HP Open Source Security for OpenVMS
Volume 2: HP SSL for OpenVMS

HP SSL Version 1.3 for OpenVMS

OpenVMS 164 Version 8.2 or higher
OpenVMS Alpha Version 7.3-2 or higher

This manual supersedes HP Open Source Security for OpenVMS
HP SSL for OpenVMS, Version 8.2

O)

invent

Manufacturing Part Number: BA554-90007
July 2006

© Copyright 2006 Hewlett-Packard Development Company, L.P.

Legal Notice

Confidential computer software. Valid license from HP required for possession, use or copying. Consistent
with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and
Technical Data for Commercial Items are licensed to the U.S. Government under vendor's standard
commercial license.

The information contained herein is subject to change without notice. The only warranties for HP products
and services are set forth in the express warranty statements accompanying such products and services.
Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for
technical or editorial errors or omissions contained herein.

See Appendix B Open Source Notices for information regarding certain open source code included in this
product.

Windows, Windows NT, and MS Windows are U.S. registered trademarks of Microsoft Corporation.
UNIX is a registered trademark of The Open Group in the U.S. and/or other countries.
All other product names mentioned herein may be trademarks of their respective companies.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

7K6661
The HP OpenVMS documentation set is available on CD-ROM.

Contents

1. Installation and Release Notes

1.1 Installation Requirements and Prerequisites............. 15
1.1.1 Hardware Prerequisitest et e e e 15
1.1.2 Software Prerequisites e e e 15
1.1.3 Account Quotas and System Parameters i, 15
1.1.4 New Features in HP SSL Version 1.3 for OpenVMS 16

1.2 OpenSSL Documentation from The Open Groupo et iniiiinnnn.. 16

1.3 Installing HP SSL for OpenVMS Automatically During OpenVMS Installation or Upgrade . .. 17

1.4 Downloading and Installing HP SSL for OpenVMS from Web Site. 17
1.4.1 Before Installing HP SSL for OpenVMS e 17
1.4.2 Installation Procedure 18

1.5 DPostinstallation Tasks. e 21
1.5.1 After Automatic Installation of HP SSL During OpenVMS Installation or Upgrade 21
1.5.2 After Download and Installation of HP SSL from Web Site............. 21

1.6 HP SSL Directory Structure. i e e e e 22

1.7 Building an HP SSL Application ittt 22
1.7.1 Building an Application Using 64-Bit APIs i, 23
1.7.2 Building an Application Using 32-Bit APIs i, 23

1.8 Release Noteso e e 23
1.8.1 Legal Caution i e e e e 23
1.8.2 HP SSL APIs Not Backward Compatible 23
1.8.3 Changes to APIsin OpenSSL 0.9.7€e i e e e 24
1.8.4 Preserve Configuration Files Before Manually Uninstalling HP SSL 24
1.8.5 Warning Against Uninstalling HP SSL from OpenVMS Version 8.3 or Higher Using the
PRODUCT REMOVE Command vttt ettt et ettt e ettt eee 24
1.8.6 SSL$DEFINE_ROOT.COM Removed From SSL$STARTUP.COM..................... 25
1.8.7 SSL$STARTUP.TEMPLATE Removed From HP SSL Version 1.3 25
1.8.8 Configuration Command Procedure Template Files. 25
1.8.9 HP SSL Requirement to Install on System Disk 25
1.8.10 Shut Down HP SSL Before Installing on Common System Disk. 25
1.8.11 OpenSSL Version Command Displays HP SSL for OpenVMS Version................. 26
1.8.12 Shareable Images Containing 64-Bit and 32-Bit APIs Provided...................... 26
1.8.13 Linking with HP SSL Shareable Images. 26
1.8.14 Certificate Tool Cannot Have Simultaneous Users 26
1.8.15 Protect Certificates and Keys. i e e e 26
1.8.16 Enhancements to the HP SSL. Example Programs. 27
1.8.17 SSL$EXAMPLES Logical Namettt ettt 27
1.8.18 Environment Variables. e e 27
1.8.19 IDEA and RC5 Symmetric Cipher Algorithms Not Supported 27
1.8.20 APIs RAND_egd, RAND_egd_bytes, and RAND_query_egd_bytes Not Supported 27
1.8.21 Documentation from the OpenSSL Web Site 27
1.8.22 Extra Certificate Files — *PEM e e 28
1.8.23 Known Problem: Certificate Verification with OpenVMS File Specifications 28
1.8.24 Known Problem: BIND Error in TCP/IP Application 28
1.8.25 Known Problem: Server Hang in HP SSL Session Reuse Example Program 28
1.8.26 Known Problem: Compaq C++ V5.5 CANTCOMPLETE Warnings 28

Contents

1.8.27 Problem Corrected: Possible Errors Using PRODUCT REMOVE 29
1.8.28 Problem Corrected: Error Running OpenSSL Command Line Utility on ODS-5 Disks ... 29

1.8.29 Problem Corrected: Attempt to Encrypt within SMIME Subutility Caused Access Violation
29

1.8.30 Problem Corrected: Race Condition When CRLs are Checked in a Multithreaded Environment
29

2. Overview of SSL

2.1 The SSL Protocol. e e 31
2.2 The SSLHandshake. e e e e e 32
2.3 Public Key Encryption e e e 33
2.4 Certificateso i e 33
2.5 CIpher SUiteo e e e 34
2.6 Digital Signatures. e e 34

3. Using the Certificate Tool

3.1 Starting the Certificate Tool. e e e e e 37
3.2 Viewing a Certificate i e e e 38
3.3 View a Certificate Request File e i 39
3.4 Create a Certificate Signing Request. 40

3.4.1 Installing Certificates. i e e e e e 42
3.5 Create a Self-Signed Certificate. i e e 42
3.6 Create a Certificate Authority i et e e 43
3.7 Createa Certificate Chain i et 45

3.7.1 Creating an Intermediate CA (RA) Certificate iion.. 45

3.7.2 Creating a Client/Server Certificate Signed with an Intermediate CA Certificate 46

3.7.3 Creating a Certificate Chain File. i e 46
3.8 Sign a Certificate Signing Request i e 46
3.9 Revoke a Certificate e 47
3.10 Create a Certificate Revocation List i 47
3.11 Hash Certificates it e e e et e 48
3.12 Hash Certificate Revocations i et e e e 48

4. SSL Programming Concepts

4.1 HP SSL Data Structures e e e 51
4.1.1 SSL_CTX Structure e e e e e e e e 52
4.1.2 SSOL Structureo 52
4.1.3 SSL_METHOD Structure.ttt et e e e e 53
4.1.4 SSL_CIPHER Structure. e e e et 53
4.1.5 CERT/X509 Structure.t e e et e e e e 53
4.1.6 BIO Structureo e 54

4.2 Certificates for SSL Applications. i it e 54
4.2.1 Configuring Certificates in the SSL Clientand Server 54
4.2.2 Obtaining and Creating Certificates............... 57

4.3 SSL Programming Tutorial e 59
4.3.1 Initializing the SSL Library. e et e 61

Contents

4.3.2 Creating and Setting Up the SSL Context Structure (SSL_CTX) 61
4.3.3 Setting Up the Certificateand Key 62
4.3.4 Creating and Setting Up the SSL Structure 65
4.3.5 Setting Up the TCP/IP Connectionttt niininnean.. 65
4.3.6 Setting Up the Socket/Socket BIO in the SSL Structure 67
4.3.7 SSLHandshake 67
4.3.8 Transmitting SSL Data e e e 68
4.3.9 Closing an SSL Connectionttt 69
4.3.10 Resuming an SSL Connectionttt ittt 69
4.3.11 Renegotiating the SSL Handshake 70
4.3.12 Finishing the SSL Application.t 71

5. Example Programs

5.1 Example Programs Included in HP SSL Kit. i, 73
5.2 Template for Creating Certificates and Keys for the Example Programs................... 74
5.3 Simple SSL Client Programttt e et e 78
5.4 Simple SSL Server Program. e 83

6. OpenSSL Command Line Interface

6.1 Command-Line Help. i i e e e 89
6.2 Standard Commandsttt e 90
6.3 Message Digest Commandsttt e e 92
6.4 Encoding and Cipher Commands. ittt 92
6.5 Password Arguments e e 95
6.6 Creating a DH Parameter (Key) File and a DSA Certificateand Key...................... 95
OpenSSL Command Line Interface (CLI) Referencecccoiiiiieeenneecnccosanns 97
CRYPTO Application Programming Interface (API) Reference...........ccooivvevnnnnn 217
SSL Application Programming Interface (API) Referenceccoivvviiinrecnnnenes 495

A. Data Structures and Header Files

Al Header Files e e e e 625
A2 SSL_CTX Structurettt e e e e e e e e e 625
A3 SO Structure. . ..ot e e e 627
A4 SSL_METHOD Structurettt et e e e 631
A5 SSL_SESSION Structure.ottt et e et e et et et 631
A6 SSL_CIPHER Structure.ttt ettt et e e et e 633
AT BIO Structure. e e e 634
A8 XB0O Structureo e e 634

B. New and Changed APIs in OpenSSL 0.9.7d and 0.9.7e
B.1 New AES APIsin OpenSSL 0.9.7et i e e e e e e e 637
B.2 New CRYPTO APIsin OpenSSL 0.9.7e it 637

Contents

B.3
B4
B.5
B.6

Changed DES APIs in OpenSSL 0.9.7€e.o ittt et e 637
New EVP APIsin OpenSSL 0.9.7€ ottt e 638
New SSL APIsin 0.9.7dot e e e e e 638
Changed SSL APIsin 0.9.7d o i e e e e et e e 639

C. Open Source Notices

C.1
C.2

OpenSSL Open Source LiCenSeo v e et et e e 641
Original SSLeay Licensettt et e e e e 642
.. 643

Table 4-1. APIs for Data Structure Creation and Deallocation

Table 4-2. Types of APIs for SSL_METHOD Creation

Table 5-1. HP SSL Example Programs

Tables

Figure 3-1

Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.
Figure 4-5.
Figure 4-6.
Figure 4-7.
Figure 4-8.

. Certificate Tool Main Menu i e 37
Relationship Between SSL_CTX and SSL 52
Structures Associated with SSL Structure. 53
Client and Server Certificates Directly Signed by CAs. 54
Client and Server Certificates Indirectly Signed by CAs 55
Certificates on SSL Client and Server (Case 1) 56
Certificates on SSL Client and Server (Case 2) 57
Certificate Creation Process i i e 57
Overview of SSL Application with OpenSSL APIs 60

Figures

10

Preface

The HP Open Source Security for OpenVMS, Volume 2: HP SSL for OpenVMS manual describes how
customers can take advantage of the OpenSSL security capabilities available in OpenVMS Industry Standard
64 and OpenVMS Alpha.

For information about HP SSL for OpenVMS VAX, see the HP Open Source Security for OpenVMS, Volume 2:
HP SSL for OpenVMS for HP SSL Version 1.2.

Intended Audience

This document is for application developers who want to protect communication links to OpenVMS
applications. The OpenSSL APIs establish private, authenticated and reliable communications link between
applications.

Document Structure

The information in this manual applies to OpenVMS 164, OpenVMS Alpha, and OpenVMS VAX.
This manual consists of the following chapters:

Chapter 1 contains installation instructions and release notes.

Chapter 2 provides an overview of SSL.

Chapter 3 includes information about the Certificate Tool.

Chapter 4 is a programming tutorial about how to use the OpenSSL APIs in your application program.
Chapter 5 lists the example programs included in the HP SSL kit.

Chapter 6 describes the OpenSSL command line interface.

The OpenSSL Command Line Interface (CLI) Reference describes the command line interface that allows you
to use the cryptography functions of SSL's cryptography library from the OpenSSL command prompt.

The CRYPTO Application Programming Interface (API) Reference is a reference section that includes
documentation from The Open Group about the CRYPTO application programming interfaces (APIs).

The SSL Application Programming Interface (API) Reference is a reference section that includes
documentation from The Open Group about the OpenSSL application programming interfaces (APIs).

Appendix A lists the header files and the data structures included in HP SSL for OpenVMS.

Appendix B lists open source notices.

Related Documents

The following documents are recommended for further information:

e HP Open Source Security for OpenVMS, Volume 1: Common Data Security Architecture

e HP Open Source Security for OpenVMS, Volume 3: Kerberos

¢ OpenSSL documentation from The Open Group is available at the following World Wide Web address:

http://www.openssl.org

11

For additional information about HP OpenVMS products and services, see the following World Wide Web
address:

http://www.hp.com/go/openvms/

For additional information about HP SSL for OpenVMS, see the HP SSL web site at the following World Wide
Web address:

http://h71000.www7 .hp.com/openvms/products/ssl/

Reader's Comments
HP welcomes your comments on this manual.

Please send comments to either of the following addresses:

Internet: openvmsdoc@hp.com

Postal Mail:
Hewlett-Packard Company
OSSG Documentation Group
ZK03-4/U08

110 Spit Brook Road
Nashua, NH 03062-2698

How to Order Additional Documentation

For information about how to order additional documentation, visit the following World Wide Web address :

http://www.hp.com/go/openvms/doc/order/

Conventions

The following conventions may be used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (x) or a pointing
device button.

Return In examples, a key name in bold indicates that you press that key.

A horizontal ellipsis in examples indicates one of the following possibilities:
— Additional optional arguments in a statement have been omitted.

— The preceding item or items can be repeated one or more times.

— Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

O) In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

12

Convention

Meaning

[]

bold type

italic type

UPPERCASE TYPE

Example

numbers

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
OpenVMS directory specifications and for a substring specification in an
assignment statement.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the
command line.

Bold type represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

In command or script examples, bold text indicates user input.

Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output
(Internal error number), in command lines /PRODUCER=name), and in
command parameters in text (where (dd) represents the predefined par code
for the device type).

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies URLs, UNIX command and
pathnames, PC-based commands and folders, and certain elements of the C
programming language.

A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the
following line.

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

13

14

Installation and Release Notes
Installation Requirements and Prerequisites

1 Installation and Release Notes

This chapter contains hardware and software prerequisites, installation instructions, postinstallation tasks,
instructions for building your application, the HP SSL directory structure, and release notes for HP SSL
Version 1.3 for OpenVMS. For an overview of HP SSL, see Chapter 2.

The information in this chapter applies to HP SSL running on OpenVMS 164 and OpenVMS Alpha. For
information about HP SSL for OpenVMS VAX, see the HP Open Source Security for OpenVMS, Volume 2: HP
SSL for OpenVMS for HP SSL Version 1.2.

1.1 Installation Requirements and Prerequisites

The following sections list hardware and disk space requirements, and software prerequisites.

1.1.1 Hardware Prerequisites

Disk Space Requirements

The HP SSL for OpenVMS kit requires approximately 45,000 blocks of working disk space to install. Once
installed, the software occupies approximately 40,000 blocks of disk space.

1.1.2 Software Prerequisites

HP SSL for OpenVMS requires the following software.
Operating System

HP OpenVMS Alpha Version 7.3-2 or higher, or

HP OpenVMS Industry Standard 64 Version 8.2 or higher
TCP/IP Transport

HP TCP/IP Services for OpenVMS Version 5.6 or higher (for HP SSL on OpenVMS 164 and OpenVMS Alpha
Version 8.2 or higher), or

HP TCP/IP Services for OpenVMS Version 5.4 or higher (for HP SSL on OpenVMS Alpha Version 7.3-2)

NOTE HP SSL for OpenVMS has been tested and verified using HP TCP/IP Services for OpenVMS.
On OpenVMS Alpha, there are no known problems running HP SSL for OpenVMS with other
TCP/IP network products, including TCPware and MultiNet from Process Software
Corporation. However, HP has not formally tested and verified these other products.

1.1.3 Account Quotas and System Parameters

There are no specific requirements for account quotas and system parameters for installing or using HP SSL
for OpenVMS.

15

Installation and Release Notes
OpenSSL Documentation from The Open Group

1.1.4 New Features in HP SSL Version 1.3 for OpenVMS

HP SSL Version 1.3 for OpenVMS, based on OpenSSL 0.9.7¢, is included in OpenVMS Version 8.3. (The
previous version of HP SSL was based on OpenSSL 0.9.7d.)

New features in HP SSL Version 1.3 include:

HP SSL Version 1.3 is now included in the OpenVMS operating system as a SIP (system integrated
product) . SSL for OpenVMS is installed automatically when you install or upgrade to OpenVMS Version
8.3.

Bug Fixes in OpenSSL 0.9.7e

— Fixed race condition when CRLs are checked in a multithreaded environment.
— Added Delta CRL to extension code.
— Fixed s3_pkt.c so alerts are sent properly.

— Reduced chances of duplicate issuer name and serial numbers (in violation of RFC3280) using the
OpenSSL certificate creation utilities.

— Removed potential SSL Protocol 2.0 rollback.

The functionality of SSL_OP_MSIE_SSLV2_RSA PADDING (part of SSL,_OP_ALL) has been
removed from 0.9.7e. This option can be used to disable the countermeasure against
man-in-the-middle protocol-version rollback in the SSL Protocol 2.0 server implementation. See
http://www.openssl.org/mews/secadv_20051011.txt for more information.

1.2 OpenSSL Documentation from The Open Group

Documentation about the OpenSSL project and The Open Group is available at the following URL:

http://www.openssl.org

The OpenSSL documentation was written for UNIX® users. When reading UNIX-style OpenSSL
documentation, note the following differences between UNIX and OpenVMS:

File specification format

The OpenSSL documentation shows example file specifications in UNIX format. For example, the UNIX
file specification /dkal00/foo/bar/file.dat is equivalent to DKA100:[FOO.BAR]FILE.DAT on
OpenVMS.

Directory format

Directories (pathnames) that begin with a period (.) on UNIX begin with an underscore (_) on OpenVMS.
In addition, on UNIX, the tilde (~) is an abbreviation for SYS$LOGIN. For example, the UNIX pathname
~/.openssl/profile/prefs. js is equivalent to the OpenVMS directory
[._OPENSSL.PROFILE]PREFS.JS.

16

Installation and Release Notes
Installing HP SSL for OpenVMS Automatically During OpenVMS Installation or Upgrade

1.3 Installing HP SSL for OpenVMS Automatically During OpenVMS
Installation or Upgrade

HP SSL Version 1.3 is included in the OpenVMS operating system as a SIP (system integrated product).
Previous versions of HP SSL were included in previous versions of OpenVMS as a layered product.

NOTE SSL for OpenVMS is now installed automatically when you install or upgrade to
OpenVMS Version 8.3, and previous installed versions of HP SSL are automatically removed.
You no longer need to install the PCSI file separately.

When the OpenVMS installation or upgrade procedure is complete, you must define the HP SSL foreign
commands and (optionally) run the Certificate Tool before you use HP SSL. See Section 1.5 for more
information.

1.4 Downloading and Installing HP SSL for OpenVMS from Web Site

You can install HP SSL Version 1.3 on versions of OpenVMS earlier than 8.3. A PCSI kit of HP SSL for
OpenVMS is available for download from the HP SSL web site at

http://h71000.www7 .hp.com/openvms/products/ssl/

1.4.1 Before Installing HP SSL for OpenVMS

Beginning in HP SSL Version 1.3, the installation procedure automatically removes the previous version
of HP SSL before installing the new version. For example, if you have Version 1.2 installed, it is removed
during the installation procedure and the product removal is displayed in the installation log.

The HP SSL Version 1.3 installation procedure also automatically removes any old SSL kits that have a kit
name beginning with DEC or CPQ. This removal is done silently during the preconfigure phase and is not
shown in the installation log. For example, if you have SSL Version 1.1-B (kit name CPQ) installed, it is
silently removed when you install SSL Version 1.3.

NOTE Do not use the PRODUCT REMOVE command to manually remove HP SSL Version 1.2 or
higher. If you attempt to use PRODUCT REMOVE on these versions of HP SSL, you will
receive a PCSI error that recommends terminating the operation. If you ignore the warning
and continue to remove HP SSL, HP strongly recommends that you use PRODUCT INSTALL
to install the HP SSL Version 1.3 PCSI kit as soon as possible. Other components in OpenVMS
require that HP SSL is installed.

Before you begin the installation of HP SSL, perform the following steps:

1. Preserve the SSL configuration files OPENSSL-VMS.CNF and OPENSSL.CNF (if you modified them) by
copying them to another disk and directory before installing HP SSL.

2. Shut down HP SSL on each node in the cluster before installing HP SSL on a common system disk
in a cluster.

17

Installation and Release Notes
Downloading and Installing HP SSL for OpenVMS from Web Site

1.4.2 Installation Procedure

Install the HP SSL for OpenVMS kit by entering the following command:

$ PRODUCT INSTALL SSL

NOTE Beginning in HP SSL Version 1.3 for OpenVMS, HP SSL is always installed into
SYS$SYSDEVICE:[VMS$COMMON]. The /DESTINATION qualifier is no longer supported.

For a description of the features you can request with the PRODUCT INSTALL command when starting an
installation, such as running the IVP, purging files, and configuring the installation, refer to the
POLYCENTER Software Installation Utility User's Guide.

As the deinstallation and installation procedures progress, the system displays information similar to the
following output.

NOTE Specifying the /HELP qualifier on the PRODUCT INSTALL command line displays additional
information about HP SSL.

$ PRODUCT INSTALL SSL/SOURCE=DKA500:[KITS] /HELP
The following product has been selected:
HP AXPVMS SSL V1.3-281 Layered Product
Do you want to continue? [YES]
Configuration phase starting

You will be asked to choose options, if any, for each selected product and for
any products that may be installed to satisfy software dependency requirements.

HP AXPVMS SSL V1.3-281: SSL for OpenVMS Alpha V1.3 (Based on OpenSSL 0.9.7e)

SSL for OpenVMS provides a toolkit that implements SSL Vv2/V3, TLS V1,
and a general purpose cryptography library.

© Copyright 2006 Hewlett-Packard Development Company, L.P.

This software is installable on OpenVMS processors using the POLYCENTER
Software Installation utility.

IMPORTANT LEGAL NOTICE:

Exports of this product are subject to U.S. Export Administration
Regulations pertaining to encryption items and may require that
individual export authorization be obtained from the U.S.
Department of Commerce.

The /DESTINATION qualifier is not supported with SSL V1.3
As of SSL V1.3, the SSL product must be installed on the system disk.

If you specified a location other than the system disk with the use of the
qualifier /DESTINATION, it is recommended that you stop the installation

18

If you did not specify the /DESTINATION qualifier,

termination question, and continue with the installatio

Terminating is strongly recommended. Do you want to te

Portion done: 0%...10%...20%...30%...40%...50%...60%..

$PCSI-I-IVPEXECUTE,

Installation and Release Notes

Downloading and Installing HP SSL for OpenVMS from Web Site

and restart it with the following command:

$ PRODUCT INSTALL SSL

Do you want the defaults for all options? [YES]

Do you want to review the options? [NO]

Execution phase starting

The following product will be installed to destination:

answer NO to the

n.
rminate? [YES] NO

HP AXPVMS SSL V1.3-281 DISKSDWLLNG_A_V73: [VMS$SCOMMON.]

The following product will be removed from destination:

HP AXPVMS SSL V1.2 DISKSDWLLNG_A_V73: [VMS$SCOMMON.]

The following product has been installed:

.70%...80%...90%...100%

HP AXPVMS SSL V1.3-281 Layered Product

The following product has been removed:

HP AXPVMS SSL V1.2 Layered Product

executing test procedure for HP AXPVMS SSL V1.3-281
$PCSI-I-IVPSUCCESS, test procedure completed successful

ly

HP AXPVMS SSL V1.3-281: SSL for OpenVMS Alpha V1.3 (Based on OpenSSL 0.9.7e)

There are post installation tasks that you must complete

including the following items that are described in

detail:

- ensuring SSL startup and logical names creation files

are executed

- updating or copying the necessary startup, shutdown and

configuration files from the installed templa

- running the Installation Verification Program

te files

(IVP)

Refer to the SSL release notes and the OpenVMS SSL documentation for
more information about activities that should be performed once the

installation has finished.

SSL has created the following directory structure and files in
PCSISDESTINATION (which defaults to SYS$SSYSDEVICE: [VMS$SCOMMON]) :

[SSL] Top-level SSL directory

[SSL.ALPHA_EXE] Contains the images for the Alpha platform
[SSL.COM] Directory to hold the various command procedures
[SSL.DEMOCA] Directory structure to demo SSL’s CA features
[SSL.DEMOCA .CERTS] Directory to hold the certificates and keys
[SSL.DEMOCA .CONF] Contains the configuration files
[SSL.DEMOCA.CRL] Contains revoked certificates and CRLs
[SSL.DEMOCA.PRIVATE] Directory for private keys and random data
[SSL.DOC] OpenSSL.org provided documentation & information

19

Installation and Release Notes
Downloading and Installing HP SSL for OpenVMS from Web Site

[SSL.INCLUDE] Contains the C Header (.H) files
[SSL.TEST] Contains the files used during the IVP
[SYSSSTARTUP] Startup and shutdown templates and files
[SYSHLP] Release notes

[SYSHLP.EXAMPLES.SSL] SSL crypto and secure session examples
[SYSLIB] SSL shareable image files

[SYSTEST] SSL$SIVP.COM test files

...after upgrading from previous SSL versions...

The SSL release notes provide information to verify the SSL startup,
shutdown, and configuration template files. Template files provide the

user with new features or changes, but do not overwrite existing command
procedures and configuration files. A product upgrade or re-installation
will not overwrite or create a new file version if the file has been odified.
It will only create the template files. It is suggested that you review
these files for any changes.

For more information, refer to the SSL Release Notes and other SSL
files using the system logical name definitions, or the subdirectory of
the PCSI destination device and directory.

..including verifying startup command procedures and logical names...

Once the installation is complete, verify that SSLSSTARTUP.COM is
located in SYS$SMANAGER:SYSTARTUP_VMS.COM file. This will define the
SSL$ executive mode logical names in the SYSTEM logical name table,
and install the SSL shareable images in memory that reside in the
[SYSLIB] directory.

Also, add SSLS$SSHUTDOWN.COM to the SYSSMANAGER:SYSHUTDWN.COM file to remove
the installed images and deassign the SSLS$S logical name definitions.

If you have customized the SSL command files for the site, it is
suggested that you compare the SSL provided template files with your
existing command procedures and take the appropriate action to update
your files. A product upgrade or re-installation will not overwrite
these files.

By default SYS$SSTARTUP: logical can be used to locate the SSL provided
startup files.

System managers should modify site-specific requirements in SSL files:

SSLSCOM: SSL$SYSTARTUP . COM
SSLSCOM: SSL$SYSHUTDOWN . COM

HP recommends that these site-specific SSL command procedures are utilized
to tailor the SSL installation specific to the regirements of the system
or site. These files are located in the SSL$COM: directory.

Refer to SYSSHELP:SSL013.RELEASE_NOTES for more information.

The SSL product release notes contain up to date information regarding
bug fixes, known problems, and general installation information.

20

Installation and Release Notes
Postinstallation Tasks

$PCSIUI-I-COMPWERR, operation completed after explicit continuation from errors

$

Stopping and Restarting the Installation
Use the following procedure to stop and restart the installation:

1. To stop the procedure at any time, press Ctrl/Y.

2. Enter the DCL command PRODUCT REMOVE SSL to reverse any changes to the system that occurred
during the partial installation. This deletes all files created up to that point and causes the installation
procedure to exit.

3. To restart the installation, go back to the beginning of the installation procedure.

1.5 Postinstallation Tasks

After the installation is complete, perform the steps in one of the following sections, depending on the
installation method you used.

1.5.1 After Automatic Installation of HP SSL During OpenVMS Installation or
Upgrade

1. If you previously installed HP SSL, the existing file SSL$STARTUP.COM has been renamed
SSL$STARTUP.COM_OLD. If you made changes to that file, manually incorporate your changes from
SSL$STARTUP.COM_OLD into the new SSL$STARTUP.COM that was installed with Version 1.3.

2. Define the foreign commands that use the OpenSSL utility OPENSSL.EXE, such as openssl, ca, enc,
req, and X509, by entering the following command:

$ @SSLSCOM:SSLSUTILS
3. Optionally, start the Certificate Tool by entering the following command:
$ @SSLSCOM: SSLSCERT _TOOL

This menu-driven tool allows you to create and view certificates and certificate requests and to sign
certificate requests. For information about the Certificate Tool, see Chapter 3.

NOTE Beginning in OpenVMS Version 8.3, HP SSL for OpenVMS is automatically started when
OpenVMS is started. The HP SSL startup file SSL$STARTUP.COM has been added to the
OpenVMS command procedure VMS$LPBEGIN-050_STARTUP.COM. Startup of HP SSL
Version 1.3 is required because other OpenVMS components, such as iCAP and Encrypt, are
dependent on HP SSL.

1.5.2 After Download and Installation of HP SSL from Web Site

1. Add the following line to the system startup file, SYS$STARTUP:SYSTARTUP_VMS.COM, to set up the
HP SSL symbols, logical names, and shareable images:

$ @SYSSSTARTUP: SSLSSTARTUP

21

Installation and Release Notes
HP SSL Directory Structure

2. At the DCL command prompt, execute the command that you entered into the system startup file so that
you can use HP SSL immediately. If you installed HP SSL to a common system disk in a cluster, execute
this command on each node in the cluster.

$ @SYSSSTARTUP: SSLSSTARTUP

3. Define the foreign commands that use the OpenSSL utility OPENSSL.EXE, such as openssl, ca, enc,
req, and X509, by entering the following command:

$ @SSLSCOM:SSLSUTILS
4. Optionally, start the Certificate Tool by entering the following command:

$ @SSLSCOM:SSLSCERT_TOOL

1.6 HP SSL Directory Structure

After the installation is complete, the HP SSL directory structure is as follows:

[SSL] - Top-level directory created by default in SYS$SYSDEVICE:[VMS$COMMON].
One of the following three directories:

[SSL.ALPHA_EXE] - Contains images for the Alpha platform.

[SSL.IA64_EXE] - Contains images for the 164 platform.

[SSL.VAX_EXE] - Contains images for the VAX platform.
[SSL.COM] - Contains command procedures.
[SSL.DEMOCA] - Contains demos for SSL's CA features
[SSL.DEMOCA.CERTS] - Contains certificates and keys.
[SSL.DEMOCA.CONF] - Contains configuration files.
[SSL.DEMOCA.CRL] - Contains revoked certificates and CRLs.
[SSL.DEMOCA.PRIVATE] - Contains private keys and random data.
[SSL.DOC] - OpenSSL Group-provided documentation and information.
[SSL.INCLUDE] - Contains C header (.H) files.
[SSL.TEST] - Contains files used during the Installation Verification Procedure (IVP).
[SYS$STARTUP] - Contains startup and shutdown templates and files.
[SYSHLP] - Contains release notes.
[SYSHLP.EXAMPLES.SSL] - Contains SSL crypto and secure session examples.
[SYSLIB] - Contains SSL shareable image files.
[SYSTEST] - Contains SSL$IVP.COM test files.

Note that the HP SSL example programs are located in SYS$COMMON:[SYSHLP.EXAMPLES.SSL]. (The
logical name SSL$EXAMPLES points to this directory.) These example programs are also shown and
discussed in Chapter 5.

1.7 Building an HP SSL Application

HP SSL for OpenVMS provides shareable images that contain 64-bit APIs and shareable images that contain
32-bit APIs. You can choose which APIs to use when you compile your application.

The file names for these shareable images are as follows:
SYS$SHARE:SSL$LIBSSL_SHR.EXE - 64-bit SSL APIs

22

Installation and Release Notes
Release Notes

SYS$SHARE:SSL$LIBCRYPTO_SHR.EXE - 64-bit Crypto APIs
SYS$SHARE:SSL$LIBSSL_SHR32.EXE - 32-bit SSL APIs
SYS$SHARE:SSL$LIBCRYPTO_SHR32.EXE - 32-bit Crypto APIs

When you compile your application using HP C, use the /POINTER_SIZE=64 qualifier to take advantage of
the 64-bit APIs. The default value for the /POINTER_SIZE qualifier is 32.

Linking your application is the same for both 64-bit or 32-bit APIs. The options file used contains either the
64-bit or 32-bit references to the appropriate shareable image.

1.7.1 Building an Application Using 64-Bit APIs

To build (compile and link) an example program using the 64-bit APIs, enter the following commands:

$ CC/POINTER_SIZE=64/PREFIX=ALL SAMPLE.C
$ LINK/MAP SAMPLE, LINKER_OPT/OPTIONS

In these commands, LINKER_OPT.OPT is a simple text file that contains the following lines:

SYS$SHARE: SSLSLIBSSL_SHR/SHARE
SYS$SHARE: SSLSLIBCRYPTO_SHR/SHARE

1.7.2 Building an Application Using 32-Bit APIs

To build (compile and link) an example program using the 32-bit APIs, enter the following commands:

$ CC/PREFIX=ALL SAMPLE.C
$ LINK/MAP SAMPLE, LINKER_OPT/OPTIONS

In these commands, LINKER_OPT.OPT is a simple text file that contains the following lines:

SYS$SSHARE: SSLSLIBSSL_SHR32/SHARE
SYS$SSHARE: SSLSLIBCRYPTO_SHR32/SHARE

1.8 Release Notes

This section contains notes on the current release of HP SSL for OpenVMS.

1.8.1 Legal Caution

SSL data transport requires encryption. Many governments, including the United States, have restrictions on
the import and export of cryptographic algorithms. Please ensure that your use of HP SSL is in compliance
with all national and international laws that apply to you.

1.8.2 HP SSL APIs Not Backward Compatible

HP cannot guarantee the backward compatibility of HP SSL for OpenVMS until the release of HP SSL for
OpenVMS that is based on OpenSSL 1.0.0 from The Open Group.

The HP SSL Version 1.3 for OpenVMS code is based on the 0.9.7e baselevel of OpenSSL. Any OpenSSL API,
data structure, header file, command, and so on might be changed in a future version of OpenSSL.

23

Installation and Release Notes
Release Notes

NOTE The HP SSL shareable images use EQUAL 1,0 which means that applications will have to
relink when the idents on the shareable images have changed, as they have in HP SSL Version
1.3.

If you were running a version of HP SSL prior to Version 1.2, you must recompile and relink your code after
you upgrade to Version 1.3. You must relink your code if you see the following error:

$ run ssl_test

$DCL-W-ACTIMAGE, error activating image SSLSLIBSSI,_SHR32

-CLI-E-IMGNAME, image file DWLLNGS$DKA500:[SYSO0.SYSCOMMON.] [SYSLIB]SSLSLIBSSL_SHR32.EXE
-SYSTEM-F-SHRIDMISMAT, ident mismatch with shareable image

$

1.8.3 Changes to APIs in OpenSSL 0.9.7e

A number of APIs have been changed in HP SSL Version 1.3. See Appendix B for a list of new and changed
APIs.

1.8.4 Preserve Configuration Files Before Manually Uninstalling HP SSL

Preserving configuration files is not necessary when you perform a regular upgrade or reinstallation of HP
SSL using the PRODUCT INSTALL command.

Using the PRODUCT REMOVE command to manually uninstall HP SSL is not recommended (see the
following note). However, if you made any modifications to the HP SSL configuration files, preserve the files
by backing up these files to a different disk and directory before you enter the PRODUCT REMOVE
command that removes the HP SSL kit. Otherwise, any changes you made to OPENSSL-VMS.CNF and
OPENSSL.CNF will be lost. When you have completed the Version 1.3 installation, move the saved items
back into the HP SSL directory structure.

1.8.5 Warning Against Uninstalling HP SSL from OpenVMS Version 8.3 or Higher
Using the PRODUCT REMOVE Command

The POLYCENTER Software Installation utility command PRODUCT REMOVE is not supported for HP SSL
on OpenVMS Version 8.3 or higher, even though there is an apparent option to remove HP SSL.. HP SSL is
installed together with the operating system and is tightly bound with it. An attempt to remove it from
Version 8.3 or higher would not work cleanly and could create other undesirable side effects.

If you ignore the warning and continue to remove HP SSL, HP strongly recommends that you use PRODUCT
INSTALL to install the HP SSL Version 1.3 PCSI kit as soon as possible. An attempt to remove HP SSL
results in the following message:

$PCSI-E-HRDREF, product HP AXPVMS SSL V1.3-xxx is referenced by DEC AXPVMS OPENVMS
V8.3 -xxx

The two products listed above are tightly bound by a software dependency.
If you override the recommendation to terminate the operation, the
referenced product will be removed, but the referencing product will have
an unsatisfied software dependency and may no longer function correctly.
Please review the referencing product’s documentation on requirements.

Answer YES to the following question to terminate the PRODUCT command.
However, if you are sure you want to remove the referenced product then

24

Installation and Release Notes
Release Notes

answer NO to continue the operation.

Terminating is strongly recommended. Do you want to terminate? [YES]

1.8.6 SSL$DEFINE ROOT.COM Removed From SSL$STARTUP.COM

Beginning in HP SSL Version 1.3, SSL is installed on the system disk only. To reflect this change, the
command procedure SSL$DEFINE_ROOT.COM has been removed from SSL$STARTUP.COM.
(SSL$DEFINE_ROOT.COM was included in HP SSL Version 1.2 to define the logical SSL$ROOT. In Version
1.2, it was possible to install HP SSL to locations other than the system disk.)

The logical name SSL$ROOT is now defined in SSL$STARTUP.COM, and points to
SYS$SYSDEVICE:[VMS$COMMON.SSL.].

1.8.7 SSL$STARTUP.TEMPLATE Removed From HP SSL Version 1.3

HP SSL Version 1.3 no longer contains SSL$STARTUP.TEMPLATE. Before overwriting the file, HP SSL
copies your existing SSL$STARTUP.COM file to SSL$STARTUP.COM_OLD to preserve any changes that you
may have made to SSL$STARTUP.COM in the past.

If you are upgrading from a previous version of HP SSL, after the installation is complete compare your
SSL$STARTUP.COM_OLD file and the new SSL$STARTUP.COM file, and add any modifications you made
to the new file. (Version 1.3 continues to provide the configuration template files
OPENSSL.CNF_TEMPLATE and OPENSSL-VMS.CNF_TEMPLATE. See the following note for more

information.)

Use SSL$COM:SSL$SYSTARTUP.COM to make additions or changes to the startup of HP SSL.
SSL$COM:SSL$SYSTARTUP.COM is executed from SSL$STARTUP.COM. SSL$STARTUP.COM has been
added to the OpenVMS command procedure VMS$LPBEGIN-050_STARTUP.COM so that SSL is started
when OpenVMS is started.

1.8.8 Configuration Command Procedure Template Files

The configuration files included in the HP SSL kit are named OPENSSL.CNF_TEMPLATE and
OPENSSL-VMS.CNF_TEMPLATE. This prevents PCSI from overwriting the .CNF files, and allows you to
preserve any modifications you made to OPENSSL.CNF and OPENSSL-VMS.CNF if you installed a previous
release of HP SSL for OpenVMS.

If you are upgrading from a previous version of HP SSL, after you install the HP SSL kit, compare the new
.CNF_TEMPLATE files with your existing .CNF files and add any new information as required.

If you did not previously install an HP SSL for OpenVMS kit, both the .CNF_TEMPLATE and .CNF files are
provided.

1.8.9 HP SSL Requirement to Install on System Disk

The option to install to a location other than the system disk is no longer available beginning in HP SSL
Version 1.3. HP SSL is installed on the system disk automatically when you install or upgrade to OpenVMS
Version 8.3. If you download HP SSL Version 1.3 from the web site and install it as a layered product, it too
must be installed on the system disk.

1.8.10 Shut Down HP SSL Before Installing on Common System Disk

Before installing HP SSL to a common system disk in a cluster, you must first shut down HP SSL by entering
the following command on each node in the cluster:

25

Installation and Release Notes
Release Notes

$ @SYSSSTARTUP: SSLSSHUTDOWN

Shutting down HP SSL deassigns logical names and removes installed shareable images that may interfere
with the installation.

After the installation is complete, start HP SSL by entering the following command on each node in the
cluster:

$ @SYSSSTARTUP: SSLSSTARTUP

Note: If you are installing on a common cluster disk and not a common system disk, omit the SYS§STARTUP
logical and specify the specific startup directory in the shutdown and startup commands. For example:

S @device: [directory.SYSSSTARTUP]SSLS$SSHUTDOWN
S @device: [directory.SYSSSTARTUP]SSLSSTARTUP

1.8.11 OpenSSL Version Command Displays HP SSL for OpenVMS Version

Beginning with HP SSL Version 1.2, the OpenSSL command line utility command VERSION now includes
the HP SSL for OpenVMS version. The OpenSSL VERSION command displays output similar to the
following:

S OPENSSL VERSION
OpenSSL 0.9.7e 25 Oct 2004
SSL for OpenVMS V1.3 May 26 2006

1.8.12 Shareable Images Containing 64-Bit and 32-Bit APIs Provided

HP SSL for OpenVMS provides shareable images that contain 64-bit APIs and shareable images that contain
32-bit APIs. You can choose which APIs to use when you compile your application. For more information, see
Building an HP SSL Application.

1.8.13 Linking with HP SSL Shareable Images

If you have written an application that links against the OpenSSL object libraries, you must make a minor
change to your code because HP SSL for OpenVMS provides only shareable images. To link your application
against the shareable images, use code similar to the following:

S LINK my_app.obj, VMS_SSIL_OPTIONS/OPT
where VMS_SSL_OPTIONS.OPT is a text file that contains the following lines:

SYS$SHARE : SSLSLIBCRYPTO_SHR.EXE/SHARE
SYS$SHARE: SSLSLIBSSL_SHR.EXE/SHARE

1.8.14 Certificate Tool Cannot Have Simultaneous Users

Only one user/process should use the Certificate Tool at a time. The tool does not have a locking mechanism to
prevent unsynchronized accesses of the database and serial file, which could cause database corruption.

1.8.15 Protect Certificates and Keys

When you create certificates and keys with the Certificate Tool, take care to ensure that the keys are properly
protected to allow only the owner of the keys to use them. A private key should be treated like a password.
You can use OpenVMS file protections to protect the key file, or you can use ACLs to protect individual key
files within a common directory.

26

Installation and Release Notes
Release Notes

1.8.16 Enhancements to the HP SSL Example Programs

Beginning with HP SSL Version 1.2, several enhancements and changes were made to the HP SSL example

programs located in SYS$COMMON:[SYSHLP.EXAMPLES.SSL]. These include new examples (for example,
using HP SSL with QIO, AES encryption, and SHA1DIGEST) and additional common callbacks and routines
to SSL,_EXAMPLES.H includes file. Extra calls to free routines have been removed from the examples along
with general code clean up. For more information about the example programs, see Chapter 5.

1.8.17 SSL$SEXAMPLES Logical Name

The SSL$EXAMPLES logical name has been added to the SSL$STARTUP.TEMPLATE command procedure.
This logical points to the directory SYS$COMMON:[SYSHLP.EXAMPLES.SSL)].

1.8.18 Environment Variables

OpenSSL environmental variables have two formats, as follows:
o $var

e ${var}

In order for these variables to be parsed properly and not be confused with logical names, HP SSL for
OpenVMS only accepts the ${var/ format.

1.8.19 IDEA and RC5 Symmetric Cipher Algorithms Not Supported

The IDEA and RC5 symmetric cipher algorithms are not available in HP SSL for OpenVMS. Both of these
algorithms are under copyright protection, and HP does not have the right to use these algorithms.

If you want to use either of these algorithms, HP recommends that you contact RSA Security at the following
URL for the licensing conditions of the RC5 algorithm:

http://www.rsasecurity.com

If you want to use the IDEA algorithm, contact Ascom for their license requirements at the following URL:
http://www.ascom.com

Once you have obtained the proper licenses, download the source code from the following URL:
http://www.openssl.org

Build the product using the command procedure named MAKEVMS.COM provided in the download.

1.8.20 APIs RAND_egd, RAND_egd_bytes, and RAND_query_egd_bytes Not
Supported
The RAND_egd (), RAND_egd_bytes (), and RAND_query_egd_bytes () APIs are not available on OpenVMS.

To obtain a secure random seed on OpenVMS, use the RAND_po11 () APIL.

1.8.21 Documentation from the OpenSSL Web Site

The documentation on the OpenSSL website is under development. It is likely that the API and command
line documentation shipped with this kit will differ from the documentation on the OpenSSL website at some
point. If such a situation arises, you should consider the API documentation on the OpenSSL website to have
precedence over the documentation included in this kit.

27

Installation and Release Notes
Release Notes

1.8.22 Extra Certificate Files — *PEM

When you sign a certificate request using either the Certificate Tool or the OpenSSL utility, you may notice
that an extra certificate is produced with a name similar to SSL§CRTO01.PEM. This certificate is the same as
the certificate that you produced with the name you chose. These extra files are the result of the OpenSSL
demonstration Certificate Authority (CA) capability, and are used as a CA accounting function. These extra
files are kept by the CA and can be used to generate Certificate Revocation Lists (CRLs) if the certificate
becomes compromised.

1.8.23 Known Problem: Certificate Verification with OpenVMS File
Specifications

OpenSSL is unable to properly parse OpenVMS file specifications when they are passed in as CApath
directories. If you try to do this, OpenSSL returns the following error:

unable to get local issuer certificate

To work around this problem, define a logical that points to the OpenVMS directory, as follows:

S define vms_cert_dir dka300:[ssl.certificates]
S openssl verify “-CApath” vms_cert_dir -purpose any example.crt

1.8.24 Known Problem: BIND Error in TCP/IP Application

If you are running a TCP/IP-based SSL client/server application, the server occasionally fails to start up, and
displays the following error message:

bind: address already in use
To avoid this error, use setsockopt () with SO_REUSEADDR as follows:

int on = 1;
ret = setsockopt(listen_sock, SOL_SOCKET, SO_REUSEADDR, (void *)
&on, sizeof(on));

1.8.25 Known Problem: Server Hang in HP SSL Session Reuse Example
Program

In HP SSL Version 1.1-B and higher, a server hang problem may occur when you are running one of the HP
SSL session reuse example programs. The server hang occurs when a VAX system acts as a client and the
server is an Alpha or 164 system in this mixed architecture, client-server test.

When the client SSL$CLI_SESS_REUSE.EXE program is run on a VAX system, and the server
SSL$SERV_SESS_REUSE.EXE program is run on an Alpha or 164 system, the server appears to hang
waiting for further session reconnections, because the loop counts differ. In fact, the VAX client has finished
and closed the connection. There is no problem when the client server roles are reversed, or if the same
system acts as both client and server.

1.8.26 Known Problem: Compaq C++ V5.5 CANTCOMPLETE Warnings

When you compile programs that contain OpenSSL APIs, Compaq C++ Version 5.5 issues warnings about
incomplete classes. This error occurs when you use a structure definition before it has been defined. You can
resolve these warnings in one of two ways:

e Upgrade to C++ Version 6.0 or higher.

28

Installation and Release Notes
Release Notes

¢ Supply the necessary prototype before using the structure.
The following is an example of this error:

S cxx/list/PREFIX=(ALL_ENTRIES) serv.c
struct CRYPTO_dynlock_value *data;

$CXX-W-CANTCOMPLETE, In this declaration, the incomplete class
"unnamed struct::CRYPTO_dynlock_wvalue"

cannot be completed because it is declared within a
class or a function prototype.

at line number 161 in file
CRYPTOSRES: [OSSL.BUILD_0049_ALPHA_32.INCLUDE.OPENSSL]CRYPTO.H;3

1.8.27 Problem Corrected: Possible Errors Using PRODUCT REMOVE

In HP SSL Version 1.2, when you used the PCSI REMOVE SSL command to remove previous versions of HP
SSL, certain DCL symbols were not set up properly. This would result in various file not found errors.

This problem has been corrected in HP SSL Version 1.3.

1.8.28 Problem Corrected: Error Running OpenSSL Command Line Utility on
ODS-5 Disks

In previous versions of HP SSL, an invalid command error was displayed when you tried to run OpenSSL
commands on an ODS-5 disk with the following parsing logicals set:

$ SET PROCESS/PARSE=EXTENDED
$ DEFINE DECCS$SARGV_PARSE_STYLE ENABLE

This problem has been corrected beginning in HP SSL Version 1.2. OpenSSL commands now work on both
ODS-2 and ODS-5 disks, regardless of the parse settings.

1.8.29 Problem Corrected: Attempt to Encrypt within SMIME Subutility Caused
Access Violation

In versions of HP SSL earlier than Version 1.2, if you entered an OpenSSL SMIME command, an access
violation was returned. For example:

S openssl smime -encrypt -in in.txt ssl$Scerts:server.pem

$SYSTEM-F-ACCVIO, access violation, reason mask=00, virtual
address=FFFFFFFFF00D2B10,
PC=000000000017DD0OC, PS=0000001B

Improperly handled condition, image exit forced.

This problem was corrected in OpenSSL 0.9.7d, and has been included beginning in HP SSL Version 1.2.

1.8.30 Problem Corrected: Race Condition When CRLs are Checked in a
Multithreaded Environment
In versions of HP SSL earlier than Version 1.2, a race condition would occur when CRLs were checked in a

multithreaded environment. This would happen because of the reordering of the revoked entries during
signature checking and serial number lookup.

29

Installation and Release Notes
Release Notes

In OpenSSL 0.9.7e and HP SSL Version 1.2 and higher, the encoding is cached and the serial number sort is
performed under a lock.

30

Overview of SSL
The SSL Protocol

2 Overview of SSL

Secure Sockets Layer (SSL) is the open standard security protocol for the secure transfer of sensitive
information over the Internet. SSL provides three things: privacy through encryption, server authentication,
and message integrity. Client authentication is available as an optional function.

OpenVMS includes three standards-based cryptographic security solutions, HP SSL for OpenVMS, Common
Data Security Architecture (CDSA), and Kerberos for OpenVMS that protect your information and
communications.

Protecting communication links to OpenVMS applications over a TCP/IP connection can be accomplished
through the use of SSL. The OpenSSL APIs establish private, authenticated and reliable communications
links between applications.

CDSA for OpenVMS provides a security infrastructure that allows for the creation of multiplatform, open
source industry standard cryptographic solutions. CDSA provides a flexible mix-and-match solution among a
variety of different applications and security services. This allows for compliance to local regulation while
keeping the security underpinnings transparent to the end user. For more information, see the HP Open
Source Security for OpenVMS, Volume 1: Common Data Security Architecture.

Kerberos is a network authentication protocol designed to provide strong authentication for client/server
applications by using secret-key cryptography. It was developed at the Massachusetts Institute of Technology
as part of Project Athena in the mid-1980s. The Kerberos protocol uses strong cryptography, so that a client
can prove its identity to a server (and vice versa) across an insecure network connection. After a client and
server have used Kerberos to prove their identity, they can also encrpt all of their communications to assure
privacy and data integrity. For more information, see HP Open Source Security for OpenVMS, Volume 3:
Kerberos.

NOTE SSL data transport requires encryption. Many governments, including the United States, have
restrictions on the import and export of cryptographic algorithms. Please ensure that your use
of SSL is in compliance with all national and international laws that apply to you.

This chapter discusses the following topics:
e The SSL protocol

¢ The SSL handshake

¢ Public key encryption

¢ (Certificates

e Cipher suite

¢ Digital signatures

2.1 The SSL Protocol

This section provides an overview of SSL technology and its application.

31

Overview of SSL
The SSL Handshake

The SSL protocol works cooperatively on top of several other protocols. SSL works at the application level.
The underlying mechanism is TCP/IP (Transmission Control Protocol/Internet Protocol), which governs the
transport and routing of data over the Internet. Application protocols, such as HTTP (HyperText Transport
Protocol), LDAP (Lightweight Directory Access Protocol), and IMAP (Internet Messaging Access Protocol),
run on top of TCP/IP. They use TCP/IP to support typical application tasks, such as displaying web pages or
running email servers.

SSL addresses three fundamental security concerns about communication over the Internet and other
TCP/IP networks:

¢ SSL server authentication — Allows a user to confirm a server's identity. SSL-enabled client software
can use standard techniques of public-key cryptography to check whether a server's certificate and public
ID are valid and have been issued by a Certificate Authority (CA) listed in the client's list of trusted CAs.
Server authentication is used, for example, when a PC user is sending a credit card number to make a
purchase on the web and wants to check the receiving server's identity.

e SSL client authentication — Allows a server to confirm a user's identity. Using the same techniques as
those used for server authentication, SSL-enabled server software can check whether a client's certificate
and public ID are valid and have been issued by a Certificate Authority (CA) listed in the server's list of
trusted CAs. Client authentication is used, for example, when a bank is sending confidential financial
information to a customer and wants to check the recipient's identity.

¢ An encrypted SSL connection — Requires all information sent between a client and a server to be
encrypted by the sending software and decrypted by the receiving software, thereby providing a high
degree of confidentiality. Confidentiality is important for both parties to any private transaction. In
addition, all data sent over an encrypted SSL connection is protected with a mechanism that
automatically detects whether data has been altered in transit.

2.2 The SSL Handshake

An SSL session always begins with an exchange of messages called the SSL handshake. The handshake
allows the server to authenticate itself to the client using public key techniques, also called asymmetric
encryption. It then allows the client and the server to cooperate in the creation of symmetric keys, which are
used for rapid encryption, decryption, and tamper detection during the session that follows. Optionally, the
handshake also allows the client to authenticate itself to the server.

This exchange of messages is designed to facilitate the following actions:

e Authenticate the server to the client.

e Allow the client and server to select the cryptographic algorithms, or ciphers, that they both support.
e Optionally authenticate the client to the server.

¢ Use public key encryption techniques to generate shared secrets.

e Kstablish an encrypted SSL connection.

32

Overview of SSL
Public Key Encryption

2.3 Public Key Encryption

In traditional environments, encrypted information is sent between parties that use the same key to encode
and decode information. This is called symmetric encryption. In the case of the Internet, there is no way
for one computer to send the encryption key to another without risk of a third party stealing the key and
decoding subsequent communications. A method other than symmetrical encryption is required to transmit
the encryption key securely on the Internet.

Public key cryptography was developed by Whitfield Diffie and Martin Hellman. The Diffie-Hellman key
agreement protocol was published in 1976. It is also called asymmetric encryption because it uses two keys
instead of one key. The RSA algorithm is another option for public key cryptography.

The solution is a system called public key cryptography or asymmetric encryption, which uses two
keys. One is a public key and is usually available to anyone who wants it. The other, a private key, is held
by just one party. Only the private key can decipher information that is encrypted using the public key; it is
impossible to decipher the message using the public key. Similarly, only the private key can create encrypted
messages that are decipherable with the public key. Because there can be only one public key for each private
key, and vice-versa, it is nearly impossible to impersonate the holder of the private key. The two keys are
mathematically related, but in such a way that it is virtually impossible to derive the private key from the
public one.

During the SSL handshake, each computer generates a set of codes to encrypt information. From these codes,
each computer creates two keys, one private key and one public key. Your computer keeps the private key
secret, but it sends out the public key to the other computer, which uses that key to encode subsequent
messages that only your computer can read. However, the public key cannot, be used to decode the message;
only private key can decode the message.

These keys allow you and the other computer to lock and unlock information so that only the holder of the
private key can read messages encrypted by the public key. Since only you and the other computer have a
copy of your respective private keys, there is no way for anybody else to intercept and decode your messages.

2.4 Certificates

A certificate, or digital certificate, is an electronic document used to identify an individual, a server, a
company, or some other entity and to associate that identity with a public key. Like a driver's license, a
passport, or other commonly used personal IDs, a certificate provides generally recognized proof of a person's
identity. Public key cryptography uses certificates to address the problem of impersonation.

Certificates are issued by certificate authorities. The Certificate Authority (CA) is a trusted third party
that verifies the identity of the site with which you are connected. Like any form of identification, the
authenticity of the issuer is essential.

The role of CAs in validating identities and in issuing certificates is analogous to the way a government issues
passports and driver's licenses. CAs can be either independent third parties or organizations running their
own certificate-issuing server software (such as Netscape Certificate Server).

The methods used to validate an identity vary depending on the policies of a given CA. In general, before
issuing a certificate, the CA must use its published verification procedures for that type of certificate to
ensure that an entity requesting a certificate is in fact who it claims to be.

33

Overview of SSL
Cipher Suite

The certificate issued by the CA binds a particular public key to the name of the entity the certificate
identifies (such as the name of an employee or a server). Certificates help prevent the use of fake public keys
for impersonation. Only the public key certified by the certificate works with the corresponding private key
possessed by the entity identified by the certificate.

In addition to a public key, a certificate always includes the name of the entity it identifies, an expiration date,
the name of the CA that issued the certificate, a serial number, and other information. Most importantly, a
certificate always includes the digital signature of the issuing CA. The CA's digital signature allows the
certificate to function as a "letter of introduction" for users who know and trust the CA but who do not know
the entity identified by the certificate.

For information about the HP SSL Certificate Tool, which allows you to view and create certificates, see
Chapter 3.

2.5 Cipher Suite

Integral to the SSL protocol is its use of cryptographic algorithms, generally called ciphers. Ciphers are
required to authenticate the server and client to each other, transmit certificates, and establish session keys.
Clients and servers can support different cipher suites, or sets of ciphers, depending on factors such as the
version of SSL they support, company policies regarding acceptable encryption strength, and government
restrictions on the export of SSL-enabled software.

Among its other functions, the SSL. handshake protocol determines how the server and client negotiate which
cipher suites they will use to authenticate each other, to transmit certificates, and to establish session keys.
Key exchange algorithms such as RSA and DH key exchange govern the way the server and client determine
the symmetric keys they will both use during an SSL session. The most commonly used SSL cipher suites use
RSA key exchange.

The SSL 2.0 and SSL 3.0 protocols support overlapping sets of cipher suites. Administrators can enable or
disable any of the supported cipher suites for both clients and servers. When a particular client and server
exchange information during the SSL handshake, they identify the strongest enabled cipher suites they have
in common and use those for the SSL session.

Decisions about which cipher suites a particular organization decides to enable depend on trade-offs among
the sensitivity of the data involved, the speed of the cipher, and the applicability of export rules.

2.6 Digital Signatures

Encryption and decryption address the problem of eavesdropping. However, tampering and impersonation are
still possible.

Public key cryptography addresses the problem of tampering using a mathematical function called a
one-way hash function (also called a message digest function or algorithm). A one-way hash is a
fixed-length number whose value is unique to the data being hashed. Any change in the data, even deleting or
altering a single character, results in a different value.

For all practical purposes, the content of the hashed data cannot be deduced from the hash, which is why it is
called "one-way."

34

Overview of SSL
Digital Signatures

This principle is the crucial part of digitally signing any data. Instead of encrypting the data itself, the
signing software creates a one-way hash of the data, then uses your private key to encrypt the hash. The
encrypted hash, along with other information, such as the hashing algorithm, is known as a digital
signature.

35

Overview of SSL
Digital Signatures

36

Using the Certificate Tool
Starting the Certificate Tool

3 Using the Certificate Tool

HP SSL for OpenVMS provides a certificate tool that is a simple menu-driven interface for viewing and
creating SSL certificates. The OpenSSL Certificate Tool enables you to perform the most important
certification functions with ease. Using it, you can view certificates and certificate requests, create certificate
requests, sign your own certificate, create your own certificate authority, and sign client certificate requests.
Additional hash functions are included.

NOTE Some OpenSSL commands are beyond the scope of the Certificate Tool. For these, use the
command-line OpenSSL utility. See Chapter 5 for more information

3.1 Starting the Certificate Tool

Run the Certificate Tool by entering the following command at the DCL command prompt:

$ @SSLS$COM: SSLSCERT_TOOL

NOTE Only one user or process should use the Certificate Tool at a time. The tool does not have a
locking mechanism to prevent unsynchronized accesses of the database and serial file, which
could cause database corruption. This assumes that you started SSL using
SSL$STARTUP.COM.

Figure 3-1 shows the Certificate Tool's main menu.

Figure 3-1 Certificate Tool Main Menu

4 ™\
SSL Certificate Tool

Main Menu

View a Certificate

View a Certificate Signing Request

Create a Certificate Signing Request

Create a Self-Signed Certificate

Create a CA (Certification Authority) Certificate
Sign a Certificate Signing Request

Hash Certificates

Hash Certificate Revocations

Exit

W oo Jo Ul WNE

Enter Option: I

- J

VM-0868A-Al

37

Using the Certificate Tool
Viewing a Certificate

3.2 Viewing a Certificate

The content of a certificate associates a public key with the real identity of an individual, server, or other
entity (known as the subject). Information about the subject includes identifying information (the
distinguished name), and the public key. It also includes the identification and signature of the certificate
authority that issued the certificate, and the period of time during which the certificate is valid. The
certificate might contain additional information (or extensions) as well as administrative information, such as
a serial number, for the Certificate Authority's use.

To view a certificate, do the following:

1. Select the View a Certificate option from the main menu by entering 1 and pressing enter.

2. Press enter to accept the default file specification (or type a new file specification to an alternative
location) for the certificate directory to find files with a CRT extension:

SSL Certificate Tool

View Certificate

Display Certificate File: ? [SSLSCRT:*.CRT] I

VM-0869A-Al

The default directory specification of SSL$CRT: is where certificates you sign are saved. Server
certificates can be saved on your system by other products. For example, HP Secure Web Server for
OpenVMS Alpha places certificates in APACHE$ROOT:[CONF.SSL_CRT].

3. Select a certificate file by entering its number, then pressing Enter. In the following example, number 1
(server_ca.crt) was selected.

4 N\
SSL Certificate Tool

View Certificate

<Select a File> Page 1 of 1

1. SSLSROOT: [CERTS]server_ca.crt;1
. SSLSROOT: [CERTS]test_selfsign.crt;1
3. SSLSROOT: [CERTS]TEST_SELFSIGN_X509.CRT;1

N

Enter B for Back, N for Next, Ctrl-Z to Exit or Enter a File Number

- J

VM-0870A-Al

4. View the certificate details:

e Version (SSL 3.0 protocol)

e Serial number (Certificates issued by a CA have a serial number that is unique to the certificates
issued by that CA.)

38

¢ Signature algorithm

e Issuer

e Validity (inception and expiration dates)
¢ Public key information

This information is displayed as follows:

Using the Certificate Tool
View a Certificate Request File

4 N\
SSL Certificate Tool
View Certificate
< SSLSROOT: [CERTS]server_ca.crt;1l > Page 1 of 3
Certificate:
Data:
Version: 3 (0x2)
Serial Number: 0 (0x0)
Signature Algorithm: md5WithRSAEncryption
Issuer: C=US, O=Compaqg Computer Corp., OU=OpenVMS, CN=Dwllng CA Authority
Validity
Not Before: Jan 24 02:26:16 2002 GMT
Not After : Jan 23 02:26:16 2007 GMT
Subject: C=US, O=Compaq Computer Corp., OU=OpenVMS, CN=Dwllng CA Authority
Subject Public Key Info:
Public Key Algorithm: rsaEncryption
RSA Public Key: (1024 bit)
Modulus (1024 bit):
00:c5:6e€:63:90:d7:11:d8:13:a8:96:8a:a3:4f:dd:
d3:8b:e6:d7:77:2c:8e:72:€6:63:73:14:1c:a9:be:
30:05:8e:84:74:17:cb:56:b3:7b:31:d4:44:26:8f:
bd:72:c£:22:£9:96:ea:84:b8:d0:13:0e:e4:cb:08:
25:e9:2e:3a:¢8:32:06:39:71:ee:93:a4:f4:71:£2:
e2:91:35:b8:6e:d3:5a:b2:0c:d9:a0:fe:07:£7:5d:
ed:89:77:77:41:3c:0d:bc:6a:41:b6:2e:1c:ab6:3c:
81:3f:70:3c:58:a3:63:3d:cd:57:2a:d3:28:97:39:
£3:dd:33:65:29:09:21:b6:bb
Exponent: 65537 (0x10001)

Signature Algorithm: md5WithRSAEncryption
5c:ea:12:35:de:24:¢7:c0:40:ca:90:57:9b:31:b2:c4:79:fc:
a6:b2:fa:bd:fe:43:92:94:66:20:01:ec:63:0c:32:57:63:fe:
92:a7:bb:8c:al:4£:92:15:6£:75:b7:9a:9d:a8:€6:59:51:77:
2c:61:99:d3:2c:52:8c:db:d2:b8:a7:21:44:3d:b2:16:22:0b:
39:97:5b:84:9€:68:30:¢cb:74:d9:¢c£:03:¢c4:95:b0:d7:7a:09:
45:28:6d:29:eb:83:1f:76:13:6e:78:8d:eb:c5:54:d9:dc:71:
32:1le:be:2d:al1:d0:67:95:03:8f:bd:c6:0b:£3:54:93:b8:1f:
b8:96

NNNNNN Enter B for Back, N for Next, Ctrl-Z to Exit ~~~~~~
o J
VM-0871A-Al

3.3 View a Certificate Request File

A certificate request file is an unsigned certificate.

To view a certificate request file, do the following:

39

Using the Certificate Tool
Create a Certificate Signing Request

1. Type the file specification to the certificate request directory to find files with a .CSR extension:
2. Select a certificate request file.
3. View the certificate request details:

e Subject

e Public key information

¢ Signature algorithm

e Issuer

e Validity (inception and expiration dates)

3.4 Create a Certificate Signing Request

Creating a certificate signing request (generating a *.CSR file) is like an application form for a certificate. You
can specify two categories of request:

e Server certificate request

Prepares a certificate file to be signed by a trusted (root) CA to authenticate your server. You are the
subject of the certificate, and the CA you send it to will be the certificate issuer. For example, if you
wanted to get a Thawte Server ID, you would create a certificate request and mail the contents of this
generated file to Thawte. The file you generate is a *.CSR file.

¢ (Client certificate request

Prepares client certificate files that are loaded in the SSL client application, such as a web browser. The
client is the subject of the certificate and you are the certificate issuer.

To create a certificate request, perform the following steps.

1. Enter the information required for the certificate. You must complete all fields to create a valid certificate
request. The certificate request is generated after you respond to the last question.

¢ Encrypt Private Key
Using an encrypted private key forces the passphrase dialog when loading the private key.

NOTE Do not use this option if you are using the mod_ss1 directive SSLPassPhraseDialog
with the default built-in option.

¢ Encryption Bits

The largest recommended size is 1024 bits. Encryption strength is often described in terms of the size
of the keys used to perform the encryption; in general, longer keys provide stronger encryption but
require more computing time. Key length is measured in bits. Private key sizes larger than 1024 bits
are incompatible with some versions of Netscape Navigator and Microsoft Internet Explorer.

¢ Certificate Key File
Use OpenVMS syntax (defaults to SSLSKEY:SERVER.KEY).
e (Certificate Request File

40

Using the Certificate Tool
Create a Certificate Signing Request

Use OpenVMS syntax (defaults to SSL§CSR:SERVER.CSR).

The remaining questions determine your server's distinguished name.

e Country Name

e State or Province Name
e (City Name

¢ Organization Name

¢ Organization Unit Name
¢ Common Name

Common name usage is different for client certificates than it is for server certificates. Generally, the
common name on a client certificate is the proper name of the individual requesting a certificate. In
the case of server certificates, the common name must be the same as your server's DNS host name
(or virtual host name, if name-based virtual hosting is used). Browsers compare the common name in
the server certificate with the host name of the server to which they are connecting; these names
must match.

¢ Email Address
¢ Display the Certificate
2. View the details of the certificate request (if you chose to display the certificate).

e Subject

e Public key information

¢ Signature algorithm
To see the encoded contents, exit the certificate tool and enter the following command to view the CSR file.
$ TYPE SSLSROOT: [CERTS]SERVER.CSR

What you see is exactly what is required by the certificate authority. You might be required to send the file
itself or just the contents of the file to your CA (according to the CA's instructions). For example:

MIIB/TCCAWYCAQAWgbwxCzAJBgNVBAYTA1VTMRYWFAYDVQQIEwW10ZXcgSGFtcHNoO
aXJ1MQ8wDQYDVQQHEWZOYXNodWEXHjAcBgNVBAOTFUNvbXBhcSBDb21wdXR1ciBD
b3JwLjECMBOGALUECXMTT3B1blZNUyBFbmdpbmV1cmluZzEaMBgGA1UEAXMRRkxJ
UDMuWk t PLKRFQy5DT00xKjAoBgkghkiG9w0OBCQEWG3d1lYmlhc3R1ckBGTEIQMy5a
SO08UREVDLKNPTTCBnzANBgkghkiGI9w0OBAQEFAAOB]QAwWgYkCgYEAQ /y8RxXUE/COy
nVpeK00GgvbgFWxX1089ULQTMVUSwWmAzhdzbi3DZL5s85YRGAPVgYW2riWs1t2SQg
JMS1FTxta/CwiWe6Vwwn9GmdadJwkgGFxnpw2LmugexLfj+4t97AZyIR207gJIxCINSS
CWg3tenlZUmgswjkrG8WehUN+2C6IBcCAWEAAAAAMAOGCSgGSIb3DQEBBAUAALAGE
ABzgiiojPAcojLXGI20FxJ5apORAHHHAYcOYCUhFXS1Rs2BIXHMM5xQuxk8yitcd
yViQfHhGDzpDmOwWMKkK7t09UjQh9humKEU1ANnS4VYLL4AV]1genwLybcLLB0Q3aiQN
UjQwIRrXNWWZYVDenvrOwtbK9dFefb4dP1ZIAS2/Z4jLP

If you are sending only the contents, copy and paste everything and send to the CA using secure email or the
appropriate enrollment form. The CA will return a digitally signed certificate to you. For example:

MIICeDCCAiICEEdpjx0zmJPyh5TiG8BRA70wDQYJKoZIhveNAQEEBQAwgakxFjAU
BgNVBAOTDVZ1lcmlTaWduLCBIbmMxRzBFBgNVBAsSTPnd3dy527ZXJpc2lnbi5jb20v
cmVwb3NpdG9yeS9UZXNOQIBTIEIuY29ycC4gQnkgUmVmL i BMaWF 1 Li BMVEQuUMUYw
RAYDVQQLEz1Gb3IgVmVyaVNpZ24gYXV0aG9yaXplZCBO0ZXNOawsnIG9ubHkuIESv
IGFzc3VyYW5JjZXMgKEMpV1MxOTk3MB4XDTAWMDCcwWNzZ AWMDAWMF 0 XDTAWMDCYMTI z

41

Using the Certificate Tool
Create a Self-Signed Certificate

NTk10VowgZAxXxCzAJBgNVBAYTA1VTMRYWFAYDVQQIEw10ZXcgSGFtcHNoaXJ1MQ8w
DQYDVQQHFAZOYXNodWExH]AcBgNVBAOUFUNvbXBhcSBDb21wdXR1ciBDb3JwLIEc
MBOGA1UECxQTT3B1blZNUyBFbmdpbmVlcmluZzEaMBgGA1UEAXQRRkxJUDMuWkt P
LKRFQy5DT00wgZ8wDQYJKoZIhveNAQEBBQADgY0AMIGJAOGBANPSVECbhPwjspla
XitNBoL24BVsV9aPPVCOEzFVEsJgM4Xc24tw2S+bPOWERNT1YGFtglrNbdkkIIzE
pRUSbWvwsFulcMJ /RpnWicJKhhcZ6cNi5roHsS34 /uLfewGciEdjudCcQibDUuQlo
N7XJIWVIgrMI5KxvFnoVDf tguiAXAgMBAAEWDQYJK0ZIThveNAQEEBQADQQAYSLLe
U7nMLJ+QkR1d61gKjU2VotphPvgWMGsJ+TKqUI4MXaAv0zQxtBni1N8s0LXVNCuJ
1EzBYJjSbgbgEhJJA

The CA-signed certificate contains the following information:

¢ Your organization's common name (Www.your-server)

¢ Additional identifying information (IP and physical address)
¢ Your public key

e Expiration date of the public key

¢ Name of the CA that issued the ID

¢ A unique serial number. (Every certificate issued by a CA has a serial number that is unique to the
certificates issued by that CA.)

e CA's digital signature

3.4.1 Installing Certificates

A signed certificate needs to be installed, along with the key you generated when creating the request, by
saving or copying the respective files to their correct directories and restarting the application.

The following example shows a certificate and key copied to the directory of a web server.
$ COPY SSL$CERTS:SERVER.CRT APACHE$SPECIFIC: [CONF.SSIL_CRT]

$ COPY SSLSKEY:SERVER.KEY APACHESSPECIFIC: [CONF.SSL_KEY]

3.5 Create a Self-Signed Certificate

To create a self-signed certificate, perform the following steps. All fields must be completed to create a valid
self-signed certificate. The inception time of a certificate is based on UTC (Coordinated Universal Time).
Check with your system administrator that your computer's UTC is set correctly if you want to use the
self-signed certificate right away.

1. Enter the required information for the self-signed certificate.

¢ Encrypt Private Key
Using an encrypted private key forces the passphrase dialog to appear at startup time.

¢ Encryption Bits

42

Using the Certificate Tool
Create a Certificate Authority

The largest recommended size is 1024 bits. Encryption strength is often described in terms of the size
of the keys used to perform the encryption; in general, longer keys provide stronger encryption. Key
length is measured in bits. Private key sizes larger than 1024 bits are incompatible with some
versions of Netscape Navigator and Microsoft Internet Explorer.

Certificate Key File

Use OpenVMS syntax (defaults to SSLSKEY:SERVER.KEY).
Certificate File

Use OpenVMS syntax (defaults to SSL$CRT:SERVER.CRT).
Country Name

State or Province Name

City Name

Organization Name

Organization Unit Name

Common Name

Common name usage is different for client certificates than it is for server certificates. Generally, the
common name on a client certificate is the proper name of the individual requesting a certificate. In
the case of server certificates, the common name must be the same as your server's DNS host name
(or virtual host name, if name-based virtual hosting is used). Browsers compare the common name in
the server certificate with the host name of the server they are connecting to. These must match.

Email Address
Display the Certificate

2. View the details of the self-signed certificate (if you chose to display the certificate).

Version (SSL 3.0 protocol)

Serial number (Certificates issued by a CA have a serial number that is unique to the certificates
issued by that CA.)

Signature algorithm
Issuer
Validity (inception and expiration dates)

Public key information

3.6 Create a Certificate Authority

Creating a certificate authority (CA) allows you to issue certificates using your own private key. The
corresponding CA public key is itself contained within a certificate, called a CA Certificate. You must
distribute this certificate to clients in order for them to access your server. A browser must contain this CA
Certificate in its "trusted root library" in order to trust certificates signed by the CA's private key.

To create a certificate authority, perform the following steps:

43

Using the Certificate Tool
Create a Certificate Authority

1. Enter the information required to create a certificate authority. You must complete all fields to create a
valid CA certificate. The certificate request is generated after you respond to the last question.

PEM Passphrase
Encryption Bits

The largest recommended size is 1024 bits. Encryption strength is often described in terms of the size
of the keys used to perform the encryption; in general, longer keys provide stronger encryption. Key
length is measured in bits. Private key sizes larger than 1024 bits are incompatible with some
versions of Netscape Navigator and Microsoft Internet Explorer.

Default Days

The default number of days until expiration for certificates issued by the CA. A large number, such as
1825 (5 years) is usually appropriate so that certificates signed with this key do not expire too soon.

Certificate Key File

Use OpenVMS syntax (defaults to SSL$KEY:SERVER_CA.KEY).
CA Certificate File

Use OpenVMS syntax (defaults to SSL$CRT:SERVER_CA.CRT).
Country Name

A certificate authority can define a policy that specifies which distinguished names are optional and
which are required. The distinguished name is defined in the config file (.cnf), and is usually made up
of more than one field. The number and makeup of the fields are defined by the certificate authority,
and are found in the config file under the [req_distinguished_name] field. A certificate authority can
also place requirements on the field contents, as can users of certificates. As an example, a Netscape
browser requires that the common name for a certificate representing a server has a name that
matches a wildcard pattern for the domain name of that server, such as *.xyz.com.

State or Province Name
City Name

Organization Name
Organization Unit Name
Common Name

This can be any text string that you want to use to identify the authority. The name can be generic,
such as CA Authority, or more specific, such as nodenameCA.

Email Address
Require Unique Subject Names

If you accept the default or answer YES, then certificates must have unique subject names. If you
answer NO, then certificates can have duplicate subject names, and are distinguished from one
another by the serial number that is assigned to them. Answering NO allows you to have two
certificates with the same subject name in the database. This makes it easier to issue new certificates
when the old certificates are about to expire.

44

Using the Certificate Tool
Create a Certificate Chain

NOTE The UNIQUE_SUBJECT variable in the OPENSSL-VMS.CNF configuration file is set
to YES or NO, depending on the answer to the Require Unique Subject Names
question. After a CA and its database is created, the UNIQUE_SUBJECT variable
should not be changed. If at a later time you want to change the setting, you must
recreate the entire database.

¢ Display the Certificate
2. View the details of the certificate authority (if you chose to display the certificate).
e Version (SSL 3.0 protocol)

e Serial number (Certificates issued by a CA have a serial number that is unique to the certificates
issued by that CA.)

¢ Signature algorithm
¢ Issuer (your distinguished name)
e Validity (inception and expiration dates)

e Public key information

3.7 Create a Certificate Chain

The following sections describe the steps you must perform to create a certificate chain. Before you create the
chain, you must have the following certificates:

e A root CA certificate (See Create a Certificate Authority.)
¢ One (or more) intermediate CA certificates (See Creating an Intermediate CA (RA) Certificate.)

¢ (Client/server certificate signed with the intermediate CA certificate (See Creating a Client/Server
Certificate Signed with an Intermediate CA Certificate.)

3.7.1 Creating an Intermediate CA (RA) Certificate

With the Certificate Tool, you can generate an X509 certificate for an intermediate CA or RA (Registration
Authority). Perform the following steps to generate an X509 certificate.

1. Create a certificate signing request. (Select item 3 in the Certificate Tool Main Menu.)

2. Sign the certificate signing request with the root CA certificate. (Select item 6 in the Certificate Tool Main
Menu.)

NOTE To create an intermediate CA, you must encrypt the private key when you create the certificate
signing request (with PEM passphrase).

45

Using the Certificate Tool
Sign a Certificate Signing Request

3.7.2 Creating a Client/Server Certificate Signed with an Intermediate CA
Certificate

After you create an intermediate CA certificate (described in the previous section), create a client/server
certificate as follows:

1. Create a certificate signing request. (Select menu item 3 in the Certificate Tool Main Menu.)

2. Sign the certificate signing request with the intermediate CA certificate. (Select menu item 6 in the
Certificate Tool Main Menu.)

Encrypting the private key is not required for creating a client/server certificate. However, if the key is
encrypted, you can also use the certificate as an intermedicate CA certificate with which another certificate
will be signed.

3.7.3 Creating a Certificate Chain File

Some OpenSSL APIs require a certificate chain file. This file contains certificates that form the certificate
chain (from the client/server certificate to the root CA certificate).

To create a certificate chain file, append the certificates of intermediate CA(s) and the root CA to the
client/server certificate. The order in the file can be expressed as follows:

client/server cert >>> intermediate CAl >>> intermediate CA2 >>> root CA
Enter the following command to create a certificate chain file:

$ COPY CLIENT_CERT.PEM, INTER_CAl.PEM, INTER_CA2.PEM, -
_$ ROOT_CA.PEM, CERT_CHAIN.PEM

3.8 Sign a Certificate Signing Request

Signing someone else's certificate signing request is the function of a certificate authority. When you send a
signed certificate back, it can be used to start the server with the passphrase they have. Embedded in the
certificate is your public key. It must match the public key you distribute to clients using your server.

To sign a certificate signing request, perform the following steps. The certificate is signed after you respond to
the last question.

1. Enter the required information to sign a certificate.

NOTE The inception time of a certificate is based on UTC (Coordinated Universal Time). Verify
with your system administrator that your computer's UTC is set correctly.

e CA Certificate File specification

Use OpenVMS syntax (defaults to SSL$CRT:SERVER_CA.CRT).
¢ CA Certificate Key File specification

Use OpenVMS syntax (defaults to SSL$KEY:SERVER_CA.KEY).
e (Certificate Request File

Use OpenVMS syntax (defaults to SSL$CRT:SERVER.CSR).

46

Using the Certificate Tool
Revoke a Certificate

¢ Signed Request File specification

Use OpenVMS syntax (defaults to SSL$CRT:SIGNED.CRT).
e Default Days

The default number of days until the signed certificate expires.
e PEM Passphrase

This is a verification field only. You must use the same passphrase you used to create the certificate
authority (option 5).

2. View the details of the signed certificate (if you chose to display the certificate):
¢ Version (SSL 3.0 protocol)

e Serial number (Certificates issued by a CA have a serial number that is unique to the certificates
issued by that CA.)

¢ Signature algorithm
¢ Issuer (your distinguished name)
e Validity (inception and expiration dates)

e Public key information

3.9 Revoke a Certificate

You should revoke a certificate if the certificate has been compromised. The security of a certificate can be
compromised if, for example, someone has a copy of the private key, or knows the password to your encrypted
key.

A certificate can be revoked by the Certificate Authority that issued the certificate. You can also use the HP
SSL Certificate Tool to revoke a certificate, if the certificate was created using the Certificate Tool.

To revoke a certificate using the Certificate Tool, perform the following steps:

1. From the Main Menu, select Option 7 - Revoke a Certificate.
2. Enter the filenames of the Certificate Authority (CA) certificate and key.
3. Enter the filename of the certificate to be revoked.
4. Enter the PEM passphrase of the CA's key.
The Certificate Tool marks that certificate as being revoked in its database.

After you revoke the certificate, you must create a certificate revocation list (CRL).

3.10 Create a Certificate Revocation List

After you have revoked all known compromised certificates, you should create a Certificate Revocation List
(CRL). You can create a CRL using the HP SSL Certificate Tool.

47

Using the Certificate Tool
Hash Certificates

To create a CRL, perform the following steps:

1. From the Main Menu, select Option 8 - Create a Certificate Revocation List.

2. Enter the filenames of the Certificate Authority (CA) certificate and key.

3. Enter the filename of the Certificate Revocation List. This is the file into which the CRL will be written.
4.

Enter the number of days until the next CRL will be issued. Certificate Authorities typically issue CRLs
on a periodic basis to maintain the current status of the certificates that it has signed.

5. Enter the PEM passphrase of the CA's key.
The Certificate Tool then creates the CRL in the specified file.

3.11 Hash Certificates

This command is required to PEM-encode third-party certificate files and files you create using option 5
(which, by default, are named SERVER_CA.CRT).

For example, the mod_ssl directives related to CA certificate management (SSLCACertificatePath and
SSLCACertificateFile) require hashed files.

To hash a certificate or certificate authority, perform the following steps:

1. Enter the name of the path in which you have installed your CA files. For example, if you installed CA
files for HP Secure Web Server, the location is APACHE$SPECIFIC:[CONF.SSL_CRT]*.CRT.

2. Press Return to hash the certificate files at the specified location, or at the default location if you did not
enter a path.

You can verify the existence of the hashed file in the directory you selected by entering the following
command:

$ DIR APACHESCOMMON: [CONF .SSL_CRT]
Directory APACHESCOMMON: [CONF.SSIL,_CRT]
AEOFEDEE.0;4 DELETE HASH FILES.COM;1 SERVER_CA.CRT;4

Total of 3 files.

3.12 Hash Certificate Revocations

This command is required to PEM-encode third-party certificate revocation lists (CRLs) and ones you create
using the OpenSSL command line interface. The mod_ssl directives related to managing client revocation
lists (SSLCARevocationPath and SSLCARevocationFile) require hashed CRL files.

To hash certificate revocations, perform the following steps:

1. Install a trusted root CA's CRL file, or create your own using the OPENSSL CA command (using the
OpenSSL command line interface).

48

Using the Certificate Tool
Hash Certificate Revocations

2. Enter the name of the path in which you have installed your CRL files. For example, if you installed CRL
files for HP Secure Web Server, the location is APACHE$ROOT:[CONF.SSL_CRL]*.CRL.

3. Press Return to hash the CRL files at the specified location.

You can verify the existence of the hashed file in the directory you selected by entering the following
command:

$ DIR APACHESSPECIFIC: [CONF.SSIL_CRL]
Directory APACHESSPECIFIC: [CONF.SSL_CRL]
AEOFEDEE.RO CA-BUNDLE.CRL DELETE_HASH FILES.COM

Total of 3 files.

49

Using the Certificate Tool
Hash Certificate Revocations

50

SSL Programming Concepts
HP SSL Data Structures

4 SSL Programming Concepts

This chapter discusses how to write application programs using HP SSL on OpenVMS. The SSL library
provides APIs supporting three SSL protocols: SSL Version 2 (SSLv2), SSL Version 3 (SSLv3), and TLS
Version 1 (TLSv1). You can write an HP SSL application program in C or C++.

This chapter provides the following information:

¢ A description of the seven HP SSL data structures
e How to configure and obtain certificates

e An HP SSL programming tutorial that shows the implementation of a simple HP SSL client and server
program using HP SSL. APIs

4,1 HP SSL Data Structures

Before you start SSL application development, you should understand the data structures used for SSL: APlIs,
and the relationships between the data structures.

SSL APIs use data structures to hold various types of information about SSL sessions and connections. The
most important structures are SSI_CTX and SSL. Usually, one SSL._CTX structure exists per SSL application
program, and an SSL structure is created every time a new SSL connection is created. An SSL structure
inherits configuration information from the SSL._CTX structure when it is created.

Table 4-1 shows the APIs commonly used for creating and deallocating data structures.

Table 4-1 APIs for Data Structure Creation and Deallocation
Data Structure API for Creation API for Deallocation
SSL_CTX SSL_CTX_new () SSL_CTX_free()
SSL SSL_new () SSL_free()
SSL_SESSION SSL_SESSION_new () SSL_SESSION_free()
BIO BIO_new() BIO_free()
X509 X509_new () X509_free()
RSA RSA_new () RSA_free()
DH DH_new () DH_free()

51

SSL Programming Concepts
HP SSL Data Structures

Figure 4-1 shows the relationship between the SSL,_CTX and SSL data structures.

Figure 4-1 Relationship Between SSL_CTX and SSL
Structure 1
SSL_CTX
SSL SSL SSL SSL
Structure 1 Structure 2 Structure 3 Structure 4

VM-0902A-Al

4.1.1 SSL CTX Structure

The SSL._CTX structure is defined in ss1.h. An SSI_CTX structure stores default values for SSL structures.
(The ssL structures are created after the SSI,_CTX structure is created and configured.) The SSI,_CTX
structure also holds information about SSL connections and sessions (the numbers of new SSL connections,
renegotiations, session resumptions, and so on).

Each SSL client or server program creates and keeps only one SSI._CTX structure. The SSL_CTX structure is
created at the beginning of the SSL application program. The SSI,_CTX structure is configured with the
default values that will be inherited by the SSL structures. For example, a CA certificate loaded in the
SSL_CTX structure is also loaded into an SSL structure when that SSL structure is created.

NOTE Data structure definitions are subject to change in future releases of HP SSL for OpenVMS.

4.1.2 SSL Structure

An SSL structure is created for every SSL connection in the SSL client or server program. You create the SSL
structure after creating and configuring the SSI._CTX structure because the SSL structure inherits default
values from the SSI._CTX structure. The inheritance of the default values enables the SSL structure to be used
without explicit configuration. However, it is possible to change the inherited values in a specific SSL
structure.

An SSL structure saves the addresses of data structures that store information about SSL connections and
sessions. These data structures are as follows:

e The ssI._CTX structure from which the SSL structure is created
e SSI,_METHOD (SSL protocol version)

® SSIL_SESSION

® SSI,_CIPHER

® CERT (certificate information extracted from an X.509 structure)

e BIO (an SSL connection is performed via BIO)

52

SSL Programming Concepts
HP SSL Data Structures

The SSL information (protocol version, connection status values, and so on) in the SSL structure is used for
the SSL connection. Figure 4-2 shows the structures associated with the SSL structure.

Figure 4-2

Structures Associated with SSL Structure

SSL Server

SSL_CTX

SSL_METHOD

SSL_SESSION

— SSL_CIPHER

SSL Client

SSL_CTX

SSL_SESSION

SSL_CIPHER

+ [ssL_METHOD

BIO SS

Handshake/SSL Connection BIO

4.1.3 SSL. METHOD Structure

The SSI,_METHOD structure is defined in ssl.h. An SSI,_METHOD structure contains pointers to the functions
that implement the SSL protocol version specified. This structure must be created before creation of the

SSL_CTX structure.

4,1.4 SSL CIPHER Structure

The SSI. CIPHER structure is defined in the ss1.h header file. An SSI._CIPHER structure holds information

VM-0903A-Al

about the cipher suite used for SSL connections and sessions.

4.1.5 CERT/X509 Structure

In OpenSSL application programs, an X.509 certificate is stored as an X509 structure. However, after loading

an X509 structure into an SSL_CTX or SSL structure, the X.509 certificate information is extracted from the
X509 structure and stored in a CERT structure associated with the SSI._CTX or SSL structure. The X509 and

CERT structures are defined in x509.h and ss1_locl.h, respectively.

NOTE

The ss1_locl.hheader file is not used for SSL application programs because it defines only

internal functions and structures, such as the CERT structure. In SSL application programs, a
certificate is stored in an X509 structure, not in a CERT structure. An SSL application developer

does not need to know the definition of the CERT structure and ss1_locl.h.

53

SSL Programming Concepts
Certificates for SSL Applications

4.1.6 BIO Structure

A BIO structure is an I/O abstraction in an SSL application with SSL. APIs. The BIO structure encapsulates
an underlying I/O secured by SSL, and all the communication between the client and server is conducted
through this structure. The BIO structure is defined in bio.h.

4.2 Certificates for SSL Applications

To establish an SSL connection successfully, you must load proper certificates into the SSL client and server.
In this section, a few common uses of certificates are described. For general information about certificates, see
Chapter 3.

4.2.1 Configuring Certificates in the SSL Client and Server
SSL client and server applications might require four certificates:

¢ Server-s CA certificate
¢ (Client-s CA certificate
e (Client certificate
* Server certificate

A root CA is a CA certificate that is located as a root in a certificate signing hierarchy. A root CA is not signed
by any other CA - it is signed by itself. In Figure 4-3 and Figure 4-4, the CA certificates correspond to root
CAs.

For successful certificate verification, the certificates must have the proper signing relationships, as shown in
Figure 4-3 and Figure 4-4. In Figure 4-3, the client and server certificates are directly signed by their peers-
CAs.

Figure 4-3 Client and Server Certificates Directly Signed by CAs
CA CA
certificate certificate
(server trust) (client trust)
Client Server
certificate certificate
Client certificate is directly signed Server certificate is directly signed
with server's CA certificate with client's CA certificate
(certificate chain depth = 1) (certificate chain depth = 1)
VM-0904A-Al

54

SSL Programming Concepts
Certificates for SSL Applications

NOTE The client and server certificates are not necessarily directly signed by the CAs (see
Figure 4-3). In some cases, the certificate is signed by an RA (registration authority) or an
intermediate CA whose certificate is signed by the CA that is trusted by the peer. (The client
certificate in Figure 4-4 is an example of this situation.) In other cases, the certificate's signing
chain may involve more RAs or intermediate CAs. (The server certificate in Figure 4-4 is an
example of this situation.)

As long as the chain depth setting is appropriate (that is, the certificate chain depth for verification is longer
than the depth from the CA to the certificate being verified), the certificate verification succeeds.

Figure 4-4 Client and Server Certificates Indirectly Signed by CAs
CA CA
certificate certificate
(server trust) (client trust)
RA/Intermediate CA
certificate
RA/Intermediate CA |
certificate
RA/Intermediate CA
certificate
Client Server
certificate certificate
Client certificate is indirectly signed Server certificate is indirectly signed
with server's CA certificate with client's CA certificate
(certificate chain depth = 2) (certificate chain depth = 3)
VM-0905A-Al

Figure 4-5 depicts the most common deployment of certificates. This deployment is often used when
establishing SSL connections between web browsers and a web server. As part of its initialization, the SSL
server loads a certificate (server certificate) signed by a CA. This CA is trusted by the SSL clients. When a
client verifies the server, the server certificate is sent to the client and then is verified against the CA

55

SSL Programming Concepts
Certificates for SSL Applications

certificate. The fact that the server has a certificate signed by a trustworthy CA means that the server can be
trusted by the client, because the client trusts the CA. This certificate setup prevents the SSL client from
establishing an SSL connection with an untrustworthy SSL server.

Figure 4-5 Certificates on SSL Client and Server (Case 1)
SSL Server SSL Client
s : CA
f.;.v ert : certificate
certiicate 1 (client trusts)

Server
certification
verification

[success] [failure]

VM-0906A-Al

In addition to server certificate verification on the SSL client, you can perform client certificate verification on
the SSL server. This is shown in Figure 4-6. Web sites that require higher security, such as banks and online
brokers, deploy this model. The SSL client connecting to this type of SSL server is requested to send its
certificate (client certificate) to the server. The SSL server then performs client authentication based on the
client certificate verification.

56

SSL Programming Concepts
Certificates for SSL Applications

This method is the same as the one used in Figure 4-5, but in this case the server checks the client certificate
against the server-s CA certificate to establish the level of trust. Using this implementation, the SSL server
can achieve enhanced client authentication by combining with another authentication method, such as
requiring a user name and password.

Figure 4-6 Certificates on SSL Client and Server (Case 2)
SSL Server SSL Client
CA : l . CA
certificate S?;.V ert 1 i Ctl.'f?nt i certificate
(server trusts) certinicate 1 , | certiticate (client trusts)

Server
certification
verification

Server
certification
verification

[success] [failure]

VM-0907A-Al

4.2.2 Obtaining and Creating Certificates

If the proper certificates are not in place, the SSL application user or developer must either create them or
obtain them from a trustworthy organization such as a CA or RA. The SSL command line interface (described
in Chapter 5) and Certificate Tool (described in Chapter 3) allow you to create X.509 certificates. Figure 4-7
shows the process for creating an X.509 certificate.

Figure 4-7 Certificate Creation Process

CA

Create CSR I '
certificate | | Private-key | !
I |

|

(Certificate signing Request)
and Private Key

of CSR

ol
i 1| Private-key
ol

|
| .
; CSRiis
of CSR |1 CSR : @ by CA
o — oo] :
Certificate I
signed by 1
CA 1 1

VM-0908A-Al

57

SSL Programming Concepts
Certificates for SSL Applications

When you obtain or create a certificate, consider the following:
¢ Algorithms

o Key size

¢ Certificate/key format

e Security policies

Algorithms: RSA certificate with RSA keys or DSA certificate with DH keys

Although RSA certificates are commonly used for SSL, DSA certificates can be loaded in the SSL structure as
well. (Most SSL servers load only RSA certificates. SSL servers that use DSA certificates are rare.)

NOTE RSA and DSA certificates and keys are incompatible. An SSL client that has only an RSA
certificate and key cannot establish a connection with an SSL server that has only a DSA
certificate and key.

To avoid this problem, you can load both RSA and DSA certificates and key pairs in the SSI._CTX and SSL
structure. (For more information, see the description of the SSI._CTX_use_certificate() and
SSL_CTX_set_cipher_list () APIs in this manual.)

If you use a DSA certificate, you must load DH keys. Although the RSA algorithm is used for both key
exchange and signing operations, DSA can be used only for signing. Therefore, DH is used as the key
agreement algorithm with a DSA certificate in an SSL application.

NOTE DSA certificates and DH keys cannot be created with the OpenVMS SSL Certificate Tool
(described in Chapter 3). Use the SSL command line interface, described in Chapter 5, instead.

Key size: 512-bit, 1024-bit, or others

You must specify the key size of the algorithms when you create a certificate. The key size affects security and
performance of the SSL application. A longer key makes the application more secure, but it can slow
performance. A shorter key makes encryption and decryption faster, but lowers security.

Usually RSA and DSA keys are 512-bit, 1024-bit or 2048-bit. (1024-bit keys are the most commonly used.) In
some cases, you must decide the key size based on the application-s requirement or corporate or national
security policy.

Certificate and key formats: PEM, DER or others

The OpenSSL command line interface supports the following three certificate formats:

DER - Encodes the certificate using Distinguished Encoding Rules.
PEM - The Base64 encoding of the DER encoding, with header and footer lines added.
NET - An obsolete Netscape server format.

The most common certificate format for SSL applications is PEM. The SSL Certificate Tool, described in
Chapter 3, supports only the PEM format. If a DER certificate is necessary, use the SSL command line
interface, described in Chapter 5.

58

SSL Programming Concepts
SSL Programming Tutorial

Security policy of the application using the certificates

Check the application-s security policy or requirements when you issue certificates. Some applications
require certain attributes or values in the X.509 certificates. For example, SSL applications for financial
transactions might have a security policy to use 1024-bit or longer RSA keys, or certain extensions in an
X.509 certificates might be mandatory.

Many countries have national policies regarding encryption. Using and exporting strong encryption
algorithms and keys might be affected by these policies. Also, some organizations might have policies that
disallow their employees using strong encryption.

4.3 SSL Programming Tutorial

This section demonstrates the implementation of a simple SSL client and server program using OpenSSL
APIs.

59

SSL Programming Concepts
SSL Programming Tutorial

Although SSL client and server programs might differ in their setup and configuration, their common
internal procedures can be summarized in Figure 4-8. These procedures are discussed in the following
sections.

Figure 4-8 Overview of SSL Application with OpenSSL APIs

Initialization

!

Create SSL_METHOD
(choose SSLv2, SSLv3, or TLSv1)

!

Create SSL_CTX

!

Configure SSL_CTX
(set up certificates, keys, etc.)

Create SSL
(inherit configuration from SSL_CTX)

!

Set up TCP/IP socket

!

Create & Configure BIO

!

SSL Handshake

SSL Data Communication

SSL Rehandshake (option)

SSL Closure

SSL Session Reuse (option)[—

End

VM-0909A-Al

60

SSL Programming Concepts
SSL Programming Tutorial

4.3.1 Inmitializing the SSL Library

Before you can call any other OpenSSL APIs in the SSL application programs, you must perform
initialization using the following SSL APIs.

SSL_library_init(); /* load encryption & hash algorithms for SSL */
SSL_load_error_strings(); /* load the error strings for good error reporting */

The sSI,_library_init () API registers all ciphers and hash algorithms used in SSL. APIs. The encryption
algorithms loaded with this API are DES-CBC, DES-EDE3-CBC, RC2 and RC4 (IDEA and RC5 are not
available in HP SSL for OpenVMS); and the hash algorithms are MD2, MD5, and SHA. The
SSL_library_init () API has a return value that is always 1 (integer).

SSL applications should call the SSI._load_error_strings () APL This API loads error strings for SSL. APIs
as well as for Crypto APIs. Both SSL and Crypto error strings need to be loaded because many SSL
applications call some Crypto APIs as well as SSL APIs.

4.3.2 Creating and Setting Up the SSL Context Structure (SSL_CTX)

The first step after the intialization is to choose an SSL/TLS protocol version. Do this by creating an
SSL_METHOD structure with one of the following APIs. The SSI,_METHOD structure is then used to create an
SSL_CTX structure with the SSI_CTX_new () APIL

For every SSL/TLS version, there are three types of APIs to create an SSI,_ METHOD structure: one for both
client and server, one for server only, and one for client only. SSLv2, SSLv3, and TLSv1 APIs correspond with
the same name protocols. Table 4-2 shows the types of APIs.

Table 4-2 Types of APIs for SSL._ METHOD Creation
Protocol For combined client For a dedicated server For a dedicated client
type and server
SSLv2 SSLv2_method () SSLv2_server_ method () SSLv2_client_ method()
SSLv3 SSLv3_method () SSLv3_server_ method() SSLv3_client_ method()
TLSv1 TLSv1_method () TLSv1l_server_ method() TLSvl_client_ method()
SSLv23 SSLv23_method () SSLv23_server_ method () SSLv23_client_ method ()
NOTE There is no SSL protocol version named SSLv23. The SSLv23_method () API and its variants

choose SSLv2, SSLv3, or TLSv1 for compatibility with the peer.

Consider the incompatibility among the SSL/TLS versions when you develop SSL client/server applications.
For example, a TLSv1 server cannot understand a client-hello message from an SSLv2 or SSLv3 client. The
SSLv2 client/server recognizes messages from only an SSLv2 peer. The SSI.v23_method () API and its
variants may be used when the compatibility with the peer is important. An SSL server with the SSLv23
method can understand any of the SSLv2, SSLv3, and TLSv1 hello messages. However, the SSL client using
the SSLv23 method cannot establish connection with the SSL server with the SSLv3/TLSv1 method because
SSLv2 hello message is sent by the client.

The ssI._CTX_new() API takes the SSI,_METHOD structure as an argument and creates an SSI,_CTX structure.

In the following example, an SSI, METHOD structure that can be used for either an SSLv3 client or SSLv3
server is created and passed to SSI,_CTX_new (). The SSL._CTX structure is initialized for SSLv3 client and
server.

61

SSL Programming Concepts
SSL Programming Tutorial

meth = SSLv3_method() ;
ctx = SSL_CTX_new (meth) ;

4.3.3 Setting Up the Certificate and Key

Certificates for SSL Applications discussed how the SSL client and server programs require you to set up
appropriate certificates. This setup is done by loading the certificates and keys into the SSI,_CTX or SSL
structures. The mandatory and optional certificates are as follows:

e For the SSL server:

Server's own certificate (mandatory)
CA certificate (optional)

e For the SSL client:

CA certificate (mandatory)
Client's own certificate (optional)

4.3.3.1 Loading a Certificate (Client/Server Certificate)

Use the SSI,_CTX_use_certificate_file() API to load a certificate into an SSI,_CTX structure. Use the
SSL_use_certificate_file() API to load a certificate into an SSL structure. When the SSL structure is
created, the SSL structure automatically loads the same certificate that is contained in the SSI,_CTX structure.
Therefore, you onlyneed to call the SSI._use_certificate_file() API for the SSL structure only if it needs
to load a different certificate than the default certificate contained in the SSI,_CTX structure.

4.3.3.2 Loading a Private Key

The next step is to set a private key that corresponds to the server or client certificate. In the SSL. handshake,
a certificate (which contains the public key) is transmitted to allow the peer to use it for encryption. The
encrypted message sent from the peer can be decrypted only using the private key. You must preload the
private key that was created with the public key into the SSL structure.

The following APIs load a private key into an SSL or SSI,_CTX structure:
® SSIL._CTX use_PrivateKey ()

® SSIL_CTX use_PrivateKey ASNI ()

® SSI,_CTX use_PrivateKey file()

® SSIL._CTX use_RSAPrivateKey ()

® SSI_CTX use_RSAPrivateKey ASNI ()
® SSI,_CTX use_RSAPrivateKey file()
® SSL_use PrivateKey ()

® SSI_use PrivateKey_ ASNI ()

® SSIL_use PrivateKey_ file()

® SSIL_use RSAPrivateKey ()

® SSIL_use RSAPrivateKey_ ASNI1 ()

® SSIL_use RSAPrivateKey_ file()

62

SSL Programming Concepts
SSL Programming Tutorial

4.3.3.3 Loading a CA Certificate

To verify a certificate, you must first load a CA certificate (because the peer certificate is verified against a CA
certificate). The SSI._CTX_load_verify locations () API loads a CA certificate into the SSI._CTX structure.

The prototype of this API is as follows:

int SSL_CTX_load verify locations(SSL_CTX *ctx, const char *CAfile,
const char *CApath) ;

The first argument, ctx, points to an SSL._CTX structure into which the CA certificate is loaded. The second
and third arguments, CAfile and CApath, are used to specify the location of the CA certificate. When looking
up CA certificates, the OpenSSL library first searches the certificates in CAfile, then those in CApath.

The following rules apply to the CAfile and CApath arguments:

e Ifthe certificate is specified by CAfile (the certificate must exist in the same directory as the SSL
application), specify NULL for CaApath.

e To use the third argument, CApath, specify NULL for Cafile. You must also hash the CA certificates in
the directory specified by capath. Use the Certificate Tool (described in Chapter 3) to perform the hashing
operation.

4.3.3.4 Setting Up Peer Certificate Verification

The CA certificate loaded in the SSI._CTX structure is used for peer certificate verification. For example, peer
certificate verification on the SSL client is performed by checking the relationships between the CA certificate
(loaded in the SSL client) and the server certificate.

For successful verification, the peer certificate must be signed with the CA certificate directly or indirectly (a
proper certificate chain exists). The certificate chain length from the CA certificate to the peer certificate can
be set in the verify depth field of the SSI._CcTXand SSL structures. (The value in SSL is inherited from
SSL_CTX when you create an SSL structure using the SSI._new () API). Setting verify_depth to 1 means that
the peer certificate must be directly signed by the CA certificate.

The ssI._CTX_set_verify() API allows you to set the verification flags in the SSI,_CTX structure and a
callback function for customized verification as its third argument. (Setting NULL to the callback function
means the built-in default verification function is used.) In the second argument of SSL, CTX_set_verify (),
you can set the following macros:

¢ SSL_VERIFY_NONE

® SSL_VERIFY_PEER

® SSL_VERIFY FATL_TIF NO_PEER_CERT
¢ SSL_VERIFY_CLIENT ONCE

The SSI._VERIFY_PEER macro can be used on both SSL client and server to enable the verification. However,
the subsequent behaviors depend on whether the macro is set on a client or a server. For example:

/* Set a callback function (verify_callback) for peer certificate */
/* verification */

SSL_CTX_set_verify(ctx, SSL_VERIFY_ PEER, verify_callback);

/* Set the verification depth to 1 */

SSL_CTX_set_verify_ depth(ctx,1);

You can verify a peer certificate in another, less common way - by using the SSI._get_verify_ result() APL
This method allows you to obtain the peer certificate verification result without using the
SSL_CTX_set_verify () APIL

Call the following two APIs before you call the SSI,_get_verify_result() APIL

63

SSL Programming Concepts
SSL Programming Tutorial

1. Call sSSL._connect () (in the client) or SSI._accept () (in the server) to perform the SSL handshake.
Certificate verification is performed during the handshake. SSI,_get_verify_result() cannot obtain the
result before the verification process.

2. Call sSL,_get_peer_certificate() to explicitly obtain the peer certificate. The X509_V_OK macro value
is returned when a peer certificate is not presented as well as when the verification succeeds.

The following code shows how to use SSI,_get_verify result() in the SSL client:

SSL_CTX_set_verify depth(ctx, 1);

err = SSL_connect(ssl);
if(SSL_get_peer_certificate(ssl) != NULL)

{

if (SSL_get_verify_result(ssl) == X509_V_OK)

BIO_printf (bio_c_out, "client verification with SSL_get_verify result ()
succeeded.\n") ;
else{

BIO_printf(bio_err, "client verification with SSL_get_verify result()
failed.\n");

exit (1) ;
}
}
else
BIO_printf(bio_c_out, -the peer certificate was not presented.\n-);

4.3.3.5 Example 1: Setting Up Certificates for the SSL Server

The SSL protocol requires that the server set its own certificate and key. If you want the server to conduct
client authentication with the client certificate, the server must load a CA certificate so that it can verify the
client-s certificate.

The following example shows how to set up certificates for the SSL server:

/* Load server certificate into the SSL context */
if (SSL_CTX_ use_certificate_file(ctx, SERVER_CERT,
SSL_FILETYPE_PEM) <= 0) }

ERR_print_errors (bio_err); /* ==
ERR_print_errors_fp(stderr); */
exit (1) ;

/* Load the server private-key into the SSL context */
if (SSL_CTX_use_PrivateKey_file(ctx, SERVER_KEY,
SSL_FILETYPE PEM) <= 0) {

ERR_print_errors (bio_err); /* ==
ERR_print_errors_fp(stderr); */
exit (1) ;

/* Load trusted CA. */
if (!SSL_CTX_load_verify locations(ctx,CA_CERT,NULL)) {

ERR_print_errors (bio_err); * ==
ERR_print_errors_fp(stderr); */
exit (1) ;

64

SSL Programming Concepts
SSL Programming Tutorial

/* Set to require peer (client) certificate verification */
SSL_CTX_set_verify(ctx, SSL_VERIFY_ PEER, verify_callback);
/* Set the verification depth to 1 */

SSL_CTX_set_verify_ depth(ctx,1);

4.3.3.6 Example 2: Setting Up Certificates for the SSL Client

Generally, the SSL client verifies the server certificate in the process of the SSL handshake. This verification
requires the SSL client to set up its trusting CA certificate. The server certificate must be signed with the CA
certificate loaded in the SSL client in order for the server certificate verification to succeed.

The following example shows how to set up certificates for the SSL client:

[F—m—— Load a client certificate into the SSL_CTX structure ----- */
if (SSL_CTX_ use_certificate_file(ctx,CLIENT_CERT,
SSL_FILETYPE_PEM) <= 0) {

ERR_print_errors_fp(stderr) ;
exit (1) ;

[F—m——— Load a private-key into the SSL_CTX structure ----- *x/
if (SSL_CTX_use_PrivateKey file(ctx,CLIENT_KEY,
SSL_FILETYPE_PEM) <= 0){

ERR_print_errors_fp(stderr) ;
exit (1) ;

}

/* Load trusted CA. */
if (!SSL_CTX_load_verify locations(ctx,CA_CERT,NULL)) {
ERR_print_errors_fp(stderr) ;
exit (1) ;

4.3.4 Creating and Setting Up the SSL Structure

Call sSI._new () to create an SSL structure. Information for an SSL connection is stored in the SSL structure.
The protocol for the SSLI, new() API is as follows:

ssl = SSL_new(ctx) ;

A newly created SSL structure inherits information from the SSL_CTX structure. This information includes
types of connection methods, options, verification settings, and timeout settings. No additional settings are
required for the SSL structure if the appropriate initialization and configuration have been done for the
SSL_CTX structure.

You can modify the default values in the SSL structure using SSL APIs. To do this, use variants of the APIs
that set attributes of the SSI._CTX structure. For example, you can use SSI,_CTX_use_certificate() toload a
certificate into an SSI,_CTX structure, and you can use SSI_use_certificate() to load a certificate into an
SSL structure.

4.3.5 Setting Up the TCP/IP Connection

Although SSL works with some other reliable protocols, TCP/IP is the most common transport protocol used
with SSL.

65

SSL Programming Concepts
SSL Programming Tutorial

The following sections describe how to set up TCP/IP for the SSL APIs. This configuration is the same as in
many other TCP/IP client/server application programs; it is not specific to SSL API applications. In these
sections, TCP/IP is set up with the ordinary socket APIs, although it is also possible to use OpenVMS system
services.

4.3.5.1 Creating and Setting Up the Listening Socket (on the SSL Server)

The SSL server needs two sockets as an ordinary TCP/IP server—one for the SSL connection, the other for
detecting an incoming connection request from the SSL client.

In the following code, the socket () function creates a listening socket. After the address and port are
assigned to the listening socket with bind (), the listen() function allows the listening socket to handle an
incoming TCP/IP connection request from the client.

listen_sock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP) ;
CHK_ERR (listen_sock, "socket");

memset (&sa_serv, 0, sizeof(sa_serv));

sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (s_port) ; /* Server Port number */

err = bind(listen_sock, (struct sockaddr*)&sa_serv,sizeof (sa_serv));
CHK_ERR (err, "bind");

/* Receilve a TCP connection. */
err = listen(listen_sock, 5);
CHK_ERR (err, "listen");

4.3.5.2 Creating and Setting Up the Socket (on the SSL Client)

On the client, you must create a TCP/IP socket and attempt to connect to the server with this socket. To
establish a connection to the specified server, the TCP/IP connect () function is used. If the function succeeds,
the socket passed to the connect () function as a first argument can be used for data communication over the
connection.

sock = socket (AF_INET, SOCK_STREAM, IPPROTO_TCP) ;
CHK_ERR (sock, "socket");

memset (&server_addr, '\0', sizeof (server_addr)) ;

server_addr.sin_family = AF_INET;

server_addr.sin_port = htons (s_port); /* Server Port number */
server_addr.sin_addr.s_addr = inet_addr(s_ipaddr); /* Server IP */

err = connect(sock, (struct sockaddr*) &server_addr, sizeof (server_addr)) ;
CHK_ERR (err, "connect");

4.3.5.3 Establishing a TCP/IP Connection (on the SSL Server)

To accept an incoming connection request and to establish a TCP/IP connection, the SSL server needs to call
the accept () function. The socket created with this function is used for the data communication between the
SSL client and server. For example:

sock = accept(listen_sock, (struct sockaddr*)&sa_cli, &client_len);
BIO_printf (bio_c_out, "Connection from %1x, port %x\n",
sa_cli.sin_addr.s_addr, sa_cli.sin_port);

66

SSL Programming Concepts
SSL Programming Tutorial

4.3.6 Setting Up the Socket/Socket BIO in the SSL Structure

After you create the SSL structure and the TCP/IP socket (sock), you must configure them so that SSL data
communication with the SSL structure can be performed automatically through the socket.

The following code fragments show the various ways to assign sock to ss1. The simplest way is to set the
socket directly into the SSL structure, as follows:

SSL_set_fd(ssl, sock);

A better way is to use a BIO structure, which is the I/O abstraction provided by OpenSSL. This way is
preferable because BIO hides details of an underlying I/0O. As long as a BIO structure is set up properly, you
can establish SSL connections over any I/0.

The following two examples demonstrate how to create a socket BIO and set it into the SSL structure.

sbio=BIO_new (BIO_s_socket());
BIO_set_fd(sbio, sock, BIO_NOCLOSE) ;
SSL_set_bio(ssl, sbio, sbio);

In the following example, the BIO_new_socket () API creates a socket BIO in which the TCP/IP socket is
assigned, and the SSI,_set_bio() API assigns the socket BIO into the SSL structure. The following two lines
of code are equivalent to the preceding three lines:

sbio = BIO_new_socket (socket, BIO_NOCLOSE) ;
SSL_set_bio(ssl, sbio, sbio);

NOTE If there is already a BIO connected to ss1, BIO_free () is called (for both the reading and
writing side, if different).

4.3.7 SSL Handshake

The SSL handshake is a complicated process that involves significant cryptographic key exchanges. However,
the handshake can be completed by calling SSI,_accept () on the SSL server and SSI,_connect () on the SSL
client.

4.3.7.1 SSL Handshake on the SSL Server

The sSL._accept () API waits for an SSL handshake initiation from the SSL client. Successful completion of
this API means that the SSL handshake has been completed.

err = SSL_accept(ssl);

4.3.7.2 SSL Handshake on the SSL Client

The SSL client calls the SSI,_connect () API to initiate an SSL handshake. If this API returns a value of 1,
the handshake has completed successfully. The data can now be transmitted securely over this connection.

err = SSL_connect(ssl);

4.3.7.3 Performing an SSL Handshake with SSL._read and SSL_write (Optional)

Optionally, you can call SSI,_write () and SSL_read () to complete the SSL. handshake as well as perform
SSL data exchange. With this approach, you must call SSI,_set_accept_state () before you call SSI._read ()
on the SSL server. You must also call SSI._set_connect_state ()before you call SSI,_write() on the client.
For example:

67

SSL Programming Concepts
SSL Programming Tutorial

/* When SSL_accept() is not called, SSL_set_accept_state() */
/* must be called prior to SSL_read() */
SSL_set_accept_state(ssl);

/* When SSL_connect() is not called, SSL_set_connect_state() */
/* must be called prior to

SSL_write() */
SSL_set_connect_state(ssl);

4.3.7.4 Obtaining a Peer Certificate (Optional)

Optionally, after the SSL handshake, you can obtain a peer certificate by calling
SSL_get_peer_certificate (). This API is often used for straight certificate verification, such as checking
certificate information (for example, the common name and expiration date).

peer_cert = SSL_get_peer_certificate(ssl);

4.3.8 Transmitting SSL Data

After the SSL handshake is completed, data can be transmitted securely over the established SSL connection.
SSL_write() and SSI_read () are used for SSL data transmission, just as write () and read() or send()
and recv () are used for an ordinary TCP/IP connection.

4.3.8.1 Sending Data

To send data over the SSL connection, call SSI, write(). The data to be sent is stored in the buffer specified
as a second argument. For example:

err = SSL_write(ssl, wbuf, strlen (wbuf));

4.3.8.2 Receiving Data

To read data sent from the peer over the SSL connection, call SSL_read (). The received data is stored in the
buffer specified as a second argument. For example:

err = SSL_read(ssl, rbuf, sizeof(rbuf)-1);

4.3.8.3 Using BIOs for SSL Data Transmission (Optional)

Instead of using SSI._write () and SSL_read (), you can transmit data by calling BIO_puts () and
BIO_gets (), and BIO_write() and BIO_read(), provided that a buffer BIO is created and set up as follows:

BIO *buf_io, *ssl_bio;
charrbuf [READBUF_SIZE];
charwbuf [WRITEBUF_SIZE]

buf_io = BIO_new(BIO_f buffer());/* create a buffer BIO */

ssl_bio = BIO_new(BIO_f_ssl()); /* create an ssl BIO */
BIO_set_ssl(ssl_bio, ssl, BIO_CLOSE);/* assign the ssl BIO to SSL */
BIO_push(buf_io, ssl_bio);/* add ssl_bio to buf_io */

ret = BIO_puts (buf_io, wbuf);

/* Write contents of wbuf[] into buf_io */
ret = BIO _write(buf_io, wbuf, wlen);
/* Write wlen-byte contents of wbuf[] into buf_io */

ret = BIO_gets(buf_io, rbuf, READBUF_SIZE) ;

68

SSL Programming Concepts
SSL Programming Tutorial

/* Read data from buf_io and store in rbuf[] */
ret = BIO_read(buf_io, rbuf, rlen);
/* Read rlen-byte data from buf_io and store rbuf[] */

4.3.9 Closing an SSL Connection

When you close an SSL connection, the SSL client and server send close_notify messages to notify each
other of the SSL closure. You use the SSI,_shutdown () API to send the close_notify alert to the peer.

The shutdown procedure consists of two steps:

¢ Sending a close_notify shutdown alert
¢ Receiving a close_notify shutdown alert from the peer

The following rules apply to closing an SSL connection:

¢ Either party can initiate a close by sending a close_notify alert.
e Any data received after sending a closure alert is ignored.
¢ Each party is required to send a close_notify alert before closing the write side of the connection.

¢ The other party is required both to respond with a close_notify alert of its own and to close down the
connection immediately, discarding any pending writes.

¢ The initiator of the close is not required to wait for the responding close_notify alert before closing the
read side of the connection.

The SSL client or server that initiates the SSL closure calls SSI._shutdown () either once or twice. If it calls
the API twice, one call sends the close_notify alert and one call receives the response from the peer. If the
initator calls the API only once, the initiator does not receive the close_notify alert from the peer. (The
initiator is not required to wait for the responding alert.)

The peer that receives the alert calls SSI,_shutdown () once to send the alert to the initiating party.

4.3.10 Resuming an SSL Connection

You can reuse the information from an already established SSL session to create a new SSL connection.
Because the new SSL connection is reusing the same master secret, the SSL handshake can be performed
more quickly. As a result, SSL session resumption can reduce the load of a server that is accepting many SSL
connections.

Perform the following steps to resume an SSL session on the SSL client:

1. Start the first SSL connection. This also creates an SSL session.

ret = SSL_connect (ssl)
(Use SSL_read() / SSL_write() for data communication
over the SSL connection)

2. Save the SSL session information.

sess = SSL_getl_session(ssl);
/* sess 1s an SSL_SESSION, and ssl is an SSL */

3. Shut down the first SSL connection.
SSL_shutdown (ssl) ;
4. Create a new SSL structure.

ssl = SSL_new(ctx) ;

69

SSL Programming Concepts
SSL Programming Tutorial

5. Set the SSL session to a new SSL session before calling SSI._connect ().

SSL_set_session(ssl, sess);
err = SSL_connect(ssl);

6. Start the second SSL connection with resumption of the session.

ret = SSL_connect (ssl)
(Use SSL_read() / SSL_write() for data communication
over the SSL connection)

If the SSL client calls SSI._getl_session() and SSL_set_session (), the SSL server can accept a new SSL
connection using the same session without calling special APIs to resume the session. The server does this by
following the steps discussed in Creating and Setting Up the SSL Structure, Setting Up the TCP/IP
Connection, Setting Up the Socket/Socket BIO in the SSL Structure, SSL. Handshake, and Transmitting SSL
Data.

NOTE Calling sSL._free () results in the failure of the SSL session to resume, even if you saved the
SSL session with SSI,_getl_session().

4.3.11 Renegotiating the SSL. Handshake

SSL renegotiation is a new SSL handshake over an already established SSL connection. Because the
renegotiation messages (including types of ciphers and encryption keys) are encrypted and then sent over the
existing SSL connection, SSL renegotiation can establish another SSL session securely. SSL renegotiation is
useful in the following situations, once you have established an ordinary SSL session:

¢ When you require client authentication
e When you are using a different set of encryption and decryption keys
¢ When you are using a different set of encryption and hashing algorithms

SSL renegotiation can be initiated by either the SSL client or the SSL server. Initiating an SSL renegotiation
on the client requires a different set of APIs (on both the initiating SSL client and the accepting server) from
the APIs required for the initiation on the SSL server (in this case, on the initiating SSL server and the
accepting SSL client).

The following sections discuss the required APIs for both situations.

NOTE SSLv2 cannot perform SSL renegotiation. Use SSLv3 or TLSv3 for this operation.

4.3.11.1 SSL Renegotiation Initiated by the SSL Server

To initiate an SSL renegotiation from the SSL server, call SSLI,_renegotiate() once and
SSL_do_handshake () twice.

The SSI._renegotiate() API sets flags for SSL renegotiation. This API does not actually initiate the
renegotiation. The flags turned on by SSL_renegotiate () inform SSL._do_handshake () that it needs to
perform SSL renegotiation with the SSL client. The SSL_do_handshake () API performs an actual SSL
handshake. The first call sends a -Server Hello- message to the SSL client.

If the first call succeeds, the client has agreed to perform an SSL renegotiation. The server then sets the
SSL_ST_ACCEPT state in the SSL structure and calls SSI,_do_handshake () again to complete the rest of the
renegotiation.

The following code fragment shows how these APIs are used:

70

SSL Programming Concepts
SSL Programming Tutorial

printf ("Starting SSL renegotiation on SSL server (initiating by SSL server)");
1f(SSL_renegotiate(ssl) <= 0) {

printf ("SSL_renegotiate() failed\n");

exit (1) ;

}

if (SSL_do_handshake(ssl) <= 0){

printf ("SSL_do_handshake() failed\n");
exit (1) ;

}

ssl->state = SSL_ST ACCEPT;

if (SSL_do_handshake(ssl) <= 0){
printf ("SSL_do_handshake() failed\n");
exit (1) ;

}

The following code shows the APIs called by the SSL client when the renegotiation is initiated by the server:

printf ("Starting SSL renegotiation on SSL client (initiating by SSL server)");
/* SSL renegotiation */
err = SSL_read(ssl, buf, sizeof (buf)-1);

As the example shows, SSI,_ READ () performs data exchange, and can also handle connection-related functions
such as renegotiation.

4.3.11.2 SSL Renegotiation Initiated by the SSL Client

The SSL client can also initiate SSL renegotiation. In this case, the setup on the client initiating the
renegotiation is similar to that on a server initiating the renegotiation. To complete this operation, the SSL
client calls SSI_renegotiate () and SSL_do_handshake () only once. SSL_renegotiate () simply sets the
flags for SSL renegotiation, and a single call of SSI._do_handshake () covers the entire renegotiation.

printf("Starting SSL renegotiation on SSL client (initiating by SSL client)");
if (SSL_renegotiate(ssl) <= 0){
printf ("SSL_renegotiate() failed\n");
exit(1l);
}
if (SSL_do_handshake(ssl) <= 0){
printf ("SSL_do_handshake () failed\n");
exit(1l);
}

The following code shows the APIs called by the SSL server when the renegotiation is initiated by the client.
(These are the same APIs that are called by the SSL client when the renegotiation is initiated by the server.)

printf("Starting SSL renegotiation on SSL server (initiating by SSL client)");
/* SSL renegotiation */
err = SSL_read(ssl, buf, sizeof (buf)-1);

Again in this example, SSI, READ () is handling the data exchange and connection renegotiation.
4.3.12 Finishing the SSL Application
When you finish an SSL application program, the major task is to free (deallocate) the data structures that

were created and used in the application program. The APIs for deallocation usually contain the _free suffix,
whereas the APIs that create a new data structure contain the_new suffix.

71

SSL Programming Concepts
SSL Programming Tutorial

You must free data structures that you explicitly created in the SSL application program. Data structures
that were created inside another structure with an xxx_new () API are automatically deallocated when the
structure is deallocated with the corresponding xxx_free () API. For example, a BIO structure created with
SSL_new () is freed when you call SSI._free (); you do not need to call BIO_free() to free the BIO inside the
SSL structure. However, if the application program called BIO_new () to allocate a BIO structure, you must
free that structure with BIO_free().

NOTE You must call SSI._shutdown () before you call SSI,_free ().

72

Example Programs
Example Programs Included in HP SSL Kit

9 Example Programs

The HP SSL for OpenVMS kit contains example programs that show you how to use the OpenSSL APIs in
your OpenVMS application. This chapter includes a table containing the names and descriptions of the
example programs included in the kit, the template file SSL$EXAMPLES_SETUP.TEMPLATE, which sets
up the certificates and keys so you can run the example programs, and the program listings of two simple
example programs.

5.1 Example Programs Included in HP SSL Kit

When you install HP SSL for OpenVMS, the example programs are copied into
SYS$COMMON:[SYSHLP.EXAMPLES.SSL]. The example programs included in the HP SSL kit are shown
in Table 5-1.

Table 5-1 HP SSL Example Programs

Example Programs (Client and Server) Description

SSL$SIMPLE_CLI.C and SSL$SIMPLE_SERV.C Simple client/server programs. This client verifies
the server certificate with the CA certificate. The
client certificate is not loaded, and there is no client
certificate verification in the SSL server.

SSL$AES.C Uses SSL Advanced Encryption Standard (AES)
256-bit key encryption application program
interface calls to encrypt 79 characters of data,
writing the encrypted data to file, then decrypting
the data and writing the plain text to a file.

SSL$BIO_CLI.C and SSL$BIO_SERV.C Implement the same functionality as
SSL$SIMPLE_CLI.C and SSL$SIMPLE_SERV.C
by using socket BIOs.

SSL$CLI_VERIFY_CLIENT.C and Based on SSL$BIO_CLI.C and SSL$BIO_SERV.C.

SSL$SERV_VERIFY_CLIENT.C These programs perform the client certificate

verification in the SSL server. For this purpose, the
client certificate is loaded in the client, and the
server has its CA certificate.

SSL$CLI_SESS_REUSE.C and Demonstrate SSL session reuse (resumption). This
SSL$SERV_SESS_REUSE.C feature was added to the implementation of
SSL$BIO_CLI.C and BIO_SERV.C.
SSL$CLI_SESS_RENEGO.C and Demonstrate SSL renegotiation (rehandshake).
SSL$SERV_SESS_RENEGO.C This feature was added to the implementation of

SSL$BIO_CLI.C and SSL$BIO_SERV.C.

73

Example Programs
Template for Creating Certificates and Keys for the Example Programs

Table 5-1 HP SSL Example Programs (Continued)
SSL$CLI_SESS_REUSE_ CLI_VER.C and Demonstrate SSL session reuse (resumption) as
SSL$SERV_SESS_REUSE_ CLI_VER.C well as the client certificate verification in the

server. The session reuse feature was added to the
implementation of SSL$CLI_VERIFY_CLIENT.C
and SSL$SERV_VERIFY_CLIENT.C.

SSL$CLI_SESS_RENEGO_ CLI_VER.C and Demonstrate SSL renegotiation (rehandshake) as

SSL$SERV_SESS_RENEGO_ CLI_VER.C well as the client certificate verification. The
renegotiation feature was added to the
implementation of SSL$CLI_VERIFY_CLIENT.C
and SSL$SERV_VERIFY_CLIENT.C.

SSL$SHA1_MD5.C Uses SSL crypto library SHA1 or MD5 message
disgest EVP application program interface calls to
perform a one way hash on the input buffer data
inputl and input2. The resulting hashed output in
digest is then printed in hex format to the terminal.

SSL$TCP_CLIENT_QIO_SSL.C and Demonstrate a TCP/IP IPv4 client and server using

SSL$TCP_SERVER_QIO_SSL.C OpenVMS QIO system services to handle network
I/O operations with SSL to secure the data with
encryption.

5.2 Template for Creating Certificates and Keys for the Example
Programs

The command procedure SSL$EXAMPLES_SETUP.TEMPLATE (located in
SYS$COMMON:[SYSHLP.EXAMPLES.SSL]) is a template that sets up the certificate and keys so you can
run the example programs included with HP SSL. SSL$EXAMPLES_SETUP.TEMPLATE does the following:

e C(Creates a Certificate Authority (CA) certificate
e C(Creates server and client certificate requests

¢ The CA signs the two certificate requests

e C(Creates server and client certificates

To execute this command procedure, be sure that SSL$STARTUP.COM and SSL$UTILS.COM have been run,
then remove the comment characters from the commands.

The following program listing shows SSL$EXAMPLES_SETUP.TEMPLATE.

St

S! SSL$SEXAMPLES_SETUP.COM --

St

$! This command procedure is actually a template that will show

$! the commands necessary to create certificates and keys for the example
$! programs.

St

$! Also included in this file are the necessary options to enter into the
$! SSLSCERT_TOOL.COM to create the necessary certificates and keys to the

74

Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl

Example Programs
Template for Creating Certificates and Keys for the Example Programs

example programs. The SSLSCERT_TOOL.COM is found in SSL$SCOM. See the
documenation for more information about the SSLSCERT_TOOL.COM.

1. Create CA certificate - option 5 in SSLSCERT_ TOOL.COM.
This will create a key in one file, named SSLSKEY:SERVER_CA.KEY
by default, and a certificate in another file, named
SSLSCERT: SERVER_CA.CRT by default.

2. Make 2 copies of CA certificate created in step #1.
One should be called server_ca.crt and the other called
client_ca.crt as these are the filenames defined in the
example programs. You will have to exit the SSLS$SCERT_TOOL.COM
procedure to do this operation from the DCL command line.
For example:

$!S COPY SSLSKEY:SERVER_CA.KEY SSLSKEY:CLIENT_CA.KEY
$!S COPY SSLSCERT:SERVER_CA.CRT SSLSCERT:CLIENT_CA.CRT

Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl
Sl

3. Create a server certificate signing request - option 3 in SSL$CERT_TOOL.COM.
The Common Name should be the TCP/IP hostname of the server system.
The default name of the request is SERVER.CSR. The corresponding private
key is named SERVER.KEY.

4. Sign server certificate signing request - option 6 in SSLS$SCERT_TOOL.COM
Use the CA certificate, SERVER_CA.CRT, created in step #1 to sign the request
created in step #3. This will create a certificate file, which should be
named SERVER.CRT. This is the name as it is defined in example programs.

5. Create a client certificate signing request - option 3 in SSL$CERT_TOOL.COM.

6. Sign client certificate signing request - option 6 in SSL$SCERT_TOOL.COM
Use the CA certificate, CLIENT_CA.CRT, created in step #1 to sign the request
created in step #5. This will create a certificate file, which should be
named CLIENT.CRT. This is the name as it is defined in example programs.

7. These certificates and keys should reside in the same directory as
the example programs.

The commands have been changed to use generic data as

input. To use these commands, one will have to substitute

the generic data with data specific to their site.

For example, yourcountry could be change to US. It is

assumed that the SSL startup file, SYS$SSTARTUP:SSLSSTARTUP.COM,
and the SSL$SCOM:SSLSUTILS.COM procedures have been executed.

Check to make sure SSL has been started, so
we can use the logicals that it defines.

S 1f fStrnlnm(“SSLSROOT”) .egs. ““

S then

$ write sysS$Soutput “SSL needs to be started. Execute SYSSSTARTUP:SSLS$SSTARTUP, ”
S write sysS$output “then try this procedure again.”

S endif

Check to make sure SSLSUTILS has been executed, so

75

Example Programs
Template for Creating Certificates and Keys for the Example Programs

S! we can use the foreign commands that it sets up.

S

s! ¢ if fStype (OPENSSL) .egs. ““
$! $ then

st s @SSLS$SCOM: SSLSUTILS

S!S endif

Sl

$! Check to make sure the SERIAL and INDEX files exist.
$s! If they don’t, create them.

$!

s! ¢ if f$search (“SSLS$SROOT: [DEMOCA]SERIAL.TXT”) .egs. ““
$! $ then

SRS CREATE SSLSROOT: [DEMOCA]SERIAL.TXT

st 01

S!S endif

S

s!' ¢ if f$search (“SSLS$SROOT: [DEMOCA]INDEX.TXT”) .egs. ““
$! $ then

SRS CREATE SSLSROOT: [DEMOCA]INDEX.TXT

S!S endif

$!

$! Create the CA certificate.

$!

$! $ define/user sys$command sysS$Sinput

S! $ openssl req -config ssl$root:[000000]openssl-vms.cnf -new -x509 -days 1825 -
S! -keyout sslSkey:server_ca.key -out sslS$Scerts:server_ca.crt

$! yourpassword

$! yourpassword

$! yourcountry

$! yourstate

S! yourcity

$! yourcompany

$! yourdepartment

$! your Certificate Authority certificate $! firstname.lastname@yourcompany.com
S

S! Copy the server_ca.* to client_ca.* so that the CA can $! be loaded on each side.
Sl

S! $ copy sslSkey:server_ca.key sslSkey:client_ca.key

S! $ copy sslScerts:server_ca.crt ssl$Scerts:client_ca.crt

S

St os!

Stos!

S! $! Create the server certificate request.

Stos!

Stos! Note : There is no way to use the value of a
Stos! symbol when you are using the value of
stos! symbol as input, as we do below. To get
Stos! around, we create a .COM on the fly and
SRR execute the created .COm file to create
SR the server certificate.

St st

S! $ hostname = fS$trnlnm(“tcpipS$Sinet_host”)

S! $ domain = fsStrnlnm(“tcpipS$inet_domain”)

$! $ server_name = hostname + “.” + domain $! $!

S! $ open/write s_com create_s_cert.com

Stos!

$! $ write s_com “$!”
S! $ write s_com “$ define/user sys$Scommand sysS$Sinput”

76

Example Programs
Template for Creating Certificates and Keys for the Example Programs

S! $ write s_com “$ openssl reqg -new -nodes -config ssl$root:[000000]openssl-vms.cnf” -
S + “-keyout sslSkey:server.key -out sslScerts:server.csr”
$! $ write s_com “yourcountry”

$! $ write s_com “yourstate”

S$! $ write s_com “yourcity”

$! $ write s_com “yourcompany”

S$! $ write s_com “yourdepartment”

$! $ write s_com “''’server_name’"”

$S! $ write s_com “firstname.lastname@yourcompany.com”

$! $ write s_com ““

$! $ write s_com ““

$tos!

$! $ close s_com
$! $ @create_s_cert
$! $ delete create_s_cert.com;

SRR
SRR
$! $! Now, sign the server certificate
SRR

$! ¢ define/user sys$Scommand sysS$Sinput

$! $ openssl ca -config ssl$root:[000000]openssl-vms.cnf -cert sslScerts:server_ca.crt
-keyfile sslS$Skey:server_ca.key -

Sl-out sslScerts:server.crt -infiles ssl$Scerts:server.csr

$! yourpassword

Sty
Sty
SRR
SRR
S! $! Create the client certificate request.
SRR

$! $ define/user sys$Scommand sysS$input

S! $ openssl req -new -nodes -config sslS$root:[000000]openssl-vms.cnf -
$! -keyout sslSkey:client.key -out sslScerts:client.csr

$! yourcountry

$! yourstate

S! yourcity

$! yourcompany

$! yourdepartment

$! yourname

$! firstname.lastname@yourcompany.com

S

S

SRR

SRR

$! $! Now, sign the client certificate
SRR

$! $ define/user sys$command sysS$input
S! $ openssl ca -config ssl$root:[000000]openssl-vms.cnf -cert sslScerts:client_ca.crt
-keyfile sslS$Skey:client_ca.key -

$! -out sslScerts:client.crt -infiles sslScerts:client.csr
$! yourpassword

Sty

sty

SRR

$! $! Let’s view the CA certificate.

SRR

S! $ openssl x509 -noout -text -in ssl$certs:server_ca.crt
SRR

77

Example Programs
Simple SSL Client Program

SRR
S! $! Let’s view the Server Certificate Request.
SRR

$! $ openssl reqg -noout -text -in ssl$Scerts:server.csr
SRR

$! $! Let’s view the Server Certificate.

SRR

S! $ openssl x509 -noout -text -in sslS$Scerts:server.crt
SRR

S! $! Let’s view the Client Certificate Request.

SRR

$! $ openssl reqg -noout -text -in ssl$certs:client.csr
SRR

$! $! Let’s view the Client Certificate.

SRR

$! $ openssl x509 -noout -text -in sslScerts:client.crt
SRR

SRR

$! $! Lastly, move the certificates and keys to the directory
$! $! in which you are building/running the examples.
S

S! Sexit

5.3 Simple SSL Client Program

The following is the program listing of the SSL$SIMPLE_CLI.C example program.
/ *

* o4+
* FACILITY:

*

*Simplest SSL Client

*

* ABSTRACT:

*

* This is an example of an SSL client with minimum functionality.
* The socket APIs are used to handle TCP/IP operations.

*

*This SSL client verifies the server's certificate against the CA
*certificate loaded in the client.

*

*This SSL client does not load its own certificate and key because

*the SSL server does not request nor verify the client certificate.
*

*/

/* Assumptions, Build, Configuration, and Execution Instructions */
/*

* ASSUMPTIONS:

*

* The following are assumed to be true for the

* execution of this program to succeed:

*

* - SSL is installed and started on this system.

78

Example Programs
Simple SSL Client Program

* - this server program, and its accompanying client

* program are run on the same system, but in different
* processes.

*

* - the certificate and keys referenced by this program
* reside in the same directory as this program. There
* is a command procedure, SSLSEXAMPLES_SETUP.COM, to

* help set up the certificates and keys.

* BUILD INSTRUCTIONS:

* To build this example program use commands of the form,

*

* For a 32-bit application using only SSL APIs needs to run the

* following commands for SSL_APP.C

K e e e e e e e e o — — — — — — — — — — — — — — —— —— ——— — —
* SCC/POINTER_SIZE=32/PREFIX_LIBRARY ENTRIES=ALL_ENTRIES SSL_APP.C
* $LINK SSL_APP.OBJ, VMS_DECC_OPTIONS.OPT/OPT

K e e e e e e e o —— — ———— —
* VMS_DECC_OPTIONS.OPT should include the following lines.

K e e e e e e e o — — — —— — — —— — — — —— —— — — —— —— ——

* SYSSLIBRARY :SSLSLIBCRYPTO_SHR32.EXE/SHARE

* SYSSLIBRARY:SSLSLIBSSL_SHR32.EXE/SHARE

K e e e e e e e . — — —— — — — — — —— — — — — —— —— ——

*

* Creating a 64-bit application of SSL_APP.C should run the

* following commands.

K e e e e e e e e e . — — — — — — — — — — — — — —— —— ———— —
* SCC/POINTER_SIZE=64/PREFIX_LIBRARY ENTRIES=ALL_ENTRIES SSL_APP.C
* SLINK SSL_APP.OBJ, VMS_DECC_OPTIONS.OPT/OPT

K e e e e e e e e o — —— — — — — — — — —— — ———— —
* VMS_DECC_OPTIONS.OPT should include the following lines.

K e e e e e e e o — — — —— — — —— — — — — — — — —— —— ——

* SYS$SLIBRARY :SSLSLIBCRYPTO_SHR.EXE/SHARE

* SYS$SLIBRARY:SSLSLIBSSL_SHR.EXE/SHARE

* CONFIGURATION INSTRUCTIONS:

* RUN INSTRUCTIONS:

* To run this example program:

*

* 1) Start the server program,

*

* S run server on this system
*

* 2) Start the client program on this same system,
*

* S run client

*

*/

#include <stdio.h>

79

Example Programs
Simple SSL Client Program

#include <string.h>
#include <errno.h>
#include <netdb.h>
#include <unistd.h>
#ifdef __VMS
#include <socket.h>
#include <inet.h>

#include <in.h>

#else

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#endif

#include <openssl/crypto.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define RETURN_NULL (x) if ((x)==NULL) exit (1)
#define RETURN_ERR(err,s) if ((err)==-1) { perror(s); exit(l); }
#define RETURN_SSL(err) if ((err)==

static int verify_callback(int ok, X509_STORE_CTX *ctx);

#define RSA_CLIENT_CERT"client.crt"
#define RSA_CLIENT_KEY "client.key"

#define RSA_CLIENT_CA_CERT "client_ca.crt"

#define RSA_CLIENT_CA_PATH "sys$common: [syshlp.examples.ssl]"
#define ON 1

#define OFF 0

void main()

{

int err;

int verify_client = OFF; /* To verify a client certificate, set ON */
int sock;

struct sockaddr_in server_addr;

char*str;

char buf [4096];

char hello[80];

SSL_CTX *ctx;

SSL *ssl;
SSL_METHOD *meth;
X509 *server_cert;

EVP_PKEY *pkey;

short int s_port = 5555;
const char*s_ipaddr = "127.0.0.1";

printf ("Message to be sent to the SSL server: ");
fgets (hello, 80, stdin);

-1) { ERR_print_errors_fp(stderr); exit(l);

}

80

Example Programs
Simple SSL Client Program

/* Load encryption & hashing algorithms for the SSL program */
SSL_library_init();

/* Load the error strings for SSL & CRYPTO APIs */
SSL_load_error_strings();

/* Create an SSL_METHOD structure (choose an SSL/TLS protocol version) */
meth = SSLv3_method() ;

/* Create an SSL_CTX structure */
ctx = SSL_CTX_new (meth) ;

RETURN_NULL (ctx) ;

if (verify client == ON)

/* Load the client certificate into the SSL_CTX structure */
if (SSL_CTX_ use_certificate_file(ctx, RSA_CLIENT_CERT,

SSL_FILETYPE_PEM) <= 0) {
ERR_print_errors_fp(stderr) ;
exit (1) ;

/* Load the private-key corresponding to the client certificate */
if (SSL_CTX_use_PrivateKey_ file(ctx, RSA_CLIENT_KEY,
SSL_FILETYPE_PEM) <= 0) {
ERR_print_errors_fp(stderr) ;
exit (1) ;

/* Check if the client certificate and private-key matches */
if (!SSL_CTX_check_private_key(ctx)) {
fprintf (stderr, "Private key does not match the
certificate public key\n");

exit (1) ;
}
}
/* Load the RSA CA certificate into the SSL_CTX structure */
/* This will allow this client to verify the server's x/
/* certificate. */

if (!SSL_CTX_load_verify locations(ctx, RSA_CLIENT_CA_CERT, NULL)) {
ERR_print_errors_fp(stderr);

exit (1) ;
}
/* Set flag in context to require peer (server) certificate */
/* verification */
SSL_CTX_set_verify(ctx,SSL_VERIFY_PEER,NULL) ;
SSL_CTX_set_verify_depth(ctx,1);
/* ___ */

81

Example Programs
Simple SSL Client Program

/* Set up a TCP socket */
sock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP) ;

RETURN_ERR (sock, "socket");

memset (&server_addr, '\0', sizeof (server_addr));
server_addr.sin_family = AF_INET;

server_addr.sin_port = htons(s_port) ; /* Server Port number */
server_addr.sin_addr.s_addr = inet_addr(s_ipaddr); /* Server IP */

/* Establish a TCP/IP connection to the SSL client */

err = connect (sock, (struct sockaddr*) &server_addr, sizeof (server_addr));
RETURN_ERR (err, "connect");

/* ___ */

/* An SSL structure is created */

ssl = SSL_new (ctx);

RETURN_NULL (ssl) ;

/* Assign the socket into the SSL structure (SSL and socket without BIO) */
SSL_set_fd(ssl, sock);

/* Perform SSL Handshake on the SSL client */
err = SSL_connect (ssl);

RETURN_SSL(err) ;

/* Informational output (optional) */
printf ("SSL connection using %s\n", SSL_get_cipher (ssl));

/* Get the server's certificate (optional) */

server_cert = SSL_get_peer_certificate (ssl);
if (server_cert != NULL)
{
printf ("Server certificate:\n");

str = X509_NAME_oneline (X509_get_subject_name (server_cert),0,0);
RETURN_NULL (str) ;

printf ("\t subject: %s\n", str);

free (str);

str = X509_NAME_oneline (X509_get_issuer_name (server_cert),0,0);
RETURN_NULL (str) ;

printf ("\t issuer: %s\n", str);

free(str);

X509_free (server_cert);

}
else
printf ("The SSL server does not have certificate.\n");

82

[Fmm e DATA EXCHANGE - send message and receive reply. ------- */
/* Send data to the SSL server */
err = SSL_write(ssl, hello, strlen(hello));

RETURN_SSL (err) ;

/* Receive data from the SSL server */
err = SSL_read(ssl, buf, sizeof(buf)-1);

RETURN_SSL (err) ;
buflerr] = '\0';

printf ("Received %d chars:'%s'\n", err, buf);

[Fmmm e SSL closure --------------- */
/* Shutdown the client side of the SSL connection */

err = SSL_shutdown(ssl) ;
RETURN_SSL(err) ;

/* Terminate communication on a socket */
err = close(sock);

RETURN_ERR(err, "close");

/* Free the SSL structure */
SSL_free(ssl);

/* Free the SSL_CTX structure */
SSL_CTX_free(ctx);

Example Programs
Simple SSL Server Program

5.4 Simple SSL Server Program

The following is the program listing of the SSL$SIMPLE_SERV.C example program.

/*
* o++
* FACILITY:

*

*Simplest SSL Server

*

* ABSTRACT:

*

*This i1s an example of a SSL server with minimum functionality.
*The socket APIs are used to handle TCP/IP operations. This SSL
*server loads its own certificate and key, but it does not verify
*the certificate of the SSL client.

*

*/

/* Assumptions, Build, Configuration, and Execution Instructions */
/*

* ASSUMPTIONS:

*

83

Example Programs

Simple SSL Server Program
* The following are assumed to be true for the
* execution of this program to succeed:
*
* - SSL is installed and started on this system.
*
* - this server program, and its accompanying client
* program are run on the same system, but in different
* processes.
*
* - the certificate and keys referenced by this program
* reside in the same directory as this program. There
* is a command procedure, SSLSEXAMPLES_SETUP.COM, to
* help set up the certificates and keys.

* BUILD INSTRUCTIONS:

* To build this example program use commands of the form,

*

* For a 32-bit application using only SSL APIs needs to run the

* following commands for SSL_APP.C

K e e e e e e e e . — — — —— — — — — — — — ——— ——— —
* $CC/POINTER_SIZE=32/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES SSL_APP.C
* $LINK SSL_APP.OBJ, VMS_DECC_OPTIONS.OPT/OPT

K e e e e e e e e e . — — — —— — — — — — — — ——— ——— —
* VMS_DECC_OPTIONS.OPT should include the following lines.

K e e e e e e e e — — — — — — — — — — — —— — — — —— — — — — — — — — — — — — — — — — —— —— ———

* SYS$LIBRARY:SSLSLIBCRYPTO_SHR32 .EXE/SHARE

* SYS$LIBRARY:SSLSLIBSSL_SHR32.EXE/SHARE

K e e e e e e o — — — — — — — — — — — — — — — —— — — — — — — — — — — — — — — — — —— —— ———

*

* Creating a 64-bit application of SSL_APP.C should run the

* following commands.

K e e e e e e e e . — — — —— — — — — — —— — — — —— — — —— — — — — — — —— ——— ————
* SCC/POINTER_SIZE=64/PREFIX_LIBRARY_ENTRIES=ALL_ENTRIES SSIL_APP.C
* SLINK SSL_APP.OBJ, VMS_DECC_OPTIONS.OPT/OPT

K e e e e e e e e o — — — — — — — — — — — —— — — — — — — — — —— ——— ————
* VMS_DECC_OPTIONS.OPT should include the following lines.

K e e e e e e e e —— —

* SYS$LIBRARY: SSLSLIBCRYPTO_SHR.EXE/SHARE

* SYS$LIBRARY:SSLSLIBSSL_SHR.EXE/SHARE

* CONFIGURATION INSTRUCTIONS:

* RUN INSTRUCTIONS:

* To run this example program:

*

* 1) Start the server program,

*

* $ run server

*

* 2) Start the client program on this same system,
*

* S run client

84

Example Programs
Simple SSL Server Program

*

*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <netdb.h>
#include <unistd.h>

#ifdef __VMS
#include <types.h>
#include <socket.h>
#include <in.h>
#include <inet.h>

#else
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#endif

#include <openssl/crypto.h>
#include <openssl/ssl.h>
#include <openssl/err.h>

#define RSA_SERVER_CERT "server.crt"
#define RSA_SERVER_KEY "server.key"

#define RSA_SERVER_CA_CERT"server_ca.crt"
#define RSA_SERVER_CA_PATH"sysS$Scommon: [syshlp.examples.ssl]"

#define ON 1
#define OFF 0

#define RETURN_NULL (x) if ((x)==NULL) exit (1)
#define RETURN_ERR(err,s) if ((err)==-1) { perror(s); exit(l); }
#define RETURN_SSL(err) if ((err)==-1) { ERR_print_errors_fp(stderr); exit(1l); 1}

void main()

{

int err;

int verify_client = OFF; /* To verify a client certificate, set ON */

int listen_sock;

int sock;

struct sockaddr_in sa_serv;
struct sockaddr_in sa_cli;
size_t client_len;
char*str;

char buf[4096];

SSL_CTX*ctx;
SSL*ssl;
SSL_METHOD *meth;

85

Example Programs
Simple SSL Server Program

X509*client_cert = NULL;
short int s_port = 5555;

/* Load encryption & hashing algorithms for the SSL program */
SSL_library_init();

/* Load the error strings for SSL & CRYPTO APIs */
SSL_load_error_strings();

/* Create a SSL_METHOD structure (choose a SSL/TLS protocol version) */
meth = SSLv3_method() ;

/* Create a SSL_CTX structure */
ctx = SSL_CTX_new (meth) ;

if (lectx) {
ERR_print_errors_fp(stderr) ;

exit (1) ;

/* Load the server certificate into the SSL_CTX structure */
if (SSL_CTX_ use_certificate_file(ctx, RSA_SERVER_CERT, SSL_FILETYPE_PEM) <= 0) {

ERR_print_errors_fp(stderr);

exit (1) ;

/* Load the private-key corresponding to the server certificate */
if (SSL_CTX use_PrivateKey file(ctx, RSA_SERVER_KEY, SSL_FILETYPE PEM) <= 0) {

ERR_print_errors_fp(stderr);
exit (1) ;
/* Check if the server certificate and private-key matches */
if (!SSL_CTX_check_private_key (ctx)) {
fprintf (stderr, "Private key does not match the certificate public key\n");

exit (1) ;

if (verify client == ON)

/* Load the RSA CA certificate into the SSL_CTX structure */
if (!SSL_CTX_load_verify locations(ctx, RSA_SERVER_CA_CERT, NULL)) {

ERR_print_errors_fp(stderr) ;
exit (1) ;

86

Example Programs

Simple SSL Server Program
/* Set to require peer (client) certificate verification */
SSL_CTX_set_verify(ctx, SSL_VERIFY_PEER,NULL) ;
/* Set the verification depth to 1 */
SSL_CTX_set_verify_ depth(ctx,1);
}
/* ___ */
/* Set up a TCP socket */
listen_sock = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP) ;
RETURN_ERR (listen_sock, "socket");
memset (&sa_serv, '\0', sizeof (sa_serv));
sa_serv.sin_family = AF_INET;
sa_serv.sin_addr.s_addr = INADDR_ANY;
sa_serv.sin_port = htons (s_port); /* Server Port number */
err = bind(listen_sock, (struct sockaddr*)&sa_serv,sizeof (sa_serv));
RETURN_ERR (err, "bind");
/* Wait for an incoming TCP connection. */
err = listen(listen_sock, 5);
RETURN_ERR (err, "listen");
client_len = sizeof(sa_cli);
/* Socket for a TCP/IP connection is created */
sock = accept(listen_sock, (struct sockaddr*)&sa_cli, &client_len);
RETURN_ERR (sock, "accept");
close (listen_sock) ;
printf ("Connection from %1x, port %x\n", sa_cli.sin_addr.s_addr,
sa_cli.sin_port);
/* ___ */
/* TCP connection is ready. */
/* A SSL structure is created */
ssl = SSL_new(ctx) ;
RETURN_NULL (ssl) ;
/* Assign the socket into the SSL structure (SSL and socket without BIO) */

SSL_set_fd(ssl, sock);

/* Perform SSL Handshake on the SSL server */
err = SSL_accept(ssl);

RETURN_SSL(err) ;

/* Informational output (optional) */

printf ("SSL connection using %s\n", SSL_get_cipher (ssl));

if (verify_client == ON)
{

/* Get the client's certificate (optional) */

87

Example Programs

Simple SSL Server Program
client_cert = SSL_get_peer_certificate(ssl);
if (client_cert != NULL)

{

printf ("Client certificate:\n");

str = X509_NAME_oneline (X509_get_subject_name(client_cert),
RETURN_NULL (str) ;

printf ("\t subject: %s\n", str);

free (str);

str = X509_NAME_oneline (X509_get_issuer_name(client_cert),
RETURN_NULL (str) ;

printf ("\t issuer: %s\n", str);

free (str);

X509_free(client_cert) ;

}

else

printf ("The SSL client does not have certificate.\n");

[Fmmmm - DATA EXCHANGE - Receive message and send reply. -------

/* Receive data from the SSL client */
err = SSL_read(ssl, buf, sizeof(buf) - 1);

RETURN_SSL(err) ;
buflerr] = '\0';
printf ("Received %d chars:'%s'\n", err, buf);

/* Send data to the SSL client */
err = SSL_write(ssl, "This message is from the SSL server",

strlen("This message is from the SSL server"));
RETURN_SSL(err) ;

[Fmm e SSL closure --------------- */
/* Shutdown this side (server) of the connection. */

err = SSL_shutdown(ssl) ;
RETURN_SSL (err) ;

/* Terminate communication on a socket */
err = close(sock);

RETURN_ERR (err, "close");

/* Free the SSL structure */
SSL_free(ssl);

/* Free the SSL_CTX structure */
SSL_CTX_free(ctx);

0, 0);

0,

0);

88

OpenSSL Command Line Interface
Command-Line Help

6 OpenSSL Command Line Interface

HP SSL for OpenVMS provides a command line interface that allows you to use the cryptography functions of
SSL's cryptography library from the OpenSSL command prompt (OPENSSL>). You can use the command-line
interface for the following tasks:

e C(Creating RSA, DH and DSA key parameters

e Creating X.509 certificates, CSRs, and CRLs

e (Calculating message digests

¢ Encrypting and decrypting with ciphers

¢ Testing on SSL/TLS clients and servers

¢ Handling of S/MIME signed or encrypted mail

For reference information about the OpenSSL commands, see the OpenSSL Command Line Interface (CLI)
Reference.

6.1 Command-Line Help

HP SSL for OpenVMS includes three pseudocommands that function like command-line help. When you
enter one of these pseudocommands at the OpenSSL prompt, SSL displays a list (one entry per line) of names
of all the standard commands, message digest commands, or cipher commands, that are available in the
command line interface.

NOTE To use these commands, you must have previously run SYS$STARTUP:SSL$STARTUP.COM
and SSL$COM:SSL$UTILS.COM.

The pseudocommands are as follows:

S openssl

openssl> list-standard-commands
openssl> list-message-digest-commands
openssl> list-cipher-commands

To obtain a list of all of the commands available, enter the following:
S openssl ?

SSL$UTILS.COM sets up foreign commands to provide command-line accesss to the standard, message
digest, and cipher commands. You can also display the UNIX manpage documentation for each command by
entering the following:

S openssl command-name ?

where command-name is the name of an OpenSSL command such as asnlparse.

89

OpenSSL Command Line Interface
Standard Commands

6.2 Standard Commands

The following are the OpenSSL standard commands.

asnlparse

Parse an ASN.1 sequence
ca

Certificate Authority (CA) Management
ciphers

Cipher Suite Description Determination
crl

Certificate Revocation List (CRL) Management
crl2pkcs?7

CRL to PKCS#7 Conversion
dgst

Message Digest Calculation
dh

Diffie-Hellman Parameter Management Obsoleted by dHParam.
dHParam

Generation and Management of Diffie-Hellman Parameters
dsa

DSA Data Management
dsaparam

DSA Parameter Generation
enc

Encoding with Ciphers
errstr

Error Number to Error String Conversion
gendh

Generation of Diffie-Hellman Parameters. Obsoleted by dHParam.
gendsa

Generation of DSA Parameters
genrsa

Generation of RSA Parameters
nseq

Netscape Certificate Sequence Utility

90

passwd

pkcsl?2

pkcs7

pkcs8

rand

req

rsa

rsautl

s_client

S_server

s_time

sess_id

smime

speed

spkac

verify

OpenSSL Command Line Interface
Standard Commands

Generation of hashed passwords

PKCS#12 Data Management

PKCS#7 Data Management

PKCS#8 Data Management

Generate pseudo-random bytes

X.509 Certificate Signing Request (CSR) Management

RSA Data Management

RSA utility for signing, verification, encryption, and decryption

Implements a generic SSL/TLS client that can establish a transparent connection to a
remote server speaking SSL/TLS. This command, however, is intended for testing purposes
only and provides only rudimentary interface functionality. Internally, however, it uses most
of the functionality of the OpenSSL ss1 library.

Implements a generic SSL/TLS server that accepts connections from remote clients
speaking SSL/TLS. It is intended for testing purposes only and provides only rudimentary
interface functionality. Internally, however, it uses most of the functionality of the OpenSSL
ssl library. It provides both its own command-line oriented protocol for testing SSL
functions and a simple HTTP response facility to emulate an SSL/TLS-aware web server.

SSL Connection Timer

SSL Session Data Management

S/MIME mail processing

Algorithm Speed Measurement

Signed public key and challenge

91

OpenSSL Command Line Interface
Message Digest Commands

X.509 Certificate Verification
version

OpenSSL Version Information
x509

X.509 Certificate Data Management

6.3 Message Digest Commands

The following are the OpenSSL message digest commands.

md2

MD2 Digest
md4

MD4 Digest
md5

MD5 Digest
mdc2

MDC2 Digest
rmdl160

RMD-160 Digest
sha

SHA Digest
shal

SHA-1 Digest

6.4 Encoding and Cipher Commands

The following are the OpenSSL encoding and cipher commands. These commands use the following
abbreviations:

¢ (CBC - Cipher Block Chaining

e CFB - Cipher Feedback

e ECB - Electronic Cookbook

e OFB - Output Feedback

e EDE - Encrypt-Decrypt-Encrypt

92

baseb4

bf-cbc

bf

bf-cfb

bf-ecb

bf-ofb

cast-cbc

cast5-cbc

cast

castb5-cfb

castb-ecb

cast5-ofb

des-cbc

des

des-cfb

des-ofb

des-ecb

des-ede-cbc

Base64 Encoding

Blowfish in CBC mode

Alias for bf-cbc

Blowfish in CFB mode

Blowfish in ECB mode

Blowfish in OFB mode

CAST Cipher in CBC mode

CASTS5 Cipher in CBC mode

Alias for cast-cbc

CASTS5 in CFB mode

CASTS5 in ECB mode

CASTS5 in OFB mode

DES Cipher in CBC mode

Alias for des-cbe

DES in CFB mode

DES in OFB mode

DES in ECB mode

Two key triple DES EDE in CBC mode

OpenSSL Command Line Interface
Encoding and Cipher Commands

93

OpenSSL Command Line Interface
Encoding and Cipher Commands

des-ede

des-ede-cfb

des-ede-ofb

des-ede3-cbc

des-ede3

des3

des-ede3-cfb

des-ede3-ofb

desx

rc2-cbc

rc2

rc2-cfb

rc2-ecb

rc2-ofb

rc2-64-cbc

rc2-40-cbc

rcd

rcd-40

Alias for des-ede

Two key triple DES EDE in CFB mode

Two key triple DES EDE in OFB mode

Three key triple DES EDE in CBC mode

Alias for des-ede3-cbc

Alias for des-ede3-cbc

Three key triple DES EDE CFB mode

Three key triple DES EDE in OFB mode

DESX algorithm

128-bit RC2 Cipher in CBC mode

Alias for rc2-cbe

128-bit RC2 in CFB mode

128-bit RC2 in ECB mode

128-bit RC2 in OFB mode

64-bit RC2 in CBC mode

40-bit RC2 in CBC mode

128-bit RC4 Cipher

40-bit RC4

94

OpenSSL Command Line Interface
Password Arguments

6.5 Password Arguments

Several commands accept password arguments, typically using the passin and the passout options,
respectively, for input and output passwords. These arguments allow the password to be obtained from a
variety of sources. Both options take a single argument in the following format. If no password argument is
given and a password is required, then the user is prompted to enter a password. The password is read from
the current terminal with echoing turned off.

pass:password

The actual password is password. Since the password is visible to utilities (such as the ps
utility in UNIX), use this form only when security is not important.

env:var

Obtains the password from the environment variable var. Because the environment of other
processes is visible on certain platforms (such as ps in certain UNIX operating systems), use
this option with caution.

file:pathname

The first line of pathname is the password. If the same pathname argument is supplied to
the passin and passout arguments, then the first line is used for the input password and
the next line is used for the output password. The pathname need not refer to a regular file;
for example, it could refer to a device or named pipe.

fd:number

Reads the password from the file descriptor number. This can be used, for example, to send
the data via a pipe.

stdin

Reads the password from standard input.

6.6 Creating a DH Parameter (Key) File and a DSA Certificate and

Key
In order to establish an SSL connection with the DH (key exchange) and DSA (DSS, signing) algorithms, a
DH parameter file and DSA certificates and keys are required in your SSL application. The Certificate Tool

(described in Chapter 3) does not provide this functionality. However, the OpenSSL command-line utility
allows you to create the required files.

The following lines demonstrate how to create the DH and DSA related files.

Create a DH parameter (key size is 1024 bits)
$ openssl dHParam -outform PEM -out dHParam.pem 1024

Create a DSA certificate

- Create DSA parameters (key size is 1024 bits)
S openssl dsaparam -out dsaparam.pem 1024

- Create a DSA CA certificate and private key(using DSA parameter in dsaparam.pem)

95

OpenSSL Command Line Interface
Creating a DH Parameter (Key) File and a DSA Certificate and Key

S openssl reqg -x509 -newkey dsa:dsaparam.pem
-keyout dsa_ca.key -out dsa_ca.crt -config SSLSCONF
- Create DSA certificate signing request (dsa_cert.csr)& private key(dsa_cert.key)

S openssl req -out dsa_cert.csr -keyout dsa_cert.key
-newkey dsa:DSAPARAM.PEM -config SSLS$SCONF

- Sign Certificate Signing Request with DSA CA Certificate and Create a New Certificate
S openssl ca -in dsa_cert.csr -out dsa_cert.crt

-config SSLSCA_CONF

96

OpenSSL Command Line Interface (CLI) Reference

This reference section includes the OpenSSL commands, and is based on information provided by The Open
Group. This information can also be found at the following URL:

http://www.openssl.org

HP SSL for OpenVMS provides a command line interface that allows you to use the cryptography functions of
SSL's cryptography library from the OpenSSL command prompt (OPENSSL>). You can use the command-line
interface for the following tasks:

e C(Creating RSA, DH and DSA key parameters

¢ Creating X.509 certificates, CSRs, and CRLs

e (Calculating message digests

¢ Encrypting and decrypting with ciphers

¢ Testing on SSL/TLS clients and servers

¢ Handling of S/MIME signed or encrypted mail

See Chapter 6, OpenSSL Command Line Interface, for more information about the OpenSSL commands.

97

asnlparse
NAME

asnlparse — ASN.1 parsing tool

Synopsis

openssl asnlparse [-inform PEM|DER] [-in filename] [-out filename] [-noout] [-offset
number] [-length number] [-1] [-oid filename] [-strparse offset]

DESCRIPTION

The asnlparse command is a diagnostic utility that can parse ASN.1 structures. It can also be used to extract
data from ASN.1 formatted data.

OPTIONS

e -inform DER|PEM

the input format. DER is binary format and PEM (the default) is base64 encoded.
¢ -in filename

the input file, default is standard input
¢ -out filename

output file to place the DER encoded data into. If this option is not present then no data will be output.
This is most useful when combined with the -strparse option.

* -noout
don't output the parsed version of the input file.
e -offset number
starting offset to begin parsing, default is start of file.
¢ -length number
number of bytes to parse, default is until end of file.
e i
indents the output according to the "depth" of the structures.
¢ -oid filename

a file containing additional OBJECT IDENTIFIERs (OIDs). The format of this file is described in the
NOTES section below.

e _strparse offset

parse the contents octets of the ASN.1 object starting at offset. This option can be used multiple times to
"drill down" into a nested structure.

OUTPUT
The output will typically contain lines like this:

0:d=0 hl=4 1= 681 cons: SEQUENCE

98

229:d=3 hl=3 1= 141 prim: BIT STRING

373:d=2 hl=3 1= 162 cons: cont [3]

376:d=3 hl=3 1= 159 cons: SEQUENCE

379:d=4 hl=2 1= 29 cons: SEQUENCE

381:d=5 hl=2 1= 3 prim: OBJECT :X509v3 Subject Key Identifier
386:d=5 hl=2 1= 22 prim: OCTET STRING

410:d=4 hl=2 1= 112 cons: SEQUENCE

412:d=5 hl=2 1= 3 prim: OBJECT :X509v3 Authority Key Identifier
417:d=5 hl=2 1= 105 prim: OCTET STRING

524:d=4 hl=2 1= 12 cons: SEQUENCE

This example is part of a self signed certificate. Each line starts with the offset in decimal. d=XX specifies the
current depth. The depth is increased within the scope of any SET or SEQUENCE.

h1=XX gives the header length (tag and length octets) of the current type. 1=XX gives the length of the
contents octets.

The -i option can be used to make the output more readable.
Some knowledge of the ASN.1 structure is needed to interpret the output.

In this example the BIT STRING at offset 229 is the certificate public key. The contents octets of this will
contain the public key information. This can be examined using the option -strparse 229 to yield:

0:d=0 hl=3 1= 137 cons: SEQUENCE
3:d=1 hl=3 1= 129 prim: INTEGER
:E5D21E1F5C8D208EA7A2166CT7TFAF9F6BDF2059669C60876DDB70840F1ASAAFAS9699FE4A71F379F1DD6A487ET7D540
9AB6A88D4A9746E24B91D8CF55DB3521015460C8EDE44EE8BA4189F7A7BE77D6CD3A9AF2696F486855CF58BFOEDF2B
4068058C7A947F52548DDF7E15E96B385F86422BEA9064A3EE9E1158A56E4A6F47E5897
135:d=1 hl=2 1= 3 prim: INTEGER :010001

NOTES

If an OID is not part of OpenSSL's internal table it will be represented in numerical form (for example
1.2.3.4). The file passed to the -oid option allows additional OIDs to be included. Each line consists of three
columns, the first column is the OID in numerical format and should be followed by white space. The second
column is the "short name" which is a single word followed by white space. The final column is the rest of the
line and is the "long name". asnlparse displays the long name. Example:

1.2.3.4shortNameA long name

Restrictions

There should be options to change the format of input lines. The output of some ASN.1 types is not well
handled (if at all).

99

ca
NAME

ca — sample minimal CA application

Synopsis

openssl ca [-verbose] [-config filename] [-name section] [-gencrl] [-revoke file]
[-crl_reason reason] [-crl_hold instruction] [-crl_compromise time] [-crl_CA_compromise
time] [-subj arg] [-crldays days] [-crlhours hours] [-crlexts section] [-startdate datel]
[-enddate date] [-days arg] [-md arg] [-policy arg] [-keyfile arg] [-key arg] [-passin arg]
[-cert file] [-in file] [-out file] [-notext] [-outdir dir] [-infiles] [-spkac file]
[-ss_cert file] [-preserveDN] [-noemailDN] [-batch] [-msie_hack] [-extensions section]
[-extfile section] [-engine id]

DESCRIPTION

The ca command is a minimal CA application. It can be used to sign certificate requests in a variety of forms
and generate CRLs it also maintains a text database of issued certificates and their status.

The options descriptions will be divided into each purpose.

CA OPTIONS

¢ -config filename
specifies the configuration file to use.
* -name section
specifies the configuration file section to use (overrides default_ca in the ca section).
¢ -in filename
an input filename containing a single certificate request to be signed by the CA.
e -ss_cert filename
a single self signed certificate to be signed by the CA.
¢ -spkac filename

a file containing a single Netscape signed public key and challenge and additional field values to be
signed by the CA. See the SPKAC FORMAT section for information on the required format.

e _infiles

if present this should be the last option, all subsequent arguments are assumed to the the names of files
containing certificate requests.

e -out filename

the output file to output certificates to. The default is standard output. The certificate details will also be
printed out to this file.

e -outdir directory

the directory to output certificates to. The certificate will be written to a filename consisting of the serial
number in hex with ".pem" appended.

100

-cert

the CA certificate file.

-keyfile filename

the private key to sign requests with.
-key password

the password used to encrypt the private key. Since on some systems the command line arguments are
visible (e.g. UNIX with the 'ps' utility) this option should be used with caution.

-passin arg

the key password source. For more information about the format of arg see the PASS PHRASE
ARGUMENTS section in openssl (1).

-verbose

this prints extra details about the operations being performed.
-notext

don't output the text form of a certificate to the output file.
-startdate date

this allows the start date to be explicitly set. The format of the date is YYMMDDHHMMSSZ (the same as
an ASN1 UTCTime structure).

-enddate date

this allows the expiry date to be explicitly set. The format of the date is YYMMDDHHMMSSZ (the same
as an ASN1 UTCTime structure).

-days arg

the number of days to certify the certificate for.

-md alg

the message digest to use. Possible values include md5, shal and mdc2. This option also applies to CRLs.
-policy arg

this option defines the CA "policy" to use. This is a section in the configuration file which decides which
fields should be mandatory or match the CA certificate. Check out the POLICY FORMAT section for more
information.

-msie_hack

this is a legacy option to make ca work with very old versions of the IE certificate enrollment control
"certenr3". It used UniversalStrings for almost everything. Since the old control has various security bugs
its use is strongly discouraged. The newer control "Xenroll" does not need this option.

-preserveDN

Normally the DN order of a certificate is the same as the order of the fields in the relevant policy section.
When this option is set the order is the same as the request. This is largely for compatibility with the
older IE enrollment control which would only accept certificates if their DNs match the order of the
request. This is not needed for Xenroll.

-noemailDN

101

The DN of a certificate can contain the EMAIL field if present in the request DN, however it is good policy
just having the e-mail set into the altName extension of the certificate. When this option is set the EMAIL
field is removed from the certificate' subject and set only in the, eventually present, extensions. The
email in_dn keyword can be used in the configuration file to enable this behaviour.

-batch

this sets the batch mode. In this mode no questions will be asked and all certificates will be certified
automatically.

-extensions section

the section of the configuration file containing certificate extensions to be added when a certificate is
issued (defaults to x509_extensions unless the -extfile option is used). If no extension section is present
then, a V1 certificate is created. If the extension section is present (even if it is empty), then a V3
certificate is created.

-extfile file

an additional configuration file to read certificate extensions from (using the default section unless the
-extensions option is also used).
-engine id

specifying an engine (by it's unique id string) will cause req to attempt to obtain a functional reference to
the specified engine, thus initialising it if needed. The engine will then be set as the default for all
available algorithms.

CRL OPTIONS

-gencrl
this option generates a CRL based on information in the index file.
-crldays num

the number of days before the next CRL is due. That is the days from now to place in the CRL nextUpdate
field.

-crlhours num

the number of hours before the next CRL is due.
-revoke filename

a filename containing a certificate to revoke.
-crl_reason reason

revocation reason, where reason is one of: unspecified, keyCompromise, CACompromise,
affiliationChanged, superseded , cessationOfOperation, certificateHold or removeFromCRL . The
matching of reason is case insensitive. Setting any revocation reason will make the CRL v2.

In practive removeFromCRL is not particularly useful because it is only used in delta CRLs which are not
currently implemented.

-crl_hold instruction

This sets the CRL revocation reason code to certificateHold and the hold instruction to instruction which
must be an OID. Although any OID can be used only holdInstructionNone (the use of which is
discouraged by RFC2459) holdInstructionCalllssuer or holdInstructionReject will normally be used.

102

e -crl_compromise time

This sets the revocation reason to keyCompromise and the compromise time to time. time should be in
GeneralizedTime format; that is, YYYYMMDDHHMMSSZ.

e -crl_CA_compromise time
This is the same as crl_compromise except the revocation reason is set to CACompromise .
e -subjarg

supersedes subject name given in the request. The arg must be formatted as
/typel=valuel/typel=valuel/type2=. .., characters may be escaped by \ (backslash), no spaces are
skipped.

e _crlexts section

the section of the configuration file containing CRL extensions to include. If no CRL extension section is
present then a V1 CRL is created, if the CRL extension section is present (even if it is empty) then a V2
CRL is created. The CRL extensions specified are CRL extensions and not CRL entry extensions. It
should be noted that some software (for example Netscape) can't handle V2 CRLs.

CONFIGURATION FILE OPTIONS

The section of the configuration file containing options for ca is found as follows: If the -name command line
option is used, then it names the section to be used. Otherwise the section to be used must be named in the
default_ca option of the ca section of the configuration file (or in the default section of the configuration file).
Besides default_ca, the following options are read directly from the ca section: RANDFILE preserve
msie_hack With the exception of RANDFILE, this is probably a bug and may change in future releases.

Many of the configuration file options are identical to command line options. Where the option is present in
the configuration file and the command line the command line value is used. Where an option is described as
mandatory then it must be present in the configuration file or the command line equivalent (if any) used.

e oid_file

This specifies a file containing additional OBJECT IDENTIFIERS. Each line of the file should consist of
the numerical form of the object identifier followed by white space then the short name followed by white
space and finally the long name.

e 0id_section

This specifies a section in the configuration file containing extra object identifiers. Each line should
consist of the short name of the object identifier followed by = and the numerical form. The short and long
names are the same when this option is used.

e new._certs_dir

the same as the -outdir command line option. It specifies the directory where new certificates will be
placed. Mandatory.

e certificate

the same as -cert. It gives the file containing the CA certificate. Mandatory.
e private_key

same as the -keyfile option. The file containing the CA private key. Mandatory.
e RANDFILE

a file used to read and write random number seed information, or an EGD socket (see RAND_egd (3)).

103

default_days
the same as the -days option. The number of days to certify a certificate for.
default_startdate

the same as the -startdate option. The start date to certify a certificate for. If not set the current time is
used.

default_enddate

the same as the -enddate option. Either this option or default_days (or the command line equivalents)
must be present.

default_crl_hours default_crl_days

the same as the -crlhours and the -crldays options. These will only be used if neither command line option
is present. At least one of these must be present to generate a CRL.

default_md

the same as the -md option. The message digest to use. Mandatory.

database

the text database file to use. Mandatory. This file must be present though initially it will be empty.
serial

a text file containing the next serial number to use in hex. Mandatory. This file must be present and
contain a valid serial number.

x509_extensions

the same as -extensions.
crl_extensions

the same as -crlexts.
preserve

the same as -preserve DN
email_in_dn

the same as -noemailDN. If you want the EMAIL field to be removed from the DN of the certificate simply
set this to 'no'. If not present the default is to allow for the EMAIL filed in the certificate's DN.

msie_hack

the same as -msie_hack

policy

the same as -policy. Mandatory. See the POLICY FORMAT section for more information.
nameopt, certopt

these options allow the format used to display the certificate details when asking the user to confirm
signing. All the options supported by the x509 utilities -nameopt and -certopt switches can be used here,
except the no_signame and no_sigdump are permanently set and cannot be disabled (this is because the
certificate signature cannot be displayed because the certificate has not been signed at this point).

For convenience the values ca_default are accepted by both to produce a reasonable output.

104

If neither option is present the format used in earlier versions of OpenSSL is used. Use of the old format
is strongly discouraged because it only displays fields mentioned in the policy section, mishandles
multicharacter string types and does not display extensions.

® copy_extensions

determines how extensions in certificate requests should be handled. If set to none or this option is not
present then extensions are ignored and not copied to the certificate. If set to copy then any extensions
present in the request that are not already present are copied to the certificate. If set to copyall then all
extensions in the request are copied to the certificate: if the extension is already present in the certificate
it is deleted first. See the WARNINGS section before using this option.

The main use of this option is to allow a certificate request to supply values for certain extensions such as
subjectAltName.

POLICY FORMAT

The policy section consists of a set of variables corresponding to certificate DN fields. If the value is "match"
then the field value must match the same field in the CA certificate. If the value is "supplied" then it must be
present. If the value is "optional" then it may be present. Any fields not mentioned in the policy section are
silently deleted, unless the -preserveDN option is set but this can be regarded more of a quirk than intended
behaviour.

SPKAC FORMAT

The input to the -spkac command line option is a Netscape signed public key and challenge. This will usually
come from the KEYGEN tag in an HTML form to create a new private key. It is however possible to create
SPKACs using the spkac utility.

The file should contain the variable SPKAC set to the value of the SPKAC and also the required DN
components as name value pairs. If you need to include the same component twice then it can be preceded by
anumber and a'.".

EXAMPLES

Note: these examples assume that the ca directory structure is already set up and the relevant files already
exist. This usually involves creating a CA certificate and private key with req, a serial number file and an
empty index file and placing them in the relevant directories.

To use the sample configuration file below the directories demoCA, demoCA/private and demoCA/newcerts
would be created. The CA certificate would be copied to demoCA/cacert.pem and its private key to
demoCA/private/cakey.pem. A file demoCA/serial would be created containing for example "01" and the empty
index file demoCA/index.txt.

Sign a certificate request:
openssl ca -in reqg.pem -out newcert.pem
Sign a certificate request, using CA extensions:
openssl ca -in reqg.pem -extensions v3_ca -out newcert.pem
Generate a CRL
openssl ca -gencrl -out crl.pem
Sign several requests:

openssl ca -infiles reqgl.pem reqg2.pem reqg3.pem

105

Certify a Netscape SPKAC:
openssl ca -spkac spkac.txt
A sample SPKAC file (the SPKAC line has been truncated for clarity):

SPKAC=MIGOMGAWXDANBgkghkiGO9wOBAQEFAANLADBIAKEAN7PDhCeV/XIXUg8V70YRXK2A5
CN=Steve Test

emailAddress=steve@openssl.org

0.0U=0penSSL Group

1.0U=Another Group

A sample configuration file with the relevant sections for ca:

[ca]
default_ca = CA_default # The default ca section

[CA_default]

dir = ./demoCA # top dir

database = S$dir/index.txt # index file.
new_certs_dir= $dir/newcerts # new certs dir

certificate = $dir/cacert.pem # The CA cert

serial = Sdir/serial # serial no file
private_key = $dir/private/cakey.pem# CA private key

RANDFILE = $dir/private/.rand # random number file
default_days = 365 # how long to certify for
default_crl_days= 30 # how long before next CRL
default_md = md5 # md to use

policy = policy_any # default policy

no # Don't add the email into cert DN

email_in_dn
nameopt= ca_default# Subject name display option
certopt= ca_default# Certificate display option

copy_extensions = none# Don't copy extensions from request

[policy_any]

countryName = supplied
stateOrProvinceName = optional
organizationName = optional
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

FILES

Note: the location of all files can change either by compile time options, configuration file entries,
environment variables or command line options. The values below reflect the default values.

/usr/local/ssl/1lib/openssl.cnf - master configuration file

. /demoCA - main CA directory

. /demoCA/cacert.pem - CA certificate

. /demoCA/private/cakey.pem - CA private key

. /demoCA/serial - CA serial number file

. /demoCA/serial.old - CA serial number backup file
. /demoCA/index. txt - CA text database file

106

. /demoCA/index.txt.old - CA text database backup file
. /demoCA/certs - certificate output file
. /demoCA/.rnd - CA random seed information

ENVIRONMENT VARIABLES

OPENSSL_CONTF reflects the location of master configuration file it can be overridden by the -config
command line option.

RESTRICTIONS

The text database index file is a critical part of the process and if corrupted it can be difficult to fix. It is
theoretically possible to rebuild the index file from all the issued certificates and a current CRL: however
there is no option to do this.

V2 CRL features like delta CRL support and CRL numbers are not currently supported.

Although several requests can be input and handled at once it is only possible to include one SPKAC or self
signed certificate.

Restrictions

The use of an in memory text database can cause problems when large numbers of certificates are present
because, as the name implies the database has to be kept in memory.

It is not possible to certify two certificates with the same DN: this is a side effect of how the text database is
indexed and it cannot easily be fixed without introducing other problems. Some S/MIME clients can use two
certificates with the same DN for separate signing and encryption keys.

The ca command really needs rewriting or the required functionality exposed at either a command or
interface level so a more friendly utility (perl script or GUI) can handle things properly. The scripts CA.sh and
CA.pl help a little but not very much.

Any fields in a request that are not present in a policy are silently deleted. This does not happen if the
-preserveDN option is used. To enforce the absence of the EMAIL field within the DN, as suggested by RFCs,
regardless the contents of the request' subject the -noemailDN option can be used. The behaviour should be
more friendly and configurable.

Cancelling some commands by refusing to certify a certificate can create an empty file.

WARNINGS

The ca command is quirky and at times downright unfriendly.

The ca utility was originally meant as an example of how to do things in a CA. It was not supposed to be used
as a full blown CA itself: nevertheless some people are using it for this purpose.

The ca command is effectively a single user command: no locking is done on the various files and attempts to
run more than one ca command on the same database can have unpredictable results.

The copy_extensions option should be used with caution. If care is not taken then it can be a security risk. For
example if a certificate request contains a basicConstraints extension with CA:TRUE and the
copy_extensions value is set to copyall and the user does not spot this when the certificate is displayed then
this will hand the requestor a valid CA certificate.

This situation can be avoided by setting copy_extensions to copy and including basicConstraints with
CA:FALSE in the configuration file. Then if the request contains a basicConstraints extension it will be
ignored.

107

It is advisable to also include values for other extensions such as keyUsage to prevent a request supplying its
own values.

Additional restrictions can be placed on the CA certificate itself. For example if the CA certificate has:
basicConstraints = CA:TRUE, pathlen:0

then even if a certificate is issued with CA:TRUE it will not be valid.

SEE ALSO

req (1), spkac (1), x509 (1), CA.pl (1), config (5)

108

ciphers
NAME

ciphers — SSL cipher display and cipher list tool

Synopsis

openssl ciphers [-v] [-ssl2] [-ss13] [-tlsl] [cipherlist]

DESCRIPTION

The cipherlist command converts OpenSSL cipher lists into ordered SSL cipher preference lists. It can be
used as a test tool to determine the appropriate cipherlist.

COMMAND OPTIONS

e v

verbose option. List ciphers with a complete description of protocol version (SSLv2 or SSLv3; the latter
includes TLS), key exchange, authentication, encryption and mac algorithms used along with any key size
restrictions and whether the algorithm is classed as an "export" cipher. Note that without the -v option,
ciphers may seem to appear twice in a cipher list; this is when similar ciphers are available for SSL v2
and for SSL v3/TLS v1.

e -ssl3

only include SSL v3 ciphers.
o -ssl2

only include SSL v2 ciphers.
o -tlsl

only include TLS v1 ciphers.
e -h -?

print a brief usage message.
¢ cipherlist

a cipher list to convert to a cipher preference list. If it is not included then the default cipher list will be
used. The format is described below.

CIPHER LIST FORMAT

The cipher list consists of one or more cipher strings separated by colons. Commas or spaces are also
acceptable separators but colons are normally used.

The actual cipher string can take several different forms.
It can consist of a single cipher suite such as RC4-SHA.

It can represent a list of cipher suites containing a certain algorithm, or cipher suites of a certain type. For
example SHA1 represents all ciphers suites using the digest algorithm SHA1 and SSLv3 represents all SSL
v3 algorithms.

109

Lists of cipher suites can be combined in a single cipher string using the + character. This is used as a logical
and operation. For example SHA1+DES represents all cipher suites containing the SHA1 and the DES
algorithms.

Each cipher string can be optionally preceded by the characters !, - or +.

If ! is used then the ciphers are permanently deleted from the list. The ciphers deleted can never reappear in
the list even if they are explicitly stated.

If - is used then the ciphers are deleted from the list, but some or all of the ciphers can be added again by later
options.

If + is used then the ciphers are moved to the end of the list. This option doesn't add any new ciphers it just
moves matching existing ones.

If none of these characters is present then the string is just interpreted as a list of ciphers to be appended to
the current preference list. If the list includes any ciphers already present they will be ignored: that is they
will not moved to the end of the list.

Additionally the cipher string @STRENGTH can be used at any point to sort the current cipher list in order of
encryption algorithm key length.

CIPHER STRINGS

The following is a list of all permitted cipher strings and their meanings.
e DEFAULT

the default cipher list. This is determined at compile time and is normally
ALL:'ADH:RC4+RSA:+SSLv2:@STRENGTH.

This must be the first cipher string specified.
e COMPLEMENTOFDEFAULT

the ciphers included in ALL, but not enabled by default. Currently this is ADH. Note that this rule does
not cover eNULL, which is not included by ALL (use COMPLEMENTOFALL if necessary).

e ALL
all ciphers suites except the eNULL ciphers which must be explicitly enabled.
e COMPLEMENTOFALL
the cipher suites not enabled by ALL, currently being eNULL.
e HIGH
"high" encryption cipher suites. This currently means those with key lengths larger than 128 bits.
e MEDIUM
"medium" encryption cipher suites, currently those using 128 bit encryption.
e LOW

"low" encryption cipher suites, currently those using 64 or 56 bit encryption algorithms but excluding
export cipher suites.

e EXP, EXPORT
export encryption algorithms. Including 40 and 56 bits algorithms.

110

EXPORT40

40 bit export encryption algorithms
EXPORT56

56 bit export encryption algorithms.
eNULL, NULL

the "NULL" ciphers that is those offering no encryption. Because these offer no encryption at all and are a
security risk they are disabled unless explicitly included.

aNULL

the cipher suites offering no authentication. This is currently the anonymous DH algorithms. These
cipher suites are vulnerable to a "man in the middle" attack and so their use is normally discouraged.

kRSA, RSA

cipher suites using RSA key exchange.

kEDH

cipher suites using ephemeral DH key agreement.
kDHr, kDHd

cipher suites using DH key agreement and DH certificates signed by CAs with RSA and DSS keys
respectively. Not implemented.

aRSA

cipher suites using RSA authentication, i.e. the certificates carry RSA keys.

aDSS, DSS

cipher suites using DSS authentication, i.e. the certificates carry DSS keys.

aDH

cipher suites effectively using DH authentication, i.e. the certificates carry DH keys. Not implemented.
kFZA, aFZA, eFZA, FZA

ciphers suites using FORTEZZA key exchange, authentication, encryption or all FORTEZZA algorithms.
Not implemented.

TLSv1, SSLv3, SSLv2

TLS v1.0, SSL v3.0 or SSL v2.0 cipher suites respectively.
DH

cipher suites using DH, including anonymous DH.
ADH

anonymous DH cipher suites.

AES

cipher suites using AES.

3DES

cipher suites using triple DES.

DES

111

cipher suites using DES (not triple DES).
e RC4

cipher suites using RC4.
e RC2

cipher suites using RC2.
e IDEA

cipher suites using IDEA.
e MD5

cipher suites using MD5.
e SHAI, SHA

cipher suites using SHA1.

CIPHER SUITE NAMES

The following lists give the SSL or TLS cipher suites names from the relevant specification and their
OpenSSL equivalents. It should be noted, that several cipher suite names do not include the authentication
used, e.g. DES-CBC3-SHA. In these cases, RSA authentication is used.

SSL v3.0 cipher suites.

SSL_RSA_WITH_NULL_MD5 NULL-MD5
SSL_RSA_WITH_NULL_SHA NULL-SHA
SSL_RSA_EXPORT_WITH_RC4_40_MD5 EXP-RC4-MD5
SSL_RSA_WITH_RC4_128_MD5 RC4-MD5
SSL_RSA_WITH_RC4_128_SHA RC4-SHA
SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 EXP-RC2-CBC-MD5
SSL_RSA_WITH_IDEA_CBC_SHA IDEA-CBC-SHA
SSL_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-DES-CBC-SHA
SSL_RSA_WITH_DES_CBC_SHA DES-CBC-SHA
SSL_RSA_WITH_3DES_EDE_CBC_SHA DES-CBC3-SHA
SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Not implemented.
SSL_DH_DSS_WITH_DES_CBC_SHA Not implemented.
SSL_DH_DSS_WITH_3DES_EDE_CBC_SHA Not implemented.
SSL_DH_RSA_EXPORT WITH_DES40_CBC_SHA Not implemented.
SSL_DH_RSA_WITH_DES_CBC_SHA Not implemented.
SSL_DH_RSA_WITH_3DES_EDE_CBC_SHA Not implemented.
SSL_DHE_DSS_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-DSS-DES-CBC-SHA
SSL_DHE_DSS_WITH_DES_CBC_SHA EDH-DSS-CBC-SHA
SSL_DHE_DSS_WITH_3DES_EDE_CBC_SHA EDH-DSS-DES-CBC3-SHA
SSL_DHE_RSA_EXPORT_WITH_DES40_CBC_SHA EXP-EDH-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_DES_CBC_SHA EDH-RSA-DES-CBC-SHA
SSL_DHE_RSA_WITH_3DES_EDE_CBC_SHA EDH-RSA-DES-CBC3-SHA
SSL_DH_anon_EXPORT_WITH_RC4_40_MD5 EXP-ADH-RC4-MD5
SSL_DH_anon_WITH_RC4_128_MD5 ADH-RC4-MD5
SSL_DH_anon_EXPORT_WITH_DES40_CBC_SHA EXP-ADH-DES-CBC-SHA
SSL_DH_anon_WITH_DES_CBC_SHA ADH-DES-CBC-SHA
SSL_DH_anon_WITH_3DES_EDE_CBC_SHA ADH-DES-CBC3-SHA

112

SSL_FORTEZZA_KEA_WITH_NULL_SHA
SSL_FORTEZZA_KEA_WITH_FORTEZZA_CBC_SHA
SSL_FORTEZZA_KEA_WITH _RC4_128_SHA

TLS v1.0 cipher suites.

TLS_RSA_WITH_NULL_MD5
TLS_RSA_WITH_NULL_SHA
TLS_RSA_EXPORT_WITH_RC4_40_MD5
TLS_RSA_WITH_RC4_128_MD5
TLS_RSA_WITH_RC4_128_SHA
TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5
TLS_RSA_WITH_IDEA CBC_SHA
TLS_RSA_EXPORT WITH DES40_CBC_SHA
TLS_RSA_WITH_DES_CBC_SHA
TLS_RSA_WITH_3DES_EDE_CBC_SHA

TLS_DH_DSS_EXPORT WITH_DES40_CBC_SHA
TLS_DH_DSS_WITH DES_CBC_SHA
TLS_DH_DSS_WITH 3DES_EDE_CBC_SHA
TLS_DH_RSA_EXPORT WITH_DES40_CBC_SHA
TLS_DH_RSA_WITH DES_CBC_SHA
TLS_DH_RSA_WITH 3DES_EDE_CBC_SHA
TLS_DHE_DSS_EXPORT WITH DES40_CBC_SHA
TLS_DHE_DSS_WITH_DES_CBC_SHA
TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA
TLS_DHE_RSA_ EXPORT WITH DES40_CBC_SHA
TLS_DHE_RSA_ WITH_DES_CBC_SHA
TLS_DHE_RSA_WITH 3DES_EDE_CBC_SHA

TLS_DH_anon_EXPORT_WITH_RC4_40_MD5
TLS_DH_anon_WITH_RC4_128_MD5
TLS_DH_anon_EXPORT_WITH_DES40_CBC_SHA
TLS_DH_anon_WITH_DES_CBC_SHA
TLS_DH_anon_WITH_3DES_EDE_CBC_SHA

Not implemented.
Not implemented.
Not implemented.

NULL-MD5
NULL-SHA
EXP-RC4-MD5
RC4-MD5

RC4-SHA
EXP-RC2-CBC-MD5
IDEA-CBC-SHA
EXP-DES-CBC-SHA
DES-CBC-SHA
DES-CBC3-SHA

Not implemented.

Not implemented.

Not implemented.

Not implemented.

Not implemented.

Not implemented.
EXP-EDH-DSS-DES-CBC-SHA
EDH-DSS-CBC-SHA
EDH-DSS-DES-CBC3-SHA
EXP-EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC-SHA
EDH-RSA-DES-CBC3-SHA

EXP-ADH-RC4-MD5
ADH-RC4-MD5
EXP-ADH-DES-CBC-SHA
ADH-DES-CBC-SHA
ADH-DES-CBC3-SHA

AES ciphersuites from RFC3268, extending TLS v1.0

TLS_RSA_WITH_AES_128_CBC_SHA
TLS_RSA_WITH_AES_256_CBC_SHA

TLS_DH_DSS_WITH AES_128_CBC_SHA
TLS_DH_DSS_WITH AES_256_CBC_SHA
TLS_DH_RSA_WITH AES_128_CBC_SHA
TLS_DH_RSA_WITH AES_256_CBC_SHA

TLS_DHE_DSS_WITH_AES_128_CBC_SHA
TLS_DHE_DSS_WITH_AES_256_CBC_SHA
TLS_DHE_RSA WITH_AES_128_CBC_SHA
TLS_DHE_RSA WITH_AES_256_CBC_SHA

TLS_DH_anon WITH_AES_128_CBC_SHA
TLS_DH_anon WITH_AES_256_CBC_SHA

AES128-SHA
AES256-SHA

DH-DSS-AES128-SHA
DH-DSS-AES256-SHA
DH-RSA-AES128-SHA
DH-RSA-AES256-SHA

DHE-DSS-AES128-SHA
DHE-DSS-AES256-SHA
DHE-RSA-AES128-SHA
DHE-RSA-AES256-SHA

ADH-AES128-SHA
ADH-AES256-SHA

Additional Export 1024 and other cipher suites

Note: these ciphers can also be used in SSL v3.

113

TLS_RSA_EXPORT1024_WITH_DES_CBC_SHA EXP1024-DES-CBC-SHA
TLS_RSA_EXPORT1024_WITH_RC4_56_SHA EXP1024-RC4-SHA
TLS_DHE_DSS_EXPORT1024_WITH DES_CBC_SHA EXP1024-DHE-DSS-DES-CBC-SHA
TLS_DHE_DSS_EXPORT1024_WITH_RC4_56_SHA EXP1024-DHE-DSS-RC4-SHA
TLS_DHE_DSS_WITH_RC4_128_SHA DHE-DSS-RC4-SHA

SSL v2.0 cipher suites.

SSL_CK_RC4_128_WITH MD5 RC4-MD5
SSL_CK_RC4_128_EXPORT40_WITH_MD5 EXP-RC4-MD5
SSL_CK_RC2_128_CBC_WITH_MD5 RC2-MD5
SSL_CK_RC2_128_CBC_EXPORT40_WITH MD5 EXP-RC2-MD5
SSL_CK_IDEA_128_CBC_WITH_MD5 IDEA-CBC-MD5
SSL_CK_DES_64_CBC_WITH_MD5 DES-CBC-MD5
SSL_CK_DES_192_EDE3_CBC_WITH_MD5 DES-CBC3-MD5
NOTES

The non-ephemeral DH modes are currently unimplemented in OpenSSL because there is no support for DH
certificates.

Some compiled versions of OpenSSL may not include all the ciphers listed here because some ciphers were
excluded at compile time.

EXAMPLES
Verbose listing of all OpenSSL ciphers including NULL ciphers:

openssl ciphers -v 'ALL:eNULL'
Include all ciphers except NULL and anonymous DH then sort by strength:
openssl ciphers -v 'ALL:!ADH:@STRENGTH'
Include only 3DES ciphers and then place RSA ciphers last:
openssl ciphers -v '3DES:+RSA'
Include all RC4 ciphers but leave out those without authentication:
openssl ciphers -v 'RC4:!COMPLEMENTOFDEFAULT'
Include all chiphers with RSA authentication but leave out ciphers without encryption.

openssl ciphers -v 'RSA:!COMPLEMENTOFALL'

SEE ALSO

s_client (1), s_server (1), ssl (3)

HISTORY
The COMPLENTOFALL and COMPLEMENTOFDEFAULT selection options were added in version 0.9.7.

114

config

NAME
config — OpenSSL CONF library configuration files

DESCRIPTION

The OpenSSL CONTF library can be used to read configuration files. It is used for the OpenSSL master
configuration file openssl.cnf and in a few other places like SPKAC files and certificate extension files for the
x509 utility.

A configuration file is divided into a number of sections. Each section starts with a line [section_name | and
ends when a new section is started or end of file is reached. A section name can consist of alphanumeric
characters and underscores.

The first section of a configuration file is special and is referred to as the default section this is usually
unnamed and is from the start of file until the first named section. When a name is being looked up it is first
looked up in a named section (if any) and then the default section.

The environment is mapped onto a section called ENV.
Comments can be included by preceding them with the # character
Each section in a configuration file consists of a number of name and value pairs of the form name=value

The name string can contain any alphanumeric characters as well as a few punctuation symbols such as ., ;
and _.

The value string consists of the string following the = character until end of line with any leading and trailing
white space removed.

The value string undergoes variable expansion. This can be done by including the form $var or ${var}: this
will substitute the value of the named variable in the current section. It is also possible to substitute a value
from another section using the syntax $section::name or ${section::name}. By using the form $ENV::name
environment variables can be substituted. It is also possible to assign values to environment variables by
using the name ENV::name, this will work if the program looks up environment variables using the CONF
library instead of calling getenv() directly.

It is possible to escape certain characters by using any kind of quote or the \ character. By making the last
character of a line a \ a value string can be spread across multiple lines. In addition the sequences \n, \r, \b
and \t are recognized.

NOTES

If a configuration file attempts to expand a variable that doesn't exist then an error is flagged and the file will
not load. This can happen if an attempt is made to expand an environment variable that doesn't exist. For
example the default OpenSSL master configuration file used the value of HOME which may not be defined on
non UNIX systems.

This can be worked around by including a default section to provide a default value: then if the environment
lookup fails the default value will be used instead. For this to work properly the default value must be defined
earlier in the configuration file than the expansion. See the EXAMPLES section for an example of how to do
this.

If the same variable exists in the same section then all but the last value will be silently ignored. In certain
circumstances such as with DNs the same field may occur multiple times. This is usually worked around by
ignoring any characters before an initial . e.g.

115

1.0U="My first OU"
2.0U="My Second 0OU"

EXAMPLES

Here is a sample configuration file using some of the features mentioned above.

This is the default section.

HOME=/temp
RANDFILE= S$S{ENV::HOME}/.rnd
configdir=$ENV::HOME/config

[section_one]
We are now in section one.

Quotes permit leading and trailing whitespace
any = " any variable name "

other = A string that can \
cover several lines \
by including \\ characters

message = Hello World\n
[section_two]

greeting = $section_one::message
This next example shows how to expand environment variables safely.

Suppose you want a variable called tmpfile to refer to a temporary filename. The directory it is placed in can
determined by the the TEMP or TMP environment variables but they may not be set to any value at all. If you
just include the environment variable names and the variable doesn't exist then this will cause an error when
an attempt is made to load the configuration file. By making use of the default section both values can be
looked up with TEMP taking priority and /tmp used if neither is defined:

TMP=/tmp

The above value is used if TMP isn't in the environment
TEMP=S$ENV: : TMP

The above value is used if TEMP isn't in the environment
tmpfile=${ENV: :TEMP}/tmp. filename

Restrictions

Currently there is no way to include characters using the octal \nnn form. Strings are all null terminated so
nulls cannot form part of the value.

The escaping isn't quite right: if you want to use sequences like \n you can't use any quote escaping on the
same line.

Files are loaded in a single pass. This means that an variable expansion will only work if the variables
referenced are defined earlier in the file.

SEE ALSO

x509 (1), req (1), ca (1)

1