
OpenVMS Compiler
Update

John Reagan
April 2025

1

History and Design

2

OpenVMS Itanium Compilers

BASIC

BLISS

C

COBOL

Fortran

PASCAL

IMACRO

C++
Intel

.OBJ LIBRARIAN .OLB LINKER .EX
E

GEM IR GEM

4

OpenVMS x86-64

• HP licensed OpenVMS to VMS Software Inc in 2014 for future platform
support which included porting to x86-64

• Legacy GEM backend is stale and doesn’t know x86-64

• Instead of throwing money at GEM, we picked LLVM to get modern code base
and not have to chase all possible chip features

• Still need to provide “recompile and go” for customers

• Leverage existing frontends which generate GEM IR/symtab

• Create a GEM IR to LLVM IR converter (G2L)

• Leverage clang as our C++ offering

OpenVMS x86-64 Compilers

BASIC

BLISS

C

COBOL

Fortran

PASCAL

XMACRO

C++
clang

Standard Interface

MCInst
Interface

LIBRARIANLLVMGEM IR LLVM IRG2L .OBJ*

* = ELF like Itanium

LINKER

.OLB

.EXE*

Internal Representation Converter Backend Code Generator

6

GEM Meets LLVM

• Map GEM IR nodes (~275) to LLVM IR nodes

• Needed about 240 GEM IR nodes for BLISS and C with remainder used by
other frontends

• Many GEM nodes have nice simple mappings, but some result in interesting
IR sequences or converter abstractions (strings, packed decimal, complex,
uplevel accesses, BASIC, etc)

• Converter currently about 36K lines of C++ (source & headers & comments)

• long double is still in progress

• GEM’s static memory initialization quite different than LLVM

7

LLVM Meets OpenVMS

• A handful of OpenVMS additions to LLVM

• Mixed pointer size linker relocations

• Memory model changes

• .note section generation for module name, compilation date/time, etc

• AMD64 ABI additions for argument count in RAX register

• Additional DWARF language tags

• Additional EH unwind descriptors for Macro-32 VAX register emulation

• Use the LLVM libc++ and libc++abi libraries including updating the abi library to
use the lib$ Calling Standard routines

• Build various LLVM tools

8

Cross-compilers and Native Bootstrapping

• We had early cross-compilers (Itanium-host, x86-target) built with an older
LLVM 3.4.2 code-base. No C++ and no BASIC. These are used to build the OS
and included in the cross-tools kits. These provide no optimization.

• We have a Linux-hosted LLVM 10 clang with the OpenVMS object additions.
• We use the Linux compiler to compile clang/LLVM, move the OBJ files to

OpenVMS, and create x86-native object libraries and the C++ compiler.
• We used the cross-compilers to build the various frontends to link with the

LLVM 10 libraries to create the first generation of native compilers including
BASIC

• We used those native compilers to build themselves natively.
• These compilers are built with optimized native compilers and generate

optimized code. There are still several areas under investigation for
optimization (routine inliner, better pointer alias analysis, etc.)

Compiler Status

9

10

Compiler Current Version Field Tests

BASIC V1.10 Soon – Bugfixes

BLISS V1.14 X1.15 – Bugfixes

C V7.6 X7.7 – Bugfixes

C++
<more slides below>

V10.1-2 (new) A10.1-3

COBOL V3.3 X3.4 – Bugfixes

Fortran V8.6 X8.7 – Bugfixes

Macro X6.0-111 (V9.2 thru V9.2-2)
V6.0-115 (V9.2-3)

V6.0-117 (V9.2-3U1)
- Improved debug support
- Bugfixes

Pascal V6.4 Soon – Bugfixes

X86ASM (native assembler) V10.0 A10.1-3 – Bugfixes

Debug

11

12

Debug

• Itanium GEM generates DWARF 2+3

• Debugger only processes the GEM DWARF, not full DWARF

• LLVM generates DWARF 4 but doesn’t know legacy compiler info

• Teaching debugger about new C++ tags

• Teaching LLVM about legacy compiler tags

• Better debugger in V9.2-3

• Even better debugger in V9.2-3 update 1

• Some fixes require better compilers

Macro

13

14

Macro-32

• Unlike Alpha and Itanium, there are not enough hardware registers to map R0-
R31

• Use memory locations for these Alpha pseudo registers managed by the
system

• Operations like ADDL3 R2,R3,R4 are two memory reads, the addition, and a
memory write

• RET instructions put the results both into R0 and %rax

• BLISS LINKAGE, C pragma linkage, DEBUG, and EH unwinding code also know
about the pseudo registers

• Porting Macro-32 should not require any changes

Legacy (non-C++)
Compilers

15

16

Legacy Compilers

• Well-written programs port with little modification needed

• Early compiler bugs are with things that are difficult to describe to LLVM such
as static data initialization and COMMON blocks

• Programs that use target-specific knowledge need to be updated

• Most common program mistakes include

• Alignment holes added by GEM protect code with buffer overruns and
32/64 bit assignment mistakes. LLVM provides no such alignment for x86.

• Any assumption about location of code in 32-bit space vs 64-bit space.

C++

17

18

C++ Update

• Itanium only at C++03 standard but many open source applications now
demand a higher level

• Itanium compiler is EDG/Intel-based with license/support issues

• Itanium STL is old with a non-portable license

• Need to update to a modern C++ for OpenVMS x86-64

• Obvious choice is the clang frontend from LLVM

19

Clang Meets OpenVMS

• Differences from Itanium

• Size of long, size_t, nullptr_t, ptrdiff_t == 64 with no option to change

• Pointer size is 64 unless changed to 32

• Names is “as-is” unless changed

• Names is “no length limit” unless changed

• Message names for pragma are different

• Current pointer-size affects new operator

• No global new/delete

• No VAX floating

• Two compilers: one with DCL interface; one with Linux interface

20

C++ V10.1-2

• Several new features including

• Listing file support similar to the Itanium compiler

• New[] now looks at current pointer size to allocate in 32-bit vs 64-bit heap

• A10.1-3 field test includes

• Assorted bugfixes for 32-bit strings; listing files; MMS dependencies

• LIBCXX/LIBCXXABI RTLs bundled with V9.2-3

• CXXFIXUP kit included in kit to help with RTL transition for V9.2-2 systems

Compiler Futures

21

22

• Complete long double support
• Improved optimization
• Continued work on debugger support

• Legacy compilers require OpenVMS-unique DWARF
• Debugger requires better C++ knowledge

• Missing /MACHINE_CODE listing
• Choice #1 – add hooks into LLVM for code and static data
• Choice #2 – add metadata into OBJ for ANAL/OBJ/DISA

• Refresh LLVM
• Currently using 10.0.1. Current version is 20.1.2.

• Provide buffer overflow detection from LLVM
• More work for libcxx for C++17 and beyond
• Investigate TLS (thread local symbols)
• Investigate various LLVM sanitizers

23

Thanks!

	Slide 1: OpenVMS Compiler Update John Reagan April 2025
	Slide 2: History and Design
	Slide 3
	Slide 4: OpenVMS x86-64
	Slide 5
	Slide 6: GEM Meets LLVM
	Slide 7: LLVM Meets OpenVMS
	Slide 8: Cross-compilers and Native Bootstrapping
	Slide 9: Compiler Status
	Slide 10
	Slide 11: Debug
	Slide 12: Debug
	Slide 13: Macro
	Slide 14: Macro-32
	Slide 15: Legacy (non-C++) Compilers
	Slide 16: Legacy Compilers
	Slide 17: C++
	Slide 18: C++ Update
	Slide 19: Clang Meets OpenVMS
	Slide 20: C++ V10.1-2
	Slide 21: Compiler Futures
	Slide 22
	Slide 23: Thanks!

