
Compaq C Run-Time Library
UtilitiesReferenceManual
Order Number: AA–R238C–TE

April 2001

This manual documents Compaq C Run-Time Library utilities used in
developing international software applications that manage localization
and time zone data.

Revision/Update Information: This manual supersedes the Compaq
C Run-Time Library Utilities Reference
Manual, Version 7.1.

Software Version: OpenVMS Alpha 7.3
OpenVMS VAX Version 7.3

Compaq Computer Corporation
Houston, Texas

© 2001 Compaq Computer Corporation

Compaq, VAX, VMS, and the Compaq logo, Registered in U.S. Patent and Trademark Office.

OpenVMS is a trademark of Compaq Information Technologies Group, L.P. in the United States and
other countries.

All other product names mentioned herein may be trademarks of their respective companies.

Confidential computer software. Valid license from Compaq required for possession, use, or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

Compaq shall not be liable for technical or editorial errors or omissions contained herein.

The information in this document is provided "as is" without warranty of any kind and is subject
to change without notice. The warranties for Compaq products are set forth in the express
limited warranty statements accompanying such products. Nothing herein should be construed as
constituting an additional warranty.

ZK6494

The Compaq OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . v

1 Overview

1.1 Creating XPG4-Compliant Localizing Applications 1–1
1.1.1 Creating and Invoking Message Catalogs . 1–1
1.1.1.1 Message Source File . 1–2
1.1.1.2 Message Catalog File . 1–2
1.1.1.3 Retrieving Messages from a Message Catalog 1–2
1.1.2 Performing Codeset Conversions . 1–2
1.1.2.1 Creating Conversion Tables . 1–2
1.1.2.2 Converting from One Codeset to Another 1–3
1.1.3 Setting International Environment Logical Names 1–3
1.2 Creating Time Zone Conversion Information . 1–4
1.2.1 Rule Lines . 1–4
1.2.2 Zone Lines . 1–6
1.2.3 Link Lines . 1–7

2 Locale File Format

2.1 Locale Categories . 2–1
2.1.1 Overriding Defaults . 2–1
2.1.2 Category Source Definitions . 2–2
2.2 LC_COLLATE Category . 2–3
2.2.1 The collating-element Statement . 2–3
2.2.2 The collating-symbol Statement . 2–4
2.2.3 The order_start Statement . 2–4
2.3 LC_CTYPE Category . 2–6
2.4 LC_MESSAGES Category . 2–9
2.5 LC_MONETARY Category . 2–10
2.5.1 LC_MONETARY Keywords . 2–10
2.5.2 Monetary Format Variations . 2–13
2.6 LC_NUMERIC Category . 2–14
2.7 LC_TIME Category . 2–15
2.7.1 Keywords . 2–16
2.7.2 Field Descriptors . 2–18
2.7.3 Sample Locale Definition . 2–20

iii

3 Character Set Description (Charmap) File

3.1 Portable Character Set . 3–1
3.2 Components of a Charmap File . 3–4

4 Command Reference

GENCAT . 4–2
ICONV COMPILE . 4–7
ICONV CONVERT . 4–12
LOCALE COMPILE . 4–14
LOCALE LOAD . 4–17
LOCALE UNLOAD . 4–19
LOCALE SHOW CHARACTER_DEFINITIONS . 4–20
LOCALE SHOW CURRENT . 4–21
LOCALE SHOW PUBLIC . 4–23
LOCALE SHOW VALUE . 4–24
zic . 4–28

Index

Tables

1–1 Day the Rule Becomes Effective . 1–5
1–2 Time of Day the Rule Becomes Effective . 1–5
2–1 LC_COLLATE Category Keywords . 2–3
2–2 LC_CTYPE Category Keywords . 2–7
2–3 LC_MESSAGES Category Keywords . 2–10
2–4 LC_MONETARY Category Keywords . 2–11
2–5 Monetary Format Variations . 2–13
2–6 LC_NUMERIC Category Keywords . 2–15
2–7 LC_TIME Category Keywords . 2–16
2–8 LC_TIME Locale Field Descriptors . 2–18
3–1 Portable Character Set . 3–1
4–1 GENCAT Command: Special Characters . 4–4
4–2 Codeset Declarations . 4–8
4–3 Locale Categories . 4–21
4–4 Locale Categories and Keywords . 4–24

iv

Preface

The Compaq C Run-Time Library Utilities Reference Manual provides detailed
usage and reference information about Compaq C Run-Time Library utilities for
managing localization and time zone data in international software applications.

Intended Audience
This manual is for programmers who use the Compaq C Run-Time Library to
develop applications that manage localization and time zone data.

Document Structure
This manual consists of four chapters.

• Chapter 1 introduces the GENGAT, ICONV, LOCALE, and ZIC programming
utilities.

• Chapter 2 explains the locale definition source file and describes the standard
locale categories that Compaq supports.

• Chapter 3 discusses the character set description (charmap) file, which defines
character symbols as character encodings.

• Chapter 4 provides complete command descriptions for the XPG4 and ZIC
utilities.

Related Documents
The following documents provide additional information about the Compaq C
Run-Time Library utilities:

• Compaq C Run-Time Library Reference Manual for OpenVMS Systems

• OpenVMS Version 7.0 New Features Manual

For additional information about Compaq OpenVMS products and services, access
the Compaq website at the following location:

http://www.openvms.compaq.com/

Reader’s Comments
Compaq welcomes your comments on this manual. Please send comments to
either of the following addresses:

Internet openvmsdoc@compaq.com

Mail Compaq Computer Corporation
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

v

How to Order Additional Documentation
Use the following World Wide Web address to order additional documentation:

http://www.openvms.compaq.com/

If you need help deciding which documentation best meets your needs, call
800-282-6672.

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose one of the options listed. Do not type
the braces in the command line.

bold text This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

vi

italic text Italic text indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TEXT Uppercase text indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Monospace text Monospace type indicates code examples and interactive screen
displays.

In the C programming language, monospace type in text
identifies the following elements: keywords, the names
of independently compiled external functions and files,
syntax summaries, and references to variables or identifiers
introduced in an example.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

vii

1
Overview

The Compaq C Run-Time Library utilities help you to manage localization and
time zone data for international software applications. Localization and time
zone data is defined separately from the application and is bound to it only at run
time.

The Compaq C Run-Time Library includes the following utilities:

• XPG4-compliant utilities (Section 1.1)

• ZIC utility (Section 1.2)

1.1 Creating XPG4-Compliant Localizing Applications
To help you develop localizing applications for use internationally, the OpenVMS
operating system offers, as part of its Compaq C Run-Time Library, several
utilities that support the XPG4 model (X/Open Portability Guide Issue 4) of
internationalization. The following XPG4-compliant utilities are provided:

• GENCAT utility (Section 1.1.1)

• ICONV utility (Section 1.1.2)

• LOCALE utility (Section 1.1.3)

These tools are useful only for applications written to the XPG4 model.

1.1.1 Creating and Invoking Message Catalogs
A message catalog is a binary file that contains the messages an application
displays or writes. This file includes all the messages that the application issues,
for example, error messages, information messages, screen displays, and prompts.
To create message catalogs, use the GENCAT command.

GENCAT reads one or more input source files and the existing catalog file, if one
exists. The source file is a text file that you create to hold the messages that your
program might print. Use any text editor to enter messages into the source file.
If you identify multiple source files, GENCAT processes them one after the other
in the sequence that you specify them. Each successive source file modifies the
catalog.

Before you or your application issues GENCAT, create the required input source
file and, if appropriate at this time, the catalog file.

For more detailed information about the GENCAT command, see Chapter 4.

Overview 1–1

Overview
1.1 Creating XPG4-Compliant Localizing Applications

1.1.1.1 Message Source File
When you create an input source file, follow these guidelines:

• Group your messages into sets to represent functional subsets of the program.

• Give each message a numeric identifier, which must be unique within its set.

• Add commands recognized by GENCAT for manipulating sets and individual
messages.

1.1.1.2 Message Catalog File
If a message catalog with the name catfile exists, GENCAT creates a new version
of the file that includes the contents of the older version and then modifies it. If
the catalog does not exist, GENCAT creates it with the name catfile.

1.1.1.3 Retrieving Messages from a Message Catalog
OpenVMS applications retrieve messages from a message catalog using the
following Compaq C Run-Time Library routines:

• catopen

• catgets

• catclose

For details, see the Compaq C Run-Time Library Reference Manual for OpenVMS
Systems.

1.1.2 Performing Codeset Conversions
The ICONV utility provides the following commands to create a conversion table
file from a conversion source file and, using this file, to convert characters from
one codeset to another:

• The ICONV COMPILE command creates a conversion table file.

• Using this conversion table file, the ICONV CONVERT command then
converts characters in another, specified file from one codeset to another.

The ICONV commands support any 1- to 4-byte codesets that are state
independent.

Note

There is a restriction in the tocodeset encodings in this implementation.
The characters in tocodeset must not use 0XFF in the fourth byte.

1.1.2.1 Creating Conversion Tables
To create a conversion table file, issue the DCL command ICONV COMPILE:

ICONV COMPILE sourcefile tablefile

See the description of the ICONV COMPILE command in Chapter 4 for the
format of the conversion source file.

See the description of the ICONV CONVERT command in Chapter 4 for the
tablefile naming convention.

1–2 Overview

Overview
1.1 Creating XPG4-Compliant Localizing Applications

1.1.2.2 Converting from One Codeset to Another
To convert characters in a file from one codeset to another codeset, issue the
ICONV CONVERT command:

ICONV CONVERT infile outfile /FROMCODE=fromcodeset /TOCODE=tocodeset

The converted characters are written to the output file parameter outfile.

1.1.3 Setting International Environment Logical Names
The LOCALE utility is an OpenVMS XPG4 localization utility that:

• Compiles a binary locale file for use by utilities and C routines dependent on
the setting of the international environment logical names

• Loads a locale name into system memory as shared, read-only global data

• Displays a summary of the current international environment as defined on
your system and details of locales on your system

• Unloads a locale name from system memory

The LOCALE utility supports the following commands:

• The LOCALE COMPILE command converts a locale source file into a binary
locale file for use by utilities and C routines. This command allows you to add
new locales to your system in addition to those specified by Compaq.

To compile a locale, the LOCALE COMPILE command uses two source files:

A locale definition source file that contains categories that describe a
locale. Locale categories, described in Table 4–3, include LC_COLLATE,
LC_CTYPE, LC_MESSAGES, LC_MONETARY, LC_NUMERIC, and
LC_TIME.

A character set description (charmap) file that defines the character set
for the locale. The charmap, which defines character symbols as character
encodings, is the source file for a coded character set (see Chapter 3).

• The LOCALE LOAD command loads a locale name into system memory as
several shared, read-only, global sections. All processes that access the loaded
locale use this one copy of the locale, thereby reducing overall demand on
system memory.

• The LOCALE UNLOAD command unloads a specified locale name from
system memory.

• The LOCALE SHOW CHARACTER_DEFINITIONS command lists the names
of the character set description files (charmaps) in the public directory defined
by the logical name SYS$I18N_LOCALE. A charmap defines the symbolic
names and values of characters in a coded character set. A charmap file has
the file type .CMAP.

• The LOCALE SHOW CURRENT command displays a summary of the current
international environment as defined by several logical names representing
locale categories. This command lists the settings for each locale category and
the values of the environment variables LC_ALL and LANG. The logical name
that defines a category has the same name as the category. For example, the
LC_MESSAGES logical name defines the setting for the LC_MESSAGES
category.

Overview 1–3

Overview
1.1 Creating XPG4-Compliant Localizing Applications

• The LOCALE SHOW PUBLIC command lists all the public locales on the
system, including locales listed in the directory defined by the logical name
SYS$118N_LOCALE as well as system locales supplied by the Compaq C
Run-Time Library.

• The LOCALE SHOW VALUE command displays the value of one or more
keywords from the current international environment. Locale categories and
keywords in each category are listed in Table 4–4.

For more information about LOCALE commands, see Chapter 4.

1.2 Creating Time Zone Conversion Information
Using the Zone Information Compiler (ZIC) utility, the ZIC compiler creates
binary files containing time zone conversion information. These files are
generated from the time zone source files that you specify.

The lines in the source files consist of fields. To create a valid time zone source
file, follow these formatting requirements:

• Any number of white space characters separate the fields.

• Leading and trailing white spaces on input lines are ignored.

• An unquoted number sign (#), the sharp character, in the input line
introduces a comment that extends to the end of the line where this sign
appears.

• White space characters and sharp characters can be enclosed in double
quotation marks (" ") if they are to be used as part of a field.

• Any line that is blank after comment stripping is ignored.

• Non-blank lines are expected to be one of three types:

Rule lines (see Section 1.2.1)

Zone lines (see Section 1.2.2)

Link lines (see Section 1.2.3)

1.2.1 Rule Lines
A rule line has the following form:

Rule NAME FROM TO TYPE IN ON AT SAVE LETTER/S

An example is as follows:

Rule USA 1969 1973 - Apr lastSun 2:00 1:00 D

The rule line consists of the following fields:

NAME
Gives the arbitrary name of the set of rules that this rule is part of.

FROM
Gives the first year in which the rule applies. The word minimum, or an
abbreviation, means the minimum year with a representable time value.
The word maximum, or an abbreviation, means the maximum year with a
representable time value.

1–4 Overview

Overview
1.2 Creating Time Zone Conversion Information

TO
Gives the final year in which the rule applies. In addition to minimum and
maximum as defined in FROM, minimum or maximum (or an abbreviation) only
may be used to repeat the value of the FROM field.

TYPE
Gives the type of year in which the rule applies. If TYPE is �, then the rule
applies in all years between FROM and TO inclusively. ZIC executes the following
command to check the type of year:

yearistype year type

An exit status of 1 means that the year is of the given type; an exit status of 5
means that the year is not of the given type.

IN
Gives the month in which the rule takes effect. Month names may be
abbreviated.

ON
Gives the day on which the rule takes effect. Table 1–1 shows the recognized
forms.

Table 1–1 Day the Rule Becomes Effective

Form Meaning

5 Fifth of the month

lastSun Last Sunday in the month

lastMon Last Monday in the month

Sun>=8 First Sunday on or after the 8th

Sun<=25 Last Sunday on or before the 25th

Names of days of the week may be abbreviated or spelled out in full. Note that
there must be no spaces within the ON field.

AT
Gives the time of day when the rule takes effect. Table 1–2 shows the recognized
forms.

Table 1–2 Time of Day the Rule Becomes Effective

Form Meaning

2 Time in hours

2:00 Time in hours and minutes

15:00 24-hour format time (for times after noon)

1:28:14 Time in hours, minutes, and seconds

Any of these forms may be followed by the letter w if the given time is local wall
clock time, or the letter s if the time is local standard time. In the absence of
either the letter w or the letter s, wall clock time is assumed.

Overview 1–5

Overview
1.2 Creating Time Zone Conversion Information

SAVE
Gives the amount of time to be added to local standard time when the rule is in
effect. This field has the same format as the AT field, although, of course, the
letter w and s suffixes are not used.

LETTER/S
Gives the variable part of time zone abbreviations to be used when this rule is in
effect; as for example, the S or D in EST or EDT. If this field is �, the variable
part is null.

1.2.2 Zone Lines
A zone line has the following form:

Zone NAME GMTOFF RULES/SAVE FORMAT UNTIL

An example is as follows:

Zone Australia/South-west 9:30 Aus CST 1987 Mar 15 2:00

The zone line consists of the following fields:

NAME
Gives the name of the time zone. This name is used in creating the time
conversion information file for the zone.

GMTOFF
Gives the amount of time to add to Greenwich mean time (GMT) to get standard
time in this zone. This field has the same format as the AT and SAVE fields of
rule lines. If time must be subtracted from GMT, begin the field with a minus
sign.

RULES/SAVE
Gives the name of the rule(s) that apply in the time zone, or alternatively, an
amount of time to add to local standard time. If this field is �, standard time
always applies in the time zone.

FORMAT
Gives the format for time zone abbreviations in this time zone. The pair
of characters %s is used to show where the variable part of the time zone
abbreviation goes.

UNTIL
Gives the time at which the GMT offset, or the rule(s) change for a location. It is
specified as the following:

A year
A month
A day
A time of day

If UNTIL is specified, the time zone information is generated from the given GMT
offset and rule change until the time specified.

If you specify UNTIL, the next line must be a continuation line. The continuation
line has the same form as the zone line except that the string Zone and the
name are omitted, for the continuation line places information starting at the
time specified in the UNTIL field in the previous line in the file used by the
previous line. Continuation lines may contain an UNTIL field, just as zone lines
do, indicating that the next line is a further continuation.

1–6 Overview

Overview
1.2 Creating Time Zone Conversion Information

1.2.3 Link Lines
A link line has the following form:

Link LINK-FROM LINK-TO

An example is as follows:

Link US/Eastern EST5EDT

In the OpenVMS implementation, Link is interpreted as a copy. Thus, the
previous line copies the information from US/Eastern to EST5EDT.

The LINK-FROM field should appear as the NAME field in some zone line. The
LINK-TO field is used as an alternate name for that zone.

Except for continuation lines, lines may appear in any order in the input.

Note

For areas with more than two types of local time, use local standard time
in the AT field of the earliest transition time’s rule to ensure that the
earliest transition time recorded in the compiled file is correct.

Overview 1–7

2
Locale File Format

A locale definition source file contains categories that describe a locale. You
can convert a locale definition source file into a locale by using the LOCALE
COMPILE command. Locales can be modified only by editing a locale definition
source file and then using the LOCALE COMPILE command again on the new
source file. Each locale source file section defines a category of locale data. A
source file cannot contain more than one section for the same category.

2.1 Locale Categories
The following standard locale categories are supported:

• LC_COLLATE — Defines character or string collation information

• LC_CTYPE — Defines character classification, case conversion, and other
character attributes

• LC_MESSAGES — Defines the format for affirmative and negative responses

• LC_MONETARY — Defines rules and symbols for formatting monetary
numeric information

• LC_NUMERIC — Defines rules and symbols for formatting nonmonetary
numeric information

• LC_TIME — Defines rules and symbols for formatting time and date
information

2.1.1 Overriding Defaults
You can include optional declarations at the beginning of your locale source file
to override the default comment and escape characters used in locale category
definitions:

• Escape character

The escape character is used in decimal or hexadecimal constants when they
are specified in the locale file. The default escape character is the backslash
(\). To define another escape character, include a line with the following
format:

escape_char <char_symbol>

• Comment character

The comment character is the first character of each comment entry in the
locale file. The default comment character is the number sign (#). To define
another comment character, use the following format:

comment_char <char_symbol>

Locale File Format 2–1

Locale File Format
2.1 Locale Categories

In the preceding formats, <char_symbol> is the character’s symbolic name as
defined in the charmap file used to build the locale’s codeset. One or more blank
characters (spaces or tabs) must separate escape_char or comment_char from
<char_symbol>.

2.1.2 Category Source Definitions
Each category source definition consists of the following:

• The category header (category_name)

• The associated keyword or value pairs that comprise the category body

• The category trailer (END category_name)

For example:

LC_CTYPE
<source for LC_CTYPE category>
END LC_CTYPE

The source for all of the categories is specified using keywords, strings, character
literals, and character symbols. Each keyword identifies either a definition or
a rule. The remainder of the statement containing the keyword contains the
operands to the keyword. Operands are separated from the keyword by one or
more blank characters (spaces or tabs). A statement may be continued on the
next line by placing a backslash (\) as the last character before the new-line
character that terminates the line. Lines containing the comment character (#)
in the first column are treated as comment lines.

A symbolic name begins with the left angle-bracket character (<) and ends with
the right angle-bracket character (>). The characters between the < and the >
can be any characters from the Portable Character Set, except for the control
and space characters. For example, <A-diaeresis> could be a symbolic name for a
character. Any symbolic name referenced in the locale source file must be defined
via the Portable Character Set or in the character set description (charmap) file
for that locale.

A character literal is the character itself, or a decimal, hexadecimal, or octal
constant. A decimal constant contains two or three decimal digits and has the
following form, where n is any decimal digit:

\dnn or \dnnn

A hexadecimal constant contains two hexadecimal digits and has the following
form, where n is any hexadecimal digit:

\xnn

An octal constant contains two or three octal digits and has the following form,
where n is any octal digit:

\nn or \nnn

The explicit definition of each category in a locale definition source file is not
required. When a category is undefined in a locale definition source file, the
LOCALE COMPILE command will not store any data value for this category in
the resulting locale file.

2–2 Locale File Format

Locale File Format
2.2 LC_COLLATE Category

2.2 LC_COLLATE Category
The LC_COLLATE category defines the relative order between collation items.
This category begins with the LC_COLLATE header and ends with the END
LC_COLLATE trailer.

A collation item is the unit of comparison for collation. A collation item may be a
character or a sequence of characters. Every collation item in the locale has a set
of weights, which determine if the collation item collates before, equal to, or after
the other collation items in the locale. Each collation item is assigned collation
weights by the LOCALE COMPILE command when the locale definition source
file is compiled. These collation weights are then used by applications programs
that compare strings.

String comparison is performed by comparing the collation weights of each
character in the string until either a difference is found or the strings are
determined to be equal. This comparison may be performed several times if the
locale defines multiple collation orders. For example, in the French locale, the
strings are compared using a primary set of collation weights. If they are equal
on the basis of this comparison, they are compared again using a secondary set of
collation weights. A collation item has a set of collation weights associated with
it that is equal to the number of collation sort rules defined for the locale.

Every character defined in the charmap file (or every character in the Portable
Character Set if no charmap file is specified) is itself a collation item. Additional
collation items can be defined using the collating-element statement (see the
description that follows).

Table 2–1 lists the statement keywords recognized in the LC_COLLATE
category.

Table 2–1 LC_COLLATE Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the
definition of this category. If you specify a copy statement,
you need not specify any other keywords in this category.

collating-element Specifies multicharacter collation items.

collating-symbol Specifies collation symbols for use in collation sequence
statements.

order_start Specifies collation order statements that assign collation
weights to collation items.

The collating-element, collating-symbol, and order_start statements are
further described in the following sections.

2.2.1 The collating-element Statement
The collating-element statement specifies multicharacter collation items.

Syntax:

collating-element <character_symbol>
from <string>

Locale File Format 2–3

Locale File Format
2.2 LC_COLLATE Category

The character_symbol argument defines a collation item that is a string of one
or more characters as a single collation item. The character_symbol cannot
duplicate any symbolic name in the current charmap file or any other symbolic
name defined in this collation definition.

The string argument specifies a string of two or more characters that define the
character_symbol argument. The following are examples of the syntax for the
collating-element statement:

collating-element <ch> from "<c><h>"
collating-element <e-acute> from "<acute><e>"
collating-element <11> from "<1><1>"

A character_symbol argument defined by the collating-element statement is
recognized only within the LC_COLLATE category.

2.2.2 The collating-symbol Statement
The collating-symbol statement specifies collation symbols for use in collation
sequence statements.

Syntax:

collating-symbol <collating_symbol>

The collating-symbol argument cannot duplicate any symbolic name in the
current charmap file or any other symbolic name defined in this collation
definition. The following are examples of collating-symbol statements:

collating-symbol <UPPER_CASE>
collating-symbol <HIGH>

An argument defined by the collating-symbol statement is recognized only
within the LC_COLLATE category.

2.2.3 The order_start Statement
The order_start statement is followed by one or more collation order statements
that assign collation weights to collation items and the order_end keyword. The
order_start statement is a required statement.

Syntax:

order_start sort_rules;sort_rules;...;sort_rules
collation_order_statements
order_end

Sort Rules
The sort_rules directives have the following syntax:

keyword, keyword,...,keyword

where keyword is FORWARD, BACKWARD, or POSITION.

The sort_rules directives are optional. If specified, they define the rules to apply
during string comparison. The number of specified sort_rules directives defines
the number of weights each collation item is assigned (that is, the directives
define the number of collation orders in the locale). If no sort_rules directives
are specified, one forward directive is assumed and comparisons are made on a
character basis rather than a string basis.

2–4 Locale File Format

Locale File Format
2.2 LC_COLLATE Category

If sort_rules directives are present, the first one applies when comparing strings
that use the primary weight, the second when comparing strings that use the
secondary weight, and so on. Each set of sort_rules directives is separated by a
semicolon (;). A sort_rules directive consists of one or more keywords separated
by commas. The following keywords are supported:

FORWARD — Specifies that collation weight comparisons proceed from the
beginning of a string to the end of the string.

BACKWARD — Specifies that collation weight comparisons proceed from the
end of a string to the beginning of the string.

POSITION — Specifies that collation weight comparisons consider the
relative position of nonignored elements in the string (that is, if strings
compare as equal, the element with the shortest distance from the starting
point of the comparison collates first).

The forward and backward keywords are mutually exclusive.

The following is an example of a sort_rules directive:

order_start forward;backward

Collation Order Statements
The following syntax rules apply to the collation order statements:

• Each collation order statement consists of a <character_symbol> specification
followed by white space and a set of collation orders.

• Characters in the character set can be explicitly specified in the collation
order statements or implicitly specified using the ellipsis symbol (...).

• A collation order statement that begins with the UNDEFINED special symbol
specifies any characters that are in the character set but not explicitly or
implicitly specified by other collation order statements.

The optional operands for each collation item are used to define the primary,
secondary, or subsequent weights for the collation item. The special symbol
IGNORE is used to indicate a collation item that is to be ignored when strings
are compared.

An ellipsis keyword appearing in place of a collating_element_list indicates
the weights are to be assigned, for the characters in the identified range, in
numerically increasing order from the weight for the character symbol on the left
side of the preceding statement.

The use of the ellipsis keyword results in a locale that may collate differently
when compiled with different character set description (charmap) source files.

The UNDEFINED special symbol includes all coded character set values not
specified explicitly or with an ellipsis symbol. These characters are inserted in
the character collation order at the point indicated by the UNDEFINED special
symbol and are all assigned the same weight. If no UNDEFINED special symbol
exists and the collation order does not specify all collation items from the coded
character set, a warning is issued and all undefined characters are placed at the
end of the character collation order.

Locale File Format 2–5

Locale File Format
2.2 LC_COLLATE Category

Example
The following is an example of a collation order statement section in the
LC_COLLATE locale definition source file category:

order_start forward;backward
UNDEFINED IGNORE;IGNORE
<LOW>
<space> <LOW>;<space>
... <LOW>;...
<a> <a>;<a>
<a-acute> <a>;<a-acute>
<a-grave> <a>;<a-grave>
<A> <a>;<A>
<A-acute> <a>;<A-acute>
<A-grave> <a>;<A-grave>
<ch> <ch>;<ch>
<Ch> <ch>;<Ch>
<s> <s>;<s>
<ss> <s><s>;<s><s>
<eszet> <s><s>;<eszet><eszet>
... <HIGH>;...
<HIGH>
order_end

This example is interpreted as follows:

• The UNDEFINED special symbol indicates that all characters not specified
in the definition (either explicitly or by the ellipsis symbol) are ignored for
collation purposes.

• All collation items between <space> and <a> have the same primary
equivalence class and individual secondary weights based on their coded
character-set values.

• All versions of the letter a (uppercase and lowercase, and with or without
diacriticals) belong to the same primary collation class.

• The <c><h> multicharacter collation item is represented by the <ch> collating
symbol and belongs to the same primary equivalence class as the <C><h>
multicharacter collation item.

• The <eszet> character is collated as an <s><s> string (that is, one <eszet>
character is expanded to two characters before comparing).

2.3 LC_CTYPE Category
The LC_CTYPE category defines character classification, case conversion, and
other character attributes. This category begins with the LC_CTYPE header and
ends with the END LC_CTYPE trailer.

All operands for LC_CTYPE category statements are defined as lists of
characters. Each list consists of one or more characters or symbolic character
names separated by semicolons. An ellipsis (...) can represent a series of
characters; for example, <a>;...;<z> represents the characters in the range a
through z.

Table 2–2 lists the statement keywords recognized in the LC_CTYPE category.
In the keyword descriptions, the phrase ‘‘automatically included’’ means that
an error does not occur if the referenced characters are included or omitted;
the characters are provided if they are missing, and are accepted if they are
present.

2–6 Locale File Format

Locale File Format
2.3 LC_CTYPE Category

Table 2–2 LC_CTYPE Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the definition for this
category.

If you specify a copy statement, you cannot specify any other keyword.

upper Defines uppercase letter characters.

Do not specify any character defined by the cntrl, digit, punct, or space
keyword. The uppercase letters A through Z are automatically included in
this set.

lower Defines lowercase letter characters.

Do not specify any character defined by the cntrl, digit, punct, or space
keyword. The lowercase letters a through z are automatically included in
this set.

alpha Defines all letter characters.

Do not specify any character defined by the cntrl, digit, punct, or
space keyword. Characters defined by the upper and lower keywords are
automatically included in this character class.

digit Defines numeric digit characters.

Only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be specified. The digits 0
through 9 are automatically included in this set.

space Defines white-space characters.

Do not specify any character defined by the upper, lower, alpha, digit,
graph, or xdigit keyword. The space, form-feed, new-line, carriage-return,
tab, and vertical tab characters are automatically included in this set.

cntrl Defines control characters.

Do not specify any character defined by the upper, lower, alpha, digit,
punct, graph, print, or xdigit keyword.

punct Defines punctuation characters.

Do not specify the space character or any character defined by the upper,
lower, alpha, digit, cntrl, or xdigit keywords.

graph Defines printable characters, excluding the space character.

Do not specify any character defined by the cntrl keyword. The characters
defined by the upper, lower, alpha, digit, xdigit, and punct keywords
are automatically included in this character class.

print Defines printable characters, including the space character.

Do not specify any character defined by the cntrl keyword. The space
character and characters defined by the upper, lower, alpha, digit,
xdigit, and punct keywords are automatically included in this character
class.

xdigit Defines hexadecimal digit characters.

Only the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9 can be specified. Any character,
however, can be specified for the hexadecimal values for 10 to 15. These
alternate hexadecimal digits are not used by standard conversion routines
when converting digit strings from hexadecimal to numeric quantities.
The numbers 0 through 9 and the letters A through F and a through f are
automatically included in this set.

(continued on next page)

Locale File Format 2–7

Locale File Format
2.3 LC_CTYPE Category

Table 2–2 (Cont.) LC_CTYPE Category Keywords

Keyword Description

blank Defines blank characters.

The space and horizontal tab characters are included in this character class.
Any characters defined by this statement are automatically included in the
space class.

toupper Defines the mapping of lowercase characters to uppercase characters.

Operands for this keyword consist of character pairs separated by commas.
Each character pair is enclosed in parentheses () and separated from the
next pair by a semicolon (;). The first character in each pair is considered
a lowercase character; the second character is considered an uppercase
character. Only characters defined by the lower and upper keywords can
be specified. If toupper is not specified, a through z is mapped to A through
Z by default.

tolower Defines the mapping of uppercase characters to lowercase characters.

Operands for this keyword consist of character pairs separated by commas.
Each character pair is enclosed in parentheses () and separated from the
next pair by a semicolon (;). The first character in each pair is considered
an uppercase character; the second character is considered a lowercase
character. Only characters defined by the lower and upper keywords can
be specified.

If tolower is not specified, the mapping defaults to the reverse mapping of
the toupper keyword, if specified. If the toupper and tolower keywords
are both omitted, the mapping for each defaults to that of the C locale.

Additional keywords can be provided to define new character classifications. For
example:

charclass vowel
vowel <a>;<e>;<i>;<o>;<u>;<y>

The LC_CTYPE category does not support multicharacter elements (for example,
the German Eszet character is traditionally classified as a lowercase letter). In
proper capitalization of German text, the Eszet character is replaced by the two
characters SS; there is no corresponding uppercase letter. This kind of conversion
is outside the scope of the toupper and tolower keywords.

2–8 Locale File Format

Locale File Format
2.3 LC_CTYPE Category

The following is a sample LC_CTYPE category specified in a locale definition
source file:

LC_CTYPE
#"alpha" is by default "upper" and "lower"
#"alnum" is by definition "alpha" and "digit"
#"print" is by default "alnum", "punct" and the space character
#"graph" is by default "alnum" and "punct"
#"tolower" is by default the reverse mapping of "toupper"
#
upper <A>;;<C>;<D>;<E>;<F>;<G>;<H>;<I>;<J>;<K>;<L>;<M>;\

<N>;<O>;<P>;<Q>;<R>;<S>;<T>;<U>;<V>;<W>;<X>;<Y>;<Z>
#
lower <a>;;<c>;<d>;<e>;<f>;<g>;<h>;<i>;<j>;<k>;<l>;<m>;\

<n>;<o>;<P>;<q>;<r>;<s>;<t>;<u>;<v>;<w>;<X>;<y>;<z>
#
digit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>
#
space <tab>;<newline>;<vertical-tab>;<form-feed>;\

<carriage-return>;<space>
#
cntrl <alert>;<backspace>;<tab>;<newline>;<vertical-tab>;\

<form-feed>;<carriage-return>;<NUL>;<SOH>;<STX>;\
<ETX>;<EOT>;<ENQ>;<ACK>;<SO>;<SI>;<DLE>;<DC1>;<DC2>;\
<DC3>;<DC4>;<NAK>;<SYN>;<ETB>;<CAN>;;<SUB>;\
<ESC>;<IS4>;<IS3>;<IS2>;<IS1>;

#
punct <exclamation-mark>;<quotation-mark>;<number-sign>;\

<dollar-sign>;<percent-sign>;<ampersand>;<asterisk>;\
<apostrophe>;<left-parenthesis>;<right-parenthesis>;\
<plus-sign>;<comma>;<hyphen>;<period>;<slash>;\
<colon>;<semicolon>;<less-than-sign>;<equals-sign>;\
<greater-than-sign>;<question-mark>;<commercial-at>;\
<left-square-bracket>;<backslash>;<circumflex>;\
<right-square-bracket>;<underline>;<grave-accent>;\
<left-curly-bracket>;<vertical-line>;<tilde>;\
<right-curly-bracket>

#
xdigit <zero>;<one>;<two>;<three>;<four>;<five>;<six>;\

<seven>;<eight>;<nine>;<A>;;<C>;<D>;<E>;<F>;\
<a>;;<c>;<d>;<e>;<f>

#
blank <space>;<tab>
#
toupper (<a>,<A>);(,);(<c>,<C>);(<d>,<D>);(<e>,<E>);\

(<f>,<F>);(<g>,<G>);(<h>,<H>);(<i>,<I>);(<j>,<J>);\
(<k>,<K>);(<l>,<L>);(<m>,<M>);(<n>,<N>);(<o>,<O>);\
(<P>,<P>);(<q>,<Q>);(<r>,<R>);(<s>,<S>);(<t>,<T>);\
(<u>,<U>);(<v>,<V>);(<w>,<W>);(<X>,<X>);(<y>,<Y>);\
(<z>,<Z>)

#
END LC_CTYPE

2.4 LC_MESSAGES Category
The LC_MESSAGES category defines the format for affirmative and negative
system responses. This category begins with the LC_MESSAGES header and
ends with the END LC_MESSAGES trailer.

All operands for the LC_MESSAGES category are defined as strings or extended
regular expressions bounded by double quotation marks ("). These operands are
separated from the keyword they define by one or more blank characters (spaces
or tabs). Two adjacent double quotation marks ("") indicate an undefined value.

Locale File Format 2–9

Locale File Format
2.4 LC_MESSAGES Category

Table 2–3 lists the statement keywords recognized in the LC_MESSAGES
category.

Table 2–3 LC_MESSAGES Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the definition of this
category.

If you specify a copy statement, you cannot specify any other keyword.

yesexpr Specifies an extended regular expression that describes the acceptable
affirmative response to a question expecting an affirmative or negative
response.

noexpr Specifies an extended regular expression that describes the acceptable
negative response to a question expecting an affirmative or negative
response.

yesstr Specifies the locale’s equivalent of an acceptable affirmative response.

This string is accessible to applications through the nl_langinfo
subroutine as nl_langinfo (YESSTR). Note that yesstr is likely to
be withdrawn from the XPG4 standard; yesexpr is the recommended
alternative.

nostr Specifies the locale’s equivalent of an acceptable negative response.

This string is accessible to applications through the nl_langinfo
subroutine as nl_langinfo (NOSTR). Note that nostr is likely to
be withdrawn from the XPG4 standard; noexpr is the recommended
alternative.

The following is a sample LC_MESSAGES category specified in a locale definition
source file:

LC_MESSAGES
#
yesexpr "<circumflex><left-square-bracket><y><Y>\
<right-square-bracket>"
noexpr "<circumflex><left-square-bracket><n><N>\
<right-square-bracket>"
yesstr "<y><e><s>"
nostr "<n><o>"
#
END LC_MESSAGES

2.5 LC_MONETARY Category
The LC_MONETARY category defines rules and symbols for formatting monetary
numeric information. This category begins with the LC_MONETARY header and
ends with the END LC_MONETARY trailer.

2.5.1 LC_MONETARY Keywords
All operands for the LC_MONETARY category keywords are defined as string
or integer values. String values are bounded by double quotation marks (").
All values are separated from the keyword they define by one or more blank
characters (spaces or tabs). Two adjacent double quotation marks ("") indicate an
undefined string value. A negative one (-1) indicates an undefined integer value.

2–10 Locale File Format

Locale File Format
2.5 LC_MONETARY Category

Table 2–4 lists the statement keywords recognized in the LC_MONETARY
category.

Table 2–4 LC_MONETARY Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the
definition of this category.

If you specify a copy statement, you cannot specify any other
keyword.

int_curr_symbol Specifies the string used for the international currency symbol.

The operand for this keyword is a 4-character string†. The first
three characters contain the alphabetic international currency
symbol. The fourth character defines a character separator
for insertion between the international currency symbol and a
monetary quantity.

currency_symbol Specifies the string used for the local currency symbol.

mon_decimal_point Specifies the decimal delimiter string used for formatting
monetary quantities.

mon_thousands_sep Specifies the character separator used for grouping digits to the
left of the decimal delimiter in formatted monetary quantities.

mon_grouping Specifies a string that defines the size of each group of digits in
formatted monetary quantities.

The operand for this keyword consists of a sequence of integers
separated by semicolons. Each integer specifies the number of
digits in a group. The first integer defines the size of the group
immediately to the left of the decimal delimiter. Subsequent
integers define succeeding groups to the left of the previous
group. If the last integer is not -1, it is used to group any
remaining digits. If the last integer is -1, no further grouping
is performed.

A sample interpretation of the mon_grouping statement
follows. Assuming a value of 123456789 to be formatted and a
mon_thousands_sep operand of ’ (single quotation mark), the
following results occur:

mon_grouping Formatted Value

3;-1 123456’789

3 123’456’789

3;2;-1 1234’56’789

3;2 12’34’56’789

positive_sign Specifies the string used to indicate a nonnegative-formatted
monetary quantity.

negative_sign Specifies the string used to indicate a negative-formatted
monetary quantity.

int_frac_digits Specifies an integer value representing the number of
fractional digits (those after the decimal delimiter) to be
displayed in a formatted monetary quantity using the
int_curr_symbol value.

†The current implementation of the Compaq C Run-Time Library allows more than four characters
to be specified. However, the user should not rely on this fact and use it exactly as specified. The
4-character limit will be implemented in a future version of the Compaq C Run-Time Library.

(continued on next page)

Locale File Format 2–11

Locale File Format
2.5 LC_MONETARY Category

Table 2–4 (Cont.) LC_MONETARY Category Keywords

Keyword Description

frac_digits Specifies an integer value representing the number of
fractional digits (those after the decimal delimiter) to be
displayed in a formatted monetary quantity using the
currency_symbol value.

p_cs_precedes Specifies an integer value indicating whether the
int_curr_symbol or currency_symbol string precedes
or follows the value for a nonnegative-formatted monetary
quantity.

The following integer values are recognized:

0 The currency symbol follows the monetary quantity.

1 The currency symbol precedes the monetary quantity.

p_sep_by_space Specifies an integer value indicating whether the
int_curr_symbol or currency_symbol string is separated
by a space from a nonnegative-formatted monetary quantity.

The following integer values are recognized:

0 No space separates the currency symbol from the
monetary quantity.

1 A space separates the currency symbol from the
monetary quantity.

2 A space separates the currency symbol and the
positive_sign string, if adjacent.

n_cs_precedes Specifies an integer value indicating whether the
int_curr_symbol or currency_symbol string precedes or
follows the value for a negative-formatted monetary quantity.

The following integer values are recognized:

0 The currency symbol follows the monetary quantity.

1 The currency symbol precedes the monetary quantity.

n_sep_by_space Specifies an integer value indicating whether the
int_curr_symbol or currency_symbol string is separated
by a space from a negative-formatted monetary quantity.

The following integer values are recognized:

0 No space separates the currency symbol from the
monetary quantity.

1 A space separates the currency symbol from the
monetary quantity.

2 A space separates the currency symbol and the
negative_sign string, if adjacent.

(continued on next page)

2–12 Locale File Format

Locale File Format
2.5 LC_MONETARY Category

Table 2–4 (Cont.) LC_MONETARY Category Keywords

Keyword Description

p_sign_posn Specifies an integer value indicating the positioning of the
positive_sign string for a nonnegative-formatted monetary
quantity.

The following integer values are recognized:

0 A left parenthesis and right parenthesis symbol enclose
both the monetary quantity and the int_curr_symbol
or currency_symbol string.

1 The positive_sign string precedes the quantity and
the int_curr_symbol or currency_symbol string.

2 The positive_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3 The positive_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4 The positive_sign string immediately follows the
int_curr_symbol or currency_symbol string.

n_sign_posn Specifies an integer value indicating the positioning of the
negative_sign string for a negative-formatted monetary
quantity.

The following integer values are recognized:

0 A left parenthesis and right parenthesis symbol enclose
both the monetary quantity and the int_curr_symbol
or currency_symbol string.

1 The negative_sign string precedes the quantity and
the int_curr_symbol or currency_symbol string.

2 The negative_sign string follows the quantity and the
int_curr_symbol or currency_symbol string.

3 The negative_sign string immediately precedes the
int_curr_symbol or currency_symbol string.

4 The negative_sign string immediately follows the
int_curr_symbol or currency_symbol string.

2.5.2 Monetary Format Variations
You can produce a unique customized monetary format by changing the value of a
single statement. Table 2–5 shows the results of using all combinations of defined
values for the p_cs_precedes, p_sep_by_space, and p_sign_posn statements.

Table 2–5 Monetary Format Variations

p_sep_by_space = 2 1 0

p_cs_precedes = 1 p_sign_posn = 0 ($1.25) ($ 1.25) ($1.25)

p_sign_posn = 1 + $1.25 +$ 1.25 +$1.25

p_sign_posn = 2 $1.25 + $ 1.25+ $1.25+

p_sign_posn = 3 + $1.25 +$ 1.25 +$1.25

p_sign_posn = 4 $ +1.25 $+ 1.25 $+1.25

(continued on next page)

Locale File Format 2–13

Locale File Format
2.5 LC_MONETARY Category

Table 2–5 (Cont.) Monetary Format Variations

p_sep_by_space = 2 1 0

p_cs_precedes = 0 p_sign_posn = 0 (1.25 $) (1.25 $) (1.25$)

p_sign_posn = 1 +1.25 $ +1.25 $ +1.25$

p_sign_posn = 2 1.25$ + 1.25 $+ 1.25$+

p_sign_posn = 3 1.25+ $ 1.25 +$ 1.25+$

p_sign_posn = 4 1.25$ + 1.25 $+ 1.25$+

The following is a sample LC_MONETARY category specified in a locale definition
source file:

LC_MONETARY
#
int_curr_symbol "<U><S><D><space>"
currency_symbol "<dollar-sign>"
mon_decimal_point "<period>"
mon_thousands_sep "<comma>"
mon_grouping 3
positive_sign "<plus-sign>"
negative_sign "<hyphen>"
int_frac_digits 2
frac_digits 2
p_cs_precedes 1
p_sep_by_space 2
n_cs_precedes 1
n_sep_by_space 2
p_sign_posn 3
n_sign_posn 3
#
END LC_MONETARY

2.6 LC_NUMERIC Category
The LC_NUMERIC category defines rules and symbols for formatting
nonmonetary numeric information. This category begins with the LC_NUMERIC
and ends with the END LC_NUMERIC trailer.

All operands for the LC_NUMERIC category keywords are defined as string
or integer values. String values are bounded by double quotation marks (").
All values are separated from the keyword they define by one or more blank
characters (spaces or tabs). Two adjacent double quotation characters ("")
indicate an undefined string value. A negative one (-1) indicates an undefined
integer value.

Table 2–6 lists the statement keywords recognized in the LC_NUMERIC
category.

2–14 Locale File Format

Locale File Format
2.6 LC_NUMERIC Category

Table 2–6 LC_NUMERIC Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the definition
of this category.

If you specify a copy statement, you cannot specify any other
keyword.

decimal_point Specifies the decimal delimiter string used to format nonmonetary
numeric quantities.

This keyword cannot be omitted and cannot be set to the undefined
string value.

thousands_sep Specifies the string separator used for grouping digits to the left of
the decimal delimiter in formatted nonmonetary numeric quantities.

grouping Defines the size of each group of digits in formatted monetary
quantities.

The operand for the grouping keyword consists of a sequence
of integers separated by semicolons. Each integer specifies the
number of digits in a group. The first integer defines the size of the
group immediately to the left of the decimal delimiter. Subsequent
integers define succeeding groups to the left of the previous group.
Grouping is performed for each integer specified for the grouping
keyword. If the last integer is not -1, it is used repeatedly to group
any remaining digits. If the last integer is -1, no more grouping is
performed.

A sample interpretation of the grouping statement follows.
Assuming a value of 123456789 to be formatted and a
thousands_sep operand of ’ (single quotation mark), the following
results occur:

grouping Formatted Value

3;-1 123456’789

3 123’456’789

3;2;-1 1234’56’789

3;2 12’34’56’789

The following is a sample LC_NUMERIC category specified in a locale definition
source file:

LC_NUMERIC
#
decimal_point "<period>"
thousands_sep "<comma>"
grouping <3>
#
END LC_NUMERIC

2.7 LC_TIME Category
The LC_TIME category defines rules and symbols for formatting time and date
information. This category begins with the LC_TIME category header and ends
with the END LC_TIME trailer.

Locale File Format 2–15

Locale File Format
2.7 LC_TIME Category

All operands for the LC_TIME category keywords are defined as string or integer
values. String values are bounded by double quotation marks ("). All values
are separated from the keyword they define by one or more blank characters
(spaces or tabs). Two adjacent double quotation characters ("") indicate an
undefined string value. Field descriptors, described later in this section, are used
by commands and subroutines that query the LC_TIME category to represent
elements of time and date formats.

2.7.1 Keywords
Table 2–7 lists the statement keywords recognized in the LC_TIME category.

Table 2–7 LC_TIME Category Keywords

Keyword Description

copy Specifies the name of an existing locale to be used as the definition of
this category.

If you specify a copy statement, you cannot specify any other keyword.

abday Defines the abbreviated weekday names corresponding to the %a field
descriptor.

Recognized values consist of seven strings separated by semicolons. The
first string corresponds to the abbreviated name for the first day of the
week (Sun), the second to the abbreviated name for the second day of the
week, and so on.

day Defines the full spelling of the weekday names corresponding to the %A
field descriptor.

Recognized values consist of seven strings separated by semicolons. The
first string corresponds to the full spelling of the name of the first day
of the week (Sunday), the second to the name of the second day of the
week, and so on.

abmon Defines the abbreviated month names corresponding to the %b field
descriptor.

Recognized values consist of 12 strings separated by semicolons. The
first string corresponds to the abbreviated name for the first month of
the year (Jan), the second to the abbreviated name for the second month
of the year, and so on.

mon Defines the full spelling of the month names corresponding to the %B
field descriptor.

Recognized values consist of 12 strings separated by semicolons. The
first string corresponds to the full spelling of the name for the first
month of the year (January), the second to the full spelling of the name
for the second month of the year, and so on.

d_t_fmt Defines the string used for the standard date-and-time format
corresponding to the %c field descriptor. The string can contain any
combination of characters and field descriptors.

d_fmt Defines the string used for the standard date format corresponding to the
%x field descriptor. The string can contain any combination of characters
and field descriptors.

t_fmt Defines the string used for the standard time format corresponding
to the %X field descriptor. The string can contain any combination of
characters and field descriptors.

(continued on next page)

2–16 Locale File Format

Locale File Format
2.7 LC_TIME Category

Table 2–7 (Cont.) LC_TIME Category Keywords

Keyword Description

am_pm Defines the strings used to represent a.m. (before noon) and p.m.
(afternoon) corresponding to the %p field descriptor.

Recognized values consist of two strings separated by semicolons. The
first string corresponds to the a.m. designation, the second string
corresponds to the p.m. designation.

t_fmt_ampm Defines the string used for the standard 12-hour time format that
includes an am_pm value (%p field descriptor).

This statement corresponds to the %r field descriptor. The string can
contain any combination of characters and field descriptors. If the string
is empty, the 12-hour format is not supported by the locale.

era Defines how the years are counted and displayed for each era in a locale,
corresponding to the %E field descriptor modifier.

For each era, there must be one string in the following format:

direction:offset:start_date:end_date:name:format

The variables for the era string format are defined as follows:

• direction — Specifies a minus (-) or a plus (+) character.

The minus character (-) indicates that years count in the negative
direction when moving from the start date to the end date. The plus
character (+) indicates that years count in the positive direction
when moving from the start date to the end date.

• offset — Specifies a number representing the first year of the era
corresponding to the %Ey field descriptor.

• start_date — Specifies the starting date of the era in yyyy/mm/dd
format, where yyyy, mm, and dd are the year, month, and day,
respectively, on the Gregorian calendar.

Years prior to the year A.D. 1 are represented as negative numbers.
For example, an era beginning March 5 in the year 100 B.C. would
be represented as -100/03/05.

• end_date — Specifies the ending date of the era in the same form
used for the start_date variable or one of the two special values -*
or +*.

A -* value indicates that the ending date of the era extends
backward to the beginning of time. A +* value indicates that the
ending date of the era extends forward to the end of time. Therefore,
the ending date can be chronologically before or after the starting
date of the era. For example, the strings for the Christian eras A.D.
and B.C. would be entered, respectively, in the following way:

+:0:0000/01/01:+*:AD:%Ey %EC
+:1:-0001/12/31:-*:BC:%Ey %EC

• name — Specifies a string representing the name of the era that is
substituted for the %EC field descriptor.

• format — Specifies a strftime, strptime, and wcsftime format
string to use when formatting the %EY field descriptor.

This string can contain any strftime, strptime, and wcsftime
format control characters (except %EY) and locale-dependent
multibyte characters.

(continued on next page)

Locale File Format 2–17

Locale File Format
2.7 LC_TIME Category

Table 2–7 (Cont.) LC_TIME Category Keywords

Keyword Description

An era value consists of one string (enclosed in quotation marks) for each
era. If more than one era is specified, each era string is separated by a
semicolon (;).

era_d_fmt Defines the string used to represent the date in alternate-era format
corresponding to the %Ex field descriptor. The string can contain any
combination of characters and field descriptors.

era_t_fmt Defines the locale’s alternative time format as represented by the %EX
field descriptor for strftime, strptime, and wcsftime.

era_d_t_fmt Defines the locale’s alternative date-and-time format as represented by
the %Ec field descriptor for strftime, strptime, and wcsftime.

alt_digits Defines alternate strings for digits corresponding to the %O field
descriptor.

Recognized values consist of a group of strings separated by semicolons.
The first string represents the alternate string for 0 (zero), the second
string represents the alternate string for 1, and so on. You can specify a
maximum of 100 alternate strings.

2.7.2 Field Descriptors
The LC_TIME locale definition source file uses field descriptors to represent
elements of time and date formats. You can combine these field descriptors to
create other field descriptors or to create time and date format strings. When
used in format strings that contain field descriptors and other characters, field
descriptors are replaced by their current values. All other characters are copied
without change. Table 2–8 lists the field descriptors used by commands and
subroutines that query the LC_TIME category for time formatting.

Table 2–8 LC_TIME Locale Field Descriptors

Field
Descriptor Meaning

%a Represents the abbreviated weekday name (for example, Sun) defined by the
abday statement.

%A Represents the full weekday name (for example, Sunday) defined by the day
statement.

%b Represents the abbreviated month name (for example, Jan) defined by the
abmon statement.

%B Represents the full month name (for example, January) defined by the mon
statement.

%c Represents the date-and-time format defined by the d_t_fmt statement.

%C Represents the century as a decimal number (00 to 99).

%d Represents the day of the month as a decimal number (01 to 31).

%D Represents the date in %m/%d/%y format (for example, 01/31/91).

(continued on next page)

2–18 Locale File Format

Locale File Format
2.7 LC_TIME Category

Table 2–8 (Cont.) LC_TIME Locale Field Descriptors

Field
Descriptor Meaning

%e Represents the day of the month as a decimal number (1 to 31).

If the day of the month is not a 2-digit number, the leading digit is filled
with a space character.

%Ec Specifies the alternate date-and-time representation for the locale.

%EC Specifies the name of the base year (period) in the locale’s alternate
representation.

%Ex Specifies the alternate date representation for the locale.

%Ey Specifies the offset from %EC (year only) in the locale’s alternate
representation.

%EY Specifies the full alternate year representation.

%h Represents the abbreviated month name (for example, Jan) defined by
the abmon statement. This field descriptor is a synonym for the %b field
descriptor.

%H Represents the 24-hour clock hour as a decimal number (00 to 23).

%I Represents the 12-hour clock hour as a decimal number (01 to 12).

%j Represents the day of the year as a decimal number (001 to 366).

%m Represents the month of the year as a decimal number (01 to 12).

%M Represents the minutes of the hour as a decimal number (00 to 59).

%n Specifies a new-line character.

%Od Specifies the day of the month by using the locale’s alternate numeric
symbols.

%Oe Specifies the day of the month by using the locale’s alternate numeric
symbols.

%OH Specifies the hour (24-hour clock) by using the locale’s alternate numeric
symbols.

%OI Specifies the hour (12-hour clock) by using the locale’s alternate numeric
symbols.

%Om Specifies the month by using the locale’s alternate numeric symbols.

%OM Specifies the minutes by using the locale’s alternate numeric symbols.

%OS Specifies the seconds by using the locale’s alternate numeric symbols.

%OU Specifies the week number of the year (with Sunday as the first day of the
week) by using the locale’s alternate numeric symbols.

%Ow Specifies the weekday as a number in the locale’s alternate representation
(Sunday = 0).

%OW Specifies the week number of the year (with Monday as the first day of the
week) by using the locale’s alternate numeric symbols.

%Oy Specifies the year (offset from %C) using the locale’s alternate numeric
symbols.

%p Represents the a.m. or p.m. string defined by the am_pm statement.

%r Represents the 12-hour clock time with a.m./p.m. notation as defined by the
t_fmt_ampm statement.

%S Represents the seconds of the minute as a decimal number (00 to 59).

(continued on next page)

Locale File Format 2–19

Locale File Format
2.7 LC_TIME Category

Table 2–8 (Cont.) LC_TIME Locale Field Descriptors

Field
Descriptor Meaning

%t Specifies a tab character.

%T Represents 24-hour clock time in the format %H:%M:%S (for example,
16:55:15).

%U Represents the week of the year as a decimal number (00 to 53).

Sunday, or its equivalent as defined by the day statement, is considered the
first day of the week for calculating the value of this field descriptor.

%w Represents the day of the week as a decimal number (0 to 6).

Sunday, or its equivalent as defined by the day statement, is considered to
be 0 (zero) for calculating the value of this field descriptor.

%W Represents the week of the year as a decimal number (00 to 53).

Monday, or its equivalent as defined by the day statement, is considered the
first day of the week for calculating the value of this field descriptor.

%x Represents the date format defined by the d_fmt statement.

%X Represents the time format defined by the t_fmt statement.

%y Represents the year of the century (00 to 99).

%Y Represents the year as a decimal number (for example, 1989).

%% Specifies a % (percent sign) character.

2.7.3 Sample Locale Definition
The following is a sample LC_TIME category specified in a locale definition source
file:

LC_TIME
#
#Abbreviated weekday names (%a)
abday "<S><u><n>";"<M><o><n>";"<T><u><e>";"<W><e><d>";\

"<T><h><u>";"<F><r><i>";"<S><a><t>"

#Full weekday names (%A)
day "<S><u><n><d><a><y>";"<M><o><n><d><a><y>";\

"<T><u><e><s><d><a><y>";"<W><e><d><n><e><s><d><a><y>";\
<T><h><u><r><s><d><a><y>";"<F><r><i><d><a><y>";\
<S><a><t><u><r><d><a><y>"

#Abbreviated month names (%b)
abmon "<J><a><n>";"<F><e>";"<M><a><r>";"<A><P><r>";\

"<M><a><y>";"<J><u><n>";"<J><u><l>";"<A><u><g>";\
<S><e><P>";"<O><c><t>";"<N><o><v>";"<D><e><c>"

#Full month names (%B)
mon "<J><a><n><u><a><r><y>";"<F><e><r><u><a><r><y>";\

"<M><a><r><c><h>";"<A><P><r><i><l>";"<M><a><y>";\
<J><u><n><e>";"<J><u><l><y>";"<A><u><g><u><s><t>";\
"<S><e><P><t><e><m><e><r>";"<O><c><t><o><e><r>";\
<N><o><v><e><m><e><r>";"<D><e><c><e><m><e><r>"

#Date-and-time format (%c)
#Note that for improved readability, this section uses actual
#characters, rather than symbolic names, and is inconsistent with
#the other sections in this example. This is bad form.
#In practice, symbolic names should be used.
d_t_fmt "%a %b %d %H:%M:%S %Y"

2–20 Locale File Format

Locale File Format
2.7 LC_TIME Category

#
#Date format (%x)
d_fmt "%m/%d/%y"
#
#Time format (%X)
t_fmt "%H:%M:%S"
#
#Equivalent of AM/PM (%p)
am_pm "<A><M>";"<P><M>"
#
#12-hour time format (%r)
#Note that for improved readability, this section uses actual
#characters, rather than symbolic names, and is inconsistent with
#the other sections in this example. This is bad form.
#In practice, symbolic names should be used.
t_fmt_ampm "%I:%M:%S %p"
#
era "+:0:0000/01/01:+*:AD:%Ey %EC";\
"+:1:-0001/12/31:-*:BC:%Ey %EC"

era_d_fmt ""
alt_digits "<0><t><h>";"<1><s><t>";"<2><n><d>";"<3><r><d>";\

"<4><t><h>";"<5><t><h>";"<6><t><h>";"<7><t><h>";\
"<8><t><h>";"<9><t><h>";"<1><0><t><h>"

#
END LC_TIME

Locale File Format 2–21

3
Character Set Description (Charmap) File

The character set description file, called the charmap file, defines character
symbols as character encodings. This file is the source file for a coded character
set, or codeset.

3.1 Portable Character Set
All supported codesets have the Portable Character Set (PCS) as a proper subset.
The PCS consists of the character symbols (listed by their standardized symbolic
names) and their hexadecimal encodings, as shown in Table 3–1.

Table 3–1 Portable Character Set

Symbol Name Hexadecimal Encoding

<NUL> \x00

<alert> \x07

<backspace> \x08

<tab> \x09

<newline> \x0A

<vertical-tab> \x0B

<form-feed> \x0C

<carriage-return> \x0D

<space> \x20

<exclamation-mark> \x21

<quotation-mark> \x22

<number-sign> \x23

<dollar-sign> \x24

<percent> \x25

<ampersand> \x26

<apostrophe> \x27

<left-parenthesis> \x28

<right-parenthesis> \x29

<asterisk> \x2A

<plus-sign> \x2B

<comma> \x2C

<hyphen> \x2D

(continued on next page)

Character Set Description (Charmap) File 3–1

Character Set Description (Charmap) File
3.1 Portable Character Set

Table 3–1 (Cont.) Portable Character Set

Symbol Name Hexadecimal Encoding

<period> \x2E

<slash> \x2F

<zero> \x30

<one> \x31

<two> \x32

<three> \x33

<four> \x34

<five> \x35

<six> \x36

<seven> \x37

<eight> \x38

<nine> \x39

<colon> \x3A

<semi-colon> \x3B

<less-than> \x3C

<equal-sign> \x3D

<greater-than> \x3E

<question-mark> \x3F

<commercial-at> \x40

<A> \x41

 \x42

<C> \x43

<D> \x44

<E> \x45

<F> \x46

<G> \x47

<H> \x48

<I> \x49

<J> \x4A

<K> \x4B

<L> \x4C

<M> \x4D

<N> \x4E

<O> \x4F

<P> \x50

<Q> \x51

<R> \x52

<S> \x53

(continued on next page)

3–2 Character Set Description (Charmap) File

Character Set Description (Charmap) File
3.1 Portable Character Set

Table 3–1 (Cont.) Portable Character Set

Symbol Name Hexadecimal Encoding

<T> \x54

<U> \x55

<V> \x56

<W> \x57

<X> \x58

<Y> \x59

<Z> \x5A

<left-bracket> \x5B

<backslash> \x5C

<right-bracket> \x5D

<circumflex> \x5E

<underscore> \x5F

<grave-accent> \x60

<a> \x61

 \x62

<c> \x63

<d> \x64

<e> \x65

<f> \x66

<g> \x67

<h> \x68

<i> \x69

<j> \x6A

<k> \x6B

<l> \x6C

<m> \x6D

<n> \x6E

<o> \x6F

<p> \x70

<q> \x71

<r> \x72

<s> \x73

<t> \x74

<u> \x75

<v> \x76

<w> \x77

<x> \x78

<y> \x79

(continued on next page)

Character Set Description (Charmap) File 3–3

Character Set Description (Charmap) File
3.1 Portable Character Set

Table 3–1 (Cont.) Portable Character Set

Symbol Name Hexadecimal Encoding

<z> \x7A

<left-brace> \x7B

<vertical-line> \x7C

<right-brace> \x7D

<tilde> \x7E

3.2 Components of a Charmap File
A charmap file has the following components:

• An optional special symbolic name declarations section

Each declaration in this section consists of a special symbolic name, followed
by one or more space or tab characters, and a value. The following list
describes the special symbolic names that you can include in the declarations
section:

<code_set_name>

Specifies the name of the codeset for which the charmap file is defined.
This value determines the value returned by the nl_langinfo (CODESET)
subroutine. If <code_set_name> is not declared, the name for the Portable
Character Set is used.

<mb_cur_max>

Specifies the maximum number of bytes in a character for the codeset.
Valid values are 1 to 4. The default value is 1.

<mb_cur_min>

Specifies the minimum number of bytes in a character for the codeset.
Since all supported codesets have the Portable Character Set as a proper
subset, this value must be 1.

<escape_char>

Specifies the escape character that indicates encodings in hexadecimal or
octal notation. The default value is a backslash (\).

<comment_char>

Specifies the character used to indicate a comment within a charmap file.
The default value is the number sign (#).

• The CHARMAP section header

This header marks the beginning of the section that associates character
symbols with encodings.

• Mapping statements for characters in the codeset

Each statement specifies a symbolic name for a character and the associated
encoding for that character. A mapping statement has the following format:

<char_symbol> encoding

3–4 Character Set Description (Charmap) File

Character Set Description (Charmap) File
3.2 Components of a Charmap File

A symbolic name begins with the left angle-bracket (<) character and ends
with the right angle-bracket (>) character. For char_symbol (the name
between < and >), you can use any characters from the Portable Character
Set, except for control and space characters. You can use a > in char_symbol;
if you do, precede all > characters except the last one with the escape
character (as specified by the <escape_char> special symbolic name).

An encoding is specified as one or more character constants, with the
maximum number of character constants specified by the <mb_cur_max>
special symbolic name. The encoding may be specified as decimal, octal, or
hexadecimal constants with the following formats:

• Decimal constant: \dnn or \dnnn, where n is any decimal digit

• Octal constant: \nn or \nnn, where n is any octal digit

• Hexadecimal constant: \xnn, where n is any hexadecimal digit

The following are sample character symbol definitions:

<A> \d65 #decimal constant
 \x42 #hexadecimal constant
<j10101> \x81\xA1 #multiple hexadecimal constants

You can also define a range of symbolic names and corresponding encoded
values, where the nonnumeric prefix for each symbolic name is common, and
the numeric portion of the second symbolic name is equal to or greater than
the numeric portion of the first symbolic name. In this format, a symbolic
name value consists of zero or more nonnumeric characters followed by an
integer of one or more decimal digits. This format defines a series of symbolic
names. For example, the string <j0101>...<j0104> is interpreted as the
symbolic names <j0101>, <j0102>, <j0103>, and <j0104>, in that order.

In statements defining ranges of symbolic names, the specified encoded value
is the value for the first symbolic name in the range. Subsequent symbolic
names have encoded values in increasing order. Consider the following
sample statement:

<j0101>...<j0104> \d129\d254

This sample statement is interpreted as follows:

<j0101> \d129\d254
<j0102> \d129\d255
<j0103> \d130\d0
<j0104> \d130\d1

You cannot assign multiple encodings to one symbolic name, but you can
create multiple names for one encoded value because some characters have
several common names. For example, the . character is called a period in
some parts of the world, and a full stop in others. You can specify both names
in the charmap. For example:

<period> \x2e
<full-stop> \x2e

Any comments must begin with the character specified by the <comment_char>
special symbolic name. When an entire line is a comment, you must specify
the <comment_char> in the first column of the line.

• The END CHARMAP section trailer

This trailer indicates the end of character map statements.

Character Set Description (Charmap) File 3–5

Character Set Description (Charmap) File
3.2 Components of a Charmap File

The following is a portion of a sample charmap file:

CHARMAP
<code_set_name> "ISO8859-1"
<mb_cur_max> 1
<mb_cur_min> 1
<escape_char> \
<comment_char> #

<NUL> \x00
<SOH> \x01
<STX> \x02
<ETX> \x03
<EOT> \x04
<ENQ> \x05
<ACK> \x06
<alert> \x07
<backspace> \x08
<tab> \x09
<newline> \x0a
<vertical-tab> \x0b
<form-feed> \x0c
<carriage-return> \x0d
END CHARMAP

3–6 Character Set Description (Charmap) File

4
Command Reference

This section describes the following commands offered by the Compaq C
Run-Time Library utilities:

• GENCAT

• ICONV COMPILE

• ICONV CONVERT

• LOCALE COMPILE

• LOCALE LOAD

• LOCALE UNLOAD

• LOCALE SHOW CHARACTER_DEFINITIONS

• LOCALE SHOW CURRENT

• LOCALE SHOW PUBLIC

• LOCALE SHOW VALUE

• zic

Command Reference 4–1

GENCAT

GENCAT

Merges message text source files into a message catalog file.

Format

GENCAT msgfile[,...] catfile

Parameters

msgfile
Required.

Name of the message text source file. The default file type is .MSGX.

catfile
Required.

Name of the message catalog output file. If catfile already exists, a new version
is created that includes the messages in the existing catalog. The file type must
be .CAT.

Qualifiers

None.

Description

The GENCAT command creates new message catalogs from one or more input
source files and an existing catalog file (if one exists). A message catalog is
a binary file containing the messages for an application. This includes all
messages that the application issues, such as error messages, screen displays,
and prompts. Applications retrieve messages from a message catalog using the
catopen, catgets, and catclose C Run-Time Library routines. See the Compaq
C Run-Time Library Reference Manual for OpenVMS Systems for details of these
routines.

A message text source file is a text file that you create to hold messages printed
by your program. You can use any text editor to enter messages into the text
source file. Messages can be grouped into sets, usually to represent functional
subsets of your program. Each message has a numeric identifier, which must be
unique within its set. The message text source file can also contain commands
recognized by GENCAT for manipulating sets and individual messages.

You can specify any number of message text source files. The GENCAT command
processes multiple source files one after the other in the sequence that you specify
them. Each successive source file modifies the catalog.

If a message catalog with the name catfile exists, GENCAT creates a new version
of the file that includes the contents of the older version and then modifies it. If
the catalog does not exist, GENCAT creates the catalog with the name catfile.

The catfile can contain the following commands:

• message_number text

4–2 Command Reference

GENCAT

Inserts text as a message with the identifier message_number. Follow these
guidelines:

Numbers must be ascending within each set. You can skip a number,
but you cannot go back to add a missing number or replace an existing
number during a GENCAT session.

If the message text is empty and a space or tab field separator is present,
an empty string is stored in the message catalog.

If a message source line has a message number but neither a field
separator nor message text, the existing message with that number (if
any) is deleted from the catalog.

• $delset set_number

Deletes the set of messages indicated by set_number.

• $quote character

Sets the quote character to character. See the Examples section for more
information.

• $set set_number

Indicates that all messages entered after this command are placed in the set
indicated by set_number. You can change the set by entering another $set
command. However, set numbers must be entered in ascending order; you
cannot go back to a lower numbered set during the GENCAT session. If the
command is not used, the default set number is 1.

Each initial keyword or number must be followed by white space. The GENCAT
utility ignores any line that begins with a space, a tab, or a dollar sign ($)
character followed by a space, a tab, or a newline character. Therefore, you
can use these sequences to start comments in your catfile. Blank lines are also
ignored. Finally, you can place comments on the same line after the $delset,
$quote, or $set commands because GENCAT ignores anything that follows these
commands.

A line beginning with a digit marks a message to be included in the catalog.
You can specify any amount of white space between the message ID number and
the message text; however, when the message text is not delimited by quotation
marks, one space or tab character is recommended. When message text is not in
quotation marks, GENCAT treats additional white space as part of the message.
When message text is enclosed in quotation marks, GENCAT ignores all spaces
or tabs between the message ID and the first quotation character.

Escape sequences such as those recognized by the C language can be used in text.
The escape character (\), a backslash, can be used to insert special characters in
the message text. See Table 4–1.

Command Reference 4–3

GENCAT

Table 4–1 GENCAT Command: Special Characters

Escape
Sequence Character

\n New Line
\t Horizontal Tab
\v Vertical Tab
\b Backspace
\r Carriage Return
\f Form Feed
\\ Backslash Character (\). Use to continue message text on the

following line.
\ddd The single-byte character associated with the octal value ddd.

You can specify one, two, or three octal digits. However, you
must include leading zeros if the characters following the octal
digits are also valid octal digits; for example, the octal value
for $ (dollar sign) is 44. To insert $5.00 into a message, use
\0445.00, not \445.00; otherwise the 5 is parsed as part of the
octal value.

Error

When GENCAT reports an error, no action is taken on any commands and an
existing catalog is left unchanged.

Examples

1. $set 10 Communication Error Messages

This example uses the $set command in a source file to assign a set number
to a group of messages.

The message set number is 10. All messages after the $set command and
up to the next $set command are assigned a message set number of 10.
(Set numbers must be assigned in ascending order but they need not be
contiguous.)

You can include a comment in the $set command.

2. $delset 10 Communication Error Messages

This example uses the $delset command to remove from a catalog all
messages belonging to the specified message set (10, in this case).

The $delset command must be placed in the proper set number order with
respect to any $set commands in the same source file. You can include a
comment in the $delset command.

4–4 Command Reference

GENCAT

3. 12 "file removed"

This example shows how to enter the message text and assign a message ID
number to it. In this case, a message ID of 12 is assigned to the text that
follows it.

Leave at least one space or tab character between the message ID number
and the message text, but you can include more spaces or tabs if you prefer.
If you do include more spaces or tabs, they are ignored when the message
text is in quotation marks and they are considered part of the text when the
message text is not in quotation marks.

Message numbers must be in ascending order within a single message set but
they need not be contiguous.

All text following the message number and up to the end of the line is
included as message text. If you place the escape character (\), a backslash,
as the last character on the line, the message text continues on the following
line. Consider the following example:

This is the text associated with \
message number 5.

The two lines in the example define the following single-line message:

This is the text associated with message number 5.

4. $quote " Use a double quote to delimit message text
$set 10 Message Facility - Quote command messages
1 "Use the $quote command to define a character \
\n for delimiting message text" \n
2 "You can include the \"quote\" character in a message \n \
by placing a \\ (backslash) in front of it" \n
3 You can include the "quote" character in a message \n \
by having another character as the first nonspace \
\n character after the message ID number \n
$quote
4 You can disable the quote mechanism by \n \
using the $quote command without \n a character \
after it \n

This example shows the effect of a quote character.

The $quote command defines the double quote (") as the quote character.
The quote character must be the first nonspace character after the message
number. Any text following the next occurrence of the quote character is
ignored.

This example also shows two ways to include the quote character in the
message text:

• Place a backslash (\) in front of the quote character.

• Use another character as the first nonspace character after the message
number. This disables the quote character for that message only.

This example also shows the following:

• A backslash (\) is still required to split a quoted message across lines.

• To display a backslash (\) in a message, you must place another backslash
(\) in front of it.

Command Reference 4–5

GENCAT

• You can format your message with a new-line character by using \n.

• If you use the $quote command with no character argument, you disable
the quote mechanism.

4–6 Command Reference

ICONV COMPILE

ICONV COMPILE

Creates a conversion table file from a conversion source file. The conversion table
file is used by the ICONV CONVERT command to convert characters in a file
from one codeset to another.

Format

ICONV COMPILE sourcefile tablefile

Parameters

sourcefile
Required.

Name of the conversion source file. The default file type is .ISRC. The file naming
convention that Compaq uses for conversion source files is:

fromcodeset_tocodeset.isrc

tablefile
Required.

Name of the conversion table file to be created. The default file type is .ICONV.
The required file naming convention for conversion table files is:

fromcodeset_tocodeset.iconv

Public conversion table files are in the directory defined by the logical name
SYS$I18N_ICONV. Put new conversion table files in the same directory if you
want to make them available systemwide.

Qualifiers

/LISTING[= listfile]
Directs ICONV COMPILE to produce a listing file, which contains the source file
listing and any error messages generated during compilation. If the file name is
omitted from the qualifier, the default listing file name is sourcefile.LIS.

Description

The ICONV commands support any 1- to 4-byte codesets that are state
independent. They do not support state-dependent codesets.

Note

There is an implementation restriction in the tocodeset encodings in this
implementation. The characters in tocodeset must not use 0XFF in the
fourth byte.

The conversion source file contains the character conversion rules for a specific
conversion.

Command Reference 4–7

ICONV COMPILE

The format of a codeset conversion source file is defined as follows:

<fromcodeset_mb_cur_max> value
<fromcodeset_mb_cur_min> value
<tocodeset_mb_cur_max> value
<tocodeset_mb_cur_min> value
<fallback_code> value
<escape_char> value
<comment_char> value
<fromcodeset_range> value...value;value...value;...;value...value
ICONV_TABLE
fromvalue tovalue
fromvalue tovalue

. .

. .

. .
fromvalue tovalue
END ICONV_TABLE

where the <...> symbols and their associated values are codeset declarations, and
the fromvalue/tovalue pairs are character conversion rules.

Codeset Declarations
The codeset declarations must precede the character conversion rules. Each
declaration consists of a symbol, starting in column 1 and including the
surrounding brackets, followed by one or more blanks (tabs or spaces), followed
by the value to be assigned to the symbol. See Table 4–2.

Table 4–2 Codeset Declarations

Symbol Value

<fromcodeset_mb_cur_max> The maximum number of bytes in a character in
the fromcodeset. This value defaults to 1.

<fromcodeset_mb_cur_min> The minimum number of bytes in a character in
the fromcodeset. This value must be less than
or equal to fromcodeset_mb_cur_max. If this
value is not specified, it defaults to the value of
fromcodeset_mb_cur_max.

<tocodeset_mb_cur_max> The maximum number of bytes in a character in
the tocodeset. This value defaults to 1.

<tocodeset_mb_cur_min> The minimum number of bytes in a character in
the tocodeset. This value must be less than or
equal to tocodeset_mb_cur_max. If this value is
not specified, it defaults to the value of tocodeset_
mb_cur_max.

(continued on next page)

4–8 Command Reference

ICONV COMPILE

Table 4–2 (Cont.) Codeset Declarations

Symbol Value

<fallback_code> The tovalues for the fromvalues that appear in
the <fromcodeset_range> but are not specified
between ICONV_TABLE and END ICONV_
TABLE. Specify one of three kinds of values:

• SAME — Specifies that the tovalues are the
same as the fromvalues.

• ERROR — Specifies that the conversion
from the fromvalue to a tovalue is not
supported. ICONV CONVERT issues a
warning and ignores the rest of the record
read. The Compaq C Run-Time Library
routine iconv returns to the caller with an
‘‘illegal character’’ error.

• User-defined tovalue — The fromvalues
are converted to the specified user-defined
tovalue.
The user-defined tovalue can represent a
multibyte character with the restriction that
0XFF cannot be used as the value in the
fourth byte. The settings for user-defined
tovalues for <fallback_code> are the same
as the settings for character conversion
rule values. You can use octal, decimal, or
hexadecimal digits. If the <fallback_code>
is not specified, it defaults to SAME.

<escape_char> The escape character used to indicate that
subsequent characters are interpreted in a
special way. The escape character defaults to
backslash (\).

<comment_char> The character that, when placed in column 1 of a
line, indicates that the line will be ignored. The
default comment character is the number sign
(#).

<fromcodeset_range> The fromcodeset encoding ranges. Specify this
declaration if the fromcodeset is a multibyte
codeset. If the fromcodeset is omitted, it defaults
to a single-byte codeset and the table created by
ICONV COMPILE will support only single-byte
fromcodeset conversions.

When specifying codeset encoding ranges for the fromcodeset, every zone of
characters must be specified. If any zones of characters are missing from the
<fromcodeset_range> specification, the codeset conversion might be incorrect.
It is very important to specify the codeset encoding ranges correctly for the
fromcodesets supported by the rest of the Compaq C Run-Time Library. If this is
not done, the codeset support for iconv and the rest of the Compaq C Run-Time
Library will not be consistent.

Command Reference 4–9

ICONV COMPILE

For example, the fromcodeset ranges for EUCJP are specified as:

<fromcodeset_range> \x0...\x7f;\x8e\xa1...\x8e\xfe;
\xa1\xa1...\xfe\xfe;\x8f\xa1\xa1...\x8f\xfe\xfe

The settings for <fromcodeset_range> values are the same as the settings for
character conversion rule values. You can use octal, decimal, or hexadecimal
digits.

Character Conversion Rules
The character conversion rules are all the lines between the string
ICONV_TABLE starting in column 1 and END ICONV_TABLE starting in
column 1.

Character conversion rules must begin in column 1.

Empty lines and lines containing a comment_char in the first column are ignored.
Comments are optional.

Character conversion rules can have one of two forms:

fromvalue tovalue

fromvalue...fromvalue tovalue

Place one or more blanks (tabs or spaces) between fromvalue and tovalue.

Use the first format to define a single-character conversion rule. For example:

\d32 \d101
\d37 \d106

Use the second format to define a range of character conversion rules. In this
format, the ending fromvalue must be equal to or greater than the starting
fromvalue. The subsequent fromvalues defined by the range are converted to
tovalues in increasing order.

For example, consider the following line:

\d223\d32...\d223\d35 \d129\d254

This line is interpreted as:

\d223\d32 \d129\d254
\d223\d33 \d129\d255
\d223\d34 \d130\d0
\d223\d35 \d130\d1

For settings of fromvalue and tovalue:

• A decimal constant is defined as one, two, or three decimal digits preceded by
the escape character and lowercase d. For example: \d42.

• An octal constant is defined as one, two, or three octal digits preceded by the
escape character. For example: \141.

• A hexadecimal constant is defined as one or two hexadecimal digits preceded
by the escape character and a lowercase x. For example: \x6a.

Each constant represents a single-byte value. You can represent multibyte values
by concatenating two or more decimal, octal, or hexadecimal constants.

4–10 Command Reference

ICONV COMPILE

Note

When constants are concatenated for multibyte values, they must have
the same radix (decimal, octal, or hexadecimal). Only characters in the
Portable Character Set can be used to construct conversion source files.

Also see the ICONV CONVERT command.

Errors

If an error is encountered during processing, ICONV COMPILE does not generate
an output tablefile. If a warning is encountered, a valid table file is created.
However, because a warning can indicate a user error, always check the returned
warning messages.

Some ICONV COMPILE error messages and their descriptions follow.

%ICONV-E-INVFCSRNG, syntax error in <fromcodeset_range> definition

The previous error occurs when the definition of the <fromcodeset_range>
symbol does not conform to the required syntax. The <fromcodeset_range>
symbol defines encoding ranges and is required for multibyte codesets.

%ICONV-E-INVSYNTAX, invalid file syntax

The previous error occurs when a line in the source does not conform to the
required syntax.

%ICONV-E-BADTABLE, bad table caused by invalid value for <fromcodeset_range>
definition

The previous error occurs when an invalid value is specified for the codeset
encoding ranges. The encoding ranges are defined by the <fromcodeset_range>
symbol.

Examples

1. $ ICONV COMPILE /LISTING EUCTW_DECHANYU.ISRC EUCTW_DECHANYU.ICONV

This example shows how to create a conversion table file to convert the
EUCTW codeset to the DECHANYU codeset. The listing file, EUCTW_
DECHANYU.LIS, contains a listing of the source file and any error messages
generated by the compiler.

Command Reference 4–11

ICONV CONVERT

ICONV CONVERT

Converts characters in a file from one codeset to another codeset. The converted
characters are written to an output file.

Format

ICONV CONVERT infile outfile

Parameters

infile
Required.

Name of the file that contains the characters to be converted. The /FROMCODE
qualifier specifies the codeset of the characters in this file.

outfile
Required.

Name of the file created by ICONV CONVERT. The /TOCODE qualifier specifies
the codeset of the characters in this file.

Qualifiers

/FROMCODE=fromcodeset
Required.

Specifies the codeset of the characters in infile.

/TOCODE=tocodeset
Required.

Specifies the codeset of the characters in outfile.

Description

The ICONV CONVERT command converts the characters in infile from the
codeset identified by the /FROMCODE qualifier to the codeset identified by the
/TOCODE qualifier. The converted file is written to outfile.

The conversion is done in one of two ways:

• Using a conversion table file to look up the converted characters. This is
the default method. Conversion table files are created by the DCL command
ICONV COMPILE.

• Using a shareable image file that implements the required conversion. This
method can be used whenever the implementation of a converter by table is
either not convenient, for example, huge virtual address space versus small
space by algorithm, or not possible, for example, for state dependent encoding
like ISO2022.

4–12 Command Reference

ICONV CONVERT

The converter’s file naming convention, valid for both table or image file type of
implementations, is:

fromcodeset_tocodeset.iconv

Note

If you add conversion files to your system, they must use the same
file-naming convention.

ICONV CONVERT searches your current directory for a converter file. If it
cannot find the file, it then searches the system directory defined by the logical
name SYS$I18N_ICONV.

Examples

1. $ ICONV CONVERT /FROMCODE=EUCTW /TOCODE=DECHANYU -
_$ FROMFILE.DAT TOFILE.DAT

This example shows a conversion from EUCTW characters to DECHANYU
characters. The EUCTW characters in the file FROMFILE.DAT are converted
to the corresponding DECHANYU characters. The converted characters are
stored in the file TOFILE.DAT.

Command Reference 4–13

LOCALE COMPILE

LOCALE COMPILE

Converts a locale source file into a binary locale file. The binary locale file is
used by those utilities and C routines that are dependent on the setting of the
international environment logical names.

Format

LOCALE COMPILE sourcefile

Parameters

sourcefile
Required.

Name of the locale source file, which defines each category of the locale. The
default file type for the source file is .LSRC. For the definition of the locale source
file format, see Chapter 2.

Qualifiers

/CHARACTER_DEFINITIONS=filename
/NOCHARACTER_DEFINITIONS
Optional. Default: /NOCHARACTER_DEFINITIONS

Specifies a character-set description file (charmap) for the locale. This file maps
characters to their actual character encodings.

If a charmap is not specified, no symbolic names (other than collating symbols
defined in a collating symbol keyword) are allowed in the locale source file.

For a definition of the charmap file format, see Chapter 3. The default file type
for a charmap is .CMAP.

/DISPLAY[=[NO]HOLE]
Optional. Default: /DISPLAY=NOHOLE

Used with certain Chinese locales and terminals to specify that 4-byte characters
occupy four printing positions (columns) on the terminal display. The default
value (/DISPLAY=NOHOLE) specifies that 4-byte characters occupy two printing
positions.

/IGNORE=WARNINGS
/NOIGNORE
Optional. Default: /NOIGNORE

Generates an output file even if LOCALE COMPILE issues warning messages.
Use the /IGNORE keyword cautiously because the warnings could indicate user
errors that you might want to correct before using the resulting locale file.

/LISTING[=filename]
/NOLISTING
Optional. Batch default: /LISTING; interactive default: /NOLISTING

Name of the listing file. The /SHOW qualifier controls the information included
in the listing file. If the file name is omitted, the default is sourcefile.LIS.

4–14 Command Reference

LOCALE COMPILE

/OUTPUT=[filename]
/NOOUTPUT
Optional. Default: /OUTPUT=sourcefile.LOCALE

Name of the output file. Public locales are stored in the directory defined by the
logical name SYS$I18N_LOCALE. If the output file is in any other location, the
locale is private.

/NOOUTPUT results in no output file creation, even if the compilation succeeds.

/SHOW[=(keyword[,...])]
Optional. Default: /SHOW=(SOURCE,TERMINAL)

/SHOW, together with /LISTING, controls the information included in the listing
file. You can specify the following keywords:

Keyword Description

ALL Include all information.
BRIEF Include a summary of the symbol table.
[NO]CHARACTER_
DEFINITIONS

Include or omit the charmap file.

NONE Do not print any information. The listing file contains
only the generated error messages.

[NO]SOURCE Include or omit a listing of the source file.
[NO]STATISTICS Include or omit compiler performance information.
[NO]SYMBOLS Include or omit a listing of the charmap symbol table.
[NO]TERMINAL Display compiler messages at the terminal.

Description

Use the LOCALE COMPILE command to add new locales to your system in
addition to those supplied by Compaq. To compile a locale, LOCALE COMPILE
requires two files:

• A charmap file that defines the character set for the locale. If you do not
specify a charmap file, symbolic names cannot be specified in the locale source
file. If this happens, LOCALE COMPILE issues an error or warning message,
depending on the category processed, and no output file is produced. (Also see
the /IGNORE qualifier.)

• A locale source file. This file describes one or more of the locale
categories: LC_CTYPE, LC_COLLATE, LC_MESSAGES, LC_MONETARY,
LC_NUMERIC, and LC_TIME.

Errors

The following error messages are related to the LOCALE COMPILE command:

• %LOCALE-E-CASEALRDY, case conversion already exists for ’character’

Where character is a character from the codeset. This error can occur when
the locale compiler is processing the LC_CTYPE category. It indicates that
more than one case conversion is specified for character.

Command Reference 4–15

LOCALE COMPILE

• %LOCALE-E-PREOFCMAP, premature end of file in charmap file

Occurs if there is no END CHARMAP statement in the charmap file.

• %LOCALE-E-PREEOFSRC, premature end of file in source file

Occurs if there is an error with the END statements in the locale source file.

• %LOCALE-F-NOADDSYM, failed to add symbol to symbol table

Occurs when there is insufficient memory to finish the compilation. Check
the amount of memory available to your process.

• %LOCALE-F-NOINITSYM, failed to initialize symbol table

Occurs if memory is insufficient to finish the compilation. Check the amount
of memory available to your process.

Examples

1. $ LOCALE COMPILE EN_GB_ISO8859-1 /CHARACTER_DEFINITIONS=ISO8859-1 -
_$ /LIST /SHOW=(CHARACTER_DEFINITIONS,SYMBOLS,STATISTICS)

This example shows how to generate a locale file named EN_GB_ISO8859-
1.LOCALE from the source file EN_GB_ISO8859-1.LSRC, using the charmap
file ISO8859-1.CMAP. To use this locale file, copy it to the SYS$I18N_
LOCALE directory and set the LANG logical to "EN_GB.ISO8859-1".
The listing file contains a listing of the charmap file, the symbol table,
performance information, and any error messages generated by the compiler.

4–16 Command Reference

LOCALE LOAD

LOCALE LOAD

Loads the specified locale name into the system’s memory as shared, read-only
global data.

Format

LOCALE LOAD locale_identifier

Parameters

locale_identifier
Required.

Character string that identifies the locale to be loaded. Specify one of the
following:

• Name of the public locale

Specifies the public locale. Use the format:

language_country.codeset[@modifier]

LOCALE LOAD searches for the public locale binary file in the location
defined by the logical name SYS$I18N_LOCALE. The file type defaults to
.LOCALE. The period (.) and at-sign (@) characters in the name specified
are replaced by underscore (_) characters.

For example, if the name specified is "zh_CN.dechanzi@radical", LOCALE
LOAD searches for the following binary locale file:

SYS$I18N_LOCALE:ZH_CN_DECHANZI_RADICAL.LOCALE

• Name of a file

Specifies the binary locale file. This can be any valid file specification. If
either the device or directory is not specified, LOCALE LOAD first applies
the current caller’s device and directory as defaults. If the file is not found,
the device and directory defined by the SYS$I18N_LOCALE logical name are
used as defaults. The file type defaults to .LOCALE.

Wildcards are not valid. The binary locale file cannot reside on a remote node.

Qualifiers

None.

Description

The LOCALE LOAD command loads the specified locale name into the system’s
memory as several shared, read-only, global sections. All processes that access
the loaded locale then use this one copy of the locale, thereby reducing overall
demand on system memory.

This DCL command is privileged, typically issued by the system manager. The
following privileges are required:

• SYSGBL

• PRMGBL

Command Reference 4–17

LOCALE LOAD

Examples

1. $ LOCALE LOAD JA_JP_DECKANJI

This example shows how to load the JA_JP_DECKANJI locale.

4–18 Command Reference

LOCALE UNLOAD

LOCALE UNLOAD

Unloads the specified locale name from system memory.

Format

LOCALE UNLOAD locale

Parameters

locale
Required.

Character string that identifies the locale to be unloaded. See the LOCALE
LOAD command for acceptable formats for this parameter.

Qualifiers

None.

Description

The LOCALE UNLOAD command unloads the specified locale name from
the system’s memory. If a process is accessing the locale when the UNLOAD
command is entered, the global sections are deleted after the process deaccesses
the locale.

This DCL command is privileged, typically issued by the system manager. The
following privileges are required:

• SYSGBL

• PRMGBL

Note

You can unload only locale files loaded with the LOCALE LOAD
command.

Examples

1. $ LOCALE UNLOAD JA_JP_DECKANJI

This example shows how to unload the JA_JP_DECKANJI locale.

Command Reference 4–19

LOCALE SHOW CHARACTER_DEFINITIONS

LOCALE SHOW CHARACTER_DEFINITIONS

Lists character set description files (charmaps).

Format

LOCALE SHOW CHARACTER_DEFINITIONS

Parameters

None.

Qualifiers

None.

Description

The LOCALE SHOW CHARACTER_DEFINITIONS command lists the names of
the character set description files (charmaps) in the public directory defined by
the logical name SYS$I18N_LOCALE.

A charmap defines the symbolic names and values of characters in a coded
character set. Charmaps are used by the LOCALE COMPILE command when
compiling a locale. A charmap file has the file type .CMAP.

Examples

1. $ LOCALE SHOW CHARACTER_DEFINITIONS

[SYS$I18N.LOCALES.SYSTEM]DECHANYU
[SYS$I18N.LOCALES.SYSTEM]DECHANZI
[SYS$I18N.LOCALES.SYSTEM]DECKANJI
[SYS$I18N.LOCALES.SYSTEM]DECKOREAN
[SYS$I18N.LOCALES.SYSTEM]EUCJP
[SYS$I18N.LOCALES.SYSTEM]EUCTW
[SYS$I18N.LOCALES.SYSTEM]ISO8859-1
[SYS$I18N.LOCALES.SYSTEM]ISO8859-2
[SYS$I18N.LOCALES.SYSTEM]ISO8859-3
[SYS$I18N.LOCALES.SYSTEM]ISO8859-4
[SYS$I18N.LOCALES.SYSTEM]ISO8859-5
[SYS$I18N.LOCALES.SYSTEM]ISO8859-7
[SYS$I18N.LOCALES.SYSTEM]ISO8859-8
[SYS$I18N.LOCALES.SYSTEM]ISO8859-9
[SYS$I18N.LOCALES.SYSTEM]MITACTELEX
[SYS$I18N.LOCALES.SYSTEM]SDECKANJI
[SYS$I18N.LOCALES.SYSTEM]SJIS

This example displays the names of the charmap files, all in the SYS$I18N_
LOCALE directory.

4–20 Command Reference

LOCALE SHOW CURRENT

LOCALE SHOW CURRENT

Displays a summary of the current international environment as defined by
several international environment logical names.

Format

LOCALE SHOW [CURRENT]

Parameters

None.

Qualifiers

None.

Description

The LOCALE SHOW CURRENT command lists the settings for each locale
category and the values of the environment variables LC_ALL and LANG.

The CURRENT keyword is the default and is, therefore, optional. The logical
name that defines a category has the same name as the category. For example,
the LC_MESSAGES logical name defines the setting for the LC_MESSAGES
category. Table 4–3 describes the locale categories.

Table 4–3 Locale Categories

Category Description

LC_COLLATE Information about collating sequences
LC_CTYPE Information about character classification
LC_MESSAGES Information about the language of program messages

and the format of yes/no prompts
LC_MONETARY Information about monetary formatting
LC_NUMERIC Information about formatting numbers
LC_TIME Information about time and date

Each locale category is defined by scanning the following logical names in the
order shown, until a logical name is found. If the logical name found does not
represent a valid locale file, LOCALE SHOW displays the string "C" for all the
categories.

1. LC_ALL

2. Logical names corresponding to the categories specified in the table (For
example, if LC_NUMERIC is specified as a valid locale category, the LOCALE
SHOW CURRENT command displays the name of the category and the locale
name it defines.)

3. LANG

4. SYS$LC_ALL

Command Reference 4–21

LOCALE SHOW CURRENT

5. The system default for the locale categories as specified by the SYS$* logical
names. (For example, the default for the category LC_NUMERIC is defined
by the SYS$LC_NUMERIC logical name.)

6. SYS$LANG

The system manager can choose to define SYS$* logicals in the site-specific
system startup files to set the default locale. If no definition is provided,
programs operate using the built-in ‘‘C’’ locale, in which case the LOCALE SHOW
CURRENT command displays the string ‘‘C’’ for the current locale categories.

Errors

If any logical names that define the environment are improperly defined, no
warning message is issued. However, the actual international environment is
listed exactly as it would be seen by an application that uses the Compaq C
Run-Time Library routine setlocale (for instance, if in the previous example the
SPECIAL.LOCALE file does not exist, then the display for the LC_MESSAGES
category would show LC_MESSAGES="C").

Examples

1. $ DEFINE LC_COLLATE EN_US.ISO8859-1 ! NOTE: the collate category in unquoted
$ DEFINE LANG EN_GB_ISO8859-1
$ DEFINE LC_MESSAGES PRIVATE$DISK:[APPL.LOCALES]SPECIAL.LOCALE
$ LOCALE SHOW CURRENT

LANG="EN_GB_ISO8859-1"
LC_CTYPE="EN_GB_ISO8859-1"
LC_COLLATE=EN_US_ISO8859-1
LC_TIME="EN_GB_ISO8859-1"
LC_NUMERIC="EN_GB_ISO8859-1"
LC_MONETARY="EN_GB_ISO8859-1"
LC_MESSAGES=PRIVATE$DISK:[APPL.LOCALES]SPECIAL.LOCALE;1
LC_ALL=

This example shows a process where all locale categories except
LC_COLLATE and LC_MESSAGES have defaulted to the same locale,
EN_GB.ISO8859-1. A setting enclosed in double quotation marks indicates
that the setting is implied by the setting of one of the following logical names:
LANG, LC_ALL, SYS$LC_ALL, or SYS$LANG. A setting not enclosed by
double quotes indicates that the logical name for that category defines the
international environment. This example also shows that if a locale category
is specified by a complete file specification, then the complete file specification
is displayed.

4–22 Command Reference

LOCALE SHOW PUBLIC

LOCALE SHOW PUBLIC

Lists all the public locales on the system.

Format

LOCALE SHOW PUBLIC

Parameters

None.

Qualifiers

None.

Description

The LOCALE SHOW PUBLIC command lists all the public locales on the system.
The set of public locales contains all the locales that reside in the directory
defined by the logical name SYS$I18N_LOCALE as well as the system’s built-in
locales supplied with the Compaq C Run-Time Library.

Examples

1. $ LOCALE SHOW PUBLIC

C (Built-in)
POSIX (Built-in)
[SYS$I18N.LOCALES.SYSTEM]EN_GB_ISO8859_1
[SYS$I18N.LOCALES.SYSTEM]EN_US_ISO8859_1
[SYS$I18N.LOCALES.SYSTEM]FR_CA_ISO8859_1
[SYS$I18N.LOCALES.SYSTEM]GRBAGE_LOCALE (bad file header checksum)
[SYS$I18N.LOCALES.SYSTEM]JA_JP_DECKANJI (Permanently Loaded)

This example shows a system with three locale files in the SYS$I18N_
LOCALE directory. The C and POSIX locales are built in with the system
and, therefore, cannot be found in the SYS$I18N_LOCALE directory.

This example also shows the effect of having a bad file or a nonlocale file
in the public directory and the effect of having a locale file loaded into the
system’s memory by the LOCALE LOAD command.

Command Reference 4–23

LOCALE SHOW VALUE

LOCALE SHOW VALUE

Displays the value of one or more keywords from the current international
environment.

Format

LOCALE SHOW VALUE name

Parameters

name
Required. Specifying more than one name is valid.

Name of one of the following:

• Keyword

If you specify a keyword, the value of that keyword in the current locale
is displayed.

For integer keywords that have no value assigned, the value CHAR_MAX
(127) is displayed.

When a keyword value includes semicolons, double quotes, backslashes,
or control characters, they are preceded by an escape character (usually a
backslash).

• Category

If you specify a category, the values of the keywords in that category are
displayed.

Table 4–4 lists the categories and keywords you can specify.

Table 4–4 Locale Categories and Keywords

Category Keyword Keyword Description

LC_CTYPE Character classification names
LC_TIME DAY Full weekday names

ABDAY Abbreviated weekday names
MON Full month names
ABMON Abbreviated month names
D_T_FMT Date and time format
D_FMT Date format
T_FMT Time format
T_FMT_AMPM Time format in the 12-hour clock
AM_PM Defines how the ante meridiem (a.m.) and post

meridiem (p.m.) strings are represented
ERA Defines how years are counted and displayed

for eras in a locale
(continued on next page)

4–24 Command Reference

LOCALE SHOW VALUE

Table 4–4 (Cont.) Locale Categories and Keywords

Category Keyword Keyword Description

ERA_D_FMT Era date format
ERA_D_T_FMT Era date and time format
ERA_T_FMT Era time format
ALT_DIGITS String defining alternative symbols for digits

LC_NUMERIC DECIMAL_POINT Character used as a decimal delimiter
THOUSANDS_SEP Character used to group digits to the left of the

decimal delimiter
GROUPING Defines how characters to the left of the

decimal delimiter are grouped
LC_MONETARY INT_CURR_SYMBOL Character string representing the international

currency symbol.
CURRENCY_SYMBOL String used as the local currency symbol.
MON_DECIMAL_POINT Character used as a decimal delimiter when

formatting monetary quantities.
MON_THOUSANDS_SEP Character used as a separator for groups of

digits to the left of the decimal delimiter.
POSITIVE_SIGN String used to represent positive monetary

quantities.
NEGATIVE_SIGN String used to represent negative monetary

quantities.
INT_FRAC_DIGITS Number of digits displayed to the right of the

decimal delimiter when formatting monetary
quantities using the international currency
symbol.

FRAC_DIGITS Number of digits displayed to the right of the
decimal delimiter when formatting monetary
quantities using the local currency symbol.

P_CS_PRECEDES For positive monetary values, this is set to 1 if
the local currency symbol precedes the number
and 0 if the symbol follows the number.

N_CS_PRECEDES For negative monetary values, this is set to 1 if
the local currency symbol precedes the number
and 0 if the symbol follows the number.

P_SEP_BY_SPACE For positive monetary values, this is set to 0 if
there is no space between the currency symbol
and the value, 1 if there is a space, and 2 if
there is a space between the symbol and the
sign string.

N_SEP_BY_SPACE For negative monetary values, this is set to 0 if
there is no space between the currency symbol
and the value, 1 if there is a space, and 2 if
there is a space between the symbol and the
sign string.

(continued on next page)

Command Reference 4–25

LOCALE SHOW VALUE

Table 4–4 (Cont.) Locale Categories and Keywords

Category Keyword Keyword Description

P_SIGN_POSN Integer used to indicate where the
POSITIVE_SIGN string should be placed.

N_SIGN_POSN Integer used to indicate where the
NEGATIVE_SIGN string should be placed.

MON_GROUPING Defines how digits are grouped when
formatting monetary values.

LC_MESSAGES YESSTR String representing YES in the current locale.
NOSTR String representing NO in the current locale.
YESEXPR Expression representing an affirmative

response in the current locale.
NOEXPR Expression representing a negative response in

the current locale.

Note

When an environment variable that affects the setting of the current
locale points to an invalid locale, the ‘‘C’’ locale is set.

Other valid keywords that are not displayed by default as part of any category
include:

• CHARMAP — Displays the file specification of the charmap used when the
locale was created.

• CODE_SET_NAME — Defines the name of the coded character set for which
the charmap file is defined.

• MB_CUR_MAX — Defines the maximum number of bytes in a multibyte
character.

• MB_CUR_MIN — Defines the minimum number of bytes in a character in
the coded character set.

Qualifiers

/CATEGORY
Optional. Default: No display of category name.

Displays the category name before each keyword.

/KEYWORD
Optional. Default: No display of keyword name.

Displays the keyword name before the value of a keyword.

Description

The LOCALE SHOW VALUE command displays the value of one or more
keywords from the current international environment.

4–26 Command Reference

LOCALE SHOW VALUE

Errors

%LOCALE-E-NOKEYFND, no keyword keyword-name found

The keyword-name you specified is not valid. Specify only the keywords listed in
Table 4–4.

Examples

1. $ LOCALE SHOW VALUE NOEXPR

"^[nN][[:alpha:]]*"

Issuing LOCALE SHOW VALUE without qualifiers displays the value of the
NOEXPR string.

2. $ LOCALE SHOW VALUE /CATEGORY NOEXPR

LC_MESSAGES
"^[nN][[:alpha:]]*"

Specifying /CATEGORY displays the category name (LC_MESSAGES) before
the value of the NOEXPR string.

3. $ LOCALE SHOW VALUE /KEYWORD NOEXPR

noexpr= "^[nN][[:alpha:]]*"

Specifying /KEYWORD displays the keyword name before its value.

4. $ LOCALE SHOW VALUE /KEYWORD /CATEGORY NOEXPR

LC_MESSAGES
noexpr= "^[nN][[:alpha:]]*"

Specifying /KEYWORD and /CATEGORY displays the category and keyword
name before the keyword value.

Command Reference 4–27

zic

zic

Using the data in the specified time zone source file, creates binary files
containing time zone conversion information.

Format

zic [-v] ["-L" leapseconds] [-d directory] [-y yearistype] infile

Parameters

infile
Required.

Source file that zic reads.

Qualifiers

-v
Optional.

Flags if a year that appears in a data file is outside the range of years
representable by time values.

"-L"
Optional.

Reads leap second information from the file with the given name. If this option is
not used, no leap second information appears in the output files.

-d
Optional.

Creates time conversion information files in the named directory rather than in
the standard directory.

-y
Optional.

Uses the given command file rather than yearistype when checking year types.

Description

The zic command allows the ZIC compiler to read text from the files named on the
command line, and then creates the time conversion information files specified
with this input.

If a file name is �, the standard input is read.

Input lines consist of fields. Any number of white space characters separate the
fields. Leading and trailing white spaces on input lines are ignored. An unquoted
number sign (#), the sharp character, in the input line introduces a comment that
extends to the end of the line where this sign appears. White space characters
and sharp characters can be enclosed in double quotation marks (" ") if they are
to be used as part of a field. Any line that is blank after comment stripping is
ignored.

4–28 Command Reference

zic

Non-blank lines are expected to be one of three types:

• Rule lines (see Section 1.2.1)

• Zone lines (see Section 1.2.2)

• Link lines (see Section 1.2.3)

Examples

1. $ zic -v "-L" leapseco -d [-] myafrica

The ZIC compiler compiles the time zone source file myafrica. Based on the
specified parameters, ZIC does the following:

1. Flags years outside the representable range

2. Builds an output file with leapsecond corrections applied

3. Puts the result in the current directory

For more information about date/time functions, see the Compaq C Run-Time
Library Reference Manual for OpenVMS Systems.

Command Reference 4–29

Index

C
Character set description file

See charmap file
charmap (character set description) file, 1–3

components, 3–4
descriptions of, 3–1 to 3–6

Commands, syntax descriptions, 4–1 to 4–29

G
GENCAT command, 4–2

I
ICONV commands

COMPILE, 1–2, 4–7
CONVERT, 1–3, 4–12

L
LC_COLLATE locale category, 2–3
LC_CTYPE locale category, 2–6
LC_MESSAGES locale category, 2–9
LC_MONETARY locale category, 2–10
LC_NUMERIC locale category, 2–14
LC_TIME locale category, 2–15
Locale category, 1–3
LOCALE commands

COMPILE, 4–14
LOAD, 4–17
SHOW CHARACTER_DEFINITIONS, 4–20
SHOW CURRENT, 4–21
SHOW PUBLIC, 4–23
SHOW VALUE, 4–24
UNLOAD, 4–19

Locale file format
descriptions of, 2–1 to 2–21
locale categories, 2–1, 2–2

Localization utilities
overview, 1–1

O
Overview

localization utilities, 1–1
ZIC utility, 1–1

P
PCS (Portable Character Set), 3–1
Portable Character Set

see PCS
See PCS

X
X/Open Portability Guide, Issue 4

See XPG4 localization utilities
XPG4 localization utilities

character map (charmap) file, 3–1 to 3–6
command, 4–28
GENCAT command, 4–2
ICONV commands

COMPILE, 1–2, 4–7
CONVERT, 4–12

LOCALE commands
COMPILE, 4–14
LOAD, 4–17
SHOW CHARACTER_DEFINITIONS,

4–20
SHOW CURRENT, 4–21
SHOW PUBLIC, 4–23
SHOW VALUE, 4–24
UNLOAD, 4–19

locale file format, 2–1 to 2–21
zic command, 4–28

Z
ZIC (Zone Information Compiler)

command, 1–4, 4–28
compiler, 1–4
parameters, 4–28
qualifiers, 4–28

ZIC link lines, 1–7

Index–1

ZIC rule lines, 1–4 to 1–6
ZIC utility

overview, 1–1
ZIC zone lines, 1–6
Zone information compiler

See ZIC

Index–2

	Compaq CRun-Time Library Utilities Reference Manual
	Contents
	Preface
	Intended Audience
	Document Structure
	Related Documents
	Reader’s Comments
	How to Order Additional Documentation
	Conventions

	1 Overview
	1.1 Creating XPG4-Compliant Localizing Applications
	1.1.1 Creating and Invoking Message Catalogs
	1.1.2 Performing Codeset Conversions
	1.1.3 Setting International Environment Logical Names

	1.2 Creating Time Zone Conversion Information
	1.2.1 Rule Lines
	1.2.2 Zone Lines
	1.2.3 Link Lines

	2 Locale File Format
	2.1 Locale Categories
	2.1.1 Overriding Defaults
	2.1.2 Category Source Definitions

	2.2 LC_COLLATE Category
	2.2.1 The collating-element Statement
	2.2.2 The collating-symbol Statement
	2.2.3 The order_start Statement

	2.3 LC_CTYPE Category
	2.4 LC_MESSAGES Category
	2.5 LC_MONETARY Category
	2.5.1 LC_MONETARY Keywords
	2.5.2 Monetary Format Variations

	2.6 LC_NUMERIC Category
	2.7 LC_TIME Category
	2.7.1 Keywords
	2.7.2 Field Descriptors
	2.7.3 Sample Locale Definition

	3 Character Set Description (Charmap) File
	3.1 Portable Character Set
	3.2 Components of a Charmap File

	4 Command Reference
	GENCAT
	ICONV COMPILE
	ICONV CONVERT
	LOCALE COMPILE
	LOCALE LOAD
	LOCALE UNLOAD
	LOCALE SHOW CHARACTER_DEFINITIONS
	LOCALE SHOW CURRENT
	LOCALE SHOW PUBLIC
	LOCALE SHOW VALUE
	zic

	Index
	Tables
	Table 1–1 Day the Rule Becomes Effective
	Table 1–2 Time of Day the Rule Becomes Effective
	Table 2–1 LC_COLLATE Category Keywords
	Table 2–2 LC_CTYPE Category Keywords
	Table 2–3 LC_MESSAGES Category Keywords
	Table 2–4 LC_MONETARY Category Keywords
	Table 2–5 Monetary Format Variations
	Table 2–6 LC_NUMERIC Category Keywords
	Table 2–7 LC_TIME Category Keywords
	Table 2–8 LC_TIME Locale Field Descriptors
	Table 3–1 Portable Character Set
	Table 4–1 GENCAT Command: Special Characters
	Table 4–2 Codeset Declarations
	Table 4–3 Locale Categories
	Table 4–4 Locale Categories and Keywords

