III VMS Software

VSI OpenVMS
VSI FMS Utilities Reference Manual

Document Number: DO-FMSURM-01A

Publication Date: June 2021

Revision Update Information: This is a new manual.

Operating System and Version: VS| OpenVMS x86-64 Version 9.0

VSI OpenVMS 164 Version 8.4-1H1
VS| OpenVMS Alpha Version 8.4-2L1

Software Version: VSI FMS Version 2.6 or higher

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

VSI FMS Utilities Reference Manual

III VMS Software

Copyright © 2021 VMS Software, Inc. (VSl), Burlington, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Theinformation contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VS| shall not beliable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.
DEC, DEC/CMS, DEC/MMS, DECnet, DECsystem-10, DECSY STEM-20, DECUS, DECwriter, MASSBUS, MICRO/PDP-11, Micro/

RSX, MicroVMS, PDP, PDT, RSTS, RSX, TOPS-20, UNIBUS, VAX, VMS, VT, and mm are trademarks or registered trademarks of
Hewlett Packard Enterprise.

VSI FMS Utilities Reference Manual

PrEface coueenuinieensnenieensneninensnensnesssnsssnssssnssssessssesssessasssssssssssssssssssssssssssssssssssassssasssssssssssssssss vii
1. About This Manualcoooiiiiiiiiiiii vii
B 3115 T (<a BN T LTS3 T PP vii
3. DOCUMENT STIUCTUIE ...ceeiiiiiiiiiiiee ettt e e e e e e ee bbb e e e e eeeeeeaeaaaans vii
4. Related DOCUMENLSeeviiiiiiiiiiiiiiiiiiiiieieieeee ettt ettt et et ee e e e e eeeeeeeeeeeeeeeeeeeeereeeeeeees vii
5. VSI Encourages Your COMMENTSc.oeeiiiiiiiiiiiiiiiiiiiiiiiiiiieiiieieieieteeeteeeeeeeeeeeeeeeeeeeeeeeeees viii
6. OpenVMS DOCUMENTATIONuevviiiiiieiiiiiiiiiiiee e ettt e e e e ettt e e e e e st e e eeeeseeaaes viii
7. Typographical CONVENTIONSooiiuuviiiiiieeiiiiiiiiiiiiee ettt e e et e e e e et eeeees viii

Chapter 1. INtroduCHiONueeieeireniieenienssennsenssnnssnsssnssssessssssssssssssssssssssssssssssssssssssassssasssns 1
1.1. FMS Development CYCIEcooiiuiiiiiiiiiiiiiiiiiiiieee ettt e e 2

L.1.1. Create FOTMS ..ooiiiiiiiiiiee ettt e ettt e e e e eeabaa e es 2
11,1, FOrm EditOr ..o s 2

1.1.1.2. FOrm Languageccoouuumiiiiiiiiiiiiiiiiiie ettt 3

1.1.2. Create Form Libraries or Memory-Resident FOrmscccooovuiiiieiiiiiinnniiieeene.n. 3
1.1.3. Write the Application Programccccovviiiiiiiiiiiiiiiieeencee e 4
1.1.4. Write User Action ROULINGScoeeeiiiiiiiiiiiiiie, 4
1.1.5. Create Object MOAUIESuviiiiiiiiiiiiiiiiiie e 4
L.1.6. TESt FOTIIIS eeviviiiieeeeee et e e e e ettt e e e e eeeeeees 5
1.1.7. Link the APPLICALIONuuuiiiiiiiiiiiiiiiiiiiiii e 5

1.2. DCL COMMANGS ...ceeeiiieiiiiiieieeeeeeeeeeeee e 5

Chapter 2. FOrm CRaracteriStiCsccccceievsnricssssnrecssssannecssssnssssssssssesssssassssssssssssssssssssssssnass 11
2.1, Back@round TEXtccoiiiiiiiiiiiiiiiiiii e 17
8 1< U LR 17

22,1, Field PIiCture ..ooooeiiieieiieeece 17
2.2.2. Date and Time Fieldsuuuuuuimmiiiiiiiiiiiiiiii e 22
2.2.3. FIeld OTETING ...evveeiiiiiiiiiiiitiee ettt e e e e e e 23
0 T\ F: o T B D - TR 23
N 1 4 01 11 PP PPPPPPPPPPINt 23
2 30 T 151 N 13 Lo 10 23
B B R N 3110 71 o PP 24
2.4.1.2. Blank Fill .oooooiiiiiiiii e 24
2.4.1.3. Clear CRATACIETcoceeeeeeeeeeeeeeee e e e e e e e e e e e e 24
2.4.1.4. Default ValUeceuiiiiiiiiiiiiiiiiiiiiiieieieieieeteeeeeeeteeeeeeeaeseseseseseseeesenenenenes 25
2.4.1.5. DiSplay ONLYoooiiiiiiiiiiiiiiiiee e 25
2.4.1.6. Field Completion User Action RoOUtinecccccovviiiiiiiiieiiiiinnniiiceneenn, 25
2.4.1.7. Field NAIMEooviiiiiiiiiiiiiiiiiiiiiiiiieeeieeeeeeeeeeeeeeeeaeeeeeeeeeeaesesesesesesesesesenesnnes 25
2.4.1.8. Fixed Decimaluuuuumiiiiiiiiiiiiiiiiiiiiiiii e 25
B R & (11 M R P 26
241,10, INAEXEA ..o 26
241010 Left JUSHEY cooiiiiiiicce e 26
2.4.1.12. Must FIll oo 27
2.4.1.13. NO ECRO oiiiiiiiii e 27
2.4.1.14. Response Requiredcooeveieeiiiiiiiiiiiiieeeeeeee e, 27
2.4.1.15. Right JUSHHY .ooveiiiiiiiiii e 27
2.4.1.16. SuperviSor ONLYccceviiiiiiieiiiiiiiiee e e 27
24117, UPPEICASE .. e 27
2.4.1.18. Zer0 Fill coooiiiiiiiiiiiiiie e 27
2.4.1.19. ZEIO SUPPIESS eevvereriririiiiiiiiiieietetettttteteteteteteteteeetetereeeteeeeeeeeeeereeeeeeeeeees 27
2.4.2. FOrm AMIIDULES ...coeeieiiieiiiiieieee e 28
2.4.2.1. FOIm NAIMEoiviiiiiiiiiiiiie e ettt e e e e e eeeebaaes 28
2.4.2.2. Help FOrm NamMEcooviiiiiiiiiiiiiiiiiiiiiiiiiieiiieieeeeeeeeeeeee e eeeeeeees 28

iii

VSI FMS Utilities Reference Manual

2.4.2.3. Screen Back@roundocoovviiiiiieiiiiiiiiiiieee e 28

2.4.2.4. Screen Width ...t 29

2.4.2.5. Screen Character Setcciiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee e 29

2.4.2.6. Screen Area t0 CLEATocooeieieieieeee e 29

2.4.2.7. Field Highlightingcooooiiiiiiiiiiee et 29

2.4.2.8. Function Key User Action Routingccccvveeieeeiiiiiiiiiiiine e, 29

2.4.2.9. Pre-help User Action ROULINGuueviieieiiiiiiiiiiieeeeeeceiiiiee e e e e 30

2.4.2.10. Post-Help User Action ROULINEcoeveeeiiiiiiiiiiiineeeeecciiieie e 30

2.4.3. LANE ATIIDULES «.oeiiiiiiiiiiiiiiiiiiiiiiiiiiiitieeeeete ettt ettt ettt et e e et e e e e e e e e eeeeees 30
2.4.3.1. DOUDIE S1ZEevveiiiiieeeeieieeeeee et e e a e e e e 30

2.4.3.2. DOUDIE WIAE ...ttt 30

2.4.3.3. SCIOIEA ...ttt 30

2.4.4. Video AHIIDULES ..eoviiiiiiiiiiiiiiiiiiiiiiiitiiiiiiitetieeeee ettt ettt ettt e e e e e e e eeees 31
Chapter 3. Form Editor - FMS/EDIT 33
3.1. Terminal CRaraCteriSTICS «...ceeetitiiiiiiiiiiiiiiiiiiiiiiieiee ettt ettt ettt ettt ettt et et et et e e e e et e e e e e eeeeeeeees 35
3,110 Terminal SETUPceeeiiiiiiiiiie e e e ettt e e e e e e e eeabt e e e eeeeeaaatenaeaeaaaenees 35

3.2. FMS/EDIT COMIMANGttttttiiiiiiiiiiiiiiiieiitiieeieeeeieeeeeieeeeeeeseeeseeeeeeeseseeeeeseseseseeeseseseeeeeee 36
3.3, FOrm EditOr KEYS ...ciiiiiiiiiiiiiiiie et e e e e e ettt e e e e e e e e eevaa e e e eeeeeeenssnnnns 37
3.4. Error Signaling in the FOrm EditOrcooiiiiiiiiiiiiiiiciee e 38
3.5. ChoOSING @ PRASEoiiiiiiiiiiiiieie e e e et e e e e e e e e er it e e e e e e eeasaeeans 39
3.6. FOIM PRASEetiiiiiiiiiiiiiiitii bbbt 39
3.6.1. FOIM NAIME ..ooiiiiiiiiiiiiiiiiiiiiieee ettt 42
3.6.2. Help FOrm NAIMEoiiiiiiiiiiiiiiiii et e e e e e e e e e e e eeevaeennnes 43
3.6.3. Screen Backgroundooiiiiiiiiiiiiiiii e a e 43
3.6.4. Screen Width ... 43
3.6.5. Screen Character Setooeiiiiiiiiiiiiiii 43
3.6.6. Screen AT€a t0 ClEATuuii s 43
3.6.7. Field Highlightingcccciiiiiiiiiiii e 44
3.6.8. User Action Routine Names and Dataccccciiiiiii 44
3.6.9. Initial Field Atributesooooiiiiiiiiiiii 44

3.7, LaYoUt PRASE ..o e e e e ra s 44
3.7.1. Adjacent: Breaking a Field into Two Adjacent Fieldsc...ccoovviiiiviiiineeeininnnn. 48
3.7.2. Cancel: Canceling a Select, Gold, or Scroll Operationc.ccevvveeieeeeerreernnnen. 49
3.7.3. Center: Centering Characters on @ LINecccceeeeiiiiiiiiiiiieeeeiiiiiiiiiieeeeeeeeeeevieeennn 49
3.7.4. Characters: Changing Character SEtSuueiieeeeriiiriiiiiiieeeeeeeeeriiiinaaeeaaeeenns 49
3.7.5. Cursor: Moving the CUISOTuuueiiieieiiiiiiiiiiis e e e e ee e e eeeeeeverrre e e e e eeeeasaeens 49
3.7.6. Cut: Cutting Characters in @ SEIECt ATCacceeeveivviiiiiiieeeeeieiiiiiiieeeeeeeeeevveeennns 51
3.7.7. Date: Defining a Date Fieldcoooiiiiiiiiiiiiiiiiieiee e 51
3.7.8. Delete: Deleting Characters and LiNesccoceeeeeiiiiiiiiiiieeeeriiiiiiiieneeeeeeeeevvieennn. 52
3.7.9. Double Size: Making Lines Double Sizecooeeeiiiiiiiiiiiiiiieeeeeeeeiiieiee e, 53
3.7.10. Double Wide: Making Lines Double Widecccceeeiiiiiiiiiiiinieiiiiiiiicieeeeeeeees 54
3.7.11. Draw: Drawing Lines and BOXeSccovieeiiiiiiiiiiiiiieeeeeeeeiiieiee e 54
3.7.12. Field Attributes: Assigning Them in Layoutccccceeevieiiiiiiiiiiieiineeeeeeeenine, 54
3.7.13. Insert: Inserting Blank HNEScccoiviiiiiiiiiiiiiiiiiiicee e 54
3.7.14. Modes: Overstrike/Insert, Text/Field, and Terminal Bell/ Quiet 55
3.7.15. Paste: Pasting Previously Cut Characterscccovvvvuieiireeeririiiiiiiieeeeeeeeveieeens 56
3.7.16. Refresh: Redisplaying the Current FOrmcccoooeeiiiiiiiiiiiiiiineeeeceecnen, 56
3.7.17. Repeat: Repeating Characters or Operationscccceeeeeeeevvvveineeeeeeerervreennnneeenn 56
3.7.18. Scroll: Making a Scrolled AT€accoeeeeiiiiiiiiiiiiiieeeieeeiee et e e 56
3.7.19. Select: Defining a SEIECt ATCaccouvvuiiieeeiiiiiiiiiiiee e e 57
3.7.20. Test Paste: Testing a Paste Operationccceeeeeeeiieiiiiiiiineeeeereiiiiiiineeeeeeeennns 58
3.7.21. Time: Defining a Time Fieldccccooeiiiiiiiiiiiiiiii e 58

VSI FMS Utilities Reference Manual

3.7.22. Video Attributes: Assigning Video Attributesccceeveeeeiiriiiiiiiiieeeeereenennen. 59

3.8, ASSIZN PRASE .oiiiiiiiiiii et e e e e e e a bbb aeaeaeeaaaaaaas 60
3.8.1. Field NAMe ..oooeiiii 62

3.8.2. Index Value K Of N (Creating Indexed Fields)ccoeeveeeiiiiiiiiiiiiieeeeieeeiiiieenn, 62

3.8.3. ALTIDULES ..eeeiieiiiiee ettt e e e e ettt e e e e e e et e e e e e e e e e nnnnaeeeaaens 63

3.8.4. Default Value ... 63

IR T TR = 1<) 1o T Lo A UPUPPUPRTRR 63

3.8.6. Field Completion User Action Routines QUEeStionnaireceevvvvvenieeeerennnnns 63

3.9, DAtA PRASE ...uttiiiiiiiiiiiiiiiiiititiitt ettt bbbt aeeee 65
310, Order PRASE ... 67
311 Test PRase ..ocoooeeiiiii 69
3120 EXIE PRASE ..tttiiiiiiiiiiiiiiiiiitit ettt 69
Chapter 4. Form Language Translator - FMS/TRANSLATEccovivniinneissncisennnns 71
4.1. Form Language CONCEPLS ...uuuueeeeeriiriiiiiiieeeeeeretiriiiiieaeeeeeeeerrinnaeeeessessssnnnaaaeesssessssnnnnns 71
4.1.1. Statement TEEIMSuiiiiiiiieiiiiii et e et e e e e e e e e et e e e eaans 72

T 1.1 NAITIES oentiiiiii et e et e e e e e et ee e e ettt e e e et e e e et e e sesaeaeeaas 72

4.1.1.2. CoOTAINALES ...eovuniiiiiieeiiiiie et e e e e e e e e e et e e e st eeeeaaannns 72

4.1.1.3. TEXE SHINES toveevviveiiiieeeeeeeiiiiieieeeeeeeeertateaaeeeeeerrrssennaaeeeseressssnnaaaaeaaseeses 73

4114, AIIDULES .ooveiiiii e 73

4.1.2. Writing a FOrm DESCIIPLIONcccvvuiiiiieeeeeiiiiiiiiiiieeeeeeeeeiiiee e e e e eeeevbiineeeeeaeens 73

4.1.2.1. Statement FOrmatooooeiiiiiiiiiie e 74

4.1.2.2. RESIIICLIONS .eeeiiiiiiiiiiiiiiiiiiiiiieee ettt ettt ettt ettt ettt et e e e e e e e e e e e 75

4.1.2.3. ADDIeviationscooeiiiiiiiiiiiiiii 75

4.1.2.4. Including COMIMENLScceevvriiriinieeeeerreiiiiiiieeeeeeeeeerreeaaeeeeereersnennaaeens 75

4.2. Form Language StateImMENtscuuuuuiireeeeeiiiiiiiiiiieeeeeeeeeritiinaeeeeeeerrssrennaeeesereesssennnnns 75
Chapter 5. Form Librarian - FMS/LIBRARYiiiiinniinnsnicssnnissssncssssnsssssssssssssssssses 93
FMS/LIBRARY/CREATE Commandccccoiiiiiiiiiiiiiiiiiiee et 94
FMS/LIBRARY/INSERT Commandcccooeiiiiiiiiiiiiiiiiieee et 95
FMS/LIBRARY/REPLACE Commandc..ccooiiiiiiiiiiieiieiiiiiiiee e e e eeeiiieeeee e 96
FMS/LIBRARY/EXTRACT Commandccooeeiiiiiiiiiiiieieeeeeiiiiiee e 98
FMS/LIBRARY/DELETE Commandc...oooiiiiiiiiiiiiiiiiee et 99
Chapter 6. Form Application Aids 101
FMS/DESCRIPTION Commandcoooiiiiiiiiiiiiiiiiiee e eeiiiiiee e e e e e eiieeeeeea e e e 101
FMS/DIRECTORY COMMANGoooiiiiiiiiiiiiiiiiiee ettt e e e et ee e e e e e e eeieeeeeeaae s 107
FMS/OBJECT Commandccooooiiiiiiiiiiiiiiiiiiiiii ettt 110
FMS/VECTOR Command ...t 111
Chapter 7. Form Tester - FIMS/TESTiiiiviiinvicninncsssencssencsssisssssssssssssssssssssssssssssess 115
7.1, Terminal SEEUD ..vvveuneeeeiiiiiiiiiiie e et e e e e e e ettt e e e e e e eeeeraba s e eeeeeeersseennaeeeaeeerssnens 115
Chapter 8. TDMS to FMS Form Converter - FMS/CONVERT 119
8.1. TDMS to FMS Form Converter FUNCHONScoooiiiiiiiiiiiiiiiiiiiie 119
8.1.1. Functions Performedccccciiiiiiiiiiiiii 119

8.1.2. TDMS Features Not Supported by FMS ..o, 119

8.2. FMS/CONVERT Commandcccoeiiiiiiiiiiiiiiiiiiiiiiiiiiieeiieeeeeeeeeeeeeeeeeeeeeeeeeeee e 120
Chapter 9. Upgrading V1 Application Programscccccecveeccscnnccssnncsssnncssnessssssscsanes 125
9.1. Upgrading V1 Form Files and Form Librariescccoeeeeiiiiiiiiiiiiiineeeeeeiiiiiieeeeeeeeees 125

9.2. Using the Form Upgrade ULIILYccoeeeeiiiiiiiiiiiiieeeciceiiieie e 125

9.3. Linking Existing Application Programs to the V2 Form Drivercccoeeeeeiriiiinnnnnn. 126
Chapter 10. FMS V1 Compatibilitycccecoeerveicivnicssnicssnnesssansssssnsssssnssssssssssssssssssssnsses 129
TO.1. FOIm EdItOr ..o 129

VSI FMS Utilities Reference Manual

10.1.1. Keyboard Layout-Form Editor KeYscceiiviiiiiiiiieiiiiiiiiiiciieee e, 129
10.2. FOIM ULIIEY «eeeeeeiiiiiie et e ettt ettt e e e e e ettt e e e e e e e et e e eaeeeeeennnneeeeas 130
10.2.1. Comparison of V1 Form Utility Options and V2 Commands 131
10.2.2. FMS/DESCRIPTIONS/DECLARATIONS COBOL/DATATRIEVE Data
D 1T 400 3 H PP 132
10.3. Installing VSI FMS V2 with VSI FMS V1 Present on the Systemccccvvvennnnn... 133
Appendix A. VSI FMS Software Messages 135
AT, MeSSage FOIMALcooiiiiiiiiiii i e e e e e e et e e e e e e e e eaabanaes 135
A.2. Messages fOr PrOZIAIMIMETSceeeeiiiiiiiiiiiieeeeeeeieiiiiieeeeeeeeeevetiseeeeeeeeaessbennaeeeeeaeesees 136
A.3. Messages for Terminal OPeratorseeereeeeiiiiiiiiiiieeeeeerieeiiiiieeeeeeeeeesreeseaeeaeeeenes 136
A 4. Suggestions to Follow if FMS Software Malfunctionsc....ceeveviviiiiineneeerieeiniennnn. 136
ALS. FMS ULLIIES IMESSAZES ...eeeeivvviiiiiiieeeereeiiiiiiiiieeeeeseertseeaaeeeeeerrssnenaaaeeseesrssnsnnaaaaaaaees 137
A.6. Form Driver Messages for Programimersceeeeeeeeveiiiiiiiineeeeeeeeiiiiiineeeeeeeeevvseennnnes 174
A.7. Form Driver Messages for Terminal Operatorscccoceeeeeivvvviiiiiieeeeeieriiiiiiineeeeeaeeenns 182

vi

Preface
1. About This Manual

This manual describes the FMS utilities, invoked with DCL commands, that you use to create video
forms and form libraries and to manage these forms and libraries.

2. Intended Audience

This manual is intended for programmers who write application programs that use FMS and for
anyone who creates forms with either the Form Editor or with the Form Language.

3. Document Structure

This manual consists of ten chapters and an appendix.

Chapter 1 provides an overview of the FMS utilities as they relate to the development cycle of an
application that uses FMS. A table of commands is included.

Chapter 2 describes FMS video forms. Major topics discussed are form attributes, background text,
and fields.

Chapter 3 describes the interactive Form Editor, which you use to lay out forms on a video terminal.

Chapter 4 describes a way to create forms by using Form Language statements in form descriptions.
You use the Form Language Translator to translate these form descriptions to binary forms. The Form
Language Translator is optional software that is purchased separately.

Chapter 5 describes the utility that you use to manage forms and form libraries.
Chapter 6 describes a set of application aids that you use during application development.

Chapter 7 describes the utility that you use to test a form by displaying it and entering data in its
fields.

Chapter 8 describes the process of converting TDMS forms from the Common Data Dictionary
(CDD) into valid FMS form files.

Chapter 9 describes the process of upgrading V1 form files and form libraries into the V2 format.

Chapter 10 describes the new enhanced Form Editor, two new components-the Form Librarian and the
Form Application Aids-and how to use FMS V1 after FMS V2 has been installed on your system.

Appendix A lists software messages that you may encounter while using FMS.

4. Related Documents

o VSI OpenVMS FMS Installation Guide and Release Notes

» Introduction to VSI OpenVMS FMS Guide

vii

Preface

o VSI OpenVMS FMS Form Driver Reference Manual

o VSI OpenVMS FMS Language Interface Manual

o VSI OpenVMS FMS Mini-Reference Guide

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <doci nf o@nssof t war e. con®. Users who
have OpenVMS support contracts through VSI can contact <suppor t @ nssof t war e. con for
help with this product.

6. OpenVMS Documentation

The full VSI OpenVMS documentation set can be found on the VMS Software Documentation
webpage at https://vmssoftware.com/resources/documentation/.

7. Typographical Conventions

The following conventions may be used in this manual:

Convention

Meaning

Ctrl/ x

A sequence such as Ctrl/ x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x

A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return

In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

A horizontal ellipsis in examples indicates one of the following possibilities:
» Additional optional arguments in a statement have been omitted.
» The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

O

In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[]

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

[1]

In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

viii

Preface

Convention Meaning

{} In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the

name of an argument, an attribute, or a reason.

italic text

Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE Uppercase text indicates a command, the name of a routine, the name of a file,

TEXT or the abbreviation for a system privilege.

Monospace Monospace type indicates code examples and interactive screen displays.

type
In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.

Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

ix

Preface

Chapter 1. Introduction

FMS utilities are tools for developing video forms applications - applications that display information
on a video terminal screen and process input. An example of a forms application might be the
computerized system that some hospital admissions desks use to record the patient's name, to check
previous admissions, to identify insurance coverage, to initiate billing, and so on. The admissions desk
employee sees a collection of structured information (that is, a form) on a video terminal screen.

To FMS internally, a form is a binary data structure that specifies how information is to be displayed
on a terminal and how the operator (for example, that admissions desk employee) can interact with
that display. The application program that you write displays forms that ask for data or show data. The
program can process data input and perhaps display it in the same form, in other forms, or in reports
printed out on a line printer. Indeed, applications that use video forms offer endless possibilities for
processing the information gathered from video forms. The admissions desk employee might fill in
the type of room. The application subsequently could use that information to establish the room cost
per day. This cost, plus other expenses incurred during the patient's stay, could be processed and billed
by the application.

The Form Driver is the FMS component that assists your application program's interaction with
forms. The Form Driver is the run-time component, a subroutine package that is linked with your
program. The Form Driver accepts calls from the program, maintains FMS data structures, and issues
terminal 1/0 calls to communicate with the operator. All Form Driver calls refer to forms and data
within forms by names that you assign when you create the forms. The VST OpenVMS FMS Form
Driver Reference Manual describes Form Driver concepts and documents each call in detail.

Two of the FMS utilities are tools for creating forms. Another utility helps you build applications, and
the others help you manage forms (for example, by putting them in libraries or testing them). Another
utility converts FMS V1 forms to FMS V2 forms, and another converts TDMS forms to FMS forms.
The utilities described in this manual are:

* Form Editor

* Form Language Translator
* Form Librarian

* Form Application Aids

* Form Tester

* Form Upgrade

* Form Converter

Important background information about video forms is presented in Chapter 2 on Form
Characteristics. You should read Chapter 2 before you start to develop an application program that
uses FMS.

Different stages of the program development cycle require you to use specific utilities, which you
invoke with DCL commands. The following sections:

* Describe the relationship between the development cycle and the FMS utilities

* Introduce the DCL command syntax

Chapter 1. Introduction

1.1. FMS Development Cycle

When you write a video form application, the development cycle may include the following steps
described in Section 1.1.1 through Section 1.1.7.

* Create forms

e Create form libraries

» Write the application program
* Write user action routines

* Create object modules

o Test forms

* Link the application

1.1.1. Create Forms

You can create FMS forms by using either the Form Editor or the Form Language Translator. Use
the Form Editor if you want an interactive utility that allows you to see the form as you type it in

and work on it. Use the Form Language Translator if you prefer a programming-language style of
working, if you do not have a video terminal, or if you have many similar but slightly different forms
to create. The Form Language Translator is optional software that is purchased separately.

The product of either the Form Editor or the Form Language Translator is a binary form (stored in a
form file), which you subsequently put in a form library or make memory resident.

1.1.1.1. Form Editor

The Form Editor is an interactive utility that lets you create and edit forms on a VT100- or VT200-
compatible terminal. Creating or editing a form may include the following operations:

* Typing in background text

» Setting up fields

* Selecting form, field, video, and line attributes
* Establishing field access order

* Creating scrolled areas

» Associating user action routines with the form
* Associating Named Data with the form

The Form Editor allows you to perform these various operations in different phases, which you enter
through the Form Editor menu.

The Form Editor menu is the first image that appears on your screen after you invoke the Form Editor.
The menu gives you a choice of seven phases. To select the phase that you want to enter, you type in
the phase name. You subsequently return to the menu to choose other phases when you are ready to
perform other operations.

Chapter 1. Introduction

The phase in which you do most of the work is the Layout phase. It allows you to type in the text that
appears when the video form is displayed and to set up fields that the operator or application program
will fill in when the application program is running. Fields are the variable parts of the form. The
Layout phase offers you a number of capabilities that are similar to a video text editor's capabilities.
Layout is an inferactive phase; that is, you see the form on the screen as you type it, and you see any
changes that you make as you edit the form.

Other Form Editor phases let you perform other operations. For example, you assign certain
characteristics to fields in a form during the Assign phase. These characteristics are called field
attributes.

In Form phase, you assign form wide attributes, identify user action routines (UAR) for the form, and
assign initial field attributes. User action routines are subroutines that you associate with a particular
form and FMS invokes at run time when the operator presses certain keys. All attributes, as well as
user action routines, are described in Chapter 2.

You can associate Named Data items with a form in the Data phase. Named Data is an ordered
collection of constant information useful to the application program and associated with a specific
form, but which is not displayed on the screen. For instance, in the admissions desk example, the
cost of different rooms might be Named Data items associated with a form. (Remember that the
admissions desk employee types in the type of room when the patient is admitted.) If inflation drives
up the costs of rooms, the costs can be changed in the form (since they are Named Data items) rather
than in the application program. At any time, the application program can get the latest room price
information to bill the patient for the correct amount.

The order in which the operator will be given access to the fields at run time is established during the
Order phase.

The Test phase lets you test a form by displaying it as an application program would. It even allows
you to type data into fields and get field-level help.

When you use the Exit phase to leave the Form Editor, you can save the form on which you were
working. The Form Editor saves the form as a binary form.

1.1.1.2. Form Language

Using the Form Language is another way to create forms. You write Form Language statements in a
form description file and use the Form Language Translator to convert the description into a binary
form. You can use any text editor on any terminal to create the form description file. You would use
the Form Language instead of the Form Editor if you like a programming-language style of working
or if you do not have a video terminal. The Form Language Translator is optional software that is
purchased separately.

With the Form Language, you can also work on a form that was originally created with the Form
Editor. You may find it convenient to do so, for instance, if you have many similar but slightly
different forms to create. To use the Form Language on a form created with the Form Editor, you must
create a form description file from the binary form saved by the Form Editor. A form description file
can be produced by the Form Application Aids utility and can be edited and subsequently translated.

1.1.2. Create Form Libraries or Memory-Resident
Forms

Once you have created binary forms, you must put them in form libraries or in an object module
(which becomes memory resident). Either operation makes the binary forms available to the Form
Driver and your application program at run time.

Chapter 1. Introduction

The Form Librarian is the utility that manages form libraries. If you choose to use a form library,

you must start by making a new library file with the Form Librarian's create operation. This operation
makes a new library file and puts one or more binary forms in it. If you want to add a form to an
existing library, you use the insert operation. If you want to exchange one version of a form in a
library with a newer version of the same form, you use the replace operation. Replace removes the old
version of the binary form and replaces it with the new version. The extract operation copies a binary
form from the library and puts it in a form file. The delete operation removes a form altogether. The
Form Editor can copy a binary form from a library and make it available for modification.

When the application requires a form at run time, the Form Driver reads the form directly from a form
library file that is stored on a disk. You do not link the form library with the application, but you do
name the form library in a Form Driver call. Storing forms in form libraries makes it easy to change
and manage forms. You do not need to relink the application every time you change a form. Relinking
would be necessary if you used memory-resident forms. You can store all your forms in one place.
Also, by using form libraries instead of memory-resident forms you can keep the size of the program
image smaller.

On the other hand, you may prefer some of the advantages of memory-resident forms. Because you
link memory-resident forms with the application program, they are brought into memory when the
program is brought in. Since a form library directory does not have to be searched, access to forms by
the Form Driver or the application is faster than if the forms were stored in libraries. Memory-resident
forms also save you from having to manage additional pieces of the application-that is,form libraries.
You create a linkable file of memory-resident forms by using the Form Application Aids utility.

1.1.3. Write the Application Program

Writing and compiling the application program is, of course, an indispensible step. You will find
several other manuals particularly helpful when you write the application program. The VSI OpenVMS
FMS Form Driver Reference Manual provides complete reference information on all the Form Driver
calls. It also describes the Form Driver's interactions with your program and with terminals. The VS/
OpenVMS FMS Language Interface Manual provides information on programming FMS applications
in each of seven languages. The Introduction to VSI OpenVMS FMS Guide introduces some concepts
and supplies exercises to help you get started with FMS.

During the program development process, you may also find some FMS features helpful. For
example, the Form Driver offers a Debug mode that reports status conditions of Form Driver calls.

The Form Application Aids utility also offers some helpful services. You can get listings of form
descriptions and of form library directories. You can also get COBOL-like and DATATRIEVE-like
field data structure descriptions that you can include (with minor editing) in your source program. See
Chapter 6.

1.1.4. Write User Action Routines

If you choose to use user action routines (form-associated subroutines), refer to Chapter 2 and to the
VSI OpenVMS FMS Form Driver Reference Manual for help in writing them. Remember that you
must associate each user action routine with the appropriate form when you create the form.

1.1.5. Create Object Modules

As with any other application program, you must compile the application program and user action
routines to produce object modules suitable for linking. Also, if you have user action routines, you
must link with your program an object module containing the names and vectors of all the routines

Chapter 1. Introduction

to be called. You can generate such an object module by using the Form Application Aids. The Form
Driver uses these vectors to locate user action routine addresses in memory at run time.

1.1.6. Test Forms

You can test forms at several stages in the development cycle, with either of two utilities.

While you are using the Form Editor to create and modify forms, you can use the Test phase to
display a form as an application program would and to type data into fields and display field help.

You can also test forms by using the Form Tester utility, which allows testing on either VT52-,
VT100-, or VT200-compatible terminals. The Form Tester lets you test forms in the same way as the
Test phase of the Form Editor.

You will probably find it convenient to use the Form Editor's test capability when you are already
working with the Form Editor. If you are not in the Form Editor, you will probably prefer to use the
Form Tester. You can test forms created with the Form Language Translator by using the Form Tester.

1.1.7. Link the Application

Once you have done the following, you must link the application and all its pieces with the Form
Driver:

* Created forms and form libraries

* Created a linkable file of memory-resident forms

* Written and compiled the application program

* Written and compiled user action routines and produced a vector object module for them

The VSI OpenVMS FMS Form Driver Reference Manual provides information on linking the
application.

1.2. DCL Commands

All the FMS utilities are invoked through the use of DCL commands, which are summarized in a
table at the end of this chapter. The following paragraphs describe the general command syntax and
Chapter 3 through Chapter 9 contain complete command syntax for each of the utilities. Chapter 10
discusses the changes that have been made since FMS V1.

FMS commands conform to the OpenVMS command language, DCL. Commands consist of English-
language words that describe what you want FMS to do. Commands can optionally contain qualifiers
and parameters. Command qualifiers modify a command. They provide the system with additional
information on how to execute the command. Command parameters describe the object of the
command.

FMS command qualifiers such as /DIRECTORY, /DESCRIPTION, /TRANSLATE, and the /
LIBRARY subqualifiers such as /CREATE, and /DELETE, are position dependent. Refer to
Chapter 4, Chapter 5, and Chapter 6 for the specific command syntax.

The default FMS operation is Form Editor editing; that is, typing the command FMS is the same as
typing FMS/EDIT. The command FMS/LIBRARY has five subcommands:

* FMS/LIBRARY/CREATE
* FMS/LIBRARY/INSERT

Chapter 1. Introduction

« FMS/LIBRARY/REPLACE

 FMS/LIBRARY/EXTRACT

« FMS/LIBRARY/DELETE

FMS/LIBRARY is the same as FMS/LIBRARY/REPLACE, since replace is the default Form

Librarian operation.

Throughout this manual, DCL commands are printed in uppercase characters. However, you can enter
these commands in uppercase, lowercase, or a mixture.

When you enter a command at the terminal, you need not enter the entire command all at once. If
you enter a command that requires parameters, and you do not specify any parameters, the command
interpreter prompts you for the remaining parameters.

The following shows the general FMS command line format:

FM5 [/command] [/subcommand] [/qualifier]... [file-spec] [form-spec-list]

The notation shown in Table 1.1 is used in command syntax descriptions throughout this manual. In
addition, the phrase "partial form library" is used to mean one or more forms from a form library, as
specified in the /[FORM_NAME qualifier.

Table 1.1. Command Syntax Notation

Item Meaning

brackets [] Indicate that the enclosed item is optional.

braces{ } Enclose lists from which one element is to be chosen. Choices are
indicated in one of two ways: (1) stacked vertically or (2) listed
horizontally and separated with vertical bars (1).

file-spec Represents a file specification.

form-spec Represents any one of the following file specifications: form-file-spec,

form-library-spec, form-library spec/FORM_NAME=form-name,
or formlibrary-spec/FORM_NAME =(form-name-list).

form-library-spec

Represents a file specification for a form library.

form-file-spec

Represents a file specification for a form file.

form-name

Represents a form name.

form-spec-list

Represents a list of one or more form-specs separated by commas.

form-name-list

Represents a list of one or more form-names separated by commas.

level Represents a value for the /WARNINGS qualifier of the FMS/
TRANSLATE command.
n Represents a value for the /ERROR_LIMIT qualifier of the FMS/

TRANSLATE command.

Table 1.2 shows the default file types that FMS assumes for input and output files whenever you

do not explicitly specify a file type in a command. An exception to this table occurs whenever the /
FORM_NAME qualifier is used for an input file, in which case FMS always assumes a default file
type of .FLB. Also, whenever the /OUTPUT qualifier is specified for a command that would normally
display output on the terminal (SYS$OUTPUT), the default output file type is .LIS. Table 1.3 shows
the complete FMS command syntax.

Chapter 1. Introduction

Table 1.2. Default File Types

Command Input File Output File

FMS/CONVERT .FRM

FMS/DESCRIPTION/BRIEF .FRM SYSSOUTPUT

FMS/DESCRIPTION/FULL .FRM FLG

FMS/DESCRIPTION/ .FRM txt

DECLARATIONS

FMS/DESCRIPI'TON/ .FRM .us

DISPLAYIMAGE

FMS/DIRECTORY .FLB SYSSOUTPUT

FMS/EDIT .FRM FRM

FMS/LIBRARY/CREATE .FRM .FLB

FMS/LIBRARY/DELETE .FLB .FLB

FMS/LIBRARY/EXTRACT .FLB .FRM

FMS/LIBRARY/INSERT .FRM .FLB

FMS/LIBRARY/REPLACE .FRM .FLB

FMS/OBJECT JFRM .OBJ

FMS/TEST .FRM no output

FMS/TRANSLATE FLG FRM

FMS/UPGRADE .FLB .FLB

FMS/VECTOR .FLB .OBJ

Table 1.3. FMS Commands and Qualifiers

Command Qualifier Description

FMS/CONVERT CDD path- |/LOG Logs completed actions on the

name terminal. INOLOG is the default
/NOLOG
/OUTPUT |=file-spec] Output form file specification. /

OUTPUT is the default

/NOOUTPUT
Generates a form file from a TDMS form stored in the Common
Data Dictionary.

FMS/DESCRIPTION form- |/BRIEF brief text description of a form

spec|,form-spec]... /DECLARATIONS declarations for FMS data fields

full text description of a form

/FULL (default) printable image of a form

/
DISPLAY_IMAGE[={ESCAPE
NOESCAPE..SEQUENCE}]

 SEQUENCE

/OUTPUT |[=file-spec]

/NOOUTPUT

output file specification

/LOG

logs completed actions on the
terminal

Chapter 1. Introduction

Command Qualifier Description
/NOLOG
Produces a readable text description of a form.
FMS/DIRECTORY form- /BRIEF (default) brief directory that lists only
spec[,form-spec]... /FULL form names full directory that
lists the full file specifications
/OUTPUT] =file-spec] for form or library files output
/NOOUTPUT file specification

Displays a directory of the forms

in form files or in form libraries

that lists the form names, their size, and the date they were last

updated.

FMS|/EDIT] {form-file-
spec I form-library-spec /
FORM_NAME=form-name}

/OUTPUT] =file-spec]

/NOOUTPUT

output file specification

Invokes the Form Editor which allows you to create and edit
forms. This is the default FMS command.

FMS/LIBRARY/CREATE
form-library-spec form-
spec[,form-spec]...

/LOG

/NOLOG

logs completed actions on the
terminal

Creates a form library from forms and other form libraries.

FMS/LIBRARY/DELETE
form-library-spec/
FORM_NAME=(form-name
[,form-name]...)

/LOG

/NOLOG

logs completed actions on the
terminal

Deletes forms from a form library.

FMS/LIBRARY/EXTRACT
form-library-spec/
FORM_NAME=form-name

/LOG

/NOLOG

logs completed actions on the
terminal

/OUTPUT] =file-spec]

/NOOUTPUT

output file specification

Extracts a copy of a form from a form library.

FMS/LIBRARY/INSERT
form-library-spec form-
spec[,form-spec]...

/LOG

/NOLOG

logs completed actions on the
terminal

Inserts forms into a form library.

FMS/LIBRARY]/
REPLACE]|form-library-spec
form-spec[,form-spec]...

/LOG

/NOLOG

logs completed actions on the
terminal

Replaces old forms with new forms in a form library. This is the

default FMS/LIBRARY command.

FMS/OBJECT form-
spec[,form-spec]...

/LOG

/NOLOG

logs completed actions on the
terminal

/OUTPUT |[=file-spec]

/NOOUTPUT

output file specification

Chapter 1. Introduction

Command

Qualifier

Description

Generates an object module of concatenated forms. The object file
can be linked with your application to use memory-resident forms.

FMS/TEST {form-file-
spec I form-library-spec /
FORM_NAME =form-name}

/QUIET quiet signaling mode

/NOQUIET

Invokes the Form Tester that displays the form as it will appear at
run time.

FMS/TRANSLATE file-spec

/OUTPUT |=file-spec] output file specification

/NOOUTPUT

/LIST[=file-spec] translation listing

/NOLIST

/WARNINGS={ALL I severity level of messages that
INFORMATIONAL I ERROR |appear in the translation listing
I WARNING}

/ERROR_LIMIT=n number of errors allowed before

the translation is aborted

Invokes the Form Language Translator that converts Form
Language text files to forms.

FMS/UPGRADE file-spec

/LOG logs completed actions on the

terminal
/NOLOG

/OUTPUT |=file-spec] output file specification

/NOOUTPUT

Converts an FMS Version 1 form or form library to FMS Version
2.6 format.

FMS/VECTOR form-
spec[,form-spec]...

/LOG logs completed actions on the

terminal
/NOLOG

/OUTPUT] =file-spec] output file specification

/NOOUTPUT

Creates an object module that contains user action routine (UAR)
vectors. You must link this module with your application to use
UAR:s.

HELP FMS

Displays a description of FMS and the qualifiers to use with the
HELP command to obtain additional information.

Note

Three qualifiers have been changed in the DCL syntax for FMS. These new qualifiers perform the
same functions as the old qualifiers. The old qualifiers will remain valid until the next major release
of FMS. The new qualifiers are the recommended way of performing each action. The old and new

qualifiers are listed below.

Chapter 1. Introduction

OLD NEW
/MEMORY_RESIDENT /OBJECT

/IMAGE /DISPLAY IMAGE
/MESSAGE /WARNINGS

10

Chapter 2. Form Characteristics

To a terminal operator running a video form application (for example, a hospital admissions clerk), a
form is a collection of structured information displayed on a video screen. To FMS internally, a form
is a binary data structure that specifies how information is to be displayed on a terminal and how the
operator can interact with that display.

You can create FMS forms by using either the Form Editor (described in Chapter 3) or the Form
Language Translator (described in Chapter 4). Use the Form Editor if you want an interactive utility
that allows you to see the form as you type it in and work on it. Use the Form Language Translator if
you prefer a programming-language style of working, if you do not have a video terminal, or if you
want to create many similar forms.

FMS forms include:

* Background text

* Fields

* Names of user-provided subroutines for extended processing

* Named Data

* Attributes

The following paragraphs introduce these concepts. Section 2.1 describes background text in detail,

Section 2.2 describes fields, Section 2.3 describes Named Data, and Section 2.4 describes each
attribute.

Background Text

In a video form, background text is the displayed part of a form - the part that cannot be modified by
the operator at run time. Compare a video form and an ordinary paper form, such as a bank check.
Figure 2.1 shows the part of a bank check that would be background text in a video check form.

Chapter 2. Form Characteristics

Figure 2.1. Background Text and Fields in a Bank Check Fields

Paper Bank Check
0649
19 3-341/11
PAY TO THE
ORDER OF $
DOLLARS
Community Bank
MEMO
Background Text
0649
19 | 33811
PAY TO THE
ORDER OF s
DOLLARS
. kw*s
Community Bank od
MEMC
Filled-in Fields

FZ

L2
WMM S — S

Fields

Fields, on the other hand, are variable parts of the form; they are the parts of a form that the operator
(or the program) fills in when the program is running. In other words, fields are analogous to the

ZK-1801-84

12

Chapter 2. Form Characteristics

places on the check where you would write in the name of the person to whom the check should be
paid, the amount of the check, your signature, and so on. Figure 2.1 also shows the check's "variables"
or "fields."

Fields in video forms differ from "fields" in paper forms in that they can be modified by the
application program itself. Figure 2.2 shows a video check that is part of the Sample Application
program. The program fills in the number field when the next check is displayed for use. The program
can also process data that the operator enters in the check form. For example, when the operator
writes a check - that is, fills in the fields - the program deducts the amount of the check from the
account.

Figure 2.2. Check Form from the Sample Application

Katherine M. Smith

1 Wog Hill Rd.

Tounsend, AK 59399
(B0D) 5551212

Pag to I
Hemo

FIRST MATIONAL BANK

ZK-1802-84

Names of User-Provided Subroutines

User-provided subroutines that the Form Driver calls at run time are called user action routines
(UARs). UARs support extended forms processing (for example, range checking for field values).
When you create a form, you connect or associate with it any user action routines that the application
requires. You do this by naming UARs in the Form and Assign phases of the Form Editor or in the
FORM and FIELD statements in the Form Language.

Named Data

Named Data is an ordered collection of constant information useful to the application program and
associated with a specific form, but not displayed on the screen. Named Data consists of constants,

Chapter 2. Form Characteristics

each of which can be accessed by name or by index. You associate Named Data with a form when you
create the form - either by using the Data phase of the Form Editor or by using the NAMED DATA
statement in the Form Language.

Attributes

Attributes are characteristics of FMS video forms. These characteristics can be categorized into four
types:

1. Field attributes
2. Form attributes
3. Line attributes

4. Video attributes
1. Field Attributes

Field attributes are characteristics of a field. You assign field attributes when you create a form,
and they become active at run time. Both the Form Editor and the Form Language provide default
field attributes if you do not specify any. The three categories of field attributes deal with data
display, data alignment and padding, and operator interaction.

Some field attributes control data display in fields. For example, No Echo inhibits display of
characters that the operator enters at the terminal. Other field data display attributes are Clear
Character, Uppercase, and Zero Suppress.

Other field attributes control data alignment and padding. They are Left Justified, Right Justified,
Fixed Decimal, Blank Fill, and Zero Fill. Left Justified, for example, causes data to be entered in a
field starting from the left.

Field attributes that control the way an operator inputs data in fields at run time can be thought of
as operator interaction attributes. An example of such an attribute is Autotab, which automatically
moves the cursor to the next field when the operator fills in the current field. Display Only,
another example, allows only the application program to fill in the field and prohibits the operator
from altering the field's contents. The other field attributes in this category are Default Value,
Must Fill, Response Required, and Supervisor Only.

The complete list of field attributes is:
* Autotab

* Blank Fill

* Clear Character

* Default Value

* Display Only

* Field Completion UARSs

* Field Name

¢ Fixed Decimal

14

Chapter 2. Form Characteristics

e Help Text

* Indexed

o Left Justify

* Must Fill

* No Echo

* Response Required

* Right Justify

e Supervisor Only

» Uppercase

» Zero Fill

e Zero Suppress
2. Form Attributes

Form attributes are characteristics that apply to the entire form. For example, the form attribute
Area to Clear specifies the area of the screen that is to be erased whenever the form is displayed.

This attribute allows you to overlay forms on each other, since you can specify that only a part of

the screen should be cleared.

The complete list of form attributes is:
* Form Name

* Help Form Name

e Screen Background

¢ Screen Width

Screen Character Set
* Screen Area to Clear
* Field Highlighting
* Function Key UARs
e Pre-help UARs
* Post-help UARs

3. Line Attributes

Line attributes apply to lines in a form. The three line attributes are illustrated in Figure 2.3.

¢ Double Wide

Chapter 2. Form Characteristics

* Double Size

» Scrolled

Figure 2.3. Line Attributes

Brrnt

Double Pl s A —

Size { Checkind Account Henu

Double

Wide '1 CHECK REGISTER — THE ACCOUNT HISTORY
Deposit Check Mew
Amount Amount Balance

Scrolled

Area

. Video Attributes

Video attributes are visual characteristics that can apply to any part of the form. The reverse video
attribute is illustrated in Figure 2.4. The complete list of video attributes is:

 Blink
 Bold
 Reverse

e Underline

e Character Set

Chapter 2. Form Characteristics

Figure 2.4. Reverse Video Attribute

R - .
Vidos Chzzking Aocount Menu
Choose aoption (1-5): R
L it
2 Write 3 check
3 Woke o deposit

4 View the check register
S Show account data

2.1. Background Text

Background text is composed of text characters displayed in a form that are not alterable by your
program or by the terminal operator at run time. Background text is typically used to provide captions
for fields and to give information to the operator.

Background text can be specified with any or all of the video attributes supported by the VT100/200-
compatible terminal. These attributes include Blink, Bold, Reverse, and Underline. Additionally,

the character set for background text characters on any part of the screen can be specified explicitly
(see Section 3.7.4 and Section 3.7.19 on the form Editor operations CHARSET and SELECT, and
Section 4.2 on the form Language TEXT statement).

2.2. Fields

Fields are areas of a form where the terminal operator can enter or view variable data. FMS provides
many features for controlling the way the terminal operator interacts with fields. Section 2.4.1
describes field attributes.

The following sections describe field pictures (a way of specifying fields), special predefined date and
time fields, and field ordering.

2.2.1. Field Picture

Fields in FMS are specified by field pictures. A field picture is a contiguous sequence of field-
validation characters and optional field-marker characters. Field-validation characters are characters

Chapter 2. Form Characteristics

that define data positions within a field and describe valid input for each position in that field.
FMS validates data entered into fields at run time by comparing the characters entered with these
undisplayed field-validation characters (see Figure 2.5 and Table 2.1). Field-marker characters can
be included in a field when the form is created. Field-marker characters, however, do appear on
the screen at run time and are used to make the form more readable (see Table 2.2). Field-marker
characters are the constant part of the field.

A field picture, therefore, specifies both the size of a field, and the set of data characters allowed to be
input. Field-marker characters are never returned to the program as part of a field's value.

Field pictures must include at least one field-validation character.

18

Chapter 2. Form Characteristics

Figure 2.5. Background Text, Field-Marker Characters, and Field-Validation
Characters

Background Text

Katherine M. Smith Nunber __§

i Hog Hill Rd.

Townsend, AK 99939 Date: 22-NOV-82
(800)555-1212

Pay to NI fnount: $5333,34

Heno

FIRST NATIONAL BANK Account 532

Field-Marker Characters

‘ -
kﬁé
Field-Vafidation Characters
g
99 AAA 939
AAAAAAAAAAAAAAAAAAAAAAAAA NNNN NN
CCCOCCCOCCCoeee
2K -1805-84
Table 2.1. Field-Validation Characters
Character Valid for Field Validation Character
Entered By A C N 9 X
Operator
Space * * *
! thru * *

Chapter 2. Form Characteristics

Character Valid for Field Validation Character

Entered By A C N 9
Operator

+ %

- *

, *

*

0 thru 9 * * *
: thru @

AthruZ * *

[thru 1

athruz * *

{ thru ~

j thru £

¥

§ thru"

° thru 3

u thru -

! thru 7

b

A thru T * *

N thru ¥ * *

B * k

athrui * *

fl thru § * *
All others are invalid for any picture.
Table 2.2. Field-Marker Characters

Symbol Name

B space

! exclamation mark
" quote

pound sign

$ dollar sign

% percent sign

& ampersand

' apostrophe

(left parenthesis

) right parenthesis
* asterisk

20

Chapter 2. Form Characteristics

Symbol Name

+ plus sign

> comma

- hyphen or minus sign

period

/ slash

colon

; semicolon

A

left angle bracket

equal sign

right angle bracket

question mark

at sign

left square bracket

backslash

'_'/'_'@'\DV

right square bracket

inverted !

cent sign

pound sign

yen sign

section sign

currency sign

IR

copyright sign

(S

feminine ordinal indicator

« angle quotation mark left

degree sign

+ plus/minus sign

2 superior 2

’ superior 3

u micro sign

O paragraph sign

middle dot

! superior 1

masculine ordinal indicator

» angle quotation mark right

Ya fraction one-quarter

Y fraction one-half

I inverted ?

A caret or circumflex

21

Chapter 2. Form Characteristics

Symbol Name

underscore

grave accent

{ left brace

| vertical bar
} right brace
~ tilde

2.2.2. Date and Time Fields

Date and time fields are special predefined fields provided by FMS. Whenever a form is displayed
or refreshed, the system date and time is placed in any date or time fields respectively. Date and
time fields are normally display only fields, but that attribute can be changed to allow the terminal
operator to enter the date or time. Date and time fields are specified with one of a set of predefined
field pictures.

The following date fields are available:
1. month day, year

Month is spelled out, day is a 2-digit decimal number, and year is a 4-digit number.
2. dd-mmm-yy

Day is a 2-digit decimal number, month is the first 3 letters of each month, and year is a 2-digit
decimal number.

3. mm/dd/yy
All entries are 2-digit decimal numbers.
4. dd-mm-yy
All entries are 2-digit decimal numbers.
The following time fields are available:
1. hh:mm:ss
The time is standard 24- hour time.
2. hh:mm AM/PM
Time is expressed in hours from 0 to 12 with AM/PM indication.

Table 2.3 and Table 2.4 summarize the date and time field formats and their corresponding field
pictures.

Table 2.3. Date Field Formats

Format Field Picture
month day, year AAAAAAAAAB99,B9999
day-month-year 99-AAA-99

22

Chapter 2. Form Characteristics

Format Field Picture
month/day/year 99/99/99
day-month-year 99-99-99

Table 2.4. Time Field Formats

Format Field Picture
hour:minute:second 99:99:99
hour:minute AM/PM 99:99BAA

2.2.3. Field Ordering

FMS allows you to specify the order in which fields are to be accessed at run time, when your
program requests the Form Driver to get all fields in a form. The order specified is also the order in
which field data is positioned in the record returned to your program. You do not need to use this
ordering; it is only a convenience. You can always have the Form Driver return the values of the fields
one at a time in any order you choose. If your program does request the Form Driver to get all field
values at once, the cursor is moved to the first field in the form, and the program waits for the operator
to enter data for that field. When the operator presses the NEXT FIELD function key (usually TAB),
the cursor moves to the next field in the form, according to the order that you specified. This process
is repeated until the operator indicates that the form is complete.

2.3. Named Data

Named Data is an ordered collection of constant information useful to the application program and
associated with a specific form, but not displayed on the screen. Named Data consists of constants,
each of which can be accessed by name or by index. You associate Named Data with a form when you
create the form - either by using the Data phase of the Form Editor or by using the NAMED DATA
statement in the Form Language.

Named Data is useful for storing form-dependent information independent of your program.

FMS forms can include approximately 60,000 Named Data items, where each item consists of an
index, a Named Data name, and a Named Data string. Named Data items can be referenced from
your program either by index or by name. The indexes for Named Data items in a form must be
consecutive and must begin with one. The name for a Named Data item can be up to 31 characters
long and can include any displayable character. Names for Named Data items need not be unique. If
no name is specified for a Named Data item, a blank name is assumed. The data string of a Named
Data element can be up to 80 characters long and can include any displayable character.

Refer to the VSI OpenVMS FMS Form Driver Reference Manual for more information about Named
Data.

2.4. Attributes

The following sections describe field attributes, form attributes, line attributes, and video attributes.

2.4.1. Field Attributes

Field attributes are characteristics of a field. You assign field attributes when you create a form, and
they become active at run time. Some field attributes control data display, some control data alignment

23

Chapter 2. Form Characteristics

and padding, and others control the way an operator puts data in fields at run time. The complete list
of field attributes is:

* Autotab

* Blank Fill

* Clear Character

* Default Value

* Display Only

* Field Completion User Action Routines
* Field Name

* Fixed Decimal

* Help Text

* Indexed

o Left Justify

* Must Fill

* No Echo

e Response Required
* Right Justify

* Supervisor Only

» Uppercase

* Zero Fill

e Zero Suppress

2.4.1.1. Autotab

The Autotab attribute automatically moves the cursor to the next field when the operator has filled the
current field. The default is no Autotab.

2.4.1.2. Blank Fill

The Blank Fill attribute causes any data positions not entered by the terminal operator or specified in
a field default value to be returned to the application program as blanks. Blank Fill is the default for
FMS fields.

2.4.1.3. Clear Character

The clear character is a character that is displayed in each field position where no data has been
entered, and no default value has been specified. The default clear character is a blank.

24

Chapter 2. Form Characteristics

2.4.1.4. Default Value

The default value for a field is a string that is placed in a field when the form is first displayed before
the operator has entered any data. If the operator does not enter data for a particular field, the default
value is returned to the application program as the value for that field. Note that the default value is
never checked against the field picture. If the default value is too long for the field, it is truncated.

2.4.1.5. Display Only

The Display Only attribute is used to prohibit the operator from altering the contents of a field. A field
that is marked display only can only be accessed by the application program, never by the terminal
operator. The default is No Display Only.

2.4.1.6. Field Completion User Action Routine

Field completion user action routines (Field UARSs) are program subroutines that are called at run time
whenever the operator completes data input to a field. Field completion UARs are specified by giving
the name of the subroutine that is to be called and an associated data string of up to 80 characters. Up
to 15 field completion UARSs can be associated with each field, and they are processed in the order
specified. Field completion UARSs are especially useful for performing extended field processing
beyond that which is normally provided by FMS.

When you create a form, you connect or associate with it any user action routines that the application
requires. You do this by naming UARs in the Form and Assign phases of the Form Editor or in the
FORM and FIELD statements in the Form Language.

To use user action routines, you need to create an object module of UAR vectors which you must link
with the Form Driver and your program. See Chapter 6 for a description of creating object modules of
UAR vectors. Field completion UARSs are assignable in the ASSIGN phase of the Form Editor or with
the FIELD statement of the Form Language.

2.4.1.7. Field Name

The field name is a unique name of up to 31 characters associated with each field. An application
program can read or write to a field in a form by providing to the Form Driver the name of the field
to be accessed. If no field name is given when the form is created, FMS assigns a default name
according to the pattern F'$nnnn where nnnn is a four-digit sequential index starting with one.

The rules for specifying field names are:

e Must begin with a letter (A-Z)

* Must end with a letter (A-Z) or digit (0-9)
* Cannot exceed 31 characters in length

» Can contain only letters (A-Z), digits (0-9), dollar signs ($), or underscores ()

2.4.1.8. Fixed Decimal

The Fixed Decimal attribute specifies a field with a fixed decimal point separator and special field
justification rules. In fixed-decimal fields the part of the field to the left of the decimal separator is
treated as right justified, while the part of the field to the right of the decimal separator is treated as
left justified. In a fixed-decimal field, the cursor is first positioned over the decimal point separator,
and characters are entered into the left side of the field. As each character is entered, the other

25

Chapter 2. Form Characteristics

characters to the left of the decimal separator are shifted one position left to make room for the new
entry. When the left side of the field is complete, the operator types in the decimal separator, either a
decimal point or a comma, and then proceeds to enter data into the right side of the field. The decimal
separator in a fixed decimal field is not returned to the application program as part of the field's value
(see Figure 2.6). The field-picture rules for fixed-decimal fields are listed below.

* The field-validation characters must be all 9s or all Ns.

* At least one period or comma must be included.

* The rightmost period or comma becomes the active decimal separator.

» At least one field-validation character must be on each side of the active decimal separator.
* Any number of other field-marker characters are permitted.

The attributes Left Justify, Right Justify, and Fixed Decimal are mutually exclusive. The default for
FMS fields is Left Justify.

Figure 2.6. Fixed Decimal Attribute
Fixed-Decimal Field

Period must be pressed to
input characters right of
"" decima! point.

- @ Beginning cursor pasition

(2) Character moves left as it is input.

Enter Amount:

Z¥—-1806-84

2.4.1.9. Help Text

Help text for a field is an 80-character or 132-character text string. It is displayed at the bottom of
the screen when the operator requests help by pressing HELP (PF2 for a VT100 terminal) while the
cursor is in a field at run time.

2.4.1.10. Indexed

Indexed fields are fields with the same name but with a different numerical index for identification. To
reference indexed fields from your program, you must specify both the field name and the field index.
The field index is just a sequential number from one to the number of fields in an indexed set. Indexed
fields can be located anywhere on the screen but must have identical field pictures and field attributes.
A typical use for indexed fields is to simplify using program loops to process a set of similar fields.
See the VSI OpenVMS FMS Form Driver Reference Manual for information on using indexed fields.

2.4.1.11. Left Justify

The Left Justify attribute causes data to be entered in a field starting from the left. As each character is
entered, the cursor moves one position to the right to accept the next character.

26

Chapter 2. Form Characteristics

The attributes Left Justify, Right Justify, and Fixed Decimal are mutually exclusive. Left Justify is the
default for FMS fields.

2.4.1.12. Must Fill

The Must Fill Attribute is used to require the operator to enter data in every position of a field if any
data is entered. The Must Fill attribute is useful for fields where partial completion does not make
sense, such as for Social Security numbers. The default for FMS fields is no Must Fill.

2.4.1.13. No Echo

The No Echo attribute is used to inhibit display of characters entered in a field by the terminal
operator. No Echo is typically used for fields that request privileged information such as passwords.
The default for FMS fields is Echo.

2.4.1.14. Response Required

The Response Required attribute is used to force the operator to enter data in a given field before
proceeding to the next form. The default is no Response Required.

2.4.1.15. Right Justify

The Right Justify attribute causes data to be entered in a field starting from the right. The cursor is
positioned at the right edge of the field, and as each character is entered, the other characters in the
field are all shifted one position to the left to make room for the new character. The field picture for
right-justify fields must have only one type of field-validation character to allow the data to be shifted
without conflict.

The attributes Left Justify, Right Justify, and Fixed Decimal are mutually exclusive. The default for
FMS fields is Left Justify.

2.4.1.16. Supervisor Only

The Supervisor Only attribute is used to provide one level of selective field protection. Fields marked
supervisor only can only be accessed by the terminal operator when the application program has
turned supervisor-only mode off. The default is No Supervisor Only.

2.4.1.17. Uppercase

The Uppercase attribute is used to convert all lowercase alphabetic characters entered to uppercase
automatically. Data entered in fields with the uppercase attribute is displayed and returned to the
application program in uppercase. The default is No Uppercase.

2.4.1.18. Zero Fill

The Zero Fill attribute causes any data positions not entered by the terminal operator or not specified
in a field default value to be returned to the application program as zeros. Zero Fill requires a clear
character of zero. The default for FMS fields is Blank Fill.

2.4.1.19. Zero Suppress

The Zero Suppress attribute is used to suppress leading zeros in right-justified or fixed-decimal fields.
Zero Suppress requires the Zero Fill attribute. The default is no Zero Suppress.

27

Chapter 2. Form Characteristics

2.4.2. Form Attributes

Form attributes are characteristics that apply to an entire form. The list of form attributes is:
* Form Name

* Help Form Name

* Screen Background

* Screen Width

* Screen Character Set

* Screen Area to Clear

* Field Highlighting

* Function Key User Action Routine

* Pre-help User Action Routine

e Post-help User Action Routine

2.4.2.1. Form Name

The form name is a unique name of up to 31 characters associated with each form and used for
identification. To display a form on the terminal, your program provides to the Form Driver the name
of the form to be displayed.

The rules for specifying form names are as follows:
* Must begin with a letter (A-Z)

* Must end with a letter (A-Z) or digit (0-9)

» Cannot exceed 31 characters in length

» Can contain only letters (A-Z), digits (0-9), dollar signs ($), or underscores ()

2.4.2.2. Help Form Name

The help form name is the name of a form that is to be displayed when the operator requests form
level help by pressing HELP (PF2 on a VT100 terminal) more than once. (See form naming rules in
Section 2.4.2.1.)

2.4.2.3. Screen Background

The Screen Background attribute specifies the screen background when the form is displayed. As

Is (for the Form Editor) or CURRENT (for the Form Language) means do not change the screen
background from its present setting. Black sets the terminal to display white characters on a black
background. White sets the terminal to display black characters on a white background (sometimes
known as reverse video). The default for Screen Background is As Is in the Form Editor and BLACK
in the Form Language.

28

Chapter 2. Form Characteristics

2.4.2.4. Screen Width

The Screen Width attribute specifies the width of the terminal screen in characters when the form is
displayed. As Is (for the Form Editor) or CURRENT (for the Form Language) means do not change
the screen width from its present setting. 80 sets the screen width to 80 characters per line and 132
sets the screen width to 132 characters per line. In 132- column mode, terminals without the advanced
video option (AVO) are restricted to a maximum form size of 13 lines. The default for screen width is
As Is for the Form Editor and CURRENT for the Form Language.

2.4.2.5. Screen Character Set

The Screen Character Set attribute specifies the default character set to be used when the form is
displayed. The default character set is used to display all text and fields that do not explicitly specify

a different character set. The choices for character set are As Is, US, UK, RULE, SET1, and SET2.
Specifying the character set As Is means do not change the character set from its present setting. US is
the standard United States character set supplied with every VT100. UK is the same as US except that
the British pound sign (TBS) replaces the US pound sign (#). RULE is the name used for the graphics
or line drawing character set. SET1 and SET2 specify optional character sets that may be added to

the standard VT100. For more information on character sets, refer to the V'T100 User Guide or your
VT200 Programmers Reference Guide if you wish to use the multinational character set on a V1200
series terminal. The FMS default for Character Set is As Is.

2.4.2.6. Screen Area to Clear

The Screen Area to Clear attribute specifies the area of the screen that is to be erased whenever the
form is displayed. By clearing only part of the screen when a form is displayed, more than one form
can be shown at a time. One form can be "overlaid" on another form. The area to clear is given by
specifying the first and last line numbers of the range of lines to be erased when the form is displayed.
The line numbers specified must be in the range of 0 to 23, and the first line specified must be less
than or equal to the last line. If both numbers are given as zero, no lines of the screen will be cleared.
If either number is given in correctly, the area to clear will be set from line 1 to line 23 by default.

2.4.2.7. Field Highlighting

Field Highlighting allows you to highlight the field that is being accessed at run time by altering

its video characteristics. Whenever the cursor enters a field, and if field highlighting is enabled, the
video attributes for that field change to the highlight attribute(s). When the cursor leaves the field,
the attributes are restored to their previous settings. The attributes for field highlighting include any
combination of Blink, Bold, Reverse, Underline, and Clear. The default for Field Highlighting is No
Highlighting.

2.4.2.8. Function Key User Action Routine

User action routines (UARS) are user-provided subroutines that the Form Driver calls at run time to
support extended forms processing. The conditions under which user action routines for a form are
invoked are described below.

When you create a form, you connect or associate with it any user action routines that the application
requires. You do this by naming UARs in the Form and Assign phases of the Form Editor or in the
FORM and FIELD statements in the Form Language.

To use user action routines, you need to create an object module of UAR vectors which you must link
with the Form Driver and your program. See Chapter 6 for a description of creating object modules of
UAR vectors.

29

Chapter 2. Form Characteristics

The rules for specifying UAR names are as follows:

e Must begin with a letter (A-Z)

* Must end with a letter (A-Z) or digit (0-9)

* Cannot exceed 31 characters in length

» Can contain only letters (A-Z), digits (0-9), dollar signs ($), or underscores ()

The function key user action routine is a subroutine that is called at run time whenever the operator
presses an undefined (to FMS) function key. A function key user action routine is used to provide
additional special key processing beyond that which is already supported by FMS.

2.4.2.9. Pre-help User Action Routine

A pre-help user action routine is a subroutine that is called at run time whenever the operator presses
HELP before any other FMS help is provided.

Refer to Section 2.4.2.8 for UAR naming rules.

2.4.2.10. Post-Help User Action Routine

A post-help user action routine is a subroutine that is called at run time when the operator presses
HELP and after all other FMS help has been displayed.

Refer to Section 2.4.2.8 for UAR naming rules.

2.4.3. Line Attributes

Line attributes are characteristics that apply to entire lines in a form. FMS line attributes are double
size, double wide, and scrolled.

Any number of lines in a form can be given line attributes. Although the lines in a single scrolled area
must be adjacent, you can define more than one scrolled area in a single form. By default, lines in a
form are defined to be normal size and nonscrolled.

2.4.3.1. Double Size

Characters on double-size lines are twice as large as normal. Each character occupies two columns on
two lines. Double-size and double-wide lines reduce the maximum number of characters that can fit
on a single line by half.

2.4.3.2. Double Wide

Characters on double-wide lines are twice as wide as normal. Each character occupies two columns.
Double-size and double-wide lines reduce the maximum number of characters that can fit on a single
line by half.

2.4.3.3. Scrolled

Scrolled lines are lines that become part of an FMS scrolled area at run time. An FMS scrolled
area is a part of the screen that can be scrolled forward and backward by the operator, allowing the
operator to enter or display more data than will fit on the screen at one time. A scrolled line must

30

Chapter 2. Form Characteristics

contain at least one field, and the fields and background text in each line of a scrolled area must be
identical. Refer to the VSI OpenVMS FMS Form Driver Reference Manual for more information about
scrolling.

2.4.4. Video Attributes

Video attributes are visual characteristics that can apply to any part of the form. FMS allows you
to specify the full range of video attributes supported by VT100/200 terminals. VT100/200 video
attributes include Blink, Bold, Reverse, Underline, and Character Set. Combinations of video
attributes can be assigned on a per character basis except for fields, which must be assigned video
attributes as a unit. On VT100 terminals without the advanced video option, only the Reverse

or Underline attribute is displayed, depending on whether the cursor is a block or underscore,
respectively. Figure 2.7 shows the Underline video attribute.

Figure 2.7. Underline Video Attribute

WRITE 4 CHECK

ZH-1807-84

31

Chapter 2. Form Characteristics

32

Chapter 3. Form Editor - FMS/EDIT

The form Editor is an interactive utility that lets you create and edit forms on a video (VT100- or
VT200-compatible) terminal. An alternative to the Form Editor is the Form Language, described in
Chapter 4.

Creating or editing a form may include many operations:
* Typing in background text

» Setting up fields

* Selecting form, field, video, and line attributes

» Establishing field access order

* Creating scrolled areas

* Associating user action routines with the form

* Associating Named Data with the form

When you are creating a new form, you type in the background text and set up the fields. The
background text is the constantly displayed part of a form, the part that cannot be modified by the
operator at run time. A field, on the other hand, is a variable part of the form; it is the part of the form
that the operator or program fills in when the FMS application program is running. Fields can also be
modified by the application program. To set up a field, you type in field-validation characters, which
indicate the type of input that will be allowed at run time. You can also use field-marker characters to
make the field more readable for the operator. You can give a field one or more field attributes, which
are described in Chapter 2 (examples are Autotab and No Echo).

You can give a form certain characteristics, such as color of background or the number of columns
in the screen width, that affect the whole form. These characteristics, called form attributes, are also
described in Chapter 2.

Although you write user action routines separately, you must associate their names with the
appropriate form when you create or edit that form. User action routines are subroutines, associated
with a particular form, that FMS invokes at run time when the operator completes a field or presses
HELP. A user action routine can also be used to process various keys, such as function keys, when
they are pressed by the operator at run time.

Another form creation or editing activity is associating Named Data with a form. Named Data is an
ordered collection of constant information that is useful to the application program and associated
with the form, but not displayed on the screen. Named Data for a form consists of constants, each of
which can be accessed by its name or by its index.

You can also establish field access order. Field access order is the order in which the operator accesses
fields in a form at run time. As the operator moves through the form, the cursor is positioned at fields
in the order specified.

The Form Editor allows you to perform these various operations in different phases, which you enter
through the Form Editor menu. Following are the seven Form Editor phases:

33

Chapter 3. Form Editor - FMS/EDIT

6.

7.

Form
Layout
Assign
Data
Order
Test

Exit

You will probably find it efficient to perform editing operations in the order of the preceding list of
phases, particularly when you are creating new forms. However, the Form Editor allows you to use
the phases in whatever order you prefer, and to go back and forth between phases. The recommended
steps, then, for creating a new form are:

L.

6.

7.

Assign form attributes, function key and help user action routine names and data, if needed, and
initial field attributes.

Lay out the form's background text and fields.
Assign field attributes.

Assign Named Data.

Assign field access order.

Test the form.

Save the form.

The Form Editor menu is the first image that appears on your screen when you invoke the Form
Editor. The menu shows you the list of Form Editor phases. You type in the name of the phase that
lets you do the work that you want to do. You return to the menu and choose other phases when you
are ready to perform other operations. Section 3.5 through Section 3.12 explain in detail how to use
the Form Editor phases.

1.

Form Phase

Assign form wide attributes, user action routine names and data, and initial field attributes using
the Form phase. The initial field attribute assignment capability in the Form phase lets you
preselect the field attributes that the Form Editor will assign to the fields you create in the current
editing session. In the Layout and Assign phases, you can assign field attributes to individual
fields.

Layout Phase

Use the Layout phase to type in the text that appears when the video form is displayed and to
set up the fields that the operator (or application program) fills in when the application program
is running. Layout is an interactive phase; that is, you see the form on the screen as you type

it, and you see changes as you edit a form. A status line at the bottom of the screen displays
information about your editing activities. The Layout phase offers you a number of capabilities

34

Chapter 3. Form Editor - FMS/EDIT

that are similar to a video text editor's capabilities. Using Form Editor keys, you can easily move
the cursor, delete characters and lines, and perform other editing operations.

3. Assign Phase
Assign field attributes to fields in a form using the Assign phase. You can also assign them in
other phases. The Form phase lets you preselect the field attribute assignments for any new
fields created during an editing session. The Layout phase lets you assign field attributes to
individual fields while you are laying out the text and fields of the form. The Assign phase is a
different way to assign attributes to fields. It allows you to assign attributes to fields that have
been changed since the last assignment, to assign attributes to one field, or to assign attributes to
all fields (but not all at once).

4. Data Phase
Use the Data phase to associate Named Data with the form.

5. Order Phase
Specify the order in which the Form Driver allows the operator to access fields at run time.

6. Test Phase

Display the current form as an application program would display it. The Test phase allows you
to type data into fields to test field validation.

7. Exit Phase

Use the Exit phase to leave the Form Editor and optionally save the form on which you were
working.

3.1. Terminal Characteristics

The Form Editor works properly on a VT100- or VT200-compatible terminal only If the following
terminal SET-UP features are in effect.

On VT100:

* ANSINTS52 bit is set to one (1) in SET-UP B

For more information on SET-UP B, see the V'T100 User Guide
On VT200:

* Select VT100 mode or VT200 mode or 8 bit controls

For more information on VT200 series terminals set up, see the V1200 User Guide.

3.1.1. Terminal Setup

FMS has alternate character sets, double size and double wide lines, ruling characters, and AST
reentrancy. In addition, FMS display several forms on the screen simultaneously. FMS requires more
complete control of the terminal to handle the additional screen characteristics than FMS V1 did.

35

Chapter 3. Form Editor - FMS/EDIT

FMS V1 queried the terminal directly for terminal type, options (such as Advanced Video Option),
and current screen characteristics. This operation did not allow type-ahead; you could not enter
commands or data while FMS was preparing for form display.

To allow type-ahead, FMS queries the operating system for terminal attributes and screen
characteristics. Type the following VMS command to make sure that VMS knows your terminal
attributes and screen characteristics before running your application:

$ SET TERM NAL/ | NQUI RE@

The operating system queries your terminal, and records its characteristics. Do not type ahead until
the operation is complete. You might consider putting the SET TERMINAL/INQUIRE command in
your login command file.

At any time you can type the following VMS command to display the characteristics of the current
terminal:

$ SHOW TERM NAL@
If your terminal characteristics differ from those the operating system has recorded, your FMS
application may not perform correctly. FMS also expects that the ANSLCRT and DEC_CRT attributes

are set appropriately. See the VSI OpenVMS Command Language User's Guide for details on terminal
characteristics.

3.2. FMS/EDIT Command

— To invoke the Form Editor, use the FMS/EDIT command.
Syntax

FMS [/EDIT] { form-file-spec | form-library-spec/FORM_NAME=form-name } [/[[NOJOUTPUT
[=filespec]]

form-library-spec represents a file specification for a form library

form-file-spec represents a file specification for a form file (A
form file is a file containing a single binary form.)

form-name represents a form name

file-spec represents a file specification

Description

In the command syntax illustration shown above, you can use either a form file-spec or a form-
library-spec as input. The parameter form-file-spec represents the file specifications for the form
file you wish to create or edit. If you do not supply a file type, FMS assumes .FRM by default. The
parameter form-library-spec represents the file specifications of the Form Library of the form you
wish to edit. FMS assumes a .FLB file type. The parameter form-name represents the name of the
form you wish to edit. The parameter file-spec represents the file specifications of the output file.

Note that /EDIT is the default FMS command. That is, if you do not specify a command with FMS,
FMS assumes /EDIT by default.

36

Chapter 3. Form Editor - FMS/EDIT

Qualifiers

/OUTPUT] =file-spec]
/NOOUTPUT

The /OUTPUT qualifier specifies that you want an output file created.

If you do not explicitly specify the directory in which the output file should be placed, the
default directory is one of two possibilities. (1) if you specify the /OUTPUT qualifier, the default
directory is your current directory. (2) If you do not specify the /OUTPUT qualifier, the default
directory is the same as the input directory.

If you do not include the file specification of the output file, the default file specification of the
output file is one of three possibilities. (1) if you are creating a new form, the default output file
specification is the file specification given plus the default type .FRM. (2) if you are editing an
existing form from a form file, the default output file specification is the input file specification
with an incremented version number. (3) If you are editing an existing form from a form library,
the default output file specification is the form name (truncated) plus the file type .FRM. (If a
form name contains a dollar sign or underscore, FMS removes the dollar sign and underscore and
truncates the name to the first 9 characters.) Use the /NOOUTPUT qualifier if you do not want an
output file created.

This qualifier is useful for viewing forms in directories to which you do not have write access.

Examples
1. $ FM5 MENU

This example creates or edits the form in the form file MENU.FRM.
2. $ FMS/ EDI T SAVP/ FORM _NAVE=DEPCSI T / DUTPUT=DEPCS! TI

This example edits the form DEPOSIT from form library SAMP.FLB. The output file is assigned
the name DEPOSIT1.FRM.

3.3. Form Editor Keys

The Form Editor uses the VT100/200 keyboard and alternate keypad to perform editing functions and
to move the cursor on the terminal screen. Figure 3.1 shows the keypad keys.

Pressing GOLD MENU always returns you to the Form Editor menu. Pressing HELP always displays
any available Form Editor help.

37

Chapter 3. Form Editor - FMS/EDIT

Figure 3.1. Form Editor Keys

CHARBCK CHARFWD
N LG s
WPLINE DOWNLINE

ALL PHASES
RETURN Terminates display of current form
{in Layout, moves cursor to next line)
DELETE Deletes previous character
LINEFEED Deletes field contents {in Layout, moves

surser down one ling in same ¢olumn}

TAB Moves curser to next field (in Layout,
moves cursor to next fixed tab stop)

BACKSPACE Moves curser to previous field (in Layout,
moves cursor 1o previous character

position)
GOLD Q Reverses current error signaling move
GOLD R Restores original field values (except
in Layout)
CTRL/R Refreshes the screen

GQOLD/DELETE Terminates a Gold Sequence

LAYQUT PHASE ONLY ORDER PHASE ONLY

GOLD m Repeats a key or operation n times GOLD C Restores conventional field
access order
GOLD D Creates a cdate field
GOLD T Creates a time fietd TEST PHASE ONLY
) . GOLD ¢ Exits t& previous fieid from scrolled
GOLD 8 Makes current line double size area
GoLD w Makes current line double wide GOLD | Exits to next field from scrolied area
CTRL/U Deletes to beginning of line
2K-1630-84

The VT200 series of terminals have six additional function key definitions for the Form Editor. These
functions, their associated keys and the phases in which these functions are active are listed below.

VT200

Function (LK201 Keyboard) Phase
BACKSPACE F12 Layout
DOWNLINE F13 Layout
HELP HELP(F15) All phases
PASTE E2 Layout
CUT E3 Layout
SELECT E4 Layout

3.4. Error Signaling in the Form Editor

When an illegal function is attempted or when screen boundaries are reached, the Form Editor signals
an error based on the current signal mode. An error message is also displayed on the bottom line of
the screen. The error message is erased after another key is pressed.

Pressing GOLD Q changes the current signaling mode from Terminal Bell to Quiet and vice versa. If
the screen background is specified "As Is", it is changed to "Black" for Quiet signaling.

38

Chapter 3. Form Editor - FMS/EDIT

Terminal Bell signal mode is a 'beep." Quiet signal mode reverses the current screen background
instead of beeping. The signal mode is visual rather than audio. The default signal mode is Terminal
Bell.

Four functions display error messages on the bottom line of the screen only if you press HELP. The
error is signaled, however, based on the current signal mode. The four functions are:

* Creating Date Fields - GOLD D
* Creating Time Fields - GOLD T
* Assigning Video Attributes - VIDEO

* Assigning character sets - CHARSET

3.5. Choosing a Phase

To choose a phase from the Form Editor menu (see Figure 3.2), type in the whole phase name or just
the first letter. Each phase is described in the following sections.

Figure 3.2. Form Editor Menu

Form Editor Hemu

Phase Choice! !

Assign form attributes

Create or modify a form

hssign field attributes

Enter Named Data itens

Modify field access order

Test the form with the Form Driver
Erd this editor session

Forn Name: [
TN fore belng created

3.6. Form Phase

The Form phase lets you assign form attributes, identify user action routines for the form, and assign
initial field attributes. Form attributes are the characteristics, such as color of background and number

39

Chapter 3. Form Editor - FMS/EDIT

of columns in the screen width, that affect the whole form. User action routines are routines that
you associate with a particular form and that FMS invokes at run time when the operator presses a
function key or HELP. The initial field attribute assignment capability in the Form phase lets you
preselect the field attributes that the Form Editor will assign to the fields you create in the current
editing session. Refer to Chapter 2 for more detail on form characteristics, such as user action
routines.

You use Form phase by filling in a series of three questionnaires that appear on the screen:

1. Assign Form Attributes

2. Assign Initial Field Attributes

3. Form User Action Routines

The second and third questionnaires appear on the screen only if you answer yes to the last two
questions on the Assign Form Attributes Questionnaire. Figure 3.3 through Figure 3.5 show the three

questionnaires.

The following is a complete list of the assignments you can make in the Form phase. Section 3.6.1
through Section 3.6.9 describe how to make those assignments.

* Form Name

* Help Form Name

* Screen Background

* Screen Width

* Screen Character Set

* Screen Area to Clear

* Field Highlighting

» User action routine Names and data

e Initial Field Attributes

Entering the Form Phase

Type FORM to enter the Form phase at any time from the Form Editor menu. When you enter the
Form phase, the Assign Form Attributes questionnaire is displayed (see Figure 3.3).

Use the following keys to control processing in the Form phase:
» TAB to move the cursor to the next field

* BACKSPACE to move the cursor to the previous field

* GOLD MENU to return to the Form Editor menu

* HELP to get help in any field or for the Form phase

40

Chapter 3. Form Editor - FMS/EDIT

* RETURN or ENTER to move to the next form

* DELETE to delete the character to the left of the cursor
» LINEFEED to delete the contents of a field

* QUIET to change the signal mode to reverse screen

Pressing HELP displays a single line of help text on the bottom line of the screen. Pressing HELP a
second time displays an entire screen of help information about the Form phase.

Leaving the Form Phase

Press RETURN, ENTER or GOLD MENU to return to the Form Editor menu once you have finished
assigning form wide attributes.

Figure 3.3. Assign Form Attributes Questionnaire

fissidn Form Attributes

Form Name: EXPLOYEE
Help Form Mame: HELPFORN

Eereen Widih)

L. 4 Is

2. B0 Columns
3. 132 Columns

First Line & £ HIIWI AT

Last Line 21 _ Blink -
_ Bold — Underline

Do you want to specify user action routines for this form? (Y/N) N
Do you want to assign initial field attributes? (Y/N) YR

ZK-1810-8¢

41

Chapter 3. Form Editor - FMS/EDIT

Figure 3.4. Assign Initial Field Attributes Questionnaire

- Right Justify _ Uppercase

_ Fixed Decimal _ Must Fill

_ Zera Fill _ Response Required Clear Character _
_ Supervisor Only

Default Yalue:

Field Character Setl

ZK-1811-84

Figure 3.5. Form User Action Routines Questionnaire

Form Name: X

Pre-Help LAR Name:
Associated Data:

Post-Help UAR Name:
#ssociated Data:

Function Key UAR Name:
Associated Data:

IK=-1812-84

3.6.1. Form Name

You can select a name for the form on which you are working. If you do not give a name to the form
in the Form phase, FMS uses the name of the input file as the form name. If the file name begins

42

Chapter 3. Form Editor - FMS/EDIT

with a numeric digit, FMS appends the letter F to the beginning of the name to make it suitable as a
form name. See Section 2.4.2.1 for naming rules. When the Assign Form Attributes questionnaire is
displayed, the cursor is positioned next to Form Name. You type in the name that you want for the
form and then press TAB to move the cursor to Help Form Name.

3.6.2. Help Form Name

You can specify the name of a help form that you want to associate with the form on which you are
working. A help form is not required. See Section 2.4.2.1 for naming rules.

To give the name that you want to the help form, move to the appropriate field (using TAB) in the
Assign Form Attributes questionnaire and type in the name of the help form.

3.6.3. Screen Background

You can specify the background (black or white) that the form will have when the application program
is running.

To select screen background, move to the appropriate field (using TAB) in the Assign Form Attributes
questionnaire and type the number of your choice.

3.6.4. Screen Width

You can specify how wide the form will be in the running application. The form can be either 80
columns or 132 columns wide.

To select the screen width you want, move to the appropriate field (using TAB) in the Assign Form
Attributes questionnaire and type the number of your choice.

3.6.5. Screen Character Set

You can choose one of five character sets to appear in the form at run time. The US, UK, and RULE
character sets are standard on every VT100-family terminal. SET1 and SET2 character sets on the
VT100 require optional hardware. Refer to your V7200 User Guide for information about the use
of the multinational character set and the compose character function. See Chapter 2 for more detail
about character sets.

To select the character set you want, move to the appropriate field (using TAB) in the Assign Form
Attributes questionnaire and type the number of your choice.

3.6.6. Screen Area to Clear

You can specify the area to be cleared at run time when the form is displayed. You indicate the area by
specifying the first and last lines. Initial default values are 1 through 23. These fields are right justified
with the zero fill attribute. If either initial value is deleted, the Form Driver supplies a value of zero.
An error message will be displayed if only one value is left at zero.

Refer to Chapter 2 for more detail.

To specify the screen area to clear, move to the First Line field (using TAB) under Screen Area to
Clear in the Assign Form Attributes questionnaire and type the number of the first line. Then move to
the Last Line field and type the number of the last line.

43

Chapter 3. Form Editor - FMS/EDIT

3.6.7. Field Highlighting

If you choose field highlighting, the field on which the cursor is positioned at run time blinks, appears
in bold type, appears in reverse video, is underlined, or has any combination of these attributes. See
Section 2.4.4 for more details.

To select the type of highlighting that you want (or No Highlighting), move to the appropriate field
(using TAB) in the Assign Form Attributes questionnaire, and type X. You must erase the X in the
No Highlighting field before selecting any specific highlight attributes. To use Clear as the highlight,
erase the No Highlight and all other highlight attributes.

The highlight option fields are supervisor only fields. If the NO HIGHLIGHTING field is X, then
the highlight option fields cannot be accessed. If the NO HIGHLIGHTING field is BLANK, then the
highlight option fields are accessible. The default is NO HIGHLIGHTING.

3.6.8. User Action Routine Names and Data

If a form will have user action routines associated with it, you must provide the names to those user
action routines. Remember that user action routines are routines that you associate with a particular
form and FMS invokes at run time when the operator presses a function key or HELP. Refer to
Chapter 2 for more information on user action routines.

To name user action routines for a form, move to the appropriate field (using TAB) in the Assign
Form Attributes questionnaire, type Y, and press RETURN. The Form UAR questionnaire appears on
the screen. Move to the appropriate fields in the questionnaire and type in the names of the user action
routines. Move to the appropriate fields to type in associated data that is made available to the user
action routines at run time.

3.6.9. Initial Field Attributes

If you choose to assign initial field attributes, any new fields you create during the current editing
session will have those attributes. In other words, you can preselect characteristics for the Form Editor
to assign to fields. Those characteristics become active at run time and in the Test phase.

To assign initial field attributes, move to the appropriate field (using TAB) in the Assign Form
Attributes questionnaire, type Y, and press RETURN. The Assign Initial Field Attributes
questionnaire appears on the screen. Again move to the appropriate field and type X for each initial
field attribute that you want to assign. For Clear Character, type in the character that you want to
be displayed in fields at run time. For Default Value, type in a data or numeric string that you want
to appear in the fields when the form is displayed. For Help Text, type in a help string up to 80
characters long. For Field Character Set, choose one of the character sets offered.

3.7. Layout Phase

Layout is the phase that lets you (1) type in the background text that appears when the video form

is displayed and (2) set up the fields that the operator (or application program) will fill in when

the application program is running. Layout is an interactive phase; that is, you see the form on the
screen as you type it and you see changes as you edit a form. A status line at the bottom of the screen
displays information about your editing activities. Figure 3.6 shows a status line, and Table 3.1
summarizes the information supplied in it.

The Layout phase offers you a number of capabilities that are similar to a video text editor's
capabilities. The Form Editor displays a cursor, the small, rectangular, blinking symbol or underscore

44

Chapter 3. Form Editor - FMS/EDIT

that marks the place of the current operation. Using the Form Editor Keys shown in Figure 3.1, you
can easily move the cursor, delete characters and lines, and perform other Layout operations. In
addition, you can choose the editing mode that you want: (1) a mode that replaces the character at the
cursor position with the character that you type (Overstrike) or (2) a mode that inserts a character you
type and moves any other characters to the right to make room (Insert). You can also choose Text and
Field modes to let you create or edit background text or fields, respectively.

Many form editing operations are possible in Layout phase. For example, you can insert or delete
characters or spaces. Cut and paste operations let you take out a part of a form and put that part in a
different place in the form. You can set up an area of a form (called a scrolled area) that allows your
program to gather or display more information than could otherwise be done with one form on a
terminal screen. A scrolled area consists of identically formatted lines that create a window where the
terminal operator can move up or down without affecting the rest of the form. See Section 2.4.3.3 for
more information on scrolled areas.

Layout phase provides the capability to select a part of a form and perform certain operations on it.
You can remove the area, copy the area to another location in the form, center the area, draw a line
around the area, change the character set in the area, or give video attributes to the area. The first step
in holding an area and performing an operation on it is to define the select area. Pressing SELECT
marks the current cursor position as a starting point for a select area. The end of the select area is

the final position to which you move the cursor. The Form Editor indicates the select area in reverse
video. The Center, Character Set, Cut, Draw, Paste, and Video attributes operations use select areas
and are described in the following sections. The select operation is described in Section 3.7.19.

The following is a complete list of the operations that you can perform in Layout phase. To perform
them, use the Form Editor keys as described in Section 3.7.1 through Section 3.7.22.

* Adjacent: Break a Field into Two Adjacent Fields
* Cancel: Cancel a Select, Gold, or Scroll Operation
* Center: Center the Select Area

* Characters: Change Character Sets

* Cursor: Move the Cursor

* Cut: Cut the Characters in a Select Area

* Date: Define a Date Field

* Delete: Delete Characters and Lines

* Double Size: Make Lines Double Size

* Double Wide: Make Lines Double Wide

e Draw: Draw Lines and Boxes

» Field Attributes: Assign Field Attributes

* Insert: Insert Blank Lines

* Modes: Overstrike/Insert, Text/Field, and Terminal Bell/Quiet and vice versa

45

Chapter 3. Form Editor - FMS/EDIT

» Paste: Paste Previously Cut Characters

» Refresh: Redisplay the Current Form

» Repeat: Repeat Characters or Operations
» Scroll: Make a Scrolled Area

» Select: Define a Select Area

» Test Paste: Test a Paste Operation

* Time: Define a Time Field

* Video Attributes: Assign Video Attributes

Entering the Layout Phase

Type LAYOUT to enter the Layout phase from the Form Editor menu. A screen filled with spaces is
displayed along with a status line at the bottom of the screen.

The status line (see Figure 3.6) gives information about the current cursor location (whether it is
in background text or in a field, whether it is on a scrolled line or on a normal line, and its line and
column numbers), the modes that are in effect (Text or Field, Overstrike or Insert), and the current
field name, if the cursor is positioned in a field.

Figure 3.6. Layout Phase Status Line

ZK-1813-84

46

Chapter 3. Form Editor - FMS/EDIT

Table 3.1. Layout Phase Status Line Information

Item

Meaning

Cursor

TXT or FLD

Indicates that the character at
the cursor position is either text
(TXT) or field (FLD).

NOR or SCR

Indicates whether the line on
which the cursor is positioned
is normal (NOR) or scrolled
(SCR).

LINE (1-23)

Indicates the line number.

COLUMN (1-132)

Indicates the column.

Modes

TXT or FLD

Indicates the mode that controls
whether background text (TXT)
or fields (FLD) are entered.

OVS or INS

Indicates how characters are
entered on the screen. Character
entry mode can be either
Overstrike (OVS) or Insert
(INS).

Field Name

Displays the name of the current
field, if the cursor is positioned
in a field.

Help in the Layout Phase

Help is available at all times when you are in the Layout phase. Pressing HELP displays multiple help
frames that describe Layout functions.

Form Display in the Layout Phase

Figure 3.7 shows a form as it appears in the Layout phase. The status line and field pictures do not

appear in a displayed form in the Test phase or at run time.

47

Chapter 3. Form Editor - FMS/EDIT

Figure 3.7. Form in the Layout Phase

EMPLOYEE RECORD FILE

ZK-1814-84

In the Layout phase, a form is a rectangular area of the screen filled with characters (spaces are the
default). Line terminator characters, like carriage return (CR) and linefeed (LF), do not apply to the
Layout phase as they do in other text editors, but they are available as cursor positioning keys.

Leaving the Layout Phase

You can leave the Layout phase at any time by pressing GOLD MENU to return to the Form Editor
menu.

3.7.1. Adjacent: Breaking a Field into Two Adjacent
Fields

Pressing GOLD ADJFLD breaks the current field into two adjacent fields. The cursor is positioned in
the newly created, second field.

An error is signaled and the adjacent field operation fails If the cursor is not in a field or If the field is
not at least two characters long.

You can use ADJFLD (adjacent field) in the Layout phase to create fields next to one another. The
field to the left of the cursor is marked modified by the Form Editor and retains the original attributes
assigned to it. The field to the right of the cursor is marked as a new field, and default attributes are
assigned to it. You can then edit the attributes of the new field using the Assign phase.

48

Chapter 3. Form Editor - FMS/EDIT

3.7.2. Cancel: Canceling a Select, Gold, or Scroll
Operation

Pressing GOLD RESET cancels an active select, gold, or scroll function. The cursor does not move.

3.7.3. Center: Centering Characters on a Line

Pressing CENTER centers the contents of a line or the contents of a select area. Leading and trailing
spaces surrounding text on a line are not counted as characters. An error is signaled and centering fails
if the action would write over existing characters that are not spaces. To center one or more lines, use
the select operation. If select is not active, the entire current line is centered.

3.7.4. Characters: Changing Character Sets

You can assign different character sets to parts of a form. All VT100s come with character sets that
FMS calls US, UK, and RULE.

To define an area of the screen to have a specified character set, press GOLD CHARSET after
defining a select area. You receive a prompt, which you can reply to with US, UK, RULE, SETI, or
SET2. Typing SAVE saves the last character set that you choose. If select is not active and the cursor
1s in a field, the entire field is used as the select area. If select is not active and the cursor is not in a
field, the current character is used as the select area.

If an error occurs during processing, the error is signaled using the current signal mode (Terminal Bell
or Quiet). The error message is not displayed unless you press HELP. Pressing any other key restores
the character set prompt.

3.7.5. Cursor: Moving the Cursor

You use keypad keys as well as keyboard keys to position the cursor in the Layout phase.

The cursor symbol, a rectangle or an underscore, blinks at the current screen position.
Up a Line

Pressing UPLINE moves the cursor up one line. The cursor remains in the same column on the new
line. If you try to move the cursor above the top line of the screen, an error is signaled.

When you move from a normal line to a double-size or double-wide line, or vice versa, the screen
column position does not change, but the column number does.

Down a Line

Pressing DOWNLINE moves the cursor down one line on the screen. The cursor remains in the same
column on the new line.

When you move from a normal line to a double-size or double-wide line, or vice versa, the screen
column position does not change, but the column number does.

If you try to move the cursor below the bottom line of the screen, an error is signaled. Pressing
LINEFEED performs the same action as DOWNLINE. The cursor moves down one line on the screen
in the same column.

49

Chapter 3. Form Editor - FMS/EDIT

Forward a Character

Pressing CHARFWD moves the cursor one character position to the right on a line or to the beginning
of the next line if moving right would go over the last column.

Back a Character

Pressing CHARBCK moves the cursor one character position to the left on a line or to the end of the
previous line if moving left would go beyond the first column.

Pressing BACKSPACE moves the cursor one character position to the left on a line. An error is
signaled if the cursor is at the left margin.

Next Tab Stop on a Line

Pressing TAB moves the cursor to the next fixed tab stop. The tab stops are 1, 9, 17, 25, 33, 41, 49,
57, 65, and 73. For 132-column forms, the additional tab stops are 81, 89, 97, 105, 113, 121, and 129.
Tab stops that you set on your VT100 in SET-UP A are ignored.

From the last tab stop on a line, the cursor moves to the first tab stop on the next line. If the cursor is
on the last line of the screen, an error is signaled and the cursor does not move. Tabbing moves the
cursor only; the content of your form is unaffected.

Beginning of the Current Line

Pressing BLINE moves the cursor to the beginning of the current line. If the cursor is already at the
beginning of a line, the cursor moves to the beginning of the preceding line, and so on. The action is
rejected and an error is signaled if BLINE is pressed at the beginning of the first line of the screen.

Beginning of the Next Line

Pressing RETURN (or ENTER) moves the cursor to the beginning of the next line on the screen.
If the cursor is on the last line of the screen when you press RETURN, an error is signaled and the
cursor does not move.

End of a Line

Pressing ELINE moves the cursor to the end of the current line. If ELINE is pressed at the end of a
line, the cursor moves to the end of the subsequent line, and so on. If the cursor is on the last line of
the screen when you press ELINE, an error is signaled and the action is rejected.

End of Text

Pressing EOT moves the cursor to the end of text on the current line. The cursor moves to the right
of the last non-blank character on that line. If the cursor is in the last character position of the line,
and that character position is occupied, the character position is actually one character position to the
right. If you press EOT when the cursor is at the end of a text line, the cursor moves to the end of text
on the next line.

Bottom of the Screen

Pressing GOLD BOTTOM moves the cursor to the left bottom corner of the screen. If the cursor is
already at the lower left, an error is signaled and the cursor does not move.

50

Chapter 3. Form Editor - FMS/EDIT

Top of the Screen

Pressing GOLD TOP moves the cursor to the upper left corner of the screen. If the cursor is already at
the upper left, an error is signaled and the cursor does not move.

3.7.6. Cut: Cutting Characters in a Select Area

Pressing CUT saves all the characters in the select area in the paste buffer. The select area on the
screen is replaced with spaces. The characters in the paste buffer retain their video characteristics.

If no select area is currently active and the cursor is positioned in a field and CUT is pressed, the field
becomes the select area; otherwise, the current character becomes the select area.

A select area can be defined for a scrolled area, but the entire scrolled area must be included.

An error is signaled and CUT fails if only part of a scrolled area is selected. After a cut the cursor is
positioned at the top left corner of the previous select area.

3.7.7. Date: Defining a Date Field

Pressing GOLD D displays the date menu from which you choose a date field picture. Enter the
number of the type of date field that you want. Press RETURN to insert the field picture of your
choice.

The field picture that you choose is inserted to the right of the current cursor position on the screen.
The cursor is positioned to the right of the newly inserted field.

You cannot edit the field picture after it has been entered. You must first delete the entire field, using
CUT or DELLINE.

If an error occurs during processing, the error is signaled using the current signal mode (Terminal Bell
or Quiet). The error message is not displayed unless you press HELP. Pressing any other key restores

the Date menu.

Figure 3.8 shows the date format menu that Layout displays on the last line of the screen.

51

Chapter 3. Form Editor - FMS/EDIT

Figure 3.8. Date Field Menu

TH-1815-84

3.7.8. Delete: Deleting Characters and Lines

AH characters and lines that you delete are retrievable from character and line buffers in the Form
Editor. In other words, for every delete function, there is an undelete function. Undeleting what you
deleted always restores whatever was most recently deleted.

Character to the Left of the Cursor

Pressing DELETE deletes the character to the left of the cursor. The character is stored in the
character buffer and can be replaced by pressing GOLD UNDELCHR.

An error is signaled if DELETE is pressed when the cursor is at the leftmost character position on a
line.

If you are in Overstrike mode, pressing DELETE replaces the character to the left of the cursor with a
blank and moves the cursor one position to the left.

In Insert mode, the cursor and the characters to the right of the cursor are shifted left one position.

Pressing GOLD UNDELCHR places the deleted character at the current cursor position. The
character remains in the buffer as well. If the buffer is empty, then an error is signaled, and the cursor
does not move. The action of the cursor and other characters on the line is the same as If the character
had been typed.

Character that the Cursor Is On

Pressing DELCHR deletes the character the cursor is on. The deleted character is stored in the
character buffer and can be recovered by pressing GOLD UNDELCHR.

52

Chapter 3. Form Editor - FMS/EDIT

When you press DELCHR again, the character in the buffer is replaced with the most recently deleted
character.

In Overstrike mode, the character position is replaced with a space, and the cursor moves one
character position to the right on the line.

If you are in Insert mode, the characters to the right of the cursor are moved one character position to
the left. The cursor remains at its current position, and a space is added to the end of the line.

Pressing GOLD UNDELCHR places the deleted character at the current cursor position. The
character remains in the buffer as well. If the buffer is empty, then an error is signaled, and the cursor
does not move. The action of the cursor and other characters on the line is the same as If the character
had been typed.

Beginning of a line

Pressing CTRL/U deletes all characters from the current cursor position to the beginning of the same
line and replaces them with spaces. The cursor does not move. If the cursor is already at the beginning
of the current line, the previous line is deleted. The operation fails if the cursor is in the middle of a
field. Only entire fields can be deleted. The characters are stored in the line buffer, so you can do a
GOLD UNDELLINE to get them back. UNDELLINE places characters to the left of the cursor if you
deleted to the beginning of a line.

End of a Line

Pressing GOLD DELEOL deletes all characters from the current cursor position to the end of the
same line and replaces them with spaces. The cursor does not move. If the cursor is already at the end
of the current line, the next line is deleted. The operation fails If the cursor is in the middle of a field.
Only entire fields can be deleted.

The characters are stored in the line buffer so you can do a GOLD UNDELLINE to restore them.
UNDELLINE places characters to the right of the cursor if you deleted to the end of a line.

Line
Pressing DELLINE deletes the entire current line.

Pressing DELLINE in Insert mode causes all the lines below the deleted line to move up one line.
The cursor can be located anywhere on the line being deleted. The deleted line is stored in the line
buffer. A blank line is inserted on the bottom line of the screen. Pressing DELLINE in Overstrike

mode deletes the entire line and replaces it with a line filled with spaces.

To retrieve a line deleted by a previous DELLINE, press GOLD UNDELLIN. In Overstrike mode, the
characters are placed in the current line. GOLD UNDELLIN fails if you attempt to either cross a line
boundary, write over characters that are not spaces, or press GOLD UNDELLIN when the character
buffer is empty. In Insert mode, the screen is scrolled down a line and the retrieved line is placed on
the screen. If the bottom line is not blank, an error is signaled.

3.7.9. Double Size: Making Lines Double Size

Pressing GOLD S when the cursor is on a normal line, makes the line, and all characters on the line,
double size. If the line is already double size, then the line becomes normal size.

A double-size character takes up four character positions. Two character positions are on one line and
two character positions are on the line directly below that. The remainder of the lines on the screen are

53

Chapter 3. Form Editor - FMS/EDIT

moved down one line and the bottom line is removed. The entire line is, in other words, made double
wide and double high.

Since an 80-column form has a maximum of 23 lines, you can have only 11 double-size lines with a
maximum of 40 (66 in 132-column mode) characters per line with the advanced video option. A 132-
column form without AVO can have only 6 double-size lines with a maximum of 66 characters per
line.

An error is signaled If the double-size line is too long (more than 40 or 66 characters for an 80- or
132-column form, respectively). An error is also signaled if the bottom line is not blank, because it
cannot be deleted.

3.7.10. Double Wide: Making Lines Double Wide

Pressing GOLD W when the cursor is on a normal line, makes the line, and all characters on the line,
double wide. If the line is already double wide, then the line becomes normal width.

A double-wide character takes two screen positions. Characters and spaces are enlarged horizontally
from one character position to two.

Up to 40 characters are allowed on a double-wide line in an 80-column form. For a 132-column form,
you can have up to 66 characters on a double-wide line.

3.7.11. Draw: Drawing Lines and Boxes

Press SELECT to define a select area for a line or box. A screen line, part of a screen line, or a
rectangular area of the screen are all valid select areas for DRAW.

Press DRAW after you have pressed SELECT. A line is drawn around the perimeter of the select area.
Corners and other intersecting characters are inserted automatically.

If the perimeter of the select area contains any characters other than spaces or other line-drawing
characters, an error is signaled and DRAW fails.

Press SELECT, select the line or box, and then GOLD UNDRAW to delete lines or boxes. An error is
signaled and UNDRAW fails If the select area has nongraphic characters.

3.7.12. Field Attributes: Assigning Them in Layout

You can enter the Assign phase directly from the Layout phase by pressing GOLD FLDATR while the
cursor is in a field picture.

GOLD FLDATR allows you to assign attributes to the current field picture only.

When you complete attribute assignment for a field, return to the Layout phase by pressing RETURN.
Press GOLD MENU to return directly to the Form Editor menu.

An error is signaled and GOLD FLDATR is rejected If the cursor is not in a field.

3.7.13. Insert: Inserting Blank lines

Pressing GOLD OPENLINE inserts a line of spaces at the current cursor position by shifting the

remaining lines on the screen down. You can be in either Overstrike or Insert mode and the cursor can
be anywhere on a line.

54

Chapter 3. Form Editor - FMS/EDIT

If the last line of the screen is not blank, the Form Editor rejects the action, an error is signaled, and
the cursor does not move.

3.7.14. Modes: Overstrike/lnsert, Text/Field, and
Terminal Bell/ Quiet

The following modes are available in the Layout phase and indicate the following:
» Overstrike/Insert - the way characters are placed on the screen

» Text/Field - the legal characters that can be entered

* Terminal bell/Quiet-the way errors are signaled

Only one mode of each pair can be active at a time.

You can choose modes through keys on your terminal's keyboard. Overstrike, Text, and Terminal bell
are the default modes. Pressing GOLD INSERT, GOLD FIELD, or GOLD Q activates the alternate
mode.

Pressing OVRSTRIK puts you in Overstrike mode, which replaces the character at the current cursor
position with the new character that you enter, and moves the cursor one position to the right. If you
delete a character in this mode, that character position is replaced with a space. Pressing DELETE in
Overstrike mode moves the cursor left, but the remaining characters on the line do not move. This is
the default input mode for Layout.

Pressing GOLD INSERT puts you in Insert mode, which places every character that you type at the
current cursor position and moves the cursor one position to the right. Any characters to the right
of the cursor are shifted right to make room for the inserted character. The character at the cursor
position is also moved to the right. The last character at the end of the line is removed. An error is
signaled If the last character on the line is not a space. Pressing DELETE in Insert mode causes the
space to be closed up, and the characters to the right of the cursor shift left.

When a character is typed in any mode of Layout, the cursor is one character position to the right

of the character just entered. If the cursor is in the last column of a line and a character is typed, the
cursor cannot move to the right after inserting the character. However, the Form Editor behaves as
though the cursor did move to the right. The column indicator in the status line shows the column one
position greater than the line length. This condition is called the hanging cursor position. Characters
cannot be entered but DELETE and the cursor movement functions are all valid.

Pressing TEXT puts you in Text mode, which lets you input background text on the screen. This is the
default input mode for Layout.

Pressing GOLD FIELD puts you in Field mode, which lets you create field pictures on the screen.
You can type in only valid field picture characters, which are either field-validation characters (A, C,
N, X, 9), or field-marker characters (B, $, -, %, #, etc.). See Chapter 2 for tables of these characters.

Pressing GOLD Q changes the current signaling mode from Terminal Bell to Quiet and vice versa. If
the screen background is specified "As Is," the screen is forced to black for Quiet signaling mode.

Terminal Bell signal mode is a 'beep." Quiet signal mode reverses the current screen background
instead of beeping. The signal mode is visual rather than audio. The default signal mode is Terminal
Bell.

55

Chapter 3. Form Editor - FMS/EDIT

3.7.15. Paste: Pasting Previously Cut Characters

Pressing GOLD PASTE inserts characters and spaces saved in the paste buffer into an area the same
size as the cut. The characters are inserted left to right down the screen, and the cursor ends up at the
lower right comer of the pasted area. The inserted characters cannot cross line boundaries or other
nonblank characters. If characters would be overwritten, an error is signaled and the GOLD PASTE
function fails.

You can paste scrolled areas adjacent to one another, but the scrolled areas remain separate.
You can paste lines that are double size or double wide. An error is signaled if those lines are too
long for the current line(s). Only entire lines maintain their line attributes when cut or pasted. If your

screen width is 80 columns, your double-size or double-wide line can only be 40 characters long. A
132- column screen can have 66 characters in double-size or double-wide lines.

3.7.16. Refresh: Redisplaying the Current Form

Pressing CTRLIR redisplays the current form. Refresh is useful after a system broadcast, static
problems, or terminal line distortions. The cursor does not move.

3.7.17. Repeat: Repeating Characters or Operations

Pressing GOLD # repeats a non-numeric character or an action a specified number of times. For
example, if you wanted to repeat the letter 'A:35 times, press GOLD, then type the number '35'. The
REPEAT prompt appears. Type the letter 'A.' You see the letter 'A: repeated 35 times.

The character and line DELETE functions and UNDELETE functions can not be used with a repeat
count. This feature provides a safeguard against deleting the contents of character and line storage

buffers and making unwanted changes to the screen display. You cannot repeat numeric characters
with a repeat function because numeric keys are used in the definition of a repeat sequence.

3.7.18. Scroll: Making a Scrolled Area

Pressing SCROLL begins the definition of a scrolled area. The normal, cur rent line becomes a
scrolled line. The scrolled area is displayed in reverse video.

Use one of the following keys, that move the cursor up the screen, to expand a scrolled area up:
+ BLINE
+ UPLINE

Use one of the following keys, that move the cursor down the screen, to expand a scrolled area down:

 LINEFEED

» DOWNLINE
* ENTER

« RETURN

56

Chapter 3. Form Editor - FMS/EDIT

You can make a line scrolled either before or after fields and background text are on it. You must
assign the double-size or double-wide attributes to lines before they can be made scrolled or included
in a scrolled area.

The contents on any scrolled line in a scrolled area (fields and background text) are replicated
automatically throughout the other lines of the area as you type.

An error is signaled and Scroll fails if any lines, other than the first line, in a scrolled area are not
blank.

To expand an existing scrolled area, move to the first or last line of the scrolled area and press
SCROLL and the valid keys mentioned above to expand it.

Pressing ENDSCROL terminates the definition of a scrolled area. The reverse video of the scrolled
area during SCROLL is returned to the previous video characteristic.

GOLD RESET cancels scroll definition and restores the screen.

Pressing GOLD UNSCROL removes the scroll attribute from the current line and then deletes any
characters on that line. The unscrolled lines are replaced with blank lines.

You can unscroll lines only at the top or bottom of a scrolled area. On the last remaining line of a
scrolled area, GOLD UNSCROL removes the scroll attribute only. Any fields and background text
remain on the line. You must use DELETE if you want to delete the character on the line. An error is
signaled if you try to unscroll a line that is not scrolled.

When you change the contents or attributes on any line of a scrolled area, all edits or assignment
within that scrolled line are repeated automatically throughout the scrolled area.

Help is available during scroll definition to describe the active functions.

3.7.19. Select: Defining a Select Area

Pressing SELECT marks the current cursor position as a starting point for a select area. The end of the
select area is the final position to which you move the cursor. A select area is marked in reverse video.

A select area is defined as a rectangular area of your screen that is acted upon by several of the
following functions:

« CUT

* GOLD CHARSET
* CENTER

« DRAW

* GOLD UNDRAW
 VIDEO

* GOLD RESET

When the select area has been modified by one of the above actions, the selected screen area is
restored to its former video characteristics. Figure 3.9 illustrates a select area.

57

Chapter 3. Form Editor - FMS/EDIT

Figure 3.9. Select Area

Help for FMS and SAMP Control Keys

[uses some standard editing keys. They are:
RETURM Signifies you are dome with a form,
THE Moves cursor io the nexi field.
Moves cursor to the previeus field,
Beletes the character to the left of the cursor.
Deletes the contents of an emtire field,

any tise while running SANP. you can press
doind and return o the menu,

ifferert points in the application. Use of
progress through the program.

To comtinue, press RETUEM,

IR-1816-564

During the definition of a select area, the cursor can only move between lines of equal length. Select
areas cannot contain both normal-size and double-size lines. An error is signaled if such an attempt is
made.

3.7.20. Test Paste: Testing a Paste Operation

Pressing TSTPASTE allows you to see if the characters in the last cut fit where you want them to
fit. Starting at the cursor, Test paste marks the out line of the impending paste in reverse video. If
the paste does not fit, an error is signaled and the outline of the impending paste continues to be
displayed. Typing any character restores the screen and does not effect the characters in the buffer.

3.7.21. Time: Defining a Time Field

Pressing GOLD T displays the time menu from which you can choose a time field. Enter the number
of the type of Time field that you want. Press RETURN to insert the field picture of your choice.

The time field that you choose is inserted to the right of the current cursor position. The cursor is
positioned to the right of the newly inserted field.

You cannot edit the field picture after it has been entered. You must first delete the entire field using
CUT or DELLINE.

If an error occurs during processing, the error is signaled using the current signal mode (Terminal Bell
or Quiet). The error message is not displayed unless you press HELP. Pressing any other key restores
the Time menu.

Figure 3.10 shows the time format menu that Layout displays on the last line of the screen.

58

Chapter 3. Form Editor - FMS/EDIT

Figure 3.10. Time Field Menu

| (hhimm:ss)

ZK-1824-B4

3.7.22. Video Attributes: Assigning Video Attributes

You can assign video attributes to parts of a form in a select area. If a select area is not active, the
current cursor position or the current field become the select area.

Pressing VIDEO displays the VIDEO prompt on the last line of the screen. The select area is still in
reverse video. Valid responses to the VIDEO prompt are:

Blink - Alternates a black/white screen background
Bold - Highlights an area of the screen

Clear - Clears all video attributes from select area
Restore - Restores the previous video attributes
Reverse - Displays alternate screen background
Underline- Underscores an area of the screen

Save - Saves the currently assigned video attributes and returns you to editing

You can enter more than one video attribute to the VIDEO prompt by separating them with commas
or spaces.

59

Chapter 3. Form Editor - FMS/EDIT

The VIDEO prompt is redisplayed after you make a video assignment. You exit from video and return
to editing by pressing ENTER on a blank line or by typing SAVE.

If an error occurs during processing, the error is signaled using the current signal mode (Terminal Bell

or Quiet). The error message is not displayed until you press HELP. Pressing any other key restores
the video prompt.

3.8. Assign Phase

The Assign phase lets you assign characteristics, called field attributes, to fields in a form. You can
also assign them in other phases. The Assign phase allows you to assign attributes to fields that have
been changed since the last assignment, to assign attributes to one field, or to assign attributes to all
fields.

The Assign phase uses three questionnaires:

1. Assign Menu

2. Assign Field Attributes

3. Assign user action routine names for fields

Entering the Assign Phase

Type Assign in the Form Editor menu and press RETURN to enter the Assign phase. An Assign
menu (see Figure 3.11) is displayed at the bottom of the screen. A Field Attributes Questionnaire
(see Figure 3.12) collects field attribute assignments and a Field Completion User Action Routine
Questionnaire (see Figure 3.13) asks for field UAR names and associated data. (See the V'S
OpenVMS FMS Form Driver Reference Manual for information on user action routines.)

Use the following keys to control processing in the Assign phase:
* TAB moves the cursor to the next field.

*« BACKSPACE moves the cursor to the previous field.

* DELETE deletes the character to the left of the cursor.

« LINEFEED deletes the contents of the current field and resets the mode to Overstrike for a normal
field or Insert, if the field is fixed decimal or right justified.

» HELP displays help for the current field and for the entire phase.

* RETURN terminates filling in the current questionnaire and advances to the next one if
appropriate. If you have completed assigning attributes to the current field, RETURN moves
the cursor to the next field to be assigned attributes (if there is one), and redisplays the Field
Attributes questionnaire.

60

Chapter 3. Form Editor - FMS/EDIT

Figure 3.11. Assign Menu

#ssign forn attributes

Create or modify a forn

fssign field attributes

Enter Named Data items

Hodify field access order

Test fora with the Fora Driver

Form Name: [
Input File: iS3gGH

Assign atiributes to:
1. All fields

2. Mew or modified fields
3. Specific field

ZK-1B22-84

Leaving the Assign Phase

Use GOLD MENU to return to the Form Editor menu.

Assign Menu

The Assign menu in the Assign phase asks you what fields you want to assign attributes to: new or
modified fields, a specific field, or all fields (see Figure 3.11).

* Choose number 1 if you want to assign field attributes to each field in the form.
* Choose number 2 if you want to assign field attributes to new or modified fields in the form.
* Choose number 3 if you want to assign field attributes only to a specific field.

The Field Attributes questionnaire displays the field attribute choices that you can assign to fields
(see Figure 3.12). For example, you can select Autotab by typing an X next to "Autotab" in the
Questionnaire.

Initial field attributes for fields created during the current editing session can be assigned in the Form
phase.

The questionnaire is displayed on either the top or the bottom of the screen, depending on where the
field that you are assigning is positioned. For example, If the field is near the bottom of the screen, the

61

Chapter 3. Form Editor - FMS/EDIT

questionnaire is displayed on the top of the screen. In 132-column mode on a non-AVO VT100, the
questionnaire is displayed without display of the current form being edited.

The video display of the field being assigned includes all video attributes (bold, blink, reverse video,
underline) to better identify this field. Field pictures (field-validation and field-marker characters) are
displayed as well.

Section 3.8.1 through Section 3.8.6 describe each part of the questionnaire. For a description of field
attributes, see Section 2.4.1.

3.8.1. Field Name

Field Name lets you select a name for a field in a form. The cursor is automatically positioned next

to Field Name in the Field Attributes Questionnaire. The default name of F$nnnn, where nnnn is the
four-digit sequence number in which the field being assigned was created, is displayed next to Field
Name. To enter a different name, press LINEFEED to delete the default name and type in a new name
(see Section 2.4.1.7 for information on field names).

3.8.2. Index Value K Of N (Creating Indexed Fields)

Indexed fields are fields with the same name but with a different numerical index for identification.
Indexed fields in FMS must have identical field pictures and attributes. Individual fields of an indexed
set can be located any where on the screen.

To create a set of indexed fields using the Form Editor, create one field of the set, and make it indexed
by assigning it an index value of 1. Mter assigning the field an index value of 1 in the Assign phase,
return to the Layout phase and use the CUT and PASTE operations to duplicate this field for each
element of the indexed set.

The two numeric values K and N shown next to Index Value in the Assign Field Attributes
questionnaire represent the index value of the current field, and the total number of fields in the
indexed set respectively. You can assign a value for K if you wish, but the value for N is computed by
the Form Editor.

When you create indexed fields, the Form Editor assigns the index value K a default value based on
the order in which the fields are created by the PASTE operation. You can re-order the field index
values by specifying K explicitly. Note that the index values are required to be sequential from one
to the number of indexed fields in the set. Any index values that are duplicate or out of range cause
the form Editor to issue an error message when you try to save the form. The form Editor treats fields
with an illegal index value as modified in order to make them easy to find in the Assign phase.

Note the following special properties of assigning an index value of K= O.

If a field is the only element of an indexed set and an index value of zero is specified, the field is
changed to no longer be indexed.

If a field is an element of an indexed set with more than one member and an index value of zero is
specified, a new default index value is assigned. This is useful for assigning a legal index value when
the Form Editor has warned that the current value is duplicate or out of range, and you are not sure
what alternative values are available.

Since indexed fields are required to have identical field pictures, the form Editor does not allow you
to alter the field picture of an indexed field. To edit an individual indexed field picture definition, you

62

Chapter 3. Form Editor - FMS/EDIT

must first remove the field from any indexed sets. This can be done by changing the field's name.
However, you cannot replace the field in the indexed set (by changing its name back) unless it is once
again identical to the other fields in the proposed set. Changing the field attributes for one field in an
indexed set alters the attributes for all the other fields in that set (except for the field name and index
value attributes, of course).

You can also create indexed fields by specifying identical field pictures in the Layout phase, and then
assigning the fields the same name in the Assign phase. When you add a field to an indexed set using
this method, however, the field name is rejected unless all the field attributes are identical.

Reordering fields in the Order phase does not effect the numbering of indexed fields.

3.8.3. Attributes

To select an attribute, press TAB and BACKSPACE to position the cursor next to Autotab, No Echo,
Display Only, Right Justify, Fixed Decimal, Zero Fill, Zero Suppress, Uppercase, Must Fill, Response
Required, and Supervisor Only, and type an X. To select a clear character, press TAB to position

the cursor next to Clear Character and type in any displayable character. In response to the UARs
question, type a Y to display a UAR questionnaire and type in names and associated data for one

or more UARs that you want associated with this field at run time. The maximum number of Field
UARSs for a field is 15. Press RETURN to return to the Field Attributes questionnaire. The default is
no UARs for a field. Type an N if you are not going to associate any UARs with the field.

3.8.4. Default Value

The Default Value specifies a string that will be placed in the field initially, before the operator enters
any data. If the operator does not alter the field, the default value will be returned to the application
program. For example, if you are writing a program for an insurance company for displaying car
policies, you can assign a Default Value of $100.00 to all policies. The terminal operator can change
that value to $200.00 on the less common comprehensive policies.

3.8.5. Help Text

Help Text for a field is a phrase or sentence that might be helpful to the terminal operator in filling in
the field. Type in a line of information next to "Help Text." The terminal operator sees the Help Text
when HELP (PF2) is pressed in a field at run time. Press RETURN to complete the Field Attributes
questionnaire.

3.8.6. Field Completion User Action Routines
Questionnaire

If you responded "Y" to the UARs question in the Field Attributes Questionnaire, a second
questionnaire called Field Completion User Action Routines is displayed (see Figure 3.13).

You can assign up to 15 user action routines to a field. You paginate through this questionnaire in the
same way that you do in the Named Data phase, by using TAB and BACKSPACE.

63

Chapter 3. Form Editor - FMS/EDIT

Figure 3.12. Field Attributes Questionnaire

Checking Account Menu
Choose Option (1-5): E
i Exit
2 HNrite a check
1 MKake 3 deposit
Assign Field Atiributes

Field Name: [i80001

— futotab - Right Justify _ lppercase

- No Echo .. Fixed Decinal _ Must Fill

_ Display Only _ lero Fill .. Response Required Clear Character _
_ lero Suppress _ Supervisor Only UARST (Y, N) .|

Default Value:

Help Text:

T ZR-1816-84

64

Chapter 3. Form Editor - FMS/EDIT

Figure 3.13. Field Completion UARs Questionnaire

Field Completion User Aclion Routines
Field Name: FIELDL

1 UAR Name: I
Associated Datal

UAR Name:
Associated Data:

ZK-1819-84

3.9. Data Phase

The Data phase allows you to associate Named Data with the-form on which you are working. Named
Data is an ordered collection of constant information useful to the application program and associated
with the form but not displayed on the screen. Named Data for a form consists of constants, each of
which can be accessed by its name or by its index. You can have approximately 60,000 Named Data
entries.

A Named Data questionnaire appears on the screen when you enter this phase.

The Named Data questionnaire has room for five Named Data items on the terminal screen. You can
page beyond those five entries, from the last element on the screen, by pressing TAB. The numbers
are repaginated. That is to say, you see the numbers 6 through 10 instead of 1 through 5. To page
back, use BACKSPACE.

When the Named Data questionnaire appears on the screen, the cursor is positioned in the first Name
field. Type in the name of the Named Data. Then move to the line below it and type in the data.
Continue in this fashion until all Named Data that you wish to store with the form has been entered.

Entering the Data Phase

Type Data at the menu and press RETURN. A Named Data questionnaire is displayed (see
Figure 3.14).

65

Chapter 3. Form Editor - FMS/EDIT

Use the following keys to control processing in the Data phase:

* TAB to move the cursor to the next entry.

*« BACKSPACE to move the cursor to the previous entry.

¢ GOLD MENU, RETURN or ENTER to return to the Form Editor menu.
* HELP to get help for any individual field and for the entire phase.

» DELETE to delete the character to the left of the cursor.

» LINEFEED to delete the contents of the current field.

* QUIET to change between Terminal Bell and Reverse Screen.

Named Data names can contain any displayable character.

Leaving the Data Phase

Press GOLD MENU, RETURN, or ENTER to leave the Data phase and return to the Form Editor
menu.

Figure 3.14. Data Phase

ZK-1820-84

66

Chapter 3. Form Editor - FMS/EDIT

3.10. Order Phase

The Order phase allows you to specify the order in which the Form Driver accesses fields at run time.
The access order is the order in which the operator or program (if the program does not specifically
change the order in which GETs are done to fields) has access to fields at run time. As the operator
TABs through a form, the cursor is positioned at fields in the order specified in this phase. You

can reorder all fields in a form, or just some of the fields. The default access order of fields is their
creation order.

Entering the Order Phase

Type Order at the Form Editor menu to enter the Order phase. The keys in Table 3.2 perform certain
actions unique to the Order phase. You can press HELP to get on-line information. (Pressing GOLD
MENU returns you to the Form Editor menu.)

Table 3.2. Order Phase Functions

Key Function

TAB Advance to next field.

BACKSPACE Move to previous field.

SELECT Append current field onto current ordering

sequence or start new ordering sequence if none
is in progress.

GOLD RESET Cancel ordering sequence in progress.

ENTER Update working field order to include sequence
just specified. Remain in Order phase to allow
testing of modified order or specifying another
order sequence.

RETURN Same as ENTER.

GOLD MENU Return to the Form Editor menu, updating field
access order.

GOLD R (RESTORE) Restore the order that existed before you entered
the Order phase.

CTRL/R (REFRESH) Redraw the form by redisplaying it.

GOLD C Order fields conventionally, from left to right and
top to bottom.

GOLD Q Change signal mode from Terminal Bell to Quiet

and vice versa.

Reordering Fields

The Order phase is used to rearrange the order in which the Form Driver accesses fields at run time.
You can reorder all fields in a form, or just some of them. The default access order for fields in a form
created with the Form Editor is the order in which the fields were created.

To reorder the fields in a form, you specify one or more ordering sequences. An ordering sequence is
a set of fields with a specified order. The sequence field2, field4, field3 is an example of an ordering
sequence. This sequence specifies that field4 comes immediately after field2, and that field3 comes

immediately after field4. To specify an ordering sequence, you use the TAB and BACKSPACE keys

67

Chapter 3. Form Editor - FMS/EDIT

to position the cursor at the next field in the sequence. Then press the SELECT key. To specify the
ordering sequence above, for example, you would first position the cursor over field2 and press
SELECT. If noordering sequence is in progress, this operation has the effect of starting a new
sequence. Then move the cursor to field4 and press SELECT, then to field3 and press SELECT again.
To end the ordering sequence, you press ENTER or RETURN. After ending the sequence, the field
order is updated to include the ordering sequence just specified. The TAB and BACKSPACE keys
now move the cursor through the fields in the new order. At this point you are free to start another
ordering sequence, return to the Form Editor menu (saving the current field ordering), restore the field
order to what it was before you entered the Order phase (RESTORE), or change the field ordering to
left to right, top to bottom (GOLD C). If you make a mistake in the middle of an ordering sequence,
you can cancel the ordering sequence in progress by pressing RESET. Table 3.2 summarizes the
functions that are recognized during the Order phase.

Ordering Fields in a Scrolled Area

When ordering fields in a scrolled area, you must order them contiguously so that the Form Driver can
know when to scroll an entire line. You can start an ordering sequence with any field. To ensure that
fields in a single scrolled area are contiguously ordered, the Form Editor enforces the following rules:

1. When you enter a scrolled area from a nonscrolled field, the rest of the fields in the scrolled area
are appended in their present order after the field selected.

2. Once in an ordering sequence, you can leave a scrolled area only through the last field in the
area. Any attempt to SELECT a field outside the scrolled area from other than the last field in the
scrolled area will be rejected.

Figure 3.15 gives some examples of ordering fields in a scrolled area (SCA).

Figure 3.15. Ordering Fields in a Scrolled Area

F{——tnF2 —tpF 3 ——tF 4§ ~tpF 5 ~ttmF§—F7
Scrotled Area

b\

Ofdering sequence Resulting field order

F1,F4 F1,F4,F3,F5,F2,F6, F7

F1,F3 F1,F3,F4,F5,F2,F6, Fi

F8,F3 F1,F2, F6, F3, F4, F5, F7

F4,F6 F6 rejected

F5,F1 F2,F3, F4, F5, F1, Fé6, F7

F3,F5,F1L F1 rejected (F5 is no longer
last in Scrolled Area)

ZK- 182184

Leaving the Order Phase

Pressing ENTER or RETURN updates the working field ordering to include the reorder you just
completed. You can remain in the Order phase to test the modified order or continue reordering.

68

Chapter 3. Form Editor - FMS/EDIT

Press GOLD MENU to leave the Order Phase, save the new ordering sequence, and return to the
Form Editor menu.

3.11. Test Phase

The Test phase lets you display the current form as a program would and allows you to type data into
fields to test field validation. Help forms and user action routines are not accessible from the Test
phase.

Entering the Test Phase

Type Test at the Form Editor menu to enter the Test phase. Use the following keys to control
processing in the Test phase:

* TAB to move the cursor to the next field.

* BACKSPACE to move the cursor to the previous field.

e GOLD MENU, RETURN, or ENTER to return to the Form Editor menu.
» HELP to get single-line help for any fields in the form.

* QUIET to change from Terminal Bell to Reverse Screen.

* DELETE to delete the character to the left of the cursor.

 LINEFEED to delete the contents of a field.

Leaving the Test Phase

You leave the Test phase by pressing RETURN, ENTER, or GOLD MENU. The data that you entered
in the fields is not saved.

3.12. Exit Phase

The Exit phase allows you to leave the Form Editor and save the form you were working on.

Entering the Exit Phase

Type Exit at the Form Editor menu to enter the Exit phase. A question is dis played in the lower part
of the screen. (See Figure 3.16.) Use the following keys to control processing in the Exit phase:

* GOLD MENU to return to the Form Editor menu.

* HELP to get help for the Exit phase.

* QUIET to change from Terminal Bell to Reverse Screen.
* DELETE to delete the character to the left of the cursor.
* LINEFEED to delete the contents of a field.

You can type RETURN or ENTER to save your form or "N" to delete the out put form file. The input
form, in any case, is unchanged.

69

Chapter 3. Form Editor - FMS/EDIT

If you used /NOOUTPUT on the command line when you entered the Form Editor, no form will be
output, regardless of your answer to this question.

Figure 3.16. Exit Phase Query

Phase Cholce: pxil

Fars Assign form atiributes

Layout | Create or modify a form

fhssign | Assign field attributes

Data Enter Mamed Data itess

(rder Modify field access order

Test Test the form with the Form Driver
Exit

Forn Name: j{XhH
Input File: N

Do you want to save this fora? (Y/N) I

ZK=-1817-84

Leaving the Exit Phase

The Exit phase validates the form you were working on and then saves it in a form file. Control
characters can exit you from the Form Editor, but they do not save your form. Your form is saved only

when you leave the Form Editor by using the Exit phase. Use the RETURN or ENTER key to leave
the Exit phase.

Before you save your form, the Form Editor validates field pictures against field attribute assignment.
If any discrepancies are found, choose an appropriate phase to correct the problem. Fields in error are
considered as modified by the Assign phase. (You can then enter the Assign phase to choose the New
or Modified Fields option.)

70

Chapter 4. Form Language Translator
- FMS/TRANSLATE

The Form Language Translator is an alternative to the Form Editor for creating binary forms. The
Form Language is optional software that is purchased separately. You create forms using the Form
Language by writing a form description with a text editor, and then translating this description to a
binary form using the Form Language Translator. Since you can write form descriptions with any text
editor, you do not need a VT100 terminal to create forms with the Form Language.

The Form Language provides all the form descriptive capabilities of the Form Editor (see Chapter 3).
Any form that can be created using the Form Editor can also be created with the Form Language. The
choice between using the Form Editor or Form Language should be based on your own preference
and how the forms for your program are to be-maintained. The form descriptions that you write when
creating forms with the Form Language are sometimes more convenient to store and distribute, more
self documenting, and easier to update using automated procedures.

The remainder of this chapter provides an overview of the Form Language, a description of each
Form Language statement, and commands for translating a form description to a binary form.

4.1. Form Language Concepts

A form description is a collection of Form Language statements that describe a binary form. Form
Language statements allow you to specify the background text, fields, video, and all the other features
that make up a form.

Each Form Language statement consists of a statement keyword followed by a collection of statement
items and terminated by a semicolon. The statement keyword, always the first word of a Form
Language statement, serves to uniquely identify the statement type. The Form Language statement
types are summarized in Table 4.1.

Table 4.1. Form Language Statement Types

Keyword Description

ATTRIBUTE_DEFAULTS Redefines default attributes for all subsequent
TEXT or FIELD statements.

DRAW Defines lines or boxes.

END OF FORM Designates the end of a form description.

FIELD Defines a field.

FORM Defines form characteristics.

NAMED DATA Specifies Named Data items.

ORDER Specifies field access order.

SCROLL Defines a scrolled area.

TEXT Specifies background text.

VIDEO Specifies video attributes for parts of the screen.

71

Chapter 4. Form Language Translator - FMS/#RANSLATE

4.1.1. Statement ltems

Statement items are used to specify the actual characteristics of the form entity being described.
Statement items include names, coordinate specifications, text strings, and various attributes.

4.1.1.1. Names

The Form Language allows you to specify names within a form for each instance of the following:
e The form itself (Form name)

* A help form (Help form name)

* Each field (Field name)

* Each Named Data item (Named Data name)

* Each user action routine (user action routine name)

These names are used by the Form Driver at run time to refer to the entity specified. Names in the
Form Language are always given as keyword parameters. A keyword parameter consists of a keyword
that identifies the parameter, followed by an equal sign and the value being assigned to that parameter.
In the Form Language, names are always enclosed in apostrophes. As an example, the keyword
parameter to specify a form name could be given as:

NAME ='"FORM!'

The rules for specifying names in FMS are as follows:

* Must begin with a letter (A-Z)

* Must end with a letter (A-Z) or a digit (0-9)

» Cannot exceed 31 characters in length

» Can contain only letters (A-Z), digits (0-9), dollar signs ($), or underscores ()

FMS does not distinguish between upper- and lowercase names. Internally, all names are stored as
uppercase. However, for compatibility with FMS Version 1, Named Data names can contain any
printing character.

4.1.1.2. Coordinates

Coordinates specify the line and column position for form entities on the screen. Coordinate
specifications are given by a line and column number enclosed in parentheses and separated with

a comma. Two types of coordinate specifications are allowed: absolute and relative. Absolute
coordinates are given as unsigned numbers and specify an absolute screen position. Relative
coordinates are given as signed numbers (the plus sign (_) and the minus sign (-)) and specify the
relative offset from the previous coordinate position. Absolute and relative coordinates can be mixed
in a single coordinate specification as in (+ 5,7).

If you omit the line coordinate, the line number assigned is the line coordinate in the previous
statement incremented by 1.

72

Chapter 4. Form Language Translator - FMS/#RANSLATE

If you omit the column coordinate, the column number assigned is the preceding column coordinate.

The initial coordinate position is (1,1), the upper left corner of the screen.

4.1.1.3. Text Strings

Text strings in the Form Language specify names, background text, field pictures, and other form
entities. The general rules for entering text strings are given below.

o Text strings are enclosed in apostrophes.
* An apostrophe inside a text string is represented by two consecutive apostrophes.
* Characters can be repeated using a repeat count.

» Text strings can be concatenated or continued over more than one line by using the ampersand (&)
symbol.

» Text strings can contain only printing characters. Some examples of valid text strings follow.

"This is a text string',

"Don't tell anyone,’

BO'X'

"This is a very long statenent, and | choose’
&' to put it on two lines,’

4.1.1.4. Attributes

Forms can contain several different types of attributes as documented in Chapter 2. An attribute is
assigned simply by specifying the attribute keyword in the appropriate statement.

Some attributes are assumed for form, field, and text. These attributes are the FMS default attributes.
Unless another attribute is specified explicitly, these attributes are automatically assigned to form,
field, and text.

The Form Language provides keywords to identify all the nondefault FMS attributes. When
appropriate, it also provides keywords for negating or overriding these attributes.

For example, if an ATTRIBUTE DEFAULTS statement is used to redefine an attribute as the default
for field, an inverse attribute (the negated form of the keyword) would be used to override the
previous attribute specification.

Thus the attributes for FIELD and TEXT statements define both senses of the attribute (the attribute
and its inverse). The tables of attributes for each statement type list these attributes and, if one exists,
their inverses.

4.1.2. Writing a Form Description

Form descriptions are prepared using any conventional text editor. The following sections give some
general guidelines for writing form descriptions.

Figure 4.1 is a layout sheet that you can use to graphically set up your form prior to writing a text file
containing Form Language statements. The layout sheet helps you provide coordinates for your TEXT
and FIELD statements as well as helping you to see how you want to position items in a form.

73

Chapter 4. Form Language Translator - FMS/#RANSLATE

Figure 4.1. Layout Sheet

EX=

ol T2BAEE e

Evect

12

5

5|7

[
q HECEEELIERDEEE EELNHEE

.ﬁ1 giﬁﬁﬁﬁﬁlh

1j2[3]4]

4.1.2.1. Statement Format

Form Language statements can be entered in free format with up to 132 characters per line in the text
file that you are creating. Free format means that statement names and items can be separated by any
number of blank lines or spaces without affecting their interpretation. Use as many lines as you want
in a Form Language statement.

74

Chapter 4. Form Language Translator - FMS/#RANSLATE

4.1.2.2. Restrictions

Each form description must begin with a FORM statement. Only one FORM statement is allowed per
form description.

* Any SCROLL statements must precede the TEXT or FIELD statements to which they apply.
* Any ORDER statements must follow all FIELD statements in a form description.

* Each form description must end with the END OF FORM statement. Only one END OF FORM
statement is possible per form description.

Only one form description can be translated from a single text file. You must place each form
description in a separate file if you wish to translate them to binary forms.

4.1.2.3. Abbreviations

You can truncate Form Language keywords to four characters, or three characters if the fourth
character is an underscore (). Attributes beginning with NO must include six characters.

You can use more than four characters or the entire word, if you wish. Each character is checked for
correct spelling.

4.1.2.4. Including Comments

You can include comments in a form description with the exclamation mark (!). All text after the
comment symbol (1), to the end of the line, is treated as a comment. For example:

FORM NAME='" WELCOVE' ! The nane of the first displayed form
HELP=" HELP WELCOVE' I The help formfor WELCOVE,
BACKGROUND=BLACK I Dar k backgr ound.

4.2. Form Language Statements

Each statement keyword must be in the first position of a Form Language statement. The statement
keyword indicates the type of Form Language statement. Form Language statement keywords are
followed by statement items such as screen coordinates, attributes, field pictures, and background text.

The following sections describe each Form Language statement in detail.

ATTRIBUTE_DEFAULTS Statement

ATTRIBUTE_DEFAULTS Statement — The ATTRIBUTE DEFAULTS statement redefines
default attributes for all subsequent FIELD, TEXT, or DRAW statements in a form.

Syntax

ATTRI BUTE_DEFAULTS { FIELD | TEXT } [attribute...] ;

attribute Text or field attribute.
Description

A single statement can redefine default attributes for either fields, or text, but not both. Text attributes
also apply to DRAW statements with the exception of CHARACTER_SET. Field and background text
attributes are described in Chapter 2.

75

Chapter 4. Form Language Translator - FMS/#RANSLATE

You can use the ATTRIBUTE DEFAULTS statement more than once in a form description. Each
ATTRIBUTE DEFAULTS statement redefines only those attributes that are given explicitly.

To restore the FMS default attributes for FIELD or TEXT statements, you can include an
ATTRIBUTE_DEFAULTS statement without attributes.

Attributes specified in individual FIELD and TEXT statements override those specified in an
ATTRIBUTE DEFAULTS statement.

Action Routine specifications are additive and are always processed in the order specified. Action
Routines specified in an ATTRIBUTE DEFAULTS FIELD statement are processed by the Form
Driver before Action Routines given in subsequent FIELD statements.

Table 4.2 and Table 4.3 show valid attributes for the ATTRIBUTE DEFAULTS statement.

Table 4.2. ATTRIBUTE_DEFAULTS FIELD Attributes

Attribute Name FMS Default

ACTI ON_RQUTI NE = 'name'": 'data’' NOACTI ON
AUTOTAB NOAUTOTAB
BLANK FI LL LEFT JUSTIFIED
BLI NKI NG NOBLI NKI NG
BOLD NOBCLD
CHARACTER SET = {US|UK|RULE | current character set
SET1 | SET2 }

CLEAR CHARACTER = 'char' blank

DI SPLAY_ONLY NCODI SPLAY_ONLY
FIXED DECIMAL LEFT JUSTIFIED
HELP = 'help text' NCHELP

MUST_FI LL NOMUST_FI LL
NOECHO ECHO

RESPONSE _REQUI RED NORESPONSE REQUI RED
REVERSE NOREVERSE
RIGHT JUSTIFIED LEFT JUSTIFIED
SUPERVI SOR_ONLY NOSUPERVI SOR_ONLY
SUPPRESS NOSUPPRESS
UNDERLI NE NOUNDERLI NE
UPPERCASE NOUPPERCASE
ZERO FI LL BLANK FILL
Table 4.3. ATTRIBUTE_DEFAULTS TEXT Attributes
Attribute Name FMS Default

BLI NKI NG NOBLI NKI NG
BOLD NOBCLD
CHARACTER SET = {US|UK|RULE| current character set
SET1 | SET2 }

76

Chapter 4. Form Language Translator - FMS/#RANSLATE

Attribute Name FMS Default
REVERSE NOREVERSE
UNDERLI NE NOUNDERL| NE

Example

ATTRI BUTE- DEFAULTS
FI ELD
RIGHT JUSTIFIED
UNDERL| NE
ACTI N- ROUTI NE ' CHUNCK' ;
FI ELD NAVE= ' AMTPAY" (9,67) PICTURE= ' 9999, 99
RESPONSE REQUI RED
CLEAR _CHARACTER= ' *'
HELP= ' Enter ampunt of check.'
ACTI ON_ROUTI NE= ' RANGE'
'100, This bank doesn't issue such small checks, Send
cash, ';
FI ELD NAME= 'MEMO' (11, 11) PICTURE= 35'X'
LEFT JUSTIFIED
NOACTION
HELP= ' (Optional) A rem nder of why you and your nobney are parting'

The ATTRIBUTE DEFAULTS FIELD statement establishes RIGHT JUSTIFIED, UNDERLINE,
and the user ACTION-ROUTINE

CHUNCK as the default attributes for subsequent FIELD statements. The first FIELD statement,
in addition to the attributes specified explicitly in the statement, has these attributes defined. The
field AMTPAY has two action routines defined for it: CHUNCK (first in the calling sequence)
and RANGE (second in the calling sequence). Note that the second FIELD statement reestablishes
LEFT JUSTIFIED for the attribute (overriding the RIGHT JUSTIFIED specification in the
ATTRIBUTE_DEFAULTS FIELD statement) and removes the action routine CHUNCK (also
assigned in the ATTRIBUTE_DEFAULTS FIELD statement).

DRAW Statement

DRAW Statement — The DRAW statement is used to specify lines or boxes in a form. On VT100s,
lines and boxes specified with the DRAW statement will use the line-drawing (RULE) character set.
On VT52s,' 1'is used for vertical lines, "' for horizontal lines, and '+' for corners and intersections. A
single character results in a vertical line.

Syntax

DRAW [([line] [,column]) [:([line] [,column])]] [video-attribute...] ;

line Absolute or relative line position of coordinate.

column Absolute or relative column position of
coordinate.

video-attribute Video attribute for a line or box selected from any
or all of the following: Blink, Bold, Reverse, and
Underline.

77

Chapter 4. Form Language Translator - FMS/#RANSLATE

Description

Coordinates in the DRAW statement can be absolute or relative. The second coordinate is relative to
and defaulted from the first coordinate in the DRAW statement.

The perimeter of the area defined by a DRAW statement must contain unused spaces, line-drawing
characters, or video attributes; If the position is occupied by background text or fields, the DRAW
statement is rejected as invalid during translation.

If lines produced by DRAW statements intersect, an appropriate intersection character is inserted.
If DRAW is used across lines with mismatched line attributes (normal size, double size, and double
wide), an error is detected and no binary form is output during translation. If DRAW is used across
lines with different video attributes, the last DRAW video attribute specification is used for the
intersection.

Line-drawing characters may be assigned to the first line of a scrolled area by referencing the first line
of the scrolled area in the DRAW statement. A box may be drawn around a scrolled area by simply
giving the coordinates for the rectangle.

To simplify line-drawing for scrolled areas, the Form Language ignores certain references in a DRAW
statement to lines within a scrolled area. The rule for scrolled area draws is: vertical line segments in a
DRAW statement may reference lines in a scrolled area other than the first if either of these conditions
are met:

1. The line segment begins outside the scrolled area and includes the first line of the scrolled area.
2. The line segment begins on the first line of the scrolled area.

The extent of the line may be partially or entirely through the scrolled area.

Example

DRAW (20, 14) : (+3,80);

TEXT (21,15) 'To scroll through the check register, press '
& UPARROW or DOWNARROW ' ;

TEXT 'To return to the menu, Press RETURN,';

This DRAW statement defines a box whose perimeter is line 20, column 14 through column 80; line
23, column 14 through column 80; line 20 through line 23, column 14; and line 20 through line 23,
column 80. Note that the second coordinate's line specification is relative to the first line coordinate in
the DRAW. The appropriate intersection characters are inserted automatically into character positions
(20,14), (20,80), (23,14), and (23,80). The TEXT statements define background text inside the box.

END OF FORM Statement

END OF _FORM Statement — The END OF FORM statement marks the end of a Form
Description in a text file. Any text after the END OF FORM statement is ignored by the Form
Language Translator. The form name specified in the END OF FORM statement must be the same as
the name used in the FORM statement. If the form name is different, a warning message is generated.

Syntax

END OF FORM NAME = 'form-name';

78

Chapter 4. Form Language Translator - FMS/#RANSLATE

form name Name of form as given in FORM statement.

Example

END_OF_FORM NAME=' nenu’

FIELD Statement

FIELD Statement — The FIELD statement is used to specify fields in a form. The field position can
be specified using absolute or relative coordinates. If the coordinate positions specified in a FIELD
statement cause the field picture to overlap other text or fields, or go beyond the screen boundary, an
error is signaled during translation and no form is output.

Syntax

FI ELD [NAME = 'field-name'] [([line] [,column])] { PICTURE | TIMEFIELD | DATE FIELD } =
'field-picture' [field-attribute...]

field-name Name of field being specified.

line Absolute or relative line position of field.
column Absolute or relative column position of field.
field-picture Field picture for field being specified.
field-attribute Field attribute for field being specified.
Description

If you omit the NAME = 'field-name' keyword parameter, the Form Language Translator assigns a
sequential default name following the pattern F$nnnn.

Field pictures are described in Chapter 2. The field picture for DATE FIELD and TIME FIELD can
only use the predefined pictures for FMS date and time fields (see Chapter 2). The repeat count cannot
be used for date and time predefined picture specifications.

Attributes

You can list optional attributes after the field picture in the FIELD statement. If you specify an
attribute more than once, the Form Translator assigns the last attribute value encountered. For each
attribute assignment, the Form Translator checks for valid attribute combinations (specified either in
the FIELD statement or by an ATTRIBUTE DEFAULTS FIELD statement).

Table 4.4 lists field attributes. See Chapter 2 for a description of each field attribute.

Rules for Specifying Indexed Fields

INDEXED fields are specified by listing the coordinate positions for the fields. The FIELD
statement's coordinate specification is always index one if the INDEXED attribute is specified. The
fields specified in the coordinate list following the INDEXED keyword are assigned an index value
corresponding to the order they appear in the coordinate list. Note that an indexed field set can contain
one or more fields.

79

Chapter 4. Form Language Translator - FMS/#RANSLATE

The default visitation order for all fields in the form is left to right, top to bottom. The index value is
not related to the visitation order. INDEXED fields may be ordered in the ORDER statement as any
other field; the index value is used to identify the field.

Line attributes (normal, double-size, or double-wide) must be identical for all fields in an indexed

set. If an INDEXED field is scrolled, all fields must be contained on the first line of the same scrolled
area.

Table 4.4. FIELD Attributes

Attribute Name FMS Default

ACTI ON_RQUTI NE = 'name':'data’ NOACTI ON
AUTOTAB NOAUTOTAB
BLANK _FI LL BLANK_FI LL

BLI NKI NG NOBLI NKI NG
BOLD NOBCOLD
CHARACTER SET = {US|UK|RULE | current character set
SET1 | SET2 }

CLEAR CHARACTER = 'char' blank

DEFAULT = 'value' DEFAULT = 'blank'
DI SPLAY_ONLY NCDI SPLAY_ONLY
FIXED DECIMAL LEFT JUSTIFIED
HELP = ‘help text' NCHELP

| NDEXED [= ([line] [,column]) [:([line]
[,column])]...]

MUST_FI LL NOMUST FILL
NOECHO ECHO
RESPONSE_REQUI RED NORESPONSE_REQUI RED
REVERSE NOREVERSE

RIGHT JUSTIFIED LEFT JUSTIFIED
SUPERVI SOR_ONLY NOSUPERVI SOR_ONLY
SUPPRESS NOSUPPRESS
UNDERLI NE NOUNDERLI NE
UPPERCASE NOUPPERCASE
ZERO FI LL BLANK_FI LL
Examples

FI ELD NAME= ' DATE' (3,55) DATE FIELD= '99-2ARA-99"';

FI ELD NAME= 'DEPOSIT' (7,42) PICTURE= '9999. 99
HELP= ' Enter anount of deposit’
FI XED- DECI MAL ;
FI ELD NAME= ' SUMMARY' (15,56) PICTURE= '9999, 99'
I NDEXED= (+1) ; (,+0) : ()
Rl GHT_JUSTI FI ED

80

Chapter 4. Form Language Translator - FMS/#RANSLATE

SUPPRESS ZERO FI LL CLEAR _CHARACTER= ' 0

The first field, DATE, specifies a standard FMS date field, beginning on line 3, column 55. The field
is DISPLAY ONLY by default.

The second field, DEPOSIT, begins on line 7, column 42. It has for its picture 6 numeric characters,
with an embedded decimal point. The fixed-decimal attribute is assigned for this field; the picture
must be valid for this attribute assignment. Help text has also been assigned for this field.

The third field, SUMMARY, defines the four indexed fields, SUMMARY. SUMMARY (1) begins
on line 15, column 56; SUMMARY (2) begins on line 16, column 56, SUMMARY (3) begins on
line 17, column 56, and SUMMARY (4) begins on line 18, column 56. Note the three different yet
equivalent ways used to specify 'next line, same column'. The Form Language defines the four fields
identically: each has a 6 character numeric picture, and the attributes SUPPRESS, ZERO FILL,
CLEAR_CHARACTER of zero, and RIGHT JUSTIFIED.

FORM Statement

FORM Statement — The FORM statement is used to begin a form description, and specify form
wide and line attributes. The FORM statement must precede all other Form Language statements. The
Translator allows only one FORM statement per form description.

Syntax

FORM NAME = 'form-name'[form-attribute...] ;

form-name Name of form.

form-attribute Form attribute to be applied to entire form.
Description

Double-size, double-wide, and highlight attributes can be specified more than once in a FORM
statement. For these attributes, the last attribute does not override the previous ones, but instead is
added to them. For example:

FORM NAME = '"activities'
DBLSIZ = B I Lines B and 9 are doubl e size.
DBLSIZ = 10 ! Lines 10 and 11 are doubl e size,

Form attributes are listed below (see Section 2.4.2 for a description of form attributes). The following
attributes will override any previous attributes specified, with the exception of DBLSIZ, DBLWID,
and HIGHLIGHT, which are additive.

AREA TO CLEAR = first-line: last-line
BACKGROUND = { CURRENT | BLACK | WHITE }
CHARACTER _SET = {US|UK|RULE|SETI1 |SET2}

DBLSI Z

line-number [: line-number]

DBLSI Z

BEGIN WITH = line-number

END WITH = line-number

81

Chapter 4. Form Language Translator - FMS/#RANSLATE

DBLW D line-number [: line-number]

DBLW D

BEA N WTH = line-number
END W TH = line-number
FUNCTION KEY ACTION ROUTINE = 'routine-name'[:'associated- data']

HELP FORM = ‘help-form-name'

HIGHLIGHT = video-attribute [:video-attribute]
PRE_HELP_ACTI ON_ROUTI NE = 'routine-name' [:'associated-data']
POST_HELP_ACTI ON_RQUTI NE = 'routine-name' [:'associated-data']

W DTH = {CURRENT 80132}

Rules for Specifying Form and Line Attributes

For AREA TO _CLEAR, the first line and last line must be in the range 0 to 23, and the first line
must be less than or equal to the last line. If the first line and last line are zero, no lines are cleared. If
AREA_TO_CLEAR is not specified, or if one or both of the line specifications is omitted or invalid,
an error occurs, and default values of 1 and 23 are assigned for first line and last line respectively.

You can specify a user action routine more than once in the FORM statement. The Form Language
Translator will override only the items specified. In the example below, a pre-help user action routine,
HELP1, is defined with the associated data '12345'. The associated data '12345' is carried over from
'‘prehelp' to 'helpl.’

Examples

FORM NAME = ' FORML '
PRE- HELP= 'Prehelp' : '12345
PRE_HELP= ' HELP1'

For DBLSIZ, the line numbers specified indicate a line or range of lines to be displayed as

double size. Line number can be any value between 1 and 22, but the line number associated with
BEGIN_WITH must be less than or equal to the line number for END WITH. When specifying
double size lines, the line numbers given must always specify the top of a double size pair. Double
size lines can include text, fields, and graphics. If any of the lines specified have already been
assigned a line attribute, an error results, and the new line attribute is not assigned.

For DBLWID, the line numbers specified indicate a line or range of lines to be displayed as

double wide. Line number can be any value between 1 and 23, but the line number associated with
BEGIN_WITH must be less than or equal to the line number for END_WITH. Double wide lines
can include text, fields, and graphics. If any of the lines specified have already been assigned a line
attribute, an error results, and the new line attribute is not assigned.

The HIGHLIGHT attribute specifies video attributes used at run time to highlight the field being
accessed. The video attributes for highlighting are BLINKING, BOLD, CLEAR, REVERSE, and
UNDERLINE.

FORM NAME= ' CHECK_DONE'
HELP_FORM= " HELP_CHECK'

82

Chapter 4. Form Language Translator - FMS/#RANSLATE

AREA TO CLEAR= 20: 23

W DTH= CURRENT
BACKGROUND= CURRENT

CHARACTER SET= us

FUNCTI ON_KEY_ACTI DN_ROUTI NE= ' PASSKY' : '110 112'

When the form CHECK DONE is displayed, the Form Driver will clear lines 20 through 23 and
display the form in the current screen mode for width and background. A character-set specification is
included to force the current character set to be the US. The PASSKY user action routine is associated
with the form as a function key UAR; the Form Driver will call this routine when any non-FMS
function key is pressed. The help form HELP_CHECK will be displayed when the help form is
requested for this form. No line attributes (DBLWID or DBLSIZ) were specified, so all the lines in the
form will be normal. No highlighting was specified, so the Form Driver will not highlight the current
field.

NAMED_DATA Statement

NAMED_ DATA Statement — The NAMED DATA statement is used to specify Named Data for
a form. Named Data is information associated with a form that is not displayed. Named Data can be
used to contain form-dependent information for your application.

Syntax

NAMED_DATA | NDEX = index [NAME ='name'] [DATA = 'data'] [INDEX=index
[NAME="name'] [DATA='data']] ... ;

index Index value for Named Data item. An unsigned
value between 1 and 60000.

name Name of Named Data item. Up to 31 characters
long, can include any printable character.

data Data for Named Data item. Up to 80 characters
long, can include any printable character.

Description

Each Named Data item must have a unique index, and you must provide either a name or data string
for each index you specify. Although you can specify indexes in any order, all index values must

be consecutive. If you assign nonconsecutive index values, the Form Translator will signal an error.
Approximately 60,000 Named Data items can be specified in a single form description.

The Named Data name can be up to 31 characters long and include any printing character. Named
Data names do not have to be unique. If no name is specified, a blank name is assumed.

The data part of a Named Data item specifies the data value to be associated with the index and name
already provided. The data can be up to 80 characters long and include any printing character.

Examples
NAMVED_DATA
| NDEX= 1
NAME= ' FI RST'
DATA= ' 03" ;
NAMED- DATA

83

Chapter 4. Form Language Translator - FMS/#RANSLATE

| NDEX= 2
NAMVE= ' LAST'
DATA= ' 15

The NAMED_ DATA statements define entries in Named Data. The program can access these values
as run-time parameters. In the Sample Application, these Named Data entries are used to delimit the
first and last lines of the check.

The two NAMED DATA statements could have been combined into one as follows:

NAVMED- DATA
| NDEX= 1 NAMVE= ' FI RST' DATA= ' 03'
| NDEX= 2 NAMVE= ' LAST" DATA= '15'

ORDER Statement

ORDER Statement — The ORDER statement is used to define the run-time Form Driver visitation
order of fields in a form.

Syntax

ORDER [BEGIN_WITH = visitation-order] NAME = 'field-name[(index)]"... ;

visitation-order Absolute order number for the field that begins
the new order.

field-name Name of next field in ordering.

index Index value for next field in ordering if indexed.

Description

The default visitation order is from left to right, top to bottom. A form description can contain any
number of ORDER statements. The following list gives the general rules for ORDER statements.

* You must use valid field names from previous FIELD statements.

* You must include the field index when specifying indexed fields in an ORDER statement.

* You must order at least two fields.

* The value given for visitation-order must be less than or equal to the number of fields in the form.
* You can assign a visitation order only once.

* You can order each field only once.

* You must place ORDER statements after all FIELD statements.

* You must order all fields in a single scrolled area contiguously.

You can reorder a subset of the fields in a form by using the optional BEGIN_WITH item.
BEGIN_ WITH = visitation-order specifies the absolute order position for the first field in the new
order sequence. If you do not use BEGIN_ WITH, the first field named in the ORDER statement
becomes the first field visited.

84

Chapter 4. Form Language Translator - FMS/#RANSLATE

If a field is not specified in an ORDER statement, the field still has a visitation order assigned to it.
The Form Language Translator first assigns visitation orders to each field specified in the ORDER
statement, and then assigns an available visitation order to each of the unnamed fields according to the
default (left to right, top to bottom).

Examples

SCROLL BEA N WTH= 8 ENQ WTH= 13 ;
FI ELD NAVE= ' NUMBER (8, 2) Pl CTURE= 4' X
Rl GHT_JUSTI FI ED ;

FI ELD NAME= 'DATE' (8 ,7) Pl CTURE= 'XX-XXX-XX'

FI ELD NAVE= 'PAYMEM' (B, 17) PICTURE= 35'X"' ;
FI ELD NAVE= ' DEPOSI T' (8 ,54) PICTURE= 'XXXX,XX'

RIGHT JUSTIFIED

SUPPRESS ZERO FI LL CLEAR CHARACTER= '0' ;

FI ELD NAVE= 'AMTPAY' (8 ,63) PICTURE= 'XXXX,XX'
Rl GHT_JUSTI FI ED
SUPPRESS ZERO FI LL CLEAR CHARACTER= 'O0' ;

FI ELD NAVE= ' BALANCE' (8 ,72) PICTURE= 'XXXX,XX'
Rl GHT_JUSTI FI ED
SUPPRESS ZERO FI LL CLEAR CHARACTER= 'O0' ;

FI ELD NAVE= ' FAKE' (8 , 80) Pl CTURE= 'X'
NCDI SPLAY_ONLY
NCECHO

FI ELD NAVE= ' SUMMARY' (15,56) PI CTURE= ' 9999. 99'
| NDEX= (16,56) : (17,56) : (18, 56)
RIGHT JUSTIFIED
SUPPRESS ZERO FI LL CLEAR CHARACTER= '0' ;

ORDER
NAME= ' SUMVARY (1)
NAME= ' SUMVARY (2)'
NAME= ' SUMVARY (3)"
NAMVE= ' SUMMARY (4)';

ORDER BEGNWTH = 5
NAME= ' NUMBER
NAVE= ' DATE'
NAMVE= ' PAYMEM
NAVE= ' DEPOSI T
NAME= 'AMTPAY'
NAVE= ' BALANCE'
NAVE= ' FAKE' ;

The ORDER statements show ordering of scrolled area fields and indexed fields. Though this
example shows two ORDER statements, the ordering could have been done with one ORDER
statement. The first ORDER statement illustrates ordering of indexed fields. Note that the field is
identified by its index. The second ORDER statement orders the fields within the scrolled area. The
fields are ordered contiguously (in this case they are consecutively ordered, but that is not required).
If no ORDER statement is used, the order for the fields would be: NUMBER, DATE, PAYMEM,

85

Chapter 4. Form Language Translator - FMS/#RANSLATE

DEPOSIT, AMTPAY, BALANCE, FAKE, SUMMARY (1), SUMMARY (2), SUMMARY(3),
SUMMARY (4). The above ORDER statements have changed the order so that the full indexed field
set is visited before the fields in the scrolled area.

The same order can be obtained in at least two other ways: by omitting the first order statement, or by
omitting the second order statement. Both methods will result in the same ordering as above.

SCROLL Statement

SCROLL Statement — The SCROLL statement is used to specify a scrolled area in a form. A
scrolled area in a form is a window where the terminal operator can enter or display more data than
will fit on the screen at one time.

Syntax

SCROLLBEGIN WITH = first-line [END_WITH = last-line]

first-line Specifies the number of the first line in a scrolled
area.

last-line Specifies the number of the last line in a scrolled
area.

Description

Scrolled areas can contain one or more fields and background text. Lines in scrolled areas must have
identical line attributes (normal size, double size, or double wide).

The line numbers given for first line and last line must be between 1 and 23. Also, the first line must
be less than or equal to the last line. If you omit the last line specification, it will default to the same as
the first line.

The Translator takes TEXT and FIELD statements you define for the first line of the scrolled area and
repeats the fields and background text on each consecutive line in a scrolled area.

You must observe the following rules when defining a scrolled area with a SCROLL statement:
* Include at least one field in the first line of the scrolled area.
* Define fields or background text on only the first line of the scrolled area.

¢ Use the SCROLL statement before FIELD or TEXT statements defined for the scrolled area.

Examples

I Note that all field definitions start on the first line of the

| scrolled area, line B.

SCROLL BEGN WTH= 8 ENO WTH= 13 ;

DRAW (7,1) : (14,79);

I These definitions Provide the vertical lines in the scrolled area to
I intersect the lines Just above and bel ow the scrolled areas,

DRAW (7,6):(14,6);

DRAW (7,16): (14, 16);

DRAW (7,53):(14,53);

86

Chapter 4. Form Language Translator - FMS/#RANSLATE

DRAW (7, 62): (14, 62);

DRAW (7, 71):(14,71);

FIELD NAME= ' NUMBER (8,2) PICTURE= 4'x'
RIGHT JUSTIFIED

FI ELD NAME= ' FAKE' (8,80) PICTURE= 'X'
NCDI SPLAY_ONLY
NCECHO ;

The SCROLL statement defines a scrolled area beginning on line 8 and ending on line 13. Two fields
are assigned to it. The first DRAW statement defines a box around the scrolled area. The rest of the
DRAW statements define a series of vertical lines through the scrolled area. Appropriate intersection
characters are inserted at the vertical line intersections.

TEXT Statement

TEXT Statement — The TEXT statement is used to specify background text in a form.

Syntax

TEXT [([line] [,column])] 'background-text' [attribute...] ;

line Line number of text position.

column Column number of text position.

background-text Background text string to be placed at coordinate
position specified.

attribute Attribute for background text.

Description

You can specify the position of background text using either absolute or relative coordinates. If
any portion of the specified position is occupied, or goes beyond the boundaries of the screen, the
translator issues an error and no form is output.

Table 4.5 lists attributes for background text. Video attributes are described in Chapter 2.

Table 4.5. Attributes for Background Text

Attribute Name FMS Default

BLI NKI NG NOBLI NKI NG

BOLD NOBCLD

CHARACTER { US | UK | RULE | SET1 | SET2 } |current character set

REVERSE NOREVERSE

UNDERLI NE NOUNDERLI NE

Examples

TEXT (2,3) 'CHECK REG STER - THE ACCOUNT HI STORY'
BOLD ;

I Heading for the scrolled area (regi ster proper)

TEXT (5, 2)

' Chk. , Deposit Check New ;

87

Chapter 4. Form Language Translator - FMS/#RANSLATE

TEXT
'No, Date Check Payee or Deposit Menp Anpunt Amount Bal ance’

The first TEXT statement defines the header for the form. The text begins on line 2, column 3 and is
displayed in bold video. If the FORM statement had contained a DBLWID = 2 attribute specification,
the background text would be displayed as double wide.

The next two TEXT statements define a header for a table. They are defined for two consecutive lines.
The text is spaced so that it is placed over the proper column (corresponding to the fields in the table).
Since no attributes are defined, all the text will be displayed with normal video.

VIDEO Statement

VIDEO Statement — The VIDEO statement is used to define the video display attributes of an area
of a form.

Syntax

VI DEO [[([line] [,column])] [:([line] [,column])]] video-attribute...;

line Line number of coordinate position.

column Column number of coordinate position.

video-attribute Video attribute to be applied to area of form
specified.

Description

The line and column coordinates, which specify the boundaries of an area of the screen, can be
absolute or relative. The second coordinate uses values from the first coordinate for relative and
default assignments. You can default the first coordinate to the last line plus one and the last column.
If the values you specify for line or column are invalid, the Translator signals an error and no form is
output.

At-least one video attribute is required for each VIDEO statement. Attributes listed in DRAW, FIELD,
TEXT, and other VIDEO statements will override attributes specified in a VIDEO statement.

The attributes for VIDEO statements are BLINKING, BOLD, REVERSE, and UNDERLINE.

Examples
VI DED (10, 20) : (+0, +50) BOLD, REVERSE ;

The VIDEO statement defines line 10, column 20 through column 70 inclusive, to contain the
video attributes bold and reverse. If subsequent definitions of field, text, or line-drawing characters
overwrite any characters of the video definition, the characters overwritten take on only the video
attributes defined in that statement.

FMS/TRANSLATE Command

FMS/TRANSLATE Command — To convert a form description into a binary form, use the FMS/
TRANSLATE command.

88

Chapter 4. Form Language Translator - FMS/#RANSLATE

Syntax

FMS/ TRANSLATE [/[NO]LISTING [=file-spec] | /'WARNINGS=level | /ERROR/LIMIT=x] file-
spec [/[NOJOUTPUT [=file-spec]]

file-spec represents a file specification

level represents one of the error message levels: ALL,
INFORMATIONAL, ERROR, WARNING

n represents the number of errors allowed before
translation is aborted

Description

This command allows you to convert a form description to a binary form. In the command syntax
illustration shown above, file-spec represents the following file specifications:

* A form description, when used as the input file
e A listing file, when used with the /LISTING qualifier

* A binary form, when used with the /OUTPUT qualifier

Qualifiers

/LISTING = [file-spec]
/NOLISTING

Creates a translation listing. Use file-spec to specify a name for the listing file; if you do not
specify this file, FMS uses the name of the input file and assigns an .LIS file type. The default
when you use the FMS/TRANSLATE command interactively is /NOLISTING. The default when
you use it in a batch job is /LIST. /NOLISTING does not create a translation listing.

/WARNINGS={ALL [INFORMATIONAL I ERROR I WARNING}

Specifies which level of error messages are to be reported. The qualifier value

represents the minimum severity level of messages reported. The levels are: ALL,
INFORMATIONAL, ERROR, or WARNING. The default is ALL. For example, if you specify /
WARNINGS=WARNING, the informational messages are not reported.

/ERROR-LIMIT =n

Specifies the number of errors allowed, represented by n, before the translation is aborted. The
default limit is 20. The valid values for n are O through 255 (inclusive).

/OUTPUT = [file-spec]
/NOOUTPUT

Specifies the name of the output file, which is the form file represented by file-spec. If you do not
specify file-spec, FMS uses the name of the input file and assigns a .FRM file type./ NOOUTPUT
does not create an output file.

Examples

1. $ FMS/ TRANSLATE MENU

89

Chapter 4. Form Language Translator - FMS/#RANSLATE

In this example, a binary form is created from the form description MENU.FLG and is stored in
the form file MENU.FRM.

2. $ FMVB / TRANSLATE/ WARNI NGS= ERROR MENU QUTPUT=TEST

In this example, a binary form is created from MENU.FLG and is stored in TEST.FRM; this
command also specifies that only messages of severity ERROR and SEVERE are to be reported.

3. $ FMS/ TRANSLATE/ LI ST=MENULI ST MENU NOCQUTPUT

In this example, a listing file named MENULIST.LIS is created from the translation of
MENU.FLG. The command also specifies that no output form file should be created.

Sample Translation Listing

Example 4.1 shows a sample listing produced by the Form Language Translator. The listing prints
out coordinates in the left margin to show the absolute coordinate values for relative coordinates in
statements. At the bottom of the listing is a summary of errors, the time it took to translate the form
description, and the command line processed.

Example 4.1. Sample Translation Listing

5-Cct-1982 10: 03: 11 FMS Form Language Translator 2.2
30- SEP- 1982 11:50: 28 USER: [FMS] MENU. FLG,

0001 ! MENU

0002 ! FM5 VZ SAMPLE APPLI CATI ON PROGRAM FORM
0003 ! MENU

0004

0005 FORM NAME= ' MENU

0006 HELP_FORM= ' HELP_INENU

0007 AREA TO CLEAR= 1. 23

0008 W DTH= 80

0009 BACKGROUND= WHITE

0010 DBLWD= 7

0011 DBLSI Zz= 3

0012 FUNCTI ON_KEY_ACTI ON_ROUTI NE=' TAKEL1S' ;
(0, 1)

0013

0014

0015 TEXT (3,9) ' Checking Account Menu '
0016 REVERSE

(3 9

0017

0018 TEXT (7,10) 'Choose option (1-5):';

(7, 10)

0019

0020 FI ELD NAME= 'OPTION' (7,31) PICTURE= '9'
0021 HEL P=

0022 'Enter one of the nunmbers 1, 2, 3, 4, or 5
0023 DEFAULT= ' 2'

0024 ACTION ROUTINE= 'VALID1l' : '12345
0025 RESPONSE_REQUI RED

0026 UNDERLI NE ;

(7, 31)

0027

0028 TEXT (9,27) '1 "Exit' ;

90

Chapter 4. Form Language Translator - FMS/#RANSLATE

(9, 27)

0029 TEXT (11,27) '2 Wite a check'
(11, 27)

0030 TEXT (13,27) '3 Make a deposit' ;
(13, 27)

0031 TEXT (15,27) '4 View the check register’
(15, 27)

0032 TEXT (17,27) '5 Show account data' ;
(17, 27)

0033

0034 DRAW (20,49) : (23,80) ;

(23, 49)

0035

0036 TEXT (21,50) 'For help, Press HELP,' ;
(21, 50)

0037 TEXT (22,50) 'To continue, Press keypad 15.°'
(22, 50)

0038

0039 END OF_FORM NAME= ' MENU ;

End of translation 5-0ct-1982 10:03:13
39 lines were parsed,

No errors were detected.

El apsed tine is 0,61 seconds,

FMS/ TRANSLATE USER: [FMS] MENU, FLG

/L' ST = USER: [FMS] MENU, LI S;

/ OUTPUT=USER: [FMS] MENU, FRM

Chapter 4. Form Language Translator - FMS/#RANSLATE

92

Chapter 5. Form Librarian - FMS/
LIBRARY

The Form Librarian is the utility that manages form libraries. Putting forms in form libraries makes
the forms available to the Form Driver and your application program at run time. You can also make
them available by making them memory resident. Memory-resident forms are described in Chapter 6.

When the application requires the use of a form at run time, the Form Driver reads the form directly
from a form library file that has been stored on a disk. You do not link the form library with the
application, but you do name the form library in a Form Driver call. Storing forms in form libraries
makes it easy to change and manage forms. You do not need to relink the application every time you
change one or more forms; relinking would be necessary if you used memory-resident forms. You
can store all your forms in one place. Also, when you use form libraries instead of memory-resident
forms, the size of the application program image is smaller.

The Form Librarian offers a variety of operations that can be performed on form libraries:
* Create a library FMS/LIBRARY/CREATE

* Insert a form in a library FMS/LIBRARY/INSERT

* Replace a form in a library FMS/LIBRARY/REPLACE

» Extract a form from a library FMS/LIBRARY/EXTRACT

* Delete a form from a library FMS/LIBRARY/DELETE

The following paragraphs introduce the Form Librarian capabilities and describe the various
commands in detail. Chapter 1 describes DCL command syntax in general.

The create operation makes a new library file and puts one or more binary forms in it. If you want

to put an additional form in an existing library, use the insert operation. If you want to exchange

one version of a form in a library with a newer version of the same form, use the replace operation.
Replace removes the old version of the binary form and replaces it with the new version. The extract
operation copies a binary form from the library and puts it in a form file. The delete operation
removes a form altogether. Note that the Form Editor can copy a binary form from a library and make
it available for modification.

Warning

When the Form Librarian updates a form library file, it does not create a new output form library file.
Instead, it updates in place, without changing the form library file's version number. For this reason,
you may find it helpful to keep copies of old forms, which would otherwise be destroyed by a replace
or a delete operation.

The Form Application Aids FMS/DIRECTORY command produces directories of form files and form
libraries. Refer to Chapter 6 for information on the Form Application Aids.

You can run the Form Librarian on any type of terminal, video or hard copy.

93

Chapter 5. Form Librarian - FMS/LIBRARY

FMS/LIBRARY/CREATE Command

FMS/LIBRARY/CREATE Command — To create a form library, use the FMS/LIBRARY/
CREATE command.

Syntax

FMS/LIBRARY/CREATE [/[NO]JLOG] form-library-spec form-spec-list

form-library-spec represents a file specification for a form library

form-spec-list represents a list of one or more form-specs
separated by commas

form-spec represents any one of the following file
specifications:

form-file-spec, form-library-spec,

form-library-spec/FORM NAME= form-name,
or

form-library-spec/FORM NAME (form-name-
list)

Description

In the command syntax illustration shown above, form-library-spec represents the file specification
of the form library file you wish to create. FMS assigns a .FLB file type to the form library file
specification by default. The parameter form-spec-list represents a list of input files (form files,
partial form libraries, or whole form libraries) containing forms that you wish to insert in the form
library you are creating. FMS assumes an .FRM file type for input file specifications by default,
unless you specify /FORM-NAME (in which case FMS assumes a default file type of .FLB). The
input cannot contain forms with duplicate names. The Form Librarian skips to the next form in the
input if it reads a duplicate form name. Figure 5.1 illustrates the create operation.

Qualifiers

/LOG
/NOLOG

The /LOG qualifier logs completed actions on the terminal. The /NOLOG qualifier is the default.

Examples

$ FMS/ LI BRARY/ CREATE/ LDG SUBSET MENU, ACCOUNTS, FLB, CHECKI NG
FORMF(REG STER, DEPCSI T)

In this example, the form library SUBSET.FLB is created. The form in the form file MENU.FRM, all
the forms in the form library ACCOUNTS.FLB, and the forms REGISTER and DEPOSIT in the form
library CHECKING.FLB, are inserted in SUBSET.FLB. Also, the /LOG qualifier is used to provide
logging of the action on the terminal.

94

Chapter 5. Form Librarian - FMS/LIBRARY

Figure 5.1. Creating a Form Library

Form files
CHKDON.FEM HCHECK.FRM HREYS.FRM
HWLCOM.FEM MENU.FRM WELCOM.FRM HDPSIT.FRM
ACTDAT.FRM HACTDT.FRM CHECK.FRM
DPOSIT.FRM REGIST.FRM
HMENU. FRM
Y

SFMS/LIBRARY/CREATE SAMP.FLB MENU.FRM, WELCOM.FRM,...

Form library file

Library FNSV2: (TEST.FNSISAMP.FLB; 14, created: 28-0CT-1982 12136
Date and time of last modification: 28-DCT-1982 12:36

Forn nane Creation date/time Morkspace size (bytes)

28-80T-1842 12:35
8-00T-1842 12:36
28-0CT-1982 12:36
28-0CT-1982 12:36
28-0CT-1982 12:36
28-0CT-1582 12:36
28-0CT-1982 12:36
28-0CT-1582 12:38
28-0CT-1982 12:38

839
173
68
508
52
4
46
32
4
46
165
992
€8

FMS/LIBRARY/INSERT Command

FMS/LIBRARY/INSERT Command — To insert a form in a form library, use the FMS/LIBRARY/
INSERT command.

95

Chapter 5. Form Librarian - FMS/LIBRARY

Syntax

FMS/ LIBRARY /I NSERT [/[NO]JLOG] form-library-spec form-spec-list

form-library-spec represents a file specification for a form library

form-spec-list represents a list of one or more form-specs
separated by commas

form-spec represents any one of the following file
specifications:

form-file-spec, form-library-spec,

form-library-spec/FORM_NAME =form-
name, or

form-library-spec/FORM_NAME = (form-
name-list)

Description

In the command syntax illustration shown above, the parameter form-library-spec represents the

file specification of the existing form library in which you wish to insert a form. If you do not supply
a file type, FMS assumes .FLB by default. The parameter form-spec-list represents a list of input
files (form files, partial form libraries, or whole form libraries) containing forms you wish to insert. If
you do not supply a file type, FMS assumes .FRM by default, unless you specify /FORM_NAME (in
which case, FMS assumes .FLB by default).

If you try to insert a form that is already in a library, an error is signaled and the form is not inserted.
The operation continues If there are other forms to be processed. If forms in the input files have
duplicate names, an error is signaled and only the first of the forms with the same name will be
inserted.

Qualifiers

/LOG
/NOLOG

The /LOG qualifier logs completed actions on the terminal. /NOLOG does not log completed
actions. The /NOLOG qualifier is the default.

Examples
$ FNMB/ LI BRARY/ | NSERT SUBSET WELCOVE, HELPFORMS/ FORMEHWEL COVE, SUBFORNMS. FLB

In this example, the form in the form file WELCOME.FRM, the form HWELCOME in the form
library HELPFORMS.FLB, and all the forms in the form library SUBFORMS.FLB are inserted in the
form library SUBSET.FLB.

FMS/LIBRARY/REPLACE Command

FMS/LIBRARY/REPLACE Command — To replace a form in a form library, use the FMS/
LIBRARY/REPLACE command.

96

Chapter 5. Form Librarian - FMS/LIBRARY

Syntax

FMS/ L1BRARY/REPLACE [/[NO]JLOG] form-library-spec form-spec-list

form-library-spec represents a file specification for a form library

form-spec-list represents a list of one or more form-specs
separated by commas

form-spec represents any one of the following file
specifications:

form-file-spec, form-library-spec,

form-library-spec/FORM_NAME =form-
name, or

form-library-spec/FORM_NAME = (form-
name-list)

Description

This command allows you to replace a form in a form library. In the command syntax illustration
shown above, form-library-spec represents the file specifications of the form library file in which
you are replacing a form. FMS assumes a .FLB file type for the form library file specification by
default. The parameter form-spec-list represents a list of input files (form files, partial form libraries,
or whole form libraries) containing forms that you wish to replace in the form library. FMS assumes
a .FRM file type for input file specifications by default, unless you specify /FORM_NAME (in which
case, FMS assumes a default file type of .FLB). When you use this command, FMS replaces the form
in the form library with form of the same name, which is contained in the input files. If an input form
name does not match a form name already in the library, the input form is simply inserted. If more
than one input file contains a form with the same name, the last such form is put in the library. If you
do many delete and replace operations, the size of the library continues to grow. You can compress the
library by creating a new version.

Note that /REPLACE is the default Form Librarian operation. That is, if you specify the FMS/
LIBRARY command, FMS assumes FMS/LIBRARY/ REPLACE by default.

Warning

The Form Librarian updates form libraries in place. Therefore, the forms that are in the library, and
that you are replacing, are destroyed. If you want to keep copies of forms that you replace, use the
extract operation before replacing.

Qualifiers

/LOG
/NOLOG

The /LOG qualifier logs completed actions on the terminal. NOLOG does not log completed
actions. The /NOLOG qualifier is the default.

Examples

$ FMS/ LI BRARY MULTI TERM TEST5, SUBSET/ FORM=TERM NAL

97

Chapter 5. Form Librarian - FMS/LIBRARY

In this example, forms TESTS and TERMINAL in the form library MULTITERM.FLB are replaced
by newer versions of the forms from the form file TEST5.FRM and the form library SUBSET.FLB.

FMS/LIBRARY/EXTRACT Command

FMS/LIBRARY/EXTRACT Command — To extract a form from a form library, use the FMS/
LIBRARY/EXTRACT command.

Syntax

FMS/LIBRARY/EXTRACT [[NOJLOG] form-library-spec/FORM_ NAME=form-name
[[NOJOUTPUT [=file-speck]]

form-library-spec represents a file specification for a form library
form_name represents a form name

file-spec represents a file specification
Description

In the command syntax illustration shown above, the parameter form-library-spec represents the file
specification of the form library from which you wish to extract a form. If you do not supply a file
type, FMS assumes .FLB by default. The parameter form-name represents the name of the form you
wish to extract. The parameter file-spec represents the file specification of the file in which you wish
the extracted form to be stored. If you do not supply a file type, FMS provides .FRM by default. If
you do not specify the /OUTPUT qualifier, FMS uses the form name as the default output file name,
with a file type of .FRM. If the form name is longer than nine characters or contains the characters $
or -, these characters are removed and the name is truncated to nine characters.

Note that the extract operation only extracts a copy of the form from the library. It does not delete the
form from the library.

Qualifiers

/LOG
/NOLOG

The /LOG qualifier logs completed actions on the terminal. The /NOLOG qualifier is the default.

/OUTPUT = [file-spec]
/NOOUTPUT

The /OUTPUT qualifier specifies the output file in which you wish the extracted form to be
stored. If you do not supply a file specification, FMS provides the name of the extracted form and
assigns a .FRM file type. The / NOOUTPUT qualifier specifies that no output file is to be created.

Examples
$ FMS/ LI BRARY/ EXTRACT SUBSET/ FORM NAME=REG STER/ QUTPUT=REGQ STER1

In this example, form REGISTER is extracted from the form library SUBSET.FLB and stored in the
output form file REGISTER1.FRM.

98

Chapter 5. Form Librarian - FMS/LIBRARY

FMS/LIBRARY/DELETE Command

FMS/LIBRARY/DELETE Command — To delete a form from a form library, use the FMS/
LIBRARY/DELETE command.

Syntax

FMS/ LI BRARY/ DELETE [[NO]LOG] form-library-spec/FORM_NAME=(form-name-list)

form-library-spec represents a file specification for a form library

form-name-list represents a list of one or more form-names
separated by commas

Description

In the command syntax illustration shown above, the parameter form-library-spec represents the file
specifications of the form library from which you wish to delete a form. If you do not supply a file
type, FMS assumes .FLB by default. The parameter form-name-list represents a list of the names of
the forms that you wish to delete.

Only one form library can be specified on a command line. If forms specified for deletion are not in
the library, the Form Librarian signals an error but continues processing if other forms are specified.
The delete operation does not reclaim file space in the library. if you do many delete and replace
operations, the size of the library continues to grow. You can compress the library by creating a new
version.

Warning

The Form Librarian updates form libraries in place. Therefore, the forms that you delete are
destroyed. If you want to keep copies of forms that you delete, use the extract operation before
deleting.

Qualifiers

/LOG
/NOLOG

The /LOG qualifier logs completed actions on the terminal. The /NOLOG qualifier is the default.

Examples
$ FMS/ LI BRARY/ DELETE SAMP/ FORM NAME=(REG STER, HELP. MENU)

In this example, the forms REGISTER and HELP MENU are deleted from the form library
SAMP.FLB.

99

Chapter 5. Form Librarian - FMS/LIBRARY

100

Chapter 6. Form Application Aids

The Form Application Aids utility offers some services that are useful during the application program
development cycle. These services include:

* Obtaining form descriptions FMS/DESCRIPTION

e Obtaining a directory of form files and libraries FMS/DIRECTORY

* Creating memory-resident forms FMS/OBJECT

¢ Creating object modules of user action routine vectors FMS/VECTOR

The following paragraphs introduce Form Application Aids capabilities and describe each command
in detail. Chapter 1 describes the DCL command syntax in general.

The Form Application Aids utility can provide four basic types of descriptions of forms:

1. A brief description contains summary information about a form, its fields, its Named Data, and its
user action routines. It is a valuable reference tool during program development.

2. A declarations file for FMS data fields is similar to COBOL data divisions or DATATRIEVE
record definitions.

3. A full text description of a form consists of Form Language statements and is suitable for input to
the Form Language Translator (see Chapter 4).

4. A printable image shows background text and any field default values.

The FMS/DIRECTORY command produces either a brief or full directory of form files or form
libraries.

You can create a linkable file of memory-resident forms by using the FMS/OBJECT command.

Once you have created binary forms, you must put them in form libraries or make them memory
resident. Either operation makes the binary forms available to the Form Driver and your application
program at run time. You may prefer some of the advantages of memory-resident forms. Because you
link memory-resident forms with the application program, they are brought into memory when the
program is brought in.

Since a form library directory does not have to be searched, access to forms by the Form Driver or the
application is faster than if the forms were stored in libraries. Memory-resident forms also save you
from having to manage additional pieces of the application; that is, form libraries.

In order to make use of user action routines, you must link with your program an object module
containing the names and vectors of all the routines to be called. The Form Driver can use these
vectors to locate user action routine addresses in memory at run time. You generate such an object
module by using the FMS/VECTOR command.

FMS/DESCRIPTION Command

FMS/DESCRIPTION Command — To obtain a description of a form or of all forms in a library
file, use the FMS/DESCRIPTION command.

101

Chapter 6. Form Application Aids

Syntax

FMS/DESCRIPTION [{/BRIEF |/DECLARATION |/FULL |/
DISPLAY IMAGE[=[NO]JESCAPE_SEQUENCE] } | /[INOJLOG | /[INOJOUTPUT [=file-spec]]
form-spec-list

form-spec-list represents a list of one or more form-specs separated by commas

form-spec represents any one of the following file specifications:
form-file-spec, form.-library-spec,

form-library-spec/FORM..NAME=form-name, or

form-library-spec/FORM_NAME = (form-name-list)

Description

In the command syntax illustration shown above, the parameter form-spec-list represents one or more
input file specifications (form files, partial form libraries, and whole form libraries). If you do not
supply a file type, FMS assumes .FRM by default, unless you specify /FORM_NAME (in which
case, FMS assumes .FLB by default). The qualifier value file-spec represents the file specification of
the output file for the description. The default file type FMS provides is discussed in the following
sections. The qualifiers /FULL, /BRIEF, /DISPLAY IMAGE, and /DECLARATIONS are mutually
exclusive and cannot be used in the same command line. If you do not specify a qualifier, FMS
assumes /FULL by default. The default output file name is the same as the first input file name.

Qualifiers

/BRIEF

Produces a brief text description of a form. If the /OUTPUT qualifier is used, FMS provides
a .LIS default file type. If /OUTPUT is not specified, output is sent to the terminal.

The brief description contains a concatenated list of descriptions in table format, including the
following information:

Form name

Help form name

Area to clear

Memory-resident form size

Field names

Scrolled fields

Number of indexed fields

Length and type of field picture

Type of access (Display-Only Supervisor-Only)
Total length required for fields (except in scrolled areas)
Longest field

Named data indexes and names

User action routine names

The total length and longest length are the size of the buffer required for concatenated field calls.

The Memory Resident Form Size indicates the number of bytes that would be required in a user
program If the form were to be converted into a Memory Resident form and LINKed into the

102

Chapter 6. Form Application Aids

application program. This does not indicate the size of a workspace, but the size of the form
which is currently being examined.

If you process two or more forms, the brief description includes a summary with the following
information:

Required length for any one form being processed (not including fields in scrolled areas)
Largest field size

Largest scrolled line length

Largest scrolled area in lines

Number of forms processed

/DECLARATIONS

Produces a declarations file for FMS data fields similar to COBOL data divisions or
DATATRIEVE record definitions. (See Example 6.2.) The default output file type is .TXT.

Declaration files must be edited to suit your application's requirements. They list a form's
name, field names, and indexed field names. FMS does not check for invalid names when you
use this command. Fields are listed in the order that the Form Driver processes them. The /
DECLARATIONS qualifier defines all fields in a form as "x" data type regardless of the type
defined originally.

Scrolled areas are not defined in the declaration file; if a form contains only scrolled fields, the
output contains only the form name.

FMS tries to treat sets of indexed fields that look like tables as tables. FMS assumes that two
consecutive sets of indexed fields with an equal number of indices comprise a table and FMS
generates declarations accordingly.

A form without fields generates a blank output file. If you generate a declaration file of all the
forms in a library, only those forms with fields are included in the output file.

/FULL

Produces a full text description of the forms in the input files. This text description, consisting
of Form Language statements, is suitable for input to the Form Language Translator. However,
the Form Translator can process only one form description at a time. Therefore, if you input
more than one form, split the output text file into separate files for each form. This is the default
FMS/DESCRIPTION qualifier. The default output file type is .FLG. Figure shows a sample full
description.

/DISPLAY-IMAGE[=|[NOJESCAPE_SEQUENCE]]

Produces a printable image of a form. The ESCAPE_SEQUENCE value for the /

DISPLAY IMAGE qualifier produces an image that includes VT100 video escape sequences.
The NOESCAPE_SEQUENCE value, the default value for this qualifier, produces an image with
no video information. The default output file type is .LIS. Figure 6.1 shows a printed image of a
form and Figure 6.2 shows a video image.

/LOG
/NOLOG

The /LOG qualifier logs completed actions on your terminal. The /NOLOG qualifier is the
default.

103

Chapter 6. Form Application Aids

/OUTPUT] =file-spec]
/NOOUTPUT

Specifies the output file in which the description is to be stored. If you do not use file-spec, FMS
uses the name of the first input file. The /NOOUTPUT qualifier specifies that no output file is to
be created.

Examples

Example 6.1. Brief Description

FMS Form Description Application Ald - V2,2 - Brief Description
Form Nane = REQ STER

No Hel p Form

Area to Clear = 1:23

Menory Resident Form Size = 1634

Fiel d Nane (Max | ndex) Pi c(Lengt h) Access UARs

——————— Scrolled Area ————

NUMVBER x(4) Dl SP
DATE x(7) Dl SP
PAYMEM x(35) Dl SP
DEPCSI T x(6) Dl SP
AMTPAY x(6) Dl SP
BALANCE x(6) Dl SP
FAKE x(1) Dl SP
—— 6 Lines with Line Length = 65 ——

SUMMARY (4) 9(6) Dl SP

Total Length Required = 24
Longest Field = 35

Narmed Data

1 NSCROL User Action Routines
PASSKY

Example 6.2. Data Description File

A form
EMPLOYEE:

TYPE OF SALE NUVMBER OF SALES DCOLLARS

RETAIL: $----,--
WHOLESALE:
OTHER:
TOTAL: $----,--

The data description file:

01 EMPLOYEE_SALES.

05 EMPLOYEE PIC X(20).
05 FMS_TABLE_1 OCCURS 3 TI MES.
10 NUVBER_OF SALES PIC X(5).
10 TOTAL PI C X(6).
05 TOTAL_NUMBER OF SALES PIC X(6).
05 TOTAL_DOLLAR_AMOUNT PIC X(7).

104

Chapter 6. Form Application Aids

Example 6.3. Full Description

! FMS Form Description Application Aid
! Version V2.6
FORM NAME=' DEPCSI T'

HELP_FORM' HELP_DEPGCSI T'

AREA TO CLEAR=I : 23

W DTH=80

BACKGROUND=CURRENT

FUNCTI ON_KEY_ACTI ON_ROUTI NE=' PASSKY'

'110°

TEXT (1,32) 'MAKE A DEPOSI T
BOLD

TEXT’ (3,49) 'Date:’

TEXT’ (S,22) 'Current Balance §
TEXT’ (7,22) 'Deposit $'
TEXT’ (9,22) 'New Bal ance $'
TEXT’ (12,22) ' Meno:'

ATTRI BUTE_DEFAULTS FI ELD

CLEAR _CHARACTER=" '

NCAUTOTAB BLANK_FI LL NOBLI NKI NG NOBOLD NCREVERSE
NOUNDERLI NE NODI SPLAY_ONLY ECHO NOFI XED_DECI MAL
LEFT_JUSTI FI ED NOSUPERVI SOR_ONLY NOSUPPRESS NCOUPPERCASE

FI ELD NAME=' DATE (3, 55)
DATE_FI ELD=" 99- AAA- 99'
DI SPLAY_ONLY

FI ELD NAME=' CURBAL' (5, 42)
Pl CTURE=" 9999, 99'
RI GHT_JUSTI FI ED ZERO _FI LL SUPPRESS DI SPLAY_ONLY CLEAR _CHARACTER=' 0’

Fl ELD NAME='DEPOSIT' (7, 42)
Pl CTURE=' 9999, 99
HELP=' Ent er anount of deposit'
FI XED_DECI MAL ZERO FI LL RESPONSE- REQUI RED CLEAR_CHARACTER=' 0' UNDERLI NE

FI ELD NAME= ' NEWBAL' (8, 42)
Pl CTURE=" 9999, 99'
Rl GHT_JUSTI FI ED ZERO _FI LL SUPPRESS DI SPLAY_ONLY CLEAR _CHARACTER=' 0’

FI ELD NAME=' MEMO (12, 28)
Pl CTURE=35' X'
HELP=' Enter the origin of the deposit'
RESPONSE_REQUI RED UNDERLI NE

ORDER BEG N WTH =1
NAVE= ' DATE'
NAMVE=" CURBAL'

105

Chapter 6. Form Application Aids

NAME=

'DEPOSIT'

=" NEWBAL'

MEMO

NAMED_DATA | NDEX=I
DATA=" Deposi t

made.

NAVE=" DONE'

Press RETURN or
END_OF- FORM NAME=' DEPCSI T'

Figure 6.1. Printed Image of a Description

Formi DFNSIT

17i
261
211
221
23!

17745478901 TT4TATRS

1

"

T

by I
N1 ET4ATATAROI 2TA5A7RY

Mfarrnnt Relanee §

Teensit $
New Ralance 4
Kemoi

F)

S

&

ENTER to conti nue.'

.

B

07?1436?39ﬂ1?345&?8951??4567890T?3#54?390

e o i ot T e T N S R R M R 7R ey

WARE A TEFNSIT

+

6000, 00

Nabal

- I ————————p——r T TP R T T T bl et

17745678901 7345478901 2145478701 2345478901 2345476901 234547890 12T4547RFOT 224547890

1

2

3

4

&

7

e
ZR-1829-B4

106

Chapter 6. Form Application Aids

Figure 6.2. Video Image of a Description

MAKE A DEPOSIT
Date: 04-0CT-82

$0000.00
’ -

Forn: DEPOSIT

ZK-1830-84

FMS/DIRECTORY Command

FMS/DIRECTORY Command — To obtain a directory of a form file or form library, use the FMS/
DIRECTORY command.

Syntax

FMS/ DI RECTORY [{/BRIEF | /FULL }] form-spec-list [/[[NO]JOUTPUT [=file-spec]]

form-spec-list represents a list of one or more form-specs separated by
commas
form-spec represents any one of the following file specifications:

form-file-spec, form-library-spec,
form-library-spec/FORM_NAME =form-name, or

form-library-spec/FORM_NAME =(form-name-list)

file-spec represents a file specification

Description

In the command syntax illustration shown above, the argument form-spec-list represents a list of
input files (form files, partial form libraries, or whole form libraries). If you do not supply a file

107

Chapter 6. Form Application Aids

type, FMS assumes .FLB by default. If /OUTPUT is not specified, output goes to the terminal. The
qualifiers /FULL and /BRIEF are mutually exclusive and cannot be used in the same command line.
The default is /BRIEF. The default output file type is .LIS. The default output file name is the same as
the first input file name.

Qualifiers

/BRIEF

Displays a summary directory listing showing only form names that exist within the specified
file(s).

/FULL

Displays a full directory listing showing the form name, creation date and time, and workspace
size for each form in the file.

The workspace size is considerably smaller than the form size since, currently, background text
is not stored in the workspace. The value passed in the "Size" argument to the FDVSAWKSP
call need not be precise, as the form driver allocates the space it requires dynamically. The size
reported by the FMS/DIRECTORY/FULL command can be used as the workspace size when
calling FDVSAWKSP to allocate memory for the workspace.

Figure 6.3 shows a sample full form file directory listing and Figure 6.4 shows a sample full form
library directory.

/OUTPUT |[=file-spec]
/NOOUTPUT

The /OUTPUT qualifier specifies that an output file is to be created. The /NOOUTPUT qualifier
specifies that no output file is to be created.

Examples
$ FMS /DI RECTORY/ FULL THI SLI B/ OQUTPUT=LI BRDI R

In this example, a full directory listing of the form library file THISLIB.FLB is produced. The
directory listing is to be stored in the output file LIBRDIR.LIS.

108

Chapter 6. Form Application Aids

Figure 6.3. Full Form File Directory

$ fas/dir/fu deposit.fra

Forn fpplication Aids ¥2.0
9-DEC-1382 03:53

File USER: {FMSTEST.NBL27X10. AMNIDEPOSIT. FRM; 1

Forn name Creation date/time Workspace size (buies)

ﬁFn | 2-0CT-1982 12:% 508

ZK-1831-B4

Figure 6.4. Full Form Library Directory

Forn Application Aids V2.0
9-DEC-1982 09:58

Library USER:[FNSTEST.MEL27X10.ANNISANF,FLB; {4, created: 28~0CT-1982 12:36
Date and 1ime of last wodification: 20-0CT-1382 12:36

Forn name Creation date/time Workspace size (bytes)

ACCOUNT _DATA 28-0CT-1982 12:35
CHECK 28-0CT-1982 12:36
CHECK_DGNE 2B-0CT-1962 12:36
DEPOSIT 28-IXT-1962 12:36
HELP_ACCOUNT. DATA 28-0CT-1982 12:36
HELP_CHECK 23-DCT-1962 12:38
28-0CT-1982 12;
28-0(T-1982 12:
28-0CT-1982 12:38
28-0CT-1982 12:36
28-0CT-1982 12:38
28-D(T-1982 12:36
28-0CT-1982 12;

BEESRUAIREREY

ZK-1832-84

109

Chapter 6. Form Application Aids

FMS/OBJECT Command

FMS/OBJECT Command — To create a memory-resident form or forms, use the FMS/OBJECT
command (see Figure 6.5).

Syntax

FMS/ OBJECT /[NOJLOG form-spec-list [[[NO]JOUTPUT [=file-spec]]

form-spec-list represents a list of one or more form-specs separated by
commas
form-spec represents any one of the following file specifications:

form-file-spec, form-library-spec,
form-library-spec/FORM_NAME =form-name, or

form-library-spec/FORM_NAME =(form-name-list)

file-spec represents a file specification

Description

In the command syntax illustration shown above, the parameter form-spec-list represents one or more
input file specifications (form files, partial form libraries, and whole form libraries). If you do not
supply a file type, FMS assumes .FRM by default, unless you specify /FORM_NAME (in which case,
FMS assumes .FLB by default). The parameter file-spec, when used with the /OUTPUT qualifier,
represents the file specification of the memory-resident output file. If you do not supply a file type,
FMS assumes .OBJ by default. The default output file name is the same as the first input file name.

To determine how much space to allocate when you create arrays to load memory-resident forms,
refer to the brief form description produced by the FMS/DESCRIPTION/BRIEF command.

Qualifiers

/LOG
/NOLOG

The /LOG qualifier logs completed actions on the terminal. The /NOLOG qualifier suppresses
logging of completed actions (the default qualifier).

/OUTPUT |[=file-spec]
/NOOUTPUT

The /OUTPUT qualifier specifies the file specification of the output file. If you do not supply
the file specification, FMS uses the name of the first input file and assigns a .OBJ file type. The /
NOOUTPUT qualifier specifies that no output file is to be created.

Examples
1. $ FVS/ OBJECT TERMCHECK

In this example, the memory-resident form named TERMCHECK.OBJ is created from the input
form file TERMCHECK.FRM.

110

Chapter 6. Form Application Aids

2. $ FMS/ OBJECT SAMP/ FORM NAME=(VELCOME, REQ STER, CHECK) / OUTPUT=CHECKFORM

In this example, a memory-resident form file CHECKFORM.OBJ is created from the input forms
WELCOME, REGISTER, and CHECK, which are in the form library SAMP.FLB.

Figure 6.5. Creating Memory-Resident Forms

Farm fikks

WELCOM.FRM

MENLL.FRM

HKEYS.FRM

SFMS/MEMORY_RESIDENT .

MAIN MEMORY

Program

Form Briver

Mernory-
resident
forms

FMS/VECTOR Command

FMS/VECTOR Command — To create a user action routine (UAR) vector module, use the FMS/

VECTOR command (see Figure 6.6).

Syntax

FMS/ VECTOR /[NOJLOG form-spec-list [[[NO]JOUTPUT [=file-spec]]

ZK-1577-84

form-spec-list

represents a list of one or more form-specs separated by
commas

form-spec

represents any one of the following file specifications:
form-file-spec, form-library-spec,
form-library-spec/FORM_NAME =form-name, or

form-library-spec/FORM_NAME =(form-name-list)

file-spec

represents a file specification

111

Chapter 6. Form Application Aids

Description

In the command syntax illustration shown above, the parameter form-spec-list represents one or more
input file specifications (form files, partial form libraries, and whole form libraries). If you do not
supply a file type, FMS assumes .FLB by default. The qualifier value file-spec represents the file
specification of the output file for the vector module. If you do not supply the file specification for
the /OUTPUT qualifier, FMS uses the name of the first input file and assigns a .OBJ file type.

Qualifiers

/LOG
/NOLOG

The /LOG qualifier logs completed actions on the terminal. The /NOLOG qualifier suppresses
logging of completed actions (the default qualifier).

/OUTPUT |[=file-spec]
/NOOUTPUT

The /OUTPUT qualifier specifies the file specifications of the output file. If you do not supply

the file specification, FMS uses the name of the first input file and assigns a .OBJ file type. The /
NOOUTPUT qualifier specifies that no output file is to be created.

Examples
1. $ FMS/ VECTOR EXEMPTI ON, FRM OUTPUT=EXEMVEC

In this example, the UAR vector module named EXEMVEC.OBJ is created from the UARs in the
input form file EXEMPTION.FRM.

2. $ FMS/VECTOR THI SLIB

In this example, the UAR vector module named THISLIB.OBJ is created from the UARs in all
forms from the input form library THISLIB.FLB.

112

Chapter 6. Form Application Aids

Figure 6.6. Creating Object Modules of UAR Vectors

Form files Object module

ACTDAT.FRM
k

VECTOR OBJ
passky

$FMS/VECTOR

MAIN MEMORY

Program Form Driver

Vector

UARs

ZK-1834-84

113

Chapter 6. Form Application Aids

114

Chapter 7. Form Tester - FMS/TEST

The form Tester is the utility that allows you to display a form as an application program would, to
type data into fields, and to display field help. The form Tester does not require a VT100- or VT200-
compatible terminal - you can use a VT52 terminal. You can test forms created by either the Form
Editor or the form Language Translator. The Form Editor (described in Chapter 3) also lets you test
forms during its Test phase.

You can test forms stored in either form files or form libraries. You can display field help by pressing
HELP. You can see help forms If they are in the same form library as the form you are testing. The
form Tester displays any fatal form Driver error messages. However, certain nonfatal form Driver
error conditions are ignored. You can see these messages when they occur if you assign form Driver
Debug mode before you test the form. See the VST OpenVMS FMS Form Driver Reference Manual
for more information on the form Driver. The form Driver errors listed in Table 7.1 are ignored by the
form Tester in certain cases.

When testing a form with the AUTOTAB attribute in the last field visited in the form, the cursor
remains on the last character and the message "no next field on form" is displayed.

When using FMS/TEST (and the TEST phase of the form Editor), the field's help text is not displayed
if the user has specified pre-help user action routines. Post-help user action routines prevent the no
help available message from being displayed.

Table 7.1. Form Driver Errors Ignored by the Form Tester

Error Code Meaning

FDV$ UDE UAR Depth exceeded(-33)

FDV§$ UAR UAR returned illegal code (-34)

FDV$ UNF UAR specified but not found (-35)

FDV$ UTR Undefined field terminator (-17)

FDV$ FCH Form library is not open on channel (-7)

FDV§ FNM Specified form does not exist (-9)

FDVS$_FLD Field does not exist, or index value is invalid for
field (-11)

FDV$ NOF Form contains no fields (-12)

FDV$ DSP Form contains only display-only fields (-13)

Figure 7.1 shows a form displayed by the Form Tester.

Note that the Form Tester always runs with supervisor mode on. Therefore, all fields having the
Supervisor-Only attribute are treated as display-only fields.

The FMS/TEST command invokes the Form Tester.

7.1. Terminal Setup

FMS now has alternate character sets, double size and double wide lines, ruling characters, and AST
reentrancy. In addition, FMS now can display several forms on the screen simultaneously. FMS now
requires more complete control of the terminal to handle the additional screen characteristics than
FMSV1 did.

115

Chapter 7. Form Tester - FMS/#EST

FMS V1 queried the terminal directly for terminal type, options (such as the Advanced Video Option),
and current screen characteristics. This operation did not allow type-ahead; you could not enter
commands or data while FMS was preparing for form display.

To allow type-ahead, FMS now queries the operating system for terminal attributes and screen
characteristics. Type the following VMS command to make sure that VMS knows your terminal
attributes and screen characteristics before running your application:

$ SET TERM NAL/ | NQUI RE @

The operating system queries your terminal, and records its characteristics. Do not type ahead until
the operation is complete. You might consider putting the SET TERMINAL/INQUIRE command in
your login command file.

At any time you can type the following VMS command to display the characteristics of the current
terminal:

$ SHOW TERM NAL @

If your terminal characteristics differ from those the operating system has recorded, your FMS
application may not perform correctly. FMS also expects that the ANSLCRT and DEC_CRT attributes
are set appropriately. See the VSI OpenVMS Command Language User's Guide for details on terminal
characteristics.

FMS/TEST Command

FMS/TEST Command — To test a form you have created, use the FMS/TEST command.

Syntax

FMS/ TEST { form-file-spec | form-library-spec/FORM_NAME =form-name } [/[NO]JQUIET]
form-file-spec represents a file specification for a form file
form-library-spec represents a file specification for a form library
form-name represents a form name

Description

In the command syntax illustration shown above, the parameters form-file-spec and form-library-
spec are mutually exclusive and cannot be used in the same command line. The parameter form-file-
spec represents the file specification of the binary form file you wish to test. If you do not supply

a file type, FMS assumes .FRM by default. The parameter form-library-spec represents the file
specification of the form library in which the form that you wish to test exists. If you do not supply a
file type for form-library-spec, FMS assumes .FLB by default. The parameter form-name represents
the name of the form you wish to test.

Qualifiers

/QUIET
/NOQUIET

The /QUIET qualifier invokes the Form Driver quiet signaling mode. The /NOQUIET qualifier,
the default qualifier, invokes normal signaling mode.

116

Chapter 7. Form Tester - FMS/#EST

Examples

$ FMS/ TEST SUBSET/ FORM_NAME=MENU/ QUI ET

The example tests the form MENU, which exists in the form library SUBSET.FLB. The /QUIET

qualifier is used to invoke the quiet signaling mode.

Figure 7.1. Form Tester Displaying a Form

Checking Account Menu

Choose option (1-5): B

{

Exit

Write a check

Make a deposit

View the check register
Show account data

For help, press HELP.
Te continue, press keypad i-5.

ZK-1835-84

117

Chapter 7. Form Tester - FMS/#EST

118

Chapter 8. TDMS to FMS Form
Converter - FMS/CONVERT

The Terminal Data Management System (TDMS) to FMS Form Converter is a new component of
FMS which will take an existing TDMS form from the Common Data Dictionary (CDD) and output
an FMS form. The Form Converter will be used by TDMS users who wish to transfer their existing
TDMS forms to FMS.

The Form Converter will only run on the VAX series of computers. It is not dependent on any
particular type of peripheral device. It does, however, require the following software components:

+ VAX TDMS
« VAXCDD

This chapter describes the TDMS to FMS Form Converter in detail. Section 8.1 describes the
functions performed as well as features the converter does not support.

The FMS/CONVERT command invokes the Form Converter. This command requires one parameter:
The CDD path name for the name of the TDMS form. FMS/CONVERT command has two optional
qualifiers - /LOG and /OUTPUT. Section 8.2 describes the FMS/CONVERT command and its

parameters and qualifiers; a listing of a TDMS form, the FMS/CONVERT command syntax used to
convert that form, and a full description of the resulting FMS form.

8.1. TDMS to FMS Form Converter Functions

8.1.1. Functions Performed

The Form Converter accepts a valid TDMS form that is stored in the CDD as a CDD$FORM (i.e.,
with a CDD protocol of CDD$FORM) with a CDD core level of 2.

The Form Converter will output a valid FMS form file (assuming the /NOOUTPUT qualifier is not
used). It will also output informational messages to the SYSSERROR device.

Assuming the /NOOUTPUT qualifier is not used and the TDMS form is valid, this product will

always attempt to output an FMS form file, regardless of the presence of any TDMS features that are
not supported by FMS.

8.1.2. TDMS Features Not Supported by FMS

The TDMS to FMS Form Converter will ignore the following TDMS features that are contained in
the TDMS form being converted (appropriate informational messages will be issued to the user if the /
LOG qualifier is specified - see Appendix A for the messages that will be issued):

* Help form path name

* Form field data types

* Field validators:

119

Chapter 8. TDMS to FMS Form Converter - FMS/CONVERT

* Range
e Choice
e Size

* Check digit
e Scale factors

In addition, the Form Converter will modify the following field attribute combinations to make them
compatible with FMS:

» Zero Suppress, Zero Fill and Right Justify set. The fill character will be set to zero.

e Zero Suppress set but Zero Fill and Right Justify not set. The Zero Suppress attribute will be
removed.

e Zero Suppress and Right Justify set but Zero Fill not set. The Zero Fill attribute is set.

» Zero Suppress and Zero Fill set but Right Justify not set. Both Zero Suppress and Zero Fill
attributes are removed.

e Zero Fill set and Clear Character is not O. The Clear Character is set to zero.

8.2. FMS/CONVERT Command

To convert a TDMS form from the CDD to an FMS form, use the FMS/CONVERT command.

Syntax

FMS/ CONVERT CDD-path-name [/[[NOJLOG] [[[NOJOUTPUT [=file-spec]]

CDD-path-name represents the CDD path name for the name of
the TDMS form to be converted to an FMS form
file.

Description

In the command syntax illustration shown above, CDD-path-name is the only parameter accepted.
It is the CDD path name for the name of the TDMS form. If the path name contains any characters
other than those allowed in VMS file s specifications and/or logical names, then the path name must
be enclosed in quotes. This includes CDD passwords and the CDD hyphen character. Normal CDD
defaulting rules apply to the path name. The CDD path name is required.

Command Qualifiers
/LOG

The /LOG qualifier will cause the Form Converter to display logging information on the default
SYSSERROR device. This logging information will consist of success messages telling the name

120

Chapter 8. TDMS to FMS Form Converter - FMS/CONVERT

of the TDMS form being converted and the name of the output form file (if any). If the default, /
NOLOG, qualifier is given, this logging information will not be output.

Informational messages for any TDMS features being ignored by the Form Converter will always
be output whether the /[LOG qualifier is specified or not.

/OUTPUT = file-spec

The /OUTPUT qualifier causes a form file to be created. If a file-spec is specified with the
qualifier, that file specification will be the name of the output form file. The default file type will
be .FRM. If a file-spec is not specified, the filename of the form file will be the object name of the
TDMS form and the file type will be .FRM.

The NOOUTPUT qualifier does not create a form file.

Conversion Example

This example illustrates how the FMS/CONVERT command converts a TDMS form into an FMS
form. In this example you will see a listing of a TDMS form which was created using the Form
Definition Utility (FDU), the FMS/CONVERT command syntax and output, and a full description of
the converted FMS form file. The following figure illustrates the output from the FDU LIST FORM
command:

121

Chapter 8. TDMS to FMS Form Converter - FMS/CONVERT

Figure 8.1. TDMS List of the FCVEXAMPLE Form

Form nass: FLU_EXAMPLE

Fors sath namer CODSTOF . ETANSBURY . FCU_EXANFLE
Help fatm names

Helr form Path name:

Bedinntng ling nusmbar: 1

Last line nunber: 12

Forn seresn widths a0

Date/time form was stored in CDOD: Z1-MAR-1884 16:05:3B.71
Midhlisht attributes: BOLD» REVERSE s

Field Access Order List:
Field nawe Subscriey
FIRST_MANE
LAST NAME
SOCIAL_SECURITY _NUNBER
TELEFHONE _NUMBER

FORM IMAGE

1 z a a 5 B 7 B
123458769012345678301234567850123456 7890123456789 12345678801 234567880 1204567890

1 1
2 [
a 13
a 14
5 P8
[P B
E I
-3 Name: HXRMNCHANE MURGHNNOUUSHXNELAMA [
L] i 18
w o Secial Security: 999-35-8389 L]
[SO P
iz i Telgrhone: (8989)8992-8389 [T3
i3 113

] 118
15 toas
1B L
a7 PaT
18]
18 1 18
20 -]
21 i 21
22 P2z
23 23

LZ34S67£58012345E878901 2345678501 204 567890123456 7890 1 234567890 1234567890 1234557880
L z a a 5 & 7 [:}

FIELD DEFINITIONS

Finld name: FIRST_NAME
Field lensths 10

Field micture type: ALPHANUMER L
Field daratvee: TEXT

FLlL characier:

Clear ohatacter: re

Field hels text: Please enier the first name
Risalay astsiharans

1:2‘,02

Field names LAST_NAME
Field lensthsz 19

Field picture tveer ALPHANUMERIC
Field davatvre: TEXT

Fill character:

Ciear characier: Lo

Field help text: Please enter the last mame
Attributes assigneds: RESPONSE REQUIRED.
Disrlar attributes;:
10,31
Field name: SOCIAL-SECURITY_NUMBER
Field lensth: 2
Field scale faestor: 0
Field Picture ivpe: UNSIGNED NUMERIC
Field datatyre: UNSTGNED WNUMERIC
Fill tharacter: ‘o
Clear character: o
Field helr texi: Flease enter the social securitr number
Attributes assisned: AUTOTAE + RESPONSE REQUIRED.
Display attributes:
12.31
Freld name: TELEFHDNE_NUNBER
Field lensthsz ie
Field scale factor: o
Field picture trre: UNSTGNED NUMERIC
Field datatyre: UNSTGNED NUMERIC
Fill characters ‘o’
Clear character: ol
Field help text: Flease enter the telerhone number
Atiributes assisned: HUST FILL, RESPONSE REQUIRED

Diselay attributess

Example 8.1 shows the command syntax used to convert the form into an FMS form, and the output
from that command:

Example 8.1. Converting the Form

$ FM5/ CONVERT/ LOG/ QUTPUT CDD$TOP. STANSBURY. FCV_EXAMPLE
%-MS- S- CDD_EXTRACTI NG Extracting TDMS form FCV_EXAMPLE form t he CDD.
%-MS- | - DATATYPE | GNRD, Dat atype ignored on field FI RST_NAME.
%-MS- | - DATATYPE | GNRD, Dat atype ignored on field LAST_NAME.
%-NM5- | - DATATYPE_JGNRD, Dat atype i gnored on field SOCI AL_SECURI TY_NUMBER
%-MS- | - SCALEFCTR _JGNRD, Scal e factor ignored on field

SOCI AL_SECURI TY_NUNMBER.
%-MS- | - DATATYPE | GNRD, Dat atype ignored on field TELEPHONE NUVBER.
%-MS- | - SCALEFCTR | GNRD, Scal e factor ignored on field TELEPHONE NUVBER
%-MS- S- FRM OUTPUT, TDMB form successfully extracted i nto WORKS:
[STANSBURY] FCV_EXAMPLE. FRML.

122

Chapter 8. TDMS to FMS Form Converter - FMS/CONVERT

If logging is turned on using the LOG qualifier, at least one logging message for the data type of each
field will be issued.

The following command will give you a complete description of the converted FMS form.

$ FMS/ DESCRI PTI OV FULL FCV_EXAMPLE. FRM

Example 8.2 shows the full description of the FMS form file.

Example 8.2. Full Description of the FMS Form File

! FMS Form Description Application Aid
! Version V2.2
FORM NAME=' FCV_EXAMPLE'

AREA TO CLEAR=I : 12

W DTH=80

BACKGROUND=CURRENT

HI GHLI GHT=BOLD: REVERSE

TEXT (8,25) 'Nane:'
TEXT (10, 14) 'Social Security:'

TEXT (12, 20) ' Tel ephone:’

ATTRI BUTE_DEFAULTS FI ELD
CLEAR_CHARACTER=" '
NCAUTOTAB BLANK_FI LL NOBLI NKI NG NOBOLD NCREVERSE
NOUNDERLI NE NODI SPLAY_ONLY ECHO NOFI XED_DECI MAL
LEFT_JUSTI FI ED NOSUPERVI SOR_ONLY NOSUPPRESS NCUPPERCASE

FI ELD NAVE=' FI RST_NAME' (8, 31)
Pl CTURE=10"' X'
HELP=' Pl ease enter the first nane'

FI ELD NAVE=' LAST_NAME' (8, 42)
Pl CTURE=19' X
HELP=' Pl ease enter the |ast nane'
RESPONSE- REQUI RED

FI ELD NAME= 'SOCIAL SECURITY NUMBER' (10, 31)
Pl CTURE=' 999- 99- 9999’
HELP=' Pl ease enter the social security nunber'’
AUTOTAB ZERO FI LL RESPONSE_REQUI RED CLEAR_CHARACTER=' 0'

FI ELD NAME= ' TELEPHONE_NUMBER (12, 31)
PICTURE="(999)9999-9999"
HELP=' Pl ease enter the tel ephone nunber’
ZERO FI LL MUST_FI LL RESPONSE- REQUI RED CLEAR_CHARACTER=' 0'

ORDER BEGNWTH = 1

123

Chapter 8. TDMS to FMS Form Converter - FMS/CONVERT

NAVE=" FI RST_NAME'

NAVE=" LAST- NAVE'

NAME=" SOCI AL_SECURI TY_NUMBER
NAVE=" TELEPHONE_NUMBER

END_OF _FORM NAME=' FCV_EXAMPLE' ;

124

Chapter 9. Upgrading V1 Application
Programs

The Form Upgrade Utility is used to convert V1 form files and form libraries to V2 format. The
following paragraphs discuss the necessary process for upgrading to FMS V2. Section 9.2 describes
the Form Upgrade Utility. Section 9.3 describes the process for linking your applications, and the
FMS/UPGRADE command section describes the command and its qualifiers in detail.

If you have already installed VSI FMS V2, and have upgraded your V1 form files and form libraries
to V2, you will not have to upgrade again. If you have not upgraded to FMS V2, use the following
two-step procedure to upgrade your application programs.

1. Upgrade V1 form files and form libraries to run properly with upgraded application programs. Use
the Form Upgrade Utility to convert V1 form files and form libraries to V2 form files and form
libraries (as described in Section 9.1 and Section 9.2).

2. Relink your application programs (as described in Section 9.3).

9.1. Upgrading V1 Form Files and Form
Libraries

The Form Upgrade Utility converts V1 form files and form libraries to V2 format. Some exceptions
are discussed in the following paragraphs.

Before you make any modifications, read Chapter 3 of the VST OpenVMS FMS Installation Guide and
Release Notes to ensure that you make a consistent set of changes.

The Form Upgrade Utility replaces duplicate and blank field names in a V1 form with default field
names in the equivalent V2 form, and issues messages indicating what default names have been
assigned. The default field names have the following format:

F8nnnn
'nnnn'is a number string from 0001 to 9999.

V2 field and form names conform to the VSI OpenVMS Common Data Dictionary naming
conventions. Names that contain illegal characters are not modified by the Form Upgrade Utility. For
more details, refer to Chapter 2.

Upgraded V1 forms that have text in scrolled areas will not scroll the text off the screen, as the
equivalent V1 forms did. Instead, the text will remain in the scrolled area. The Form Upgrade Utility
issues a message when such forms are upgraded.

V2 utilities that generate forms also validate forms according to V2 definitions. Therefore, you
cannot use the V2 Form Editor to edit a form without conforming to V2 definitions. Similarly, Form
Language files are validated by the Form Language Translator according to V2 definitions.

9.2. Using the Form Upgrade Utility

The Form Upgrade Utility converts V1 form descriptions to V2 format and stores them in V2 form
files or form libraries. The converted file has the same file specification as the V1 equivalent, but

125

Chapter 9. Upgrading V1 Application Programs

it has a higher version number. The default input file extension is .FLB. To avoid confusion, VSI
recommends that you use the /OUTPUT qualifier to specify a different output file name.

Note

VSI recommends that you make backup copies of V1 form files and form libraries before using the
Form Upgrade Utility.

9.3. Linking Existing Application Programs to
the V2 Form Driver

After you upgrade V1 form files and form libraries, you must link your application programs with

the V2 Form Driver. Application programs linked with the V1 Form Driver shareable image must

be relinked with the V2 Form Driver. You may have to edit the command procedures that build your
application program, since the V2 Form Driver is a shareable image. Any references to the V1 Form
Driver object library will cause an error. The FMS installation places the shareable image in the
system's default shareable image library. The VAX linker resolves references to the Form Driver so
you do not need to reference the Form Driver shareable image in link commands as you may have had
to in V1.

Use the following command format to link the appropriate Form Driver modules with your
application program.

$ LINK file-spec RET

Example

$ LI NK SAMP, SMPVECTOR, SMPMEMRES RET

FMS/UPGRADE Command

FMS/UPGRADE Command — To convert V1 form descriptions to V2 format use the /UPGRADE
command.

Syntax

FMS/ UPGRADE [V file-spec] [OUTPUT[= V2 file-spec]] /[NO]JLOG

V1 file-spec represents form library or form file to be
converted

Description

In the command syntax illustration shown above, V1 file-spec represents the form library or form file
to be converted to V2 format. If the V1 input file spec is a form library, it is converted to the specified
V2 form library. If the V1 input file-spec is a form file, it is converted to the specified V2 form file.
If you specify an output file that already exists, the Form Upgrade Utility creates the next highest
version number of the file. You can convert only one form file or one form library at a time while
using FMS/UPGRADE.

126

Chapter 9. Upgrading V1 Application Programs

Qualifiers

/LOG
/NOLOG

The /LOG qualifier displays a confirmation message for every form that is successfully upgraded.
The /NOLOG qualifier suppresses the display of a confirmation message for files that are
successfully upgraded. The /NOLOG qualifier is the default FMS/UPGRADE qualifier.

Note

V1 form files or form libraries that have been altered by any means other than the V1 Form Editor
cannot be quaranteed successful conversion to V2.

127

Chapter 9. Upgrading V1 Application Programs

128

Chapter 10. FMS V1 Compatibility

The V1 Form Editor has been replaced by a new enhanced Form Editor. Section 10.1 describes the
new Form Editor.

There are two new components that replace the FMS V1 Form Utility: the Form Librarian and
the Form Application Aids. The Form Librarian creates and modifies the form libraries that your
application uses. The Form Application Aids are a group of programming tools to aid you in
developing your application. Section 10.2 describes these components in detail. Section 10.2.1
describes the comparison of V1 Form Utility options and V2 commands.

Section 10.3 describes how to use FMS V1 after FMS V2 has been installed on your system.

10.1. Form Editor

The V2 Form Editor is a forms driven interactive editor. The Form Editor Menu provides a choice of
seven major functions that the Form Editor supports. The Form Editor functions have been completely
redefined for V2. A list of these functions, with a brief description of each, follows:

Form Assign form attributes

Layout Create or modify a form

Assign Assign field attributes

Data Enter Named Data items

Order Modify field access order

Test Test the form with the Form Driver
Exit End this editor session

10.1.1. Keyboard Layout-Form Editor Keys

The function keys that are active in the Form Editor phase are shown in the Figure 10.1. To use the
function on the upper part of a key, press that function key. To use the function on the lower part of a
key, use a GOLD key sequence.

129

Chapter 10. FMS V1 Compatibility

Figure 10.1. Form Editor Keys

CHARBCK CHARFWD
Hi i
: v — —
UFLINE DOWNLINE

(" DELLINE

ALL PHASES
RETURM Terminates display of current form
{in Layous, moves cursor o next line)
DELETE Deletes previcus character
LINEFEED Deletes tield contents (in Layoul, moves

cursor down one ling in sams oolumn)

TAE Moves cursor o next field (in Layout,
moves gursor to next fixed tab stop}

BACKSPACE Moves cursor to previous fleld (in Lavouwt,
MoYES GUrsSor 1o previous character

position}
aoLD O Reverses current error signaling mowve
GOLD R Restores original fisld values (except
in Layaut)
CTRL/R Refreshes the screen

GOLO/DELETE Terminates a Gold Sequencs

LAYOUT PHASE ONLY ORDER PHASE OMLY

GOLD & Repeats a key or operation n fimes GOLD & Restores conventional field
access ordar
GOLD D Creates a MT Fihed
GOLD T Creates a time fiekd TEST PHASE ONLY
) GOLD Exits to previous field from scrofled
GOLD S Makes current ine double size ares
GOLD W Makes current line double wide GOLD | Exits to next field from scrolled area
inni f i

CTRLAU Daletes to beginning of ine R

10.2. Form Utility

The operations performed by the V1 Form Utility are performed by two components in V2. These
components are the Form Librarian and the Form Application Aids.

The Form Librarian creates and modifies the form libraries that your application accesses at run time.
The Form Librarian performs the following operations:

* Creates libraries from form files and other form libraries or partial form libraries
e Deletes forms from libraries

* Extracts copies of forms from libraries

* Inserts forms into libraries

* Replaces forms in libraries

The Form Application Aids are a group of programming tools to aid you in developing your
application. These tools are listed below.

130

Chapter 10. FMS V1 Compatibility

* FMS/DESCRIPTION produces

* asummary of a form

* aform description

¢ adata definition

* aprintable image

* avideo image of a form

* FMS/DIRECTORY displays a directory of one or more form files or form libraries.

« FMS/VECTOR generates an object module containing a User Action Routine vector.

* FMS/OBJECT generates an object module of concatenated forms that you can link with an

application program to create memory-resident forms.

10.2.1. Comparison of V1 Form Utility Options and V2
Commands

Table 10.1 shows the Form Ultility options and the corresponding V2 commands and qualifiers.

Table 10.1. Comparison of V1 Form Utility Options and V2 Commands

Option Description Commands and Qualifiers
/BA Controls form description block alignment |Not supported in V2
in a form library
/CC Creates a COBOL form description FMS/DESCRIPTION/DECLARATIONS
/CR Creates a form library FMS/LIBRARY/CREATE
/DE Deletes forms from libraries FMS/LIBRARY/DELETE
/EX Extracts forms from libraries to create a FMS/LIBRARY/CREATE
form library
/FD Creates a listing of a form description FMS/DESCRIPTION/BRIEF
FMS/DESCRIPTION/FULL
FMS/DESCRIPTION/DISPLAY IMAGE
=NOESCAPE /SEQUENCE
/FF Extracts a form file from a form library FMS/LIBRARY/EXTRACT
/HE Displays FUT HELP HELP FMS
/1D Displays FUT identification Not applicable
/LI Creates a form directory FMS/DESCRIPTION/BRIEF
FMS/DESCRIPTION/FULL
/OB Creates object modules of forms for FMS/OBJECT
PDP-11 systems
/RP Replaces forms in libraries FMS/LIBRARY/REPLACE

131

Chapter 10. FMS V1 Compatibility

Option Description Commands and Qualifiers

/SP Controls spooling to line printer Not applicable

10.2.2. FMS/DESCRIPTIONS/DECLARATIONS COBOL/
DATATRIEVE Data Description

The FMS/DESCRIPTION/DECLARATIONS command produces a data description of a form that
can be used in a COBOL data division or in a DATATRIEVE record definition.

The format of the data description used in a COBOL data division or in a DATATRIEVE record
definition has completely changed for FMS V2. V1 has two variables defined for each field; one
variable for the field name, and one variable for the data. V2 defines only the data variable.

V1 variable names are built from a prefix, a form name, and a field name. V2 variable names are
built from the field name only. COBOL programmers can use literals in the procedure division when
referencing fields. Below is a section of a V1 data description that appeared in the V1 VSI OpenVMS
FMS Software Reference Manual that shows the format of the FUT/CC output. The data description
has a field named "PARTNOQO" in a form named "PARTS."

01 FORM PARTS- DEF
03 FORM PARTS PIC X(6) VALUE "PARTS",
03 N-PARTS- PARTNO PIC X (6) VALUE "PARTNO',
03 D- PARTS- PARTND PI C X(9),

In V2, the FMS/DESCRIPTION/DECLARATIONS command produces the same data description in
the following format:

01 PARTS
05 PARTND PIC x(9),

In most cases, the output can be used without modification; however, in the case of scrolled or
indexed fields, you may have to edit the output.

If you modify an upgraded V1 form, and you want to create a new data definition to reflect the
changes, you must also modify the variable names in the new data definition to match the variable

names in the rest of the application.

Scrolled Fields

In V1, scrolled fields are included in the data definition and are noted in the comments. The V2 data
definition works for the general form wide field calls. In the V2 data definition, all scrolled fields are
ignored. They are not defined or listed in the FMS/DESCRIPTION/DECLARATIONS output, and
there are no corresponding messages to indicate that scrolled areas have been ignored.

132

Chapter 10. FMS V1 Compatibility

Indexed Fields

The FMS/DESCRIPTION/DECLARATIONS command determines if an index field group is part

of a table. A table is defined as follows: the first element of an indexed field is followed, in access
order, by another first element of an indexed field that contains the same number of indexes. Only the
first element of the indexed set is checked for access order; all other elements of the indexed set are

ignored.

In the following example of a form description, the first elements of the indexed fields
NUMBER_OF SALES, and DOLLARS are sequential in access order. Both groups have three
elements. Therefore, the indexed fields are defined as a table in the data definition.

Exanpl e Form
EMPLOYEE:

TYPE OF SALE
RETAIL:

VWHOLESALE:
OTHER:
TOTAL:

NUMBER OF SALES

Exanpl e Descri ption

01 EMPLOYEE_SALES.
05 EMPLOYEE
05 FMS_TABLE_1 OCCURS 3 TI MES.
10 NUMBER_OF SALES
10 DOLLARS
TOTAL_NUVBER OF SALES
TOTAL_DOLLAR_AMOUNT

05
05

DOLLARS
$- -T - ’

PI C x(20) .

PIC X(5).
PI C X(6).
PIC X(6) .
PIC xX(7).

10.3. Installing VSI FMS V2 with VSI FMS V1
Present on the System

The VSI FMS V2 installation procedure makes provisions for systems that have VSI FMS V1
installed. This affects two categories of users:

1. Users who have a version of ALL-IN-1 that requires VSI FMS V1
2. Users who wish to ease migration to VSI FMS V2

VSI FMS V1 is left intact on the system. The VAX FMS V2 installation procedure makes the
following changes to avoid any conflict between the two versions:

e All references to FMS V1 are deleted from STARLET.OLB.

To use FMS V1, you can link programs with FDVLIB.OLB in the directory SYSSLIBRARY.
Programs that are already linked with FDVLIB.OLB will run correctly.

* The Form Driver shareable image, FDVSHR.EXE, in the directory SYS$SLIBRARY, is
renamed to FDVSHR.OLD. The option file used to link with the shareable image is renamed to
FDVSHARE.OLD.

If you wish to continue using the FMS V1 shareable image, move FDVSHR.OLD from the
directory SYSSLIBRARY to another account and rename it to FDVSHR.EXE.

133

Chapter 10. FMS V1 Compatibility

Examples
$ coprpYy SYSS$LI BRARY: FDVSHR, DLD SYS$SYSTEM FDVSHR. EXE

To access the shared image, assign FDVSHR.EXE, with the associated device and directory
specification, to the logical FDVSHR.

$ ASSI GN SYS$SYSTEM FDVSHR FDVSHR

134

Appendix A. VSI FMS Software
Messages

This appendix lists VSI FMS software messages that are displayed when you use FMS utilities or run
a program that uses FMS.

FMS messages are grouped and listed alphabetically in the following three sections:

1. FMS Utilities Messages describe each message that might occur when using FMS commands at
DCL level or within each utility.

2. Form Driver Messages for Programmers describe each message that might occur during program
debugging.

3. Form Driver Messages for Terminal Operators describe messages that might occur at run time in
programs that use FMS.

A.1. Message Format

FMS messages displayed at DCL level generally have the following format:

%-Ms- i dent, text
[-FM5-L-ident, text]

FMS

Is the FMS facility code.

L

Is a severity level indicator of the following values:

Code Meaning

S Success

I Information

W Warning

E error

F Fatal, or severe error

Success and information messages display information on the performed operation(s). An operation
can be a Form Editor function, a Form Language statement, Form Library operation. Form
Application Aid operation, or a Form Driver call.

Warning messages indicate that the operation performed may have been partially completed but that
you may have to check to see that it was completely performed.

Error messages indicate that the output or program result is incorrect, but FMS may attempt to
continue execution.

Fatal or severe messages indicate that FMS cannot continue execution of an operation.

135

Appendix A. VSI FMS Software Messages

Ident

Is an abbreviation of the message text. The messages under each of the following sections are
alphabetized according to this abbreviation.

Text

A description of what happened.

FMS messages displayed within the Form Editor are displayed without a facility identification. Only a
textual message is displayed on the bottom line of the terminal.

A.2. Messages for Programmers

Programmers see the following types of FMS messages:
* FMS utilities messages
* Form Driver messages

FMS utilities messages are displayed on the SYSSERROR and SYS$SOUTPUT devices if errors occur
while you are using any of the utilities or if you specify commands with the /LOG qualifier. The
messages are in simple textual format and are described in detail in this appendix in the FMS Ultilities
Messages section.

Form Driver messages are displayed on the terminal when a program that uses FMS is being
executed. These messages enable you to minimize or completely eliminate program-related error
messages. These messages are described in detail in the section on Form Driver Messages for
Programmers.

A.3. Messages for Terminal Operators

When terminal operators run programs that use FMS, the Form Driver displays messages on the
bottom line of the current terminal or the default terminal associated with the program. You can also
provide messages for terminal operators by using the FDVSPUTL call (see the VST OpenVMS FMS
Form Driver Reference Manual.

Form Driver messages are issued if the terminal operator makes an input error, such as typing in an
invalid character, or trying to move the cursor illegally. A message is displayed on the bottom line of
the screen and the terminal bell is rung. The terminal operator can specify Quiet mode by pressing
GOLD Q, which specifies that the screen's video is reversed when an error occurs. If GOLD Q is
pressed again, the signal mode reverts to the terminal bell. The text messages displayed at the bottom
of the screen are in simple textual format and are described in detail in the following section on Form
Driver Messages for Terminal Operators.

A.4. Suggestions to Follow if FMS Software
Malfunctions

If you think that FMS software has malfunctioned, take the following steps:

1. As accurately as possible, write down the functions, commands, terminal input, and user program
processes that you used before the messages appeared that indicated a malfunction.

136

Appendix A. VSI FMS Software Messages

2. Save any programs and files that you were using.

3. Check with the person who installed FMS to make sure that nothing went wrong with the
installation and that the installation was properly verified.

4. If you still think that FMS software has malfunctioned, check your hardware or find someone to
check it for you.

5. If'the problem persists, consult someone in your area who is very familiar with FMS software.

6. Ifyou qualify to receive a written reply under VSI's Software Performance Report (SPR) service,
follow the directions on the SPR form.

A.5. FMS Utilities Messages

ADJFLD The cursor is not over a field.

Explanation: The adjacent field function is valid only when the cursor is over a field with more than
one character.

User Action: Position the cursor over a field that is longer than one character or make the current
field picture more than one character.

ADJPROT You cannot split a date, time, or indexed field.
Explanation: Time, date, and indexed fields cannot be split with the Adjacent Field Function.

User Action: Delete the entire date or time field and create the fields that you want. If you want to
split an indexed field, press GOLD FLDATR, then TAB to "Index _." Type a zero to make the field
not indexed and press RETURN to continue editing.

ADVPARSN Parsing has advanced to 'numeric value'.

Explanation: This message is a result of the previously reported syntax error. The message gives an
indication of what internal error recovery was done. No binary form will be output as a result of this
translation.

User Action: Correct the syntax error.

ADVPARSS Parsing has advanced to 'keyword or statement item'.

Explanation: This message is a result of the previously reported syntax error. The message gives an
indication of what internal error recovery was done. No binary form will be output as a result of this
translation.

User Action: Correct the syntax error.

ALLBAD None of the input files could be opened.
Explanation: None of the specified input files could be opened.

User Action: Check to make sure that the input files were specified correctly and that they exist in the
specified directory.

137

Appendix A. VSI FMS Software Messages

ATERM Unable to attach terminal.
Explanation: The FMS Form Driver was unable to attach the terminal.

User Action: Check succeeding messages for reason.

ATTRPREYV The value 'value' has replaced the previous attribute assignment.

Explanation: This attribute is already defined in the Form Language statement. The last attribute
specification in the statement has been assigned. A binary form will be output.

User Action: Only one attribute assignment is valid for this particular attribute. You should remove
all other attribute assignments for the Form Language statement.

AWKSP Unable to attach workspace.
Explanation: The FMS Form Driver was unable to attach the workspace.

User Action: Check succeeding messages for reason.

BAD_CORE_LEVEL Unsupported core level for this TDMS form.

Explanation: The user specified a TDMS form that has a core level that the Form Converter does not
support.

User Action: Upgrade the core level of the TDMS form to that which is supported by the Form
Converter.

BADDRAW lllegal SELECT perimeter for DRAW or UNDRAW function.

Explanation: The DRAW and UNDRAW functions can only overwrite blanks and other line drawing
characters. The perimeter of the current select area violates this restriction and the function is rejected.

User Action: Adjust the SELECT area as required.

BAD_PATHNAME Error in accessing the pathname.

Explanation: The user specified a bad pathname. This message is followed by the CDD error
message that explains the error.

User Action: Specify a correct pathname.

BAD_PROTOCOL Incorrect protocol for this CDD object - should be "CDD$SFORM".
Explanation: The user specified a CDD object that is not a TDMS form.

User Action: Specify a TDMS form pathname instead.

138

Appendix A. VSI FMS Software Messages

BLANKNAME A blank field name was specified in form 'form-name'; default name 'field-
name' has been assigned.

Explanation: Blank field names are not allowed in FMS Version 2.6, so a default name was supplied
for the field. This should not have any effect on the upgraded application program.

User Action: If the default field name is not appropriate, rename the field.

BRIEF Form 'form-name' brief description output to 'file-spec'.
Explanation: A brief form description of the specified form has been successfully output to the
specified file or device. The description contains only summary information such as names of forms,

fields, UARs, and Named Data, and various other attributes.

User Action: Use the information as a reminder while you code your application program.

BRIEFERR Error generating brief description for input file 'file-spec’.

Explanation: An error occurred while attempting to generate a brief description for the specified
input file.

User Action: Check to be sure the input files are valid and were entered correctly. Also look at any
previous messages for more information.

BTSLINE Form too wide on line 'line-number’.

Explanation: The FMS Form Tester was unable to display the form on the user's Bisynch terminal
since the line specified did not fit after it had been expanded with BTS terminal attributes.

User Action: Edit the form with the form editor to cause the line to be displayable on the screen. This
may involve removing video attributes or extra spaces between text or fields.

CDD-EXTRACTING Extracting TDMS form 'form-name' from the CDD.

Explanation: This message tells the user the name of the form being extracted from the CDD. This
message is output before the extraction starts.

User Action: The message indicates that the conversion has started successfully. No user action is
required.

CDD_FAILURE A CDD call failed. Aborting the form conversion.

Explanation: A call to the CDD run-time routines failed. The Form Converter cannot continue
converting the TDMS form.

User Action: Make sure that the CDD is installed on the system. Make sure that the TDMS form is
accessible by the TDMS Form Definition Utility.

139

Appendix A. VSI FMS Software Messages

CDISP Unable to display form named 'form-name'.
Explanation: The FMS Form Driver was unable to display the specified form.

User Action: Check succeeding messages for reason.

CHECKDGT _IGNRD Check digit field validator ignored on field 'field-name'.
Explanation: This field contains a check digit field validator. It will be ignored.

User Action: The message is informational.

CHOICE_IGNRD Choice field validator ignored on field 'field-name'.
Explanation: This field contains a choice field validator. It will be ignored.

User Action: The message is informational.

CLEARAREA An invalid line number was specified for AREA_TO_CLEAR. Lines 1 and 23
have been assigned.

Explanation: The line number specified for the AREA TO_CLEAR is invalid, or the order of
specification is wrong. Valid line values are 0 through 23 inclusive. The range for the area requires
the number specified first to be greater than or equal in value to the number specified last. The default
values (1 and 23) were assigned for this form. A binary form will be output.

User Action: Correct the values for the lines in AREA_ TO_CLEAR.

CLEAR_TO_ZERO Clear character set to zero on field 'field-name'.

Explanation: This field contained a conflict of attributes involving the clear character. To resolve the
conflict, the clear-character was set to zero.

User Action: The message is informational.

CMDLNERR An error was encountered in processing the command line.
Explanation: The command line has an error and cannot be processed.

User Action: Check the command line syntax, parameters, and qualifiers, and then retype the
command.

CONF_SCREEN_POS Conflicting screen positions at line 'line-number' column 'column-
number’.

Explanation: The TDMS form specifies two entities that occupy the same screen position. These
entities can be background text, fields, rule characters, or video attributes.

User Action: Edit the TDMS form with the Form Definition Utility. Remove the conflicting entities
from the indicated line and column position.

140

Appendix A. VSI FMS Software Messages

CONTINUE Continuing to process.

Explanation: Recovery is possible from any of the reported errors; therefore, processing continues.
User Action: Look at the previous messages to determine their causes and also make sure that the
output is as you intended.

CONTXTLST An internal recovery error was detected.

Explanation: This is an internal logic error message. This message should not occur during
translation.

User Action: Send in SPR.

COORDOCC Coordinate position is already occupied by field or text.

Explanation: The screen position specified already contains a field or background text. Field and text
cannot overlap one another. No binary form will be output as a result of this translation.

User Action: Correct the coordinate position for the current statement or that of the conflicting field
or text definition.
CURSORMOY Cannot move cursor past display boundary.

Explanation: The cursor cannot be moved past the display boundaries. Any attempt to move the
cursor beyond the top, bottom, left, or right of the display will be rejected.

User Action: Do not attempt the illegal move.

CUTLINES Cannot cut or paste a SELECT area with different line types.

Explanation: You cannot cut or paste a SELECT area that has more than one line type. Line types
can be double wide, double size, scrolled, and normal.

User Action: If you want to cut or paste the specified select area, you must alter the line types first.

CUTSCROLL Canneot cut part of a scrolled area.

Explanation: You can only cut all of a scrolled area.

User Action: To cut a scrolled area, create a select area for the entire scrolled area. If you wish to cut
the present select area, change the appropriate lines so they are not scrolled.

DATATYPE_IGNRD Datatype ignored on field 'field-name’.

Explanation: This field contains a datatype. The datatype will be ignored.

User Action: The message is informational.

141

Appendix A. VSI FMS Software Messages

DBLLENGTH Line is too long to display as double wide or double size.

Explanation: Displaying the current line as double wide or double size would cause some characters
to be truncated at the right margin.

User Action: Shorten the line by deleting characters past the midpoint of the line.

DBLPREYV A line attribute has already been assigned to this line.

Explanation: The line specified for the DBLWID or DBLSIZ attribute already has a line attribute
assigned to it. Only one line attribute assignment can be made to any line. No binary form will be
output as a result of this translation.

User Action: Correct the line number specified in the current or previous DBLSIZ or DBLWID
attribute specification.

DBLSCR Cannot change line size of line in scrolled area.

Explanation: Lines cannot be changed between normal and double size or double wide within a
scrolled area.

User Action: Remove the line(s) from the scrolled area by pressing UNSCROLL and then assign a
line attribute.
DBLSIZE Line is already double sized.

Explanation: The specified line is already double size and therefore cannot be converted to double
wide.

User Action: Press GOLD S again to make the line normal; then press GOLD W to make the line
double wide.
DBLSLINE Invalid double size line assignment.

Explanation: The line number specified for the DBLSIZ attribute is invalid. Valid line numbers are 1
through 22 inclusive. No binary form will be output as a result of this translation.

User Action: Specify a valid line number for the DBLSIZ assignment.

DBLWIDE Line is already double wide.

Explanation: The specified line is already double wide and therefore cannot be converted to double
size.

User Action: Press GOLD W again to make the line normal; then press GOLD S to make the line
double size.

142

Appendix A. VSI FMS Software Messages

DBLWLINE Invalid double wide line assignment.

Explanation: The line number specified for the DBLWID attribute is invalid. Valid line numbers are
1 through 23 inclusive. No binary form will be output as a result of this translation.

User Action: Specify a valid line number for the DBLWID assignment.

DECLARS Form 'form-name' declarations output to 'file-spec'.

Explanation: A set of declarations for various form elements for the specified form has been
put in the specified file. These declarations are similar to what would be needed in a COBOL or
DATATRIEVE program, but they may need to be modified to be used in an actual program.

User Action: Modify the file as necessary and include it in your COBOL or DATATRIEVE program.

DECLERR Error generating form declarations for input file 'file-spec’.

Explanation: An error occurred while attempting to generate form declarations for the specified input
file.

User Action: Check to be sure the input files are valid and were entered correctly; also look at any
previous messages for more information.

DELBOUND Cannot delete past display boundaries.

Explanation: You cannot delete characters past the display boundaries. Any attempt to delete a
character beyond the top, bottom, left, or right of the display will be rejected.

User Action: Do not attempt the illegal deletion.

DELCHRDTM Cannot delete characters in date, time, or indexed fields.

Explanation: You cannot delete individual characters in date, time, or indexed fields. The attempted
delete has been rejected.

User Action: Press CUT or DELLINE to delete the entire field, and then respecify the field as
desired.

DELCHRLEF Cannot delete before beginning of line.
Explanation: You cannot delete characters before the beginning of a line.

User Action: Do not attempt to delete characters beyond the physical screen boundary (beginning of
a line).

DELCURCHR Cannot delete character in hanging cursor position.

Explanation: The current character cannot be deleted from the hanging cursor position because the
cursor is not logically over a character.

User Action: Move cursor left, or delete previous character.

143

Appendix A. VSI FMS Software Messages

DELETED Form 'form-name' deletedfrom 'library-name’'.
Explanation: The specified form was successfully deleted form the form library.

User Action: The message is informational.

DELFIELD Cannot split a field when deleting to beginning or end of line.
Explanation: You cannot delete part of a field; you must delete the whole field.

User Action: Reposition the cursor to delete either all or none of the field.

DELFILE Unable to delete output file 'file-spec'.

Explanation: Due to an error in processing, the output file is not valid, but for some reason it could
not be deleted.

User Action: Check to make sure the output device is on line and delete the output file yourself.

DELLINE Cannot delete scrolled line.
Explanation: Lines in scrolled area cannot be deleted.

User Action: Remove the line from the scrolled area and then delete the line.

DELLINSEL Cannot delete or undelete a line during SELECT definition.
Explanation: You cannot press DELLINE or UNDELLIN after you have pressed SELECT. You can
only press CUT, CHARSET, DRAW, UNDRAW, CENTER, VIDEO, and RESET during definition of

a select area.

User Action: Cancel the SELECT function by pressing GOLD RESET and then perform the desired
function.

DELOUTPUT Output file deleted.
Explanation: The output file has been deleted due to a severe error.

User Action: Check previously issued messages to determine the cause of the problem.

DESCERR Error generating form description for input file 'file-spec'.

Explanation: An error occurred while attempting to generate a form description for the specified
input file.

User Action: Check to be sure the input files are valid and were entered correctly. Also look at any
previous messages for more information.

144

Appendix A. VSI FMS Software Messages

DESCRIBED Form 'form-name' described in 'file-spec'.

Explanation: A form description of the specified form has been put in the specified text file. The
form description consists of Form Language statements which completely describe the form. If a text
file contains only one form description, it may be used as input to the Form Language Translator,

which will output the corresponding binary form.

User Action: You can print the file for a hard-copy record of everything in the form.

DISPAUTO DISPLAY_ONLY is invalid with AUTOTAB.

Explanation: DISPLAY ONLY and AUTOTAB cannot be assigned to the same field. No binary
form will be output when using the Form Language Translator.

User Action: If using the Form Editor, assign only one of the field attributes. If using the Form
Language, correct the statement to include only one of these attribute specifications.

DISPHELP DISPLAY _ONLY is invalid for a field with help text.

Explanation: Help text cannot be assigned to a display-only field. No binary form will be output
when using the Form Language Translator.

User Action: If using the Form Editor, assign only one of the field attributes. If using the Form
Language, conect the statement to use only one of these attribute specifications.

DISPMUST DISPLAY_ONLY is invalid with MUST_FILL.

Explanation: DISPLAY ONLY and MUST FILL cannot be assigned to the same field. No binary
form will be output when using the Form Language Translator.

User Action: If using the Form Editor, assign only one of the field attributes. If using the Form
Language, correct the statement to include only one of these attributes.

DISPRESP DISPLAY_ONLY is invalid with RESPONSE REQUIRED.

Explanation: DISPLAY ONLY and RESPONSE REQUIRED cannot be assigned to the same field.
No binary form will be output when using the Form Language Translator.

User Action: If using the Form Editor, assign only one of the field attributes. If using the Form
Language, correct the statement to include only one of these attributes.

DISPSUPE DISPLAY_ONLY is invalid with SUPERVISOR_ONLY.

Explanation: DISPLAY ONLY and SUPERVISOR ONLY cannot be assigned to the same field. No
binary form will be output when using the Form Language Translator.

User Action: If using the Form Editor, assign only one of the field attributes. If using the Form
Language, correct the statement to include only one of these attributes.

145

Appendix A. VSI FMS Software Messages

DISPUAR DISPLAY_ONLY is invalid for a field with action routines.

Explanation: The Display Only attribute and UARs cannot be assigned to the same field. No binary
form will be output when using the Form Language Translator.

User Action: If using the Form Editor, assign only one of the field attributes. If using the Form
Language, correct the statement to include only one of these attributes.

DISPUPPR DISPLAY_ONLY is invalid with UPPERCASE.

Explanation: DISPLAY ONLY and UPPERCASE cannot be assigned to the same field. No binary
form will be output when using the Form Language Translator.

User Action: If using the Form Editor, assign only one of the field attributes. If using the Form
Language, correct the statement to include only one of these attributes.

DTMBADRES Invalid response to date or time query.
Explanation: Only the characters shown can be entered in response to a date or time query.

User Action: Reenter a valid response.

DTMDELLEF Cannot delete blank response.
Explanation: A blank response to a date or time query cannot be deleted.

User Action: Do not attempt the deletion.

DTMNBLANK Area for date or time field is not blank.
Explanation: Date and time fields can overwrite blank spaces only.

User Action: Reposition the cursor or clear an area large enough to contain the date or time field.

DTMNOROOM Date or time field will not fit here.

Explanation: There is not enough room beyond the current cursor position to hold the selected date
or time field.

User Action: Reposition the cursor or delete unwanted characters to make sufficient room for the
selected date or time field.

DUPFLDNAM Field name 'field-name' was already specified; default name has been assigned.

Explanation: The field name was assigned to a previously defined field. Each field must have
a unique name. A default name was substituted for the field name specified. If using the Form
Language, no binary form will be output as a result of this translation.

User Action: Assign the field a unique field name or use the default name substitution. For the Form
Language, correct the field name or use a default name by removing the NAME keyword from the
FIELD statement.

146

Appendix A. VSI FMS Software Messages

DUPFRM Form 'form-name' from file 'file-spec' is already in the library.

Explanation: A form in the library has the same name as one contained in the specified input file.
The form in the input file is not inserted into the library. This does not prevent the insertion of other
forms from the input file(s) into the library.

User Action: If you want to have both forms in the library, rename one of them. If you want to
replace the form in the library with the input form, use the FMS/LIBRARY/REPLACE command.

DUPNMDIDX A duplicate INDEX value has been assigned to this named data entry.

Explanation: The NAMED DATA INDEX value duplicates the index value of an existing Named
Data entry. Each INDEX must be unique. No binary form will be output as a result of this translation.

User Action: Correct the INDEX values for the NAMED DATA entries so that they are unique and
consecutive.

DUPORDANSN The field 'field-name' has already been assigned an order.

Explanation: A field with this name was previously specified in an ORDER statement. A field can
be ordered only once in a source form description. No binary form will be output as a result of this
translation.

User Action: Correct the ORDER statement(s) in the source form description to contain only one
reference to any field name.

DUPPICT PICTURE is multiply defined for this field.

Explanation: More than one picture specification was assigned to this field. Only one picture
specification is allowed in a FIELD statement. No binary form will be output as a result of this
translation.

User Action: Correct the FIELD statement to contain only one PICTURE, DATE FIELD, or
TIME_FIELD attribute specification.

ENDMISSNG An END_OF_FORM statement is missing.

Explanation: No valid END_OF FORM statement was included in the source file, or the translation
terminated before the END_OF FORM statement was reached. A binary form will be output if other
errors have not caused the END OF FORM to be missed.

User Action: If the END OF FORM statement is missing, add one. Otherwise, correct the other
errors found during the translation or increase the error limit so the entire translation completes.

ENDNOFRM Translation was completed with errors. No binary form was output.

Explanation: The translation had ERROR level errors. No binary form was output. Check the
translation listing file or the error Jog for the errors.

User Action: Correct the errors.

147

Appendix A. VSI FMS Software Messages

EOF End Of File occurred while expecting input from 'file-spec'.

Explanation: An End Of File (EOF) was reached while there was still more input expected from the
specified file.

User Action: Check to see if the input file has been truncated or altered in some undesired manner.

EXTRACTED Form 'form-name' extracted into 'file-spec'.

Explanation: The specified form was successfully extracted from the form library and stored in the
specified file.

User Action: The message is informational.

FIELDORD Field already part of new order sequence.

Explanation: This field has already been marked as part of the new order sequence in the Order
phase.

User Action: Move to another field to add it to the current order sequence.

FILBADFRM File name is not valid as form name; name was changed to 'file-spec'.

Explanation: The file name started with a numeric digit, so it could not be used as a form name. The
letter "F" was added to the beginning of the name to make it valid.

User Action: If the form name used is inappropriate, change it.

FLDINDEX Warning, field index is duplicate or out of range.

Explanation: The specified field index is a duplicate or out of range. This is a warning message
only. The index will still be recorded as specified, but you cannot save the form until the conflict is
resolved.

User Action: Change the indexed field set to make the current index value acceptable, or modify
the current assignment. If you specify zero for the index value, the Form Editor will assign the next
available index by default.

FLDSIZ Warning, field has no validation characters.

Explanation: A field must have at least one field-validation character. This is a warning message so
you can continue editing, but you cannot save the form until the above condition is satisfied.

User Action: Modify field picture, or change field-marker characters to background text.

FORMPROC A FORM statement has already been processed.

Explanation: More than one FORM statement was detected in the source form description. Only one
FORM statement is allowed in a source form description. No binary form will be output as a result of
this translation.

User Action: Correct the source form file to contain only the FORM statement you want.

148

Appendix A. VSI FMS Software Messages

FORMQUAL /FORM_NAME must be specified in this context.

Explanation: /FORM_NAME =form-name must be specified (following the form library
specification). Only one or more forms in the form library can be specified, not the whole library.

User Action: Reenter the command, using the /FORM_NAME qualifier.

FORMSIZE Insufficient memory to read in form, execution terminated.

Explanation: The Form Editor was unable to allocate sufficient memory to read in the requested
form. This should only occur from an error in the form size or from an internal logic error.

User Action: Check to be sure the form specified is valid. If the error persists, submit an SPR.

FRMBADFIL Form name 'form-name' is not valid as file name; name was changed to 'file-
spec'.

Explanation: The specified form name was too long or had characters not allowed in file names, so a
compacted version of the name was used as the file name.

User Action: If the file name used is inappropriate, rename the file.

FRMNOTFND Form 'form-name' not found in library.
Explanation: The specified form name was not found in the specified library.

User Action: Check to be sure the library and form names were entered correctly. You can use the
FMS/DIRECTORY command to list the names of forms in a library.

FRM_OUTPUT TDMS form successfully extracted into 'file-name'.

Explanation: The Form Converter has successfully extracted the TDMS form from the CDD and put
the resulting FMS form into the indicated file.

User Action: No user action is required.

GET Error getting data from field named 'field-name'.
Explanation: The FMS Form Driver was unable to get data from the specified field.

User Action: Examine the succeeding messages to determine the cause of the error.

GETFIRST Error getting data from first field in form.
Explanation: The FMS Form Driver was unable to get data from the first field in the form.

User Action: Examine the succeeding messages to determine the cause of the error.

149

Appendix A. VSI FMS Software Messages

HELPFORM_IGNRD 'Help-form-name' help form ignored.

Explanation: The TDMS form contained a help form name. This name is ignored. The help form
name is not stored in the FMS form file.

User Action: If you intend to use a help form name for this form, you must edit the form and enter the
name of the help form.

IDXSCALIN Indexed fields must be contained in a single scrolled area.

Explanation: The field coordinates listed in the INDEXED assignment are not all contained in the
same scrolled area. A set of indexed fields within a scrolled area must be assigned to the first line of
the same scrolled area. No binary form will be output for this translation.

User Action: Correct the field coordinate specifications so that all the fields are in or all the fields are
out of the scrolled area; or correct the SCROLL statement.

ILLDBL Cannot use DBLSIZ or DBLWID during SELECT definition.
Explanation: SELECT lines must have identical attributes (doublesize, doublewide, or normal size).

User Action: Make lines double size or double wide before Select definition.

ILLINPCHR Illegal character was input.

Explanation: The statement contains a nonprinting character. Only printing characters are valid in
Form Language statements. No binary form will be output as a result of this translation.

User Action: Remove the nonprinting character from the source file.

ILLSCR Cannot define scroll area during SELECT definition.

Explanation: The Scroll function uses SELECT internally to define a scrolled area; therefore, Scroll
is an illegal function during SELECT.

User Action: Terminate the SELECT operation before using the SCROLL function.

ILLSELECT Illegal SELECT area; fields cannot be split.
Explanation: You must select whole fields.

User Action: Adjust the select area boundaries to include entire fields only.

ILLSIZE Terminal size (lines or columns) too small for FMS form.
Explanation: The display size available (lines or columns) is not large enough for the specified form.

User Action: Use a terminal that can display more lines or columns as needed for the specified form,
or adjust the form description to fit terminal needs. A 24 line by 132 column form, for example,
requires a VT100 with the advanced video option.

150

Appendix A. VSI FMS Software Messages

ILLTERM Illegal terminal type - must be VT100 compatible.
Explanation: The FMS Form Editor requires a VT100-compatible terminal.

User Action: Use a VT100-compatible terminal, or use the FMS Form Language to create forms with
a standard text editor.

IMAGE Form 'form-name' screen image output to 'file-spec’.

Explanation: A copy of the screen image of the form, suitable for printing, has been put in the
specified text file.

User Action: You can print the file for a hard-copy record of the appearance of the form.

IMAGERR Error generating image description for input file 'file-spec'.

Explanation: An error occurred while attempting to generate an image description for the specified
input file.

User Action: Check to be sure the input files are valid and were entered correctly. Also look at any
previous messages for more information. Submit an SPR if you cannot generate an image file.

INACTIVE Function key not currently active.
Explanation: The function key pressed is not active in the current Form Editor phase.

User Action: Refer to the Form Editor keypad.

INDXPREYV The INDEXED attribute assignment has been replaced for this field.

Explanation: The INDEXED attribute was previously assigned in this FIELD statement. The
last specification will be used for the indexed field assignments. The previous INDEXED field
assignments will not be used. A binary form w ill be output.

User Action: Correct the FIELD statement so that it contains only the INDEXED field definitions
that you want for this FIELD statement.

INDXUNANSN Invalid line or column specification: no INDEX assignment was made for this
field.

Explanation: The line or column specification for the first field is invalid. No indexed field
assignments will be made. No binary form will be output as a result of this translation.

User Action: Correct the invalid line or column specification in the FIELD coordinate specification.

INSCHR No room for character insertion.
Explanation: There is no room for character insertion on this line.

User Action: Remove one or more characters from the end of the line.

151

Appendix A. VSI FMS Software Messages

INSCHRDTM Cannot insert characters in date, time, or indexed field.
Explanation: Characters cannot be inserted in date, time, and indexed fields.

User Action: Delete the entire field and respecify the field as desired.

INSCHRFLD Invalid character for field insertion.
Explanation: Only field-validation and field-marker characters can be entered in Field mode.

User Action: Enter a valid field character or change to Text mode.

INSERTED Form 'form-name' inserted in 'library-name'.
Explanation: The specified form was successfully inserted into the form library.

User Action: The message is informational.

INSVIRMEM Insufficient memory available, attempted operation rejected.

Explanation: The Form Editor was unable to acquire sufficient virtual memory for the attempted
operation, therefore the operation was rejected.

User Action: Insufficient memory may be caused by an internal logic error. If the problem persists,
submit an SPR.
INVALID_FIELD Field 'field-name' contains no FMS picture characters.

Explanation: The field does not contain any FMS picture characters. TDMS allows fields to contain
only marker characters. FMS does not allow this. The field is not converted.

User Action: Edit the TDMS form and add an FMS picture character to the field. Then convert the
form again.
INVALID_INDEX Field 'field-name' is not indexed correctly.

Explanation: The field is not indexed correctly. The Form Converter cannot store the field in the
FMS form. The field is ignored.

User Action: Edit the form using the Form Definition Utility. Assign new attributes to the indexed
field, and use the Form Converter again.
INVCLRCHR The specified clear character is invalid.

Explanation: The specified clear character is either more than one character in length, or it is not a
valid clear character. No binary form will be output as a result of this translation.

User Action: Supply a single valid clear character.

152

Appendix A. VSI FMS Software Messages

INVCMD Unrecognized command, re-enter.
Explanation: The phase name entered is not a valid phase name in the Form Editor menu.

User Action: Enter a valid phase name.

INVDATA Invalid character(s) in data string.

Explanation: Non printing characters are not valid in a data string. No binary output will be
generated as a result of this translation.

User Action: Correct the data string.

INVDATALN Data is too long.

Explanation: The number of characters in the data string exceeds the maximum allowed (80
characters). No binary form will be output as a result of this translation.

User Action: Delete some characters in the data string.

INVDATE Invalid DATE_FIELD picture was specified.

Explanation: The DATE FIELD picture is not valid. Standard field pictures of the DATE FIELD are
required. No binary form will be output as a result of this translation.

User Action: Use one of the standard FMS DATE FIELD pictures.

INVDBLASN Text or field assignments must be made to the top line of a double size line pair.

Explanation: Text and field line specifications must reference the first line of the DBLSIZ line pair.
No references to the bottom half of the DBLSIZ line pair are allowed. No binary form will be output
as a result of this translation.

User Action: Correct the line coordinate specification so it references the first line of the DBLSIZ
line pair.

INVDBLRNG First DBLSIZ or DBLWID line exceeds last DBLSIZ or DBLWID line.

Explanation: The double-size or double-wide range specification requires the first line number to be
less than the last line number. No binary form will be output as a result of this translation.

User Action: Correct the range specified in the DBLSIZ or DBLWID attribute specification.

INVDEFCH DEFAULT specification for field exceeds the field length. The string has been
truncated.

Explanation: The number of characters in the DEFAULT specification cannot exceed the number
of field-validation characters. The DEFAULT string is truncated to the number of field-validation
characters. A binary form will be output.

User Action: Correct the length of the DEFAULT string specification to be less than or equal to the
number of field-validation characters in the picture, or increase the field length.

153

Appendix A. VSI FMS Software Messages

INVDEFLEN Default value for field is longer than the field definition.

Explanation: The number of characters in the default value string for the field is greater than the
number of field definition characters in the field definition.

User Action: Delete some characters in the default field value string.

INVDRWLAT Line attributes for lines contained in the DRAW are not identical.
Explanation: The line attributes for all lines in the DRAW area must be identical. The DRAW
perimeter specified contains a line with different line attributes. No binary form will be output as a

result of this translation.

User Action: Correct the line attribute assignments or the DRAW coordinate specifications.

INVDVSPEC Invalid coordinates were specified for DRAW or VIDEO.
Explanation: The line or column specified in the statement is invalid. Valid line values are 1 through
23 inclusive. Valid column values are 1 through 80 inclusive, for 80-column screens; 1 through 132

inclusive, for 132-column screens. No binary form will be output as a result of this translation.

User Action: Correct the line or column specifications.

INVENDNAM The name 'form-name' specified in the END_OF_FORM statement is invalid.

Explanation: The name specified for the END OF FORM statement must match the name given in
the FORM statement. A binary form will be output.

User Action: Correct the spelling of the name in either the FORM or END OF FORM statement so
that they are identical.

INVERRVAL The value for’ ERROR_LIMIT is invalid./ERROR_LIMIT=20 is used.

Explanation: An incorrect value was given for /ERROR_LIMIT. The valid values are O through 255
inclusive. The translation will continue with a value of 20 assigned for /ERROR _LIMIT.

User Action: Supply a valid value for the /ERROR LIMIT qualifier.

INVFIXPIC Field picture for FIXED_DECIMAL field is invalid.

Explanation: The specified field picture is invalid for a fixed-decimal field. The field-validation
characters must be all numeric (9's) or signed numeric (N's) with at least one embedded decimal point
or comma. No binary form will be output when using the Form Language Translator.

User Action: Refer to the VST OpenVMS FMS Utilities Reference Manual for a description of the
fixed-decimal field picture requirements. Correct the field picture or remove the FIXED DECIMAL
attribute specification.

154

Appendix A. VSI FMS Software Messages

INVFLDCH Field PICTURE contains invalid character(s).

Explanation: Only field-marker characters or field-validation characters are allowed in the field
definition. No binary form will be output as a result of this translation.

User Action: Correct the field picture so that it contains only valid field-definition characters.

INVFLDLEN Field PICTURE length is invalid.

Explanation: The picture length is invalid for one of the following reasons: the length is zero, the
length exceeds the width of the screen, or the field contains no field-validation characters. No binary
form will be output as a result of this translation.

User Action: Correct the field picture length or use a wider form (132-column mode is the
maximum).

INVFLDNAM Field name 'field-name' in form 'form-name' violates FMS V2 naming
standards.

Explanation: The field name specified does not follow the rules for defining valid names for FMS
V2.0.

User Action: If the message was issued by the Form Upgrade Ultility, then the form can be used by
the upgraded application program with no change. The name must be changed, however, to be valid
for any of the other V2.0 utilities.

INVFORM Binary form 'form-name' in file 'file-spec' is invalid.
Explanation: The internal structure of the given form in the specified file is invalid.

User Action: Check to make sure that you specified the correct file. If you cannot determine the cause
of the corruption, submit an SPR including information about the utility that produced the form and
exactly what steps were taken.

INVFRM Input file does not contain a valid form, execution terminated.
Explanation: The internal structure of the form in the specified input file is invalid.

User Action: Check to make sure that you specified the correct file. If you cannot determine the cause
of the message, submit an SPR that includes information about the utilities that you used to produce
the form and exactly what steps you took to create it.

INVFRMNAM Form name 'form-name' violates FMS V2 naming standards.

Explanation: The form name specified does not follow the rules for defining valid names for FMS
V2.0.

User Action: If this message was issued by the Form Upgrade Utility, the form can be used by the
upgraded application program without any changes. The name must be changed, however, to be valid
for any of the other FMS V2.0 utilities.

155

Appendix A. VSI FMS Software Messages

INVHLPLEN The help text exceeds the line width.

Explanation: The help text is too long to fit on the screen. Help text can be a maximum of one line
of information (80 characters for 80-column forms, 132 characters for 132-column forms). No binary
form will be output as a result of this translation.

User Action: Correct the length of the help text or change the width of the form to 132 columns.

INVIMGVAL 'value' is not a valid value for the IMAGE qualifier.

Explanation: The value given for the /IMAGE qualifier was not valid, so the operation has been
rejected.

User Action: Enter a valid qualifier value. The legal values are ESCAPE_SEQUENCE and
NOESCAPE SEQUENCE. Only the first four characters are necessary.

INVINDFLD Invalid indexed field specification, field attributes do not match.
Explanation: The fields in an indexed set must have identical field attributes.

User Action: Redefine the fields so that they have identical field attributes before including them in
an indexed set.

INVINDLAT Line attributes for lines containing the INDEXED fields are not identical.

Explanation: The lines in the INDEXED field specification do not all have identical line attributes.
All fields specified in the INDEXED set must have identical line attributes. No binary form will be
output as a result of this translation.

User Action: Correct either the line attribute assignments or the INDEXED coordinate specifications.

INVLDCOL Column specification is invalid.

Explanation: The column value specified is invalid. The valid values for column are 1 through 80
inclusive for 80-column forms; 1 through 132 inclusive for 132-column forms. No binary form will be
output as a result of this translation.

User Action: Correct the column specification.

INVLDLINE Line specification is invalid.

Explanation: The line value specified is invalid. The valid values for line are 1 through 23 inclusive.
No binary form will be output as a result of this translation.

User Action: Correct the line specification.

INVLINCOL A check for conflicting screen position was not done.

Explanation: The coordinate specification is invalid; therefore, no check can be made if the screen
position is occupied. No binary form will be output as a result of this translation.

User Action: Correct the coordinate specification.

156

Appendix A. VSI FMS Software Messages

INVLSTCOL The last character in the field or text extends beyond the form boundary.

Explanation: The character position for the last character in the field or text definition extends
beyond the form boundary. The coordinate specification, or the number of characters in the string or
picture field is invalid. No binary form will be output as a result of this translation.

User Action: Correct either the coordinate specification, the length of the string or of the picture
defined, or change the width of the form to 132 columns.

INVMIXPIC Field picture for RIGHT JUSTIFIED field is invalid.

Explanation: The picture specified is not valid for a right-justified field. The field-validation
characters must be identical in a right-justified field. No binary form will be output when using the
Form Language translator.

User Action: Refer to the VSI OpenVMS FMS Utilities Reference Manual for a description
of field picture requirements for a right-justified field. Correct the field picture or remove the
RIGHT JUSTIFIED attribute specification.

INVMSGVAL The value for /WARNINGS is invalid.
/WARNINGS = ALL is used.

Explanation: An incorrect value was given for /WARNINGS. The valid values are ALL,
INFORMATIONAL, WARNING, and ERROR. The translation will continue with a value of ALL
assigned for / WARNINGS.

User Action: Supply a valid value for the /WARNINGS qualifier.

INVNAME Invalid character(s) in name 'name’'.

Explanation: The characters in the name do not conform to the FMS standard naming conventions.
No binary form will be output as a result of this translation.

User Action: Refer to the VS OpenVMS FMS Utilities Reference Manual for the name requirements.
Correct the name.

INVNAMLEN Too many characters in name.

Explanation: The name contains more than 31 characters. No binary form will be output as a result of
this translation.

User Action: Reduce the number of characters in the name.

INVNMDENT Neither NAME nor DATA has been defined for this NAMED_DATA entry.

Explanation: The NAMED DATA entry just defined has no valid name or data defined for it. Each
NAMED DATA entry must contain either a name or a data entry. No binary form will be output as a
result of this translation.

User Action: Add a NAME or DATA definition or delete the INDEX assignment from the statement.

157

Appendix A. VSI FMS Software Messages

INVNMDIDX The index value assigned to the named data entry is invalid.

Explanation: The INDEX value assigned to the NAMED DATA entry is invalid. No binary form
will be output as a result of this translation.

User Action: Correct the INDEX value.

INVNMDLEN The length of data is invalid.

Explanation: The number of characters in the data must be less than or equal to 80. No binary form
will be output as a result of this translation.

User Action: Reduce the length of the data string.

INVNOUAR The number of ACTION_ROUTINE assignments for this field exceeds the
maximum allowed.

Explanation: The number of user action routines (UARSs) assigned to this field (either in the FIELD
or ATTRIBUTE DEFAULTS FIELD statement or both) exceeds the 15 allowed. No binary form will
be output as a result of this translation.

User Action: Reduce the number of UARs defined for this field to be at most 15, which is the
maximum.

INVORDASN The visitation order specified is invalid.

Explanation: The value specified for visitation order is invalid. Valid values for visitation order are

1 through the number of fields in the form inclusive. No binary form will be output as a result of this

translation.

User Action: Correct the value specified for visitation order.

INVORDER Ordering is not valid for form with less than two fields.

Explanation: Ordering is only valid for a form with two or more fields. No binary form will be
output as a result of this translation.

User Action: Delete the ORDER statement or add some fields.

INVORDFLD The field named 'field-name' in the ORDER statement does not exist.

Explanation: A field with this name was not defined for this form. No binary form will be output as a
result of this translation.

User Action: Correct either the field definition or the name in the ORDER statement.

158

Appendix A. VSI FMS Software Messages

INVORDIDX The index for ORDER field name 'field-name' does not match actual field.

Explanation: The ORDER name specification for the indexed field does not contain a valid index
value. Indexed fields specified in the ORDER statement are referenced by their index value. No
binary form will be output as a result of this translation.

User Action: Correct the field name or the index value.

INVORDNAM The field name 'field-name' specified in ORDER statement is invalid.

Explanation: The specified field name is invalid. This is an error in the way the field index is
specified. No binary form will be output as a result of this translation.

User Action: Correct the field name.

INVSCAASN Text or field assignments are made only to the first line of a scrolled area.

Explanation: The specified line is in a scrolled area, rather than the first line of the scrolled area. No
binary form will be output as a result of this translation.

User Action: Correct the line specification for the field, text or scroll area definition.

INVSCADEF Invalid line assignment for the scrolled area.

Explanation: The lines assigned for the scrolled area are invalid. The valid lines are 1 through 23
inclusive. The scroll area definition requires that the first line be less than or equal to the last line. No
binary form will be output as a result of this translation.

User Action: Correct the line specification(s).

INVSCADRW DRAW assignment can be made only to the first line of the scrolled area.

Explanation: The specified line for the DRAW assignment is in a scrolled area, rather than the first
line of the scrolled area. No binary form will be output as a result of this translation.

User Action: Correct the DRAW line or scroll area definition.

INVSCALAT Line attributes for each line in the scrolled area are not identical.

Explanation: The scrolled area contains lines with different line attribute assignments. All lines in
a scrolled area must have the same line attributes. No binary form will be output as a result of this
translation.

User Action: Correct either the scrolled area or the line attribute definition.

INVSTRLEN The number of characters in the string exceeds the maximum allowed.

Explanation: The number of characters in the string exceeds the maximum number allowed for string
definitions. No binary form will be output as a result of this translation.

User Action: Delete some characters from the string.

159

Appendix A. VSI FMS Software Messages

INVSUPPRS SUPPRESS attribute is invalid for a LEFT_JUSTIFIED field.

Explanation: Zero SUPPRESS and LEFT JUSTIFIED cannot be assigned to the same field. The
zero SUPPRESS assignment will not be made when using the Form Language Translator.

User Action: If using the Form Editor, assign only one of the field attributes. If using the Form
Language, correct the statement to include only one of these attributes.

INVTIMDAT TIME and DATE fields must be LEFT_JUSTIFIED.

Explanation: TIME FIELD and DATE_FIELD fields cannot be assigned the RIGHT JUSTIFIED or
FIXED DECIMAL attributes. No binary form will be output as a result of this translation.

User Action: Delete the attribute specification or add the LEFT JUSTIFIED attribute specification to
the FIELD statement.

INVTIME Invalid TIME_FIELD picture was specified.

Explanation: The time field picture definition is invalid. Standard field pictures for TIME FIELD are
required. No binary form will be output as a result of this translation.

User Action: Use one of the standard FMS TIME FIELD pictures.

INVTXTLEN The length of the background text exceeds the line width.

Explanation: The number of characters in the text will not fit on the screen. The length must be less
than or equal to the screen width. No binary form will be output as a result of this translation.

User Action: Delete some characters in the background text.

INVUAR UAR specification has associated data with no name, re-enter.
Explanation: A user action routine (UAR) specification must include the UAR name.

User Action: Enter the user action routine name.

INVUARNAM UAR name 'UAR-name' in form 'form-name' violates FMS V2 naming
conventions.

Explanation: The specified UAR name does not follow the rules for defining valid names for FMS
V2.0.

User Action: The name must be changed to follow FMS V2 naming rules.

INVVIFILE Invalid V1 file 'file-spec'.
Explanation: The input file is not a valid V1 form file or V1 form library.

User Action: Check to make sure that the input file has been specified correctly. A common cause of
this error is that the file has already been upgraded.

160

Appendix A. VSI FMS Software Messages

INVVI1FLB Invalid V1 form library 'library-name'.
Explanation: V1 form library is not valid.

User Action: Check the V1 form library with V1 utilities to make sure the form library is not
corrupted.

INVV1FNAM Invalid V1 form name 'form-name’.
Explanation: V1 form name is not valid.

User Action: Check the V1 form with V1 utilities to make sure the form is not corrupted.

INVV1FORM Invalid V1 form 'form-name'.
Explanation: V1 form is not valid.

User Action: Check the V1 form with V1 utilities to make sure the form is not corrupted.

INVVINMD Too many named data elements in 'form-name'.
Explanation: V1 form has too many Named Data elements.

User Action: Check the V1 form with V1 utilities to make sure the form is not corrupted.

INVV2NAM Name is invalid according to FMS V2 naming rules.
Explanation: Name specified does not conform to FMS V2 naming rules.

User Action: Change the name to conform to the FMS V2 naming rules.

INVWIDSPC An invalid value was specified for WIDTH attribute.

Explanation: The valid values for the WIDTH attribute are CURRENT, 80, and 132. No binary form
will be output as a result of this translation.

User Action: Correct the specified value for WIDTH.

LCHAN Unable to assign channel for 'library-name'.
Explanation: The FMS form Driver was unable to assign the specified channel for the form library.

User Action: Check succeeding messages for a reason.

LINETYPE Cannot change line types in a select area or scrolled area.

Explanation: Lines in select or scrolled areas must have identical attributes (double size, double
wide, scrolled, or normal size).

User Action: Adjust the select area, or first change the desired lines to be all of the same type (double
size, double wide, or normal size).

161

Appendix A. VSI FMS Software Messages

LLI Length of line image too long for buffer, line image truncated.

Explanation: The length of the line image including video escape sequences is too long for the
internal buffer. The screen image for this line has been truncated.

User Action: To recover the entire line image, use the IMAGE = NOESCAPE SEQUENCE option,
or reduce the amount of text and video information in the line.

LOPEN Unable to open form library 'library-name'.
Explanation: The FMS form Driver was unable to open the form library.

User Action: Examine the succeeding messages to determine the cause of this error.

MEMRES Form 'form-name' converted to memory-resident format in 'file-spec'.

Explanation: The specified form has been converted to memory resident format and put in the
specified file, which is an object module suitable for linking with your application program.

User Action: Link the file with your program to access the forms.

MISSFORM No FORM statement has been defined for this form.
Explanation: No valid FORM statement was found in the source form description. Either the FORM
statement was not defined, or the statement contained errors and was not completely processed. No

binary form will be output as a result of this translation.

User Action: Add a FORM statement or correct the existing FORM statement.

MISSINDEX The INDEX values for named data are not consecutive.
Explanation: The INDEX values for the NAMED DATA statement entries must be consecutive. One
INDEX value is missing in the Named Data assignments. No binary form will be output as a result of

this translation.

User Action: Correct the INDEX values in the NAMED DATA statement.

MISSPICT PICTURE is not defined for this field.
Explanation: No valid picture was specified in the FIELD statement. Each FIELD statement requires
either a PICTURE, DATE FIELD, or TIME FIELD definition. No binary form will be output as a

result of this translation.

User Action: Add a picture definition or correct the existing picture definition.

162

Appendix A. VSI FMS Software Messages

MODRGNWID Form will be 132-column mode, but with WIDTH = CURRENT defined.

Explanation: This message is issued only when the WIDTH mode CURRENT is specified and

either text (as a result of DRAW, VIDEO, or TEXT) or field definitions reference a screen column
position greater than 80. The form created will be a 132-column form, but the WIDTH mode will be
CURRENT. This form cannot be displayed by the Form Driver unless the terminal width is set to 132-
column mode. If the terminal is in 80-column mode, the Form Driver issues an error message and
does not display the form.

User Action: If you want the form to be 80 columns wide, then you must correct the TEXT, DRAW,
VIDEO, or FIELD definitions that exceeded the 80-column boundary. The form will then be an 80-
column form, and the WIDTH mode will be CURRENT.

MRFERR Error generating memory resident form for input file 'file-spec’.

Explanation: An error occurred while attempting to generate a memory-resident forms module from
the specified input file.

User Action: Check to be sure the input files are valid and were entered correctly. Also look at any
previous messages for more information.

MULTORDER This visitation order has already been assigned.

Explanation: A field has already been assigned this visitation order. A visitation order can be
assigned only once in a source form description. No binary form will be output as a result of this
translation.

User Action: Correct the ORDER statement(s) so that you define the visitation order only once.

NEWLINE Bottom line is not blank, no room to insert new line.

Explanation: The bottom line is not blank. Inserting a new line would cause the bottom line to move
beyond the screen boundaries.

User Action: Change from Insert to Overstrike mode, or delete unwanted lines to make room for
insertion.

NEWSCRL Cannot insert line in the middle of a scrolled area.

Explanation: A new line cannot be added when the cursor is in the middle of a scrolled area.

User Action: Move the cursor to a line outside the scrolled area and then press OPENLINE to insert a
blank line at the cursor position.

NOFIELDS No more fields in the form in that direction.

Explanation: Attempting to press BACKSPACE in 'the first field in a form, or attempting to press
TAB in the last field in a form, causes an error because there are no more fields.

User Action: Move the cursor in the opposite direction to enter another field.

163

Appendix A. VSI FMS Software Messages

NORMAL Normal, successful completion.
Explanation: FMS command completed successfully.

User Action: None.

NOSTRING Empty or null string was input for name validation.
Explanation: A name or string was expected but not found when name validation was performed.

User Action: Check to make sure all command line values are specified correctly.

NOTFRM File 'file-name' is not a form file or form library.
Explanation: The specified file is not an FMS V2.0 form file or form library.

User Action: Check to make sure that the correct file was specified. This error would result if you
specified an FMS V1 file that has not been upgraded to V2.

NOTRANSLR Your FMS license does not include the Form Language Translator.
Explanation: The Form Language Translator is sold under a separate license. The Form Language
Translator is the facility that converts form descriptions written in the Form Language into binary
forms. FMS/DESCRIPTION/FULL produces form descriptions that consist of Form Language
statements. Forms created with either the Form Language Translator or the Form Editor are
equivalent.

User Action: Purchase the Form Language Translator from VSI and install the kit on your system.

NO_UARS No User Action Routines found, null vector module generated.
Explanation: No user action routines were found, so a null vector module has been generated.

User Action: None.

NO_UNDCHR No character in buffer to undelete.
Explanation: The character buffer is empty; there is no character to undelete.

User Action: You must delete a character before you can undelete one.

NUMFIELD Not enough fields in form to re-order.
Explanation: A form must have at least two fields before field ordering is allowed.

User Action: None.

164

Appendix A. VSI FMS Software Messages

ODDNOLIN END_WITH references the bottom half of a DBLSIZ line pair.

Explanation: All line specifications for lines having the DBLSIZ line attribute must reference the
first line of the DBLSIZ line pair. No references to the bottom half of the double-size line pair are
allowed. No binary form will be output as a result of this translation.

User Action: Correct the line number of the END_WITH specification.

OPENLIST Unable to open listing file 'file-spec' for output. Listing output is inhibited.

Explanation: The listing file could not be opened for output. Possible reasons for this message
include: the device or directory does not exist; the volume is write-locked or the user does not have
write access; the volume is full. The listing file output will be inhibited and translation will continue.
Messages will be written to the error logging device.

User Action: Correct the situation and reenter the command.

ORDERPROC No FIELD statement can follow an ORDER statement.

Explanation: FIELD statements cannot follow ORDER statements. All fields must be defined before
any ordering is done. No binary form will be output as a result of this translation.

User Action: Place all FIELD statements before all ORDER statements.

ORDSCAFLD Scrolled fields must be ordered contiguously.

Explanation: All fields in a specified scrolled area must be visited by the Form Driver before exiting
the scrolled area. This requires that fields in scrolled areas be contiguously ordered. No binary form
will be output as a result of this translation.

User Action: Correct the ORDER statement so that the fields in the scrolled area are contiguously
ordered.

PASTEBLNK Invalid paste, characters to be overwritten are not blank.
Explanation: The Paste operation can overwrite blank characters only.

User Action: Adjust cursor position or delete some characters so that the paste area is blank.

PASTEBND Invalid paste, paste buffer extends past screen boundaries.
Explanation: The specified Paste area must fit within the screen boundaries.

User Action: Reposition cursor.

PASTEHANG Invalid test paste, cursor is in hanging position.
Explanation: Cursor must be over a character position for test paste.

User Action: Reposition cursor.

165

Appendix A. VSI FMS Software Messages

PASTEMTY Paste buffer is empty.
Explanation: The paste buffer is empty. The operation is rejected.

User Action: You must press CUT to remove characters and store them in the paste buffer before you
can press PASTE to paste up the contents of the paste buffer.

PASTESCA Cannot paste into a scroll area.

Explanation: You cannot press PASTE in the middle of a scrolled area. The Cut and Paste functions
are allowed for entire scrolled areas only.

User Action: None.

PFT Error processing field terminator.
Explanation: The FMS Form Driver was unable to process the current field terminator.

User Action: Examine the succeeding messages to determine the cause of the error.

PREMATEOQF End-of-file or ERROR_LIMIT was reached.

Explanation: The end-of-file (EOF) was detected or ERROR LIMIT was reached before an
END OF FORM statement was found. No binary form will be output as a result of this translation.

User Action: If the source file does not contain an END OF FORM statement, add one. Otherwise,

correct the translation errors or increase the ERROR LIMIT (up to 255) so the translation can
continue until the END OF FORM statement is found.

RANGEJGNRD Range field validator ignored on field 'field-name'.
Explanation: This field contains a range field validator. The validator will be ignored.

User Action: The message is informational.

REPEATCNT The specified repeat count is invalid.

Explanation: The repeat count value must be less than or equal to the line width. No binary form will
be output as a result of this translation.

User Action: Correct the repeat count.

REPLACED Form 'form-name' replaced in 'library-name’.
Explanation: The specified form was successfully replaced in the form library.

User Action: None.

166

Appendix A. VSI FMS Software Messages

RETEFN Error getting name of first field.
Explanation: The FMS Form Driver was unable to get the name of the first field.

User Action: Check succeeding messages for reason.

RIGHTFIXD RIGHT_JUSTIFIED is invalid with FIXED_DECIMAL.
Explanation: RIGHT JUSTIFIED and FIXED DECIMAL cannot be assigned to the same field.

User Action: Assign only one of the field attributes.

SCALEFCTR_IGNRD Scale factor ignored on field 'field-name’.
Explanation: This field contains a scale factor. The scale factor will be ignored.

User Action: The message is informational.

SCANOFLD The scrolled area contains no fields.

Explanation: Every scrolled area must contain at least one field. No binary form will be output as a
result of this translation.

User Action: Either delete the SCROLL statement or add fields to the scrolled area.

SCAOCCUPD Field or text has already been defined in this scrolled area.

Explanation: The scrolled area being defined is already occupied by field or text. A scrolled area
must be defined before the field or text is assigned to it. No binary form will be output as a result of
this translation.

User Action: Correct the line assignment for the scrolled area or for the field or background text; or
move the SCROLL statement so that it precedes the FIELD and TEXT statements.

SCAORDER Fields must be contiguously ordered within scrolled area.

Explanation: All fields in a specified scrolled area must be visited by the Form Driver before exiting
the scrolled area. This requires that fields in scrolled areas be contiguously ordered. No binary form

will be output as a result of this translation.

User Action: Reorder the fields in the scrolled area so they are contiguous.

SCAPREDEF Scrolled area overlaps a previously defined scrolled area.

Explanation: A scrolled area already exists in the area defined, and scrolled areas cannot overlap. No
binary form will be output as a result of this translation.

User Action: Redefine one or the other of the scrolled areas.

167

Appendix A. VSI FMS Software Messages

SCREENSIZ Form is not compatible with new screen size, re-specify.
Explanation: The specified form cannot be displayed within the specified screen size.

User Action: Specify a larger screen size, or delete unnecessary parts of the form.

SCROLLF Invalid line for scrolled area.
Explanation: The specified line is already part of a scrolled area.

User Action: None.

SELECTION Select range already active.
Explanation: The Select function is already active.

User Action: Cancel the current select range by pressing GOLD RESET.

SIZE_IGNRD Size field validator ignored on field 'field-name'.
Explanation: This field contains a size field validator. The field validator will be ignored.

User Action: The message is informational.

SOMEBAD One or more input files could not be opened.

Explanation: Some input files could be opened, but at least one input file could NOT be opened.
User Action: Examine the previous messages to determine which input files could not be opened.
Make sure they are specified correctly and that they appear in the directory.

SSIGQ Unable to set quiet mode.

Explanation: The FMS Form Driver was unable to set error signaling to Quiet mode.

User Action: Examine the succeeding messages to determine the cause of the error.

STACKOVREF Parse stack overflow - translation was aborted.
Explanation: This is an indication of a severe internal error.

User Action: Submit an SPR.

STBORDER Internal error, Screen Text Block is out of order.
Explanation: An internal logic error was detected while editing a form.

User Action: Submit an SPR.

168

Appendix A. VSI FMS Software Messages

STMNTDEL The statement item or keyword was deleted.

Explanation: This message is a result of the previously reported syntax error. The message tells you
what internal error recovery was done. No binary form will be output as a result of this translation.

User Action: Correct the syntax error.

STMNTEXP One of the following keywords or statement items was expected...
Explanation: A keyword or statement item was not expected in the syntax. The list following the
messages gives the abbreviated form of all possible valid keywords or items. No binary form will be

output as a result of this translation.

User Action: Correct the statement syntax by using the correct keyword or statement item.

STMNTINS 'name’' was inserted before the keyword or statement item.

Explanation: This message is a result of the previously reported syntax error. The message tells you
what internal error recovery was done. No binary form will be output as a result of this translation.

User Action: Correct the syntax error.

STMNTREP An invalid statement item or keyword has been replaced by 'name’.

Explanation: This message is a result of the previously reported syntax error. The message tells you
what internal error recovery was done. No binary form will be output as a result of this translation.

User Action: Correct the syntax error.

STOP Execution terminated.
Explanation: Recovery from previous error(s) was not possible. Processing was aborted.

User Action: Check previously issued messages to determine the cause of the problem.

STRMSSQUO String literal is missing a closing quote.

Explanation: An item delimiter or end-of-record was found before the closing quote for a string
definition. No binary form will be output as a result of this translation.

User Action: Add a closing quote.

SYNTAXERR Syntax error.

Explanation: A syntax error was detected in the source form description file. No binary form will be
output as a result of this translation.

User Action: Correct the syntax error.

169

Appendix A. VSI FMS Software Messages

TOOMNYFLD Too many fields have been defined for this form.

Explanation: The number of fields created exceeds the number allowed for one form. The translation
has been aborted. No binary form will be output as a result of this translation.

User Action: Delete some FIELD statements.

TOOMNYNMD Too many named_data entries have been defined for this form.

Explanation: The number of NAMED DATA statement entries exceeds the number allowed for one
form. The translation has been aborted. No binary form will be output as a result of this translation.

User Action: Delete some NAMED DATA statement entries.

TRANABORT A severe translation error was detected. Translation has been aborted.

Explanation: A severe error was detected during translation. Translation was aborted. No binary form
will be output as a result of this translation.

User Action: Correct the error by examining previous messages for the cause of the error.

TRANDIAGS Translation was completed with warnings or informational messages.

Explanation: The translation was completed with warning or informational errors. A binary form was
output.

User Action: Check the messages generated during the translation to see if the resulting binary form
will be what was expected. Some corrective action may have occurred during the translation. If the
messages indicate that the form is what you expected, you may use the form as is. If the messages
indicate that the form is different from what you expected, then you should correct the errors.

TRANWOERR Translation was completed without error.

Explanation: The translation completed without any errors. Unless /NOOUTPUT was explicitly
requested in the command line, a binary form was output.

User Action: The form can be placed in a form library for use in your application program or
displayed with FMS TEST.

TXTLENGTH Internal error, Package Text Block is too long.
Explanation: An internal logic error has been detected while generating a form.

User Action: Submit an SPR.

UNDCHROYVS Character to be overwritten is not blank.
Explanation: Undelete character can only overwrite a space in Overstrike mode.

User Action: None.

170

Appendix A. VSI FMS Software Messages

UNDELLINE No line to undelete, line buffer is empty.
Explanation: The line buffer is empty. There is no line to undelete.

User Action: You must delete a line before you can undelete one.

UNDNOROOM UNDELETE buffer will not fit from cursor position.

Explanation: There is not enough room for the contents of the UNDELETE buffer beginning at the
present cursor location.

User Action: Reposition the cursor.

UNDNOTMTY UNDELETE area is not blank or line types don't match.

Explanation: The Undelete function can overwrite blank characters only, and only when all lines in
the target area have the same line attributes.

User Action: Adjust the cursor position, or delete some characters so that the undelete area is blank.
Also make sure that all lines in the target area have the same line attributes.
UNSCROL Line not part of a scrolled area.

Explanation: The line specified for the Unscroll operation must be from the top or bottom of a
scrolled area.

User Action: None.

UNSCROLM Cannot unscroll middle of scrolled area.
Explanation: Unscroll is only allowed at the top or bottom of a scrolled area.

User Action: Reposition the cursor at the top or bottom of the scrolled area.

UPGRADED V1 file 'file-spec' upgraded to V2 file 'file-spec'.
Explanation: The V1 input file was successfully upgraded, and its V2 counterpart was output.

User Action: None.

V1ISCRTXT Scrolled area in form 'form-name' has text characters; behavior will be different in
FMS V2.

Explanation: A scrolled area in the form has text characters in it. In FMS VI, these characters would
have scrolled off the screen and would not be displayed again. In FMS V2, they will remain in the
scrolled area and will not scroll off the screen.

User Action: There is no way to exactly emulate the V1 behavior in V2. Text characters will always
be present on every line of a scrolled area, or you can delete them entirely.

171

Appendix A. VSI FMS Software Messages

VECTERR Error generating UAR vector module for input file 'file-spec'.

Explanation: An error occurred while attempting to generate a UAR vector module for the specified
input file.

User Action: Check to be sure that the input files are valid and that they were entered correctly. Also
look at any previous messages for more information.
VECTOR Form 'form-name' UAR vectors included in 'file-spec’.

Explanation: Any UARs in the specified form have had vector information concerning them included
in the specified file, which is an object module suitable for linking with your application program.

User Action: Link the file with your program so that the Form Driver will know where to find the
UARs when it needs to call them.
VIDEOF Invalid select range for attempted operation.

Explanation: The specified select area includes part of one or more fields. Entire fields must be
included in the select range.

User Action: Respecify the select area to include entire fields, or choose another function.

VIDILLCHR Illegal character for insertion during VIDEO or CHRSET.

Explanation: Only alphanumeric characters, including space and comma, are accepted during
VIDEO or CHRSET entry.

User Action: Enter a valid character or press RETURN.

VIDILLFNC Illegal key function during VIDEO or CHRSET functions.
Explanation: The function key pressed is not valid during VIDEO or CHRSET entry.

User Action: Enter a valid character or press RETURN.

VIDILLKEY Invalid or misspelled keyword.

Explanation: The characters entered were not recognized as a valid video attribute.

User Action: Enter a valid video attribute keyword (blink, bold, clear, restore, reverse, or save), or
press RETURN.

VIDLINFUL No room to insert more characters on line.

Explanation: There is no more room for video keywords on this line.

User Action: Press RETURN to process the current line, and then enter more video attributes as
desired.

172

Appendix A. VSI FMS Software Messages

VIDNODEL Cannot delete left from beginning of the line.
Explanation: Attempt to delete past beginning of line has been ignored.

User Action: Enter a video attribute keyword (blink, bold, clear, restore, reverse, underline, or save),
or press RETURN.

VIDPROT Cannot change video or character set of indexed fields.

Explanation: The video attributes or character set of a single indexed field cannot be changed
because all indexed fields must have identical attributes.

User Action: Unindex the fields, change their attributes, then reindex.

WRITELIST Unable to write to listing file. Further listing output is inhibited.

Explanation: The Form Language Translator is unable to write to the listing file. Possible reasons for
this include: (1) the device or directory does not exist; (2) the volume is write-locked or the user does
not have write access; (3) the volume is full. Further listing file output will be inhibited. Translation
will continue.

User Action: Correct the situation and reenter the command.

ZEROCLR The field attribute ZERO_FILL requires clear-character to be zero.

Explanation: A field defined with the Zero fill attribute must also have a clear character of zero. If
you are using the Form Language Translator, the clear character will be set to zero, and a binary form
will still be output.

User Action: Define Clear Character as zero for all zero-filled fields.

ZEROPICT A check for conflicting screen position not done.

Explanation: No valid picture was defined for this field, or the field contained no field-validation
characters. No binary form will be output as a result of this translation.

User Action: Correct the field picture.

ZEROSUPPR Field attribute zero SUPPRESS can only be used with ZERO_ FILL.

Explanation: The zero SUPPRESS attribute must have the ZERO..FILL attribute assigned to the
same field. If you are using the Form Language Translator, no binary output form is created as a result
of this translation.

User Action: Include ZERO FILL with zero SUPPRESS in the field attribute list.

ZROFILLADDED Zero-fill attribute added to field 'field-name’.

Explanation: This field contained a conflict of attributes. To resolve the conflict, the zero-fill
attribute was added.

User Action: The message is informational.

173

Appendix A. VSI FMS Software Messages

ZROFILL_REMOVED Zero-fill attribute removed on field 'field-name'.

Explanation: The field contains a conflict of attributes. To resolve the confiict, the zero-fill attribute
was removed.

User Action: The message is informational.

ZROSUPP_REMOVED Zero-suppressed attribute removed on field 'field-name'.

Explanation: This field contained a conflict of attributes. To resolve the conflict, the zero-suppressed
attribute was removed.

User Action: The message is informational.

A.6. Form Driver Messages for Programmers

ARG Wrong number of arguments for call.

Explanation: Either too many or too few arguments were specified in a call on one of the Form
Driver routines. No part of the function was performed.

User Action: Correct the call in the source code according to the information in the VSI OpenVMS
FMS Form Driver Reference Manual

CAN Call was cancelled.

Explanation: The call did not complete because it was cancelled by a previous call on the
FDV$CANCL routine from the user's program.

User Action: No action is required since the cancel was requested by the user program. Output
parameters of the call are undefined.

DLN Data to output too long.

Explanation: Data given to the Form Driver to display in a field or on a data line (from any of the
Form Driver PUT-type calls or from the FDVSGETDL call) was too long for the field or line and was
truncated as the Form Driver completed the operation. This message is displayed only when the Form
Driver is in Debug mode and is not returned to a program.

User Action: Check for program errors that cause the data string to be too long. Check that the form
has been designed properly.

DNM Invalid call to get named data.

Explanation: The name supplied in a FDVSRETDN call or the index supplied in a FDVSRETDI call
could not be found in the Named Data of the form.

User Action: Check that the Named Data name or index is properly specified in the program and that
the Named Data is defined in the form. Output parameters of the call are undefined.

174

Appendix A. VSI FMS Software Messages

DSP GET-type call is illegal for display only field.

Explanation: The program called FDV$GET, FDVSGETAF, FDVSGETAL, or FDVSGETSC,
but the field is display only, or it is supervisor only and the supervisor-only flag is on (making it
equivalent to a display-only field). Output parameters of the call are undefined.

User Action: Check that the field attributes are correct and that the correct form is in the current
workspace.

FCH Form library is not open on channel.

Explanation: A call to the Form Driver required access to a form library to find the definition of a
form, but no form library is open on the current channel.

User Action: Check that the form is either memory resident or that an FDV$LOPEN call precedes
the request to display a form. If the form library was properly opened, check that the correct channel
number was specified to the Form Driver in the last FDVSLCHAN call (if any). The form library
should be open while the form is being processed since the Form Driver may require access to the
form library to redisplay the form (CTRL/R) or to access a help form from the library.

FLB Specified file not a form library.
Explanation: The file specified to open in an FDV$SLOPEN call is not an FMS V2 form library.

User Action: Check that the file specification is correct and that any FMS V1 libraries have been
converted to FMS V2 libraries.

FLD Invalid field specification.

Explanation: The field specified does not exist. An invalid field name or an invalid index for the field
was specified. Output parameters of the call are undefined.

User Action: Check the field name and index. An unindexed field must have an index of zero and
indexed fields must have positive indexes. Also check for a program error that causes the call to be
executed at the wrong time or for the wrong form.

FNM Specified form does not exist.

Explanation: The specified form cannot be found in the memory resident list or in the current form
library. If this message is returned on a GET-type call, then a help form was defined for the current
form but could not be found. Output parameters of the call are undefined.

User Action: Check that the form has been placed in the memory resident list. Check to see that you
have created and linked with your program an object module that contains that form. Make sure that
the correct form library file is open and that the channel number specified to the Form Driver is the
one specified when the form library file was opened. Check that the call specifies the correct form
name.

175

Appendix A. VSI FMS Software Messages

FRM Invalid binary form.

Explanation: The format of the binary form is not valid. Most likely the file or memory-resident
storage area from which the form is obtained has been corrupted.

User Action: Check that the form description has not been altered since it was produced by the Form
Editor, the Form Language Translator, or the Form Upgrade Utility.

FSP Illegal file spec in a LOPEN call.
Explanation: The file name specified for the form library is not a legal file specification.

User Action: Correct the file specification.

FVM Error freeing virtual memory.

Explanation: The Form Driver encountered an error inferring some of the virtual memory it obtained
for the process.

User Action: Check the program for logic errors which may overwrite some Form Driver data or for
the same TCA or workspace attached more than once without being detached.

IBF User buffer supplied too small for form specified.

Explanation: The buffer supplied to the FDVSREAD call is too small to contain the form description
read from the library.

User Action: Increase the size of the buffer. The buffer must be at least the size of the form plus 8
bytes.

ICH Invalid channel number specified.

Explanation: An attempt was made to access a form library on the channel specified in the last
FDVSLCHAN call or in the FDVSLOPEN call. That channel number is not a valid channel number
for the program. The second parameter of the FDVSSTAT call, if nonzero, contains the RMS 1/0
status code from the system.

User Action: Correct the channel number that the program is using.

IFN Illegal PFT function.

Explanation: The field terminator in a FDVS$PFT call is illegal. For example, the Next Field function
is illegal at the end of the form and Exit Scrolled Area Forward is illegal if the field is nonscrolled.
The current field is not changed. The current field is returned as the "new field" in the output
parameters.

User Action: Check the program for logic error in the use of the FDV$PFT call.

176

Appendix A. VSI FMS Software Messages

IFU Illegal function while in UAR.

Explanation: The program attempted an illegal FDVSDTERM or FDVSDWKSP while the program
was executing a user action routine. These routines may not detach the TCA or workspace which are
current at the time of invocation of the U AR. The detach does not take place.

User Action: Rewrite the program to avoid detaching during execution of a UAR.

IMP Workspace too small.

Explanation: The size of the workspace passed in an AWKSP call is too small for the Form Driver to
link with its other structures. No attach is performed.

User Action: Check that the workspace is a contiguous array or string of at least 12 bytes. Check that
the workspace is passed by descriptor.

INC Form incomplete after a PFT call.

Explanation: The FDVSPFT call had a field terminator of FDV$ FT NTR, and PFT detected that
some nonscrolled field in the form did not satisfy one of the validation criteria: Must Fill, Response
Required, or user act ion routine. The current field is set to the first such field, and its name is returned
to the "new" field parameters of the FDVS$PFT call, if any.

User Action: Decide what action is appropriate.

INI Workspace not attached.

Explanation: The call required a current workspace, and none was current or it was corrupted. The
call could not complete and any output parameters are undefined.

User Action: Provide a current workspace. Check that a workspace was really attached; the

return from FDVSAWKSP or FDV$SWKSP may have stated that the operation attempted was not
successful. Check that the terminal to which the workspace is attached is the current terminal. Check
that the program does not write into the area given to the Form Driver for the workspace.

IOL Error opening form library.

Explanation: An error was encountered in an attempt to open the form library. The RMS 1/0 error
code is returned with the second parameter of the FDV$STAT call.

User Action: Check that the form library specification is correct and that the file exists on the
specified volume and directory.

IOR Error reading form library.

Explanation: An error was encountered reading the form library. The RMS 1/0 error code is returned
with the second parameter of the FDV$STAT call.

User Action: Check that the volume is installed and that its device is on line. If the message continues
to appear, try another copy of the form library file. If the new copy works, the original copy or its
form name directory are corrupt and should be replaced.

177

Appendix A. VSI FMS Software Messages

ITT Invalid terminal type.

Explanation: The terminal specified in a FDVSATERM call is not of a type that is supported by
FMS. The Form Driver determines the terminal type from the VMS device information calls. If the
terminal is not specified correctly to VMS or if the terminal is not supported by FMS, the Form Driver
cannot continue. The TCA is not attached.

User Action: Set the correct VMS terminal type information from DCL or use an FMS-supported
terminal.

IVM Insufficient virtual memory.

Explanation: The Form Driver was unable to obtain enough virtual memory from VMS for its
purposes. The operation did not complete.

User Action: Extend the amount of virtual memory available for the process or change the program
logic to use less virtual memory.

KEX Too many key codes for key function in the defkbd parameter.

Explanation: A call on FDVSDFKBD attempted to define too many keys to be associated with an
FMS function. Only one key can be associated with the intrafield editing operations and only two
keys can be associated with the interfield or field terminator functions. The entire keyboard definition
is rejected, and the previously defined keyboard remains in effect.

User Action: Change the keyboard definition array parameter to DFKBD. Check that the array is
defined to be a one-dimensional word array.

KIF Illegal key function in the defkbd parameter.

Explanation: A key was assigned a function unknown to the Form Driver in an FDVSDFKBD call.
The entire keyboard definition is rejected, and the previously defined keyboard remains in effect.

User Action: Correct the Form Driver function code in the keyboard definition array parameter.
Check that the array is defined to be a one dimensional word array.

KIL Key code illegal.

Explanation: An unknown key code was passed to the FDVSDFKBD call. The entire keyboard
definition is rejected, and the previously defined keyboard remains in effect.

User Action: Correct the Form Driver key code in the keyboard definition array parameter. Check
that the array is defined to be a one dimensional word array.

KTW Key code assigned two key functions.

Explanation: In a call on FDV$SDFKBD, the same key was assigned two different functions. The
entire keyboard definition is rejected, and the previously defined keyboard remains in effect.

User Action: Change the keyboard definition in the array passed to the Form Driver.

178

Appendix A. VSI FMS Software Messages

LIN Line or portion of form lies outside visible screen range.

Explanation: For calls which specify that a form be shifted vertically on the screen, the line or offset
parameter causes a part of that form to be shifted off the screen; the form is not displayed. If a VT100-
family terminal does not have the advanced video option, a form defined expecting more than 13 lines
of 132 columns will not fit. For calls that specify the data line (FDV$SPUTL, FDVSGETDL), the line
specified is not on the screen; the line is not displayed, and the input is not requested.

User Action: Check the program logic to ensure that the right form is being displayed, that the
terminal can display the form, or that the data line being used is on the screen in its current state.

LLI Length of Line Image too long for FDVSRETFL.

Explanation: In a call on FDVSRETFL, the Form Driver's internal buffer, used to build up the
current terminal's line, image, has overflowed. The line image returned may be incomplete but is
correct as far as it extends across the line.

User Action: Redefine the form to contain less background text or fewer fields on a single line. Each
change of video attributes increases the amount of internal storage space needed for background text.

MOD Input successful, some field may be changed.

Explanation: Input for one of the GET-type calls has completed successfully, and it is possible that
one or more fields (depending on the call) has been modified by the operator. Note that typing any
data characters into a field generates this return, even if those characters do not change the field. This
does not usually indicate an error but is informational.

User Action: Decide what action is appropriate.

NDS Get-type call to undisplayed form was attempted.

Explanation: The program called FDV$GET, FDVSGETAF, FDVSGETAL, or FDVSGETSC, but
the form in the current workspace is not displayed. No input is requested. Output parameters of the
call are undefined. A form is not displayed if it was loaded into the workspace by FDVSLOAD but
never displayed by FDV$DISPW; if it was explicitly marked not displayed by a FDVS$NDISP call;

if it is implicitly marked not displayed because a FDV$CDISP call cleared the screen and displayed
another form from a different workspace; or because it was implicitly marked undisplayed by another
form being displayed, which forced the screen to be narrower than the form previously displayed.

User Action: Check for a logic error in the program.

NFL No form loaded into specified workspace.

Explanation: The call pertains to a form, fields of a form, or Named Data and no form is loaded into
the current workspace. The function requested is not performed, and output parameters of the call are
undefined.

User Action: Check for a program error that causes the field processing call to be executed for the
wrong workspace. Check that the form has been loaded.

179

Appendix A. VSI FMS Software Messages

NOF No fields defined for form.

Explanation: Calls pertaining to fields are illegal if no fields are defined for the current form. No
input is requested. Output parameters of the call are undefined.

User Action: Check that the form has been defined properly. Also check for a program error that
causes the field processing call to be executed for the wrong workspace.
NSC Specified a scrolled field, but field not found in scrolled area.

Explanation: The name of a field is required to identify the scrolled area to which the call pertains.
The specified field is not in a scrolled area.

User Action: Check the current form. If the form is correct and if it has been defined properly, check
for proper field name.

SIGNAL Error signaled.

Explanation: The Form Driver signaled an internal Form Driver logic error.

User Action: Submit an SPR.

SRETFL Signal to RETFL leading to LLI.
Explanation: The Form Driver signaled an error which was not properly handled internally.

User Action: Submit an SPR.

STA Size of Terminal Control Area too small.

Explanation: The size of the TCA passed in an ATERM call is too small for the Form Driver to link
with its other structures.

User Action: Check that the TCA is a contiguous array or string of at least 12 bytes. Check that the
TCA is passed by descriptor.
STR Insufficient space allocated for string.

Explanation: The string descriptor given to the Form Driver was not long enough for the string value
returned. The string is truncated on the right and execution continues.

User Action: Check that the string definition is long enough for the longest data expected to be
returned. Dynamic strings must be preextended to the proper length before calling the Form Driver.
SUC Normal completion.

Explanation: The Form Driver call has completed successfully.

User Action: None required.

180

Appendix A. VSI FMS Software Messages

SYS FDV encountered system error response.

Explanation: The Form Driver encountered an error in requesting a VMS system service. The Form
Driver action was not completed. The second word of the FDVS$STAT call contains the VMS status
code.

User Action: If the VMS system error is "running out of event flags," then either use fewer terminals
at a time or fewer event flags. Other errors usually indicate network or terminal errors. If errors occur
regularly, submit an SPR.

TCA Terminal Control Area invalid or undefined.

Explanation: The call required a TCA, and there was no current TCA or the current TCA has been
corrupted.

User Action: Check that a TCA has been attached and that the program does not write into the TCA
given to the Form Driver.
TMO Timeout exceeded on GET-type call or WAIT.

Explanation: The operator has not responded with a keystroke in the time allotted by the last
FDVSSTIME call. The values returned in the output parameters are not defined.

User Action: User action is defined by the program, since the program requested the timeout.

UAR UAR returned illegal code.

Explanation: A user action routine called by the Form Driver has returned a function value not
expected by the Form Driver. This error terminates any GET-type call, and the values returned in the
output parameters of the call are not defined.

User Action: Check that the UAR routine returns .only those values expected by the Form Driver
for that type of UAR. Make sure that the declaration of the UAR is as a function returning an integer
value.

UDP UAR depth exceeded.

Explanation: The program has UAR calls nested beyond the Form Driver's ability to keep track

of them. The nesting arises when a UAR performs a GET-type call which requires a UAR for
completion. The GET-type call, which gave rise to the UAR, is terminated with this error code and the
values returned in the output parameters are not defined.

User Action: Check for an infinite loop in your program. Also, do not nest user action routines so
deeply.

181

Appendix A. VSI FMS Software Messages

UNF UAR specified but not found.
Explanation: During processing of a GET-type call, a UAR was specified for the field or form but
was not found in the UAR vector. The GET-type call is terminated, and the output parameters are not

defined.

User Action: Check that the link command for the image includes a UAR vector object module. A
vector module is produced for the forms used in the application by the FMS VECTOR command.

UTR Undefined field terminator.
Explanation: The field terminator in an FDV$PFT call is not a valid Form Driver terminator (in the
range 0-9). The current field remains the same, and the "new field" in the output parameters is set to

the current field.

User Action: Correct the field terminator code.

VAL Value of parameter out of range.

Explanation: At least one of the call's parameters requires a value with a limited range and that range
has been exceeded.

User Action: Correct the value of the parameter.

WID Form too wide for terminal or context.

Explanation: The form to be displayed requires the terminal to be in 132-column mode. The terminal
is not capable of such a mode, or the form definition does not require that the terminal be switched to
that mode and the terminal is in 80-column mode.

User Action: Check that the terminal is capable of 132-column mode. If not, do not use this form

on the terminal or redefine the terminal. If the terminal is capable of 132-column mode, check that
the form definition requires the mode change (in Form Editor phase or in the Form Language FORM
WIDTH statement). If the terminal is capable of 132-column mode, reset it. If not, redefine the form
for this terminal.

A.7. Form Driver Messages for Terminal
Operators

Alphabetic required.

Explanation: An alphabetic character is required in the current position. The alphabetic characters are
the letters A-Z, a-z, and space.

User Action: Application documentation should include instructions for completing the field. The
character is rejected and the cursor returns to the position to be entered and the operator may continue.

182

Appendix A. VSI FMS Software Messages

Alphanumeric required.

Explanation: An alphabetic (A-Z, a-z, space) or numeric (0-9) character is required in the current
position.

User Action: Application documentation should include instructions for completing the field. The

character is rejected and the cursor returns to the position to be entered and the operator may continue

entry.

Cannot change input mode in fixed decimal field.

Explanation: It is not possible to change input modes while inputting to a fixed-decimal field. The
integer part of the field is always entered in Insert mode and the fractional part is always entered in
Overstrike mode.

User Action: The mode command is rejected, and the operator may continue entry.

Cannot move cursor left.

Explanation: The cursor cannot be moved farther left since it is already in the first character position

of the field.

User Action: The cursor is not moved, and the operator may continue entry.

Cannot move cursor right.
Explanation: The cursor cannot be moved farther right since it is already at the end of the field.

User Action: The cursor is not moved, and the operator may continue entry.

Field full.

Explanation: No more characters can be entered into the field without deleting another character,
changing the input mode to Overstrike, or moving the cursor so that Insert mode does not require
shifting a character out of the field.

User Action: The character is rejected, and the operator may enter an editing key or a terminator.

Full Field Required.
Explanation: The current field must be completely filled and contain no fill characters.

User Action: Application documentation should include instructions for completing the field. The
cursor is placed in the field that must be filled, and the operator may continue entry.

Input Required.
Explanation: At least one non-fill character must be entered in the current field.

User Action: Application documentation should include instructions for completing the field. The
cursor is placed in the field that must have some entry, and the operator may continue entry.

183

Appendix A. VSI FMS Software Messages

Insert mode illegal.
Explanation: The operator attempted to change the input mode from Overstrike to Insert. Insert mode
is not legal in a field with a mixed picture, since shifting characters may invalidate previous characters

entered into the field.

User Action: The mode remains Overstrike, and the operator may continue entry.

Invalid character.

Explanation: The character input is not a legal ASCII character.

User Action: Application documentation should include instructions for completing the field. The
character is rejected, and the cursor returns to the position to be entered and the operator may continue
entry.

No help available.

Explanation: No help beyond that already given is available.

User Action: If a help form has been displayed, the operator has two choices: pressing HELP to
restart the help cycle or pressing RETURN or ENTER to return to the data entry form to continue

entry. If a help form has not been displayed, the cursor returns to the field being entered, and the
operator may continue entry immediately.

No next field on form.
Explanation: The operator has pressed a terminator key, which requests movement to the next field
on the form (the Next Field function or the Exit Scrolled Area Forward function), and there are no

input fields after the current field.

User Action: The cursor does not move, and the operator may continue input in the current field.

No previous field on form.
Explanation: The operator has pressed a terminator key, which requests movement to the previous
field on the form (the Previous Field function or the Exit Scrolled Area Backward function), and there

are no input fields before the current field.

User Action: The cursor does not move, and the operator may continue input in the current field.

Nothing to delete.

Explanation: There is no character to delete since the cursor is at the left edge of a left-justified field
or all the characters to the left of the cursor in a right-justified field are fill characters.

User Action: The field is not changed, and the operator may continue entry.

184

Appendix A. VSI FMS Software Messages

Numeric required.
Explanation: A numeric character (0-9) is required in the current position.

User Action: Application documentation should include instructions for completing the field. The
character is rejected, the cursor returns to the position to be entered and the operator may continue
entry.

Only HELP (more help) and RETURN or ENTER (return to data entry) are legal.

Explanation: A help form is being displayed and the operator has entered an illegal terminator for
this situation.

User Action: The operator must enter one of three responses: the HELP key (to get more help), and
either the RETURN or ENTER keys (to exit the help procedure and return to data entry).

Only RETURN or ENTER are legal as DEBUG response.

Explanation: The Form Driver has just displayed a Debug mode message, and the operator has
entered an illegal terminator for this situation.

User Action: The operator must enter one of two keys, RETURN or ENTER, to signal the Form
Driver that the Debug message has been seen. The program continues from the point of the error.

Signed numeric required.

Explanation: A valid signed numeric character (0-9, period, comma, plus, minus) is required in

the current position. Whether period or comma is accepted as the decimal point depends on the last
FDVS$DPCOM call. The default is period. No more than one decimal point or sign is allowed in any
field with a signed numeric validation character.

User Action: Application documentation should include instructions for completing the field. The
character is rejected, and the cursor returns to the position to be entered and the operator may continue
entry.

Terminator required.

Explanation: The operator pressed a data key, but the Form Driver requires a terminator in this
context, since the input operation results from an FDVSWAIT call.

User Action: Application documentation should include instructions for completing the form. The
character is rejected, and the operator may continue entry.

That terminator is legal only in scrolled areas.

Explanation: The current field is nonscrolled, and the operator pressed a terminator key which
applies only to scrolled areas (Scroll Forward, Scroll Backward, Exit Scrolled Area Forward, Exit
Scrolled Area Backward).

User Action: Application documentation should include instructions for completing the form. The
cursor is not moved, and the operator may continue entry.

185

Appendix A. VSI FMS Software Messages

186

	VSI FMS Utilities Reference Manual
	Table of Contents
	Preface
	1. About This Manual
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. OpenVMS Documentation
	7. Typographical Conventions

	Chapter 1. Introduction
	1.1. FMS Development Cycle
	1.1.1. Create Forms
	1.1.1.1. Form Editor
	1.1.1.2. Form Language

	1.1.2. Create Form Libraries or Memory-Resident Forms
	1.1.3. Write the Application Program
	1.1.4. Write User Action Routines
	1.1.5. Create Object Modules
	1.1.6. Test Forms
	1.1.7. Link the Application

	1.2. DCL Commands

	Chapter 2. Form Characteristics
	2.1. Background Text
	2.2. Fields
	2.2.1. Field Picture
	2.2.2. Date and Time Fields
	2.2.3. Field Ordering

	2.3. Named Data
	2.4. Attributes
	2.4.1. Field Attributes
	2.4.1.1. Autotab
	2.4.1.2. Blank Fill
	2.4.1.3. Clear Character
	2.4.1.4. Default Value
	2.4.1.5. Display Only
	2.4.1.6. Field Completion User Action Routine
	2.4.1.7. Field Name
	2.4.1.8. Fixed Decimal
	2.4.1.9. Help Text
	2.4.1.10. Indexed
	2.4.1.11. Left Justify
	2.4.1.12. Must Fill
	2.4.1.13. No Echo
	2.4.1.14. Response Required
	2.4.1.15. Right Justify
	2.4.1.16. Supervisor Only
	2.4.1.17. Uppercase
	2.4.1.18. Zero Fill
	2.4.1.19. Zero Suppress

	2.4.2. Form Attributes
	2.4.2.1. Form Name
	2.4.2.2. Help Form Name
	2.4.2.3. Screen Background
	2.4.2.4. Screen Width
	2.4.2.5. Screen Character Set
	2.4.2.6. Screen Area to Clear
	2.4.2.7. Field Highlighting
	2.4.2.8. Function Key User Action Routine
	2.4.2.9. Pre-help User Action Routine
	2.4.2.10. Post-Help User Action Routine

	2.4.3. Line Attributes
	2.4.3.1. Double Size
	2.4.3.2. Double Wide
	2.4.3.3. Scrolled

	2.4.4. Video Attributes

	Chapter 3. Form Editor - FMS/EDIT
	3.1. Terminal Characteristics
	3.1.1. Terminal Setup

	3.2. FMS/EDIT Command
	REFENTRY WITHOUT TITLE???

	3.3. Form Editor Keys
	3.4. Error Signaling in the Form Editor
	3.5. Choosing а Phase
	3.6. Form Phase
	3.6.1. Form Name
	3.6.2. Help Form Name
	3.6.3. Screen Background
	3.6.4. Screen Width
	3.6.5. Screen Character Set
	3.6.6. Screen Area to Clear
	3.6.7. Field Highlighting
	3.6.8. User Action Routine Names and Data
	3.6.9. Initial Field Attributes

	3.7. Layout Phase
	3.7.1. Adjacent: Breaking а Field into Two Adjacent Fields
	3.7.2. Cancel: Canceling а Select, Gold, or Scroll Operation
	3.7.3. Center: Centering Characters on а Line
	3.7.4. Characters: Changing Character Sets
	3.7.5. Cursor: Moving the Cursor
	3.7.6. Cut: Cutting Characters in а Select Area
	3.7.7. Date: Defining а Date Field
	3.7.8. Delete: Deleting Characters and Lines
	3.7.9. Double Size: Making Lines Double Size
	3.7.10. Double Wide: Making Lines Double Wide
	3.7.11. Draw: Drawing Lines and Boxes
	3.7.12. Field Attributes: Assigning Them in Layout
	3.7.13. Insert: Inserting Blank lines
	3.7.14. Modes: Overstrike/Insert, Text/Field, and Terminal Bell/ Quiet
	3.7.15. Paste: Pasting Previously Cut Characters
	3.7.16. Refresh: Redisplaying the Current Form
	3.7.17. Repeat: Repeating Characters or Operations
	3.7.18. Scroll: Making а Scrolled Area
	3.7.19. Select: Defining а Select Area
	3.7.20. Test Paste: Testing а Paste Operation
	3.7.21. Time: Defining а Time Field
	3.7.22. Video Attributes: Assigning Video Attributes

	3.8. Assign Phase
	3.8.1. Field Name
	3.8.2. Index Value K Of N (Creating Indexed Fields)
	3.8.3. Attributes
	3.8.4. Default Value
	3.8.5. Help Text
	3.8.6. Field Completion User Action Routines Questionnaire

	3.9. Data Phase
	3.10. Order Phase
	3.11. Test Phase
	3.12. Exit Phase

	Chapter 4. Form Language Translator - FMS/ТRANSLATE
	4.1. Form Language Concepts
	4.1.1. Statement Items
	4.1.1.1. Names
	4.1.1.2. Coordinates
	4.1.1.3. Text Strings
	4.1.1.4. Attributes

	4.1.2. Writing а Form Description
	4.1.2.1. Statement Format
	4.1.2.2. Restrictions
	4.1.2.3. Abbreviations
	4.1.2.4. Including Comments

	4.2. Form Language Statements
	ATTRIBUTE_DEFAULTS Statement
	DRAW Statement
	END_OF_FORM Statement
	FIELD Statement
	FORM Statement
	NAMED_DATA Statement
	ORDER Statement
	SCROLL Statement
	ТЕХТ Statement
	VIDEO Statement
	FMS/ТRANSLATE Command

	Chapter 5. Form Librarian - FMS/LIBRARY
	FMS/LIBRARY/CREATE Command
	FMS/LIBRARY/INSERT Command
	FMS/LIBRARY/REPLACE Command
	FMS/LIBRARY/EXTRACT Command
	FMS/LIBRARY/DELETE Command

	Chapter 6. Form Application Aids
	FMS/DESCRIPTION Command
	FMS/DIRECTORY Command
	FMS/OBJECT Command
	FMS/VECTOR Command

	Chapter 7. Form Tester - FMS/ТEST
	7.1. Terminal Setup
	FMS/ТEST Command

	Chapter 8. TDMS to FMS Form Converter - FMS/CONVERT
	8.1. TDMS to FMS Form Converter Functions
	8.1.1. Functions Performed
	8.1.2. TDMS Features Not Supported by FMS

	8.2. FMS/CONVERT Command
	REFENTRY WITHOUT TITLE???

	Chapter 9. Upgrading V1 Application Programs
	9.1. Upgrading V1 Form Files and Form Libraries
	9.2. Using the Form Upgrade Utility
	9.3. Linking Existing Application Programs to the V2 Form Driver
	FMS/UPGRADE Command

	Chapter 10. FMS V1 Compatibility
	10.1. Form Editor
	10.1.1. Keyboard Layout-Form Editor Keys

	10.2. Form Utility
	10.2.1. Comparison of V1 Form Utility Options and V2 Commands
	10.2.2. FMS/DESCRIPTIONS/DECLARATIONS COBOL/DATATRIEVE Data Description

	10.3. Installing VSI FMS V2 with VSI FMS V1 Present on the System

	Appendix A. VSI FMS Software Messages
	A.1. Message Format
	A.2. Messages for Programmers
	A.3. Messages for Terminal Operators
	A.4. Suggestions to Follow if FMS Software Malfunctions
	A.5. FMS Utilities Messages
	A.6. Form Driver Messages for Programmers
	A.7. Form Driver Messages for Terminal Operators

