
POLYCENTER Software
Installation Utility Developer’s
Guide
Order Number: AA–Q28MF–TK

January 2005

This guide describes how to package software products using the
POLYCENTER Software Installation utility. It describes the product
description language, product description files, product text files, and
other relevant concepts.

Revision/Update Information: This manual supersedes the
POLYCENTER Software Installation
Utility Developer’s Guide, Version 7.3-2

Software Version: OpenVMS I64 Version 8.2
OpenVMS Alpha Version 8.2

Hewlett-Packard Company
Palo Alto, California

PS Conditioner
Processed on 10/10/2004Black and white submission.

© Copyright 2005 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries
in the United States and other countries.

Motif and UNIX are registered trademarks of The Open Group.

NFS is a registered trademark of Sun Microsystems, Inc.

Printed in the U.S.

ZK5952

The HP OpenVMS documentation set is available on CD-ROM.

Contents

Preface . ix

1 Overview

1.1 Features for Software Providers . 1–1
1.2 Coexistence with VMSINSTAL . 1–2
1.3 Creating an Installable Kit . 1–2
1.3.1 Step 1: Make A Plan . 1–2
1.3.2 Step 2: Gather the Product Material . 1–3
1.3.3 Step 3: Create a Product Description File . 1–3
1.3.4 Step 4: Create a Product Text File (Optional) 1–3
1.3.5 Step 5: Package the Software Components . 1–4
1.3.6 Step 6: Test and Debug the Installable Kit . 1–5

2 Basic Concepts

2.1 The Product Database . 2–1
2.1.1 Querying the Product Database . 2–2
2.2 Software Product Kit Formats . 2–2
2.3 Software Product Kit Naming Conventions . 2–4
2.3.1 Sequential Format . 2–4
2.3.2 Compressed Format . 2–4
2.3.3 Reference Format . 2–5
2.3.4 Kit Naming Rules and Conventions . 2–5
2.3.5 More About the Version Field . 2–5
2.3.6 Version Information Visible to the OpenVMS Users 2–7
2.3.7 More About the Kit Type . 2–7
2.3.8 Looking at Software Product Name Examples 2–8
2.3.9 Input and Output Versions of the PDF and PTF 2–8
2.4 User-Defined Logical Names . 2–9
2.5 Utility-Defined Logical Names . 2–9
2.5.1 PCSI$SOURCE, PCSI$DESTINATION, and PCSI$SCRATCH 2–9
2.5.2 PCSI$$RECOVERY_MODE and PCSI$$SAVE_RECOVERY_DATA . . . 2–10
2.5.3 PCSI$$COMMAND_LINE . 2–10
2.5.4 PCSI$$CONFIRM . 2–11
2.6 Managed Objects . 2–11
2.6.1 Creating Managed Objects . 2–11
2.6.2 Managed Object Conflict . 2–12
2.6.3 Preventing Managed Object Conflict . 2–12
2.6.4 Managed Object Replacement and Merging . 2–13
2.6.5 Managed Object Scope and Lifetime . 2–14
2.7 Creating an Integrated Platform (Product Suite) . 2–14

iii

3 Creating the Product Description File

3.1 General Guidelines . 3–1
3.2 Defining Your Environment . 3–2
3.3 PDF File-Naming Conventions . 3–5
3.4 Structure of a PDF . 3–5
3.4.1 Overview of PDL Statements . 3–5
3.4.2 PDL Statement Syntax . 3–8
3.4.3 PDL Function Syntax and Expressions . 3–8
3.4.4 PDL Data Types and Values . 3–9
3.5 Kit Types and Usage . 3–11
3.5.1 The Full Kit Type . 3–12
3.5.2 The Operating System Kit Type . 3–15
3.5.3 The Platform Kit Type . 3–18
3.5.4 The Partial Kit Type . 3–20
3.5.5 The Patch Kit Type . 3–21
3.5.6 The Mandatory Update Kit Type . 3–24
3.5.7 The Transition Kit Type . 3–24
3.5.8 The PCSI$REGISTER_PRODUCT.COM Command Procedure 3–26

4 Creating the Product Text File

4.1 PTF File-Naming Conventions . 4–1
4.2 Structure of a PTF . 4–2
4.2.1 Specifying the Product Name . 4–2
4.2.2 PTF Modules and the Relationship with the PDF 4–3
4.2.3 PTF Modules Not Related with the PDF . 4–3
4.2.4 Including Prompt and Help Text . 4–4

5 Packaging the Kit

5.1 Description of the Product Material . 5–2
5.2 Files Required to Package the Kit . 5–3
5.3 Creating the Product Kit . 5–4
5.4 Listing the Contents of the Product Kit . 5–5
5.5 Extracting Files from the Kit . 5–5
5.5.1 Extracting Files by Name . 5–6
5.5.2 Extracting the PDF, PTF, or Release Notes . 5–6
5.5.3 Converting a Sequential Kit into Reference Format 5–7
5.5.4 Converting a Sequential Kit into Compressed Format 5–7
5.6 Displaying Information from the Product Database 5–7

6 Advanced Topics

6.1 Using Command Procedures in PDL Statements . 6–1
6.1.1 Noninteractive and Interactive Mode . 6–3
6.1.2 Packaging a Command Procedure . 6–4
6.1.3 Logical Names for Subprocess Environments . 6–5
6.1.4 EXECUTE Statement Summary . 6–5
6.1.5 Processing EXECUTE Statements . 6–6
6.2 Forcing Operation Termination from A Command Procedure 6–11
6.3 Testing and Debugging Tips . 6–12
6.3.1 The /LOG Qualifier . 6–12
6.3.2 The /TRACE Qualifier . 6–12
6.3.3 The /DEBUG=CONFLICT Qualifier . 6–13

iv

6.3.4 Installing Your Product on Older Versions of OpenVMS 6–14

7 Product Description Language Statements

7.1 PDL Evolution . 7–1
7.2 PDL Conventions . 7–3
7.3 PDL Reference Section . 7–4

ACCOUNT . 7–5
APPLY TO . 7–7
BOOTSTRAP BLOCK (VAX only) . 7–9
DIRECTORY . 7–11
END . 7–13
ERROR . 7–14
EXECUTE ABORT . 7–16
EXECUTE INSTALL . . . REMOVE . 7–19
EXECUTE LOGIN . 7–22
EXECUTE POSTINSTALL . 7–23
EXECUTE POST_UNDO . 7–25
EXECUTE PRECONFIGURE . 7–27
EXECUTE PRE_UNDO . 7–30
EXECUTE REBOOT . 7–32
EXECUTE RELEASE . 7–34
EXECUTE START . . . STOP . 7–37
EXECUTE TEST . 7–40
EXECUTE UPGRADE . 7–42
FILE . 7–44
HARDWARE DEVICE . 7–51
HARDWARE PROCESSOR . 7–53
IF . 7–55
INFER . 7–58
INFORMATION . 7–60
LINK . 7–63
LOADABLE IMAGE . 7–65
LOGICAL NAME . 7–67
MODULE . 7–69
NETWORK OBJECT . 7–72
OPTION . 7–75
PART . 7–78
PATCH IMAGE (VAX only) . 7–80
PATCH TEXT . 7–82
PROCESS PARAMETER . 7–84
PROCESS PRIVILEGE . 7–86
PRODUCT . 7–87
REGISTER MODULE . 7–90
REMOVE . 7–92
RIGHTS IDENTIFIER . 7–94
SCOPE . 7–96
SOFTWARE . 7–99

v

SYSTEM PARAMETER . 7–107
UPGRADE . 7–109

A Migrating from VMSINSTAL to the POLYCENTER Software
Installation Utility

A.1 VMSINSTAL Options and Equivalents . A–1
A.2 VMSINSTAL Callbacks and Equivalents . A–2

Glossary

Index

Examples

1–1 PDF for Software Kit TNT . 1–4
1–2 PTF for Software Kit TNT . 1–5
3–1 PDF for a Full Kit That References Another Full Kit 3–13
3–2 PDF for a Full Kit . 3–15
3–3 PDF for an Operating System Kit . 3–17
3–4 PDF for a Platform Kit . 3–19
3–5 PDF for a Partial Kit . 3–21
3–6 PDF for a Patch Kit . 3–22
3–7 PDF for a Patch Kit That Modifies the Operating System 3–23
3–8 PDF for a Transition Kit . 3–25

Figures

2–1 Package Operation . 2–4
2–2 Integrated Platform Example . 2–14
6–1 EXECUTE Statement Summary . 6–6
6–2 INSTALL Operation - Product Is Installed for the First Time 6–8
6–3 INSTALL Operation - Product Is Upgraded . 6–9
6–4 RECONFIGURE Operation - Product Is Reconfigured 6–10
6–5 REMOVE Operation - Product Is Removed . 6–11
7–1 Features by OpenVMS Version: Statements . 7–2
7–2 Features by OpenVMS Version: Functions . 7–3

Tables

2–1 Format of tmn-ue Version Identification . 2–6
2–2 PDF Kit Types and Values . 2–8
3–1 Base Data Types and Values . 3–9
3–2 String Data Type Constraints . 3–10
6–1 Command Procedure Execution by Operation 6–3
6–2 Comparison of Noninteractive with Interactive Mode 6–4
7–1 Directory Managed Object Scope and Lifetime 7–12
7–2 Resolving File Conflict with Generation Numbers 7–47

vi

7–3 File Managed Object Scope and Lifetime . 7–48
7–4 Link Managed Object Scope and Lifetime . 7–63
7–5 Library Types for Module Statement . 7–69
7–6 Resolving Module Conflict with Generation Numbers 7–70
7–7 Library Types for Register Module Statement 7–90
7–8 Summary of SOFTWARE Statement and SOFTWARE Function

Differences . 7–104
A–1 VMSINSTAL Options and Equivalents . A–1
A–2 VMSINSTAL Callbacks and Equivalents . A–2

vii

Preface

Intended Audience
This guide is intended for individuals who are responsible for packaging software
products. You do not need to be a programmer to package kits for software
products, but you do need to understand the POLYCENTER Software Installation
utility commands and concepts.

Document Structure
This guide is organized as follows:

• Chapter 1 provides an overview of the POLYCENTER Software Installation
utility.

• Chapter 2 defines some key terms and concepts.

• Chapter 3 describes writing the product description file. It also contains
sample product descriptions.

• Chapter 4 describes writing the product text file. It also contains sample
product text files.

• Chapter 5 describes how to package your product and manipulate the kit.

• Chapter 6 presents advanced topics such as use of command procedures and
testing.

• Chapter 7 provides detailed reference material on product description
language statements and functions.

• Appendix A contains information about migrating from the VMSINSTAL
utility to the POLYCENTER Software Installation utility.

• The Glossary lists and defines POLYCENTER Software Installation utility
terminology.

Related Documents
The HP OpenVMS System Manager’s Manual describes the tasks that system
managers perform using the POLYCENTER Software Installation utility. It
explains operations such as software installation and removal.

For additional information about HP OpenVMS products and services, visit the
following World Wide Web address:

http://www.hp.com/go/openvms

ix

Reader’s Comments
HP welcomes your comments on this manual. Please send comments to either of
the following addresses:

Internet openvmsdoc@hp.com

Mail Hewlett-Packard Company
OSSG Documentation Group, ZKO3-4/U08
110 Spit Brook Rd.
Nashua, NH 03062-2698

How To Order Additional Documentation
For information about how to order additional documentation, visit the following
World Wide Web address:

http://www.hp.com/go/openvms/doc/order

Conventions
The following product names may appear in this manual:

• HP OpenVMS Industry Standard 64 for Integrity servers

• OpenVMS I64

• I64

All three names—the longer form and the two shorter forms—refer to the version
of the OpenVMS operating system that runs on the Intel® Itanium® architecture.

The following typographic conventions may be used in this manual:

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

x

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type This typeface represents the introduction of a new term. It
also represents the name of an argument, an attribute, or a
reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

UPPERCASE TYPE Uppercase type indicates a DCL command, a product
description language statement, the name of a file, a logical
name, or the abbreviation for a system privilege.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xi

1
Overview

The POLYCENTER Software Installation utility is a complete software
installation and management tool for OpenVMS systems. It can package, install,
remove, and manage software products on Alpha, Itanium® or VAX systems. It
can also save information about software products such as system requirements
and installation options.

The POLYCENTER Software Installation utility is intended to be used by
people creating (packaging) kits for software products and by system managers
who install and maintain these products. This guide describes how to package
software products using the POLYCENTER Software Installation utility. It
describes the product description language, product description files, product text
files, and other relevant concepts.

System managers should refer to the OpenVMS System Manager’s Manual for
general use information.

1.1 Features for Software Providers
The POLYCENTER Software Installation utility improves the task of packaging
software for software providers in the following ways:

• Reduces effort

Installations require less packaging effort than most conventional installation
methods—resulting in performance gains and reduced development time over
conventional installations.

• Provides more user information

You can include both brief and detailed installation text to guide users
through an installation— resulting in a higher installation success rate.

• Simplifies installation

Related products can easily be packaged as a product suite—resulting in one
operation installation.

• Version tracking

The utility tracks which products and which product versions have been
installed and removed. You can design your installation procedure to check
for and manage version dependencies—resulting in easy version tracking.

Overview 1–1

Overview
1.2 Coexistence with VMSINSTAL

1.2 Coexistence with VMSINSTAL
The POLYCENTER Software Installation utility is integrated into OpenVMS
and coexists with the VMSINSTAL utility. Today, you use the POLYCENTER
Software Installation utility to install the OpenVMS operating system and many
layered products on Alpha and I64 systems, and to install some layered products
on VAX systems. The POLYCENTER Software Installation utility is the preferred
installation mechanism for future layered product and OpenVMS releases.

The POLYCENTER Software Installation utility offers the following features:

• Typically faster installation and upgrade operations than the VMSINSTAL
utility

• Removal (deinstallation) of previously-installed software products

• A query-capable database of information on installed products

• Dependency checking of software products based on the product version
number

If you currently use VMSINSTAL to package your software product, see
Appendix A for information about migrating from VMSINSTAL to the
POLYCENTER Software Installation utility.

1.3 Creating an Installable Kit
As a software provider, you can use the POLYCENTER Software Installation
utility to create an installable kit for your software product. This kit may
be either a new software product or an update to an existing product; the
POLYCENTER Software Installation utility provides features for each case.

Once you have created an installable kit, your OpenVMS user will be able to use
the POLYCENTER Software Installation utility to install your product with a
minimum of documentation and effort.

Generally, the installable kit you create is packaged in one ‘‘container’’ file. This
container file has a file extension of .PCSI and is in the binary format recognized
by the POLYCENTER Software Installation utility. The person installing your
product issues the PRODUCT INSTALL command to install the .PCSI file on
their OpenVMS system.

The following sections describe the main steps to create an installable kit.

1.3.1 Step 1: Make A Plan
To create an installable .PCSI file, you must determine the required
characteristics of the execution environment for your product or platform.
Questions you need to consider:

• Where will the files be placed?

• Will DCL tables or help libraries need to be updated?

• Will system or process parameters need to be checked?

• Will you need to provide any command procedures to perform product specific
tasks?

When you have the answers to these questions, proceed to Section 1.3.2.

1–2 Overview

Overview
1.3 Creating an Installable Kit

1.3.2 Step 2: Gather the Product Material
Next, you need to gather all the product material.

Locate all product-related files that will be installed on the user’s system. Collect
any command procedures you may have written to perform product-specific
tasks. These include command procedures that will remain on the user’s system
and those that will be executed from a temporary directory and then deleted.
Together, the product files and any associated command procedures are called the
product material.

You can organize the product material for input to the packaging operation in any
way that is meaningful and convenient for you. For example, you can organize
the material in one of the following ways:

• Keep the product material in the directory structure used by the software
engineering team.

• Organize the product material into one or more staging directories that mirror
the directory structure of the product on the user’s disk after installation.

• Place the product material in a single directory tree.

Each approach has its merits and limitations. However, if you have special
requirements, such as the need to install different files with the same name in
different directories, your options for organizing the files before packaging might
be restricted.

1.3.3 Step 3: Create a Product Description File
Create a product description file (PDF) using a text editor. This step is
discussed in more detail in Chapter 3. PDF files do the following:

• Identify all of the files and other objects (such as directories, accounts, library
modules, and others) that the product provides

• Specify configuration choices the product offers, including default answers

• Specify product requirements (such as dependencies on other software
products, minimum hardware configurations, and system parameter values)

PDF files use Product Description Language (PDL) statements (described
in Chapter 7) to convey all of the information the POLYCENTER Software
Installation utility needs for installing either a software product or a set of
software products.

Example 1–1 shows a sample PDF. Chapter 7 describes each PDL statement in
detail.

1.3.4 Step 4: Create a Product Text File (Optional)
Create a product text file (PTF) with a text editor. This optional step is fully
described in Chapter 4. The PTF provides information about the product in brief
and detailed formats. The information includes product identification, copyright
notice, configuration choice descriptions, and message text used primarily during
product installation and configuration operations.

Overview 1–3

Overview
1.3 Creating an Installable Kit

Example 1–1 PDF for Software Kit TNT

product DEC VAXVMS TNT V3.0 full ;
if (not <software DEC VAXVMS VMS version minimum V6.2>) ;

error NOVMS ;
end if ;
execute install "@PCSI$SOURCE:[SYSUPD]TNT$BACKUP.COM"

remove "" -- nothing special to do on remove
uses [SYSUPD]TNT$BACKUP.COM ; -- will not leave file on system

execute start "@PCSI$DESTINATION:[SYS$STARTUP]TNT$STARTUP.COM"
stop "@PCSI$DESTINATION:[SYS$STARTUP]TNT$SHUTDOWN.COM" ;

execute test "@PCSI$DESTINATION:[SYSTEST]TNT$IVP.COM" ;
directory [SYSTEST.TNT] ;
directory [TNT] ;
file [SYSHLP]TNT030.RELEASE_NOTES generation 50084697 release notes ;
remove ;

file [SYSHLP]TNT010.RELEASE_NOTES ;

file [SYSHLP]TNT015.RELEASE_NOTES ;
file [SYSHLP]TNT020.RELEASE_NOTES ;
file [SYSHLP]TNT021.RELEASE_NOTES ;
file [SYSEXE]TNT$POPULATE.EXE ;
file [SYSEXE]TNT$INITJOURNAL.EXE ;
file [SYSEXE]TNT$DUMPACS.EXE ;
file [SYSEXE]TNT$DUMPJOURNAL.EXE ;

end remove ;
information RELEASE_NOTES phase after ;
information POST_INSTALL phase after ;
file [SYS$STARTUP]TNT$STARTUP.COM generation 50084697 ;
file [SYS$STARTUP]TNT$SHUTDOWN.COM generation 50084697 ;
file [SYSMGR]TNT$UTILITY.COM generation 50084697 ;
file [SYSTEST]TNT$IVP.COM generation 50084697 ;
file [SYSEXE]TNT$SERVER.EXE generation 50084697 ;
file [SYSEXE]TNT$HELPER.EXE generation 50084697 ;
file [SYSEXE]TNT$UTILITY.EXE generation 50084697 ;
file [SYSEXE]TNT$EXCLUDED_SYMBIONTS.DAT generation 50084697 ;
file [SYSTEST.TNT]TNT$SERVER_IVP.EXE generation 50084697 ;
execute postinstall

"@PCSI$DESTINATION:[SYSMGR]TNT$UTILITY.COM UPDATE ALL" ;
end product ;

The PTF file format is similar to that of modules used with the Librarian utility
(LIBRARY) to create, modify, or describe a help library. Example 1–2 shows a
product text file.

1.3.5 Step 5: Package the Software Components
Package the software components to create a .PCSI file. This step is fully
described in Chapter 5. Use the PRODUCT PACKAGE command and its
qualifiers. The PRODUCT PACKAGE command determines if the PDF and PTF
are syntactically correct and verifies that all listed product material files can be
found.

1–4 Overview

Overview
1.3 Creating an Installable Kit

Example 1–2 PTF for Software Kit TNT

=PRODUCT DEC VAXVMS TNT V3.0 Full
1 ’LICENSE
=prompt This product uses the PAK: VAX-VMS
This product is contained within the Product Authorization Key for
OpenVMS VAX.
1 ’NOTICE
=prompt Copyright 2003 Hewlett-Packard Company. All rights reserved.
Unpublished rights reserved under the copyright laws of the United States.

This software is proprietary to and embodies the confidential technology of
Hewlett-Packard Company. Possession, use, or copying of this software
and media is authorized only pursuant to a valid written license from HP
or an authorized sublicensor.

Restricted Rights: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of DFARS 252.227-7013, or in FAR 52.227-19 or in FAR 52.227-14 Alt. III, as
applicable.
1 ’PRODUCER
=prompt Hewlett-Packard Company
This software product is sold by Hewlett-Packard Company.
1 ’PRODUCT
=prompt HP OpenVMS Management Station
The OpenVMS Management Station is a client-server application which
provides OpenVMS system management capabilities via a client application
on a Personal Computer running Microsoft Windows; the server application
runs on OpenVMS systems.
1 NOVMS
=prompt Minimum OpenVMS software not found on system, abort installation
This kit requires a minimum OpenVMS version of V6.2.
1 POST_INSTALL
=prompt See the installation guide for post installation information.
Postinstallation tasks required for OpenVMS Management Station.
For more information, refer to the installation guide.
1 RELEASE_NOTES
=prompt Release notes for OpenVMS Management Station available
The release notes for the OpenVMS Management Station are available in
the file SYS$HELP:TNT030.RELEASE_NOTES.

1.3.6 Step 6: Test and Debug the Installable Kit
When a kit has been successfully produced, use the PRODUCT INSTALL,
PRODUCT SHOW, and PRODUCT REMOVE commands to verify the installation
and removal of the product. Check for correct file placement and protection,
test user input, review message text, modify configuration options, verify that
execution environment requirements are satisfied, and so forth.

Test your installable kit to make sure that it properly handles any software
version dependencies.

Overview 1–5

2
Basic Concepts

This chapter defines key terms and concepts. Read this chapter before creating
your installable kit.

This chapter describes the following topics:

• The product database (Section 2.1)

• The format of software product kits (Section 2.2)

• Software product name conventions (Section 2.3)

• User-defined logical names (Section 2.4)

• Utility-defined logical names (Section 2.5)

• Managed objects (Section 2.6)

• Creating an integrated platform (Section 2.7)

If you are familiar with the POLYCENTER Software Installation utility terms
and concepts, you can start with Chapter 3.

2.1 The Product Database
The product database (PDB) refers to a set of interrelated files located in
SYS$SYSDEVICE:[VMS$COMMON] with a .PCSI$DATABASE file extension.
The POLYCENTER Software Installation utility automatically creates the PDB
the first time a product is installed or registered on the system, such as when the
OpenVMS operating system is installed. Once created, the utility updates the
database as operations are performed to install, reconfigure, register, or remove
products.

The PDB is the single source of information about operations performed on
products using the POLYCENTER Software Installation utility. This information
includes a history of operations performed, which products are installed,
which files and other managed objects are owned by each product, software
dependencies among products, and so forth.

The PDB consists of three permanent files:

• PCSI$FILE_SYSTEM.PCSI$DATABASE

• PCSI$PROCESSOR.PCSI$DATABASE

• PCSI$ROOT.PCSI$DATABASE

A product-specific database file is created each time a product kit is installed
or registered, and deleted when the product is removed. For example, the
layered product TNT V3.0 for OpenVMS VAX might have a database file named
DEC-VAXVMS-TNT-V0300.PCSI$DATABASE.

Basic Concepts 2–1

Basic Concepts
2.1 The Product Database

Note

The format and content of the database files are controlled by the
POLYCENTER Software Installation utility. If an OpenVMS system
manager uses the POLYCENTER Software Installation utility to install
your product, the utility will expect the database files to exist from that
point on.

Caution your product’s users not to delete these files or the
POLYCENTER Software Installation utility will not be able to detect
and manage your product. The complete set of database files must be
intact for the utility to access the information in the database.

2.1.1 Querying the Product Database
As a software provider, you can use PDL statements to query the product
database to dynamically determine the version of an installed product. The
following example illustrates how installation choices are made based on the
installed version of OpenVMS on an Alpha system:

if (<software DEC AXPVMS VMS version minimum V6.2> AND
<software DEC AXPVMS VMS version below A6.3>) ;
file [SYSEXE]TNT$SERVER.EXE generation 5

source [000000]TNT$SERVER_V62.EXE ;
file [SYSEXE]TNT$UTILITY.EXE generation 1

source [000000]TNT$UTILITY_V62.EXE ;
file [SYSTEST.TNT]TNT$SERVER_IVP.EXE generation 5

source [000000]TNT$SERVER_IVP_V62.EXE ;
end if;

if (<software DEC AXPVMS VMS version minimum V7.0> AND
<software DEC AXPVMS VMS version below A7.1>) ;
file [SYSEXE]TNT$SERVER.EXE generation 5

source [000000]TNT$SERVER_V70.EXE ;
file [SYSEXE]TNT$UTILITY.EXE generation 1

source [000000]TNT$UTILITY_V70.EXE ;
file [SYSTEST.TNT]TNT$SERVER_IVP.EXE generation 5

source [000000]TNT$SERVER_IVP_V70.EXE ;
end if;

OpenVMS users can use the DCL command PRODUCT SHOW either to query
the product database to show what products are installed and the dependencies
between them, to list the files and other objects that make up each product, or to
show the history of installation and upgrade activity.

If your installation procedure or the OpenVMS user removes a product,
information about the files and objects associated with the product are removed
from the database. However, the history of the product’s activity from installation
to removal is retained in the database.

2.2 Software Product Kit Formats
When you create a software product kit, you must also choose a distribution
format. You may choose one of three distribution formats:

• Sequential format. In this format, the PDF, PTF, kit-specific command
procedures, and all files that comprise the product are packaged into a
single container file that is identified by a .PCSI file type. You can ship a
sequential kit on either a random-access device, such as a CD–ROM, or on
a sequential access device, such as magnetic tape. Most layered products

2–2 Basic Concepts

Basic Concepts
2.2 Software Product Kit Formats

and patch kits are distributed in this format. Use the PRODUCT PACKAGE
/FORMAT=SEQENTIAL command to generate a kit in sequential format.

• Compressed format. This format is a variant of sequential format in which
a compression technique is used to reduce the size of the kit. To create a
kit in compressed format, first package the product in sequential format
using the PRODUCT PACKAGE /FORMAT=SEQUENTIAL command. Next,
use the PRODUCT COPY /FORMAT=COMPRESSED command to create a
compressed kit from the sequential kit. The resulting container file has a file
type of .PCSI$COMPRESSED. The PRODUCT INSTALL command and all
other PRODUCT commands that read software product kits automatically
decompress records from a compressed kit as they are needed.

• Reference format. In this format, the PDF, PTF, kit-specific command
procedures, and all files that comprise the product are placed in a directory
tree on a random-access device. The directory tree mirrors the directory
structure of the product on the user’s disk after installation. The top-
level directory contains the PDF and PTF. The PDF has a file type of
.PCSI$DESCRIPTION and it is used to identify the kit. Use the PRODUCT
PACKAGE /FORMAT=REFERENCE command to generate a kit in reference
format. You can also use the PRODUCT COPY /FORMAT=REFERENCE
command to expand a kit in either sequential or compressed format to one in
reference format where all extracted files are placed in a directory tree.

The OpenVMS operating system product is packaged in reference format.
This format is used because the operating system is distributed in bootable
form on a CD–ROM or DVD–ROM where all of its files must be directly
accessible to the file system. While layered products and patch kits can be
distributed in reference format, this is rarely done because it is much simpler
to ship a kit in the form of a single container file in either sequential or
compressed format.

Figure 2–1 shows how the package operation uses the PDF, PTF, and product
material to create a product kit in reference or sequential format. Subsequently,
the copy operation can be used to transform a sequential kit into a kit in
compressed format.

Basic Concepts 2–3

Basic Concepts
2.2 Software Product Kit Formats

Figure 2–1 Package Operation

VM-0749A-AI

Product
Package

Product

Kit in
Reference

Format

Description
Product

File (PDF)
Text

File (PTF)

Product
Material

Kit in
Sequential

Format

Kit in
Compressed

Format

Product
Copy

2.3 Software Product Kit Naming Conventions
The POLYCENTER Software Installation utility adheres to the following file-
naming conventions when either creating a software product kit or processing
PDF and PTF files.

2.3.1 Sequential Format
A software product kit created in sequential format is a single file whose name is
in the following format:

producer-base-product-version-kittype.PCSI

For example:

DEC-AXPVMS-DWMOTIF-V0102-6-1.PCSI

Note that the file name is constructed of components delimited by hyphens
(-). The version component is further divided into subfields and includes an
additional hyphen as explained in Section 2.3.5.

2.3.2 Compressed Format
A software product kit created in compressed format is a single file whose name
is in the following format:

producer-base-product-version-kittype.PCSI$COMPRESSED

For example:

DEC-AXPVMS-DWMOTIF-V0102-6-1.PCSI$COMPRESSED

2–4 Basic Concepts

Basic Concepts
2.3 Software Product Kit Naming Conventions

2.3.3 Reference Format
A software product kit created in reference format consists of a directory tree
populated with product files used during installation. The directory structure
mirrors the directory structure of the product on the user’s disk after installation.
The top-level directory contains the PDF and PTF. The presence of the PDF
identifies this as a kit in reference format. There is no .PCSI container file for a
kit in reference format. The PDF and PTF are named as follows:

producer-base-product-version-kittype.PCSI$DESCRIPTION
producer-base-product-version-kittype.PCSI$TLB

For example:

DEC-AXPVMS-DWMOTIF-V0102-6-1.PCSI$DESCRIPTION
DEC-AXPVMS-DWMOTIF-V0102-6-1.PCSI$TLB

2.3.4 Kit Naming Rules and Conventions
The fields in a kit name are position-dependent and provide useful information
about the kit. There are a few general naming rules:

• Each field in the file name is separated by a hyphen.

• The length of the file name string (including all required hyphens) cannot
exceed 39 characters.

• The producer-base-product portion of the string must uniquely identify the
software product.

The fields are defined as follows:

• producer is the legal owner of the software product. For Hewlett-Packard
software products this component of the file name is usually HP, although it
may be CPQ or DEC.

• base denotes the hardware and operating system combination that the
product requires. For OpenVMS Integrity systems, use I64VMS; for
OpenVMS Alpha systems, use AXPVMS; for OpenVMS VAX systems, use
VAXVMS; for products that can be installed on any OpenVMS platform, use
VMS.

• product is the name of the software product. For example, DWMOTIF.

• version identifies the version of the software product expressed in tmn-ue
format. For example, V0102-6 denotes V1.2-6. See Table 2–1 for more
information.

• kittype identifies a kit type specified as a value from 1 through 7, as shown in
Table 2–2.

2.3.5 More About the Version Field
The POLYCENTER Software Installation utility uses the version field to
determine which kit is the most recent and therefore which kit supersedes
another kit for the same product. The version field is in the format tmn-ue. This
format is described in Table 2–1.

Basic Concepts 2–5

Basic Concepts
2.3 Software Product Kit Naming Conventions

Table 2–1 Format of tmn-ue Version Identification

t The type of version (a single uppercase alphabetic character A through V; the
letters W, X, Y, and Z are reserved for use by Hewlett-Packard). Evaluated by
ascending ASCII value. Pre-release versions of a product usually begin with
the letters A through U and V is used to indicate the formal release version.

m The major version number (decimal integer 01 through 99).

n The minor version number (decimal integer 00 through 99).

- The hyphen is required in all cases. When both update level (u) and
maintenance edit level (e) are omitted, the version string will end with a
hyphen and the file name will have a double hyphen (- -) preceding the kit type.

u The update level (decimal integer 1 through 999999999). This is optional. If
not present, the utility evaluates this component as 0.

e The maintenance edit level (up to 16 alphanumeric characters beginning with
an alphabetic character). This is optional. If not present, the utility evaluates
this component as a null string.

When the utility compares the file specifications of two kits for the same product
to determine the latest version of the product, it examines the version strings as
follows:

1. Compares the components of the version field in the following order:

a. Major version number (m)

b. Minor version number (n)

c. Update level (u)

d. Maintenance edit level (e)

e. Version type (t)

It is important to note that version type (t) is the last component to be
evaluated. Because it indicates the delivery status (internal, external,
beta, and so on) of the product in the development cycle, it is considered
the least important component.

2. Stops when it finds two components that are not equal, or determines that all
five components are equal.

3. Evaluates alphabetic characters and numbers in ascending order.

Once you use an update level (u) or a maintenance edit level (e) in the product
version field, that component must be carried throughout the release cycle of the
product to ensure proper evaluation by the utility.

For example, if you release a test version of your product called E7.3-10
(expressed as E0703-10 in tmn-ue format) and then drop the update number
in the final version V7.3, the utility will not recognize V7.3 as the latest version.
This is what happens:

• The utility stops the comparison after it finds two components that are not
equal. In this case, it stops at the update level.

• Because the update level is not present in V7.3, it is evaluated as 0. Ten (10),
the update level in E7.3-10, is greater than zero (0).

• Since version type is evaluated last, it is not a factor here.

2–6 Basic Concepts

Basic Concepts
2.3 Software Product Kit Naming Conventions

Once the update level is established, as in E7.3-10, do not omit it (causing it to
default to zero (0)) until you increase the major or minor version. Any of the
following examples of version numbers would supersede E7.3-10:

• D7.3-10A, because A is greater than the null string.

• V7.3-10, because V is greater than E.

• A7.3-11, because 11 is greater than 10.

2.3.6 Version Information Visible to the OpenVMS Users
The tmn-ue format used in file names is similar to the format used to display
versions to OpenVMS users, or as entered by the OpenVMS user with the
/VERSION qualifier.

However, when the POLYCENTER Software Installation utility displays a version
to the OpenVMS user:

• Leading zeros are omitted in m and n.

• If neither u nor e is present, the hyphen (-) is omitted.

The following version information is contained in the OpenVMS System Manager’s
Manual. However, it is worth repeating the information here to make sure that
you know how the product version is interpreted.

• If a hyphen is present and the first character after the hyphen is a digit,
then the leading digits after the hyphen are the update level. If nondigit
characters are present, the maintenance edit level consists of the first
nondigit character and all following characters. If nondigit characters are not
present, the maintenance edit level is blank.

• If a hyphen is present and the first character after the hyphen is a nondigit
character, the update level is zero (0) and the maintenance edit level consists
of all of the characters after the hyphen.

• If no hyphen is present, the update level is zero (0) and the maintenance edit
level is blank.

2.3.7 More About the Kit Type
The POLYCENTER Software Installation utility supports the seven kit types
described in Table 2–2.

Basic Concepts 2–7

Basic Concepts
2.3 Software Product Kit Naming Conventions

Table 2–2 PDF Kit Types and Values

Value Type of Kit Description

1 Full Layered product (application) software.

2 Operating system Operating system software.

3 Partial An upgrade to currently installed software that
replaces or provides new files. Installation of this
kit changes the version of the product.

4 Patch A correction to currently installed software that
replaces or provides new files. Installation of this
kit does not change the version of the product.

5 Platform An integrated set of software products (also known
as a software product suite).

6 Transition Product information used to register (in the
POLYCENTER Software Installation database)
a product that was installed by VMSINSTAL or
other mechanism. This kit includes only a PDF
and (optionally) a PTF; it does not provide product
material.

7 Mandatory update A required correction to currently installed software
that replaces or provides new files. Installation of
this kit does not change the version of the product.
Functionally the same as a patch kit.

2.3.8 Looking at Software Product Name Examples
The following examples show how the format is used for a sequential format kit
and a reference format kit:

• A sequential format kit for HP Softwindows for OpenVMS VAX that requires
a double hyphen has the following format:

DEC-VAXVMS-SOFTWIN-V0101--1.PCSI

This format shows that the producer is DEC (Hewlett-Packard), the base is
VAXVMS (OpenVMS VAX), the product is SOFTWIN, and the version is V1.1.
The type of version is V, the major and minor version numbers are each 1.
There are no update or maintenance edit levels. The kittype is 1 (full).

• A product description file in a reference format kit for OpenVMS Alpha has
the following format:

DEC-AXPVMS-VMS-V0602-1H2-2.PCSI$DESCRIPTION

This format shows that the producer is DEC (Hewlett-Packard), the base is
AXPVMS (OpenVMS Alpha), the product is VMS, and the version is V6.2-
1H2. The type of version is V, the major version number is 6, the minor
version number is 2, the update level is 1, and the maintenance edit level is
H2. The kittype is 2 (operating system).

2.3.9 Input and Output Versions of the PDF and PTF
Although you provide the product description file (PDF) and the product text file
(PTF) as input to the package operation, they also exist in modified (output) form
in the kit you create. You need to be aware that two versions of these files do
exist and that they perform specific tasks.

2–8 Basic Concepts

Basic Concepts
2.3 Software Product Kit Naming Conventions

You create the input version as input to the package operation, and the
POLYCENTER Software Installation utility creates the output version for its
own use.

The package operation changes the format of the output PTF file. For more
information, see Section 4.2.

The output PDF is in the same format as the input PDF, but the package
operation may modify statements in the output PDF. For example, the package
operation adds the size option to FILE statements in the output PDF.

2.4 User-Defined Logical Names
When installing your product, system managers must specify a location where the
software kit resides and a location in which to install the software. Two methods
are available for identifying these locations:

• Defining logical names

• Specifying /SOURCE and /DESTINATION qualifiers on the command line

The system manager can also define logical names, and then override them by
using the /SOURCE and /DESTINATION qualifiers.

PCSI$SOURCE defines the location of the software kits to install. By default, the
user’s default device and directory are used. PCSI$DESTINATION defines the
location in which to install the software.

If the system manager does not define PCSI$DESTINATION or use the
/DESTINATION qualifier, the utility installs the software product in
SYS$SYSDEVICE:[VMS$COMMON] and directories under it. If this is not
appropriate for your product, make sure that your installation instructions
describe how to specify the /DESTINATION qualifier, or how to define the
PCSI$DESTINATION logical name.

Note

When you package your product, the logical names PCSI$SOURCE and
PCSI$DESTINATION are not used. You must use the /SOURCE and
/DESTINATION qualifiers on the PRODUCT PACKAGE command.

2.5 Utility-Defined Logical Names
This section discusses the logical names defined by the POLYCENTER Software
Installation utility for use by kit-supplied command procedures.

2.5.1 PCSI$SOURCE, PCSI$DESTINATION, and PCSI$SCRATCH
Several Product Description Language (PDL) statements execute
command procedures in the context of a subprocess. The POLYCENTER
Software Installation utility defines the logical names PCSI$SOURCE,
PCSI$DESTINATION, and PCSI$SCRATCH for use by these command
procedures. Note that these logical names are accessible only within the
subprocess and do not interfere with similar names that the user may have
defined. Note also that the user’s definition of PCSI$SOURCE is not the same as
that defined by the utility for the command procedure. See Figure 6–1 and the
descriptions of various EXECUTE statements in the PDL reference section for
additional information.

Basic Concepts 2–9

Basic Concepts
2.5 Utility-Defined Logical Names

2.5.2 PCSI$$RECOVERY_MODE and PCSI$$SAVE_RECOVERY_DATA
With the introduction of the /RECOVERY_MODE and /SAVE_RECOVERY_
DATA qualifiers to the PRODUCT INSTALL and PRODUCT RECONFIGURE
commands for OpenVMS Version 7.3-2, the utility defines logical names to
increase product developers’ control over the product installation process.
These new logical names are PCSI$$RECOVERY_MODE and PCSI$$SAVE_
RECOVERY_DATA. The PCSI$$RECOVERY_MODE logical name represents
the /RECOVERY_MODE qualifier while the PCSI$$SAVE_RECOVERY_DATA
qualifier represents the /SAVE_RECOVERY_DATA command-line qualifier. They
are defined in the system-wide logical name table whenever the user specifies
their equivalent qualifiers and are deassigned when the PRODUCT command
terminates.

For the /RECOVERY_MODE qualifier, the PCSI$$RECOVERY_MODE logical
name is defined with a YES value. If the user specifies /NORECOVERY_MODE,
the PCSI$$RECOVERY_MODE logical name is defined with a NO value. If the
user does not use the /RECOVERY_MODE qualifier at all, the logical name is not
defined. The same process applies to the PCSI$$SAVE_RECOVERY_DATA logical
name.

The /RECOVERY_MODE qualifier forces product installation to be performed
in recovery mode, which allows recovery from a failed product installation or
reconfiguration through a rollback of files and library modules displaced by the
failed operation. By default, the installation and reconfiguration operations are
not performed in recovery mode.

The /SAVE_RECOVERY_DATA qualifier applies only to the installation of patch
and mandatory update kits. It is similar to /RECOVERY_MODE in that it
forces files displaced during installation to be saved in a specially designated
directory tree. Those saved objects can later be used to uninstall patch products
by executing the PRODUCT UNDO PATCH command. By default, the patch kit
installation does not trigger patch recovery data to be saved for future use. This
is the reason the PCSI$$RECOVERY_MODE and PCSI$$SAVE_RECOVERY_
DATA logical names have been introduced.

Using these logical names, the product developer can control whether the product
installation is performed in recovery mode or whether the patch recovery data
is being saved for potential patch kit removal. Using a command procedure
supplied with the PDL statement EXECUTE PRECONFIGURE in your PDF,
you can examine the logical names and determine if the user has specified the
/RECOVERY_MODE or /SAVE_RECOVERY_DATA qualifiers.

If, for example, the user did not use the /SAVE_RECOVERY_DATA qualifier,
and you believe that it is important that your patch kit be installed in a manner
allowing its uninstallation in case of a problem, you can set the PCSI$$SAVE_
RECOVERY_DATA logical name in your EXECUTE PRECONFIGURE command
and force the recovery data to be saved for future use.

2.5.3 PCSI$$COMMAND_LINE
Starting with OpenVMS Version 8.2, the utility defines the logical name
PCSI$$COMMAND_LINE to be the DCL command line entered by the user
that initiated the PRODUCT command. This logical name is defined in the
system-wide logical name table and is deassigned when the PRODUCT command
terminates.

2–10 Basic Concepts

Basic Concepts
2.5 Utility-Defined Logical Names

2.5.4 PCSI$$CONFIRM
Starting with OpenVMS Version 8.2, the utility defines the logical
name PCSI$$CONFIRM with a NO value when the user specifies the
/OPTIONS=NOCONFIRM qualifier on the command line. This logical name
is defined in the system-wide logical name table and is deassigned when the
PRODUCT command terminates.

2.6 Managed Objects
Managed objects are the files, directories, accounts, network objects, and so
forth that support the proper functioning of your product. The POLYCENTER
Software Installation utility must directly create them.

As an example, if you use a PDF FILE statement to create a file, that file is
considered to be a managed object.

However, if your product creates directories, files, and so forth after the
installation is completed, the POLYCENTER Software Installation utility
has no way to know about those files or directories and cannot manage them.
For example, if your product dynamically creates an error log as a result of a
specific error condition, the POLYCENTER Software Installation utility will not
be able to manage (for example, remove) this log file. This means that if the
OpenVMS user uses the POLYCENTER Software Installation utility to remove
your software product, the user would have to manually delete the error log.

In addition, if your PDF includes command procedures in EXECUTE statements
that create files, directories, accounts, and so forth, the POLYCENTER Software
Installation utility has no way to know about these objects and cannot manage
them.

2.6.1 Creating Managed Objects
To create managed objects using PDL statements, you can specify the names
and properties of the managed objects that are necessary for your product. At
installation time, the POLYCENTER Software Installation utility uses your
product description file (PDF) to create the managed objects for your product and
records information about these objects in the product database.

For example, you use the DIRECTORY, FILE, and MODULE statements to
specify directory, file, and library module managed objects, as shown in the
following example:

directory [SYSTEST.FORTRAN] ;
file [SYSTEST]FORT$IVP.COM ;
file [SYSHLP]TNT030.RELEASE_NOTES release notes ;
file [SYSHLP]HELPLIB.HLB generation 40069227 release merge ;
module [000000]CPQC.CLD type command module CC ;

When the POLYCENTER Software Installation utility removes a software
product, it uses the data in the product database to delete managed objects from
the system.

Use the PRODUCT SHOW OBJECT command to display the names of objects
installed on a system. For example:

Basic Concepts 2–11

Basic Concepts
2.6 Managed Objects

$ PRODUCT SHOW OBJECT *COPY*
--- ----------------- -----
OBJECT NAME OBJECT TYPE STATUS
--- ----------------- -----
[SYSEXE]COPY.EXE file OK
[SYSHLP.EXAMPLES.DECW.UTILS]COPYRIGHT.H file OK
COPY module OK

2.6.2 Managed Object Conflict
Occasionally, your product will supply a managed object that conflicts with
another managed object. For example, if you supply a file called FOO.TXT
and a file by that name was also provided (in the same directory) by another
product, a conflict occurs. The existing file will be overwritten under the following
circumstances:

• If it was provided by an earlier instance of your product.

• If it was not created by the PRODUCT command. (It is not a managed object
in the product database.)

However, if the file is a managed object identified in the product database, and is
owned by some other product, it might not be appropriate to replace it.

The following two types of managed object conflict can occur:

• An interproduct conflict occurs when two or more products provide an object
with the same name in the same directory. (Files with the same name can
coexist in different directories.)

• An intraproduct conflict occurs when two or more patch or partial kits for a
product update the same object.

When the utility detects conflict, it displays an informational message. The
following statements detect managed object conflict and display informational
messages:

• ACCOUNT

• DIRECTORY

• FILE

• LINK

• LOADABLE IMAGE

• MODULE

• NETWORK OBJECT

• REGISTER MODULE

• RIGHTS IDENTIFIER

2.6.3 Preventing Managed Object Conflict
In some cases, the POLYCENTER Software Installation utility allows you to
anticipate and resolve conflict before it occurs. The following statements provide
some level of conflict resolution:

• FILE

• MODULE

• REGISTER MODULE

2–12 Basic Concepts

Basic Concepts
2.6 Managed Objects

Managed object conflict is resolved differently, depending on what type of object
is involved. The description of these statements in Chapter 7 indicates how each
one resolves managed object conflict.

For example, some statements provide a generation option (using the
GENERATION keyword) that lets you assign a generation number to an object.
During installation, if the utility attempts to create an object that already exists,
it compares the generation numbers of the objects, selecting the object with the
highest generation number.

When two or more products provide the same file or module, the one with the
highest generation number must implement a superset of the capabilities found
in the objects having lower generation numbers. This is required so that all
products installed that use this object will continue to function properly.

When one of these products is removed, the POLYCENTER Software Installation
utility retains the object with the highest generation number and reassigns the
ownership of the object to the product remaining on the system.

Thus, when products update one or more objects in common (indirectly modify
each other), removal of one product might result in not restoring the other
product to its former state. This is because the objects with the highest
generation numbers are left on the system.

For example, the product description files for products TEST1 and TEST2 are as
follows:

product CPQ AXPVMS TEST1 V1.0 full;
file [SYSEXE]TEST.EXE generation 100;

end product;

product CPQ AXPVMS TEST2 V1.0 full;
file [SYSEXE]TEST.EXE generation 200;

end product;

If you first install product TEST1 and then install TEST2, the TEST.EXE file with
generation number 200 will supersede the previously installed file TEST.EXE
with generation number 100. However, if you subsequently remove product
TEST2, the utility will retain generation 200 of file TEST.EXE and list product
TEST1 as its owner. It is assumed that the file having the higher generation
number is a functional superset of the file with the lower generation number;
therefore, product TEST1 will continue to work properly. To restore product
TEST1 to its original state, you will need to reinstall it. This will remove all the
installed files associated with the product and replace them with files from the
kit.

2.6.4 Managed Object Replacement and Merging
As described in Section 2.6.2, managed objects occasionally have characteristics
that conflict with each other. The POLYCENTER Software Installation utility
handles this situation differently depending on the kit type:

• When upgrading a product using a full operating system or platform kit,
the utility deletes the existing object and replaces it with the object and
characteristics provided by the new version of the product.

• When upgrading a product using a partial kit or modifying a product using
a patch or mandatory update kit, the utility preserves the characteristics of
existing objects. For example, the security environment you establish for your
product is preserved when you install a partial, patch, or mandatory update
kit.

Basic Concepts 2–13

Basic Concepts
2.6 Managed Objects

If you want to provide new characteristics for a managed object in a partial,
patch, or mandatory update kit, use the REMOVE statement to delete the
existing object and then respecify the object with the desired characteristics.

For more information about kit types, see Table 2–2.

2.6.5 Managed Object Scope and Lifetime
The scope of a managed object defines the degree of sharing that the managed
object permits. For example, some objects are available only to certain processes,
and some can be shared by all processes. The utility usually ensures that
managed objects have the correct scope.

Occasionally, you might need to use the SCOPE statement to give a managed
object a scope other than its default. For more information about specifying
the scope of a managed object, see the description of the SCOPE statement in
Chapter 7.

2.7 Creating an Integrated Platform (Product Suite)
In addition to packaging individual products, the POLYCENTER Software
Installation utility gives you the means to assemble integrated platforms.
An integrated platform is a combination of several products, such as a suite of
complementary management products that you might bundle together.

Functionally, a platform is the same as a full kit, except that it has the
designation ‘‘PLATFORM’’. A platform is intended to reference other products,
but it can also supply files.

Figure 2–2 shows an example of an integrated platform.

Figure 2–2 Integrated Platform Example

ZK−5242A−GE

Product C
Product B

Product A

To package a platform, you create a platform PDF and platform PTF. In
addition to other statements, the platform PDF contains SOFTWARE statements
that specify the products that make up the platform. The individual products
have their own PDFs and PTFs (independent of the platform PDF and PTF). For
more information about platform PDFs, see Section 3.5.3.

2–14 Basic Concepts

3
Creating the Product Description File

The product description file (PDF) is a required component of any software
product kit that you create using the POLYCENTER Software Installation utility.
The PDF does the following:

• Specifies all files that make up the product

• Identifies configuration options that are presented to the user at installation
time

• Specifies any dependencies the product may have on other software products

• Defines various actions that must be performed during installation

This chapter discusses the following PDF topics:

• General PDF guidelines (Section 3.1)

• Define the environment (Section 3.2)

• PDF file-naming conventions (Section 3.3)

• PDF structure (Section 3.4)

• Kit types and usage (Section 3.5)

3.1 General Guidelines
The POLYCENTER Software Installation utility is intended to simplify the job of
system managers, making products quick and easy to install and manage. Use
the following guidelines when writing PDFs:

• Minimize installation activity (such as linking images and building
databases). Instead, include all material required for product execution
on the reference.

• Make your products adapt to the target environment at execution time rather
than installation time. This practice keeps products consistent across varying
configurations.

• Avoid requiring system parameter settings on the target system that would
require rebooting the system.

• Minimize configuration choices at installation time.

• Ensure that the PDF expresses all the known requirements that your product
needs to execute. Use the checklist in Section 3.2 to define the requirements
for the target environment.

Creating the Product Description File 3–1

Creating the Product Description File
3.2 Defining Your Environment

3.2 Defining Your Environment
To define the environment for your product, use the following checklist.

Does your product depend on other software?

For example, your product may require a specific version of the operating
system or optional software products. To express these software requirements,
use the SOFTWARE function or statement.

Note

Note the distinction between the SOFTWARE statement and the
SOFTWARE function. The statement and function serve different
purposes and are not interchangeable. See Table 7–8 for a summary of
differences.

The SOFTWARE statement specifies a software product that should
be installed on the system to satisfy a software product dependency.
It also specifies a software product that is a part of an integrated
platform (product suite) and should be included in the platform product
installation.

The SOFTWARE function tests for the presence of a product. You can also
specify the version of the product that must be present. The SOFTWARE
function, unlike the SOFTWARE statement, does not create a permanent
software reference to another product and does not force the installation
of the other product.

Note that software you reference with a SOFTWARE statement must be
registered in the product database to be recognized by the POLYCENTER
Software Installation utility. If you install a product using a mechanism other
than the POLYCENTER Software Installation utility, the product database
will not contain information about the product unless you register it using a
full or transition PDF. For more information about creating transition product
descriptions, see Section 3.5.7.

If you are creating a platform, what software products make up the
platform?

If you are creating a platform, you must specify the software products that
make up the platform. To specify the products that make up your platform,
use the SOFTWARE statement with the component option.

Does your product require specific hardware devices?

For example, your product may require that the system has access to
certain peripheral devices, such as a compact disc drive or printer. To
display a message to users expressing these hardware requirements, use the
HARDWARE DEVICE statement.

3–2 Creating the Product Description File

Creating the Product Description File
3.2 Defining Your Environment

Does your product run only on specific computer models?

Some products run only on certain computer models. For example, recent
versions of the OpenVMS operating system are no longer supported on
the VAX–11/725 computer. If this is the case with your product, use the
HARDWARE PROCESSOR statement to display a message to users.

Does your product require specific images, files, or directories?

All the files, images, and directories that your product requires should be
expressed in FILE or DIRECTORY statements.

Does your product require a special account on the system?

Some products require a dedicated account on the system. Use the
ACCOUNT statement to supply the account.

Does your product require network objects?

Some products require network objects on the system. If your object is
designed for DECnet Phase IV, use the NETWORK OBJECT statement to
supply the required network objects. For DECnet-Plus you might want to use
a different mechanism. For example, supply an NCL script with a PDL file
statement.

Do you want to set up rights identifiers?

Use the RIGHTS IDENTIFIER statement.

Does your product supply an image to the system loadable images
table?

Use the LOADABLE IMAGE statement.

Does your product have several options that the user can choose?

Although it is a good practice to limit the number of user options, you may
need to present the user with options during installation. To present options
to the user, use the OPTION statement.

Does your product have specific security requirements?

If the files and directories for your product require special protection or access
controls, you can express this in the product description. See the descriptions
of the DIRECTORY statement and the FILE statement. You can also supply
a rights identifier using the RIGHTS IDENTIFIER statement.

Does your product require certain values for system parameters?

Many software products require that system parameters have certain
values for the product to function properly. Use the SYSTEM PARAMETER
statement to display system parameter requirements to users.

Creating the Product Description File 3–3

Creating the Product Description File
3.2 Defining Your Environment

Does your product require certain values for process parameters?

Use the PROCESS PARAMETER statement to display these requirements to
users.

Does your product require certain values for process privileges?

Use the PROCESS PRIVILEGE statement to display these requirements to
users.

Do you want to include a functional test with your product?

You can include it in the product material to verify that your product installed
correctly. To execute the functional test for your product, use the EXECUTE
TEST statement.

Are there commands that your installation procedure needs to
execute that are outside the domain of the POLYCENTER Software
Installation utility?

Use the EXECUTE statement.

Does your product have specific pre- or postinstallation tasks?

You can use the POLYCENTER Software Installation utility to automate
these tasks; however, there may be some tasks you want users to perform
that are outside the capabilities of the utility. You can inform users of such
tasks using the INFORMATION statement. You can also use several of the
EXECUTE statements to perform these tasks.

Does your product require command, help, macro, object, or text
library modules?

You should express the following types of modules in your PDF:

• DIGITAL Command Language (DCL) command definition modules

• DCL help modules

• Macro modules

• Object modules

• Text modules

You can express these types of modules using the MODULE statement.

What happens to existing product files?

Make sure that your product’s files are handled correctly during an
installation or upgrade. The POLYCENTER Software Installation utility
deletes all those files that are replaced by newly-installed products. When
upgrading a full, an operating system, or a platform product, non-replaced
files of the older product version are also deleted. When installing partial,
patch, or mandatory update kits, files that are not replaced by new versions
are preserved.

3–4 Creating the Product Description File

Creating the Product Description File
3.2 Defining Your Environment

To remove obsolete files, enclose FILE statements representing them in the
REMOVE group statement.

Does your product require documentation?

You may want to include online documentation (such as release notes) with
your product. To express the documentation requirements for your product,
use the release notes option to the FILE statement.

3.3 PDF File-Naming Conventions
You supply the PDF as input to the PRODUCT PACKAGE command. The PDF
can have any valid OpenVMS file name and file type. We recommend that you
give the input PDF file the extension .PCSI$DESC. For example:

TEST.PCSI$DESC

When you execute the PRODUCT PACKAGE command, it creates an output PDF.
See Section 2.3.9 for the distinction between input and output files.

The output PDF file format is the same as the input PDF; that is, a sequential
file containing PDL statements. The contents of the output PDF, however, may
differ slightly from that of the input PDF. For example, the POLYCENTER
Software Installation utility adds the size option to every FILE statement and
supplies the actual size of the file in disk blocks.

The name of the output PDF consists of the product’s stylized file name and a file
type of .PCSI$DESCRIPTION as follows:

producer-base-product-version-kittype.PCSI$DESCRIPTION

For example, the output PDF for product BLACKJACK V2.1-17 might be named:

ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$DESCRIPTION

See Section 2.3 for a description of the product-naming syntax.

3.4 Structure of a PDF
A PDF is a text file that contains a sequence of PDL statements. A PDF must
begin with a PRODUCT statement and end with an END PRODUCT statement.
The PRODUCT statement uniquely identifies the product and specifies the
type of kit to build (full, partial, patch, and so forth). Each file that is part of
the product material must be specified with a FILE statement. The following
example shows a complete PDF for a product that places one file named test.exe
in SYS$COMMON:[SYSEXE].

product DEC axpvms test v1.0 full ;
file [sysexe]test.exe ;

end product ;

3.4.1 Overview of PDL Statements
The product description language consists of statements that are defined in
Chapter 7 of this manual. As an overview, these statements are listed here in
classes according to their main function:

• Statement groups are defined by a pair of opening and closing statements;
by convention, the closing statement is the keyword END followed by the
keyword of the opening statement. Statement groups operate on statements

Creating the Product Description File 3–5

Creating the Product Description File
3.4 Structure of a PDF

lexically contained within their begin-end pair. Many statement groups can
be nested within other groups.

The following statement groups are used to conditionally process other
statements:

IF and END IF (ELSE and ELSE IF statements optionally can be used
within the statement group). Used to evaluate the Boolean value of
a statement function or expression as a condition to process enclosed
statements or a group of statements.

OPTION and END OPTION.

The following statement groups unconditionally process all statements at
their inner level:

PART and END PART

PRODUCT and END PRODUCT

REMOVE and END REMOVE

SCOPE and END SCOPE

• Statements that create or modify managed objects include:

ACCOUNT

DIRECTORY

FILE

LINK (create an alias directory entry)

LOADABLE IMAGE

MODULE

NETWORK OBJECT

REGISTER MODULE

RIGHTS IDENTIFIER

• Statements that enforce software dependencies and hardware requirements
by testing the execution environment and taking appropriate action include:

APPLY TO

HARDWARE DEVICE

HARDWARE PROCESSOR

INFER

SOFTWARE

UPGRADE

• Statements whose main purpose is to display a message to the user and in
some cases query the user for a response are as follows:

ERROR

INFORMATION

PROCESS PARAMETER

PROCESS PRIVILEGE

3–6 Creating the Product Description File

Creating the Product Description File
3.4 Structure of a PDF

SYSTEM PARAMETER

• Statements that cause producer-supplied command procedures to execute or
instruct the user to manually perform a task include:

EXECUTE ABORT

EXECUTE INSTALL . . . REMOVE

EXECUTE LOGIN

EXECUTE POSTINSTALL

EXECUTE POST_UNDO

EXECUTE PRECONFIGURE

EXECUTE PRE_UNDO

EXECUTE REBOOT

EXECUTE START . . . STOP

EXECUTE TEST

EXECUTE UPGRADE

• Statement functions that are used to provide a Boolean value when evaluated
in the expression part of an IF statement:

<HARDWARE DEVICE>

<HARDWARE PROCESSOR>

<LOGICAL NAME>

<OPTION>

<SOFTWARE>

<UPGRADE>

Many software products require only the use of a small subset of these PDL
statements to create their PDF. Commonly used statements are as follows:

• PRODUCT and END PRODUCT (required in every PDF)

• FILE

• MODULE

• SOFTWARE

• OPTION and END OPTION

• IF and END IF

• EXECUTE INSTALL . . . REMOVE

• EXECUTE TEST

Creating the Product Description File 3–7

Creating the Product Description File
3.4 Structure of a PDF

3.4.2 PDL Statement Syntax
A PDL statement consists of:

• A keyword phrase that identifies the statement (required)

• Zero or more parameter values (which may be expressions in certain contexts)

• Zero or more options each specified as a keyword phrase and value pair

• A semicolon (;) that terminates the statement (required)

Additional Syntax Rules

• Statements can span multiple lines and whitespace can be used freely to
improve readability or show relationship through indentation levels.

• Case is not significant, except within a quoted string.

• A keyword phrase consists of one or more keywords as defined by the PDL
statement.

• A comment is a sequence of two consecutive hyphens (- -) followed by
characters up to and including end-of-line.

When a string containing consecutive hyphens is passed as a parameter or
option value, enclose the string in quotes, for example, ‘‘a--b.dat’’. This
prevents the hyphens from being parsed as the start of a comment.

• Lexical element separators are used to set off keywords, values, expressions,
and so on. They include end-of-line, comment, and the following characters:
space, horizontal tab, form feed, and vertical tab (except when they appear
within a quoted string).

• Delimiters are required syntax in many situations. They consist of the
following characters: semicolon (;), comma (,), left parenthesis ((), right
parenthesis ()), left angle bracket (<), and right angle bracket (>).

When a string contains a delimiter character that is passed as a parameter or
option value, enclose the string in quotes. For example, to pass the numeric
UIC string [1,1] as an option value, use the quoted string form of ‘‘[1,1]’’,
because it contains a comma character.

3.4.3 PDL Function Syntax and Expressions
Certain PDL statements have a function form that tests for a condition in the
execution environment and returns a Boolean value of true or false. A function
is syntactically similar to its corresponding statement except that a function is
enclosed in left and right angle brackets (<...>), instead of being terminated by a
semicolon (;).

The following statements have corresponding functions:

• HARDWARE DEVICE

• HARDWARE PROCESSOR

• OPTION

• SOFTWARE

• UPGRADE

The LOGICAL NAME function does not have a corresponding statement form.

3–8 Creating the Product Description File

Creating the Product Description File
3.4 Structure of a PDF

Expressions are used in IF statements to produce a Boolean value for the if-
condition test. An expression is delimited by opening and closing parentheses
((...)). It contains one or more functions and, optionally, one or more of the
keywords AND, OR, and NOT, which are used as logical operators.

An expression has one of the following forms, where each term is either another
expression or a function:

• (term)

• (term AND term)

• (term OR term)

• (NOT term)

The following example shows an IF statement using a compound expression:

if ((not <hardware device MUA0:>) and
(<software ABC VAXVMS TEST version below 2.0>)) ;
.
.
.

end if ;

3.4.4 PDL Data Types and Values
The PDL has several base data types that you must use when passing parameters
to the PDL statements listed in Chapter 7. Table 3–1 describes the PDL base
data types and their values. PDL statements may restrict the range of values
that can be used as parameters.

Table 3–1 Base Data Types and Values

Data Type Values

Boolean The number 0 (false), the number 1 (true), the keywords false, true, no,
and yes.

String A sequence of 0 to 255 ISO Latin-1 characters. In the context of PDF
language statements:

• abc is an unquoted string.

• ‘‘abc’’ is a quoted string.

• ‘‘‘‘double_quoted_string’’’’ is a quoted string that maintains original
quotation marks.

You must use the quoted string form if the string contains any PDL
delimiters (open/close parentheses, comma, open/close angle brackets, and
semicolons) or lexical element separators (double hyphen, space, horizontal
tab, form feed, or vertical tab). For example, ‘‘/privilege=(tmpmbx,
netmbx)’’.

Table 3–2 lists the additional constraints on PDL strings.

Signed
integer

Specifies a positive, negative, or zero integral value in the range of
-2147483648 to 2147483647.

Unsigned
integer

Specifies a zero or positive integral value in the range of 0 through
4294967295.

(continued on next page)

Creating the Product Description File 3–9

Creating the Product Description File
3.4 Structure of a PDF

Table 3–1 (Cont.) Base Data Types and Values

Data Type Values

Version
identifier

See the description in Section 2.3.

Text module
name

Specifies a unique name for a text module using the printable ISO Latin-1
characters, excluding horizontal tab, space, exclamation point, and comma.
The name can be from 1 to 31 characters.

Table 3–2 describes additional constraints on the string data type.

Table 3–2 String Data Type Constraints

String Type Values Examples

Unconstrained None; any character
may appear in any
position.

Access control
entry (ACE)

Specifies an ACE for a
directory or file.

‘‘(IDENTIFIER=[KM],ACCESS=READ)’’

Command Specifies an operating
system command that
you want to execute
during a specific
operation.

@PCSI$DESTINATION:[SYSTEST]
PROD$IVP.COM

Device name Specifies the name of a
hardware device.

DUB6:

File name Specifies a file name
(without a device or
directory specification).

STARTUP.DAT

Identifier name Specifies a rights
identifier.

DOC

Module name Specifies the name of a
module in a library.

FMSHELP

Processor model
name

Specifies the model
identification of a
particular computer
system.

7

Relative
directory
specification

Specifies the directory
name and, if necessary,
the directory path,
relative to the root
directory specification.

[MY_PRODUCT]

Relative file
specification

Specifies the directory
path and file name,
relative to the root
directory path.

[MY_PRODUCT]DRIVER.DAT

(continued on next page)

3–10 Creating the Product Description File

Creating the Product Description File
3.4 Structure of a PDF

Table 3–2 (Cont.) String Data Type Constraints

String Type Values Examples

Root directory
specification

Specifies the directory
name and a trailing
period (.). If you specify
a directory name and
omit the period, it is
inserted. If necessary,
you can add the device
name.

[TEST.]
SYS$SYSDEVICE:[VMS$COMMON.]

3.5 Kit Types and Usage
The POLYCENTER Software Installation utility supports seven kit types that
can be grouped into three broad categories:

• Primary kit — Used to install or upgrade a product. Primary kits can require
prerequisite products to be installed before or concurrently. Kit types in this
category include:

Full (layered product or application software)

Operating system

Platform (product suite)

• Secondary kit — Used to modify installed products. Kits types in this
category include:

Partial (changes the product’s version)

Patch (maintenance update)

Mandatory update

• Transition kit — Used to register a product that has been installed using
VMSINSTAL or some method other than the DCL command PRODUCT
INSTALL. The kit type in this category is as follows:

Transition

Use the PRODUCT PACKAGE command to package (or build) a product kit. The
output of the packaging process is an installable kit (in either sequential copy
format or reference format) that contains:

• Product material (usually present) — The files that make up the product.
Usually, the installation of a product kit copies files to the target disk.
However, there are exceptions:

A transition kit never provides files.

A platform kit references other products; it may or may not provide
common files for the product suite.

Since product material is not a requirement for any type of kit, you may
create ‘‘skeleton’’ kits for testing purposes that do not modify the target
disk.

Creating the Product Description File 3–11

Creating the Product Description File
3.5 Kit Types and Usage

• A product description file (required) that drives the installation process —
It defines the managed objects that are provided or created and contains
directives for the installation utility. In addition, it can include options for the
installer to select, declare software references to other prerequisite products,
and invoke command procedures you write to augment the installation
process.

• A product text file (optional) that provides text modules for use during the
installation process.

• Temporary files such as command procedures (optional) that are used during
the installation process but are not left on the user’s system.

The full product name (that is, the string producer-base-product) must be unique
among all products installed on a system. This implies, for example, that there
could be two FORTRAN compilers installed from different companies (such
as DEC-AXPVMS-FORTRAN and XYZCORP-AXPVMS-FORTRAN), but there
cannot be two patch kits with the same full name that are intended to apply to
different products (such as ABC-AXPVMS-ECO1 for ABC-AXPVMS-COBOL and
ABC-AXPVMS-ECO1 for ABC-AXPVMS-C).

The following sections describe each type of kit and provide examples of their
product description files.

3.5.1 The Full Kit Type
A full kit provides layered product application software and is the most common
type of kit. The PDF for a full kit must contain a PRODUCT statement with
the keyword full and an END PRODUCT statement, as shown in the following
example:

product CPQ AXPVMS TEST_A V2.0 full ;
.
.
.

end product ;

The full kit has the following characteristics:

• It contains all of the material for the product. Therefore, it can be used to
install the product for the first time or it can upgrade a previously installed
version of the product.

• The product can be removed, configured, or reconfigured.

• Its PDF can contain OPTION and SOFTWARE statements.

Example 3–1 shows a full kit that references another product.

3–12 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

Example 3–1 PDF for a Full Kit That References Another Full Kit

product HP AXPVMS FORTRAN V7.1-1 full ; !
if (not <software HP AXPVMS VMS version minimum V7.1>) ;"

software HP AXPVMS FORRTL version minimum V7.1 ;
end if ;
information STARTUP_TASK phase after ;
information RELEASE_NOTES phase after ;#
file [SYSHLP]FORTRAN.RELEASE_NOTES release notes ;$
file [SYSHLP]FORTRAN_RELEASE_NOTES.PS ;
file [SYSHLP]FORTRAN_RELEASE_NOTES.DECW$BOOK ;
if (<software DEC AXPVMS FORTRAN90>) ;%

error REMFORT90 ;
end if ;
option FORTRAN_90 ;&

file [SYSEXE]F90$MAIN.EXE generation 2 ;
file [SYSMSG]F90$MSG.EXE generation 2 ;
module [000000]F90CLD.CLD type command generation 2 module F90 ;
module [000000]F90HELP.HLP type help generation 2 module F90 ;’

end option ;
option FORTRAN_77 ;

file [SYSEXE]FORT$MAIN.EXE generation 1 ;
file [SYSEXE]FORT$FSPLIT.EXE generation 1 ;
file [SYSMSG]FORT$MSG.EXE generation 1 ;
file [SYSMSG]FORT$MSG2.EXE generation 1 ;
module [000000]DEC_FORTCLD.CLD type command

generation 1 module FORTRAN ;
module [000000]DEC_FORHELP.HLP type help

generation 1 module FORTRAN ;
end option ;
file [SYSLIB]FORSYSDEF.TLB generation 5 ;
file [SYS$STARTUP]FORT$STARTUP.COM generation 1 protection private ;(
file [SYSTEST]FORT$IVP.COM generation 1 protection private ;
execute test "@PCSI$DESTINATION:[SYSTEST]FORT$IVP.COM" ;)

end product ;

! The PRODUCT statement identifies this as a complete layered product kit
for installation of (or upgrade to) FORTRAN V7.1-1 on an OpenVMS Alpha
system.

" The IF . . . END IF group conditionally executes statements within the group
based on the evaluation of the IF function. In this example, the SOFTWARE
statement is executed only if the system is running a version of OpenVMS
earlier than V7.1. This SOFTWARE statement creates a software reference
to the product FORRTL. If FORRTL V7.1 or later is already installed,
the software dependency is satisfied; otherwise, FORRTL is automatically
installed concurrently with FORTRAN.

This INFORMATION statement causes a message to be displayed after the
product has been installed. Text is obtained from the module RELEASE_
NOTES in the PTF:

1 RELEASE_NOTES
=prompt Type HELP FORTRAN Release_notes for release notes location

$ This FILE statement copies file FORTRAN.RELEASE_NOTES
to SYS$SYSDEVICE:[VMS$COMMON.][SYSHLP] (the same as
SYS$COMMON:[SYSHLP]) unless the user specifies a different destination.
The RELEASE NOTES keyword phrase tags this file in the kit so that the
PRODUCT EXTRACT RELEASE_NOTES command can be used to extract
this file from the kit.

Creating the Product Description File 3–13

Creating the Product Description File
3.5 Kit Types and Usage

% This IF statement determines whether or not the product FORTRAN90 is
installed. If it is installed, text from the module REMFORT90 in the PTF is
displayed and the user is asked if he wants to terminate the operation:

1 REMFORT90
=prompt PRODUCT REMOVE FORTRAN90 before installing HP Fortran
The obsolete DEC Fortran 90 product must be removed before HP Fortran
is installed. To do this, use the command:

PRODUCT REMOVE FORTRAN90

Note that if the ABORT keyword had been used on the ERROR statement,
the operation would terminate unconditionally. ABORT was not used because
the ABORT keyword was introduced in OpenVMS V7.1 and this kit can be
installed on earlier versions of OpenVMS.

& This OPTION . . . END OPTION group conditionally provides files and
library modules associated with the FORTRAN 90 compiler. The user is
asked a question from text module FORTRAN_90 in the PTF:

1 FORTRAN_90
=prompt Compaq Fortran 90 compiler
This option selects the Compaq Fortran 90 compiler.

By default, the OPTION statement displays only text from the prompt line.
However, if the user specifies the /HELP qualifier on the PRODUCT INSTALL
command, then both prompt and extended help text is displayed (two lines in
this case).

’ The MODULE statement installs the help text module F90 from the file
F90HELP.HLP in the default help library [SYSHLP]HELPLIB.HLB. The file
F90HELP.HLP is not left on the system because a FILE statement is not
used.

(The PROTECTION PRIVATE keyword phrase on this FILE statement sets
the file protection to (S:RWED, O:RWED, G, W), giving general users no
access.

) The EXECUTE TEST statement executes the functional test for the product
(the installation verification procedure) after the product has been installed.
If the test fails, the user is informed but the product is not removed. The user
can use the PRODUCT REMOVE command to delete the product.

Example 3–2 shows the full kit referenced by Example 3–1.

3–14 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

Example 3–2 PDF for a Full Kit

product HP AXPVMS FORRTL V7.1-427 full ;!
if (<software HP AXPVMS VMS version minimum V7.0>) ;"

file [SYSLIB]FORDECFORRTL.EXE
source [SYSLIB]FORDECFORRTL-V70.EXE ;

file [SYSLIB]FORDECFORRTL.OBJ
source [SYSLIB]FORDECFORRTL-V70.OBJ ;

else ;
file [SYSLIB]FORDECFORRTL.EXE

source [SYSLIB]FORDECFORRTL-V61.EXE ;
file [SYSLIB]FORDECFORRTL.OBJ

source [SYSLIB]FORDECFORRTL-V61.OBJ ;
end if ;
if (<software DEC AXPVMS VMS version below V7.1>) ;

file [SYSLIB]FOR$NXTAFTR.OBJ ;
end if ;
file [SYSUPD]FOR$INSTALL_FORRTL.COM ;
file [SYSTEST]FOR$RTL_IVP.COM ;
file [SYSTEST]FOR$RTL_IVP.OBJ ;
file [SYSHLP]FORRTL.RELEASE_NOTES release notes ;
information RELEASE_NOTES phase after ;
information POST_INSTALL phase after ;
execute install "@PCSI$DESTINATION:[SYSUPD]FOR$INSTALL_FORRTL INSTALL"

remove "@PCSI$DESTINATION:[SYSUPD]FOR$INSTALL_FORRTL REMOVE";#
execute test "@PCSI$DESTINATION:[SYSTEST]FOR$RTL_IVP" ;

end product ;

! The PRODUCT statement identifies this as a complete layered product kit
for installation of (or upgrade to) FORRTL V7.1-427 on an OpenVMS Alpha
system.

" The IF . . . ELSE . . . END IF group conditionally executes statements
within the group based on the evaluation of the IF function. In this
example, two files named [SYSLIB]FORDECFORRTL.EXE and
[SYSLIB]FORDECFORRTL.OBJ are always provided. However, the
contents of these files vary depending on the version of the OpenVMS
product that is installed. Notice the use of the SOURCE option on the FILE
statements to select the desired file from the kit to copy to the target disk.

The EXECUTE INSTALL . . . REMOVE statement executes the command
procedure PCSI$DESTINATION:[SYSUPD]FOR$INSTALL_FORRTL.COM
during installation or upgrade of the product, and also during removal of the
product. Instead of providing two command procedures, one is used and a
parameter is passed to it to indicate the operation.

3.5.2 The Operating System Kit Type
The operating system kit provides operating system software, such as OpenVMS.
The PDF for an operating system kit must contain a PRODUCT statement with
the OPERATING SYSTEM keyword and an END PRODUCT statement as shown
in the following example:

product DEC AXPVMS VMS V7.2 operating system ;
.
.
.

end product ;

Creating the Product Description File 3–15

Creating the Product Description File
3.5 Kit Types and Usage

The operating system kit has the following characteristics:

• It contains all of the material for the product. Therefore, it can be used to
install the product for the first time or it can upgrade a previously installed
version of the product.

• The product cannot be removed unless the PRODUCT REMOVE command
contains the /REMOTE qualifier to remove the operating system on a disk
that is not the running system.

• The product can be configured or reconfigured.

• Its PDF can contain OPTION and SOFTWARE statements.

• There can be only one product of type operating system installed on a system
disk.

• Except for the kit type designation, the structure of an operating system kit
is the same as a full kit; all PDL statements that are allowed in a full kit can
be used in an operating system kit.

Example 3–3 shows an operating system kit.

3–16 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

Example 3–3 PDF for an Operating System Kit

product HP AXPVMS VMS V7.1 operating system ;!
upgrade version minimum V6.1 version below A7.2;"
.
.
.
directory [SYSEXE] ;#
directory [SYSFONT] ;
directory [SYSFONT.DECW] ;
directory [SYSFONT.DECW.100DPI] ;
.
.
.
file [SYSEXE]COPY.EXE generation 40069227 ; $
file [SYSEXE]CREATE.EXE generation 40069227 ;
file [SYSEXE]CREATEFDL.EXE generation 40069227 ;
file [SYSEXE]DCL.EXE generation 40069227 ;
.
.
.
file [SYSMGR]SYLOGIN.TEMPLATE generation 40069227 ;
file [SYSMGR]SYLOGIN.COM generation 40069227 %

source [SYSMGR]SYLOGIN.TEMPLATE write ;
.
.
.
option ACCOUNTING ;

file [SYSEXE]ACC.EXE generation 40069227 ;
end option ;
option UTILITIES ; &

option MAIL ;
file [SYSEXE]MAIL.COM generation 40069227 ;
file [SYSEXE]MAIL.EXE generation 40069227 ;
file [SYSEXE]MAIL_OLD.EXE generation 40069227 ;
file [SYSEXE]MAILEDIT.COM generation 40069227 ;
file [SYSEXE]MAIL_SERVER.EXE generation 40069227 ;
file [SYSHLP]MAILHELP.HLB generation 40069227 ;

end option ;
.
.
.

option DUMP ;
file [SYSEXE]DUMP.EXE generation 40069227 ;

end option ;
option HELP_LIBRARY ;

scope global ;
file [SYSHLP]HELPLIB.HLB generation 40069227 release merge ;’

end scope ;
end option ;

end option ;
.
.
.
option REMOVE_OBSOLETE ;

remove ; (
file [SYSLIB]LIBOTS.OLB ;
file [SYSLIB]EDTSHR_TV.EXE ;

end remove ;
end option ;

end product ;

! The PRODUCT statement identifies this as a complete operating system kit
for installation of (or upgrade to) OpenVMS V7.1 on an Alpha system.

Creating the Product Description File 3–17

Creating the Product Description File
3.5 Kit Types and Usage

" The UPGRADE statement specifies that if this kit is being used to upgrade
the VMS product then the previous version must be within the stated range
of versions. However, if this is an initial installation of the operating system,
the UPGRADE statement is ignored.

This DIRECTORY statement creates the directory
[SYS0.SYSCOMMON.SYSEXE], that is, SYS$COMMON:[SYSEXE].

$ These FILE statements copy files to the target system disk. The VMS product
places generation numbers on all objects that it provides to aid in object
conflict detection and resolution when other products (or patch and partial
kits to the operating system) that may replace these objects are installed.

% This FILE statement provides [SYSMGR]SYLOGIN.COM from a template
file. The WRITE option indicates that customers are allowed to edit this file.
On upgrade, if this file exists it will not be replaced.

& This OPTION . . . END OPTION group demonstrates how options can be
nested. The MAIL option is presented to the user only if the UTILITIES
option is selected.

’ The FILE statement that provides [SYSHLP]HELPLIB.HLB is enclosed in
a SCOPE GLOBAL . . . END SCOPE group to allow other products to freely
make updates to this library.

The RELEASE MERGE keyword phrase indicates that library modules
propagate during an upgrade. For example, if a layered product adds a
module to HELPLIB.HLB, this module is automatically inserted into the new
library file that is provided by the VMS product during an upgrade of the
operating system.

(The REMOVE . . . END REMOVE group within an OPTION . . . END
OPTION group deletes all objects specified in the remove group if the user
selects the option.

3.5.3 The Platform Kit Type
The platform kit installs a product suite, which is an integrated set of software
products. It may provide files that are common to all products in the suite, or it
may not provide any files. It does, however, contain software references to one
or more other products. These references can be either required, optional, or
a combination of required and optional. For example, the OPENVMS platform
kit always installs the OpenVMS operating system product and asks whether to
optionally install system integrated products such as HP DECwindows Motif and
HP TCP/IP Services for OpenVMS.

The PDF for a platform kit must contain a PRODUCT statement with the
keyword PLATFORM and an END PRODUCT statement, as shown in the
following example:

product HP AXPVMS OPENVMS V7.2 platform ;
.
.
.

end product ;

The platform kit has the following characteristics:

• It contains all of the material that is common to the product suite. Therefore,
it can be used to install the product suite for the first time or it can upgrade
a previously installed version of the platform. As stated, product material

3–18 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

is optional for a platform kit. It should, however, contain one or more
SOFTWARE statements to reference other products.

• Products referenced do not have to be present when the platform kit is
packaged because referenced products are not bundled into the platform
kit. However, when you copy a platform, products that are referenced by
SOFTWARE statements with the COMPONENT option must be present.

• The platform product can be removed, configured, or reconfigured.

• Its PDF can contain OPTION and SOFTWARE statements.

• Except for the kit type designation, the structure of a platform kit is the same
as a full kit; all PDL statements that are allowed in a full kit can be used in
a platform kit.

Example 3–4 shows a platform kit.

Example 3–4 PDF for a Platform Kit

product HP AXPVMS OPENVMS F7.1 platform ; !
upgrade version minimum A7.1 version below V7.2; "
software HP AXPVMS VMS version required F7.1 ; #
option DWMOTIF_KIT ; $

software HP AXPVMS DWMOTIF version minimum V1.2-4 ;
end option ;
option DECNET_OSI_KIT ;

software HP AXPVMS DECNET_OSI version minimum K7.1 ;
end option ;
option UCX_KIT ;

software HP AXPVMS UCX version minimum V4.1-12 ;
end option ;

end product ;

! The PRODUCT statement identifies this as the OPENVMS F7.1 product suite
for installation or upgrade on an OpenVMS Alpha system. The version type
F indicates that this is a test version of the kit. The PLATFORM keyword
indicates that the primary purpose of this product is to install other products.

Note that VMS (the operating system product) is different from OPENVMS
(the product suite).

" The UPGRADE statement specifies that if this kit is being used to upgrade
the OpenVMS product then the previous version must be within the stated
range of versions. However, if the OpenVMS product is not currently
installed, then the UPGRADE statement is ignored.

The SOFTWARE statement specifies that the operating system (OpenVMS
F7.1) is a required component of the product suite that will be implicitly
installed. Should the OpenVMS F7.1 product kit not be accessible, an error
message is displayed and the installation terminated before any files from
any products are copied to the system.

$ The OPTION . . . END OPTION group conditionally executes statements
within the group based on the user’s response to a question. In this example,
the OPTION statement displays text associated with the label DWMOTIF_
KIT from the PTF:

Creating the Product Description File 3–19

Creating the Product Description File
3.5 Kit Types and Usage

1 DWMOTIF_KIT
=prompt DECwindows Motif for OpenVMS Alpha

This option installs HP DECwindows Motif for OpenVMS Alpha, which
provides the X Window system graphical user interface.

An affirmative response to the question causes the DWMOTIF V1.2-4 product
to be installed (or upgraded if a version is already installed); otherwise, the
SOFTWARE statement is ignored. Should the DWMOTIF V1.2-4 product
kit not be accessible when the platform is installed, this option is marked as
unselectable and skipped over.

3.5.4 The Partial Kit Type
Use a partial kit to upgrade a currently installed product, including replacing
some of the product’s files, providing new files, or removing files. The PDF for
a partial kit must contain a PRODUCT statement with the PARTIAL keyword,
an UPGRADE statement, and an END PRODUCT statement as shown in the
following example:

product HP AXPVMS TEST_A V2.1 partial ;
upgrade version required V2.0 ;
.
.
.

end product ;

A partial kit has the following characteristics:

• It does not contain all of the material for the product. Therefore, it can be
used only to upgrade a previously installed version of the product.

• It can upgrade a full, operating system, or platform product. More than one
partial kit can be applied to the same product.

• The full product name (the producer-base-product string) must be the same as
the product it upgrades.

• After installation, the version of the product is changed to the one specified in
the partial kit’s PDF.

• The product can be removed, in which case the managed objects provided by
the product’s full and partial kits are deleted.

• The product can be configured or reconfigured.

• Its PDF can contain OPTION and SOFTWARE statements.

Generally, a new version of a product is provided as a full kit instead of a partial
kit because a full kit can be used for either an initial installation or for an
upgrade of the product. A partial kit is limited to an upgrade path.

A partial kit, however, is usually much smaller in disk block size than its
corresponding full kit. For a very large product, this reduction in size may
significantly reduce the time it takes to distribute the kit over the network.

Example 3–5 shows a partial kit.

3–20 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

Example 3–5 PDF for a Partial Kit

product HP AXPVMS FORTRAN V7.2 partial ; !
upgrade version required V7.1-1 ; "
information RELEASE_NOTES phase after ;
information STARTUP_TASK phase after ;
file [SYSHLP]FORTRAN.RELEASE_NOTES release notes ;
file [SYSHLP]FORTRAN_RELEASE_NOTES.PS ;
file [SYSHLP]FORTRAN_RELEASE_NOTES.DECW$BOOK ;
file [SYSEXE]FORT$MAIN.EXE generation 4 ; #
file [SYSMSG]FORT$MSG.EXE generation 4 ;
file [SYSMSG]FORT$MSG2.EXE generation 4 ;
module [000000]DEC_FORTCLD.CLD type command

generation 4 module FORTRAN ;$
execute test "@PCSI$DESTINATION:[SYSTEST]FORT$IVP.COM" ;%

end product ;

! The PRODUCT statement identifies this as a partial kit for the FORTRAN
product that will upgrade FORTRAN to V7.2 on an OpenVMS Alpha system.

" The UPGRADE statement (required for a partial kit) specifies that FORTRAN
V7.1-1 must be installed before installing this upgrade kit.

The GENERATION keyword in this FILE statement is used to supply
sequencing information to aid file conflict detection and resolution should a
patch kit for this product or another product supply the same file name.

$ The MODULE statement installs the command definition module FORTRAN
from the file DEC_FORTCLD.CLD in the default command library
[SYSLIB]DCLTABLES.EXE. The file DEC_FORTCLD.CLD is not left on
the system because a FILE statement is not used to place it there. (In
Example 3–7 a CLD file is put into DCLTABLES and a copy of the file is left
on the target disk.)

Note that if this partial kit is installed after the patch kit in Example 3–6, the
module FORTRAN from this partial kit will supersede the module FORTRAN
from the patch kit because it has the higher generation number.

Conversely, if the patch kit is installed after this partial kit, the module will
not be updated. Conflict detection between patch kits and between patch and
partial kits for the same product is new for OpenVMS Version 7.2. Previously,
conflict detection only occurred between full, platform, and operating system
products.

% FORT$IVP.COM already exists on the system disk, provided earlier by the
full version of FORTRAN V7.1-1.

3.5.5 The Patch Kit Type
Use a patch kit to apply a correction to a currently installed product. It can
replace files, provide new files, or remove files. The PDF for a patch kit must
contain a PRODUCT statement with the keyword PATCH, an APPLY TO
statement, and an END PRODUCT statement as shown in the following example:

product HP AXPVMS TEST_A_ECO1 V1.0 patch ;
apply to HP AXPVMS TEST_A version minimum A2.0 version maximum V2.0 ;
.
.
.

end product ;

Creating the Product Description File 3–21

Creating the Product Description File
3.5 Kit Types and Usage

A patch kit has the following characteristics:

• It usually does not contain all of the material for the product. Therefore, it
can be used only to modify a previously installed version of the product.

• It can modify a full, operating system, or platform product. Also, it can
modify a product that has been upgraded by a partial kit. More than one
patch kit can be applied to the same product.

• Its full product name (the producer-base-product string) must be different
than the full product name of the product it updates. Further, its full product
name must be unique among all products and patches installed on the system.

• After installation, the version of the product that it modifies is not changed.
Use the PRODUCT SHOW PRODUCT /FULL command to display all patch
kits that have been installed on the system.

• Because it is not a product, you cannot remove a patch kit individually using
a PRODUCT REMOVE command. Patches to a product are automatically
removed when the product is removed or upgraded. They can also be
uninstalled using the PRODUCT UNDO PATCH command, but only if they
were installed with the /SAVE_RECOVERY_DATA qualifier and the recovery
data is intact.

• The patch kit cannot be configured or reconfigured, but the product that it
modifies can be configured or reconfigured.

• Its PDF cannot contain OPTION or SOFTWARE statements.

• Patch kits are intended for making small updates to a product. Since
the installation of a patch kit does not change the version number of the
product, you should distribute a new version of the product kit (full, operating
system, or platform) or a partial kit to make large updates or functional
enhancements.

Example 3–6 shows a patch kit.

Example 3–6 PDF for a Patch Kit

product HP AXPVMS FORTECO_03 V1.0 patch ; !
apply to HP AXPVMS FORTRAN version required V7.1-1 ; "
module [000000]FORTCLD.CLD type command generation 3 module FORTRAN ;#

end product ;

! The PRODUCT statement identifies this as V1.0 of a patch kit named
FORTECO_03. The name of this kit must be unique among all products and
patches applied to the system.

" The APPLY TO statement (required for a patch kit) specifies that this patch
can be applied only to the installed product FORTRAN V7.1-1.

The MODULE statement installs the FORTRAN CLD module in the default
command library [SYSLIB]DCLTABLES.EXE. The file FORTCLD.CLD is not
left on the system because a FILE statement is not used to place it there. (In
Example 3–7 a CLD file is put into DCLTABLES and a copy of the file is left
on the target disk.)

3–22 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

Example 3–7 shows a patch kit that modifies the operating system.

Example 3–7 PDF for a Patch Kit That Modifies the Operating System

product HP AXPVMS VMS61TO71U2_PCSI B1.0 patch ; !
apply to HP AXPVMS VMS version minimum V6.1 version below A7.2 ; "

-- This patch kit provides the entire POLYCENTER Software Installation#
-- facility built from OpenVMS V7.2 sources that can be installed on OpenVMS
-- V6.1 through V7.1-n systems. Installation of this patch extends the
-- capabilities of the DCL command PRODUCT, enhances the utility’s user
-- interface, and corrects problems. In addition, the availability of this
-- patch enables product developers to use new product description language
-- syntax introduced in OpenVMS V7.1 and V7.2 in their product kits for
-- deployment on older OpenVMS systems that have this patch installed.
--
-- Although this kit could have been packaged as a layered product, it was
-- more appropriate to package it as a patch to the operating system because
-- it replaces a facility that is bundled with OpenVMS. Finally, the use
-- of generation numbers on files and library modules provides information
-- used during object conflict detection and resolution should other patches
-- for this facility be distributed in the future that update these objects.

file [SYSEXE]PCSI$MAIN.EXE generation 50000000 ;
file [SYSLIB]PCSI$SHR.EXE generation 50000000 ;
file [SYSUPD]PCSI.CLD generation 50000000 ; $
module [SYSUPD]PCSI.CLD type command generation 50000000 module PRODUCT ;
module [SYSUPD]PRODUCT.HLP type help generation 50000000 module PRODUCT ;
file [SYSUPD]PCSI$CREATE_RIGHTS_IDENTIFIER.COM generation 50000000 ;
file [SYSUPD]PCSI$DELETE_RIGHTS_IDENTIFIER.COM generation 50000000 ;
file [SYSUPD]PCSI$CREATE_ACCOUNT.COM generation 50000000 ;
file [SYSUPD]PCSI$DELETE_ACCOUNT.COM generation 50000000 ;
file [SYSUPD]PCSI$CREATE_NETWORK_OBJECT.COM generation 50000000 ;
file [SYSUPD]PCSI$DELETE_NETWORK_OBJECT.COM generation 50000000 ;
file [SYSUPD]PCSI$REGISTER_PRODUCT.COM generation 50000000 ;
file [SYSUPD]PCSI$EXTRACT_TLB.COM generation 50000000 ;
remove ;%

file [SYSLIB]PCSI$MOTIFSHR.EXE ; -- obsolete file as of VMS V7.2
end remove ;

end product ;

! The PRODUCT statement identifies this as B1.0 (a field test version) of a
patch kit named VMS61TO71U2_PCSI. The name of this kit must be unique
among all products and patches applied to the system.

" The APPLY TO statement (required for a patch kit) specifies that this patch
can be applied only to versions V6.1 through V7.1-2 of the VMS product.

The double hyphen (--) identifies a comment line.

$ This FILE statement provides [SYSUPD]PCSI.CLD. The following MODULE
statement installs the command definition module PRODUCT from this file in
the default command library [SYSLIB]DCLTABLES.EXE. A FILE statement
is not required to provide the file specified in the MODULE statement unless
you want the file left on the system.

% This REMOVE . . . END REMOVE group deletes the obsolete file
[SYSLIB]PCSI$MOTIFSHR.EXE.

Creating the Product Description File 3–23

Creating the Product Description File
3.5 Kit Types and Usage

3.5.6 The Mandatory Update Kit Type
Use a mandatory update kit to apply a correction to a currently installed product.
It can replace files, provide new files, or remove files. The PDF for a mandatory
update kit must contain a PRODUCT statement with the MANDATORY UPDATE
keyword, an APPLY TO statement, and an END PRODUCT statement, as shown
in the following example:

product HP AXPVMS TEST_A_ECO1 V1.0 mandatory update ;
apply to HP AXPVMS TEST_A version minimum A2.0 version maximum V2.0 ;
.
.
.

end product ;

A mandatory update kit is functionally identical to a patch kit except for its kit
type designation. It is used for corrections that must be applied to the product.

The characteristics of a mandatory update kit are the same as for a patch kit, as
described in Section 3.5.5.

3.5.7 The Transition Kit Type
Use a transition kit to register in the product database a product that was not
installed by the POLYCENTER Software Installation utility. For example, use a
transition kit to register products installed by the VMSINSTAL utility. The PDF
for a layered product transition kit must contain a PRODUCT statement with
the TRANSITION keyword and an END PRODUCT statement as shown in the
following example:

product HP AXPVMS FMS V2.4 transition ;
.
.
.

end product ;

To register an operating system product, the keyword OPERATING SYSTEM is
added to the keyword TRANSITION as shown in the following example:

product HP VAXVMS VMS V7.2 transition operating system ;
.
.
.

end product ;

In contrast to OpenVMS Alpha, the OpenVMS VAX operating system is not
installed by the POLYCENTER Software Installation utility. The OpenVMS VAX
installation procedure uses the PRODUCT REGISTER PRODUCT VMS command
to register the operating system in the product database.

The transition kit has the following characteristics:

• It cannot be installed with a PRODUCT INSTALL command; instead, it is
registered with a PRODUCT REGISTER PRODUCT command.

• Optionally, it can reference managed objects such as files, directories,
modules, and so forth. However, none of these objects is created or modified
when the kit is registered, nor does the installation utility verify that any of
these objects actually exist on the system.

• Files specified in FILE statements do not need to be present when a transition
kit is packaged because product material is not included in this type of kit.

3–24 Creating the Product Description File

Creating the Product Description File
3.5 Kit Types and Usage

• The registered product can be removed with the PRODUCT REMOVE
command. If the transition kit references any managed objects, these objects
will be removed as if the transition kit had been a full kit.

• The registered product cannot be configured or reconfigured.

• The INFER statement can be used only in a PDF for a transition kit.

There are several benefits of registering a product:

• The product name is displayed with the PRODUCT SHOW PRODUCT and
PRODUCT SHOW HISTORY commands.

• Other software products that require this product as a prerequisite can
specify it in a SOFTWARE statement and have this software dependency
satisfied.

• If all of the managed objects for the product are specified in the transition
kit, then the product can be completely removed with a PRODUCT REMOVE
command.

Example 3–8 shows a transition PDF for the FMS product.

Example 3–8 PDF for a Transition Kit

product HP AXPVMS FMS V2.4 transition ; !
infer version from [SYSLIB]FDVSHR.EXE ; "
file [SYSLIB]FDVSHARE.OPT ; #
module [SYSUPD]FDV.OBJ type object module FDV ; $
module [SYSUPD]FDVMSG.OBJ type object module FDVMSG ;
module [SYSUPD]FDVDAT.OBJ type object module FDVDAT ;
module [SYSUPD]FDVERR.OBJ type object module FDVERR ;
module [SYSUPD]FDVTIO.OBJ type object module FDVTIO ;
module [SYSUPD]FDVXFR.OBJ type object module FDVXFR ;
module [SYSUPD]HLL.OBJ type object module HLL ;
module [SYSUPD]HLLDFN.OBJ type object module HLLDFN ;

end product ;

The following list describes the statements in this example:

! The TRANSITION keyword to the PRODUCT statement indicates that this is
a transition PDF.

" The INFER VERSION statement tests the execution environment to
determine whether the file FDVSHR.EXE is present. If it is, the utility
infers the version that is installed.

The FILE statement indicates that the [SYSLIB]FDVSHARE.OPT file is part
of the FMS kit.

$ The MODULE statements describe object modules in the default object
library [SYSLIB]STARLET.OLB that are part of the FMS kit.

Creating the Product Description File 3–25

Creating the Product Description File
3.5 Kit Types and Usage

3.5.8 The PCSI$REGISTER_PRODUCT.COM Command Procedure
An alternative way to register a product (without providing a transition kit
for the user to register with a PRODUCT REGISTER PRODUCT command)
is to execute the SYS$UPDATE:PCSI$REGISTER_PRODUCT.COM command
procedure. This procedure prompts the user to enter product name, version,
producer, and base system information, as shown in the following example:

$ @SYS$UPDATE:PCSI$REGISTER_PRODUCT.COM
Product name: FMS
Version: V2.4
Producer [HP] :
Base System [AXPVMS] :

.

.

.
The following product has been registered:
HP AXPVMS FMS V2.4 Transition (registration)

Registering a product using the command procedure allows another software
product to reference this product with a SOFTWARE statement. However, use
of this command procedure does not allow objects (such as files) to be registered
along with the product name in the product database.

3–26 Creating the Product Description File

4
Creating the Product Text File

The product text file (PTF) is an optional component of a software product kit.
However, most kits created using the POLYCENTER Software Installation utility
include a PTF. You must supply a PTF to the kitting process if you want to
use PDF statements that display text to users during product installation. The
following PDF statements have corresponding text modules in the PTF:

• ERROR

• INFORMATION

• OPTION

• PART

• PRODUCT

For each text module in the PTF, you may provide a brief, one-line prompt and
a detailed (longer than one line) help description. The brief, one-line prompt
from the text module is displayed by default (with the exception of the ERROR
statement). (See Chapter 7 to see how help text is displayed for each statement.)
To display the detailed help text, the user includes the /HELP qualifier on
the PRODUCT INSTALL command line. If you choose to provide only a brief,
one-line prompt for a given text module and the user asks for detailed help text,
the brief prompt is displayed. By providing detailed help text, you can reduce or
eliminate hardcopy installation documentation.

Note

You might want to force the detailed text to be displayed without the user
having to request it. To do this, use the INFORMATION or OPTION PDF
statement, as in the following example:

option EXAMPLE default YES with helptext;

4.1 PTF File-Naming Conventions
The PTF you provide as input to the PRODUCT PACKAGE command must:

• Reside in the same directory as the PDF

• Have the same file name as the PDF and a file type of .PCSI$TEXT

The following are examples of valid input PDF and PTF names:

TEST.PDF
TEST.PCSI$TEXT

ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$DESC
ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$TEXT

Creating the Product Text File 4–1

Creating the Product Text File
4.1 PTF File-Naming Conventions

The execution of the PRODUCT PACKAGE command transforms the input PTF
into an output PTF. The input PTF is a text file containing header lines and text
module lines. The output PTF is an OpenVMS text library file. Its name consists
of the product’s stylized file name and a file type of .PCSI$TLB as follows:

producer-base-product-version-kittype.PCSI$TLB

For example:

ABC_CO-AXPVMS-BLACKJACK-V0201-17-1.PCSI$TLB

You can convert the output PTF from an OpenVMS library file back to a text
file by executing the PCSI$EXTRACT_TLB.COM command procedure, which is
located in SYS$COMMON:[SYSUPD]. You must supply the PTF library file as a
parameter to the procedure.

4.2 Structure of a PTF
A PTF is a text file that contains packaging directives, module header lines, and
module text. The PTF must begin with the =product directive line that uniquely
identifies the product and specifies the type of kit. The rest of the file contains
one or more text modules. Each text module entry consists of:

• A module header line that identifies the name of the text module

• An =prompt directive line that includes text for a brief display

• Zero or more lines of text that are combined with the brief text to form the
detailed display associated with the text module

The user chooses whether to receive brief or detailed explanations using the
/HELP qualifier on the PRODUCT INSTALL command.

Brief text format (the default) is restricted to one line of text, that is, the text in
the =prompt directive line. To avoid carrying the single-line text over to the next
line, try to keep your brief message to no more than 60 characters.

Detailed or help text can include any number of lines of text. The formatting of
the information is preserved on output, except that the POLYCENTER Software
Installation utility may indent the entire block of text displaying information
about configuration options or software requirements.

Comment lines are not permitted in a PTF.

4.2.1 Specifying the Product Name
You must use the =product directive to specify product information in the PTF.
The information that you specify with the =product directive must match the
information you specify with the PRODUCT statement in the PDF.

The =product directive has the following format:

=product producer base product version kittype

See Section 2.3 for the naming conventions.

4–2 Creating the Product Text File

Creating the Product Text File
4.2 Structure of a PTF

4.2.2 PTF Modules and the Relationship with the PDF
PTF text modules are text blocks that you want to present to the user. The
POLYCENTER Software Installation utility does not process text blocks
sequentially, so the order of the text modules in the PTF does not matter.

Text modules are identified by a module header line in the following format:

1 module-name

The module header line consists of the number 1, followed by a space or tab and
the name of the module. The module-name must be from 1 to 31 ISO Latin-1
characters, excluding the horizontal tab, space, exclamation point (!), and comma
(,) characters. For example:

1 SAMPLE

The POLYCENTER Software Installation utility uses the name of the module to
associate the text module with a line from the PDF. For example, the SAMPLE
module could correspond to an option in the PDF:

option SAMPLE ;

4.2.3 PTF Modules Not Related with the PDF
The utility also allows you to specify text modules that are not associated with
statements in the PDF. These text modules are preceded by an apostrophe (’).
Use the following module names to specify information about your product:

• The ’LICENSE module specifies licensing information.

• The ’NOTICE module specifies copyright, ownership, and similar legal
information.

• The ’PRODUCER module specifies a brief description of the producer of the
product.

• The ’PRODUCT module specifies a brief functional description of the product.

For example, a product might contain the following modules:

=product HP VAXVMS C V1.0 full
1 ’PRODUCT
=prompt HP C++ for OpenVMS
HP C++ for OpenVMS VAX is a native compiler that implements the C++
programming language and includes:

o A C++ compiler that implements C++ as defined by The Annotated C++
Reference Manual, Ellis & Stroustrup, reprinted with corrections,
May 1991. The compiler implementation includes templates but ex-
cludes exception handling. HP C++ generates optimized object code
without employing an intermediate translation to C.

o The HP C++ Class Library, which consists of the following class li-
brary packages: iostream, complex, generic, Objection, Stopwatch,
String, task, messages, and vector.

1 ’NOTICE
=prompt Copyright 2003 Hewlett-Packard Company. All rights reserved.
Unpublished rights reserved under the copyright laws of the United States.

This software is proprietary to and embodies the confidential technology of
Hewlett-Packard Company. Possession, use, or copying of this software
and media is authorized only pursuant to a valid written license from HP
or an authorized sublicensor.

Creating the Product Text File 4–3

Creating the Product Text File
4.2 Structure of a PTF

Restricted Rights: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of DFARS 252.227-7013, or in FAR 52.227-19, or in FAR 52.227-14 Alt. III,
as applicable.
1 ’LICENSE
=prompt This product uses the PAKs: <xxx> and <xxx-RT>.
This software is furnished under the licensing provisions of Hewlett-Packard
Company’s Standard Terms and Conditions. For more in-
formation about HP’s licensing terms and policies, contact your
local HP office.

1 ’PRODUCER
=prompt Hewlett-Packard Company
This software product is sold by Hewlett-Packard Company.

4.2.4 Including Prompt and Help Text
You can include prompt text in your PTF using the =prompt directive. Prompt
text cannot exceed one line of text. (The suggested line length is 60 characters.)
Help text is similar to prompt text, except that it can span multiple lines. The
help text follows the =prompt line. You can also include blank lines in help text.

The following example shows prompt text:

=prompt This option provides files for programming support.

The following example shows a sample product text file. Note the prompt and
help text:

=product HP VAXVMS UCX V2.0 full
1 ’PRODUCT
=prompt HP TCP/IP Services for OpenVMS
HP TCP/IP Services for OpenVMS is an OpenVMS layered software product that
promotes interoperability and resource sharing between OpenVMS systems,
UNIX systems, and other systems that support the TCP/IP and NFS
protocol suites.

The product provides capabilities for file access, remote terminal
access, remote command execution, remote printing, mail, and application
development, including three major functional components:

o The Run-Time component, which is based on the Berkeley Standard
Distribution, brings TCP/IP communications to OpenVMS computer systems.
It also includes a suite of application development tools
(DECrpc, C socket programming interface, and QIO programming
interface).

o The Applications component includes the popular user-oriented protocols
for file transfer, remote processing, remote printing, and mail: File
Transfer Protocol (FTP), Telnet Protocol (Telnet), Berkeley R commands
(rsh, rlogin, rexec), remote printing, and Simple Mail Transfer
Protocol (SMTP).

o The HP NFS component supports Network File System (NFS) V2.0 proto-
col specifications. NFS is an Application layer protocol that provides
clients with transparent access to remote file services.

1 ’NOTICE
=prompt Copyright 2003 Hewlett-Packard Company. All rights reserved.
Unpublished rights reserved under the copyright laws of
the United States.

This software is proprietary to and embodies the confidential technology of
Hewlett-Packard Company. Possession, use, or copying of this software
and media is authorized only pursuant to a valid written license from HP
or an authorized sublicensor.

4–4 Creating the Product Text File

Creating the Product Text File
4.2 Structure of a PTF

Restricted Rights: Use, duplication, or disclosure by the U.S.
Government is subject to restrictions as set forth in subparagraph (c)(1)(ii)
of DFARS 252.227-7013, or in FAR 52.227-19 or in FAR 52.227-14 Alt. III, as
applicable.
1 ’LICENSE
=prompt This product uses the PAKs: UCX and UCX-IP-RT.
This product currently has two Product Authorization Keys (PAKs):

Producer PAK Name Version Release Date

DEC UCX 2.0 6-JUL-1992
DEC UCX-IP-RT 2.0 6-JUL-1992

1 ’PRODUCER
=prompt Hewlett-Packard Company
This software product is sold by Hewlett-Packard Company.
1 EXAMPLES
=prompt Example files
The example files include client/server programming examples.
1 NFS
=prompt NFS files

The HP NFS component supports Network File System (NFS) protocol
specifications. NFS is an application layer protocol that provides
clients with transparent access to remote file services.

The HP NFS server promotes data sharing among clients by providing
a central data storage facility for OpenVMS and UNIX files. The HP NFS
server provides two types of file access for UNIX clients: 1) client
access to OpenVMS files, and 2) client access to files compatible with UNIX
systems.
1 APPLICATIONS
=prompt Applications
The Applications component includes the popular user-oriented protocols
for file transfer, remote processing, remote printing, and mail: File
Transfer Protocol (FTP), Telnet Protocol (Telnet), Berkeley R commands
(rsh, rlogin, rexec), remote printing, and Simple Mail Transfer
Protocol (SMTP).
1 PRE_INSTALL
=prompt Complete preinstallation tasks for HP TCP/IP Services first.
Before you install HP OpenVMS UCX, you must complete certain preinstallation
tasks. For more information, refer to the "HP TCP/IP Services for OpenVMS
Installation and Configuration Guide."
1 POST_INSTALL
=prompt Postinstallation tasks required for HP TCP/IP Services.
For more information, refer to these associated documents:

- "HP TCP/IP Services for OpenVMS Installation and Configuration Guide"
- "HP TCP/IP Services for OpenVMS System Management"

Creating the Product Text File 4–5

5
Packaging the Kit

Use the PRODUCT PACKAGE command to create a software product kit. This
operation uses a product description file (PDF), an optional product text file
(PTF), and product material files as input to produce a software product kit in
either sequential or reference format.

The syntax of the PRODUCT PACKAGE command is documented in the HP
OpenVMS System Management Utilities Reference Manual.

This chapter shows you how to create a product kit in sequential format from
product materials that are spread across several directories. A game application
named CHESS is used throughout this chapter to illustrate the steps required to
package the kit. You will also be introduced to the PRODUCT LIST, PRODUCT
EXTRACT, and PRODUCT COPY commands, which are useful for manipulating
the product kit.

Assume that the files needed to package the CHESS product have been organized
into a directory tree. The following is a listing of this directory tree containing
the product material, required kitting files, and other files produced by the
engineering team (such as listing and object files).

$ DIRECTORY /COLUMN=1 /NOTRAILING DKA300:[TEST.*]

Directory DKA300:[TEST.COM]

CHECK_SPACE.COM;1
CHESS_IVP.COM;1

Directory DKA300:[TEST.KIT]

CHESS.PCSI$DESC;1
CHESS.PCSI$TEXT;1
PACKAGE.COM;1

Directory DKA300:[TEST.LIS]

CHESS.LIS;1

Directory DKA300:[TEST.OBJ]

CHESS.EXE;1
CHESS.OBJ;1

Directory DKA300:[TEST.SRC]

CHESS.C;1
CHESS.GAMES;1
CHESS.OPENINGS;1
HEADER.H;1

Packaging the Kit 5–1

Packaging the Kit
5.1 Description of the Product Material

5.1 Description of the Product Material
The product material for the CHESS application consists of the files that will be
installed on the user’s system along with any command procedures included in
the kit to perform product-specific tasks during installation.

Assume that the product material is located in the directory tree [TEST...] as
follows:

• An executable image named CHESS.EXE is located in [TEST.OBJ]. It will be
placed in [SYSEXE] on the target disk when the product is installed.

• Two data files, CHESS.OPENINGS and CHESS.GAMES, reside in
[TEST.SRC]. The first file, an opening book, will always be copied to
[SYSEXE] on the user’s system. However, the second file, a large games
collection, is an optional component of the product. Users determine at install
time whether or not to install this file. If they choose not to install it, they
can later reconfigure the product to obtain this optional file.

• Two command procedures, CHESS_IVP.COM and CHECK_SPACE.COM, are
placed in [TEST.COM]. CHESS_IVP.COM will be copied to [SYSTEST] on
the destination device and executed to verify the correct installation of the
product. CHECK_SPACE.COM will be executed early during the installation
but it will not be left on the user’s system. It checks for adequate space on
the destination device for large work files that will be used when the product
is used.

The contents of the two command procedures from [TEST.COM] are shown here
as they might appear early in the packaging process. Later in the development
cycle they will be replaced by command procedures that perform their intended
functions.

$ TYPE [TEST.COM]*.*

DKA300:[TEST.COM]CHECK_SPACE.COM;1

$! This command procedure is executed from an EXECUTE PRECONFIGURE statement
$! with the INTERACTIVE keyword specified. Therefore, all output lines
$! generated will be displayed.
$!
$ write sys$output "*** Output from execute preconfigure ***"
$ exit 1
DKA300:[TEST.COM]CHESS_IVP.COM;1

$! This command procedure is executed from an EXECUTE TEST statement without
$! the INTERACTIVE keyword specified. Therefore, only output lines that
$! look like an OpenVMS message (that is, those starting with %) will be
$! displayed. By default, all other output from this
$! procedure will be suppressed unless the /TRACE qualifier is used on the
$! PRODUCT INSTALL command. For testing purposes you can force a line
$! of text to be displayed by putting a percent sign in column 1.
$!
$ write sys$output "%%% Output from execute test %%%"
$ exit 1

5–2 Packaging the Kit

Packaging the Kit
5.2 Files Required to Package the Kit

5.2 Files Required to Package the Kit
In this CHESS kit example, the [TEST.KIT] directory contains the following files
to package the kit:

• CHESS.PCSI$DESC, the product description file

• CHESS.PCSI$TEXT, the product text file

• PACKAGE.COM, as a convenience

PACKAGE.COM has been created to simplify the task of entering the PRODUCT
PACKAGE command with the appropriate qualifiers.

The content of the packaging files for the CHESS product might be similar to the
following:

$ TYPE [TEST.KIT]*.*

DKA300:[TEST.KIT]CHESS.PCSI$DESC;1

product ABC_CO AXPVMS CHESS V1.0 full ;
execute preconfigure "@pcsi$source:[000000]check_space.com"

uses [000000]check_space.com interactive ;
file [sysexe]chess.exe ;
file [sysexe]chess.openings ;
option master_games ;

file [sysexe]chess.games ;
end option ;
file [systest]chess_ivp.com ;
execute test "@pcsi$destination:[systest]chess_ivp.com" ;

end product ;

DKA300:[TEST.KIT]CHESS.PCSI$TEXT;1

=product abc_co axpvms chess v1.0 full
1 ’PRODUCT
=prompt ABC Company’s Chess for OpenVMS Alpha
Chess V1.0 provides a chess playing engine with 50 selectable
user levels (rated playing strength from 1200 to 2450), a
graphical interface with 2D and 3D boards, an extensive
database of openings, plus thousands of complete master games,
and three modes of operation: play, analyze, and tutorial.
1 MASTER_GAMES
=prompt Do you want the database of master games?
Answer YES to install a database containing 16000 complete
games played by GMs and IMs (25000 blocks). Your choice does
not affect the quality or size of the opening database which
is always installed in its entirety.

DKA300:[TEST.KIT]PACKAGE.COM;1

Packaging the Kit 5–3

Packaging the Kit
5.2 Files Required to Package the Kit

$! This command file packages product CHESS into a sequential format kit.
$!
$! Note that by default the package command searches for the input PDF and
$! input PTF in the source directory using file name and type of:
$! <producer-base-product-version-edit-type>.pcsi$desc (for PDF) [1]
$! <producer-base-product-version-edit-type>.pcsi$text (for PTF)
$! For example:
$! abc_co-axpvms-chess-v0100--1.pcsi$desc
$! abc_co-axpvms-chess-v0100--1.pcsi$text
$!
$! You can override this default by specifying the file name of the PDF and
$! PTF (and optionally the file type of the PDF) in the /source qualifier
$! (for example, /source=dev:[dir]chess.pdf). The file type of the PTF, however,
$! must be .pcsi$text. The approach used in this command procedure is
$! to specify the file name of the PDF and PTF in the /source qualifier and
$! let the file types be defaulted. For example, /source=dev:[dir]chess
$! causes the package command to search for input PDF and input PTF named:
$! chess.pcsi$desc
$! chess.pcsi$text
$!
$! [1] For OpenVMS V6.1-V7.1, the default input PDF file type was
$! .pcsi$description (the same as the output PDF), but beginning with
$! OpenVMS V7.1-2, the utility looks for .pcsi$desc; if not found it
$! then searches for .pcsi$description.
$!
$ product package chess -

/base=axpvms -
/producer=abc_co -
/source=dka300:[test.kit]chess - ! where to find PDF and PTF
/destination=dka300:[test.kit] - ! where to put .PCSI file
/material=dka300:[test.*] - ! where to find product material
/format=sequential

$ exit

5.3 Creating the Product Kit
The sample output below shows the execution of the PRODUCT PACKAGE
command (via a command procedure listed in Section 5.2) to create the product
kit in sequential format. The full kit name for CHESS V1.0 produced by ABC_CO
to run on OpenVMS Alpha is ABC_CO-AXPVMS-CHESS-V0100–1.PCSI.

$ SET DEFAULT [TEST.KIT]
$ @PACKAGE.COM

The following product has been selected:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

The following product will be packaged:
ABC_CO AXPVMS CHESS V1.0

Portion done: 0%...100%

The following product has been packaged:
ABC_CO AXPVMS CHESS V1.0 Layered Product

$ DIRECTORY /COLUMN=1 /NOTRAILING

Directory DKA300:[TEST.KIT]

ABC_CO-AXPVMS-CHESS-V0100--1.PCSI;1
CHESS.PCSI$DESC;1
CHESS.PCSI$TEXT;1
PACKAGE.COM;1

5–4 Packaging the Kit

Packaging the Kit
5.4 Listing the Contents of the Product Kit

5.4 Listing the Contents of the Product Kit
A product kit in sequential format is a container file. You can list its contents
with the PRODUCT LIST command. In the following example, note:

• During the packaging operation, the input PTF has been converted to a text
library file with a file type of .PCSI$TLB.

• The input PDF with a file type of .PCSI$DESC has been packaged as an
output PDF with a file type of .PCSI$DESCRIPTION.

• During the packaging operation, the output PDF has the same format as the
input PDF, but comments have been removed and additional information such
as file size has been added to the file.

$ PRODUCT LIST CHESS

The following product has been selected:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

Product kit in sequential format:
_KRYSYS$DKA300:[TEST.KIT]ABC_CO-AXPVMS-CHESS-V0100--1.PCSI

--
CONTENTS OF KIT USING RELATIVE FILE SPECIFICATION
--
[000000]ABC_CO-AXPVMS-CHESS-V0100--1.PCSI$TLB
[000000]CHECK_SPACE.COM
[SYSEXE]CHESS.EXE
[SYSEXE]CHESS.GAMES
[SYSEXE]CHESS.OPENINGS
[SYSTEST]CHESS_IVP.COM
[000000]ABC_CO-AXPVMS-CHESS-V0100--1.PCSI$DESCRIPTION
--

Starting with OpenVMS Version 7.3, you can use the /FULL qualifier with the
PRODUCT LIST command. The expanded output lists the following:

• The size of most files.
Certain files, such as the PDF, PTF, temporary command procedures, and files
created at install time with an ASSEMBLE USES option, will not have a file
size listed.

• Additional information on certain files in a comments field.

Note

Prior to OpenVMS Version 7.3, the PRODUCT LIST command did not list
files in the kit that were associated with the USES or ASSEMBLE USES
option.

5.5 Extracting Files from the Kit
You can extract one or more files from a product kit using the PRODUCT
EXTRACT and PRODUCT COPY commands. The PRODUCT EXTRACT
command is often used with the PRODUCT LIST command to identify a file or a
set of files to extract.

Packaging the Kit 5–5

Packaging the Kit
5.5 Extracting Files from the Kit

5.5.1 Extracting Files by Name
With the PRODUCT EXTRACT FILE command, you can obtain a single file by
name or a set of files with a wildcard file specification from a product kit. For
example:

$ PRODUCT EXTRACT FILE CHESS /SELECT=*.EXE /LOG

The following product has been selected:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

Portion done: 0%
%PCSI-I-CREFIL, created DISK$WORK7:[TEST.KIT.][000000]CHESS.EXE;1
Portion done: 100%
%PCSIUI-I-SUCEXTRFIL, EXTRACT FILE operation completed successfully

5.5.2 Extracting the PDF, PTF, or Release Notes
You can extract the PDF, PTF, or release notes file by name. If you do not know
their names, use the following EXTRACT commands:

• PRODUCT EXTRACT PDF

• PRODUCT EXTRACT PTF

• PRODUCT EXTRACT RELEASE_NOTES

Every product kit contains a PDF. A PTF and a file designated as the release
notes are optionally present in a kit.

The following example illustrates how to obtain the PDF from a sequential kit:

$ SET DEFAULT [TEST.KIT]
$ PRODUCT EXTRACT PDF CHESS /DESTINATION=[TEMP] /LOG

The following product has been selected:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

Portion done: 0%
%PCSI-I-CREFIL, created
DISK$WORK7:[TEMP.][000000]ABC_CO-AXPVMS-CHESS-V0100--1.PCSI$DESCRIPTION;1
Portion done: 100%

Product Description File has been extracted from the following product:
ABC_CO AXPVMS CHESS V1.0 Layered Product

%PCSIUI-I-SUCEXTRPDF, EXTRACT PDF operation completed successfully

When you extract the PTF, the following two files are produced:

• The output form of the PTF as a text library file

• A recreation of the input form of the PTF as a sequential text file

$ PRODUCT EXTRACT PTF CHESS /LOG

The following product has been selected:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

5–6 Packaging the Kit

Packaging the Kit
5.5 Extracting Files from the Kit

Portion done: 0%
%PCSI-I-CREFIL, created
DISK$WORK7:[TEST.KIT.][000000]ABC_CO-AXPVMS-CHESS-V0100--1.PCSI$TLB;1
%PCSI-I-CREFIL, created
DISK$WORK7:[TEST.KIT.][000000]ABC_CO-AXPVMS-CHESS-V0100--1.PCSI$TEXT;1
Portion done: 100%
Product Text File has been extracted from the following product:

ABC_CO AXPVMS CHESS V1.0 Layered Product
%PCSIUI-I-SUCEXTRPTF, EXTRACT PTF operation completed successfully

Use the PRODUCT EXTRACT RELEASE_NOTES command to examine any
release notes file that may be present in the kit. This command always places the
release notes in the user’s default directory. By default, the name of the release
notes file is preserved.

$ SET DEFAULT [TEMP]
$ PRODUCT EXTRACT RELEASE_NOTES CHESS /SOURCE=[TEST.KIT]

The following product has been selected:
ABC_CO AXPVMS CHESS V1.0 Layered Product

Do you want to continue? [YES]

Portion done: 0%...100%

5.5.3 Converting a Sequential Kit into Reference Format
You can use the PRODUCT COPY command to extract files from a kit in
sequential format and place them in reference format. This differs in a number
of ways from extracting all files from a sequential kit into a specific directory
using the PRODUCT EXTRACT FILE command. When copying a kit into
reference format, the files are placed in a directory tree as they would appear
after installation on the user’s system. Unlike the installation of a sequential kit,
however, temporary files from the kit are placed in the directory tree and files
pertaining to all options are extracted.

You can also use the PRODUCT COPY command to convert a reference kit into
sequential format, and for copying a kit while preserving its format.

5.5.4 Converting a Sequential Kit into Compressed Format
You can use the PRODUCT COPY command to convert a sequential kit into
compressed format. The following example illustrates this technique:

$ PRODUCT COPY CHESS /SOURCE=[TEST.KIT] -
/DESTINATION=[TEST.KIT] /FORMAT=COMPRESSED

The /SOURCE qualifier points to the location of the sequential kit you want to
convert to the compressed format. The /DESTINATION= qualifier points to the
location where the newly-created compressed kit will reside.

5.6 Displaying Information from the Product Database
After the product kit is installed, you can use the PRODUCT SHOW PRODUCT
command to list the products installed on the system. Use the /FULL qualifier
for additional information about software references and patches that may have
been applied to the products. Additional commands (not shown here) that are
useful for obtaining more information about installed products are the PRODUCT
SHOW HISTORY /FULL, PRODUCT SHOW OBJECT /FULL, and PRODUCT
SHOW RECOVERY_DATA commands.

Packaging the Kit 5–7

Packaging the Kit
5.6 Displaying Information from the Product Database

$ PRODUCT INSTALL CHESS ! /LOG and /TRACE are useful for debugging
.
.
.
$ PRODUCT SHOW PRODUCT
----------------------------------- ----------- ------------
PRODUCT KIT TYPE STATE
----------------------------------- ----------- ------------
ABC_CO AXPVMS CHESS V1.0 Full LP Installed
DEC AXPVMS DECNET_PHASE_IV V7.1 Full LP Installed
DEC AXPVMS DWMOTIF V1.2-4 Full LP Installed
DEC AXPVMS VMS V7.1 Transition Installed
----------------------------------- ----------- ------------

4 items found

5–8 Packaging the Kit

6
Advanced Topics

This chapter contains information about the following advanced POLYCENTER
Software Installation utility concepts:

• Using command procedures

• Testing and debugging

In addition, it presents flow diagrams depicting the execution of several
PRODUCT commands.

6.1 Using Command Procedures in PDL Statements
The Product Description Language (PDL) provides statements that perform
common kit installation tasks such as creating directories, copying files to the
target disk, updating libraries, displaying informational messages, and so on.
There are times, however, when you might need to perform tasks that are unique
to your product. For example, a new version of a product might need to detect the
existence of a data file from a previous version and convert it to a new format.
Or, you might want to probe the operating environment or ask the user specific
questions before an installation may proceed.

To support this type of customization, the PDL provides several EXECUTE
statements. These statements let you include command procedures (or individual
DCL commands) that run during certain phases of a product install, upgrade,
reconfigure, undo patch, or remove operation. These statements are:

• EXECUTE ABORT
Runs error recovery commands just before the utility exits when an error
condition causes the operation to terminate. For example, the following will
activate the EXECUTE ABORT statement:

An error or fatal error condition that results from running commands
from an EXECUTE statement (except EXECUTE TEST and EXECUTE
REBOOT).

The user terminates the operation by pressing Ctrl/Y or Ctrl/C.

After an error is reported during material placement on the target disk,
the user answers YES to the question "Do you want to terminate?".

• EXECUTE INSTALL . . . REMOVE
Runs commands during the execution phase when changes are made to the
target disk (such as creating directories and moving files).

The INSTALL portion is performed during an installation, upgrade, or
reconfiguration of the product after product material has been moved
from the kit to the target disk.

The REMOVE portion is performed during removal of the product before
any files are deleted from the target disk.

Advanced Topics 6–1

Advanced Topics
6.1 Using Command Procedures in PDL Statements

• EXECUTE LOGIN
Does not run any commands. It only displays a predefined message telling
users to update their LOGIN.COM file with the specified commands.

• EXECUTE POSTINSTALL
Runs commands that perform additional tasks at the end of the execution
phase of an installation, upgrade, or reconfiguration of the product.

• EXECUTE POST_UNDO
Runs commands that perform additional tasks at the end of a patch kit
removal in the UNDO PATCH operation.

• EXECUTE PRECONFIGURE
Runs commands after the user has selected the product for installation,
upgrade, or reconfiguration, but before the utility begins the configuration
phase where the user is asked to select options for the product. If you need to
run a command procedure in preparation for installing your product, consider
using an EXECUTE PRECONFIGURE statement. This lets you embed
preconfiguration work in the kit and relieves users of performing this task
themselves.

• EXECUTE PRE_UNDO
Runs commands that perform additional tasks at the beginning of a patch kit
removal in the UNDO PATCH operation.

• EXECUTE REBOOT
Runs commands that initiate a system reboot at the conclusion of a
PRODUCT INSTALL or PRODUCT RECONFIGURE operation.

• EXECUTE START . . . STOP
Runs commands during the execution phase.

The START commands are executed during an installation or upgrade. In
addition, a predefined message is displayed telling the user to add these
commands to their SYSTARTUP_VMS.COM file.

The STOP commands are executed when the product is removed or
upgraded. In addition, a predefined message is displayed telling the user
to add these commands to their SYSHUTDWN.COM file whenever the
product is installed, upgraded, or reconfigured.

• EXECUTE TEST
Runs an installation verification procedure (or functional test of the product)
after the installation has completed. Prior to running the test, the product
database is updated and closed. The user can prevent the running of the
installation verification procedure by specifying the /NOTEST qualifier with
the PRODUCT INSTALL command.

• EXECUTE UPGRADE
Runs commands when the product is upgraded by another version of the
product. Commands are run before product material from the previously
installed version of the product is deleted.

• ASSEMBLE EXECUTE option of a FILE statement
Runs commands that create the specified file in a scratch directory at
execution time, then copies the file to the target disk. This replaces the usual
process of extracting a packaged copy of the file from the kit. A typical use
of the ASSEMBLE EXECUTE option is to dynamically link an image at
installation time.

6–2 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Table 6–1 lists the PDL statements you can use to run command procedures
(or individual DCL commands) that you provide. The statements are listed in
the order of their execution during an installation, reconfiguration, or remove
operation. Note that the table distinguishes between a new installation and an
upgrade installation. The term upgrade denotes replacement of an installed
version of a product by a higher, lower, or the same version of the product.

Table 6–1 Command Procedure Execution by Operation

PDL Statements
Listed in the
Order of Execution

PRODUCT
INSTALL
1st Time

PRODUCT
INSTALL
Upgrade

PRODUCT
RECONFIGURE

PRODUCT
REMOVE

PRODUCT
UNDO
PATCH

EXECUTE
PRECONFIGURE

yes yes yes no no

EXECUTE . . . STOP no yes1 no yes no

EXECUTE . . . REMOVE no no no yes no

EXECUTE UPGRADE no yes1 no no no

FILE statement using
ASSEMBLE EXECUTE

yes yes yes2 no no

EXECUTE INSTALL . . . yes yes yes no no

EXECUTE START . . . yes yes no no no

EXECUTE
POSTINSTALL

yes yes yes no no

EXECUTE TEST yes yes yes no no

EXECUTE LOGIN no3 no3 no3 no no

EXECUTE START . . .
STOP

no3 no3 no3 no no

EXECUTE ABORT yes4 yes4 yes4 no no

EXECUTE REBOOT yes5 yes5 yes5 no no

EXECUTE PRE_UNDO no no no no yes

EXECUTE POST_UNDO no no no no yes

1Only commands from the EXECUTE statement of the product being removed are run.
2The file is created only if the statement is part of a configuration option that the reconfiguration operation selects for the
first time.
3The only action performed at this time is to display a message to the user.
4Commands from the EXECUTE ABORT statement are run only when an error condition causes the operation to
terminate.
5Commands from the EXECUTE REBOOT statement are run if the user allows it during the operation.

6.1.1 Noninteractive and Interactive Mode
The mode (noninteractive or interactive) in which an EXECUTE statement runs
determines the following:

• The type of subprocess used to run your command procedures (or individual
DCL commands)

• How a command procedure interacts with the user

By default, an EXECUTE statement runs in noninteractive mode. You can
specify interactive mode with the INTERACTIVE option. For example, the
following command sets up a command procedure to run in interactive mode
when the product is installed:

Advanced Topics 6–3

Advanced Topics
6.1 Using Command Procedures in PDL Statements

execute postinstall "@PCSI$DESTINATION:[SYSUPD]CONFIGURE.COM" interactive ;

In both noninteractive and interactive modes, the utility checks the final exit
status of a command procedure (or individual DCL command) to determine
whether or not the EXECUTE statement completed successfully or failed.
Although error messages generated by a command procedure are displayed to the
user, this does not determine its success or failure. The utility bases this decision
solely on the final exit status. It is the kit developer’s responsibility to ensure
that proper status is conveyed to the utility upon termination of any command
procedure incorporated into the kit.

The following table compares noninteractive and interactive mode.

Table 6–2 Comparison of Noninteractive with Interactive Mode

Noninteractive Mode (default) Interactive Mode

Used when you do not specify the INTERACTIVE
option

Used when you specify the INTERACTIVE option

At the start of processing a PRODUCT command,
the utility creates a detached subprocess
using the SYS$CREPRC system service. This
subprocess is reused to run the commands from
all of the EXECUTE statements specified to run
in noninteractive mode. 1

The utility creates a new subprocess using the
LIB$SPAWN run-time library routine for each
EXECUTE statement whose commands are to run
interactively. All the commands specified for the
same EXECUTE statement are performed, then the
subprocess is terminated.

Interaction with the user is not possible. The
utility communicates with the subprocess
through mailboxes. It filters all output from
the subprocess, only displaying lines of output to
the user that resemble error messages (that is,
lines beginning with a percent sign). All other
lines of output are discarded.

Communication with the subprocess is performed
through the user’s terminal connection. The utility
does not monitor input to or output from the
subprocess. This enables a command procedure to
enter into a dialog with the user (that is, display text
and solicit responses from the user).

The utility obtains exit status from the value
of the $STATUS symbol received in response
to a SHOW SYMBOL $STATUS command it
sends to the subprocess. Status is queried in this
manner for each DCL command you specify in
the EXECUTE statement (for example, "@a.com",
"show symbol $status", "@b.com", "show symbol
$status", . . .). If the command refers to a
command procedure (for example, "@c.com"),
status is checked only when the command
procedure exits.

Exit status is obtained from the final status value
returned from the LIB$SPAWN routine (the value of
the $STATUS symbol from the last DCL command
executed). Since a new subprocess is created for the
execution of each command procedure (or individual
DCL commands) you specify, the same level of status
checking is performed for interactive mode as is done
for noninteractive mode, although the technique is
different.

1The utility may also perform other actions in the same subprocess, such as the updating of libraries using the
LIBRARIAN command.

6.1.2 Packaging a Command Procedure
You can package command procedure files that run from EXECUTE statements
in two ways:

• With a separate FILE statement
For most EXECUTE statements, you can specify a command procedure in a
FILE statement. For example:

file [SYSUPD]EXEC_PREC.COM;
execute install "@PCSI$DESTINATION:[SYSUPD]EXEC_PREC.COM";

This causes the utility to copy the command procedure to the target disk and
execute it from there. The command procedure remains on the target disk.

6–4 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

The technique of using a FILE statement cannot be used for the EXECUTE
PRECONFIGURE statement because EXECUTE PRECONFIGURE is
processed before files are copied to the target disk.

• With the USES option
For most EXECUTE statements, you can specify a command procedure with
the USES option (instead of using a FILE statement). For example:

execute install "@PCSI$SOURCE:[000000]EXEC_PREC.COM"
uses [000000]EXEC_PREC.COM;

In this case, the utility extracts the command procedure from the kit
and places it in a temporary directory (pointed to by the logical name
PCSI$SOURCE) where it is executed. Afterwards, the command procedure is
automatically deleted.

The USES option also lets you list additional files needed by the command
procedure. For example, if you link an image during the installation, you can
use the USES option to package required object files for the link operation.
They are also placed in the temporary directory and deleted after the
statement is processed.

Keep the following rules in mind:

• Do not use a FILE statement and the USES option to specify the same file.
Specifying both results in the file being packaged twice in the kit.

• The USES option is not available for EXECUTE statements that are run
when the product is removed (because the product kit is not referenced).

• Do not use the USES option when the customer may run the command
procedure at a later time (for example, a startup command procedure).

The only exception to these rules are the EXECUTE PRE_UNDO and EXECUTE
POST_UNDO statements, which require the USES option even though the
commands are not run during the product installation.

6.1.3 Logical Names for Subprocess Environments
In preparation for running command procedures (or individual commands)
specified in EXECUTE statements, the utility defines up to three logical names:

• PCSI$SOURCE

• PCSI$DESTINATION

• PCSI$SCRATCH

Command procedures use these logical names in the context of the subprocess
in which they are run. The logical name environment differs depending on the
EXECUTE statement being used. For more information, see the descriptions for
individual EXECUTE statements in Chapter 7.

6.1.4 EXECUTE Statement Summary
Figure 6–1 lists the EXECUTE statements and summarizes information about
them.

Advanced Topics 6–5

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6–1 EXECUTE Statement Summary

VM-0709A-AI

no no
run command(s)
and display
predefined message

EXECUTE...STOP
non-interactive (default)
and interactive PCSI$DESTINATION

no no
run command(s)
and display
predefined message

EXECUTE START non-interactive (default)
and interactive PCSI$DESTINATION

 no yes run command(s)FILE statement using
ASSEMBLE EXECUTE

 non-interactive only
 PCSI$SOURCE
 PCSI$SCRATCH
 PCSI$DESTINATION

2 3

EXECUTE
PRECONFIGURE

run command(s) yes yesnon-interactive (default)
and interactive

PCSI$DESTINATION
PCSI$SOURCE
PCSI$SCRATCH

1

1

1

run command(s)EXECUTE INSTALL... non-interactive (default)
and interactive

PCSI$SOURCE
PCSI$SCRATCH
PCSI$DESTINATION

yes yes

run command(s)EXECUTE UPGRADE non-interactive (default)
and interactive PCSI$DESTINATIONyes no

yes yesrun command(s) non-interactive (default)
and interactive

PCSI$SOURCE
PCSI$SCRATCH
PCSI$DESTINATION

EXECUTE POSTINSTALL

yes yesrun command(s) non-interactive (default)
and interactive

PCSI$SOURCE
PCSI$SCRATCH
PCSI$DESTINATION

EXECUTE ABORT

yes norun command(s) non-interactive (default)
and interactive PCSI$DESTINATIONEXECUTE TEST

yes
display predefined
message n/an/an/aEXECUTE LOGIN

norun command(s)
PCSI$SOURCE
PCSI$SCRATCH
PCSI$DESTINATION

yesnon-interactive (default)
and interactiveEXECUTE POST_UNDO

You can specify many FILE statements in a PDF, but only one ASSEMBLE EXECUTE option per FILE statement.2
You must use the USES option to identify files needed by the EXECUTE statement.1

The name of the option for the FILE statement is ASSEMBLE USES.3

run command(s)EXECUTE...REMOVE non-interactive (default)
and interactive yes no n/a

run command(s)EXECUTE REBOOT non-interactive (default)
and interactive yes no PCSI$DESTINATION

run command(s)EXECUTE PRE_UNDO non-interactive (default)
and interactive no yes

PCSI$SOURCE
PCSI$SCRATCH
PCSI$DESTINATION

USES Option
Available
USES Option
Available

Logical Names
Defined for
Subprocess

Logical Names
Defined for
Subprocess

6.1.5 Processing EXECUTE Statements
This section provides flow diagrams for the PRODUCT INSTALL, PRODUCT
RECONFIGURE, and PRODUCT REMOVE commands. There is a separate
diagram for a first time installation of a product and for an upgrade of a product.

These diagrams illustrate the processing of EXECUTE statements in relation to
events that occur during the major phases of an operation. Shaded boxes show
typical output from these commands to help establish the timeline of events.

The installation and reconfiguration operations are performed in three phases:

• Configuration

• Execution

• Postprocessing

6–6 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

In contrast, the remove operation has only an execution phase. Following are
brief descriptions of the major phases of an operation.

Configuration Phase
During the configuration phase, the user selects any options the product
might provide and answers any questions that might be asked to complete
the configuration process. Informational messages from the kit may be displayed
at this time.

Execution Phase
During the execution phase, in a new installation, upgrade, or reconfiguration
operation, the utility analyzes managed objects supplied by the product for
conflicts. The utility uses generation information to resolve these conflicts. Any
conflicts that cannot be resolved cause the utility to terminate the operation. In
a remove operation, the utility does not perform any conflict detection or conflict
resolution.

For all operations, the next step in the execution phase is to place the objects
from all participating products in execution order. The utility merges the
requirements of all affected products to produce a sequenced list of actions to
perform. Note that the order in which the utility performs installation tasks
might not correspond to the order in which PDL statements appear in the PDF,
even when only one product is participating in an operation.

Finally, the utility modifies the target disk according to the execution order of
the objects. Directories are created as required. The utility moves files to their
destination directories as new or replacement files and merges library modules
into existing libraries. When all actions have been successfully completed, the
utility updates the SYS$SYSTEM:*.PCSI$DATABASE files that make up the
product database.

Postprocessing Phase
During the postprocessing phase, actions such as running a functional test of
the product or displaying informational messages to the user are performed.
Since the postprocessing phase occurs after the installation or reconfiguration
operation has completed and the product database has been updated on disk,
any errors that might occur during this phase (such as failure of the functional
test) do not affect the state of the product. Also, any error that occurs during the
postprocessing phase will not trigger an EXECUTE ABORT statement.

Advanced Topics 6–7

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6–2 INSTALL Operation - Product Is Installed for the First Time

Configuration phase starting ...

You will be asked to choose options, if any, for each
selected product and for any products that may be installed
to satisfy software dependency requirements.

CPQ AXPVMS GAME V1.0

Execution phase starting ...

The following product will be installed to destination:
 CPQ AXPVMS GAME V1.0 DISK$ALPHASYS:[VMS$COMMON.]

Portion done: 0%

EXECUTE PRECONFIGURE

EXECUTE INSTALL ...
EXECUTE START ...
EXECUTE POSTINSTALL

EXECUTE TEST
EXECUTE LOGIN (messages only)
EXECUTE START ... STOP (messages only)

All participating products are configured.

Product database files are updated on disk.

 FILE ... ASSEMBLE EXECUTE

Portion done: 100%

The following product has been installed:
 CPQ AXPVMS GAME V1.0 Layered Product

VM-0722A-AI

EXECUTE ABORT
Initiated when
an error condition
occurs during the
timeframe denoted
by the bracket

Configuration
Phase

Execution
Phase

Post-
Processing
Phase

The target disk is modified according to the
execution order of the objects.

Legend:

 Fixed text displayed to user Description of background processing

Managed objects supplied by the product, such as
files or library modules, are analyzed for conflicts. Objects
from all participating products are placed in execution order.

6–8 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6–3 INSTALL Operation - Product Is Upgraded

Configuration phase starting ...

You will be asked to choose options, if any, for each
selected product and for any products that may be installed
to satisfy software dependency requirements.

CPQ AXPVMS GAME V1.0

Execution phase starting ...

The following product will be installed to destination:
 CPQ AXPVMS GAME V1.0 DISK$ALPHASYS:[VMS$COMMON.]

Portion done: 0%

EXECUTE PRECONFIGURE

EXECUTE INSTALL ...
EXECUTE START ...
EXECUTE POSTINSTALL

EXECUTE ... STOP
EXECUTE UPGRADE

EXECUTE TEST
EXECUTE LOGIN (messages only)
EXECUTE START ... STOP (messages only)

Portion done: 100%

The following product has been installed:
 CPQ AXPVMS GAME V1.0 Layered Product

VM-0723A-AI

EXECUTE ABORT
Initiated when
an error condition
occurs during the
timeframe denoted
by the bracket

Configuration
Phase

Execution
Phase

Legend:

 Fixed text displayed to user

Post-
Processing
Phase

Description of background processing

All participating products are configured.

Product database files are updated on disk.

 FILE ... ASSEMBLE EXECUTE

The target disk is modified according to the
execution order of the objects.

Managed objects supplied by the product, such as
files or library modules, are analyzed for conflicts. Objects
from all participating products are placed in execution order.

Advanced Topics 6–9

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6–4 RECONFIGURE Operation - Product Is Reconfigured

Configuration phase starting ...

You will be asked to choose options, if any, for each
selected product and for any products that may be installed
to satisfy software dependency requirements.

CPQ AXPVMS GAME V1.0

Execution phase starting ...

The following product will be installed to destination:
 CPQ AXPVMS GAME V1.0 DISK$ALPHASYS:[VMS$COMMON.]

Portion done: 0%

EXECUTE PRECONFIGURE

EXECUTE INSTALL ...
EXECUTE POSTINSTALL

EXECUTE TEST
EXECUTE LOGIN (messages only)
EXECUTE START ... STOP (messages only)

Portion done: 100%

The following product has been reconfigured:
 CPQ AXPVMS GAME V1.0 Layered Product

VM-0724A-AI

EXECUTE ABORT
Initiated when
an error condition
occurs during the
timeframe denoted
by the bracket

Configuration
Phase

 FILE ... ASSEMBLE EXECUTE
(run only if part of newly selected option)

Legend:

 Fixed text displayed to user Description of background processing

Post-
Processing
Phase

All participating products are configured.

Product database files are updated on disk.

The target disk is modified according to the
execution order of the objects.

Managed objects supplied by the product, such as
files or library modules, are analyzed for conflicts. Objects
from all participating products are placed in execution order.

Execution
Phase

6–10 Advanced Topics

Advanced Topics
6.1 Using Command Procedures in PDL Statements

Figure 6–5 REMOVE Operation - Product Is Removed

The following product will be removed from destination:
 CPQ AXPVMS GAME V1.0 DISK$ALPHASYS:[VMS$COMMON.]

Portion done: 0%

EXECUTE ... STOP
EXECUTE ... REMOVE

Portion done: 100%

The following product has been removed:
 CPQ AXPVMS GAME V1.0 Layered Product

VM-0725A-AI

Execution
Phase

Legend:

 Fixed text displayed to user Description of background processing

Product database files are updated on disk.

The target disk is modified according to the
execution order of the objects.

Objects from all participating products are placed in
execution order.

6.2 Forcing Operation Termination from A Command Procedure
There may be times when the command procedure you have included in your
PDF determines during execution that the product processing environment is
inadequate and cannot successfully complete the operation. In this case, you may
want to abort the execution. You may do this by exiting your command procedure
with the status code %X053D9301.

This status code is intercepted by the installation utility and gracefully and
cleanly aborts the operation. It is recommended that you include an appropriate
message explaining why the operation is being terminated in your command
procedure.

This status code is recommended for prcedures run with the EXECUTE
PRECONFIGURE and EXECUTE PRE_UNDO statements. It may also be
successfully used with the EXECUTE INSTALL, EXECUTE POSTINSTALL,
EXECUTE START, and EXECUTE UPGRADE statements, but it is important
the operation is run with the /RECOVERY_MODE qualifier. The abort code is
ignored by the installation utility when used in the command procedure run with
the EXECUTE TEST statement.

Advanced Topics 6–11

Advanced Topics
6.3 Testing and Debugging Tips

6.3 Testing and Debugging Tips
The POLYCENTER Software Installation utility includes features you can use
to monitor an operation to ensure it functions as expected. This section provides
information on the following topics:

• /LOG qualifier

• /TRACE qualifier

• /DEBUG=CONFLICT qualifier

6.3.1 The /LOG Qualifier
The /LOG qualifier for the PRODUCT INSTALL, PRODUCT RECONFIGURE,
PRODUCT REMOVE, and PRODUCT UNDO PATCH commands causes an
informational message to be displayed whenever a file is created, modified, or
deleted on the destination disk. Using this qualifier, you can verify that product
material from your kit has been placed in the proper directories, and that files
have been correctly deleted, modified, or renamed. The information logged
includes:

• Creation and deletion of directories

• Creation, deletion, and renaming of files

• Insertion and removal of modules from libraries

• File conflict detection and resolution when two or more products provide the
same file (or two or more patches for a product provide the same file)

• Module conflict detection and resolution when two or more products provide
the same module (or two or more patches for a product provide the same
module)

Use the /LOG qualifier with the PRODUCT PACKAGE, PRODUCT COPY, and
PRODUCT EXTRACT commands to list the files being processed.

6.3.2 The /TRACE Qualifier
The /TRACE qualifier for the PRODUCT INSTALL, PRODUCT RECONFIGURE,
PRODUCT REMOVE, and PRODUCT UNDO PATCH commands is used to
display information about the execution of DCL commands run in the context of a
subprocess during the processing of the PRODUCT command.

Most EXECUTE statements in the PDF result in the execution of one or more
DCL commands or entire command procedures. Depending on whether the
INTERACTIVE option is used on the EXECUTE statement, these commands are
run in one of the following ways:

• In an interactive subprocess created by LIB$SPAWN where input and output
is directed to the user’s terminal.

• In a noninteractive subprocess created by SYS$CREPRC where input and
output is performed through mailboxes under the control and monitoring of
the POLYCENTER Software Installation utility.

In addition, the utility performs certain actions (such as library updates) by
sending commands to a noninteractive subprocess. See Section 6.1 for more
information about interactive and noninteractive modes of execution.

6–12 Advanced Topics

Advanced Topics
6.3 Testing and Debugging Tips

For interactive mode, the /TRACE qualifier logs the creation and deletion of
the subprocess used to run the command, identifies the command line being
executed, and displays the final exit status of the subprocess. Any output that
DCL produces is displayed with or without the use of /TRACE.

For noninteractive mode, the /TRACE qualifier logs the creation and deletion
of the subprocess used to run commands, identifies commands the utility sends
to the subprocess to set up the environment, identifies commands sent from
the EXECUTE statement, and displays the completion code of each command
processed. It also directs the utility to send all mailbox output to the user’s
terminal.

Normally in noninteractive mode, the utility monitors all output from the
subprocess and suppresses any output that does not appear to be an error
message. However, use of the /TRACE qualifier directs the utility to display all
output from the subprocess. This allows you to use SET VERIFY in command
procedures that are run in noninteractive mode to have their commands echoed
as they are executed. Also, you can insert WRITE SYS$OUTPUT commands to
provide additional information for debugging. Specifically, the /TRACE qualifier
does the following to log input and output for noninteractive mode:

• Identifies input to the subprocess by prefacing lines with the message:
"%PCSI-I-PRCINPUT, input to subprocess follows . . . "

• Lists each command sent to the subprocess, including the definition of logical
names for the subprocess environment such as PCSI$SCRATCH.

• Lists each command you specify in EXECUTE statements as it is sent to the
subprocess.

• Identifies output from the subprocess by prefacing lines with the message:
"%PCSI-I-PRCOUTPUT, output from subprocess follows . . . "

• Displays all output from DCL commands as they are executed, including
status messages that are normally suppressed in noninteractive mode.

• Displays the output from the $SHOW SYMBOL $STATUS command that is
sent to the subprocess to obtain final exit status from a command procedure;
this value determines the success or failure of the execute statement.

6.3.3 The /DEBUG=CONFLICT Qualifier
If your product replaces files or library modules that are provided by another
product (or if you have created patch kits that update the same objects), you
can use the /DEBUG=CONFLICT qualifier with the /LOG qualifier to obtain
detailed information on file and module conflict resolution. You can use the
/DEBUG=CONFLICT qualifier with the PRODUCT INSTALL and PRODUCT
RECONFIGURE commands. With this qualifier you can see:

• The generation numbers used in the comparison

• Whether the object is retained or replaced and the name of the product that
supplies the object

The majority of products do not replace files from another product. However, if
your product does this, it is your responsibility to work with the kit developer of
the other product to decide how you will use generation numbers to determine
which object takes precedence when there is a conflict.

Advanced Topics 6–13

Advanced Topics
6.3 Testing and Debugging Tips

Note

If neither product uses a generation number attribute and an interproduct
conflict occurs, the utility will not be able to resolve the conflict and the
installation will terminate.

For intraproduct conflict, you need only coordinate the use of generation numbers
by your full, partial, and patch kits so that your customers can apply updates
to the product in any order. For example, if you do not use generation numbers
in your patch kits for objects, then the objects from the current patch kit will
supersede the others. To avoid having the order of patch kit installation affect
the final results, we recommend that you always assign generation numbers to
files and modules provided by patch kits.

6.3.4 Installing Your Product on Older Versions of OpenVMS
The POLYCENTER Software Installation utility has evolved since it was first
released with OpenVMS V6.1. New PDL statements and options have been added
in subsequent releases and are summarized in Section 7.1. While backward
compatibility is a strong goal, occasionally software corrections and improvements
in internal algorithms have resulted in slight differences in behavior when a
product kit is installed on different version of OpenVMS (specifically different
versions of the POLYCENTER Software Installation utility).

For example, a change was made in the utility that ships with OpenVMS
Version 7.3 that affects the file chosen in conflict detection when there is a tie
in generation numbers. Previously, the file already installed on the target disk
was retained; now the file from the kit replaces the file on the target disk. In
both cases, the file is considered to be the same (because the nonzero generation
numbers declare the files to be identical), but use of the /LOG qualifier would
show procedural differences in how the conflict is handled.

Therefore, if your product is supposed to install on a range of versions of
OpenVMS, we strongly recommend that you verify the installation and removal of
your kit on each version that you support. In particular, perform these operations
with the /LOG and /TRACE qualifiers to ascertain that your files are processed as
you intended.

6–14 Advanced Topics

7
Product Description Language Statements

This chapter describes the individual Product Description Language (PDL)
statements and functions.

7.1 PDL Evolution
The POLYCENTER Software Installation utility is an integrated component of
OpenVMS Version 6.1 and later. After its introduction, subsequent releases of
the OpenVMS operating system have incorporated various enhancements to PDL
statements and functions. It is likely that we will make further enhancements
over time.

Earlier versions of the OpenVMS operating system do not support the new
utility features provided in later versions of the operating system. This creates a
challenge for the developer who must devise a kit that will install as expected in
a variety of customer environments.

You can write a product description file based on the earliest version of OpenVMS
at your customer sites. If you choose this approach, you must have or acquire
knowledge about customer environments. It means you can use only the
statements and functions (and their parameters and options) available for the
earliest customer installed version of OpenVMS.

Another option you have is to require your customers to apply a software patch
kit, available from Hewlett-Packard, that back ports utility functionality to
earlier versions of OpenVMS. With this strategy, you can use the latest utility
enhancements in your product installation.

Figure 7–1 and Figure 7–2 let you quickly see when new utility features were
made available. Note that bug fixes are not shown unless they impact the
behavior of the utility. For more information on a specific feature, please refer to
the appropriate section in this manual.

Product Description Language Statements 7–1

Product Description Language Statements
7.1 PDL Evolution

Figure 7–1 Features by OpenVMS Version: Statements

PDL Statements OpenVMS V7.1
OpenVMS V7.1-2 (Alpha)
OpenVMS V7.2 (VAX) OpenVMS V7.3

APPLY TO

New option: ABORT

New option:
WITH HELPTEXT

New option:
WITH HELPTEXT

ERROR

EXECUTE ABORT

EXECUTE...REMOVE

EXECUTE POSTINSTALL

EXECUTE PRECONFIGURE

EXECUTE RELEASE

EXECUTE START...STOP

EXECUTE TEST

FILE

INFORMATION

MODULE

OPTION

SOFTWARE

UPGRADE

New option: VERSION ABOVE

New option: VERSION ABOVE

New statement

New option: INTERACTIVE

New option: INTERACTIVE

New option: INTERACTIVE

EXECUTE UPGRADE

New option: INTERACTIVE

New logical name:
PCSI$DESTINATION

New option: INTERACTIVE

New logical name:
PCSI$DESTINATION

New statement

New option: VERSION ABOVE

New behavior: file from kit
selected to resolve conflict
on non-zero generation
number tie

New behavior: supports
intra-product conflict detection

New behavior: performs action
before the configuration dialog,
when possible

New behavior: supports
intra-product conflict detection

New behavior: module from
kit selected to resolve conflict
on non-zero generation
number tie

BOOTSTRAP BLOCK Obsolete: not available
for layered products

PATCH IMAGE

PATCH TEXT

VM-0700A-AI

New statement

Obsolete: new kits should use
EXECUTE UPGRADE or other
EXECUTE statements

Obsolete: new kits should use
FILE statement to replace file

Obsolete: new kits should use
FILE statement or an
EXECUTE statement

New behavior: runs also on
reconfigure operation

7–2 Product Description Language Statements

Product Description Language Statements
7.1 PDL Evolution

Figure 7–2 Features by OpenVMS Version: Functions

PDL Functions OpenVMS V7.1
OpenVMS V7.1-2 (Alpha)
OpenVMS V7.2 (VAX) OpenVMS V7.3

SOFTWARE

UPGRADE New option: VERSION ABOVE

New function

New behavior: detects whether
or not a patch or mandatory
update kit has been installed
New options:

VM-0703A-AI

New behavior: version
range checking fully
supported

LOGICAL NAME

INSTALLED BEFORE
INSTALLED AFTER
KIT ACCESSIBLE
VERSION ABOVE

7.2 PDL Conventions
The PDL conventions used are described in the Preface. However, the syntax
descriptions in this chapter make significant use of several conventions, and they
are worth repeating here:

• Brackets ([]) indicate optional elements. You can choose one, none, or all of
the options.

• Braces ({ }) indicate a required choice of options; you must choose one of the
options listed.

• The vertical bar (|) separates optional elements. It functions as a logical OR
between two options, as in A | B, or A | B | C.

• Horizontal ellipsis points (...) in examples indicate that the preceding item
or items can be repeated one or more times, or that additional parameters,
values, or other information can be entered.

• The semicolon (;) in syntax diagrams is required syntax.

• Angle brackets (<>) in syntax diagrams are required syntax.

• A double hyphen (--) indicates that the rest of the line is a comment.

• Unless otherwise indicated, extra space and tab characters may be used freely
between syntax elements for the purposes of formatting and readability.

• A statement may span more than one line.

Note

The space is required between the [NO] qualifier and its option, for
example [NO] ACCESS CONTROL. This differs from standard DCL
syntax.

Product Description Language Statements 7–3

Product Description Language Statements
7.3 PDL Reference Section

7.3 PDL Reference Section
The rest of this chapter describes each PDL statement in detail and provides
examples of its use. The PDL statements are presented in alphabetical order.
Certain statements can be used as functions in the evaluation of an IF statement.
The functional form of a statement is documented along with the definition of the
statement.

7–4 Product Description Language Statements

ACCOUNT

ACCOUNT

The ACCOUNT statement uses a command procedure to create a system account.

Syntax

ACCOUNT name WITH (parameters,...) ;

Parameters

name
Indicates the user name of the account as a 1- to 12-character string. The user
name is passed to the command procedure as P1.

WITH (parameters,...)
Indicates the list of parameters that are passed to the command procedure
that creates the account. Each parameter must be a single unquoted or quoted
string that specifies P2 through P8, in order. If there are no qualifiers to pass,
specify a null string (‘‘ ’’). Refer to the Description section for the meaning of the
parameters.

Description

The ACCOUNT statement uses a command procedure
(SYS$UPDATE:PCSI$CREATE_ACCOUNT.COM) to create an account. The
parameters that you pass to the command procedure that creates the accounts
are:

• P1 specifies the user name of the account (using the name parameter).

• P2 specifies general AUTHORIZE qualifiers. If there are no qualifiers to pass,
specify a null string (‘‘ ’’).

• P3 specifies a comma-separated list of rights identifiers to grant to the user
name. These identifers must already exist, or be created with a separate
RIGHTS IDENTIFIER statement.

• P4 through P8 specify other general AUTHORIZE qualifiers.

Certain AUTHORIZE qualifiers must be used with care. For example,
/DIRECTORY=dir-name assigns a default directory name to be used by the
account. However, the POLYCENTER Software Installation utility does not
create this directory for you; you must make sure that it exists.

When you remove a product that created accounts, the utility uses a command
procedure (SYS$UPDATE:PCSI$DELETE_ACCOUNT.COM) to delete accounts
associated with your product. This happens regardless of whether the
SYSUAF.DAT file is shared by another system disk.

Note

In a future version, the utility may create and delete these managed
objects directly without the use of command procedures. If this is the
case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the
utility.

Product Description Language Statements 7–5

ACCOUNT

The ACCOUNT statement specifies an account managed object that has the
following characteristics:

• Its name is the value of the name parameter. The name must be unique
among all account names.

• It has operating lifetime.

• Managed object conflict is not recoverable.

See Also

RIGHTS IDENTIFIER

Example
account TEST with ("/priv=(tmpmbx, netmbx)",!

"PCSI_TEST","
"/account=PCSI",#
"/astlm=500/biolm=200/bytlm=96000",
"/wsdefault=4000",
"/flags=(nodisuser,genpwd)",
"/pwdminimum=8");

In this example, the ACCOUNT statement creates the TEST account.

! Parameter P2 specifies the TMPMBX and NETMBX privileges to be assigned
to the TEST account.

" Parameter P3 is a rights identifier. This name must exist on the system prior
to executing the ACCOUNT statement. It can be created with a RIGHTS
IDENTIFIER statement.

Parameters P4 to P8 assign certain values to the TEST account.

7–6 Product Description Language Statements

APPLY TO

APPLY TO

The APPLY TO statement specifies a product or product version that you want to
update with a patch or mandatory update kit.

Note

You must include an APPLY TO statement in a patch or mandatory
update PDF to identify the product that is being updated. This statement
is not valid in other types of PDFs.

Syntax

APPLY TO producer base name
[{ VERSION ABOVE version |
VERSION BELOW version |
VERSION MAXIMUM version |
VERSION MINIMUM version |
VERSION REQUIRED version |
VERSION ABOVE version VERSION BELOW version |
VERSION ABOVE version VERSION MAXIMUM version |
VERSION MINIMUM version VERSION BELOW version |
VERSION MINIMUM version VERSION MAXIMUM version }] ;

Parameters

producer
Indicates the legal owner of the software product. This parameter must be a
single quoted or an unquoted string.

base
Indicates the base hardware/software system on which the product is intended to
be installed. This parameter must be a single quoted or an unquoted string. By
convention, the string I64VMS denotes an OpenVMS Itanium product, the string
AXPVMS denotes an OpenVMS Alpha product, VAXVMS denotes an OpenVMS
VAX product, and VMS denotes a product applicable for either OpenVMS Alpha
or VAX.

name
Indicates the name of the product. This parameter must be a single quoted or an
unquoted string. The combination of producer, base, and name parameters must
be unique among products installed on the system.

Options

VERSION ABOVE version
Establishes a lower version limit. The version identifier must be a single quoted
or an unquoted string. Use this option to specify that the product version must
be greater than (but not equal to) the specified version. You cannot use this
option with either the VERSION MINIMUM or VERSION REQUIRED option.
By default, there is no lower version limit.

Product Description Language Statements 7–7

APPLY TO

VERSION BELOW version
Establishes an upper version limit. The version identifier must be a single quoted
or an unquoted string. Use this option to specify that the product version must be
less than (but not equal to) the specified version. You cannot use this option with
either the VERSION MAXIMUM or VERSION REQUIRED option. By default,
there is no upper version limit.

VERSION MAXIMUM version
Establishes an upper version limit. The version identifier must be a single quoted
or an unquoted string. Use this option to specify that the product version must
be less than or equal to the specified version. You cannot use this option with
either the VERSION BELOW or VERSION REQUIRED option. By default, there
is no upper version limit.

VERSION MINIMUM version
Establishes a lower version limit. The version identifier must be a single quoted
or an unquoted string. Use this option to specify that the product version must
be greater than or equal to the specified version. You cannot use this option with
either the VERSION ABOVE or VERSION REQUIRED option. By default, there
is no lower version limit.

VERSION REQUIRED version
Establishes a required version. The version identifier must be a single quoted
or an unquoted string. Use this option to specify that the product version must
be equal to the specified version. You cannot use this option with either the
VERSION ABOVE, VERSION BELOW, VERSION MAXIMUM, or VERSION
MINIMUM option. By default, there is no required version constraint.

Description

The APPLY TO statement specifies the name of an installed product that a patch
or mandatory update kit modifies. You can use options on this statement to limit
the application of the patch or mandatory update either to a specific version of
the product or to a range of versions. If you do not use version constraints, then
you can modify any version of the product by installing a patch or mandatory
update kit.

The APPLY TO statement is a utility directive and does not specify a managed
object.

See Also

PRODUCT
SOFTWARE
UPGRADE

Example

product HP VAXVMS CSCPAT57 V1.0 patch ;
apply to HP VAXVMS FORTRAN version required V2.0 ;
patch image [SYSEXE]FORTRAN.EXE with [000000]CSCPAT57.PAT ;

end product ;

This example shows part of the product description for a patch to HP Fortran.
As shown in the APPLY TO statement, you must have HP Fortran Version 2.0
installed to apply this patch.

7–8 Product Description Language Statements

BOOTSTRAP BLOCK (VAX only)

BOOTSTRAP BLOCK (VAX only)

The BOOTSTRAP BLOCK statement updates the bootstrap block on the system
disk to reference the bootstrap file.

Note

As of OpenVMS Version 7.3, the BOOTSTRAP BLOCK statement is
obsolete and its use is reserved for Hewlett-Packard. This statement is to
be used by an operating system product, not by a layered product or other
application. Documentation of the BOOTSTRAP BLOCK statement may
be discontinued in a future release of this manual.

Syntax

BOOTSTRAP BLOCK name IMAGE source ;

Parameters

name
Indicates the bootstrap file specification. You must provide this file with a FILE
statement. You must also ensure that the file has bootstrap scope and product or
assembly lifetime (using the SCOPE statement).

IMAGE source
Indicates the file specification of the file that contains the bootstrap block image.
You must provide this file with a FILE statement, and it must also have product
scope and product lifetime.

Description

The BOOTSTRAP BLOCK statement specifies the file that the bootstrap block
references and updates the bootstrap block on the system disk.

The BOOTSTRAP BLOCK statement also specifies a bootstrap block managed
object that has the following characteristics:

• It is unnamed and unique within the bootstrap scope.

• It has operating lifetime and bootstrap scope.

• Managed object conflict is not recoverable.

See Also

FILE
SCOPE

Product Description Language Statements 7–9

BOOTSTRAP BLOCK (VAX only)

Example

scope bootstrap;
file [sysexe]vmb.exe;

end scope;
file [sysexe]bootblock.exe;

.

.

.
bootstrap block [sysexe]vmb.exe image [sysexe]bootblock.exe ;

This example uses the BOOTSTRAP BLOCK statement to point the bootstrap
block to the bootstrap file ([SYSEXE]VMB.EXE).

7–10 Product Description Language Statements

DIRECTORY

DIRECTORY

The DIRECTORY statement creates the specified directory if it does not already
exist.

Syntax

DIRECTORY name
[[NO] ACCESS CONTROL (access-control-entry...)]
[OWNER name]
[PROTECTION { EXECUTE | PRIVATE | PUBLIC }]
[[NO] VERSION LIMIT maximum] ;

Parameter

name
Indicates the directory name.

Options

[NO] ACCESS CONTROL (access-control-entry...)
Indicates the minimum access control entries (ACEs) that the directory will have.
You must specify the ACEs as a quoted string. By default, directories have no
added ACEs.

OWNER name
Indicates the account name that owns the directory. By default, the directory is
owned by the SYSTEM account. If you specify a numeric value for name, you
must enclose the string in quotation marks, for example "[11,7]".

PROTECTION EXECUTE
Sets the directory protection to (S:RWE, O:RWE, G:E, W:E) so that users have
execute access.

PROTECTION PRIVATE
Sets the directory protection to (S:RWE, O:RWE, G, W) so that users have no
access.

PROTECTION PUBLIC
Sets the directory protection to (S:RWE, O:RWE, G:RE, W:RE) so that users have
read and execute access. This is the default.

[NO] VERSION LIMIT maximum
Indicates the maximum number of file versions in the directory as an unsigned
integer from 1 through 32767. The default is no version limit.

Description

The DIRECTORY statement creates the specified directory if it does not already
exist. You use the DIRECTORY statement to create a directory, and to specify
characteristics about the directory such as ownership and protection. However,
use of the DIRECTORY statement is optional because the FILE statement will
implicitly create a directory, if it does not already exist, to contain the file it
provides.

Product Description Language Statements 7–11

DIRECTORY

The DIRECTORY statement specifies the name of a directory managed object.
Check the other statements in your PDF to make sure the name you specify is
unique among all directory, file, and link managed objects in all scopes.

The scope and lifetime of the directory managed object depend on whether it is
lexically contained in a SCOPE, END SCOPE pair, as shown in Table 7–1. (See
the SCOPE statement for additional information.)

Table 7–1 Directory Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

If you use the access control option, the DIRECTORY statement specifies one
access control entry (ACE) managed object that references the directory managed
object for each entry specified with the ACCESS CONTROL option. The ACE
managed object has the following characteristics:

• It is unnamed.

• It has operating lifetime.

• It has the same scope as the directory.

See Also

FILE
SCOPE

Examples

1. directory [SYSHLP.EXAMPLES.FMS.MESSAGE] protection private
access control ("(IDENTIFIER=[FMS], ACCESS=READ)");

This example specifies the directory [SYSHLP.EXAMPLES.FMS.MESSAGE].
The PROTECTION PRIVATE option specifies that no users have access to
this directory. The ACCESS CONTROL option grants the user FMS read
access to the directory.

2. directory [AL] owner PCSI$TEST version limit 3;

In this example the directory [AL] is owned by the account PCSI$TEST and
holds the maximum of three file versions.

3. directory [JIM] owner "[11,7]";

This example specifies the directory [JIM] owned by the account whose UIC
is [11,7].

7–12 Product Description Language Statements

END

END

The END statement terminates a statement group.

Syntax

END
{ IF |
OPTION |
PART |
PRODUCT |
REMOVE |
SCOPE } ;

Parameters

None

Options

None

Description

The END statement terminates a statement group. See the statement referenced
by the END statement for information about the statement group.

See Also

IF
OPTION
PART
PRODUCT
REMOVE
SCOPE

Example

product HP AXPVMS TEST V1.0 full ;
.
.
.

end product ;

The END PRODUCT statement identifies the end of the product group.

Product Description Language Statements 7–13

ERROR

ERROR

The ERROR statement displays an error message during an installation or
reconfiguration operation. The text is from a PTF text module.

Note

The ERROR statement must be contained within an IF group.

Syntax

ERROR name [ABORT] ;

Parameter

name
Indicates, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

Option

ABORT
Forces an unconditional termination of the operation when the ERROR statement
is executed. See Section 7.1 for usage constraints.

Description

The ERROR statement specifies a text module you want to display during
an installation or reconfiguration operation. The ERROR statement must be
contained within an IF group.

The utility processes ERROR statements in lexical order. The utility displays
both prompt and help text during the validation phase. The validation phase
occurs before and after the configuration of a product.

During execution of an ERROR statement that does not contain an ABORT
option, the utility prompts the user to continue or terminate the operation. If the
ABORT option is present, or the operation is executed in batch mode, the ERROR
statement causes the operation to terminate unconditionally.

The ERROR STATEMENT is a utility directive and does not specify a managed
object.

You must supply text in the associated product text module. The module must
contain an =prompt directive line.

See Also

HARDWARE DEVICE
HARDWARE PROCESSOR
IF
LOGICAL NAME
SOFTWARE
UPGRADE

7–14 Product Description Language Statements

ERROR

Examples

1. Suppose the PDF for a product contains the following lines:

if (<hardware processor model 7>) ;
error UNSPROC abort ;

end if ;

The corresponding module in the PTF contains the following lines:

1 UNSPROC
=prompt This product is not supported on a MicroVAX I processor.
Please read the installation guide that accompanies the software
to determine minimum system requirements for running this product.

If the user attempts to install the product on processor model 7, the
following message is displayed and the installation is terminated:

This product is not supported on a MicroVAX I processor.

Please read the installation guide that accompanies the software
to determine minimum system requirements for running this product.

%PCSI-E-S_OPFAIL, operation failed
%PCSIUI-E-ABORT, operation terminated due to an unrecoverable error
condition

2. The following PDF fragment illustrates how to check for prerequisite
software and issue an error message if the requirement is not met:

if (not <software HP AXPVMS TCPIP >) and
(not <software HP AXPVMS UCX version minimum V4.0>)) ;
error TCPIP_NOT_INSTALLED ;

end if;

The corresponding module in the PTF contains the following lines:

1 TCPIP_NOT_INSTALLED
=prompt TCPIP software is not installed on your system.
This product requires TCPIP networking software. Please terminate
this operation, install any version of TCPIP (or UCX version V4.0
or higher), then install this product.

On installation of the product containing the previous PDL statements,
if neither the TCP/IP nor the UCX product is already installed (or will
not be installed at the completion of the current operation), the following
messages are displayed:

TCPIP software has not been installed on your system.

This product requires TCPIP networking software. Please terminate
this operation, install any version of TCPIP (or UCX version V4.0
or higher), then install this product.

Terminating is strongly recommended. Do you want to terminate? [YES]
%PCSI-E-S_OPCAN, operation cancelled by request
%PCSIUI-E-ABORT, operation terminated due to an unrecoverable error
condition

Because the ABORT option is not used on the ERROR statement, the user
was given the opportunity to continue installation of the product. Use of
the ABORT option would have caused unconditional termination of the
installation as shown in the first example.

Product Description Language Statements 7–15

EXECUTE ABORT

EXECUTE ABORT

The EXECUTE ABORT statement specifies commands to execute when an error
condition causes an installation or reconfiguration operation to terminate.

Syntax

EXECUTE ABORT (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter
whenever the operation fails.

Options

INTERACTIVE
Allows communication between the user and the specified command or commands
executing in a subprocess.

USES (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. Use a separate FILE statement to specify required files
that are permanently placed in the user’s destination directory tree. Use the
USES option to specify required files that are placed in a temporary directory and
deleted after use. By default, this statement does not require files.

Description

The EXECUTE ABORT statement specifies commands to execute when an error
condition causes an installation or reconfiguration operation to terminate. For
example, the following conditions activate the EXECUTE ABORT statement:

• An error or fatal error condition returned as the final status from the
subprocess in which commands are run from an EXECUTE statement,
excluding the EXECUTE TEST statement.

• The user terminates the operation by pressing Ctrl/Y or Ctrl/C.

• The user answers YES to the question "Do you want to terminate?" Typically,
this question is asked after an error is reported during material placement on
the target disk.

You specify recovery actions to perform by including one or more DCL command
lines in the EXECUTE ABORT statement. These commands are passed for
execution to the DCL interpreter running in a subprocess. Enclose each action,
whether specified as a single DCL command or a command procedure, in double
quotes (" "). If more than one action is given, use parentheses to enclose the list.

Enclosing the EXECUTE ABORT statement in a scope group (consisting of
SCOPE and END SCOPE statements) has no effect on the way EXECUTE
ABORT commands are processed.

7–16 Product Description Language Statements

EXECUTE ABORT

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE ABORT statement with the INTERACTIVE option. The
INTERACTIVE option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the INTERACTIVE option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages; that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE ABORT statement, specify them in the USES
option. Each file you specify with the USES option must be present in the product
material.

Note that the USES option will not cause the listed files to be placed permanently
in your file system. As soon as the installation operation completes, the files
listed with the USES option are deleted. For this reason, you must use the FILE
statement for this execute operation, and any other operation, in which you want
your EXECUTE command procedures placed permanently in your file system.

The EXECUTE ABORT statement causes the utility to define logical names for
use by the subprocess that executes the specified commands. The commands
should use these logical names to reference files, as follows:

• PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the USES option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product kit.

• PCSI$DESTINATION is a root directory specification that points to the root
directory where product material will be placed. The PCSI$DESTINATION
logical is available except when the EXECUTE ABORT statement is
called when the EXECUTE PRECONFIGURE statement fails. The
PCSI$DESTINATION logical is not available until the configuration phase.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

The EXECUTE ABORT statement is a utility directive and does not specify a
managed object.

See Also

Section 6.1
EXECUTE INSTALL . . . REMOVE
EXECUTE POSTINSTALL
EXECUTE PRECONFIGURE
EXECUTE START . . . STOP
EXECUTE UPGRADE
FILE

Product Description Language Statements 7–17

EXECUTE ABORT

Example

execute install "@PCSI$SOURCE:[SYSUPD]EXEC_INSTALL.COM"
remove "" uses [SYSUPD]EXEC_INSTALL.COM ;

execute abort "@PCSI$SOURCE:[SYSUPD]EXEC_ABORT.COM"
uses [SYSUPD]EXEC_ABORT.COM ;

In this example, the EXECUTE ABORT statement sets up a command procedure
to run whenever the operation fails after the EXECUTE INSTALL command
has been executed. It is intended to clean the user environment in case the
commands supplied by EXECUTE INSTALL have left the user’s system modified.
The USES option specifies the file name of the command procedure that is deleted
after use.

7–18 Product Description Language Statements

EXECUTE INSTALL . . . REMOVE

EXECUTE INSTALL . . . REMOVE

The EXECUTE INSTALL . . . REMOVE statement is a compound statement that
performs two distinct actions:

• The install portion specifies commands to execute when the product is
installed or reconfigured.

• The remove portion specifies commands to execute when the product is
removed, but not when the product is upgraded.

Note

The REMOVE part of the statement is required syntax even if there
are no commands you want to execute when the product is removed. To
indicate no command, use remove "".

Syntax

EXECUTE INSTALL (command,...) REMOVE (command,...) [INTERACTIVE] [
USES (file,...)] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter in the
execution environment.

Options

INTERACTIVE
Allows communication between the user and the specified command or commands
executing in a subprocess.

USES (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. Use a separate FILE statement to specify required files
that are permanently placed in the user’s destination directory tree; use the
USES option to specify required files that are placed in a temporary directory and
deleted after use. By default, this statement does not require files.

Description

The EXECUTE INSTALL . . . REMOVE statement is a compound statement
consisting of an install portion and a remove portion.

The install portion specifies commands to execute when the product is installed
or reconfigured. These commands are run after all product material has been
placed on the target disk (that is, after all DIRECTORY, FILE, and MODULE
statements have been processed).

The remove portion specifies commands to execute when the product is removed.
These commands are run before any product material is deleted from the target
disk. The EXECUTE . . . REMOVE statement has no effect when the product

Product Description Language Statements 7–19

EXECUTE INSTALL . . . REMOVE

is upgraded. To execute commands when the product is upgraded by another
version of the product, use the EXECUTE UPGRADE statement.

Note

Previous versions of this manual incorrectly stated that EXECUTE
INSTALL . . . REMOVE commands are also run when the product is
upgraded.

You specify the install and remove actions to perform by including one or more
DCL command lines in the EXECUTE INSTALL . . . REMOVE statement.
These commands are passed for execution to the DCL interpreter running in a
subprocess. Enclose each action, whether specified as a single DCL command or a
command procedure, in double quotes (" "). If more than one action is given, use
parentheses to enclose the list.

If you want your commands to prompt the user and accept the user’s
input, specify the EXECUTE INSTALL . . . REMOVE statement with the
INTERACTIVE option. The INTERACTIVE option causes all output from DCL to
be displayed, unless you prevent it. In contrast, when the INTERACTIVE option
is not specified, output generated by DCL commands is displayed only for lines
that are interpreted as DCL messages, that is, those beginning with a percent
sign (%) in column one.

If you need files for the EXECUTE INSTALL statement, specify them in the
USES option or in separate FILE statements. However, if you need files for the
EXECUTE REMOVE statement, you must provide them with FILE statements so
that they are available on the user’s system for use when the product is removed.
Each file you specify with the USES option must be present in the product
material.

Note that the USES option will not cause the listed files to be placed permanently
in your file system. As soon as the installation operation completes, the files
listed with the USES option are deleted. For this reason, you must use the FILE
statement for this execute operation, and any other operation, in which you want
your execute command procedures placed permanently in your file system.

The EXECUTE INSTALL . . . REMOVE statement causes the utility to define
logical names for use by the subprocess that executes the specified commands.
The commands should use these logical names to reference files, as follows:

• PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the USES option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product kit.

Note

The PCSI$SOURCE logical name is available only for the EXECUTE
INSTALL operation. You cannot use it for an EXECUTE REMOVE
operation.

• PCSI$DESTINATION is a root directory specification that points to the root
directory for the current scope where product material will be placed.

7–20 Product Description Language Statements

EXECUTE INSTALL . . . REMOVE

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

The EXECUTE INSTALL . . . REMOVE statement is a utility directive and does
not specify a managed object.

See Also

Section 6.1
EXECUTE ABORT
FILE

Example

file [SYSUPD]UNLOAD_LOADABLE_IMAGE.COM ;
execute

install "@PCSI$SOURCE:[SYSUPD]LOAD_LOADABLE_IMAGE.COM"
remove "@PCSI$DESTINATION:[SYSUPD]UNLOAD_LOADABLE_IMAGE.COM"
uses ([SYSUPD]LOAD_LOADABLE_IMAGE.COM) ;

In this example, the EXECUTE INSTALL . . . REMOVE statement sets up
command procedures to run when the product is installed and removed. The
USES option specifies the file name of the command procedure for use on
installation of the product. The file is deleted after use. The FILE statement
specifies the file name of the command procedure for use on removal of the
product. This file is placed in the user’s destination directory tree during
installation and executed during removal.

Product Description Language Statements 7–21

EXECUTE LOGIN

EXECUTE LOGIN

The EXECUTE LOGIN statement displays a message when the product is
installed or reconfigured, informing the installer that the specified commands
need to be added to the login command procedure of every user of this product.

Syntax

EXECUTE LOGIN (command,...) ;

Parameter

(command,...)
Indicates the commands that the utility displays in a message to the user.

Description

The EXECUTE LOGIN statement displays a message when the product is
installed or reconfigured, advising the installer that the specified commands need
to be added to the login command procedure of every user of this product. The
specified commands are not run during the installation or reconfiguration
operation. The message is displayed after the operation has completed
successfully.

The EXECUTE LOGIN statement is a utility directive and does not specify a
managed object.

See Also

Section 6.1

Example

execute login "$ @USER_START" ;

In this example, the EXECUTE LOGIN statement displays the following message
to users:

Users of this product require the following lines in their login procedure:
$ @USER_START

7–22 Product Description Language Statements

EXECUTE POSTINSTALL

EXECUTE POSTINSTALL

The EXECUTE POSTINSTALL statement specifies commands to execute when
the product is installed or reconfigured. These commands are run after any
commands from EXECUTE INSTALL . . . and EXECUTE START . . . statements
are run.

Syntax

EXECUTE POSTINSTALL (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter

(command,...)
Indicates the command that the utility passes to the command interpreter in the
execution environment.

Options

INTERACTIVE
Allows communication between the user and the specified command or command
procedure executing in a subprocess.

USES (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. Use a separate FILE statement to specify required files
that are permanently placed in the user’s destination directory tree; use the
USES option to specify required files that are placed in a temporary directory and
deleted after use. By default, this statement does not require files.

Description

The EXECUTE POSTINSTALL statement specifies commands to execute when
the product is installed or reconfigured. These commands are run after any
commands from EXECUTE INSTALL . . . and EXECUTE START . . . statements
are run.

You specify actions to perform by including one or more DCL command lines
in the EXECUTE POSTINSTALL statement. These commands are passed for
execution to the DCL interpreter running in a subprocess. Enclose each action,
whether specified as a single DCL command or a command procedure, in double
quotes (" "). If more than one action is given, use parentheses to enclose the list.

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE POSTINSTALL statement with the INTERACTIVE
option. The INTERACTIVE option causes all output from DCL to be displayed,
unless you prevent it. In contrast, when the INTERACTIVE option is not
specified, output generated by DCL commands is displayed only for lines that are
interpreted as DCL messages, that is, those beginning with a percent sign (%) in
column one.

If you need files for the EXECUTE POSTINSTALL statement, specify them in
the USES option or in separate FILE statements. Each file you specify with the
USES option must be present in the product material.

Product Description Language Statements 7–23

EXECUTE POSTINSTALL

Note that the USES option will not cause the listed files to be placed permanently
in your file system. As soon as the installation operation completes, the files
listed with the USES option are deleted. For this reason, you must use the FILE
statement for this execute operation, and any other operation, in which you want
your execute command procedures placed permanently in your file system.

The EXECUTE POSTINSTALL statement causes the POLYCENTER Software
Installation utility to define logical names for use by the subprocess that executes
the specified commands. The commands should use these logical names to
reference files, as follows:

• PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the USES option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product kit.

• PCSI$DESTINATION is a root directory specification that points to the root
directory for the current scope where product material will be placed.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

The EXECUTE POSTINSTALL statement is a utility directive and does not
specify a managed object.

See Also

Section 6.1
EXECUTE ABORT
FILE

Example

execute
postinstall "@pcsi$source:[sysupd]product_cleanup.com"
uses [sysupd]product_cleanup.com ;

In this example, the EXECUTE POSTINSTALL statement sets up a command
procedure to run after the product is installed. The USES option specifies the file
name of the command procedure that is deleted after use.

7–24 Product Description Language Statements

EXECUTE POST_UNDO

EXECUTE POST_UNDO

The EXECUTE POST_UNDO statement specifies commands to execute when one
or more patch kits are uninstalled by executing the PRODUCT UNDO PATCH
command. These commands are run after all directories, files, and modules are
processed.

Syntax

EXECUTE POST_UNDO (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter after
uninstalling patch kits indicated in the recovery data set being processed.

Options

INTERACTIVE
Allows communication between the user and the specified command or commands
executing in a subprocess.

USES (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. The files listed with the USES option are saved in the
recovery data set. When the UNDO PATCH operation is executed, these files are
moved to a temporary directory for processing and deleted after use.

Description

The EXECUTE POST_UNDO statement specifies commands to execute when
one or more patch kits are uninstalled by executing the PRODUCT UNDO
PATCH command. These commands are run near the end of operation, after
all directories, files, and modules are processed. This statement is useful for
automatically running a command procedure to perform cleanup or restore the
system environment after one or more patch or mandatory product updates have
been removed.

You specify actions to perform by including one or more DCL command lines
in the EXECUTE POST_UNDO statement. These commands are passed for
execution to the DCL interpreter running in a subprocess. Enclose each action,
whether specified as a single DCL command or a command procedure, in double
quotes. If more than one action is given, use parentheses to enclose the list.

Enclosing the EXECUTE POST_UNDO statement in a scope group (consisting
of SCOPE and END SCOPE statements) has no effect on the way EXECUTE
POST_UNDO commands are processed.

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE POST_UNDO statement with the INTERACTIVE option.
The INTERACTIVE option causes all output from DCL to be displayed, unless
you prevent it. In contrast, when the INTERACTIVE option is not specified,
output generated by DCL commands is displayed only for lines that are
interpreted as DCL messages; that is, those beginning with a percent sign
(%) in column one.

Product Description Language Statements 7–25

EXECUTE POST_UNDO

If you need files for the EXECUTE POST_UNDO statement, you must specify
each one of them with the USES option. Files listed with the USES option are
placed in the recovery data set (the [PCSI$UNDO_001] directory tree) when
the patch kit is installed and retrieved during the PRODUCT UNDO PATCH
operation.

There are certain restrictions on the use of the EXECUTE POST_UNDO
statements:

• They can be packaged in a product kit only if the product is of a patch or
mandatory update type.

• Only one EXECUTE POST_UNDO statement is allowed per product.

The DCL commands supplied with the EXECUTE POST_UNDO statement are
not executed during the product installation; they are merely registered in the
patch recovery data set description file for use in the PRODUCT UNDO PATCH
operation.

The EXECUTE POST_UNDO statement causes the POLYCENTER Software
Installation utility to define logical names for use by the subprocess that executes
the specified commands. The commands should use these logical names to
reference files, as follows:

• PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the USES option.
This logical name is defined for the subprocess in which product-supplied
commands execute.

• PCSI$DESTINATION is a root directory specification that points to the root
directory where the patch or mandatory update product material was placed
in the installation operation.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that
commands can use for temporary working space. The utility automatically
deletes this directory and any files placed in it at the end of the operation.

The EXECUTE POST_UNDO statement is a utility directive and does not specify
a managed object.

See Also

Section 6.1
FILE

Example

execute post_undo "@PCSI$SOURCE:[SYSUPD]EXEC_POST_UNDO.COM"
uses [SYSUPD]EXEC_POST_UNDO.COM ;

In this example, the EXECUTE POST_UNDO statement sets up a command
procedure to run after the patch kit files are removed from the system as a result
of the PRODUCT UNDO PATCH command execution. The USES option specifies
the file name of the command procedure that is deleted after use.

7–26 Product Description Language Statements

EXECUTE PRECONFIGURE

EXECUTE PRECONFIGURE

The EXECUTE PRECONFIGURE statement specifies commands to execute after
the user has selected the product for installation or reconfiguration, but before
the user is asked to select options for the product.

Syntax

EXECUTE PRECONFIGURE (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter in the
preconfiguration environment.

Options

INTERACTIVE
Allows communication between the user and the specified command or commands
executing in a subprocess.

USES (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. Files for the EXECUTE PRECONFIGURE statement
cannot be supplied by a separate FILE statement because EXECUTE
PRECONFIGURE is processed before files are copied to the target disk.

Description

The EXECUTE PRECONFIGURE statement specifies commands to execute after
the user has selected the product for installation or reconfiguration, but before
the user is asked to select options for the product. This statement is useful
for automatically running a command procedure in preparation for installing
your product. This command procedure is packaged in the kit and is run
before the standard configuration dialog with the user begins. The EXECUTE
PRECONFIGURE statement gives you the ability to do such things as probe the
system environment, ask the user questions, and define logical names for use
later in the processing of LOGICAL NAME functions. The ability to conditionally
provide product material, or to perform other actions based on decisions made at
the very start of the operation, is a powerful and flexible mechanism.

Note

If you want to use LOGICAL NAME functions, the logical names must be
either defined by the action of EXECUTE PRECONFIGURE statements,
or by the user before the installation or reconfiguration operation is
initiated. The processing of an EXECUTE PRECONFIGURE statement
cannot be conditionalized by including it within an IF group that is
controlled by a LOGICAL NAME function. In such a case, the EXECUTE
PRECONFIGURE statement is always executed.

Product Description Language Statements 7–27

EXECUTE PRECONFIGURE

You specify actions to perform by including one or more DCL command lines in
the EXECUTE PRECONFIGURE statement. These commands are passed for
execution to the DCL interpreter running in a subprocess. Enclose each action,
whether specified as a single DCL command or a command procedure, in double
quotes. If more than one action is given, use parentheses to enclose the list.

Enclosing the EXECUTE PRECONFIGURE statement in a scope group
(consisting of SCOPE and END SCOPE statements) has no effect on the way
EXECUTE PRECONFIGURE commands are processed.

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE PRECONFIGURE statement with the INTERACTIVE
option. The INTERACTIVE option causes all output from DCL to be displayed,
unless you prevent it. In contrast, when the INTERACTIVE option is not
specified, output generated by DCL commands is displayed only for lines that are
interpreted as DCL messages, that is, those beginning with a percent sign (%) in
column one.

If you need files for the EXECUTE PRECONFIGURE statement, specify them in
the USES option. Each file you specify with the USES option must be present in
the product material.

Note that the USES option does not cause the listed files to be placed
permanently in your file system. As soon as the installation operation completes,
the files listed with the USES option are deleted.

The EXECUTE PRECONFIGURE statement causes the POLYCENTER Software
Installation utility to define logical names for use by the subprocess that executes
the specified commands. The commands should use these logical names to
reference files, as follows:

• PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the USES option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product kit.

• PCSI$DESTINATION is a root directory specification that points to the root
directory for the current scope where product material will be placed.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that
commands can use for temporary working space. The utility automatically
deletes this directory and any files placed in it at the end of the operation.

The EXECUTE PRECONFIGURE statement is a utility directive and does not
specify a managed object.

See Also

Section 6.1
EXECUTE ABORT
FILE

7–28 Product Description Language Statements

EXECUTE PRECONFIGURE

Example

execute preconfigure "@PCSI$SOURCE:[SYSUPD]EXEC_PREC.COM"
uses [SYSUPD]EXEC_PREC.COM ;

In this example, the EXECUTE PRECONFIGURE statement sets up a command
procedure to run before the product configuration begins. The USES option
specifies the file name of the command procedure that is deleted after use.

Product Description Language Statements 7–29

EXECUTE PRE_UNDO

EXECUTE PRE_UNDO

The EXECUTE PRE_UNDO statement specifies commands to execute when one
or more patch kits are uninstalled by executing the PRODUCT UNDO PATCH
command. These commands are run before any directories, files, and modules are
processed.

Syntax

EXECUTE PRE_UNDO (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter prior
to uninstalling patch kits indicated in the recovery data set being processed.

Options

INTERACTIVE
Allows communication between the user and the specified command or commands
executing in a subprocess.

USES (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. The files listed with the USES option are saved in the
recovery data set. When the UNDO PATCH operation is executed, these files are
moved to a temporary directory for processing and deleted after use.

Description

The EXECUTE PRE_UNDO statement specifies commands to execute when one
or more patch kits are uninstalled by executing the PRODUCT UNDO PATCH
command. These commands are run before any directories, files, and modules
are processed. This statement is useful for automatically running a command
procedure in preparation for uninstalling one or more patch or mandatory product
updates. The EXECUTE PRE_UNDO statement gives you the ability to do such
things as ask the user questions, probe, or set the system environment before a
patch kit is uninstalled.

You specify actions to perform by including one or more DCL command lines in
the EXECUTE PRE_UNDO statement. These commands are passed for execution
to the DCL interpreter running in a subprocess. Enclose each action, whether
specified as a single DCL command or a command procedure, in double quotes ("
"). If more than one action is given, use parentheses to enclose the list.

Enclosing the EXECUTE PRE_UNDO statement in a scope group (consisting
of SCOPE and END SCOPE statements) has no effect on the way EXECUTE
PRE_UNDO commands are processed.

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE PRE_UNDO statement with the INTERACTIVE option.
The INTERACTIVE option causes all output from DCL to be displayed, unless
you prevent it. In contrast, when the INTERACTIVE option is not specified,
output generated by DCL commands is displayed only for lines that are

7–30 Product Description Language Statements

EXECUTE PRE_UNDO

interpreted as DCL messages; that is, those beginning with a percent sign
(%) in column one.

If you need files for the EXECUTE PRE_UNDO statement, you must specify each
one of them with the USES option. Files listed with the USES option are placed
in the recovery data set (the [PCSI$UNDO_001] directory tree) when the patch
kit is installed and retrieved during the PRODUCT UNDO PATCH operation.

There are certain restrictions on the use of the EXECUTE PRE_UNDO
statements:

• They can be packaged in a product kit only if the product is a patch or
mandatory update type.

• Only one EXECUTE PRE_UNDO statement is allowed per product.

The DCL commands supplied with the EXECUTE PRE_UNDO statement are
not executed during the product installation; they are merely registered in the
patch recovery data set description file for use in the PRODUCT UNDO PATCH
operation.

The EXECUTE PRE_UNDO statement causes the POLYCENTER Software
Installation utility to define logical names for use by the subprocess that executes
the specified commands. The commands should use these logical names to
reference files, as follows:

• PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the USES option.
This logical name is defined for the subprocess in which product-supplied
commands execute.

• PCSI$DESTINATION is a root directory specification that points to the root
directory where the patch or mandatory update product material was placed
in the installation operation.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that
commands can use for temporary working space. The utility automatically
deletes this directory and any files placed in it at the end of the operation.

The EXECUTE PRE_UNDO statement is a utility directive and does not specify
a managed object.

See Also

Section 6.1
FILE

Example

execute pre_undo "@PCSI$SOURCE:[SYSUPD]EXEC_PRE_UNDO.COM"
uses [SYSUPD]EXEC_PRE_UNDO.COM
interactive ;

In this example, the EXECUTE PRE_UNDO statement sets up a command
procedure to run before patch kit files are removed from the system as a
result of the PRODUCT UNDO PATCH command execution. The USES option
specifies the file name of the command procedure that is deleted after use.
The INTERACTIVE option allows dialog between the user and the command
procedure.

Product Description Language Statements 7–31

EXECUTE REBOOT

EXECUTE REBOOT

The EXECUTE REBOOT statement specifies commands that initiate a system
reboot procedure at the conclusion of the PRODUCT INSTALL or PRODUCT
RECONFIGURE operations.

Syntax

EXECUTE REBOOT (command,...) [INTERACTIVE] [MANDATORY] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter after
completing product installation or reconfiguration, but just before exiting the
operation with final status.

Options

INTERACTIVE
Allows communication between the user and the specified command or command
procedure executing in a subprocess.

MANDATORY
Indicates that the system must be rebooted after the product installation or
reconfiguration. If the MANDATORY option is not present, the system reboot is
not required.

Regardless of whether this option is specified, the user is prompted in the
configuration phase as to whether a reboot will be allowed at the end of the
operation. If the MANDATORY option is set and the user does not want to
perform a system reboot, the operation terminates before any product files are
handled. If the MANDATORY option is not specified, and the user does not want
to perform a system reboot, the operation is not terminated and continues until
successful conclusion. No system reboot is performed.

Description

The EXECUTE REBOOT statement specifies commands to execute at the
conclusion of the PRODUCT INSTALL or PRODUCT RECONFIGURE
commands. These commands can perform any action the product developer
desires, but the last one should invoke the system shutdown procedure.

You specify actions to perform by including one or more DCL command lines in
the EXECUTE REBOOT statement. These commands are passed for execution
to the DCL interpreter running in a subprocess. Enclose each action, whether
specified as a single DCL command or a command procedure, in double quotation
marks (" "). If more than one action is desired, use parentheses to enclose the list.

Enclosing the EXECUTE REBOOT statement in a scope group (consisting of
SCOPE and END SCOPE statements has no effect on the way EXECUTE
REBOOT commands are processed.

7–32 Product Description Language Statements

EXECUTE REBOOT

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE REBOOT statement with the INTERACTIVE option. The
INTERACTIVE option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the INTERACTIVE option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you want to force a system reboot at the end of your product installation,
you must use the MANDATORY option. Whether this option is present or not,
the user is warned that the system shutdown may take place at the end of the
operation and is prompted to accept it. If the MANDATORY option is set, the
following message is issued:

* Product DEC AXPVMS EXRT V1.0 requires a system reboot.

If the MANDATORY option is not used, the following message is issued:

* Product DEC AXPVMS EXRT V1.0 recommends a system reboot.

In either case, the message is followed by this prompt:

* Can the system be REBOOTED after the installation completes? [YES]

If the MANDATORY option is set and your response to the prompt is No, the
operation terminates. If the MANDATORY option is not set and your response
to the prompt is No, the operation continues, but the EXECUTE REBOOT
statement will not be processed.

The EXECUTE REBOOT statement causes the POLYCENTER Software
Installation utility to define logical names for use by the subprocess that executes
the specified commands. The commands should use these logical names to
reference files, as follows:

• PCSI$DESTINATION is a root directory specification that points to the root
directory where the product material was placed in the installation operation.

The EXECUTE REBOOT statement is a utility directive and does not specify a
managed object.

See Also

Section 6.1
FILE

Example

execute reboot "@SYS$COMMON:[SYSEXE]SHUTDOWN.COM"
interactive ;

In this example, the EXECUTE REBOOT statement sets up the system shutdown
command procedure to run after successful product installation, but before the
utility exits the operation with the final status code.

Product Description Language Statements 7–33

EXECUTE RELEASE

EXECUTE RELEASE

The EXECUTE RELEASE statement specifies commands to execute when
the product is installed or reconfigured. These commands are run after any
commands from EXECUTE INSTALL . . . statements are run.

Note

Starting with OpenVMS V7.3, the EXECUTE RELEASE statement
is obsolete. To support existing product kits that may have used this
statment, the POLYCENTER Software Installation utility continues to
process this statement in a backward compatible manner. However,
Heweltt-Packard recommends that you do not use the EXECUTE
RELEASE statement in new or revised product kits. Instead, use the
EXECUTE UPGRADE, EXECUTE INSTALL . . . REMOVE, or the
EXECUTE POSTINSTALL statements, as appropriate. Documentation
of the EXECUTE RELEASE statement may be discontinued in a future
release of this manual.

Syntax

EXECUTE RELEASE (command,...) [INTERACTIVE] [USES (file,...)] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter in the
execution environment.

Options

INTERACTIVE
Allows communication between the user and the specified command or command
procedure executing in a subprocess.

USES (file,...)
Indicates the files required to execute the commands you specified in the
command parameter. Use a separate FILE statement to specify required files
that are permanently placed in the user’s destination directory tree; use the
USES option to specify required files that are placed in a temporary directory and
deleted after use. By default, this statement does not require files.

Description

The EXECUTE RELEASE statement specifies commands to execute when
the product is installed or reconfigured. These commands are run after any
commands from EXECUTE INSTALL . . . statements are run. The name of this
statement could imply that it only runs when a product is upgraded or removed;
however, this is not the case. The EXECUTE RELEASE statement is run under
the same situations that the EXECUTE INSTALL . . . statement is run. Because
of its misleading name and duplicate functionality, EXECUTE RELEASE is now
obsolete.

7–34 Product Description Language Statements

EXECUTE RELEASE

Use the EXECUTE UPGRADE statement or the REMOVE portion of the
EXECUTE INSTALL . . . REMOVE statement to perform actions when your
product is upgraded or removed. To perform actions when your product is
installed or reconfigured, use either the EXECUTE INSTALL . . . or EXECUTE
POSTINSTALL statement.

You specify actions to perform by including one or more DCL command lines in
the EXECUTE RELEASE statement. These commands are passed for execution
to the DCL interpreter running in a subprocess. Enclose each action, whether
specified as a single DCL command or a command procedure, in double quotes ("
"). If more than one action is given, use parentheses to enclose the list.

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE RELEASE statement with the INTERACTIVE option. The
INTERACTIVE option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the INTERACTIVE option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

If you need files for the EXECUTE RELEASE statement, specify them in the
USES option or in separate FILE statements. Each file you specify with the
USES option must be present in the product material.

The USES option will not cause the listed files to be placed permanently in your
file system. As soon as the installation operation completes, the files listed with
the USES option are deleted. For this reason, you must use the FILE statement
for this execute operation and any other operation in which you want your
execute command procedures placed permanently in your file system.

The EXECUTE RELEASE statement causes the POLYCENTER Software
Installation utility to define logical names for use by the subprocess that executes
the specified commands. The commands should use these logical names to
reference files, as follows:

• PCSI$SOURCE is a subdirectory in the root format under the user’s login
directory that points to the location of the files specified by the USES option.
This logical name is defined for the subprocess in which product-supplied
commands execute. It is not the same PCSI$SOURCE logical name that
can be defined by a user, in the user’s process, pointing to the location of a
product kit.

• PCSI$DESTINATION is a root directory specification that points to the root
directory for the current scope where product material will be placed.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

The EXECUTE RELEASE statement is a utility directive and does not specify a
managed object.

See Also

Section 6.1
EXECUTE INSTALL . . . REMOVE
EXECUTE POSTINSTALL
EXECUTE UPGRADE
FILE

Product Description Language Statements 7–35

EXECUTE RELEASE

Example

execute release "@pcsi$source:[sysupd]config.com" uses [sysupd]config.com ;

In this example, the EXECUTE RELEASE statement sets up a command
procedure to run when the product is installed or reconfigured. The USES option
specifies the file name of the command procedure that is deleted after use.

7–36 Product Description Language Statements

EXECUTE START . . . STOP

EXECUTE START . . . STOP

The EXECUTE START . . . STOP statement is a compound statement that
performs two distinct actions:

• The "start" portion either specifies commands to execute when the product is
installed for the first time or upgrades a previously installed version of the
product.

• The "stop" portion specifies commands to execute when the product is either
removed or upgraded by another version of the product.

The EXECUTE START . . . STOP statement also displays a message at the
successful conclusion of the operation, advising the user to add the specified
commands to the appropriate systemwide startup or shutdown command
procedure.

Note

The STOP part of the statement is required syntax even if there are no
commands you want to execute when the product is removed. To indicate
no command, use stop "".

Syntax

EXECUTE START (command,...) STOP (command,...) [INTERACTIVE] ;

Parameter

(command,...)
Indicates the commands that the utility displays in a message to the user and
also passes to the command interpreter in the execution environment.

Option

INTERACTIVE
Allows communication between the user and the specified command or commands
executing in a subprocess.

Description

The EXECUTE START . . . STOP statement is a compound statement consisting
of a "start" portion and a "stop" portion.

The "start" portion either specifies commands to execute when the product is
installed for the first time or upgrades a previously installed version of the
product. These commands are run after any EXECUTE INSTALL . . . statements
have been processed, but before any EXECUTE POSTINSTALL statements. In
addition, a message is displayed at the end of the operation telling users to add
these commands to their SYSTARTUP_VMS.COM file.

The "stop" portion specifies commands to execute when the product is either
removed or upgraded by another version of the product. These commands are
run before any product material is deleted from the target disk and before any
EXECUTE . . . REMOVE statements are processed. In addition, a message is

Product Description Language Statements 7–37

EXECUTE START . . . STOP

displayed at the end of the operation telling users to add these commands to their
SYSHUTDWN.COM file.

If you need files for the EXECUTE START . . . STOP statement, you must
provide them with FILE statements so that they are available on the user’s
system for use after the installation completes.

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE START statement with the INTERACTIVE option. The
INTERACTIVE option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the INTERACTIVE option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

The EXECUTE UPGRADE statement causes the POLYCENTER Software
Installation utility to define a logical name for use by the subprocess that
executes the specified commands. It defines PCSI$DESTINATION as a root
directory specification that points to the root directory for the current scope where
product material will be placed.

The EXECUTE START . . . STOP statement is a utility directive and does not
specify a managed object.

See Also

Section 6.1
EXECUTE ABORT
FILE

Examples

1. file [SYS$STARTUP]PRODUCT_STARTUP.COM ;
file [SYS$STARTUP]PRODUCT_SHUTDOWN.COM ;
execute

start "@sys$startup:product_startup.com"
stop "@sys$startup:product_shutdown.com" ;

In this example, the EXECUTE START . . . STOP statement displays a
message to users about command procedures they should run to start and
stop the product:

Insert the following lines in SYS$MANAGER:SYSTARTUP_VMS.COM:
@SYS$STARTUP:PRODUCT_STARTUP.COM

Insert the following lines in SYS$MANAGER:SHUTDOWN.COM:
@SYS$STARTUP:PRODUCT_SHUTDOWN.COM

The PRODUCT_STARTUP.COM command procedure is executed during
the installation. The PRODUCT_SHUTDOWN.COM command procedure is
executed during the REMOVE operation or during a product upgrade.

2. file [SYS$STARTUP]ABS_STARTUP.COM ;
execute

start "@sys$startup:abs_startup.com"
stop "" ;

In this example, the EXECUTE START . . . STOP statement displays a
message to users about command procedures they should run to start the
product. Note that there are no commands executed when the product is
stopped. The command procedure ABS_STARTUP.COM executes during the
INSTALL operation, then the following message is issued:

7–38 Product Description Language Statements

EXECUTE START . . . STOP

Insert the following lines in SYS$MANAGER:SYSTARTUP_VMS.COM:
@SYS$STARTUP:ABS_STARTUP.COM

Product Description Language Statements 7–39

EXECUTE TEST

EXECUTE TEST

The EXECUTE TEST statement specifies an installation verification procedure
(IVP) to run after the product has been successfully installed or reconfigured to
perform a functional test of the product.

Syntax

EXECUTE TEST (command,...) [INTERACTIVE] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter in the
execution environment.

Option

INTERACTIVE
Allows communication between the user and the specified command or command
procedure executing in a subprocess.

Description

The EXECUTE TEST statement specifies an IVP to run after the product has
been successfully installed or reconfigured to perform a functional test of the
product. Prior to running this test, the product database is updated and closed.
The product remains installed or reconfigured even if the functional test fails.

The user can prevent the running of the IVP by specifying the /NOTEST qualifier
on the PRODUCT INSTALL or PRODUCT RECONFIGURE command.

You specify test actions to perform by including one or more DCL command lines
in the EXECUTE TEST statement. These commands are passed for execution
to the DCL interpreter running in a subprocess. Enclose each action, whether
specified as a single DCL command or a command procedure, in double quotes ("
"). If more than one action is given, use parentheses to enclose the list.

If you need files for the EXECUTE TEST statement, you must provide them with
FILE statements.

If you want your commands to prompt the user and accept the user’s input,
specify the EXECUTE TEST statement with the INTERACTIVE option. The
INTERACTIVE option causes all output from DCL to be displayed, unless you
prevent it. In contrast, when the INTERACTIVE option is not specified, output
generated by DCL commands is displayed only for lines that are interpreted as
DCL messages, that is, those beginning with a percent sign (%) in column one.

The EXECUTE TEST statement causes the POLYCENTER Software Installation
utility to define a logical name for use by the subprocess that executes the
specified commands. It defines PCSI$DESTINATION as a root directory
specification that points to the root directory for the current scope where product
material will be placed.

The EXECUTE TEST statement is a utility directive and does not specify a
managed object.

7–40 Product Description Language Statements

EXECUTE TEST

See Also

Section 6.1
FILE

Example

file [SYSTEST]PROD$IVP.COM ;
execute

test "@sys$test:prod$ivp.com" ;

In this example, the EXECUTE TEST statement runs a command procedure to
perform an installation verification test of the product.

Product Description Language Statements 7–41

EXECUTE UPGRADE

EXECUTE UPGRADE

The EXECUTE UPGRADE statement specifies the commands to execute when
the product is upgraded by another version of the product.

Syntax

EXECUTE UPGRADE (command,...) [INTERACTIVE] ;

Parameter

(command,...)
Indicates the commands that the utility passes to the command interpreter in the
execution environment.

Option

INTERACTIVE
Allows communication between the user and the specified command or command
procedure executing in a subprocess.

Description

The EXECUTE UPGRADE statement specifies the commands to execute when
the product is upgraded by another version of the product. These commands
are run for the version of the product that is being replaced, not for the new
version of the product. To run commands when the product is removed (but
not upgraded by another version), use the remove portion of the EXECUTE
INSTALL . . . REMOVE statement to specify the commands.

If you need files for the EXECUTE UPGRADE statement, you must provide them
with FILE statements so that they are available on the user’s system when the
product is upgraded.

The EXECUTE UPGRADE statement causes the POLYCENTER Software
Installation utility to define a logical name for use by the subprocess that
executes the specified commands. It defines PCSI$DESTINATION as a root
directory specification that points to the root directory for the current scope where
product material will be placed.

The EXECUTE UPGRADE statement is a utility directive and does not specify a
managed object.

See Also

Section 6.1
EXECUTE ABORT
FILE
SOFTWARE

7–42 Product Description Language Statements

EXECUTE UPGRADE

Example

file [sysupd]UPG_TASKS.COM ;
execute upgrade "@PCSI$DESTINATION:[SYSUPD]UPG_TASKS.COM" interactive ;

In this example, the FILE statement places the command procedure UPG_
TASKS.COM on the destination disk during the product installation. The
EXECUTE UPGRADE statement specifies that this command procedure is run
only when this product is upgraded by the installation of the same or different
version of the product. In the future, if an upgrade of the product is performed,
this command procedure is run before any product material is deleted from the
destination disk. Use of the INTERACTIVE option on the EXECUTE UPGRADE
statement allows the command procedure to interact with the user via the
SYS$INPUT and SYS$OUTPUT I/O channels.

Product Description Language Statements 7–43

FILE

FILE

The FILE statement creates a file on the target disk. If a file of the same name
already exists, the POLYCENTER Software Installation utility may replace the
file, depending on the options specified.

Format

FILE name
[[NO] ACCESS CONTROL (access-control-entry...)]
[[NO] ARCHIVE]
[ASSEMBLE EXECUTE (command,...) [ASSEMBLE USES (file,...)]]
[[NO] GENERATION generation]
[IMAGE LIBRARY]
[OWNER owner]
[PROTECTION { EXECUTE | PRIVATE | PUBLIC }]
[RELEASE MERGE]
[RELEASE NOTES]
[SIZE size]
[SOURCE source]
[[NO] WRITE] ;

Parameter

name
Specifies the name of the file object to install on the user’s system. The name
consists of a relative file directory specification, file name, and file type. The
file version is ignored because the utility determines the file version to use at
installation time.

Options

[NO] ACCESS CONTROL (access-control-entry...)
Indicates the minimum access control entries (ACEs) that the file will have. By
default, files have no added ACEs (no access control).

[NO] ARCHIVE
Allows you to preserve existing files during an upgrade. The POLYCENTER
Software Installation utility appends _OLD to the end of the file type. For
example, if you archived an existing file named STARTUP_TEMPLATE.SYS, the
utility would rename it STARTUP_TEMPLATE.SYS_OLD. Note that the utility
does not keep track of archived files as managed objects, or delete them when the
product is upgraded or removed.

If there are several versions of the existing file, the utility renames the latest
file type before deleting all of the remaining file versions. By default, the
POLYCENTER Software Installation utility does not preserve existing file
versions (no archive). You cannot use this option with the RELEASE MERGE or
WRITE option.

ASSEMBLE EXECUTE (command,...)
Establishes the contents of the file by executing the specified commands. Specify
the command lines as quoted or unquoted strings.

7–44 Product Description Language Statements

FILE

ASSEMBLE USES (file,...)
Indicates a list of additional files required by the ASSEMBLE EXECUTE option.
You must include the relative file specification. Files specified with this option
are placed in a temporary directory for use by the ASSEMBLE EXECUTE option
and are automatically deleted after use. By default, the ASSEMBLE EXECUTE
option does not require additional files.

[NO] GENERATION generation
Indicates that the file has an explicit generation number. Specify the number
as an unsigned integer in the range 0 through 4294967295. See the Description
section for the meaning of this value. By default, the file does not have an explicit
generation number (no generation), which is equivalent to 0.

IMAGE LIBRARY
Indicates that the file’s symbols are inserted into the system shareable image
symbol table library. The file must be a shareable image.

OWNER owner
Indicates the account name that owns the file. By default, the file is owned by
the SYSTEM account. If you specify a numeric value for name, you must enclose
the string in quotation marks, for example "[11,7]".

PROTECTION EXECUTE
Sets the file protection to (S:RWED, O:RWED, G:E, W:E) giving general users
execute access.

PROTECTION PRIVATE
Sets the file protection to (S:RWED, O:RWED, G, W), giving general users no
access.

PROTECTION PUBLIC
Sets the file protection to (S:RWED, O:RWED, G:RE, W:RE), giving general users
read and execute access. This is the default.

RELEASE MERGE
Indicates that library modules propagate during a version upgrade. If modules
are present in the existing library but not in the new library, they are propagated
to the new library. The file you specify with the name parameter must be a
library. You cannot use this option with the ARCHIVE, RELEASE REPLACE, or
WRITE option.

RELEASE NOTES
Indicates that the file is a release notes file. Users can extract the release notes
to a file using the DCL command PRODUCT EXTRACT RELEASE_NOTES. The
release notes are created in the file DEFAULT.PCSI$RELEASE_NOTES in the
current directory, or in the file specified by the user with the /FILE qualifier.

SIZE size
Do not specify this option in your PDF. When you package your product, the
utility calculates the size (in blocks) of the files you specify and provides this
option in the output PDF. If you specify this option in the input PDF to a
PRODUCT PACKAGE command, the option is ignored.

SOURCE source
Specifies the name of the file to package that supplies the contents for the file
specified in the name parameter of the file statement.

Product Description Language Statements 7–45

FILE

The source file name consists of a relative directory specification, file name, and
file type of a file in the materials directory path. File version number is not used
because the file with the highest version is packaged. Use this option when the
input file for the package operation has a different relative file specification than
the output file your kit installs on the user’s system. By default, the name of the
input file for the package operation is the same as the output file created in the
execution environment when the kit is installed.

[NO] WRITE
Indicates that you expect users to modify the file during system operation. If you
specify this option during a version upgrade, if the file already exists, it remains
the active version. For example, the OpenVMS operating system PDF uses this
option for [SYSMGR]SYSLOGIN.COM. The default is no write. You cannot use
this option with the ARCHIVE or RELEASE MERGE options.

Description

The FILE statement creates a file object on the target disk. You specify a file
managed object with either the name parameter or the SOURCE option. The
file must be supplied as product material, unless the ASSEMBLE EXECUTE
option is used to dynamically create the file. The LINK and LOADABLE IMAGE
statements can also specify references to a file-managed object.

File Conflict
Two types of file conflict can occur:

• An interproduct file conflict occurs when two or more products provide a file
with the same name in the same directory. (Files with the same name can
co-exist in different directories.)

• An intraproduct file conflict occurs when two or more patch or partial kits
for a product update the same file.

For example, OpenVMS provides the file DUDRIVER.EXE. If you install two
different remedial kits for a particular version of OpenVMS that both update
this file, an intraproduct file conflict results.

Intraproduct file conflict detection and resolution was introduced in the
version of the utility that shipped with OpenVMS Alpha Version 7.1-2 and
OpenVMS VAX Version 7.2. This enhancement allows patch and partial
kits to be installed "out-of-order" while providing the most up-to-date files.
Prior to this change, files from patch or partial kits always superseded the
previously installed files.

The utility resolves a file conflict by comparing the generation numbers of the
files involved.

Do not confuse generation numbers with file versions. A generation number is an
optional attribute you supply on a file statement using the GENERATION option.
A generation number can be any integer in the range of 0 to 4294967295. For
example:

file [SYSEXE]ABC.EXE generation 100;

If you do not specify a generation number, its default value is 0. Table 7–2 shows
how the utility resolves a file coflict.

7–46 Product Description Language Statements

FILE

Table 7–2 Resolving File Conflict with Generation Numbers

If the generation numbers Then

Are different The file with the largest non-zero number is
selected.

Are the same and are not
zero

V6.1-V6.2: The file from the kit replaces the
previously installed file.
V7.0-V7.2: The previously installed file is
retained.
V7.3: The file from the kit replaces the
previously installed file.

Are zero Unresolvable file conflict, an error is reported to
the user. Note that in V7.1, file conflict is not
detected and the file from the kit is selected.
This behavior was corrected in OpenVMS Alpha
Version 7.1-2 and OpenVMS VAX Version 7.2.

Generation information is not used for intraproduct conflict detection when a
product is upgraded. In this case, all files from the old version are deleted,
and new files from the kit are placed on the target disk. However, generation
information is used during an upgrade for interproduct conflict detection when
any files from the product conflict with files from another product.

Logical Names
The ASSEMBLE EXECUTE option causes the utility to define logical names for
use by the subprocess that executes the specified commands. The commands
should use these logical names to reference files, as follows:

• PCSI$SOURCE is a root directory specification under the user’s login
directory. It is used for temporary placement of the files specified by the
ASSEMBLE USES option. This logical name is defined for the subprocess in
which product-supplied commands execute. It is not the same PCSI$SOURCE
logical name that can be defined by a user, in the user’s process, pointing to
the location of a product kit.

• PCSI$DESTINATION is a root directory specification under the user’s login
directory used as a staging area. The commands specified in the ASSEMBLE
EXECUTE option are responsible for creating a file in this directory tree
whose name matches the one specified in the file name parameter. After
the commands are executed, the utility moves the file to the product’s
destination directory for the current scope. This logical name is defined
for the subprocess in which product-supplied commands execute. It is not the
same PCSI$DESTINATION logical name pointing to the target disk that can
be defined by a user in the user’s process.

• PCSI$SCRATCH is a subdirectory under the user’s login directory that can be
used by commands for temporary working space. This directory and any files
placed in it are automatically deleted at the end of the operation.

Product Description Language Statements 7–47

FILE

Scope and Lifetime
The scope and lifetime of the file managed object depend on whether it is
contained within a SCOPE, END SCOPE pair as shown in Table 7–3.

Table 7–3 File Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product1 Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

1If the file option is ASSEMBLE EXECUTE, the file managed object has assembly lifetime and
product scope.

Access Control Managed Object
You can include an ACCESS CONTROL option in a FILE statement to control
access to a file managed object. Each access control entry (ACE) you specify
creates an ACE managed object with the following characteristics:

• It is unnamed.

• It has operating lifetime. It has the same scope as the file managed object.

• The system resolves managed object conflict by managed object collection.

Image Library Managed Object
For a FILE statement that provides a shareable image, you can specify the
IMAGE LIBRARY option to direct the utility to insert the file’s symbols into the
system shareable image symbol table library. This action creates an image library
module object with the following characteristics:

• It must be unique within the global scope.

• It has assembly lifetime and global scope.

• Managed object conflict is not recoverable.

See Also

DIRECTORY
EXECUTE ABORT
EXECUTE INSTALL . . . REMOVE
EXECUTE POSTINSTALL
EXECUTE START . . . STOP
EXECUTE TEST
EXECUTE UPGRADE
LINK
LOADABLE IMAGE
MODULE
SCOPE

7–48 Product Description Language Statements

FILE

Examples

1. file [SYSMGR]PROD01.DAT
access control ("(IDENTIFIER=[TEST],ACCESS=READ)",

"(IDENTIFIER=[PROD_USER],ACCESS=READ+WRITE)",
"(IDENTIFIER=*,ACCESS=NONE)") write;

The FILE statement in this example specifies that the file PROD01.DAT
cannot be accessed by any user account other than TEST, which is allowed to
read it, and PROD_USER, which is allowed to read and write the file.

2. file [SYSLIB]FDVSHR.EXE image library ;

The FILE statement in this example specifies that the symbols for the
shareable image [SYSLIB]FDVSHR.EXE are inserted into the system
shareable image symbol table library.

3. file [SYSMGR]DECW$STARTUP.COM protection public ;

The FILE statement in this example creates the file
[SYSMGR]DECW$STARTUP.COM, giving users read and execute access.

4. file [SYSMGR]DECW$SYLOGIN.COM protection public
source [SYSMGR]DECW$SYLOGIN.TEMPLATE ;

The FILE statement in this example creates the file
[SYSMGR]DECW$SYLOGIN.COM in the execution environment using the
contents of the file [SYSMGR]DECW$SYLOGIN.TEMPLATE from product
material packaged in the kit. You do not have to specify the source file with
a separate FILE statement. The PACKAGE command always requires a
/MATERIAL qualifier.

5. file [SYSMGR]DECW$SYSTARTUP.COM generation 56 archive ;

The FILE statement in this example creates the file
[SYSMGR]DECW$SYSTARTUP.COM. If a version of the file
already exists in the directory, the existing file is renamed
[SYSMGR]DECW$SYSTARTUP.COM_OLD instead of being deleted. It
also assigns a generation number to the file for conflict resolution. For
example, if a version of the file already exists with a generation number of
60, the utility will preserve the copy with generation number 60 and will not
create a new one.

6. file [SYSEXE]CALIBRATE.EXE
assemble execute "@PCSI$SOURCE:[TEMP]CALIBRATE_LINK.COM"
assemble uses ("[TEMP]CALIBRATE.OBJ",

"[TEMP]CALIBRATE_LINK.COM") ;

The FILE statement in this example creates the file
[SYSEXE]CALIBRATE.EXE in the execution environment by executing
a command procedure to link the image. The link command procedure
and object file are obtained from product material packaged in the kit.
The link command in CALIBRATE_LINK.COM uses the link qualifier
/EXECUTABLE=PCSI$DESTINATION:[SYSEXE]CALIBRATE.EXE to create
the image file.

Product Description Language Statements 7–49

FILE

7. file "[EXAMPLES.C_CODE]ERROR--42-49.C" ;

The relative file specification in the FILE statement above is enclosed in
quotes because the file name contains consecutive hyphen characters. A
double hyphen usually indicates a comment delimiter in the PDF, unless it is
part of a quoted string.

8. if (<software HP AXPVMS VMS version minimum V7.1 version below A7.2>) ;
file [syslib]debugshr.exe source [syslib]debugshr_v71.exe ;

else if (<software HP AXPVMS VMS version minimum A7.2>) ;
file [syslib]debugshr.exe source [syslib]debugshr_v72.exe ;

The PDL statements above conditionally provide a file named
DEBUGSHR.EXE based on the version of the OpenVMS operating system
that is installed. Separate shareable images linked to run on OpenVMS
Version 7.1 and OpenVMS Version 7.2 (or later) are packaged in the kit. If
the version of OpenVMS is at least Version 7.1, the appropriate image is
selected and installed as DEBUGSHR.EXE.

7–50 Product Description Language Statements

HARDWARE DEVICE

HARDWARE DEVICE

The HARDWARE DEVICE statement identifies a required hardware device that
must be present in the execution environment. If the device is not present, the
utility prompts the user either to continue or to terminate the operation.

The HARDWARE DEVICE function tests whether a specified device is present.
The value is true if the device is present; otherwise, the value is false.

Statement Syntax

HARDWARE DEVICE name ;

Function Syntax

< HARDWARE DEVICE name >

Parameter

name
Indicates the device name of the hardware device. You must include the colon (:)
at the end of the device name.

Description

Statement
The HARDWARE DEVICE statement specifies a required hardware device. If the
device is not present, the utility prompts the user to continue or to terminate the
operation.

If the operation executes in batch mode and requires user interaction, the
operation terminates.

Function
The HARDWARE DEVICE function tests whether the specified device is present.
The value is true if the device is present; otherwise, the value is false.

See Also

IF

Examples

1. hardware device LPA0: ;

The HARDWARE DEVICE statement in this example specifies that if the
device named LPA0: is not present in the execution environment, then
the utility displays a message prompting the user either to continue or to
terminate the operation.

Product Description Language Statements 7–51

HARDWARE DEVICE

2. if (<hardware device GAA0:>) ;
file [SYSEXE]SMFDRIVER.EXE ;

end if ;

The HARDWARE DEVICE function in this example provides the file
[SYSEXE]SMFDRIVER.EXE if the device GAA0: is present.

7–52 Product Description Language Statements

HARDWARE PROCESSOR

HARDWARE PROCESSOR

The HARDWARE PROCESSOR statement identifies a system processor model
that must be present in the execution environment. If the model is not present,
the utility prompts the user either to continue or to terminate the operation.

The HARDWARE PROCESSOR function tests whether the specified system
processor model is present. The value is true if the model is present; otherwise,
the value is false.

Statement Syntax

HARDWARE PROCESSOR MODEL (model,...) ;

Function Syntax

< HARDWARE PROCESSOR MODEL (model,...) >

Parameter

MODEL (model,...)
Indicates processor model identifiers as integer values. You can obtain the
processor model number by using the DCL lexical function F$GETSYI("CPU").

Description

Statement
The HARDWARE PROCESSOR statement specifies a system processor model.
If the model is not present, the utility prompts the user to either continue or
terminate the operation.

If the operation executes in batch mode and requires user interaction, the
operation terminates.

Function
The HARDWARE PROCESSOR function tests whether the specified system
processor model is present. The value is true if the model is present; otherwise,
the value is false.

See Also

IF

Example

Suppose the PDF contains the following lines:

if (<hardware processor model 7>) ;
error UNSPROC ;

end if ;

You would have an UNSPROC module in the PTF similar to the following:

Product Description Language Statements 7–53

HARDWARE PROCESSOR

1 UNSPROC
=prompt Not supported on MicroVAX I.
This product is not supported on the MicroVAX I processor.

If the processor model is 7, the system displays a message supplied by the text
module UNSPROC indicating that the product is not supported on the MicroVAX
I computer. The user is then prompted to continue or terminate the operation.

7–54 Product Description Language Statements

IF

IF

The IF statement conditionally processes a group of statements based on the
evaluation of an expression. The IF, ELSE, ELSE IF, and END IF statements are
used together to form an IF group.

Syntax

IF expression; PDL-statements

[[ELSE IF expression; PDL-statements] ...]

[ELSE; PDL-statements]

END IF ;

Parameter

expression
Indicates the condition you want to test. An expression is used to produce a
Boolean value based on the evaluation of the condition. It is delimited by opening
and closing parentheses (...). It contains one or more of the following PDL
functions:

• <HARDWARE DEVICE>

• <HARDWARE PROCESSOR>

• <LOGICAL NAME>

• <OPTION>

• <SOFTWARE>

• <UPGRADE>

Optionally, the expression also contains one or more of the keywords AND, OR,
and NOT, which are used as logical operators. An expression has one of the
following forms, where each term is either another expression or a function:

• (term)

• (term AND term)

• (term OR term)

• (NOT term)

Option

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the PRODUCT and END PRODUCT statements.

Required Terminator

END IF ;

Product Description Language Statements 7–55

IF

Description

The IF group conditionally processes a group of statements based on the
evaluation of an expression. The utility executes the statements contained in
the IF group up to the first occurrence of an ELSE IF statement (if present), an
ELSE statement (if present), or END IF statement if the expression evaluates to
true. The utility skips these statements if the expression evaluates to false.

ELSE IF
The ELSE IF statement is valid only if it is immediately contained in an IF group
and is not lexically preceded by an ELSE statement.

The utility executes the statements lexically contained in the IF group between
the ELSE IF statement and the next occurrence of an ELSE, ELSE IF, or END IF
statement if all of the following conditions exist:

• The result of evaluating the expression in the IF statement is false.

• The result of evaluating the expression in all lexically preceding ELSE IF
statements in the same IF group (if present) is false.

• The result of evaluating the ELSE IF expression is true.

If any of these conditions are not satisfied, the utility also does not execute
statements lexically contained in the IF group between the ELSE IF statement
and the next occurrence of an ELSE, ELSE IF, or END IF statement.

ELSE
The ELSE statement is valid only if it is immediately contained in an IF group
and is the only ELSE statement in the IF group. The utility executes the
statements following the ELSE statement (in the same IF group) if both of
the following conditions exist:

• The result of evaluating the expression in the IF statement is false.

• The result of evaluating the expression in all lexically preceding ELSE IF
statements in the same IF group (if present) is false.

If either of these conditions is not satisfied, the utility does not execute
statements lexically contained in the IF group between the ELSE statement
and the END IF statement.

See Also

HARDWARE DEVICE
HARDWARE PROCESSOR
LOGICAL NAME
OPTION
SOFTWARE
UPGRADE

7–56 Product Description Language Statements

IF

Examples

1. if (<software HP VAXVMS DECWINDOWS>) ;
file [SYSEXE]PRO$DW_SUPPORT.EXE ;

else if (<software DEC VAXVMS MOTIF>) ;
file [SYSEXE]PRO$MOTIF_SUPPORT.EXE ;

else ;
file [SYSEXE]PRO$CC_SUPPORT.EXE ;

end if ;

This example uses the IF statement in conjunction with the SOFTWARE
function to determine which file to provide, as follows:

• If DECwindows is present, the utility provides the file
[SYSEXE]PRO$DW_SUPPORT.EXE.

• If DECwindows is not present and DECwindows Motif is present, the
utility provides the file [SYSEXE]PRO$MOTIF_SUPPORT.EXE.

• If neither DECwindows nor DECwindows Motif is present, the utility
provides the file [SYSEXE]PRO$CC_SUPPORT.EXE.

2. if ((NOT <hardware device MUA0:>) AND
(<software ABC AXPVMS TEST version below 2.0>));
.
.
.

end if;

In this example, the group of statements enclosed within the IF . . . END IF
statements is executed if no MUA0: device is available on the target system
and the product TEST with a version below V2.0 is present. The expression
evaluates to false either if there is an MUA0: device, the product TEST is
V2.0 or above, or no such product is installed.

Product Description Language Statements 7–57

INFER

INFER

The INFER statement tests the target system to determine if a product or product
version is available.

Note

The INFER statement is valid only in a transition PDF.

Syntax

INFER { AVAILABLE FROM { INSTALL file | LOGICAL NAME logical_name } |
VERSION FROM file } ;

Parameters

file
Indicates the relative file specification of the file you want to test.

logical_name
Indicates the logical name you want to test.

Description

The INFER statement tests the target system to determine if a product or product
version is available. This statement is valid only in a transition PDF.

There are several types of INFER statements:

• The INFER AVAILABLE statement tests the target system to determine if the
product named in the product directive of the transition PDF is available.

The INFER AVAILABLE FROM INSTALL statement tests whether the
product is available only if the specified file is installed as a known image.
The SCOPE statement controls execution of this statement; the test
executes in the specified scope.

The INFER AVAILABLE FROM LOGICAL NAME statement tests
whether the product is available only if the logical name you specify has a
translation.

• The INFER VERSION statement tests the target system to determine the
presence and active version of the product named in the product directive of
the transition PDF. The product is inferred to be present if the specified file
is present on the system and absent otherwise. If the product is present, the
active version is inferred to be the internal version number of the specified
file. The SCOPE statement controls execution of this statement; the test
executes in the specified scope.

7–58 Product Description Language Statements

INFER

See Also

SCOPE

Examples

1. infer available from logical name DOC$ROOT ;

The INFER AVAILABLE statement in this example determines if the product
is available by checking to see if there is a translation for the logical name
DOC$ROOT. The name of the product that the statement is testing for is
contained in the product directive in the transition PDF.

2. infer version from [SYSEXE]FORTRAN.EXE

The INFER VERSION statement in this example determines the active
version of the product by checking to see if the file [SYSEXE]FORTRAN.EXE
is present.

Product Description Language Statements 7–59

INFORMATION

INFORMATION

The INFORMATION statement displays a message from the specified text module
in the PTF either before or after the execution of an installation, configuration, or
reconfiguration operation.

Syntax

INFORMATION name
[[NO] CONFIRM]
[{ PHASE AFTER | PHASE BEFORE }]
[WITH HELPTEXT] ;

Parameter

name
Indicates, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

Options

[NO] CONFIRM
Displays the contents of the text module and prompts the user for a response.
The user can continue or terminate the operation. The CONFIRM option does not
have any effect in batch mode. The default is NO CONFIRM.

PHASE AFTER
Displays the contents of the text module after the execution phase of the
operation finishes. This option cannot be used with the PHASE BEFORE
option.

PHASE BEFORE
Displays the contents of the text module during the configuration phase. This
option is the default and cannot be used with the PHASE AFTER option.

WITH HELPTEXT
Forces the display of the full help text module during the installation or
configuration of the product. See Section 7.1 for usage constraints.

Description

The INFORMATION statement displays a message from the specified text module
in the PTF either before or after the execution of an installation, configuration, or
reconfiguration operation as directed by the phase option. The PHASE BEFORE
option causes the message to be displayed during the configuration phase of the
operation; the PHASE AFTER option causes the message to be displayed after
the execution phase of the operation.

By default, the prompt text string is displayed without help text. However,
help text is displayed after the prompt text when the user specifies the /HELP
qualifier on the command line, or the INFORMATION statement contains the
WITH HELPTEXT option.

7–60 Product Description Language Statements

INFORMATION

You must supply prompt text for the INFORMATION statement in the PTF using
the =prompt directive. Help text is optional. If provided, it must immediately
follow the prompt text line.

If you have INFORMATION statements that specify the PHASE BEFORE option
and they are lexically contained in a group with configuration choices, they are
processed in lexical order and may be nested.

Information statements that specify the PHASE AFTER option do not display
text if they are lexically contained in an option group that is not selected.

The CONFIRM option to the INFORMATION statement causes the utility to
prompt the user to continue or terminate the operation.

The INFORMATION statement declares a name; it is not a variable.

See Also

PART
PROCESS PARAMETER
SYSTEM PARAMETER

Example

Suppose the product text file for HP Rdb for OpenVMS software contains the
following lines:

1 RELEASE_NOTES
=prompt Release notes for Rdb/VMS available.
The release notes for Rdb/VMS are available in the file
SYS$HELP:RDBVMSV4.RELEASE_NOTES.
1 STOP_RDB_VMS_MONITOR
=prompt The HP Rdb for OpenVMS monitor must be stopped before installation

The HP Rdb for OpenVMS monitor must be stopped before you install HP Rdb
for OpenVMS.
Perform the following operation:
$ @SYS$MANAGER:RMONSTOP

The product description file could contain the following information statements:

information RELEASE_NOTES phase after ;
information STOP_RDB_VMS_MONITOR phase before with helptext confirm;

If the user requests help, the first INFORMATION statement displays the
following text after the operation finishes:

Release notes for HP Rdb for OpenVMS available.

The release notes for HP Rdb for OpenVMS are available in the file
SYS$HELP:RDBVMSV4.RELEASE_NOTES.

If the user does not request help, the first INFORMATION statement displays
only the prompt text after the operation finishes:

Release notes for HP Rdb for OpenVMS available.

Regardless of whether the user requests help or not, the second INFORMATION
statement displays the following text for the user during the configuration phase:

Product Description Language Statements 7–61

INFORMATION

The HP Rdb for OpenVMS monitor must be stopped before installation

The HP Rdb for OpenVMS monitor must be stopped before HP Rdb for OpenVMS
may be installed.
Perform the following operation:
$ @SYS$MANAGER:RMONSTOP

Do you want to continue [YES]?

Regardless of whether the HELP DISPLAY option is set, the confirm option in
the second statement forces the user to respond to the prompt before continuing.

7–62 Product Description Language Statements

LINK

LINK

The LINK statement specifies a second directory entry for a file or directory.

Syntax

LINK name FROM source ;

Parameters

name
Indicates the file specification of the second directory entry.

FROM source
Indicates the file specification of an existing directory entry for the file or
directory. The parameter string must be a single quoted or unquoted string. The
referenced file or directory must be defined by a DIRECTORY or FILE statement
in the same product description.

Description

The LINK statement specifies a second directory entry for a file or directory. The
managed object type of the file with the second directory entry is ‘‘link’’.

The scope and lifetime of the link managed object depend on whether it is
contained in a scope group, as shown in Table 7–4.

Table 7–4 Link Managed Object Scope and Lifetime

Type of Scope Group Lifetime Scope

Product Product Product
Global Assembly Global
Bootstrap Operating Bootstrap
Processor Operating Processor

If the LINK statement is not contained in a SCOPE, END SCOPE pair or it is
contained in a scope product group, the link managed object has product lifetime
and product scope.

Managed object conflict is unrecoverable.

See Also

DIRECTORY
FILE
SCOPE

Examples

1. file [SYS$EXE]FMS.EXE;
link [SYSEXE]FMS.EXE from [SYS$EXE]FMS.EXE ;

The statement in this example specifies that the file [SYSEXE]FMS.EXE is
linked to the file [SYS$EXE]FMS.EXE. Both files, [SYS$EXE]FMS.EXE and
[SYSEXE]FMS.EXE, have the same file ID.

Product Description Language Statements 7–63

LINK

2. directory [ABC] ;
directory [DEF] ;

link [DEF]ABC.DIR from [000000]ABC.DIR;

This example illustrates how to create a second directory entry [DEF.ABC] for
a directory [ABC].

7–64 Product Description Language Statements

LOADABLE IMAGE

LOADABLE IMAGE

The LOADABLE IMAGE statement places an image into the system loadable
images table, SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA, and
also into SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX for compatibility with the
System Management utility (SYSMAN).

Syntax

LOADABLE IMAGE image PRODUCT product
[STEP { INIT | SYSINIT }]
[MESSAGE text]
[SEVERITY { FATAL | SUCCESS | WARNING }] ;

Parameters

image
Indicates the file name of the system loadable image. The name you specify must
be defined in the same product description and must have bootstrap scope and
product or assembly lifetime.

PRODUCT product
Indicates the product mnemonic (as a single quoted or unquoted string of 1 to 8
characters) that uniquely identifies the loadable image. For user-written images,
this should typically contain the string _LOCAL_.

Options

STEP INIT
Indicates that the system load the image during the INIT step of the booting
process.

STEP SYSINIT
Indicates that the system load the image during the SYSINIT step of the booting
process. This is the default.

MESSAGE text
Indicates the message you want displayed using the severity option. The message
must be a single quoted or unquoted string. Case is significant. By default, the
severity option displays the message ‘‘system image load failed.’’

SEVERITY FATAL
Indicates that if an error occurs while the image is being loaded, the system
displays the message and bugchecks; if no error occurs, processing continues.

SEVERITY SUCCESS
Indicates that the system continue processing and not display a message
regardless of whether an error occurs while the image is being loaded.

SEVERITY WARNING
Indicates that if an error occurs while the image is being loaded, the system
displays the message and continues; if no error occurs, the system continues and
does not display the message. This is the default.

Product Description Language Statements 7–65

LOADABLE IMAGE

Description

The LOADABLE IMAGE statement places an image into the system loadable
images table, SYS$LOADABLE_IMAGES:VMS$SYSTEM_IMAGES.DATA, and
also into SYS$UPDATE:VMS$SYSTEM_IMAGES.IDX for compatibility with the
System Management utility (SYSMAN).

The LOADABLE IMAGE statement specifies a loadable image module managed
object that has the following characteristics:

• It must be unique within the global scope.

• It has assembly lifetime and global scope.

• It does not recover from managed object conflict.

The LOADABLE IMAGE statement also refers to a file managed object specified
using the image parameter.

See Also

FILE

Example

loadable image DDIF$RMS_EXTENSION product _LOCAL_
message "DDIF Extension not loaded"
severity warning ;

The statement in this example places the user-written image DDIF$RMS_
EXTENSION in the system loadable images table. If an error occurs while
loading this image, the system displays the error message ‘‘DDIF Extension not
loaded’’ and continues.

7–66 Product Description Language Statements

LOGICAL NAME

LOGICAL NAME

The LOGICAL NAME function tests whether the specified logical name is defined
in the designated logical name table and optionally has an equivalence string
with a particular value.

There is no corresponding LOGICAL NAME statement.

Function Syntax

< LOGICAL NAME name [EQUALS value] [TABLE table_name] >

Parameter

NAME name
Indicates the logical name string.

Options

EQUALS value
Specifies the value of the equivalence name string that must match the
translation of the logical name to cause the function to evaluate as TRUE. If
you do not use the EQUALS option to specify an equivalence name, the presence
of the logical name in the specified or default logical name table is sufficient to
make the function evaluate as TRUE.

TABLE table_name
Specifies the name of the logical name table to search. If you do not use the
TABLE option to designate a logical name table, LNM$SYSTEM_TABLE becomes
the default table to search.

Description

The LOGICAL NAME function tests whether the specified logical name is defined
in the designated logical name table and optionally has an equivalence string
with a particular value.

The function evaluates as TRUE if the logical name is defined in the designated
logical name table (or the system logical name table by default) and, if a value
for the logical name is specified, the translation of the logical name provides an
equivalence string that matches that value. Otherwise, the function evaluates as
FALSE. Note that only one logical name table is searched.

The LOGICAL NAME function is evaluated immediately after processing all
EXECUTE PRECONFIGURE statements that may be present in the PDF. This
has the following implications:

• For the logical name function to evaluate as TRUE, it must be defined in one
of the following ways:

1. By the user before the PRODUCT command is invoked

2. BY the action of a command procedure run by the processing of an
EXECUTE PRECONFIGURE statement.

A logical name defined during the processing of any other type of EXECUTE
statement will not be used in the evaluation of a logical name function.

Product Description Language Statements 7–67

LOGICAL NAME

• A logical name function cannot be used to conditionalize the execution of an
EXECUTE PRECONFIGURE statement. If an EXECUTE PRECONFIGURE
statement is enclosed in an IF group that tests for a logical name, the
EXECUTE PRECONFIGURE statement will always be executed.

The primary purpose of the logical name function is to provide a mechanism for
the product developer to conditionalize the execution of PDL statements based
on the definition of a logical name that can be established dynamically after the
user selects a product kit, but before the configuration phase begins. By using
an EXECUTE PRECONFIGURE command procedure, you can probe the system
environment or interact with the user to gather information to define a logical
name as appropriate. This allows you to affect the processing of PDL statements
within an IF group during the execution phase of an installation, configuration,
or reconfiguration operation.

See Also

EXECUTE PRECONFIGURE
IF

Example

execute preconfigure "@PCSI$SOURCE:[SYSUPD]EXEC_PREC.COM"
uses [SYSUPD]EXEC_PREC.COM interactive ;

if (< logical name YOUR_ANSWER equals MENU_ITEM_1 >) ;
file [SYSEXE]FILE1.EXE ;

else if (< logical name YOUR_ANSWER equals MENU_ITEM_2 >) ;
file [SYSEXE]FILE2.EXE ;

else if (< logical name YOUR_ANSWER equals MENU_ITEM_3 >) ;
file [SYSEXE]FILE3.EXE ;

end if ;

The utility limits your configuration options to accept only true or false values.
This example illustrates how to program multiple choice questions.

The EXECUTE PRECONFIGURE statement runs commands from the EXEC_
PREC.COM file in an interactive mode. The user is prompted to select one
of three menu items. The answer is stored by the command procedure as an
equivalence name to a logical name YOUR_ANSWER. The logical name is
evaluated immediately after the EXECUTE PRECONFIGURE statement and
the result is stored internally. During the execution phase, the LOGICAL
NAME function is evaluated and, based on the result, the IF group installs the
appropriate file.

7–68 Product Description Language Statements

MODULE

MODULE

The MODULE statement adds or replaces one or more modules in a command,
help, macro, object, or text library file.

Syntax

MODULE file TYPE type MODULE (module_name[,...])
[[NO] GENERATION generation]
[[NO] GLOBALS]
[LIBRARY library]
[[NO] SELECTIVE SEARCH] ;

Parameters

file
Indicates the relative file specification of the file that contains the modules.

TYPE type
The library type. Table 7–5 lists the keywords you can specify with this
parameter.

Table 7–5 Library Types for Module Statement

Keyword Library Type Default Library File

Command Command definition library [SYSLIB]DCLTABLES.EXE
Help Help library [SYSHLP]HELPLIB.HLB
Macro Macro library [SYSLIB]STARLET.MLB
Object Object library [SYSLIB]STARLET.OLB
Text Text library [SYSLIB]STARLETSD.TLB

MODULE module_name
The list of module names you are specifying.

Options

[NO] GENERATION generation
Indicates that the file has an explicit generation number. Specify the number as
an unsigned integer in the range of 0 through 4294967295. See the Description
section for the meaning of this value. By default, the file does not have an explicit
generation number (no generation), which is equivalent to 0.

[NO] GLOBALS
Indicates whether the global symbol names of the modules you are inserting
into an object library are included in the global symbol table. You can use this
option with object libraries only. By default, the global symbols of the module are
inserted into the global symbol table.

LIBRARY library
Indicates the relative file specification of the library. The file you specify must be
a library of the type you specified with the TYPE parameter.

Product Description Language Statements 7–69

MODULE

[NO] SELECTIVE SEARCH
Indicates whether the input modules being inserted into the library are available
for selective searches by the linker (by default, they are not). You cannot use
this option with the command and help libraries. For more information about
selective searches, see the HP OpenVMS Linker Utility Manual.

Description

The MODULE statement adds or replaces one or more modules in a command
library file, or a single module in a help, macro, object, or text library file. The
MODULE statement adds the module name to the product database. You do
not need to use a REGISTER MODULE statement in addition to a MODULE
statement to register the module name.

Use the MODULE parameter to specify the name of the module object. For
a help, macro, object, or text library, the name specified with the MODULE
parameter should be the same as the name of the module itself.

The module object has assembly lifetime, and its scope is the same as the library.

A module inserted into a command, help, object, text, or macro library can conflict
with another module having the same name that is already resident in the
library. Two types of module conflict can occur:

• An interproduct module conflict occurs when two or more products provide
a module with the same name.

• An intraproduct module conflict occurs when two or more patch or partial
kits for a product update the same module.

The utility resolves a module conflict by comparing the generation numbers of the
modules involved.

A generation number is an optional attribute you supply on either the MODULE
or REGISTER MODULE statement using the GENERATION option. A
generation number can be any integer in the range of 0 to 4294967295. If
you do not specify a generation number, its default value is 0.

Table 7–6 Resolving Module Conflict with Generation Numbers

If the generation numbers Then

Are different The module with the largest non-zero number is
selected.

Are the same and are not
zero

The module from the kit replaces the previously
installed module.

Are zero Unresolvable file conflict, an error is reported
to the user. Note that for V6.1-V6.2 a module
with an explicit generation number of 0 might be
selected over a module with a default value of 0.

Generation information is not used for intraproduct conflict detection when a
product is upgraded. In this case, all modules from the old version are deleted,
and new modules from the kit are placed on the target disk. However, generation
information is used during an upgrade for interproduct conflict detection when
any modules from the product conflict with modules from another product.

7–70 Product Description Language Statements

MODULE

See Also

FILE
REGISTER MODULE

Examples

1. module [SYSUPD]CDD.CLD type COMMAND module CDD ;

The statement in this example creates the command module CDD in
the default command library [SYSLIB]DCLTABLES.EXE using the file
[SYSUPD]CDD.CLD.

2. module [SYSUPD]HELP.HLP type HELP module HELP ;

The statement in this example creates the help module in the default help
library [SYSHLP]HELPLIB.HLB using the file [SYSUPD]HELP.HLP.

3. module [SYSUPD]SPI$CONNECT.MAR type MACRO
library [SYSLIB]LIB.MLB module SPI$CONNECT ;

The statement in this example creates the macro module
SPI$CONNECT in the macro library [SYSLIB]LIB.MLB using the file
[SYSUPD]SPI$CONNECT.MAR.

4. module [SYSUPD]COBRTL.OBJ type OBJECT module COBRTL;

The statement in this example creates the object module COBRTL
in the default object library [SYSLIB]STARLET.OLB using the file
[SYSUPD]COBRTL.OBJ.

5. module [SYSUPD]PROTOTYPE_BOOK.TXT type TEXT
library [SYSLIB]LPS$FONT_METRICS.TLB module PROTOTYPE_BOOK;

The statement in this example creates the text module PROTOTYPE_
BOOK in the text library [SYSLIB]LPS$FONT_METRICS.TLB using the file
[SYSUPD]PROTOTYPE_BOOK.TXT.

Product Description Language Statements 7–71

NETWORK OBJECT

NETWORK OBJECT

The NETWORK OBJECT statement uses a command procedure to create a
DECnet network object.

Syntax

NETWORK OBJECT name WITH (parameters,...) ;

Parameters

name
Indicates the name of the network object. The network object name is passed to
the command procedure as P1.

WITH (parameters,...)
Indicates the list of parameters that are passed to the command procedure that
creates the network object. Each parameter must be a single quoted string that
specifies P2 through P5, in order. See the Description section for the meaning of
the parameters.

Description

The NETWORK OBJECT statement uses a command procedure
(SYS$UPDATE:PCSI$CREATE_NETWORK_OBJECT.COM) to create network
objects. The command procedure determines whether DECnet Phase IV or
DECnet–Plus is running on the system. If Phase IV is being used, the command
procedure runs the Network Control Program (NCP) utility to create the network
object. Otherwise, it runs the Network Control Language (NCL) utility.

In the case of DECnet–Plus, the network object created during the product
installation will exist only in memory. It is recommended that DECnet–Plus
objects be supplied in the form of an NCL script with a FILE statement and
activated with a product startup procedure.

The utility passes the following parameters to the command procedure:

• P1 specifies the name of the network object (using the name parameter).

• P2 specifies the object number (for DECnet Phase IV systems only).

• P3 specifies the user name associated with the object. If you specify a user
name, it must already exist.

Note

The password of the specified user account is changed when the network
object is created by PCSI$CREATE_NETWORK_OBJECT.COM. The new
password is system generated, and can be viewed with the NCP command
SHOW OBJECT.

• P4 specifies optional parameters to use with the NCP command DEFINE
OBJECT for DECnet Phase IV objects.

• P5 specifies optional parameters to use with the NCL command
CREATE SESSION CONTROL APPLICATION for DECnet–Plus objects.

7–72 Product Description Language Statements

NETWORK OBJECT

When you remove a product that created network objects, the
POLYCENTER Software Installation utility uses a command procedure
(SYS$UPDATE:PCSI$DELETE_NETWORK_OBJECT.COM) to delete network
objects associated with your product.

Note

In a future version, the utility may create and delete these managed
objects directly without the use of command procedures. If this is the
case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the
utility.

The NETWORK OBJECT statement specifies a network object managed object
that has the following characteristics:

• Its name is the value of the name parameter. The name must be unique with
respect to all network object names in the processor scope.

• It has operating lifetime and processor scope.

• Managed object conflict is not recoverable.

See Also

FILE
EXECUTE START . . . STOP

Examples

1. network object k$test with ("number 107", "user KRYPTON") ;

In this example, the NETWORK OBJECT statement creates a network
DECnet Phase IV object named k$test. Its object number is 107 and it will
execute as user KRYPTON.

2. file [SYSMGR]NETOBJ_TEST.NCL;
file [SYS$STARTUP]PRODUCT_STARTUP.COM ;

execute
start "@sys$startup:product_startup.com"
stop "";

In this example, the first FILE statement supplies the DECnet–Plus NCL
script file. This script can contain NCL directives that create a DECnet–Plus
network object, that is, session control application. For example, the script
file might contain the following NCL commands:

.

.

.
delete session control application k_test
create session control application k_test
set session control application k_test

.

.

.

The network object name is k_test.

Product Description Language Statements 7–73

NETWORK OBJECT

The second FILE statement supplies a command procedure, which is executed
as a result of processing the EXECUTE START statement during the product
installation. The startup command procedure may contain the following DCL
command that forces the NCL script file to be executed:

.

.

.
$ MCR NCL DO NETOBJ_TEST.NCL

.

.

.

The startup command procedure can be placed later into the system startup
procedure to execute each time the user’s system is rebooted.

7–74 Product Description Language Statements

OPTION

OPTION

The OPTION statement conditionally processes a group of statements based on
the user’s response to a question. The OPTION and END OPTION statements
form an OPTION group.

Statement Syntax

OPTION name [DEFAULT value] [WITH HELPTEXT] ;

[PDL-statements]

END OPTION ;

Function Syntax

< OPTION name [DEFAULT value] [WITH HELPTEXT] >

Parameter

name
Indicates, as a quoted or unquoted string, the name of the associated PTF text
module. This text module contains the text of a question that will be displayed
to the user. The name you specify can be from 1 to 31 characters and must be
unique among all text modules in the PDF; that is, two PDL statements cannot
refer to the same text module.

Options

DEFAULT value
Indicates the default value for the option. The value must be either 1 (true), 0
(false), yes, no, true, or false; the default is 1 (true).

If you specify an OPTION statement with the default value 0, and the OPTION
group contains other OPTION statements, any defaults for the enclosed OPTION
statements apply only when the top-level OPTION statement is selected.

WITH HELPTEXT
Forces the display of the full help text module during the installation or
configuration of the product. See Section 7.1 for usage constraints.

PDL-statements
Any product description language statement or a group of statements described
in this reference section can be used, except the PRODUCT and END PRODUCT
statements.

Required Terminator

END OPTION ;

Product Description Language Statements 7–75

OPTION

Description

Statement
The OPTION statement conditionally processes a group of statements based on
the user’s response to a question. The user is prompted to choose options during
the configuration phase of an operation. If the user accepts an option, the utility
executes the statements contained in the OPTION group. If the user declines the
option, the utility skips these statements.

You can nest OPTION groups. The user must process and select an OPTION
group containing other OPTION statements before any inner OPTION statements
are processed. That is, if the user declines an option, any OPTION groups
contained within it are also treated as being declined.

When an option is processed, the utility displays the prompt text line from the
specified module in the PTF and waits for a response. The response can be Yes,
No, or Return to accept the default answer.

Default answers come from one of three places:

• A product configuration file (PCF), if one is supplied with the
/CONFIGURATION=INPUT=pcf-name qualifier on the command line
of a PRODUCT INSTALL, PRODUCT CONFIGURE, or PRODUCT
RECONFIGURE command.

• The product database (PDB) for an upgrade of a previously installed product
where the PDB contains the answers from the previous installation.

• The product description file (PDF) from the product kit.

If an input PCF is used and it contains an answer for an option, that answer
is the default. Depending on the entry in the PCF, the user may or may not be
allowed to change the default value.

If no input PCF is supplied, or if the input PCF does not contain an answer for
an option, the default answer is obtained from either the PDB or the PDF. If
the PDB does not contain information about the product (for example, this is a
new installation), or a product specific PDB entry exists but does not contain the
option (a new option), then the default comes from the PDF. Default answers that
come from either the PDB or PDF may be changed by the user.

In addition to the prompt text line, the utility displays help text (if present in the
PTF), when the user specifies the /HELP qualifier on the command line, or the
OPTION statement contains the WITH HELPTEXT option.

You must supply prompt text for the OPTION statement in the PTF using the
=prompt directive. Help text is optional. If provided, it must immediately follow
the prompt text line.

You cannot use the OPTION statement in a patch, mandatory update, partial, or
transition PDF. It is valid only in a full, platform, or operating system PDF.

Function
The user is prompted to choose options during the configuration phase of the
operation. If the user selects an option, the OPTION function returns true. If the
user declines the option, the OPTION function returns false.

7–76 Product Description Language Statements

OPTION

See Also

IF
PART

Examples

1. option NET ;
file [SYSEXE]NETSERVER.COM ;
file [SYSEXE]NETSERVER.EXE ;
file [SYSHLP]NCPHELP.HLB ;
option NET_A default 0 ;

file [SYSEXE]FAL.COM ;
file [SYSEXE]FAL.EXE ;

end option ;
option NET_B ;

file [SYSEXE]REMACP.EXE ;
file [SYSMGR]RTTLOAD.COM ;
file [SYS$LDR]CTDRIVER.EXE ;
file [SYS$LDR]RTTDRIVER.EXE ;

end option ;
end option ;

If the product description file contains the previous lines, the product text file
contains the corresponding text:

1 NET
=prompt network support
This option allows you to participate in a DECnet network.
1 NET_A
=prompt incoming remote file access
This option allows file access from other nodes in a DECnet network.
1 NET_B
=prompt incoming remote terminal access
This option allows users on other nodes in a DECnet network to log
in.

The user must select option NET before NET_A or NET_B are available for
selection. Therefore, NET is processed before NET_A or NET_B.

2. if (<option A>) ;
file [SYSEXE]A.EXE ;

else ;
file [SYSEXE]B.EXE ;

end if ;

The product text file contains the corresponding text:

1 A
=prompt the X capability
This feature provides the A capability, but you will not get the B
capability.

In this example, if the user selected the A option, the utility provides the file
[SYSEXE]A.EXE. Otherwise, the utility provides the file [SYSEXE]B.EXE.

Product Description Language Statements 7–77

PART

PART

The PART statement displays a message from the specified text module in
the PTF about a group of statements during the configuration phase of an
installation, configuration, or reconfiguration operation. The PART and END
PART statements form a PART group.

Syntax

PART name ;

[PDL-statements]

END PART ;

Parameter

name
Indicates, as a quoted or unquoted string, the name of the associated PTF text
module. The name you specify can be from 1 to 31 characters in length and must
be unique among all names in the same product description.

Option

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the PRODUCT and END PRODUCT statements.

Required Terminator

END PART ;

Description

The PART statement displays a message from the specified text module in
the PTF about a group of statements during the configuration phase of an
installation, configuration, or reconfiguration operation. You can nest PART
groups, which are processed in lexical order.

Although the syntax of the part group and the option group is similar, their
purpose is quite different. The part group simply displays a message and does
not affect the processing of PDL statements contained within the group. In
contrast, the option group prompts the user to accept or decline the option,
causing the PDL statements that make up the option to be processed or ignored.

By default, the prompt text string is displayed without help text. However,
help text is displayed after the prompt text when the user specifies the /HELP
qualifier on the command line.

You must supply prompt text for the PART statement in the PTF using the
=prompt directive. Help text is optional. If provided, it must immediately follow
the prompt text line.

7–78 Product Description Language Statements

PART

See Also

INFORMATION
OPTION

Example

Suppose the product description file contains the following lines:

part CSWS ;
software HP AXPVMS CSWS

version required V1.0 component ;
software HP AXPVMS MOD_JSERV

version required V1.0 component ;
software HP AXPVMS MOD_PERL

version required V1.0 component ;
end part;

The product text file contains the corresponding text:

1 CSWS
=prompt HP Secure Web Server
This platform provides the following products:
* HP Secure Web Server software (Based on Apache)
* MOD_JSERV software
* MOD_PERL software

This example shows how to use the PART statement to display a message about
the required software products that this platform provides.

Product Description Language Statements 7–79

PATCH IMAGE (VAX only)

PATCH IMAGE (VAX only)

The PATCH IMAGE statement updates an executable image using PATCH
commands.

Note

As of OpenVMS Version 7.3, the PATCH IMAGE statement is obsolete.
To support existing product kits that may have used this statement, the
POLYCENTER Software Installation utility continues to process this
statement in a backward-compatible manner. However, we recommend
that you not use the PATCH IMAGE statement in new or revised product
kits. Instead of patching an image file, provide a replacement image file
with a FILE statement. Documentation of the PATCH IMAGE statement
may be discontinued in a future release of this manual.

Syntax

PATCH IMAGE name WITH source ;

Parameters

name
Indicates the relative file specification of the executable image you want to
update.

WITH source
Indicates the file specification of the file containing the update commands. The
file must contain OpenVMS VAX Image File Patch Utility (PATCH) commands.

Description

The PATCH IMAGE statement updates an executable image using PATCH
commands. Use this statement when it is inconvenient to provide a new image.

You must supply the file containing the update commands as part of the product
material.

The PATCH IMAGE statement specifies a managed object that has the following
characteristics:

• Its name is the same as the name parameter of the product group in which
the statement is lexically contained; it is a multicomponent name qualified
by the relative file specification of the file that is being updated. It must be
unique with respect to all managed objects in all scopes.

• It has assembly lifetime, and its scope is the same as that of the file being
updated.

• Managed object conflict is unrecoverable.

7–80 Product Description Language Statements

PATCH IMAGE (VAX only)

Example

patch image [SYS$LDR]SYS.EXE with [SYSUPD]VERSION_PATCH.PAT ;

This statement provides a file, [SYSUPD]VERSION_PATCH.PAT, to patch the
image [SYS$LDR]SYS.EXE.

Product Description Language Statements 7–81

PATCH TEXT

PATCH TEXT

The PATCH TEXT statement updates a text file using SUMSLP commands.

Note

As of OpenVMS Version 7.3, the PATCH TEXT statement is obsolete.
To support existing product kits that may have used this statement, the
POLYCENTER Software Installation utility continues to process this
statement in a backward-compatible manner. However, Hewlett-Packard
recommends that you do not use the PATCH TEXT statement in new or
revised product kits. If possible, provide a replacement file with a FILE
statement. If this is not practical, and you must edit an existing file,
consider using a FILE statement with the ASSEMBLE EXECUTE and
ASSEMBLE USES options to run a command procedure that places a
copy of the previously installed file in the PCSI$DESTINATION scratch
directory and performs the editing function there. Documentation of the
PATCH TEXT statement may be discontinued in a future release of this
manual.

Syntax

PATCH TEXT name WITH source ;

Parameters

name
Indicates the relative file specification of the text file you want to update.

WITH source
Indicates the file specification of the file containing the update commands (as a
single quoted or unquoted string). The file must contain SUMSLP commands for
use by the EDIT/SUM editor.

Description

The PATCH TEXT statement updates a text file using SUMSLP commands. Use
this statement when it is inconvenient to provide a new file.

You must supply the file containing the update commands as part of the product
material. You must also supply the file that you want to update, but this file
is not propagated to the product kit. The POLYCENTER Software Installation
utility uses it to calculate the input and output checksum values.

The PATCH TEXT statement creates a temporary directory, identified by
the logical name PCSI$SCRATCH, to compute a checksum value. The
PCSI$SCRATCH directory is created as a subdirectory of SYS$SCRATCH.

The PATCH TEXT statement specifies a managed object that has the following
characteristics:

• Its name is the same as the name parameter of the product group in which
the statement is lexically contained; it is a multicomponent name qualified
by the relative file specification of the file that is being updated. It must be
unique with respect to all managed objects in all scopes.

7–82 Product Description Language Statements

PATCH TEXT

• It has assembly lifetime, and its scope is the same as that of the file being
updated.

• Managed object conflict is unrecoverable.

Example

patch text [SYSUPD]VMSINSTAL.COM with [SYSUPD]VMSINSTAL.SLP ;

This statement provides a file, [SYSUPD]VMSINSTAL.SLP, to patch the text file
[SYSUPD]VMSINSTAL.COM.

Product Description Language Statements 7–83

PROCESS PARAMETER

PROCESS PARAMETER

The PROCESS PARAMETER statement displays a message to users about
process parameter requirements.

Note

The utility does not adjust process parameters.

Syntax

PROCESS PARAMETER name
{ { CONSUME | REQUIRE } value |
MAXIMUM value |
MINIMUM value |
MINIMUM value MAXIMUM value } ;

Parameter

name
Indicates the process parameter name. The name you specify must be valid on
the system where the product executes.

Options

CONSUME value
Indicates that the process parameter must be increased by the specified value.
Use this option when the product consumes a resource that is controlled by the
process parameter. The value must be a single unquoted string that specifies an
unsigned integer value. You cannot use this option with either the MAXIMUM,
MINIMUM, or REQUIRE option.

MAXIMUM value
Indicates that the process parameter must have a value less than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value.

MINIMUM value
Indicates that the process parameter must have a value greater than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value.

REQUIRE value
Indicates that the process parameter must have the specified value. The value
must be a single string that specifies a value of the parameter’s type. This option
is valid for any parameter data type. You cannot use this option with either the
MAXIMUM, MINIMUM, or CONSUME option.

Description

The PROCESS PARAMETER statement displays a message to users after the
installation about process parameter requirements. Note that the utility does not
adjust process parameters.

7–84 Product Description Language Statements

PROCESS PARAMETER

See Also

INFORMATION
SYSTEM PARAMETER

Example

process parameter ASTLM minimum 6;
process parameter BYTLM require 32768;
process parameter PRCLM consume 2;
process parameter FILLM maximum 40;

These statements display a message to users that a process that executes the
product must have the following process parameters:

ASTLM greater than or equal to 6
BYTLM set to 32768
PRCLM increased by 2
FILLM less than or equal to 40

Product Description Language Statements 7–85

PROCESS PRIVILEGE

PROCESS PRIVILEGE

The PROCESS PRIVILEGE statement displays a message to users about process
privilege requirements.

Note

The utility does not adjust process privileges.

Syntax

PROCESS PRIVILEGE (name[,...]) ;

Parameter

name
Indicates the process privilege names as a list. The privileges you specify must
be valid on the system where the product executes.

Description

The PROCESS PRIVILEGE statement displays a message to users after the
installation about process privilege requirements. The utility does not adjust
process privileges.

Example

process privilege (group, oper, tmpmbx, sysnam) ;

The statement in this example displays a message to the user that processes
using the product must have the GROUP, OPER, TMPMBX, and SYSNAM
privileges.

7–86 Product Description Language Statements

PRODUCT

PRODUCT

The PRODUCT statement specifies product identification and other descriptive
information about the product. The PRODUCT and END PRODUCT statements
form a PRODUCT group.

Syntax

PRODUCT producer base name version kittype ;

[PDL-statements]

END PRODUCT ;

Parameters

producer
Indicates the legal owner of the software product. This parameter must be a
single quoted or unquoted string.

base
Indicates the base hardware and operating system combination on which the
product is intended to be installed. This parameter must be a single quoted
or unquoted string. By convention, the string AXPVMS denotes an OpenVMS
Alpha product, VAXVMS denotes an OpenVMS VAX product, and VMS denotes a
product applicable for either OpenVMS Alpha or VAX.

Although any base system name can be used when you package a product,
Hewlett-Packard recommends that you use the names AXPVMS, VAXVMS, and
VMS when developing products for use on OpenVMS.

name
Indicates the name of the product. This parameter must be a single quoted or
unquoted string. The combination of the producer, base, and name parameters
must be unique among products installed on the system.

version
Indicates the version of the product. This parameter must be a single quoted or
unquoted string.

kittype
Indicates the kit type of the product through use of one of the following keywords
or keyword phrases:

• FULL–a complete description of a layered product (application software) that
can be used to install or upgrade the product.

• OPERATING SYSTEM–a complete description of an operating system that
can be used to install or upgrade the product. Only one product or operating
system type can be installed on the system.

• PARTIAL–a partial (incomplete) description of a product that can be used
only to upgrade an existing version of the same product. Installation of
a partial kit changes the version number of the product and can upgrade
a product of type full, operating system, or platform. A partial kit must
contain an UPGRADE statement and have the same producer-base-name
identification string as the product it upgrades.

Product Description Language Statements 7–87

PRODUCT

• PATCH–a partial (incomplete) description of a product that can be used only
to update an existing version of a product. Installation of a patch kit does
not change the version number of the product and can update a product type:
full, operating system, or platform. A patch kit must contain an APPLY TO
statement and have a different producer-base-name identification string than
the product it updates.

• PLATFORM–a complete description of a suite of products that can be used to
install or upgrade the entire set of products.

• TRANSITION–a complete or incomplete description of a product that was
installed on the system by another installation method, such as VMSINSTAL.
A transition kit is used only to register a previously installed product; it
does not contain any product material. Registration using a transition kit
defines the name of a product and its managed objects in the POLYCENTER
Software Installation product database. After a product is registered, the
utility can use this information to satisfy software dependency requirements
that other products may have on the availability of this product.

The keyword TRANSITION used alone denotes a layered product; the
keyword phrase TRANSITION OPERATING SYSTEM denotes an operating
system.

• MANDATORY UPDATE–functionally identical to a patch kit. Its type implies
that the patch must be applied to the product it updates.

See Section 3.5 for a more detailed description of kit types and example PDFs.

Option

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the PRODUCT and END PRODUCT statements.

Required Terminator

END PRODUCT ;

Description

The PRODUCT statement specifies product identification and other descriptive
information about the product. The PRODUCT and END PRODUCT statements
form the product group. A product description file consists of a product group and
any other PDL statements that this group might enclose.

The PRODUCT statement is a utility directive and does not specify a managed
object.

See Also

APPLY TO
SOFTWARE
UPGRADE

7–88 Product Description Language Statements

PRODUCT

Examples

1. product HP VAXVMS FMS V2.4 full ;
file [sysmsg]fdvshr.exe image library ;
file [sysmsg]fmsmsg.exe ;
file [sysexe]fmsfed.exe ;
file [sysexe]fmsfaa.exe ;
file [sysexe]fmsfte.exe ;
directory [systest.fms] ;
file [systest.fms]ivp.exe ;
file [systest.fms]samp.flb ;

end product ;

The PRODUCT statement in this example identifies the product as FMS
version 2.4 that is intended to be installed on an OpenVMS VAX system.

2. product HP AXPVMS INTERNET_PRODUCTS V1.1 platform ;
.
.
.

end product ;

The PRODUCT statement in this example identifies INTERNET_PRODUCTS
Version 1.1 as a suite of products (that is, a platform) for installation on an
OpenVMS Alpha system.

Product Description Language Statements 7–89

REGISTER MODULE

REGISTER MODULE

The REGISTER MODULE statement registers in the product database one or
more existing modules in a command, help, macro, object, or text library file.

Syntax

REGISTER MODULE TYPE type MODULE (module_name,...)
[[NO] GENERATION generation]
[LIBRARY library] ;

Parameters

TYPE type
Indicates the library type. Table 7–7 lists the keywords you can use with this
parameter.

Table 7–7 Library Types for Register Module Statement

Keyword Library Type Default Library File

Command Command definition library [SYSLIB]DCLTABLES.EXE
Help Help library [SYSHLP]HELPLIB.HLB
Macro Macro library [SYSLIB]STARLET.MLB
Object Object library [SYSLIB]STARLET.OLB
Text Text library [SYSLIB]STARLETSD.TLB

MODULE module_name
Indicates the names of the modules contained within the library.

Options

[NO] GENERATION generation
Indicates that the module has an explicit generation number. Enter the number
as an unsigned integer in the range of 0 through 4294967295. See the Description
section of the MODULE statement for the meaning of this value. By default, the
module does not have an explicit generation number (no generation), which is
equivalent to 0.

LIBRARY library
The file specification of the library. The file you use must be a library of the type
you specified with the type parameter.

Description

The REGISTER MODULE statement registers in the product database one or
more existing modules in a command, help, macro, object, or text library file.
Typically, REGISTER MODULE statements are used when a product provides
a library file with a FILE statement that is already populated with modules.
Registering these modules in the product database allows the utility to detect
conflicts with other modules.

7–90 Product Description Language Statements

REGISTER MODULE

Do not use REGISTER MODULE statements to register information about
modules specified in a MODULE statement. When a MODULE statement is
processed, module information is automatically placed in the product database.
Therefore, use of REGISTER MODULE statements in this context would be
redundant.

See Also

MODULE

Examples

1. register module type HELP
module (":=","=","@",ACCOUNTING,ALLOCATE,ANALYZE,APPEND,...) ;

In this example, the REGISTER MODULE statement registers several help
modules in [SYSHLP]HELPLIB.HLB.

2. register module type OBJECT generation 1
module (BAS$$CB,BAS$$COPY_FD,BAS$$DISPATCH_T,...) ;

In this example, the REGISTER MODULE statement registers several
object modules. The generation option allows the utility to perform conflict
resolution with these object modules.

Product Description Language Statements 7–91

REMOVE

REMOVE

The REMOVE statement deletes objects from the user’s system. The REMOVE
and END REMOVE statements form a remove group.

Note

You cannot use the REMOVE statement in a transition PDF.

Syntax

REMOVE ;

[PDL-statements]

END REMOVE ;

Option

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the PRODUCT and END PRODUCT statements.

Required Terminator

END REMOVE ;

Description

The REMOVE group is used to delete objects from the user’s system. Statements
that normally provide managed objects (such as FILE and DIRECTORY
statements) cause these objects to be deleted when the statements are enclosed in
a REMOVE group.

By using the REMOVE group in a partial, patch, or mandatory update kit, you
can eliminate obsolete files from a previous version of your product. By using the
REMOVE group in a full kit, you can eliminate objects provided by a previous
installation mechanism (for example, VMSINSTAL). You can also use a REMOVE
group to delete objects that were created by a previous version of your product,
but which were not recorded in the product database as managed objects. These
include archived files (those saved as *.*_OLD) and files created by command
procedures invoked through EXECUTE statements.

Statements that do not provide managed objects function normally within a
REMOVE group.

You can nest REMOVE, END REMOVE within SCOPE, END SCOPE, if
necessary.

7–92 Product Description Language Statements

REMOVE

Examples

1. remove ;
directory [SYSHLP.EXAMPLES.FOO] ;
file [SYSHLP.EXAMPLES.FOO]SMLUS.COM ;
file [SYSHLP.EXAMPLES.FOO]SMLUT.COM ;
file [SYSHLP.EXAMPLES.FOO]SMLUU.COM ;

end remove ;

The statements in this example remove some files and a directory (if they
exist) from the product database and the running system.

2. scope bootstrap ;
remove ;

file [SYSEXE]PROD_PROC.EXE ;
end remove ;
file [SYSEXE]PROD_PROC_V2.EXE ;

end scope ;

The statements in this example remove a file in the bootstrap scope and then
provide a new file.

Product Description Language Statements 7–93

RIGHTS IDENTIFIER

RIGHTS IDENTIFIER

The RIGHTS IDENTIFIER statement uses a command procedure to create a
rights identifier.

Syntax

RIGHTS IDENTIFIER name WITH (parameters,...) ;

Parameters

name
Indicates the name of the rights identifier. The rights identifier name is passed
to the command procedure as P1.

WITH (parameters,...)
Indicates the list of parameters that are passed to the command procedure that
creates the rights identifier. Each parameter must be a single unquoted or quoted
string that specifies P2 and P3, in order. If there are no qualifiers to pass, specify
a null string (" "). See the Description section for the meaning of the parameters.

Description

The RIGHTS IDENTIFIER statement invokes a command procedure
(SYS$UPDATE:PCSI$CREATE_RIGHTS_IDENTIFIER.COM) to create rights
identifiers. This command procedure runs the AUTHORIZE utility to perform the
function. The utility passes the following parameters to the command procedure:

• P1 specifies the name of the rights identifier (using the name parameter).

• P2 specifies the optional qualifiers to use with the AUTHORIZE command
ADD/IDENTIFIER. If there are no qualifiers to pass, specify a null string (‘‘
’’).

• P3 specifies the /VALUE qualifier to use with the AUTHORIZE command
ADD/IDENTIFIER. You can specify this parameter only if the identifier does
not already exist on the system.

When you remove a product that created rights identifiers, the
POLYCENTER Software Installation utility uses a command procedure
(SYS$UPDATE:PCSI$DELETE_RIGHTS_IDENTIFIER.COM) to delete rights
identifiers associated with your product. This happens regardless of whether the
SYSUAF.DAT is shared by another system disk.

Note

In a future version, the utility may create and delete these managed
objects directly without the use of command procedures. If this is the
case, these statements will continue to function, but the command
procedures may not be maintained or shipped with future versions of the
utility.

7–94 Product Description Language Statements

RIGHTS IDENTIFIER

The RIGHTS IDENTIFIER statement specifies a rights identifier managed object
that has the following characteristics:

• Its name is the value of the name parameter. The name must be unique with
respect to all rights identifier names in the operating scope.

• It has operating lifetime.

• It does not recover from managed object conflict.

See Also

ACCOUNT

Example

rights identifier PCSI_TEST
with ("/attributes=DYNAMIC",

"/value=IDENTIFIER:14600926") ;

In this example, the RIGHTS IDENTIFIER statement creates a rights identifier
named PCSI_TEST with a value of 14600926.

Product Description Language Statements 7–95

SCOPE

SCOPE

The SCOPE statement establishes the scope of one or more managed objects. The
SCOPE and END SCOPE statements form a scope group.

Syntax

SCOPE { BOOTSTRAP |
GLOBAL |
PROCESSOR |
PRODUCT } ;

[PDL-statements]

END SCOPE ;

Option

PDL-statements
Any product description language statement or a group of statements described
in this reference section, except the PRODUCT and END PRODUCT statements.

Required Terminator

END SCOPE ;

Description

The SCOPE statement establishes the scope of one or more managed objects.
The scope of a managed object defines the degree of sharing that the managed
object permits. For example, some objects are available only to certain processes;
whereas others are shared by all processes.

The SCOPE and END SCOPE statements form a SCOPE group. The type of
scope indicated in the SCOPE statement pertains to all objects within the SCOPE
group. You can nest SCOPE groups.

Note

In almost all cases, the POLYCENTER Software Installation utility
defaults establish the correct scope for each type of managed object.
Because using SCOPE statements unnecessarily or incorrectly can cause
problems, we recommend that you use explicit SCOPE statements only
when you are sure product scope is not sufficient, as explained here or
stated in the description of certain PDL statements.

The different types of scope that a managed object can have are as follows:

• Global scope is the largest scope in which a single POLYCENTER Software
Installation utility operation can have an effect. A single file that must be
shared by every process in the computing facility must exist in global scope.
Modules in system object libraries are examples of managed objects that must
be in global scope. Writable databases might be in global scope.

7–96 Product Description Language Statements

SCOPE

When placing file or modules in global scope, see Section 2.6 and the
descriptions of the FILE and MODULE statements regarding conflict
resolution and the GENERATION option.

• Bootstrap scope managed objects function during system bootstrap when
operating system facilities are unable to locate and use larger scopes. Drivers
and loadable images that must be present before startup executes are
examples of files that should be in the bootstrap scope.

Use bootstrap scope for products that use device drivers, especially those
drivers that must be read by the primitive file system. Because files in
bootstrap scope are read by the primitive file system, they are read when not
synchronized with the file system on other cluster members that might access
the same disk. Therefore, those files must retain stable positions as long
as the disk is in use by any system and must not be manipulated by online
disk defragmentation operations, including those that use the MOVEFILE
primitive.

• Product scope managed objects are product specific. Most managed objects
for a product reside in product scope. Product scope is the default scope
for most objects; therefore, it is not necessary to specify product scope.
Product scope managed objects for different products can be stored together
or separately.

• Processor scope managed objects exist in all processes executing on a single
computer. For example, a logical name might exist in processor scope.

When you update your product with a partial, patch, or mandatory update kit,
you can either explicitly state the scope of the file managed objects you are
updating or let the utility determine the scope of the file managed objects:

• You can use the SCOPE statement to ensure that the utility looks in a specific
scope for the file managed object you want to update.

• If you do not use the SCOPE statement, the utility searches the execution
environment for a file managed object with the same name. If the utility finds
the object, it replaces the object; if the utility does not find the file managed
object, it provides a new file in product scope.

If you use the PATCH statement, the object you are updating must have been
provided by your product. If you use the MODULE statement, the object you are
updating either must have been provided by your product or must be in global or
bootstrap scope.

See Also

DIRECTORY
FILE
INFER
LINK

Product Description Language Statements 7–97

SCOPE

Example

scope bootstrap ;
file [SYSEXE]SYSBOOT.EXE ;
file [SYSEXE]VMB.EXE ;
bootstrap block [SYSEXE]VMB.EXE image [SYSEXE]BOOTBLOCK.EXE ;

end scope;

The statements in this example specify that the files VMB.EXE and
SYSBOOT.EXE must be placed on every bootstrap disk.

7–98 Product Description Language Statements

SOFTWARE

SOFTWARE

The SOFTWARE statement signals a software dependency on the specified
product: the specified product must be installed prior to, or concurrently with,
the installation of the product that contains the SOFTWARE statement. Upon
successful installation, the SOFTWARE statement causes a permanent software
reference to be recorded in the product database.

The SOFTWARE function tests for the presence of the specified product, including
any version constraints that you may impose.

In contrast to the SOFTWARE statement, the SOFTWARE function does not
create a permanent software reference to the specified product in the product
database. The SOFTWARE function also does not cause the referenced product to
be implicitly installed.

Note

Take note of the distinction between the SOFTWARE statement and
the SOFTWARE function. The statement and function serve different
purposes and are not interchangeable. See the Description section for a
full discussion of the differences.

Statement Syntax

SOFTWARE producer base name
[[NO] COMPONENT]
[{ VERSION ABOVE version |
VERSION BELOW version |
VERSION MAXIMUM version |
VERSION MINIMUM version |
VERSION REQUIRED version |
VERSION ABOVE version VERSION BELOW version |
VERSION ABOVE version VERSION MAXIMUM version |
VERSION MINIMUM version VERSION BELOW version |
VERSION MINIMUM version VERSION MAXIMUM version }] ;

Function Syntax

< SOFTWARE producer base name
[{ VERSION ABOVE version |
VERSION BELOW version |
VERSION MAXIMUM version |
VERSION MINIMUM version |
VERSION REQUIRED version |
VERSION ABOVE version VERSION BELOW version |
VERSION ABOVE version VERSION MAXIMUM version |
VERSION MINIMUM version VERSION BELOW version |
VERSION MINIMUM version VERSION MAXIMUM version }] ;
[{ INSTALLED BEFORE | INSTALLED AFTER | KIT
ACCESSIBLE}] >)

Product Description Language Statements 7–99

SOFTWARE

Parameters

producer
Indicates the legal owner of the software product. This parameter must be a
single quoted or unquoted string.

base
Indicates the base hardware/software system on which the product is intended
to be installed. This parameter must be a single quoted or unquoted string. By
convention, the string AXPVMS denotes an OpenVMS Alpha product, VAXVMS
denotes an OpenVMS VAX product, and VMS denotes a product applicable for
either OpenVMS Alpha or VAX.

name
Indicates the name of the product. This parameter must be a single quoted or
unquoted string. The combination of producer, base, and name parameters must
be unique among products installed on the system.

Options

[NO] COMPONENT
Indicates that if the product is copied (using the PRODUCT COPY command),
the component products will be copied along with the product. The default is NO
COMPONENT (the product does not need to be present during a copy operation).

INSTALLED AFTER
Directs the utility to test whether the specified software product will be installed
on the system at the conclusion of the current operation. This option is available
only for the SOFTWARE function. You cannot use this option with either the
INSTALLED BEFORE or KIT ACCESSIBLE option. This option is the default
when neither the INSTALLED BEFORE nor the KIT ACCESSIBLE option is
used.

INSTALLED BEFORE
Directs the utility to test whether the specified software product was installed on
the system before the current operation began. This option is available only for
the SOFTWARE function. You cannot use this option with either the INSTALLED
AFTER or KIT ACCESSIBLE option.

Take special note of the fact that INSTALLED BEFORE is not the default. When
neither the INSTALLED BEFORE nor the INSTALLED AFTER option is used,
the default is INSTALLED AFTER. Therefore, if you want to determine if a
product is already installed, you must use the INSTALLED BEFORE option.

KIT ACCESSIBLE
Directs the utility to test whether the specified software product kit, either in
sequential or reference format, is present in the source directory. This option
is available only for the SOFTWARE function. You cannot use this option with
either the INSTALLED AFTER or INSTALLED BEFORE option. By default,
availability of the kit is not tested.

VERSION ABOVE version
Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than (but not equal to) the specified version. You cannot use this option

7–100 Product Description Language Statements

SOFTWARE

with either the VERSION MINIMUM or VERSION REQUIRED option. By
default, there is no lower version limit.

VERSION BELOW version
Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than (but not equal to) the specified version. You cannot use this option with
either the VERSION MAXIMUM or VERSION REQUIRED option. By default,
there is no upper version limit.

VERSION MAXIMUM version
Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than or equal to the specified version. You cannot use this option with either
the VERSION BELOW or VERSION REQUIRED option. By default, there is no
upper version limit.

VERSION MINIMUM version
Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than or equal to the specified version. You cannot use this option with
either the VERSION ABOVE or VERSION REQUIRED option. By default, there
is no lower version limit.

VERSION REQUIRED version
Establishes a required version. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must
be equal to the specified version. You cannot use this option with either the
VERSION ABOVE, VERSION BELOW, VERSION MAXIMUM, or VERSION
MINIMUM option. By default, there is no required version constraint.

Description

SOFTWARE Statement
The SOFTWARE statement signals a software dependency on the specified
product: the specified product must be installed prior to (or concurrently with)
the installation of the product that contains the SOFTWARE statement. Upon
successful installation, the SOFTWARE statement causes a permanent software
reference to be recorded in the product database.

One of three situations may occur when a product with a SOFTWARE statement
is installed:

• If the referenced product is already installed, the software dependency is
satisfied, so no action is performed on the referenced product.

• If the referenced product is not installed, but a product kit for it is available
in the source directory, the referenced product is implicitly installed to satisfy
the software dependency.

• If the referenced product is not installed and the source directory does not
contain a product kit for it, then an error message is displayed advising the
user to terminate the installation process.

If a referenced product is not available, Hewlett-Packard recommends that
users accept the default prompt and terminate the operation.

Product Description Language Statements 7–101

SOFTWARE

If you intend only to check whether a certain software product is installed on the
system and alert the user if it is not, use the SOFTWARE function.

You use the SOFTWARE statement for the following purposes:

• To specify a software product that should be installed on the system to satisfy
a software product dependency. For example, if Product A has a dependency
on Product B, install Product B before installing Product A.

• To specify that a software product that is a part of a platform (product suite)
is to be included in the platform product installation.

• To satisfy a special use of the MODULE statement when the following
conditions are met:

The product updates (with a MODULE statement) a library that is
supplied by the referenced product

Both products could be installed concurrently

Because it provides a library that another product updates, the referenced
product must be installed first. The SOFTWARE statement forces the
referenced product to be installed first when the products are installed
together in one operation. (If the products were to be installed separately, you
could use the SOFTWARE function to make sure that the referenced product
was already installed.)

For example, installing the OpenVMS platform product results in the
installation of the OpenVMS operating system and, optionally, selected
layered products such as DECwindows Motif. DECwindows Motif updates
HELPLIB.HLB, which is originally provided by OpenVMS. Therefore,
DECwindows Motif must use a statement such as

software HP AXPVMS VMS ;

in its product description file to explicitly reference the OpenVMS operating
system and guarantee that OpenVMS is installed before DECwindows Motif.

If two products reference each other (creating a circular reference list), the utility
issues an error message.

If you use the component option, the utility creates a copy of the referenced
product when you use the PRODUCT COPY command.

If the operation executes in batch mode and a referenced product is not available,
the operation terminates.

Software Function
The SOFTWARE function tests for the presence of a product. You can also specify
the version of the product that must be present.

You can use different options to determine whether the specified product:

• Is currently installed

• Will be installed on successful completion of the operation

• Has a product kit in the source directory

The SOFTWARE function, unlike the SOFTWARE statement, does not create
a permanent software reference to another product and does not force the
installation of the other product.

7–102 Product Description Language Statements

SOFTWARE

By default, the SOFTWARE function tests the state the product will be in when
the operation finishes, not when the operation begins. The same effect is obtained
when you include the INSTALLED AFTER option. To test the state of the
referenced product when the operation begins, you must specify the INSTALLED
BEFORE option. If you specify the KIT ACCESSIBLE option, the function tests
whether the referenced product kit is present in the source directory.

Note

The default option INSTALLED AFTER, is reliably tested only after
the user configuration phase concludes and the utility is about to begin
the execution phase. Use caution when including this option with the
SOFTWARE function.

The function value is true if the following conditions exist; otherwise, the value is
false:

• The product specified by the producer, base, and name parameters is
available according to one of the following options: INSTALLED BEFORE,
INSTALLED AFTER, or KIT ACCESSIBLE.

• The VERSION option is omitted, or the available version satisfies the
specified constraints.

The SOFTWARE function is more appropriate than the SOFTWARE statement if
you need only verify the existence of a certain product.

You use the SOFTWARE function with the IF statement, as shown in the
following example:

if (not < software HP AXPVMS PROD_A version minimum V4.0 >) ;
information NO_PROD_A confirm ;
file [SYSEXE]PROD_A_SUBSTITUTE.EXE ;

end if ;

Using the SOFTWARE function with the IF statement gives you much more
flexibility in forming expressions with other functions, and allows you to perform
multiple actions in the form of groups of statements.

If the SOFTWARE function reference is not satisfied, you can display an error
message with an ERROR statement. This message allows a message of any size
and contents. (Note that an error message induced by an unsatisfied SOFTWARE
statement is rigid, short, and potentially less informative.)

You can use the ABORT option on an ERROR statement to unconditionally
terminate the SOFTWARE function operation, while the failed SOFTWARE
statement leaves the user with an option to continue the product installation.

if (< software HP AXPVMS PROD_B version below V7.0 >) ;
error NO_PROD_B abort ;

end if ;

Product Description Language Statements 7–103

SOFTWARE

Summary of Differences Between the Statement and Function
Table 7–8 summarizes the differences between the SOFTWARE statement and
the SOFTWARE function.

Table 7–8 Summary of SOFTWARE Statement and SOFTWARE Function
Differences

Statement Function

If the referenced product is not
installed and its kit is available to
the utility during the installation of
the referencing product, it will be
installed by the utility just prior to
the referencing product.

If the referenced product is not installed,
the function will evaluate to the boolean
value FALSE (0). The referenced product
will not be installed even though the kit
may be available to the utility.

Causes the utility to create a
permanent software reference in
the database.

Does not create any reference from the
referencing to the referenced product.

Creates a risk of software reference
conflicts.

Because no permanent software reference
is created, there is no risk of conflict.

Causes the utility to create a
software reference and user interface
related data structures in memory
for the duration of the operation,
thereby consuming additional system
memory.

Does not cause the utility to create
software reference or user interface
related data structures in memory.

Requires additional processing to
check for software reference conflicts
and for processing error messages.

Requires no additional processing other
than searching for the presence of the
referenced products.

If software reference cannot be
satisfied, a one-sentence message is
displayed to the user.

Allows any processing based on the
value of the SOFTWARE function; error
messages can be tailored in any desired
way and size.

With the failure of a software
reference, continuation of the
operation is still possible.

With the failure of a software reference,
processing may be unconditionally
aborted with an "error <message> abort"
statement.

Use only if you are willing to install
the referenced product.

Use whenever you want only to check for
the referenced product availability, but
do not intend to install the referenced
product.

7–104 Product Description Language Statements

SOFTWARE

Avoiding Common Mistakes
A common mistake is for a layered product’s PDF to include a SOFTWARE
statement reference to a VMS (OpenVMS operating system) product, or to
an OPENVMS platform (product suite that includes the OpenVMS operating
system).

It is acceptable to reference the OpenVMS operating system from a SOFTWARE
statement if your product relies on the presence of the library files supplied by
the operating system. However, do not reference the OpenVMS platform from a
SOFTWARE statement.

If you need to verify the OpenVMS operating system version before the
installation of the layered product can proceed and complete successfully, use
the SOFTWARE function instead:

if (< software DEC AXPVMS VMS version below V6.2 >) ;
error UNSUPP_VMS_VER abort ;

else ;
-- include your PDL statements here

end if ;

If you do use the SOFTWARE statement, you should expect the following results:

• If the installed version of OpenVMS is different than the one specified by the
SOFTWARE statement, and the OpenVMS product kit is not available, an
error message prompting the user to terminate the session is issued. This
might be the result you are trying to achieve, but the SOFTWARE function is
still the better choice.

• If the installed version of OpenVMS is different than the one specified by the
SOFTWARE statement, and an OpenVMS product kit satisfying the software
reference criteria is available, the utility may attempt an upgrade of the
operating system.

• If the installed version of OpenVMS is within constraints specified by the
SOFTWARE statement, the installation of the layered product may complete
successfully, but a permanent software reference is made in the database
from the layered product to the OpenVMS operating system. This can lead to
software reference conflicts if the OpenVMS operating system is upgraded in
the future.

Another drawback is that a significantly greater amount of memory is
consumed and additional processing is done to check for software reference
conflicts when processing the SOFTWARE statements, which leads to
diminished performance.

See Also

APPLY TO
IF
PRODUCT
UPGRADE

Examples

1. software HP VAXVMS FORTRAN
version minimum V3.0 version maximum V5.0 ;

The SOFTWARE statement in this example specifies that this product
requires HP Fortran software. The version must be between 3.0 and 5.0.

Product Description Language Statements 7–105

SOFTWARE

2. software HP VAXVMS FORTRAN version below V5.0 ;

The SOFTWARE statement in this example specifies that this product
requires HP Fortran software. The version must be less than (but not equal
to) 5.0.

3. if (< software HP AXPVMS COOL_PRODUCT
version minimum V3.0 kit accessible >) ;

software HP AXPVMS COOL_PRODUCT version minimum V3.0 ;
else if (< option NO_COOL_REFERENCE default YES with helptext >) ;

file [SYSEXE]COOL_SUBSTITUTE.EXE ;
else ;

error MISSING_COOL ;
end if ;

In this example, the SOFTWARE function is used to search the source
directory for the COOL_PRODUCT kit. If the POLYCENTER Software
Installation utility finds the software package with Version 3.0 or higher
on the system, the reference to it is created with a separate SOFTWARE
statement.

If the COOL_PRODUCT V3.0 or higher is not found, an option to install its
substitute (file [SYSEXE]COOL_SUBSTITUTE.EXE]) is offered to the user. If the
user declines to accept the substitute image, an error is issued and the user
is prompted to either terminate or continue the current session.

7–106 Product Description Language Statements

SYSTEM PARAMETER

SYSTEM PARAMETER

The SYSTEM PARAMETER statement allows you to display a message to users
that expresses system parameter requirements for your product.

Note

The utility does not change system parameters.

Syntax

SYSTEM PARAMETER name
{ { CONSUME | REQUIRE } value |
MAXIMUM value |
MINIMUM value |
<MINIMUM value MAXIMUM value } ;

Parameter

name
Indicates the name of the system parameter. The parameter you specify must be
valid on the system where the product executes.

Options

CONSUME value
Indicates that the system parameter must be increased by the specified value.
Use this option when the product consumes a resource that is controlled by the
system parameter. The value must be a single unquoted string that specifies an
unsigned integer value. You cannot use this option with either the MAXIMUM,
MINIMUM, or REQUIRE options.

MAXIMUM value
Indicates that the system parameter must have a value less than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value.

MINIMUM value
Indicates that the system parameter must have a value greater than or equal to
the specified value. The value must be a single unquoted string that specifies an
integer value.

REQUIRE value
Indicates that the system parameter must have the specified value. The value
must be a single string that specifies a value of the parameter’s type. This option
is valid for any parameter data type. You cannot use this option with either the
MAXIMUM, MINIMUM, or CONSUME options.

Description

The SYSTEM PARAMETER statement displays a message to users about system
parameter requirements for your product after the installation. Note that the
utility does not adjust system parameters.

Product Description Language Statements 7–107

SYSTEM PARAMETER

See Also

INFORMATION
PROCESS PARAMETER

Example

system parameter vaxcluster require 1 ;
system parameter tty_classname require "TT" ;
system parameter pagedyn consume 200 ;

The statements in this example display the following messages:

This product requires the following system parameters
VAXCLUSTER value 1

This product requires the following system parameters
TTY_CLASSNAME value TT

This product requires the following system parameters
PAGEDYN add 200

7–108 Product Description Language Statements

UPGRADE

UPGRADE

The UPGRADE statement specifies the versions of the product that can be
upgraded by the product kit being installed. If the product is currently installed
but its version does not meet the version selection criteria in the UPGRADE
statement, the installation is terminated. The UPGRADE statement has no effect
when the product is being installed for the first time.

The UPGRADE function tests whether a version of the product in the specified
range is being upgraded by the current operation. If a version of the product in
the specified range is currently installed, the function returns true; otherwise it
evaluates to false. If no version criteria are given, the function tests whether any
version of the product is currently installed.

Statement Syntax

UPGRADE
{ VERSION ABOVE version |
VERSION BELOW version |
VERSION MAXIMUM version |
VERSION MINIMUM version |
VERSION REQUIRED version |
VERSION ABOVE version VERSION BELOW version |
VERSION ABOVE version VERSION MAXIMUM version |
VERSION MINIMUM version VERSION BELOW version |
VERSION MINIMUM version VERSION MAXIMUM version } ;

Function Syntax

< UPGRADE
{ VERSION ABOVE version |
VERSION BELOW version |
VERSION MAXIMUM version |
VERSION MINIMUM version |
VERSION REQUIRED version |
VERSION ABOVE version VERSION BELOW version |
VERSION ABOVE version VERSION MAXIMUM version |
VERSION MINIMUM version VERSION BELOW version |
VERSION MINIMUM version VERSION MAXIMUM version }] >

Options

VERSION ABOVE version
Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than (but not equal to) the specified version. You cannot use this option
with either the VERSION MINIMUM or VERSION REQUIRED option. By
default, there is no lower version limit.

VERSION BELOW version
Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than (but not equal to) the specified version. You cannot use this option with

Product Description Language Statements 7–109

UPGRADE

either the VERSION MAXIMUM or VERSION REQUIRED option. By default,
there is no upper version limit.

VERSION MAXIMUM version
Establishes an upper version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
less than or equal to the specified version. You cannot use this option with either
the VERSION BELOW or VERSION REQUIRED option. By default, there is no
upper version limit.

VERSION MINIMUM version
Establishes a lower version limit. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must be
greater than or equal to the specified version. You cannot use this option with
either the VERSION ABOVE or VERSION REQUIRED option. By default, there
is no lower version limit.

VERSION REQUIRED version
Establishes a required version. The version identifier must be a single quoted
or unquoted string. Use this option to specify that the product version must
be equal to the specified version. You cannot use this option with either the
VERSION ABOVE, VERSION BELOW, VERSION MAXIMUM, or VERSION
MINIMUM option. By default, there is no required version constraint.

Description

Statement
In a full, platform, or operating system PDF, the UPGRADE statement is
optional. When present, the UPGRADE statement specifies the versions of
the product that can be successfully upgraded by the product kit. If a version of
the product is currently installed but does not meet the version selection criteria
in the UPGRADE statement, the installation is terminated. The UPGRADE
statement has no effect when the product is being installed for the first time.
If an UPGRADE statement is not present in the PDF, the kit being installed
is allowed to upgrade (or replace) any version of the product that might be
installed. This includes a lower version, a higher version, or the same version of
the product.

In a partial PDF, the UPGRADE statement is required. The statement specifies
which versions of the product must be installed for the partial kit to be applied
successfully.

You cannot use the UPGRADE statement for a patch, mandatory update, or
transition PDF.

Function
The UPGRADE function tests whether a version of the product in the specified
range is being upgraded by the current operation. If a version of the product in
the specified range is currently installed, the function returns true; otherwise it
evaluates to false. If no range is given, the function tests whether any version of
the product is currently installed.

The UPGRADE function is not meaningful for a patch, mandatory update,
or transition PDF. If included in these PDFs, the UPGRADE function always
evaluates to false.

7–110 Product Description Language Statements

UPGRADE

See Also

APPLY TO
IF
PRODUCT
SOFTWARE

Examples

1. product HP AXPVMS ABC V4.0 full ;
upgrade version minimum V2.0 ;
.
.
.

end product ;

The UPGRADE statement in this example does not allow product ABC V4.0
to upgrade versions of the product prior to V2.0. Product ABC, however,
can upgrade to V2.0 or later of the product. Or, if a previous version of the
product is not currently installed, it can perform a new installation.

2. product HP AXPVMS DEF V4.2 partial ;
upgrade version required V4.1 ;
.
.
.

end product ;

The UPGRADE statement in this PDF is required because this is a partial
kit. It specifies that product DEF V4.1 must already be installed in order to
apply this partial kit to upgrade the product to V4.2.

3. product HP VAXVMS JKL V2.5 full ;
if (<upgrade>) ;
information UPG_MSG ;
end if ;
.
.
.

end product ;

In this example, if any version of product JKL is currently installed, an
informational message will be displayed to the user.

4. product HP VAXVMS JKL V2.5 full ;
if (<upgrade version minimum A1.0 version below A2.0>) ;
file [sysupd]jkl_convert.com ;
end if ;
.
.
.

end product ;

If version 1 of the product (from beta test through final release) is being
upgraded, the UPGRADE function in this PDF is used to conditionally
provide a file.

Product Description Language Statements 7–111

A
Migrating from VMSINSTAL to the

POLYCENTER Software Installation Utility

VMSINSTAL is an installation mechanism supplied by Hewlett-Packard. This
appendix contains information about VMSINSTAL options and callbacks and
their POLYCENTER Software Installation utility equivalents.

A.1 VMSINSTAL Options and Equivalents
Table A–1 lists some tasks that you may need to perform, the corresponding
VMSINSTAL option, and the POLYCENTER Software Installation utility
equivalent. Note that some VMSINSTAL options do not have an equivalent. In
many cases, this is because the design of the POLYCENTER Software Installation
utility eliminates the need for an equivalent.

Table A–1 VMSINSTAL Options and Equivalents

Task
VMSINSTAL
Option

POLYCENTER Software Installation Utility
Equivalent

Creating a file that specifies
answers to installation questions

OPTIONS A Create a product configuration file (PCF). This is
similar to an auto-answer file in VMSINSTAL.

Specifying a temporary work
directory

OPTIONS AWD Specify the /WORK qualifier to the PRODUCT
command.

Starting the system OPTIONS B1 No equivalent.

Tracing callbacks during
installation

OPTIONS C2 Use the /LOG and /TRACE qualifiers on the
PRODUCT INSTALL command.

Manipulating product kits OPTIONS G Use the PRODUCT COPY/FORMAT=keyword
command to convert a kit into a different format
(see Chapter 5).

Suppressing VMSINSTAL
prompts

OPTIONS I2 Use the /OPTIONS=NOCONFIRM qualifier.

Debugging a kit OPTIONS K2 Use the /LOG and /TRACE qualifiers to assist in
debugging a PDF.

Providing a log of installation
operations

OPTIONS L Use the /LOG and /TRACE qualifiers. This
provides more information than OPTIONS L
with VMSINSTAL.

Displaying or printing release
notes

OPTIONS N Use the RELEASE NOTES option to the FILE
statement and the PRODUCT EXTRACT
RELEASE_NOTES command. The release notes
are created in the current directory, using the file’s
original specification as the default name.

1OpenVMS startup use only
2Developer’s use only

(continued on next page)

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility A–1

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.1 VMSINSTAL Options and Equivalents

Table A–1 (Cont.) VMSINSTAL Options and Equivalents

Task
VMSINSTAL
Option

POLYCENTER Software Installation Utility
Equivalent

Performing an installation in
test mode

OPTIONS Q2 No equivalent.

Installing a product in an
alternate root

OPTIONS R Use the /DESTINATION qualifier or a logical
name, PCSI$DESTINATION, defined before
product installation.

Pausing the installation at
various points

OPTIONS RSP2 No equivalent.

Compiling information about the
installation

OPTIONS S2 Use the /LOG and /TRACE qualifiers to the
PRODUCT command.

2Developer’s use only

A.2 VMSINSTAL Callbacks and Equivalents
To install a product using VMSINSTAL, you create a command procedure named
KITINSTAL.COM that makes callbacks to VMSINSTAL. If you are migrating
from VMSINSTAL to the POLYCENTER Software Installation utility, see
Table A–2, which lists the VMSINSTAL callbacks and their equivalents.

Table A–2 VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Adding an identifier to the
rights database

ADD_IDENTIFIER Use the RIGHTS
IDENTIFIER statement.

Prompting the installer for
information

ASK To confirm the completion
of preinstallation tasks, use
the CONFIRM option to the
INFORMATION statement.
The product text file (PTF)
contains the prompt and
help text.

Not recording responses to
installation questions

A No equivalent.

Forcing a Boolean answer B No equivalent.

Preceding a prompt with
blank line

D No equivalent.

Disabling terminal echo E No equivalent.

Displaying help text before
the prompt

H The INFORMATION
statement.

Requiring an integer as the
answer

I No equivalent.

Returning input in lowercase L No equivalent.

Returning input in the same
case

M No equivalent.

(continued on next page)

A–2 Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Indicating a null response is
acceptable

N No equivalent.

Ringing the terminal bell
before the prompt

R No equivalent.

Indicating the response can
be a string

S No equivalent.

Returning input in uppercase U No equivalent.

Indicating the response can
be Ctrl/Z

A No equivalent.

Determining whether a
license for the product is
installed on the system

CHECK_LICENSE No equivalent. License
management is outside the
domain of the utility.

Determining whether the
network is running

CHECK_NETWORK No equivalent. If you use a
statement that references
the DECnet network, the
utility ensures that the
network is available.

Determining whether there
is sufficient disk space on the
target device

CHECK_NET_
UTILIZATION

No equivalent. The utility
ensures that sufficient disk
space is available.

Determining whether a
minimum version of software
is present in the execution
environment

CHECK_PRODUCT_
VERSION

Use the VERSION
MINIMUM option to the
SOFTWARE function.

Limiting an installation
to specified versions of the
OpenVMS operating system

CHECK_VMS_
VERSION

Use the VERSION
MINIMUM and VERSION
MAXIMUM options to the
SOFTWARE function,
specifying HP as the
producer name, VAXVMS or
AXPVMS as the base, and
VMS as the product name.

Determining which is the
most recent version of an
image

COMPARE_IMAGE You can manage file
versions using the
generation option to the
FILE statement.

Determining whether
the user has loaded the
license for the product being
installed on the system

CONFIRM_LICENSE No equivalent. License
management is outside the
domain of the utility.

Providing for orderly exit
from an installation

CONTROL_Y No equivalent necessary;
the utility provides this
automatically.

Creating an account on the
system

CREATE_ACCOUNT Use the ACCOUNT
statement.

(continued on next page)

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility A–3

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Deleting obsolete files from a
previous installation

DELETE_FILE In full and operating system
kits, the utility deletes files
that are replaced during
an upgrade. However, in a
partial kit, you can remove
obsolete files using the
REMOVE statement.

Locating files FIND_FILE If you want to determine
whether an optional
software product is
available, use the
SOFTWARE function. You
do not need to determine
whether a file is present
before performing an
operation that references
it; the utility does this
automatically.

Generating structure
definition language (SDL)
definition files

GENERATE_SDL No equivalent.

Extracting the image file
identification string for a file

GET_IMAGE_ID If you want to determine
the available version of a
software product, use the
SOFTWARE function.

Obtaining a password for an
account

GET_PASSWORD No equivalent necessary;
the utility provides this
function.

Placing requirements on
system parameters

GET_SYSTEM_
PARAMETER

Use the SYSTEM
PARAMETER statement.

Displaying messages to the
user

MESSAGE Use the INFORMATION
statement to display
information about pre- and
postinstallation tasks. You
do not need to provide error
messages and progress
information; the utility does
this automatically.

Patching an image as part of
the installation

PATCH_IMAGE No equivalent. Use the
FILE statement to provide
the modified file.

Moving a shareable image’s
symbol table to the system
shareable image library when
the patch is complete

I No equivalent necessary.
The IMAGE LIBRARY
option to the FILE
statement controls its
replacement in the image
library.

Creating a journal file of
patches

J No equivalent.

(continued on next page)

A–4 Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Saving old versions of the
image file

K No equivalent necessary.
The utility deletes existing
versions.

Moving the file to the
SYS$SPECIFIC directory

O No equivalent necessary.
The placement of the FILE
statement that originally
described the image within
a scope group determines
its placement.

Reinstalling the image when
the patch is complete

R No equivalent necessary;
the utility does this
automatically.

Queuing a print job to
SYS$PRINT

PRINT_FILE No equivalent.

Invoking a command
procedure of product-specific
callbacks

PRODUCT No equivalent.

Adding a command to the
system DCL table

PROVIDE_DCL_
COMMAND

Use the MODULE
statement with the TYPE
COMMAND parameter.
You do not need to reinstall
the system command
table as a known image;
the utility does this
automatically.

Adding help to the DCL help
library

PROVIDE_DCL_HELP Use the MODULE
statement with the TYPE
HELP parameter.

Adding a new file to the
system

PROVIDE_FILE Use the FILE statement.

Adding a new image to the
system

PROVIDE_IMAGE Use the FILE statement.
The utility can distinguish
whether a file is a valid
executable image.

Placing the file in more than
one location

C No equivalent necessary.

Dynamically patching ECOs
into the new image file

E No equivalent necessary.
You should package the
file with the correct ECO
numbers already set.

Moving a shareable image’s
symbol table to the system
shareable image library

I Use the IMAGE LIBRARY
option to the FILE
statement.

Preserving old versions K No equivalent necessary.
The utility deletes existing
versions.

(continued on next page)

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility A–5

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Moving the file to the
SYS$SPECIFIC directory

O Enclose the FILE statement
in a SCOPE PROCESSOR
group.

Specifying an input file that
contains a list of logical
names for the source image
files and their respective
destinations

T No equivalent necessary.
Use one FILE statement for
each file.

Changing the file name and
file type of all versions of a
file

RENAME_FILE Use the archive option
of the FILE statement to
preserve an existing version
of a file during an upgrade.

Restoring save sets of a
product that is divided among
several save sets

RESTORE_SAVESET No equivalent necessary.

Running an image during
installation

RUN_IMAGE Use the EXECUTE
statement or the
ASSEMBLE EXECUTE
option to the FILE
statement.

Specifying a UIC or
protection code for product
files

SECURE_FILE Use the OWNER and
PROTECTION options
to the DIRECTORY and
FILE statements.

Modifying the access control
list (ACL) of a device,
directory, or file

SET ACL Use the ACCESS
CONTROL option of the
FILE and DIRECTORY
statements.

Determining the default case
(upper or lower) in which text
from the installer is returned
to the installation procedure

SET ASK_CASE No equivalent.

Running an installation
verification procedure (IVP)

SET IVP No equivalent necessary.
You can specify the
EXECUTE TEST statement
and invoke the functional
test for a product with
the /TEST qualifier to
the PRODUCT INSTALL
command.

Calling a product’s
installation procedure after
files have been moved to their
target directories

SET POSTINSTALL Depending on your
application, you can use the
EXECUTE POSTINSTALL
statement.

Purging files replaced by an
installation

SET PURGE No equivalent necessary.
The utility deletes existing
versions.

Rebooting the system after
the installation

SET REBOOT Use the EXECUTE
REBOOT statement.

(continued on next page)

A–6 Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility
A.2 VMSINSTAL Callbacks and Equivalents

Table A–2 (Cont.) VMSINSTAL Callbacks and Equivalents

Task VMSINSTAL Callback Option

POLYCENTER Software
Installation Utility
Equivalent

Ensuring a high level of
installation success

SET SAFETY No equivalent necessary.
The utility provides the
necessary disk management
and reliability features.

Rebooting the system after
the installation

SET SHUTDOWN Use the EXECUTE
REBOOT statement.

Specifying a product-specific
startup command procedure

SET STARTUP Use the EXECUTE START
statement.

Editing text files SUMSLP_TEXT No equivalent. Use the
FILE statement to provide
the modified file.

Identifying installation
peculiarities

TELL_QA No equivalent necessary.

Exiting the installation
procedure

UNWIND No equivalent necessary.
The utility controls the flow
of the installation.

Updating an existing user
account

UPDATE_ACCOUNT Use the ACCOUNT
statement to modify
existing user accounts.

Making a file available for
updating by copying it to a
working directory

UPDATE_FILE No equivalent necessary.

Modifying an identifier in the
rights database

UPDATE_IDENTIFIER Use the RIGHTS
IDENTIFIER statement
to modify an existing rights
identifier.

Updating a library UPDATE_LIBRARY Use the MODULE
statement with the
appropriate parameter
for the type of library
you are updating. To
update the shareable
image library, use the
IMAGE LIBRARY option
to the FILE statement. No
equivalent exists to update
RSX libraries.

Migrating from VMSINSTAL to the POLYCENTER Software Installation Utility A–7

Glossary

This glossary lists and defines the terms used in this guide.

integrated platform

A combination of software products that is targeted toward a specific market,
type of application, or a set of applications that work together or share data. Also
called a product suite. A platform is packaged to allow all of its software products
to be installed or removed in a single operation.

managed object

An entity that exists to support the proper functioning of a product. Files,
directories, library modules, and accounts are all examples of types of managed
objects.

package operation

A POLYCENTER Software Installation utility operation that uses the PDF, PTF,
and product material to create a reference or sequential copy of a product kit.

patch

A minor update to a software product that does not change the version level of
the product.

PCF

Product configuration file. A text file that specifies configuration choices for the
POLYCENTER Software Installation utility to use in subsequent operations. For
example, you can use a PCF to avoid specifying the same answers to installation
questions when you have multiple installations to perform.

PDB

Product database. A repository in which the POLYCENTER Software Installation
utility records information about events such as product installation and removal.
Users can query the PDB to find out information about their environment.

PDF

Product description file. A text file that specifies the execution environment for
your product.

PDL

Product description language. A set of statements that you use to write a product
description file.

Glossary–1

POLYCENTER Software Installation utility

The OpenVMS program that implements the DCL command PRODUCT. This
utility allows you to create software kits and manage software (for example,
installation, removal, configuration).

product configuration file

See PCF.

product database

See PDB.

product description file

See PDF.

product description language

See PDL.

product material

The files associated with the product, excluding the PDF and PTF. Product
material files are the output of the software engineering process.

product text file

See PTF.

PTF

Product text file. A text file that contains all the product-specific text that
the POLYCENTER Software Installation utility can display during product
manipulation (for example, description of options, informational text, copyright
notice, and so forth).

reference format

The format of a software product kit. In this format, the PDF, PTF, and all files
that make up the product are placed in a directory tree on a random-access
device. OpenVMS Alpha is distributed in reference format on CD–ROM.

removal

An operation opposite to installation that reverses the effect of an installation.
Product files are deleted and the PDB is updated.

sequential format

The format of a software product kit. In this format, the PDF, PTF, and all files
that make up the product are packaged in a single container file. This container
file can be placed either on a random-access device, such as a compact disc, or on
a sequential access device, such as a magnetic tape. Most layered products are
distributed in sequential format.

transition product description file

A type of PDF that allows you to reference products not converted to the
POLYCENTER Software Installation utility and to migrate products to the
POLYCENTER Software Installation utility.

Glossary–2

upgrade

The installation of a product that replaces any previously installed version of
the same product. The new version may be higher, lower, or the same as the old
version of the product.

utility directive

A PDL statement that does not specify managed objects. Utility directives affect
the operation of the POLYCENTER Software Installation utility but do not affect
the execution environment.

Glossary–3

Index

A
ACCOUNT statement, 3–3, 7–5
APPLY TO statement, 7–1, 7–7

B
Backward compatibility, 6–14
Base data types and values, 3–9
Boolean data type, 3–9
BOOTSTRAP BLOCK statement, 7–1, 7–9
Bootstrap scope, 7–9, 7–65, 7–93, 7–97

C
Command procedure

packaging, 6–4
Command procedures, rules for using, 6–1
Compatibility

backward, 6–14
Compressed format, 2–3
Configuration phase, 6–6 to 6–11, 7–68

and execute preconfigure statement, 7–27
Conflict

managed object, 2–12
Conflict detection, testing, 6–12
Conflict resolution

and the generation option, 2–12
testing, 6–13

Creating the product kit, 5–4

D
Data types, 3–9
Databases, of software products, 2–1
DCL commands, rules for using, 6–1
Debugging tools, 6–12
Directive

=prompt, 4–4
DIRECTORY statement, 3–3, 7–11
Displaying information, 5–7

E
END statement, 7–13
Environment

defining, 3–2
ERROR statement, 7–1, 7–14
EXECUTE ABORT statement, 6–1, 7–1, 7–16
EXECUTE INSTALL statement, 6–1, 7–19
EXECUTE INSTALL . . . REMOVE statement,

7–1
EXECUTE LOGIN statement, 6–1, 7–22
EXECUTE POSTINSTALL statement, 6–2, 7–1,

7–23
EXECUTE POST_UNDO statement, 6–2, 7–25
EXECUTE PRECONFIGURE statement, 6–2,

7–1, 7–27
EXECUTE PRE_UNDO statement, 6–2, 7–30
EXECUTE REBOOT statement, 6–2, 7–1, 7–32
EXECUTE RELEASE statement, 7–1, 7–34
EXECUTE REMOVE statement, 6–1, 7–19
EXECUTE START statement, 6–2, 7–37
EXECUTE START . . . STOP statement, 7–1
Execute statement, 6–1
EXECUTE statement, 3–4

summary, 6–5
EXECUTE STATEMENT

order of execution, 6–3
EXECUTE STOP statement, 6–2, 7–37
EXECUTE TEST statement, 3–4, 6–2, 7–1, 7–40
EXECUTE UPGRADE statement, 6–2, 7–1, 7–42
Execution phase, 6–6 to 6–11, 7–68
Exit status, determining for a command procedure,

6–4

F
FILE statement, 7–1, 7–44

and the assemble execute option, 6–2
uses, 3–3, 3–5

Files
extracting named files, 5–6

Full kit, 3–12
Functions

HARDWARE DEVICE, 7–51
HARDWARE PROCESSOR, 7–53
LOGICAL NAME, 7–67
OPTION, 7–75

Index–1

Functions (cont’d)
SOFTWARE, 7–99
UPGRADE, 7–109

G
Generation number, 2–12, 6–14, 7–49, 7–90

and file statement, 7–45
and intraproduct conflict, 6–13
and module statement, 7–69
rules for specifying, 7–46, 7–70

Generation option, 2–12, 7–45, 7–46, 7–69, 7–70,
7–90

Global scope, 7–96

H
HARDWARE DEVICE function, 7–51
HARDWARE DEVICE statement, 3–2, 7–51
HARDWARE PROCESSOR function, 7–53
HARDWARE PROCESSOR statement, 3–3, 7–53
Help text, displaying for users, 4–4

I
IF statement, 7–55
INFER statement, 7–58
INFORMATION statement, 3–4, 7–1, 7–60
Installable kit

formats, 2–2
Installable kit, creating, 1–2
Integrated platforms, 2–14

packaging, 2–14
Interactive mode, 6–3
Interproduct conflict, 2–12, 6–13, 7–46, 7–70
Intraproduct conflict, 2–12, 6–14, 7–46, 7–70

K
Kit

extracting files, 5–5
packaging, 5–1

required files, 5–3
Kit formats, 2–2
Kit naming conventions, 2–4
Kit types and values, 2–7
Kits

types, 3–11

L
LINK statement, 7–63
LOADABLE IMAGE statement, 3–3, 7–65
LOGICAL NAME function, 7–3, 7–67
Logical names

PCSI$DESTINATION, 2–9, 6–5, 7–17, 7–20,
7–24, 7–26, 7–28, 7–31, 7–33, 7–35, 7–38,
7–40, 7–42, 7–47

Logical names (cont’d)
PCSI$SCRATCH, 2–9, 6–5, 7–17, 7–20, 7–24,

7–26, 7–28, 7–31, 7–35, 7–47
PCSI$SOURCE, 2–9, 6–5, 7–17, 7–20, 7–24,

7–26, 7–28, 7–31, 7–35, 7–47

M
Maintenance edit level, 2–5
Managed object

preventing conflict, 2–12
scope, 2–14

Managed objects
definition, 2–11

Mandatory update kit, 3–24
Mode

specifying for EXECUTE statement, 6–3
MODULE statement, 3–4, 7–1, 7–69

N
NETWORK OBJECT statement, 3–3, 7–72
Noninteractive mode, 6–3

O
Operating system kit, 3–15
OPTION function, 7–75
OPTION statement, 3–3, 7–1, 7–75

P
Packaging kit

example, 5–1
Part statement, 7–78
Partial kit, 3–20
PATCH IMAGE statement, 7–1, 7–80
Patch kit, 3–21
PATCH TEXT statement, 7–1, 7–82
PCFs (product configuration files), 7–76, A–1
PCSI$DESTINATION logical name, 2–9, 6–5,

7–17, 7–20, 7–24, 7–26, 7–28, 7–31, 7–33,
7–35, 7–38, 7–40, 7–42, 7–47

PCSI$SCRATCH logical name, 2–9, 6–5, 7–17,
7–20, 7–24, 7–26, 7–28, 7–31, 7–35, 7–47

PCSI$SOURCE logical name, 2–9, 6–5, 7–17,
7–20, 7–24, 7–26, 7–28, 7–31, 7–35, 7–47

PDB (product database)
and execute test statement, 7–40
definition and location, 2–1
during execution phase, 6–6
updating, 6–6 to 6–11

PDF
extracting, 5–6

PDFs (product description files)
creating, 3–1
definition, 1–3
file name format, 3–5

Index–2

PDFs (product description files) (cont’d)
guidelines for creating, 3–1
platform, 2–14
product requirements checklist, 3–2
transition, 3–25

PDLs
data types, 3–9
definition, 3–5
function syntax, 3–8

Phases of product command
See Configuration phase
See Execution phase
See Post-processing phase

Platform kit, 3–18
Platform PDF, 2–14
POLYCENTER Software Installation utility

benefits of using, 1–1
compared to VMSINSTAL, A–1
guidelines for using, 3–1

POLYCENTER Software Installation Utility
customizing, 6–1

Postprocessing phase, 6–7
PROCESS PARAMETER statement, 3–4, 7–84
PROCESS PRIVILEGE statement, 3–4, 7–86
Processor scope, 7–97
Product configuration files

See PCFs
Product database

See PDB
Product description files

See PDFs, Platform PDF, and Transition PDF
=Product directive, syntax, 4–2
Product kit

creating, 5–4
listing contents, 5–5

Product material
description, 5–2

Product name, specifying in the PTF, 4–2
Product scope, 7–97
PRODUCT statement, 7–87
Product text files

See PTFs
=Prompt directive, 4–4
Prompt text, including in the PTF, 4–4
PTF

extracting, 5–6
PTFs

modules, 4–3
structure, 4–2

PTFs (product text files)
definition, 1–3
example, 4–4
file format, 4–2
file name format, 4–1
including prompt text, 4–4
sample file names, 4–1
specifying the product name, 4–2

R
Reference format, 2–3
REGISTER MODULE statement, 7–90
Release notes

extracting, 5–6
REMOVE statement, 3–5, 7–92
RIGHTS IDENTIFIER statement, 3–3, 7–94

S
Scope

object and lifetime, 2–14
SCOPE statement, 7–96
Scope, definition, 7–96
Sequential format, 2–2
Sequential kit

converting to reference, 5–7
Sequentialkit

converting to compressed, 5–7
Signed integer data type, 3–9
SOFTWARE function, 7–3, 7–99
Software product kit

formats, 2–2
Software statement, 2–14
SOFTWARE statement, 3–2, 7–1, 7–99
String data type and constraints, 3–10
Subprocess environments, 6–4

logical names, 6–5
SYSTEM PARAMETER statement, 3–3, 7–107

T
Termination

forcing, 6–11
Testing

using /LOG and /TRACE qualifiers, 6–14
Testing tools, 6–12
Text module name data type, 3–9
Transition kit, 3–24
Transition PDF, example, 3–25

U
Unsigned integer data type, 3–9
Update level, 2–5
UPGRADE function, 7–3, 7–109
UPGRADE statement, 7–1, 7–109
Upgrade, definition, 6–3
Utility directives

definition, 2–11
example, 2–11

Index–3

V
Version field, components and evaluation, 2–5
Version identifier data type, 3–9
Version type, 2–5
VMSINSTAL, migrating from, A–1

Index–4

