
 

 

 

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 01803 

 
 
 
 
 

VSI OpenVMS x86-64 V9.1 Field Test 
Release Notes 

June 2021 
 
  



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 018032                    2 

Contents 

Preface ........................................................................................................................... 5 
Introduction ................................................................................................................. 5 
Intended Audience ...................................................................................................... 5 
Document Structure..................................................................................................... 5 
Related Documents ..................................................................................................... 5 

Before You Start... Read These First............................................................................ 6 
1. Tested Virtual Environments .................................................................................. 6 

1.1 Tested VMware Products and License Types ............................................... 6 
2. Hardware Support .................................................................................................. 7 
3. MD5 Checksum for the X86091OE.ISO File ........................................................... 7 
4. Non-Intel Processors Are Not Currently Supported ................................................ 7 
5. CPU Compatibility Checks for Virtual Machines ..................................................... 7 
6. Terminal Emulator Settings .................................................................................... 8 
7. x86-64 Licensing .................................................................................................... 9 
8. License PAKs for VSI OpenVMS x86-64 V9.1 ........................................................ 9 
9. MemoryDisk and the Command Procedure SYS$MD.COM ................................... 9 
10. Networking Options .............................................................................................. 10 

10.1 VSI DECnet Phase IV for OpenVMS ........................................................... 10 
10.2 VSI TCP/IP Services X6.0-9 TELNET and FTP Available 

in VSI OpenVMS x86-64 V9.1 ..................................................................... 11 
11. VSI SSL111 V1.1-1K for OpenVMS ..................................................................... 12 
12. VSI Kerberos V3.3-1 for OpenVMS ...................................................................... 12 
13. VSI DECwindows Motif V1.7-X for OpenVMS ...................................................... 12 
14. Scripts for Configuring and Running VSI OpenVMS x86-64 in Virtual Machines .. 13 
15. Documentation Notes ........................................................................................... 13 

Release Notes .............................................................................................................. 14 
1. Operating System Notes ...................................................................................... 14 

1.1 Features Not Available in VSI OpenVMS x86-64 V9.1 ................................ 14 
1.2 Access Violation .......................................................................................... 14 
1.3 AUTHORIZE Utility: Exit Sometimes Results in System Crash.................... 14 
1.4 AUTOGEN Warning That Appears During AUTOGEN Boot May Be  

Safely Ignored ............................................................................................. 15 
1.5 BACKUP Utility: Verification Errors for SYS$EFI.SYS When 

Copying an x86-64 System Disk ................................................................. 15 
1.6 CHECKSUM Utility Supports SHA1 and SHA256 Algorithms ...................... 16 
1.7 Copying Files Between Integrity Systems and x86-64 Systems .................. 16 
1.8 Cross-Tools Kit Update ............................................................................... 16 
1.9 Display of License Charge Information for x86-64 Nodes ............................ 16 
1.10 ENCRYPT Utility Does Not Work as Expected ............................................ 17 
1.11 Extended File Cache (XFC) ........................................................................ 17 
1.12 HYPERSORT Utility Available ..................................................................... 17 
1.13 Idle CPU Power Saving Mechanism ............................................................ 17 
1.14 Images Linked /SYSEXE Require to Be Relinked ....................................... 17 
1.15 INSTALL Utility Supports INSTALL /RESIDENT and 

/SHARED=ADDRESS_DATA ..................................................................... 18 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 018033                    3 

1.16 ISO 9660 Formatted Volume Can Not Be Mounted on x86-64 Systems ...... 18 
1.17 LIB$INITIALIZE Requires LINK Qualifier ..................................................... 19 
1.18 Linker: New Informational Messages .......................................................... 19 
1.19 Memory Disks ............................................................................................. 19 
1.20 Mount Verification for Tape Devices Causes System Crash ........................ 20 
1.21 MSCP Served Disks .................................................................................... 20 
1.22 OpenVMS Clusters ..................................................................................... 21 
1.23 OpenVMS Cluster Usage of LAN Failover and VLAN Devices .................... 21 
1.24 OpenVMS x86-64 Will Not Support Swap Files ........................................... 22 
1.25 Parallel Processing Library (PPL$) .............................................................. 22 
1.26 POSIX Threads Library ............................................................................... 22 
1.27 Process Dumps ........................................................................................... 23 
1.28 Security Server ........................................................................................... 23 
1.29 Reserved Memory ....................................................................................... 23 
1.30 Spurious Error Message During Shutdown ................................................. 24 
1.31 Storage Controllers Without Attached Disks May Have Incorrect  

Device Names ............................................................................................. 24 
1.32 Supported Disk Types ................................................................................. 24 
1.33 Symmetric Multiprocessing (SMP) .............................................................. 24 
1.34 SYSGEN Parameter Changes .................................................................... 25 
1.35 System Crash Dumps ................................................................................. 28 
1.36 System Service Intercept (SSI) ................................................................... 29 
1.37 Text Editors ................................................................................................. 30 
1.38 Traceback Support ...................................................................................... 30 
1.39 Volume Shadowing ..................................................................................... 30 
1.40 VSI C Run-Time Library (C RTL) Update .................................................... 30 
1.41 VSI DECram for OpenVMS ......................................................................... 31 
1.42 VSI TCP/IP Services: Use of SHOW INTERFACE and IFCONFIG -a on  

x86-64 Systems Under Heavy Traffic .......................................................... 31 
1.43 ZIP/UNZIP Tools ......................................................................................... 31 

2. Virtualization Notes .............................................................................................. 32 
2.1 Time of Day May Not Be Correctly Maintained in Virtual Machine 

Environments .............................................................................................. 32 
2.2 VirtualBox and Hyper-V Compatibility on Windows 10 Hosts ...................... 32 
2.3 VirtualBox: TCP Ports May Become Unusable After Guest Is Terminated .. 33 
2.4 VMware Guest May Fail to Boot After Adding Second SATA Controller ...... 34 
2.5 Wall-Clock Time Sometimes Runs Slow on Virtual Machine Guests ........... 34 

3. Layered and Open Source Products Notes .......................................................... 35 

Appendix A: VSI C Run-Time Library (C RTL) Notes ................................................ 36 
C99 Update ............................................................................................................... 36 

C99 Functions ...................................................................................................... 38 
CRTL ECO V3.0 Changes ......................................................................................... 46 

Bug Fixes ............................................................................................................. 46 
New Constants ..................................................................................................... 46 
New Flags ............................................................................................................ 46 
New Datatypes ..................................................................................................... 47 
New Header ......................................................................................................... 47 
Interface Change .................................................................................................. 47 
New Feature Logical: DECC$PRN_PRE_BYTE ................................................... 48 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 018034                    4 

New Functions ...................................................................................................... 48 
C RTL Changes ......................................................................................................... 54 

New Functions ...................................................................................................... 55 
Updates to Functions ............................................................................................ 57 
Bug Fixes ............................................................................................................. 57 
New Header ......................................................................................................... 58 

 
  



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 018035                    5 

Preface 

Introduction 
 
VMS Software, Inc. (VSI) is pleased to introduce VSI OpenVMS x86-64 V9.1 Field Test. 
This release of OpenVMS for x86-64 is intended for testing purposes only. 
 
With this release, VSI introduces the installation procedure for VSI OpenVMS x86-64 
V9.1 as a guest operating system on Oracle VM VirtualBox, Red Hat KVM, and 
VMware virtual machines. 
 

Intended Audience 
 
This document is intended for all users of VSI OpenVMS x86-64 V9.1. Read this 
document before you install or use VSI OpenVMS x86-64 V9.1. 
 

Document Structure 
 
This document contains the following sections: 
 

• Before You Start...Read These First 

• Release Notes 
 

Related Documents 
 
The following documents provide additional information in support of this release. They 
are included in the V91_DOCS.zip file that is available for download from the 
VSI Services Portal. 

 
• VSI OpenVMS x86-64 V9.1 Field Test Installation Guide 

 
• OpenVMS V9.0 x86-64 Boot Manager User Guide with Virtual Machine 

Setup (see the documentation notes in Section 15 in the Before You Start... Read 
These First section) 
 

• VSI OpenVMS Calling Standard Manual 
 

• VSI OpenVMS Linker Utility Manual 
 

• VSI OpenVMS x86-64 Cross-Tools Kit Installation and Startup Guide 
  



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 018036                    6 

Before You Start... Read These First 
 
Before you begin to download the VSI OpenVMS x86-64 V9.1 installation kit, 
VSI strongly recommends that you read the notes in this section. The notes provide 
information about the virtual machine environments tested by VSI, CPU feature checks, 
terminal emulator settings, licensing on OpenVMS x86-64 systems, describe the new 
boot method called MemoryDisk, and available networking options. 
 

1. Tested Virtual Environments 
 
VSI OpenVMS x86-64 V9.1 can be installed as a guest operating system on 
Oracle VM VirtualBox, Red Hat KVM, and VMware virtual machines using the 
X86091OE.ISO file. 
 
For the installation procedure, refer to the VSI OpenVMS x86-64 V9.1 Field Test 
Installation Guide. 
 
VSI has been testing with VirtualBox V6.1.18 or later. 
 
For KVM, VSI recommends ensuring that your system is up-to-date with KVM kernel 
modules and the associated packages necessary for your particular Linux distribution. 
 
For VMware products, see Section 1.1 below. 
 

1.1 Tested VMware Products and License Types 
 
VSI has tested VSI OpenVMS x86-64 V9.1 with the following VMware products: 
 

VMware Product Version Tested by VSI 

Workstation Pro V15.5.7 

Workstation Player V16.1.0 

Fusion Pro V11.5.7 

Fusion Player V12.1.0 

ESXi V6.7.0 

 
Important: Note that not all VMware license types are currently supported for running 
VSI OpenVMS x86-64 V9.1. The following table lists VMware license types that have 
been tested by VSI: 
 

VMware License VSI Tested 

Enterprise Plus ESXi V6.7.0 as part of vSphere Enterprise Plus 

Enterprise Not tested 

Essentials Plus Not currently supported 

Essentials Not currently supported 

Standard Not currently supported 

Hypervisor Not currently supported 

 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 018037                    7 

The VMware licenses that are marked as “Not currently supported” do not support the 
use of virtual serial lines in a virtual machine. OpenVMS requires a serial port 
connection with a terminal emulator and therefore VMware systems with these 
licenses are not currently supported for running OpenVMS. This support will be added 
in a future release of VSI OpenVMS x86-64. 
 

2. Hardware Support 
 
Direct support for x86-64 hardware systems (models to be specified) will be added in 
later releases. USB support will be addressed after we provide x86-64 hardware system 
support. 
 

3. MD5 Checksum for the X86091OE.ISO File 
 
VSI recommends that you verify the MD5 checksum of the X86091OE.ISO file after it 
has been downloaded to the target system, on which you will run your virtual machine. 
The MD5 checksum of X86091OE.ISO must correspond to the following value: 
 
BB4163E2BC783410E05B1CC917515BE3 
 
To calculate the MD5 checksum, you can use any platform-specific utilities or tools that 
are available for your system. 
 

4. Non-Intel Processors Are Not Currently Supported 
 
Currently, non-Intel processors are not supported for running VSI OpenVMS x86-64 
V9.1. In virtual machine environments, this means that non-Intel processors are not 
supported on host systems or guest virtual machines for running VSI OpenVMS x86-64. 
 
The support for non-Intel processors will be added in future versions of VSI OpenVMS 
x86-64. 
 

5. CPU Compatibility Checks for Virtual Machines 
 
VSI OpenVMS x86-64 requires that the CPU supports certain features that are not 
present in all x86-64 processors. When using virtual machines, both the host system and 
guest virtual machine must have the required features. 
 
Host System Check 
 
Before downloading the VSI OpenVMS x86-64 V9.1 installation kit, VSI recommends 
that you determine whether your host system has the required CPU features to run VSI 
OpenVMS x86-64. For this purpose, execute a Python script called vmscheck.py on 
your host system. This script, along with the accompanying PDF document entitled VMS 
CPUID Feature Check, is included in the Helpful_Scripts.zip file. 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 018038                    8 

 
The VMS CPUID Feature Check document contains instructions on how to run the script 
and interpret the results and also describes script limitations.  
 
Guest Virtual Machine Check 
 
The OpenVMS Boot Manager performs the CPU feature check on the guest virtual 
machine. The CPU feature check is performed automatically every time the Boot 
Manager is launched. If the check has passed successfully, the following message is 
displayed: 
 
Checking Required Processor Features:  PASSED 

 
In addition, before booting VSI OpenVMS x86-64 V9.1, you can issue the following Boot 
Manager command to list the compatibility details: 
 
BOOTMGR> DEVICE CPU 

 
VSI OpenVMS x86-64 V9.1 cannot be booted on the system that fails either of the CPU 
feature checks – the host system check (via the vmscheck.py script) or the guest virtual 
machine check (via the OpenVMS Boot Manager). 
 
Note: In case the system has the required CPU features but lacks some of the optional 
CPU features, the OpenVMS operating system may have noticeably lower performance. 
 

6. Terminal Emulator Settings 
 
The OpenVMS V9.0 x86-64 Boot Manager User Guide with Virtual Machine Setup 
indicates that you are required to access the system through a serial port connection 
with a terminal emulator such as PuTTY. You may need to experiment in order to find 
the appropriate setting for your emulator. 
 
Refer to Chapter 25 titled “Terminal Emulator Tips” in the VSI OpenVMS x86-64 Boot 
Manager User Guide with Virtual Machine Setup for more details about the settings for 
emulators. 
 
On Windows, VSI recommends using PuTTY. Some PuTTY users have found success 
with the following settings: 
 

• If the connection type is Raw, the following settings should be used: 
 
Session 
    Connection type: Raw 
 
Terminal 
    Uncheck Implicit CR in every LF 
    Uncheck Implicit LF in every CR 
    Local echo: Force off 
    Local line editing: Force off (character mode) 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 018039                    9 

• If the Connection type is Telnet, the following settings should be used: 
 
Session 
    Connection type: Telnet 
 
Connection → Telnet 
    Telnet negotiation mode: Switch from Active to Passive (This yields a 
                                             connection to a PuTTY window.) 
                                             Uncheck Return key sends new line instead of ^M 

 
Note: As there is no Telnet server on the virtual machine host for the console 
communication, it is not literally a Telnet connection, but it can be used because not all 
emulators support a Raw connection. 
 

7. x86-64 Licensing 
 
VSI OpenVMS x86-64 V9.1 introduces support for licensing on x86-64 systems. Only 
Product Authorization Keys (PAKs) with the new X86_64 option keyword will load when 
running on x86-64 systems. 
 
The LICENSE REGISTER command has been updated to add the X86_64 keyword for 
the /OPTIONS qualifier. 
 

8. License PAKs for VSI OpenVMS x86-64 V9.1 
 
VSI OpenVMS x86-64 V9.1 includes a pre-populated license database for Field Test. 
Please note that not all products included in the license database may be available 
during Field Test. 
 

9. MemoryDisk and the Command Procedure SYS$MD.COM 
 
VSI OpenVMS x86-64 uses a new boot method called MemoryDisk that simplifies the 
boot process by eliminating boot complexity and decoupling the operating system 
Loader (the Boot Manager) from a specific device or version of VSI OpenVMS x86-64. 
VSI provides a pre-packaged MemoryDisk container file (SYS$MD.DSK) on the 
distribution kit and on every bootable OpenVMS system device. The MemoryDisk 
contains all files that are required to boot the minimum OpenVMS kernel and all files 
needed to write system crash dumps. Changes such as file modifications, or PCSI kit or 
patch installations require the operating system to execute a procedure to update the 
MemoryDisk container, thus assuring that the next boot will use the new images. A 
command procedure, SYS$MD.COM, keeps the MemoryDisk up-to-date. 
 
 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180310                    10 

Note: Do not invoke SYS$MD.COM directly unless you are advised to do so by VSI 
Support, or when required while following documented procedures. For example, if you 
load a user-written execlet by running SYS$UPDATE:VMS$SYSTEM_IMAGES.COM, 
you must then invoke SYS$UPDATE:SYS$MD.COM. For more details, see Section 1.19 
in the Release Notes section. 
 
Note: Do not rename or move SYS$MD.DSK or SYS$EFI.SYS (the UEFI partition). 
Doing so will invalidate the boot blocks and render the system unbootable. 
 

10. Networking Options 
 
VSI OpenVMS x86-64 V9.1 provides support for VSI TCP/IP Services and  
VSI DECnet Phase IV. 
 
VSI TCP/IP Services X6.0-9 is a part of the VSI OpenVMS x86-64 V9.1 installation and 
will be installed along with the operating system. 
 
VSI DECnet Phase IV can be optionally selected to include when you install the 
VSI OpenVMS x86-64 V9.1 operating system. The following prompt will be displayed: 
 
Do you want to install DECnet Phase IV for OpenVMS X86-64 V9.1? 

(Yes/No) [Yes] 

 
VSI recommends that you answer the default Yes and install VSI DECnet Phase IV 

along with the operating system. 
 

10.1 VSI DECnet Phase IV for OpenVMS 
 
VSI OpenVMS x86-64 V9.1 includes support for VSI DECnet Phase IV. Select VSI 
DECnet Phase IV to include when you install the OpenVMS x86-64 operating system 
and then configure the product just as you would for an OpenVMS Alpha or Integrity 
release. 
 
Note: Configuration on a virtual machine requires careful configuration of the NICs. 
For details, refer to the following documents that are included in the 
Helpful_Scripts.zip file: 
 
• For VirtualBox and KVM, refer to the How To Configure and Run VSI OpenVMS 

x86-64 V9.0 document for your VM platform. Each of these documents has a 
section entitled “Network Configuration – DECnet Phase IV”. 
 

• For VMware, refer to the “Network Configuration – DECnet Phase IV” section in 
the VMware, Instructions for Importing the Appliance and Network Setup 
document. 

 
After VSI DECnet Phase IV has been installed and configured, you can set host and 
copy files to/from other Integrity or x86-64 systems running DECnet. 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180311                    11 

Note: After you install VSI DECnet Phase IV, you must update the memory disk to 
ensure SYS$NETWORK_SERVICES.EXE is loaded on boot. Use the following 
commands: 
 
$ @sys$update:sys$md.com 

 

After the next system reboot, you may want to purge the memory disk. 
 
$ purge sys$loadable_images:sys$md.dsk 

 

Additional information about VSI DECnet Phase IV for OpenVMS can be found on the 
VMS Software Documentation webpage. 

 

10.2 VSI TCP/IP Services X6.0-9 TELNET and FTP Available in 
VSI OpenVMS x86-64 V9.1 

 
VSI OpenVMS x86-64 V9.1 includes VSI TCP/IP Services X6.0-9. The only services 
supported in X6.0-9 are TELNET and FTP. In order to use secure services such as 
SSH and SFTP it is necessary to install VSI OpenSSH after you have installed and 
configured VSI TCP/IP Services X6.0-9. The VSI OpenSSH kit is available for 
download from the VSI Services Portal. 
 
Before starting VSI TCP/IP Services, you must run the TCPIP$CONFIG configuration 
procedure. To start TCPIP$CONFIG, enter the following command: 
 
$ @SYS$MANAGER:TCPIP$CONFIG 

 
To start the network stack after configuring it, enter the following command: 
 
$ @SYS$STARTUP:TCPIP$STARTUP.COM 

 
In the VSI TCP/IP Services for OpenVMS Installation and Configuration manual, refer 
to Chapter 3 titled “Configuring TCP/IP Services” for detailed information on running 
the TCPIP$CONFIG configuration procedure. 
 
In the VSI TCP/IP Services for OpenVMS Management manual, refer to Chapter 15 
titled “Configuring and Managing TELNET” and Chapter 16 titled “Configuring and 
Managing FTP” for detailed information on TELNET and FTP. 
 
The information in these manuals is applicable to the x86-64 port of VSI TCP/IP 
Services. 
 
Note: If FTP does not work after it has been started, switch to passive mode with the 
following command: 
 
FTP> SET PASSIVE ON 

Passive is ON 

 

http://md.com/
https://vmssoftware.com/resources/documentation/
https://vmssoftware.com/docs/VSI_TCPIP_SERVICES_INSTALL_CONFIG.pdf
https://vmssoftware.com/docs/VSI_TCPIP_SERVICES_MGMT.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180312                    12 

In passive mode, the FTP client always initiates a data connection. This is useful in 
virtual machine environments when there is network address translation (NAT) in your 
network. 
 
To run this command automatically when you invoke FTP, put it into 
SYS$LOGIN:FTPINIT.INI. Refer to the VSI TCP/IP Services for OpenVMS User’s 
Guide for the full description of the SET PASSIVE command. 
 

11. VSI SSL111 V1.1-1K for OpenVMS 
 
VSI OpenVMS x86-64 V9.1 includes VSI SSL111 V1.1-1K for OpenVMS that is based 
on OpenSSL 1.1.1k. 
 
OpenSSL is used by many operating system functions, networking products, OpenVMS 
layered products and open source applications. 
 

12. VSI Kerberos V3.3-1 for OpenVMS 
 
VSI OpenVMS x86-64 V9.1 includes VSI Kerberos V3.3-1 for OpenVMS. 
 

13. VSI DECwindows Motif V1.7-X for OpenVMS 
 
VSI DECwindows Motif V1.7-X for OpenVMS x86-64 kit is not a standard DECwindows 
Motif kit. It is provided as a temporary measure until an actual VSI DECwindows Motif for 
x86-64 systems is available. 
 
This kit contains shareable images and header files that have been designed to allow 
developers to compile and link their applications cleanly. The images contain the same 
global symbols as their Alpha and Integrity versions; if called, routines simply return the 
status SS$_UNSUPPORTED. 
 
VSI DECwindows Motif V1.7-X can be optionally selected to include when you install the 
VSI OpenVMS x86-64 V9.1 operating system. The following prompt will be displayed: 
 
Do you want to install DECwindows Motif for OpenVMS X86-64 V1.7-X? 

(Yes/No) [Yes] 

 
VSI recommends that you answer the default Yes and install VSI DECwindows Motif for 

OpenVMS x86-64 along with the operating system. 
 
VSI DECwindows Motif V1.7-X for OpenVMS x86-64 kit is needed if you want to run a 
main program that provides a DECwindows interface and a command line interface. 
Otherwise, the main program will fail to start due to the lack of the DECwindows 
shareable images, even though the command line interface is being used. The image 
activator recognizes that the main program was linked against the DECwindows 
shareable images and causes the main program to fail. 
 

https://vmssoftware.com/docs/VSI_TCPIP_SERVICES_UG.pdf
https://vmssoftware.com/docs/VSI_TCPIP_SERVICES_UG.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180313                    13 

14. Scripts for Configuring and Running VSI OpenVMS x86-64 
in Virtual Machines 

 
The Helpful_Scripts.zip file contains the scripts for configuring and creating virtual 
machines to run VSI OpenVMS x86-64 using the pre-configured virtual appliances 
(the .OVA files) and scripts for removing the corresponding virtual machines. The zip file 
also includes the following documents that provide the details on using the scripts and 
importing the virtual appliances: 

 

• How to Configure and Run VSI OpenVMS x86-64 V9.0 in a KVM Virtual Machine on 
Linux  

 

• How to Configure and Run VSI OpenVMS x86-64 V9.0 in an Oracle VM VirtualBox 
Virtual Machine on Linux  

 

• How to Configure and Run VSI OpenVMS x86-64 V9.0 in an Oracle VM VirtualBox 
Virtual Machine on Windows 10  

 

• VMware, Instructions for Importing the Appliance and Network Setup 
 
Note: VSI provided the pre-configured virtual appliances for the V9.0 EAK release 
series. For VSI OpenVMS x86-64 V9.1, the virtual appliances have been replaced with 
the ISO installation kit (X86091OE.ISO). Therefore, you may refer to these scripts and 
the related documents for details of the virtual machine configurations, such as the 
configuration of optional disks, network adapters, or serial devices, but the information 
about the VSI-supplied virtual appliances should be ignored. 
 

15. Documentation Notes 
 
The V91_DOCS.zip includes the OpenVMS V9.0 x86-64 Boot Manager User Guide with 
Virtual Machine Setup. Note that some of the information in this guide is specific to the 
V9.0 EAK release series. With those releases, VSI supplied the pre-configured virtual 
appliances (the .OVA files) to run OpenVMS x86-64 in virtual machines. 
For VSI OpenVMS x86-64 V9.1, the virtual appliances have been replaced with the ISO 
installation kit (X86091OE.ISO). Therefore, please ignore the information specific to the 
VSI-supplied virtual appliances. 
 
Please also disregard the commands for configuring and starting VSI TCP/IP that 
appear in this guide. VSI OpenVMS x86-64 V9.1 includes the new networking product 
VSI TCP/IP Services X6.0-9. For details, see Section 10.2 of this document. 
 
Refer to OpenVMS V9.0 x86-64 Boot Manager User Guide with Virtual Machine Setup 
for details of the boot process (including the operation of the OpenVMS Boot Manager), 
virtual machine configurations, and tips for terminal emulator settings. This information 
remains relevant for the V9.1 release. 
 
  



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180314                    14 

Release Notes 

1. Operating System Notes 
 
The notes in this section announce support for new functionality and also describe 
known issues and limitations in VSI OpenVMS x86-64 V9.1. 
 

1.1 Features Not Available in VSI OpenVMS x86-64 V9.1 
 
The following functionality, products, and commands are not available in 
VSI OpenVMS x86-64 V9.1. 
 
• ACME_SERVER (only UAF Login is available) 
• Availability Manager 
• DEBUG (user-mode symbolic debugger) 
• DECdtm Services 
• DECnet-Plus 
• DECwindows server 
• Process swapping (see Section 1.24 of this document) 
• RAD support 
• Support for privileged applications, such as: 

o User written device drivers 
o Code that directly calls internal system routines such as those that manage 

page tables 
• TECO Editor 
• The current cross-compilers do not support VAX floating-point. Do not specify 

VAX floating-point arguments on any compiler command. VAX floating-point 
support will be available in a future update for all compilers other than C++. 

• Due to the lack of VAX floating-point support, the system routines such as 
LIB$WAIT (even using the IEEE input option), CVT$CONVERT_FLOAT, 
CVT$FTOF, and many others will not work as intended since the underlying bit 
pattern of the floating-point arguments do not match the VAX layout. 

 

1.2 Access Violation 
 
When you run a VSI OpenVMS x86-64 image on VSI OpenVMS Integrity, no 
message from the image activator appears but an access violation occurs. 
 

1.3 AUTHORIZE Utility: Exit Sometimes Results in System Crash 
 
When you exit the AUTHORIZE utility after performing a conversational boot with 
SET/STARTUP OPA0: the system may crash. VSI has observed a few crashes after 
the following conditions have been met: 
 
1. Perform a conversational boot via SET/STARTUP OPA0: 
2. Invoke the AUTHORIZE utility 
3. Exit the AUTHORIZE utility 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180315                    15 

 
Upon exiting, the system crashes. This problem has only been seen following a 
conversational boot, using SET/STARTUP OPA0:. It has not been observed when 
using a FULL or MIN startup. 
 
This problem will be addressed in a future release of VSI OpenVMS x86-64. 
 

1.4 AUTOGEN Warning That Appears During AUTOGEN Boot May Be Safely 
Ignored 

 
AUTOGEN issues a warning message during the AUTOGEN Boot portion of the 
OpenVMS system installation. This message may be safely ignored. The problem 
will be fixed in a future release of VSI OpenVMS x86-64. 
 
****************** 

%AUTOGEN-W-REPORT, Warnings were detected by AUTOGEN. Please review the 

        information given in the file SYS$SYSTEM:AGEN$PARAMS.REPORT 

****************** 

 

1.5 BACKUP Utility: Verification Errors for SYS$EFI.SYS When Copying an 
x86-64 System Disk 

 
The BACKUP utility will output a verification error message when copying an x86-64 
system disk. For example: 

 
$ backup/ignore=interlock/image/verify dka0: dka600: 
   . 
   . 
   . 
%BACKUP-I-STARTVERIFY, starting verification pass at 

1-JUN-2021 16:10:04.28 
   . 

   . 
   . 
%BACKUP-E-VERIFYERR, verification error for block 1 of 

DKA600:[VMS$COMMON.SYS$LDR]SYS$EFI.SYS;1 
   . 
   . 
   . 
$ 
 

This error message will also be generated when a BACKUP/COMPARE operation is 
performed. 
 
The message can be safely ignored as it reflects an expected change in the contents 
of the boot block in the EFI partition of the system disk. VSI will provide an update to 
BACKUP that recognizes this difference as acceptable in a future release of 
VSI OpenVMS x86-64. 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180316                    16 

1.6 CHECKSUM Utility Supports SHA1 and SHA256 Algorithms 
 
In VSI OpenVMS x86-64 V9.1, the CHECKSUM utility supports the SHA1 and 
SHA256 secure hash algorithms to calculate file checksums. These algorithms 
calculate a checksum for all bytes within a file and ignore possible record structures. 
 
Use the CHECKSUM command qualifier /ALGORITHM=option to specify the 
algorithm for the file checksum calculation. 
 
Refer to the CHECKSUM command help or the VSI OpenVMS DCL Dictionary: A-M 
for information about all supported checksum algorithms. 
 

1.7 Copying Files Between Integrity Systems and x86-64 Systems 
 
Please refer to Chapter 21 in the OpenVMS V9.0 x86-64 Boot Manager User Guide 
with Virtual Machine Setup for information about how to copy files between Integrity 
systems and x86-64 systems. 
 

1.8 Cross-Tools Kit Update 
 
With VSI OpenVMS x86-64 V9.1, use the new VSI x86-64 cross-tools kit 
(VSI-I64VMS-X86_XTOOLS-V0901-XFZK-1.ZIP). 
 
For detailed information on the cross-tools included in the V9.1-XFZK kit, refer to the 
release notes bundled with the kit. 
 
The cross-tools kit also includes non-functional DECwindows Motif sharable images 
and header files. They have been designed to allow developers to compile and link 
applications, which call DECwindows Motif routines, without major modifications to 
the compilation and linking processes used on Itanium systems. 
 
Refer to the VSI OpenVMS x86-64 Cross-Tools Kit Installation and Startup Guide for 
complete information on installing the cross-tools kit. 
 

1.9 Display of License Charge Information for x86-64 Nodes 
 
In a cluster with x86-64 nodes running VSI OpenVMS V9.1 and Alpha or I64 nodes 
running previous versions of OpenVMS, the SHOW LICENCE/CLUSTER/CHARGE 
command, run from a non-x86-64 node, displays the existing x86-64 nodes but does 
not display the license charge information for x86-64 systems. 
 
This issue will be fixed in a future update for previous VSI OpenVMS versions. 
 
 
 
 

https://vmssoftware.com/docs/VSI_DCL_DICT_VOL_I.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180317                    17 

1.10 ENCRYPT Utility Does Not Work as Expected 
 
Most operations with the ENCRYPT utility return the following error: 
 
%ENCRYPT-F-ILLALGSEL, algorithm selection unknown, unavailable, 

or unsupported 

 
This issue will be addressed in a future release of VSI OpenVMS x86-64. 
 

1.11 Extended File Cache (XFC) 
 
VSI OpenVMS x86-64 V9.1 has extended file caching (XFC) enabled by default. 
 

1.12 HYPERSORT Utility Available 
 
The high-performance Sort/Merge utility (HYPERSORT) is available in 
VSI OpenVMS x86-64 V9.1. Enable the utility with the following command: 
 
$ DEFINE SORTSHR SYS$LIBRARY:HYPERSORT.EXE 

 

1.13 Idle CPU Power Saving Mechanism 
 
VSI OpenVMS x86-64 V9.1 is capable of putting the CPU into a low-power (C1) state 
when it is idle. The power saving mechanism is controlled by the 
CPU_POWER_MGMT and CPU_POWER_THRSH system parameters as on 
VSI OpenVMS Integrity systems. This will help reduce power consumption as well as 
the host CPU utilization in a virtual machine environment. 
 

1.14 Images Linked /SYSEXE Require to Be Relinked 
 
SYS$BASE_IMAGE.EXE contains a version array that defines compatibility for any 
images linked /SYSEXE. In VSI OpenVMS x86-64 V9.1, the version number for all 
memory management cells has been incremented, requiring all images that link 
/SYSEXE and touch memory management cells (for example, 
MMG$GQ_PAGE_SIZE) be relinked. 
 
All images that are included in VSI OpenVMS x86-64 V9.1 (including any layered 
products) have been relinked. If you create or use any additional images that linked 
/SYSEXE and reference memory management cells in the base image, you will need 
to relink them. (If in doubt, relink any image linked /SYSEXE). 
 
 
 
 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180318                    18 

If you do not relink and you try to activate such an image, you will see this error 
message: 
 
%SYSTEM-W-SYSVERDIF, system version mismatch; please relink 

 
Note that there is no functional change associated with the version number change. It 
is necessary because an internal data structure has been reorganized. 
 

1.15 INSTALL Utility Supports INSTALL /RESIDENT and 
/SHARED=ADDRESS_DATA  

 
Starting with V9.1, INSTALL /RESIDENT and /SHARED=ADDRESS_DATA are 
supported and functional on OpenVMS x86-64. 
 
Note that on OpenVMS x86-64, installing images as resident images requires shared 
address data. This differs from other OpenVMS platforms, where shared address 
data is not a requirement for images being installed as resident images. 
 
On all OpenVMS platforms, installing an image with shared address data requires 
that all images, which this image depends on, are installed with shared address data. 
On OpenVMS x86-64, this means that an image cannot be installed with /RESIDENT 
if this image depends on a shareable image that is not or cannot be installed with 
shared address data. 
 
If INSTALL is run with only the /RESIDENT qualifier specified on the command line, 
/SHARED=ADDRESS_DATA is automatically added, and the following informational 
message is displayed: 
 
%INSTALL-I-SHRADRADDED, '/RESIDENT requires /SHARED=ADDRESS_DATA, 

added for <image_name>'  

 
This has been implemented to help to identify problems with installing resident 
images on x86-64. To avoid the message, either add /SHARED=ADDRESS_DATA, if 
the image can be installed with shared address data or remove /RESIDENT, if the 
image cannot be installed with shared address data. 
 

1.16 ISO 9660 Formatted Volume Can Not Be Mounted on x86-64 Systems 
 
The attempt to mount an ISO 9660 formatted volume (on a physical, logical, or virtual 
device) on VSI OpenVMS x86-64 V9.1 results in failure or system crash. 
 
This issue will be addressed in a future release of VSI OpenVMS x86-64. 
 
 
 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180319                    19 

1.17 LIB$INITIALIZE Requires LINK Qualifier 
 
Programs that use the LIB$INITIALIZE startup mechanism must explicitly include the 
LIB$INITIALIZE module from STARLET.OLB when linking. Traditionally, source 
programs simply declared an external reference to that module, and the linker 
automatically included it. However, the LLVM backend, which is used by the cross-
compilers, removes that external reference from the object file since there were no 
additional source references to the routine. This results in the linker not bringing in the 
LIB$INITIALIZE module to process the startup routines. 
 
Pascal programs that use the [INITIALIZE] attribute will experience the same 
behavior since the compiler uses LIB$INITIALIZE as the underlying mechanism. 
 
As a workaround, specify 
"SYS$LIBRARY:STARLET.OLB/INCLUDE=LIB$INITIALIZE" with your LINK 
command or options file. 
 

1.18 Linker: New Informational Messages 
 
When the linker encounters writable code sections, with PSECT attributes set to WRT 
and EXE, it now prints the following informational message: 
 
%ILINK-I-MULPSC, conflicting attributes for section <PSECT name> 

        conflicting attribute(s): EXE,WRT 

        module: <module name> 

        file: <obj-or-olb-filename> 

 
When the linker finds unwind data in a module, but no section with the PSECT 
attribute set to EXE, it prints the following informational message: 
 
%ILINK-I-BADUNWSTRCT, one or more unwind related sections are 

missing or corrupted 

        section: .eh_frame, there is no non-empty EXE section 

        module: <module name> 

        file: <obj-or-olb-filename> 

 
These messages are seen mainly with Macro-32 and BLISS source modules. All 
code sections must be non-writable. You must have code in sections with the PSECT 
attribute set to EXE. 
 

1.19 Memory Disks 
 
If you change anything that affects the boot path or dumping, you must run the 
command procedure SYS$MD.COM before rebooting. For instance, if you change 
any files referenced or loaded during booting (up to and including the activation of 
STARTUP), or any files used by the dump kernel, then you must run SYS$MD.COM. 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180320                    20 

However, in VSI OpenVMS x86-64 V9.1 there are three exceptions to the above 
statement. If you make any of the following changes that affect the boot path or 
dumping, you need not run SYS$MD.COM: 
 
1. Use SYSGEN WRITE CURRENT or SYSMAN PARAM WRITE CURRENT. 

These commands will access the parameter file on the memory disk directly. 
 

2. Modify dump options using the SET DUMP_OPTIONS command. The copy of the 
data file SYS$DUMP_CONFIG.DAT on the memory disk is updated directly. 

 
3. Copy a file directly to the memory disk when specifically advised by VSI Support 

Engineers to do so. 
 
For the V9.1 release, use the following command exactly as specified here: 
 
$ @sys$update:sys$md 

 
(No parameters are needed, since the defaults should apply). 
 
When SYS$MD.COM completes, you must reboot. 
 
When SYS$MD.COM is invoked, the system will display something like the following: 
 
$ @sys$update:sys$md 
 

X86VMS$DKA0:[VMS$COMMON.SYS$LDR]SYS$MD.DSK;3 created (158451 blocks 

in 1 LBN range), 
        mounted on X86VMS$LDM2: (volume label SYS$MD20133C) with 

25013 free blocks, 
        containing OpenVMS XFKC-N4A. 
  

$ 

 

1.20 Mount Verification for Tape Devices Causes System Crash  
 
Any operation that invokes mount verification for tape devices including Logical 
Magtape (LM) causes a system crash with an INCONSTATE bugcheck. 
 
This issue will be addressed in a future release of VSI OpenVMS x86-64. 
 

1.21 MSCP Served Disks 
 
MSCP served disks are supported on VSI OpenVMS x86-64 V9.1. 
 
Refer to the VSI OpenVMS Cluster Systems manual for more information on using 
the MSCP server to make locally connected disks available to all cluster members. 
 

https://vmssoftware.com/docs/VSI_OpenVMS_Cluster_Systems.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180321                    21 

1.22 OpenVMS Clusters 
 
VSI OpenVMS x86-64 V9.1 can be clustered with any OpenVMS system running 
Version 7.3 or above. VSI has tested 2-node and 3-node clusters, booting from a 
common system disk, MSCP-served disks where appropriate, 
CLUSTER_CONFIG.COM, and many relevant SET, SHOW, and SYSMAN 
commands. Many configurations and options are yet to be tested but the basic 
capabilities are working and ready for external testing. 
 
Adding a Node Using a Copy of an Existing System Disk 
 
On VSI OpenVMS x86-64 systems, you must perform an additional step if you use a 
copy of an existing system disk as the initial system disk of a new node being added 
to a cluster. 
 
In addition to tasks such as modifying the SCSNODE and SCSSYSTEMID 
parameters and changing the label on the new system disk, you must also change 
the label for the memory disk. Follow these steps, which assume that the new system 
disk is DKA300: and is already mounted. 
 
1. Connect and mount the memory disk container file using the following commands: 

 
$ LD CONNECT DKA300:[VMS$COMMON.SYS$LDR]SYS$MD.DSK LDM LDDEV 

$ MOUNT/OVER=ID LDDEV 

 
2. Note the label of the memory disk. It will be of the form “MD20345927FD”. 

Change the last letter to create a unique name. For example: 
 
$ SET VOLUME LDDEV /LABEL=MD20345927FE 

 
3. Dismount the memory disk before completing the other setup tasks for the new 

system disk. 
 
$ DISMOUNT LDDEV 

$ LD DISCONNECT LDDEV 

 

1.23 OpenVMS Cluster Usage of LAN Failover and VLAN Devices 
 
When an OpenVMS x86-64 system is in a cluster, LAN Failover and VLAN devices 
should be configured early in the boot process, but this does not happen. The result is 
that the cluster software configures PEDRIVER on the members of the LAN Failover 
set, preventing these devices from joining the LAN Failover set after boot. Also, 
PEDRIVER does not start on VLAN devices as expected. 
 
The LAN Failover set issue can be worked around by doing an SCACP STOP LAN on 
the LAN Failover set members, then SCACP START LAN on the LAN Failover 
device. If any additional protocols have started on the LAN Failover set members, it is 
necessary to stop these protocols as well. 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180322                    22 

The LAN VLAN issue can be worked around by doing an SCACP START LAN on the 
VLAN devices after boot. 
 
Both issues will be addressed in a future release of VSI OpenVMS. 
 

1.24 OpenVMS x86-64 Will Not Support Swap Files 
 
VSI OpenVMS x86-64 will not support swap files. The system’s physical memory 
should be managed with appropriately sized system memory and page file(s). 
 
The AUTOGEN and SWAPFILES procedures will no longer create swap files on the 
system disk. If a swap file resides on the system disk, it will no longer be installed as 
part of the system startup. 
 
The SYSGEN INSTALL /SWAPFILE command is still present on the system and will 
install a swap file if used. However, OpenVMS x86-64 will never attempt to swap out 
a process to the swap file. The ability to install a swap file will be disabled in a future 
release of VSI OpenVMS x86-64. 
 
Processes may be seen in the computable out swapped (COMO) state. This is a 
transient state for newly created processes. Processes will never appear in the local 
event flat wait out swapped (LEFO) or hibernate out swapped (HIBO) states. All 
performance counters associated with swapping are still present in the system. 
Various MONITOR displays will show swapping metrics. The swapping metrics may 
be removed from the displays in a future release of VSI OpenVMS x86-64. 

 

1.25 Parallel Processing Library (PPL$) 
 
The Parallel Processing Library (PPL$) is available in VSI OpenVMS x86-64 V9.1. 
 

1.26 POSIX Threads Library 
 
The POSIX Threads Library (formerly DECthreads) is available along with kernel 
threads and upcall support in VSI OpenVMS x86-64 V9.1. To optimally use POSIX 
threads in applications, compile them with /REENTRANCY=MULTITHREAD and link 
with /THREADS_ENABLE. 
 
Refer to the Guide to the POSIX Threads Library (AA–QSBPD–TE) for details. The 
information in this guide is applicable to the x86-64 port. 
 
 
 
 
 
 
 

https://support.hpe.com/hpesc/public/docDisplay?docId=emr_na-c04623127


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180323                    23 

1.27 Process Dumps 
 
VSI OpenVMS x86-64 V9.1 provides support for Process Dumps, with the following 
limitations: 
 

• The only method currently available for analyzing process dumps is using the 
System Dump Analyzer (SDA). Most SDA commands that display data about a 
process can be used to examine the state of the process. For example, SHOW 
PROCESS, SHOW CRASH, SHOW EXCEPTION, SHOW CALL, EXAMINE, 
MAP. Support for the Symbolic Debugger interface will be added in a future 
release of VSI OpenVMS x86-64. 

• In a threaded process, only the state of the active thread is saved. All memory of 
the process is saved, but registers in use in other threads may not be available. 
This support will be added in a future release of VSI OpenVMS x86-64. 
 

1.28 Security Server 
 
The Security Server is enabled for VSI OpenVMS x86-64 V9.1. 
 
Error Message When Displaying Intrusion Database 
 
When issuing the SHOW INTRUSION command after a login failure followed by a 
successful login, the following message is displayed: 
 
%SYSTEM-F-BADCONTEXT, invalid or corrupted context encountered 

 
The message is caused by a problem in creating certain intrusion records. This 
problem will be fixed in a future update for VSI OpenVMS x86-64. 
 

1.29 Reserved Memory 
 
VSI OpenVMS x86-64 V9.1 provides the Reserved Memory support. Use the 
SYSMAN RESERVED_MEMORY commands to manage the Reserved Memory 
Registry. 
 
For more information about the Reserved Memory Registry, refer to the 
VSI OpenVMS System Manager’s Manual, Volume 2: Tuning, Monitoring, and 
Complex Systems. 
 
 
 
 
 
 
 
 

https://vmssoftware.com/docs/VSI_SYS_MGMT_MANUAL_VOL_II.PDF
https://vmssoftware.com/docs/VSI_SYS_MGMT_MANUAL_VOL_II.PDF


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180324                    24 

1.30 Spurious Error Message During Shutdown 

 
When booted from the kit disk, the following message is displayed upon the system 
shutdown: 
 
%DISM-F-SYSDEV, The system device cannot be dismounted 

 
    Shutting down the system 
               . 

               . 

               . 

SYSTEM SHUTDOWN COMPLETE 

 
This message may be safely ignored. It will be removed in a future release of 
VSI OpenVMS x86-64. 
 

1.31 Storage Controllers Without Attached Disks May Have Incorrect Device 
Names 

 
The OpenVMS Boot Manager may assign incorrect controller letters when 
enumerating storage controllers that have no attached disks. For example, device 
names such as DKA100 may appear as DKB100 when OpenVMS x86-64 is booted. 
 
When configuring your virtual machine guest, please avoid inclusion of storage 
controllers with no disks attached. If you have existing storage controllers with no 
disks attached, they should be removed from your virtual machine configuration, or 
have at least one disk attached so that they will be included during boot device 
enumeration. Additionally, you should avoid defining storage controllers for disk types 
which are not yet supported by OpenVMS x86-64 as these will also cause 
enumeration issues. See Section 1.32 below for supported disk types. 
 
If device naming appears incorrect, the Boot Manager allows you to specify the UEFI 
File System device name (i.e. FS4:) as the boot device in a boot command. For 
example, BOOTMGR> BOOT FS0: 
 

1.32 Supported Disk Types 
 
VSI OpenVMS x86-64 V9.1 only supports SATA disks. Support for other disk types 
will be added in future releases of VSI OpenVMS x86-64. 
 

1.33 Symmetric Multiprocessing (SMP) 
 
If you have more than one CPU in your virtual machine configuration, VSI 
recommends that you keep the CPU count on the virtual machine at least 1 or 2 
smaller than the number of cores on your host system. Refer to the OpenVMS x86-64 
V9.0 Boot Manager User Guide with Virtual Machine Setup for details on how to 
change the number of CPUs in your virtual machine configuration. 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180325                    25 

 
Note: Due to an unresolved issue, you should not configure your system with more 
than 24 CPUs. VSI is working on resolving this issue. 
 
If you increase the number of CPUs in your virtual machine configuration, you will see 
messages like the following during system startup: 
 
%SMP-I-CPUTRN, CPU #2 has joined the active set. 

%SMP-I-CPUTRN, CPU #1 has joined the active set. 

%SMP-I-CPUTRN, CPU #3 has joined the active set. 

 
Once VSI OpenVMS x86-64 V9.1 is up and running, the DCL command SHOW CPU 
will reflect your CPU count. For example: 
 
$ show cpu 

 

System: X86VMS, VBOX   VBOXFACP 

 

CPU ownership sets: 

   Active           0-3 

   Configure        0-3 

 

CPU state sets: 

   Potential        0-3 

   Autostart        0-3 

   Powered Down     None 

   Not Present      None 

   Hard Excluded    None 

   Failover         None 

$ 

 

The DCL command STOP/CPU n will remove a CPU from the set of CPUs being 
used. For example: 
 
$ stop/cpu 3 

%SMP-I-CPUTRN, CPU #3 was removed from the active set. 

$ 

 

The DCL command START/CPU n is not currently supported. 
 

1.34 SYSGEN Parameter Changes 
 
The following changes and additions have been made to the SYSGEN Utility for 
VSI OpenVMS x86-64 V9.1. For more information about SYSGEN qualifiers and 
parameters, please see the VSI OpenVMS System Management Utilities Reference 
Manual, Volume II: M–Z. 
 
 
 
 
 

https://vmssoftware.com/docs/VSI_SYS_MAN_UTIL_REF_VOL_II.pdf
https://vmssoftware.com/docs/VSI_SYS_MAN_UTIL_REF_VOL_II.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180326                    26 

Table 1: SYSGEN Qualifiers Used for VSI OpenVMS x86-64 

Command Qualifier Description 

USE CURRENT 

Specifies that source information is to be retrieved from the current system 
parameter file on disk. 
 
On x86 systems, the system parameter file is 
SYS$SYSTEM:X86_64VMSSYS.PAR. 

WRITE CURRENT 

Specifies that source information is to be written to the current system 
parameter file on disk. The new values will take effect the next time the 
system is booted. 
 
On x86 systems, command modifies the current system parameter on disk, 
SYS$SYSTEM:X86_64VMSSYS.PAR. 

 
Table 2: System Parameters 

Parameter Description 

BOOT_BITMAP1 

On x86 systems, this parameter defines the required size in megabytes of the 
first boot-time allocation bitmap used by SYSBOOT during the bootstrap process 
on x86. If this value is too small, the system may be unable to boot. 
 
This parameter does not apply to Alpha or Integrity systems. 

BOOT_BITMAP2 

On x86 systems, this parameter defines the required size in megabytes of the 
second boot-time allocation bitmap used by SYSBOOT during the bootstrap 
process on x86. If this value is too small, the system may be unable to boot. 
 
This parameter does not apply to Alpha or Integrity systems. 

DISABLE_X86_FT 

On x86 systems, DISABLE_X86_FT is a bit mask used to inhibit the use of 
certain X86 processor features by the operating system. 
 
It is used to decide which variant of the SYSTEM_PRIMITIVES execlet gets 
loaded. Setting all bits (disabling the use of all optional features) results in 
SYSTEM_PRIMITIVES_0 being loaded. 
 
The following bits are defined: 

Bit Definition 

0 If 1, do not use the XSAVEOPT instruction. 

1 If 1, do not use the RDFSBASE, WRFSBASE, RDGSBASE or 
WRGSBASE instructions. 

2 If 1, do not provide software mitigation against the Intel MDS 
vulnerabilities. 

 
DISABLE_x86_FT is a STATIC parameter. 
 
This parameter does not apply to Alpha or Integrity systems. 

GH_EXEC_CODE_S2 

On x86 systems, GH_EXEC_CODE_S2 specifies the size in pages of the execlet 
code granularity hint region in S2 space. 
GH_EXEC_CODE_S2 has the AUTOGEN and FEEDBACK attributes. 
 
This parameter does not apply to Alpha or Integrity systems. 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180327                    27 

GH_EXEC_DATA_S2 

On x86 systems, GH_EXEC_DATA_S2 specifies the size in pages of the execlet 
data granularity hint region in S2 space. 
GH_EXEC_DATA_S2 has the AUTOGEN and FEEDBACK parameters. 
 
This parameter does not apply to Alpha or Integrity systems. 

GH_RES_DATA_S2 

On x86 systems, GH_RES_DATA_S2 specifies the size in pages of the resident 
image data granularity hint region in S2 space. 
GH_RES_DATA_S2 has the AUTOGEN and FEEDBACK attributes. 
 
This parameter does not apply to Alpha or Integrity systems. 

GH_RES_CODE 

This parameter now applies to x86 systems. On x86, Integrity, and Alpha 
systems, GH_RES_CODE specifies the size in pages of the resident image code 
granularity hint region in S0 space. 
 
GH_RES_CODE has the AUTOGEN and FEEDBACK attributes. 

GH_RO_EXEC_S0 

On x86 systems, GH_RO_EXEC_S0 specifies the size in pages of the read-only 
execlet data granularity hint region in S0 space. 
GH_RO_EXEC_S0 has the AUTOGEN and FEEDBACK attributes. 
 
This parameter does not apply to Alpha or Integrity systems. 

GH_RO_RES_S0 

On x86 systems, GH_RO_RES_S0 specifies the size in pages of the read-only 
resident image data granularity hint region in S0 space. 
 
GH_RO_EXEC_S0 has the AUTOGEN and FEEDBACK attributes. 
 
This parameter does not apply to Alpha or Integrity systems. 

LOAD_SYS_IMAGES 

This special parameter is used by VSI and is subject to change. Do not change 
this parameter unless VSI recommends that you do so. 
 
LOAD_SYS_IMAGES controls the loading of system images described in the 
system image data file, VMS$SYSTEM_IMAGES. This parameter is a bit mask. 
 
The following bits are defined: 

Bit Description 

0 (SGN$V_LOAD_SYS_IMAGES) Enables loading alternate execlets 
specified in 
VMS$SYSTEM_IMAGES.DATA. 

1 (SGN$V_EXEC_SLICING) Enables executive slicing. Note that 
executive slicing is always enabled on 
x86 systems. 

2 (SGN$V_RELEASE_PFNS) Enables releasing unused portions of 
granularity hint regions on Alpha servers. 

 
These bits are on by default. Using conversational bootstrap exec slicing can be 
disabled. 
 
LOAD_SYS_IMAGES is an AUTOGEN parameter. 

RAD_SUPPORT 

RAD_SUPPORT enables RAD-aware code to be executed on systems that 
support Resource Affinity Domains (RADs). 
 
On x86 systems, the default, minimum, and maximum values for 
RAD_SUPPORT are all zeros because RAD support is not currently available on 
that platform. 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180328                    28 

SCSBUFFCNT 

SCSBUFFCNT is reserved for VSI use only. 
 
On x86, Alpha, and Integrity servers, the system communication services (SCS) 
buffers are allocated as needed, and SCSBUFFCNT is not used. 

VCC_FLAGS 

The static system parameter VCC_FLAGS enables and disables file system data 
caching. If caching is enabled, VCC_FLAGS controls which file system data 
cache is loaded during system startup. 
 

Value Description 

0 Disables file system data caching on the local node and 
throughout the OpenVMS Cluster. In an OpenVMS Cluster, 
if caching is disabled on any node, none of the other nodes 
can use the extended file cache or the virtual I/O cache. 
They cannot cache any file data until that node either 
leaves the cluster or reboots with VCC_FLAGS set to a 
nonzero value. 

1 Enables file system data caching and selects the Virtual 
I/O Cache. This value is relevant only for Alpha systems. 

2 Enables file system data caching and selects the extended 
file cache. 

 
Note: On x86 and Integrity servers, the volume caching product 
[SYS$LDR]SYS$VCC.EXE is not available. XFC caching is the default caching 
mechanism. Setting the VCC_FLAGS parameter to 1 is equivalent to not loading 
caching at all or to setting VCC_FLAGS to 0. 
 
VCC_FLAGS is an AUTOGEN parameter. 

 
All system parameters are exposed on every platform: x86-64, Integrity, and Alpha. In 
addition, flags can be set or cleared on any platform using the SYSGEN Utility. 
However, the flag may not have any effect on a platform for which it is not intended. 
 

1.35 System Crash Dumps 
 
VSI OpenVMS x86-64 V9.1 supports a single system crash dump type, Compressed 
Selective format. Bits 0 and 3 in the system parameter DUMPSTYLE must both be 
set. (The value 9 is the default setting.) 
 
VSI OpenVMS x86-64 V9.1 system crash dumps are written using a minimal VMS 
environment called the Dump Kernel. All the files used by the Dump Kernel are 
included in the MemoryDisk, described in Section 1.19 of this document. 
 
Dump Off System Disk 
 
Crash dumps can be written to the system disk or to an alternate disk designated for 
the purpose. Dumps to the system disk are written to 
SYS$SYSDEVICE:[SYSn.SYSEXE]SYSDUMP.DMP, which can be created or 
extended using the SYSGEN utility. 
 
Dumps to an alternate device can be set up as described in the following example 
that specifies DKA100: as the desired dump device. 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180329                    29 

 
1. Create a dump file on DKA100: using the SYSGEN utility. 

 
$ RUN SYS$SYSTEM:SYSGEN 

SYSGEN> CREATE DKA100:[SYS0.SYSEXE] SYSDUMP.DMP /SIZE=200000 
SYSGEN> EXIT 

$ 

 
2. Modify the system parameter DUMPSTYLE to set bit 2. For this example, assume 

that DUMPSTYLE is at its default setting of 9: 
 
$ RUN SYS$SYSTEM:SYSGEN 

SYSGEN> USE CURRENT 

SYSGEN> SET DUMPSTYLE 13 

SYSGEN> WRITE CURRENT 

SYSGEN> EXIT 

$ 

 
Update SYS$SYSTEM:MODPARAMS.DAT to reflect this change. 
 

3. Enter the command: 
 
$ SET DUMP_OPTIONS/DEVICE=DKA100: 

 
You can confirm the setting using the SHOW DUMP_OPTIONS command. 
 
The change is effective immediately, without requiring a reboot. 

 
System Dump Analysis 
 
VSI strongly recommends that the version of SDA.EXE and SDA$SHARE.EXE used 
to analyze a system dump should be exactly the same as the version of OpenVMS in 
use when the system crash occurred. However, it is often possible to use SDA 
images from a different version of OpenVMS if there are no major differences 
between the versions, and ignore the warnings output by SDA (either 
%SDA-W-LINKTIMEMISM, or %SDA-W-SDALINKMISM, or both). 
 
In VSI OpenVMS x86-64 V9.1, there is a layout change in the format of a system 
crash dump, such that older SDA images cannot be used to analyze V9.1 system 
dumps, and vice-versa. Please be sure to use the correct SDA images for system 
dump analysis. 
 

1.36 System Service Intercept (SSI) 
 
System Service Intercept (SSI) is available on VSI OpenVMS x86-64 V9.1. SSI 
enables system services to be intercepted and user-specified code to run before, 
after, or instead of the intercepted system service. 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180330                    30 

1.37 Text Editors 
 
The EDT and TPU editors are available in VSI OpenVMS x86-64 V9.1. 
 

1.38 Traceback Support 
 
The linker has been updated to include sufficient traceback information in the image 
file for a functional symbolic traceback. As a result, the image file may be larger than 
in previous updates. This additional debug information is not read by the image 
activator, so it will not slow down normal image activation. This is the same behavior 
as on OpenVMS Alpha and OpenVMS Integrity server systems. 
 
Traceback now prints the image name, routine name, and line numbers in much like 
traceback on OpenVMS Alpha and OpenVMS Integrity server systems with the 
following differences: 
 
1. Traceback reports that the line numbers displayed are source line numbers. That 

is incorrect. The line numbers are in fact listing line numbers just like on 
OpenVMS Alpha and OpenVMS Integrity server systems. 

2. Traceback is unable to determine the module name so instead it prints the 
"basename" of the source file used to create the module. 

3. The position of the values in their respective columns may not line up with the 
header line. 

 
These differences will be addressed in a future release of VSI OpenVMS x86-64. 
 

1.39 Volume Shadowing 
 
Volume Shadowing is supported on VSI OpenVMS x86-64 V9.1. VSI has tested many 
configurations including multi-volume shadow sets, booting with a shadowed system 
disk, dynamic volume expansion, many relevant SET and SHOW commands, and a 
6-member shadow set mounted clusterwide using MSCP serving. Many 
configurations and options are yet to be tested but the basic capabilities are working 
and ready for external testing. 
 
Refer to the VSI OpenVMS Volume Shadowing Guide for more information. 
 

1.40 VSI C Run-Time Library (C RTL) Update 
 
VSI OpenVMS x86-64 V9.1 includes the updated VSI C Run-Time Library (C RTL). 
The update provides bug fixes as well as new functions, including the additional C99 
Standard functions, new constants, new and updated header files. 
 
See Appendix A in this document for more detailed information. 
 
 

https://vmssoftware.com/docs/VSI_VOLUME_SHAD_GD.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180331                    31 

1.41 VSI DECram for OpenVMS 
 
VSI DECram for OpenVMS, also referred to as a RAMdisk, is now fully operational in  
VSI OpenVMS x86-64 V9.1. 
 
Refer to the DECram for OpenVMS User’s Manual for details of the DECram disk 
characteristics and configuration. 
 

1.42 VSI TCP/IP Services: Use of SHOW INTERFACE and IFCONFIG -a on 
x86-64 Systems Under Heavy Traffic 

 
When you issue the TCP/IP commands SHOW INTERFACE or IFCONFIG -a on the 
OpenVMS x86-64 system that is heavily loaded with FTP traffic, the multiple error 
messages %LIB-E-KEYNOTFOU, key not found in tree are displayed and 

followed by the correct command output information. These multiple error messages 
can be safely ignored. 
 
This issue will be addressed in a future release of VSI OpenVMS x86-64. 
 

1.43 ZIP/UNZIP Tools 
 
With VSI OpenVMS x86-64 V9.1, VSI provides the Freeware executables for 
managing ZIP archives on OpenVMS x86-64 systems. These files are located on the 
distribution kit in the following directories: 
 
SYS$SYSDEVICE:[VMS$COMMON.SYSHLP.UNSUPPORTED.ZIP] 
zip.exe 
zipcloak 
zipnote.exe 
zipsplit.exe 
zip_cli.exe 
zip_msg.exe 
 
SYS$SYSDEVICE:[VMS$COMMON.SYSHLP.UNSUPPORTED.UNZIP]  
unzip.exe 
unzipsfx.exe 
unzipsfx_cli.exe 
unzip_cli.exe 
unzip_msg.exe 
 
In order to use these files, copy them from the distribution kit to an appropriate 
location on your system after you have installed VSI OpenVMS x86-64. 
  

https://support.hpe.com/hpesc/public/docDisplay?docId=c04622753&docLocale=en_US


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180332                    32 

2. Virtualization Notes 
 
The notes in this section describe known issues and limitations when running 
VSI OpenVMS x86-64 V9.1 as a guest operating system in Oracle VM VirtualBox, 
Red Hat KVM, and VMware virtual machines.  
 

2.1 Time of Day May Not Be Correctly Maintained in Virtual Machine 
Environments 

 
VSI OpenVMS x86-64 V9.1 may not correctly maintain the time of day in virtual 
machine environments. To keep the time of day accurate, the system manager may 
need to issue a SET TIME command after booting, suspending, taking a snapshot of 
a virtual machine, or any other similar operations with a virtual machine, depending 
on the virtual machine host. VSI is working on this issue and will deliver an update in 
a future release of VSI OpenVMS x86-64. 
 
When running VSI OpenVMS x86-64 V9.1 in KVM virtual machines, the system 
manager should set the SYSGEN parameter PLATF_SPT_D3 to 30 to keep the 
OpenVMS system time accurate after it has been initially set. This will be addressed 
in a future release of VSI OpenVMS x86-64. 
 

2.2 VirtualBox and Hyper-V Compatibility on Windows 10 Hosts 
 
Host systems running Windows 10 that have previously run Microsoft Hyper-V 
hypervisor may fail the CPU feature checks. The issue is that certain CPU features 
are supported on the host system (the vmscheck.py script passes), but not on the 
guest system (the OpenVMS Boot Manager check fails). Primarily, the XSAVE 
instruction may not be present on the guest system. 
 
This issue persists even if the Hyper-V feature has been removed. This happens 
because certain Hyper-V services interfere with VirtualBox. 
 
The VirtualBox developers are aware of this issue and are working to improve the 
interoperability with Hyper-V. 
 
To explicitly disable execution of the Hyper-V services that interfere with VirtualBox,  
perform the following steps on your Windows 10 host system: 
 
1. Run Command Prompt as administrator. 

 
2. In Command Prompt, execute the following command to disable Hyper-V: 

 
bcdedit /set hypervisorlaunchtype off 

 
3. Shut down your Windows 10 host system by executing the following command: 

 
shutdown -s -t 2 

 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180333                    33 

4. Power on and boot your Windows 10 host system again. 
 

The XSAVE instruction should now be available to your VirtualBox guest. 
 
For more information about the CPU feature checks, see Section 5 in the 
Before You Start…Read These First section. 
 
Tips on How To Determine If Hyper-V Services Impact Your VirtualBox VM 
 
When you launch a VirtualBox guest, look for the icon in the guest window status bar. 
 

• A green turtle icon ( ) indicates that the VirtualBox host is running as a Hyper-V 
guest with diminished performance. 

• An icon with a V symbol ( ) indicates that you are running directly on a 
VirtualBox host. 

 
View the log file VBOX.LOG.  
 
1. To open the log file, in the VirtualBox Manager window, right-click on the virtual 

machine entry and select Show Log from the menu. 
 

2. In the log file, search for “XSAVE”. 

• If it shows "1 (1)", your VM guest has XSAVE. 

• If it shows "0 (1)", your VM guest has Hyper-V services impacting it. 
 

3. In the log file, search for “HM”. The following message also indicates that 
Hyper-V is active: 
 
{timestamp} HM: HMR3Init: Attempting fall back to NEM: VT-x is not 

available 

{timestamp} NEM: WHvCapabilityCodeHypervisorPresent is TRUE, so 

this might work. 

 

2.3 VirtualBox: TCP Ports May Become Unusable After Guest Is Terminated 
 
When running VSI OpenVMS x86-64 V9.1 as a guest in a VirtualBox VM, TCP 
console ports may become unusable after a guest session has been terminated. After 
that, you cannot connect to your VirtualBox VM again. These ports remain in the 
LISTEN state even after you have disconnected the remote terminal session.  
 
As a workaround, use the following commands to free your TCP ports and connect to 
your VirtualBox VM: 
 
vboxmanage controlvm <vmname> changeuartmode1 disconnected 

vboxmanage controlvm <vmname> changeuartmode1 tcpserver <port> 

 
The VirtualBox developers have indicated that the fix will be provided in an upcoming 
VirtualBox maintenance release. 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180334                    34 

2.4 VMware Guest May Fail to Boot After Adding Second SATA Controller 
 
It has been reported by an EAK user that their VMware guest does not boot when a 
second SATA controller is added to the configuration. In their case, removing the 
second SATA controller eliminates the issue. 
 
VSI has not observed boot issues when adding a second SATA controller during 
testing. If you encounter this situation, please report your issue via the VSI Services 
Portal. 
 

2.5 Wall-Clock Time Sometimes Runs Slow on Virtual Machine Guests 
 
Wall-clock time may advance slightly slowly on virtual machine guests. This is the 
time displayed by the DCL command SHOW TIME or obtained by reading 
EXE$GQ_SYSTIME. 
 
This issue will be addressed in a future release of VSI OpenVMS x86-64. 

  



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180335                    35 

3. Layered and Open Source Products Notes 
 
Layered and open source products for VSI OpenVMS x86-64 V9.1 can be downloaded 
individually from the VSI Services Portal. For detailed information about the products, 
please refer to the associated product release notes bundled with the kits. 
 
  



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180336                    36 

Appendix A: VSI C Run-Time Library (C RTL) Notes 

C99 Update 
 
VSI OpenVMS x86-64 V9.1 includes the updated C RTL that provides additional C99 
Standard functions and functionality that were not previously available. 
 
These functions are also available on the following VSI OpenVMS versions: 
 

• VSI OpenVMS Integrity V8.4-2L1 and V8.4-2L3 

• VSI OpenVMS Alpha V8.4-2L1 and V8.4-2L2 
 
To utilize C99 Standard functions, compile your applications with the /STANDARD=C99, 
/STANDARD=LATEST or /STANDARD=RELAXED (default) switches. See the section 
C99 Functions for a list of functions. 
 
The value of the __CRTL_VER macro, predefined by the VSI C Compiler, has been 
changed from 80400000 to 80500000. 
 
Note: If you develop an application on a system with the CRTL C99 or any later kit 
installed and intend it to be run on a system without those kits, you must compile your 
application with the switch /DEFINE=(__CRTL_VER_OVERRIDE=80400000). 
 
This release also includes changes to some header files to make them more consistent 
with the standards. 
 

MATH.H, FP.H and FLOAT.H: Definitions have been moved around/between 
these header files to match the C99 Standard requirements. 

 
STDINT.H and INTTYPES.H: Definitions from INTTYPES.H have been moved 
into a new header file, STDINT.H, to match the standard’s requirements. 
INTTYPES.H now contains ‘#include <STDINT.H>’ so that existing applications 
will continue to compile without any changes. In addition, some new names have 
been defined for data types to match the C99 Standard. For example, int64_t. 

 
Possible errors when compiling applications 
 
With the addition of new data type and function definitions, it is possible that applications 
may incur compilation errors if the applications include definitions that conflict with the 
definitions now provided in the system header files. For example, if an application 
contains a definition of int64_t that differs from the definition included in STDINT.H, the 
compiler generates a %CC-E-NOLINKAGE error. Conflicting function definitions can 
result in various %CC errors or warnings. To diagnose such problems, compile the 
application using /LIST/SHOW=INCLUDE and then examine the listing file. 
 
 
 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180337                    37 

There are different ways to resolve such problems. Some examples are following: 
 

• Remove the application-specific definition if the system-provided definition provides 
the proper functionality. 

• Undefine the system-provided definition before making the application-specific 
definition. For example: 
 
#ifdef alloca 

#undefine alloca 

#endif 

<application-specific definition of alloca> 

 

• Guard the application-specific definition. For example: 
 
#ifndef alloca 

<application-specific definition of alloca> 

#endif 

 
Possible informational and warning messages when linking applications 
 
The implementations of isnan() and isnormal() have changed and now utilize 

functions in the Math Run-Time Library (DPML$SHR.EXE). If your application includes 
references to isnan() or isnormal() and you encounter the %ILINK-I-UDFSYM and 

%ILINK-W-USEUNDEF messages for MATH$ symbols when linking your application, 
you may add SYS$LIBRARY:DPML$SHR/SHAREABLE to your options file as one way 
of resolving undefined symbolic references. 
 
UNSUPCONVSPEC warning 
 
When using the new format specifiers with print and scan (see the section Print and 
scan conversion specifier and argument types) the system will generate a  
%CC-W-UNSUPCONVSPEC warning.  
 
You can eliminate the warnings by adding #pragma message disable 
UNSUPCONVSPEC to your code or by compiling your code with the switch, 
/WARNING=DISABLE=UNSUPCONVSPEC. This warning will be removed in a future 
update to the C compiler. 
 
va_copy() 
 
va_copy() will be enabled with a future VSI C Compiler Version 7.5. 

 
Online Help 
 
A future version of VSI OpenVMS will update the Online Help contents of the C RTL with 
the functions listed in this document. 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180338                    38 

C99 Functions 
 
This section describes the C99 functions that have been added to the C RTL. For VSI 
OpenVMS x86-64 V9.1, these functions are included in the C RTL. 
 
For VSI OpenVMS Integrity and VSI OpenVMS Alpha systems, these functions are 
included in the following kits: 
 

• C99 V1.0  

• C99 V2.0 

• RTL V2.0 
 

fpclassify 
 
Format 
#include <math.h> 
int fpclassify (real-floating x); 
 
Description 
The fpclassify macro classifies its argument value as NaN, infinite, normal, 

subnormal, zero, or into another implementation-defined category. First, an argument 
represented in a format wider than its semantic type is converted to its semantic type. 
Then classification is based on the type of the argument. 
 
Returns 
The fpclassify macro returns the value of the number classification macro 

appropriate to the value of its argument. 

isblank, iswblank 
 
Format 
#include <ctype.h> 
int isblank (int c); 
 
#include <wctype.h> 
int iswblank (wint_t wc); 
 
Description 
The isblank function tests for any character that is a standard blank character or is 

one of a locale-specific set of characters for which isspace is true and that is used to 

separate words within a line of text. The standard blank characters are the following: 
space (' '), and horizontal tab ('\t'). In the "C" locale, isblank returns true only for the 

standard blank characters. 
 
The iswblank function tests for any wide character that is a standard blank wide 

character or is one of a locale-specific set of wide characters for which iswspace is true 

and that is used to separate words within a line of text. The standard blank wide 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180339                    39 

characters are the following: space (L' '), and horizontal tab (L'\t'). In the "C" locale, 
iswblank returns true only for the standard blank characters. 

 
Returns 
These functions return true if and only if the value of the character or wide character has 
the property described in the description. 
 

isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered 
 
Format 
#include <math.h> 
int isgreater (x, y); 
int isgreaterequal (x, y); 
int isless (x, y); 
int islessequal (x, y); 
int islessgreater (x, y); 
int isunordered (x, y); 
 
Description 
The normal relation operations (like <, "less than") will fail if one of the operands is NaN. 
This will cause an exception. To avoid this, C99 defines the macros listed below. 
 
These macros are guaranteed to evaluate their arguments only once. The arguments 
must be of real floating-point type (note: do not pass integer values as arguments to 
these macros, since the arguments will not be promoted to real-floating types). 
 
isgreater () 

    determines (x) > (y) without an exception if x or y is NaN.  
isgreaterequal () 

    determines (x) >= (y) without an exception if x or y is NaN.  
isless () 

    determines (x) < (y) without an exception if x or y is NaN.  
islessequal () 

    determines (x) <= (y) without an exception if x or y is NaN.  
islessgreater () 

    determines (x) < (y) || (x) > (y) without an exception if x or y is NaN. This macro is not 
equivalent to x != y because that expression is true if x or y is NaN.  
isunordered () 

    determines whether its arguments are unordered, that is, whether at least one of the 
    arguments is a NaN. 
 
Returns 
The macros other than isunordered () return the result of the relational comparison; 

these macros return 0 if either argument is a NaN. 
 
isunordered () returns 1 if x or y is NaN and 0 otherwise. 

 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180340                    40 

llrint, llrintf, llrintl 
 
Format 
#include <math.h> 
long long int llrint (double x); 
long long int llrintf (float x); 
long long int llrintl (long double x); 
 
Description 
The llrint functions round their argument to the nearest integer value, rounding 

according to the current rounding direction. If the rounded value is outside the range of 
the return type, the numeric result is unspecified and a domain error or range error may 
occur. 
 
Returns 
The llrint functions return the rounded integer value. 

 

llround, llroundf, llroundl 
 
Format 
#include <math.h> 
long long int llround (double x); 
long long int llroundf (float x); 
long long int llroundl (long double x); 
 
Description 
The llround functions round their argument to the nearest integer value, rounding 

halfway cases away from zero, regardless of the current rounding direction. If the 
rounded value is outside the range of the return type, the numeric result is unspecified 
and a domain error or range error may occur. 
 
Returns 
The llround functions return the rounded integer value. 

 

nearbyint, nearbyintf, nearbyintl 
 
Format 
#include <math.h> 
double nearbyint (double x); 
float nearbyintf (float x); 
long double nearbyintl (long double x); 
 
Description 
The nearbyint functions round their argument to an integer value in floating-point 

format, using the current rounding direction and without raising the "inexact" floating-
point exception. 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180341                    41 

Returns 
The nearbyint functions return the rounded integer value. 

 

round, roundf, roundl 
 
Format 
#include <math.h> 
double round (double x); 
float roundf (float x); 
long double roundl (long double x); 
 
Description 
The round functions round their argument to the nearest integer value in floating-point 

format, rounding halfway cases away from zero, regardless of the current rounding 
direction. 
 
Returns 
The round functions return the rounded integer value. 
 

scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl 
 
Format 
#include <math.h> 
double scalbln (double x, long int n); 
float scalblnf (float x, long int n); 
long double scalblnl (long double x, long int n); 
double scalbn(double x, int n); 
float scalbnf(float x, int n); 
long double scalbnl(long double x, int n); 
 
Description 
These functions multiply their first argument x by FLT_RADIX (probably 2) to the power 
of n, which is:  
x * FLT_RADIX ** n 

The definition of FLT_RADIX can be obtained by including <float.h>. 
 
Returns 
On success, these functions return x × FLT_RADIX ** n. 
If x is a NaN, a NaN is returned. 
If x is positive or negative infinity, positive or negative infinity is returned. 
If x is +/- 0, +/- 0 is returned. 
If the result overflows, a range error occurs, and the functions return HUGE_VAL, 
HUGE_VALF, or HUGE_VALL, respectively, with a sign the same as x.  
If the result underflows, a range error occurs, and the functions return zero, with a sign 
the same as x. 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180342                    42 

strtof, strtold, wcstof, wcstold 
 
Format 
#include <stdlib.h> 
float strtof (const char * restrict nptr, char ** restrict endptr); 
long double strtold (const char * restrict nptr, char ** restrict endptr); 
 
#include <wchar.h> 
float wcstof (const wchar_t * restrict nptr, 
wchar_t ** restrict endptr); 
long double wcstold (const wchar_t * restrict nptr, 
wchar_t ** restrict endptr); 
 
Function Variants 
The strtof function has variants named _strtof32 and _strtof64 for use with 32-

bit and 64-bit pointer sizes, respectively. The strtold function has variants named 

_strtold32 and _strtold64 for use with 32-bit and 64-bit pointer sizes, respectively. 

The wcstof function has variants named _wcstof32 and _wcstof64 for use with 32-

bit and 64-bit pointer sizes, respectively. The wcstold function has variants named 

_wcstold32 and _wcstold64 for use with 32-bit and 64-bit pointer sizes, respectively. 

See Section 1.9 in VSI C Run-Time Library Reference Manual for OpenVMS Systems 
for more information on using pointer-size-specific functions. 
 
Description 
These functions convert the initial portion of the string or wide string pointed to by nptr to 
float, and long double representation, respectively. First, they decompose the input 
string into three parts: an initial, possibly empty, sequence of white-space characters (as 
specified by the isspace function), a subject sequence resembling a floating-point 

constant or representing an infinity or NaN, and a final string of one or more 
unrecognized characters, including the terminating null character of the input string. 
Then, they attempt to convert the subject sequence to a floating-point number, and 
return the result. 
 
The expected form of the (initial portion of the) string or wide string is optional leading 
white space, an optional plus ('+') or minus sign ('-') and then either (i) a decimal number, 
or (ii) a hexadecimal number, or (iii) an infinity, or (iv) a NAN (not-a-number). 
 
Returns 
The functions return the converted value, if any. If no conversion could be performed, 
zero is returned. If the correct value is outside the range of representable values, plus or 
minus HUGE_VAL, HUGE_VALF, or HUGE_VALL is returned (according to the return 
type and sign of the value), and the value of the macro ERANGE is stored in errno. If the 
result underflows, the functions return a value whose magnitude is no greater than the 
smallest normalized positive number in the return type; whether errno acquires the value 
ERANGE is implementation-defined. 
 
 

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180343                    43 

va_copy 
 
Format 
#include <stdarg.h> 
void va_copy (va_list dest, va_list src); 
 
Description 
The va_copy macro initializes dest as a copy of src, as if the va_start macro had 

been applied to dest followed by the same sequence of uses of the va_arg macro as 

had previously been used to reach the present state of src. Neither the va_copy nor 

va_start macro shall be invoked to reinitialize dest without an intervening invocation of 

the va_end macro for the same dest. 

 
This macro will be enabled with a future VSI C Compiler Version 7.5. 
 
Returns 
The va_copy macro returns no value. 

 

wcstoll, wcstoull 
 
Format 
#include <wchar.h> 
long long int wcstoll (const wchar_t * restrict nptr,  

wchar_t ** restrict endptr, int base); 
unsigned long long int wcstoull (const wchar_t * restrict nptr,  

wchar_t ** restrict endptr, int base); 
 
Function Variants 
The wcstoll function has a variant named _wcstoll64 for use with 64-bit pointer 

sizes. The wcstuoll function has a variant named _wcstoull64 for use with 64-bit 

pointer sizes. See Section 1.9 in VSI C Run-Time Library Reference Manual for 
OpenVMS Systems for more information on using pointer-size-specific functions. 
 
Description 
The wcstoll and wcstoull functions convert the initial portion of the wide string 

pointed to by nptr to long long int and unsigned long long int representation, respectively. 
First, they decompose the input string into three parts: an initial, possibly empty, 
sequence of white-space wide characters (as specified by the iswspace function), a 

subject sequence resembling an integer represented in some radix determined by the 
value of base and a final wide string of one or more unrecognized wide characters, 
including the terminating null wide character of the input wide string. Then, they attempt 
to convert the subject sequence to an integer, and return the result. 
 
Returns 
The functions return the converted value, if any. If no conversion could be performed, 
zero is returned. If the correct value is outside the range of representable values, 
LONG_MIN, LONG_MAX, LLONG_MIN, LLONG_MAX, ULONG_MAX, or 

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180344                    44 

ULLONG_MAX is returned (according to the return type sign of the value, if any), and 
the value of the macro ERANGE is stored in errno. 
 

Print and scan conversion specifier and argument types 
 
The C RTL now supports the F conversion specifier and the hh, t, j and z argument 
types in print and scan. 
 
F  Similar to f. 
 
hh Specifies that a following d, i, o, u, x, or X conversion specifier applies to a signed 

char or unsigned char argument (the argument will have been promoted according 
to the integer promotions, but its value shall be converted to signed char or 
unsigned char before printing); or that a following n conversion specifier applies to a 
pointer to a signed char argument. 

 
t       Specifies that a following d, i, o, u, x, or X conversion specifier applies to a ptrdiff_t 

or the corresponding unsigned integer type argument; or that a following n 
conversion specifier applies to a pointer to a ptrdiff_t argument.  

 
J Specifies that a following d, i, o, u, x, or X conversion specifier applies to an 

intmax_t or uintmax_t argument; or that a following n conversion specifier applies to 
a pointer to an intmax_t argument. 

 
z     Specifies that a following d, i, o, u, x, or X conversion specifier applies to a size_t or 

the corresponding signed integer type argument; or that a following n conversion 
specifier applies to a pointer to a signed integer type corresponding to size_t 
argument. 

 

strftime, wcsftime, strptime – additional conversion specifiers 
 
Description 
The following conversion specifiers have been added to strftime, wcsftime and 

strptime: 

 
%F  is equivalent to ‘‘%Y−%m−%d’’ (the ISO 8601 date format). [tm_year, tm_mon, 

tm_mday] 
 
%g  is replaced by the last 2 digits of the week-based year as a decimal number 

(00−99). [tm_year, tm_wday, tm_yday] 
 
%G  is replaced by the week-based year as a decimal number (e.g., 1997). [tm_year, 

tm_wday, tm_yday] 
 
%k The hour (24-hour clock) as a decimal number (range 0 to 23); single digits are 

preceded by a blank.  
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180345                    45 

%l  The hour (12-hour clock) as a decimal number (range 1 to 12); single digits are 
preceded by a blank.  

 
%P  Like %p but in lowercase: "am" or "pm" or a corresponding string for the current 

locale. 
 
%s  The number of seconds since the Epoch, 1970-01-01 00:00:00 +0000 (UTC). 
 
%u  The day of the week as a decimal, range 1 to 7, with Monday being 1. 

%z  The +hhmm or -hhmm numeric timezone (that is, the hour and minute offset from 
UTC). 

%Z The timezone name. 

%+  The date and time in date format.  



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180346                    46 

CRTL ECO V3.0 Changes 
 
For VSI OpenVMS Integrity and VSI OpenVMS Alpha systems, VSI provides the CRTL 
ECO V3.0 kit that includes bug fixes, new functions, new constants and a new header 
file. 
 
For VSI OpenVMS x86-64 V9.1, all these changes are included in the C RTL. 
 

Bug Fixes 
 

• Calling the function l64a with an invalid argument no longer causes a memory leak. 

• Calling the function l64a_r with a null buffer pointer no longer causes an ACCVIO. 

• Calling the functions readv or writev with an invalid file descriptor no longer 

causes a memory leak. 

• Fixed a possible memory leak in realpath. 

• Fixed possible undefined behavior in make_cli_comm. 

• Fixed a memory leak in the return path of newwin. 

• Fixed definitions of isnan, isnanf, and isnanl. 

• Fixed fstat to return the proper value in the stat field, st_ino, when FID$W_SEQ 

field has the high bit set and _USE_STD_STAT has been defined. 

• Fixed headers to define isblank and iswblank when compiling with 

/STANDARD=C99. 

• Fixed the definition of C99 routines when compiling with /STANDARD=RELAXED. 

• Fixed headers so that nan, nanf, and nanl are only defined when using IEEE floating 
point. 

• Fixed headers so that va_copy is only defined when using the latest compiler. 

• Fixed SEMAPHORE.H so that it no longer generates a compiler error when compiled 
with /STANDARD=ANSI89 or /STANDARD=VAXC. 

 

New Constants 
 
The following constants were added to LIMITS.H: 
 

• LLONG_MAX -- Maximum value for an object of type long long int. 

• LLONG_MIN -- Minimum value for an object of type long long int. 

• ULLONG_MAX -- Maximum value for an object of type unsigned long long int. 
 

New Flags 
 
The following flags were added to DLFCN.H: 
 

• RTLD_GLOBAL 

• RTLD_LOCAL 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180347                    47 

New Datatypes 
 
The following type was added to SOCKET.H: 
 

• socklen_t – Socket address length type. 
 
The following types were added to DECC$TYPES.H: 
 

• typedef const unsigned int * __const_u_int_ptr64; 

• typedef int * __int_ptr64; 

• typedef const int * __const_int_ptr64; 
 

New Header 
 
This ECO includes MALLOC.H. 
 

Interface Change 
 
The interface for the function isatty has been modified.  

 
Previously, in case of an error, the function returned -1. This is not compatible with the 
POSIX 1003.1 standard. This leads to errors that are hard to find. With this release, in 
case of an error, the function returns 0 and stores the error in errno.  
 
If your code assumes a return value of 0, this means that the fd is not a tty. If and a 
return value of -1 means an error, you will need to change the code. See the following 
example: 
 
Existing code: 

int val = isatty(fd); 

if (val == 1) { 

 // fd is tty 

} 

else if (val == 0) { 

 // fd is not tty 

} 

else if (val == -1) { 

 // error 

} 

 

Changed code: 

int val = isatty(fd); 

if (val == 1) { 

 // fd is tty 

} 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180348                    48 

else if (val == 0) { 

 if (errno) { 

  // error 

} 

else {  

  // fd is not tty 

} 

} 

 

New Feature Logical: DECC$PRN_PRE_BYTE 
 
A change introduced by Hewlett Packard Enterprise (HPE) during OpenVMS V8.4 
maintenance allowed systems that used the CIFS product (SAMBA) to display files in 
the appropriate format. However, that change affected files with Print File Carriage 
Control (also known as Fortran Carriage Control). For some environments, the print 
codes that are removed when transferring files between systems cause incorrect printing 
behavior resulting in form feeds being lost. 
 
A new C RTL feature logical name, DECC$PRN_PRE_BYTE, when enabled, converts 
the print codes in files with Print File Carriage Control to their ASCII control code 
equivalents. CIFS then sends them to the client. 
 
Enabling this new logical, in addition to enabling the logical DECC$TERM_REC_CRLF, 
which is used by CIFS, correctly includes the print codes on transferred files. 
 
To enable the DECC$PRN_PRE_BYTE feature, use: 
 
$ DEFINE/SYSTEM DECC$PRN_PRE_BYTE ENABLE 

 

New Functions 
 
This section describes the functions that have been added to the C RTL. For VSI 
OpenVMS V9.0 EAK, they are included in the C RTL. 
 
For VSI OpenVMS Integrity and VSI OpenVMS Alpha systems, these functions are 
included in the RTL V3.0 kit. 
 

freeifaddrs 
 
Format 
#include <ifaddrs.h> 
void freeifaddrs(struct ifaddrs *ifp); 
 
 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180349                    49 

Description 
The freeifaddrs function frees the dynamically allocated data returned by the 

getifaddrs function. ifp is the address returned by a previous call to getifaddrs. If 

ifp is a NULL pointer no action occurs. 
 

getgrent_r 
 
Format 
#include <grp.h> 
int getgrent_r(struct group *grp, char *buffer, size_t bufsize, struct group **result); 
 
Function Variant 
The getgrent_r function has a variant named __getgrent_r64 and for use with 64-

bit pointers. See Section 1.9 in VSI C Run-Time Library Reference Manual for OpenVMS 
Systems for more information on using pointer-size-specific functions. 
 
Description 
The getgrent_r function is the reentrant version of getgrent. The getgrent_r 

function returns a pointer to a structure containing the broken-out fields of a record in the 
group database. When first called, getgrent_r returns a pointer to a group structure 

containing the first entry in the group database. Thereafter, it returns a pointer to the 
next group structure in the group database, so successive calls can be used to search 
the entire database. It updates the group structure pointed to by grp and stores a pointer 
to that structure at the location pointed to by result. Storage referenced by the group 
structure is allocated from the memory provided with the buffer argument, which is 
bufsize characters in size. The maximum size needed for this buffer can be determined 
with the _SC_GETGR_R_SIZE_MAX parameter of the sysconf function. 

If the requested entry is not found or an error is encountered, a NULL pointer is returned 
at the location pointed to by result. 
 
Returns 
On success, the function returns 0 and *result is a pointer to the struct group. On error, 
the function returns an error value and *result is NULL. 
 

gethostbyname_r 
 
Format 
#include <netdb.h> 
int gethostbyname_r(const char *name, struct hostent *ret, char *buffer, size_t buflen, 
struct hostent **result, int *h_errnop); 
 
Description 
The gethostbyname_r function is the reentrant version of gethostbyname. The 

caller supplies a hostent structure ret which will be filled in on success, and a temporary 
work buffer buffer of size buflen. After the call, result will point to the result on success. 
In case of an error or if no entry is found result will be NULL. The functions return 0 on 
success and a nonzero error number on failure. In addition to the errors returned by the 
nonreentrant version, if buffer is too small, the functions will return ERANGE, and the 

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180350                    50 

call should be retried with a larger buffer. The global variable h_errno is not modified, but 
the address of a variable in which to store error numbers is passed in h_errnop. 
 
Returns 
The functions return 0 on success and a nonzero error number on failure. The global 
variable h_errno is not modified, but the address of a variable in which to store error 
numbers is passed in h_errnop. 
 
Note 
Modules which include calls to gethostbyname or gethostbyname_r must be 

compiled with the C switch /PREFIX=ALL. 
 

getifaddrs 
 
Format 
#include <sys/socket.h> 
#include <ifaddrs.h> 
int getifaddrs(struct ifaddrs **ifap); 
 
Function Variants 
The getifaddrs function has variants named _getifaddrs32 and 

_getifaddrs64 for use with 32-bit and 64-bit pointer sizes, respectively. See 

Section 1.9 in VSI C Run-Time Library Reference Manual for OpenVMS Systems for 
more information on using pointer-size-specific functions. 
 
Description 
The getifaddrs function creates a linked list of structures describing the network 

interfaces, one for each network interface on the host machine. The getifaddrs 

function stores a reference to a linked list of the network interfaces on the local machine 
in the memory referenced by ifap. The list consists of ifaddrs structures, as defined in 

the include file <ifaddrs.h>. The ifaddrs structure contains the following entries: 

 
  struct ifaddrs *ifa_next;  /* Pointer to next struct */ 
  char    *ifa_name;  /* Interface name */ 
  u_int     ifa_flags;  /* Interface flags */ 
  struct sockaddr *ifa_addr;  /* Interface address */ 
  struct sockaddr *ifa_netmask; /* Interface netmask */ 

 struct sockaddr *ifa_broadaddr; /* Interface broadcast address */ 
  struct sockaddr *ifa_dstaddr; /* P2P interface destination */ 
  void     *ifa_data;  /* unused */ 
 
The data returned by getifaddrs is dynamically allocated and should be freed 

using freeifaddrs when no longer needed. 

 
Returns 
The getifaddrs function returns the value 0 if successful; otherwise the value -1 is 

returned and the global variable errno is set to indicate the error. 
 

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180351                    51 

getrusage 
 
Format 
#include <sys/resource.h>  
int getrusage(int who, struct rusage *r_usage); 
 
Description 
The getrusage function provides measures of the resources used by the current 

process or its terminated and waited-for child processes. If the value of 
the who argument is RUSAGE_SELF, information is returned about resources used by 
the current process. If the value of the who argument is RUSAGE_CHILDREN, 
information is returned about resources used by the terminated and waited-for children 
of the current process. If the child is never waited for, the resource information for the 
child process is discarded and not included in the resource information provided 
by getrusage. 

Currently, only getting elapsed user time (ru_utime) and maximum resident memory 
(ru_maxrss) is supported. 
 
Returns 
Upon successful completion, getrusage returns 0; otherwise, -1 is returned 

and errno set to indicate the error. 
 

stpcpy 
 
Format 
#include <string.h> 
char *stpcpy(char *dest, const char *src); 
 
Function Variants  
The stpcpy function has variants named _stpcpy32 and _stpcpy64 for use with 

32-bit and 64-bit pointer sizes, respectively. See Section 1.9 in VSI C Run-Time Library 
Reference Manual for OpenVMS Systems for more information on using pointer-size-
specific functions. 
 
Description 
The function stpcpy uses strlen to determine the length of src then 

copies the src to dest. The difference from the strcpy function is that stpcpy returns a 

pointer to the final '\0', and not to the beginning of the line. 
 
Returns 
Pointer to the end of the string dest. 
 

strerror_r 
 
Format 
#include <string.h> 
int strerror_r(int error_code, char *buf, size_t buflen); 
 

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180352                    52 

Description 
The strerror_r function is the reentrant version of strerror. The strerror_r 

function uses the error number in error_code to retrieve the appropriate locale 
dependent error message. The contents of the error message strings are determined by 
the LC_MESSAGES category of the program's current locale. 
If error_code is EVMSERR the function looks at vaxc$errno to get the OpenVMS 

error condition. 
 
Returns 
Upon successful completion, strerror_r returns 0 and puts the error message in the 

character array pointed to by buf. The array is buflen characters long and should have 
space for the error message and the terminating null character. 
 

strtoimax, strtoumax 
 
Format 
#include <inttypes.h> 
intmax_t strtoimax(const char *nptr, char **endptr, int base); 
uintmax_t strtoumax(const char *nptr, char **endptr, int base); 
 
Function Variants 
The strtoimax function has variants named _strtoimax32 and _strtoimax64 for 

use with 32-bit and 64-bit pointer sizes, respectively. The strtoumax function has 

variants named _strtoumax32 and _strtoumax64 for use with 32-bit and 64-bit 

pointer sizes, respectively. See Section 1.9 in VSI C Run-Time Library Reference 
Manual for OpenVMS Systems for more information on using pointer-size-specific 
functions. 
 
Description 
The strtoimax and strtoumax functions converts strings of ASCII characters 

pointed to by nptr to the appropriate signed and unsigned numeric values. strtoimax 

is a synonym for strtoll, strtoumax is a synonym for strtoull. The functions 

recognizes strings in various formats, depending on the value of the base. Any leading 
white-space characters (as defined by isspace in <ctype.h>) in the given string are 

ignored. The function recognizes an optional plus or minus sign, then a sequence of 
digits or letters that may represent an integer constant according to the value of the 
base. The first unrecognized character ends the conversion and is pointed to by endptr. 
Leading zeros after the optional sign are ignored, and 0x or 0X is ignored if the base is 
16. 
If base is 0, the sequence of characters is interpreted by the same rules used to interpret 
an integer constant: after the optional sign, a leading 0 indicates octal conversion, a 
leading 0x or 0X indicates hexadecimal conversion, and any other combination of 
leading characters indicates decimal conversion. 
 
 
 
 
 

http://en.cppreference.com/w/c/types/integer
http://en.cppreference.com/w/c/types/integer
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180353                    53 

Returns 

• If successful, an integer value corresponding to the contents of nptr is returned. 

• If the converted value falls out of range of corresponding return type, a range error 

occurs (setting errno to ERANGE) and INTMAX_MAX, INTMAX_MIN, 

UINTMAX_MAX or 0 is returned, as appropriate. 

• If no conversion can be performed, 0 is returned. 

 

strndup 
 
Format 
#include <string.h> 
char *strndup(const char *s, size_t size); 
 
Function Variants 
The strndup function has variants named _strndup32 and _strndup64 for use 

with 32-bit and 64-bit pointer sizes, respectively. See Section 1.9 in VSI C Run-Time 
Library Reference Manual for OpenVMS Systems for more information on using pointer-
size-specific functions. 
 
Description 
The strndup function duplicates a specific number of bytes from a string. The 

strndup function is equivalent to the strdup function, duplicating the provided string 

in a new block of memory allocated as if by using malloc, with the exception that 

strndup copies at most size plus one bytes into the newly allocated memory, 

terminating the new string with a NUL character. If the length of s is larger than size, only 
size bytes will be duplicated. If size is larger than the length of s, all bytes in s will be 
copied into the new memory buffer, including the terminating NUL character. The newly 
created string will always be properly terminated. 
 
Returns 
A pointer to the resulting string or NULL if there is an error.  

https://en.cppreference.com/w/c/error/errno
https://en.cppreference.com/w/c/error/errno_macros
https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/integer
https://en.cppreference.com/w/c/types/integer
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://vmssoftware.com/docs/VSI_CRTL_REF.pdf
https://pubs.opengroup.org/onlinepubs/9699919799/functions/malloc.html


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180354                    54 

C RTL Changes 
 
VSI OpenVMS x86-64 V9.1 includes the updated C RTL that provides additional 
functions, updates to some functions, bug fixes, and a new header. 
 
For VSI OpenVMS Integrity and VSI OpenVMS Alpha systems, the next CRTL ECO kit 
will be released to provide these changes. 
 
Possible errors when compiling applications 
 
With the addition of new data type and function definitions, it is possible that applications 
may incur compilation errors if the applications include definitions that conflict with the 
definitions now provided in the system header files. For example, if an application 
contains a definition of int64_t that differs from the definition included in STDINT.H, the 
compiler generates a %CC-E-NOLINKAGE error. Conflicting function definitions can 
result in various %CC errors or warnings. To diagnose such problems, compile the 
application using /LIST/SHOW=INCLUDE and then examine the listing file. 
 
There are different ways to resolve such problems. Some examples are following: 
 

• Remove the application-specific definition if the system-provided definition provides 
the proper functionality. 

• Undefine the system-provided definition before making the application-specific 
definition. For example: 
 
#ifdef alloca 

#undefine alloca 

#endif 

<application-specific definition of alloca> 

 

• Guard the application-specific definition. For example: 
 
#ifndef alloca 

<application-specific definition of alloca> 

#endif 

 
Manipulating Variable Argument Lists on x86-64 
 
The implementation of variable argument lists on x86-64 is different than on Integrity and 
Alpha and may require source code changes, depending on how the lists are used. 
 
On Integrity and Alpha, it is possible to copy one variable argument list to another using 
an assignment operator. For example: 
 

va2 = va1 

 
On x86-64, this does not work. Use the va_copy function for this purpose. For example: 

 
va_copy (va2, va1) 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180355                    55 

 
On Integrity and Alpha, it is also possible to reference specific entries in the variable 
argument list using the subscript notation. For example: 
 
int arg2 = va[1] 

 
On x86-64, this does not work. Use the va_arg function for this purpose. For example: 

 
int arg2 = va_arg(va,int) 

 

New Functions 
 
This section describes the new functions that have been added to the C RTL. 

alloca 
 
Format 
#include <alloca.h> 
void *alloca (unsigned int size); 
 
Description 
The alloca function allocates size bytes from the stack frame of the caller. See the 

VSI C User's Guide for OpenVMS Systems for the __ALLOCA macro. 
 
Returns 
The alloca function returns a pointer to the allocated memory. 

 

mempcpy 
 
Format 
#include <string.h> 
void *mempcpy (void *dest, const void *source, size_t size); 
 
Function Variants 
The mempcpy function has variants named _mempcpy32 and _mempcpy64 for use with 

32-bit and 64-bit pointer sizes, respectively. 
 
Description 
The mempcpy function, similar to the memcpy function, copies size bytes from the object 

pointed to by source to the object pointed to by dest; it does not check for the overflow of 
the receiving memory area (dest). 
 
Returns 
The function returns a pointer to the byte following the last written byte. 
 
 

https://vmssoftware.com/docs/VSI_C_USER.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180356                    56 

getline, getwline, getdelim, getwdelim 
 
Format 
#include <stdio.h> 
ssize_t getline (char **lineptr, size_t *n, FILE *stream); 
ssize_t getwline (wchar_t **lineptr, size_t *n, FILE *stream); 
ssize_t getdelim (char **lineptr, size_t *n, int delimiter, FILE *stream); 
ssize_t getwdelim (wchar_t **lineptr, size_t *n, wint_t delimiter, FILE *stream); 
 
Function Variants 
The getline function has variants named _getline32 and _getline64 for use with 

32-bit and 64-bit pointer sizes, respectively. 
The getwline function has variants named _getwline32 and _getwline64 for use 

with 32-bit and 64-bit pointer sizes, respectively. 
The getdelim function has variants named _getdelim32 and _getdelim64 for use 

with 32-bit and 64-bit pointer sizes, respectively. 
The getwdelim function has variants named _getwdelim32 and _getwdelim64 for 

use with 32-bit and 64-bit pointer sizes, respectively. 
 
Description 
getline and getwline read an entire line from stream, storing the address of the 

buffer containing the text into *lineptr. The buffer is null-terminated and includes the 
newline character, if one was found. 
 
If *lineptr is NULL, then getline will allocate a buffer for storing the line, which should 

be freed by the user program. (In this case, the value in *n is ignored.) 
 
Alternatively, before calling getline, *lineptr can contain a pointer to a malloc allocated 

buffer *n bytes in size. If the buffer is not large enough to hold the line, getline resizes 

it with realloc, updating *lineptr and *n as necessary. 

 
getdelim and getwdelim work like getline and getwline, except that a line 

delimiter other than newline can be specified as the delimiter argument. As with 
getline and getwline a delimiter character is not added if one was not present in the 

input before end of file was reached. 
 
Returns 
On success, all functions return the number of characters read, including the delimiter 
character, but not including the terminating null byte. 
 

qsort_r 
 
Format 
#include <stdlib.h> 
void qsort_r (void *base, size_t nmemb, size_t size, int (*compar)(const void *, const 
void *, void *), void *arg) 
 
 



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180357                    57 

Function Variants 
The qsort_r function has variants named _qsort_r32 and _qsort_r64 for use with 

32-bit and 64-bit pointer sizes, respectively. 
 
Description 
The qsort_r function is the reentrant version of qsort. See the qsort description in 

the VSI C Run-Time Library Reference Manual for OpenVMS Systems. The comparison 
function takes a third argument. A pointer is passed to the comparison function via arg.  
 
Returns 
qsort_r returns no value. 

 

mkostemp 
 
Format 
#include <stdlib.h> 
int mkostemp (char *template, int flags) 
 
Description 
The mkostemp function replaces the six trailing Xs of the string pointed to by template 

with a unique set of characters, and returns a file descriptor for the file opened using the 
flags specified in flags. 
 
The string pointed to by template should look like a filename with six trailing X's. The 
mkostemp function replaces each X with a character from the portable file-name 

character set, making sure not to duplicate an existing filename. 
If the string pointed to by template does not contain six trailing Xs, -1 is returned. 
 
Returns 
A file descriptor for the open file. 
-1 indicates an error. 
 

Updates to Functions 
 

• Added support for close on exit to the open, fopen, and popen functions. The 

open function now supports the O_CLOEXEC flag. The fopen and popen now 

support “e” in the access mode. 

• Added support for the O_NONBLOCK flag in fcntl in the F_SETFL and F_GETFL 

modes.  

 

Bug Fixes 
 

• The open function now works properly when opening /dev/null and /dev/tty 

when DECC$POSIX_COMPLIANT_PATHNAMES is defined as 1, 2, or 3.  

• Multiple processes or multiple threads attempting to open a file for append at the 
same time now correctly open the same file.  

https://vmssoftware.com/docs/VSI_CRTL_REF.pdf


 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180358                    58 

• The stat function now returns the correct value for st_blocks when the file 

allocation value is greater than 65536 blocks.  

• MATH$FP_CLASS_<n>X functions, added as part of the C99 work, have been 
added to STARLET.OLB  

 

New Header 
 
ALLOCA.H. 

  



 
 
 

 

  

DO-X86V91-01A      VMS Software, Inc., 800 District Avenue, Suite 530, Burlington, MA 0180359                    59 

 
Copyright © 2021 VMS Software, Inc., Burlington, Massachusetts, USA 
 
Legal Notice  
 
Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 
12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for 
Commercial Items are licensed to the U.S. Government under vendor's standard commercial license.  
 
The information contained herein is subject to change without notice. The only warranties for VSI products and services 
are set forth in the express warranty statements accompanying such products and services. Nothing herein should be 
construed as constituting an additional warranty. VSI shall not be liable for technical or editorial errors or omissions 
contained herein.  
 
HPE, HPE Integrity, and HPE Alpha are trademarks or registered trademarks of Hewlett Packard Enterprise.  
 
Intel and x86 are registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. 
 
Microsoft and Windows are registered trademarks of Microsoft Corporation. 
 
Apple and macOS are registered trademarks of Apple Computer Inc. 
 
VirtualBox is a registered trademark of Oracle Corporation. 
 
KVM is a registered trademark of Red Hat Inc. 
 
VMware is a registered trademark or trademark of VMware, Inc. 
 
PuTTY is copyrighted by Simon Tatham. 
 
Apache and the Apache feather logo are trademarks of The Apache Software Foundation. 
 
Motif is a registered trademark of The Open Group. 
 
POSIX is a trademark of The IEEE. 
 
Kerberos is a trademark of the Massachusetts Institute of Technology. 
 
OpenSSL is a registered trademark owned by OpenSSL Software Foundation. 


	Preface
	Introduction
	Intended Audience
	Document Structure
	Related Documents

	Before You Start... Read These First
	1. Tested Virtual Environments
	1.1 Tested VMware Products and License Types

	2. Hardware Support
	3. MD5 Checksum for the X86091OE.ISO File
	4. Non-Intel Processors Are Not Currently Supported
	5. CPU Compatibility Checks for Virtual Machines
	6. Terminal Emulator Settings
	7. x86-64 Licensing
	8. License PAKs for VSI OpenVMS x86-64 V9.1
	9. MemoryDisk and the Command Procedure SYS$MD.COM
	10. Networking Options
	10.1 VSI DECnet Phase IV for OpenVMS
	10.2 VSI TCP/IP Services X6.0-9 TELNET and FTP Available in VSI OpenVMS x86-64 V9.1

	11. VSI SSL111 V1.1-1K for OpenVMS
	12. VSI Kerberos V3.3-1 for OpenVMS
	13. VSI DECwindows Motif V1.7-X for OpenVMS
	14. Scripts for Configuring and Running VSI OpenVMS x86-64 in Virtual Machines
	15. Documentation Notes

	Release Notes
	1. Operating System Notes
	1.1 Features Not Available in VSI OpenVMS x86-64 V9.1
	1.2 Access Violation
	1.3 AUTHORIZE Utility: Exit Sometimes Results in System Crash
	1.4 AUTOGEN Warning That Appears During AUTOGEN Boot May Be Safely Ignored
	1.5 BACKUP Utility: Verification Errors for SYS$EFI.SYS When Copying an x86-64 System Disk
	1.6 CHECKSUM Utility Supports SHA1 and SHA256 Algorithms
	1.7 Copying Files Between Integrity Systems and x86-64 Systems
	1.8 Cross-Tools Kit Update
	1.9 Display of License Charge Information for x86-64 Nodes
	1.10 ENCRYPT Utility Does Not Work as Expected
	1.11 Extended File Cache (XFC)
	1.12 HYPERSORT Utility Available
	1.13 Idle CPU Power Saving Mechanism
	1.14 Images Linked /SYSEXE Require to Be Relinked
	1.15 INSTALL Utility Supports INSTALL /RESIDENT and /SHARED=ADDRESS_DATA
	1.16 ISO 9660 Formatted Volume Can Not Be Mounted on x86-64 Systems
	1.17 LIB$INITIALIZE Requires LINK Qualifier
	1.18 Linker: New Informational Messages
	1.19 Memory Disks
	1.20 Mount Verification for Tape Devices Causes System Crash
	1.21 MSCP Served Disks
	1.22 OpenVMS Clusters
	1.23 OpenVMS Cluster Usage of LAN Failover and VLAN Devices
	1.24 OpenVMS x86-64 Will Not Support Swap Files
	1.25 Parallel Processing Library (PPL$)
	1.26 POSIX Threads Library
	1.27 Process Dumps
	1.28 Security Server
	1.29 Reserved Memory
	1.30 Spurious Error Message During Shutdown
	1.31 Storage Controllers Without Attached Disks May Have Incorrect Device Names
	1.32 Supported Disk Types
	1.33 Symmetric Multiprocessing (SMP)
	1.34 SYSGEN Parameter Changes
	1.35 System Crash Dumps
	1.36 System Service Intercept (SSI)
	1.37 Text Editors
	1.38 Traceback Support
	1.39 Volume Shadowing
	1.40 VSI C Run-Time Library (C RTL) Update
	1.41 VSI DECram for OpenVMS
	1.42 VSI TCP/IP Services: Use of SHOW INTERFACE and IFCONFIG -a on x86-64 Systems Under Heavy Traffic
	1.43 ZIP/UNZIP Tools

	2. Virtualization Notes
	2.1 Time of Day May Not Be Correctly Maintained in Virtual Machine Environments
	2.2 VirtualBox and Hyper-V Compatibility on Windows 10 Hosts
	2.3 VirtualBox: TCP Ports May Become Unusable After Guest Is Terminated
	2.4 VMware Guest May Fail to Boot After Adding Second SATA Controller
	2.5 Wall-Clock Time Sometimes Runs Slow on Virtual Machine Guests

	3. Layered and Open Source Products Notes

	Appendix A: VSI C Run-Time Library (C RTL) Notes
	C99 Update
	C99 Functions
	fpclassify
	isblank, iswblank
	isgreater, isgreaterequal, isless, islessequal, islessgreater, isunordered
	llrint, llrintf, llrintl
	llround, llroundf, llroundl
	nearbyint, nearbyintf, nearbyintl
	round, roundf, roundl
	scalbln, scalblnf, scalblnl, scalbn, scalbnf, scalbnl
	strtof, strtold, wcstof, wcstold
	va_copy
	wcstoll, wcstoull
	Print and scan conversion specifier and argument types
	strftime, wcsftime, strptime – additional conversion specifiers


	CRTL ECO V3.0 Changes
	Bug Fixes
	New Constants
	New Flags
	New Datatypes
	New Header
	Interface Change
	New Feature Logical: DECC$PRN_PRE_BYTE
	New Functions
	freeifaddrs
	getgrent_r
	gethostbyname_r
	getifaddrs
	getrusage
	stpcpy
	strerror_r
	strtoimax, strtoumax
	strndup


	C RTL Changes
	New Functions
	alloca
	mempcpy
	getline, getwline, getdelim, getwdelim
	qsort_r
	mkostemp

	Updates to Functions
	Bug Fixes
	New Header



