
State of the Port to x86_64
April 2017

April 3 , 2017

Update Topics
• Executive Summary

− Development Plan
− Release Plan

• Engineering Details
− Compilers
− Objects & Images
− Binary Translator
− Early Boot Path

• Boot Manager
• SYSBOOT
• Virtual Machines
• Condition Handling

− Dump Kernel
− Conditional Code Verification

Project Summary - Development
The Development Plan consists of five strategic work areas for porting the operating system
to the x86_64 architecture.
• VMS supports nine programming languages, six of which use a DEC-developed

proprietary back-end code generator on both Alpha and Itanium. We are creating a
converter to internally connect these compiler front-ends to the open source LLVM back-end
code generator which targets x86_64 as well as many other architectures. LLVM
implements the most current compiler technology and associated development tools and it
provides a direct path for porting to other architectures in the future. The other three
compilers have their own individual pathways to the new architecture.

• Operating system components are being modified to implement the industry standard
x86_64 calling conventions and executable image format. We moved away from
proprietary conventions and format in porting from Alpha to Itanium so there is much less
work in these areas in porting to x86_64.

• As in any port to a new architecture we are implementing a number of architecture-defined
interfaces that are critical to the inner workings of the operating system.

• VMS is currently built for Alpha and Itanium from common source code. We are adding
support for x86_64 so all conditional assembly directives must be verified.

• The boot manager for x86_64 has been upgraded to take advantage of new features and
methods which did not exist when our previous implementation was created for Itanium.
This will streamline the entire boot path and make it more flexible and maintainable.

Project Summary - Release
The Release Plan includes multiple stages.
• Once we achieve First Boot we will work towards an Early Adopter Kit. We define

First Boot as being able to bring the system up to the point of logging in and
successfully executing a DIRECTORY command. That may not sound like much but most
of the architecture-specific aspects of the operating system must be working as well as
being able to compile, link, load, and execute non-privileged code.

• The Early Adopter Kit is for our partners. There will be some system components, most
layered products, and analysis tools not in place or not yet complete but it will be
enough for partners to start verifying their code on x86.

• There may be another less-than-complete system release depending on our own testing
and feedback from our partners.

• The full production General Release will be the complete system as it ships today on
Alpha and Itanium.

Compilers
One measure of the GEM-to-LLVM converter (G2L) work is the

conversion of GEM tuples to LLVM’s internal language constructs. For
those needed by C and BLISS for First Boot we are down to the final
10% - 20%.

The C and BLISS compiler builtins GEM handles internally are now
implemented in G2L. LLVM intrinsics are used when they can assist in a
builtin’s implementation. Other compiler builtins call system routines and
we are starting to look at those as the relevant architecture-specific
work progresses.

A system build through the compile phase was recently done for the
first time with both C and BLISS compilers. This has further refined the
focus on what is needed for First Boot.

The internal MACRO compiler structure is expanding. The basic
VAX-to-x86 instruction substitution framework is in place and the
register mapping implementation is being finalized, that is when you call
a routine and return from it, did the correct things happen?

Objects & Images
Both the Calling Standard and ELF documents are as complete as they can be at this time.
Minor changes may be needed as implementation of system components progresses but the
implementations of the key system components creating and using the specifics are in
progress.

As expected, a number of areas do not require much invention given our switch to industry
standards in the Alpha-to-Itanium port.

The LINKER, LIBRARIAN, and Image Activator are in various stages of prototyping and
implementation.

The LINKER can now take an object file produced by the x86 LLVM-based C compiler and
create an x86 executable image. There is still much to be done in the LINKER but the basics
are in place. ANALYZE/OBJECT and /IMAGE are complete and can be used to validate the
contents of the objects and images.

The LIBRARIAN, used to create an object library, will be implemented in parallel with the
LINKER.

The image activator’s internal structure is starting to take shape now that the internal format
of an executable image is defined.

Binary Translator

Alpha-to-x86 binary translator prototyping is underway. It parses an
Alpha image, sets up simple memory mapping and starts emulating
Alpha instructions. Early work includes decoding fixups, integrating an
emulator, locating the image sections, and verifying the call/return
interfaces.

Some code from the simh Alpha emulator is used and the protoytpe
translator currently runs on linux or Windows/cygwin.

The next milestones include 1) running some simple programs all the
way to completion in emulation and 2) start generating LLVM internal
representation from the emulator.

The Itanium-to-x86 translator work will follow the Alpha-to-x86 work.

Reminder: The early boot path is being streamlined and modernized to be more suitable
for the UEFI / ACPI environment. The functions of the former VMS primary bootstraps
(VMB/APB/IPB) have been merged into the boot manager VMS_BOOTMGR and the
VMS loader SYSBOOT.

We recently upgraded our sources to the latest ACPI Component Architecture and have
incorporated the kernel pieces. Preliminary testing is done with thorough verification
testing to occur as we get more of the system running. We are now bringing the user-
space ACPI code analysis and system monitoring tools to VMS. These tools are new for
us and will greatly enhance our ACPI capabilities.

Once the basics of local memory disk booting were in place we moved on to remote
booting from a web server. (It happened to be a PC/Windows system but it could be
anything.) The shell, the boot manager, and the memory disk file are downloaded and then
the system boot is initiated.

We continue to work with virtual machines as well as running natively and we reach the
end of SYSBOOT in all environments. In addition to creating a USB stick on VMS and
taking it to an x86 system to boot natively, we can also take it to the MacBook Pro, create
a virtual disk, and boot a VirtualBox virtual machine.

Early Boot Path

Reminder: The x86 SYSBOOT code being developed is, like the boot manager, in Microsoft
C, built with Windows Visual Studio, then transferred to the appropriate platform for
debugging. We have also compiled the SYSBOOT code on VMS with the our new x86 LLVM-
based C compiler so there are no surprises when we eventually move to building everything
on VMS.

Nearly all of SYSBOOT’s tasks are now written in C with just a couple MACRO-32 and native
assembler modules remaining to be addressed. The initial execution pass through SYSBOOT
is done; it runs to completion on multiple hardware platforms and virtual machine
implementations, skipping over a few steps.

Work now focuses on filling in the skipped steps and preparing the boot environment for
EXEC_INIT which SYSBOOT loads when it finishes its own work. The final steps in
SYSBOOT now in progress are: setting up the boot-time I/O database, enabling boot QIOs to
the memory disk, and creating the infrastructure to enable exceptions and interrupts.

Early Boot Path, continued

Early Boot Path, continued
Reminder: Most of the code in the x86 condition handler EXCEPTION.EXE will be in C.
Since this code has few dependencies on the rest of the system, it presents another
opportunity to take advantage of Visual Studio and the boot environment. Normally, interrupts
are fielded by SWIS and sent off to the appropriate handlers, many of which go through
EXCEPTION. We are “borrowing” that initial vectoring from SWIS and temporarily putting it in
the new x86 EXCEPTION to facilitate some early debugging. This image can be loaded and
started directly by the boot manager. With a little creativity we can force the EXCEPTION
code into the various condition handlers and do a lot of debugging natively on x86 now.

Dump Kernel
Reminder: During normal system boot a second, minimalist OS instance is
loaded into memory but not started. When the system goes down the primary
kernel gathers and stores information; BUGCHECK then notifies the Boot
Manager to boot the Dump Kernel which writes the crash dump using the runtime
driver and finally initiates a shutdown.

In the beginning we did not know just how far we would need to boot the Dump
Kernel but that now has settled in at the point where SYSINIT mounts the system
disk.

The dump kernel is now successfully writing dumps - full and selective, raw and
compressed. The dumps are being analyzed with SDA to verify their contents.
(This initial testing is all being done on Itanium.) Many details remain but the
major functions are solidly in place.

We previously thought the new Dump Kernel mechanism would require the crash
dump file not be on the system disk, that is dump off system disk (DOSD) only.
This is no longer the case due to some new insights on the timing of mounting
the disk.

Conditional Code Verification
There are roughly 800 code modules needed for First Boot that contain
conditionalized code, that is code compiled for one or more but not all
platforms. Each of these source code modules must be checked to verify the
conditionals produce the correct code for all three architectures – Alpha, Itanium
and x86.

Some detailed changes will have to wait until we get further along but the vast
majority of the work is easily done now. This work is underway and is
proceeding well. It involves MACRO-32 source, BLISS source, C source, structure
definition language (SDL) source, C header files, BLISS require files, and
MACRO include files.

Note that since this work immediately becomes part of the Alpha and Itanium
system builds, the conditionals affecting those two platforms get tested in our
normal regression testing now.

For more information, please contact us at:

RnD@vmssoftware.com

VMS Software, Inc. • 580 Main Street • Bolton MA 01740 • +1 978 451 0110

