
VSI OpenVMS

VSI ACMS for OpenVMS
Remote Systems Management Guide

Document Number: DO-DACMMG-01A

Publication Date: October 2019

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS Integrity Version 8.4-1H1
VSI OpenVMS Alpha Version 8.4-2L1

Software Version: ACMS for OpenVMS Version 5.3-2

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

VSI ACMS for OpenVMSRemote Systems Management Guide:

Copyright © 2019 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VSI OpenVMS documentation set is available on DVD.

ii

VSI ACMS for OpenVMSRemote Systems Management Guide

Preface .. ix
1. About this manual ... ix
2. Document Structure ... ix
3. Related Documents ... x
4. VSI Encourages Your Comments .. xi
5. Conventions ... xi

Part I. Introduction

Chapter 1. Overview of Remote Management ... 3
1.1. Architecture and Implementation .. 3
1.2. Remote Management Capabilities ... 4

Chapter 2. Getting Started with the ACMS Remote Manager ... 5
2.1. Running the ACMS Remote Manager ... 5

2.1.1. Server Node Setup .. 5
2.1.1.1. Verify Portmapper (RPC) Setup ... 6
2.1.1.2. Run the ACMS Postinstallation Procedure ... 7
2.1.1.3. Define Process Logicals and Symbols .. 7
2.1.1.4. Prepare the ACMS Environment ... 7
2.1.1.5. Start the ACMS Remote Manager ... 7

2.1.2. Client Node Setup ... 8
2.1.2.1. Run ACMS_POST_INSTALL.COM .. 8
2.1.2.2. Copy Files and Define Symbols .. 9

2.1.3. Communicate with the Remote Manager .. 9
2.2. TCP/IP Setup ... 10

2.2.1. Set Up the Portmapper (RPC) .. 11
2.2.1.1. Determine the Current Portmapper Configuration 11
2.2.1.2. Remove the Existing Portmapper Configuration 11
2.2.1.3. Configure the Portmapper ... 12

2.2.2. Set Up SNMP ... 13
2.2.2.1. Determine the Current SNMP Configuration .. 13
2.2.2.2. Remove the Existing SNMP Configuration ... 14
2.2.2.3. Configure SNMP .. 14
2.2.2.4. Test SNMP ... 16

2.3. Remote Manager Setup .. 16
2.3.1. Run the Postinstallation Procedure .. 17
2.3.2. Define Process Logicals and Symbols ... 18
2.3.3. Review and Update the Configuration File .. 19
2.3.4. Start the Remote Manager .. 19
2.3.5. Communicate with the Remote Manager ... 20

2.3.5.1. Using ACMSMGR and Logging In Explicitly .. 20
2.3.5.2. Using ACMSMGR and a Proxy Account ... 20

2.4. Troubleshooting the ACMS Remote Manager Startup .. 21
2.4.1. Problems Starting ACMS ... 21
2.4.2. Problems Starting the ACMS Remote Manager ... 22

2.4.2.1. ACMS$MGMT_SERVER.OUT Messages ... 22
2.4.2.2. Remote Manager Log Entries .. 23

2.4.3. Problems with the ACMSMGR Utility ... 25
2.4.3.1. ACMSMGMT-W-NOCLNT_ATTACH Messages 25
2.4.3.2. ACMSMGR Hangs ... 26

Chapter 3. Using the Remote Manager to Manage ACMS ... 27

iii

VSI ACMS for OpenVMSRemote Systems Management Guide

3.1. Overview of the Remote Manager Web Agent ... 27
3.2. Remote Manager Web Agent Setup ... 27

3.2.1. Install the Remote Manager Web Agent Software .. 28
3.2.2. Install the VSI Management Agents for OpenVMS Software 30
3.2.3. Assign Additional Rights Identifiers ... 30
3.2.4. Start the Remote Manager Web Agent Process .. 31
3.2.5. Enable Access to Remote Manager Hosts ... 31
3.2.6. Stop the Remote Manager Web Agent .. 31

3.3. Using the Remote Manager Web Agent ... 32
3.3.1. Accessing the ACMS Remote Management Web Page 32
3.3.2. Conventions .. 33
3.3.3. Customizing the Display .. 33
3.3.4. Selecting the Remote Manager Host ... 34

3.4. Issuing Remote Manager Commands ... 34
3.4.1. Using Show Commands ... 34
3.4.2. Using Set Commands .. 35
3.4.3. Using Start and Stop Commands .. 36
3.4.4. Using Add and Delete Commands .. 36

3.5. Troubleshooting the Remote Manager Web Agent .. 37
3.5.1. Reporting Problems ... 38

Chapter 4. Managing the Remote Manager ... 39
4.1. Overview ... 39
4.2. Configuring Remote Manager Startup ... 39

4.2.1. How to Run the ACMSCFG Utility .. 40
4.2.2. Displaying Current Values .. 40
4.2.3. Changing Values .. 41

4.3. Starting and Stopping the Remote Manager ... 42
4.3.1. Remote Manager Startup .. 42
4.3.2. Remote Manager Shutdown ... 43

4.4. Logging In to the Remote Manager ... 43
4.4.1. Authentication ... 43

4.4.1.1. Logging In ... 44
4.4.1.2. Proxy Accounts .. 44

4.4.2. Authorization ... 45
4.4.2.1. Read Access ... 45
4.4.2.2. Write Access .. 45
4.4.2.3. Operate Access ... 45

4.5. Starting and Stopping Interfaces .. 46
4.5.1. Using ACMSCFG to Enable or Disable Interfaces ... 46
4.5.2. Using ACMSMGR to Start or Stop Interfaces ... 46

4.6. Modifying Management Parameters .. 47
4.6.1. Using ACMSCFG to Modify Management Parameters 47
4.6.2. Using ACMSMGR to Modify Management Parameters 48

4.7. Managing Log Files ... 48
4.7.1. Setting Audit Levels .. 48
4.7.2. Displaying Audit Messages .. 50
4.7.3. Resetting the Audit Log ... 50

Chapter 5. Using the Remote Manager to Manage ACMS ... 51
5.1. Managing Data Collection .. 51

5.1.1. Entities, Classes, Names, and Collections .. 52
5.1.2. Starting and Stopping Collections ... 54

iv

VSI ACMS for OpenVMSRemote Systems Management Guide

5.1.2.1. Using ACMSCFG to Start or Stop Collections .. 54
5.1.2.2. Using ACMSMGR to Start or Stop Collections 55
5.1.2.3. Using SNMP to Start or Stop Collections ... 56

5.2. Displaying Collected Data .. 56
5.2.1. Using ACMSMGR to Display Collected Data ... 56

5.3. Managing ACMS Using the Remote Manager ... 56
5.3.1. Types of Variables ... 57

5.3.1.1. Stored Variables .. 57
5.3.1.2. Active Variables .. 57

5.3.2. How the Remote Manager Makes Changes ... 58
5.3.3. Using ACMSMGR to Modify the ACMS Run-Time System 58
5.3.4. Using SNMP to Modify the ACMS Run-Time System 59

5.3.4.1. Starting and Stopping Processes Using SNMP .. 60
5.3.4.2. Adding and Deleting Rows Using SNMP ... 60
5.3.4.3. Replacing Application Procedure Servers Using SNMP 60

5.3.5. Using ONC RPC to Modify the ACMS Run-Time System 60
Chapter 6. Management Programming Using ONC RPC ... 63

6.1. ONC RPC Overview .. 63
6.2. API Overview .. 65
6.3. Initialization and Security ... 65

6.3.1. Initialization Example .. 66
6.4. Get Procedures ... 67

6.4.1. Get Example ... 67
6.5. List Procedures .. 68

6.5.1. Linked List Example ... 69
6.6. Set Procedures ... 72

6.6.1. Set Example .. 73
6.7. Delete Procedures ... 74

6.7.1. Delete Example ... 75
6.8. Add Procedures .. 75

6.8.1. Add Example .. 76
6.9. Start, Stop, and Replace Procedures .. 77

6.9.1. Start Example .. 78
Chapter 7. Management Programming Using SNMP ... 81

7.1. SNMP Overview .. 81
7.2. SNMP Security .. 82
7.3. Initializing the SNMP Interface ... 82
7.4. SNMP Tables ... 83

7.4.1. Data Type Mapping ... 84
7.4.2. Single-Row Tables ... 84
7.4.3. Static Tables .. 84
7.4.4. Dynamic Tables ... 86
7.4.5. Servers and Task Groups ... 86

7.5. SNMP GET Operations .. 87
7.6. SNMP SET Operations ... 87
7.7. Using SNMP to Start and Stop ACMS Entities .. 88
7.8. SNMP Traps .. 88

7.8.1. EXISTS Traps ... 89
7.8.2. EVENT_SEVERITY Traps .. 90

7.9. SNMP Debug Tracing .. 90
7.9.1. Starting SNMP Debug Tracing ... 91

v

VSI ACMS for OpenVMSRemote Systems Management Guide

7.9.2. Stopping SNMP Debug Tracing ... 91
7.10. Remote Manager eSNMP Return Codes .. 91

Part II. Reference Information

Chapter 8. Management APIs .. 95
8.1. Common RPC Fields .. 95

8.1.1. Collection Classes ... 95
8.1.2. Interface Types .. 95
8.1.3. Enable States ... 95
8.1.4. Entity Types .. 96
8.1.5. Facility Types .. 96
8.1.6. Running States .. 97
8.1.7. Severity Codes .. 97
8.1.8. Trap Parameters ... 97

8.2. Thread-Safe and Non-Thread Safe Clients ... 98
8.3. ACMSMGMT_ADD_COLLECTION_2 .. 98

Chapter 9. Remote Manager Reference Tables .. 245
9.1. Data Types ... 245
9.2. ACC Table ... 246

9.2.1. Field Descriptions .. 248
9.3. Agent Table ... 254

9.3.1. Field Descriptions .. 257
9.4. Collection Table ... 261

9.4.1. Field Descriptions .. 262
9.5. CP Table .. 263

9.5.1. Field Descriptions .. 265
9.6. EXC Table ... 268

9.6.1. Field Descriptions .. 271
9.7. Interfaces Table .. 277

9.7.1. Field Descriptions .. 277
9.8. Manager Status Table ... 278

9.8.1. Field Descriptions .. 279
9.9. Parameter Table .. 279

9.9.1. Field Descriptions .. 281
9.10. QTI Table .. 284

9.10.1. Field Descriptions .. 286
9.11. Server Table ... 289

9.11.1. Field Descriptions .. 289
9.12. Task Group Table ... 291

9.12.1. Field Descriptions .. 292
9.13. Trap Table .. 293

9.13.1. Field Descriptions .. 294
9.14. Valid Trap Minimums and Maximums ... 296

9.14.1. Field Descriptions .. 296
9.14.2. Valid Trap Minimums and Maximums .. 298
9.14.3. SNMP Trap Format ... 300

9.15. TSC Table .. 301
9.15.1. Field Descriptions .. 302

9.16. Users Table .. 305
9.16.1. Field Descriptions .. 306

vi

VSI ACMS for OpenVMSRemote Systems Management Guide

Chapter 10. ACMSCFG Commands ... 309
10.1. ACMSCFG Overview ... 309

10.1.1. Command Format .. 309
10.1.2. Command Objects and Qualifiers .. 309

10.2. ACMSCFG ADD COLLECTION ... 311
10.3. ACMSCFG ADD TRAP ... 314
10.4. ACMSCFG DELETE COLLECTION ... 316
10.5. ACMSCFG DELETE TRAP ... 317
10.6. ACMSCFG SET COLLECTION ... 319

Chapter 11. ACMSMGR Commands .. 333
11.1. ACMSMGR Overview .. 333

11.1.1. Command Format .. 333
11.1.2. Command Objects and Qualifiers .. 333

11.2. ACMSMGR ADD COLLECTION .. 337
11.3. ACMSMGR ADD FILTER ... 341
11.4. ACMSMGR ADD TRAP .. 343
11.5. ACMSMGR DELETE COLLECTION .. 345
11.6. ACMSMGR DELETE FILTER ... 347
11.7. ACMSMGR DELETE TRAP .. 349
11.8. ... 351
11.9. ACMSMGR LOGIN ... 351
11.10. ACMSMGR LOGOUT ... 353
11.11. ACMSMGR REPLACE SERVER ... 355
11.12. ACMSMGR RESET ERROR .. 356
11.13. ACMSMGR RESET LOG .. 357
11.14. ACMSMGR SAVE FILTER .. 359
11.15. ACMSMGR SET ACC ... 360
11.16. ACMSMGR SET AGENT .. 365
11.17. ACMSMGR SET COLLECTION .. 367
11.18. ACMSMGR SET CP .. 371
11.19. ACMSMGR SET EXC ... 373
11.20. ACMSMGR SET INTERFACE ... 376
11.21. ACMSMGR SET PARAMETER ... 378
11.22. ACMSMGR SET QTI ... 381
11.23. ACMSMGR SET SERVER ... 384
11.24. ACMSMGR SET TRAP ... 387
11.25. ACMSMGR SET TSC .. 389
11.26. ACMSMGR SHOW ACC ... 393
11.27. ACMSMGR SHOW AGENT .. 398
11.28. ACMSMGR SHOW COLLECTION .. 402
11.29. ACMSMGR SHOW CP .. 404
11.30. ACMSMGR SHOW ERROR .. 407
11.31. ACMSMGR SHOW EXC ... 410
11.32. ACMSMGR SHOW FILTER .. 412
11.33. ACMSMGR SHOW GROUP .. 414
11.34. ACMSMGR SHOW INTERFACE ... 417
11.35. ACMSMGR SHOW LOG ... 418
11.36. ACMSMGR SHOW MANAGER .. 424
11.37. ACMSMGR SHOW PARAMETER ... 425
11.38. ACMSMGR SHOW PROCESS ... 428
11.39. ACMSMGR SHOW QTI .. 431
11.40. ACMSMGR SHOW SERVER ... 434

vii

VSI ACMS for OpenVMSRemote Systems Management Guide

11.41. ACMSMGR SHOW TRAP ... 436
11.42. ACMSMGR SHOW TSC .. 438
11.43. ACMSMGR SHOW USER ... 442
11.44. ACMSMGR SHOW VERSION ... 445
11.45. ACMSMGR START EXC ... 447
11.46. ACMSMGR START QTI .. 448
11.47. ACMSMGR START SYSTEM .. 449
11.48. ACMSMGR START TERMINALS ... 451
11.49. ACMSMGR START TRACE_MONITOR .. 452
11.50. ACMSMGR STOP EXC ... 454
11.51. ACMSMGR STOP MANAGER .. 455
11.52. ACMSMGR STOP QTI .. 456
11.53. ACMSMGR STOP SYSTEM .. 458
11.54. ACMSMGR STOP TERMINALS ... 459
11.55. ACMSMGR STOP TRACE_MONITOR .. 460

Chapter 12. ACMSSNAP Commands ... 463
12.1. ACMSSNAP Overview ... 463

12.1.1. Command Format .. 463
12.1.2. Command Objects and Qualifiers .. 463

12.2. ACMSSNAP CLOSE Command ... 464
12.3. ACMSSNAP EXIT Command .. 465
12.4. ACMSSNAP HELP Command .. 466
12.5. ACMSSNAP NEXT Command ... 466
12.6. ACMSSNAP OPEN Command ... 467
12.7. ACMSSNAP PREV Command ... 469
12.8. ACMSSNAP QUIT Command .. 470
12.9. ACMSSNAP RESET Command .. 471
12.10. ACMSSNAP SHOW Command .. 472
12.11. ACMSSNAP TRACE Command ... 475

Appendix A. Remote Manager Logical Names .. 477
A.1. Remote Manager Server ... 477
A.2. Remote Manager Client (ACMSMGR Utility) ... 477

Appendix B. RPC Procedures and Corresponding Rights Identifiers 479
Appendix C. RPC Procedures and Corresponding Rights Identifiers 481

C.1. Server Messages .. 481
C.2. ACMSMGR Messages ... 490
C.3. ACMSCFG Messages .. 495
C.4. ACMSSNAP Messages .. 501

Index .. 503

viii

Preface

1. About this manual
This manual explains how to use the Remote Manager to manage Compaq ACMS for OpenVMS
(ACMS) software systems remotely. The manual describes the features of the Remote Manager,
which is based on a client/server architecture, how to use the features, and how to manage the Remote
Manager. It also provides reference information for the utilities and commands you use in working
with the Remote Manager.

2. Document Structure
This manual contains ten chapters and three appendixes. The chapters are grouped into two parts.
The first part contains chapters concerning the use of remote management features of ACMS. The
second part contains chapters concerning reference information for the remote management of ACMS
systems. The appendixes follow Part II.

Part I Introduction
Chapter 1 Introduces the architecture, implementation, and

capabilities of ACMS remote management.
Chapter 2 Describes how to get started using the Remote

Manager including preparation and startup of
the server and client nodes; setting up TCP/
IP; setting up SNMP; and troubleshooting the
Remote Manager.

Chapter 4 Describes how to manage the ACMS Remote
Manager including configuring startup; starting,
stopping, and logging in to the Remote Manager;
starting and stopping interfaces; and modifying
management parameters and log files.

Chapter 5 Describes how to use the Remote Manager
to manage ACMS, including managing data
collection, displaying collected data, and
modifying ACMS systems.

Chapter 6 Describes how programmers can use the Open
Network Computing (ONC) remote procedure
call (RPC) interface to the ACMS Remote
Manager to develop their own programs for
managing ACMS systems.

Chapter 7 Describes how programmers can use the Simple
Network Management Protocol (SNMP)
interface to the ACMS Remote Manager to
develop their own programs for managing ACMS
systems.

Part II Reference Information

ix

Preface

Chapter 8 Provides reference information about the ACMS
remote management APIs, which are procedures
that are intended to be called from ONC RPC
clients.

Chapter 9 Provides reference information about data types
and tables for the ACMS Remote Manager.

Chapter 10 Provides reference information about the
commands of the ACMSCFG utility for
performing operations on the Remote Manager
configuration file.

Chapter 11 Provides reference information about the
commands of the ACMSMGR utility for
performing operations on running ACMS
systems.

Appendices
Appendix A Contains information about the logical names

used by the Remote Manager server and the
Remote Manager client (ACMSMGR utility).

Appendix B Contains information providing cross-references
of remote procedure call (RPC) procedures to
rights identifiers.

Chapter 12 Contains a listing of information about Simple
Network Management Protocol (SNMP) object
identifiers (OIDs) for ACMS management
information base (MIB) fields.

3. Related Documents
The following table lists the books in the VSI ACMS for OpenVMS documentation set.

Table 1. Related documents

Title Description
VSI ACMS Version 5.0 for OpenVMS Release
Notes

Information about the latest release of the
software. Available online only.

VSI ACMS Version 5.0 for OpenVMS Installation
Guide

Description of installation requirements, the
installation procedure, and postinstallation tasks.

VSI ACMS for OpenVMS Getting Started Overview of ACMS software and documentation.
Tutorial for developing a simple ACMS
application. Description of the AVERTZ sample
application.

VSI ACMS for OpenVMS Concepts and Design
Guidelines

Description of how to design an ACMS
application.

VSI ACMS for OpenVMS Writing Applications Description of how to write task, task group,
application, and menu definitions using the
Application Definition Utility. Description of how
to write and migrate ACMS applications on an
OpenVMS Alpha system.

x

Preface

Title Description
VSI ACMS for OpenVMS Writing Server
Procedures

Description of how to write programs to use
with tasks and how to debug tasks and programs.
Description of how ACMS works with the APPC/
LU6.2 programming interface to communicate
with IBM CICS applications. Description of how
ACMS works with third-party database managers,
with ORACLE used as an example.

VSI ACMS for OpenVMS Systems Interface
Programming

Description of using Systems Interface (SI)
Services to submit tasks to an ACMS system.

VSI ACMS for OpenVMS ADU Reference Manual Reference information about the ADU
commands, phrases, and clauses.

VSI ACMS for OpenVMS Quick Reference List of ACMS syntax with brief descriptions.
VSI ACMS for OpenVMS Managing Applications Description of authorizing, running, and

managing ACMS applications, and controlling
the ACMS system.

VSI ACMS for OpenVMS Remote Systems
Management Guide

Description of the features of the Remote
Manager for managing ACMS systems, how to
use the features, and how to manage the Remote
Manager.

Online help Online help about ACMS and its utilities.

For additional information on the compatibility of other software products with this version of ACMS,
refer to the Compaq ACMS for OpenVMS Software Product Description (SPD 25.50.xx).

For additional information about the Open Systems Software Group (OSSG) products and services,
access the following OpenVMS World Wide Web address:

tbs

4. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who
have OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

5. Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified,
references to OpenVMS Cluster systems or clusters in this document are synonymous with
VMScluster systems.

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for
OpenVMS software.

xi

Preface

The following conventions are also used in this manual:

Convention Meaning
Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled

Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the key

labeled PF1 and then press and release another key or a pointing device button.
Return In examples, a key name enclosed in a box indicates that you press a key on the

keyboard. (In text, a key name is not enclosed in a box.)
… A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

[|] In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

xii

Preface

Convention Meaning
- A hyphen at the end of a command format description, command line, or code

line indicates that the command or statement continues on the following line.
numbers All numbers in text are assumed to be decimal unless otherwise noted.

Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

xiii

Preface

xiv

Part I. Introduction
Part I contains information about using the remote management features of ACMS. It contains an
overview of the Remote Manager, as well as information on how it is managed and operates. It also
contains information on how to manage data collection and how to use the Remote Manager to
modify a running ACMS system. Finally, this part shows you how to write programs that perform
remote management using RPC and SNMP.

1

2

Chapter 1. Overview of Remote
Management
This chapter provides an overview of ACMS remote management.

1.1. Architecture and Implementation
The ACMS Remote Manager provides ACMS system managers with the capability of monitoring
and managing their ACMS application environment across a network. The facilities that comprise
the Remote Manager are based on a client/server architecture. Two protocols are supported for
accessing the ACMS remote management server: Open Network Computing Remote Procedure Call
(ONC RPC), which is used by command line utilities (provided with the remote management option)
and can be called directly from user-written programs; and Simple Network Management Protocol
(SNMP), for use with third-party management consoles.

Figure 1.1 shows the architecture of the ACMS Remote Manager.

Figure 1.1. ACMS Remote Manager Architecture

As Figure 1.1 shows, users communicate with the ACMS Remote Manager using one of the supported
interfaces over a TCP/IP network. Communications between the ACMS Remote Manager and the
ACMS run-time system are transparent. Users may be on the same or a different node than the
Remote Manager, but the Remote Manager must be running on the same node as the ACMS run-time
system it is monitoring or accessing.

The command line utility provides command line access to management information as well as
control of the Remote Manager process. This utility uses the RPC interface and can be run from any
OpenVMS node that has TCP/IP network connectivity to the ACMS node.

3

Chapter 1. Overview of Remote Management

The SNMP interface provides network access to ACMS management information using the industry
standard SNMP protocol. This protocol is supported by most leading system management packages
(including PATROL ® from BMC ® and Compaq Insight Manager from Compaq).

The RPC interface provides local or remote access to ACMS management information and is used
by user-written programs to access ACMS management information.

ACMS system managers control the data being collected as well as automatic variable monitoring and
the management interfaces themselves through either SNMP or RPC commands.

The Remote Manager obtains initial configuration information during process startup from a
user-maintained configuration file (described in Chapter 4). Once started, the Remote Manager
provides ACMS system managers remote access to their ACMS application environment through the
interfaces.

1.2. Remote Management Capabilities
The Remote Manager provides ACMS system managers with the ability to:

• Remotely manage the Remote Manager (Chapter 4)

• Remotely manage data collection (Section 5.1), including:

• Remotely configure SNMP traps

• Remotely view ACMS Management Information on line

• Remotely modify ACMS run-time systems (Section 5.3)

• Write programs that remotely access management information on line using ONC RPC
(Chapter 6) and SNMP (Chapter 7)

4

Chapter 2. Getting Started with the
ACMS Remote Manager
This chapter describes how to prepare and run the ACMS Remote Manager software on a node where
VSI ACMS Version 4.3 for OpenVMS has been installed. This chapter does not describe the actual
installation. For information about installing VSI ACMS Version 4.3 for OpenVMS, refer to the VSI
ACMS Version 5.0 for OpenVMS Installation Guide.

Note

The procedures in this chapter assume VSI TCP/IP Services Version 5.0 for OpenVMS or higher
is installed. The image and process names changed in Version 5.0 from UCX* to TCPIP*. If you
are using a machine with an older version of TCP/IP Services installed, you should substitute UCX
wherever you see TCPIP in the instructions in this chapter.

Terminology
The following terms are used in this chapter:

• Server node

A node on which ACMS Version 4.3 has been installed and on which the ACMS Remote Manager
server will run. Server nodes can be either ACMS application or submitter nodes, and can be
managed either locally or remotely using one of the supported interfaces (RPC or SNMP). Server
nodes are automatically client nodes, but not all client nodes are server nodes.

• Client node

A node on which ACMS Version 4.3 may or may not be installed. Client nodes can get
information from and perform operations on server nodes. However, users cannot obtain ACMS
system management information from or perform system management functions on nodes that are
client nodes only.

2.1. Running the ACMS Remote Manager
The following sections outline the steps required to get the ACMS Remote Manager running on an
OpenVMS system. If you are an inexperienced user of ACMS, you should first read Section 2.2 and
Section 2.3 for detailed information about how to set up a node for ACMS remote management.

This section describes setup for both client and server nodes. Server nodes automatically support
all client functions; once a node is set up as a server, it can function as a client and a server without
additional work. Client nodes can function only as clients.

When you complete the following procedures, the ACMS Remote Manager will be running on your
system and you can access it using the ACMSMGR command line utility.

2.1.1. Server Node Setup
Before you begin, you must have already installed the ACMS Version 4.3 kit on your system. Also
ensure that you have the minimum supported version of TCP/IP (as described in the ACMS Software

5

Chapter 2. Getting Started with the ACMS Remote Manager

Product Description [SPD 25.50. xx]) installed on your node, and that it is operational. (If TCP/IP is
not installed and operational, the ACMS Remote Manager will not run.) For information about TCP/
IP setup, see Section 2.2.

Once you have installed the ACMS and TCP/IP software, perform the following steps to set up a
Remote Manager server node:

1. Verify Portmapper (RPC) setup (see Section 2.1.1.1)

2. Run the ACMS postinstallation procedure (see Section 2.1.1.2)

3. Define process logicals and symbols (see Section 2.1.1.3)

4. Prepare the ACMS environment (see Section 2.1.1.4)

5. Start the ACMS Remote Manager (see Section 2.1.1.5)

Server nodes are automatically client nodes. Therefore, you do not need to perform the tasks in
Section 2.1.2 for nodes that you set up as server nodes.

2.1.1.1. Verify Portmapper (RPC) Setup
Before you attempt to start the Remote Manager, ensure that the proper TCP/IP support is in place.
This section provides an overview of the Portmapper (RPC) verification process. If you need more
detailed information, or if you will be using third-party tools or writing your own SNMP management
tools, see Section 2.2.

1. Look for the process TCPIP$PORTM (UCX$PORTM on older versions):

$ SHOW SYSTEM/PROCESS=TCPIP*

If you find the TCPIP$PORTM process, RPC is running and you can skip to Section 2.1.1.2.
Otherwise, go to step 2.

2. See whether the Portmapper service is enabled:

$ TCPIP
TCPIP> SHOW SERVICE PORTMAPPER

Service Port Proto Process Address State

PORTMAPPER 111 TCP,UDP TCPIP$PORTM 0.0.0.0 Enabled

The Portmapper should have both the TCP and UDP protocols defined. If it does not, you may
need to configure the Portmapper (see Section 2.2.1). If the Portmapper state is Enabled, skip to
Section 2.1.1.2. Otherwise, go to step 3.

3. To enable the Portmapper, enter the following commands:

$ TCPIP
TCPIP> ENABLE SERVICE PORTMAPPER
TCPIP> SET CONFIGURATION ENABLE SERVICE PORTMAPPER
TCPIP> EXIT

Then restart TCP/IP. The Portmapper process does not automatically start when TCP/IP starts, so
you may not see the TCPIP$PORTM process. The process starts the first time the Portmapper is
accessed.

6

Chapter 2. Getting Started with the ACMS Remote Manager

2.1.1.2. Run the ACMS Postinstallation Procedure

If you did not run the postinstallation procedure when you installed the ACMS Version 4.3 kit, do so
now. For details, see Section 2.3.

1. Run the postinstallation procedure as follows:

$ @SYS$STARTUP:ACMS_POST_INSTALL

2. When you are asked whether you want to configure the ACMS Remote Manager, answer YES:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]?
 YES

3. Answer the questions according to the needs of your organization.

2.1.1.3. Define Process Logicals and Symbols

The ACMS$MGMT_ENV.COM command procedure is provided to define some symbols that make
using the ACMSMGR utility simpler. For more information, see Section 2.3.2, or run the procedure
now by entering the following command:

$ @SYS$STARTUP:ACMS$MGMT_ENV.COM

2.1.1.4. Prepare the ACMS Environment

You are now ready to start the Remote Manager. If you need more information about this procedure,
see Section 2.3.3. Then follow these steps:

1. Ensure that the ACMSTART.COM procedure has been run by entering the following command:

$ ACMS/SHOW SYSTEM

If you get the following error, you must invoke the SYS$STARTUP:ACMSTART.COM procedure
described in step 2:

%DCL-W-ACTIMAGE, error activating image ACMSHR

If you get a message indicating that the ACMS system is stopped, or if some information about the
ACMS system is displayed, go to Section 2.1.1.5.

2. Invoke the ACMSTART command procedure:

$ @SYS$STARTUP:ACMSTART

2.1.1.5. Start the ACMS Remote Manager

To start the ACMS Remote Manager, follow these steps:

1. Enter the following command:

$ STARTMGR

2. Check that the ACMS$MGMT_SVR process started by entering the following command:

$ SHOW SYSTEM/PROCESS=ACMS$MGMT_SVR

7

Chapter 2. Getting Started with the ACMS Remote Manager

3. If the process is running, you should be able to communicate with it using ACMSMGR
commands (see Section 2.1.3).

If the process is not running, you can look for information in either of two places:

• Type out the SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT text file:

$ TYPE/PAGE SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT

• View the Remote Manager log file by using the following command:

$ ACMSMGR SHOW LOG/LOCAL

For more information about these sources, refer to Section 2.4.2.1 and Section 2.4.2.2.

2.1.2. Client Node Setup
All ACMS Remote Manager client nodes require that TCP/IP be installed and operational. (For
information about TCP/IP setup, refer to Section 2.2.) Other than TCP/IP connectivity to the server
node, no additional TCP/IP setup is required. (The Portmapper does not need to be running on the
client node.)

The following sections describe how to set up an ACMS Remote Manager client node. You can
skip these sections if you are installing the ACMS Remote Mangement server; server nodes are
automatically client nodes.

If the client node will not be used as an ACMS submitter node, the ACMS Remote Option kit does
not need to be installed. How you set up the client node depends upon whether the ACMS Remote
Option kit has been installed.

• If the ACMS Remote Option kit has been installed, simply run the
ACMS_POST_INSTALL.COM command procedure (see Section 2.1.2.1).

• If the ACMS Remote Option kit has not been installed, you must copy some files and define
several symbols before you can use the ACMSMGR utility on a client node (see Section 2.1.2.2).

Once you have completed these tasks, you can try to communicate with a Remote Manager on a
server node using the procedure in Section 2.1.3.

Note that you cannot obtain ACMS system management information or perform system management
functions on nodes that are client nodes only. Client nodes can get information from and perform
operations on server nodes only.

2.1.2.1. Run ACMS_POST_INSTALL.COM
Follow these steps to run the ACMS_POST_INSTALL.COM command procedure:

1. Run the postinstallation procedure as follows:

$ @SYS$STARTUP:ACMS_POST_INSTALL

2. When you are asked whether you want to configure the ACMS Remote System Manager, answer
YES:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]?
 YES

8

Chapter 2. Getting Started with the ACMS Remote Manager

3. Answer the questions according to the needs of your organization.

4. Now execute the ACMS$MGMT_ENV.COM command procedure to define some symbols that
make using the ACMSMGR utility simpler:

$ @SYS$STARTUP:ACMS$MGMT_ENV.COM

2.1.2.2. Copy Files and Define Symbols

If you did not install the ACMS Remote Option kit (that is, if this node will not be an ACMS
submitter node), follow this procedure. You will need access to a node with one of the ACMS Version
4.3 Run-Time kits installed.

1. Copy the ACMSMGR executable to your node from SYS$SYSTEM on the node that has ACMS
Version 4.3 installed. Which executable to copy depends on the version of Compaq TCP/IP
Services for OpenVMS (TCP/IP) you have installed:

• If you are running Version 4.2 of Compaq TCP/IP, copy the ACMS
$MGMT_CMD_UCX.EXE file to SYS$SYSTEM on your node.

• If you are running TCP/IP Version 5.0 or higher, copy the ACMS$MGMT_CMD_TCPIP.EXE
file to SYS$SYSTEM on your node.

2. Copy ACMS$MGMT_ENV.COM to your node and run it. This file is located in SYS$STARTUP
of a node where ACMS Version 4.3 is installed. ACMS$MGMT_ENV.COM defines some
symbols that make using the ACMSMGR utility simpler. Execute the command procedure as
follows:

$ @SYS$STARTUP:ACMS$MGMT_ENV.COM

2.1.3. Communicate with the Remote Manager
Before you issue any ACMSMGR commands, you must either log in to the Remote Manager (see step
1) or use an ACMS proxy (see step 2). For detailed information, see Section 2.3.5.

1. To log in to the Remote Manager, you must have a valid user account and password on the node
on which the Remote Manager is running. The following example commands log in to the Remote
Manager on node SERVER, using account MYACCT and password MYPASS. (For more details,
see Section 2.3.5.1.)

$ DEFINE ACMS$MGMT_SERVER_NODE SERVER
$ DEFINE ACMS$MGMT_USER MYACCT
$ ACMSMGR LOGIN

ACMS Remote Management -- Command line utility
Password:MYPASS

If the login succeeds, no messages are displayed. Go to step 3.

If the login fails, check the following possible reasons:

• You typed in an invalid user name or password.

• You defined the ACMS$MGMT_SERVER_NODE logical incorrectly (wrong or misspelled
node name).

9

Chapter 2. Getting Started with the ACMS Remote Manager

• You defined the ACMS$MGMT_USER logical incorrectly (wrong or misspelled node name).

• The Remote Manager is not running on the node you specified.

Refer to Section 2.4 for more help.

2. If you will be using ACMS proxies to access the Remote Manager, and you already know that you
have a valid proxy account, go to step 3. If you have not set up proxies but would like to use them,
create a proxy file on the node on which the Remote Manager will run. (For more information, see
Section 2.3.5.2.)

$ SET DEFAULT SYS$SYSTEM $ MCR ACMSUDU UDU> CREATE/PROXY

Now you can add a proxy. To add a proxy, you need to know the following information:

• The nodes and accounts from which you will access the Remote Manager

• The account on the Remote Manager node you will use

For example, assume you will be on node CLIENT using account MYACCT, and you will be
accessing node SERVER using account SRVACCT. Enter the following command on node
SERVER:

UDU> ADD/PROXY CLIENT::MYACCT SRVACCT

3. You can now enter any of the ACMSMGR commands. For example:

$ ACMSMGR SHOW INTERFACES

This command results in output similar to the following:

ACMS Remote Management -- Command line utility

ACMS V4.4-0 Interfaces Display Time: 18-APR-2001
 13:59:15.51

 Enabled Running Get Set Alarms Time Last
Node Interface State State Requests Requests Sent Alarm Sent
------ --------- ------- ------- -------- -------- ------

SERVER rpc enabled started 987 0 0 17-NOV-1858
 00:00:00.00
SERVER snmp enabled started 0 0 0 17-NOV-1858
 00:00:00.00

If you get error messages instead, refer to Section 2.4.

2.2. TCP/IP Setup
There are two components to the TCP/IP setup for the ACMS Remote Manager:

• Portmapper (RPC) setup (see Section 2.2.1)

Portmapper setup is required if you will be using the DCL command line utility ACMSMGR for
remote management, or if you intend to write your own programs using the RPC API.

• SNMP setup (see Section 2.2.2)

10

Chapter 2. Getting Started with the ACMS Remote Manager

SNMP setup is required if you will be using third-party tools (such as PATROL from BMC) for
remote system management, or if you will be writing your own SNMP management tools.

The information in the following sections applies only to nodes on which the ACMS Remote Manager
will run. It is not relevant for ACMS Remote Manager client nodes.

2.2.1. Set Up the Portmapper (RPC)
Perform this task if the Portmapper has not previously been set up on the node you are using, or if it
has been set up incorrectly.

The procedure described here may require a restart of TCP/IP on the node you are using.

Note

When you configure RPC, you are providing network access to the node. This may have significant
security implications. Be sure you understand these implications before you configure SNMP. If you
are in doubt, consult your network or security administrator.

2.2.1.1. Determine the Current Portmapper Configuration

To determine whether the Portmapper is configured, use the following commands:

$ TCPIP TCPIP> SHOW SERVICE PORTMAPPER

If the Portmapper is configured, you will see a display similar to the following:

Service Port Proto Process Address State

PORTMAPPER 111 TCP,UDP TCPIP$PORTM 0.0.0.0 Enabled

If you get an error message indicating that the record is not found, or if both protocols are shown but
the state is not Enabled, go to Section 2.2.1.3.

If the service is displayed, make sure that both TCP and UDP are shown in the "Proto" column and
that the state is Enabled. If both protocols are not shown or if you suspect that the Portmapper is not
working correctly, go to Section 2.2.1.2.

If both protocols are shown and the state is Enabled, then the Portmapper is configured on this node
and no additional work must be performed.

2.2.1.2. Remove the Existing Portmapper Configuration

Perform this task if you suspect the Portmapper is not working correctly, or if you were directed here
from Section 2.2.1.1.

Enter the following commands:

$ TCPIP TCPIP> SET NOSERVICE PORTMAPPER

Enter Y at the "Remove? [N]:" prompt, and then exit the utility.

Now shut down and restart TCP/IP on this node:

11

Chapter 2. Getting Started with the ACMS Remote Manager

$ @SYS$STARTUP:TCPIP$SHUTDOWN
$ @SYS$STARTUP:TCPIP$STARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after the first command
executes. You may have to reboot the machine in order to log in and complete the procedure. To avoid
this problem, put the shutdown and startup commands into a command procedure, and submit the
procedure to a batch queue that is guaranteed to run on this node.

2.2.1.3. Configure the Portmapper

To configure the Portmapper, run the SYS$MANAGER:TCPIP$CONFIG command procedure.
Select option 3 (Server components) and then option 8 (PORTMAPPER). Select the option to "Enable
service on this node." For example:

$ @SYS$MANAGER:TCPIP$CONFIG

 Compaq TCP/IP Services for OpenVMS Configuration Menu

 Configuration options:

 1 - Core environment
 2 - Client components
 3 - Server components
 4 - Optional components
 5 - Shutdown Compaq TCP/IP Services for OpenVMS
 6 - Startup Compaq TCP/IP Services for OpenVMS
 7 - Run tests

 A - Configure options 1 - 4
 [E] - Exit configuration procedure

 Enter configuration option: 3

 Compaq TCP/IP Services for OpenVMS SERVER Components Configuration Menu

 Configuration options:
 1 - BIND Disabled
 2 - BOOTP Disabled
 3 - TFTP Disabled
 4 - FTP Enabled
 5 - LPR/LPD Disabled
 6 - NFS Disabled
 7 - PC-NFS Disabled
 8 - PORTMAPPER Enabled
 9 - TELNET/RLOGIN Enabled
 10 - SNMP Enabled
 11 - NTP Disabled
 12 - METRIC Disabled
 13 - POP Disabled
 14 - FINGER Disabled
 15 - RMT Disabled
 16 - LBROKER Disabled
 17 - DHCP Disabled

12

Chapter 2. Getting Started with the ACMS Remote Manager

 A - Configure options 1 - 17
 [E] - Exit menu

 Enter configuration option: 8

 PORTMAPPER SERVER configuration options:

 1 - Enable service on all nodes
 2 - Enable service on this node

 E - Exit PORTMAPPER configuration

 Enter configuration option: 2

To exit from the command procedure, enter E twice.

Now shut down and restart TCP/IP on this node:

$ @SYS$STARTUP:TCPIP$SHUTDOWN
$ @SYS$STARTUP:TCPIP$STARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after the first command
executes. You may have to reboot the machine in order to log in and complete the procedure. To avoid
this problem, put the shutdown and startup commands into a command procedure, and submit the
procedure to a batch queue that is guaranteed to run on this node.

After TCP/IP starts up, the Portmapper should be ready to use. The Portmapper process itself does not
start until it is needed, but you should make sure it is defined as described in Section 2.2.1.1.

You can test RPC access to the Remote Manager by using ACMSMGR commands. But you will need
to get the ACMSMGR running first (see Section 2.3).

2.2.2. Set Up SNMP
Perform this task if SNMP is not set up on the node you are using, or if SNMP is set up incorrectly.

This procedure may require that you restart TCP/IP on the node you are using.

Note

When you configure SNMP, you must configure the SNMP communities to which the node will
belong. SNMP communities govern SNMP network access to the node, which may have significant
security implications. Be sure you understand these implications before you configure SNMP. If
you are in doubt, consult your network or security administrator. If the SNMP communities are not
configured properly, you may be unable to access the ACMS Remote Manager.

2.2.2.1. Determine the Current SNMP Configuration
To determine whether SNMP is configured, enter the following commands:

$ TCPIP TCPIP> SHOW SERVICES

13

Chapter 2. Getting Started with the ACMS Remote Manager

If SNMP is configured, you will see a display similar to the following:

Service Port Proto Process Address State

...
ESNMP 242 UDP ESNMP 0.0.0.0 Disabled
SNMP 161 UDP TCPIP$SNMP 0.0.0.0 Enabled
...

If you do not see both of these services, proceed to Section 2.2.2.3. If both services are displayed,
SNMP is configured on this node. If you suspect that SNMP is not working correctly, you can proceed
to Section 2.2.2.2. Otherwise, there is no additional work to be performed. (Note: It is fine if ESNMP
has a state of Disabled.)

2.2.2.2. Remove the Existing SNMP Configuration
Perform this step if you suspect SNMP is not working correctly or if you were directed here from
Section 2.2.2.1.

Enter the following commands:

$ TCPIP TCPIP> SET NOSERVICE SNMP

Enter Y at the "Remove? [N]:" prompt, and then enter:

TCPIP> SET NOSERVICE ESNMP

Enter Y again at the "Remove? [N]:" prompt, and then exit the utility.

Now shut down and restart TCP/IP on this node:

$ @SYS$STARTUP:TCPIP$SNMP_SHUTDOWN
$ @SYS$STARTUP:TCPIP$SNMP_STARTUP

2.2.2.3. Configure SNMP
To configure SNMP, run the SYS$MANAGER:TCPIP$CONFIG command procedure. Select option
3 (Server components) and then option 10 (SNMP Configuration). Select the option to "Enable
service on this node", and respond to the prompts as shown in the following example.

Note

Configuring SNMP communities must be coordinated among all nodes that will participate. If you are
unsure which SNMP communities to configure, contact your network administrator.

$ @SYS$MANAGER:TCPIP$CONFIG

 Compaq TCP/IP Services for OpenVMS Configuration Menu

 Configuration options:

 1 - Core environment
 2 - Client components
 3 - Server components
 4 - Optional components
 5 - Shutdown Compaq TCP/IP Services for OpenVMS

14

Chapter 2. Getting Started with the ACMS Remote Manager

 6 - Startup Compaq TCP/IP Services for OpenVMS
 7 - Run tests

 A - Configure options 1 - 4
 [E] - Exit configuration procedure

 Enter configuration option: 3

 Compaq TCP/IP Services for OpenVMS SERVER Components Configuration Menu

 Configuration options:
 1 - BIND Disabled
 2 - BOOTP Disabled
 3 - TFTP Disabled
 4 - FTP Enabled
 5 - LPR/LPD Disabled
 6 - NFS Disabled
 7 - PC-NFS Disabled
 8 - PORTMAPPER Enabled
 9 - TELNET/RLOGIN Enabled
 10 - SNMP Enabled
 11 - NTP Disabled
 12 - METRIC Disabled
 13 - POP Disabled
 14 - FINGER Disabled
 15 - RMT Disabled
 16 - LBROKER Disabled
 17 - DHCP Disabled
 A - Configure options 1 - 17
 [E] - Exit menu

 Enter configuration option: 10

 SNMP SERVER configuration options:

 1 - Enable service on all nodes
 2 - Enable service on this node

 E - Exit PORTMAPPER configuration

 Enter configuration option: 2

 Do you want to provide the public community [Y]: <site dependent>
 Do you want to provide another community [N]: <site dependent>
 Enter contact person(s): <site administrator>
 Enter the location of the system: <site location>

To exit from the command procedure, enter E twice.

After exiting from the procedure, you may need to modify the public communities you just specified
to allow SNMP reads, writes, or traps. The following example shows how to do so. (Community
names are case sensitive. Also note the use of double quotes.) To allow SNMP writes to occur on the
node, you also need to enable the set flag, as follows:

$ TCPIP
TCPIP> SET CONFIG SNMP/COMMUNITY="PUBLIC"/TYPE=WRITE

15

Chapter 2. Getting Started with the ACMS Remote Manager

TCPIP> SET CONFIG SNMP/COMMUNITY="PUBLIC"/TYPE=TRAP
TCPIP> SET CONFIG SNMP/FLAGS=SETS

Now exit the TCP/IP utility and restart TCP/IP on this node:

$ @SYS$STARTUP:TCPIP$SHUTDOWN
$ @SYS$STARTUP:TCPIP$STARTUP

Note

If you logged in to this node using TCP/IP, you will lose connectivity after the first command
executes. You may have to reboot the machine in order to log in and complete the procedure. To avoid
this problem, put the shutdown and startup commands into a command procedure, and submit the
procedure to a batch queue that is guaranteed to run on this node.

After TCP/IP starts, SNMP should be ready to use. The following SNMP processes should be
running:

TCPIP$ESNMP
TCPIP$OS_MIBS

2.2.2.4. Test SNMP
TCP/IP includes a DCL command line utility that can be used to issue SNMP commands to SNMP
agents on OpenVMS. To use this utility, define the following foreign commands:

 $ SNMPGET :== SYSSYSTEM:TCPIP$SNMP_REQUEST
<your node name> PUBLIC GET -W 20 $ SNMPSET :== SYSSYSTEM:TCPIP
$SNMP_REQUEST
<your node name> PUBLIC SET -W 20

Then, after starting the ACMS Remote Manager (see Section 2.3), test access to SNMP:

$ SNMPGET 1.3.6.1.4.1.36.2.18.48.5.1.10.1
1.3.6.1.4.1.36.2.18.48.5.1.10 = 14

$ SNMPSET 1.3.6.1.4.1.36.2.18.48.5.1.10.1 -I 15
1.3.6.1.4.1.36.2.18.48.5.1.10 = 15

In this example, the first command issues an SNMP GET to get the value of the parameter
mgr_audit_level (the audit level of the main thread). The second command sets the value of the
mgr_audit_level parameter to 15 (log all messages). Following each command, the current value of
the field is returned.

If these commands fail to return the expected results, refer to Section 2.4.

2.3. Remote Manager Setup
Setting up the Remote Manager primarily involves preparing the OpenVMS environment to start
the Remote Manager. While many of the steps in this procedure can be performed without having
previously configured TCP/IP, it is strongly suggested that you perform TCP/IP setup tasks described
in Section 2.2 before you attempt to start and access the Remote Manager.

Most of what you need to know to set up the ACMS Remote Manager is covered in Chapter 4. Please
read that chapter before you set up the ACMS Remote Manager.

16

Chapter 2. Getting Started with the ACMS Remote Manager

2.3.1. Run the Postinstallation Procedure
The postinstallation procedure creates two important command procedures:

• ACMS$MGMT_SETUP.COM

• ACMS$MGMT_ENV.COM

Both of these procedures are required to start and run the ACMS Remote Manager successfully.

In addition, the postinstallation procedure modifies ACMSTART.COM to execute ACMS
$MGMT_SETUP.COM to ensure that important logicals are defined whenever the ACMS run-time
system is started.

Run the ACMS_POST_INSTALL.COM command procedure as follows:

$ @SYS$STARTUP:ACMS_POST_INSTALL

Respond appropriately to all prompts until you reach the following prompt:

Do you want to SETUP and CONFIGURE the ACMS Remote System Manager [Y]?

Be sure to respond YES (the default) to this prompt. Several more questions are posed. The
procedure continues with the following questions. Your responses are stored in the ACMS
$MGMT_SETUP.COM file.

Do you want to allow Proxy Authorization [Y]?

All clients must be authenticated and authorized to access the ACMS Remote Manager. Proxy
access allows ACMS proxies to be used for this purpose. Proxy access is described in detail in
Section 4.4.1.2.

Enter Y to enable proxy authentication and authorization when the Remote Manager is started.

(ACMS$MGMT_CONFIG) Enter the file specification for the configuration
 file used by the ACMS Remote Manager
Equivalence string [SYS$SPECIFIC:[SYSEXE]ACMS$MGMT_CONFIG.ACM]:

The configuration file contains the default startup configuration for both ACMS data collections and
the Remote Manager. Section 4.2 describes how to use the ACMSCFG utility to manage this file. The
default location is SYS$SYSROOT:[SYSEXE]ACMS$MGMT_CONFIG.ACM. The information
in this file is not node dependent; however, you may choose to configure the nodes in your cluster
differently. If you configure all nodes in the cluster the same, you can put this file in the cluster
common root. Otherwise, the default value places it in the node-specific root.

Either press Return to accept the default, or type the file specification you want to use.

(ACMS$MGMT_TEMP) Enter the directory where the temp command procedures
 will be created
Equivalence string [SYS$SPECIFIC:[SYSMGR]]:

The Remote Manager uses temporary command procedures (see Section 5.3.2 to update the ACMS
run-time system. The default location of the command procedures is SYS$MANAGER. This
directory should not be a cluster common directory.

Either press Return to accept the default, or type the directory specification you want to use. If the
directory does not exist, the command procedure creates it for you.

17

Chapter 2. Getting Started with the ACMS Remote Manager

(ACMS$MGMT_LOG) Enter the directory for the ACMS Remote Manager's Log file
Equivalence string [SYS$SPECIFIC:[ACMS_RM.LOG]]:

The Remote Manager log file (described in Section 4.7 contains a variety of messages generated
by the Remote Manager at run time. The default location of the audit log is SYS$SYSROOT:
[ACMS_RM.LOG]ACMS$MGMT_LOG.LOG. If you choose to place this log in a cluster common
directory, be sure that the file name is different for each node.

Either press Return to accept the default, or type the file specification you want to use.

(ACMS$MGMT_CREDS_DIR) Enter the directory for the ACMS Remote Manager
Credential's Equivalence string [SYS$SPECIFIC:[ACMS_RM.CREDS]]:

Client credential files (described in Section 4.4.1.1 contain encrypted client identity information used
for client authorization. The default location for these files is SYS$SYSROOT:[ACMS_RM.CREDS].
Credential files are created with unique names and can be safely placed in a cluster common directory.

Either press Return to accept the default, or type the directory specification you want to use. If the
directory does not exist, the command procedure creates it for you.

 Please enter the UIC for the ACMS$SNMP account, in the form [ggggg,nnnnnn]
 UIC:

This account is used to control SNMP access to ACMS system management information and
functions. Section 4.4.1 and Section 7.2 describe the uses of this account. In general, if you will be
using an SNMP-based management console to access ACMS, you should create this account.

Please enter a password of at least 8 characters, using only
the following characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_

Password:

The password for this account is never used. Enter any combination of the characters shown.
However, keep in mind that you will be prompted to verify whatever you type.

After you run the postinstallation procedure, you should rerun SYS$STARTUP:ACMSTART.COM to
ensure that the newly created ACMS$MGMT_SETUP.COM is run.

2.3.2. Define Process Logicals and Symbols
Four symbols are defined in the ACMS$MGMT_ENV.COM procedure:

• ACMSMGR: Used to invoke the ACMSMGR utility, which provides remote access to the ACMS
Remote Manager. The ACMSMGR utility is described in detail in Chapter 11.

• ACMSCFG: Used to invoke the ACMSCFG utility, which allows the Remote Manager
configuration file to be managed. The ACMSCFG utility is described in detail in Chapter 10.

• ACMSSNAP (and ACMSNAP): Used to invoke the ACMSSNAP utility, which enables users to
view ACMS Remote Manager data snapshot files. This utility and its use is described in detail in
Chapter 12.

• STARTMGR: Used to invoke the Remote Manager startup procedure.

• SNMPGET and SNMPSET: Used to issue SNMP get and set commands to the Remote Manager.
Requires knowledge of ACMS MIB OIDs, which are listed in the file MIB_OID.LIS available
from the directory ACMS$RM_ EXAMPLES.

18

Chapter 2. Getting Started with the ACMS Remote Manager

Before you attempt to run any of these utilities, run the ACMS$MGMT_ENV.COM procedure:

$ @SYS$STARTUP:ACMS$MGMT_ENV.COM

2.3.3. Review and Update the Configuration File
The ACMS$MGMT_CONFIG system logical points to the configuration file. This logical is defined
in the ACMS$MGMT_SETUP.COM procedure, which is executed by the ACMSTART.COM
procedure. If this logical is not defined, the ACMSCFG utility will not be able to locate the file. If you
have not already run ACMSTART.COM, do so before issuing any ACMSCFG commands.

The ACMS_POST_INSTALL.COM procedure creates a configuration file with default values in SYS
$SYSROOT:[SYSEXE]ACMS$MGMT_CONFIG.ACM.

The configuration file contains the startup configuration for ACMS data collections and provides
many defaults for the Remote Manager. Section 4.2 describes how to use the ACMSCFG utility to
manage this file.

In particular, consider the following:

• Interfaces

By default, both RPC and SNMP interfaces are enabled. The RPC interface must be enabled if you
intend to use the ACMSMGR command line utility, or if you will be writing programs that use the
RPC API. The SNMP interface is required only if you will use a third-party SNMP management
tool to manage ACMS. The following command disables the SNMP interface:

$ ACMSCFG SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED

• Data collections

By default, only ID and CONFIG class data is collected by all ACMS processes. If you intend to
use the Remote Manager to monitor run-time or pool data, you must enable data collection for
those classes. The following commands enable run-time and pool data collection for all processes:

$ ACMSCFG ADD COLL/ENT=*/CLASS=RUNTIME/COLL_STATE=ENABLED
$ ACMSCFG ADD COLL/ENT=*/CLASS=POOL/COLL_STATE=ENABLED

• Traps

Configuring traps is optional. Traps are used only if your SNMP management console listens
for traps. Section 7.8 discusses traps in more detail. If you are unsure about whether you need to
configure traps, use the defaults.

• Parameters

The parameters in the configuration file control various aspects of the Remote Manager. In
general, use the default values unless you have a particular reason to modify them. Refer to
Section 9.9 includes a table with descriptions of each parameter.

2.3.4. Start the Remote Manager
At this point, you can start the Remote Manager. You can start the Remote Manager before or after
you start the ACMS run-time system. Start the Remote Manager by entering the following command:

$ STARTMGR

19

Chapter 2. Getting Started with the ACMS Remote Manager

If you prefer, you can run the startup procedure directly:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP

Once this command completes, you should be able to see the Remote Manager process running by
issuing the following command:

$ SHOW SYSTEM/PROCESS=ACMS$MGMT_SVR

If this process is not running, refer to Section 2.4.

2.3.5. Communicate with the Remote Manager
If the ACMS$MGMT_SVR process is running and you have enabled both the RPC interface and
proxy access, you should be able to communicate with the Remote Manager. The exact commands
you will use depends on the interfaces you have enabled and the mode of authentication you want to
use. This section shows two examples of communicating with the Remote Manager:

• Using ACMSMGR and logging in explicitly

• Using ACMSMGR and a proxy account

2.3.5.1. Using ACMSMGR and Logging In Explicitly
If you will not be using proxy accounts, or if you have not set them up yet, you can log in directly to
the Remote Manager and communicate with it. To reduce typing, define the process logicals ACMS
$MGMT_USER to be the user account you will log in with, and ACMS$MGMT_SERVER_NODE to
be the node on which the Remote Manager is running:

$ DEFINE ACMS$MGMT_USER MYNAME
$ DEFINE ACMS$MGMT_SERVER_NODE NODE_SERVER_RUNS_ON

Then you can log in as follows (the ACMSMGR utility will prompt you for your password):

$ ACMSMGR LOGIN Password: MYPASSWORD

If no error messages are returned, you have successfully logged in to the Remote Manager. You can
now issue ACMSMGR commands from this process. Try the following command:

$ ACMSMGR SHOW USERS

2.3.5.2. Using ACMSMGR and a Proxy Account
If you will be using proxy accounts, you must set them up prior to issuing any ACMSMGR
commands. If you have already set them up, you can skip to the example ACMSMGR command.

If you have not set up your proxies, you start by running the ACMSUDU utility. It's best to run this
from the SYS$SYSTEM directory, since that is where ACMSUDU expects to find the file in which it
stores proxies.

Start ACMSUDU as follows:

$ SET DEFAULT SYS$SYSTEM
$ MCR ACMSUDU UDU>

If you have never set up an ACMS proxy before, create the proxy file now. Use the following
command:

20

Chapter 2. Getting Started with the ACMS Remote Manager

UDU> CREATE/PROXY

Now you need to define the proxy accounts. Proxy accounts have three components: the remote node,
the remote account, and the local account.

The remote node is the node from which you will be accessing this node. You can either specify a
node name or use the asterisk wildcard (*). Be aware that the Remote Manager treats every access as
a remote access. This means that even if you access the Remote Manager only from the same node it
runs on, you must create a proxy. In that case, the remote and local nodes are the same.

The remote account is the account on the remote node that will be accessing the Remote Manager.
This is the user name on the remote node.

The local account is the account on the local node that will be used for authorization. It must be a
valid account on the local node.

To add the proxy record, use the following command:

 UDU> ADD/PROXY remote-node::remote-account local-account

Once the proxy record has been added, you can attempt to access the Remote Manager. Using a
proxy does not require a separate login; you just issue the command. Also, do not define the ACMS
$MGMT_USER logical. If it is defined, the ACMSMGR utility will look for login information and
will not attempt proxy access.

Try this command:

 $ AMCMSGR SHOW USERS/NODE=remote-manager-node

If no error messages are returned, a list of users logged in to the Remote Manager will be
displayed. To reduce typing when issuing more commands, define the process logical ACMS
$MGMT_SERVER_NODE to be the name of the node you want to access; this eliminates the need
for using the /NODE qualifier in ACMSMGR commands.

If an error is returned, refer to Section 2.4.

2.4. Troubleshooting the ACMS Remote
Manager Startup
The following sections provide troubleshooting information for the following problems:

• Problems starting ACMS (Section 2.4.1)

• Problems starting the ACMS Remote Manager (Section 2.4.2)

• Problems with ACMSMGR (Section 2.4.3)

2.4.1. Problems Starting ACMS
The following message is displayed when the ACMS run-time system is being started and the ACMS
Central Controller (ACC) cannot open the Remote Manager configuration file:

%ACMSMGMT-I-CFGNOTOPEN, Unable to open management config file, using
 defaults

21

Chapter 2. Getting Started with the ACMS Remote Manager

Possible reasons for this message include:

• The logical name ACMS$MGMT_CONFIG is not defined.

Solution: This logical is typically defined in the file SYS$STARTUP:ACMS
$MGMT_SETUP.COM, which is created by the SYS$STARTUP:ACMS_POST_INSTALL.COM
command procedure. If the ACMS$MGMT_SETUP.COM file does not exist, run
ACMS_POST_INSTALL.COM. If it does exist, edit it and add the definition of ACMS
$MGMT_CONFIG. In either case make sure to run ACMS$MGMT_SETUP.COM, and then run
the ACMSCFG utility to create a new, default file.

• The logical name ACMS$MGMT_CONFIG does not point to the configuration file, or the file has
not been created.

Solution: Ensure that the logical is defined properly (see the first bullet). If it is, you can create a
new file by running the ACMSCFG utility. ACMSCFG will ask whether you want to create a new
file. Answer yes, and then review the default settings.

• The ACC process does not have read access to the file pointed to by the logical name ACMS
$MGMT_CONFIG.

Solution: Modify the permissions on the file and restart ACMS.

• The ACMS_POST_INSTALL.COM procedure has not been run.

Solution: Run this procedure to prepare your system to run the ACMS Remote Manager. See the
first bullet for more information.

2.4.2. Problems Starting the ACMS Remote Manager
The Remote Manager writes error messages to two locations. If you are experiencing problems with
the Remote Manager, check both locations for messages.

• SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT (see Section 2.4.2.1)

• Remote Manager log, pointed to by logical ACMS$MGMT_LOG (see Section 2.4.2.2)

2.4.2.1. ACMS$MGMT_SERVER.OUT Messages

This is an ASCII text file that contains the redirected SYS$OUTPUT from the Remote Manager
process. In general, messages appear in this log only if the Remote Manager is unable to write to its
log file. The following conditions are exceptions:

• The literal "log_to_sysout" is passed to the Remote Manager startup procedure as P1 (for
example, @SYS$STARTUP:ACMS$MGMT_STARTUP.COM log_to_sysout). Except for rare
debugging circumstances, the "log_to_sysout" literal should not be passed to the Remote Manager
startup procedure as P1.

• The Remote Manager experiences an access violation or other nontrapped fatal error.

Under these circumstances, OpenVMS exception output is written to ACMS$MGMT_SERVER.OUT.

If you experience problems with SNMP, refer to Section 7.9 for information about obtaining SNMP
debug output.

22

Chapter 2. Getting Started with the ACMS Remote Manager

LOG: Could not open file acms$mgmt_log

This message indicates that the Remote Manager could not open the file pointed to by the logical
ACMS$MGMT_LOG. Possible reasons for this include:

• The logical is not defined, or is improperly defined.

Solution: This logical is typically defined in the file SYS$STARTUP:ACMS
$MGMT_SETUP.COM, which is created by the SYS$STARTUP:ACMS_POST_INSTALL.COM
command procedure. If the ACMS$MGMT_SETUP.COM file does not exist, run
ACMS_POST_INSTALL.COM. If it does exist, edit it and add the definition of ACMS
$MGMT_LOG. In either case, make sure to run ACMS$MGMT_SETUP.COM, and then start the
Remote Manager again.

• The device is full.

Solution: If there is insufficient space for the log file, either redefine the logical to point to another
device or make room on the device.

• The Remote Manager does not have write access to the file.

Solution: Modify the permissions on the file or directory to which the ACMS$MGMT_LOG
logical points.

• The ACMS_POST_INSTALL.COM procedure has not been run.

Solution: Run this procedure to prepare your system to run the ACMS Remote Manager. See the
first bullet for more information.

2.4.2.2. Remote Manager Log Entries
The messages written to the Remote Manager are determined by Remote Manager parameter settings
(for example, mgr_audit_level, rpc_audit_level, and so on). Changing the parameter values results
in either more or fewer messages appearing in the Remote Manager log. By default, messages with
a severity of warning (w), error (e), or fatal (f) are written to the Remote Manager log. The log is
pointed to by logical ACMS$MGMT_LOG.

You can use the ACMSMGR SHOW LOG command to display messages in the Remote Manager
log. If the Remote Manager is not running, use the /LOCAL qualifier to read the log file directly. You
must be logged in to a node with direct access to the log file in order to use the /LOCAL switch. For
instance:

$ ACMSMGR SHOW LOG/LOCAL

See Section 4.7 for detailed information about the log file maintained by the ACMS Remote Manager.

mgr: f : Failure opening config file

The Remote Manager could not open the configuration file. See the discussion in Section 2.4.2.1.

mgr: f : No Interfaces were enabled. Process will shutdown

At least one interface must be enabled when the Remote Manager is started. Otherwise, it is
impossible to communicate with the Remote Manager. If both interfaces are disabled, the Remote
Manager will not start.

23

Chapter 2. Getting Started with the ACMS Remote Manager

Solution: Issue the following command to see the current interface settings in the configuration file:

$ ACMSCFG SHOW INTERFACE

Enable at least one of the interfaces as follows (substitute SNMP for RPC if you want to enable the
SNMP interface instead of the RPC interface):

$ ACMSCFG SET INTERFACE/INTERFACE=RPC/STATE=ENABLED

Now restart the Remote Manager.

procmon: e : Failure obtaining current collection states. Bypassingqti

This message can safely be ignored. It is generated when an ACMS entity is not started and the
Remote Manager is parsing the collection table.

procmon: f : Failure waiting on mgmt$x_proc_mon_cond_var

This message can safely be ignored. It is generated when the process monitor thread is unexpectedly
interrupted, generally during Remote Manager shutdown.

Remote Manager hangs during process startup

Most Remote Manager hangs during process startup are due to problems with the Portmapper. Verify
that the Portmapper is functioning properly, and restart the Remote Manager.

rpc: f : Unable to initialize security. Aborting

The Remote Manager was unable to find a rights identifier in the UAF.

Solution: Create the rights identifier.

sec: e : Failure obtaining uaf info for ACMS$SNMP

If the SNMP interface is enabled, the ACMS$SNMP account must exits. Otherwise, it can perform
no operations. If the account exists, it must be granted at least one of the following rights identifiers:
ACMS$MGMT_READ, ACMS$MGMT_WRITE, ACMS$MGMT_OPER.

Solution: Either disable the SNMP interface ($[ACMSCFG,ACMSMGR] SET INTERFACE/
INTERFACE=SNMP/STATE=DISABLED), or create the ACMS$SNMP account and grant it one of
the rights.

sec: e : MGMTL_ACMSMGMT_READ Rights identifier not found in rights db!

The Remote Manager was unable to find the rights identifier in the UAF.

Solution: Create the rights identifier.

sec: f : ACMS$SNMP user has been granted no rights.

If the SNMP interface is enabled, the ACMS$SNMP account must be granted at least one of
the following rights identifiers: ACMS$MGMT_READ, ACMS$MGMT_WRITE, ACMS
$MGMT_OPER. Otherwise, the account cannot perform any operations. If it is not granted any rights
identifiers, the thread will not start.

Solution: Either disable the SNMP interface ($[ACMSCFG,ACMSMGR] SET INTERFACE/
INTERFACE=SNMP/STATE=DISABLED), or grant one of the rights to the ACMS$SNMP account.

24

Chapter 2. Getting Started with the ACMS Remote Manager

snmp: e : Terminating....

This is a general error that simply reports that the thread is exiting. Look in the log file for the
reason the thread is exiting. If there are no other error messages, look in SYS$ERRORLOG:ACMS
$MGMT_SERVER.OUT.

snmp: f : Internal Initialization failed, exiting...

This is a general error that simply reports that the thread is exiting. Look in the log file for the
reason the thread is exiting. If there are no other error messages, look in SYS$ERRORLOG:ACMS
$MGMT_SERVER.OUT.

snmp: w : An esnmp error has occurred: -1

This message, if followed by termination of the SNMP thread, usually indicates that SNMP has not
been set up properly on the node.

Solution: Configure and enable the SNMP interface. Restart TCP/IP and then restart the Remote
Manager.

If this message is received, but is not followed by termination of the SNMP thread, the SNMP
interface was able to recover from this error and there is no action that must be taken.

snmp: w : An esnmp error has occurred: -5

This is a warning message that refers to a problem communicating with the SNMP master agent.
These errors usually are recoverable and the SNMP interface continues to work. In general, you can
ignore this message.

However, frequent occurrences of this error may be attributable to a busy system and may indicate a
need to modify one or more of the following parameters: snmp_agent_time_out, snmp_are_you_there,
snmp_sel_time_out.

2.4.3. Problems with the ACMSMGR Utility
ACMSMGR problems typically fall into two categories:

• ACMSMGMT-W-NOCLNT_ATTACH messages (see Section 2.4.3.1)

• ACMSMGR hangs (see Section 2.4.3.2)

2.4.3.1. ACMSMGMT-W-NOCLNT_ATTACH Messages
ACMSMGR can display the following message:

%ACMSMGMT-W-NOCLNT_ATTACH, Cannot create client for node NODE\NOCLNT_ATTACH

This message usually is followed by these messages:

%ACMSMGMT-E-NOCLIENTS, No clients created, cannot continue
%ACMSMGMT-E-FAIL, Operation failed

These messages usually are returned when the Remote Manager is not running on the target node.
Possible reasons for this include:

• The Remote Manager is not started.

25

Chapter 2. Getting Started with the ACMS Remote Manager

Solution: Start the Remote Manager as follows:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP

• The Remote Manager is not fully initialized. Complete initialization of the Remote Manager may
take several seconds.

Solution: Wait several seconds and then reissue the command that resulted in this error.

• The node name is incorrect.

Solution: Double-check the spelling of the node name in the /NODE qualifier or in the ACMS
$MGMT_SERVER_NODE logical.

2.4.3.2. ACMSMGR Hangs
ACMSMGR hangs are generally the result of a problem with the Portmapper or the Remote Manager.
To verify that the Remote Manager has connected to the Portmapper, issue the following commands
on the node on which the Remote Manager is running:

$ TCPIP
TCPIP> SHOW PORTMAPPER

If the Remote Manager has connected, you will see a display similar to the following:

Program Number Version Protocol Port-number Process Service-name
---------------------- ------- -------- ----------- -------- ------------
000186A0 (100000) 2 TCP 111 20407E5E PORTMAPPER
000186A0 (100000) 2 UDP 111 20407E5E PORTMAPPER
20000099 (536871065) 1 UDP 1023 20408675
20000099 (536871065) 1 TCP 1023 20408675

If the bottom two lines are missing (program number 20000099, version 1), then the Remote Manager
is not connected to the Portmapper. Either the Remote Manager is not started or has terminated, or the
RPC interface is not enabled.

If no lines are displayed (that is, if a “record not found” message is displayed), the Portmapper is not
started. Refer to Section 2.2 for more information.

Solution: Correct the problem with the Remote Manager or the Portmapper.

26

Chapter 3. Using the Remote Manager
to Manage ACMS
This chapter describes how to prepare and run the ACMS Remote Manager web agent.

3.1. Overview of the Remote Manager Web
Agent
With the Remote Manager web agent, system managers can use their web browser to monitor and
tune remote ACMS systems. The ACMS for OpenVMS Alpha Development and Run-time kits
include the Remote Manager Hyper- Media Management Object (HMMO), which is integrated into
the VSI web-based enterprise management (WBEM) environment. Known as the Remote Manager
web agent, this object functions as a Remote Manager client through the ONC RPC interface.

Note

ACMS HMMO will work only with Insight Management Agents using the ELM HTTP/HTTPS
server. It will not work with versions of Insight Management Agent using the System Management
Homepage as the HTTP/HTTPS server.

The Remote Manager web agent environment consists of the following host systems:

• Web client – One or more local systems running a web browser that supports Java plug-ins,
JavaScript, and Cascading Style Sheets (CSS).

• Web server – An OpenVMS Alpha system where the web agent (ACMS$MGMT_HMMO) and
WBEM management server (WBEM$SERVER) processes are running. This system serves the
ACMS Remote Management web page and handles all communication between the web client
and Remote Manager server systems.

• Remote Manager server – One or more OpenVMS Alpha or I64 systems where Remote
Manager server processes (ACMS$MGMT_SVR) are running. The ACMS information displayed
on the web agent home page is a result of executing ACMSMGR commands on the Remote
Manager servers.

As shown in Figure 1.1, the Remote Manager web agent (ACMS$MGMT_HMMO) relies on the
WBEM management server (WBEM$SERVER) to relay data to and from the web browser. The web
agent uses its internal web server to connect to the ACMS Remote Management page. All command
input is then relayed to Remote Manager server through the HMMO.

3.2. Remote Manager Web Agent Setup
Before you begin, you must have already installed OpenVMS Alpha Version 8.2 on the web server
system. Also, ensure that all web client systems are running one of the currently supported web
browsers. See the VSI ACMS for OpenVMS Software Product Description (SPD 25.50.xx) for a list of
the currently supported web browsers.

Once the OpenVMS Alpha software is installed, perform the following steps to set up the Remote
Manager web agent on the web server system:

• Install the Remote Manager web agent software (Section 3.2.1)

27

Chapter 3. Using the Remote Manager to Manage ACMS

• Install the VSI Management Agents for OpenVMS software (Section 3.2.2)

• Assign additional rights identifiers (Section 3.2.3)

• Start the web agent (Section 3.2.4)

• Enable access to Remote Manager hosts (Section 3.2.5)

3.2.1. Install the Remote Manager Web Agent Software
The Remote Manager web agent software is bundled with the ACMS for OpenVMS Alpha Run-time
and Development kits. To install the web agent software, choose to install the WBEM-related files
component of either kit.

This section contains excerpts from an ACMS Development kit installation. Refer to the VSI ACMS
Version 5.0 for OpenVMS Installation Guide for detailed information about the entire ACMS
installation procedure.

1. Run the VSI ACMS for OpenVMS Alpha 5.0 installation procedure for either the ACMS Run-
time or Development kit, in as described in Section 3.2.1 of the VSI ACMS Version 5.0 for
OpenVMS Installation Guide. For example:

$ @SYS$UPDATE:VMSINSTAL ACMSDEVA_050 MTA0: OPTIONS N,AWD=DISK1
OpenVMS AXP Software Product Installation Procedure V8.2

It is 22-JUN-2001 at 11:00.

Enter a question mark (?) at any time for help.

2. A series of product-specific questions are displayed that prompt you to choose the appropriate
installation options. Answer the following prompts accordingly:

* Do you want the full ACMS installation [NO]? N
* Do you want to install the ACMS component software [YES]? N
* Do you want to install the WBEM-related files for ACMS [YES]? Y
* Do you want to update the LSE environment for ACMS [YES]? N

The installation procedure then checks for prerequisite software and adequate disk space and lists
a summary of the components to be installed, as follows:

CHECKING INSTALLATION PREREQUISITES

 (required and optional software checked)
 (product licenses checked)
 (disk space checked)

ACMS PREVIOUS INSTALLATION

 (previous installation of ACMS is compatible with current
 installation)

ACMS WBEM CHECK

SUMMARY OF THIS ACMS INSTALLATION

 The following steps will be taken to complete this installation:
 o WBEM environment will be updated for ACMS

28

Chapter 3. Using the Remote Manager to Manage ACMS

 The rest of the installation will take approximately 7 minutes.
 Note that this time is heavily dependent your system load, hardware
 and kit media. The time mentioned was measured on a stand-alone
 DEC 3000 (Alpha) system with a disk-resident kit. Your time may
 vary.

3. When prompted to continue the installation, answer YES. The procedure enters the ACMS
WBEM Setup phase.

4. The WBEM setup procedure (SYS$STARTUP:ACMS$WBEM_SETUP.COM) is then invoked,
which creates or updates the ACMS$WBEM account and creates the necessary directories and
web agent files.

Do one of the following:

• If the account does not exist, you are prompted to supply a UIC and password for the account,
as follows:

The ACMS$WBEM account used to execute ACMSMGR WBEM commands is not
 available.
You must supply a UIC and password for this account so that it can be
 created.
Please enter the UIC for the ACMS$WBEM account, in the form
 [ggggg,nnnnnn]
UIC: [320,525]

Please enter a password of at least 8 characters, using only
the following characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_
Password:
Verification:

Enter the appropriate UIC and password. The ACMS$WBEM account is then created and
assigned the ACMS$MGMT_READ rights identifier.

• If the account already exists, a list of the rights identifiers currently assigned to the account are
displayed, as follows:

**
* ACMS WBEM Setup *
**
 Checking for user account ACMS$WBEM
 Identifier for ACMS$MGMT_READ exists in RIGHTSLIST
 Identifier for ACMS$MGMT_WRITE exists in RIGHTSLIST
 Identifier for ACMS$MGMT_OPER exists in RIGHTSLIST
 Identifier for ACMS$MGMT_SYSUPD exists in RIGHTSLIST

 The account ACMS$WBEM exists.

The identifiers on the account ACMS$WBEM are

Identifier Value Attributes
ACMS$MGMT_READ %X8001012E
ACMS$MGMT_WRITE %X8001012F
ACMS$MGMT_OPER %X80010130
ACMS$MGMT_SYSUPD %X800101DB

Do you wish to reset the account ACMS$WBEM to the default values
 [N] ? y

29

Chapter 3. Using the Remote Manager to Manage ACMS

You can choose to reset the identifiers at this time by answering YES.

The setup procedure then completes by creating the following directories and files on the web
server system:

The ACMS WBEM setup has completed.
The following files were copied:

 To SYS$SYSROOT:[WBEM]
 ACMS$MGMT_HMMO.EXE
 RUN_ACMS_HMMO.COM
 STOP_ACMS_HMMO.COM

 To SYS$SYSROOT:[WBEM.WEB.IM.ACMSHMMO.ENG]
 ACMS.CSS
 ACMSHMMO.JS
 ACMSMENUTREE.JAR
 ACMS_BANNER.HTML
 ACMS_INDEX.HTML
 ACMS_MENU.HTML
 ACMS_OUTPUT.HTML
 To SYS$SYSROOT:[WBEM.WEB.IM.ACMSHMMO.IMAGES]
 ACMSHMMO.GIF
 HPLOGO.GIF
 WEBBUM.GIF
 To SYS$COMMON:[SYSLIB]
 ACMS$TRACE_SHR.EXE
 You may wish to purge these directories.

Once the ACMS installation is complete, download and install the VSI Management Agent for
OpenVMS software, as described in the next section.

3.2.2. Install the VSI Management Agents for OpenVMS
Software
If you have not already installed the VSI Management Agents for OpenVMS software, do so now.
You can download this software from the web page listed in Section 3.1.

Follow the associated instructions to copy, unpack, and install the appropriate VSI Management
Agents for OpenVMS PCSI kit. Once the software is installed, issue the following command to start
the management agent process:

$ SET DEFAULT SYS$SPECIFIC:[WBEM]
$ @WBEM$RUN_WEBSERVER.COM

Note that the WBEM server (WBEM$SERVER) is the only process started by this procedure. None
of the other Management Information Base (MIB) processes included in the WBEM kit (such as,
WBEM$CPQHOST) are used by the Remote Manager agent. If you plan to use software on this
system that relies on the MIB processes, run the WBEM$STARTUP.COM procedure, as described in
the WBEM installation material.

3.2.3. Assign Additional Rights Identifiers
The installation procedure automatically grants the ACMS$MGMT_READ rights identifier to the
ACMS$WBEM account when it is created. This enables all SHOW commands to be executed from

30

Chapter 3. Using the Remote Manager to Manage ACMS

the web agent. In order to enable all other non-read operations (such as SAVE, SET, START, STOP,
RESET, ADD, and DELETE), grant one or more of the following rights identifiers to the ACMS
$WBEM account:

• ACMS$MGMT_WRITE

• ACMS$MGMT_OPER

• ACMS$MGMT_SYSUPD

See Section 4.4.2 for more information on the use of rights identifiers.

3.2.4. Start the Remote Manager Web Agent Process
Enter the following command to start the Remote Manager web agent process:

$ SUBMIT/NOTIFY/LOG=SYS$SYSROOT:[WBEM]/QUEUE=queue-name -
_$ /USER=ACMS$WBEM SYS$SPECIFIC:[WBEM]RUN_ACMS_HMMO.COM

where queue-name is a valid OpenVMS batch queue. If the process is already running, this command
restarts the process.

3.2.5. Enable Access to Remote Manager Hosts
In order for the Remote Manager web agent to access a Remote Manager server system, the logical
ACMS$MGMT_ALLOW_PROXY_ACCESS on the host system must be set to a value of 1, which
enables proxy access.

Also, an ACMS proxy entry for the ACMS$WBEM account is required. For example, the following
proxy entry grants the user ACMS$WBEM access to the local host from any known system:

$ MCR ACMSUDU
UDU>SHOW /PROXY *::ACMS$WBEM
Remote User: *::ACMS$WBEM Local User: ACMS$WBEM

The rights identifiers on the local ACMS$WBEM account control the level of access allowed on the
host system.

Note

Even if the Remote Manager is running on the same node as the web agent, it is still considered a
remote host and the requirements above still apply.

3.2.6. Stop the Remote Manager Web Agent
Use the following command to stop the web agent process:

$ @SYS$SPECIFIC:[WBEM]STOP_ACMS_HMMO.COM

If you also want to stop the WBEM server process, enter the following command:

$ @SYS$SPECIFIC:[WBEM]WBEM$STOP_WEBSERVER.COM

31

Chapter 3. Using the Remote Manager to Manage ACMS

3.3. Using the Remote Manager Web Agent
The following sections describe how to access and use the Remote Manager web agent interface.

3.3.1. Accessing the ACMS Remote Management Web
Page
From a browser on the web client system, enter the following URL to connect to the web server
system:

http://server-host:2301/acmshmmo/eng/acms_index.html

where server-host represents the address of the OpenVMS Alpha system on which the web agent
software is running. This address can be expressed in any of the following forms:

node (node name)
node.company.com (URL)
165.112.94.78 (IP address)

The ACMS Remote Management page is displayed, similar to the figure below.

Figure 3.1. Remote Manager Web Agent Page

This page consists of the following frames:

Banner frame

Displays the application name as well as the name of the web server system. This frame also
contains a link that you can use to send feedback about the web agent directly to VSI.

Command Selection frame

Displays a tree that contains selections representing the various ACMSMGR commands. The
items in this tree are grouped by common command verbs (such as, SHOW and SET) or by object

32

Chapter 3. Using the Remote Manager to Manage ACMS

(such, as Remote Manager). This frame also contains a series of links to pertinent VSI WBEM
and ACMS information, such as to the HTML version of this guide.

Output frame

Displays the results of the selected command. Brief instructions on how to interact with the data
in this frame are displayed along with the related output and status messages (if any).

3.3.2. Conventions
The web agent uses color and font highlighting to indicate the different states and types of data
displayed in the output frame. The default conventions are described in the table below. Note,
however, that you can change these conventions as described in the following section.

Table 3.1. Remote Manager Web Agent Conventions

Text appearing in... Indicates...
White with teal or blue background Active and stored values that can be changed.

To set a value, single click on the item. (Set
commands)

Teal italics Dynamic configuration fields. (Show commands)
Gray Inactive data; old process data that is still

available will be displayed. The node name
is also prefixed with an asterisk, similar to
ACMSMGR displays. (Show commands)

Red Warning or error messages. (All)
Blue Disabled collection state. Data displayed for

the related class may not be current. (Show
commands)

3.3.3. Customizing the Display
The Remote Management web page relies on a cascading style sheet (CSS) to manage its formatting.
Based on the CSS level 2 specification (CSS2) from the World Wide Web Consortium (W3C), the
ACMS.CSS file functions as a template for information displayed in the output frame.

If you are familiar with CSS files, you can customize the formatting of information
in the output frame by editing the file ACMS.CSS located in SYS$SYSROOT:
[WBEM.WEB.IM.ACMSHMMO.ENG].

For example, to remove the background image in the output frame, open the CSS file and search for
the following statement:

BODY {background-color: white; background-image:
url(/acmshmmo/images/webbum.gif); color: black;}

Replace this statement with the following:

BODY {background-color: white; color: black;}

To learn more about CSS files or the CSS2 specification, visit the W3C web site for the latest
information and resource listings:

33

Chapter 3. Using the Remote Manager to Manage ACMS

http://www.w3.org/Style/CSS

Note

Each browser may interpret style sheet properties differently. Be aware that slight variations in format
may occur depending upon the browser that you use.

3.3.4. Selecting the Remote Manager Host
When you first access the ACMS Remote Management web page, the name of the web server is
displayed as the Remote Manager host.

To choose a different Remote Manager host, click the Change button in the command selection frame.
The Select Host popup window is displayed, similar to the figure below.

Figure 3.2. Select Host

Enter the name of the Remote Manager host, and click OK. Note that if you enter a URL or IP
address, only the short form of the name is displayed in the command selection frame.

3.4. Issuing Remote Manager Commands
The Remote Manager web agent interface provides detailed usage instructions on each page displayed
within the output frame. Therefore, the following sections are only intended to provide a brief
overview of issuing the most common Remote Manager commands with the web agent.

The Remote Manager web agent interface provides you with much of the same capability as
ACMSMGR in managing ACMS systems. The main functional differences are that with the web
agent:

• You cannot view TRAP information.

• There is no equivalent to the SHOW LOG/LOCAL and SHOW ERROR/LOCAL commands.

• You can only connect to one Remote Manager host system per window.

You can quickly reissue any web agent command using the Refresh (or Reload) option of your
browser to reload the page in the output frame. To save frequently issued commands, bookmark the
page in the output frame.

3.4.1. Using Show Commands
To display information about an ACMS entity or object:

34

Chapter 3. Using the Remote Manager to Manage ACMS

1. In the command selection frame, click Show to expand the list of valid entities and Remote
Manager objects.

2. Click on the appropriate entity (such as, TSC) or object (such as, Process). If you selected an
entity, click on the appropriate type of information to display (such as, Config), and choose the
scope of display (such as, Brief/Stored).

The results of the command are displayed in the output frame, similar to the figure below. Note
that all dynamic data is displayed in italics.

Figure 3.3. Show TSC

3.4.2. Using Set Commands
To change information related to an ACMS entity or Remote Manager object:

1. In the command selection frame, click Set to expand the list of valid entities and Remote Manager
objects.

2. Click on the appropriate entity (such as, ACC) or object (such as, Remote Manager >
Collection). If you selected an entity, click on the appropriate type of information you want to
change (such as, ACMSGEN).

The available values are displayed in the output frame, similar to the figure below. Note that any
active and stored data that can be changed is displayed reverse highlight.

35

Chapter 3. Using the Remote Manager to Manage ACMS

Figure 3.4. Set ACC

3. Move the cursor over the value you want to change until the link cursor appears, and then click on
the value. A popup window is displayed prompting you for a new value.

4. Enter the new value in the popup window, and click OK.

Note that you can update the values displayed in the output frame at any time by clicking the Refresh
button.

3.4.3. Using Start and Stop Commands
To start or stop an ACMS object, such as an application (EXC):

1. In the command selection frame, click Start or Stop to expand the list of objects.

2. Click on the appropriate object (such as, Remote Manager > Collection).

Except for System, the command is executed as soon as it is selected. If you chose Start or Stop
System, additional choices are displayed in the output frame.

3. Click on the appropriate check boxes to set or unset one or more values, and click the Start
SYSTEM or Stop SYSTEM button.

3.4.4. Using Add and Delete Commands
To add or delete a Remote Manager object, such as an error filter:

1. In the command selection frame, click on the appropriate entry, either Error Management or
Remote Manager.

2. Click on the subentries until you reach the item you want to add or delete (such as, Add Filter).

A form with related parameter information is displayed, similar to the figure below.

36

Chapter 3. Using the Remote Manager to Manage ACMS

Figure 3.5. Add Error Filter

3. Complete form and click Add or Delete.

3.5. Troubleshooting the Remote Manager
Web Agent
• WBEM Home Page does not display the ACMS Icon

ACMS HMMO is not registered with the WBEM$SERVER process. After starting the WBEM
server with the following command:

$ @SYS$SPECIFIC:[WBEM]WBEM$RUN_WEBSERVER.COM

You may need to delay starting the ACMS HMMO until the WBEM$SERVER process is in the
HIB state. If the ACMS HMMO is started too soon it may not register with the WBEM$SERVER.
The SYS$SPECIFIC:[WBEM]WBEM$RUN_WEBSERVER.COM must be run prior to running
SYS$SPECIFIC:[WBEM]RUN_ACMS_HMMO.COM.

• WBEM Home Page does not display

If you access the WBEM Home Page at http://host_name:2301/, and the page does not display,
it may be that the WBEM$SERVER is not started. Another possibility is that the ACMS
$MGMT_HMMO process was started prior to the WBEM$SERVER process. To ensure proper
startup, stop both processes and then restart them in the correct order.

• Remote Manager web page displays, but remote commands fail.

This indicates that the Remote Manager web agent cannot connect to the specified Remote
Manager server host. If all commands fail, ensure that the Remote Manager server process
is running on the host system and that access to it has been properly setup (as described in
Section 3.2.5. If some commands work and others fail, the ACMS$WBEM account may not have
the required rights identifier; see Section 3.2.3.

• Page Refresh or Reload does not update the output frame.

37

Chapter 3. Using the Remote Manager to Manage ACMS

This behavior is browser dependent. To refresh the information displayed in the output frame,
move the cursor inside the frame to specifically refresh or reload the information within it.

3.5.1. Reporting Problems
If the ACMS$MGMT_HMMO process crashes, the following files will contain any error information
that was available: SYS$SPECIFIC:[WBEM]ACMS$MGMT_ HMMO.LOG;* SYS$SPECIFIC:
[WBEM]ACMS$MGMT_HMMO.ERR;*.

If there are any new dump files you may want to examine the file to locate the problem source. SYS
$SPECIFIC:[WBEM]*.DMP;*

If the problem is with WBEM$SERVER process, send the dump file to your VSI support
representative. If the problem is with the ACMS HMMO process, please have the following files
ready for analysis in addition to a procedure that reproduces the situation:

SYS$SPECIFIC:[WBEM]ACMS$MGMT_HMMO.LOG;*

SYS$SPECIFIC:[WBEM]ACMS$MGMT_HMMO.ERR;*

SYS$SPECIFIC:[WBEM]*.html;*

SYS$SPECIFIC:[WBEM]*.txt;*

SYS$SPECIFIC:[WBEM]SYS$OUTPUT.*;

SYS$SPECIFIC:[WBEM]*.DMP;*

38

Chapter 4. Managing the Remote
Manager
This chapter describes how to manage the ACMS Remote Manager.

4.1. Overview
The ACMS Remote Manager runs on the same node as the ACMS run-time system but runs
independently of it. The Remote Manager may be started and stopped at any time without affecting
the ACMS run-time system. Similarly, the ACMS system can be started and stopped at any time
without affecting the Remote Manager process. Remote management can be performed only on nodes
where the Remote Manager has been started.

ACMS system managers configure the Remote Manager process (for example, which interfaces are
enabled, what alarms to send) using a combination of the ACMSCFG utility (which provides initial
configuration settings at process startup) and the ACMSMGR utility (to change settings once the
process has started). Management consoles that support SNMP can also be used to configure and
manage the Remote Manager.

Before the Remote Manager process can communicate with external entities, either SNMP or RPC
must be configured and running on the appropriate nodes. See the VSI ACMS Version 5.0 for
OpenVMS Installation Guide for information about configuring and starting SNMP and RPC.

4.2. Configuring Remote Manager Startup
Before the Remote Manager is started, the configuration file should contain the appropriate settings.
Both the ACMS run-time system and the Remote Manager read the configuration file during startup.
If the ACMS Central Controller (ACC) process cannot read the configuration file when starting
up, it uses default values. If the Remote Manager cannot read the configuration file when starting
up, it logs an error and exits. By default, the configuration file is stored in SYS$SYSTEM:ACMS
$MGMT_CONFIG.ACM. This location can be changed using the systemwide logical ACMS
$MGMT_CONFIG. Use the ACMSCFG utility to change values in this file. The ACMSCFG utility
allows ACMS system managers to set:

• The interfaces to be started

• Data-collection options

• Remote Manager run-time parameters

• SNMP traps

The configuration file is created during postinstallation with a set of default values. ACMS system
managers should review these settings prior to starting the Remote Manager to determine whether
the settings are appropriate for the node on which the process will run. Use the ACMSCFG SHOW
commands as follows to display the settings:

$ ACMSCFG SHOW INTERFACE
$ ACMSCFG SHOW COLLECTION
$ ACMSCFG SHOW PARAMETER
$ ACMSCFG SHOW TRAP

39

Chapter 4. Managing the Remote Manager

Note

Changes made to the ACMSCFG file are not automatically reflected in the running system. The
ACMSCFG file is read during Remote Manager and ACMS system startup only. The Remote
Manager process must be restarted in order for configuration file changes to the Parameter, Interface,
and Trap tables to become active. The ACMS run-time system must be restarted in order for
configuration file changes to the Collection table to become active. After the Remote Manager
process has been started, you can use the ACMSMGR utility to make dynamic changes to the active
system.

4.2.1. How to Run the ACMSCFG Utility
The ACMSCFG utility is a DCL command line tool that is invoked using a foreign command. The
ACMSCFG utility accepts a number of command line arguments that determine what operations it
should perform. The basic syntax for running the ACMSCFG utility is as follows:

ACMSCFG verb object qualifier

For example, to display the current data collection settings, you would use the following command:

$ ACMSCFG SHOW COLLECTION

You can get help on the available ACMSCFG commands and their syntax using the following
command:

$ ACMSCFG HELP

You can define your own foreign command by using the following DCL command:

$ MYCOMMAND :== SYSSYSTEM:ACMS$MGMT_CONFIG_CMD

If you do this, you would substitute MYCOMMAND for ACMSCFG in the preceding examples.

When the ACMSCFG utility is started, it attempts to locate the ACMS$MGMT_CONFIG.ACM file
by translating the logical name ACMS$MGMT_CONFIG. If that attempt fails, it looks in the default
location, SYS$SYSTEM:ACMS$MGMT_CONFIG. If that lookup fails, ACMSCFG asks the user
whether to create a new file. New files are created with default values in the directory that the logical
name ACMS$MGMT_CONFIG translates to. If the logical name is not defined or does not include a
directory specification, the default directory location is the current directory.

4.2.2. Displaying Current Values
Current ACMSCFG values can be displayed using the SHOW command, as follows:

ACMSCFG SHOW object

Valid SHOW objects are:

• Collection

• Control

• Interface

• Parameter

40

Chapter 4. Managing the Remote Manager

• Trap

The values for each object type correspond directly to fields in management configuration tables.
These tables are discussed in Chapter 9.

The following is an example SHOW command and its output:

SPARKS> ACMSCFG SHOW COLLECTION

Entity Collect Collect Storage
 Storage
Type Entity Name Class State Storage Location State
 Interval
------- ------------- ------- --------- ------------------ --------

 * * id enabled acms$mgmt_snapshot enabled 3600
 * * config enabled acms$mgmt_snapshot disabled 3600
 * * error enabled acms$mgmt_snapshot disabled 300

4.2.3. Changing Values
ACMSCFG values can be changed using one of three verbs:

• ADD

The ADD verb is used to add rows for the following objects:

• Collection

• Trap

Example:

$ ACMSCFG ADD COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME

• DELETE

The DELETE verb is used to delete rows for the following objects:

• Collection

• Trap

Example:

$ ACMSCFG DELETE COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME

• SET

The SET verb is used to add rows for the following objects:

• Collection

• Interface

• Parameter

• Trap

41

Chapter 4. Managing the Remote Manager

Example:

$ ACMSCFG SET COLLECTION/ENTITY=*/NAME=*/CLASS=RUNTIME/
COLL_STATE=ENABLED

Each object has unique qualifiers that determine which values are to change. Qualifiers are either
mandatory or optional. Mandatory qualifiers have no default and must be specified by the user.
Optional qualifiers have default values and do not have to be specified. See Chapter 10 for a
complete description of the syntax for each command and the qualifiers they support.

4.3. Starting and Stopping the Remote
Manager
The following information discusses starting and stopping the ACMS Remote Manager.

4.3.1. Remote Manager Startup
The Remote Manager is started as a detached process using the command procedure SYS
$STARTUP:ACMS$MGMT_STARTUP, as follows:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP

You should run this file from the SYSTEM account during system startup. You can run the file either
before or after the ACMS run-time system has been started. Alternatively, you can run it at any time
from a privileged account.

During process startup, the Remote Manager reads the ACMSCFG file (located in SYS
$SYSTEM:ACMS$MGMT_CONFIG.ACM or wherever the ACMS$MGMT_CONFIG logical
points). If the file cannot be found and opened, the Remote Manager will not start.

The Remote Manager writes errors to the ACMS$MGMT_LOG file. This is a binary file that can be
displayed using the ACMSMGR utility, as follows:

$ ACMSMGR SHOW LOG

The ACMSMGR utility generally performs operations on remote nodes. If the Remote Manager fails
to start, it will not be accessible remotely. You will need to log in to the node on which it failed to
start, and issue the following command:

$ ACMSMGR SHOW LOG/LOCAL

This command instructs the ACMSMGR utility to read the log file directly, bypassing the Remote
Manager. See Chapter 11 for a complete description of the ACMSMGR utility, commands, and
command syntax.

In addition to writing messages to the ACMS$MGMT_LOG file, the Remote Manager writes
messages to SYS$OUTPUT if it cannot access the log file. You can have all messages written to SYS
$OUTPUT by invoking the startup procedure with the LOG_TO_SYSOUT parameter, as follows:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP LOG_TO_SYSOUT

The ACMS$MGMT_STARTUP procedure redirects SYS$OUTPUT for the Remote Manager to a file
called ACMS$MGMT_SERVER.OUT in the SYS$ERRORLOG directory.

42

Chapter 4. Managing the Remote Manager

4.3.2. Remote Manager Shutdown
The Remote Manager is stopped using the ACMSMGR STOP MANAGER command, which has the
following syntax:

ACMSMGR STOP MANAGER /NODE=node-name

The /NODE qualifier can be omitted if the ACMS$MGMT_SERVER_NODE logical is defined. If
the /NODE qualifier is provided, it overrides the ACMS$MGMT_SERVER_NODE logical.

The Remote Manager can be stopped independently of the ACMS run-time system. Stopping the
Remote Manager has no effect on the running ACMS system. Note, however, that simply stopping the
Remote Manager does not stop any active data collections. Data collections can be stopped only by
using ACMSMGR commands, or from an SNMP management console that has access to the Remote
Manager.

Note also that prior to issuing this command, the user must either have logged in to the Remote
Manager, or the user must have a valid proxy (and proxy access must have been enabled). Regardless
of how access is gained, the user must hold the ACMS$MGMT_OPER rights identifier on the node
the Remote Manager is running in order to stop it. See Section 4.4 for a description of how to log in to
the Remote Manager.

The ACMSMGR STOP MANAGER command executes asynchronously of the actual shutdown. That
is, the command will complete (control will return to the user) before the shutdown has completed.

If the Remote Manager fails to shut down, it can be stopped by using the DCL command STOP/ID,
which has the following syntax:

STOP/ID=pid

Determine the PID of the Remote Manager using the DCL command SHOW SYSTEM, and then look
for the process named ACMS$MGMT_SVR.

4.4. Logging In to the Remote Manager
The Remote Manager requires that each client is authenticated and that each access attempt is
authorized.

4.4.1. Authentication
Authentication can be performed in one of two ways: either through an explicit login (using a valid
OpenVMS user name and password) or through a valid ACMS proxy account.

The exception to this rule is SNMP access, which is controlled by the presence of the ACMS$SNMP
account in the local rights database. Authentication for external entities that communicate with the
Remote Manager through the SNMP protocol is allowed only when a valid OpenVMS account exists
for the user ACMS$SNMP. If this account exists and is not disusered, the user is considered to be
an authentic user. Authorization for SNMP users is treated the same as for any other user — by
OpenVMS rights identifier. See Section 4.4.2 for more information about authorization.

All access for an interface can be disabled by disabling the interface itself, either through the
ACMSCFG utility prior to management startup, or through the ACMSMGR utility after Remote
Manager startup.

43

Chapter 4. Managing the Remote Manager

The total number of users that can be simultaneously logged in to the Remote Manager (regardless of
authentication mechanism) is controlled by the Remote Manager parameter MAX_LOGINS, which
can be modified by the Remote Manager. (This parameter is not the same as the MAX_LOGINS
ACMS system parameter in ACMSGEN.) When the number of users currently logged in is equal to
the value of this parameter, new logins are rejected until some users have logged out, or until their
credentials have expired. You can set the initial value of MAX_LOGINS with the ACMSCFG utility.
You can change the value of MAX_LOGINS dynamically (but nondurably) with the ACMSMGR
utility.

Attempts to log in to the Remote Manager are recorded in the Remote Manager log file if the
security_audit_level parameter is set for informational level logging (any odd value, up to and
including F). By default, informational messages are not logged. See Section 4.7.1 for more
information.

Use the SHOW USER command of the ACMSMGR utility to display a list of users currently logged
in to the Remote Manager. (Note: You must be authenticated in order to issue this command.)

$ ACMSMGR SHOW USER

4.4.1.1. Logging In
Login is performed using the ACMSMGR LOGIN command, which has the following syntax:

ACMSMGR LOGIN /USER=user-name /PASSWORD=password /NODE=node-name

The /USER qualifier can be omitted if the ACMS$MGMT_USER logical is defined. If the qualifier
is provided, it overrides the ACMS$MGMT_USER logical. If neither the logical nor the qualifier is
present, the ACMSMGR utility prompts the user for the user name.

If the /PASSWORD qualifier is not present, the ACMSMGR utility prompts the user for the password.
There is no logical name for the password.

The /NODE qualifier can be omitted if the ACMS$MGMT_SERVER_NODE logical is defined. If it
is provided, it overrides the ACMS$MGMT_SERVER_NODE logical. If neither the qualifier nor the
logical name is provided, no login is attempted.

For each node to which a user logs in, a credentials file is created, either in the current directory
or in the directory pointed to by the logical name ACMS$MGMT_CREDS_DIR. The credentials
file contains encrypted security information (password is not stored in the file) and can be used by
subsequent executions of the ACMSMGR utility. Credentials are specific to the process that created
them and cannot be used by other processes. Prior to creating a new credentials file, any old credential
files for the process are deleted.

Once a user has logged in to the Remote Manager, the user's credentials are valid for the duration of
the credentials lifetime period, as specified by the parameter LOGIN_CREDS_LIFETIME. You can
set the initial value of LOGIN_CREDS_LIFETIME with the ACMSCFG utility. You can change the
value of LOGIN_CREDS_LIFETIME dynamically (but nondurably) with the ACMSMGR utility.

Once a user's credentials have expired, the user must log in to the server again.

4.4.1.2. Proxy Accounts
Proxy access to the management server is supported if the logical name ACMS
$MGMT_ALLOW_PROXY_ACCESS is defined on the Remote Manager node. The valid values for
this logical name are: 1, T, t, Y, y, TRUE, and true. If the name is defined to be any other value or if
the logical name is not defined, proxy access is disabled.

44

Chapter 4. Managing the Remote Manager

When proxy access is allowed, users do not need to explicitly log in to the Remote Manager with a
user name and password, and no credentials file is created. See Section 4.4.1.1 for a description of
how to log in with user name and password.

In order for a user to be granted proxy access, there must be an entry in the ACMSPROXY.DAT
for the combination of node and user attempting access. See VSI ACMS for OpenVMS Managing
Applications for more information. The first time a user attempts to access a management function
without having first logged in using user name and password, the Remote Manager looks for a valid
ACMS proxy. If one is found, the OpenVMS account specified by the proxy is used for authorization.

The Remote Manager maintains a cache of users who have been logged in by proxy.
Records remain in the cache for the duration of the proxy credentials' lifetime, as
specified by the PROXY_CREDS_LIFETIME parameter. You can set the initial value of
PROXY_CREDS_LIFETIME with the ACMSCFG utility. You can change the value of
PROXY_CREDS_LIFETIME dynamically (but nondurably) with the ACMSMGR utility. Proxy
credentials are automatically refreshed when they expire.

4.4.2. Authorization
Authorization consists of ensuring that the user attempting access holds the appropriate rights
identifier on the node they are attempting to access. There are three levels of access, each with its own
identifier, as shown in Table 4.1.

Table 4.1. Node Access Types and Rights Identifiers

Access Type Rights Identifier
Operate ACMS$MGMT_OPER
Read ACMS$MGMT_READ
Write ACMS$MGMT_WRITE

4.4.2.1. Read Access
Read access allows users to perform the following functions:

• Log in

• Log out

• Issue SHOW commands

4.4.2.2. Write Access
Write access allows users to issue the following commands:

• ADD

• DELETE

• SET

4.4.2.3. Operate Access
Operate access allows users to issue the following commands:

45

Chapter 4. Managing the Remote Manager

• REPLACE

• RESET

• START

• STOP

4.5. Starting and Stopping Interfaces
You can control which interfaces are started or stopped by using either the ACMSCFG utility prior
to Remote Manager startup or the ACMSMGR utility after Remote Manager startup. The Remote
Manager supports two interfaces:

• RPC

The RPC interface is used by the ACMSMGR utility, and also by any user-written programs based
on the MGMT API. Most users will enable the RPC interface.

• SNMP

The SNMP interface is used by third-party system management packages to access ACMS
management information. If no SNMP enabled packages are being used, this interface can safely
be disabled.

Either the RPC or SNMP interface should always be enabled. If both are disabled, there is no way to
communicate with the Remote Manager.

For a more complete discussion of the available interfaces and their attributes, see Section 9.7.

4.5.1. Using ACMSCFG to Enable or Disable Interfaces
Use the ACMSCFG utility to configure which interfaces should be enabled or disabled when the
Remote Manager starts up. Either the SNMP or RPC interface should always be enabled. If both are
disabled, there is no way to communicate with the Remote Manager.

Use the ACMSCFG SET INTERFACE command to enable or disable an interface. This command has
the following syntax:

ACMSCFG SET INTERFACE /INTERFACE=interface-name /STATE=state

In this format:

• interface-name is one of the supported interfaces (SNMP or RPC).

• state is one of the following states: ENABLED or DISABLED.

Use the ACMSCFG SHOW INTERFACE command to determine the state of an interface in the
configuration file:

$ ACMSCFG SHOW INTERFACE

4.5.2. Using ACMSMGR to Start or Stop Interfaces
Use the ACMSMGR utility to dynamically enable or disable an interface after the Remote Manager
has already been started. As noted previously, at least one of either the SNMP or RPC interfaces

46

Chapter 4. Managing the Remote Manager

should always be enabled. If both are disabled, there is no way to communicate with the Remote
Manager (for example, to shut it down or to enable an interface). Changes made with the ACMSMGR
interface are not stored in the ACMSCFG file and are lost when the Remote Manager is stopped. Use
the ACMSCFG utility to save changes to the ACMSCFG file.

An interface cannot disable itself. Since the ACMSMGR utility uses the RPC interface, it cannot be
used to disable the RPC interface. To disable the RPC interface, either use the ACMSCFG utility and
restart the Remote Manager, or use the SNMP interface.

Use the ACMSMGR SET INTERFACE command to disable the SNMP interface. The command has
the following syntax:

ACMSMGR SET INTERFACE /INTERFACE=interface-name /STATE=state

In this format:

• interface-name must be SNMP.

• state is one of the following states: ENABLED or DISABLED.

Use the ACMSMGR SHOW INTERFACE command to determine the state of an interface:

$ ACMSMGR SHOW INTERFACE

4.6. Modifying Management Parameters
There are a large number of parameters that affect the internal processing of the ACMS Remote
Manager. In general, most of these parameters will not need to be changed. However, you may need to
alter some of these parameters in order to make the ACMS Remote Manager operate more efficiently
or to meet your computing needs. You can modify these parameters using both the ACMSCFG and
the ACMSMGR utilities.

For a more complete discussion of the available management parameters and their functions, see
Section 9.9.

4.6.1. Using ACMSCFG to Modify Management
Parameters
Use the ACMSCFG utility to set the values of management parameters when the Remote Manager
starts up.

Use the ACMSCFG SET PARAMETER command to modify the value of a parameter. The command
has the following syntax:

ACMSCFG SET PARAMETER /parameter-name=value

In this format:

• parameter-name is one of the management parameters listed in Section 9.9.

• value is the new value for the parameter.

Use the ACMSCFG SHOW PARAMETER command to determine the current value of the parameter
in the configuration file:

47

Chapter 4. Managing the Remote Manager

$ ACMSCFG SHOW PARAMETER

4.6.2. Using ACMSMGR to Modify Management
Parameters
Use the ACMSMGR utility to dynamically modify a management parameter after the Remote
Manager has already been started. Not all parameters can be modified dynamically. Also, changes
made with the ACMSMGR interface are not stored in the ACMSCFG file and are lost when the
Remote Manager is stopped.

Use the ACMSMGR SET PARAMETER command to modify the value of a parameter. The
command has the following syntax:

ACMSMGR SET PARAMETER /parameter-name=value

In this format:

• parameter-name is one of the dynamic management parameters listed in Section 9.9.

• value is the new value for the parameter.

Use the ACMSMGR SHOW PARAMETER command to determine the current value of the parameter
in the configuration file:

$ ACMSMGR SHOW PARAMETER

4.7. Managing Log Files
The ACMS Remote Manager maintains an audit log of internally generated messages. The log
is stored in a location determined by the logical name ACMS$MGMT_LOG. If the logical is not
defined, the default location is in the default directory for the account under which the Remote
Manager process runs.

Depending on the tracing levels specified, the size of this file will vary. It is strongly suggested that
ACMS system managers monitor this file to ensure that it does not grow too large.

If the Remote Manager is unable to write to the audit log, it prints a message to file SYS
$ERRORLOG:ACMS$MGMT_SERVER.OUT and terminates. This can occur if logical name ACMS
$MGMT_LOG is incorrectly defined, if the output device is full, or if the Remote Manager does not
have sufficient privilege to write to the file.

4.7.1. Setting Audit Levels
Facilities within the Remote Manager write audit log messages based on the parameter settings, as
shown in Table 4.2.

Table 4.2. Audit Level Parameters

Parameter Function
DCL_AUDIT_LEVEL Controls auditing for the DCL subprocess (used

internally to modify the ACMS run-time system).
MGR_AUDIT_LEVEL Controls auditing for the main Remote Manager

process.

48

Chapter 4. Managing the Remote Manager

Parameter Function
MSG_PROC_AUDIT_LEVEL Controls auditing for the message processing

thread (used internally to handle communications
from ACMS processes).

PROC_MON_AUDIT_LEVEL Controls auditing for the process monitor.
RPC_AUDIT_LEVEL Controls auditing for the RPC interface.
SECURITY_AUDIT_LEVEL Controls auditing for security access

(authorization and authentication).
SNMP_AUDIT_LEVEL Controls auditing for the SNMP interface.
TIMER_AUDIT_LEVEL Controls auditing for the timer thread.

The value of each parameter determines what level of information is stored in the Remote Manager
audit log. Table 4.3 shows the four levels of auditing and the integer value for each.

Table 4.3. Auditing Levels and Their Values

Auditing Level Integer Value
Informational 1
Warning 2
Error 4
Fatal 8

Auditing values can be combined by logically ORing the integer values in order to have multiple
levels of auditing in effect for a given facility. Table 4.4 shows the valid auditing values.

Table 4.4. Auditing Level Combinations and Their Values

Auditing Level Value
None 0
Info 1
Warn 2
Info, Warn 3
Error 4
Info, Error 5
Warn, Error 6
Info, Warn, Error 7
Fatal 8
Info, Fatal 9
Warn, Fatal A
Info, Warn, Fatal B
Error, Fatal C
Info, Error, Fatal D
Warn, Error, Fatal E
All F

49

Chapter 4. Managing the Remote Manager

Parameter settings are stored in the ACMSCFG file and can also be modified dynamically using the
ACMSMGR utility. For example, in order to specify that all messages and events generated by the
security routines should be stored in the audit log, use the following command:

$ ACMSCFG SET PARAMETER/SECURITY_AUDIT_LEVEL=F

Alternatively, to dynamically modify an auditing level, use the following ACMSMGR utility
command:

$ ACMSMGR SET PARAMETER/SECURITY_AUDIT_LEVEL=F

4.7.2. Displaying Audit Messages
Use the SHOW LOG command in the ACMSMGR utility to display Remote Manager audit
messages. This command accepts a number of qualifiers, including a qualifier that identifies the
node from which to get audit messages (/NODE) and a qualifier that specifies the beginning time of
messages to display (/SINCE).

The following example shows how to display audit messages from the node SPARKS:

$ ACMSMGR SHOW LOG/NODE=SPARKS

You can display audit messages from a node other than the current node only if the Remote Manager
is running on the target node. If the Remote Manager is not running on the target node, you must first
log in to the target node, and then issue the SHOW LOG command using the /LOCAL qualifier.

The following example shows how to display audit messages on the current node when the Remote
Manager process is not running:

$ ACMSMGR SHOW LOG/LOCAL

For a complete description of the ACMSMGR commands and qualifiers, see Chapter 11.

4.7.3. Resetting the Audit Log
Use the ACMSMGR RESET LOG command to close the current audit log file and open a new
version. You may want to reset the log if it has grown too large.

The following example shows how to reset the log on node SPARKS:

$ ACMSMGR RESET LOG/NODE=SPARKS

50

Chapter 5. Using the Remote Manager
to Manage ACMS
5.1. Managing Data Collection
Data collection is the mechanism by which ACMS run-time data is made available to the ACMS
Remote Manager and, consequently, to other processes. Data collections do not involve disk or
network read or write operations. All data collection is performed in memory on the local node.

ACMS systems managers control what data is collected by manipulating entries in the Collection
table. In the Collection table, the data to be collected is specified by a combination of entity, class, and
name.

• Entity refers to an ACMS run-time process type, such as ACC, EXC, or CP.

• Class refers to the class of data to be collected (see Section 5.1.1).

• Name refers to a process or application name that uniquely identifies a particular ACMS run-time
process.

Using the combination of entity, class, and name gives ACMS system managers a great deal of
flexibility in configuring the data to be collected.

Data collection can be managed either statically, through the ACMSCFG file, or dynamically, using
one of the supported interfaces. For example, the ACMSMGR SET COLLECTION command
can be used to dynamically enable or disable data collection on a local or remote node. Similarly,
SNMP management tools can issue SNMP SET commands to dynamically modify entries in
the Collection table. Users can also write their own programs and use the remote procedure call
ACMSMGMT_SET_COLLECTION_1 (see Chapter 8) to dynamically manage data collection.

In general, management information is not collected unless an ACMS system manager has
specifically enabled it. The exceptions are identification and configuration information. By default,
these two classes of data are enabled for all ACMS entities. Having these classes enabled by default is
an optimization that imposes little run-time overhead and ensures that process startup information is
available. VSI recommends that you leave these classes enabled.

Data collection for other entities and classes is not enabled by default. When the ACMS system is
started, the ACMS processes read either the configuration file (if the Remote Manager is not already
running) or the Collection table to determine which classes of data to collect. Thereafter, external
processes use the SNMP or RPC management interfaces to enable or disable data collection for a
given entity, class, and name.

For each entity and class for which collection is enabled, a table of data values is populated by the
appropriate ACMS processes (determined by name) and can be accessed by external entities using one
of the data access interfaces (SNMP or RPC).

ACMS entities that collect data do so continuously when collection has been enabled for that entity/
class/name combination. With the exception of event notifications (generated as the result of ACMS
process startup or shutdown), and POOL information (which is updated based on timer intervals),
collection data is modified when it changes.

51

Chapter 5. Using the Remote Manager to Manage ACMS

5.1.1. Entities, Classes, Names, and Collections
ACMS system managers control data collection by modifying entries in the Collection table. The
Collection table is keyed to entity, class, and name.

An entity is an ACMS run-time process or object. The valid ACMS entities are:

• ACC

• CP

• EXC

• QTI

• SERVER

• TASK GROUP

• TSC

• * or ALL

• * (all)

The wildcard value `*' is valid, and specifies all entities. When specifying an entity, you are
specifying the type of process that it is. The asterisk (*) wildcard value is valid and specifies all
entities. When specifying an entity, you are specifying its process type. The asterisk (*) wildcard
value is valid and specifies all entities. When specifying an entity, you are specifying its process type.

A class is a set of run-time data values that entities set. Referring to data by class is a convenient
method of referring to a set of related data values. However, the actual values contained in a class are
entity specific. The following are valid classes:

• Configuration

This class is a set of values that can be changed for the process and that controls some
fundamental aspects of the execution. Configuration values are entity specific. An example of a
Configuration class value for ACC is the maximum number of applications that may be running.
An example value for a Server is the maximum number of instances.

• Identification

This class is a set of values that do not change for the process as long as it is running and that help
identify the process. Examples of Identification class values are process name, PID, and version.

• Pool

This class is a set of values related to the current or historical MSS or workspace pool processing
for the process. MSS pool values are the same for all entities except ACC. An example of a Pool
class value for ACC is the current free amount in the MSS shared pool. An example value for
other processes is the current free amount in the MSS process pool.

• Run-time

52

Chapter 5. Using the Remote Manager to Manage ACMS

This class is a set of values that reflect either current or historical run-time processing for the
process. Run-time values are also entity specific. An example of a Runtime class value for ACC is
current number of applications. An example value for an EXC is the current number of executing
tasks.

• *

The asterisk is a wildcard value that specifies all classes.

A name specifies one or more specific processes of an entity type. The name field is entity specific.
An example name for EXCs is the application name. An example name for CPs is process name. The
wildcard value `*' is also supported, and for CPs is process name. The asterisk (*) wildcard value is
also supported and matches all names.

Entity, class, and name are used in combination to determine which processes will collect which
values. Duplicate rows (that is, rows with the same entity, class, and name) are not allowed, but it is
possible to have overlapping entries in the Collection table if the wildcard value `* is used. Consider
the example in table if the asterisk wildcard value is used. Consider the example in Table 5.1.

Table 5.1. Example 1: Collection with Wildcards

Name Entity Class
* ACC *
* ACC Runtime

In this example, the entries overlap but are not duplicates. This is allowed because the attributes of
each collection may be different. But users should be cautious when using the wildcard to avoid
redundant processing.

When more than one row applies, the most specific row will be used, based on the column precedence
of name, then entity, and then class. Within a particular column, wildcards are the least specific. In
Table 5.1, both rows are equivalent in name and entity, but the second row is more specific in class.
In this case, the values from the first row will be used for all classes except the Runtime class. The
values from the second row will be used for the Runtime class.

Consider the example in Table 5.2.

Table 5.2. Example 2: Collection with Wildcards

Name Entity Class Collection State
* * Runtime Enabled
* EXC Runtime Disabled
VR_APPL EXC Runtime Enabled

In this example, the first row enables run-time data collection for all entities. The second row disables
it for all EXCs. The third row enables it for the VR_APPL. As a result, among applications, only the
VR_APPL will collect run-time data.

As an aide to identifying which row is the most specific and therefore will apply to a given process,
the ACMSMGR command SHOW COLLECTIONS includes a column that represents the weight of a
given row. A row with higher weight overrides a row with lower weight when they apply to the same

53

Chapter 5. Using the Remote Manager to Manage ACMS

class and process. Consider the following example, which is the same as the example in Table 5.2 but
includes the weights (in the column labelled "Wt") of each row.

SPARKS> ACMSMGR SHOW COLLECTION
ACMS Remote Management -- Command line utility

ACMS V4.4-0 Entity/Collection Table Display Time: 19-APR-2001
 11:46:36.49

 Node Wt Entity Collect Collect
 Storage Storage
 Type Entity Name Class State Storage Location
 State Interval
 ------------ -- ------ -------------- ------- -------- ------------------
 -------- --------
 SPARKS 2 * * runtime enabled acms$mgmt_snapshot
 enabled 3600
 SPARKS 4 exc * runtime disabled acms$mgmt_snapshot
 disabled 10
 SPARKS 8 exc VR_APPL runtime enabled acms$mgmt_snapshot
 disabled 10

In this example, the last row has the highest weight, and will override the other two rows for the
RUNTIME class for the VR_APPL.

5.1.2. Starting and Stopping Collections
Users start and stop data collections by modifying the data collection state field in the Collection
table. The Collection table is accessed through either the ACMSCFG utility prior to management
startup, or through the ACMSMGR utility after Remote Manager startup.

By default, the ACMSCFG file includes entries to enable collection for the Identification and
Configuration classes for all processes. Unless specific action has been taken to disable these
collections, identification and configuration information is always available for all running processes.

Before a collection can be modified, it must be added to the entity collection table. By default, if
the collection state is not specified when a collection is added, the collection state is DISABLED.
Otherwise, the collection state is whatever was specified.

When the data collection state is set to ENABLED, the Remote Manager sends messages to the
appropriate ACMS processes (based on the entity and name fields in the Collection table row) to
begin collection for the class. When the data collection state is set to DISABLED, a similar message
is sent to stop collection for the class. Once collection has started, it continues until the data collection
state is set to DISABLED.

The requesting user must have ACMS$MGMT_WRITE privilege in order to start or stop a collection.

5.1.2.1. Using ACMSCFG to Start or Stop Collections
Use the ACMSCFG utility to set the state for a collection when the Remote Manager starts up. Some
ACMSCFG commands are described here; for details on all ACMSCFG commands, see Chapter 10.

Use the ACMSCFG ADD COLLECTION command to create a new collection record. The command
has the following syntax:

ACMSCFG ADD COLLECTION /ENTITY=entity /CLASS=class /NAME=name /
COLL_STATE=state

54

Chapter 5. Using the Remote Manager to Manage ACMS

Use the ACMSCFG SET COLLECTION command to modify the state of an existing collection
record in the configuration file. The command has the following syntax:

ACMSCFG SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /
COLL_STATE=state

Use the ACMSCFG DELETE COLLECTION command to delete a collection. The command has the
following syntax:

ACMSCFG DELETE COLLECTION /ENTITY=entity /CLASS=class /NAME=name

Deleting a collection can cause the Remote Manager to disable the class for a process because
collections are disabled by default. The collection state for a process becomes disabled when no
collections remain to specifically enable the class.

Use the ACMSCFG SHOW COLLECTION command to determine which collections already exist
and their collection states. The command has the following syntax:

ACMSCFG SHOW COLLECTION

Note

You cannot use the ACMSCFG utility to add, delete, or modify Collection and Identification class
records.

5.1.2.2. Using ACMSMGR to Start or Stop Collections
Use the ACMSMGR utility to dynamically modify the state of a collection after the Remote Manager
has already been started. Note that changes made with the ACMSMGR interface are not automatically
stored in the ACMSCFG file and are lost when the Remote Manager is stopped.

Use the ACMSMGR ADD COLLECTION command to create a new collection record. The command
has the following syntax:

ACMSMGR ADD COLLECTION /ENTITY=entity /CLASS=class /NAME=name /
COLL_STATE=state

Use the ACMSMGR SET COLLECTION command to modify the state of an existing collection. The
command has the following syntax:

ACMSMGR SET COLLECTION /ENTITY=entity /CLASS=class /NAME=name /
COLL_STATE=state

Use the ACMSMGR DELETE COLLECTION command to delete a collection. The command has the
following syntax:

ACMSMGR DELETE COLLECTION /ENTITY=entity /CLASS=class /NAME=name

Deleting a collection can cause the Remote Manager to disable the class for a process because
collections are disabled by default. The collection state for a process becomes disabled when no
collections remain to specifically enable the class.

Use the ACMSMGR SHOW COLLECTION command to determine which collections already exist
and their collection states. The command has the following syntax:

ACMSMGR SHOW COLLECTION

55

Chapter 5. Using the Remote Manager to Manage ACMS

5.1.2.3. Using SNMP to Start or Stop Collections
Use the SNMP interface to dynamically modify the state of a collection after the Remote Manager
has already been started. Note that changes made with the SNMP interface are not stored in the
ACMSCFG file and are lost when the remote Remote Manager is stopped.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An SNMP console
issues an SNMP SET command to the Remote Manager to modify the Collection table.

The SNMP OID (object ID) for the collection state columns are listed in in the file MIB_OID.LIS in
ACMS$RM_EXAMPLES. The data type for the field is INTEGER. Possible settings for this field
have the following meanings:

• 0 = Collection is disabled.

• 1 = Collection is enabled.

• 9 = Collection record is deleted.

You cannot add a collection record using the SNMP interface.

5.2. Displaying Collected Data
Management data can be displayed using either the ACMSMGR utility or one of the programming
interfaces (SNMP or ONC RPC). Data is displayed by entity and, optionally, by class.

5.2.1. Using ACMSMGR to Display Collected Data
Use the ACMSMGR SHOW command to display collected data. See Chapter 11 for a description of
each command.

The following ACMSMGR command displays ACC data:

$ ACMSMGR SHOW ACC /NODE=SPARKS /ID

The following example shows output from this command:

ACMS Remote Management Option -- Command line utility
ACMS V4.4-0 ACC Table Display Time: 19-APR-2001
 11:59:09.56

 ID
 Node Class PID Process Name Start Time
 User Name Version
 ------------ -------- -------- --------------- -----------------------
 ------------ ------------
 sparks enabled 2020C8BB ACMS01ACC001000 18-APR-2001 14:44:47.29
 SYSTEM V4.4-0

5.3. Managing ACMS Using the Remote
Manager
The ACMS Remote Manager provides the ability to modify the running ACMS system using either
the SNMP or the RPC interface. In general, only Configuration class variables can be modified at run

56

Chapter 5. Using the Remote Manager to Manage ACMS

time. However, not all Configuration class variables can be modified. Chapter 9 lists all Configuration
class variables by entity and indicates which ones can be modified.

5.3.1. Types of Variables
Many Configuration class variables can have the following two forms:

• Stored variable (see Section 5.3.1.1)

• Active variable (see Section 5.3.1.2)

The programming interfaces expose stored and active values as separate variables.

5.3.1.1. Stored Variables

Stored variables are maintained by the ACMS run-time system on disk, either in the ACMSGEN file
or as part of an ADB or TDB file. For example, mss_maxobj is a run-time variable that is stored in the
ACMSGEN file. The auditing state for a particular application is a run-time variable that is stored in
the application database (ADB).

As you might expect, the ACMS Remote Manager allows ACMSGEN stored values to be modified,
but it does not allow modifications to values that are stored in application executables.

Changes to stored values are durable but not dynamic. That is, if the stored value of a variable is
modified, the value survives the restart of the ACMS run-time system. However, changes to stored
values do not take effect immediately. Some or all of the ACMS run-time system needs to be restarted
before the new value takes effect.

For example, to change the value of the mss_net_retry_timer parameter in the ACMSGEN file using
ACMSMGR, use the following command:

$ ACMSMGR SET ACC/MSS_NET_RETRY_TIMER=50/STORED

To change the value in ACMSGEN file using the RPC interface, set the mss_net_retry_timer_stored
field in the acc_config_rec using the ACMSMGMT_SET_ACC procedure. To change the same value
using an SNMP console, set the acc_mss_net_retry_timer_stored field in the ACC Table.

Note that none of these changes would effect the running system. To effect the running system, you
must change the active value (see Section 5.3.1.2.)

5.3.1.2. Active Variables

Active variables are maintained in memory by the ACMS run-time system. All Configuration class
variables are active because they have an in-memory value. Although the ACMS Remote Manager
allows most active values to be modified, not all changes to active values are dynamic. Refer to
Chapter 9 to determine whether a particular active value is dynamic. Changes to nondynamic active
variables are essentially useless.

Changes to active values are never durable; that is, they never survive a restart of the system.

For example, to change the active value of the mss_net_retry_timer using ACMSMGR, use the
following command:

$ ACMSMGR SET ACC/MSS_NET_RETRY_TIMER=50/ACTIVE

57

Chapter 5. Using the Remote Manager to Manage ACMS

To change the value using the RPC interface, set the mss_net_retry_timer_active field in the
acc_config_rec using the ACMSMGMT_SET_ACC procedure. To change the same value using an
SNMP console, set the acc_mss_net_retry_timer_active field in the ACC table.

Note that none of these changes would survive a system restart. To change a value and have it survive
a system restart, you have to change the stored value (see Section 5.3.1.1.)

5.3.2. How the Remote Manager Makes Changes
The ACMS Remote Manager applies changes to the ACMS run-time system either by using the
ACMSGEN parameter file and utility, or through the ACMSOPER utility. In either case, the ACMS
Remote Manager server applies updates to the running system by creating temporary command
procedures that are executed by a spawned DCL subprocess (process name ACMS$MGMT_DCL).

The temporary command procedures are written to and read from the directory pointed to by the
logical name ACMS$MGMT_TEMP. If this logical is not defined when the Remote Manager starts, it
will define the logical to point to SYS$MANAGER.

Temporary command procedures are given names unique to the procedure instance that creates them,
but the names are not unique across nodes. These names are deleted after they have been executed.

If the Remote Manager server does not have access to the directory pointed to by ACMS
$MGMT_TEMP, all update attempts fail. However, the definition of the logical can be changed
without restarting the Remote Manager. Changing the definition at run time should be done
cautiously. One or more updates could fail if the logical is changed in the middle of an update
operation.

If the ACMSMGR or RPC interface is used, any errors that occur during the system update are
returned to the user and are written to the Remote Manager log file. Depending on the current setting
of the dcl_audit_level parameter, some messages may not be written to the log.

User accounts (including proxy accounts and the ACMS$SNMP account, if SNMP is being used)
must be granted the ACMS$MGMT_WRITE or ACMS$MGMT_OPERATE rights identifier in order
to modify Configuration class values. See Section 4.4.2 for a list of functions and the rights identifier
required for each.

5.3.3. Using ACMSMGR to Modify the ACMS Run-Time
System
The ACMSMGR utility can be used to dynamically modify Configuration class parameters for ACMS
run-time entities. More than one value can be modified at once, on one or more nodes. The command
executes synchronously; that is, it does not complete until an attempt has been made to update all
parameters. Multiple node updates are processed serially; all updates are performed on one node
before any updates are attempted on subsequent nodes.

Use the ACMSMGR SET command to modify a Configuration class variable. The syntax of the
command is as follows:

ACMSMGR SET entity [/parameter=value,...]

For example, the following command disables ACMS auditing on the node specified by ACC:

$ ACMSMGR SET ACC /AUDIT_STATE=DISABLED

58

Chapter 5. Using the Remote Manager to Manage ACMS

Two qualifiers are provided to control whether the active (/ACTIVE) or stored (/STORED) value of
the variable is to be modified. The default is /STORED. Both qualifiers can be specified in a single
command to update both values. For example, the following command modifies both the active and
stored values of the ACC Configuration class variable node_name:

$ ACMSMGR SET ACC/NODE_NAME=SPARKS/ACTIVE/STORED

If a specified qualifier does not apply (for example, /ACTIVE is specified for a nondynamic variable),
the qualifier is ignored.

For a complete list of Configuration class variables, see Chapter 9.

The ACMSMGR START and STOP commands can be used to dynamically start and stop the
following processes:

• ACC (starts or stops the entire ACMS run-time system)

• EXC

• MANAGER (Remote Manager; stop only)

• QTI

• TRACE_MONITOR

• TSC (starts or stops the TSC and any CPs)

In addition, ACMS procedure servers can be replaced (stopped and restarted) using the ACMSMGR
REPLACE command.

Different qualifiers are available for each command and process.

For more information about ACMSMGR commands, refer to Chapter 11.

5.3.4. Using SNMP to Modify the ACMS Run-Time
System
The SNMP interface can be used to dynamically modify Configuration class parameters for ACMS
run-time entities. Updates to Configuration class parameters are synchronous; the SNMP command
does not complete until an attempt has been made to update the parameter.

The SNMP interface responds to SNMP commands issued by SNMP consoles. An SNMP console
issues an SNMP SET command to the Remote Manager to modify Configuration class parameters.

There are both active and stored values for many of the Configuration class variables. In the ACMS
MIB, each value is given a separate variable (OID).

Because the SNMP protocol offers only GET and SET commands, the SNMP interface handles
the following operations differently from the RPC interface in order to perform the full range of
management activities:

• Starting and stopping processes (see Section 5.3.4.1)

• Adding and deleting table rows (Section 5.3.4.2)

59

Chapter 5. Using the Remote Manager to Manage ACMS

• Replacing servers (Section 5.3.4.3)

Not all operations that can be performed by the RPC interface can be performed by the SNMP
interface. The following sections indicate which operations are not available in the SNMP interface.

5.3.4.1. Starting and Stopping Processes Using SNMP
To start or stop the following ACMS processes, issue an SNMP SET command on the Configuration
class variable acms_state, and specify the state as either 1 (to start the process) or 0 (to stop the
process).

• ACC

• QTI

• TSC

You cannot start or stop CP processes.

To start an ACMS application, issue an SNMP SET command on the exc-appl-name field in the
excTable, specifying a row that is not currently in use and that is less than the value of the acc-max-
appl-active field in the accTable.

To stop an ACMS application, issue an SNMP SET command on the exc-acms-state field, specifying
a value of 0.

You cannot start or stop application procedure servers or task groups.

5.3.4.2. Adding and Deleting Rows Using SNMP
Currently, no tables allow rows to be added using SNMP.

The Collection and Trap tables allow rows to be deleted using SNMP.

• To delete rows from the Collection table, set the collection-state field to 9. (A value of 1 enables
the collection; a value of 0 disables the collection; a value of 9 deletes the collection.)

• To delete rows from the Trap table, set the trap-delete field to 1. This is the only value allowed for
this field.

5.3.4.3. Replacing Application Procedure Servers Using SNMP
To replace an ACMS application procedure server, issue an SNMP SET command on the ser-replace-
flag field in the Server table, specifying a nonzero value.

5.3.5. Using ONC RPC to Modify the ACMS Run-Time
System
The RPC interface can be used to dynamically modify Configuration class parameters for ACMS run-
time entities. Configuration class parameter updates are synchronous; the RPC command does not
complete until an attempt has been made to update the parameter.

There are both active and stored values for many of the Configuration class variables. In the
ACMSMGMT_RPC.X IDL file, each value is given a separate variable.

60

Chapter 5. Using the Remote Manager to Manage ACMS

Separate RPC commands for each entity type are provided for modifying Configuration class
variables. In addition, RPC commands are provided to perform start, stop, add, delete, replace, and
reset functions. Chapter 8 provides details about all of the RPC commands.

61

Chapter 5. Using the Remote Manager to Manage ACMS

62

Chapter 6. Management Programming
Using ONC RPC
Programmers who want to access and maintain the ACMS Remote Manager from their own programs
can use the following two interfaces:

• Simple Network Management Protocol (SNMP)

The SNMP interface is provided for integration with enterprise management packages such as
PATROL ® from BMC ® and Tivoli from IBM ®. For more information, see Chapter 7.

• Open Network Computing (ONC) Remote Procedure Call (RPC)

The ONC RPC interface is for system managers and system programmers who want to write
custom tools and applications that access the ACMS Remote Manager.

This chapter describes the ONC RPC interface. Programmers who are familiar with the C
programming language and RPC mechanisms can use this information when coding and building
their own client programs. For a more complete discussion of ONC RPC programming, see Power
Programming with RPC by John Bloomer, published by O'Reilly & Associates, Inc., Sebastopol, CA.

6.1. ONC RPC Overview
ONC RPC is a widely used and supported remote procedure call (RPC) mechanism. Similar to
other RPC mechanisms, the ONC RPC protocol supports a request/response model, in which client
applications make requests of servers and receive responses. Clients typically make synchronous
calls to remote servers over a network. The RPC mechanism hides the network operations from the
programmer, making each remote procedure call appear to be a local function invocation.

Unlike the SNMP interface, which connects to the ACMS Remote Manager using the SNMP master
agent, access through ONC RPC is directly to the ACMS Remote Manager.

Figure 6.1 provides a graphical overview of the ONC RPC interface.

Figure 6.1. ONC RPC Interface Overview

Programming for ONC RPC is based on interface definitions coded in Interface Definition Language
(IDL). Functions and their arguments are described in IDL source files, which are precompiled using
an IDL compiler. The outputs from the IDL compiler are a set of C source and header files that are
then compiled and linked with client and server programs to form run-time executables. (For Remote
Manger client development, server stub files are not needed and can be discarded.)

Figure 6.2 provides a graphical overview of programming for ONC RPC.

63

Chapter 6. Management Programming Using ONC RPC

Figure 6.2. ONC RPC Programming Overview

The IDL that describes the procedures supported by the ACMS Remote Manager is provided with the
ACMS Remote Manager installation and provides the basis for ACMS management programming.
Users write their own client programs, calling the functions described in the ACMS Remote Manager
IDL file (ACMSMGMT_RPC.X). They precompile the IDL file with the precompiler provided by
their TCP/IP package, and then compile and link their client programs. No compilation or linking is
required for the Remote Manager; it contains all the support required by ONC RPC client programs.

The ACMS Remote Manager provides several types of procedures that are callable through the
ONC RPC interface. These procedures provide read and write access to each table maintained by the
Remote Manager, as well as command routines (such as start and stop). Table 6.1 summarizes the
types of procedures available.

Table 6.1. Procedures for Accessing Remote Manager Functions

Procedure Type Table or Object Description
Add Collection, Trap Allows entries to be added to

configuration tables.
Delete Collection, Trap Allows entries to be removed

from configuration tables.
Get ACC, MGR_STATUS, PARAM,

QTI, TSC
Returns all columns in the table.

List Collection, CP, EXC, Interfaces,
Log, Process, Trap, Server, Task
Group, Users

Returns a linked list of records
based on selection criteria. All
columns in the table are returned
with each row.

Replace Server Allows an application server to
be replaced.

Reset Log Allows the current version of
the Remote Manager log to be
closed and a new version to be
opened.

Set ACC, CP, Collection, EXC,
Interfaces, Trap, Param, QTI,
SERVER, TSC

Allows modifications to the
table. For configuration tables,
set functions allow rows to be
added to tables. (Entity rows can
only be added by starting the
appropriate process.)

64

Chapter 6. Management Programming Using ONC RPC

Procedure Type Table or Object Description
Start ACC, TSC, QTI, EXC, Trace

Monitor
Allows ACMS processes to be
started.

Stop Manager, ACC, TSC, QTI,
EXC, Trace Monitor

Allows ACMS processes to be
stopped.

The procedure names and arguments for each procedure type are similar — all get calls have similar
names and arguments; set calls have similar names and arguments, and so on.

The sections that follow describe in more detail how to write programs that access these functions.

6.2. API Overview
Remote management client programs follow a typical programming model that involves the following
phases:

• Initialization

During the initialization phase, client programs establish connections with the Remote Managers
they will be calling. As part of this phase, the programs select a security mode (explicit or
implicit). Once this phase is complete, the Remote Managers have been verified to be available,
and the client authentication has been verified. This phase involves using a combination of ONC
RPC function calls and an ACMS Remote Manager function call (if explicit authentication is
being used).

• Processing

During the processing phase, client programs make procedure calls to the Remote Managers.
During this phase, clients obtain or modify management information. This phase involves the use
of the functions defined in the ACMS$RM_EXAMPLES:ACMSMGMT_RPC.X IDL file.

• Termination

During the termination phase, clients halt execution. There is no API support or programming
requirement for this phase.

6.3. Initialization and Security
In order to perform initialization, ACMS remote client programs must first determine the type of
authentication (explicit or implicit) they will use. The type of authentication determines whether or
not the client program must obtain credentials.

The Remote Manager performs authentication either explicitly, using a valid OpenVMS account
name and password, or implicitly, using ACMS proxies. Implicit authentication is allowed only if it
has been enabled on the Remote Manager node, and does not require the use of credentials. Explicit
authentication requires the use of credentials and also requires that the client process execute a
separate login using the ACMSMGR utility.

See Section 4.4 for a discussion of the various security modes and how to log in using ACMSMGR.

Once the authentication mode has been determined, remote management clients perform the following
tasks:

65

Chapter 6. Management Programming Using ONC RPC

• Establish an RPC connection with the Remote Manager on the target node.

The clnt_create function call establishes RPC client connections.

• Establish the security context and, optionally, populate it with credentials information.

The security context is established by calling the authunix_create_default function. As a result
of this call, client process-identity information is passed to the server on each procedure call. The
Remote Manager uses this information to authorize the user for each function.

The default security context is not sufficient if explicit authentication is being used. Clients that
need to support explicit authentication call the acms$mgmt_get_credentials function to obtain
a client ID, which was previously issued for the client process by executing a login through the
ACMSMGR utility. This client ID is used on subsequent RPC calls.

Note

In order for credentials information to be created, the client process must first execute the login
command of the ACMSMGR utility. The only way to create credentials files is by using the
ACMSMGR utility.

6.3.1. Initialization Example
The following example code shows a client program that establishes an RPC connection with the
Remote Manager, establishes the security context, and then populates it with credentials information if
a logical name (ACMS$MGMT_USER) has been defined.

#include <rpc/rpc.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;
char sname[] = "sparks";
char *username_p, username[13] = "";
int client_id;
int status;

int acms$mgmt_get_creds();

int main ()
{

 /* if the logical is defined, credential information will be used */
 username_p = getenv("ACMS$MGMT_USER");
 if (username_p)
 strcpy(username,username_p);

 /* establish an rpc connection to the server */
 cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");

 /* if the connection was established */
 if (cl != NULL) {

 /* create a security context */
 cl->cl_auth = authunix_create_default();

66

Chapter 6. Management Programming Using ONC RPC

 client_id = 0;

 /* optionally, get credentials for this user & server */
 if (strlen(username))
 status = acms$mgmt_get_creds(sname,username,&client_id);

 }

return(1);
}

6.4. Get Procedures
Get procedures are available for all ACMS Remote Manager tables. Get procedures return all columns
from a single table row.

As Table 6.2 shows, a separate get procedure is available for each entity and table.

Input arguments to get procedures are client_id. See Chapter 8 for details about each call.

Table 6.2. Get Procedures

Procedure Description
acmsmgmt_get_acc_1 No keys; only 1 ACC per node.
acmsmgmt_get_mgr_status_1 No keys; only one row in the Manager Status

table.
acmsmgmt_get_param_1 No keys; only one row in the Parameter table.
acmsmgmt_get_qti_1 No keys; only 1 QTI per node.
acmsmgmt_get_tsc_1 No keys; only 1 TSC per node.

6.4.1. Get Example
The following example code shows how a client program calls the acmsmgmt_get_param_1
procedure and displays the current value of a parameter.

int get_param_data(int client_id,CLIENT *cl)
 {
 int x = 0;
 int y = 0;

 param_rec2 *params;
 param_rec_out2 *param_rec;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 param_rec = acmsmgmt_get_param_2(&sub_rec,cl);

 if (!param_rec) {
 printf("\n RPC Call to get Parameter data failed");
 return(MGMT_FAIL);
 }

67

Chapter 6. Management Programming Using ONC RPC

 if (param_rec->status != MGMT_SUCCESS) {
 printf("\n Call to get Parameter data failed, returning status code
 %d",
 param_rec->status);
 status = param_rec->status;
 xdr_free(xdr_param_rec_out2, param_rec);
 free(param_rec);
 return(status);
 }

 params = ¶m_rec->param_rec_out2_u.data;

 printf("\n Maximum logins allowed is %d",params->max_logins);
 xdr_free(xdr_param_rec_out2, param_rec);
 free(param_rec);
 return(0);
}

6.5. List Procedures
List procedures operate on all rows in a table. Procedures are available for each entity and each
configuration table with more than one row. There are no list procedures for the following tables,
since they contain only one row:

• ACC table

• TSC table

• QTI table

• Parameter table

As Table 6.3 shows, separate list procedures are provided for the remainder of the management
information and configuration tables. Input to a list procedure is a selection criteria record, which
varies depending on the table being accessed. Some key values in the selection criteria records will
support wildcards (*, %). support wildcards (*, %).

Table 6.3. List Procedures

Procedure Description
acmsmgmt_list_collections_1 Key value is table index.
acmsmgmt_list_cp_1 No keys.
acmsmgmt_list_exc_1 Key value is application name or table index.
acmsmgmt_list_interfaces_1 No keys.
acmsmgmt_list_log_1 No keys; selection criteria is before_time,

since_time, file_name, facility, severity.
acmsmgmt_list_proc_1 No keys.
acmsmgmt_list_server_1 Key value is application name, server name, or

table index.
acmsmgmt_list_tg_1 Key value is application name, task group name,

or table index.

68

Chapter 6. Management Programming Using ONC RPC

Procedure Description
acmsmgmt_list_trap_1 No keys.
acmsmgmt_list_users_1 No keys.

For all list procedures, only entire rows (that is, all columns in the row) are returned. Data is
returned in a linked list. The number of nodes in the list is determined by the systemwide parameter
table field max_rpc_return_recs. When the number of rows to be returned exceeds the value of
max_rpc_return_recs, the caller must reissue the call, providing the appropriate key values to fetch
the next set of rows. The call returns status MGMT_NO_MORE_ROWS if there are no more rows
available. Procedures with no keys return all rows in the table on the first call, regardless of the value
of the max_rpc_return_recs field.

6.5.1. Linked List Example
Data from list calls is returned in a linked list. The example in this section uses the
acmsmgmt_list_log_1 procedure to illustrate how linked list processing works.

The call to the acmsmgmt_list_log_1 procedure requires the following input structure:

struct log_sel_struct {
 int client_id;
 string before_time<TIME_SIZE_A>;
 string since_time<TIME_SIZE_A>;
 string file_name<STORAGE_LOC_SIZE>;
 int dup_count;
 int facility;
 int severity;
 };

In the code example that follows, the lines of code beginning with log_rec initialize the fields in this
structure as follows:

• Client_id is set to 0 to select proxy authentication.

• Before_time is set to a NULL string to specify no end date for viewing log entries. Note that you
cannot provide a NULL pointer.

• Since_time is set to the 1st of January 1998. Log entries from this date and later will be viewed.

• File_name is set to an empty string, which causes the active log file to be used.

• Dup_count is set to -1. This field is used to uniquely identify log records with identical times.

• Facility is set to -1, which causes entries for all facilities to be returned.

• Severity is set to -1, which causes entries of all severity levels to be returned.

The following example code shows the initialization of the client and the call to the
acmsmgmt_list_log_1 procedure:

 static struct log_sel_struct log_rec; log_data_list *log; log_link
 *nl; char null_time_str[24] = ""; char first_of_jan[24] = "01-
JAN-1998 00:00:00.00"; char file_spec[] = "ACMS$MGMT_LOG"; char sname[]
 = "sparks"; int skip_rec = 0; /* Initialize client connection; if that

69

Chapter 6. Management Programming Using ONC RPC

 fails, exit*/ cl = clnt_create(sname, ACMS_MGMT_RPC, ACMS_MGMT_VERSION,
 "tcp"); if (!cl) return(FAIL); /* Create a default security context */
 cl->cl_auth = authunix_create_default(); /* So far so good. Initialize
 log selection data */ log_rec.client_id = 0; log_rec.before_time =
 null_time_str; log_rec.since_time = first_of_jan; log_rec.file_name =
 file_spec; #include
<rpc/rpc.h> #include
<stdio.h> #include string #include "acmsmgmt_rpc.h" CLIENT *cl;
 int main () { int skip_rec = 0; char null_time_str[24] = ""; char
 first_of_jan[24] = "01-JAN-1998 00:00:00.00"; char file_spec[] =
 ""; /* use default, i.e. active log file */ char sname[] = "sparks";
 char time_cache[MGMT_S_TIME_A+1]; top: /* Now make RPC */ log =
 acmsmgmt_list_log(log_rec,cl);

static struct log_sel_struct log_rec; log_data_list *log; log_link *nl; /* Initialize client connection;
if that fails, exit*/ cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION,
"tcp"); if (!cl) return(MGMT_FAIL); /* Create a default security context */ cl->cl_auth =
authunix_create_default(); /* So far so good. Initialize log selection data */ log_rec.client_id = 0;
log_rec.before_time = null_time_str; log_rec.since_time = first_of_jan; log_rec.file_name = file_spec;
log_rec.dup_count = -1; log_rec.facility = -1; /* don't match on facility */ log_rec.severity = -1; /*
don't match on severity */ top: /* Now make RPC */ log = acmsmgmt_list_log_1(&log_rec,cl);

The return value from the calls to all list procedures (including acmsmgmt_list_log_1) is a pointer
to a union. If the pointer returned is NULL, the call has failed. RPC error checking must be used
to determine the cause of the error. If a valid pointer has been returned, it will point to a structure
containing a union with the following structure:

#include <rpc/rpc.h>
#include <stdio.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;

int main ()
{

int skip_rec = 0;

char null_time_str[24] = "";
char first_of_jan[24] = "01-JAN-1998 00:00:00.00";
char file_spec[] = ""; /* use default, i.e. active log file */
char time_cache[MGMT_S_TIME_A+1];
static struct log_sel_struct log_rec;
log_data_list *log;
log_link *nl;

/* Initialize client connection; if that fails, exit*/

cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");
if (!cl)
 return(MGMT_FAIL);

/* Create a default security context */

cl->cl_auth = authunix_create_default();

70

Chapter 6. Management Programming Using ONC RPC

/* So far so good. Initialize log selection data */

log_rec.client_id = 0;
log_rec.before_time = null_time_str;
log_rec.since_time = first_of_jan;
log_rec.file_name = file_spec;
log_rec.dup_count = -1;
log_rec.facility = -1; /* don't match on facility */
log_rec.severity = -1; /* don't match on severity */

top:
/* Now make RPC */
log = acmsmgmt_list_log_1(&log_rec,cl);

The status field determines which structure is being returned. If the status is equal to MGMT_FAIL,
the rc field is returned. The rc field contains a status code indicating the reason for failure.

If the status field is not equal to MGMT_FAIL, a pointer to a linked list has been returned.

The log_list field is defined as a pointer to linked list node, as follows:

typedef struct log_link *log_list;

The linked list node has the following structure:

struct log_link {
 logging_rec log_data;
 log_list pNext;
};

In this structure, log_data is of type logging_rec, which is a record structure containing the log data.
The pNext field is a pointer to the next node in the linked list (which is of type log_link).

Figure 6.3 illustrates the return structure and how the linked list is constructed.

Figure 6.3. Linked List: Return Structure and Construction

The following example code shows how to check whether the call completed successfully, and how to
traverse the linked list to display the data:

/* if a NULL pointer was returned, the RPC failed */
if (!log)
 return(MGMT_FAIL);

/* if bad status was returned, something failed in our call.

71

Chapter 6. Management Programming Using ONC RPC

 log->log_data_list_u.rc contains the status */
if (log->status == MGMT_FAIL)
 return(log->log_data_list_u.rc);

/* while more data in the list, display the data */
for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {
 if (skip_rec)
 skip_rec = 0;
 else
 printf("\n %-12s\t%-s",sname,nl->log_data.log_msg);

 /* save last time received to use as next time to read forward from
 */
 memcpy(&time_cache[0],nl->log_data.log_msg,23);
 log_rec.dup_count = nl->log_data.dup_count;
 log_rec.since_time = time_cache;

}
if (log->status == MGMT_NOMORE_DATA)
 printf("\n *** End of data **");
else {
 skip_rec = 1;
 goto top;
}

return(1);
}

In this example, the returned pointer is checked for whether data has been returned (log is not NULL).
Then the status code is checked for whether the call completed successfully.

If the call completed successfully, the code drops into a FOR loop and starts printing the data. For
this particular call, the client prints all the records the very first time the RPC is called; on subsequent
calls, the first record is a duplicate of the last one from the previous call and is not printed.

After printing a record, the key data is saved to be used again on a subsequent call. Remember that
only max_rpc_return_recs is returned in each call to the acmsmgmt_list_log_data_1 procedure. There
may be more log records than can be sent at once. It is the responsibility of the client to initialize the
call properly to get the next set of records.

Once all the returned records have been returned, the code will call the acmsmgmt_list_log_data_1
procedure again if the status code from the call was not MGMT_NOMORE_DATA. In this way, all
the records are retrieved.

6.6. Set Procedures
Set procedures are available for many of the ACMS Remote Manager tables. Set procedures allow
you to modify ACMS entity and Remote Manager configuration information. As Table 6.4 shows, a
separate set procedure is available for each entity and table.

Table 6.4. Set Procedures

Procedure Description
acmsmgmt_set_acc_1 No keys; only 1 ACC per node.
acmsmgmt_set_coll_1 Key value is entity, ID, and class.

72

Chapter 6. Management Programming Using ONC RPC

Procedure Description
acmsmgmt_set_exc_1 Key value is application name.
acmsmgmt_set_interface_1 Key value is interface name.
acmsmgmt_set_param_1 No keys; only one row in the parameter table.
acmsmgmt_set_qti_1 No keys; only 1 QTI per node.
acmsmgmt_set_server_1 Key value is application name and server name.
acmsmgmt_set_trap_1 Key value is entity, ID, and parameter.
acmsmgmt_set_tsc_1 No keys; only 1 TSC per node.

For Entity tables, set procedures allow fields to be modified for a particular entry. A unique key value
must be provided to identify the particular table row to be updated for tables with more than one row.
Only configuration class fields can be modified in entity tables.

For the Trap and Collection tables, add and delete procedures (described in Section 6.7 and
Section 6.8) are available along with set procedures. Each procedure requires a unique key value.

For all tables, some or all fields in a row can be modified in a single call. The Remote Manager
scans the input record for uninitialized fields (that is, fields that are not set to the default value of
-1); if a field contains an initialized value, the Remote Manager attempts to apply the update. The
corresponding field in the return record is updated with the completion status of the update. Updates
are applied serially, but the Remote Manager attempts to update all initialized fields regardless of the
outcome of any individual update. The exception to this processing is if an internal error occurs, in
which case processing is aborted.

All calls are synchronous.

See Chapter 8 for details about each call.

6.6.1. Set Example
The following example code shows how a client program calls the acmsmgmt_set_param_1 procedure
to change the values of the proc_mon_interval and mss_coll_interval parameters.

This example assumes client initialization has been performed as described in Section 6.3.

int set_param_data(int client_id,CLIENT *cl)
 {
 int x = 0;
 int y = 0;

 static param_config_rec2 set_struct;
 param_status_rec2 *ret_struct;
 static int *status;

 /* initialize input argument; values < 0 are not processed
 by the server */
 memset(&set_struct,-1,sizeof(set_struct));

 /* establish the client id */
 set_struct.client_id = client_id;
 set_struct.params.proc_mon_interval = 60;
 set_struct.params.mss_coll_interval = 60;

73

Chapter 6. Management Programming Using ONC RPC

 ret_struct = acmsmgmt_set_param_2(&set_struct,cl);

 if (!ret_struct) {
 printf("\nCall to modify parameters failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to modify parameters failed, returning %d",
 ret_struct->status);
 status=ret_struct->status;
 xdr_free(xdr_param_status_rec2, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 if (ret_struct->param_status_rec_u.data.proc_mon_interval !=
 MGMT_SUCCESS)
 printf("\n Call to modify proc_mon_interval failed");
 if (ret_struct->param_status_rec_u.data.mss_coll_interval !=
 MGMT_SUCCESS)
 printf("\n Call to modify mss_coll_interval failed");
 xdr_free(xdr_param_status_rec2, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }
 else
 printf("\n Call to update parameters successful");
 xdr_free(xdr_param_status_rec2, ret_struct);
 free(ret_struct);
 return(0);
}

In this example, note that the input argument (set_struct) is initialized to negative values prior to
the call. The Remote Manager will attempt to apply updates for any positive values found; negative
values are ignored.

Following the call to the update routine, the return record pointer is tested to ensure that it is not
NULL (that is, that the call completed). Then individual return codes are tested to determine the status
of the updates. The first status check (ret_rec->status) determines the overall call status. For instance,
security violations will be recorded in this field. If that status field contains a failure code, no updates
were attempted. If that status field contains MGMT_SUCCESS, updates were attempted for the two
fields. The subsequent status checks in the return record determine the outcome of those updates.

6.7. Delete Procedures
Delete procedures are available for the Collection and Trap tables. Delete procedures allow you
to remove rows from the corresponding table. As Table 6.5 shows, a separate delete procedure is
available for each of these tables.

The delete procedures require an input record with key data to be passed by the caller. A simple status
code is returned indicating the success or failure of the operation.

All calls are synchronous.

74

Chapter 6. Management Programming Using ONC RPC

See Chapter 8 for details about each call.

Table 6.5. Delete Procedures

Procedure Description
acmsmgmt_delete_collection_1 Key value is entity, ID, and class.
acmsmgmt_delete_trap_1 Key value is entity, ID, and parameter.

6.7.1. Delete Example
The following example code shows how a client program calls the acmsmgmt_delete_collection_1
procedure to remove a collection row.

This example assumes that client initialization has been performed as described in Section 6.3.

int del_coll_data(int client_id,CLIENT *cl)
 {

 static int *status;
 static coll_del_rec set_struct;
 static char ent_name[MGMT_S_ENTITY_NAME];

 set_struct.client_id = client_id;
 set_struct.entity_type = MGMT_ACC;
 strcpy(ent_name,"*");
 set_struct.entity_name = ent_name;
 set_struct.collection_class = MGMT_CLASS_ALL;

 status = acmsmgmt_delete_collection_1(&set_struct,cl);

 if (!status) {
 printf("\n Call to delete collection failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\nCall to delete collection failed with status
 %d",*status);
 return(MGMT_FAIL);
 }
 else
 printf("\nCall to delete collection was executed");
 free(status)
 return(0);
}

In this example, the input record is prepared with key information, and then the call to delete the
row is performed. Following the call to the delete routine, the value pointed by status is checked for
success or failure. In either event, a message is printed out indicating the completion status of the call.

6.8. Add Procedures
Add procedures are available for the Collection and Trap tables. Add procedures provide the ability to
add rows to the corresponding table. As shown in Table 6.6, a separate add procedure is available for
each of these tables.

75

Chapter 6. Management Programming Using ONC RPC

The add procedures require an input record with an entire table row, including unique key data to
be passed by the caller. The Remote Manager validates the input fields before adding the record,
including checking for duplicate keys. A record is returned with an overall status code indicating the
success or failure of the operation, and with individual status codes for each field indicating which
fields are invalid.

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6.6. Add Procedures

Procedure Description
acmsmgmt_add_collection_1 Key value is entity, ID, and class.
acmsmgmt_add_trap_1 Key value is entity, ID, and parameter.

6.8.1. Add Example
The following example code shows how a client program calls the acmsmgmt_add_collection_1
procedure to add a collection row.

This example assumes client initialization has been performed as described in Section 6.3.

int add_collection_data(int client_id,CLIENT *cl)
 {
 static char c_name_all[2] = "*";
 static coll_config_rec_2 set_struct;
 struct coll_status_rec_2 *status_rec;

 set_struct.client_id = client_id;
 set_struct.coll.entity_type = MGMT_ACC;
 set_struct.coll.entity_name = c_name_all;
 set_struct.coll.collection_class = MGMT_CLASS_ALL;
 set_struct.coll.collection_state = MGMT_STATE_ENABLED;

 status_rec = acmsmgmt_add_collection_2(&set_struct,cl);

 if (!status_rec) {
 printf("\n Call to add collection record failed");
 return(MGMT_FAIL);
 }

 if (status_rec->status == MGMT_WARN) {
 printf("\nThe following fields are invalid: ");
 if (status_rec->coll_status_rec_2_u.data_warn.entity_type ==
 MGMT_FAIL)
 printf("\n entity_type");
 if (status_rec->coll_status_rec_2_u.data_warn.collection_class
 == MGMT_FAIL)
 printf("\n collection_class");
 if (status_rec->coll_status_rec_2_u.data_warn.collection_state
 == MGMT_FAIL)
 printf("\n coll_state");
 return(0);
 }
 else if (status_rec->status != MGMT_SUCCESS) {

76

Chapter 6. Management Programming Using ONC RPC

 printf("\nCall to add collection failed with status",
 status_rec->coll_status_rec_2_u.rc);
 xdr_free(xdr_coll_status_rec_2,status_rec);
 free(status_rec);
 return(0);
 }
 else
 printf("\nCall to add collection was executed");
 xdr_free(xdr_coll_status_rec_2,status_rec);
 free(status_rec);
 return(1);
}

In this example, the input record is prepared with key and data values, and then the call to add the row
is performed.

Following the call to the add routine, the return record pointer is tested to ensure that it is not NULL
(that is, that the call completed). Then the overall status code (status_rec->status) is checked to
determine whether the add was performed.

A status value of MGMT_WARN indicates that some fields were in error, so individual return codes
are tested to determine which fields were invalid.

A status value other than MGMT_WARN or MGMT_SUCCESS means a general error occurred. A
value of MGMT_SUCCESS means the record was added.

6.9. Start, Stop, and Replace Procedures
These three types of procedures are similar in the way they are called and in the data that is returned
to them, even though they do very different operations. Start and stop procedures are used to start or
stop various ACMS processes; the replace procedure is used to replace a running procedure server in
an application.

An exception is the call to the acmsmgmt_stop_1 procedure, which requests the Remote Manager to
shut down. For more information about the acmsmgmt_stop_1 procedure, see Chapter 8.

For the rest of the start, stop, and replace procedures, an input record, which contains key data or
startup or shutdown qualifier flags, is provided by the caller; the return data contains a status code and
a linked list of status messages. Status messages are generated by ACMSOPER and are returned in
their entirety. (Linked-list processing is illustrated in Section 6.5.1.)

All calls are synchronous.

See Chapter 8 for details about each call.

Table 6.7. Start, Stop, and Replace Procedures

Procedure Description
acmsmgmt_replace_server_1 Key is application name and server name.
acmsmgmt_start_acc_1 No keys; specify auditing, QTI, and terminal

disposition.
acmsmgmt_start_exc_1 Key is application name; no startup qualifiers.
acmsmgmt_start_qti_1 No keys or qualifiers.
acmsmgmt_start_tsc_1 No keys or qualifiers.

77

Chapter 6. Management Programming Using ONC RPC

Procedure Description
acmsmgmt_stop_acc_1 No keys; specify cancel disposition.
acmsmgmt_stop_exc_1 Key is application name; specify cancel

disposition.
acmsmgmt_stop_qti_1 No keys or qualifiers.
acmsmgmt_stop_tsc_1 No keys or qualifiers.

6.9.1. Start Example
The following example code shows how a client program calls the acmsmgmt_start_acc_1 procedure
to start ACMS on a remote node. In this example, the QTI and TSC are started along with the system,
and system auditing is enabled.

This example assumes client initialization has been performed as described in Section 6.3.

int start_acc(int client_id,CLIENT *cl)
 {
 dcl_link *nl;
 static acc_startup_rec start_struct;
 static cmd_output_rec *ret_struct;

 start_struct.client_id = client_id;
 start_struct.audit_sw = 1;
 start_struct.qti_sw = 1;
 start_struct.terminals_sw = 1;

 ret_struct = acmsmgmt_start_acc_1(&start_struct,cl);

 if (!ret_struct) {
 printf ("\n Call to start ACMS system failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to start ACMS system failed with status %d",
 ret_struct->status);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
 }

 printf("\n Call to start ACMS system completed with warnings or
 errors");

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }
 else {

78

Chapter 6. Management Programming Using ONC RPC

 printf("\nCall to start ACMS system was executed");
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In this example, the input record is prepared with qualifier data, and then the call to start the system is
performed. Auditing is enabled, and QTI and TSC will be started with the system.

The return value from the calls to the start, stop (except acmsmgmt_stop_1), and replace procedures
is a pointer to a union. If the pointer returned is NULL, the call has failed. RPC error checking must
be used to determine the cause of the error. If a valid pointer is returned, it points to a structure
containing a union with the following structure:

union cmd_output_rec switch (int status) {
 case MGMT_WARN:
 cmd_rec data_warn;
 case MGMT_SUCCESS:
 cmd_rec data;
 case MGMT_FAIL:
 int rc;
 default:
 void;
 };

The status field determines which structure is being returned. If the status is equal to MGMT_FAIL,
the rc field is returned. The rc field contains a status code indicating the reason for failure.

If the status field is not equal to MGMT_WARN or MGMT_SUCCESS, a pointer to a linked list has
been returned. The linked list contains a text field and a forward pointer. By following the forward
pointers, all the records in the list can be retrieved. Section 6.5.1 illustrates how to follow the linked
list.

In either case, the example code prints out the contents of all the strings in the linked list. These
strings are status messages returned by ACMSOPER.

79

Chapter 6. Management Programming Using ONC RPC

80

Chapter 7. Management Programming
Using SNMP
Programmers who want to access and maintain the ACMS Remote Manager from their own programs
can use the following two interfaces:

• Open Network Computing (ONC) Remote Procedure Call (RPC)

The ONC RPC interface is for system managers and system programmers who want to write
custom tools and applications that access the ACMS Remote Manager. For more information, see
Chapter 6.

• Simple Network Management Protocol (SNMP)

The SNMP interface is provided for integration with enterprise management packages such as
PATROL ® from BMC ® and Tivoli from IBM ®.

This chapter discusses the SNMP interface. Programmers who are familiar with SNMP console
programming can use this information when writing routines that interact with the ACMS Remote
Manager using the SNMP protocol. The information in this chapter is also useful for programmers
who are integrating the ACMS Remote Manager with other enterprise management packages through
the SNMP protocol.

The ACMS Remote Manager implements the management information base (MIB) for SNMP. To
access ACMS MIB information through SNMP, you must have an SNMP-enabled console (such
as PATROL ® from BMC ®) or you can use an SNMP MIB browser such as the one provided by
Compaq TCP/IP Services for OpenVMS, which includes the TCPIP$SNMP_REQUEST.EXE utility.

Alternatively, you can write your own SNMP interface. For more information about programming
SNMP, refer to Windows NT SNMP by James D. Murray, published by O'Reilly & Associates, Inc.,
Sebastopol, CA.

7.1. SNMP Overview
The ACMS Remote Manager implements a MIB for ACMS. When the SNMP interface is enabled,
either during or after Remote Manager process startup, it registers the ACMS subtree with the local
SNMP master agent. SNMP console requests go first to the SNMP master agent (provided by the
installed TCP/IP software, such as Compaq TCP/IP Services for OpenVMS), which in turn delivers
them to the ACMS Remote Manager. Figure 7.1 illustrates the SNMP interface with the ACMS
Remote Manager.

Figure 7.1. SNMP Program Interface with Remote Manager

Communications between the SNMP interface and the master agent use the eSNMP protocol. This
protocol is transparent to SNMP consoles.

81

Chapter 7. Management Programming Using SNMP

The ACMS Remote Manager provides management information to SNMP management platforms
in response to snmp_get and snmp_getnext messages. Management platforms can modify many
management data elements by sending the appropriate snmp_set message. If any traps have been
configured, the ACMS Remote Manager will generate SNMP traps when the Remote Manager detects
a trap condition (for example, when an ACMS process starts or stops).

All Management table fields are available to SNMP management applications through get operations,
but not all fields can be set. In general, the fields that can be set are Configuration class fields (in
ACMS entity tables) and nearly all Manager configuration table fields. See Chapter 9 for a list of all
tables and fields.

7.2. SNMP Security
Security for the SNMP interface is enforced first by the SNMP master agent (not the ACMS MIB).
SNMP supports the concept of communities, which are essentially node inclusion lists. Whoever
installs and configures the SNMP software package (typically the network manager) sets up SNMP
communities. Nodes that are part of the SNMP community to which the subagent belongs can connect
to the master agent; any node that can connect to the master agent can connect and interact with the
subagent. All SNMP communities are allowed any combination of read, write, and trap access. Nodes
that are not part of the community do not have access to the master agent.

Note that communities work at the node level only. It is not possible to restrict the access of individual
user accounts on the node, although it may be possible to restrict access to the SNMP console
software on a per-user basis. Note also that node authentication itself is relatively weak and provides
no safeguards against masquerades or other forms of network deception.

As a second level of security, the ACMS Remote Manager requires that a special OpenVMS account
(ACMS$SNMP) be created for the SNMP interface on nodes on which the Remote Manager runs.
The account must be granted OpenVMS rights for read, write, or operate access (or some combination
of these) to Remote Manager data and functions. This allows ACMS system managers to grant
read access, for instance, through the SNMP interface, but to prevent write or operate access. See
Section 4.4 for a discussion of how to configure Remote Manager authentication and authorization for
the SNMP interface.

7.3. Initializing the SNMP Interface
In order for SNMP consoles to communicate with the ACMS Remote Manager through SNMP, the
Remote Manager SNMP interface must have been started. The SNMP interface runs as a separate
thread in the Remote Manager and can be started or stopped at any time without restarting the Remote
Manager.

The SNMP interface is started using the SET INTERFACE command. The current state of the
interface can be determined using the SHOW INTERFACE command. Refer to Section 4.5 for more
information about using ACMSCFG and ACMSMGR to start and stop interfaces.

During startup, the SNMP interface first performs some housekeeping tasks and then attempts to
register with the SNMP master agent.

In order for the SNMP interface to initialize successfully, the following conditions must be met:

• The ACMS$SNMP account on the Remote Manager node must exist.

• The ACMS$MGMT_READ, ACMS$MGMT_WRITE, and ACMS$MGMT_OPER rights
identifiers must exist. At least one of these identifiers must be granted to the ACMS$SNMP
account.

82

Chapter 7. Management Programming Using SNMP

• The SNMP master agent must be running on the Remote Manager node.

If any of the initialization tasks fail, or if registration fails, the SNMP interface writes error messages
to the Remote Manager log and the thread exits. In this case, users should check the Remote Manager
log for messages, correct the problem, and restart the interface.

During initialization, the Remote Manager establishes a timeout that the master agent will use
when communicating with it. The timeout is based on the value of the Remote Manager parameter
SNMP_AGENT_TIME_OUT.

If initialization is successful, the SNMP interface thread waits for incoming SNMP requests. The
wait times out periodically (based on the Remote Manager parameters SNMP_SEL_TIME_OUT
and SNMP_ARE_YOU_THERE stored in the Parameter table), and checks to make sure the SNMP
master agent is still running by sending an “are you there” message to the master agent. If the master
agent responds, the Remote Manager continues to wait for incoming messages. If the master agent
does not respond, the SNMP interface thread attempts to restart the connection. If the restart fails, the
SNMP thread exits.

7.4. SNMP Tables
The tables in Chapter 9 and the tables defined in the ACMS MIB map to each other on a one-to-one
basis. However, data types are slightly different between SNMP and RPC, most significantly in the
use of the gauge structure type. Section 7.4.1 describes data type mapping.

When accessing any of the ACMS MIB tables, it is important to keep in mind the dynamic nature of
the ACMS run-time system. ACMS entities may be stopped and restarted; collection states for the
entities may change dynamically; new processes (especially EXC and CPs) may be created. It is also
important to understand that the size of some ACMS MIB tables may change when either the ACMS
run-time system is restarted, or even as certain processes are started and stopped.

If the proper access strategies are not used when getting or setting ACMS MIB data, unpredictable
and erroneous results can occur.

Different access strategies must be used for different types of tables. In the ACMS MIB, there are
three types of tables. Specific access strategies for each table type are discussed in separate sections,
as follows:

• Single-row tables (see Section 7.4.2)

• Static tables (see Section 7.4.3)

• Dynamic tables (see Section 7.4.4)

Also refer to Section 7.4.5 for a discussion of how the Server and Task Group tables are indexed.

Regardless of the type of table, identity and state validation should be performed for all ACMS entity
tables (ACC, TSC, CP, QTI, EXC, server, task group).

Identity validation is performed by storing the PID field of the process occupying the row the first
time the row is accessed. Then, when revisiting the table, get the PID along with the data values. Then
check that the PID has not changed. If it has, the data refers to a new process.

Note that the process name is not a good means of identifying a process, because process names can
be reused between entity executions.

Also note PID is not an ID class field for servers and task groups. For these two entity types, the EXC
PID should be used.

83

Chapter 7. Management Programming Using SNMP

State validation is performed by checking the collection state for the class that contains the field. For
instance, if the exc-current-waiting-tasks-num (in the EXC run-time class) is being monitored, ensure
that the exc-rt-coll-state is enabled (equal to 1). Otherwise, the value in that field is no longer being
updated by the EXC, and is no longer accurate.

7.4.1. Data Type Mapping
The ACMS Remote Manager implements three data types:

• Integer

• String

• Gauge

The integer and string data types map directly to the SNMP INTEGER and DisplayString data types.

The gauge data type defined for the Remote Manager is not the same as the SNMP Gauge type. In
order to avoid confusion, the Remote Manager SNMP interface maps the Remote Manager gauge
fields to SNMP INTEGER and DisplayString data types. So for each Remote Manager gauge data
type, three fields are defined in the MIB: the current field value, the maximum (or minimum) field
value, and the maximum (or minimum) field value time.

For example, consider the ACC run-time field current_appls. This is defined as a Remote Manager
gauge data type in Section 9.2. In the MIB, three fields are defined:

acc-current-appls-num INTEGER,
acc-current-appls-max INTEGER,
acc-current-appls-time DisplayString

This is the case for all Remote Manager gauge data types. For Remote Manager min gauge data types,
there is a -min field instead of a -max field. For both gauge data types, time is expressed in the form
DD-MMM-YYYY HH:MM:SS.hh.

7.4.2. Single-Row Tables
Access to single-row tables is straightforward, because only a single row is ever accessed. The
following are single-row tables:

• ACC table

• QTI table

• TSC table

• Parameter table

• Remote Manager table

Bounds checking need not be performed. However, for Entity tables (ACC, QTI, TSC), both identity
and state validation must be performed.

7.4.3. Static Tables
Static tables are sized when the parent process starts and do not change as long as the parent process is
running. For each static table, there is a field in the table of the parent process that indicates the upper
bound of the static table.

84

Chapter 7. Management Programming Using SNMP

Table 7.1 shows the static tables, their parent process, and the field that indicates the upper bound of
the table.

Table 7.1. Static Tables

Table Parent Process Upper Bound (field and table)
CP TSC tsc-cp-slots-active in the TSC

table
EXC ACC acc-max-appl-active in the ACC

table
Server EXC exc-server-types in the EXC

table
Task Group EXC exc-task-groups in the EXC

table
Interfaces Remote Manager rmIfCt in the Remote Manager

table
Collection Remote Manager totl-entity-slots in the Parameter

table

In static tables, table data is not always contiguous and table rows can be reused. The PID field should
be used to establish process identity.

For example, consider the following CP table. Assume that the first CP is permanent, and the second
two are not.

Table Row CP process name CP PID
1 ACMS01CP001000 2040013D
2 ACMS01CP002000 2040013E
3 ACMS01CP003000 2040013F

An SNMP console searching this table sequentially would find all three CP instances; access to table
row 4 would return an error. However, if the users attached to the CP in table row 2 log out, the CP
terminates and the table now looks like this:

Table Row CP process name CP PID
1 ACMS01CP001000 2040013D
2
3 ACMS01CP003000 2040013F

An SNMP console searching this table sequentially and stopping when the first error is returned
would find only the first CP. Access to the second row would return an error. Therefore, when
scanning static tables, it is important to examine all rows of the table before terminating the scan; that
is, perform a loop based on the tsc-cp-slots-active field in the TSC table.

Finally, consider what happens if a new CP now starts. The table would look as follows:

Table Row CP process name CP PID
1 ACMS01CP001000 2040013D
2 ACMS01CP002000 20400140
3 ACMS01CP003000 2040013F

Table row 2 is now valid again, but a different process occupies it. Therefore, any cached information
for table row 2 is invalid and must be refreshed with the data from the new process.

85

Chapter 7. Management Programming Using SNMP

7.4.4. Dynamic Tables
Dynamic tables do not have a fixed upper bound; they grow and shrink as entries are added and
removed. However, data in dynamic tables is always contiguous, so there are never invalid rows
stored between valid rows. When a row becomes invalid because it is empty or unoccupied, it is
removed from the table and the remaining rows are renumbered.

The following are dynamic tables:

• User table

• Log table

• Trap table

To see how a dynamic table changes when a table row is removed, assume that a user table has the
following contents:

Table row User Name Client Id
1 User1 1
2 User2 2
3 User3 3
4 User4 4

If User2 logs out, the contents of the table would change as follows:

Table row User Name Client Id
1 User1 1
2 User3 3
3 User4 4

As with static tables, you must ensure that the table row being accessed has not been reused or
renumbered. Among dynamic tables, only the Trap table allows updates. Note that entries are never
deleted or modified in the Log table; new entries are always appended to the end.

7.4.5. Servers and Task Groups
The Servers and Task Group tables are indexed by a compound index. For both tables, the first key
value is the table row of the owning EXC; the second key value is the Server or Task Group row.
When fetching or setting Server or Task Group rows, you must first determine the EXC (application)
they belong to, and then determine the particular server or task group.

For example, assume the EXC table has a total of four rows. Application Appl1 occupies row 1,
and has two servers (ServerA and ServerB) and one task group (TaskGroupA). Application Appl2
occupies row 3 and has two servers (ServerC and ServerD) and two task groups (TaskGroupB,
TaskGroupC). EXC table rows 2 and 4 are unused. Table 7.2 and Table 7.3 list the contents of each
table.

Table 7.2. EXC Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Row Contents
1 Appl1
2 (unused)
3 Appl2

86

Chapter 7. Management Programming Using SNMP

Row Contents
4 (unused)

Table 7.3. Server Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Key 1 (EXC) Key 2 (Server) Contents
1 1 ServerA
1 2 ServerB
3 1 ServerC
3 2 ServerD

Table 7.4. Task Group Table (OID 1.3.6.1.4.1.36.2.18.48.13)

Key 1 (EXC) Key 2 (Task Group) Contents
1 1 TaskGroupA
3 1 TaskGroupB
3 2 TaskGroupC

In order to access the ser-server-name field for ServerA in application Appl1, the OID would be
1.3.6.1.4.1.36.2.18.48.14.1.3.1.1 To access the same field for ServerD in Appl2, the OID would be
1.3.6.1.4.1.36.2.18.48.14.1.3.3.2.

There is no way to determine to which task group a server belongs. In contrast, you can always
determine from the OID which application a server belongs to because ACMS requires that each
server be given a unique name within the application.

7.5. SNMP GET Operations
SNMP get requests are satisfied at the time they are received by the subagent. Get requests can take
one of three forms: get, get next, and get bulk.

• Get operations are simple requests for single data items.

• Get next requests are iterative requests for logically sequential information.

• Get bulk requests obtain a logical sequence of information in a single request.

The SNMP subagent for ACMS supports only the first operation. SNMP “walks”, if performed, return
unpredictable results.

OID's for ACMS Management tables are documented in Section x.x (THIS SECTION IS TO BE
DETERMINED).

7.6. SNMP SET Operations
SNMP set requests are executed at the time they are received by the subagent and are applied to the
running system. However, not all fields that can be set are dynamic; the actual implementation of
modification may not occur until the affected entities are restarted.

For more discussion about updates that modify the ACMS run-time system, see Section 5.3.

87

Chapter 7. Management Programming Using SNMP

OIDs for ACMS Management tables are documented in the file MIB_OID.LIS available from the
directory ACMS$RM_EXAMPLES. The MIB definition for the ACMS subtree is provided in the
ACMS$RM_EXAMPLES directory in file MGMTMIB.MY.

In order for SNMP set requests to complete successfully, the following conditions must be met:

• The ACMS$SNMP account on the Remote Manager node must be granted the ACMS
$MGMT_WRITE or ACMS$MGMT_OPER identifier, depending on the operation being
performed (see Appendix B).

• The SNMP interface must already be started.

• The ACMS run-time system must already be started (to update ACMS entity information).

General eSNMP return codes for SNMP get requests are returned from the Remote Manager (see
Section 7.10). For details about a specific error, refer to the Remote Manager log.

7.7. Using SNMP to Start and Stop ACMS
Entities
To start and stop ACMS entities (or to stop the Remote Manager), the Remote Manager allows SNMP
users to modify the ID class field running_state. In general, ID class fields are read only. However,
since SNMP does not support a START or STOP command, the SET command must be used.

Modifications to the running_state fields are not performed directly by the Remote Manager. Instead,
the Remote Manager uses ACMSOPER commands to request the shutdown or startup of the ACMS
entity. The ACMS entities update the running_state field when they start or stop.

For instance, to start the ACMS run-time system, an SNMP console program issues an SNMP SET
command for the ACC running_state OID, specifying the value “started”. The Remote Manager
interprets this message as an attempt to start the system and issues the appropriate ACMSOPER
command.

The SNMP set call is synchronous. That is, it does not complete until the ACMS operation has
completed.

Failure messages related to start or stop requests are written to the Remote Manager log.

7.8. SNMP Traps
SNMP traps provide a means of automatically notifying the system support team when a warning or
error condition exists. Users configure SNMP traps in the SNMP trap table; however, note that traps
are not generated unless a corresponding entry exists in the entity/collection table. Refer to the Data
Abstraction for the contents of each of these tables.

At runtime, SNMP traps can be generated either as the result of an error event occurring (i.e. a new
entry being made in the Class 6 table), or if a monitored parameter exceeds (or falls below) a user
defined threshold. The SNMP interface will monitor both sources of data, and will generate traps
accordingly. Note that SNMP traps themselves will result in error records being written, but are not
themselves trappable.

Error events are inspected at the time they are detected by the error collection routines to determine
if a trap should be generated or not. Thresholds are checked on a user defined interval to determine

88

Chapter 7. Management Programming Using SNMP

if a trap should be generated or not. For both sources of traps, a gating factor is used to prevent a
persistent error from flooding the system. After n number of consecutive alarms (where n is the gating
factor), the monitoring interval is continuously doubled, until the error condition does not re-occur.
As a matter of implementation, monitoring of the value is not suspended when the interval is doubled.
Instead, traps are discarded for the duration of the inflated monitoring interval.

It is possible to have SNMP traps generated for the following events: SNMP trap table; when a
matching condition or event occurs, an SNMP trap is generated. SNMP management consoles listen
for SNMP traps and then respond in a console-dependent (and usually user-configurable) manner.

See Section 9.13 for a discussion of the Trap table and the format of trap messages.

At run time, SNMP traps can be generated as the result of either an ACMS process starting
or stopping, or an event that occurred within the Remote Manager (for example, a failure in
communications with ACMS).

ACMS system managers configure traps by modifying the Trap table, either by using the ACMSCFG
utility prior to Remote Manager startup or by using the ACMSMGR utility after the Remote Manager
has been started. Changes made using ACMSCFG do not affect the running system until the Remote
Manager is restarted; changes made using ACMSMGR are not saved when the Remote Manager
stops.

The configuration process is the same with either utility. You use the ADD TRAP command to add
new traps, use the DELETE TRAP command to remove traps, and use the SET TRAP command to
modify traps.

Keep in mind that although you can add, delete, or modify entries in the trap table at almost any time,
traps will not be generated unless the SNMP interface is started. In addition, traps are not queued if
the SNMP interface is disabled.

The combination of entity, name, and parameter uniquely identify a trap in the Trap table. For
each trap, a minimum and a maximum value can be specified, along with a severity. Minimum and
maximum trap values specify thresholds that trigger traps when the associated parameter is either
greater than or less than the threshold. Minimum and maximum trap values are parameter specific.

A special value of -1 is used as a placeholder when creating a trap for which a minimum or maximum
does not apply. In many situations, only the minimum or maximum value setting is meaningful. In this
instance, set the desired field (minimum or maximum) to the threshold value, and set the other to -1.

Two trap parameters are supported:

• EXISTS (see Section 7.8.1)

• EVENT_SEVERITY (see Section 7.8.2)

7.8.1. EXISTS Traps
The trap parameter EXISTS allows traps to be generated based on whether an ACMS process starts or
stops.

Specifying a minimum trap value of 1 for a process specifies, in effect, that a trap should be generated
whenever the process stops — that is, when the process existence is less than 1.

Specifying a maximum value of 0 specifies that a trap should be generated whenever the process starts
— that is, when the processes existence is greater than 0.

89

Chapter 7. Management Programming Using SNMP

A minimum value of 0 or a maximum value of 1, while valid, is basically useless, since the EXISTS
parameter is never greater than 1 or less than 0.

7.8.2. EVENT_SEVERITY Traps
The trap parameter EVENT_SEVERITY allows traps to be generated based on the facility and
severity of events being logged to the Remote Manager log. For example, an EVENT_SEVERITY
trap can be configured for Remote Manager SNMP events with severity higher than WARNING (such
as ERROR or FATAL). Any time a Remote Manager SNMP operation fails with a severity higher than
WARNING, an SNMP trap is generated.

Other facilities that can be monitored are:

• * (all)

• MGR (Remote Manager main process)

• PROCMON (process monitor thread)

• RPC (RPC interface thread)

• SNMP (SNMP interface thread)

• SEC (security routines)

• LOG (event logging thread)

• TIMER (internal timer thread)

• DCL (DCL subprocess management thread)

• MSG_PROC (processes incoming ACMS errors)

• TRAP (trap sender thread)

Use care when you configure traps so that you do not create unnecessary traps. In general, traps
are intended to be used to signal significant events. For instance, specifying a minimum severity of
FATAL or ERROR causes all informational and warning messages to generate traps. This is probably
not a good use of network or console resources.

7.9. SNMP Debug Tracing
In addition to the normal logging the Remote Manager performs, it is possible to enable debug-level
SNMP tracing. This level of tracing is performed by the eSNMP TCP/IP code layer and may not
be available for all TCP/IP products. The Compaq TCP/IP Services for OpenVMS product supports
debug-level SNMP tracing. If you use a third-party TCP/IP product, check with that vendor regarding
support for this option.

Debug-level tracing of the Remote Manager SNMP interface can be valuable for developing SNMP
console applications or for trying to debug a particular SNMP environmental problem. However, it is
relatively resource intensive and should be performed in a controlled environment for short durations.

To enable debug-level SNMP tracing, the Remote Manager must be started with the command line
argument LOG_TO_SYSOUT, as follows:

@sys$startup:acms$mgmt_startup LOG_TO_SYSOUT

90

Chapter 7. Management Programming Using SNMP

The SNMP_AUDIT_LEVEL parameter must be greater than 0. When the SNMP interface is started,
it will enable debug-level tracing in the eSNMP code layer. All output is directed to SYS$OUTPUT
for the Remote Manager process, which is redirected by the startup command procedure to SYS
$ERRRORLOG:ACMS$MGMT_SERVER.OUT.

7.9.1. Starting SNMP Debug Tracing
To start the Remote Manager with debug-level SNMP tracing, run the startup command procedure
SYS$STARTUP:ACMS$MGMT_STARTUP, specifying LOG_TO_SYSOUT as the only parameter
to the command procedure, as follows:

$ @SYS$STARTUP:ACMS$MGMT_STARTUP LOG_TO_SYSOUT

Once the Remote Manager has been started and the SNMP interface has been enabled, make sure that
the SNMP_AUDIT_LEVEL parameter is greater than 0. To do this, use the following ACMSMGR
command:

$ ACMSMGR SET PARAM/SNMP_AUDIT_LEVEL=F

The SNMP debug output is written to SYS$ERRORLOG:ACMS$MGMT_SERVER.OUT, which is
an ASCII file that can be typed or edited.

7.9.2. Stopping SNMP Debug Tracing
To stop debug-level SNMP tracing, either restart the Remote Manager (without the
LOG_TO_SYSOUT parameter), or use the following command to set the SNMP_AUDIT_LEVEL
parameter to 0:

$ ACMSMGR SET PARAM/SNMP_AUDIT_LEVEL=0

7.10. Remote Manager eSNMP Return Codes
Table 7.5 describes the return codes returned by the Remote Manager eSNMP routines.

Table 7.5. Remote Manager eSNMP Routines Return Codes

Return Code Description
ESNMP_MTHD_commitFailed An attempt to apply an update failed. This is also

returned from a start or stop attempt that fails.
Refer to the Remote Manager log for details.

ESNMP_MTHD_genErr An internal error occurred. This could be due to
security violations, a failure updating a particular
field, or an internal processing error. Refer to the
Remote Manager log for details.

ESNMP_MTHD_noCreation The table does not allow new rows to be created.
The OID specified for the set operation indicates
a table row that does not exist, and the table does
not allow new rows to be created.

ESNMP_MTHD_noError The set operation was successful.
ESNMP_MTHD_noSuchInstance A request was made for a variable that does not

exist. Either the OID is invalid, or the particular
table row does not exist (is out of bounds).

91

Chapter 7. Management Programming Using SNMP

Return Code Description
ESNMP_MTHD_noSuchObject The column specified does not exist.
ESNMP_MTHD_notWritable An attempt was made to set a variable that is read

only.
ESNMP_MTHD_resourceUnavailable The table row exists (is within the bounds of the

table) but is currently unused (empty).
ESNMP_MTHD_wrongValue An attempt was made to update a field with an

invalid value.

92

Part II. Reference Information
Part II contains reference information for the ACMS Remote Manager.

93

94

Chapter 8. Management APIs
The Management APIs are intended to be called from Open Network Computing (ONC) Remote
Procedure Call (RPC) clients. ONC RPC Interface Definition Language (IDL) for all procedures is
contained in the file ACMS$RM_EXAMPLES:ACMSMGMT_RPC.X.

Programmers who write client programs are strongly urged to become familiar with the contents of
this file. Many programming questions can be answered by looking at the actual RPC definitions. All
structure definitions, for example, are contained within this file.

Note

The acms$mgmt_get_creds procedure is not included in the ACMSMGMT_RPC.X IDL because
it is not a remote procedure call. It is a statically linked, locally executed function for those clients
performing explicit authentication. The ACMS$MGMT_GET_CREDENTIALS.OBJ object module
is located in the ACMS$RM_EXAMPLES directory.

The acms$mgmt_get_creds procedure is for use by ONC RPC clients only.

8.1. Common RPC Fields
The tables in this section list commonly used fields and their values.

8.1.1. Collection Classes
Table 8.1 shows the symbolic names for Remote Manager collection classes.

Table 8.1. Collection Classes

Symbolic Name Description
MGMT_CLASS_ALL All classes
MGMT_CLASS_CFG Config class
MGMT_CLASS_ID ID class
MGMT_CLASS_POOL Pool class
MGMT_CLASS_RT Runtime class

8.1.2. Interface Types
Table 8.2 shows the symbolic names for Remote Manager interfaces.

Table 8.2. Interface Types

Symbolic Name Description
MGMT_IF_RPC Remote Procedure Call (RPC) interface
MGMT_IF_SNMP Simple Network Management Protocol (SNMP)

interface

8.1.3. Enable States
shows the symbolic names for Remote Manager enable states.

95

Chapter 8. Management APIs

Table 8.3. Enable States

Symbolic Name Description
MGMT_STATE_DISABLED Disabled
MGMT_STATE_ENABLED Enabled

8.1.4. Entity Types
Table 8.4 shows the symbolic names for Remote Manager entity types.

Table 8.4. Entity Types

Symbolic Name Description
MGMT_ACC Application Central Controller (ACC) process
MGMT_ALL All entities
MGMT_CP Command Process (CP) process
MGMT_EXC Application Execution Controller (EXC) process
MGMT_MGR Remote Manager process
MGMT_QTI Queued Task Initiator (QTI) process
MGMT_SER Procedure server types
MGMT_TG Task groups
MGMT_TSC Terminal Subsystem Controller (TSC) process
MGMT_UNSUPPORTED Null value

8.1.5. Facility Types
Table 8.5 shows the symbolic names for Remote Manager facility types.

Table 8.5. Facility Types

Symbolic Name Description
MGMT_FAC_ALL Any facility type.
MGMT_FAC_DCL A thread that manages a spawned DCL process.

The DCL process is used to execute ACMSOPER
commands.

MGMT_FAC_LOG The event log writer thread.
MGMT_FAC_MGR The mainline Remote Manager process.
MGMT_FAC_MSGPROC A thread that handles messages coming in from

ACMS processes.
MGMT_FAC_PROCMON A thread dedicated to monitoring processes.
MGMT_FAC_RPC The RPC interface thread (listener and

procedures).
MGMT_FAC_SEC Security routines in the Remote Manager.
MGMT_FAC_SNMP The SNMP interface thread (message loop and

procedures).

96

Chapter 8. Management APIs

Symbolic Name Description
MGMT_FAC_TIMER A thread that controls timers for the Remote

Manager.
MGMT_FAC_TRAP A thread that sends out SNMP traps.

8.1.6. Running States
Table 8.6 shows the symbolic names for Remote Manager running states.

Table 8.6. Running States

Symbolic Name Description
MGMT_STATE_INITED Process or object has initialized.
MGMT_STATE_INITING Process or object is initializing.
MGMT_STATE_LOAD_DONE Process or object has finished loading.
MGMT_STATE_LOADING Process or object is loading itself.
MGMT_STATE_STARTED Process or object has started and is ready to run.
MGMT_STATE_STARTING Process or object is starting the mainline.
MGMT_STATE_STOPPED Process or object is stopped.

8.1.7. Severity Codes
Table 8.7 shows the symbolic names for Remote Manager severities.

Severities are generally reported as simple severities (informational, warning, error, fatal) but may
be combined by logically ORing the values when used as selection criteria (such as for selecting log
records).

Table 8.7. Severity Codes

Symbolic Name Description
MGMT_SEV_ERR Error
MGMT_SEV_FATAL Fatal
MGMT_SEV_INFO Informational
MGMT_SEV_NONE Null value
MGMT_SEV_WARN Warning

8.1.8. Trap Parameters
The table below shows the symbolic names for Remote Manager trap parameters.

Table 8.8. Trap Parameters

Symbolic Name Description
MGMT_EXISTS Existence traps
MGMT_SEVERITY Remote Manager severity traps

97

Chapter 8. Management APIs

8.2. Thread-Safe and Non-Thread Safe Clients
Each of the procedures documented in this chapter (and those in ACMS$MGMT_EXAMPLES.C) are
designed to use the thread-safe client stub provided with the Remote Manager, as described in the file
ACMS$MGMT_EXAMPLES_BUILD.COM. As a result, each procedure contains one or more "free"
calls that prevent memory leaks in multithreaded client implementations.

If you intend to build a multithreaded client, you must modify any existing, customized API functions
to include these calls, then recompile them along with the thread-safe client stub.

If you want to implement a non-thread safe client using the RPC-generated stub, omit the "free" calls.
See ACMS$MGMT_EXAMPLES_BUILD.COM for detailed build instructions.

8.3. ACMSMGMT_ADD_COLLECTION_2

ACMSMGMT_ADD_COLLECTION_2
ACMSMGMT_ADD_COLLECTION_2 — This procedure adds entries to the Remote Manager
Collection table. Collection table entries can also be modified and deleted.

Format

coll_status_rec_2 *acmsmgmt_add_collection_2(coll_config_rec_2 *set_struct,CLIENT *cl)

Parameters

set struct

Type: Coll_config_rec_2
Access: Read
Mechanism: By reference

Structure that contains the following client identification and Collection
table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being used, a valid

client ID must be provided. If the value for
client_id is 0, proxy access is used. Client_id is
obtained by calling the acms$mgmt_get_creds
procedure.

coll

Usage:

Type: Coll_update_rec_r_2

98

Chapter 8. Management APIs

Access: Read
Mechanism: By value
Usage: Structure containing a Collection table

record. Collection table fields are described
in Section 9.4. See the Description section for
information on how to initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Coll_status_rec_2
Access: write
Mechanism: By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type coll_update_rec_r_2, which
contains status codes for each field. See the Description section for
a discussion of how to determine the update status for any field.
The following are the contents of this union:

status
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Coll_output_rec_r_2
Access: write
Mechanism: By value

Usage:

Usage: Structure containing a Collection
table record. The entries in
this field contain status codes
corresponding to the fields
in the coll structure. See the
Description section for a
discussion of how to determine
the update status for any field.

99

Chapter 8. Management APIs

Description
This procedure adds a row to the Collection table (see Section 9.4).

Additions to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the Collection table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and collection_class. The combination
of these fields must be unique within the collection table for the row to be added. Tables above
contain symbolic values used to populate the entity_type and collection_class fields; entity_name is
specified as a null-terminated string.

ID and Config class rows cannot be added. By default, these classes are always enabled for all ACMS
processes.

The Collection table contains a fixed number of rows, which is determined by the Remote Manager
parameter total_entity_slots. This is a nondynamic parameter and requires a restart of the ACMS
system in order to be changed. The default is 20 rows.

Additions to the Collection table are processed immediately, and may affect more than one ACMS
process.

Example
int add_collection_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[] = "*";
 static coll_config_rec_2 set_struct;
 struct coll_status_rec_2 *status_rec;

 set_struct.client_id = client_id;
 set_struct.coll.entity_type = MGMT_ALL;
 set_struct.coll.entity_name = c_name_all;
 set_struct.coll.collection_class = MGMT_CLASS_RT;
 set_struct.coll.collection_state = MGMT_STATE_DISABLED;

 status_rec = acmsmgmt_add_collection_2(&set_struct,cl);

 if (!status_rec) {
 printf("\n Call to add collection failed");
 return(MGMT_FAIL);
 }

 if (status_rec->status == MGMT_WARN) {
 printf("\nThe following updates failed: ");
 if (status_rec->coll_status_rec_2_u.data_warn.entity_type ==
 MGMT_FAIL)
 printf("\n entity type invalid");
 if (status_rec->coll_status_rec_2_u.data_warn.collection_state
 == MGMT_FAIL)
 printf("\n coll_state invalid");
 if (status_rec->coll_status_rec_2_u.data_warn.storage_state ==
 MGMT_FAIL)
 printf("\n storage_state invalid");
 if (status_rec->coll_status_rec_2_u.data_warn.storage_interval
 == MGMT_FAIL)

100

Chapter 8. Management APIs

 printf("\n storage_interval invalid");
 }
 else if (status_rec->status != MGMT_SUCCESS) {
 printf("\nCall to add collection with status %d",
 status_rec->coll_status_rec_2_u.rc);
 xdr_free(xdr_coll_status_rec_2, status_rec);
 free(status_rec);
 return(MGMT_FAIL);
 }
 else
 printf("\nCall to add collection was executed");
 xdr_free(xdr_coll_status_rec_2, status_rec);
 free(status_rec);
 return(0);
}

In the preceding example, the ACMSMGMT_ADD_COLLECTION_2 procedure is called to add
a row to the Collection table. The row added is for entity type of * (all), entity name of * (all),
and collection class RUNTIME. The collection state is set to DISABLED. If the call succeeds,
a Collection table row is added, and the RUNTIME collection state for some processes may be
disabled. Otherwise, an error message is displayed.

ACMSMGMT_ADD_ERR_FILTER_2
ACMSMGMT_ADD_ERR_FILTER_2 — This procedure adds entries to the ACMS Error Filter
table. Error Filter table entries can also be deleted.

Format

error_filter_config_rec_r_2 *acmsmgmt_add_err_filter_2(err_filter_config_rec_r_2
*err_filter_cfg_rec,CLIENT *cl2)

Parameters

err_filter_cfg_rec

Type: Err_filter_config_rec_r_2
Access: Read
Mechanism: By reference

Structure that contains the following client identification and Error
Filter table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value of client_id is 0, proxy

101

Chapter 8. Management APIs

access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

error_code
Type: Integer
Access: Read
Mechanism: By value
Usage: Structure containing an Error

Filter table record. Error Filter
table fields are described in
Section 9.4. See the Description
section for information on how
to initialize this record.

cl2

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Err_filter_status_rec
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting of either a
failure code or a structure of type err_filter_update_rec_r, which
contains status codes for each field. See the Description section for
a discussion of how to determine the update status for any field.
The following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Err_filter_update_rec_r
Access: Write
Mechanism: By value

Usage:

Usage: Structure containing an Error
Filter table record. The entries

102

Chapter 8. Management APIs

in this field contain status codes
corresponding to the fields in
the err_filter_entry structure.
See the Description section for a
discussion of how to determine
the update status for any field.

Description

This procedure adds a row to the Error Filter table.

Additions to this table are durable; that is, they do survive a restart of the Remote Manager.

Calls to this procedure must specify a valid message_code for the row to be added.

The Error Filter table is dynamic and does not have a fixed upper boundary. The size of the table
fluctuates as entries are added and deleted. When a row becomes empty or unoccupied, it is removed
and the remaining rows are renumbered.

Additions to the Error Filter table are processed immediately, and may affect more than one ACMS
process.

Example
int add_err_filter(int client_id,CLIENT *cl2)
 {

 int *status;
 err_filter_config_rec_r_2 set struct;

 set_struct.client_id = client_id;
 set_struct.err_code = 16637820;

 status = acmsmgmt_add_err_filter_2(&set_struct,cl2);

 if (!status) {
 printf("\n Call to add filter failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\nCall to add error filter failed with status %d", *status);
 free(status);
 return(MGMT_FAIL);
 }
 else {
 printf("\nCall to add error filter was executed");
 }
 free(status);
 return(0);
}

In the preceding example, the acmsmgmt_add_err_filter_2 procedure is called to add a row to the
Error Filter table. If the call succeeds, the filter is added to the Error Filter table. Otherwise, an error
message is displayed.

103

Chapter 8. Management APIs

ACMSMGMT_ADD_TRAP_1
ACMSMGMT_ADD_TRAP_1 — This procedure adds entries to the Remote Manager Trap table.
Trap table entries can also be modified and deleted.

Format

trap_status_rec *acmsmgmt_add_trap_1(trap_config_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Trap_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and Trap
table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value of client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

trap_entry
Type: Trap_update_rec_r
Access: Read
Mechanism: By value

Usage:

Usage: Structure containing a Trap
table record. See the Description
section for information on how
to initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value

104

Chapter 8. Management APIs

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Trap_status_rec
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting of either
a failure code or a structure of type trap_update_rec_r, which
contains status codes for each field. See the Description section for
a discussion of how to determine the update status for any field.
The following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Trap_update_rec_r
Access: Write
Mechanism: By value

Usage:

Usage: Structure containing a Trap
table record. The entries in
this field contain status codes
corresponding to the fields in
the trap_entry structure. See
the Description section for a
discussion of how to determine
the update status for any field.

Description

This procedure adds a row to the Trap table.

Additions to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the Trap table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and param_to_trap. The combination
of these fields must be unique within the Trap table for the row to be added. Table 8-1 and Table 8-4
contain symbolic values used to populate the collection_class and entity_type fields.

Setting fields trap_min, trap_max and/or severity to -1 causes them to be ignored when trap conditions
are evaluated at run time. Otherwise, they must contain valid values for the row to be added (trap_min
and trap_max must be position numbers; severity must be one of the valid severities).

Additions to the Trap table are processed immediately, and may affect more than one ACMS process.

105

Chapter 8. Management APIs

The size of the Trap table is unbounded.

Example
int add_trap_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[2] = "*";
 static trap_config_rec set_struct;
 struct trap_status_rec *status_rec;

 set_struct.client_id = client_id;
 set_struct.trap_entry.entity_type = MGMT_ACC;
 set_struct.trap_entry.entity_name = c_name_all;
 set_struct.trap_entry.param_to_trap = MGMT_EXISTS;
 set_struct.trap_entry.min = -1;
 set_struct.trap_entry.max = 0;
 set_struct.trap_entry.severity = MGMT_SEV_ERR;

 status_rec = acmsmgmt_add_trap_1(&set_struct,cl);

 if (!status_rec) {
 printf("\n Call to add trap failed");
 return(MGMT_FAIL);
 }

 if (status_rec->status == MGMT_WARN) {
 printf("\nThe following fields are invalid: ");
 if (status_rec->trap_status_rec_u.data_warn.entity_type ==
 MGMT_FAIL)
 printf("\n entity_type not found or invalid");
 if (status_rec->trap_status_rec_u.data_warn.param_to_trap ==
 MGMT_FAIL)
 printf("\n param not found or invalid");
 if (status_rec->trap_status_rec_u.data_warn.min == MGMT_FAIL)
 printf("\n min invalid");
 if (status_rec->trap_status_rec_u.data_warn.max == MGMT_FAIL)
 printf("\n max invalid");
 if (status_rec->trap_status_rec_u.data_warn.severity == MGMT_FAIL)
 printf("\n severity invalid");
 }
 else if (status_rec->status != MGMT_SUCCESS) {
 printf("\nCall to add trap failed with status %d",
 status_rec->trap_status_rec_u.rc);
 xdr_free(xdr_trap_status_rec, status_rec);
 free(status_rec);
 return(MGMT_FAIL);
 }
 else
 printf("\nCall to add trap was executed");
 xdr_free(xdr_trap_status_rec, status_rec);
 free(status_rec);
 return(0);
}

In the preceding example, the ACMSMGMT_ADD_TRAP_1 procedure is called to add a row to
the Trap table. The new row will contain an entity type of ACC, an entity name of * (all), and a trap
parameter of EXISTS. The value of the trap_min field is -1 (ignored), and the value of the trap_max

106

Chapter 8. Management APIs

field is 0. The severity of the trap will be error. The effect of this addition is to cause an error-level
trap to be generated whenever the ACC is started on the target node. If the call succeeds, the trap is
added to the Trap table. Otherwise, an error message is displayed.

ACMSMGMT_DELETE_COLLECTION_1
ACMSMGMT_DELETE_COLLECTION_1 — This procedure deletes entries from the Remote
Manager Collection table. Collection table entries can also be added and updated.

Format

int *acmsmgmt_delete_collection_1(coll_del_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Coll_del_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and
Collection table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

entity_type
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of ACMS entity the

process is.

entity_name
Type: Null-terminated string

Usage:

Access: Read

107

Chapter 8. Management APIs

Mechanism: By reference
Usage: Pointer to a character string

containing a full or partial entity
name. May contain wildcard
characters (*, !).

collection_class
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of collection class to

delete.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

Description
This procedure deletes a row from the Collection table.

Calls to this procedure must specify entity_type, entity_name, and collection_class. The combination
of these fields must exactly match an existing row in the table for the row to be deleted. Table 8-1
and Table 8-4 contain symbolic values used to populate the collection_class and entity_type fields;
entity_name is specified as a null-terminated string.

ID and CONFIG class rows cannot be deleted.

The Collection table contains a fixed number of rows, which is determined by the Remote Manager
Parameter table field total_entity_slots. This is a nondynamic parameter and requires a restart of the
ACMS system in order to be changed. The default is 20 rows. When a row is deleted, it becomes
immediately available for reuse.

Deletions from the collection table are processed immediately, and may affect more than one ACMS
process.

108

Chapter 8. Management APIs

Example
int delete_collection_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[] = "*";
 static coll_del_rec set_struct;
 int *status;

 set_struct.client_id = client_id;
 set_struct.entity_type = MGMT_ALL;
 set_struct.entity_name = c_name_all;
 set_struct.collection_class = MGMT_CLASS_RT;

 status = acmsmgmt_delete_collection_1(&set_struct,cl);

 if (!status) {
 printf("\n Call to delete collection failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\n Call to delete collection failed with status
 %d",*status);
 free (status);
 return(MGMT_FAIL);
 }
 else
 printf("\nCall to delete collection was executed");
 free (status);
 return(0);
}

In the preceding example, the ACMSMGMT_DELETE_COLLECTION_1 procedure is called to
delete a row from the Collection table. The row deleted is for entity type of * (all), entity name of *
(all), and a collection class of RUNTIME. If the call succeeds, the collection table row is deleted, and
the RUNTIME collection state for some processes may be changed depending on the collection state
of the row before it was deleted. Otherwise, an error message is displayed.

ACMSMGMT_DELETE_ERR_FILTER_2
ACMSMGMT_DELETE_ERR_FILTER_2 — This procedure deletes entries from the Remote
Manager Error Filter table. Error Filter table entries can also be added.

Format
int *acmsmgmt_delete_err_filter_2(err_del_rec *set_struct,CLIENT *cl2)

Parameters
set_struct

Type: Err_del_rec
Access: Read
Mechanism: By reference

109

Chapter 8. Management APIs

Structure that contains the following client identification and Error
Filter table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

error_code
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: The type of ACMS entity the
process is.

cl2

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

Description
This procedure deletes rows from the Error Filter table.

The Error Filter table is dynamic and does not have a fixed upper boundary. The size of the table
fluctuates as entries are added and deleted. When a row becomes empty or unoccupied, it is removed
and the remaining rows are renumbered.

110

Chapter 8. Management APIs

Changes to the Error Filter table are processed immediately, and may affect more than one ACMS
process.

Example
int delete_err_filter(int client_id,CLIENT *cl2)
 {

 int *status;
 err_filter_config_rec_r_2 set_struct;

 set_struct.client_id = client_id;
 set_struct.err_code = 16638720;

 status = acmsmgmt_delete_err_filter_2(&set_struct,cl2);

 if (!status) {
 printf("\n RPC Call to delete filter failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\n Call to delete error filter failed with status
 %d",*status);
 free(status);
 return(MGMT_FAIL);
 }
 else {
 printf("\n Call to delete error filter was executed");
 }
 free(status);
 return(0);
}

In the preceding example, the acmsmgmt_delete_err_filter_2 procedure is called to delete a row from
the Error Filter table.

ACMSMGMT_DELETE_TRAP_1
ACMSMGMT_DELETE_TRAP_1 — This procedure deletes entries from the Remote Manager Trap
table. Trap table entries can also be added and updated.

Format
int *acmsmgmt_delete_trap_1(trap_del_rec *set_struct,CLIENT *cl)

Parameters
set_struct

Type: Trap_del_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Trap

table fields.

111

Chapter 8. Management APIs

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

entity_type
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of ACMS entity the

process is.

entity_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Pointer to a character string

containing a full or partial entity
name. May contain wildcard
characters (*, !).

param_to_trap
Type: Integer
Access: Read
Mechanism: By value
Usage: The type of parameter to be

monitored for trap conditions.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Integer

112

Chapter 8. Management APIs

Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or failure status

code. MGMT_SUCCESS indicates success. Other values indicate
failure.

Description

This procedure deletes rows from the Trap table.

Calls to this procedure must specify entity_type, entity_name, and param_to_trap. These fields must
exactly match an existing record in the Trap table for the delete to be performed. Table 8-1 and table
8-4 contain symbolic values used to populate the collection_class and entity_type fields; symbolic
values to the param_to_trap field are described in Table 8-8.

Deletions from the Trap table are processed immediately and may affect more than one ACMS
process.

Example
int delete_trap_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[2] = "*";
 static trap_del_rec set_struct;
 static int *status;

 set_struct.client_id = client_id
 set_struct.entity_type = MGMT_ACC;
 set_struct.entity_name = c_name_all;
 set_struct.param_to_trap = MGMT_EXISTS;

 status = acmsmgmt_delete_trap_1(&set_struct,cl);

 if (!status) {
 printf("\n Call to delete trap failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\nCall to delete trap failed with status %d",*status);
 free(status);
 return(MGMT_FAIL);
 }
 else
 printf("\nCall to delete trap was executed");
 free(status);
 return(0);
}

In the preceding example, the ACMSMGMT_DELETE_TRAP_1 procedure is called to delete a
row from the Trap table. The row to be deleted contains an entity type of ACC, an entity name of *
(all), and a trap parameter of EXISTS. If the call succeeds, the trap is deleted from the Trap table.
Otherwise, an error message is displayed.

113

Chapter 8. Management APIs

ACMSMGMT_GET_ACC_2
ACMSMGMT_GET_ACC_2 — ACMS Remote Manager clients call this procedure to obtain class
information about an ACMS Central Controller (ACC) on a local or remote node.

Format
acc_rec_out_2 *acmsmgmt_get_acc_2 (sub_id_struct *sub_rec,CLIENT *cl)

Parameters
sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Acc_rec_out_2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has

failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

114

Chapter 8. Management APIs

Description

This procedure obtains class information about an ACC. The return pointer points to a record of type
acc_rec_out_2, which contains a union consisting of either a failure return code or a pointer to an
ACC record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example
int get_acc_data(int client_id,CLIENT *cl)
 {

 acc_rec_r_2 *accs;
 acc_rec_out_2 *acc_rec;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 acc_rec = acmsmgmt_get_acc_2(&sub_rec,cl);

 if (!acc_rec) {
 printf("\n RPC Call to get ACC data failed");
 return(MGMT_FAIL);
 }

 if (acc_rec->status != MGMT_SUCCESS) {
 printf("\n Call to get ACC data failed, returning status code %d",
 acc_rec->status);
 xdr_free(xdr_acc_rec_out_2, acc_rec);
 free(acc_rec);
 return(status);
 }

 accs = &acc_rec->acc_rec_out_2_u.acc_rec;

 printf("\n ACC version is %s",accs->acms_version);
 xdr_free(xdr_acc_rec_out_2, acc_rec);
 free(acc_rec);
 return(0);

}

In the preceding example, the ACMSMGMT_GET_ACC_2 procedure is called to fetch ACC
management information. If the call succeeds, the ACC version is printed from the retreived record.
Otherwise, an error message is displayed.

ACMS$MGMT_GET_CREDS
ACMS$MGMT_GET_CREDS — Clients that support explicit authentication call this procedure to
obtain a client ID. A client ID is issued for the client process when the client process logs in to the
ACMS Remote Manager using the ACMSMGR LOGIN command. Once obtained by this procedure,
the client ID is used on subsequent RPC calls.

115

Chapter 8. Management APIs

Format
int acms$mgmt_get_creds(char *server_node,char *user_name, int *client)

Parameters

server_node

Type: String
Access: Read
Mechanism: By reference
Usage: Name of the node the server that issued the client ID was running

on; the node that will be accessed. Client_id is valid only for the
server that issued it.

user_name

Type: String
Access: Read
Mechanism: By reference
Usage: Name of the user the client ID was issued to, and on whose behalf

the client ID is used. The name may the same as or different than
the account name of the client process.

client

Type: Integer
Access: Write
Mechanism: By reference
Usage: The client ID to be used for the target user on the target server

node. The client ID is valid only for the client process that created
it.

Return Value

Type: Integer
Access: Write
Mechanism: By value

The completion status of the call. The following are possible return
values:
Value Description
MGMT_SUCCESS Client ID was fetched;

credentials verified.
MGMT_NO_NODELOGICAL Can't translate UCX

$INET_HOST logical name to
get local node name.

Usage:

MGMT_NO_CREDS_FILE Credentials file was not found.

116

Chapter 8. Management APIs

MGMT_CREDS_DATA_ERR Credentials file is corrupt.
MGMT_WRONG_PID PID in credentials file doesn't

match client process's PID.
MGMT_WRONG_NODE Node name in credentials file

doesn't match server_node
argument.

Description
Clients call this procedure to fetch a previously created client ID from an encrypted credentials file.
Credentials files can be created only by the ACMSMGR LOGIN command. They are stored in the
directory pointed to by the logical name ACMS$MGMT_CREDS_DIR (or SYS$LOGIN if ACMS
$MGMT_CREDS_DIR is not defined). Credentials files are named using the following format:

user-name_pid_target-node_current-node.dat

In this format:

• user-name must match the user_name argument string.

• pid must match the PID of the client process.

• target-node must match the server_node argument string.

• current-node must be the local node name (as determined by the logical name UCX
$INET_HOST).

Note

For credentials information to be created, the client process must first execute the login command of
the ACMSMGR utility. The only way to create credentials files is by using the ACMSMGR utility.

If the credentials file cannot be located, opened, and read, an error is returned. Once opened and read,
the credentials in the file are verified. If the credentials are acceptable, the client_id field is populated
and the procedure returns a status that indicates success.

This procedure is statically linked and locally executed.

Example
#include <rpc/rpc.h>
#include string
#include "acmsmgmt_rpc.h"

CLIENT *cl;
char sname[] = "sparks";
char *username_p, username[13] = "";
int client_id;
int status;

int acms$mgmt_get_creds();

int main ()
{

117

Chapter 8. Management APIs

 /* if the logical is defined, credential information will be used */
 username_p = getenv("ACMS$MGMT_USER");
 if (username_p)
 strcpy(username,username_p);

 /* establish an rpc connection to the server */
 cl = clnt_create(sname, ACMSMGMT_RPC, ACMSMGMT_VERSION, "tcp");

 /* if the connection was established */
 if (cl != NULL) {

 /* create a security context */
 cl->cl_auth = authunix_create_default();
 client_id = 0;

 /* optionally, get credentials for this user & server */
 if (strlen(username))
 status = acms$mgmt_get_creds(sname,username,&client_id);

 }

return(1);
}

The preceding example is a program that performs initialization for an ACMS Remote Manager
client. The program calls the acms$mgmt_get_creds procedure to obtain the client ID for the user
whose name is defined by the logical name ACMS$MGMT_USER on the node SPARKS.

ACMSMGMT_GET_ERR_FILTER_2
ACMSMGMT_GET_ERR_FILTER_2 — ACMS Remote Manager clients call this procedure
to obtain a listing of system messages currently being filtered from the Remote Manager, and
subsequently, the error log.

Format
int *acmsmgmt_get_err_filter_2 (sub_id_struct *sub_id_rec,CLIENT *cl2)

Parameters
sub_id_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read

Usage:

Mechanism: By value

118

Chapter 8. Management APIs

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl2

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Err_filter_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has

failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description
This procedure obtains class information about an Error Filter. The return pointer points to a record
of type err_filter_data_list_2, which is a union containing either an error code or a pointer to an Error
Filter record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example
int get_err_filter(int client_id,CLIENT *cl2)
 {

 int status;
 err_filter_data_list_2 *err_filter;
 err_filter_link_2 *nl;
 struct sub_id_struct sub_rec;

 sub_rec.client_id = client_id;

 err_filter = acmsmgmt_get_err_filter_2(&sub_rec,cl2);

 if (!err_filter) {

119

Chapter 8. Management APIs

 printf("\n RPC Call to get Error Filter failed");
 return(MGMT_FAIL);
 }

 if (err_filter->status != MGMT_SUCCESS) {
 printf("\n Call to get Error Filter failed, returning status code
 %d",
 err_filter->status);
 status = err_filter->status;
 xdr_free(xdr_err_filter_data_list_2, err_filter);
 free(err_filter);
 return(status);
 }

 for (n1 = err_filter->err_filter_data_list_2_u.list; nl != NULL;
 nl = nl->pNext) {
 printf("Filter name = %s, and code =%X\n",
 nl->err_filter_data.err_msg_name,
 nl->err_filter_data.err_code);
 }

 xdr_free(xdr_err_filter_data_list_2, err_filter);
 free(err_filter);
 return(0);

}

In the preceding example, the acmsmgmt_get_err_filter_2 procedure is called to fetch error filter
information. If the call succeeds, the message code and symbolic name are fetched. Otherwise, an
error message is displayed.

ACMSMGMT_GET_MGR_STATUS_1
ACMSMGMT_GET_MGR_STATUS_1 — ACMS Remote Manager clients call this procedure to
obtain run-time status information about a Remote Manager on a particular node.

Format
mgr_status_rec_out *acmsmgmt_get_mgr_status_1(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer

Usage:

Access: Read

120

Chapter 8. Management APIs

Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Mgr_status_rec_out
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting either of a
failure code or a pointer to a structure of type mgr_status_rec,
which contains the status data. The following are the contents of
this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data
Type: Mgr_status_rec
Access: Write
Mechanism: By reference

Usage:

Usage: Remote Manager status data
record. Contains the fields from
the Manager Status table.

Description
This procedure gets run-time information about a Remote Manager on a particular node. The return
pointer points to a record of type mgr_status_rec_out, which contains a union consisting of a failure
returns code or a pointer to a manager status record.

This procedure does not require the ACMS run-time system in order to execute.

121

Chapter 8. Management APIs

Example
int get_mgr_data(int client_id,CLIENT *cl)
 {

 mgr_status_rec *mgrs;
 mgr_status_rec_out *mgr_data;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 mgr_data = acmsmgmt_get_mgr_status_1(&sub_rec,cl);

 if (!mgr_data) {
 printf("\n RPC Call to get RM data failed");
 return(MGMT_FAIL);
 }

 if (mgr_data->status != MGMT_SUCCESS) {
 printf("\n Call to get RM data failed, returning status code %d",
 mgr_data->status);
 status = mgr_data->status;
 xdr_free(xdr_mgr_status_rec_out, mgr_data);
 free(mgr_data);
 return(status);
 }

 mgrs = &mgr_data->mgr_status_rec_out_u.data;

 printf("\n RPC UDP state is %d",mgrs->rpc_udp_state);
 xdr_free(xdr_mgr_status_rec_out, mgr_data);
 free(mgr_data);
 return(0);
}

In the preceding example, the ACMSMGMT_GET_MGR_STATUS_1 procedure is called to fetch the
contents of the Manager Status table. If the call succeeds, the current state of the TCP/UDP protocol
in the RPC interface is printed from the retrieved record. Otherwise, an error message is displayed.

ACMSMGMT_GET_PARAM_2
ACMSMGMT_GET_PARAM_2 — ACMS Remote Manager clients call this procedure to obtain
configuration information about a Remote Manager on a particular node.

Format
param_rec_out2 *acmsmgmt_get_param_2(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read

122

Chapter 8. Management APIs

Mechanism: By reference
Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Param_rec_out2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has

failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason), or the data
requested.

Description
This procedure gets configuration information about a Remote Manager on a particular node. The
return pointer points to a record of type param_rec_out2, which contains a union consisting of either a
failure return code or a pointer to a Parameter record.

This procedure does not require the ACMS run-time system in order to execute.

Example
int get_param_data(int client_id,CLIENT *cl)
 {
 int x = 0;
 int y = 0;

123

Chapter 8. Management APIs

 param_rec2 *params;
 param_rec_out2 *param_rec;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 param_rec = acmsmgmt_get_param_2(&sub_rec,cl);

 if (!param_rec) {
 printf("\n RPC Call to get Parameter data failed");
 return(MGMT_FAIL);
 }

 if (param_rec->status != MGMT_SUCCESS) {
 printf("\n Call to get Parameter data failed, returning status code
 %d",
 param_rec->status);
 status = param_rec->status;
 xdr_free(xdr_param_rec_out2, param_rec);
 free(param_rec);
 return(status);
 }

 params = ¶m_rec->param_rec_out2_u.data;

 printf("\n Maximum logins allowed is %d",params->max_logins);
 xdr_free(xdr_param_rec_out2, param_rec);
 free(param_rec);
 return(0);
}

In the preceding example, the ACMSMGMT_GET_PARAM_2 procedure is called to fetch the
contents of the Parameter table. If the call succeeds, the maximum number of logins is printed from
the retrieved record. Otherwise, an error message is displayed.

ACMSMGMT_GET_QTI_2
ACMSMGMT_GET_QTI_2 — ACMS Remote Manager clients call this procedure to obtain class
information about a Queued Task Initiator (QTI) on a local or remote node.

Format
qti_rec_out_2 *acmsmgmt_get_qti_2(sub_id_struct *sub_rec, CLIENT *cl)

Parameters
sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

Usage:

124

Chapter 8. Management APIs

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Qti_rec_out2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has

failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description
This procedure obtains class information about a QTI on a local or remote node. The return pointer
points to a record of type qti_rec_out_2, which contains a union consisting of either a failure return
code or a pointer to a QTI record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example
int get_qti_data(int client_id,CLIENT *cl)
 {

 qti_rec_r_2 *qtis;
 qti_rec_out_2 *qti_rec;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

125

Chapter 8. Management APIs

 qti_rec = acmsmgmt_get_qti_2(&sub_rec,cl);

 if (!qti_rec) {
 printf("\n RPC Call to get QTI data failed");
 return(MGMT_FAIL);
 }

 if (qti_rec->status != MGMT_SUCCESS) {
 printf("\n Call to get QTI data failed, returning status code %d",
 qti_rec->status);
 status = qti_rec->status;
 xdr_free(xdr_qti_rec_out_2, qti_rec);
 free(qti_rec);
 return(status);
 }

 qtis = &qti_rec->qti_rec_out_2_u.qti_rec;

 printf("\n QTI process name is %s",qtis->process_name);
 xdr_free(xdr_qti_rec_out_2, qti_rec);
 free(qti_rec);
 return(0);
}

In the preceding example, the ACMSMGMT_GET_QTI_2 procedure is called to fetch QTI
management information. If the call succeeds, the QTI process name is printed from the retrieved
record. Otherwise, an error message is displayed.

ACMSMGMT_GET_TSC_2
ACMSMGMT_GET_TSC_2 — ACMS Remote Manager clients call this procedure to obtain class
information about a Terminal Subsystem Controller (TSC) on a local or remote node.

Format
tsc_rec_out_2 *acmsmgmt_get_tsc_2(sub_id_struct *sub_rec, CLIENT *cl)

Parameters
sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read

Usage:

Mechanism: By value

126

Chapter 8. Management APIs

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Tsc_rec_out_2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has

failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description
The return pointer points to a record of type tsc_rec_out_2, which contains a union consisting of
either a failure return code or a pointer to a TSC record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example
int get_tsc_data(int client_id,CLIENT *cl)
 {

 tsc_rec_r_2 *tscs;
 tsc_rec_out_2 *tsc_rec;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 tsc_rec = acmsmgmt_get_tsc_2(&sub_rec,cl);

 if (!tsc_rec) {
 printf("\n RPC Call to get TSC data failed");
 return(MGMT_FAIL);
 }

127

Chapter 8. Management APIs

 if (tsc_rec->status != MGMT_SUCCESS) {
 printf("\n Call to get TSC data failed, returning status code %d",
 tsc_rec->status);
 status = tsc_rec->status;
 xdr_free(xdr_tsc_rec_out_2, tsc_rec);
 free(tsc_rec);
 return(status);
 }

 tscs = &tsc_rec->tsc_rec_out_2_u.tsc_rec;

 printf("\n TSC process name is %s",tscs->process_name);
 xdr_free(xdr_tsc_rec_out_2, tsc_rec);
 free(tsc_rec);
 return(0);
}

In the preceding example, the ACMSMGMT_GET_TSC_2 procedure is called to fetch TSC
management information. If the call succeeds, the TSC's process name is printed from the retrieved
record. Otherwise, an error message is displayed.

ACMSMGMT_GET_VERSION_2
ACMSMGMT_GET_VERSION_2 — ACMS Remote Manager clients call this procedure to obtain
version information for ACMS.

Format
version_data_list_2 *acmsmgmt_get_version_2(sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

128

Chapter 8. Management APIs

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: version_data_list_2
Access: Write
Mechanism: By reference
Usage: Pointer to record returned. If NULL, the RPC has

failed. If not null, the record contains either an
error code in the status field (the RPC succeeded,
but the call failed for another reason) or the data
requested.

Description
The return pointer points to a record of type version_data_list_2, which constains a union consisting
of either a failure return code or a pointer to a version record.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example
int get_version_data(int client_id,CLIENT *cl2)
 {

 struct sub_id_struct sub_rec;
 version_data_list_2 *version;
 int status;

 sub_rec.client_id = client_id;

 version = acmsmgmt_get_version_2(&sub_rec,cl2);

 if (!version) {
 printf("\n RPC Call to get Version data failed");
 return(MGMT_FAIL);
 }

 if (version->status != MGMT_SUCCESS) {
 printf("\n Call to get Version data failed, returning status code
 %d",
 version->status);
 status = version->status;
 xdr_free(xdr_version_data_list_2, version);
 free(version);
 return(status);

129

Chapter 8. Management APIs

 }

 printf("\n ACMS version is %s",version->
 version_data_list_2_u.data.acms_version);
 xdr_free(xdr_version_data_list_2, version);
 free(version);
 return(0);
}

In the preceding example, the ACMSMGMT_GET_VERSION_2 procedure is called to fetch ACMS
version information. If the call succeeds, the version of the installed ACMS software is printed from
the retrieved record. Otherwise, an error message is displayed.

ACMSMGMT_LIST_COLLECTIONS_2
ACMSMGMT_LIST_COLLECTIONS_2 — ACMS Remote Manager clients call this procedure to
obtain a list of Collection table entries.

Format
coll_data_list_2 *acmsmgmt_list_collections_2(coll_sel_struct *coll_rec, CLIENT *cl)

Parameters

coll_rec

Type: Coll_sel_struct
Access: Read
Mechanism: By reference

Defines starting point for list of records to be returned. Also
identifies the user. The coll_rec structure contains the following
fields:

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being

used, a valid client ID must
be provided. If the value for
client_id is 0, proxy access is
used.

starting_rec
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: Sequential record number
(starting at 0) of record to begin
list from. Records are returned

130

Chapter 8. Management APIs

sequentially from the table.
Up to max_rpc_return_recs
(Parameter table configuration
value) are returned in each call.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Coll_data_list_2
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a pointer to a
structure of type coll_list, which contains the start of a linked list of records. The
following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Coll_list_2
Access: Write
Mechanism: By reference
Usage: Start of linked list. Pointer to a structure of collection table

record, and a forward pointer to the next node in the linked
list. The following are the contents of this structure:

pNext
Type: Coll_list_2
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

coll_data
Type: Coll_rec_2
Access: Write

Usage:

Mechanism: By reference

131

Chapter 8. Management APIs

Usage: Collection table row. Collection table
fields are described in Section 9.4.

Description
The ACMSMGMT_LIST_COLLECTIONS_2 procedure returns a linked list of collection table rows.
The number of rows returned in a single call is bounded by the value of the Parameter table field
max_rpc_return_recs. More than one call may be required to fetch all the rows. The selection record
field starting_rec determines the table row to begin with. Records are returned sequentially from the
table, beginning with the starting_rec row. Row numbering begins at 0.

Entire table rows are returned. See Section 9.4 for a description of the fields in the coll_rec structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

If the end of the table is reached during execution of this procedure, MGMT_NOMORE_DATA is
returned in the status field.

Example
int list_collection_data(int client_id,CLIENT *cl)
{

 int rec_count = 0;
 coll_data_list_2 *coll;
 coll_link_2 *nl;
 static struct coll_sel_struct coll_rec;
 int status;
 char c_states[2][9] = {"enabled","disabled"};
 char c_entities[10][9] = {"unknown","*","acc","tsc","qti","cp","exc",
 "server","group","mgr"};
 char c_classes[6][8] = {"*","id","config","runtime","pool","error"};

 coll_rec.client_id = client_id;
top:
 coll_rec.starting_rec = rec_count;

 coll = acmsmgmt_list_collections_2(&coll_rec,cl);

 if (!coll) {
 printf("\n RPC Call to get Collection data failed");
 return(MGMT_FAIL);
 }

 if ((coll->status != MGMT_SUCCESS) && (coll->status !=
 MGMT_NOMORE_DATA)) {
 printf("\n Call to get Collection data failed, returning status code
 %d",coll->status);
 xdr_free(xdr_coll_data_list2, coll);
 free(coll);
 return(status);
 }

 for (nl = coll->coll_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
 rec_count++;
 if (nl->coll_data.entity_name_s > 0)

132

Chapter 8. Management APIs

 printf("\n Entity: %-9s Name: %-32s Class: %-9s
 Collection State: %-9s",
 c_entities[nl->coll_data.entity_type],
 nl->coll_data.entity_name,
 c_classes[nl->coll_data.collection_class],
 c_states[nl->coll_data.collection_state]);
 }

 if (coll->status != MGMT_NOMORE_DATA)
 goto top;

 printf("\n End of data");
 xdr_free(xdr_coll_data_list_2, coll);
 free(coll);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_COLLECTIONS_2 procedure is called to fetch
the contents of the Collection table. If the call succeeds, the entity type, name, class, and collection
state are printed for each row in the table. Otherwise, an error message is displayed.

ACMSMGMT_LIST_CP_2
ACMSMGMT_LIST_CP_2 — ACMS Remote Manager clients call this procedure to obtain a list of
Command Process (CP) table entries.

Format
cp_data_list_2 *acmsmgmt_list_cp_2(cp_sel_struct *sub_rec, CLIENT *cl)

Parameters
sub_rec

Type: Cp_sel_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

Usage:

proc_name

133

Chapter 8. Management APIs

Type: String
Access: Read
Mechanism: By value
Usage: String that lists the OpenVMS

process name for each CP.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cp_data_list_2
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting of either a failure code or a
pointer to a structure of type cp_data_list2, which contains the start of a linked
list of records. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Cp_list_2
Access: Write
Mechanism: By reference

Start of linked list. Pointer to a structure of CP table record,
and a forward pointer to the next node in the linked list. The
following are the contents of this structure:

pNext
Type: Cp_list_2
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

cp_data

Usage:

Usage:

Type: Cp_rec_r_2

134

Chapter 8. Management APIs

Access: Write
Mechanism: By reference
Usage: CP table row. CP table fields are

described in Section 9.5.

Description
The ACMSMGMT_LIST_CP_2 procedure returns a linked list of CP table rows. All CP table rows
are returned in each call. Records are returned sequentially from the table, beginning at the start of the
table.

Entire table rows are returned. See Section 9.5 for a description of the fields in the cp_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Rows in the CP table are subject to reuse. Rows are assigned round-robin, and are not cleared
until they have been reassigned. So some rows may contain data for inactive CPs. It is the caller's
responsibility to examine the record_state field to determine whether this row belongs to an active
(record_state field is MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) CP, and
to process the row accordingly.

Example
int list_cp_data(int client_id,CLIENT *cl)
{
 static char c_all_cps[2] = "*";
 cp_data_list_2 *cp_data;
 cp_link_2 *nl;
 static struct cp_sel_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;
 sub_rec.proc_name = c_all_cps;

 cp_data = acmsmgmt_list_cp_2(&sub_rec,cl);

 if (!cp_data) {
 printf("\n RPC Call to get CP data failed");
 return(MGMT_FAIL);
 }

 if (cp_data->status == MGMT_FAIL) {
 if (cp_data->cp_data_list_2_u.rc == MGMT_NOMORE_DATA) {
 printf("\n No CP data found");
 xdr_free(xdr_cp_data_list_2, cp_data);
 free(cp data);
 return(MGMT_FAIL);
 }
 printf("\n Call to get CP data failed, returning status code %d",
 cp_data->cp_data_list_2_u.rc);
 status = cp_data->cp_data_list_2_u.rc;
 xdr_free(xdr_cp_data_list_2, cp_data);
 free(cp_data);
 return(status);
 }

135

Chapter 8. Management APIs

 if (cp_data->status == MGMT_WARN)
 printf("\n ** Warning, some data may be from inactive processes
 **");

 for (nl = cp_data->cp_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
 if (nl->cp_data.record_state == MGMT_INACTIVE)
 printf("\n INACTIVE ");
 else
 printf("\n ");
 printf(" PID: %8X Process Name: %-s",
 nl->cp_data.pid,
 nl->cp_data.process_name);
 }

 printf("\n End of data");
 xdr_free(xdr_cp_data_list_2, cp_data);
 free(cp_data);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_CP_2 procedure is called to fetch the contents of
the CP table. If the call succeeds, the state of the CP (if INACTIVE), its PID, and process name are
displayed for each table row returned. Otherwise, an error message is displayed.

ACMSMGMT_LIST_EXC_2
ACMSMGMT_LIST_EXC_2 — ACMS Remote Manager clients call this procedure to obtain a list
of Application Execution Controller (EXC) (ACMS application) table entries.

Format
exc_data_list_2 *acmsmgmt_list_exc_2(exc_sel_struct *sub_rec, CLIENT *cl)

Parameters
sub_rec

Type: Exc_sel_struct
Access: Read
Mechanism: By reference

Structure that contains client information and application selection
criteria. The structure contains the following fields.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is

136

Chapter 8. Management APIs

obtained by calling the acms
$mgmt_get_creds procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application

name. The name may contain
wildcard characters (*, !).
Specify in all uppercase
characters.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Exc_data_list_2
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting of either a failure code or a
pointer to a structure of type exc_data_list_2, which contains the start of a linked
list of records. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Exc_list_2
Access: Write
Mechanism: By reference

Start of linked list. Pointer to a structure containing an EXC
table record, and a forward pointer to the next node in the
linked list. The following are the contents of this structure:

pNext
Type: Exc_list_2

Usage:

Usage:

Access: Write

137

Chapter 8. Management APIs

Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

exc_data
Type: Exc_rec_r_2
Access: Write
Mechanism: By reference
Usage: EXC table row. EXC table fields are

described in Section 9.6.

Description
The ACMSMGMT_LIST_EXC_2 procedure returns a linked list of EXC table rows. All EXC table
rows whose application_name field matches the appl_name field in the selection record are returned
in each call.

Entire table rows are returned. See Section 9.6 for a description of the fields in the exc_rec_r
structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin, and are not cleared until
they have been reassigned. Therefore, some rows may contain data for inactive EXCs. It is the caller's
responsibility to examine the record_state field to determine whether this row belongs to an active
(record_state field is MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) EXC,
and to process the row accordingly.

Example
int list_exc_data(int client_id,CLIENT *cl)
{

 static char c_all_appls[2] = "*";
 exc_data_list_2 *exc_data;
 exc_link_2 *nl;
 static struct exc_sel_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;
 sub_rec.appl_name = c_all_appls;

 exc_data = acmsmgmt_list_exc_2(&sub_rec,cl);

 if (!exc_data) {
 printf("\n RPC Call to get EXC data failed");
 return(MGMT_FAIL);
 }

 if (exc_data->status == MGMT_FAIL) {
 if (exc_data->exc_data_list_2_u.rc == MGMT_NOMORE_DATA) {
 printf("\n No EXC data found");
 xdr_free(xdr_exc_data_list_2, exc_data);

138

Chapter 8. Management APIs

 free(exc_data);
 return(MGMT_FAIL);
 }
 printf("\n Call to get EXC data failed, returning status code %d",
 exc_data->exc_data_list_2_u.rc);
 status = exc_data->exc_data_list_2_u.rc;
 xdr_free(xdr_exc_data_list_2, exc_data);
 free(exc_data);
 return(status);
 }

 if (exc_data->status == MGMT_WARN)
 printf("\n ** Warning, some data may be from inactive processes
 **");

 for (nl = exc_data->exc_data_list_2_u.list; nl != NULL; nl = nl->pNext)
 {
 if (nl->exc_data.record_state == MGMT_INACTIVE)
 printf("\n INACTIVE ");
 else
 printf("\n ");
 printf(" PID: %8X Application : %-s",
 nl->exc_data.pid,
 nl->exc_data.appl_name);
 }

 printf("\n End of data");
 xdr_free(xdr_exc_data_list_2, exc_data);
 free(exc_data);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_EXC_2 procedure is called to fetch the contents
of the EXC table. If the call succeeds, the state of the EXC (if inactive), its PID, and its application
name are displayed for each table row returned. Otherwise, an error message is displayed.

ACMSMGMT_LIST_INTERFACES_1
ACMSMGMT_LIST_INTERFACES_1 — ACMS Remote Manager clients call this procedure to
obtain information about all configured interfaces for a Remote Manager server on a local or remote
node.

Format
interfaces_rec_out *acmsmgmt_list_interfaces_1 (sub_id_struct *sub_rec, CLIENT *cl)

Parameters
sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

139

Chapter 8. Management APIs

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Interfaces_rec_out
Access: Write
Mechanism: By reference
Usage: Pointer to a record that contains a union

consisting of either a failure code or a pointer
to the start of a linked list of records. See the
Description section for a discussion of the
structure of the union. The records contain all the
fields of the Interfaces table (see Section 9.7).

Description
The ACMSMGMT_LIST_INTERFACES_1 procedure returns an array of Remote Manager Interfaces
table rows. All records in the table are returned. Each record represents a separate interface, as
determined by the interface_type field.

The return record is a union containing either a failure code or the first record in the list, as follows:

 struct interfaces_rec_out {
 int status;
 union {
 interfaces_rec_out_r interfaces;
 int rc;
 } interfaces_rec_out_u;
 };

To determine the status of the call and the contents of the return record, first check the status field.
The following are possible values in the status field:

140

Chapter 8. Management APIs

• MGMT_FAIL

The call has failed and the rc field contains a specific error code describing the failure.

• MGMT_SUCCESS

The call completed successfully. All rows in the table were returned.

The array is contained in a structure of type interfaces_rec_out_r with an integer field (num_elements)
containing the size of the array, as follows:

 struct interfaces_rec_out_r {
 int num_elements;
 interfaces_rec values[MGMT_K_MAX_IF];
 };

Example
int list_interfaces_data(int client_id,CLIENT *cl)
 {

 interfaces_rec_out *if_ptr;
 interfaces_rec_out_r *inter;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 if_ptr = acmsmgmt_list_interfaces_1(&sub_rec,cl);

 if (!if_ptr) {
 printf("\n RPC Call to get Interfaces data failed");
 return(MGMT_FAIL);
 }

 inter = &if_ptr->interfaces_rec_out_u.interfaces;
 if (if_ptr->status == MGMT_FAIL) {
 printf("\n Call to get Interfaces data failed, returning status code
 %d",if_ptr->interfaces_rec_out_u.rc);
 status = if_ptr->interfaces_rec_out_u.rc;
 xdr_free(xdr_interfaces_rec_out, if_ptr);
 free(if_ptr);
 return(status);
 }

 printf("\n RPC interface has processed %d read requests",
 inter->values[0].get_request_count);
 printf("\n SNMP interface has processed %d read requests",
 inter->values[1].get_request_count);
 xdr_free(xdr_interfaces_rec_out, if_ptr);
 free(if_ptr);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_INTERFACES_1 procedure is called to fetch
the contents of the Interfaces table. If the call succeeds, the number of read requests by each interface
is printed from the retrieved record. Otherwise, an error message is displayed. The example in
Section 6.4.1 shows how to declare and initialize the input arguments to this procedure.

141

Chapter 8. Management APIs

ACMSMGMT_LIST_LOG_1
ACMSMGMT_LIST_LOG_1 — ACMS Remote Manager clients call this procedure to obtain
information from a Remote Manager log on a local or remote node.

Format
log_data_list *acmsmgmt_list_log_1 (log_sel_struct *log_rec, CLIENT *cl)

Parameters
log_rec

Type: Log_sel_struct
Access: Read
Mechanism: By reference

Defines which log records to return. The log_sel_struct contains
the following fields:

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is being

used, a valid client ID must
be provided. If the value for
client_id is 0, proxy access is
used.

before_time
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated

character string containing a
valid OpenVMS ASCII time
string. This field determines
the chronological starting point
for the list of records to be
returned. If omitted, records are
returned beginning at the start
of the file. Format is OpenVMS
ASCII time (DD-MMM-YY
HH:MM:SS.hh).

since_time
Type: Null-terminated character string
Access: Read, optional

Usage:

Mechanism: By reference

142

Chapter 8. Management APIs

Usage: Pointer to a null-terminated
character string containing a
valid OpenVMS ASCII time
string. This field determines
the chronological ending point
for the list of records to be
returned. If omitted, records
are returned until end of file is
reached. Format is OpenVMS
ASCII time (DD-MMM-YY
HH:MM:SS.hh).

file_name
Type: Null-terminated character string
Access: Read, optional
Mechanism: By reference
Usage: Pointer to a null-terminated

character string containing
either a valid OpenVMS file
specification or a logical name
pointing to a valid OpenVMS
file specification. This field
determines the log file to be
processed. An empty string
requests the default (currently
open) log file.

dup_count
Type: Integer
Access: Read
Mechanism: By value
Usage: A sequential counter of records

with the same time. This allows
records to be unique even if they
were generated at the same time.
Set this value to -1 for the initial
call.

facility
Type: Integer
Access: Read, optional
Mechanism: By value
Usage: Value of a valid Remote

Manager facility. If specified,
only audit records with matching
facility codes are returned.

severity
Type: Integer

143

Chapter 8. Management APIs

Access: Read, optional
Mechanism: By value
Usage: Value of a valid Remote

Manager severity. If specified,
only audit records with matching
severity are returned.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Log_data_list
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a
pointer to the start of a linked list of records. See the Description
section for a discussion of the structure of the union. The following
are the contents of this record:

log_data_list
Type: Logging_rec
Access: Write
Mechanism: By reference
Usage: Pointer to a structure of type

logging_rec.

dup_count
Type: Integer
Access: Write
Mechanism: By value
Usage: Integer value with uniquely

identifies records generated at
the same time.

log_msg
Type: Null-terminated character string
Access: Write
Mechanism: By reference

Usage:

Usage: Pointer to a null-terminated
character string containing the
audit information.

144

Chapter 8. Management APIs

pNext
Type: Log_list
Access: Write
Mechanism: By value
Usage: Pointer to the next record in the

linked list.

Description

Note

The ACMSMGMT_LIST_LOG_1 procedure is also described in detail in Section 6.6.1.

The ACMSMGMT_LIST_LOG_1 procedure returns a linked list of Remote Manager log entries,
ordered by time. The records to be returned are determined by the fields specified in thelog_sel_struct
input argument. Records can be selected by date and time, facility, and severity. Note that only
max_rpc_return_rec data (Parameter table field) is returned in each call. The end of data is signaled
by the status field (see the following example). If the end of data is not signaled, repeated calls are
needed to fetch all matching records.

The return record is a union containing either a failure code or the first record in the list:

 struct log_data_list {
 int status;
 union {
 int rc;
 log_list list;
 } log_data_list_u;
 };

To determine the status of the call and the contents of the return record, first check the status field.
The following are possible values in the status field:

• MGMT_FAIL

The call has failed and the rc field contains a specific error code describing the failure.

• MGMT_NOMORE_DATA

There are no more records in the file. The linked list may or may not contain the final records,
depending on whether any more records matched the selection criteria.

• MGMT_SUCCESS

The call completed successfully. More records exist than were returned in the call.

The ACMSMGMT_LIST_LOG_1 procedure returns n records per call, where n is determined by the
Remote Manager parameter field max_rpc_return_recs. Therefore, repeated calls may be necessary to
retrieve all records that match the selection criteria. Context is not maintained by the server between
calls; the selection criteria are evaluated on each call by the Remote Manager. Following the initial
call, callers should place the correct time value in the since_time field of the log_sel_struct input
argument, as well as the correct dup_count value in order to have the chronologically next n records
returned.

145

Chapter 8. Management APIs

This procedure does not require the ACMS run-time system to execute.

Example
int list_log_data(int client_id,CLIENT *cl)
{

 int skip_rec = 0;
 char null_time_str[24] = "";
 char first_of_jan[24] = "01-JAN-1998 00:00:00.00";
 char file_spec[] = ""; /* use default, i.e. active log file */
 char time_cache[MGMT_S_TIME_A+1];
 static struct log_sel_struct log_rec;
 log_data_list *log;
 log_link *nl;
 int status;

 /* Initialize log selection data */

 log_rec.client_id = client_id;
 log_rec.before_time = null_time_str;
 log_rec.since_time = first_of_jan;
 log_rec.file_name = file_spec;
 log_rec.dup_count = -1;
 log_rec.facility = -1; /* don't match on facility */
 log_rec.severity = -1; /* don't match on severity */

top:

 log = acmsmgmt_list_log_1(&log_rec,cl);

 if (!log)
 return(MGMT_FAIL);

 if (log->status == MGMT_FAIL) {
 status = log->log_data_list_u.rc;
 xdr_free(xdr_log_data_list, log);
 free(log);
 return(status);
 }

 for (nl = log->log_data_list_u.list; nl != NULL; nl = nl->pNext) {
 if (skip_rec)
 skip_rec = 0;
 else
 printf("\n %-12s\t%-s",sname,nl->log_data.log_msg);

 memcpy(&time_cache[0],nl->log_data.log_msg,23);
 log_rec.dup_count = nl->log_data.dup_count;
 log_rec.since_time = time_cache;
 }

 if (log->status == MGMT_NOMORE_DATA)
 printf("\n *** End of data **");

 else {
 skip_rec = 1;
 goto top;

146

Chapter 8. Management APIs

 }

 xdr_free(xdr_log_data_list, log);
 free(log);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_LOG_1 procedure is called to fetch the contents
of the RM log file. All entries since January 1, 1998 are requested. If the call succeeds, each entry
is printed out. Otherwise, an error message is displayed. This example is very similar to the one
described in detail in Chapter 6.

ACMSMGMT_LIST_PROC_1
ACMSMGMT_LIST_PROC_1 — ACMS Remote Manager clients call this procedure to obtain a list
of ACMS processes running on a particular node, along with some collection state information for
each process.

Format
proc_data_list *acmsmgmt_list_proc_1 (sub_id_struct *sub_rec, CLIENT *cl)

Parameters
sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

147

Chapter 8. Management APIs

Return Value
Type: Proc_data_list
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting of either a failure code or a
pointer to a structure of type proc_link, which contains the start of a linked list
of records. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Proc_list
Access: Write
Mechanism: By reference

Start of linked list. Pointer to a structure of process data,
and a forward pointer to the next node in the linked list. The
following are the contents of this structure:

pNext
Type: Proc_list
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type user_list.

proc_data
Type: Proc_rec
Access: Write
Mechanism: By reference

The data describing the process. This
record contains the following fields:

record_state
Type: Integer
Access: Write
Mechanism: By value
Usage: The current state

of the record.
Will be either
MGMT_VALID or
MGMT_INACTIVE.

Usage:

Usage:

Usage:

148

Chapter 8. Management APIs

entity_type
Type: Integer
Access: Write
Mechanism: By value
Usage: The type of ACMS

entity the process
is.

pid
Type: Integer
Access: Write
Mechanism: By value
Usage: OpenVMS Process

ID.

process_name
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The OpenVMS

process name.

class_states
Type: Array of integers
Size: 5
Access: Write
Mechanism: By value
Usage: An array of

integers. Each
array element
represents the
collection state for
a class. Positions
are:

• 0: ID

• 1: CONFIG

• 2: RUNTIME

• 3: POOL

• 4: ERROR

149

Chapter 8. Management APIs

Description
The ACMSMGMT_LIST_PROC_1 procedure returns a linked list of processes that a particular
Remote Manager is aware of. The Remote Manager builds this list from the various ACMS Entity
tables. For each process, the Remote Manager populates a proc_data record.

Note that some entity tables may contain rows with inactive data, that is, data for processes that are no
longer active. The data in these rows may or may not be interesting to the caller. To distinguish active
and inactive processes, the Remote Manager sets the record_state field to MGMT_VALID for active
processes and to MGMT_INACTIVE for inactive processes. The caller is responsible for checking
this field and taking appropriate action.

The collection_states field is a simple array of five integers. Each array element contains either a
1 (if the collection class is enabled) or a 0 (if the collection class is disabled). Array elements are
positional, as described in the Return Value section.

Like other procedures that return linked lists, the return parameter is a union containing either a
failure status code or a linked list of records.

To determine the status of the call and the contents of the return record, first check the status field.
The following are possible values in the status field:

• MGMT_FAIL

The call has failed and the rc field contains a specific error code describing the failure.

• MGMT_SUCCESS

The call completed successfully. All user records have been returned.

If the status field value is MGMT_SUCCESS, a linked list has been returned. The linked list contains
a structure containing the process data, and a forward pointer. By following the forward pointer, all
the records in the list can be retrieved.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Example
int list_process_data(int client_id,CLIENT *cl)
{

 proc_data_list *proc;
 proc_link *nl;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 proc = acmsmgmt_list_proc_1(&sub_rec,cl);

 if (!proc) {
 printf("\n RPC Call to get Process data failed");
 return(MGMT_FAIL);
 }

150

Chapter 8. Management APIs

 if ((proc->status != MGMT_SUCCESS) && (proc->status !=
 MGMT_NOMORE_DATA)) {
 printf("\n Call to get Process data failed, returning status code
 %d",
 proc->proc_data_list_u.rc);
 status = proc->proc_data_list_u.rc;
 xdr_free(xdr_proc_data_list, proc);
 free(proc);
 return(status);
 }

 for (nl = proc->proc_data_list_u.list; nl != NULL; nl = nl->pNext) {
 if (nl->proc_data.record_state == MGMT_INACTIVE)
 printf("\n INACTIVE ");
 else
 printf("\n ");
 printf(" PID: %8X Process Name: %s",nl->proc_data.pid,
 nl->proc_data.process_name);
 }

 printf("\n End of data");
 xdr_free(xdr_proc_data_list, proc);
 free(proc);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_PROC_1 procedure is called to fetch information
about collection states from all processes accessible to the Remote Manager. If the call succeeds,
the name of the process, along with its state is displayed (inactive processes have that string printed
before the process name). Otherwise, an error message is displayed.

ACMSMGMT_LIST_SERVER_1
ACMSMGMT_LIST_SERVER_1 — ACMS Remote Manager clients call this procedure to obtain a
list of procedure server table (Server table) entries.

Format
ser_data_list *acmsmgmt_list_server_1(ser_sel_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Ser_sel_struct
Access: Read
Mechanism: By reference

Structure that contains client information and procedure server
selection criteria. The structure contains the following fields.

client_id
Type: Integer

Usage:

Access: Read

151

Chapter 8. Management APIs

Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application

name. The name may contain
wildcard characters (*, !).
Specify in all uppercase
characters.

server_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to a procedure

server name. The name may
contain wildcard characters
(*, !). Specify in all uppercase
characters.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Ser_data_list
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting of either a failure code or a
pointer to a structure of type ser_link, which contains the start of a linked list of
records. The following are the contents of this union:

rc

Usage:

Type: Integer

152

Chapter 8. Management APIs

Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Ser_list
Access: Write
Mechanism: By reference

Start of linked list. Pointer to a structure containing an EXC
table record, and a forward pointer to the next node in the
linked list. The following are the contents of this structure:

pNext
Type: Ser_list
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

ser_data
Type: Ser_rec_r
Access: Write
Mechanism: By reference

Usage:

Usage: Server table row. Server table fields are
described in Section 9.11.

Description

The ACMSMGMT_LIST_SER_1 procedure returns a linked list of Server table rows. All matching
Server table rows are returned in each call. Matching is performed first on application name, and then
on server name. Therefore, all matching servers for all matching applications are returned.

Entire table rows are returned. See Section 9.11 for a description of the fields in the ser_rec_r
structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin, and are not cleared until
they have been reassigned. Therefore, some rows may contain data for inactive EXCs. The Remote
Manager attempts to retrieve server information for inactive EXCs. It is the caller's responsibility to
examine the record_state field to determine whether this row belongs to an active (record_state field is
MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) EXC, and to process the row
accordingly.

Example
int list_ser_data(int client_id,CLIENT *cl)
{

153

Chapter 8. Management APIs

 static char c_all_appls[2] = "*";
 ser_data_list *ser_data;
 ser_link *nl;
 static struct ser_sel_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;
 sub_rec.appl_name = c_all_appls;
 sub_rec.server_name = c_all_appls;

 ser_data = acmsmgmt_list_server_1(&sub_rec,cl);

 if (!ser_data) {
 printf("\n RPC Call to get Server data failed");
 return(MGMT_FAIL);
 }

 if (ser_data->status == MGMT_FAIL) {
 if (ser_data->ser_data_list_u.rc == MGMT_NOMORE_DATA) {
 printf("\n No SERVER data found");
 xdr_free(xdr_ser_data_list, ser_data);
 free(ser_data);
 return(MGMT_FAIL);
 }
 printf("\n Call to get Server data failed, returning status code
 %d",
 ser_data->ser_data_list_u.rc);
 status = ser_data->ser_data_list_u.rc;
 xdr_free(xdr_ser_data_list, ser_data);
 free(ser_data);
 return(status);
 }

 if (ser_data->status == MGMT_WARN)
 printf("\n ** Warning, some data may be from inactive processes
 **");

 for (nl = ser_data->ser_data_list_u.list; nl != NULL; nl = nl->pNext) {
 if (nl->ser_data.record_state == MGMT_INACTIVE)
 printf("\n INACTIVE ");
 else
 printf("\n ");
 printf(" Application : %-32s Server: %-s",
 nl->ser_data.appl_name,
 nl->ser_data.server_name);
 }

 printf("\n End of data");
 xdr_free(xdr_ser_data_list, ser_data);
 free(ser_data);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_SERVER_1 procedure is called to fetch the
contents of the Server tables for all applications on the target node. If the call succeeds, the state of the
server (if inactive), the name of the application it belongs to, and the name of the server are displayed
for each table row returned. Otherwise, an error message is displayed.

154

Chapter 8. Management APIs

ACMSMGMT_LIST_TG_2
ACMSMGMT_LIST_TG_2 — ACMS Remote Manager clients call this procedure to obtain a list of
Task Group table entries.

Format
tg_data_list_2 *acmsmgmt_list_tg_2(tg_sel_struct *sub_rec, CLIENT *cl)

Parameters
sub_rec

Type: Tg_sel_struct
Access: Read
Mechanism: By reference

Structure that contains client information and task group selection
critera. The structure contains the following fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application

name. The name may contain
wildcard characters (*, !).
Specify in all uppercase
characters.

tg_name
Type: Null-terminated string
Access: Read
Mechanism: By reference

Usage:

Usage: A pointer to a task group name.
The name may contain wildcard
characters (*, !). Specify in all
uppercase characters.

155

Chapter 8. Management APIs

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Tg_data_list_2
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting of either a failure code or a
pointer to a structure of type tg_link_2, which contains the start of a linked list
of records. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Tg_list_2
Access: Write
Mechanism: By reference

Start of linked list. Pointer to a structure containing a Task
Group table record, and a forward pointer to the next node
in the linked list. The following are the contents of this
structure:

pNext
Type: Tg_list_2
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type coll_list.

tg_data
Type: Tg_rec_r_2
Access: Write
Mechanism: By reference

Usage:

Usage:

Usage: Task Group table row. Task Group table
fields are described in Section 9.12.

156

Chapter 8. Management APIs

Description
The ACMSMGMT_LIST_TG_2 procedure returns a linked list of Task Group table rows. All
matching Task Group table rows are returned in each call. Matching is performed first on the
application name, and then on the task group name. Therefore, all matching task groups for all
matching applications are returned.

Entire table rows are returned. See Section 9.12 for a description of the fields in the tg_rec_r structure.

If the ACMS run-time system is not running when this call is issued, the Remote Manager returns the
MGMT_NOT_MAPPED error code.

Rows in the EXC table are subject to reuse. Rows are assigned round-robin, and are not cleared
until they have been reassigned. Therefore, some rows may contain data for inactive EXCs. The
Remote Manager will attempt to retrieve task group information for inactive EXCs. It is the caller's
responsibility to examine the record_state field to determine whether this row belongs to an active
(record_state field is MGMT_VALID) or inactive (record_state field is MGMT_INACTIVE) EXC,
and to process the row accordingly.

Example
int list_group_data(int client_id,CLIENT *cl)
{

 static char c_all_appls[2] = "*";
 tg_data_list_2 *tg_data;
 tg_link_2 *nl;
 static struct tg_sel_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;
 sub_rec.appl_name = c_all_appls;
 sub_rec.tg_name = c_all_appls;

 tg_data = acmsmgmt_list_tg_2(&sub_rec,cl);

 if (!tg_data) {
 printf("\n RPC Call to get Task Group data failed");
 return(MGMT_FAIL);
 }

 if (tg_data->status == MGMT_FAIL) {
 if (tg_data->tg_data_list_2_u.rc == MGMT_NOMORE_DATA) {
 printf("\n No GROUP data found");
 xdr_free(xdr_tg_data_list_2, tg_data);
 free(tg_data);
 return(MGMT_FAIL);
 }
 printf("\n Call to get Task Group data failed, returning status code
 %d",tg_data->tg_data_list_2_u.rc);
 status = tg_data->tg_data_list_2_u.rc;
 xdr_free(xdr_tg_data_list_2, tg_data);
 free(tg_data);
 return(status);
 }

 if (tg_data->status == MGMT_WARN)

157

Chapter 8. Management APIs

 printf("\n ** Warning, some data may be from inactive processes
 **");

 for (nl = tg_data->tg_data_list_2_u.list; nl != NULL; nl = nl->pNext) {
 if (nl->tg_data.record_state == MGMT_INACTIVE)
 printf("\n INACTIVE ");
 else
 printf("\n ");
 printf(" Application: %-32s Task Group: %-s",
 nl->tg_data.appl_name,
 nl->tg_data.tg_name);
 }

 printf("\n End of data");
 xdr_free(xdr_tg_data_list_2, tg_data);
 free(tg_data);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_TG_1 procedure is called to fetch the contents
of the Task Group tables for all applications on the target node. If the call succeeds, the state of the
task group (if inactive), the name of the application it belongs to, and the name of the task group are
displayed for each table row returned. Otherwise, an error message is displayed.

ACMSMGMT_LIST_TRAP_1
ACMSMGMT_LIST_TRAP_1 — ACMS Remote Manager clients call this procedure to obtain a list
of Trap table entries.

Format
trap_data_list *acmsmgmt_list_trap_1(sub_id_struct *sub_id_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct *
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is

158

Chapter 8. Management APIs

obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Trap_data_list
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a pointer to a
structure of type trap_list, which contains the start of a linked list of records. The
following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: Trap_list
Access: Write
Mechanism: By reference

Start of linked list. Pointer to a structure of trap table rows,
and a forward pointer to the next node in the linked list. The
following are the contents of this structure:

pNext
Type: Proc_list
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type trap_list.

trap_data

Usage:

Usage:

Type: Trap_rec

159

Chapter 8. Management APIs

Access: Write
Mechanism: By reference
Usage: Trap table row. Trap table fields are

described in Section 9.13.

Description
The acmsmgmt_list_trap_1 procedure returns a linked list of Trap table rows. All Trap table rows are
returned in each call. Records are returned sequentially from the table, beginning at the start of the
table.

Entire table rows are returned. See Section 9.13 for a description of the fields in the trap_rec structure.

This procedure does not require the ACMS run-time system in order to execute.

Example
int list_trap_data(int client_id,CLIENT *cl)
{

 char c_states[2][9] = {"enabled","disabled"};
 char c_entities[10][9] = {"unknown","*","acc","tsc","qti","cp","exc",
 "server","group","mgr"};
 char c_classes[6][8] = {"*","id","config","runtime","pool","error"};
 char c_trap_params[2][15] = {"exists","event severity"};

 trap_data_list *trap;
 trap_link *nl;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 trap = acmsmgmt_list_trap_1(&sub_rec,cl);

 if (!trap) {
 printf("\n RPC Call to get Trap data failed");
 return(MGMT_FAIL);
 }

 if (trap->status != MGMT_SUCCESS) {
 printf("\n Call to get Trap data failed, returning status code %d",
 trap->trap_data_list_u.rc);
 status = trap->trap_data_list_u.rc;
 xdr_free(xdr_trap_data_list, trap);
 free(trap);
 return(status);
 }

 for (nl = trap->trap_data_list_u.list; nl != NULL; nl = nl->pNext) {
 printf("\n Entity: %-9s Name: %-32s Param: %-15s Trap Min: %d
 Trap Max: %d",
 c_entities[nl->trap_data.entity_type],
 nl->trap_data.entity_name,
 c_trap_params[nl->trap_data.param_to_trap],
 nl->trap_data.min,

160

Chapter 8. Management APIs

 nl->trap_data.max);
 }

 printf("\n End of data");
 xdr_free(xdr_trap_data_list, trap);
 free(trap);
 return(0);
}

In the preceding example, the acmsmgmt_list_trap_1 procedure is called to fetch the contents of the
Trap table. If the call succeeds, the entity_type, entity_name, parameter, trap_min, and trap_max
fields are displayed for each row in the table. Otherwise, an error message is displayed. The example
in Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_LIST_USERS_1
ACMSMGMT_LIST_USERS_1 — ACMS Remote Manager clients call this procedure to obtain
information about users attached to a Remote Manager server on a local or remote node.

Format
user_data_list *acmsmgmt_list_users_1 (sub_id_struct *sub_rec, CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value

161

Chapter 8. Management APIs

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: User_data_list
Access: Write
Mechanism: By reference

Pointer to a record that contains a union consisting of either a failure code or a
pointer to a structure of type user_link, which contains the start of a linked list of
records. The following are the contents of this union:

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

list
Type: User_list
Access: Write
Mechanism: By reference

Start of linked list. Pointer to a structure of user data, and
a forward pointer to the next node in the linked list. The
following are the contents of this structure:

pNext
Type: User_list
Access: Write
Mechanism: By value
Usage: Start of linked list. Pointer to a

structure of type user_list.

user_data
Type: User_rec
Access: Write
Mechanism: By reference

The data describing the user. This
record contains the following fields:

client_id
Type: Integer
Access: Write
Mechanism: By value

Usage:

Usage:

Usage:

Usage: Integer value
containing the

162

Chapter 8. Management APIs

client ID for the
user.

reserved
Type: Integer
Access: Write
Mechanism: By value
Usage: Reserved for VSI

use.

gid
Type: Word
Access: Write
Mechanism: By value
Usage: UIC group

identifier.

uid
Type: Word
Access: Write
Mechanism: By value
Usage: UIC user identifier.

proxy_gid
Type: Word
Access: Write
Mechanism: By value
Usage: UIC group

identifier of the
proxy user, if
proxy is being
used.

proxy_uid
Type: Word
Access: Write
Mechanism: By value
Usage: UIC user identifier

of the proxy user,
if proxy is being
used.

node-name
Type: Null-terminated

string
Access: Write

163

Chapter 8. Management APIs

Mechanism: By reference
Usage: Pointer to a null-

terminated string
containing the
name of the node
from which the
user logged in.

expires
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: Time the user's

credentials expire.
Time is expressed
in OpenVMS
ASCII time format
(DD-MMM-YYYY
HH:MM:SS.hh).

user-name
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: Pointer to a null-

terminated string
containing the user
name.

rights
Type: Array of integers
Access: Write
Mechanism: By value
Usage: ACMS

management rights
identifiers held by
the user.

proxy_flag
Type: Integer
Access: Write
Mechanism: By value
Usage: Indicates whether

the record is for
a proxy user
(proxy_flag = 1) or

164

Chapter 8. Management APIs

is not for a proxy
user (proxy_flag =
0).

Description
The ACMSMGMT_LIST_USERS_1 procedure returns a linked list of users who are logged in to a
particular Remote Manager. All user records are returned on each call to this procedure.

Like other procedures that return linked lists, the return parameter is a union containing either a
failure status code or a linked list of records.

To determine the status of the call and the contents of the return record, first check the status field.
The following are possible values for the status field:

• MGMT_FAIL

The call has failed, and the rc field contains a specific error code describing the failure.

• MGMT_SUCCESS

The call completed successfully. All user records have been returned.

If the status field is equal to MGMT_SUCCESS, a linked list has been returned. The linked list
contains a structure containing the user data and a forward pointer. By following the forward pointer,
all the records in the list can be retrieved.

This procedure does not require the ACMS run-time system to execute.

Example
int list_users_data(int client_id,CLIENT *cl)
{

 user_data_list *user;
 user_link *nl;
 static struct sub_id_struct sub_rec;
 int status;

 sub_rec.client_id = client_id;

 user = acmsmgmt_list_users_1(&sub_rec,cl);

 if (!user) {
 printf("\n RPC Call to get User data failed");
 return(MGMT_FAIL);
 }

 if ((user->status != MGMT_SUCCESS) && (user->status !=
 MGMT_NOMORE_DATA)) {
 printf("\n Call to get User data failed, returning status code %d",
 user->user_data_list_u.rc);
 status = user->user_data_list_u.rc;
 xdr_free(xdr_user_data_list, user);
 free(user);
 return(status);
 }

165

Chapter 8. Management APIs

 for (nl = user->user_data_list_u.list; nl != NULL; nl = nl->pNext)
 printf("\n User %s is logged in from node %s",nl->user_data.uname,
 nl->user_data.nodename);

 printf("\n End of data");
 xdr_free(xdr_user_data_list, user);
 free(user);
 return(0);
}

In the preceding example, the ACMSMGMT_LIST_USERS_1 procedure is called to fetch
information about the users who have logged in to the Remote Manager. If the call succeeds, the name
of the user and the node they logged in from are displayed. Otherwise, an error message is displayed.
Note that the name displayed is the name by which the user is known to the server, and may be a
proxy account. The example in Section 6.3.1 shows how to declare and initialize the input arguments
to this procedure.

ACMSMGMT_REPLACE_SERVER_1
ACMSMGMT_REPLACE_SERVER_1 — This procedure requests the Remote Manager to replace
an ACMS procedure server in an ACMS application on the same node on which the Remote Manager
is running.

Format
cmd_output_rec *acmsmgmt_replace_server_1(ser_sel_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Ser_sel_struct
Access: Read
Mechanism: By reference

Structure that contains client information and procedure server
selection criteria. The structure contains the following fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

Usage:

appl_name

166

Chapter 8. Management APIs

Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to an application

name. The name may contain
wildcard characters (*, !).
Specify in all uppercase
characters.

server_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: A pointer to a procedure

server name. The name may
contain wildcard characters
(*, !). Specify in all uppercase
characters.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of type
cmd_rec, which points to a linked list containing status messages. The following
are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write

Usage:

Mechanism: By value

167

Chapter 8. Management APIs

Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value

Structure containing the first node in a linked list of status
messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference

Usage:

Usage:

Usage: Pointer to the next
node in the linked
list.

Description
This procedure requests to have an ACMS procedure server replaced (stopped and started) in
an application that is running on the same node on which the Remote Manager is running. The
combination of appl_name and server_name in the input record determines which server will be
replaced.

This call executes synchronously. It does not return to the caller until the attempt to replace the server
is complete. Any messages associated with an unsuccessful replacing of the server are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of
both structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status
messages from the cmd_output linked list.

168

Chapter 8. Management APIs

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. There are
no status messages associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. There are no status messages returned;
instead, the reason for the failure is contained in the rc field.

Example
int replace_server(int client_id,CLIENT *cl)
 {

 dcl_link *nl;
 static char c_name_all[2] = "*";
 static char vr_read_server[] = "VR_READ_SERVER";
 static struct ser_sel_struct sub_rec;
 static cmd_output_rec *ret_struct;

 sub_rec.client_id = client_id;
 sub_rec.appl_name = c_name_all;
 sub_rec.server_name = vr_read_server;

 ret_struct = acmsmgmt_replace_server_1(&sub_rec,cl);

 if (!ret_struct) {
 printf("\n Call to replace server failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to replace procedure server %s failed",
 sub_rec.server_name);
 return(MGMT_FAIL);
 }

 printf("\n Call to replace procedure server %s completed with warnings
 or
 errors",sub_rec.server_name);

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
 nl= nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 else {
 printf("\nCall to replace procedure server %s was executed",
 sub_rec.server_name);
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);

169

Chapter 8. Management APIs

}

In the preceding example, the acmsmgmt_replace_server_1 procedure is called to replace servers
named VR_READ_SERVER in any application on the target node. If the call succeeds, all
VR_READ_SERVER servers are replaced (stopped and started). Otherwise, any error messages
associated with the failure are displayed. The example in Section 6.3.1 shows how to declare and
initialize the input arguments to this procedure.

ACMSMGMT_RESET_LOG_1
ACMSMGMT_RESET_LOG_1 — This procedure requests the Remote Manager to close the current
version of its log file and open a new one.

Format
int *acmsmgmt_reset_log_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters
sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Integer

170

Chapter 8. Management APIs

Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or

failure status code. MGMT_SUCCESS indicates
success. Other values indicate failure.

Description

This procedure requests the Remote Manager to close the currently open version of its log and to open
a new one. All subsequent log entries are posted to the new version, and the old version can be safely
removed.

Example
int reset_log_data(int client_id,CLIENT *cl)
 {

 static struct sub_id_struct sub_rec;
 int *status;

 sub_rec.client_id = client_id;

 status = acmsmgmt_reset_log_1(&sub_rec,cl);

 if (!status) {
 printf("\n Call to reset log failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\n Call to reset log failed with status %d",*status);
 free(status);
 return(MGMT_FAIL);
 }
 else
 printf("\n Call to reset log completed");
 free(status);
 return(0);
}

In the preceding example, the acmsmgmt_reset_log_1 procedure is called to close the current Remote
Manager log and to open a new one. If the call succeeds, a success message is displayed. Otherwise,
an error message is displayed. The example in Section 6.3.1 shows how to declare and initialize the
input arguments to this procedure.

ACMSMGMT_RESET_ERR_2
ACMSMGMT_RESET_ERR_2 — This procedure requests the Remote Manager to close the current
version of the error log file and open a new one.

Format

int *acmsmgmt_reset_err_2(sub_id_struct *sub_rec,CLIENT *cl)

171

Chapter 8. Management APIs

Parameters
sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or

failure status code. MGMT_SUCCESS indicates
success. Other values indicate failure.

Description
This procedure requests the Remote Manager to close the currently open version of the error log and
to open a new one. All subsequent erro log entries are posted to the new version, and the old version
can be safely removed.

Example
int reset_err_data(int client_id,CLIENT *cl)
 {

172

Chapter 8. Management APIs

 static struct sub_id_struct sub_rec;
 int *status;

 sub_rec.client_id = client_id;

 status = acmsmgmt_reset_err_2(&sub_rec,cl);

 if (!status) {
 printf("\n Call to reset log failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\n Call to reset log failed with status %d",*status);
 free(status);
 return(MGMT_FAIL);
 }
 else
 printf("\n Call to reset log completed");
 free(status);
 return(0);
}

In the preceding example, the ACMSMGMT_RESET_ERR_2 procedure is called to close the current
error log and to open a new one. If the call succeeds, a success message is displayed. Otherwise, an
error message is displayed.

ACMSMGMT_SAVE_ERR_FILTER_2
ACMSMGMT_SAVE_ERR_FILTER_2 — This procedure saves the current error filter records to an
error filter file.

Format
int *acmsmgmt_save_err_filter_2(sub_id_struct *sub_rec,CLIENT *cl)

Parameters
set_struct

Type: Err_filter_config_rec_r_2
Access: Read
Mechanism: By reference

Structure that contains the following client authorization and error
filter record information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client

173

Chapter 8. Management APIs

ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

err_filter_file_name
Type: file_spec
Access: Read
Mechanism: By value
Usage: Specifies the OpenVMS file

specification for the error filter
file.

err_msg_name
Type: String
Access: Read
Mechanism: By value
Usage: Symbolic name of the error

message.

err_code
Type: String
Access: Read
Mechanism: By value
Usage: Decimal or hexadecimal code

for the error message.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to a status code containing a success or

failure status code. MGMT_SUCCESS indicates
success. Other values indicate failure.

Description
This procedure saves all records in the Error Filter table to the specified ASCII text file.

174

Chapter 8. Management APIs

Example
int save_err_filter(int client_id, CLIENT *cl)
 {
 int *status;
 static char c_null_str[2] = "";
 static char file_spec = "sys$login:err_filter.dat";
 err_filter_config_rec_r_2 set_struct;

 set_struct.client_id = client_id;
 set_struct.err_filter_file_name = file_spec;
 set_struct.err_msg_name = c_null_str;
 set_struct.err_code = -2;

 status = acmsmgmt_save_err_filter_file_2(&set_struct, cl);

 if (!status) {
 printf("\n Call to save error filter failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\n Call to save error filter failed with status %d",
 *status);
 free(status);
 return(MGMT_FAIL);
 }
 else {
 printf("\n Call to save error filter completed");
 }

 free(status);
 return(0);
}

In the preceding example, the ACMSMGMT_SAVE_ERR_FILTER_2 procedure is called to save all
the records in the Error Filter table to the file SYS$LOGIN:ERR_FILTER.DAT. If the call succeeds, a
success message is displayed. Otherwise, an error message is displayed.

ACMSMGMT_SET_ACC_2
ACMSMGMT_SET_ACC_2 — This procedure modifies ACMS Central Controller (ACC) Config
class fields.

Format
acc_status_rec_2 *acmsmgmt_set_acc_2(acc_config_rec_2 *set_struct,CLIENT *cl)

Parameters
set_struct

Type: Acc_config_rec
Access: Read
Mechanism: By reference

175

Chapter 8. Management APIs

Structure that contains the following client identification and ACC
table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

active_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether active

variables should be updated
(active_sw = 1). Active variables
are currently in use by the
ACMS system; updates to active
variables take effect immediately
but are not durable (that is,
they do not survive a restart
of the ACMS system). Not all
variables are dynamic, however.
Refer to Section 9.2, and to
the field descriptions in this
section, to determine whether
a particular variable can be
updated dynamically.

current_sw
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: Indicates whether current
variables should be updated
(current_sw = 1). Current
variables are those stored in the
ACMSGEN file currently in use
by the ACMS system and are
durable (that is, they can survive

176

Chapter 8. Management APIs

a restart of the ACMS system).
Updates to current variables take
effect when the ACMS system is
restarted.

acc_priority, audit_state, max_appl, mss_maxobj, mss_maxbuf,
mss_poolsize, wsc_poolsize, tws_poolsize, twsc_poolsize
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These

fields correspond to fields of
the same names in the ACC
table, depending on the value
of active_sw and current_sw
in this record (for example,
acc_priority will update the
acc_priority_active field if
active_sw is equal to 1). See
Section 9.2 for a discussion
of these fields. Note that
not all fields can be updated
dynamically.

acc_username, username_default, node_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Values to be updated. These

fields correspond to fields of
the same names in the ACC
table, depending on the value
of active_sw and current_sw
in this record (for example,
username_default will update
the username_default_active
field if active_sw is equal
to 1). See Section 9.2 for a
discussion of these fields. Note
that not all fields can be updated
dynamically. In order to have
any of these fields set to null
(that is, ""), set the field to the
string "NULL".

cl

Type: CLIENT *

177

Chapter 8. Management APIs

Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Struct acc_status_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type acc_config_rec_out, which contains status codes for each field, as well as
a linked list of status messages associated with the update. See the Description
section for a discussion of how to determine the update status for any field. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Acc_config_rec_out
Access: Write
Mechanism: By value

Structure containing fields corresponding to the fields in the
acc_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update
status for any field. The following are the contents of this
structure:

acc_priority, audit_state, max_appl, mss_maxobj,
mss_maxbuf, mss_poolsize, wsc_poolsize, tws_poolsize,
twsc_poolsize
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the fields

in the input argument.

Usage:

Usage:

acc_username, username_default, node_name

178

Chapter 8. Management APIs

Type: Null-terminated string
Access: Write
Mechanism: By reference
Usage: These fields contain the values that

were supplied in the input argument,
and can be ignored.

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference

Usage:

Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests updates to ACMS ACC Config class fields contained in the ACC table (see
Section 9.2). Note that the ACC table contains both active and stored values. The active_sw field and
current_sw field control which fields are to be updated.

Attempting to update an active field that is nondynamic is essentially useless, since the value of the
active field value will not change. For instance, calling this procedure with the active_sw field set to 1
and the acc_username field populated produces no change to the system.

Setting the current_sw field to 1 causes updates to be written to the current ACMSGEN file. These
updates are durable, that is, they can survive a restart of the ACMS sytem, but they do not affect the
active system until the system is restarted.

179

Chapter 8. Management APIs

Both current_sw and active_sw can be set on a given call. If they are, both the active and stored
values for any nonnegative or nonnull fields will be updated.

For any nonnegative integer fields, the completion status of the update is returned in the
corresponding field in the return structure. For string fields, the string field value is returned
regardless of the status of the call.

In order to have one of the string fields set to a null string, that is, "", populate the field with the value
NULL. To have one of the string fields ignored, pass in a null string.

Example
int set_acc_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[2] = "*";
 static char c_null_str[2] = "";
 static acc_config_rec_2 set_struct;
 acc_status_rec_2 *ret_struct;
 dcl_link *nl;

 memset(&set_struct,-1,sizeof(set_struct));
 set_struct.client_id = client_id;
 set_struct.active_sw = 1;
 set_struct.current_sw = 0;
 set_struct.audit_state = MGMT_STATE_DISABLED;

 /* Have to provide a pointer for string conversions by XDR
 or it will access vio. RM will ignore any fields with
 strlen of 0 */
 set_struct.acc_username = c_null_str;
 set_struct.username_default = c_null_str;
 set_struct.node_name = c_null_str;

 ret_struct = acmsmgmt_set_acc_2(&set_struct,cl);

 if (!ret_struct) {
 printf("\n Call to modify ACC failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS)
 printf("\n Call to modify ACC returned the following warnings or
 errors\n");
 else
 printf("\n Call to modify ACC completed\n");

 for (nl = ret_struct->acc_status_rec_2_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_acc_status_rec_2, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_set_acc_1 procedure is called to disable system auditing
on the target node. If the call succeeds, system auditing is disabled on the target node, and a success

180

Chapter 8. Management APIs

message is displayed. Otherwise, an error message is displayed. The example in Section 6.3.1 shows
how to declare and initialize the input arguments to this procedure.

ACMSMGMT_SET_COLLECTION_2
ACMSMGMT_SET_COLLECTION_2 — This procedure modifies entries in the Remote Manager
Collection table. Collection table entries can also be added and deleted.

Format
coll_status_rec_2 *acmsmgmt_set_collection_2(coll_config_rec_2 *set_struct,CLIENT *cl)

Parameters
set_struct

Type: Coll_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and
collection table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

coll
Type: Struct coll_update_rec_r
Access: Read
Mechanism: By value

Usage:

Usage: Structure containing a Collection
table record. Collection
table fields are described in
Section 9.4. See the Description
section for information on how
to initialize this record.

cl

Type: CLIENT *

181

Chapter 8. Management APIs

Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Struct coll_status_rec
Access: write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a
structure of type coll_update_rec_r, which contains status codes
for each field. See the Description section for a discussion of how
to determine the update status for any field. The following are the
contents of this union:

status
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Coll_update_rec_r
Access: write
Mechanism: By value

Usage:

Usage: Structure containing a Collection
table record. The entries in
this field contain status codes
that correspond to the fields
in the coll structure. See the
Description section for a
discussion of how to determine
the update status for any field.

Description

This procedure requests updates to fields in the Collection table (see Section 9.4).

Updates to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the collection table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and collection_class. These fields
must exactly match an existing record in the Collection table for the update to be applied. Table 8.1
and Table 8.4 contain symbolic values used to populate the collection_class and entity_type fields;
entity_name is specified as a null-terminated string.

182

Chapter 8. Management APIs

For any nonnegative fields, the completion status of the update is returned in the corresponding field
in the return structure. This includes the key fields of entity_type, entity_name, and collection_class.
If no matching record is found in the table, entity_type and collection_class contain values of
MGMT_FAIL.

Updates to the collection table are processed immediately and may affect more than one ACMS
process. See Section 5.1 for discussion of how the collection table affects ACMS data collection.

Example
int set_collection_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[2] = "*";
 static coll_config_rec_2 set_struct;
 struct coll_status_rec_2 *status_rec;

 set_struct.client_id = client_id;
 set_struct.coll.entity_type = MGMT_ALL;
 set_struct.coll.entity_name = c_name_all;
 set_struct.coll.collection_class = MGMT_CLASS_RT;
 set_struct.coll.collection_state = MGMT_STATE_ENABLED;

 status_rec = acmsmgmt_set_collection_2(&set_struct,cl);
 if (!status_rec) {
 printf("\n Call to modify collection failed");
 return(MGMT_FAIL);
 }

 if (status_rec->status == MGMT_WARN) {
 printf("\nThe following updates failed: ");
 if (status_rec->coll_status_rec_2_u.data_warn.entity_type ==
 MGMT_FAIL)
 printf("\n Record not found");
 if (status_rec->coll_status_rec_2_u.data_warn.collection_state
 == MGMT_FAIL)
 printf("\n coll_state invalid");
 if (status_rec->coll_status_rec_2_u.data_warn.storage_state ==
 MGMT_FAIL)
 printf("\n storage_state invalid");
 if (status_rec->coll_status_rec_2_u.data_warn.storage_interval
 == MGMT_FAIL)
 printf("\n storage_interval invalid");
 }

 else if (status_rec->status != MGMT_SUCCESS) {
 printf("\n Call to modify collection failed with status
 %d",status_rec->coll_status_rec_2_u.rc);
 xdr_free(xdr_coll_status_rec_2, status_rec);
 free(status_rec);
 return(MGMT_FAIL);
 }
 else
 printf("\nCall to modify collection was executed");
 xdr_free(xdr_coll_status_rec_2, status_rec);
 free(status_rec);
 return(0);

183

Chapter 8. Management APIs

}

In the preceding example, the acmsmgmt_set_collection_1 procedure is called to set the collection
state to ENABLED for the Collection table record with entity of * (all), name of * (all), and class of
RUNTIME. If the call set the collection state to ENABLED for the Collection table record with an
entity of * (all), a name of * (all), and class of RUNTIME. If the call succeeds, the new value will be
stored in the Collection table, all ACMS processes on the target node will begin collecting run-time
data, and a success message will be displayed. Otherwise, an error message is displayed. The example
in Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_SET_CP_2
ACMSMGMT_SET_CP_2 — This procedure modifies the ACMS Central Process (CP) class
attributes.

Format
cp_status_rec_2 *acmsmgmt_set_cp_2(cp_config_rec_2 *cp_cfg_rec,CLIENT *cl)

Parameters
cp_cfg_rec_2

Type: Cp_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and
collection table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

astlm, biolm, bytlm, current_sw, diolm, enqlm, fillm,
pgflquota, tqelm, wsdefault, wsextent, wsquota
Type: Cp_rec_r
Access: Read
Mechanism: By value

Usage:

Usage: Structure containing a CP
table record. CP table fields
are described in . See the
Description section for

184

Chapter 8. Management APIs

information on how to initialize
this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cp_status_rec_2
Access: write
Mechanism: By reference

Pointer to a record that contains a union consisting of either
a failure code or a structure of type config_rec_out_2, which
contains status codes for each field. See the Description section for
a discussion of how to determine the update status for any field.
The following are the contents of this union:

rc
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Config_rec_out_2
Access: write
Mechanism: By value

Usage:

Usage: Structure containing a CP
table record. The entries in this
field contain status codes that
correspond to the fields in the
cp structure. See the Description
section for a discussion of how
to determine the update status
for any field.

Description
This procedure requests updates to fields in the CP table.

Updates to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the collection table, use the ACMSCFG utility.

Updates to the CP table are processed immediately and may affect more than one ACMS process.

185

Chapter 8. Management APIs

Example
int set_cp_data(int client_id,CLIENT *cl)
 {
 cp_config_rec_2 set_struct;
 cp_status_rec_2 *ret_struct;
 dcl_link *nl;

 memset(&set_struct,-1,sizeof(set_struct));

 set_struct.client_id = client_id;
 set_struct.current_sw = 1;
 set_struct.astlm = 500;

 ret_struct = acmsmgmt_set_cp_2(&set_struct,cl);

 if (!ret_struct) {
 printf("\n Call to modify CP failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS)
 printf("\n Call to modify CP returned the following warnings or
 errors\n");
 else
 printf("\n Call to modify CP completed\n");

 for (nl = ret_struct->cp_status_rec_2_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cp_status_rec_2, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the ACMSMGMT_SET_CP_2 procedure is called. Otherwise, an error
message is displayed.

ACMSMGMT_SET_EXC_2
ACMSMGMT_SET_EXC_2 — This procedure modifies the ACMS Application Execution
Controller (EXC) Config class attributes.

Format
exc_status_rec_2 *acmsmgmt_set_exc_2(exc_config_rec_2 *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Exc_config_rec
Access: Read
Mechanism: By reference

186

Chapter 8. Management APIs

Structure that contains the following client identification and EXC
table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value of client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the application to

update.

audit_state, max_tasks, sp_mon_interval, max_servers,
server_proc_dmpflag, transaction_timeout
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: Values to be updated. These
fields correspond to the
active fields of the same
names in the EXC table (for
example, max_tasks will
update max_tasks_active). See
Section 9.6 for a discussion
of these fields. All fields in
this record can be updated
dynamically. Stored values
cannot be changed for EXCs
(application must be rebuilt).

cl

Type: CLIENT *
Access: Read
Mechanism: By value

187

Chapter 8. Management APIs

Usage: Pointer to an RPC client handle previously obtained by calling the
RPC routine CLNT_CREATE.

Return Value

Type: Struct exc_status_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type exc_config_rec_out, which contains status codes for each field, as well as
a linked list of status messages associated with the update. See the Description
section for a discussion of how to determine the update status for any field. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Exc_config_rec_out
Access: Write
Mechanism: By value

Structure containing fields corresponding to the fields in the
exc_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update
status for any field. The following are the contents of this
structure:

audit_state, max_tasks, sp_mon_interval, max_servers,
server_proc_dmpflag, transaction_timeout
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the fields

in the input argument.

cmd_output
Type: Dcl_list
Access: Write

Usage:

Usage:

Mechanism: By reference

188

Chapter 8. Management APIs

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference

Usage:

Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests updates to ACMS EXC Config class fields contained in the EXC table (see
Section 9.6). Note that the EXC table contains both active and stored values; however, only the active
fields can be changed. In order to change the stored values, the application must be rebuilt.

For any nonnegative integer fields, the completion status of the update is returned in the
corresponding field in the return structure.

Example
int set_exc_data(int client_id,CLIENT *cl)
 {

 static char vr_appl[] = "VR_APPL";
 static exc_config_rec_2 set_struct;
 exc_status_rec_2 *ret_struct;
 dcl_link *nl;

 memset(&set_struct,-1,sizeof(set_struct));
 set_struct.client_id = client_id;
 set_struct.audit_state = MGMT_STATE_DISABLED;
 set_struct.appl_name = vr_appl;

 ret_struct = acmsmgmt_set_exc_2(&set_struct,cl);

 if (!ret_struct) {
 printf("\n Call to modify EXC failed");
 return(MGMT_FAIL);

189

Chapter 8. Management APIs

 }

 if (ret_struct->status != MGMT_SUCCESS)
 printf("\n Call to modify EXC returned the following warnings or
 errors\n");
 else
 printf("\n Call to modify EXC completed\n");

 for (nl = ret_struct->exc_status_rec_2_u.data.cmd_output; nl != NULL; nl
 =
 nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_exc_status_rec_2, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_set_exc_1 procedure is called to disable application
auditing for the application VR_APPL on the target node. If the call succeeds, the VR_APPL no
longer writes application auditing messages, and a success message is displayed. Otherwise, an error
message is displayed. The example in Section 6.3.1 shows how to declare and initialize the input
arguments to this procedure.

ACMSMGMT_SET_INTERFACE_1
ACMSMGMT_SET_INTERFACE_1 — This procedure modifies the status of a Remote Manager
interface. Either the SNMP or RPC interface can be modified. Note: ACMS Remote Manager will
not allow the RPC interface to be DISABLED through this call. The only way to disable the RPC
interface dynamically is to use the SNMP interface.

Format
int *acmsmgmt_set_interface_1(interface_config_rec *if_cfg_rec,CLIENT *cl)

Parameters

if_cfg_rec

Type: Interface_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and
interface configuration fields.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the

190

Chapter 8. Management APIs

value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

interface_type
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates the interface to be

modified. Table 8.2 shows
the valid symbolic values for
interface types.

state
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates desired state of the

interface. Table 8.3 shows the
valid symbolic values for the
allowable states.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to status value returned. If NULL or

MGMT_SUCCESS, the RPC has succeeded.
If neither NULL nor MGMT_SUCCESS, the
procedure call failed and the value pointed to is
the reason for failure.

Description
This procedure modifies the status of an interface. Interfaces can be enabled (that is, requested to
start) or disabled (that is, requested to stop) by setting the state field in if_cfg_rec to the appropriate
value.

191

Chapter 8. Management APIs

Note that it is not possible to use the RPC interface to enable the RPC interface. In order to use the
RPC interface, it must already be enabled. In order to start the RPC interface, either use the SNMP
interface, or use the ACMSCFG utility to configure the RPC interface to be enabled when the Remote
Manager starts up.

It is also not possible to use this call to disable the RPC interface. The ACMS Remote Manager does
not allow an interface to disable itself. The only way to disable the RPC interface dynamically is to
use the SNMP interface.

Example
int set_interface_data(int client_id,CLIENT *cl)
 {

 static interface_config_rec set_struct;
 int *status;

 memset(&set_struct,-1,sizeof(set_struct));

 set_struct.client_id = client_id;
 set_struct.interface_type = MGMT_IF_SNMP;
 set_struct.state = MGMT_STATE_ENABLED;

 status = acmsmgmt_set_interface_1(&set_struct,cl);

 if (!status) {
 printf("\n Call to update SNMP interface failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\n Call to update SNMP interface failed with status
 %d",*status);
 free(status);
 return(MGMT_FAIL);
 }
 else
 printf("\n Call to set SNMP interface completed");
 free(status);
 return(0);
}

In the preceding example, the acmsmgmt_set_interface_1 procedure is called to enable the SNMP
interface. If the call succeeds, the SNMP interface is running on the target node, and a success
message is displayed. Otherwise, an error message is displayed. The example in Section 6.3.1 shows
how to declare and initialize the input arguments to this procedure.

ACMSMGMT_SET_PARAM_2
ACMSMGMT_SET_PARAM_2 — This procedure requests updates to fields in the Remote Manager
Parameter table.

Format

param_status_rec2 *acmsmgmt_set_param_2(param_config_rec2 *set_struct,CLIENT *cl)

192

Chapter 8. Management APIs

Parameters
set_struct

Type: Param_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and
parameter configuration fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

params
Type: Struct param_rec
Access: Read
Mechanism: By value

Usage:

Usage: Structure containing a Parameter
table record. Parameter
table fields are described in
Section 9.9. See the Description
section for information on how
to initialize this record.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Struct param_status_rec
Access: write
Mechanism: By reference

193

Chapter 8. Management APIs

Pointer to a union. The union either contains a failure code or
a structure of type param_rec, which contains status codes for
each field. See the Description section for a discussion of how to
determine the update status for any field. The following are the
contents of this union:

status
Type: Integer
Access: write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Param_rec
Access: write
Mechanism: By value

Usage:

Usage: Structure containing a Parameter
table record. The entries in
this field contain status codes
correspond to the fields in
the params structure. See
the Description section for a
discussion of how to determine
the update status for any field.

Description
This procedure requests updates to fields in the Parameter table (see Section 9.9). Some field updates
are dynamic; others are not. Updates to this table are not durable; that is, they do not survive a restart
of the Remote Manager.

When this procedure is called, any fields with negative values are ignored. Callers should initialize
any fields to a negative value, for example, -1, for which updates are not to be applied. All
nonnegative fields are validated prior to being updated.

For any nonnegative fields, the completion status of the update is returned in the corresponding
field in the return structure. For instance, if the mss_coll_interval and max_logins fields in the
params structure of the param_config_rec are nonnegative when this procedure is called, the
mss_coll_interval and max_logins field of the data or data_warn structures of the param_status_rec
will contain the completion status for those updates.

The data and data_warn structures contain identical data. If the operation fails, the status field
of either structure is MGMT_WARN; in this case, use the data_warn structure to fetch the status
messages from the cmd_output linked list.

If the operation is successful, the status field of either structure is MGMT_SUCCESS. There are no
status messages associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. There are no status messages returned;
instead, the reason for the failure is contained in the rc field.

194

Chapter 8. Management APIs

Example
int set_param_data(int client_id,CLIENT *cl)
 {

 static param_config_rec2 set_struct;
 param_status_rec2 *ret_struct;
 int status;

 memset(&set_struct,-1,sizeof(set_struct));

 set_struct.client_id = client_id;
 set_struct.params.max_logins = 25;

 ret_struct = acmsmgmt_set_param_2(&set_struct,cl);

 if (!ret_struct) {
 printf("\n Call to modify parameters failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to modify parameters failed, returning %d",
 ret_struct->status);
 status = ret_struct->status;
 xdr_free(xdr_param_status_rec2, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 if (ret_struct->param_status_rec2_u.data.max_logins != MGMT_SUCCESS)
 printf("\n max_logins specified was invalid ");
 xdr_free(xdr_param_status_rec2, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 else
 printf("\n Call to set params completed");
 xdr_free(xdr_param_status_rec2, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_set_param_1 procedure is called to set the maximum
number of logins to the Remote Manager to 25. If the call succeeds, the new value will be stored
in the Parameter table and a success message will be displayed. Otherwise, an error message is
displayed. The example in Section 6.3.1 shows how to declare and initialize the input arguments to
this procedure.

ACMSMGMT_SET_QTI_2
ACMSMGMT_SET_QTI_2 — This procedure modifies Queued Task Initator (QTI) Config class
attributes.

195

Chapter 8. Management APIs

Format
qti_status_rec_2 *acmsmgmt_set_qti_2(qti_config_rec_2 *set_struct,CLIENT *cl)

Parameters
set_struct

Type: Qti_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and QTI
table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value of client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

active_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether active

variables should be updated
(active_sw = 1). Active variables
are currently in use by the
ACMS system; updates to active
variables take effect immediately
but are not durable (that is,
they do not survive a restart
of the ACMS system). Not all
variables are dynamic, however.
Refer to Section 9.10 and to
the field descriptions in this
section, to determine whether
a particular variable can be
updated dynamically.

Usage:

current_sw

196

Chapter 8. Management APIs

Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether current

variables should be updated
(current_sw = 1). Current
variables are those stored in the
ACMSGEN file currently in use
by the ACMS system and are
durable (that is, they survive a
restart of the ACMS system).
Updates to current variables take
effect when the ACMS system is
restarted.

qti_priority, max_threads, sub_timeout, retry_timer, polling_timer
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These

fields correspond to fields of
the same names in the QTI
table, depending on the value
of active_sw and current_sw
in this record (for example,
qti_priority will update the
qti_priority_stored field if
current_sw is equal to 1). See
Section 9.10 for a discussion
of these fields. Note that
not all fields can be updated
dynamically.

qti_username
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Values to be updated. This field

corresponds to the qti_username
field in the QTI table; the exact
field depends on the value
of active_sw and current_sw
in this record (for example,
qti_username will update the
qti_username_stored field if
current_sw is equal to 1). See
Section 9.10 for a discussion

197

Chapter 8. Management APIs

of these fields. Note that
not all fields can be updated
dynamically. In order to have
this field set to null (that is,
""), set the field to the string
"NULL".

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Struct qti_status_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type qti_config_rec_out, which contains status codes for each field, as well as
a linked list of status messages associated with the update. See the Description
section for a discussion of how to determine the update status for any field. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Qti_config_rec_out
Access: Write
Mechanism: By value

Structure containing fields corresponding to the fields in
the qti_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update
status for any field. The following are the contents of this
structure:

qti_priority, max_threads, sub_timeout, retry_timer,
polling_timer

Usage:

Usage:

Type: Integer

198

Chapter 8. Management APIs

Access: Write
Mechanism: By value
Usage: Status fields corresponding to the fields

in the input argument.

qti_username
Type: Null-terminated string
Access: Write
Mechanism: By reference
Usage: This field contains the value that was

supplied in the input argument and can
be ignored.

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference

Usage:

Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests updates to ACMS QTI Config class fields contained in the QTI table (see
Section 9.10). Note that the QTI table contains both active and stored values. The active_sw field and
current_sw field control which fields should be updated.

199

Chapter 8. Management APIs

Attempting to update an active field that is nondynamic is essentially useless, since the active field
value does not change. For instance, calling this procedure with the active_sw field set to 1 and the
qti_username field populated produces no change to the system.

Setting the current_sw field to 1 causes updates to be written to the current ACMSGEN file. These
updates are durable, that is, they survive a restart of the ACMS sytem, but do not affect the active
system until the system is restarted.

Both current_sw and active_sw can be set on a given call. In this case, both the active and stored
values for any nonnegative or nonnull fields are updated.

For any nonnegative integer fields, the completion status of the update is returned in the
corresponding field in the return structure. For string fields, the string field value is returned,
regardless of the status of the call.

In order to have one of the string fields set to a null string, that is, "", populate the field with value
"NULL". To have one of the string fields ignored, pass in a null string.

Example
int set_qti_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[2] = "*";
 static char c_null_str[2] = "";
 static qti_config_rec_2 set_struct;
 qti_status_rec_2 *ret_struct;
 dcl_link *nl;

 memset(&set_struct,-1,sizeof(set_struct));
 set_struct.client_id = client_id;
 set_struct.active_sw = 1;
 set_struct.current_sw = 0;
 set_struct.polling_timer = 4999;

 /* Have to provide a pointer for string conversions by XDR
 or it will qtiess vio. RM will ignore any fields with
 strlen of 0 */
 set_struct.qti_username = c_null_str;

 ret_struct = acmsmgmt_set_qti_2(&set_struct,cl);

 if (!ret_struct) {
 printf("\n Call to modify qti failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS)
 printf("\n Call to modify QTI returned the following warnings or
 errors\n");
 else
 printf("\n Call to modify QTI completed\n");

 for (nl = ret_struct->qti_status_rec_2_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_qti_status_rec_2, ret_struct);
 free(ret_struct);

200

Chapter 8. Management APIs

 return(0);
}

In the preceding example, the acmsmgmt_set_qti_1 procedure is called to set the ACMSGEN
parameter qti_polling_timer to 4999 milliseconds. If the call succeeds, only the active value is
modified, the stored value is unchanged, and a success message is displayed. Otherwise, an error
message is displayed. The example in Section 6.3.1 shows how to declare and initialize the input
arguments to this procedure.

ACMSMGMT_SET_SERVER_1
ACMSMGMT_SET_SERVER_1 — This procedure modifies server (ACMS procedure server)
Config class attributes.

Format
ser_status_rec *acmsmgmt_set_server_1(ser_config_rec *set_struct,CLIENT *cl)

Parameters
set_struct

Type: Ser_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and
Server table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value of client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the application to

which the server to be updated
belongs.

Usage:

201

Chapter 8. Management APIs

server_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the server to update.

creation_delay, creation_interval, deletion_delay,
deletion_interval, server_proc_dmpflag, minimum_instances,
maximum_instances
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These

fields correspond to the active
fields of the same names in
the Server table (for example,
creation_delay updates the
creation_delay_active field). See
Section 9.11 for a discussion
of these fields. All fields in
this record can be updated
dynamically.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Struct ser_status_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type ser_config_rec_out, which contains status codes for each field, as well as
a linked list of status messages associated with the update. See the Description
section for a discussion of how to determine the update status for any field. The
following are the contents of this union:

status
Type: Integer
Access: Write

Usage:

Mechanism: By value

202

Chapter 8. Management APIs

Usage: Failure return code.

data, data_warn
Type: Ser_config_rec_out
Access: Write
Mechanism: By value

Structure containing fields corresponding to the fields in the
ser_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update
status for any field. The following are the contents of this
structure:

creation_delay, creation_interval, deletion_delay,
deletion_interval, server_proc_dmpflag,
minimum_instances, maximum_instances
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the fields

in the input argument.

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list

Usage:

Usage:

Access: Write

203

Chapter 8. Management APIs

Mechanism: By reference
Usage: Pointer to the next

node in the linked
list.

Description
This procedure requests updates to ACMS server Config class fields contained in the Server table (see
Section 9.11). Note that the Server table contains only active values.

For any nonnegative integer fields, the completion status of the update is returned in the
corresponding field in the return structure.

Example
int set_ser_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[2] = "*";
 static char vr_appl[] = "VR_APPL";
 static ser_config_rec set_struct;
 ser_status_rec *ret_struct;
 dcl_link *nl;

 memset(&set_struct,-1,sizeof(set_struct));
 set_struct.client_id = client_id;
 set_struct.appl_name = vr_appl;
 set_struct.server_name = c_name_all;
 set_struct.creation_delay = 20;

 ret_struct = acmsmgmt_set_server_1(&set_struct,cl);

 if (!ret_struct) {
 printf("\n Call to modify Server failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS)
 printf("\n Call to modify Server returned the following warnings or
 errors\n");
 else
 printf("\n Call to modify Server completed\n");

 for (nl = ret_struct->ser_status_rec_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_ser_status_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_set_server_1 procedure is called to set the creation_delay
parameter field for all servers in application VR_APPL to 20 seconds. If the call succeeds, this
parameter field is modified for all servers in the VR_APPL, and a success message is displayed.
Otherwise, an error message is displayed. The example in Section 6.3.1 shows how to declare and
initialize the input arguments to this procedure.

204

Chapter 8. Management APIs

ACMSMGMT_SET_TRAP_1
ACMSMGMT_SET_TRAP_1 — This procedure modifies entries in the Remote Manager Trap table.
Trap table entries can also be added and deleted.

Format

trap_status_rec *acmsmgmt_set_trap_1(trap_config_rec *set_struct,CLIENT *cl)

Parameters

set_struct

Type: Trap_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and Trap
table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value of client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

trap_entry
Type: Struct trap_update_rec_r
Access: Read
Mechanism: By value

Usage:

Usage: Structure containing a Trap
table record. Trap table fields
are described in Section 9.13.
See the Description section for
information on how to initialize
this record.

cl

Type: CLIENT *

205

Chapter 8. Management APIs

Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Struct trap_status_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a
structure of type trap_update_rec_r, which contains status codes
for each field. See the Description section for a discussion of how
to determine the update status for any field. The following are the
contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data_warn
Type: Trap_update_rec_r
Access: Write
Mechanism: By value

Usage:

Usage: Structure containing a Trap
table record. The entries in
this field contain status codes
corresponding to the fields in
the trap_entry structure. See
the Description section for a
discussion of how to determine
the update status for any field.

Description

This procedure requests updates to fields in the Trap table (see Section 9.13).

Updates to this table are not durable; that is, they do not survive a restart of the Remote Manager. To
make nondynamic, permanent updates to the Trap table, use the ACMSCFG utility.

Calls to this procedure must specify entity_type, entity_name, and param_to_trap. These fields must
exactly match an existing record in the Trap table for the update to be applied. Table 8.1 and Table 8.4
contain symbolic values used to populate the collection_class and entity_type fields; symbolic values
to the param_to_trap field are described in Table 8.8.

206

Chapter 8. Management APIs

Setting fields trap_min, trap_max, or severity to -2 excludes them from being updating. Otherwise, the
corresponding field in the matching trap record is modified. -1 is a special value that causes the field
to be ignored when evaluating the trap conditions; see Section 7.8.

Updates to the Trap table are processed immediately and may affect more than one ACMS process.
See Section 7.8 for a discussion of how to set SNMP traps.

Example
int set_trap_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[2] = "*";
 static trap_config_rec set_struct;
 struct trap_status_rec *status_rec;

 set_struct.client_id = client_id
 set_struct.trap_entry.entity_type = MGMT_ACC;
 set_struct.trap_entry.entity_name = c_name_all;
 set_struct.trap_entry.param_to_trap = MGMT_EXISTS;
 set_struct.trap_entry.min = 1;
 set_struct.trap_entry.max = -1;
 set_struct.trap_entry.severity = MGMT_SEV_FATAL;

 status_rec = acmsmgmt_set_trap_1(&set_struct,cl);

 if (!status_rec) {
 printf("\n Call to modify trap failed");
 return(MGMT_FAIL);
 }

 if (status_rec->status == MGMT_WARN) {
 printf("\nThe following updates failed: ");
 if (status_rec->trap_status_rec_u.data_warn.entity_type ==
 MGMT_FAIL)
 printf("\n entity_type not found or invalid");
 if (status_rec->trap_status_rec_u.data_warn.param_to_trap ==
 MGMT_FAIL)
 printf("\n param not found or invalid");
 if (status_rec->trap_status_rec_u.data_warn.min == MGMT_FAIL)
 printf("\n min invalid");
 if (status_rec->trap_status_rec_u.data_warn.max == MGMT_FAIL)
 printf("\n max invalid");
 if (status_rec->trap_status_rec_u.data_warn.severity == MGMT_FAIL)
 printf("\n severity invalid");
 }

 else if (status_rec->status != MGMT_SUCCESS) {
 printf("\nCall to modify trap failed with status %d",
 status_rec->trap_status_rec_u.rc);
 xdr_free(xdr_trap_status_rec, status_rec);
 free(status_rec);
 return(MGMT_FAIL);
 }
 else
 printf("\nCall to modify trap was executed");
 xdr_free(xdr_trap_status_rec, status_rec);
 free(status_rec);

207

Chapter 8. Management APIs

 return(0);
}

In the preceding example, the acmsmgmt_set_trap_1 procedure is called to set the trap_min field to 1,
the trap_max field to -1, and the trap severity to FATAL for a trap based on an entity_type of ACC, an
entity_name of * (all), and a trap parameter of EXISTS. The effect of this change is to cause a fatal-
level trap to be generated if the ACC on the target node is stopped. If the call succeeds, the trap is
reconfigured in the Trap table in memory. Otherwise, an error message is displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_SET_TSC_2
ACMSMGMT_SET_TSC_2 — This procedure modifies Terminal Subsystem Controller (TSC)
Config class attributes.

Format
tsc_status_rec_2 *acmsmgmt_set_tsc_2(tsc_config_rec_2 *set_struct,CLIENT *cl)

Parameters
set_struct

Type: Tsc_config_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and TSC
table fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value of client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

active_sw
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: Indicates whether active
variables should be updated
(active_sw = 1). Active variables

208

Chapter 8. Management APIs

are currently in use by the
ACMS system; updates to active
variables take effect immediately
but are not durable (that is,
they do not survive a restart
of the ACMS system). Not all
variables are dynamic, however.
Refer to Section 9.15, and to
the field descriptions in this
section, to determine whether
a particular variable can be
updated dynamically.

current_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether current

variables should be updated
(current_sw = 1). Current
variables are those stored in the
ACMSGEN file currently in use
by the ACMS system and are
durable (that is, they survive a
restart of the ACMS system).
Updates to current variables take
effect when the ACMS system is
restarted.

tsc_priority, cp_priority, cp_slots, max_logins, max_tts_cp,
perm_cps, min_cpis
Type: Integer
Access: Read
Mechanism: By value
Usage: Values to be updated. These

fields correspond to fields of
the same names in the TSC
table, depending on the value
of active_sw and current_sw
in this record (for example,
tsc_priority will update the
tsc_priority_stored field if
current_sw is equal to 1). See
Section 9.15 for a discussion
of these fields. Note that
not all fields can be updated
dynamically.

209

Chapter 8. Management APIs

tsc_username, cp_username
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Values to be updated. These

fields correspond to fields of
the same names in the TSC
table, depending on the value
of active_sw and current_sw
in this record (for example,
tsc_username will update the
tsc_username_stored field if
current_sw is equal to 1). See
Section 9.15 for a discussion
of these fields. Note that
not all fields can be updated
dynamically. In order to have
any of these fields set to null
(that is, ""), set the field to the
string "NULL".

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Struct tsc_status_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type tsc_config_rec_out, which contains status codes for each field, as well as
a linked list of status messages associated with the update. See the Description
section for a discussion of how to determine the update status for any field. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

Usage:

data, data_warn

210

Chapter 8. Management APIs

Type: Tsc_config_rec_out
Access: Write
Mechanism: By value

Structure containing fields corresponding to the fields in the
acc_config_rec structure, as well as a linked list of status
messages associated with the update. See the Description
section for a discussion of how to determine the update
status for any field. The following are the contents of this
structure:

tsc_priority, cp_priority, cp_slots, max_logins, max_tts_cp,
perm_cps, min_cpis
Type: Integer
Access: Write
Mechanism: By value
Usage: Status fields corresponding to the fields

in the input argument.

tsc_username, cp_username
Type: Null-terminated string
Access: Write
Mechanism: By reference
Usage: These fields contain the values that

were supplied in the input argument,
and can be ignored.

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference

Usage:

Usage:

Usage: The status
message.

211

Chapter 8. Management APIs

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the next

node in the linked
list.

Description

This procedure requests updates to ACMS TSC Config class fields contained in the TSC table (see
Section 9.15). Note that the TSC table contains both active and stored values. The active_sw field and
current_sw field control which fields are attempted to be updated.

Attempting to update an active field that is nondynamic is essentially useless, since the active field
value will not change. For instance, calling this procedure with the active_sw field set to 1 and the
tsc_username field populated does not result in any change to the system.

Setting the current_sw field to 1 causes updates to be written to the current ACMSGEN file. These
updates are durable, that is, they survive a restart of the ACMS sytem, but do not affect the active
system until the system is restarted.

Both current_sw and active_sw may be set on a given call. In this case, both the active and stored
values for any nonnegative or nonnull fields will be updated.

For any nonnegative integer fields, the completion status of the update is returned in the
corresponding field in the return structure. For string fields, the string field value is returned,
regardless of the status of the call.

In order to have one of the string fields set to a null string, that is, "", populate the field with value
"NULL". To have one of the string fields ignored, pass in a null string.

Example
int set_tsc_data(int client_id,CLIENT *cl)
 {

 static char c_name_all[2] = "*";
 static char c_null_str[2] = "";
 static tsc_config_rec set_struct;
 tsc_status_rec *ret_struct;
 dcl_link *nl;

 memset(&set_struct,-1,sizeof(set_struct));

 set_struct.client_id = client_id;
 set_struct.active_sw = 1;
 set_struct.current_sw = 0;
 set_struct.max_logins = 61;

 /* Have to provide a pointer for string conversions by XDR

212

Chapter 8. Management APIs

 or it will tscess vio. RM will ignore any fields with
 strlen of 0 */
 set_struct.tsc_username = c_null_str;
 set_struct.cp_username = c_null_str;

 ret_struct = acmsmgmt_set_tsc_2(&set_struct,cl);

 if (!ret_struct) {
 printf("\n Call to modify TSC failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS)
 printf("\n Call to modify TSC returned the following warnings or
 errors\n");
 else
 printf("\n Call to modify TSC completed\n");
 for (nl = ret_struct->tsc_status_rec_2_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_tsc_status_rec_2, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_set_tsc_1 procedure is called to set the ACMSGEN
parameter max_logins to 61. If the call succeeds, only the active value is modified; the stored value
is unchanged, and a success message is displayed. Otherwise, an error message is displayed. The
example in Section 6.3.1 shows how to declare and initialize the input arguments to this procedure

ACMSMGMT_START_ACC_1
ACMSMGMT_START_ACC_1 — This procedure requests that the Remote Manager start the ACMS
system.

Format

cmd_output_rec *acmsmgmt_start_acc_1(acc_startup_rec *start_struct,CLIENT *cl)

Parameters

start_struct

Type: Acc_startup_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and Trap
table fields.

client_id

Usage:

Type: Integer

213

Chapter 8. Management APIs

Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

audit_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether system

auditing should be enabled
(audit_sw = 1), or disabled
(audit_sw = 0).

qti_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the Queued

Task Initiator (QTI) should be
started (qti_sw = 1), or not
(qti_sw = 0).

terminals_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the Terminal

Subsystem Controller (TSC)
should be started (terminals_sw
= 1), or not (terminals_sw = 0).

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

214

Chapter 8. Management APIs

Return Value
Type: Cmd_output_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type cmd_rec_r, which points to a linked list containing status messages. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value

Structure containing the first node in a linked list of status
messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string

Usage:

Usage:

Usage:

Access: Write

215

Chapter 8. Management APIs

Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the next

node in the linked
list.

Description
This procedure requests startup of the ACMS run-time system on the same node that the Remote
Manager is running on. Fields in the input argument determine how the ACMS system will be started
(that is, with or without auditing, terminals or QTI).

This call executes synchronously. It does not return to the caller until the attempt to start the system
is complete. Any messages associated with an unsuccessful start of the system are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of
both structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status
messages from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. There are
no status messages associated with a successful call. If the status field contains MGMT_FAIL, the call
failed. No status messages are returned; instead, the reason for the failure is contained in the rc field.

Example
int start_acc(int client_id,CLIENT *cl)
{
 dcl_link *nl;
 static acc_startup_rec start_struct;
 cmd_output_rec *ret_struct;

 start_struct.client_id = client_id;
 start_struct.audit_sw = 1;
 start_struct.qti_sw = 1;
 start_struct.terminals_sw = 1;

 ret_struct = acmsmgmt_start_acc_1(&start_struct,cl);

 if (!ret_struct) {
 printf("\n Call to start system failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {

216

Chapter 8. Management APIs

 printf("\nCall to start ACMS system failed with status %d",
 ret_struct->status);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 printf("\n Call to start ACMS system completed with warnings or
 errors");

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 else {
 printf("\nCall to start ACMS system was executed");
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_start_acc_1 procedure is called to start the ACMS run-
time system on the target node. The system is started with system auditing enabled, the QTI started,
and terminals started. If the call succeeds, the ACMS run-time system is started on the target node.
Otherwise, any error messages associated with the failure are displayed. The example in Section 6.3.1
shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_START_EXC_1
ACMSMGMT_START_EXC_1 — This procedure requests that the Remote Manager start an ACMS
application on the same node on which the Remote Manager is running.

Format
cmd_output_rec *acmsmgmt_start_exc_1(exc_startup_rec *start_struct,CLIENT *cl)

Parameters

start_struct

Type: Exc_startup_rec
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client identification and Trap

table fields.

217

Chapter 8. Management APIs

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Pointer to the application name

of the application to be started.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type cmd_rec_r, which points to a linked list containing status messages. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

Usage:

218

Chapter 8. Management APIs

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value

Structure containing the first node in a linked list of status
messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference

Usage:

Usage:

Usage: Pointer to the next
node in the linked
list.

Description
This procedure starts an ACMS application on the same node on which the Remote Manager is
running. The appl_name field in the input record determines which application will be started.

219

Chapter 8. Management APIs

This call executes synchronously. It does not return to the caller until the attempt to start the
application is complete. Any messages associated with an unsuccessful start of the application are
returned in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of
either structure will be MGMT_WARN; in this case, use the data_warn structure to fetch the status
messages from the cmd_output linked list.

If the operation is successful, the status field of either structure will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example
int start_exc(int client_id,CLIENT *cl)
{
 dcl_link *nl;
 static char c_appl_name[] = "VR_APPL";
 static exc_startup_rec start_struct;
 cmd_output_rec *ret_struct;

 start_struct.client_id = client_id;
 start_struct.appl_name = c_appl_name;

 ret_struct = acmsmgmt_start_exc_1(&start_struct,cl);

 if (!ret_struct) {
 printf("\n Call to start EXC failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to start ACMS EXC failed with status %d",
 ret_struct->status);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 printf("\n Call to start ACMS EXC completed with warnings or
 errors");

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 else {
 printf("\nCall to start ACMS EXC was executed");
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;

220

Chapter 8. Management APIs

 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_start_exc_1 procedure is called to start an application
named VR_APPL on the target node. If the call succeeds, the VR_APPL application is started on the
target node. Otherwise, any error messages associated with the failure are displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_START_QTI_1
ACMSMGMT_START_QTI_1 — This procedure requests that the Remote Manager start a Queued
Task Initiator (QTI) on the same node on which the Remote Manager is running.

Format

cmd_output_rec *acmsmgmt_start_qti_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct *
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read

221

Chapter 8. Management APIs

Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type cmd_rec_r, which points to a linked list containing status messages. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value

Structure containing the first node in a linked list of status
messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

Usage:

Usage:

Usage:

222

Chapter 8. Management APIs

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference
Usage: Pointer to the next

node in the linked
list.

Description
This procedure starts an ACMS QTI on the same node on which the Remote Manager is running.

This call executes synchronously. It does not return to the caller until the attempt to start the QTI
is complete. Any messages associated with an unsuccessful start of the QTI are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of
both structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status
messages from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example
int start_qti(int client_id,CLIENT *cl)
{
 dcl_link *nl;
 static struct sub_id_struct sub_rec;
 cmd_output_rec *ret_struct;

 sub_rec.client_id = client_id;

 ret_struct = acmsmgmt_start_qti_1(&sub_rec,cl);

 if (!ret_struct) {
 printf("\n Call to start QTI failed");
 return(MGMT_FAIL);
 }

223

Chapter 8. Management APIs

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to start ACMS QTI failed with status %d",
 ret_struct->status);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 printf("\n Call to start ACMS QTI completed with warnings or
 errors");

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 else {
 printf("\nCall to start ACMS QTI was executed");
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
 \
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_start_qti_1 procedure is called to start the Queued
Task Initiator (QTI) on the target node. If the call succeeds, the QTI is started on the target node.
Otherwise, any error messages associated with the failure are displayed. The example in Section 6.3.1
shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_START_TRACE_MONITOR_1
ACMSMGMT_START_TRACE_MONITOR_1 — This procedure requests that the Remote Manager
start the ACMS$TRACE_MONITOR process. The ACMS$TRACE_MONITOR process is an
intermediate process used by the Remote Manager to communicate with ACMS run-time processes to
enable and disable collections.

Format

int *acmsmgmt_start_trace_monitor_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct

224

Chapter 8. Management APIs

Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to status value returned. If the value

is NULL or MGMT_SUCCESS, the RPC has
succeeded. If the value is neither NULL nor
MGMT_SUCCESS, the call failed and the value
pointed to is the reason for failure.

Description
This procedure requests that the Remote Manager start the ACMS$TRACE_MONITOR process on
the target node. The ACMS$TRACE_MONITOR process is an intermediate process used by the
Remote Manager to communicate with ACMS run-time processes to enable and disable collections.

In general, external entities do not require a startup and shutdown request of the trace monitor process.
The Remote Manager starts the trace monitor during process initialization and stops it during process
shutdown. Additionally, the Remote Manager starts the trace monitor anytime it is needed if it is
not already started. Once started, the trace monitor continues to run until the Remote Manager shuts
down.

225

Chapter 8. Management APIs

After issuing the start command to the trace monitor, the Remote Manager waits for a period of up to
trace_start_wait_time, a Parameter table parameter that is dynamic and expressed in seconds. If the
trace monitor fails to start during that period, the Remote Manager returns an error to the caller.

Example
int start_trace(int client_id,CLIENT *cl)
{
 int *status;
 static struct sub_id_struct sub_rec;

 sub_rec.client_id = client_id;

 status = acmsmgmt_start_trace_monitor_1(&sub_rec,cl);

 if (!status) {
 printf("\nStartup of Trace Monitor has failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\nStartup of Trace Monitor has failed with return code %d",
 *status);
 return(*status);
 }

 printf("\nTrace Monitor has been started ");
 free(status);
 return(MGMT_SUCCESS);
}

In the preceding example, the acmsmgmt_start_trace_monitor_1 procedure is called to start the
ACMS$TRACE_MON process on the target node. If the call succeeds, the process is started.
Otherwise, any error messages associated with the failure are displayed. The example in Section 6.3.1
shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_START_TSC_1
ACMSMGMT_START_TSC_1 — This procedure requests that the Remote Manager start a Terminal
Subsystem Controller (TSC) on the same node on which it is running.

Format
cmd_output_rec *acmsmgmt_start_tsc_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters
sub_rec

Type: Sub_id_struct *
Access: Read
Mechanism: By reference
Usage: Structure that contains the following client authorization

information.

226

Chapter 8. Management APIs

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Cmd_output_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type cmd_rec_r, which points to a linked list containing status messages. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn

Usage:

Type: Cmd_rec

227

Chapter 8. Management APIs

Access: Write
Mechanism: By value

Structure containing the first node in a linked list of status
messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference

Usage:

Usage:

Usage: Pointer to the next
node in the linked
list.

Description

This procedure requests that an ACMS TSC be started on the same node on which the Remote
Manager is running.

This call executes synchronously. It does not return to the caller until the attempt to start the TSC
is complete. Any messages associated with an unsuccessful start of the TSC are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of
both structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status
messages from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

228

Chapter 8. Management APIs

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example
int start_tsc(int client_id,CLIENT *cl)
{
 dcl_link *nl;
 static struct sub_id_struct sub_rec;
 cmd_output_rec *ret_struct;

 sub_rec.client_id = client_id;

 ret_struct = acmsmgmt_start_tsc_1(&sub_rec,cl);

 if (!ret_struct) {
 printf("\n Call to start TSC failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to start ACMS TSC failed with status %d",
 ret_struct->status);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 printf("\n Call to start ACMS TSC completed with warnings or
 errors");

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 else {
 printf("\nCall to start ACMS TSC was executed");
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_start_tsc_1 procedure is called to start the terminal
subsystem on the target node. If the call succeeds, the terminal subsystem is started on the target node.
Otherwise, any error messages associated with the failure are displayed. The example in Section 6.3.1
shows how to declare and initialize the input arguments to this procedure.

229

Chapter 8. Management APIs

ACMSMGMT_STOP_1
ACMSMGMT_STOP_1 — This procedure initiates shutdown of the Remote Manager server on a
particular node.

Format
int *acmsmgmt_stop_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters
sub_rec
Type: Sub_id_struct *
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl
Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value
Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to status value returned. If the value

is NULL or MGMT_SUCCESS, the RPC
has succeeded. If the value is neither null nor
MGMT_SUCCESS, the call failed and the value
pointed to is the reason for failure.

230

Chapter 8. Management APIs

Description
This procedure shuts down the Remote Manager server on the target node. As part of shutdown, the
RPC interface is stopped, which may result in a NULL pointer being returned to the caller. A NULL
pointer in this case signals success of the shutdown request.

Note that the success of this procedure does not guarantee that the Remote Manager server has
actually shut down. It guarantees only that the shutdown has been requested.

Example
int stop_manager(int client_id,CLIENT *cl)
{
 static int *status;
 static struct sub_id_struct sub_rec;
 sub_rec.client_id = client_id;

 status = acmsmgmt_stop_1(&sub_rec,cl);

 if (!status) {
 printf("\nServer shutdown has been requested");
 return(0);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\n Call to stop server failed with status %d",*status);
 return(MGMT_FAIL);
 }

 printf("\n Server shutdown has been requested");

 return(0);
}

In the preceding example, the acmsmgmt_stop_1 procedure is called to request shutdown of the
ACMS Remote Manager. A message is displayed indicating the success or failure of the operation.
The example in Section 6.3.1 shows how to declare and initialize the input arguments to this
procedure.

ACMSMGMT_STOP_ACC_1
ACMSMGMT_STOP_ACC_1 — This procedure requests that the Remote Manager stop the ACMS
system.

Format
cmd_output_rec *acmsmgmt_stop_acc_1(acc_shutdown_rec *stop_struct,CLIENT *cl)

Parameters
stop_struct

Type: Acc_shutdown_rec
Access: Read
Mechanism: By reference

231

Chapter 8. Management APIs

Structure that contains the following client identification and ACC
control fields.

client_id
Type: Integer
Access: Read
Mechanism: By value
Usage: If explicit authentication is

being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cancel_sw
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: Indicates whether the system
should be stopped immediately
(cancel_sw = 1), or whether
currently executing tasks should
be allowed to complete first
(cancel_sw = 0).

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type cmd_rec_r, which points to a linked list containing status messages. The
following are the contents of this union:

status

Usage:

Type: Integer

232

Chapter 8. Management APIs

Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value

Structure containing the first node in a linked list of status
messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write

Usage:

Usage:

Mechanism: By reference

233

Chapter 8. Management APIs

Usage: Pointer to the next
node in the linked
list.

Description
This procedure shuts down the ACMS run-time system on the same node on which the Remote
Manager is running. Fields in the input argument determine how the ACMS system will be stopped. If
the value for cancel_sw is 1, currently executing tasks are cancelled, and the system is stopped. If the
value for cancel_sw is 0, currently executing tasks are allowed to complete before the system is shut
down.

This call executes synchronously. It does not return to the caller until the attempt to stop the system
is complete. Any messages associated with an unsuccessful stop of the system are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of
both structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status
messages from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example
int stop_acc(int client_id,CLIENT *cl)
{
 dcl_link *nl;
 static acc_shutdown_rec stop_struct;
 cmd_output_rec *ret_struct;

 stop_struct.client_id = client_id;
 stop_struct.cancel_sw = 1;

 ret_struct = acmsmgmt_stop_acc_1(&stop_struct,cl);

 if (!ret_struct) {
 printf("\n Call to stop ACC failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {
 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to stop ACMS ACC failed with status %d",
 ret_struct->status);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 printf("\n Call to stop ACMS ACC completed with warnings or
 errors");

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl != NULL;

234

Chapter 8. Management APIs

 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }
 else {
 printf("\nCall to stop ACMS ACC was executed");
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_stop_acc_1 procedure is called to stop the ACMS run-
time system on the target node. The system is stopped abruptly (/CANCEL), terminating any in-
process tasks. If the call succeeds, the ACMS system is stopped on the target node. Otherwise, any
error messages associated with the failure are displayed. The example in Section 6.3.1 shows how to
declare and initialize the input arguments to this procedure.

ACMSMGMT_STOP_EXC_1
ACMSMGMT_STOP_EXC_1 — This procedure requests that the Remote Manager stop the ACMS
system.

Format
cmd_output_rec *acmsmgmt_stop_exc_1(exc_shutdown_rec *stop_struct,CLIENT *cl)

Parameters
stop_struct

Type: Exc_shutdown_rec
Access: Read
Mechanism: By reference

Structure that contains the following client identification and
Application Execution Controller (EXC) control fields.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is

235

Chapter 8. Management APIs

obtained by calling the acms
$mgmt_get_creds procedure.

cancel_sw
Type: Integer
Access: Read
Mechanism: By value
Usage: Indicates whether the application

should be stopped immediately
(cancel_sw = 1), or whether
currently executing tasks should
be allowed to complete first
(cancel_sw = 0).

appl_name
Type: Null-terminated string
Access: Read
Mechanism: By reference
Usage: Name of the application to be

stopped.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type cmd_rec_r, which points to a linked list containing status messages. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

Usage:

236

Chapter 8. Management APIs

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value

Structure containing the first node in a linked list of status
messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Dcl_list
Access: Write
Mechanism: By reference

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference

Usage:

Usage:

Usage: Pointer to the next
node in the linked
list.

Description
This procedure shuts down an ACMS application on the same node on which the Remote Manager is
running. Fields in the input argument determine which application to stop (appl_name) and how the

237

Chapter 8. Management APIs

application will be stopped. If the value for cancel_sw is 1, currently executing tasks are cancelled,
and the application is stopped. If the value for cancel_sw is 0, currently executing tasks are allowed to
complete before the application is shut down.

This call executes synchronously. It does not return to the caller until the attempt to stop the
application is complete. Any messages associated with an unsuccessful stop of the system are returned
in the cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of both
structure will be MGMT_WARN; in this case, use the data_warn structure to fetch the status messages
from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example
int stop_exc(int client_id,CLIENT *cl)
{
 dcl_link *nl;
 static char c_appl_name[] = "VR_APPL";
 static exc_shutdown_rec stop_struct;
 cmd_output_rec *ret_struct;

 stop_struct.client_id = client_id;
 stop_struct.cancel_sw = 1;
 stop_struct.appl_name = c_appl_name;

 ret_struct = acmsmgmt_stop_exc_1(&stop_struct,cl);

 if (!ret_struct) {
 printf("\n Call to stop EXC failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to stop ACMS EXC failed with status %d",
 ret_struct->status);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 printf("\n Call to stop ACMS EXC completed with warnings or errors");

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);

238

Chapter 8. Management APIs

 }

 else {
 printf("\nCall to stop ACMS EXC was executed");
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_stop_exc_1 procedure is called to stop an application
named VR_APPL on the target node. If the call succeeds, the VR_APPL application is stopped on the
target node. Otherwise, any error messages associated with the failure are displayed. The example in
Section 6.3.1 shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_STOP_QTI_1
ACMSMGMT_STOP_QTI_1 — This procedure requests that the Remote Manager stop a Queued
Task Initiator (QTI) on the same node on which the Remote Manager is running.

Format

cmd_output_rec *acmsmgmt_stop_qti_1(sub_id_struct *sub_rec,CLIENT *cl)

Parameters

sub_rec

Type: Sub_id_struct *
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

239

Chapter 8. Management APIs

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Cmd_output_rec
Access: Write
Mechanism: By reference

Pointer to a union. The union contains either a failure code or a structure of
type cmd_rec_r, which points to a linked list containing status messages. The
following are the contents of this union:

status
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

rc
Type: Integer
Access: Write
Mechanism: By value
Usage: Failure return code.

data, data_warn
Type: Cmd_rec
Access: Write
Mechanism: By value

Structure containing the first node in a linked list of status
messages (type dcl_list). The following are the contents of
this structure:

cmd_output
Type: Dcl_list
Access: Write

Usage:

Usage:

Mechanism: By reference

240

Chapter 8. Management APIs

Pointer to a linked list of records
containing status messages related
to the failure of any updates. This
structure contains the following fields:

dcl_msg
Type: Null-terminated

string
Access: Write
Mechanism: By reference
Usage: The status

message.

pNext
Type: Dcl_list
Access: Write
Mechanism: By reference

Usage:

Usage: Pointer to the next
node in the linked
list.

Description
This procedure requests to stop an ACMS QTI on the same node on which the Remote Manager is
running.

This call executes synchronously. It does not return to the caller until the attempt to stop the QTI
is complete. Any messages associated with an unsuccessful stop of the QTI are returned in the
cmd_output linked list.

The data and data_warn structures contain identical data. If the operation fails, the status field of
both structures will be MGMT_WARN; in this case, use the data_warn structure to fetch the status
messages from the cmd_output linked list.

If the operation is successful, the status field of both structures will be MGMT_SUCCESS. No status
messages are associated with a successful call.

If the status field contains MGMT_FAIL, the call failed. No status messages are returned; instead, the
reason for the failure is contained in the rc field.

Example
int stop_qti(int client_id,CLIENT *cl)
{
 dcl_link *nl;
 static struct sub_id_struct sub_rec;
 cmd_output_rec *ret_struct;

 sub_rec.client_id = client_id;

241

Chapter 8. Management APIs

 ret_struct = acmsmgmt_stop_qti_1(&sub_rec,cl);

 if (!ret_struct) {
 printf("\n Call to stop qti failed");
 return(MGMT_FAIL);
 }

 if (ret_struct->status != MGMT_SUCCESS) {

 if (ret_struct->status != MGMT_WARN) {
 printf("\nCall to stop ACMS QTI failed with status %d",
 ret_struct->status);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 printf("\n Call to stop ACMS QTI completed with warnings or
 errors");

 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(MGMT_FAIL);
 }

 else {
 printf("\nCall to stop ACMS QTI was executed");
 for (nl = ret_struct->cmd_output_rec_u.data.cmd_output; nl !=
 NULL;
 nl = nl->pNext)
 printf("\n %s",nl->dcl_msg);
 }
 xdr_free(xdr_cmd_output_rec, ret_struct);
 free(ret_struct);
 return(0);
}

In the preceding example, the acmsmgmt_stop_qti_1 procedure is called to stop the Queued Task
Initiator (QTI) on the target node. If the call succeeds, the QTI is stopped on the target node.
Otherwise, any error messages associated with the failure are displayed. The example in Section 6.3.1
shows how to declare and initialize the input arguments to this procedure.

ACMSMGMT_STOP_TRACE_MONITOR_1
ACMSMGMT_STOP_TRACE_MONITOR_1 — This procedure requests that the Remote Manager
stop the ACMS$TRACE_MONITOR process. The ACMS$TRACE_MONITOR process is an
intermediate process used by the Remote Manager to communicate with ACMS run-time processes to
enable and disable collections.

Format
int *acmsmgmt_stop_trace_monitor_1(sub_id_struct *sub_rec,CLIENT *cl)

242

Chapter 8. Management APIs

Parameters

sub_rec

Type: Sub_id_struct
Access: Read
Mechanism: By reference

Structure that contains the following client authorization
information.

client_id
Type: Integer
Access: Read
Mechanism: By value

Usage:

Usage: If explicit authentication is
being used, a valid client
ID must be provided. If the
value for client_id is 0, proxy
access is used. Client_id is
obtained by calling the acms
$mgmt_get_creds procedure.

cl

Type: CLIENT *
Access: Read
Mechanism: By value
Usage: Pointer to an RPC client handle previously obtained by calling the

RPC routine CLNT_CREATE.

Return Value

Type: Integer
Access: Write
Mechanism: By reference
Usage: Pointer to status value returned. If the value

is NULL or MGMT_SUCCESS, the RPC has
succeeded. If the value is neither NULL nor
MGMT_SUCCESS, the call failed and the value
pointed to is the reason for failure.

Description

This procedure requests that the Remote Manager stop the ACMS$TRACE_MONITOR process on
the target node. The ACMS$TRACE_MONITOR process is an intermediate process used by the
Remote Manager to communicate with ACMS run-time processes to enable and disable collections.

243

Chapter 8. Management APIs

In general, external entities do not require a startup and shutdown request of the trace monitor process.
The Remote Manager starts the trace monitor during process initialization and stops it during process
shutdown. Additionally, the Remote Manager starts the trace monitor anytime it is needed if it is
not already started. Once started, the trace monitor continues to run until the Remote Manager shuts
down.

After issuing the stop command to the trace monitor, the Remote Manager waits for a period of up to
trace_start_wait_time, a Parameter table parameter that is dynamic and expressed in seconds. If the
trace monitor fails to stop during that period, the Remote Manager returns an error to the caller.

Example
int stop_trace(int client_id,CLIENT *cl)
{
 int *status;
 static struct sub_id_struct sub_rec;

 sub_rec.client_id = client_id;

 status = acmsmgmt_stop_trace_monitor_1(&sub_rec,cl);

 if (!status) {
 printf("\nShutdown of Trace Monitor has failed");
 return(MGMT_FAIL);
 }

 if (*status != MGMT_SUCCESS) {
 printf("\nShutdown of Trace Monitor has failed with return code %d",
 *status);
 free(status);
 return(MGMT_FAIL);
 }

 printf("\nTrace Monitor has been stopped ");
 free(status);
 return(MGMT_SUCCESS);
}

In the preceding example, the acmsmgmt_stop_trace_monitor_1 procedure is called to stop the
ACMS$TRACE_MON process on the target node. If the call succeeds, the process is stopped.
Otherwise, any error messages associated with the failure are displayed. The example in Section 6.3.1
shows how to declare and initialize the input arguments to this procedure.

244

Chapter 9. Remote Manager
Reference Tables
This chapter contains information about data types that the Remote Manager implements and
the reference tables for the Remote Manager. The Remote Manager reference tables include the
following:

• ACC table

• Agent table

• Collection table

• CP table

• EXC table

• Interfaces table

• Manager status table

• Parameter table

• QTI table

• Server table

• Task Group table

• Trap table

• TSC table

• Users table

Note

The following sections describe the records and fields in each Remote Manager reference table. Many
of these tables now contain a subset of fields intended solely for use on or by systems running ACMS
Version 4.4 or higher.

9.1. Data Types
The ACMS Remote Manager implements the following data types:

• Gauge and Min Gauge

Gauge fields are structures containing the following fields:

• current_value

The value of the object when last observed. Represents the most current known value.

245

Chapter 9. Remote Manager Reference Tables

• max_value or min_value

The largest or smallest observed value for the object.

• time_max_seen or time_min_seen

The date and time the max_value or min_value was set.

• Integer

Integer fields are 32-bit signed integers.

• State 1

State 1 fields are integers with two possible values:

• MGMT$K_STATE_DISABLED

• MGMT$K_STATE_ENABLED

• State 2

State 2 fields are integers with the following possible values:

• MGMT$K_STATE_INITED

• MGMT$K_STATE_INITING

• MGMT$K_STATE_LOAD_DONE

• MGMT$K_STATE_LOADING

• MGMT$K_STATE_STARTED

• MGMT$K_STATE_STARTING

• MGMT$K_STATE_STOPPED

• MGMT$K_STATE_STOPPING

• String

String fields are null-terminated ASCII strings.

• Time

Time fields are stored internally in OpenVMS internal time format and are generally displayed as
DD-MMM-YYY HH:MM:SS.hh. When present in a record supplied by the Remote Manager (that
is, from either an RPC or SNMP call, or in a file), time is always an ASCII value in the default
OpenVMS format (DD-MMM-YYYY HH:MM:SS.hh) and is stored as a null-terminated string.

9.2. ACC Table
The ACC table contains a single entry for ACC management information.
246

Chapter 9. Remote Manager Reference Tables

Table 9.1. ACC Table

Class Field Data Type SNMP Access RPC Access Dynamic
ID record_state integer R R
ID id_coll_state integer R R
ID process_name string R R
ID pid integer R R
ID username_active string R R
ID username_storedstring R R
ID start_time time R R
ID end_time time R R
ID acms_version string R R
CONFIG config_coll_stateinteger R R
CONFIG acms_state integer RW R D
CONFIG acc_priority_activeinteger R R
CONFIG acc_priority_storedinteger RW RW
CONFIG max_appl_activeinteger R R
CONFIG max_appl_storedinteger RW RW
CONFIG mss_maxobj_activeinteger R R
CONFIG mss_maxobj_storedinteger RW RW
CONFIG mss_maxbuf_activeinteger R R
CONFIG mss_maxbuf_storedinteger RW RW
CONFIG mss_poolsize_activeinteger R R
CONFIG mss_poolsize_storedinteger RW RW
CONFIG mss_process_pool_activeinteger R R
CONFIG mss_process_pool_storedinteger RW RW
CONFIG mss_net_retry_timer_activeinteger RW RW D
CONFIG mss_net_retry_timer_storedinteger RW RW
CONFIG audit_state integer RW RW D
CONFIG username_default_activeinteger RW RW D
CONFIG username_default_storedinteger RW RW
CONFIG node_name_activeinteger R R
CONFIG node_name_storedinteger RW RW
CONFIG ws_poolsize_activeinteger R R
CONFIG ws_poolsize_storedinteger RW RW
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

247

Chapter 9. Remote Manager Reference Tables

Class Field Data Type SNMP Access RPC Access Dynamic
CONFIG wsc_poolsize_activeinteger R R
CONFIG wsc_poolsize_storedinteger RW RW
CONFIG tws_poolsize_activeinteger R R
CONFIG tws_poolsize_storedinteger RW RW
CONFIG twsc_poolsize_activeinteger R R
CONFIG twsc_poolsize_storedinteger RW RW
RUNTIME runtime_coll_stateinteger R R
RUNTIME current_appls gauge R R
RUNTIME current_users gauge R R
RUNTIME current_local_usersgauge R R
RUNTIME current_remote_usersgauge R R
RUNTIME appl_starts integer R R
RUNTIME decnet_object integer R R
POOL pool_coll_state integer R R
POOL mss_shared_totalinteger R R
POOL mss_shared_freemin gauge R R
POOL mss_shared_largestmin gauge R R
POOL mss_shared_failuresinteger R R
POOL mss_shared_garbageinteger R R
POOL mss_process_totalinteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largestmin gauge R R
POOL mss_process_failuresinteger R R
POOL mss_process_garbageinteger R R
POOL mss_objects gauge R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

9.2.1. Field Descriptions
Following are descriptions of the fields in Table 9.1.

• record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

• id_coll_state

248

Chapter 9. Remote Manager Reference Tables

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• username_active

The OpenVMS user name under which the process is currently running. This is the value that was
in the ACMSGEN file when the process was started.

• username_stored

The OpenVMS process name currently stored in the ACMSGEN file for this process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field will be null.

• acms_version

Current version of the ACC.

• config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• acc_priority_active

The base priority for this process. This is the value of the ACMSGEN field when the process was
started.

• acc_priority_stored

The base priority currently stored in the ACMSGEN file for this process.

• max_appl_active

The maximum number of ACMS applications that can be started simultaneously on this node.
This is the value of the ACMSGEN field when the ACC process was started.

• max_appl_stored

The value of the max_appl field currently stored in the ACMSGEN file.

249

Chapter 9. Remote Manager Reference Tables

• mss_maxobj_active

The maximum number of ACMS message switch objects that can be started simultaneously on
this node. This is the value of the ACMSGEN field when the ACC process was started. See the
MSS class field mss_objects for a count of the current and maximum number of MSS objects
instantiated on the system.

• mss_maxobj_stored

The value of the mss_maxobj field currently stored in the ACMSGEN file.

• mss_maxbuf_active

The maximum size of a message segment of an ACMS message switch message. This is the value
of the ACMSGEN field when the ACC process was started.

• mss_maxbuf_stored

The value of the mss_maxbuf field currently stored in the ACMSGEN file.

• mss_poolsize_active

The size of the MSS shared pool. This is the value of the ACMSGEN field when the ACC process
was started.

• mss_poolsize_stored

The value of the mss_poolsize field currently stored in the ACMSGEN file.

• mss_process_pool_active

The default size of the MSS pool allocated for each ACMS process. This is the value of the
ACMSGEN field when the ACC process was started.

• mss_process_pool_stored

The value of the mss_process_pool field currently stored in the ACMSGEN file.

• mss_net_retry_active

The time ACMS processes will wait before retrying an MSS network operation. This field can be
modified dynamically.

• mss_net_retry_timer_stored

The value of the mss_net_retry_timer field currently stored in the ACMSGEN file.

• audit_state

The current system auditing state.

• username_default_active

The default user name for remote users. This is the value of the ACMSGEN field when the ACC
process was started.

250

Chapter 9. Remote Manager Reference Tables

• username_default_stored

The value of the username_default field currently stored in the ACMSGEN file.

• node_name_active

The node name for the current node. This is the value of the ACMSGEN field when the ACC
process was started.

• node_name_stored

The value of the node_name field currently stored in the ACMSGEN file.

• ws_poolsize_active

The default size for WS pools. This is the value of the ACMSGEN field when the ACC process
was started.

• ws_poolsize_stored

The value of the ws_poolsize field currently stored in the ACMSGEN file.

• wsc_poolsize_active

The default size for WSC pools. This is the value of the ACMSGEN field when the ACC process
was started.

• wsc_poolsize_stored

The value of the wsc_poolsize field currently stored in the ACMSGEN file.

• tws_poolsize_active

The default size for TWS pools. This is the value of the ACMSGEN field when the ACC process
was started.

• tws_poolsize_stored

The value of the twsc_poolsize field currently stored in the ACMSGEN file.

• twsc_poolsize_active

The default size for TWSC pools. This is the value of the ACMSGEN field when the ACC process
was started.

• twsc_poolsize_stored

The value of the twsc_poolsize field currently stored in the ACMSGEN file.

• acms_state

Current ACMS state of the process. This field can be set (to DISABLED or to 0) by the SNMP
interface only. RPC users use the ACMSMGMT_STOP_ACC_1 procedure described in
ACMSMGMT_STOP_ACC_1. ACMSMGR users use the STOP SYSTEM command.

• runtime_coll_state

251

Chapter 9. Remote Manager Reference Tables

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• current_appls

The number of applications currently running on the node.

• current_users

The number of users currently logged in to the node.

• current_local_users

The number of current users logged in to ACMS locally.

• current_Remote_users

The number of current users who are logged in to ACMS remotely.

• appl_starts

The number of applications that have been started on the node since the system was started.

• decnet_object

If the process has a current DECnet object, the value of this field is STARTED. Otherwise, the
value is STOPPED. If the DECnet object is stopped (and the runtime_coll_state is enabled for this
process), either distributed processing has not been enabled (that is, the node_name parameter in
the ACMSGEN file is NULL) or there is currently a problem with DECnet. Also, check the ACC
CONFIG parameters node_name_active and node_name_stored to determine the current status of
the ACMSGEN node_name field.

• pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• mss_shared_total

The total size (in bytes) of the MSS shared pool on this node. The frequency with which this field
is updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

• mss_shared_free

The amount (in bytes) of unused MSS shared pool. The frequency with which this field is updated
is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

252

Chapter 9. Remote Manager Reference Tables

• mss_shared_largest

The largest unused block (in bytes) available in the MSS shared pool. The frequency with which
this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_shared_failures

The number of failed attempts to allocate space from the MSS shared pool. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_shared_garbage

The number of garbage collections that have been run to reclaim space in the MSS shared pool.
The frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

• mss_process_total

The total size (in bytes) of the MSS process pool allocated for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_free

The amount of unused MSS process pool (in bytes) for this process. The frequency with which
this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_largest

The largest unused block (in bytes) available in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

• mss_process_garbage

The number of garbage collections for this process that have been run to reclaim space in the
MSS process pool. The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9.8).

• mss_objects

The number of MSS objects currently instantiated on the node. The frequency with which
this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

253

Chapter 9. Remote Manager Reference Tables

9.3. Agent Table
Table 9.2. Agent Table

Class Field Data Type SNMP
Access

RPC Access Dynamic

ID record_state integer R R
ID id_coll_state integer R R
ID process_name string R R
ID pid integer R R
ID start_time time R R
ID end_time time R R
ID user_name string R R
ID acms_state integer R R
CONFIG cfg_coll_state integer R R
CONFIG astlm_active‡ integer R R
CONFIG astlm_stored‡ integer RW RW
CONFIG biolm_active‡ integer R R
CONFIG biolm_stored‡ integer RW RW
CONFIG bytlm_active‡ integer R R
CONFIG bytlm_stored‡ integer RW RW
CONFIG diolm_active‡ integer R R
CONFIG diolm_stored‡ integer RW RW
CONFIG enqlm_active‡ integer R R
CONFIG enqlm_stored‡integer RW RW
CONFIG fillm_active‡ integer R R
CONFIG fillm_stored‡ integer RW RW
CONFIG pgflquota_active‡integer R R
CONFIG pgflquota_stored‡integer RW RW
CONFIG tqelm_active‡ integer R R
CONFIG tqelm_stored‡ integer RW RW
CONFIG wsdefault_active‡integer R R
CONFIG wsdefault_stored‡integer RW RW
CONFIG wsextent_active‡integer R R
CONFIG wsextent_stored‡integer RW RW
CONFIG wsquota_active‡integer R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

254

Chapter 9. Remote Manager Reference Tables

Class Field Data Type SNMP
Access

RPC Access Dynamic

CONFIG wsquota_stored‡integer RW RW
RUNTIME rt_coll_state integer R R
RUNTIME decnet_object integer R R
RUNTIME active_task_callsgauge R R
RUNTIME current_attached_termsgauge R R
RUNTIME active_tdms_menu_reqsgauge R R
RUNTIME total_tdms_menu_reqsinteger R R
RUNTIME active_tdms_reqsgauge R R
RUNTIME active_tdms_msgrdgauge R R
RUNTIME active_tdms_msgwtgauge R R
RUNTIME active_tdms_cancelgauge R R
RUNTIME total_tdms_reqsinteger R R
RUNTIME total_tdms_msgrdinteger R R
RUNTIME total_tdms_msgwtinteger R R
RUNTIME total_tdms_cancelinteger R R
RUNTIME active_vf_menu_reqsgauge R R
RUNTIME total_vf_menu_reqsinteger R R
RUNTIME active_vf_reqsgauge R R
RUNTIME active_vf_enablegauge R R
RUNTIME active_vf_disablegauge R R
RUNTIME active_vf_cancelgauge R R
RUNTIME active_vf_sendgauge R R
RUNTIME active_vf_receivegauge R R
RUNTIME active_vf_xceivegauge R R
RUNTIME total_vf_reqs integer R R
RUNTIME total_vf_enableinteger R R
RUNTIME total_vf_disableinteger R R
RUNTIME total_vf_cancelinteger R R
RUNTIME total_vf_send integer R R
RUNTIME total_vf_receiveinteger R R
RUNTIME total_vf_xceiveinteger R R
RUNTIME total_tasks_executedinteger R R
RUNTIME user1_time time RW RW
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

255

Chapter 9. Remote Manager Reference Tables

Class Field Data Type SNMP
Access

RPC Access Dynamic

RUNTIME user2_time time RW RW
RUNTIME user3_time time RW RW
RUNTIME user1_data integer RW RW
RUNTIME user2_data integer RW RW
RUNTIME user3_data integer RW RW
RUNTIME user4_data integer RW RW
RUNTIME user5_data integer RW RW
RUNTIME user6_data integer RW RW
RUNTIME astlm_current‡gauge R R
RUNTIME biolm_current‡gauge R R
RUNTIME bytlm_current‡gauge R R
RUNTIME diolm_current‡gauge R R
RUNTIME enqlm_current‡gauge R R
RUNTIME fillm_current‡ gauge R R
RUNTIME pgflquota_current‡gauge R R
RUNTIME tqelm_current‡gauge R R
RUNTIME wssize_current‡gauge R R
RUNTIME channelcnt_current‡gauge R R
POOL pool_coll_stateinteger R R
POOL mss_process_totalinteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largestmin gauge R R
POOL mss_process_failuresinteger R R
POOL mss_process_garbageinteger R R
ERROR err_coll_state‡integer R R
ERROR err_count‡ integer R R
ERROR last_err_msg‡ string R R
ERROR time_of_last_error‡time R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

Note

Items marked with ‡ are only valid for use with systems running ACMS Version 4.4 or higher.

256

Chapter 9. Remote Manager Reference Tables

9.3.1. Field Descriptions
Following are descriptions of the fields in the table above.

• record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. If this field is set to DISABLED, the process is not
currently collecting data for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field is null.

• user_name

The OpenVMS account under which the process is running.

• acms_state

The ACMS state of the process.

• cfg_coll_state

Collection states can be modified by modifying entries in the Collection table. If this field is set
to DISABLED, the process is not currently collecting data for the fields in this class. Any field
values reflect activity during a prior period when collection was enabled.

• astlm_active, biolm_active, bytlm_active, diolm_active, enqlm_active, fillm_ active,
pgflquota_active, tqelm_active, wsdefault_active, wsextent_active, wsquota_active

The default value of the related OpenVMS process quota. This is the value of the quota when the
Agent process was started.

• astlm_stored, biolm_stored, bytlm_stored, diolm_stored, enqlm_stored, fillm_ stored,
pgflquota_stored, tqelm_stored, wsdefault_stored, wsextent_stored, wsquota_stored

257

Chapter 9. Remote Manager Reference Tables

The value of the related process quota currently stored in the OpenVMS system user authorization
file (SYSUAF.DAT).

• rt_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. If this field is set to DISABLED, the process is not
currently collecting data for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• decnet_object

If the process has a current DECnet object, the value of this field is STARTED. Otherwise, the
value is STOPPED. If the DECnet object is stopped (and the runtime_coll_state is enabled for this
process), either distributed processing has not been enabled (that is, the node_name parameter in
the ACMSGEN file is NULL) or there is currently a problem with DECnet. Also, check the ACC
CONFIG parameters node_name_active and node_name_ stored to determine the current status of
the ACMSGEN node_name field.

• active_task_calls

The number of task calls currently being executed by all users of the Agent.

• current_attached_terms

The number of terminals currently attached to the Agent.

• active_tdms_menu_reqs

The number of TDMS menu requests currently being executed by all users of the Agent.

• total_tdms_menu_reqs

The total number of TDMS menu requests executed by all users of the Agent since the Agent was
started.

• active_tdms_reqs

The number of TDMS requests of all types currently being executed by all users of the Agent.

• active_tdms_msgrd

The number of TDMS read messages currently being executed by all users of the Agent.

• active_tdms_msgwt

The number of TDMS write messages currently being executed by all users of the Agent.

• active_tdms_cancel

The number of TDMS cancels currently being executed by all users of the Agent.

• total_tdms_reqs

The total number of TDMS requests (menu and exchange) executed by all users of the Agent since
the Agent was started.

258

Chapter 9. Remote Manager Reference Tables

• total_tdms_msgrd

The total number of TDMS read messages executed by all users of the Agent since the Agent was
started.

• total_tdms_msgwt

The total number of TDMS write messages executed by all users of the Agent since the Agent was
started.

• total_tdms_cancel

The total number of TDMS cancels executed by all users of the Agent since the Agent was started.

• active_vf_menu_reqs

The number of VSI DECforms menu requests currently being executed by all users of the Agent.

• total_vf_menu_reqs

The total number of VSI DECforms menu requests executed by all users of the Agent since the
Agent was started.

• active_vf_reqs

The number of VSI DECforms requests of all types currently being executed by all users of the
Agent.

• active_vf_enable

The number of VSI DECforms enable requests currently being executed by all users of the Agent.

• active_vf_disable

The number of VSI DECforms disable requests currently being executed by all users of the Agent.

• active_vf_cancel

The number of VSI DECforms cancel requests currently being executed by all users of the Agent.

• active_vf_send

The number of VSI DECforms requests currently being executed by all users of the Agent.

• active_vf_receive

The number of VSI DECforms receive requests currently being executed by all users of the Agent.

• active_vf_xceive

The number of VSI DECforms enable transceives currently being executed by all users of the
Agent.

• total_vf_reqs

The total number of VSI DECforms requests of all types executed by all users of the Agent since
the Agent was started.

259

Chapter 9. Remote Manager Reference Tables

• total_vf_enable

The total number of VSI DECforms enable requests executed by all users of the Agent since the
Agent was started.

• total_vf_disable

The total number of VSI DECforms disable requests executed by all users of the Agent since the
Agent was started.

• total_vf_cancel

The total number of VSI DECforms cancel requests executed by all users of the Agent since the
Agent was started.

• total_vf_send

The total number of VSI DECforms send requests executed by all users of the Agent since the
Agent was started.

• total_vf_receive

The total number of VSI DECforms receive requests executed by all users of the Agent since the
Agent was started.

• total_vf_xceive

The total number of VSI DECforms transceive requests executed by all users of the Agent since
the Agent was started.

• total_tasks_executed

The total number of tasks started in the Agent since the Agent was started.

• user1_time, user2_time, user3_time, user1_data, user2_data, user3_data, user4_data, user5_data,
user6_data

Additional generic runtime fields that are available to programmers and Agent developers.

• astlm_current, biolm_current, bytlm_current, diolm_current, enqlm_current, fillm_current,
pgflquota_current, tqelm_current, wssize_current, channelcnt_ current

The actual amount of the related OpenVMS process or system resource that is being consumed by
the Agent process. The frequency with which these fields are updated is based on the value of the
vms_coll_interval field in the Parameter table.

• pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. If this field is set to DISABLED, the process is not
currently collecting data for the fields in this class. Any field values reflect activity during a prior
period when collection was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which this
field is updated is based on the value of the Parameter table field mss_coll_interval.

260

Chapter 9. Remote Manager Reference Tables

• mss_process_free

The amount of unused MSS process pool for this process. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval.

• mss_process_largest

The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval.

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval.

• mss_process_garbage

The number of garbage collections that have been run to reclaim space in this processes MSS
process pool. The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval.

• error_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. Errors for this process are only sent to the Remote
Manager if this field is set to ENABLED. If this field is set to DISABLED, the process will not
collect data for the fields in this class; existing field values reflect activity during a prior period
when collection was enabled.

• error_count

The total number of errors related to this process that were sent to the Remote Manager.

• last_error_message

The text of the most recent error message related to this process that was sent to the Remote
Manager.

• time_of_last_error

Date and time of the most recent error message related to this process that was sent to the Remote
Manager.

9.4. Collection Table
The Collection table is populated from the configuration file maintained by the user on the local
system (or in a cluster common area) when the ACMS run-time system is started.

This table can be used at run time to enable or disable data collection by entity and class. The primary
key to this table is the combination of entity, class, and name. Duplicate rows are not allowed.

261

Chapter 9. Remote Manager Reference Tables

Table 9.3. Collection Table

Field Data Type SNMP Access RPC Access Configuration
Access

Dynamic

entity string R RW RW D
class string R RW RW D
name string R RW RW D
coll_state state 1 RW RW RW D
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

9.4.1. Field Descriptions
Following are descriptions of the fields in Table 9.3.

• entity

Name or type of the entity. Valid values are ACC, CP, EXC, GROUP, QTI, SERVER, and TSC.

• class

Class of data to be collected. Valid values are CONFIG, ID, POOL, and RUNTIME.

• name

A name for the entity that helps to uniquely identify an instance of the entity type. Possible entity
names are:

• ACC, CP, QTI, TSC (process name)

• EXC (application name)

• GROUP (task group name

• SERVER (server name)

Name can include the following wildcard values:

• asterisk (*) (matches all characters)

• exclamation point (!) (negation)

• coll_state

Current state as configured, either from the configuration file or by a user at run time. Valid
values are ENABLED or DISABLED. A change to this field causes collection to be initiated or
terminated.

262

Chapter 9. Remote Manager Reference Tables

Note

The trap table has not been implemented. The following is subject to change.

The event notification table is used to configure event notifications. The ACMS Management process
populates this table from the configuration file at system startup. Thereafter, users make modifications
to this table through either the SNMP interface, or the ACMSMGT interface.

It will be possible to disable thresholds by using any negative value (e.g. - 1). No monitoring is
performed for a disabled threshold.

A consistency check is performed between this table, the Threshold Monitor table, and the entity/
collection table. Parameters are monitored only if there is an active entry in the Threshold Monitor
table, and only if the entity being monitored is actively collecting data.

A special parameter (RETURN_CODE) will be provided to allow alarms and notifications to be
generated based on Error class data. When an entry is made in this table with the RETURN_CODE
parameter type, the min and max thresholds determine which return codes will result in a trap.
By definition, only non-successful return codes will be monitored. For example, to specify that
an error level trap should be generated when any server procedure returns a fatal return code,
the entry would be ENTITY=SERVER_PROC, NAME = *, PARAMETER=RETURN_CODE,
MIN_ERROR_THRESHOLD=FATAL.

9.5. CP Table
The CP table contains a row for each terminal Command Process (CP) running on the node.

Table 9.4. CP Table

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

ID record_state integer R R
ID id_coll_state integer R R
ID process_name string R R
ID pid integer R R
ID start_time time R R
ID end_time time R R
ID user_name string R R
RUNTIME runtime_coll_stateinteger R R
RUNTIME acms_state integer R R
RUNTIME decnet_object integer R R
RUNTIME current_attached_terminalsgauge R R
RUNTIME active_task_callsgauge R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

263

Chapter 9. Remote Manager Reference Tables

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

RUNTIME active_tdms_menu_reqsgauge R R
RUNTIME total_tdms_menu_reqsinteger R R
RUNTIME active_tdms_reqsgauge R R
RUNTIME active_tdms_read_msgsgauge R R
RUNTIME active_tdms_write_msgsgauge R R
RUNTIME active_tdms_cancelsgauge R R
RUNTIME total_tdms_reqs integer R R
RUNTIME total_tdms_read_msgsinteger R R
RUNTIME total_tdms_write_msgsinteger R R
RUNTIME total_tdms_cancelsinteger R R
RUNTIME active_df_menu_reqsgauge R R
RUNTIME total_df_menu_reqsinteger R R
RUNTIME active_df_reqs gauge R R
RUNTIME active_df_enablesgauge R R
RUNTIME active_df_disablesgauge R R
RUNTIME active_df_cancelsgauge R R
RUNTIME active_df_sends gauge R R
RUNTIME active_df_receivesgauge R R
RUNTIME active_df_transceivesgauge R R
RUNTIME total_df_reqs integer R R
RUNTIME total_df_enables integer R R
RUNTIME total_df_disablesinteger R R
RUNTIME total_df_cancels integer R R
RUNTIME total_df_sends integer R R
RUNTIME total_df_receivesinteger R R
RUNTIME total_df_transceivesinteger R R
RUNTIME data_set_hangupsinteger R R
POOL pool_coll_state integer R R
POOL mss_process_totalinteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largestmin gauge R R
POOL mss_process_failuresinteger R R
POOL mss_process_garbageinteger R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

264

Chapter 9. Remote Manager Reference Tables

9.5.1. Field Descriptions
Following are descriptions of the fields in Table 9.4.

• record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• process_name

The OpenVMS process name for the process.

• user_name

The OpenVMS account under which the process is running.

• pid

The OpenVMS process identifier for the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field is null.

• link_time

Date and time the image was linked.

• runtime_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• acms_state

The ACMS state of the process.

• decnet_object

If the process has a current DECnet object, the value of this field is STARTED. Otherwise, the
value is STOPPED. If the DECnet object is stopped (and the runtime_coll_state is enabled for this
process), either distributed processing has not been enabled (that is, the node_name parameter in

265

Chapter 9. Remote Manager Reference Tables

the ACMSGEN file is NULL) or there is currently a problem with DECnet. Also, check the ACC
CONFIG parameters node_name_active and node_name_stored to determine the current status of
the ACMSGEN node_name field.

• current_attached_terminals

The number of terminals currently attached to the CP.

• active_task_calls

The number of task calls currently being executed by all users of the CP.

• active_tdms_menu_reqs

The number of TDMS menu requests currently being executed by all users of the CP.

• total_tdms_menu_reqs

The total number of TDMS menu requests executed by all users of the CP since the CP was
started.

• active_tdms_reqs

The number of TDMS requests of all types currently being executed by all users of the CP.

• active_tdms_read_msgs

The number of TDMS read messages currently being executed by all users of the CP.

• active_tdms_write_msgs

The number of TDMS write messages currently being executed by all users of the CP.

• active_tdms_cancels

The number of TDMS cancels currently being executed by all users of the CP.

• total_tdms_reqs

The total number of TDMS requests (menu and exchange) executed by all users of the CP since
the CP was started.

• total_tdms_read_msgs

The total number of TDMS read messages executed by all users of the CP since the CP was
started.

• total_tdms_write_msgs

The total number of TDMS write messages executed by all users of the CP since the CP was
started.

• total_tdms_cancels

The total number of TDMS cancels executed by all users of the CP since the CP was started.

• active_df_menu_reqs

The number of DECforms menu requests currently being executed by all users of the CP.

266

Chapter 9. Remote Manager Reference Tables

• total_df_menu_reqs

The total number of DECforms menu requests executed by all users of the CP since the CP was
started.

• active_df_reqs

The number of DECforms requests of all types currently being executed by all users of the CP.

• active_df_enables

The number of DECforms enable requests currently being executed by all users of the CP.

• active_df_disables

The number of DECforms disable requests currently being executed by all users of the CP.

• active_df_cancels

The number of DECforms cancel requests currently being executed by all users of the CP.

• active_df_sends

The number of DECforms requests currently being executed by all users of the CP.

• active_df_receives

The number of DECforms receive requests currently being executed by all users of the CP.

• active_df_transceives

The number of DECforms enable transceives currently being executed by all users of the CP.

• total_df_reqs

The total number of DECforms requests of all types executed by all users of the CP since the CP
was started.

• total_df_enables

The total number of DECforms enable requests executed by all users of the CP since the CP was
started.

• total_df_disables

The total number of DECforms disable requests executed by all users of the CP since the CP was
started.

• total_df_cancels

The total number of DECforms cancel requests executed by all users of the CP since the CP was
started.

• total_df_sends

The total number of DECforms send requests executed by all users of the CP since the CP was
started.

267

Chapter 9. Remote Manager Reference Tables

• total_df_receives

The total number of DECforms receive requests executed by all users of the CP since the CP was
started.

• total_df_transceives

The total number of DECforms transceive requests executed by all users of the CP since the CP
was started.

• data_set_hangups

The total number of data set hangups detected by the CP since the CP was started.

• pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 9.4 and Section 5.1 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which
this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_free

The amount of unused MSS process pool for this process. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

• mss_process_largest

The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

• mss_process_garbage

The number of garbage collections that have been run to reclaim space in this processes MSS
process pool. The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9.8).

9.6. EXC Table
The EXC table is sized according the MAX_APPLS ACMSGEN parameter.

268

Chapter 9. Remote Manager Reference Tables

Table 9.5. EXC Table

Collection
Class

Field Data Type SNMP Access RPC Acess Dynamic

ID record_state integer R R
ID id_coll_state integer R R
ID process_name string R R
ID user_name string R R
ID pid integer R R
ID start_time time R R
ID end_time time R R
ID appl_name string R R
ID build_time time R R
ID exc_appl_tbl_stateinteger R
ID exc_server_typesinteger R
ID exc_task_groups integer R
CONFIG config_coll_stateinteger R R
CONFIG acms _state integer RW R D
CONFIG audit_state_activeinteger RW RW D
CONFIG audit_state_storedstate1 R R
CONFIG max_tasks_activeinteger RW RW D
CONFIG max_tasks_storedinteger R R
CONFIG sp_monitoring_interval_activeinteger RW RW D
CONFIG sp_monitoring_interval_storedstate1 R R
CONFIG max_servers_activeinteger RW RW D
CONFIG max_servers_storedinteger R R
CONFIG transaction_timeout_activeinteger RW RW D
CONFIG transaction_timeout_storedinteger R R
RUNTIME runtime_coll_stateinteger R R
RUNTIME decnet_object integer R R
RUNTIME current_servers gauge R R
RUNTIME current_submittersgauge R R
RUNTIME current_tasks gauge R R
RUNTIME total_tasks_executedinteger R R
RUNTIME total_submitters integer R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

269

Chapter 9. Remote Manager Reference Tables

Collection
Class

Field Data Type SNMP Access RPC Acess Dynamic

RUNTIME current
active_servers

gauge R R

RUNTIME current_free_serversgauge R R
RUNTIME current_waiting_tasksgauge R R
RUNTIME server_start_countinteger R R
RUNTIME server_failure_countinteger R R
RUNTIME task_failures integer R R
RUNTIME task_start_failuresinteger R R
RUNTIME task_security_failuresinteger R R
RUNTIME task_cancels integer R R
RUNTIME active_tdms_requestsgauge R R
RUNTIME active_tdms_read_messagesgauge R R
RUNTIME active_tdms_write_messagesgauge R R
RUNTIME active_tdms_cancelsgauge R R
RUNTIME total_tdms_requestsinteger R R
RUNTIME total_tdms_read_messagesinteger R R
RUNTIME total_tdms_write_messagesinteger R R
RUNTIME total_tdms_cancelsinteger R R
RUNTIME total_dataset_hangupsinteger R R
POOL pool_coll_state integer R R
POOL mss_process_totalinteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largestmin gauge R R
POOL mss_process_failuresinteger R R
POOL mss_process_garbageinteger R R
POOL ws_pool_total integer R R
POOL ws_pool_free min gauge R R
POOL ws_pool_largest min gauge R R
POOL ws_pool_failuresinteger R R
POOL ws_pool_garbageinteger R R
POOL wsc_pool_total integer R R
POOL wsc_pool_free min gauge R R
POOL wsc_pool_largestmin gauge R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

270

Chapter 9. Remote Manager Reference Tables

Collection
Class

Field Data Type SNMP Access RPC Acess Dynamic

POOL wsc_pool_failuresinteger R R
POOL wsc_pool_garbageinteger R R
POOL tws_pool_total integer R R
POOL twsc_pool_total integer R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

9.6.1. Field Descriptions
Following are descriptions of the fields in Table 9.5.

• record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• process_name

The OpenVMS process name for the process.

• user_name

The OpenVMS account under which the process is running.

• pid

The OpenVMS process identifier of the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field will be null.

• appl_name

Name of the application.

271

Chapter 9. Remote Manager Reference Tables

• build_time

Date and time the application database (ADB) was built.

• exc_appl_tbl_state

This field is available to the SNMP interface only. It contains the state of the application global
section for this EXC. When EXCs have completed their startup, they construct global sections
containing server and task group tables. If this field is not MGMT$K_VALID (2), the Server and
Task Group tables are not available.

• exc_server_types

This field is available to the SNMP interface only. It contains the number of server types
contained in the application, which is also the number of rows in the Server table for this EXC.

• exc_task_groups

This field is available to the SNMP interface only. It contains the number of task groups contained
in the application, which is also the number of rows in the Task Group table for this EXC.

• config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• audit_state_active

Current auditing state of the application.

• audit_state_stored

Value of the auditing state of the application as specified in the ACMS application database (.ADB
file).

• max_tasks_active

The current maximum number of executing tasks allowed.

• max_tasks_stored

The maximum number of executing tasks allowed as specified in the ACMS application database
(.ADB file).

• sp_monitoring_interval_active

The current server process monitoring interval for the application.

• sp_monitoring_interval_stored

The server process monitoring interval for the application as specified in the ACMS application
database (.ADB file).

• max_servers_active
272

Chapter 9. Remote Manager Reference Tables

The current maximum number of started server instances for the application.

• max_servers_stored

The maximum number of started server instances for the application as specified in the ACMS
application database (.ADB file).

• transaction_timeout_active

The current default task timeout for the application.

• transaction_timeout_stored

The default task timeout for the application as specified in the ACMS application database (.ADB
file).

• acms_state

The current ACMS state of this process.

• runtime_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• decnet_object

If the process has a current DECnet object, the value of this field is STARTED. Otherwise, the
value is STOPPED. If the DECnet object is stopped (and the runtime_coll_state is enabled for this
process), either distributed processing has not been enabled (that is, the node_name parameter in
the ACMSGEN file is NULL) or there is currently a problem with DECnet. Also, check the ACC
CONFIG parameters node_name_active and node_name_stored to determine the current status of
the ACMSGEN node_name field.

• current_servers

The number of server instances currently started in this application.

• current_submitters

The number of submitters currently logged in to this application.

• current_tasks

The number of tasks currently started in the application.

• total_tasks_executed

The total number of tasks started in the application since the application was started.

• total_submitters

273

Chapter 9. Remote Manager Reference Tables

The total number of submitters who have submitted tasks to this application since the application
was started.

• current_active_servers

The currrent number of active servers (that is, those servers peforming processing steps).

• current_free_servers

The number of started servers which are not currently active (that is, not currently executing
processing steps).

• current_waiting_tasks

The number of tasks that are not executing, waiting for a procedure server to become available.

• server_start_count

The number of times servers have been started in this application.

• server_failure_count

The number of times servers have been stopped in this application.

• task_failures

The number of tasks in this application that have failed to complete successfully.

• task_start_failures

The number of tasks in this application that have failed to start.

• task_security_failures

The number of tasks in this application that have failed to start because of security violations.

• task_cancels

The number of tasks in this application that have been cancelled.

• active_tdms_requests

The number of TDMS requests (both exchange and menu) that are currently executing for this
process.

• active_tdms_read_messages

The number of TDMS read messages currently outstanding for this process.

• active_tdms_write_messages

The number of TDMS write messages currently outstanding for this process.

• active_tdms_cancels

The number of TDMS cancels currently outstanding for this process.

274

Chapter 9. Remote Manager Reference Tables

• total_tdms_requests

The total number of TDMS requests (both exchange and menu) processed by this process while
the runtime_coll_state has been ENABLED.

• total_tdms_read_messages

The total number of TDMS read messages processed by this process while the runtime_coll_state
has been ENABLED.

• total_tdms_write_messages

The total number of TDMS write messages processed by this process while the runtime_coll_state
has been ENABLED.

• total_tdms_cancels

The total number of TDMS cancels processed by this process while the runtime_coll_state has
been ENABLED.

• total_dataset_hangups

The total number of TDMS dataset hangups (unexpected session interruptions) processed by this
process while the runtime_coll_state has been ENABLED.

• pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which
this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_free

The amount of unused MSS process pool for this process. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

• mss_process_largest

The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

275

Chapter 9. Remote Manager Reference Tables

• mss_process_garbage

The number of garbage collections for this process that have been run to reclaim space in the MSS
process pool for this process. The frequency with which this field is updated is based on the value
of the Parameter table field mss_coll_interval (see Table 9.8).

• ws_pool_total

The total size of the WS pool allocated for this application. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

• ws_pool_free

The amount of unused WS pool for this application. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

• ws_pool_largest

The largest unused block available in this application's WS pool. The frequency with which
this field is updated is based on the value of the Parameter table field wksp_coll_interval (see
Table 9.8).

• ws_pool_failures

The number of failed attempts to allocate space in the WS pool for this application. The
frequency with which this field is updated is based on the value of the Parameter table field
wksp_coll_interval (see Table 9.8).

• ws_pool_garbage

The number of garbage collections that have been run to reclaim space in this application's WS
pool. The frequency with which this field is updated is based on the value of the Parameter table
field wksp_coll_interval (see Table 9.8).

• wsc_pool_total

The total size of the WSC pool allocated for this application. The frequency with which this field
is updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

• wsc_pool_free

The amount of unused WSC pool for this application. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

• wsc_pool_largest

The largest unused block available in this application's WSC pool. The frequency with which
this field is updated is based on the value of the Parameter table field wksp_coll_interval (see
Table 9.8).

• wsc_pool_failures

The number of failed attempts to allocate space in this application's WSC pool. The
frequency with which this field is updated is based on the value of the Parameter table field
wksp_coll_interval (see Table 9.8).

• wsc_pool_garbage

276

Chapter 9. Remote Manager Reference Tables

The number of garbage collections that have been run to reclaim space in this application's WSC
pool. The frequency with which this field is updated is based on the value of the Parameter table
field wksp_coll_interval (see Table 9.8).

• tws_pool_total

The default size for TWS pools (in pagelets) allocated for this application.

• twsc_pool_total

The default size for TWSC pools (in pagelets) allocated for this application.

9.7. Interfaces Table
The Interfaces table is populated from the configuration file by the ACMS Remote Manager process
during process startup. This table specifies which interfaces are active and contains parameters
associated with each interface. By default, the RPC interface is started; SNMP is not started.

Table 9.6. Interfaces Table

Field Data Type SNMP Access RPC Access Configuration
Access

Dynamic

interface string R R R
state state1 RW RW RW D
running_state state2 R R R
get_request_countinteger R R
set_request_countinteger R R
alarms_sent integer R R
time_alarm_last_sentinteger R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

9.7.1. Field Descriptions
Following are descriptions of the fields in Table 9.6.

• interface

Name or type of the interface. Valid values are RPC or SNMP.

• state

Current state as configured, either from the configuration file or by a user at run time. Valid
values are ENABLED or DISABLED. Note that state and acms_state are not always the same
because of potential run-time failures in a thread. For instance, if a thread fails to start, state may
be ENABLED, but acms_state may be STOPPED.

277

Chapter 9. Remote Manager Reference Tables

A thread can be enabled only if the acms_state value is STOPPED. A thread can be disabled only
if the acms_state value is not STOPPED.

• acms_state

Actual execution state. Interfaces go through the following states:

• INITING

The Remote Manager is in the process of creating the interface thread.

• STARTING

The interface thread has been created and is initializing.

• STARTED

The interface thread has completed initializing and is now running.

• STOPPING

The thread is starting shutdown, as the result of either a stop request or a fatal error.

• STOPPED

The thread is no longer executing.

• get_request_count

The number of read requests submitted to the interface. This includes requests that are rejected
because of authorization failures.

• set_request_count

The number of write requests submitted to the interface. This includes requests that are rejected
because of authorization failures.

• alarms_sent

The number of alarms that have been sent by this interface. For SNMP, these are SNMP traps. For
RPC, this field is undefined.

• time_alarm_last_sent

The time the most recent alarm was sent by this interface. For SNMP, this is the time the last
SNMP trap was sent. For RPC, this field is undefined.

9.8. Manager Status Table
The Manager Status table contains run-time values that reflect Remote Manager activity. This table
is maintained internally by the Remote Manager and is read only to all external entities. Values in the
table can be accessed through one of the supported interfaces. No changes can be made to the table by
external users.

In general, the values in this table are informational only.

278

Chapter 9. Remote Manager Reference Tables

Table 9.7. Manager Status Table

Field Name Data Type SNMP Access RPC Access Dynamic
collection_count integer R R
interfaces_count integer R R
timer_count integer R R
trap_count integer R R
rpc_udp_state state1 R R
rpc_tcp_state state1 R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

9.8.1. Field Descriptions
Following are descriptions of the fields in Table 9.7.

• collection_count

Current number of Collection table entries.

• interfaces_count

Current number of entries in the Interfaces table.

• timer_count

Current number of entries in the Timer table.

• trap_count

Current number of entries in the Trap table.

• rpc_udp_state

Current state of the RPC interface using the UDP protocol. A value of 1 means that the UDP
protocol is active. A value of 0 means that the UDP protocol is inactive.

• rpc_tcp_state

Current state of the RPC interface using the TCP protocol. A value of 1 means that the UDP
protocol is active. A value of 0 means that the UDP protocol is inactive.

9.9. Parameter Table
The Parameter table contains values that control the operation of the ACMS Remote Manager and
that are not directly related to any ACMS entity. This table is populated initially from the ACMSCFG
file. The Remote Manager maintains the table internally at run time; users can access data in the table
only through one of the supported interfaces. Changes made to the table at run time are lost when the
Remote Manager is stopped.

279

Chapter 9. Remote Manager Reference Tables

In general, the values in this table should be modified for fine tuning only, and only if a demonstrated
need exists.

Note

All the fields in Table 9.8 are of type integer, and all fields have read and write access.

Table 9.8. Parameter Table

Field Default Value Minimum
Value

Maximum
Value

Dynamic Interface

dcl_audit_level E 0 F D S,R,F
dcl_mgr_priority5 1 10 S,R,F
dcl_stacksize 300 1 2147483647 S,R,F
event_log_priority5 1 10 S,R,F
log_stacksize 300 1 2147483647 S,R,F
login_creds_lifetime60 1 14399999 D S,R,F
max_logins 20 1 2147483647 D S,R,F
max_rpc_return_recs20 1 2147483647 S,R,F
mgr_audit_level E 0 F D S,R,F
msg_proc_audit_levelE 0 F D S,R,F
msg_proc_priority5 1 10 S,R,F
msg_proc_stacksize300 1 2147483647 S,R,F
mss_coll_interval10 1 863999999 D S,R,F
proc_mon_audit_levelE 0 F S,R,F
proc_mon_interval30 1 14399999 D S,R,F
proc_mon_priority5 1 10 S,R,F
proc_mon_stacksize300 1 2147483647 S,R,F
proxy_creds_lifetime60 1 14399999 D S,R,F
rpc_audit_level E 0 F D S,R,F
rpc_priority 5 1 10 S,R,F
rpc_stacksize 300 1 2147483647 S,R,F
security_audit_levelE 0 F D S,R,F
snmp_agent_time_out10 1 863999999 D S,R,F
snmp_audit_levelE 0 F D S,R,F
snmp_are_you_there300 1 863999999 S,R,F
snmp_priority 5 1 10 S,R,F
Key to Interface

S – SNMP
R – RPC (API and ACMSMGR utility)
F – File (configuration file)
D – Field is dynamic.

280

Chapter 9. Remote Manager Reference Tables

Field Default Value Minimum
Value

Maximum
Value

Dynamic Interface

snmp_sel_time_out5 0 863999999 S,R,F
snmp_stacksize 300 1 2147483647 S,R,F
timer_audit_levelE 0 F D S,R,F
timer_interval 30 1 863999999 D S,R,F
timer_priority 5 1 10 S,R,F
timer_stacksize 300 1 2147483647 S,R,F
total_entity_slots20 1 2147483647 S,R,F
trace_msg_wait_time5 1 14399999 D S,R,F
trace_start_wait_time5 1 14399999 D S,R,F
trap_audit_level E 0 F D S,R,F
trap_priority 5 1 10 S,R,F
trap_stacksize 300 1 2147483647 S,R,F
wksp_coll_interval10 1 863999999 D S,R,F
Key to Interface

S – SNMP
R – RPC (API and ACMSMGR utility)
F – File (configuration file)
D – Field is dynamic.

9.9.1. Field Descriptions
Following are descriptions of the fields in Table 9.8.

• dcl_audit_level, mgr_audit_level, msg_audit_level,proc_mon_audit_level, rpc_audit_level,
security_audit_level, snmp_audit_level, timer_audit_level, trap_audit_level

Audit levels determine the amount of auditing information written for a given facility. Audit levels
are specified using a hexidecimal value from 0 (none) to F (all). The integer values are a logical
ORing of the following:

INFO 1
WARN 2
ERROR 4
FATAL 8

For example, to specify auditing of both error and fatal information, specify a value of C. For
more information about auditing and audit levels see Section 4.7.

• dcl_mgr_priority

Relative priority of the DCL manager thread. The DCL manager is used to send ACMS run-time
changes to the ACMS system. Priority is specified as a whole number between 1 and 10, where 1
is the lowest priority and 10 is the highest. This value should be left at the default.

281

Chapter 9. Remote Manager Reference Tables

• dcl_stacksize, log_stacksize, msg_proc_stacksize, proc_mon_stacksize, rpc_stacksize,
snmp_stacksize, timer_stacksize, trap_stacksize,

These values determine the internal stack sizes for each thread. Stack sizes are set during thread
creation and are not adjusted after the thread has been started. Restartable threads, such as RPC
and SNMP, can be adjusted while the Remote Manager is running by disabling the interface,
modifying the parameter, and then reenabling the interface.

• event_log_priority

Relative priority of the event log thread. The event log thread writes audit messages to the audit
log. Priority is specified as a whole number between 1 and 10, where 1 is the lowest priority and
10 is the highest. This value should be left at the default.

• login_creds_lifetime

The amount of time (in minutes) that explict logins are valid. When a user logs in to a Remote
Manager process using a valid OpenVMS account and password, a login is created for the user,
and the expiration of that login is calculated and stored based on this parameter. When the current
time is greater than the expiration time, the user is logged out and must log in again using the
ACMSMGR LOGIN command. A change to this parameter takes effect for any login that takes
place after the change is made. A change to this parameter does not take effect for any login that
took place before the change was made.

• max_logins

Maximum number of external processes allowed to concurrently connect to the Remote Manager.
Starting the SNMP interface counts as one login. Each RPC client counts as one login. RPCs are
serviced serially.

• max_rpc_return_recs

The maximum number of records to be returned to any given request for data. This parameter
allows network bandwidth to be conserved by sending data in user-managed chunks.

• msg_proc_priority

Relative priority of the message processor thread. The message processor is responsible for
removing messages sent by ACMS processes to the Remote Manager from the error input queue
and for processing messages according to configuration values specified in the Collection and
Trap tables. This value should be left at the default. Priority is specified as a whole number
between 1 and 10, where 1 is the lowest priority and 10 is the highest.

• mss_coll_interval

Controls the frequency (in seconds) at which MSS values are collected. A lower value causes
MSS values to be collected more often; a higher value causes MSS values to be collected
less often. MSS values are collected by all ACMS run-time processes except SWL, ATR, and
procedure servers.

• proc_mon_interval

The frequency (in seconds) at which the process monitor thread should run. The process monitor
thread checks for the existence of the ACC and other ACMS run-time processes in order to map
the MGMT global section and to send alarms.

282

Chapter 9. Remote Manager Reference Tables

• proc_mon_priority

Relative priority of the process monitor thread. The process monitor thread periodically checks for
the existence of the ACC process in order to map the MGMT global section and to send alarms.
Priority is specified as a whole number between 1 and 10, where 1 is the lowest priority and 10 is
the highest. This value should be left at the default.

• proxy_creds_lifetime

The amount of time (in minutes) that proxy logins are valid. When a user first accesses a Remote
Manager process using an ACMS proxy, a login is created for the user, and the expiration of that
login is calculated and stored based on this parameter. When the current time is greater than the
expiration time, the user's proxy information is refreshed. A change to this parameter takes effect
for any login that takes place after the change is made. A change to this parameter does not take
effect for any login that took place before the change was made.

• rpc_priority

Relative priority of the RPC management thread. The RPC management thread responds to RPC
requests to get or set data values. Priority is specified as a whole number between 1 and 10, where
1 is the lowest priority and 10 is the highest.

• snmp_agent_time_out

Number of seconds that the SNMP Master agent waits for a response from the Remote Manager.
The maximum is 10 seconds for Compaq TCP/IP Services Version 4.2. For Compaq TCP/IP
Services Version 5.0 and higher, the maximum is 60 seconds.

• snmp_are_you_there

Controls how often are you there messages are sent by the Remote Manager to the SNMP Master
agent. This value should be entered as a multiple of the snmp_sel_time_out value. Each time a
timeout occurs, a timeout counter is incremented. The product of the timeout counter and the
snmp_sel_timeout are then compared to the snmp_are_you_there value. If the product is greater
than the snmp_are_you_there value, an are_you_there message is sent.

• snmp_priority

Relative priority of the SNMP management thread. The SNMP management thread responds to
SNMP requests to get or set data values. Priority is specified as a whole number between 1 and 10,
where 1 is the lowest and 10 is the highest.

• snmp_sel_time_out

Controls how long the Remote Manager waits for a response from the SNMP master agent. If
the timeout valueis reached and no messages are expected, the snmp_are_you_there interval is
checked (see snmp_are_you_there) . If a message is expected and is not received before the select
times out, the connection to the master agent is assumed to have been lost and an attempt is made
to reregister. There is a hard coded 2 second wait prior to reregistration.

This value also controls how long it takes to begin disabling this interface. Requests to disable
the interface do not interrupt the socket select – they wait for it to either timeout or end naturally
(that is, when a message is received). At worse case, a request to disable the interface has to wait
snmp_sel_time_out seconds before the shutdown of the interface begins. Once it begins, it usually
shuts down quickly – within a second or two.

283

Chapter 9. Remote Manager Reference Tables

• timer_interval

The Remote Manager runs one internal timer that controls the operation of all other timers. The
interval of this timer effectively sets the smallest timer interval for the process. The interval is set
in seconds. If the value is too small, the timer will run frequently with no work to do. This value
should be set to smallest desired timer interval.

• timer_priority

Relative priority of the timer thread. The timer thread manages all internal timers. Priority is
specified as a whole number between 1 and 10, where 1 is the lowest priority and 10 is the
highest. This value should be left at the default.

• total_entity_slots

The total number of Collection table entries to allow. When this number is reached, additional
ACMSMGR ADD COLLECTION requests are rejected. Slots are allocated when the ACMS run-
time system is started.

• trace_msg_wait_time

The number of seconds the Remote Manager should wait for updates to the mss_coll_interval and
wksp_coll_interval parameters to become effective (processed by the ACC). Updates to the ACC
are sent by means of the trace monitor. The Remote Manager will poll the value being changed
for up to trace_msg_wait_time seconds to see whether the value was in fact changed. If it is not
changed within this timeframe, the Remote Manager logs an error and returns an error to the
caller.

• trace_start_wait_time

The number of seconds the Remote Manager should wait for the trace monitor to be started.
The Remote Manager communicates to ACMS process through the trace monitor. The Remote
Manager attempts to start the trace monitor if the Remote Manager needs to send a message and
the trace monitor is not already running. This value controls how long the Remote Manager will
wait for the trace monitor to start before aborting the message send. Messages that are not sent are
discarded (lost).

• trap_priority

Relative priority of the trap sender thread. The trap sender thread dispatches trap messages to
SNMP and RPC receivers. Priority is specified as a whole number between 1 and 10, where 1 is
the lowest priority and 10 is the highest. This value should be left at the default.

• wksp_coll_interval

Controls the frequency (in seconds) at which workspace (WS, WSC, TWS, TWSC) pool values
are collected. A lower value causes workspace values to be collected more often; a higher value
causes workspace pool values to be collected less often. Workspace pool values are collected only
by ACC and EXC.

9.10. QTI Table
The QTI table contains a single entry for QTI management information.

284

Chapter 9. Remote Manager Reference Tables

Table 9.9. QTI Table

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

ID record_state integer R R
ID id_coll_state integer R R
ID process_name string R R
ID pid integer R R
ID start_time time R R
ID end_time time R R
CONFIG config_coll_stateinteger R R
CONFIG acms _state integer RW R D
CONFIG qti_username_activestring R R
CONFIG qti_username_storedstring RW RW
CONFIG qti_priority_activeinteger R R
CONFIG qti_priority_storedinteger RW RW
CONFIG max_threads integer RW RW
CONFIG sub_timeout_activeinteger RW RW D
CONFIG sub_timeout_storedinteger RW RW
CONFIG retry_timer_activeinteger RW RW D
CONFIG retry_timer_storedinteger RW RW
CONFIG polling_timer_activeinteger RW RW D
CONFIG polling_timer_storedinteger RW RW
RUNTIME runtime_coll_stateinteger R R
RUNTIME started_ queues gauge R R
RUNTIME current_tasks gauge R R
RUNTIME current_submittersgauge R R
RUNTIME task_successes integer R R
RUNTIME task_failures integer R R
RUNTIME task_retries integer R R
RUNTIME errors_queued integer R R
POOL pool_coll_state integer R R
POOL mss_process_totalinteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largestmin gauge R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

285

Chapter 9. Remote Manager Reference Tables

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

POOL mss_process_failuresinteger R R
POOL mss_process_garbageinteger R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

9.10.1. Field Descriptions
Following are descriptions of the fields in Table 9.9.

• record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field will be null.

• config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• qti_username_active

The OpenVMS account under which the QTI will run. This is the value of the ACMSGEN field
when the process was started.

• qti_username_stored

286

Chapter 9. Remote Manager Reference Tables

The value of the qti_username field currently stored in the ACMSGEN file.

• qti_priority_active

The base priority for this process. This is the value of the ACMSGEN field when the process was
started.

• qti_priority_stored

The base priority currently stored in the ACMSGEN file for this process.

• max_threads

The maximum number of threads allowed.

• sub_timeout_active

The current value of the QTI submitter timeout.

• sub_timeout_stored

The value of the qti_sub_timeout field in the current ACMSGEN file.

• retry_timer_active

The current value of the QTI retry timer.

• retry_timer_stored

The value of the qti_retry_timer field in the current ACMSGEN file.

• polling_timer_active

The current value of the QTI polling timer.

• polling_timer_stored

The value of the qti_polling_timer field in the current ACMSGEN file.

• acms_state

The current ACMS state of this process.

• runtime_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• started_queues

The number of queues currently started on the node.

287

Chapter 9. Remote Manager Reference Tables

• current_tasks

The number of tasks currently executed that were submitted by the QTI.

• current_submitters

The number of submitters currently logged in by the QTI.

• task_successes

The number of tasks successfully submitted and executed by the QTI.

• task_failures

The number of tasks that failed to complete successfully after being submitted by the QTI.

• task_retries

The number of times the QTI has attempted to re-run a task that is currently failed.

• errors_queued

The number of tasks queued to error queues by the QTI.

• pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which
this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_free

The amount of MSS process pool for this process that is currently unused. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_largest

The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

288

Chapter 9. Remote Manager Reference Tables

• mss_process_garbage

The number of garbage collections for this process that have been run to reclaim space in the
MSS process pool. The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9.8).

9.11. Server Table
The Server table contains a separate row for each server type (not server instance) in the application.
Totals are for all instances of the server type.

Table 9.10. Server Table

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

ID record_state integer R R
ID id_coll_state integer R R
ID appl_name string R R
ID server_name string R R
CONFIG config_coll_stateinteger R R
CONFIG creation_delay_activeinteger RW RW D
CONFIG creation_interval_activeinteger RW RW D
CONFIG deletion_delay_activeinteger RW RW D
CONFIG deletion_interval_activeinteger RW RW D
CONFIG server_process_dump_flag_activeinteger RW RW D
CONFIG server_replace_flaginteger RW RW D
CONFIG minimum_instances_activeinteger RW RW D
CONFIG maximum_instances_activeinteger RW RW D
RUNTIME runtime_coll_stateinteger R R
RUNTIME current_servers gauge R R
RUNTIME current_waiting

tasks
gauge R R

RUNTIME server_start_countinteger R R
RUNTIME server_failures integer R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

9.11.1. Field Descriptions
Following are descriptions of the fields in Table 9.10.

• record_state

289

Chapter 9. Remote Manager Reference Tables

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• appl_name

Name of the application to which this server type belongs.

• server_name

Name of this server type.

• config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• creation_delay_active

The current creation delay for this server type.

• creation_interval_active

The current creation interval for this server type.

• deletion_delay_active

The current deletion delay for this server type.

• deletion_interval_active

The current deletion interval for this server type.

• server_process_dump_flag_active

The current server process dump flag for this server type.

• server_replace_flag

This field provides the ability for SNMP users to replace a server type by setting this value to 1.
This field is available only to the SNMP interface.

• minimum_instances_active

The current minimum number of started instances for this server type.

• maximum_instances_active

The current maximum number of started instances for this server type.

290

Chapter 9. Remote Manager Reference Tables

• runtime_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• current_servers

The current number of started servers of this type in the application.

• current_waiting_tasks

The current number of tasks waiting to execute processing steps that call servers of this type in
this application.

• server_start_count

The number of times a server instance has been created for servers of this type in this application.

9.12. Task Group Table
The Task Group table contains a row for each task group in the application.

Table 9.11. Task Group Table

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

ID record_state integer R R
ID id_coll_state integer R R
ID appl_name string R R
ID task_group_namestring R R
ID build_time time R R
POOL pool_coll_state integer R R
POOL tws_pool_total integer R R
POOL tws_pool_free min gauge R R
POOL tws_pool_largestmin gauge R R
POOL tws_pool_failuresinteger R R
POOL tws_pool_garbageinteger R R
POOL twsc_pool_total integer R R
POOL twsc_pool_free min gauge R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

291

Chapter 9. Remote Manager Reference Tables

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

POOL twsc_pool_largestmin gauge R R
POOL twsc_pool_failuresinteger R R
POOL twsc_pool_garbageinteger R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

9.12.1. Field Descriptions
Following are descriptions of the fields in Table 9.11.

• record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• appl_name

Name of the application to which this server type belongs.

• task_group_name

Name of this task group.

• build_time

The date and time the task group database (TDB) was built.

• pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• tws_pool_total

The total size of the TWS pool allocated for this task group. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

• tws_pool_free

292

Chapter 9. Remote Manager Reference Tables

The amount of unused TWS pool this task group. The frequency with which this field is updated
is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

• tws_pool_largest

The largest unused block available in this task group's TWS pool. The frequency with which
this field is updated is based on the value of the Parameter table field wksp_coll_interval (see
Table 9.8).

• tws_pool_failures

The number of failed attempts to allocate space in the TWS pool for this task group, The
frequency with which this field is updated is based on the value of the Parameter table field
wksp_coll_interval (see Table 9.8).

• tws_pool_garbage

The number of garbage collections that have been run to reclaim space in this task group's TWS
pool. The frequency with which this field is updated is based on the value of the Parameter table
field wksp_coll_interval (see Table 9.8).

• twsc_pool_total

The total size of the TWSC pool allocated for this task group. The frequency with which this field
is updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

• twsc_pool_free

The amount of unused TWSC Pool for this task group. The frequency with which this field is
updated is based on the value of the Parameter table field wksp_coll_interval (see Table 9.8).

• twsc_pool_largest

The largest unused block available in this task group's TWSC pool. The frequency with which
this field is updated is based on the value of the Parameter table field wksp_coll_interval (see
Table 9.8).

• twsc_pool_failures

The number of failed attempts to allocate space in this task group's TWSC pool. The
frequency with which this field is updated is based on the value of the Parameter table field
wksp_coll_interval (see Table 9.8).

• twsc_pool_garbage

The number of garbage collections that have been run to reclaim space in this task group's TWSC
pool. The frequency with which this field is updated is based on the value of the Parameter table
field wksp_coll_interval (see Table 9.8).

9.13. Trap Table
The Trap table is used to control which events trigger the Remote Manager to generate an SNMP
trap. The ACMS Remote Manager populates this table from the configuration file at system
startup. Thereafter, users make modifications to this table through either the SNMP interface or the
ACMSMGR interface.

293

Chapter 9. Remote Manager Reference Tables

The primary key to this table is the combination of entity, name, and parameter. Duplicate rows are
not allowed.

Table 9.12. Trap Table

Field Data Type SNMP Access RPC Access Configuration
Access

Dynamic

entity integer R RW RW D
name string R RW RW D
parameter integer R RW RW D
min_value integer RW RW RW D
max_value integer RW RW RW D
severity integer RW RW RW D
alarms_sent integer R R
alarm_last_sent integer R R
trap_delete integer RW D
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

9.13.1. Field Descriptions
Following are descriptions of the fields in Table 9.12.

• entity

Name or type of the entity. Valid values are ACC, CP, EXC, MGR, QTI, and TSC. Symbolic
values for the RPC interface are defined in Section 8.1.4. This value for entity cannot be changed
from the SNMP interface.

• name

A name for the entity that helps to uniquely identify an instance of the entity type. This value
cannot be changed from the SNMP interface. Possible entity names are:

• ACC, CP, QTI, TSC (process name)

• EXC (application name)

• GROUP (task group name)

• MGR: Must be *

• SERVER (server name): One of the following wildcard values:

• asterisk (*) (matches all characters)

• exclamation point (!) (negation)

294

Chapter 9. Remote Manager Reference Tables

• parameter

Parameter specifies the value or condition to be monitored for potential alarms. This value cannot
be changed from the SNMP interface.

Not all parameters are valid for all entity types (see Table 9.13). Valid values are:

• EVENT_SEVERITY

This parameter causes a test to be performed each time an auditable event is raised in the
Remote Manager. Remote Manager events are filtered using the fields in the Parameter table
(see Section 9.9) and are stored in the Remote Manager log (see Section 4.7). Events are
monitored for traps even if the event is not currently being logged.

• EXISTS

This parameter causes a test to be performed each time the Remote Manager detects that a
process has started or stopped.

• min_value

The minimum allowable value for the parameter. Valid minimums are parameter dependent (see
Table 9.13). If the field or condition being monitored is less than the value specified, an alarm is
generated. A value of -1 is used when this field is not to be evaluated.

• max_value

The maximum allowable value for the parameter. Valid maximums are parameter dependent (see
Table 9.13). If the field or condition being monitored is greater than the value specified, an alarm
is generated. A value of -1 is used when this field is not to be evaluated.

• severity

A severity to be associated with the trap. Severity codes are embedded in the trap message (see
Section 9.14.3) and must be parsed by the trap receiver. Valid values are:

• INFO

• WARN

• ERROR

• FATAL

• alarms_sent

A count of the number of alarms that have been sent.

• alarm_last_sent

The date and time the last alarm was sent.

• trap_delete

This field is available only through the SNMP interface. Set this field to 1 to delete the table row.
RPC users call the procedure shown in ACMSMGMT_DELETE_TRAP_1. ACMSMGR and
ACMSCFG each provide a DELETE TRAP command for this purpose.

295

Chapter 9. Remote Manager Reference Tables

9.14. Valid Trap Minimums and Maximums
Table 9.13 lists the values that can be specified as the minimum or maximum for each parameter type.

Table 9.13. Trap Minimums and Maximums

Parameter Value Meaning Valid for These
Entities

EVENT_SEVERITY 1 Informational MGR
1 Warning MGR
1 Error MGR
1 Fatal MGR
2 Ignore this field. MGR

EXISTS 3 Stopped ACC, CP, EXC, QTI,
TSC

4 Started ACC, CP, EXC, QTI,
TSC

2 Ignore this field. ACC, CP, EXC, QTI,
TSC

1When configuring alarms for event severities, remember how the values are evaluated. For example, specifying the value 8 (FATAL) as a
minimum results in an alarm being generated by all lesser severities. Simlarly, specifying the value 1 (INFO) as a maximum results in an
alarm being generated by all greater severities.
2The value of -1 causes the field to be ignored. When configuring traps, it is not always desirable to specify both minimum and maximum
values. The value -1 can be used as a null placeholder when either value is to be ignored.
3When specified as a maximum, this value causes an alarm to be generated whenever the associated entity type and name is started. This
value can be used, for example, to signal when the QTI has been started on a node on which it should not run.
4When specified as a minimum, this value causes an alarm to be generated whenever the associated entity type and name is stopped. This
value can be used, for example, to signal when a particular application has been stopped.

9.14.1. Field Descriptions
Following are descriptions of the fields in the table above:

• entity

Name or type of the entity. Valid values are ACC, CP, EXC, MGR, QTI, and TSC. Symbolic
values for the RPC interface are defined in Section 8.1.4. This value for entity cannot be changed
from the SNMP interface.

• name

A name for the entity that helps to uniquely identify an instance of the entity type. This value
cannot be changed from the SNMP interface. Possible entity names are:

• ACC, CP, QTI, TSC (process name)

• EXC (application name)

• GROUP (task group name)

• MGR: Must be *

• SERVER (server name): One of the following wildcard values:

296

Chapter 9. Remote Manager Reference Tables

• asterisk (*) (matches all characters)

• exclamation point (!) (negation)

• parameter

Parameter specifies the value or condition to be monitored for potential alarms. This value cannot
be changed from the SNMP interface.

Not all parameters are valid for all entity types. Valid values are:

• EVENT_SEVERITY

This parameter causes a test to be performed each time an auditable event is raised in the
Remote Manager. Remote Manager events are filtered using the fields in the Parameter table
and are stored in the Remote Manager log. Events are monitored for traps even if the event is
not currently being logged.

• EXISTS

This parameter causes a test to be performed each time the Remote Manager detects that a
process has started or stopped.

• min_value

The minimum allowable value for the parameter. Valid minimums are parameter dependent. If the
field or condition being monitored is less than the value specified, an alarm is generated. A value
of -1 is used when this field is not to be evaluated.

• max_value

The maximum allowable value for the parameter. Valid maximums are parameter dependent. If
the field or condition being monitored is greater than the value specified, an alarm is generated. A
value of -1 is used when this field is not to be evaluated.

• severity

A severity to be associated with the trap. Severity codes are embedded in the trap message and
must be parsed by the trap receiver. Valid values are:

• INFO

• WARN

• ERROR

• FATAL

• alarms_sent

A count of the number of alarms that have been sent.

• alarm_last_sent

The date and time the last alarm was sent.

• trap_delete

297

Chapter 9. Remote Manager Reference Tables

This field is available only through the SNMP interface. Set this field to 1 to delete the table row.
RPC users call the procedure shown in ACMSMGMT_DELETE_TRAP_1. ACMSMGR and
ACMSCFG each provide a DELETE TRAP command for this purpose.

9.14.2. Valid Trap Minimums and Maximums
The table below lists the values that can be specified as the minimum or maximum for each parameter
type.

Parameter Value Meaning Valid for These
Entities

Comments

EVENT_SEVERITY1 Informational MGR When configuring
alarms for
event severities,
remember how
the values are
evaluated.
For example,
specifying the
value 8 (FATAL)
as a minimum
results in an alarm
being generated by
all lesser severities.
Similarly,
specifying the
value 1 (INFO) as
a maximum results
in an alarm being
generated by all
greater severities.

2 Warning MGR When configuring
alarms for
event severities,
remember how
the values are
evaluated.
For example,
specifying the
value 8 (FATAL)
as a minimum
results in an alarm
being generated by
all lesser severities.
Similarly,
specifying the
value 1 (INFO) as
a maximum results
in an alarm being
generated by all
greater severities.

298

Chapter 9. Remote Manager Reference Tables

4 Error MGR When configuring
alarms for
event severities,
remember how
the values are
evaluated.
For example,
specifying the
value 8 (FATAL)
as a minimum
results in an alarm
being generated by
all lesser severities.
Similarly,
specifying the
value 1 (INFO) as
a maximum results
in an alarm being
generated by all
greater severities.

8 Fatal MGR When configuring
alarms for
event severities,
remember how
the values are
evaluated.
For example,
specifying the
value 8 (FATAL)
as a minimum
results in an alarm
being generated by
all lesser severities.
Similarly,
specifying the
value 1 (INFO) as
a maximum results
in an alarm being
generated by all
greater severities.

–1 Ignore this field. MGR The value of -1
causes the field to
be ignored. When
configuring traps,
it is not always
desirable to specify
both minimum and
maximum values.
The value -1 can
be used as a null
placeholder when

299

Chapter 9. Remote Manager Reference Tables

either value is to
be ignored.

EXISTS 0 Stopped ACC, CP, EXC,
QTI, TSC

When specified
as a maximum,
this value causes
an alarm to
be generated
whenever the
associated entity
type and name is
started. This value
can be used, for
example, to signal
when the QTI has
been started on a
node on which it
should not run.

1 Started ACC, CP, EXC,
QTI, TSC

When specified
as a minimum,
this value causes
an alarm to
be generated
whenever the
associated entity
type and name
is stopped. This
value can be used,
for example,
to signal when
a particular
application has
been stopped.

–1 Ignore this field. ACC, CP, EXC,
QTI, TSC

The value of -1
causes the field to
be ignored. When
configuring traps,
it is not always
desirable to specify
both minimum and
maximum values.
The value -1 can
be used as a null
placeholder when
either value is to
be ignored.

9.14.3. SNMP Trap Format
The following is the format of an SNMP trap message. Note that the message is generated as an
ASCII string. Fields within the string are separated by a colon.

time: severity: entity_type: entity_name: parameter: value

300

Chapter 9. Remote Manager Reference Tables

In this format:

• time is a 23-character ASCII time in the format DD-MMM-YYYY HH:MM:SS.hh.

• severity is a single ASCII character that specifies the severity as determined from the severity field
in the table that raised the alarm. Severities are:

• I (informational)

• W (warning)

• E (error)

• F (fatal)

• entity_type is one of the valid entity types (ACC, TSC, QTI, EXC, CP, MGR) and represents the
entity that caused the alarm to be raised.

• entity_name is the process name of the entity that raised the alarm.

• parameter is the parameter that caused the alarm to be raised.

• value is the value that caused the alarm to be raised.

9.15. TSC Table
The TSC table contains a single entry for TSC management information.

Table 9.14. TSC Table

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

ID record_state integer R R
ID id_coll_state integer R R
ID process_name string R R
ID pid integer R R
ID start_time time R R
ID end_time time R R
CONFIG config_coll_stateinteger R R
CONFIG tsc_priority_activeinteger R R
CONFIG acms_state integer RW R D
CONFIG tsc_priority_storedinteger RW RW
CONFIG tsc_username_activestring R R
CONFIG tsc_username_storedinteger RW RW
CONFIG cp_priority_activeinteger R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

301

Chapter 9. Remote Manager Reference Tables

Collection
Class

Field Data Type SNMP Access RPC Access Dynamic

CONFIG cp_priority_storedinteger RW RW
CONFIG cp_slots_active integer R R
CONFIG cp_slots_stored integer RW RW
CONFIG max_logins_activeinteger RW RW D
CONFIG max_logins_storedinteger RW RW
CONFIG max_tts_cp_activeinteger RW RW D
CONFIG max_tts_cp_storedinteger RW RW
CONFIG perm_cps_activeinteger RW RW D
CONFIG perm_cps_storedinteger RW RW
CONFIG min_cpis_active integer RW RW D
CONFIG min_cpis_stored integer RW RW
CONFIG cp_username_activeinteger R R
CONFIG cp_username_storedinteger RW RW
RUNTIME runtime_coll_stateinteger R R
RUNTIME current_users gauge R R
POOL pool_coll_state integer R R
POOL mss_process_totalinteger R R
POOL mss_process_freemin gauge R R
POOL mss_process_largestmin gauge R R
POOL mss_process_failuresinteger R R
POOL mss_process_garbageinteger R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic

9.15.1. Field Descriptions
Following are descriptions of the fields in Table 9.14.

• record_state

The current state of this table entry. Valid states are VALID (the process is currently running and
maintaining this table entry) or INACTIVE (the process is no longer running). Inactive rows are
subject to reuse.

• id_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

302

Chapter 9. Remote Manager Reference Tables

• process_name

The OpenVMS process name for the process.

• pid

The OpenVMS process identifier for the process.

• start_time

Date and time the process was started.

• end_time

Date and time the process ended. If the process has not yet ended, this field will be null.

• config_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

• tsc_priority_active

The base priority for this process. This is the value of the ACMSGEN field when the process was
started.

• tsc_priority_stored

The base priority currently stored in the ACMSGEN file for this process.

• tsc_username_active

The OpenVMS account under which the TSC will run. The tsc_username_active is the value of
the ACMSGEN field when the process was started.

• tsc_username_stored

The value of the tsc_username field currently stored in the ACMSGEN file.

• cp_priority_active

The base priority for CP processes. This is the value of the ACMSGEN field when the TSC
process was started.

• cp_priority_stored

The base priority currently stored in the ACMSGEN file for CP processes.

• cp_slots_active

The current number of CP slots. This is the value of the ACMSGEN field when the TSC process
was started. This field also represents the maximum number of entries in the CP table.

• cp_slots_stored
303

Chapter 9. Remote Manager Reference Tables

The value of the cp_slots field in the current ACMSGEN file.

• max_logins_active

The current maximum number of logins allowed.

• max_logins_stored

The value of the max_logins field in the current ACMSGEN file.

• max_tts_cp_active

The current maximum number of terminals that a CP will support.

• max_tts_cp_stored

The value of the max_tts_cp field in the current ACMSGEN file.

• perm_cps_active

The number of permanent CPs that will be maintained on the system.

• perm_cps_stored

The value of the perm_cps field in the current ACMSGEN file.

• min_cpis_active

The number of CP slots that will be left open on a given CP.

• min_cpis_stored

The value of the min_cpis field in the current ACMSGEN file.

• cp_username_active

The current user name under which CP processes will run.

• cp_username_stored

The value of the cp_username field in the current ACMSGEN file.

• acms_state

Current ACMS state of the process.

• runtime_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• current_users

304

Chapter 9. Remote Manager Reference Tables

The current number of terminal users in all CPs started by this TSC.

• pool_coll_state

The current collection state for this class and this process. Collection states can be modified by
modifying entries in the Collection table. See Section 5.1 and Section 9.4 for discussions of data
collection.

If this field is set to DISABLED, the process is not currently collecting data for the fields in this
class. Any field values reflect activity during a prior period when collection was enabled.

• mss_process_total

The total size of the MSS process pool allocated for this process. The frequency with which
this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_free

The amount of unused MSS process pool for this process. The frequency with which this field is
updated is based on the value of the Parameter table field mss_coll_interval (see Table 9.8).

• mss_process_largest

The largest unused block available in the MSS process pool for this process. The frequency with
which this field is updated is based on the value of the Parameter table field mss_coll_interval (see
Table 9.8).

• mss_process_failures

The number of failed attempts to allocate space in the MSS process pool for this process. The
frequency with which this field is updated is based on the value of the Parameter table field
mss_coll_interval (see Table 9.8).

• mss_process_garbage

The number of garbage collections that have been run to reclaim space in the MSS process pool
for this process. The frequency with which this field is updated is based on the value of the
Parameter table field mss_coll_interval (see Table 9.8).

9.16. Users Table
The Users table contains information about users who have logged in to Remote Manager, either
explicitly (using a user name and password) or implicitly (using a proxy account). This table is
maintained internally by the Remote Manager and is read only to all external entities. Values in the
table can be accessed through one of the supported interfaces. External users cannot make changes to
this table.

In general, the values in this table are informational only.

305

Chapter 9. Remote Manager Reference Tables

Table 9.15. Users Table

Field Name Data Type SNMP Access RPC Access Dynamic
client_id integer R R
gid short integer R R
uid short integer R R
proxy_gid short integer R R
proxy_uid short integer R R
nodename string R R
expires string R R
uname string R R
rights integer array R R
proxy_flag integer R R
Key to Access Modes

R – Read Access
RW – Read/Write Access
Blank – Not available to the interface
D – Field is dynamic.

9.16.1. Field Descriptions
Following are descriptions of the fields in Table 9.15.

• client_id

Unique number that identifies this client.

• gid

Group portion of the user's UIC on the client node.

• uid

User portion of the user's UIC on the client node,

• proxy_gid

Group portion of the UIC from the proxy account on the server node.

• proxy_uid

User portion of the UIC from the proxy account on the server node.

• nodename

Name of client node. This is the only node from which the client ID is valid.

• expires

Date and time the user log in expires. Full OpenVMS ASCII date (DD-MMM-YYYY
HH:MM:SS.hh).

306

Chapter 9. Remote Manager Reference Tables

• uname

Account name of the account being used for authorization. This can be the account name for the
proxy.

• rights

Rights held by the user. This is an array of three elements. The first element contains the ACMS
$MGMT_READ rights identifier; the second contains the ACMS$MGMT_WRITE rights
identifier; the third contains the ACMS$MGMT_OPER identifier. A value of 0 indicates the user
does not hold the right.

• proxy_flag

A flag indicating whether the user has explicitly logged in (value of 0) or implicitly logged in by
means of proxy (value of 1).

307

Chapter 9. Remote Manager Reference Tables

308

Chapter 10. ACMSCFG Commands
This chapter provides reference information about the commands of the ACMSCFG utility.

10.1. ACMSCFG Overview
The ACMSCFG utility is provided for performing operations on the ACMS Remote Manager
configuration file. Similar to the ACMSMGR utility (described in Chapter 11), the ACMSCFG utility
performs only a subset of the operations that the ACMSMGR utility performs.

The ACMSCFG utility performs operations on the Remote Manager configuration file only, and only
on configuration files that are directly accessible to the process running the utility.

Section 4.2 discusses the purpose and use of the configuration file, as well as file defaults.

10.1.1. Command Format
The format for ACMSCFG commands is as follows:

ACMSCFG verb object qualifiers

The following verbs are supported:

• ADD

• DELETE

• HELP

• SET

• SHOW

Each verb has associated objects. The following sections list the objects and any qualifiers for each
ACMSCFG command.

10.1.2. Command Objects and Qualifiers
The objects and qualifiers for the ACMSCFG commands are summarized in Table 10.1.

Table 10.1. ACMSCFG Command Objects and Qualifiers

Objects Qualifiers
ADD Command
COLLECTION /CLASS, /COLL_STATE, /ENTITY, /

NAME, /STORAGE_END_TIME, /
STORAGE_INTERVAL, /
STORAGE_LOCATION, /STORAGE_
BEGIN_TIME, /STORAGE_STATE

TRAP /ENTITY, /NAME, /PARAMETER, /
SEVERITY, /TRAP_MIN, /TRAP_ MAX

DELETE Command
COLLECTION /CLASS, /ENTITY, /NAME

309

Chapter 10. ACMSCFG Commands

Objects Qualifiers
TRAP /ENTITY, /NAME, /PARAMETER
HELP Command
None. None.
SET Command
COLLECTION /CLASS, /COLL_STATE, /ENTITY, /

NAME, /STORAGE_END_TIME, /
STORAGE_INTERVAL, /
STORAGE_LOCATION, /STORAGE_
BEGIN_TIME, /STORAGE_STATE

INTERFACE /INTERFACE, /STATE
PARAMETER /DCL_AUDIT_LEVEL, /

DCL_MGR_PRIORITY, /
DCL_STACKSIZE, /ERROR_INTERVAL, /
EVENT_LOG_PRIORITY, /
LOG_STACKSIZE, /
LOGIN_CREDS_LIFETIME, /
MAX_LOGINS, /MAX_RPC_RETURN_
RECS, /MGR_AUDIT_LEVEL, /
MSG_PROC_AUDIT_LEVEL, /
MSG_PROC_PRIORITY, /
MSG_PROC_STACKSIZE, /
MSS_ COLL_INTERVAL, /
PROC_MON_AUDIT_LEVEL, /PROC_MON_
INTERVAL, /PROC_MON_PRIORITY, /
PROC_MON_STACKSIZE, /
PROXY_CREDS_LIFETIME, /
RPC_AUDIT_LEVEL, /RPC_
PRIORITY, /RPC_STACKSIZE, /
SECURITY_AUDIT_LEVEL, /
SNAP_ AUDIT_LEVEL, /
SNAP_PRIORITY, /SNAP_STACKSIZE, /
SNMP_ AGENT_TIME_OUT, /
SNMP_ARE_YOU_THERE, /SNMP_AUDIT_
LEVEL, /SNMP_PRIORITY, /
SNMP_SEL_TIME_OUT, /SNMP_
STACKSIZE, /TCP_ENABLED, /
TIMER_AUDIT_LEVEL, /TIMER_
INTERVAL, /TIMER_PRIORITY, /
TIMER_STACKSIZE, /
TOTAL_ ENTITY_SLOTS, /
TRACE_MSG_WAIT_TIME, /TRACE_START_
WAIT_TIME, /TRAP_AUDIT_LEVEL, /
TRAP_PRIORITY, /TRAP_ STACKSIZE, /
UDP_ENABLED, /VMS_COLL_INTERVAL, /
WKSP_ COLL_INTERVAL, /MAX_AGENTS

TRAP /ENTITY, /NAME, /PARAMETER, /
SEVERITY, /TRAP_MIN, /TRAP_ MAX

SHOW Command

310

Chapter 10. ACMSCFG Commands

Objects Qualifiers
COLLECTION /BRIEF, /FULL
CONTROL None
INTERFACE None
PARAMETER None
TRAP None

10.2. ACMSCFG ADD COLLECTION

ACMSCFG ADD COLLECTION
ACMSCFG ADD COLLECTION — Adds records to the collection table in the configuration file.

Format
ACMSCFG ADD COLLECTION [/qualifiers]

Command Qualifier Default
/CLASS=keyword * (all)
/COLL_STATE=keyword DISABLED
/ENTITY=keyword None
/NAME=[*,proc_name] * (all)
/STORAGE_END_TIME=[NEVER, /time] NEVER; run until DISABLED

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_INTERVAL=value 300

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_LOCATION=file-name Translation of logical ACMS
$MGMT_SNAPSHOT.

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_BEGIN_TIME=[NOW, /time] NOW; start as soon as ENABLED.

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_STATE=keyword DISABLED.

Only for use on systems running ACMS Version
4.4 or higher.

Privileges Required
None.

311

Chapter 10. ACMSCFG Commands

Parameters
None.

Qualifiers
/CLASS=[*, ERROR, POOL, RUNTIME]

This qualifier determines the class that will be enabled or disabled. The default is all (*). See
Section 5.1.1 for a description of each class type.

/COLL_STATE=[ENABLED, DISABLED]

This qualifier specifies the state of the collection. The default is DISABLED. When a SHOW
entity command is issued, data for those classes that have their collection state set to ENABLED
is displayed. Note that while the collection state is DISABLED, the data displayed for an entity
may not be accurate. Data cannot be written to the data snapshot file when this qualifier is
DISABLED, even when the storage state is ENABLED.

/ENTITY=[*, ACC, CP, EXC, GROUP, QTI, SERVER, TSC]

This required qualifier specifies the entity for which collection should be enabled or disabled.

/NAME=[*, entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

For ACC, CP, QTI, and TSC entity types, the entity name is the process name. For the EXC entity
type, the entity name is the name of the application (for example, VR_APPL).

Server and task group names can be specified as compound names made up of an
application name and a server or task group name, separated by a period (for example,
VR_APPL.VR_READ_SERVER). Either part of server or task group names can be a wildcard
(for example, *.VR_READ_SERVER or VR_APPL.*). If only one part of a server or task group
name is specified, it is assumed to be the application name, and the server or task group name is
wildcarded. For example, VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/STORAGE_END_TIME=[NEVER, time]

This qualifier specifies a time after which the collection data should no longer be written to the
snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for
example, 10-OCT or 09:00) are supported. If this qualifier is not specified, the default keyword of
NEVER is applied, which equates to the OpenVMS zero date of 17-NOV-1858 00:00:00.00. With
a value of NEVER, collection data continues to be written to the snapshot file until the storage
state is set to DISABLED.

/STORAGE_INTERVAL=value

This qualifier controls the frequency (in seconds) at which data snapshots are performed. The
default value is 300 seconds.

The storage interval value should be a multiple of the timer interval parameter (SET
PARAMETER/TIMER_INTERVAL). The timer interval value determines the minimum
elapsed time for many Remote Manager parameters, including the storage interval setting. The
relationship of these values determine how often data snapshots are performed, for example:

312

Chapter 10. ACMSCFG Commands

• If the timer interval value is greater, its value is used by default. For instance, if the timer
interval is 10 and the storage interval is 5, snapshots will be written at 10 second intervals.

• If the storage interval value is greater and is a multiple of the timer interval, the storage
interval value is used. For example, if the timer interval is 10 and the storage interval is 30,
snapshots will be written at 30 second intervals.

• If the storage interval value is greater and is not a multiple of the timer interval, the next
multiple of the timer interval value is used. For example, if the timer interval is 10 and the
storage interval is 15, snapshots will be written at 20 second intervals.

/STORAGE_LOCATION=file-name

This qualifier specifies an OpenVMS file specification to which collection data is to be
written. The format of file-name is a valid OpenVMS pathname or logical (such as DISK$1:
[SYSTEM.SNAPSHOTS] or SYS$SYSTEM:SNAPSHOTS.DAT).

If the /STORAGE_LOCATION qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SNAPSHOT. If the logical is defined, the value
of the logical is used by default. If a directory is not provided as part of the specification, the file
is written to the default directory of the account under which the Remote Manager process is
running.

Multiple collections can share a single snapshot file or be stored in separate files. For continuity,
Compaq recommends that EXC, Server, and Task Group collection information be written to the
same snapshot file.

/STORAGE_START_TIME=[NOW, time]

This qualifier specifies a time after which the collection data should be written to the snapshot
file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for example, 10-
OCT or 09:00) are supported. If this qualifier is not specified, the default keyword of NOW is
applied, which equates to the OpenVMS zero date of 17-NOV-1858 00:00:00.00. With a value of
NOW, collection data is written to the snapshot file immediately, or as soon as the storage state is
set to ENABLED.

/STORAGE_STATE=[ENABLED, DISABLED]

This qualifier specifies the state of the data snapshots. If this qualifier is not specified, data
snapshots are disabled by default. To fully enable data snapshots, both the storage state and the
collection state (/COLL_STATE) must be set to ENABLED.

Notes

When adding new collection records, the combination of class, entity, and name must be unique.

It is not possible to add records for the ID and CONFIG class. By default, all ACMS processes collect
ID and CONFIG class data.

ACMS processes read the Collection table during process startup to determine which classes to begin
collecting. Once the Remote Manager has been started, the ACMSMGR SHOW PROCESS command
can be used to determine the class states for the currently running ACMS processes.

In order for collection data to be written to a snapshot file, the following conditions must be met:

313

Chapter 10. ACMSCFG Commands

• A qualifying entity must be running (one with an entity type and name matching fields in the
Collection table).

• The collection state and storage state for that entity must be enabled.

• The current time must fall between the storage start time and storage end time.

If all these conditions are met, the Remote Manager opens the snapshot file for shared write
operations. The file remains open until the storage state is set to DISABLED or until the snapshot
period expires.

When multiple collection records apply to a given process, the records are assigned weights according
to a precedence of name, then entity, and then class. Within a column, wildcard entries are weighted
less than nonwildcard entries. The row with the highest weight that applies to a process is used. The
command ACMSMGR SHOW COLLECTIONS displays weights for each row in the table. See
Section 5.1.1 for a discussion of the Collection table and how weights are assigned.

In contrast to typical collections, weighting for data snapshot threads does not apply. Therefore,
it is possible for redundant collection data to be written to one or more snapshot files. If multiple
collection records compile overlapping data, and each has their storage state set to ENABLED, each
record writes data to the designated snapshot file.

See Section 11.2 for a discussion about adding collection records at run time.

Examples
$ ACMSCFG ADD COLLECTION/ENTITY=EXC/CLASS=RUNTIME/NAME=VR_APPL

This command creates an entry in the Collection table in the configuration file.

10.3. ACMSCFG ADD TRAP

ACMSCFG ADD TRAP
ACMSCFG ADD TRAP — Adds records to the trap table in the configuration file.

Format
ACMSCFG ADD TRAP [/qualifiers]

Command Qualifier Default
/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/PARAMETER=keyword EXISTS
/SEVERITY=[I,W,E,F] E
/TRAP_MIN=value -1
/TRAP_MAX=value -1

Privileges Required
None.

314

Chapter 10. ACMSCFG Commands

Parameters

None.

Qualifiers

/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]

This required qualifier determines the entities for which a trap should be set.

/NAME=[*,entity-name]

This qualifier specifies particular instances of an entity. In general, the entity name is the process
name. The exceptions are the EXC entity and the MGR entity.

For the EXC entity, use the assigned application name.

For the MGR entity, you must specify all (*).

Wildcards (*) are allowed in names. The default qualifier is the asterisk (*) wildcard.

/PARAMETER=[EVENT_SEVERITY, EXISTS]

The field that should be monitored. Valid values are:

• EVENT_SEVERITY

This parameter is used for monitoring internal Remote Manager events. The Remote Manager
logs internal events in the Remote Manager log. (See Section 4.7 and Section 11.35 for
discussions of the Remote Manager log.) Traps can be generated based on the severity levels
of these events.

• EXISTS

This parameter is used for monitoring process existence. Traps are generated if the associated
entity type and name either start or stop.

/SEVERITY=[I, W, E, F]

A severity to be associated with the trap. Severity codes are embedded in the trap message and
must be parsed by the trap receiver. Severities can be informational (I), warning (W), error (E),
and fatal (F).

/TRAP_MIN=value

This qualifier specifies the minimum allowable value for the parameter being monitored. A trap is
generated if the parameter value is less than the minimum value. See Table 9.12 for a list of valid /
TRAP_MIN values.

/TRAP_MAX=value

This qualifier specifies the maximum allowable value for the parameter being monitored. A trap
is generated if the parameter value is greater than the maximum value. See Table 9.12 for a list of
valid /TRAP_MAX values.

315

Chapter 10. ACMSCFG Commands

Notes
When adding new trap records, the combination of entity, name, and parameter must be unique.

See Section 9.14.2 for a discussion about setting appropriate trap minimums and maximums. See
Section 9.14.3 for a description of the trap message generated.

Examples
$ ACMSCFG ADD TRAP /ENTITY=ACC/PARAMETER=EXISTS/TRAP_MIN=1

This command causes an SNMP trap to be generated whenever the ACC process stops if the SNMP
interface is running.

10.4. ACMSCFG DELETE COLLECTION

ACMSCFG DELETE COLLECTION
ACMSCFG DELETE COLLECTION — Deletes records from the collection table in the
configuration file.

Format
ACMSCFG DELETE COLLECTION [/qualifiers]

Command Qualifier Default
/CLASS=keyword * (all)
/ENTITY=keyword None
/NAME=[*,entity-name] * (all)

Privileges Required
None.

Parameters
None.

Qualifiers
/CLASS=[*, CONFIG, ERROR, ID, POOL, RUNTIME]

This qualifier determines the class that will be enabled or disabled. See Section 5.1.1: Entities,
Classes, Names, and Collections for a description of each class type.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]

This required qualifier determines the entities for which collection should be enabled or disabled.

/NAME=[*,entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

316

Chapter 10. ACMSCFG Commands

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process name. For
EXCs, the entity name is the name of the application (for example, VR_APPL).

Server and task group names can be specified as compound names made up of
application name and server or task group name, separated by a period (for example,
VR_APPL.VR_READ_SERVER). Either part of server or task group names can be a wildcard
(for example, *.VR_READ_SERVER or VR_APPL.*). If only one part of a server or task group
name is specified, it is assumed to be the application name, and a wildcard is used as the server or
task group name. For example, VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

Notes
When deleting collection records, the combination of class, entity, and name must exactly match the
row to be deleted.

It is not possible to delete records for the ID and CONFIG class. By default, all ACMS processes
collect ID and CONFIG class data.

When multiple collection records apply to a given process, the records are assigned weights according
to a precedence of name, then entity, then class. Within a column, wildcard entries are weighted
less than nonwildcard entries. The row with the highest weight that applies to a process is used. The
ACMSMGR SHOW COLLECTIONS command displays weights for each row in the table. See also
Section 5.1.1 for a discussion of the Collection table and how weights are assigned.

See Section 5.1.1 for a discussion about deleting collection records at run time.

Examples
$ ACMSCFG DELETE COLLECTION/ENTITY=EXC/CLASS=RUNTIME/NAME=VR_APPL

This command deletes the entry in the Collection table for run-time collection by the VR_APPL
application.

10.5. ACMSCFG DELETE TRAP

ACMSCFG DELETE TRAP
ACMSCFG DELETE TRAP — Deletes a record from the trap table in the configuration file.

Format
ACMSCFG DELETE TRAP [/qualifiers]

Command Qualifier Default
/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/PARAMETER=keyword EXISTS

Privileges Required
None.

317

Chapter 10. ACMSCFG Commands

Parameters
None.

Qualifiers
/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]

This required qualifier determines the entity or entities for which a trap should be set.

/NAME=[*,entity-name]

This qualifier specifies particular instances of an entity. In general, the entity name is the process
name. The exceptions are the EXC entity and the MGR entity.

For the EXC entity, use the assigned application names.

For the MGR entity, you must specify all (*).

Wildcards (*) are allowed in names. The default qualifier is the asterisk (*) wildcard.

/PARAMETER=[EVENT_SEVERITY,EXISTS]

The field that should be monitored. Valid values are:

• EVENT_SEVERITY

This parameter is used for monitoring internal Remote Manager events. The Remote Manager
logs internal events in the Remote Manager log. (See Section 4.7 and Section 11.35 for
discussions of the Remote Manager log.) Traps can be generated based on the severity levels
of these events.

• EXISTS

This parameter is used for monitoring process existence. Traps are generated if the associated
entity type and name either start or stop.

Notes
When deleting trap records, the combination of entity, name, and parameter must exactly match a row
in the Trap table.

Examples
$ ACMSCFG DELETE TRAP/ENTITY=ACC/PARAMETER=EXISTS

This command deletes a trap from the Trap table in the configuration file.

ACMSCFG HELP
ACMSCFG HELP — Displays help information about the ACMS Configuration utility (ACMSCFG)
and its commands.

Format
ACMSCFG HELP

318

Chapter 10. ACMSCFG Commands

Privileges Required
None.

Parameters
None.

Qualifiers
None.

Notes
Online help is available for each ACMSCFG command. Each help topic summarizes the valid syntax,
abbreviations, parameters, and qualifiers for a particular command and also indicates all default and
required values.

For a comprehensive list of ACMS utilities that offer online help or for further instructions on how to
invoke help, see ACMS Help.

Examples
$ ACMSCFG HELP

This command invokes online help for the ACMSCFG utility and displays a list of available topics.

10.6. ACMSCFG SET COLLECTION

ACMSCFG SET COLLECTION
ACMSCFG SET COLLECTION — Adds records to the collection table in the configuration file.

Format
ACMSCFG SET COLLECTION [/qualifiers]

Command Qualifier Default
/CLASS=keyword * (all)
/COLL_STATE=keyword None
/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/STORAGE_END_TIME=[NEVER, /time] None

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_INTERVAL=value None

Only for use on systems running ACMS Version
4.4 or higher.

319

Chapter 10. ACMSCFG Commands

Command Qualifier Default
/STORAGE_LOCATION=file-name Translation of logical ACMS

$MGMT_SNAPSHOT

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_BEGIN_TIME=[NOW, /time] None

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_STATE=keyword Only for use on systems running ACMS Version
4.4 or higher.

Privileges Required
None.

Parameters
None.

Qualifiers
/CLASS=[*, CONFIG, ERROR, ID, POOL, RUNTIME]

This qualifier determines the class that will be enabled or disabled. See Section 5.1.1: Entities,
Classes, Names, and Collections for a description of each class type.

/COLL_STATE=[ENABLED, DISABLED]

This qualifier specifies the state of the collection. When an ACMSMGR SHOW entity command
is issued, data for those classes that have their collection state set to ENABLED is displayed. Note
that while the collection state is DISABLED, data is not collected. As a result, data cannot be
written to the data snapshot file when this qualifier is DISABLED, even when the storage state is
ENABLED.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]

This required qualifier determines the entities for which collection should be enabled or disabled.

/NAME=[*,entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process name. For the
EXC entity, the entity name is the name of the application (for example, VR_APPL).

Server and task group names can be specified as compound names made up of
application name and server or task group name, separated by a period (for example,
VR_APPL.VR_READ_SERVER). Either part of server or task group names can be a wildcard
(for example, *.VR_READ_SERVER or VR_APPL.*). If only one part of a server or task group
name is specified, it is assumed to be the application name, and a wildcard is used as the server or
task group name. For example, VR_APPL is equivalent to VR_APPL.*.

320

Chapter 10. ACMSCFG Commands

The default is all (*), which is equivalent to *.* for a compound name.

/STORAGE_END_TIME=[NEVER,time]

This qualifier specifies a time after which the collection data should no longer be written to the
snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for
example, 10-OCT or 09:00) are supported. The keyword NEVER is also supported, which equates
to the OpenVMS zero date of 17-NOV-1858 00:00:00.00. With a value of NEVER, collection
data continues to be written to the snapshot file until the storage state is set to DISABLED.

If this qualifier is not specified, the existing value remains unchanged. This value can be modified
dynamically.

/STORAGE_INTERVAL=value

This qualifier controls the frequency (in seconds) at which data snapshots are performed.

The storage interval value should be a multiple of the timer interval parameter (SET
PARAMETER/TIMER_INTERVAL). The timer interval value determines the minimum
elapsed time for many Remote Manager parameters, including the storage interval setting. The
relationship of these values determine how often data snapshots are performed, for example:

• If the timer interval value is greater, its value is used by default. For instance, if the timer
interval is 10 and the storage interval is 5, snapshots will be written at 10 second intervals.

• If the storage interval value is greater and is a multiple of the timer interval, the storage
interval value is used. For example, if the timer interval is 10 and the storage interval is 30,
snapshots will be written at 30 second intervals.

• If the storage interval value is greater and is not a multiple of the timer interval, the next
multiple of the timer interval value is used. For example, if the timer interval is 10 and the
storage interval is 15, snapshots will be written at 20 second intervals.

/STORAGE_LOCATION=file-name

This qualifier specifies an OpenVMS file specification to which collection data is to be
written. The format of file-name is a valid OpenVMS pathname or logical (such as DISK$1:
[SYSTEM.SNAPSHOTS] or SYS$SYSTEM:SNAPSHOTS.DAT).

If the /STORAGE_LOCATION qualifier is not specified, the current value remains unchanged. If
a directory is not provided as part of the specification, the file is written to the default directory of
the account under which the Remote Manager process is running.

Multiple collections can share a single snapshot file or be stored in separate files. For continuity,
HP recommends that EXC, Server, and Task Group collection information be written to the same
snapshot file.

This value can be modified dynamically.

/STORAGE_BEGIN_TIME=time

This qualifier specifies a time after which the collection data should be written to the snapshot
file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for example,
10-OCT or 09:00) are supported. The keyword NOW is also supported, which equates to the
OpenVMS zero date of 17-NOV-1858 00:00:00.00. With a value of NOW, collection data is
written to the snapshot file immediately, or as soon as the storage state is set to ENABLED.

321

Chapter 10. ACMSCFG Commands

If this qualifier is not specified, the current value remains unchanged. This value can be modified
dynamically.

/STORAGE_STATE=[ENABLED, DISABLED]

This qualifier specifies the state of the data snapshots. To fully enable data snapshots, both the
storage state and the collection state (/COLL_STATE) must be set to ENABLED. If this qualifier
is not specified, the current value remains unchanged. This value can be modified dynamically.

Notes

When updating collection records, the combination of class, entity, and name must exactly match a
record in the collection table.

By default, processes collect only ID and CONFIG class data during process initialization. If these
classes were disabled during process startup, that information would not be available until the class
was enabled and the process was restarted.

ACMS processes read the Collection table during process startup to determine which classes to begin
collecting. Once the Remote Manager has been started, the ACMSMGR SHOW PROCESS command
can be used to determine the class states for the currently running ACMS processes.

In order for collection data to be written to a snapshot file, the following conditions must be met:

• A qualifying entity must be running (one with an entity type and name matching fields in the
Collection table).

• The collection state and storage state for that entity must be enabled.

• The current time must fall between the storage start time and storage end time.

If all these conditions are met, the Remote Manager opens the snapshot file for shared write
operations. The file remains open until the storage state is set to DISABLED or until the snapshot
period expires.

Changes to snapshot values are processed dynamically. Updated storage interval and storage state
values are applied immediately; updated storage location and storage end time values are applied
during the next snapshot interval.

When multiple collection records apply to a given process, the records are assigned weights according
to a precedence of name, then entity, and then class. Within a column, wildcard entries are weighted
less than nonwildcard entries. The row with the highest weight that applies to a process is used.
The command ACMSMGR SHOW COLLECTION displays weights for each row in the table. See
Section 5.1.1 for a discussion of the Collection table and how weights are assigned.

In contrast to typical collections, weighting for data snapshot threads does not apply. Therefore,
it is possible for redundant collection data to be written to one or more snapshot files. If multiple
collection records compile overlapping data, and each has their storage state set to ENABLED, each
record writes data to the designated snapshot file.

Examples
$ ACMSCFG SET COLLECTION/ENTITY=EXC/CLASS=RUNTIME/NAME=VR_APPL/
COLL_STATE=DISABLED

322

Chapter 10. ACMSCFG Commands

This command disables run-time data collection for the VR_APPL application.

ACMSCFG SET INTERFACE
ACMSCFG SET INTERFACE — Allows Remote Manager interfaces to be enabled or disabled in the
configuration file.

Format

ACMSCFG SET INTERFACE [/qualifiers]

Command Qualifier Default
/INTERFACE=interface None
/STATE=keyword DISABLED

Privileges Required

None.

Parameters

None.

Qualifiers

/INTERFACE=interface

This required qualifier determines which interface to modify. Valid values are:

• RPC

• SNMP

/STATE=[DISABLED, ENABLED]

This qualifier determines the operation to perform. If the value supplied is ENABLED, the
interface will be started (if it is not already running). If the value supplied is DISABLED, the
interface will be stopped.

Notes

The ACMSMGR uses the RPC interface. Stopping an interface disables communication to the
Remote Manager through that interface. Stopping the RPC interface on a given node prevents
ACMSMGR from communicating with the Remote Manager on that node.

Examples
$ ACMSCFG SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED
ACMS Remote Management Option -- Command line utility
Call to modify interface on server sparks was executed

323

Chapter 10. ACMSCFG Commands

%ACMSMGMT-S-SUCCESS, Operation completed

ACMSCFG SET PARAMETER
ACMSCFG SET PARAMETER — Allows Remote Manager parameters to be updated in the
configuration file.

Format

ACMSMGR SET PARAMETER [/qualifiers]

Command Qualifier Default
/DCL_AUDIT_LEVEL=value None
/DCL_MGR_PRIORITY=value None
/DCL_STACKSIZE=value None
/ERROR_INTERVAL=value None

Only for use on systems running ACMS Version
4.4 or higher.

/EVENT_LOG_PRIORITY=value None
/LOG_STACKSIZE=value None
/LOGIN_CREDS_LIFETIME=value None
/MAX_LOGINS=value None
/MAX_RPC_RETURN_RECS=value None
/MGR_AUDIT_LEVEL=value None
/MSG_PROC_AUDIT_LEVEL=value None
/MSG_PROC_PRIORITY=value None
/MSG_PROC_STACKSIZE=value None
/MSS_COLL_INTERVAL=value None
/PROC_MON_AUDIT_LEVEL=value None
/PROC_MON_INTERVAL=value None
/PROC_MON_PRIORITY=value None
/PROC_MON_STACKSIZE=value None
/PROXY_CREDS_LIFETIME=value None
/RPC_AUDIT_LEVEL=value None
/RPC_PRIORITY=value None
/RPC_STACKSIZE=value None
/SECURITY_AUDIT_LEVEL=value None
/SNAP_AUDIT_LEVEL=value None

Only for use on systems running ACMS Version
4.4 or higher.

/SNAP_PRIORITY=value None

324

Chapter 10. ACMSCFG Commands

Command Qualifier Default
Only for use on systems running ACMS Version
4.4 or higher.

/SNAP_STACKSIZE=value None

Only for use on systems running ACMS Version
4.4 or higher.

/SNMP_AGENT_TIME_OUT None
/SNMP_ARE_YOU_THERE=value None
/SNMP_AUDIT_LEVEL=value None
/SNMP_PRIORITY=value None
/SNMP_SEL_TIME_OUT=value None
/SNMP_STACKSIZE=value None
/TCP_ENABLED=value None

Only for use on systems running ACMS Version
4.4 or higher.

/TIMER_AUDIT_LEVEL=value None
/TIMER_INTERVAL=value None
/TIMER_PRIORITY=value None
/TIMER_STACKSIZE=value None
/TOTAL_ENTITY_SLOTS=value None
/TRACE_MSG_WAIT_TIME=value None
/TRACE_START_WAIT_TIME=value None
/TRAP_AUDIT_LEVEL=value None
/TRAP_PRIORITY=value None
/TRAP_STACKSIZE=value None
/UDP_ENABLED=value None

Only for use on systems running ACMS Version
4.4 or higher.

/VMS_COLL_INTERVAL=value None

Only for use on systems running ACMS Version
4.4 or higher.

/WKSP_COLL_INTERVAL=value None
/MAX_AGENTS=value None

Privileges Required

None.

Parameters

None.

325

Chapter 10. ACMSCFG Commands

Qualifiers
/[parameter]=value

All qualifiers correspond directly to fields in the Parameter table. See Section 9.9.1 for
descriptions of each field.

Notes
See Section 9.9 for a description of each parameter.

Example
$ ACMSCFG SET PARAMETER /MGR_AUDIT_LEVEL=E

This command modifies the dynamic parameter field mgr_audit_level.

ACMSCFG SET TRAP
ACMSCFG SET TRAP — Updates records in the Trap table in the configuration file.

Format
ACMSCFG SET TRAP [/qualifiers]

Command Qualifier Default
/ENTITY=keyword None
/NAME=[*,entity-name] * (all)
/PARAMETER=keyword EXISTS
/SEVERITY=[I,W,E,F] None
/TRAP_MIN=value None
/TRAP_MAX=value None

Privileges Required
None.

Parameters
None.

Qualifiers
/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]

This required qualifier determines the entity or entities for which a trap should be set.

/NAME=[*,entity-name]

This qualifier specifies particular instances of an entity. Specify the value of the name field for the
record you wish to modify.

326

Chapter 10. ACMSCFG Commands

/PARAMETER=[EVENT_SEVERITY, EXISTS]

The field that should be monitored. Valid values are:

• EVENT_SEVERITY

This parameter is used for monitoring internal Remote Manager events. The Remote Manager
logs internal events in the Remote Manager log. (See Section 4.7 and Section 11.35 for
discussions of the Remote Manager log.) Traps can be generated based on the severity levels
of these events.

• EXISTS

This parameter is used for monitoring process existence. Traps are generated if the associated
entity type and name either starts or stops.

/SEVERITY=[I,W,E,F]

A severity to be associated with the trap. Severity codes are embedded in the trap message and
must be parsed by the trap receiver. Severities are informational (I), warning (W), error (E), and
fatal (F).

/TRAP_MIN=value

This qualifier specifies the minimum allowable value for the parameter being monitored. A trap is
generated if the parameter value is less than the minimum value. See Table 9.12 for a list of valid
values.

/TRAP_MAX=value

This qualifier specifies the maximum allowable value for the parameter being monitored. A trap
is generated if the parameter value is greater than the maximum value. See Table 9.12 for a list of
valid values.

Notes
When updating trap records, the combination of entity, name, and parameter must exactly match a
record in the trap table.

See Section 9.14.2 for a discussion about setting appropriate trap minimums and maximums. See
Section 9.14.3 for a description of the trap message generated.

Examples
$ ACMSCFG SET TRAP /ENTITY=QTI/PARAMETER=EXISTS/TRAP_MAX=0

This command causes an SNMP trap to be generated whenever the QTI process is started if the
SNMP interface is running.

ACMSCFG SHOW COLLECTION
ACMSCFG SHOW COLLECTION — Displays Collection table data from the configuration file.

Format
ACMSCFG SHOW COLLECTION [/qualifiers]

327

Chapter 10. ACMSCFG Commands

Privileges Required
None.

Parameters
None.

Qualifier
/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
The default is /BRIEF.

Note that storage start and end times for data snapshots are only visible when /FULL is provided.
When not specified, the resulting summary display may contain truncated values for some of the
longer fields (such as, entity name and storage location).

Notes
See Section 9.4 for a discussion of each field displayed. See Section 5.1 for a discussion of
collections.

Examples
$ ACMSCFG SHOW COLLECTION
Entity Collect Collect Storage
 Storage
Type Entity Name Class State Storage location State
 Interval
------- -------------- -------- -------- ------------------- ---------

* * id enabled acms$mgmt_snapshot enabled
 3600
* * config enabled acms$mgmt_snapshot disabled
 3600
* * runtime enabled acms$mgmt_snapshot disabled 10
* * pool enabled acms$mgmt_snapshot disabled 10
* * error enabled acms$mgmt_snapshot disabled 10

This command shows the current contents of the Collection table as stored in the configuration file.

ACMSCFG SHOW CONTROL
ACMSCFG SHOW CONTROL — Displays the control record from the configuration file.

Format
ACMSCFG SHOW CONTROL

Privileges Required
None.

328

Chapter 10. ACMSCFG Commands

Parameters
None.

Qualifiers
None.

Notes
The control record is used by the Remote Manager and cannot be modified or deleted. The
ACMSCFG SHOW CONTROL command displays the following fields:

• Interface count — Number of interface records in the file.

• Collection count — Number of collection records in the file.

• Timer count — Number of timer records in the file.

• Trap count — Number of trap records in the file.

• Parameter count — Number of parameter records in the file.

• Version — Internal file version identifier.

Examples
$ ACMSCFG SHOW CONTROL
Record Counts
 Record type Count
------------ -------

 Interface 2
 Collection 2
 Timer 1
 Trap 1
 Parameter 1
 Version 6

This command shows the current contents of the control record in the configuration file.

ACMSCFG SHOW INTERFACE
ACMSCFG SHOW INTERFACE — Displays the Remote Manager interface from the configuration
file.

Format
ACMSCFG SHOW INTERFACE

Privileges Required
None.

Parameters
None.

329

Chapter 10. ACMSCFG Commands

Qualifiers
None.

Notes
The Remote Manager supports two interfaces: RPC and SNMP. This command displays the enabled
states of each interface.

See Section 9.7 for a discussion of each field displayed.

Examples
$ ACMSCFG SHOW INTERFACE
Interface Enable
Type State
--
 rpc enabled
 snmp enabled

This command shows the current contents of the Interfaces table in the configuration file. As shown,
both interfaces are started when the Remote Manager is started.

ACMSCFG SHOW PARAMETER
ACMSCFG SHOW PARAMETER — Displays Remote Manager parameter information from the
configuration file.

Format
ACMSCFG SHOW PARAMETER

Privileges Required
None.

Parameters
None.

Qualifiers
None.

Notes
See Section 9.9 for a description of each parameter.

Examples
$ ACMSCFG SHOW PARAMETER
Management Parameters
Parameter Value Default Min Max (D)ynamic
--
 dcl_audit_level E E 0 F (D)

330

Chapter 10. ACMSCFG Commands

 dcl_mgr_priority 5 5 1 10
 dcl_stacksize 300 300 1 2147483647 k (Vax), 8k
 (Alpha)
 error_interval 10 10 1 863999999 seconds (D)
 event_log_priority 5 5 1 10
 log_stacksize 300 300 1 2147483647 K (Vax), 8k
 (Alpha)
 login_creds_lifetime 60 60 1 14399999 minutes (D)
 max_logins 20 20 1 2147483647 (D)
 max_rpc_return_recs 20 20 1 2147483647
 mgr_audit_level E E 0 F (D)
 msg_proc_audit_level E E 0 F (D)
 msg_proc_priority 5 5 1 10
 msg_proc_stacksize 300 300 1 2147483647 k (Vax), 8k
 (Alpha)
 mss_coll_interval 10 10 1 863999999 seconds (D)
 proc_mon_audit_level E E 0 F (D)
 proc_mon_interval 30 30 1 14399999 seconds (D)
 proc_mon_priority 5 5 1 10
 proc_mon_stacksize 300 300 1 2147483647 K (Vax), 8k
 (Alpha)
 proxy_creds_lifetime 60 60 1 14399999 minutes (D)
 rpc_audit_level E E 0 F (D)
 rpc_priority 5 5 1 10
 rpc_stacksize 300 300 1 2147483647 k (Vax), 8k
 (Alpha)
 security_audit_level E E 0 F (D)
 snap_audit_level E E 0 F (D)
 snap_priority 5 5 1 10
 snap_stacksize 30 30 1 2147483647 k (Vax), 8k
 (Alpha)
 snmp_agent_time_out 10 10 1 863999999 seconds
 snmp_are_you_there 300 300 2 863999999 seconds
 snmp_audit_level E E 0 F (D)
 snmp_priority 5 5 1 10
 snmp_sel_time_out 5 5 1 863999999 seconds
 snmp_stacksize 300 300 1 2147483647 k (Vax), 8k
 (Alpha)
 tcp_enabled 1 1 0 1 [0,1]
 1=enabled
 timer_audit_level E E 0 F (D)
 timer_interval 30 30 1 863999999 seconds (D)
 timer_priority 5 5 1 10
 timer_stacksize 300 300 1 2147483647 k (Vax), 8k
 (Alpha)
 total_entity_slots 20 20 1 2147483647
 trace_msg_wait_time 5 5 1 14399999 seconds (D)
 trace_start_wait_time 5 5 1 14399999 seconds (D)
 trap_audit_level E E 0 F (D)
 trap_priority 5 5 1 10
 trap_stacksize 300 300 1 2147483647 k (Vax), 8k
 (Alpha)
 udp_enabled 1 1 0 1 [0,1]
 1=enabled
 vms_coll_interval 10 10 0 863999999 seconds (D)
 wksp_coll_interval 10 10 1 863999999 seconds (D)

This command shows the current contents of the Parameter table in the configuration file.

331

Chapter 10. ACMSCFG Commands

ACMSCFG SHOW TRAP
ACMSCFG SHOW TRAP — Displays SNMP trap configurations from the configuration file.

Format
ACMSCFG SHOW TRAP

Privileges Required
None.

Parameters
None.

Qualifiers
None.

Notes
SNMP traps are generated only if the SNMP interface is started.

See Section 9.13 for a description of each field displayed.

Example
$ ACMSCFG SHOW TRAP
Entity Entity
Type Name Parameter Min Max Severity
------- ----------------------- ---------------- ------- -------- --------
 * * exists 1 -1 i

This command shows the current contents of the Trap table in the configuration file. As shown, a
single trap has been configured to send an informational trap when any ACMS process is stopped.
This is the default configuration.

332

Chapter 11. ACMSMGR Commands
This chapter provides reference information about the commands for the ACMSMGR utility.

11.1. ACMSMGR Overview
The ACMSMGR utility is used to perform operations on running ACMS systems.

You can use the ACMSMGR utility to perform the following functions:

• User authentication (login, logout)

• Display and update ACMS system management data

• Manage the ACMS Remote Manager

The ACMSMGR utility uses the ACMS management interface, which is based on ONC RPC.
Commands can be executed remotely from any node in the network, and many commands can be
executed against more than one node.

See Chapter 4 for a description of how to use ACMSMGR to manage the Remote Manager.

11.1.1. Command Format
The format for ACMSMGR commands is as follows:

ACMSMGR verb object qualifiers

The following verbs are supported:

• ADD

• DELETE

• HELP

• LOGIN

• LOGOUT

• REPLACE

• RESET

• SET

• SHOW

• START

• STOP

Each verb has an associated object and set of qualifiers.

11.1.2. Command Objects and Qualifiers
The objects and qualifiers for the ACMSMGR commands are summarized in the table below.

333

Chapter 11. ACMSMGR Commands

Table 11.1. ACMSMGR Command Objects and Qualifiers

Objects Qualifiers
ADD Command
COLLECTION /CLASS, /COLL_STATE, /ENTITY, /

NAME, /NODE, /STORAGE_END_TIME, /
STORAGE_INTERVAL, /
STORAGE_LOCATION, /
STORAGE_BEGIN_TIME, /
STORAGE_STATE, /USER

FILTER /CODE, /FILE, /NAME, /NODE, /USER
TRAP /ENTITY, /NAME, /NODE, /PARAMETER, /

SEVERITY, /TRAP_MIN, /TRAP_MAX, /USER
DELETE Command
COLLECTION /CLASS, /ENTITY, /NAME, /NODE, /USER
FILTER /CODE, /NAME, /NODE, /USER
TRAP /ENTITY, /NAME, /NODE, /PARAMETER, /

USER
HELP Command
None None
LOGIN Command
None /NODE, /PASSWORD, /USER
LOGOUT Command
None /NODE, /USER
REPLACE Command
SERVER /APPLICATION, /NODE, /SERVER, /USER
RESET Command
ERROR /NODE, /USER
LOG /NODE, /USER
SAVE Command
FILTER /FILE, /NODE, /USER
SET Command
ACC /ACC_PRIORITY, /ACC_USERNAME, /

ACTIVE, /ASTLM, /AUDIT_STATE, /
BIOLM, /BYTLM, /CHANNELCNT, /
DIOLM, /ENQLM, /FILLM, /GBLPAGES, /
GBLPAGFIL, /GBLSECTIONS, /
LOG, /MAX_APPL, /MSS_MAXBUF, /
MSS_MAXOBJ, /MSS_NET_RETRY_TIMER, /
MSS_POOLSIZE, /MSS_PROCESS_POOL, /
NODE, /NODE_NAME, /PGFLQUOTA, /
STORED, /TQELM, /TWS_POOLSIZE, /
TWSC_POOLSIZE, /USER, /
USERNAME_DEFAULT, /WS_POOLSIZE, /

334

Chapter 11. ACMSMGR Commands

WSC_POOLSIZE, /WSDEFAULT, /
WSEXTENT, /WSQUOTA

COLLECTION /CLASS, /COLL_STATE, /ENTITY, /
NAME, /NODE, /STORAGE_END_TIME, /
STORAGE_INTERVAL, /
STORAGE_LOCATION, /
STORAGE_START_TIME, /
STORAGE_STATE, /USER

CP /ASTLM, /BIOLM, /BYTLM, /DIOLM, /
ENQLM, /FILLM, /LOG /PGFLQUOTA, /
TQELM, /WSEXTENT, /WSDEFAULT, /
WSQUOTA

EXC /ACTIVE, /APPLICATION, /ASTLM, /
AUDIT_STATE, /BIOLM, /BYTLM, /DIOLM, /
ENQLM, /FILLM, /LOG, /MAX_SERVERS, /
MAX_TASKS, /NODE, /PGFLQUOTA, /
SP_MON_INTERVAL, /STORED, /TQELM, /
TRANSACTION_TIMEOUT, /USERNAME, /
WSEXTENT, /WSDEFAULT, /WSQUOTA

INTERFACE /INTERFACE, /NODE, /STATE, /USER
PARAMETER /DCL_AUDIT_LEVEL, /

DCL_MGR_PRIORITY, /
DCL_STACKSIZE, /ERROR_INTERVAL /
EVENT_LOG_PRIORITY, /
LOG_STACKSIZE, /
LOGIN_CREDS_LIFETIME, /MAX_LOGINS, /
MAX_RPC_RETURN_RECS, /
MGR_AUDIT_LEVEL, /
MSG_PROC_AUDIT_LEVEL, /
MSG_PROC_PRIORITY, /
MSG_PROC_STACKSIZE, /
MSS_COLL_INTERVAL, /NODE, /
PROC_MON_AUDIT_LEVEL, /
PROC_MON_INTERVAL, /
PROC_MON_PRIORITY, /
PROC_MON_STACKSIZE, /
PROXY_CREDS_LIFETIME, /
RPC_AUDIT_LEVEL, /
RPC_PRIORITY, /RPC_STACKSIZE, /
SECURITY_AUDIT_LEVEL, /
SNAP_AUDIT_LEVEL, /
SNAP_PRIORITY, /SNAP_STACKSIZE, /
SNMP_AGENT_TIME_OUT, /
SNMP_ARE_YOU_THERE, /
SNMP_AUDIT_LEVEL, /SNMP_PRIORITY, /
SNMP_SEL_TIME_OUT, /
SNMP_STACKSIZE, /TCP_ENABLED, /
TIMER_AUDIT_LEVEL, /
TIMER_INTERVAL, /TIMER_PRIORITY, /
TIMER_STACKSIZE, /
TOTAL_ENTITY_SLOTS, /

335

Chapter 11. ACMSMGR Commands

TRACE_MSG_WAIT_TIME, /
TRACE_START_WAIT_TIME, /
TRAP_AUDIT_LEVEL, /TRAP_PRIORITY, /
TRAP_STACKSIZE, /UDP_ENABLED, /
USER, /VMS_COLL_INTERVAL,
WKSP_COLL_INTERVAL

QTI /ACTIVE, /ASTLM, /BIOLM, /BYTLM, /
DIOLM, /ENQLM, /FILLM, /LOG, /NODE, /
PGFLQUOTA, /POLLING_TIMER, /
QTI_PRIORITY, /QTI_USERNAME, /
RETRY_TIMER, /STORED, /SUB_TIMEOUT, /
TQELM, /WSEXTENT, /WSDEFAULT, /
WSQUOTA, /USER

SERVER /APPLICATION, /CREATION_DELAY, /
CREATION_INTERVAL, /
DELETION_DELAY, /
DELETION_INTERVAL, /LOG, /
MAX_INSTANCE, /MIN_INSTANCE, /
NODE, /SERVER, /SP_DUMP_FLAG, /USER

TRAP /ENTITY, /NAME, /NODE, /PARAMETER, /
SEVERITY, /TRAP_MIN, /TRAP_MAX, /USER

TSC /ACTIVE, /ASTLM, /BIOLM, /
BYTLM, /CP_PRIORITY, /CP_SLOTS, /
CP_USERNAME, /DIOLM, /ENQLM, /
FILLM, /LOG, /MAX_LOGINS, /
MAX_TTS_CP, /MIN_CPIS, /NODE, /
PERM_CPS, /PGFLQUOTA, /
STORED, /TQELM, /TSC_PRIORITY, /
TSC_USERNAME, /USER, /WSEXTENT, /
WSDEFAULT, /WSQUOTA

SHOW Command
ACC /ACTIVE, /BRIEF, /CONFIG, /ERROR, /

FULL, /ID, /INTERVAL, /NODE, /OUT, /
POOL, /RUNTIME, /STORED, /USER

COLLECTION /BRIEF, /FULL, /INTERVAL, /NODE, /OUT, /
USER

CP /ACTIVE, /ALL, /BRIEF, /CONFIG, /ERROR, /
FULL, /ID, /INTERVAL, /NODE, /OUT, /
POOL, /PROCESS_NAME, /RUNTIME, /
STORED, /USER

ERROR /BEFORE, /FILENAME, /INTERVAL, /
LOCAL, /NODE, /OUT, /SEVERITY, /SINCE, /
USER

EXC /ACTIVE, /ALL, /APPLICATION, /BRIEF, /
CONFIG, /ERROR, /FULL, /ID, /INTERVAL, /
NODE, /OUT, /POOL, /RUNTIME, /STORED, /
USER

FILTER /NODE, /USER

336

Chapter 11. ACMSMGR Commands

GROUP /APPLICATION, /BRIEF, /FULL, /GROUP, /
ID, /INTERVAL, /NODE, /OUT, /POOL, /USER

INTERFACE /INTERVAL, /NODE, /OUT, /USER
LOG /BEFORE, /FACILITY, /FILENAME, /

INTERVAL, /LOCAL, /NODE, /OUT, /
SEVERITY, /SINCE, /USER

MANAGER /INTERVAL, /NODE, /OUT, /USER
PARAMETER /INTERVAL, /NODE, /OUT, /USER
PROCESS /ALL, /BRIEF, /FULL, /INTERVAL, /NODE, /

OUT, /USER
QTI /ACTIVE, /ALL, /BRIEF, /CONFIG, /ERROR, /

FULL, /ID, /INTERVAL, /NODE, /OUT, /
POOL, /RUNTIME, /STORED, /USER

SERVER /APPLICATION, /BRIEF, /CONFIG, /FULL, /
ID, /INTERVAL, /NODE, /OUT, /RUNTIME, /
SERVER, /USER

TRAP /INTERVAL, /NODE, /OUT, /USER
TSC /ACTIVE, /ALL, /BRIEF, /CONFIG, /ERROR, /

FULL, /ID, /INTERVAL, /NODE, /OUT, /
POOL, /RUNTIME, /STORED, /USER

USER /BRIEF, /FULL, /INTERVAL, /NODE, /OUT, /
USER

VERSION None.
START Command
EXC /APPLICATION, /NODE, /USER
QTI /NODE, /USER
SYS /NOAUDIT, /NODE, /QTI, /NOTERMINALS, /

USER
TERMINALS /NODE, /USER
TRACE_MONITOR /NODE, /USER
STOP Command
EXC /APPLICATION, /CANCEL, /NODE, /USER
MANAGER /NODE, /USER
QTI /NODE, /USER
SYS /CANCEL, /NODE, /USER
TERMINALS /NODE, /USER
TRACE_MONITOR /NODE, /USER

11.2. ACMSMGR ADD COLLECTION

ACMSMGR ADD COLLECTION
ACMSMGR ADD COLLECTION — Adds records to the Collection table.

337

Chapter 11. ACMSMGR Commands

Format
ACMSMGR ADD COLLECTION [/qualifiers]

Command Qualifier Default
/CLASS=class-name * (all)
/COLL_STATE=keyword DISABLED
/ENTITY=keyword Qualifier is required
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/STORAGE_END_TIME=[NEVER, /time] NEVER; run until DISABLED

/STORAGE_INTERVAL=value 300
/STORAGE_LOCATION=file-name Translation of logical ACMS

$MGMT_SNAPSHOT
/STORAGE_START_TIME=[NOW, /time] NOW; start as soon as ENABLED

/STORAGE_STATE=keyword DISABLED
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/CLASS=[*, ERROR, POOL, RUNTIME]

This qualifier specifies the class to be enabled or disabled. The default is * (all). See
Section 5.1.1 for a description of each class type.

/COLL_STATE=[ENABLED, DISABLED]

This qualifier specifies the state of the collection. The default is DISABLED. When a SHOW
entity command is issued, data for those classes that have their collection state set to ENABLED
is displayed. Note that while the collection state is DISABLED, the data displayed for an entity
may not be accurate. Data cannot be written to the data snapshot file when this qualifier is
DISABLED, even when the storage state is ENABLED.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]

This required qualifier specifies the entity for which collection should be enabled or disabled.

/NAME=[*, entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

338

Chapter 11. ACMSMGR Commands

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process name. For the
EXC entity type, the entity name is the name of the application (for example, VR_APPL).

Server and task group names can be specified as compound names made up of an
application name and a server or task group name, separated by a period (for example,
VR_APPL.VR_READ_SERVER). Either part of server or task group names can be a wildcard
(for example, *.VR_READ_SERVER or VR_APPL.*). If only one part of a server or task group
name is specified, it is assumed to be the application name, and the server or task group name is
wildcarded. For example, VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

To execute the command on more than one node, you can specify the node names in a comma-
separated list. The ACMSMGR utility attempts to perform the operation sequentially on each
node in the list.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/STORAGE_END_TIME=[NEVER, time]

This qualifier specifies a time after which the collection data should no longer be written to the
snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for
example, 10-OCT or 09:00) are supported. If this qualifier is not specified, the default keyword of
NEVER is applied, which equates to the OpenVMS zero date of 17-NOV-1858 00:00:00.00. With
a value of NEVER, collection data continues to be written to the snapshot file until the storage
state is set to DISABLED.

/STORAGE_INTERVAL=value

This qualifier controls the frequency (in seconds) at which data snapshots are performed. The
default value is 300 seconds.

The storage interval value should be a multiple of the timer interval parameter (SET
PARAMETER/TIMER_INTERVAL). The timer interval value determines the minimum
elapsed time for many Remote Manager parameters, including the storage interval setting. The
relationship of these values determine how often data snapshots are performed, for example:

• If the timer interval value is greater, its value is used by default. For instance, if the timer
interval is 10 and the storage interval is 5, snapshots will be written at 10 second intervals.

• If the storage interval value is greater and is a multiple of the timer interval, the storage
interval value is used. For example, if the timer interval is 10 and the storage interval is 30,
snapshots will be written at 30 second intervals.

339

Chapter 11. ACMSMGR Commands

• If the storage interval value is greater and is not a multiple of the timer interval, the next
multiple of the timer interval value is used. For example, if the timer interval is 10 and the
storage interval is 15, snapshots will be written at 20 second intervals.

/STORAGE_LOCATION=file-name

This qualifier specifies an OpenVMS file specification to which collection data is to be
written. The format of file-name is a valid OpenVMS pathname or logical (such as DISK$1:
[SYSTEM.SNAPSHOTS] or SYS$SYSTEM:SNAPSHOTS.DAT).

If the /STORAGE_LOCATION qualifier is not specified, the ACMSMGR utility checks for the
presence of the logical name ACMS$MGMT_SNAPSHOT. If the logical is defined, the value
of the logical is used by default. If a directory is not provided as part of the specification, the file
is written to the default directory of the account under which the Remote Manager process is
running.

Multiple collections can share a single snapshot file or be stored in separate files. For continuity,
HP recommends that EXC, Server, and Task Group collection information be written to the same
snapshot file.

/STORAGE_BEGIN_TIME=[NOW, time]

This qualifier specifies a time after which the collection data should be written to the snapshot
file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for example, 10-
OCT or 09:00) are supported. If this qualifier is not specified, the default keyword of NOW is
applied, which equates to the OpenVMS zero date of 17-NOV-1858 00:00:00.00. With a value of
NOW, collection data is written to the snapshot file immediately, or as soon as the storage state is
set to ENABLED.

/STORAGE_STATE=[ENABLED, DISABLED]

This qualifier specifies the state of the data snapshots. If this qualifier is not specified, data
snapshots are disabled by default. To fully enable data snapshots, both the storage state and the
collection state (/COLL_STATE) must be set to ENABLED.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

When adding new collection records, the combination of class, entity, and name must be unique.

It is not possible to add records for the ID and CONFIG class. By default, all ACMS processes collect
ID and CONFIG class data.

340

Chapter 11. ACMSMGR Commands

ACMS processes read the Collection table during process startup to determine which classes to begin
collecting. Once the Remote Manager has been started, the ACMSMGR SHOW PROCESS command
can be used to determine the class states for the currently running ACMS processes.

In order for collection data to be written to a snapshot file, the following conditions must be met:

• A qualifying entity must be running (one with an entity type and name matching fields in the
Collection table).

• The collection state and storage state for that entity must be enabled.

• The current time must fall between the storage start time and storage end time.

If all these conditions are met, the Remote Manager opens the snapshot file for shared write
operations. The file remains open until the storage state is set to DISABLED or until the snapshot
period expires.

When multiple collection records apply to a given process, the records are assigned weights according
to a precedence of name, then entity, and then class. Within a column, wildcard entries are weighted
less than nonwildcard entries. The row with the highest weight that applies to a process is used.
The command ACMSMGR SHOW COLLECTION displays weights for each row in the table. See
Section 5.1.1 for a discussion of the Collection table and how weights are assigned.

In contrast to typical collections, weighting for data snapshot threads does not apply. Therefore,
it is possible for redundant collection data to be written to one or more snapshot files. If multiple
collection records compile overlapping data, and each has their storage state set to ENABLED, each
record writes data to the designated snapshot file.

Examples
$ ACMSMGR ADD COLL/ENT=EXC/CLASS=RUNTIME/NAME=VR_APPL

This command creates an entry in the Collection table. As a result of this command, the EXC entity
for VR_APPL will begin collecting run-time information; however this data will not be saved and
written to the data snapshot file.

11.3. ACMSMGR ADD FILTER

ACMSMGR ADD FILTER
ACMSMGR ADD FILTER — Adds records to the Remote Manager Error Filter table. This command
(and its qualifiers) is only for use with systems running ACMS Version 4.4 or higher.

Format
ACMSMGR ADD FILTER [/qualifiers]

Command Qualifier Default
/CODE=value None.
/FILE=file-name None.
/NAME=error-name None.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE

341

Chapter 11. ACMSMGR Commands

/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/CODE=value

This qualifier specifies the decimal or hexadecimal value (such as, %x5258028) related to the
error message being filtered.

/FILE=file-name

This qualifier specifies the name of an input file that contains a list of error filter values. The
Remote Manager reads this file and adds each code or symbolic name to the Error Filter table.

/NAME=error-name

This qualifier specifies the symbolic name (such as, %ACMSACC-W-TCS_ LOADING) related
to the error message being filtered.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

To execute the command on more than one node, you can specify the node names in a comma-
separated list. The ACMSMGR utility attempts to perform the operation sequentially on each
node in the list.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

342

Chapter 11. ACMSMGR Commands

Notes
When adding new error filter records, you must specify either the /CODE, /NAME, or /FILE qualifier.

ACMS processes read the Error Filter table during process startup to determine which errors to refrain
from sending to the Remote Manager server. Error filtering begins or ends immediately after filter
records are added. The Remote Manager signals the appropriate ACMS process as soon as it has
reevaluated the Error Filter table following an addition. Messages are sent to active ACMS processes
using the ACMS Trace Monitor.

Certain system messages, such as event flags (ACMSACC-I-EVENT), often spawn further status
messages indicating the cause of the event (ACMSACC-WFORCEOUT). Error filtering is explicit;
that is, only the specified messages are suppressed. If you want to filter the initial and subsequent
system messages, you must add each message to the Error Filter table.

Errors are also filtered using the command SET PARAMETER/ERROR_INTERVAL=n. Any errors
that are rebroadcast within the specified interval are not sent to the Remote Manager server. The
command ACMSMGR SHOW PARAMETER can be used to determine the current error interval for
ACMS systems.

Examples
$ ACMSMGR ADD FILTER /NAME="ACMSACC-W-FORCEOUT" /NODE=SPARKS

This command adds the ACMS ACC force out warning message to the Error Filter table. If this
message is generated by an ACMS process on node SPARKS, it is not relayed to the Remote
Manager.

$ ACMSMGR ADD FILTER /FILE=DISK$1:[USER1]FILTER_ERR.DAT

This command adds all the system messages in the file FILTER_ERR.DAT to the Error Filter table.
These messages are no longer relayed to the Remote Manager.

11.4. ACMSMGR ADD TRAP

ACMSMGR ADD TRAP
ACMSMGR ADD TRAP — Adds records to the Remote Manager Trap table.

Format
ACMSMGR ADD TRAP [/qualifiers]

Command Qualifier Default
/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/PARAMETER=keyword EXISTS
/SEVERITY=[I,W,E,F] E
/TRAP_MIN=value -1

343

Chapter 11. ACMSMGR Commands

/TRAP_MAX=value -1
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]

This required qualifier specifies the entity or entities for which a trap should be set.

/NAME=[*, entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

This field is ignored for the MGR entity.

For ACC, CP, QTI, and TSC entity types, the entity name is the process name. For the EXC entity
type, the entity name is the name of the application (for example, VR_APPL).

The default is all (*).

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/PARAMETER=[EVENT_SEVERITY, EXISTS]

This parameter specifies the field that should be monitored.

• EVENT_SEVERITY

Internal Remote Manager events are to be monitored. The Remote Manager logs internal
events in the Remote Manager log. (See Section 4.7 and Section 11.35 for discussions of the
Remote Manager log.) Traps can be generated based on the severity levels of these events.

• EXISTS

Process existence is to be monitored. Traps are generated if the associated entity type and
name either starts or stops.

344

Chapter 11. ACMSMGR Commands

/SEVERITY=[I, W, E, F]

This qualifier specifies the severity to be associated with the trap. Severity codes are embedded in
the trap message and must be parsed by the trap receiver. Severities are informational (I), warning
(W), error (E), or fatal (F).

/TRAP_MIN=value

This qualifier specifies the minimum allowable value for the parameter being monitored. A trap
is generated if the parameter value is less than the minimum. See Section 9.14.2 for a list of valid
values.

/TRAP_MAX=value

This qualifier specifies the maximum allowable value for the parameter being monitored. A trap
is generated if the parameter value is greater than the maximum. See Section 9.14.2 for a list of
valid values.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access

Notes
When adding new trap records, the combination of entity, name, and parameter must be unique.

Traps become active as soon as they are added to the Trap table and the SNMP interface is running.

See Section 9.14.2 for a discussion about setting appropriate trap minimums and maximums. See also
Section 9.14.3 for a description of the trap message generated.

Examples
$ ACMSMGR ADD TRAP /ENT=ACC/PARAMETER=EXISTS/TRAP_MIN=1

This command causes an SNMP trap to be generated whenever the ACC process stops if the SNMP
interface is running.

11.5. ACMSMGR DELETE COLLECTION

ACMSMGR DELETE COLLECTION
ACMSMGR DELETE COLLECTION — Deletes records from the Collection table.

Format
ACMSMGR DELETE COLLECTION [/qualifiers]

345

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/CLASS=class-name * (all)
/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/CLASS=[*, CONFIG, ERROR, ID, POOL, RUNTIME]

This qualifier specifies the class to be enabled or disabled. The default is * (all). See
Section 5.1.1 for a description of each class type.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]

This required qualifier specifies the entity or entities for which collection should be enabled or
disabled.

/NAME=[*, entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process name. For the
EXC entity type, the entity name is the name of the application (for example, VR_APPL).

Server and task group names can be specified as compound names made up of an
application name and a server or task group name, separated by a period (for example,
VR_APPL.VR_READ_SERVER). Either part of server or task group names can be a wildcard
(for example, *.VR_READ_SERVER or VR_APPL.*). If only one part of a server or task group
name is specified, it is assumed to be the application name, and the server or task group name is
wildcarded. For example, VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

346

Chapter 11. ACMSMGR Commands

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
When deleting collection records, the combination of class, entity, and name must exactly match the
row to be deleted. Deleting a collection record automatically terminates all related snapshot threads.

It is not possible to delete records for the ID and CONFIG class. By default, all ACMS processes
collect ID and CONFIG class data.

Collections begin or end immediately after collection records are deleted. The Remote Manager
signals the appropriate ACMS process as soon as it has reevaluated the Collection table following a
deletion. Messages are sent to the ACMS process using the ACMS Trace Monitor.

ACMS processes read the Collection table during process startup to determine which classes to begin
collecting.

The ACMSMGR SHOW PROCESS command can be used to determine the class states for the
currently running ACMS processes.

Examples
$ ACMSMGR DELETE COLL/ENT=EXC/CLASS=RUNTIME/NAME=VR_APPL

This command deletes the entry in the Collection table for run-time collection by the VR_APPL
application. After the deletion, if there are no other Collection table entries that apply to the run-time
class for VR_APPL, run-time collection is disabled.

11.6. ACMSMGR DELETE FILTER

ACMSMGR DELETE FILTER
ACMSMGR DELETE FILTER — Removes records from the Remote Manager Error Filter table.
This command (and its qualifiers) is only for use with systems running ACMS Version 4.4 or higher.

Format
ACMSMGR DELETE FILTER [/qualifiers]

Command Qualifier Default
/CODE=value None.

347

Chapter 11. ACMSMGR Commands

/NAME=error-name None.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/CODE=value

This qualifier specifies the hexadecimal value (such as, %x5258028) related to the error message
being filtered.

/NAME=error-name

This required qualifier specifies the symbolic name (such as, %ACMSACC-WTCS_ LOADING)
related to the error message being filtered.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
Either the /CODE or /NAME qualifier must be specified. When deleting error filter records, the
combination of code (or name) and node must exactly match the row to be deleted.

348

Chapter 11. ACMSMGR Commands

ACMS processes read the Error Filter table during process startup to determine which errors to refrain
from sending to the Remote Manager server. Error filtering ends immediately after filter records are
deleted. The Remote Manager signals the appropriate ACMS process as soon as it has reevaluated the
Error Filter table following a deletion. Messages are sent to active ACMS processes using the ACMS
Trace Monitor.

Errors are also filtered using the command SET PARAMETER/ERROR_ INTERVAL=n. Any errors
that are rebroadcast within the specified interval are not sent to the Remote Manager server. The
command ACMSMGR SHOW PARAMETER can be used to determine the current error interval for
ACMS systems.

Examples
$ ACMSMGR DELETE FILTER /NAME="ACMSACC-W-FORCEOUT" /NODE=SPARKS

This command deletes the ACMS ACC force out warning message from the Error Filter table. If this
message is generated by an ACMS process on node SPARKS, it is relayed to the Remote Manager
and written to the error log.

11.7. ACMSMGR DELETE TRAP

ACMSMGR DELETE TRAP
ACMSMGR DELETE TRAP — Deletes a record from the trap table.

Format
ACMSMGR DELETE TRAP [/qualifiers]

Command Qualifier Default
/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/PARAMETER=keyword EXISTS
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]

This required qualifier specifies the entity or entities for which a trap should be set.

349

Chapter 11. ACMSMGR Commands

/NAME=[*, entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

For the MGR entity, this field should always be set to asterisk (*).

For ACC, CP, QTI, and TSC entity types, the entity name is the process name. For the EXC entity
type, the entity name is the name of the application (for example, VR_APPL).

The default is all (*).

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/PARAMETER=[EVENT_SEVERITY, EXISTS]

This parameter specifies the field that should be monitored.

• EVENT_SEVERITY

Internal Remote Manager events are to be monitored. The Remote Manager logs internal
events in the Remote Manager log. (See Section 11.35 and Section 4.7 for discussions of the
Remote Manager log.) Traps can be generated based on the severity levels of these events.

• EXISTS

Process existence is to be monitored. Traps are generated if the associated entity type and
name either starts or stops.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
When deleting trap records, the combination of entity, name and parameter must exactly match a row
in the trap table.

350

Chapter 11. ACMSMGR Commands

Traps become inactive as soon as they are deleted from the Trap table.

Examples
$ ACMSMGR DELETE TRAP/ENT=ACC/PARAM=EXISTS

This command deletes a trap from the Trap table.

11.8.

ACMSMGR HELP
ACMSMGR HELP — Displays help information about the ACMS Remote Manager Client
(ACMSMGR) and its commands.

Format
ACMSMGR HELP

Privileges Required
None.

Parameters
None.

Qualifiers
None.

Notes
Online help is available for each ACMSMGR command. Each help topic summarizes the valid
syntax, abbreviations, parameters, and qualifiers for a particular command and also indicates all
default and required values.

For a comprehensive list of ACMS utilities that offer online help or for further instructions on how to
invoke help, see ACMS Help.

Examples
$ ACMSMGR HELP

This command invokes online help for the ACMSMGR utility and displays a list of available topics.

11.9. ACMSMGR LOGIN

ACMSMGR LOGIN
ACMSMGR LOGIN — Logs in to a server on one or more nodes.

351

Chapter 11. ACMSMGR Commands

Format

ACMSMGR LOGIN [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/PASSWORD=password None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/PASSWORD=password

This qualifier specifies the password of the OpenVMS account on the server node to log in as. It
is sent encrypted to the server node for verification.

If the /PASSWORD parameter is not specified, the ACMSMGR will prompt the user for a
password. Login will not be attempted without a password.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node on which to log in.

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility prompts the user for a user name. Login cannot be attempted without a user
name.

352

Chapter 11. ACMSMGR Commands

Notes
In order to access any remote management functions, a valid login is required if proxy access is not
enabled or if proxy accounts have not been set up.

A credentials file is created for each node logged in to. Credentials files are specific for a user,
process, and node. In addition, a separate credentials file is created for each combination of user name
and node. Subsequent ACMSMGR commands pass the authentication information in the appropriate
credentials file to the Remote Manager server, which then performs function authorization. Users
determine which credentials are used either by using the /USER qualifier or by defining the ACMS
$MGMT_USER logical.

For example, suppose user BOB on node CLIENT logs in to node SERV1 as ACMS_ADMIN. Also,
suppose user BOB on node CLIENT logs in to node SERV2 as ACMS_USER. BOB will have two
active logins (two credentials files). He can specify which one to use by either defining the logical
ACMS$MGMT_USER, or specifying a user name using the /USER qualifier.

Logins are valid for the duration of the login_credentials_lifetime parameter (specified using the
ACMSMGR SET PARAMETER command).

See Section 4.4 for a complete discussion of how logins are processed and how credentials files are
handled.

Examples
• $ ACMSMGR LOGIN /NODE=SPARKS /USER=USERNAME /PASSWORD=12345678

This command logs in user USERNAME to node SPARKS.

• $ ACMSMGR LOGIN /NODE=SPARKS,NELSON /USER=USERNAME /PASSWORD=12345678

This command logs in user USERNAME to nodes SPARKS and NELSON.

• $ ACMSMGR LOGIN /USER=USERNAME

This command logs in user USERNAME to the node specified by the logical name ACMS
$MGMT_SERVER_NODE. The ACMSMGR utility will prompt the user for the password.

• $ ACMSMGR LOGIN

This command logs in the user defined by the logical name ACMS$MGMT_ USER to the node
specified by the logical name ACMS$MGMT_SERVER_ NODE. If the logical name ACMS
$MGMT_USER is not defined, the ACMSMGR utility will prompt for the user name. The
ACMSMGR utility also will prompt for the password.

11.10. ACMSMGR LOGOUT

ACMSMGR LOGOUT
ACMSMGR LOGOUT — Logs out a user from a server on one or more nodes.

Format
ACMSMGR LOGOUT [/qualifiers]

353

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node from which to log
out.

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility prompts the user for a user name. Logout cannot be performed without a user
name.

Notes
Once logout is complete, subsequent ACMSMGR commands for a user, process, and node will fail
authorization checks.

Examples
• $ ACMSMGR LOGOUT /NODE=SPARKS /USER=USERNAME

This command logs out user USERNAME from node SPARKS.

• $ ACMSMGR LOGOUT /NODE=SPARKS,NELSON /USER=USERNAME /PASSWORD=12345

354

Chapter 11. ACMSMGR Commands

This command logs out user USERNAME from nodes SPARKS and NELSON.

• $ ACMSMGR LOGOUT /USER=USERNAME

This command logs out user USERNAME from the node specified by the logical name ACMS
$MGMT_SERVER_NODE.

• $ ACMSMGR LOGOUT

This command logs out the user defined by the logical name ACMS$MGMT_ USER from the
node specified by the logical name ACMS$MGMT_SERVER_ NODE. If the logical name ACMS
$MGMT_USER is not defined, the ACMSMGR utility will prompt for the user name.

11.11. ACMSMGR REPLACE SERVER

ACMSMGR REPLACE SERVER
ACMSMGR REPLACE SERVER — Replaces a running server in a running ACMS application.

Format
ACMSMGR REPLACE SERVER [/qualifiers]

Command Qualifier Default
/APPLICATION=[*,application-name] * (all)
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/SERVER=[*,server-name] * (all)
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/APPLICATION=[*, application-name]

This qualifier specifies the name of the application. If this qualifier is not specified, the command
is executed for all applications on the target node.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

355

Chapter 11. ACMSMGR Commands

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/SERVER=[*, server-name]

This qualifier specifies the name of the server. If this qualifier is not specified, the command is
executed for all servers on the target node in the target application.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command is equivalent to the ACMSOPER command ACMS/REPLACE SERVER. The
command is executed synchronously.

Examples
$ ACMSMGR REPLACE SERVER /APPL=VR_APPL/SERV=VR_READ_SERVER/NODE=SPARKS

This command replaces the VR_READ_SERVER in the VR_APPL application on node SPARKS.

11.12. ACMSMGR RESET ERROR

ACMSMGR RESET ERROR
ACMSMGR RESET ERROR — Resets (closes) the Remote Manager error log file and creates
(opens) a new version. This command (and its qualifiers) is only for use with systems running ACMS
Version 4.4 or higher.

Format
ACMSMGR RESET ERROR [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

356

Chapter 11. ACMSMGR Commands

Privileges Required

ACMS$MGMT_WRITE

Parameters

None.

Qualifiers

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command closes the current version of the ACMSMGR error log file and opens a new version.

Examples
$ ACMSMGR RESET ERROR /NODE=SPARKS /USER=USERNAME

This command resets the Remote Manager error log on node SPARKS.

11.13. ACMSMGR RESET LOG

ACMSMGR RESET LOG
ACMSMGR RESET LOG — Resets (closes) the Remote Manager log file and creates (opens) a new
version.

357

Chapter 11. ACMSMGR Commands

Format
ACMSMGR RESET LOG [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command closes the current version of the ACMSMGR log file and opens a new version.

Examples
$ ACMSMGR RESET LOG /NODE=SPARKS /USER=USERNAME

This command resets the Remote Manager log on node SPARKS.

358

Chapter 11. ACMSMGR Commands

11.14. ACMSMGR SAVE FILTER

ACMSMGR SAVE FILTER
ACMSMGR SAVE FILTER — Saves the current records in the Error Filter table to a file. This
command (and its qualifiers) is only for use with systems running ACMS Version 4.4 or higher.

Format
ACMSMGR SAVE FILTER [/qualifiers]

Command Qualifier Default
/FILE=file-name Qualifier is required.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/FILE=file-name

This required qualifier specifies a full OpenVMS file specification (node::device:[directory]file-
name.ext) that indicates where the error filter information is to be written. Partial specifications
and logical names are not valid.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

359

Chapter 11. ACMSMGR Commands

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command provides the ability to write the current set of error filter records to an external file.
The /FILE qualifier is required and must reference a valid, complete OpenVMS file specification.
Logicals and partial names are not recognized.

Examples
$ ACMSMGR SAVE FILTER/FILE=VLCROW::DISK1$:[SYSTEM.FILTER]ERROR_FILTER.TXT/
NODE=SPARKS

This command saves the error filter records for node SPARKS to the DISK1$:
[SYSTEM.FILTER]ERROR_FILTER.TXT on node VLCROW.

11.15. ACMSMGR SET ACC

ACMSMGR SET ACC
ACMSMGR SET ACC — Makes modifications to the ACMS system.

Format

ACMSMGR SET ACC [/qualifiers]

Command Qualifier Default
/ACC_PRIORITY=value None
/ACC_USERNAME=user-name None
/ACTIVE /STORED
/ASTLM=value None

Only for use on systems running ACMS Version
4.4 or higher.

/AUDIT_STATE=keyword None
/BIOLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/BYTLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/CHANNELCNT=value None. See /system-parameter.

360

Chapter 11. ACMSMGR Commands

Command Qualifier Default
Only for use on systems running ACMS Version
4.4 or higher.

This special parameter is used by HP and is
subject to change. Do not change this parameter
unless HP recommends that you do so.

/DIOLM=value None. See /process-quota.
/ENQLM=value None. See /process-quota.
/FILLM=value None. See /process-quota.
/GBLPAGES=value None. See /system-parameter.
/GBLPAGFIL=value None. See /system-parameter.
/GBLSECTIONS=value None. See /system-parameter.
/LOG None
/MAX_APPL=value None
/MSS_MAXBUF=value None
/MSS_MAXOBJ=value None
/MSS_NET_RETRY_TIMER=value None
/MSS_POOLSIZE=value None
/MSS_PROCESS_POOL=value None
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/NODE_NAME=node-name None
/PGFLQUOTA=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/STORED /STORED
/TQELM=value None. See /process-quota.
/TWS_POOLSIZE=value None
/TWSC_POOLSIZE=value None
/USER=user-name Translation of logical ACMS$MGMT_USER
/USERNAME_DEFAULT=user-name None
/WS_POOLSIZE=value None
/WSC_POOLSIZE=value None
/WSDEFAULT=value None. See /process-quota.
/WSEXTENT=value None. See /process-quota.
/WSQUOTA=value None. See /process-quota.

Privileges Required
ACMS$MGMT_OPER

ACMS$MGMT_SYSUPD (for system parameters)

361

Chapter 11. ACMSMGR Commands

Parameters

None.

Qualifiers

/process-quota=value

These qualifiers correspond to and update the related process quota fields in the system user
authorization (SYSUAF) record for the user specified by ACC_ USERNAME. Updated quota
values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process quotas, the /
ACTIVE qualifier cannot be specified. The /STORED qualifier is the default and causes the
specified values to be stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the OpenVMS System
Manager’s Manual. For more information about the individual quotas and their values, see
OpenVMS System Management Utilities Reference Manual: A–L or access the online help for
AUTHORIZE.

/system-parameter=value

These qualifiers correspond to and update the related OpenVMS System Generation utility
(SYSGEN) parameters. Updated parameter values apply to the next process that is created. The
ACMS$MGMT_SYSUPD rights identifier is required to set these parameters.

Because these qualifiers control the nondynamic values for the related syste parameters, the /
ACTIVE qualifier cannot be specified. The /STORED qualifier is the default and causes the
specified values to be stored in the current SYSGEN work area.

For information on using SYSGEN, see the OpenVMS System Manager’s Manual. For more
information about the individual parameters and their values, see OpenVMS System Management
Utilities Reference Manual: M–Z or access the online help for SYSGEN.

/ACC_PRIORITY=value

This qualifier corresponds to and updates the ACMSGEN field ACC_PRIORITY. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/ACC_USERNAME=user-name

This qualifier corresponds to and updates the ACMSGEN field ACC_USERNAME. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/ACTIVE

This qualifier causes dynamic ACMSGEN field values to be updated from the current
ACMSGEN file. The /ACTIVE qualifier cannot be specified on the same command with the /
STORED qualifier. If neither is specified, the default is /STORED. If /ACTIVE is specified, no
updates are written to the file.

362

Chapter 11. ACMSMGR Commands

/AUDIT_STATE=[ENABLED, DISABLED]

This qualifier is equivalent to the ACMSOPER command ACMS/SET SYSTEM/AUDIT (or /
NOAUDIT if the value is DISABLED).

/LOG

This qualifier causes status information for the current SET transaction to be displayed to the
terminal (SYS$OUTPUT). This qualifier is useful when setting multiple values; a separate status
message is displayed for each value that is set.

/MAX_APPL=value

This qualifier corresponds to and updates the ACMSGEN field MAX_APPL. Because this is a
nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/MSS_MAXBUF=value

This qualifer corresponds to and updates the ACMSGEN field MSS_MAXBUF. Because this is
a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/MSS_MAXOBJ=value

This qualifier corresponds to and updates the ACMSGEN field MSS_MAXOBJ. Because this is
a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/MSS_NET_RETRY_TIMER=value

This qualifier corresponds to and updates the ACMSGEN field MSS_NET_ RETRY_TIMER.
As this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be
modified for the running system. The /STORED qualifier causes the specified value to be stored
in the current ACMSGEN file.

/MSS_POOLSIZE=value

This qualifier corresponds to and updates the ACMSGEN field MSS_POOLSIZE. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/MSS_PROCESS_POOL=value

This qualifier corresponds to and updates the ACMSGEN field MSS_PROCESS_ POOL.
Because this is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified
with this qualifier. The /STORED qualifier causes the specified value to be stored in the current
ACMSGEN file.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

363

Chapter 11. ACMSMGR Commands

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/NODE_NAME=node-name

This qualifier corresponds to and updates the ACMSGEN field NODE_NAME. Because this is
a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/STORED

This qualifier causes ACMSGEN field updates to be written and saved in the current ACMSGEN
file. The /STORED qualifier cannot be specified on the same command as the /ACTIVE qualifier.
If neither is specified, the default is /STORED.

/TWS_POOLSIZE=value

This qualifier corresponds to and updates the ACMSGEN field TWS_POOLSIZE. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/TWSC_POOLSIZE=value

This qualifier corresponds to and updates the ACMSGEN field TWSC_POOLSIZE. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the value specified to be stored in the current ACMSGEN file.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

/USERNAME_DEFAULT=user-name

This qualifier corresponds to and updates the ACMSGEN field USERNAME_ DEFAULT.
Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be
modified for the running system. The /STORED qualifier causes the specified value to be stored
in the current ACMSGEN file.

/WS_POOLSIZE=value

This qualifier corresponds to and updates the ACMSGEN field WS_POOLSIZE. Because this is
a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

364

Chapter 11. ACMSMGR Commands

/WSC_POOLSIZE=value

This qualifier corresponds to and updates the ACMSGEN field WSC_POOLSIZE. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

Notes
This command provides the ability to remotely update either the running ACMS system or the current
ACMSGEN file.

The /ACTIVE and /STORED qualifiers control how updates are posted to ACMSGEN. The /ACTIVE
and /STORED qualifiers have no effect on the /AUDIT_ STATE qualifier, which is processed
independently of any ACMSGEN updates.

Examples
• $ ACMSMGR SET ACC /NODE=SPARKS/MSS_NET_RETRY_TIMER=250/ACTIVE

This command modifies the ACMSGEN field mss_net_retry_timer on node SPARKS and updates
the active system only. The change is not saved in the ACMSGEN file.

• $ ACMSMGR SET ACC /NODE=SPARKS/MSS_NET_RETRY_TIMER=500/STORED

This command modifies the ACMSGEN field mss_net_retry_timer on node SPARKS and saves
the change in the ACMSGEN file. The active system is not updated.

• $ ACMSMGR SET ACC /NODE=SPARKS/CHANNELCNT=255/STORED

This command modifies the CHANNELCNT system parameter on node SPARKS and saves the
change in the SYSGEN work area. The active system is not updated.

11.16. ACMSMGR SET AGENT

ACMSMGR SET AGENT
ACMSMGR SET AGENT — Makes modifications to the ACMS system.

Format
ACMSMGR SET AGENT [/qualifiers]

Command Qualifier Default
/PID=value None (Mandatory)
/ASTLM=value None. See /process-quota.
/BIOLM=value None. See /process-quota.
/BYTLM=value None. See /process-quota.
/DIOLM=value None. See /process-quota.
/ENQLM=value None. See /process-quota.
/FILLM=value None. See /process-quota.

365

Chapter 11. ACMSMGR Commands

/LOG None
/PGFLQUOTA=value None. See /process-quota.
/TQELM=value None. See /process-quota.
/WSDEFAULT=value None. See /process-quota.
/WSEXTENT=value None. See /process-quota.
/WSQUOTA=value None. See /process-quota.
/NODE=value None
/USER=value None

Privileges Required
ACMS$MGMT_OPER

ACMS$MGMT_SYSUPD (for system parameters)

Parameters
None.

Qualifiers
/PID=pid

Specifies the Process ID of the Agent the stored values of which to modify. The /PID qualifier is
Mandatory.

/process-quota=value

These qualifiers correspond to and update the related process quota fields in the system user
authorization (SYSUAF) record for the user of the Agent using the supplied process PID. Updated
quota values apply to the next Agent that is created.

Because these qualifiers control the nondynamic values for the related process quota fields, the /
ACTIVE qualifier cannot be specified. The /STORED qualifier causes the specified values to be
stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the OpenVMS System
Manager’s Manual. For more information about the individual quotas and their values, see
OpenVMS System Management Utilities Reference Manual: A–L or access the online help for
AUTHORIZE.

/LOG=value

This qualifier causes status information for the current SET transaction to be displayed to the
terminal (SYS$OUTPUT). This qualifier is useful when setting multiple values; a separate status
message is displayed for each value that is set.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

366

Chapter 11. ACMSMGR Commands

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command provides the ability to remotely update the current ACMSGEN file.

The /ACTIVE and /STORED qualifiers are not used with the ACMSMGR SET AGENT command
because only stored values can be modified.

Examples
$ ACMSMGR SET AGENT /NODE=SPARKS /ASTLM=250 /PID=274009D6

This command modifies the ACMSGEN field astlm on node SPARKS for the Agent running in the
process of the specified PID.

11.17. ACMSMGR SET COLLECTION

ACMSMGR SET COLLECTION
ACMSMGR SET COLLECTION — Updates records in the Collection table.

Format
ACMSMGR SET COLLECTION [/qualifiers]

Command Qualifier Default
/CLASS=class-name * (all)
/COLL_STATE=keyword None
/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE

367

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/STORAGE_END_TIME=[NEVER, /time] None

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_INTERVAL=value None

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_LOCATION=file-name Translation of logical ACMS
$MGMT_SNAPSHOT

/STORAGE_BEGIN_TIME=[NOW, /time] None

Only for use on systems running ACMS Version
4.4 or higher.

/STORAGE_STATE=keyword None

Only for use on systems running ACMS Version
4.4 or higher.

/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/CLASS=[*, CONFIG, ERROR, ID, POOL, RUNTIME]

This qualifier specifies the class to be enabled or disabled. The default is * (all). See Section 5.1.1
for a description of each class type.

/COLL_STATE=[ENABLED, DISABLED]

This qualifier specifies the state of the collection. When a SHOW entity command is issued, data
for those classes that have their collection state set to ENABLED is displayed. Note that while the
collection state is DISABLED, the data displayed for an entity may not be accurate. Data cannot
be written to the data snapshot file when this qualifier is DISABLED, even when the storage state
is ENABLED.

/ENTITY=[*, ACC, AGENT, CP, EXC, GROUP, QTI, SERVER, TSC]

This required qualifier specifies the entity or entities for which collection should be enabled or
disabled.

/NAME=[*, entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

368

Chapter 11. ACMSMGR Commands

For ACC, AGENT, CP, QTI, and TSC entity types, the entity name is the process name. For the
EXC entity type, the entity name is the name of the application (for example, VR_APPL).

Server and task group names can be specified as compound names made up of an
application name and a server or task group name, separated by a period (for example,
VR_APPL.VR_READ_SERVER). Either part of server or task group names can be a wildcard
(for example, *.VR_READ_SERVER or VR_APPL.*). If only one part of a server or task group
name is specified, it is assumed to be the application name, and the server or task group name is
wildcarded. For example, VR_APPL is equivalent to VR_APPL.*.

The default is all (*), which is equivalent to *.* for a compound name.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/STORAGE_END_TIME=[NEVER,time]

This qualifier specifies a time after which the collection data should no longer be written to the
snapshot file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for
example, 10-OCT or 09:00) are supported. The keyword NEVER is also supported, which equates
to the OpenVMS zero date of 17-NOV-1858 00:00:00.00. With a value of NEVER, collection
data continues to be written to the snapshot file until the storage state is set to DISABLED.

If this qualifier is not specified, the existing value remains unchanged. This value can be modified
dynamically.

/STORAGE_INTERVAL=value

This qualifier controls the frequency (in seconds) at which data snapshots are performed.

The storage interval value should be a multiple of the timer interval parameter (SET
PARAMETER/TIMER_INTERVAL). The timer interval value determines the minimum
elapsed time for many Remote Manager parameters, including the storage interval setting. The
relationship of these values determine how often data snapshots are performed, for example:

• If the timer interval value is greater, its value is used by default. For instance, if the timer
interval is 10 and the storage interval is 5, snapshots will be written at 10 second intervals.

• If the storage interval value is greater and is a multiple of the timer interval, the storage
interval value is used. For example, if the timer interval is 10 and the storage interval is 30,
snapshots will be written at 30 second intervals.

• If the storage interval value is greater and is not a multiple of the timer interval, the next
multiple of the timer interval value is used. For example, if the timer interval is 10 and the
storage interval is 15, snapshots will be written at 20 second intervals.

369

Chapter 11. ACMSMGR Commands

/STORAGE_LOCATION=file-name

This qualifier specifies an OpenVMS file specification to which collection data is to be
written. The format of file-name is a valid OpenVMS pathname or logical (such as DISK$1:
[SYSTEM.SNAPSHOTS] or SYS$SYSTEM:SNAPSHOTS.DAT).

If the /STORAGE_LOCATION qualifier is not specified, the current value remains unchanged. If
a directory is not provided as part of the specification, the file is written to the default directory of
the account under which the Remote Manager process is running.

Multiple collections can share a single snapshot file or be stored in separate files. For continuity,
VSI recommends that EXC, Server, and Task Group collection information be written to the same
snapshot file.

This value can be modified dynamically.

/STORAGE_BEGIN_TIME=time

This qualifier specifies a time after which the collection data should be written to the snapshot
file. The format of time is DD-MMM-YY:hh:mm:ss.nn. Partial dates and times (for example,
10-OCT or 09:00) are supported. The keyword NOW is also supported, which equates to the
OpenVMS zero date of 17-NOV-1858 00:00:00.00. With a value of NOW, collection data is
written to the snapshot file immediately, or as soon as the storage state is set to ENABLED.

If this qualifier is not specified, the current value remains unchanged. This value can be modified
dynamically.

/STORAGE_STATE=[ENABLED, DISABLED]

This qualifier specifies the state of the data snapshots. To fully enable data snapshots, both the
storage state and the collection state (/COLL_STATE) must be set to ENABLED. If this qualifier
is not specified, the current value remains unchanged. This value can be modified dynamically.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
When updating collection records, the combination of class, entity, and name must exactly match a
record in the Collection table.

You cannot modify Collection table entries for the ID and CONFIG classes.

ACMS processes read the Collection table during process startup to determine which classes to begin
collecting. Once the Remote Manager has been started, the ACMSMGR SHOW PROCESS command
can be used to determine the class states for the currently running ACMS processes.

370

Chapter 11. ACMSMGR Commands

In order for collection data to be written to a snapshot file, the following conditions must be met:

• A qualifying entity must be running (one with an entity type and name matching fields in the
Collection table).

• The collection state and storage state for that entity must be enabled.

• The current time must fall between the storage start time and storage end time.

If all these conditions are met, the Remote Manager opens the snapshot file for shared write
operations. The file remains open until the storage state is set to DISABLED or until the snapshot
period expires.

Changes to the Collection table are processed immediately, except for storage location and storage
end time values. These values are applied the next time snapshot data is written. The Remote Manager
signals the appropriate ACMS process as soon as it has reevaluated the Collection table following an
addition. Messages are sent to the ACMS process using the ACMS Trace Monitor.

When multiple collection records apply to a given process, the records are assigned weights according
to a precedence of name, then entity, then class. Within a column, wildcard entries are weighted
less than nonwildcard entries. The row with the highest weight that applies to a process is used. The
ACMSMGR SHOW COLLECTION command displays weights for each row in the table. See also
Section 5.1.1 for a discussion of the Collection table and of how weights are assigned.

In contrast to typical collections, weighting for data snapshot threads does not apply. Therefore,
it is possible for redundant collection data to be written to one or more snapshot files. If multiple
collection records compile overlapping data, and each has their storage state set to ENABLED, each
record writes data to the designated snapshot file.

Examples
$ ACMSMGR SET COLLECTION/ENT=EXC/CLASS=RUNTIME/NAME=VR_APPL/COLL_S=DISABLED

This command disables run-time data collection for the VR_APPL application.

11.18. ACMSMGR SET CP

ACMSMGR SET CP
ACMSMGR SET CP — Makes modifications to an ACMS system process. This command (and its
qualifiers) is only for use with systems running ACMS Version 4.4 or higher.

Format
ACMSMGR SET CP [/qualifiers]

Command Qualifier Default
/ASTLM=value None. See /process-quota.
/BIOLM=value None. See /process-quota.
/BYTLM=value None. See /process-quota.
/DIOLM=value None. See /process-quota.

371

Chapter 11. ACMSMGR Commands

/ENQLM=value None. See /process-quota.
/FILLM=value None. See /process-quota.
/LOG None.
/PGFLQUOTA=value None. See /process-quota.
/TQELM=value None. See /process-quota.
/WSDEFAULT=value None. See /process-quota.
/WSEXTENT=value None. See /process-quota.
/WSQUOTA=value None. See /process-quota.

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/process-quota=value

These qualifiers correspond to and update the related process quota fields in the system user
authorization (SYSUAF) record for the user specified by CP_ USERNAME. Updated quota
values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process quota fields, the /
ACTIVE qualifier cannot be specified. The /STORED qualifier causes the specified values to be
stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the OpenVMS System
Manager’s Manual. For more information about the individual quotas and their values, see
OpenVMS System Management Utilities Reference Manual: A–L or access the online help for
AUTHORIZE.

/LOG

This qualifier causes status information for the current SET transaction to be displayed to the
terminal (SYS$OUTPUT). This qualifier is useful when setting multiple values; a separate status
message is displayed for each value that is set.

Notes
This command provides the ability to remotely update either the running ACMS system or the current
ACMSGEN file quota values for subsequent CP processes.

Examples
$ ACMSMGR SET CP /ASTLM=1000 /LOG

This command modifies the ASTLM process quota and causes informational messages to be
displayed that indicate the status of the update. The new ASTLM value will be applied to subsequent
CP processes.

372

Chapter 11. ACMSMGR Commands

11.19. ACMSMGR SET EXC

ACMSMGR SET EXC
ACMSMGR SET EXC — Makes modifications to running ACMS applications.

Format
ACMSMGR SET EXC [/qualifiers]

Command Qualifier Default
/ACTIVE /ACTIVE
/APPLICATION=application-name None
/ASTLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/AUDIT_STATE=keyword None
/BIOLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/BYTLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/DIOLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/ENQLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/FILLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/LOG None
/MAX_SERVERS=value None
/MAX_TASKS=value None
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/PGFLQUOTA=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/SP_MON_INTERVAL=value None

373

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/STORED /ACTIVE
/TQELM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/TRANSACTION_TIMEOUT=value None
/USER=user-name Translation of logical ACMS$MGMT_USER
/WSDEFAULT=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/WSEXTENT=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/WSQUOTA=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/process-quota=value

These qualifiers correspond to and update the related process quota fields in the system user
authorization (SYSUAF) record for the user specified by SHOW EXC/ID. Updated quota values
apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process quota fields, the /
ACTIVE qualifier cannot be specified. The /STORED qualifier causes the specified values to be
stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the OpenVMS System
Manager’s Manual. For more information about the individual quotas and their values, see
OpenVMS System Management Utilities Reference Manual: A–L or access the online help for
AUTHORIZE.

/ACTIVE

This qualifier causes dynamic ACMSGEN field values to be updated from the current
ACMSGEN file. The /ACTIVE qualifier cannot be specified on the same command with the /
STORED qualifier. If neither is specified, the default is /ACTIVE for all values except for process
quotas (which default to /STORED). If /ACTIVE is specified, no updates are written to the file.

374

Chapter 11. ACMSMGR Commands

/APPLICATION=application-name

The name of the application to be modified. The command ACMSMGR SET EXC requires the /
APPL qualifier for any values that are stored values. If the /APPL qualifier is missing, the error
NOAPPLQUAL will be returned.

A different error, NOSUCHAPPL, will be returned if the application you are attempting to modify
is not active.

/AUDIT_STATE=[ENABLED, DISABLED]

This qualifier is equivalent to the ACMSOPER command ACMS/MODIFY APPLICATION /
APPL=AUDIT (or /APPL=NOAUDIT if the value is DISABLED).

/LOG

This qualifier causes status information for the current SET transaction to be displayed to the
terminal (SYS$OUTPUT). This qualifier is useful when setting multiple values; a separate status
message is displayed for each value that is set.

/MAX_SERVERS=value

This qualifier updates the MAX_SERVERS limit in the running application. Updates are lost
when the application is restarted.

/MAX_TASKS=value

This qualifier updates the MAX_TASKS limit in the running application. Updates are lost when
the application is restarted.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/SP_MON_INTERVAL=value

This qualifier updates the SP_MON_INTERVAL field in the running application. Updates are lost
when the application is restarted.

/STORED

This qualifier causes ACMSGEN field updates to be written and saved in the current ACMSGEN
file. The /STORED qualifier cannot be specified on the same command as the /ACTIVE qualifier.
If neither is specified, the default is /ACTIVE for all values except for process quotas (which
default to /STORED).

/TRANSACTION_TIME=value

This qualifier updates the TRANSACTION_TIMEOUT default value in the running application.
Updates are lost when the application is restarted.

375

Chapter 11. ACMSMGR Commands

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command is equivalent to the ACMSOPER command ACMS/MOD APPLICATION. Any
changes made to the running system are lost when the application is restarted.

Examples
$ ACMSMGR SET EXC/APPL=VR_APPL/SP_MON_INTERVAL=10/MAX_TASKS=50

This command modifies the running application VR_APPL.

11.20. ACMSMGR SET INTERFACE

ACMSMGR SET INTERFACE
ACMSMGR SET INTERFACE — Allows Remote Manager interfaces to be started or stopped.

Format
ACMSMGR SET INTERFACE [/qualifiers]

Command Qualifier Default
/INTERFACE=[RPC,SNMP] Qualifier is required.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/STATE=[ENABLED,DISABLED] DISABLED
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_WRITE

Parameters
None.

Qualifiers
/INTERFACE=[RPC, SNMP]

This required qualifier specifies which interface to modify. Only SNMP is supported.

376

Chapter 11. ACMSMGR Commands

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/STATE=[ENABLED, DISABLED]

This qualifier specifies the operation to perform. If the value is ENABLED, the interface will be
started (if it is not already running). If the value is DISABLED, the interface will be stopped (if it
is not already stopped).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command allows interfaces to be stopped or started. However, an interface cannot disable itself.
Since the ACMSMGR utility uses the RPC interface, it cannot be used to disable the RPC interface.
To disable the RPC interface, either use the ACMSCFG utility and restart the Remote Manager, or use
the SNMP interface.

The SNMP interface can be both enabled and disabled using this command. It may take several
seconds for this command to complete if the SNMP interface is in a non-interruptible state when the
command is issued.

Examples
$ ACMSMGR SET INTERFACE/INTERFACE=SNMP/STATE=DISABLED

ACMS Remote Management Option -- Command line utility
Call to modify interface on server sparks was executed
%ACMSMGMT-S-SUCCESS, Operation completed

This command stops the SNMP interface on the node specified by the logical name ACMS
$MGMT_SERVER_NODE. Authorization is either performed for the user specified by the logical
ACMS$MGMT_USER, or is based on an ACMS proxy on the target node if the logical is not
defined.

377

Chapter 11. ACMSMGR Commands

11.21. ACMSMGR SET PARAMETER

ACMSMGR SET PARAMETER
ACMSMGR SET PARAMETER — Allows Remote Manager parameters to be modified.

Format
ACMSMGR SET PARAMETER [/qualifiers]

Command Qualifier Default
/DCL_AUDIT_LEVEL=value See /parameter.
/DCL_MGR_PRIORITY=value See /parameter.
/DCL_STACKSIZE=value See /parameter.
/ERROR_INTERVAL=value See /parameter.

Only for use on systems running ACMS Version
4.4 or higher.

/EVENT_LOG_PRIORITY=value See /parameter.
/LOG_STACKSIZE=value See /parameter.
/LOGIN_CREDS_LIFETIME=value See /parameter.
/MAX_LOGINS=value See /parameter.
/MAX_RPC_RETURN_RECS=value See /parameter.
/MGR_AUDIT_LEVEL=value See /parameter.
/MSG_PROC_AUDIT_LEVEL=value See /parameter.
/MSG_PROC_PRIORITY=value See /parameter.
/MSG_PROC_STACKSIZE=value See /parameter.
/MSS_COLL_INTERVAL=value See /parameter.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/PROC_MON_AUDIT_LEVEL=value See /parameter.
/PROC_MON_INTERVAL=value See /parameter.
/PROC_MON_PRIORITY=value See /parameter.
/PROC_MON_STACKSIZE=value See /parameter.
/PROXY_CREDS_LIFETIME=value See /parameter.
/RPC_AUDIT_LEVEL=value See /parameter.
/RPC_PRIORITY=value See /parameter.
/RPC_STACKSIZE=value See /parameter.
/SECURITY_AUDIT_LEVEL=value See /parameter.
/SNAP_AUDIT_LEVEL=value See /parameter.

Only for use on systems running ACMS Version
4.4 or higher.

378

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/SNAP_PRIORITY=value See /parameter.

Only for use on systems running ACMS Version
4.4 or higher.

/SNAP_STACKSIZE=value See /parameter.

Only for use on systems running ACMS Version
4.4 or higher.

/SNMP_AGENT_TIME_OUT=value See /parameter.
/SNMP_ARE_YOU_THERE=value See /parameter.
/SNMP_AUDIT_LEVEL=value See /parameter.
/SNMP_PRIORITY=value See /parameter.
/SNMP_SEL_TIME_OUT=value See /parameter.
/SNMP_STACKSIZE=value See /parameter.
/TCP_ENABLED See /parameter.

Only for use on systems running ACMS Version
4.4 or higher.

/TIMER_AUDIT_LEVEL=value See /parameter.
/TIMER_INTERVAL=value See /parameter.
/TIMER_PRIORITY=value See /parameter.
/TIMER_STACKSIZE=value See /parameter.
/TOTAL_ENTITY_SLOTS=value See /parameter.
/TRACE_MSG_WAIT_TIME=value See /parameter.
/TRACE_START_WAIT_TIME=value See /parameter.
/TRAP_AUDIT_LEVEL=value See /parameter.
/TRAP_PRIORITY=value See /parameter.
/TRAP_STACKSIZE=value See /parameter.
/UDP_ENABLED See /parameter.

Only for use on systems running ACMS Version
4.4 or higher.

/USER=user-name Translation of logical ACMS$MGMT_USER
/VMS_COLL_INTERVAL=value See /parameter.

Only for use on systems running ACMS Version
4.4 or higher.

/WKSP_COLL_INTERVAL=value See /parameter.

Privileges Required

ACMS$MGMT_WRITE

379

Chapter 11. ACMSMGR Commands

Parameters
None.

Qualifiers
/parameter=value

All qualifiers except NODE and USER correspond directly to fields in the Parameter table. See
Section 9.10.1 for a description of each field. For a listing of the current default, minimum, and
maximum values, use the SHOW PARAMETER command.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
Some parameter changes take effect immediately; others take effect only when the Remote
Manager is restarted, and only if they are written to the ACMSCFG file (using the ACMSCFG SET
PARAMETER command). Table 9–9 shows which parameters are dynamic and which are not.

For parameters that are not dynamic, you must restart the appropriate facility for the change to take
effect. For example, to modify the SNMP_SELECT_TIME_ OUT parameter, you must stop and
restart the SNMP interface.

The ACMS Remote Manager allows an authorized user to make changes to the VMS parameter file
(via SYSGEN), ACMS parameter file (via ACMSGEN), user quotas (via AUTHORIZE), ACMS
Remote Manager parameters (via ACMSMGR SET PARAM) and to a running ACMS system (via
ACMSOPR commands).

Some values are checked for minimums, like negative numbers and zero. ACMS Remote Manager
parameters are checked for limits but Authorize, ACMSGEN and SYSGEN values are not. Use the

380

Chapter 11. ACMSMGR Commands

same caution with the ACMS Remote Manager as you would with SYSGEN and AUTHORIZE and
verify any changes you make.

Examples
$ ACMSMGR SET PARAMETER /MGR_AUDIT_LEVEL=E /NODE=SPARKS /USER=USERNAME

ACMS Remote Management Option -- Command line utility
Call to modify parameters on server sparks was executed
%ACMSMGMT-S-SUCCESS, Operation completed

This command modifies the dynamic parameter MGR_AUDIT_LEVEL on node SPARKS and
specifies that authorization be performed for user USERNAME.

11.22. ACMSMGR SET QTI

ACMSMGR SET QTI
ACMSMGR SET QTI — Makes modifications related to the Queued Task Initiator (QTI).

Format
ACMSMGR SET QTI [/qualifiers]

Command Qualifier Default
/ACTIVE /STORED
/ASTLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/BIOLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/BYTLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/DIOLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/ENQLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/FILLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/LOG None

381

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/PGFLQUOTA=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/POLLING_TIMER=value None
/QTI_PRIORITY=value None
/QTI_USERNAME=user-name None
/RETRY_TIMER None
/STORED /STORED
/SUB_TIMEOUT None
/TQELM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/USER=user-name Translation of logical ACMS$MGMT_USER
/WSDEFAULT=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/WSEXTENT=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/WSQUOTA=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/process-quota=value

These qualifiers correspond to and update the related process quota fields in the system user
authorization (SYSUAF) record for the user specified by QTI_ USERNAME. Updated quota
values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process quota fields, the /
ACTIVE qualifier cannot be specified. The /STORED qualifier causes the specified values to be
stored in the current SYSUAF.DAT file.

382

Chapter 11. ACMSMGR Commands

For information on using AUTHORIZE to modify process quotas, see the OpenVMS System
Manager’s Manual. For more information about the individual quotas and their values, see
OpenVMS System Management Utilities Reference Manual: A–L or access the online help for
AUTHORIZE.

/ACTIVE

This qualifier causes dynamic ACMSGEN field values to be updated from the current
ACMSGEN file. The /ACTIVE qualifier cannot be specified on the same command with the /
STORED qualifier. If neither is specified, the default is /STORED. If /ACTIVE is specified, no
updates are written to the file.

/LOG

This qualifier causes status information for the current SET transaction to be displayed to the
terminal (SYS$OUTPUT). This qualifier is useful when setting multiple values; a separate status
message is displayed for each value that is set.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/POLLING_TIMER=node-name

This qualifier corresponds to and updates the ACMSGEN field QTI_POLLING_ TIMER.
Because this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be
modified for the running system. The /STORED qualifier causes the specified value to be stored
in the current ACMSGEN file.

/QTI_PRIORITY=value

This qualifier corresponds to and updates the ACMSGEN field QTI_PRIORITY. Because this is
a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/QTI_USERNAME=user-name

This qualifier corresponds to and updates the ACMSGEN field QTI_USERNAME. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/RETRY_TIMER=value

This qualifier corresponds to and updates the ACMSGEN field QTI_RETRY_ TIMER. Because
this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be
modified for the running system. The /STORED qualifier causes the specified value to be stored
in the current ACMSGEN file.

383

Chapter 11. ACMSMGR Commands

/STORED

This qualifier causes ACMSGEN field updates to be written and saved in the current ACMSGEN
file. The /STORED qualifier cannot be specified on the same command as the /ACTIVE qualifier.
If neither is specified, the default is /STORED.

/SUB_TIMEOUT=value

This qualifier corresponds to and updates the ACMSGEN field QTI_SUB_ TIMEOUT. Because
this is a dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be
modified for the running system. The /STORED qualifier causes the specified value to be stored
in the current ACMSGEN file.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command allows you to remotely update either the running ACMS system or the current
ACMSGEN file.

The /ACTIVE and /STORED qualifiers control how updates are posted to ACMSGEN. The /ACTIVE
and /STORED qualifiers have no effect on the /AUDIT_ STATE qualifier, which is processed
independently of any ACMSGEN updates.

Examples

• $ ACMSMGR SET QTI /NODE=SPARKS/SUB_TIMEOUT=5000/ACTIVE

This command modifies the ACMSGEN field qti_sub_timeout on node SPARKS and updates the
active system only. The change is not saved in the ACMSGEN file.

• $ ACMSMGR SET QTI /NODE=SPARKS/SUB_TIMEOUT=5000/STORED

This command modifies the ACMSGEN field qti_sub_timeout on node SPARKS and saves the
change in the ACMSGEN file. The active system is not updated.

11.23. ACMSMGR SET SERVER

ACMSMGR SET SERVER
ACMSMGR SET SERVER — Makes modifications to servers running in ACMS applications.

384

Chapter 11. ACMSMGR Commands

Format
ACMSMGR SET SERVER [/qualifiers]

Command Qualifier Default
/APPLICATION=[*,application-name] * (all)
/CREATION_DELAY=value None
/CREATION_INTERVAL=value None
/DELETION_DELAY=value None
/DELETION_INTERVAL=value None
/LOG None
/MAX_INSTANCE=value None
/MIN_INSTANCE=value None
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/SERVER=[*,server_name] * (all)
/SP_DUMP_FLAG=
####[ENABLED,DISABLED] None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/APPLICATION=application-name

The name of the application to be modified. If this qualifier is not specified, modifications are
applied to all applications.

/CREATION_DELAY=value

This qualifier updates the CREATION_DELAY for the specified server in the running
application. Updates are lost when the application is restarted.

/CREATION_INTERVAL=value

This qualifier updates the CREATION_INTERVAL for the specified server in the running
application. Updates are lost when the application is restarted.

/DELETION_DELAY=value

This qualifier updates the DELETION_DELAY for the specified server in the running
application. Updates are lost when the application is restarted.

385

Chapter 11. ACMSMGR Commands

/DELETION_INTERVAL=value

This qualifier updates the DELETION_INTERVAL for the specified server in the running
application. Updates are lost when the application is restarted.

/LOG

This qualifier causes status information for the current SET transaction to be displayed to the
terminal (SYS$OUTPUT). This qualifier is useful when setting multiple values; a separate status
message is displayed for each value that is set.

/MAX_INSTANCE=value

This qualifier updates the MAX_INSTANCE limit for the specified server in the running
application. Updates are lost when the application is restarted.

/MIN_INSTANCE=value

This qualifier updates the MIN_INSTANCE limit for the specified server in the running
application. Updates are lost when the application is restarted.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/SERVER=server-names

This qualifier specifies the name of the server to be modified. If this qualifier is not specified, all
servers in the application are modified.

/SP_DUMP_FLAG=value

This qualifier updates the SP_DUMP_FLAG for the specified server in the running application.
Updates are lost when the application is restarted.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

386

Chapter 11. ACMSMGR Commands

Notes
This command is equivalent to the ACMSOPER command ACMS/MOD APPLICATION/SERVER.
Any changes made to the running system are lost when the application is restarted.

Examples
$ ACMSMGR SET SERVER/APPL=VR_APPL/SERVER=VR_READ_SERVER/
SP_DUMP_FLAG=ENABLED

This command modifies the SP_DUMP_FLAG field for the server VR_READ_ SERVER running in
the VR_APPL application.

11.24. ACMSMGR SET TRAP

ACMSMGR SET TRAP
ACMSMGR SET TRAP — Updates records in the Trap table.

Format
ACMSMGR SET TRAP [/qualifiers]

Command Qualifier Default
/ENTITY=[*,entity-name] Qualifier is required.
/NAME=[*,entity-name] * (all)
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/PARAMETER=keyword EXISTS
/SEVERITY=[I,W,E,F] E
/TRAP_MIN=value -1
/TRAP_MAX=value -1
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/ENTITY=[*, ACC, CP, EXC, MGR, QTI, TSC]

This required qualifier specifies the entity or entities for which a trap should be set.

/NAME=[*, entity-name]

This qualifier specifies particular instances of an entity. Wildcards (*) are allowed in names.

387

Chapter 11. ACMSMGR Commands

For the MGR entity, this field should always be set to asterisk (*).

For ACC, CP, QTI, and TSC entity types, the entity name is the process name. For the EXC entity
type, the entity name is the name of the application (for example, VR_APPL).

The default is all (*).

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/PARAMETER=[EVENT_SEVERITY, EXISTS]

This parameter specifies the field that should be monitored.

• EVENT_SEVERITY

Internal Remote Manager events are to be monitored. The Remote Manager logs internal
events in the Remote Manager log. (See Section 11.35 and Section 4.7 for discussions of the
Remote Manager log.) Traps can be generated based on the severity levels of these events.

• EXISTS

Process existence is to be monitored. Traps are generated if the associated entity type and
name either starts or stops.

/SEVERITY=[I, W, E, F]

This qualifier specifies the severity to be associated with the trap. Severity codes are embedded in
the trap message and must be parsed by the trap receiver. Severities are informational (I), warning
(W), error (E), or fatal (F).

/TRAP_MIN=value

This qualifier specifies the minimum allowable value for the parameter being monitored. A trap
is generated if the parameter value is less than the minimum. See Section 9.14.2 for a list of valid
values.

/TRAP_MAX=value

This qualifier specifies the maximum allowable value for the parameter being monitored. A trap
is generated if the parameter value is greater than the maximum. See Section 9.14.2 for a list of
valid values.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

388

Chapter 11. ACMSMGR Commands

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
When updating trap records, the combination of entity, name, and parameter must exactly match a
record in the Trap table.

Changes become active as soon as they are added to the Trap table.

See Section 9.14.2 for a discussion about setting appropriate trap minimums and maximums. See
Section 9.14.3 for a description of the trap message generated.

Examples
$ ACMSMGR SET TRAP /ENT=QTI/PARAM=EXISTS/MAX=0

This command causes an SNMP trap to be generated whenever the QTI process is started if the
SNMP interface is running.

11.25. ACMSMGR SET TSC

ACMSMGR SET TSC
ACMSMGR SET TSC — Makes modifications to the ACMS terminal subsystem.

Format
ACMSMGR SET TSC [/qualifiers]

Command Qualifier Default
/ACTIVE /STORED
/ASTLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/BIOLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/BYTLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/CP_PRIORITY=value None
/CP_SLOTS=value None

389

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/CP_USERNAME=user-name None
/DIOLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/ENQLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/FILLM=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/LOG None
/MAX_LOGINS=value None
/MAX_TTS_CP=value None
/MIN_CPIS=value None
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/PERM_CPS=value None
/PGFLQUOTA=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/STORED /STORED
/TQELM=value None. See /process-quota. Only for use on

systems running ACMS Version 4.4 or higher.
/TSC_PRIORITY=value None
/TSC_USERNAME=user-name None
/USER=user-name Translation of logical ACMS$MGMT_USER
/WSDEFAULT=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/WSEXTENT=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

/WSQUOTA=value None. See /process-quota.

Only for use on systems running ACMS Version
4.4 or higher.

Privileges Required

ACMS$MGMT_OPER

390

Chapter 11. ACMSMGR Commands

Parameters
None.

Qualifiers
/process-quota=value

These qualifiers correspond to and update the related process quota fields in the system user
authorization (SYSUAF) record for the user specified by /TSC_ USERNAME. Updated quota
values apply to the next process that is created.

Because these qualifiers control the nondynamic values for the related process quota fields, the /
ACTIVE qualifier cannot be specified. The /STORED qualifier is the default and causes the
specified values to be stored in the current SYSUAF.DAT file.

For information on using AUTHORIZE to modify process quotas, see the OpenVMS System
Manager’s Manual. For more information about the individual quotas and their values, see
OpenVMS System Management Utilities Reference Manual: A–L or access the online help for
AUTHORIZE.

/ACTIVE

This qualifier causes dynamic ACMSGEN field values to be updated from the current
ACMSGEN file. The /ACTIVE qualifier cannot be specified on the same command with the /
STORED qualifier. If neither is specified, the default is /STORED. If /ACTIVE is specified, no
updates are written to the file.

/CP_PRIORITY=value

This qualifier corresponds to and updates the ACMSGEN field CP_PRIORITY. Because this is
a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/CP_SLOTS=value

This qualifier corresponds to and updates the ACMSGEN field CP_SLOTS. Because this is a
nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/CP_USERNAME=user-name

This qualifier corresponds to and updates the ACMSGEN field CP_USERNAME. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/LOG

This qualifier causes status information for the current SET transaction to be displayed to the
terminal (SYS$OUTPUT). This qualifier is useful when setting multiple values; a separate status
message is displayed for each value that is set.

/MAX_LOGINS=value

This qualifier corresponds to and updates the ACMSGEN field MSS_MAX_ LOGINS. As this is
a dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be modified for

391

Chapter 11. ACMSMGR Commands

the running system. The /STORED qualifier causes the value specified to be stored in the current
ACMSGEN file.

/MAX_TTS_CP=value

This qualifier corresponds to and updates the ACMSGEN field MAX_TTS_CP. Because this is
a dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be modified for
the running system. The /STORED qualifier causes the specified value to be stored in the current
ACMSGEN file.

/MIN_CPIS=value

This qualifier corresponds to and updates the ACMSGEN field MIN_CPIS. Because this is a
dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be modified for
the running system. The /STORED qualifier causes the specified value to be stored in the current
ACMSGEN file.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/PERM_CPS=value

This qualifier corresponds to and updates the ACMSGEN field PERM_CPS. Because this is a
dynamic ACMSGEN field, the /ACTIVE qualifier causes the current value to be modified for
the running system. The /STORED qualifier causes the specified value to be stored in the current
ACMSGEN file.

/STORED

This qualifier causes ACMSGEN field updates to be written and saved in the current ACMSGEN
file. The /STORED qualifier cannot be specified on the same command as the /ACTIVE qualifier.
If neither is specified, the default is /STORED.

/TSC_PRIORITY=value

This qualifier corresponds to and updates the ACMSGEN field TSC_PRIORITY. Because this is
a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

/TSC_USERNAME=user-name

This qualifier corresponds to and updates the ACMSGEN field TSC_USERNAME. Because this
is a nondynamic ACMSGEN field, the /ACTIVE qualifier cannot be specified with this qualifier.
The /STORED qualifier causes the specified value to be stored in the current ACMSGEN file.

392

Chapter 11. ACMSMGR Commands

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command provides the ability to remotely update either the running ACMS system or the current
ACMSGEN file.

The /ACTIVE and /STORED qualifiers control how updates are posted to ACMSGEN.

Examples
• $ ACMSMGR SET TSC /NODE=SPARKS/MAX_LOGINS=500/ACTIVE

This command modifies the ACMSGEN field max_logins on node SPARKS and updates the
active system only. The change is not saved in the ACMSGEN file.

• $ ACMSMGR SET TSC /NODE=SPARKS/MAX_LOGINS=500/STORED

This command modifies the ACMSGEN field max_logins on node SPARKS and saves the change
in the ACMSGEN file. The active system is not updated.

11.26. ACMSMGR SHOW ACC

ACMSMGR SHOW ACC
ACMSMGR SHOW ACC — Displays information about an ACC on one or more remote nodes.

Format
ACMSMGR SHOW ACC [/qualifiers]

Command Qualifier Default
/[BRIEF,FULL] /FULL if the CLASS=* (all). /BRIEF, otherwise.
/CLASS=keyword *
/ACTIVE See Notes.
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ID, /

POOL,
or /RUNTIME) is specified. Otherwise, /BRIEF.

/[CONFIG,ID,POOL,RUNTIME] * (all)
/INTERVAL=interval Command is executed once.

393

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/ACTIVE

When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN field values to
be displayed. /ACTIVE is effective only when used with the /CONFIG qualifier. If /BRIEF is not
specified, or if /FULL is specified, this qualifier has no effect (both active and stored values are
displayed).

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME) is specified, this qualifier
is ignored and all details are displayed (equivalent to /FULL). Note that OpenVMS process quota
and SYSGEN parameter information is only shown when /FULL is specified.

/[CONFIG,ERROR,ID,POOL,RUNTIME]

This qualifier causes data for only the specified class to be displayed. The default is to display
information for all classes.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

394

Chapter 11. ACMSMGR Commands

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/STORED

When specified with the /BRIEF qualifier, this qualifier causes field values from the ACMSGEN
file (not those active in memory) to be displayed. The /STORED qualifier is effective only
when used with the /CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command displays information about the ACC on the target node. The /BRIEF and /FULL
qualifiers control the format of information to be displayed. To display OpenVMS process quota and
SYSGEN parameter information, use the /FULL qualifier.

See Section 9.2 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class to which the data
belongs has been enabled for the ACC. The Config Class field indicates whether or not information is
being collected for that class.

Examples

1. $ ACMSMGR SHOW ACC /CONFIG /NODE=GOCROW,VLCROW
ACMS Remote Management – Command line utility ACMS V4.3-0 ACC Table
 Display Time: 25-AUG-1999 13:59:06.99
 A Collect Audit Max Mss Mss Proc Mss Mss WS
 TWS
 Node S State State Appl Max Obj Pool Poolsize Maxbuf
 Poolsize Poolsize
 ------ - ------- ------- ---- ------- -------- -------- ------
 -------- --------
 gocrow A enabled enabled 10 1006 512 4096 1544 256
 1440
 vlcrow A enabled enabled 10 1006 512 2048 1544 256
 1440

This command displays ACC configuration information from nodes GOCROW and VLCROW.
Authorization is performed for the user specified by the logical name ACMS$MGMT_USER,

395

Chapter 11. ACMSMGR Commands

or by proxy if the logical is not defined. Only summary configuration information is displayed
because neither the /BRIEF nor /FULL qualifier was supplied.

2. $ ACMSMGR SHOW ACC /NODE=VLCROW /USER=JONES
ACMS Remote Management – Command line utility
ACMS V4.3-0 ACC Table Display Time: 25-AUG-1999
 13:59:04.38
 ==
 Node IDENTIFICATION

 vlcrow Id Class Collection State enabled
 Version V4.3-0
 Process Name ACMS01ACC001000
 PID 37C0024F
 User Name LT$ACC_V31
 Start Time 24-AUG-1999 14:49:15.76
 End Time (null)
 Node CONFIGURATION Active Stored
 -------- --------------------------------- ---------------

 vlcrow Config Class Collection State enabled
 System Auditing State enabled
 ACC Running State started
 ACC Username LT$ACC_V31 LT$ACC_V31
 ACC Base Priority 4 4
 Max Applications 10 10
 MSS Max Objects 1006 1006
 MSS Maxbuf (bytes) 1544 1544
 MSS Poolsize (pagelets) 2048 2048
 MSS Process Pool (pagelets) 512 512
 MSS Net Retry Timer (D) (seconds) 10 10
 Username Default (D) LTU_ACMSDEF LTU_ACMSDEF
 Node Name (ACMSGEN) (DECnet node) VLCROW VLCROW
 WS Poolsize (pagelets) 256 256
 WSC Poolsize (pagelets) 128 128
 TWS Poolsize (pagelets) 1440 1440
 TWSC Poolsize (pagelets) 169 169
 Node RUNTIME

 vlcrow Runtime Class Collection State enabled
 DECnet Object started
 Gauges Current Max Limit Max
 Time
 --------------------------------- -------- ------ -------

 Users: Total 4 85
 (null)
 Users: Local 4 20
 (null)
 Users: Remote 0 0
 (null)
 Applications 1 1 20 24-
AUG-1999 14:49:49.19

 Number of application starts 6

396

Chapter 11. ACMSMGR Commands

 Process Quotas Current Max Limit
 Max Time
 --------------------------- ----------- ---------- -------

 Working Set Size 6544 6544 300000
 18-APR-2001 14:49:15.76
 AST Limit 5 (0%) 5 (0%) 500
 18-APR-2001 14:49:15.76
 Byte Limit 1792 (0%) 3648 (0%) 1775409
 18-APR-2001 14:49:15.76
 Direct I/O Limit 0 (0%) 1 (0%) 15000
 18-APR-2001 14:49:15.76
 Buffered I/O Limit 2 (0%) 3 (0%) 10000
 18-APR-2001 14:49:15.76
 Enqueue Limit 2 (0%) 2 (0%) 2000
 18-APR-2001 14:49:15.76
 File Limit 3 (0%) 3 (0%) 1001
 18-APR-2001 14:49:15.76
 Page File Quota 7056 (1%) 7056 (1%) 500000
 18-APR-2001 14:49:15.76
 Timer Queue Limit 4 (0%) 4 (0%) 500
 18-APR-2001 14:49:15.76
 Channel Count 29 (11%) 31 (12%) 256
 18-APR-2001 14:49:15.76
 Node POOL

 --
 vlcrow Pool Class Collection State enabled
 Objects Current Max Time
 --------------------------------- --------- ------

 MSS Objects 252 432 25-AUG-1999
 13:59:03.86
 Process Pool Pct Time
 --- ------

 Pool Size 262144
 Current Free (bytes) 255312 (97%)
 Minimum Free (bytes) 255056 (97%) 24-AUG-1999
 15:00:17.30
 Largest Current Free Block (bytes) 65536
 Minimum Largest Free Block (bytes) 65536 25-AUG-1999
 13:59:03.25
 Allocation Failures 0
 Garbage Collections 0
 Shared Pool Pct Time
 --- ------

 Pool Size 1048576
 Current Free (bytes) 973176 (92%)
 Minimum Free (bytes) 948480 (90%) 24-AUG-1999
 16:s22:58.01
 Largest Current Free Block (bytes) 65536
 Minimum Largest Free Block (bytes) 65536 25-AUG-1999
 13:59:03.25
 Allocation Failures 0

397

Chapter 11. ACMSMGR Commands

 Garbage Collections 0

This command displays all ACC management information from node VLCROW. Authorization is
performed for user JONES. Since no class qualifiers (/ID, /CONFIG, /RUNTIME, /POOL) were
specified, information is returned for all classes by default.

11.27. ACMSMGR SHOW AGENT
ACMSMGR SHOW AGENT
ACMSMGR SHOW AGENT — Displays Collection table data for one or more Agents.

Format
ACMSMGR SHOW AGENT [/qualifiers]

Command Qualifier Default
/ACTIVE active (CONFIG class brief display)
/ALL Inactive data not displayed
/BRIEF default when a class is specified
/[CONFIG,ERROR,ID,POOL,RUNTIME] all are shown when no class is specified
/FULL full when no class is specified
/INTERVAL=value none
/OUT=[filespec,logical_name] sys$output
/PROCESS_NAME=proc_name *
/STORED active
/NODE=value none
/USER=value none

Parameters
None.

Qualifiers
/ACTIVE

When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN field values to
be displayed. /ACTIVE is effective only when used with the /CONFIG qualifier. If /BRIEF is not
specified, or if /FULL is specified, this qualifier has no effect (both active and stored values are
displayed).

/ALL

This qualifier displays all available application data, even data for applications that may no longer
be running. When applications are stopped, the table row they were occupying is marked for
reuse. If the row has not been reused, the data remains available for display. This qualifier allows
that data to be displayed. Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only data for currently
running processes is displayed.

398

Chapter 11. ACMSMGR Commands

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME) is specified, this qualifier
is ignored and all details are displayed (equivalent to /FULL). Available OpenVMS process quota
and SYSGEN parameter information is only displayed when /FULL is specified.

/[CONFIG,ERROR,ID,POOL,RUNTIME]

This qualifier causes data for only the specified class to be displayed. If this qualifier is omitted,
the default is to display information for all classes.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/PROCESS_NAME=process-name

This qualifier causes data for only the specified process to be displayed. If this qualifier is
omitted, the default is to display information for all Agent processes.

/STORED

When specified with the /BRIEF qualifier, this qualifier causes field values from the ACMSGEN
file (not those active in memory) to be displayed. The /STORED qualifier is effective only
when used with the /CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

399

Chapter 11. ACMSMGR Commands

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Examples
$ ACMSMGR SHOW AGENT

ACMS Remote Management -- Command line utility
ACMS RM Client V5.0 Agent Table Display Time: 9-FEB-2005 10:00:15.32
 ===
 Node IDENTIFICATION

 --
OHMARY ID Class Collection State enabled
 Process Name _FTA37:
 PID 00014D60
 User Name HALL
 Start Time 9-FEB-2005 09:58:47.12
 End Time (null)

 Node CONFIGURATION Active Stored
 ------------ ---------------------------------- --------------

OHMARY Config Class Collection State enabled
 Working Set Default 65536 80000
 Working Set Extent 262144 90000
 Working Set Quota 65536 65535
 AST Limit 1024 1024
 Byte Limit 347184 350000
 Direct I/O Limit 500 500
 Buffered I/O Limit 500 500
 Enqueue Limit 16776959 32767
 File Limit 5000 5000
 Page File Quota 1000000 1000000
 Timer Queue Limit 150 150

 Node RUNTIME

 --
OHMARY Runtime Class Collection State enabled
 Agent Running State started
 DECnet Object stopped

 Terminals/Tasks/User Defined Current Max Max Time
-------------------------------------- -------- --------- -----------
 Attached Terminals 0 0 (null)
 Active Task Calls 0 1 9-FEB-2005
 09:58:50.6
 Total Tasks Executed 258
 User1 Time (null)
 User2 Time (null)
 User3 Time (null)
 User1 Data 0
 User2 Data 0
 User3 Data 0
 User4 Data 0
 User5 Data 0
 User6 Data 0

400

Chapter 11. ACMSMGR Commands

 TDMS Current Max Max Time
 ---------------------------------- -------- --------- -----------
 Active TDMS 0 0 (null)
 Active TDMS Menu Requests 0 0 (null)
 Active TDMS Read Messages 0 0 (null)
 Active TDMS Write Messages 0 0 (null)
 Active TDMS Cancels 0 0 (null)
 Total TDMS Requests 0
 Total TDMS Menu Requests 0
 Total TDMS Read Messages 0
 Total TDMS Write Messages 0
 Total TDMS Cancels 0

 DECforms Current Max Max Time
 ---------------------------------- -------- --------- -----------
 Active DECforms 0 0 (null)
 Active DECforms Menu Requests 0 0 (null)
 Active DECforms Enables 0 0 (null)
 Active DECforms Disables 0 0 (null)
 Active DECforms Cancel 0 0 (null)
 Active DECforms Send Requests 0 0 (null)
 Active DECforms Receive Requests 0 0 (null)
 Active DECforms Transceive Reqsts 0 0 (null)
 Total DECforms Requests 0
 Total DECforms Menu Requests 0
 Total DECforms Cancel Requests 0
 Total DECforms Send Requests 0
 Total DECforms Receive Requests 0
 Total DECforms Transceive Reqsts 0
 Total DECforms Enables 0
 Total DECforms Disables 0

 Process Quotas Current Max Limit Max Time
 ------------------ ------- --------- ------

 Working Set Size 65536 65536 262144 9-FEB-2005
 10:00:07.13
 AST Limit 11 (1%) 11(1%) 1024 9-FEB-2005
 10:00:07.13
 Byte Limit 9024(2%) 9024(2%) 347184 9-FEB-2005
 10:00:07.13
 Direct I/O Limit 0 (0%) 0(0%) 500 9-FEB-2005
 10:00:07.13
 Buffered I/O Limit 2 (0%) 2(0%) 500 9-FEB-2005
 10:00:07.13
 Enqueue Limit 1 (0%) 1(0%) 16776959 9-FEB-2005
 10:00:07.13
 File Limit 5 (0%) 5(0%) 5000 9-FEB-2005
 10:00:07.13
 Page File Quota 25904(2%) 25904(2%) 1000000 9-FEB-2005
 10:00:07.13
 Timer Queue Limit 5 (3%) 5 (3%) 150 9-FEB-2005
 10:00:07.13
 Channel Count 29 29 9-FEB-2005
 10:00:07.13

 Node POOL

401

Chapter 11. ACMSMGR Commands

 --
 OHMARY Pool Class Collection State enabled
 MSS Process Pool Pct Time
 ----------------------------------- ------- -----------
 Pool Size (bytes) 7680000
 Current Free (bytes) 7669200 (99%)
 Minimum Free (bytes) 7669200 (99%) 9-FEB-2005
 10:00:07.13
 Largest Current Free Block (bytes) 65536
 Minimum Largest Free Block (bytes) 65536 9-FEB-2005
 10:00:07.13
 Allocation Failures 0
 Garbage Collections 0

 Node ERROR
 -------- ---
 OHMARY Error Class Collection State enabled
 Error Count 0
 Last Error Message 0
 Time of Last Error (null)

This command displays the contents of the Collection table for all Agents that are running.

11.28. ACMSMGR SHOW COLLECTION

ACMSMGR SHOW COLLECTION
ACMSMGR SHOW COLLECTION — Displays Collection table data from one or more remote
nodes.

Format

ACMSMGR SHOW COLLECTION [/qualifiers]

Command Qualifier Default
/[BRIEF,FULL] /BRIEF
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

402

Chapter 11. ACMSMGR Commands

Qualifiers
/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.

Note that storage start and end times for data snapshots are only visible when /FULL is provided.
When not specified, the resulting summary display may contain truncated values for some of the
longer fields (such as, entity name and storage location).

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command displays data-collection configuration information on the target node.

See Section 9.6 for a discussion of each field displayed. See Section 5.1 for a discussion of
collections.

Examples
$ ACMSMGR SHOW COLL/NODE=VLCROW

403

Chapter 11. ACMSMGR Commands

ACMS Remote Management – Command line utility
ACMS V5.0 Entity/Collection table Display Time: 18-APR-2001
 13:59:11.31

 Entity Entity Collect Collect Storage
 Storage
Node Wt Type Name Class State Storage Location State
 Interval
-------- -- -------- ----- ------- -------- ------------------ --------
 ––––––––
vlcrow 2 * * id enabled acms$mgmt_snapshot enabled
 3600
vlcrow 2 * * config enabled acms$mgmt_snapshot disabled
 3600
vlcrow 2 * * runtime enabled acms$mgmt_snapshot disabled
 10
vlcrow 2 * * pool enabled acms$mgmt_snapshot disabled
 10
vlcrow 2 * * error enabled acms$mgmt_snapshot disabled
 10

This command displays the contents of the Collection table on node VLCROW, where all collections
have been enabled for all entities. Authorization is performed for the user specified by the logical
ACMS$MGMT_USER, or by proxy if the logical is not defined. Data snapshots for the ID class have
been enabled and are set to occur every 5 minutes (3600 seconds). The data files are stored in the file
specified by the logical ACMS$MGMT_SNAPSHOT.

11.29. ACMSMGR SHOW CP

ACMSMGR SHOW CP
ACMSMGR SHOW CP

Format

Command Qualifier Default
/ACTIVE See Notes.
/ALL Current data only
/[BRIEF,FULL] /FULL if no class qualifier (/ID, /POOL, or /

RUNTIME)
is specified. Otherwise, /BRIEF.

/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/PROCESS_NAME=process-name * (all)
/STORED See Notes.

404

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/ACTIVE

When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN field values to
be displayed. /ACTIVE is effective only when used with the /CONFIG qualifier. If /BRIEF is not
specified, or if /FULL is specified, this qualifier has no effect (both active and stored values are
displayed).

/ALL

This qualifier displays all available application data, even data for applications that are no longer
running. When applications are stopped, the CP table row they were occupying is marked for
reuse. If the row has not been reused, the data remains available for display. This qualifier allows
that data to be displayed. Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only data for currently
running processes is displayed.

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME) is specified, this qualifier
is ignored and all details are displayed (equivalent to /FULL). Available OpenVMS process quota
and SYSGEN parameter information is only displayed when /FULL is specified.

/[CONFIG, ERROR, ID, POOL, RUNTIME]

This qualifier causes data for only the specified class to be displayed. If this qualifier is omitted,
the default is to display information for all classes.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

405

Chapter 11. ACMSMGR Commands

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/PROCESS_NAME=process-name

This qualifier causes data for only the specified process to be displayed. If this qualifier is
omitted, the default is to display information for all CP processes.

/STORED

When specified with the /BRIEF qualifier, this qualifier causes field values from the ACMSGEN
file (not those active in memory) to be displayed. The /STORED qualifier is effective only
when used with the /CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command displays information about ACMS command processes (CPs) on the target node. The /
BRIEF and /FULL qualifiers control the format of information to be displayed.

See Section 9.5 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class to which the data
belongs has been enabled for the CP. The Collect State field indicates whether or not information is
being collected for that class.

Examples

$ ACMSMGR SHOW CP/RUNTIME/NODE=VLCROW
ACMS Remote Management -- Command line utility
ACMS V5.0 CP Table Display Time: 18-APR-2001 13:59:13.39
 Active Active Total Total Total

406

Chapter 11. ACMSMGR Commands

 Runtime Process Attached Task DECforms TDMS Task
 Dataset
Node Class Name Terms Calls Requests Requests Calls
 Hangups
------ ------- -------------- -------- ------ -------- -------- -----

vlcrow enabled ACMS01CP001000 0 0 0 0 20 0
vlcrow enabled ACMS01CP002000 1 1 0 0 20 0
vlcrow enabled ACMS01CP003000 0 0 0 0 20 0
vlcrow enabled ACMS01CP004000 1 1 0 0 20 0

This command displays summary RUNTIME class information for CPs on node VLCROW.
Authorization is performed for the user specified by the logical name ACMS$MGMT_USER, or by
proxy if the logical is not defined.

11.30. ACMSMGR SHOW ERROR

ACMSMGR SHOW ERROR
ACMSMGR SHOW ERROR — Displays the errors recorded in the Remote Manager error log file.
This command (and its qualifiers) is only for use with systems running ACMS Version 4.4 or higher.

Format

ACMSMGR SHOW ERROR [/qualifiers]

Command Qualifier Default
/BEFORE=time End of file
/BRIEF Brief
/FILENAME=file-name Translation of logical ACMS

$MGMT_ERR_LOG
/FULL Brief
/INTERVAL=interval Command is executed once.
/LOCAL Remote
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/SEVERITY=[I,W,E,F] All
/SINCE=time Beginning of file
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

407

Chapter 11. ACMSMGR Commands

Qualifiers

/BEFORE=time

This qualifier causes only those error log entries with a timestamp less than or equal to
the time specified by time to be returned and displayed. The format of time is DD-MMM-
YY:HH:MM:SS.nn. Partial dates and times (for example, 10-OCT or 09:00) are supported. If this
qualifier is not specified, the search ends when the end of the audit file is reached.

/BRIEF

The /BRIEF and /FULL qualifiers control the amount of information shown for any errors.
ACMSMGR SHOW ERROR defaults to the /BRIEF display.

/FILENAME=file-name

This qualifier allows log records to be displayed from a file other than the current error log file.
Specify a fully- or partially-qualified file specification.

/FULL

The /BRIEF and /FULL qualifiers control the amount of information shown for any errors.
ACMSMGR SHOW ERROR defaults to the /BRIEF display.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/LOCAL

This qualifier causes the ACMSMGR to open and read the error log on the local node directly.
You can use this qualifier if the Remote Manager process is not started. The /LOCAL qualifier
overrides the /NODE qualifier and the ACMS$MGMT_SERVER_NODE logical.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

408

Chapter 11. ACMSMGR Commands

/SEVERITY=[I, W, E, F]

This qualifier causes only error log entries with matching severities to be displayed. Valid
severities are informational (I), warning (W), error (E), and fatal (F). If this qualifier is not
specified, all severities are returned.

/SINCE=time

This qualifier causes only error log entries with a timestamp greater than or equal to the
time specified by time to be returned and displayed. The format of time is DD-MMM-
YY:HH:MM:SS.nn. Partial dates and times (for example, 10- OCT or 09:00) are supported. If this
qualifier is not specified, the search begins at the beginning of the audit file.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command displays Remote Manager error log information. The format of the error log entries
displayed is:

node time: severity: error-text

In this format:

• node is the node from which the information was obtained.

• time is the time the error was logged.

• severity is the severity of the error.

• error-text is the details of the error.

Examples

$ ACMSMGR SHOW ERROR /NODE=VLCROW
ACMS Remote Management -- Command line utility

ACMS V5.0 Log Display Time: 18-APR-2001 13:59:13.39
 Node Message
vlcrow : 17-APR-2001 10:40:41.04 : %ACMSACC-I-EVENT, Event
 : -ACMSACC-E-ERRSTARTA, Error occurred
 starting application
 : -ACMSEXC-ENO_
TDB, Error opening TDB file !AS for task group !AS
vlcrow : 16-APR-2001 14:26:01.34 : %ACMSMSS-E-ERRNETCRE, Error creating
 DECnet object

409

Chapter 11. ACMSMGR Commands

 : -ACMSMSS-ENODEMISMATCH,
NODE_Name is ACMSPAR does not match DECnet node name

This command displays entries from the Remote Manager error log on node VLCROW. Authorization
is performed for the user specified by the logical name ACMS$MGMT_USER, or by proxy if the
logical is not defined.

11.31. ACMSMGR SHOW EXC

ACMSMGR SHOW EXC
ACMSMGR SHOW EXC — Displays information about an application on one or more remote
nodes.

Format
ACMSMGR SHOW EXC [/qualifiers]

Command Qualifier Default
/ACTIVE See Notes.
/ALL Current applications only.
/APPLICATION=application_name * (all)
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ID, /

POOL,
or /RUNTIME) is specified. Otherwise, /BRIEF.

/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/ACTIVE

When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN field values to
be displayed. /ACTIVE is effective only when used with the /CONFIG qualifier. If /BRIEF is not
specified, or if /FULL is specified, this qualifier has no effect (both active and stored values are
displayed).

410

Chapter 11. ACMSMGR Commands

/ALL

This qualifier displays all available application data, even data for applications that may no longer
be running. When applications are stopped, the EXC table row they were occupying is marked for
reuse. If the row has not been reused, the data remains available for display. This qualifier allows
that data to be displayed. Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only data for currently
running processes is displayed.

/APPLICATION=application-name

This qualifier specifies a particular ACMS application to display. Wildcard matching is performed
on the name provided; use of asterisks (*) is allowed.

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME) is specified, this qualifier
is ignored and all details are displayed (equivalent to /FULL). Available OpenVMS process quota
and SYSGEN parameter information is only displayed when /FULL is specified.

/[CONFIG,ERROR,ID,POOL,RUNTIME]

This qualifier causes data for only the specified class to be displayed. If this qualifier is omitted,
the default is to display information for all classes.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically every interval seconds. Use
either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified, the command is
executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/STORED

When specified with the /BRIEF qualifier, this qualifier causes field values from the ACMSGEN
file (not those active in memory) to be displayed. The /STORED qualifier is effective only

411

Chapter 11. ACMSMGR Commands

when used with the /CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command displays information about ACMS applications on the target node. The /BRIEF and /
FULL qualifiers control the format of information to be displayed.

See Section 9.6 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class to which the data
belongs has been enabled for the application. The Collect State field indicates whether or not
information is being collected for that class.

Examples
$ ACMSMGR SHOW EXC/ID
ACMS Remote Management -- Command line utility
ACMS V5.0 EXC Table Display Time: 18-APR-2001
 13:59:09.33
 ID
 Node Class PID Process Name Start Time Application Name
------ ------- -------- --------------- ----------------------- ----------
vlcrow enabled 37C0025A ACMS01EXC001000 18-APR-2001 14:49:49.22 LDT_APPL_A
gocrow enabled 38000249 ACMS01EXC001000 18-AUG-2001 15:07:23.51 LDT_APPL_B

This command displays summary IDENTIFICATION class information for all applications on the
nodes specified by the logical name ACMS$MGMT_SERVER_ NODE. Authorization is performed
for the user specified by the logical name ACMS$MGMT_USER, or by proxy if the logical is not
defined.

11.32. ACMSMGR SHOW FILTER

ACMSMGR SHOW FILTER
ACMSMGR SHOW FILTER — Displays the errors currently being filtered on one or more nodes.
This command (and its qualifiers) is only for use with systems running ACMS Version 4.4 or higher.

Format
ACMSMGR SHOW FILTER [/qualifiers]

412

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

413

Chapter 11. ACMSMGR Commands

Notes
This command displays all system errors currently being filtered for the specified node or nodes.

Examples
$ ACMSMGR SHOW FILTER /NODE=VLCROW
ACMS Remote Management -- Command line utility
ACMS V5.0 ACMS Error Filter Table Display Time: 18-APR-2001
 13:59:09.33
 Node Filtered Message Name (Code)

VLCROW ACMSACC-W-AUDSYSSTARTS (FD8748)
VLCROW SYSTEM-W-TOOMUCHDATA (298)
VLCROW SYSTEM-W-NOMOREREG (AE8)

This command displays the current errors being filtered for node VLCROW. When generated by an
ACMS process on node VLCROW, these errors are not relayed to the Remote Manager.

11.33. ACMSMGR SHOW GROUP

ACMSMGR SHOW GROUP
ACMSMGR SHOW GROUP — Displays information about one or more ACMS task groups on one
or more nodes.

Format
ACMSMGR SHOW GROUP [/qualifiers]

Command Qualifier Default
/APPLICATION=application_name * (all applications)
/[BRIEF,FULL] /FULL if no class qualifier (/ID or /POOL)

is specified. Otherwise, /BRIEF.
/GROUP=group_name * (all groups)
/[ID,POOL] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

414

Chapter 11. ACMSMGR Commands

Qualifiers
/APPLICATION=application-name

This qualifer specifies a particular ACMS application to display. Wildcard matching is performed
on the name provided; use of asterisks (*) is allowed.

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
If no class qualifier (/ID or /POOL) is specified, this qualifier is ignored and all details are
displayed (equivalent to /FULL). If a class qualifier is used on the command, the default action
provides a brief format display. Using /FULL with a class qualifier produces a full format display.

/GROUP=group-name

This qualifier specifies a particular ACMS task group to display. Wildcard matching is performed
on the name provided; use of asterisks (*) is allowed.

/[ID, POOL]

This qualifier causes data for only the specified class to be displayed. If this qualifier is omitted,
the default is to display information for all classes.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

415

Chapter 11. ACMSMGR Commands

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command displays information about ACMS application task groups on the target node. The /
BRIEF and /FULL qualifiers control the format of information to be displayed.

See Section 9.12 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class to which the
data belongs has been enabled for the task group. The Collect State field indicates whether or not
information is being collected for that class.

Examples
$ ACMSMGR SHOW GROUP/POOL

ACMS Remote Management -- Command line utility
ACMS V5.0 Task Group Table Display Time: 18-APR-2001 13:59:36.35
 Pool Application -TWS Pool Free- -TWSC
 Pool Free-
 Node Class Name Task Group Name Current Minimum
 Current Mininum
------ -------- ----------- --------------- -------- ---------
 ------- ---------
VLCROW enabled LDT_APPL_A TEST_GRP01 99 % 99 % 99 %
 98 %
VLCROW enabled LDT_APPL_A TLOAD001_GRP 97 % 97 % 98 %
 98 %
VLCROW enabled LDT_APPL_A DBMS_LOAD_GRP 99 % 99 % 99 %
 99 %
VLCROW enabled LDT_APPL_A RDB_LOAD_GRP 99 % 99 % 99 %
 98 %
VLCROW enabled LDT_APPL_A RMSR_GRP 99 % 99 % 99 %
 98 %
VLCROW enabled LDT_APPL_A TCT_ LDT_GROUP 99 % 90 % 98 %
 95 %
VLCROW enabled LDT_APPL_A AT_TT_GROUP 99 % 99 % 99 %
 98 %
VLCROW enabled LDT_APPL_A RI_FMS 99 % 99 % 99 %
 98 %
VLCROW enabled LDT_APPL_A RI_SMG 99 % 99 % 99 %
 99 %
VLCROW enabled LDT_APPL_A VF_GROUP 99 % 99 % 99 %
 98 %
VLCROW enabled LDT_APPL_A CS_GROUP 99 % 99 % 99 %
 97 %
VLCROW enabled LDT_APPL_A DT_GROUP 96 % 95 % 92 %
 89 %
VLCROW enabled LDT_APPL_A VF_V32_GROUP 99 % 99 % 98 %
 97 %
VLCROW enabled LDT_APPL_A DCL_CLI_GROUP 99 % 99 % 99 %
 98 %
VLCROW enabled LDT_APPL_A DETASK_GROUP 99 % 99 % 99 %
 98 %

416

Chapter 11. ACMSMGR Commands

This command displays summary POOL class information for all task groups in all applications
on the node specified by the logical name ACMS$MGMT_ SERVER_NODE. Authorization is
performed for the user specified by the logical name ACMS$MGMT_USER, or by proxy if the
logical is not defined.

11.34. ACMSMGR SHOW INTERFACE

ACMSMGR SHOW INTERFACE
ACMSMGR SHOW INTERFACE — Displays Remote Manager interface (RPC or SNMP)
information for a Remote Manager process on one or more nodes.

Format
ACMSMGR SHOW INTERFACE [/qualifiers]

Command Qualifier Default
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

417

Chapter 11. ACMSMGR Commands

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
The ACMS Remote Manager supports two interfaces: RPC and SNMP. This command displays the
running and enabled states of each interface, along with some counter and status information. See
Section 9.8 for a discussion of each field displayed.

Examples
$ ACMSMGR SHOW INTERFACE /NODE=VLCROW,GOCROW /USER=JONES

ACMS Remote Management -- Command line utility
ACMS V5.0 Interfaces Display Time: 18-APR-2001 13:59:15.51
 Enabled Running Get Set Alarms Time Last
Node Interface State State Requests Requests Sent Alarm Sent
------ --------- ------- ------- -------- -------- ------

vlcrow rpc enabled started 987 0 0 17-NOV-1858
 00:00:00.00
vlcrow snmp enabled started 0 0 0 17-NOV-1858
 00:00:00.00
gocrow rpc enabled started 964 0 0 17-NOV-1858
 00:00:00.00
gocrow snmp enabled started 0 0 0 17-NOV-1858
 00:00:00.00

This command displays information for the Remote Manager interfaces on nodes VLCROW and
GOCROW. Authorization is performed for user JONES.

11.35. ACMSMGR SHOW LOG

ACMSMGR SHOW LOG
ACMSMGR SHOW LOG — Displays Remote Manager log entries for a server on one or more
nodes.

Format
ACMSMGR SHOW LOG [/qualifiers]

418

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/BEFORE=time End of file
/FACILITY=facility All
/FILENAME=file-name Translation of logical ACMS$MGMT_LOG
/INTERVAL=interval Command is executed once.
/LOCAL Remote
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/SEVERITY=[I,W,E,F] All
/SINCE=time Beginning of file
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/BEFORE=time

This qualifier causes only audit log entries with a timestamp less than or equal to the
time specified by time to be returned and displayed. The format of time is DD-MMM-
YY:HH:MM:SS.nn. Partial dates and times (for example, 10-OCT or 09:00) are supported. If this
qualifier is not specified, the search ends when the end of the audit file is reached.

/FACILITY=[DCL, LOG, MGR, MSG_PROC, PROCMON, RPC, SEC, SNAP, SNMP, TRAP]

This qualifier causes only audit log entries with matching facilities to be displayed. If this
qualifier is not specified, all facilities are returned.

/FILENAME=file-name

This qualifier allows log records to be displayed from a file other than the current log file. Specify
a fully or partially qualified file specification.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/LOCAL

This qualifier causes the ACMSMGR to open and read the audit log on the local node directly.
You can use this qualifier if the Remote Manager process is not started. The /LOCAL qualifier
overrides the /NODE qualifier and the ACMS$MGMT_SERVER_NODE logical.

419

Chapter 11. ACMSMGR Commands

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/SEVERITY=[I, W, E, F]

This qualifier causes only audit log entries with matching severities to be displayed. Valid
severities are informational (I), warning (W), error (E), and fatal (F). If this qualifier is not
specified, all severities are returned.

/SINCE=time

This qualifier causes only audit log entries with a timestamp greater than or equal to the
time specified by time to be returned and displayed. The format of time is DD-MMM-
YY:HH:MM:SS.nn. Partial dates and times (for example, 10- OCT or 09:00) are supported. If this
qualifier is not specified, the search begins at the beginning of the audit file.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access

Notes
This command displays Remote Manager audit file information. The format of the audit entries
displayed is:

node time: facility: severity: error-text

In this format:

• node is the node from which the information was obtained.

• time is the time the entry was logged.

• facility is the facility that generated the entry.

420

Chapter 11. ACMSMGR Commands

• severity is the severity of the entry.

• error-text is the details of the entry.

Examples
• $ ACMSMGR SHOW LOG /NODE=VLCROW /SINCE="20-MAR-2001 11:00" -

_$ /BEFORE="20-MAR-2001 12:00"
ACMS Remote Management -- Command line utility
ACMS V5.0 Log Display Time: 18-APR-2001 13:59:17.45
Node Message
vlcrow 20-MAR-2001 11:00:37.15 : log: i : Log opened
vlcrow 20-MAR-2001 11:02:29.43 : msg_proc: i : EXC shutdown. Attempting
 to
 unmap application global section for ACMS01EXC001000
vlcrow 20-MAR-2001 11:02:29.43 : msg_proc: i : Application global
 section
 unmapped for ACMS01EXC001000
vlcrow 20-MAR-2001 11:02:29.43 : msg_proc: i : EXC shutdown processing
 complete for ACMS01EXC001000
vlcrow 20-MAR-2001 11:02:35.18 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP001000
vlcrow 20-MAR-2001 11:02:38.40 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP004000
vlcrow 20-MAR-2001 11:02:38.40 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP003000
vlcrow 20-MAR-2001 11:02:38.40 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP002000
vlcrow 20-MAR-2001 11:02:39.23 : msg_proc: i : TSC process shutdown
 message
 received for ACMS01TSC001000
vlcrow 20-MAR-2001 11:02:41.93 : msg_proc: i : ACC process shutdown
 message
 received for ACMS01ACC001000
vlcrow 20-MAR-2001 11:02:42.05 : procmon: w : ACC process is absent
 after
 being present.
vlcrow 20-MAR-2001 11:03:00.23 : msg_proc: i : ACC process startup
 message
 received for ACMS01ACC001000
vlcrow 20-MAR-2001 11:03:00.23 : msg_proc: e : Failure getting current
 collection states. Ignoring process ACMS01ACC001000
vlcrow 20-MAR-2001 11:03:03.93 : msg_proc: i : TSC process startup
 message
 received for ACMS01TSC001000
vlcrow 20-MAR-2001 11:03:10.03 : msg_proc: i : CP process startup
 message
 received for ACMS01CP001000
vlcrow 20-MAR-2001 11:03:10.04 : msg_proc: i : CP process startup
 message
 received for ACMS01CP002000
vlcrow 20-MAR-2001 11:03:10.04 : msg_proc: i : CP process startup
 message
 received for ACMS01CP004000

421

Chapter 11. ACMSMGR Commands

vlcrow 20-MAR-2001 11:03:10.05 : msg_proc: i : CP process startup
 message
 received for ACMS01CP003000
vlcrow 20-MAR-2001 11:03:31.87 : msg_proc: i : EXC startup. Attempting
 to map
 application global section for ACMS01EXC001000
vlcrow 20-MAR-2001 11:03:31.87 : msg_proc: i : EXC startup processing
 complete
 for ACMS01EXC001000
vlcrow 20-MAR-2001 11:03:51.28 : sec: w : Operator access attempt by
 user
 vlcrow.zko.dec.com::LT_SUT [305,3] for function ACMSMGMT_STOP
vlcrow 20-MAR-2001 11:03:51.28 : rpc: e : Call to mgmt_shutdown complete
vlcrow 20-MAR-2001 11:03:51.28 : rpc: f : svc_run returned!
vlcrow 20-MAR-2001 11:03:51.48 : procmon: f : Failure waiting on
 mgmt$x_proc_mon_cond_var
vlcrow 20-MAR-2001 11:03:51.50 : mgr: w : Rejected request to stop RPC
 interface when it is already stopped.
vlcrow 20-MAR-2001 11:04:00.12 : log: i : Log opened
vlcrow 20-MAR-2001 11:04:02.08 : procmon: e : Failure obtaining current
 collection states. Bypassingqti
vlcrow 20-MAR-2001 11:04:02.63 : msg_proc: i : Message proc thread
 initializing
vlcrow 20-MAR-2001 11:04:02.63 : msg_proc: i : Message proc thread
 starting
vlcrow 20-MAR-2001 11:04:02.63 : msg_proc: i : Message proc thread
 executing
vlcrow 20-MAR-2001 11:04:03.14 : sec: e : Failure obtaining uaf info for
 ACMS$SNMP
vlcrow 20-MAR-2001 11:04:03.20 : sec: e : %RMS-E-RNF, record not found
vlcrow 20-MAR-2001 11:04:03.20 : sec: e : Account verification failed
 for
 ACMS$SNMP user
vlcrow 20-MAR-2001 11:25:53.20 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP001000
vlcrow 20-MAR-2001 11:25:53.72 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP003000
vlcrow 20-MAR-2001 11:25:53.72 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP002000
vlcrow 20-MAR-2001 11:25:53.72 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP004000
vlcrow 20-MAR-2001 11:26:07.51 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP002000
vlcrow 20-MAR-2001 11:26:38.34 : msg_proc: i : TSC process shutdown
 message
 received for ACMS01TSC001000

This command displays entries from the Remote Manager log on node VLCROW. Only
entries that were logged between 11:00 AM and 12:00 PM on March 20, 2001, are displayed.
Authorization is performed for the user specified by the logical name ACMS$MGMT_USER, or
by proxy if the logical is not defined.

• $ ACMSMGR SHOW LOG /SINCE=20-MAR /BEFORE=21-MAR

422

Chapter 11. ACMSMGR Commands

ACMS Remote Management -- Command line utility
ACMS V5.0 Log Display Time: 18-APR-2001
 13:59:20.12
Node Message
local 20-MAR-2001 15:13:23.47 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP001000
local 20-MAR-2001 15:13:25.57 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP004000
local 20-MAR-2001 15:13:25.88 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP002000
local 20-MAR-2001 15:13:41.77 : msg_proc: i : CP process shutdown
 message
 received for ACMS01CP003000
local 20-MAR-2001 15:14:14.16 : msg_proc: i : CP process startup message
 received for ACMS01CP001000
local 20-MAR-2001 15:14:14.87 : msg_proc: i : CP process startup message
 received for ACMS01CP002000
local 20-MAR-2001 16:55:50.92 : log: i : Log opened
local 20-MAR-2001 16:55:53.44 : msg_proc: i : Message proc thread
 initializing
local 20-MAR-2001 16:55:53.44 : msg_proc: i : Message proc thread
 starting
local 20-MAR-2001 16:55:53.44 : msg_proc: i : Message proc thread
 executing
local 20-MAR-2001 16:55:54.49 : sec: f : ACMS$SNMP user has been granted
 no rights.
local 20-MAR-2001 16:56:44.20 : sec: w : User does not hold the proper
 rights identifer -> vlcrow.zko.dec.com::LT_SUT [305,3]
local 20-MAR-2001 16:56:44.20 : rpc: w : Security check failed
local 20-MAR-2001 17:02:35.17 : sec: w : User does not hold the proper
 rights identifer -> vlcrow.zko.dec.com::LT_SUT [305,3]
local 20-MAR-2001 17:02:35.17 : rpc: w : Security check failed
local 20-MAR-2001 17:05:16.46 : sec: w : User does not hold the proper
 rights identifer -> vlcrow.zko.dec.com::LT_SUT [305,3]
local 20-MAR-2001 17:05:16.46 : rpc: w : Security check failed
local 20-MAR-2001 17:05:20.53 : sec: w : User does not hold the proper
 rights identifer -> vlcrow.zko.dec.com::LT_SUT [305,3]
local 20-MAR-2001 17:05:20.53 : rpc: w : Security check failed
local 20-MAR-2001 17:46:22.40 : msg_proc: i : ACC process startup
 message
 received for ACMS01ACC001000
local 20-MAR-2001 17:46:22.42 : msg_proc: e : Failure getting current
 collection states. Ignoring process ACMS01ACC001000
local 20-MAR-2001 17:46:22.85 : procmon: e : Failure obtaining current
 collection states. Bypassingtsc
local 20-MAR-2001 17:46:22.85 : procmon: e : Failure obtaining current
 collection states. Bypassingqti
local 20-MAR-2001 17:46:25.92 : msg_proc: i : TSC process startup
 message
 received for ACMS01TSC001000

This command displays entries from the Remote Manager log on node VLCROW. Only entries
that were logged between March 20 and 21, 2001, are displayed. Authorization is performed for

423

Chapter 11. ACMSMGR Commands

the user specified by the logical name ACMS$MGMT_USER, or by proxy if the logical is not
defined.

11.36. ACMSMGR SHOW MANAGER

ACMSMGR SHOW MANAGER
ACMSMGR SHOW MANAGER — Displays run-time information about a Remote Manager on one
or more nodes.

Format

ACMSMGR SHOW MANAGER [/qualifiers]

Command Qualifier Default
/[BRIEF,FULL] /BRIEF
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/[BRIEF,FULL]

Specifies the format of the data displayed. /BRIEF is the default. /FULL qualifier displays timer
information in addition to the information displayed in the brief display.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

424

Chapter 11. ACMSMGR Commands

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

See Section 9.8 for a discussion of each field displayed.

Examples
$ ACMSMGR SHOW MANAGER
ACMS Remote Management -- Command line utility
ACMS V5.0 Remote Manager Status Table Display Time: 18-APR-2001 13:59:22.76
 Node Fields
------------- --
 VLCROW Collection Count 0
 VLCROW Interfaces Count 2
 VLCROW Trap Count 0
 VLCROW RPC UDP State 1
 VLCROW RPC TCP State 1
 VLCROW Timer Count 0

This command displays summary information about the Remote Manager on the node specified by the
logical name ACMS$MGMT_SERVER_NODE. Authorization is performed for the user specified by
the logical name ACMS$MGMT_USER, or by proxy if the logical is not defined.

11.37. ACMSMGR SHOW PARAMETER

ACMSMGR SHOW PARAMETER
ACMSMGR SHOW PARAMETER — Displays Remote Manager configuration parameters for a
server on one or more nodes.

425

Chapter 11. ACMSMGR Commands

Format
ACMSMGR SHOW PARAMETER [/qualifiers]

Command Qualifier Default
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

426

Chapter 11. ACMSMGR Commands

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

See Section 9.9 for a description of each parameter.

Examples
$ ACMSMGR SHOW PARAMETER /NODE=VLCROW
ACMS Remote Management -- Command line utility
ACMS V5.0 Parameters Table Display Time: 18-APR-2001 13:59:24.79
 Node Parameter Value Default Min Max
 Units

VLCROW dcl_audit_level E E 0 F
 (D)
VLCROW dcl_mgr_priority 5 5 1 10
VLCROW dcl_stacksize 300 300 1 2147483647
 k (Vax), 8k (Alpha)
VLCROW event_log_priority 5 5 1 10
VLCROW error_interval 10 10 1 863999999
 seconds (D)
VLCROW log_stacksize 300 300 1 2147483647
 K (Vax), 8k (Alpha)
VLCROW login_creds_lifetime 60 60 1 14399999
 minutes (D)
VLCROW max_logins 20 20 1 2147483647
 (D)
VLCROW max_rpc_return_recs 20 20 1 2147483647
VLCROW mgr_audit_level E E 0 F
 (D)
VLCROW msg_proc_audit_level E E 0 F
 (D)
VLCROW msg_proc_priority 5 5 1 10
VLCROW msg_proc_stacksize 300 300 1 2147483647
 k (Vax), 8k (Alpha)
VLCROW mss_coll_interval 10 10 1 863999999
 seconds (D)
VLCROW proc_mon_audit_level E E 0 F
 (D)
VLCROW proc_mon_interval 3 30 1 14399999
 seconds (D)
VLCROW proc_mon_priority 5 5 1 10
VLCROW proc_mon_stacksize 300 300 1 2147483647
 K (Vax), 8k (Alpha)
VLCROW proxy_creds_lifetime 60 60 1 14399999
 minutes (D)
VLCROW rpc_audit_level E E 0 F
 (D)
VLCROW rpc_priority 5 5 1 10
VLCROW rpc_stacksize 30 300 1 2147483647
 k (Vax), 8k (Alpha)
VLCROW security_audit_level E E 0 F
 (D)
VLCROW vsnap_audit_level E E 0 F
 (D)

427

Chapter 11. ACMSMGR Commands

VLCROW vsnap_priority 5 5 1 10
VLCROW snap_stacksize 300 300 1 2147483647
 k (Vax), 8k (Alpha)
VLCROW snmp_agent_time_out 10 10 1 863999999
 seconds
VLCROW snmp_are_you_there 300 300 2 863999999
 seconds
VLCROW snmp_audit_level E E 0 F
 (D)
VLCROW snmp_priority 5 5 1 10
VLCROW snmp_sel_time_out 5 5 1 863999999
 seconds
VLCROW snmp_stacksize 300 300 1 2147483647
 k (Vax), 8k (Alpha)
VLCROW tcp_enabled 1 1 0 1
 [0,1] 1=enabled
VLCROW timer_audit_level E E 0 F
 (D)
VLCROW timer_interval 30 30 1 863999999
 seconds (D)
VLCROW timer_priority 5 5 1 10
VLCROW timer_stacksize 300 300 1 2147483647
 k (Vax), 8k (Alpha)
VLCROW total_entity_slots 20 20 1 2147483647
VLCROW trace_msg_wait_time 5 5 1 14399999
 seconds (D)
VLCROW trace_start_wait_time 5 5 1 14399999
 seconds (D)
VLCROW trap_audit_level E E 0 F
 (D)
VLCROW trap_priority 5 5 1 10
VLCROW trap_stacksize 300 300 1 2147483647
 k (Vax), 8k (Alpha)
VLCROW udp_enabled 1 1 0 1
 [0,1] 1=enabled
VLCROW vms_coll_interval 10 10 0 863999999
 seconds (D)
VLCROW wksp_coll_interval 10 10 1 863999999
 seconds (D)
VLCROW max_agents 2 2 1 2147483647

This command displays data from the Remote Manager Parameter table on node VLCROW.
Authorization is performed on the user specified by the logical name ACMS$MGMT_USER, or by
proxy if the logical is not defined.

11.38. ACMSMGR SHOW PROCESS

ACMSMGR SHOW PROCESS
ACMSMGR SHOW PROCESS — Displays summary data collection information for processes on
one or more nodes.

Format

ACMSMGR SHOW PROCESS [/qualifiers]

428

Chapter 11. ACMSMGR Commands

Command Qualifier Default
/ALL Displays only currently running processes.
/[BRIEF,FULL] Controls the format of data displayed.
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/ALL

This qualifier displays all available application data, even data for applications that may no longer
be running. When applications are stopped, the table row they were occupying is marked for
reuse. If the row has not been reused, the data remains available for display. This qualifier allows
that data to be displayed. Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only data for currently
running processes is displayed.

/[BRIEF,FULL]

Specifies the format of the data displayed. /BRIEF is the default and displays data in tabular
format.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

429

Chapter 11. ACMSMGR Commands

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command displays the current data-collection states for all process entry slots. Both active and
inactive process data is displayed. Inactive data is flagged with an asterisk (*) in the first column. The
following fields are displayed:

• Server Node: The node from which the information was fetched.

• Entity Type: The ACMS entity type to which the data belongs.

• PID: The OpenVMS PID of the process.

• Process Name: The process name for the process.

• Collection States: The current collection state of the process for each class (Id, Cfg, RT and
POOL). Collection states are displayed as binary values.

• 0 = Collection is currently disabled.

• 1 = Collection is currently enabled.

Previously, the SHOW PROCESS/BRIEF and SHOW PROCESS/FULL commands displayed all
collection states for entities even when some were not applicable. You can enable/disable collection
states for all classes and all entities. However, some combinations have no effect. These states are
now shown in the SHOW PROCESS/BRIEF display as a "-", and as "N/A" for the SHOW PROCESS/
FULL command. The display for the SHOW PROCESS command in the WEB display has also been
modified.

For Task Groups, the following classes are not applicable: CONFIG, RUNTIME, ERROR. For
Servers, the following classes are not applicable: POOL, ERROR.

Examples
$ ACMSMGR SHOW PROCESS
ACMS Remote Management -- Command line utility
ACMS V5.0 Process Table Display Time: 18-APR-2001
 13:59:26.77
Server Entity Process Name -or- Application. Collection
 States

430

Chapter 11. ACMSMGR Commands

Node Type PID [server_name, task_group_name] ID Cfg RT
 Pool Err
------ ------ -------- -------------------------------------- ---- ----
 ---- ---- ----
VLCROW acc 37C0024F ACMS01ACC001000 1 1 1
 1 1
VLCROW tsc 37C00251 ACMS01TSC001000 1 1 1
 1 1
VLCROW cp 37C00252 ACMS01CP001000 1 1 1
 1 1
VLCROW cp 37C00253 ACMS01CP002000 1 1 1
 1 1
VLCROW cp 37C00254 ACMS01CP003000 1 1 1
 1 1
VLCROW cp 37C00255 ACMS01CP004000 1 1 1
 1 1
VLCROW exc 37C0025A ACMS01EXC001000 1 1 1
 1 1
VLCROW server LDT_APPL_A.TESTSRV01 1 1 1
 1 1
VLCROW group LDT_APPL_A.TEST_GRP01 1 1 0
 1 1

This command displays Collection state information on a per-process basis from the node specified
by the logical name ACMS$MGMT_SERVER_ NODE. Authorization is performed for the user
specified by the logical name ACMS$MGMT_USER, or by proxy if the logical is not defined.

11.39. ACMSMGR SHOW QTI

ACMSMGR SHOW QTI
ACMSMGR SHOW QTI — Displays information about QTIs on one or more remote nodes.

Format
ACMSMGR SHOW QTI [/qualifiers]

Command Qualifier Default
/ACTIVE See Notes.
/ALL Current process data only.
/[BRIEF,FULL] /FULL if no class /CLASS=keyword * (all).

qualifier (/CONFIG, /ID, /POOL,
or /RUNTIME) is specified. Otherwise, /BRIEF.

/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

431

Chapter 11. ACMSMGR Commands

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/ACTIVE

When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN field values to
be displayed. /ACTIVE is effective only when used with the /CONFIG qualifier. If /BRIEF is not
specified, or if /FULL is specified, this qualifier has no effect (both active and stored values are
displayed).

/ALL

This qualifier displays all available QTI data, including data for processes that are no longer
running. When QTI processes are stopped, the QTI table row they were occupying is marked for
reuse. If the row has not been reused, the data remains available for display. This qualifier allows
that data to be displayed. Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only data for currently
running processes is displayed.

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME) is specified, this qualifier
is ignored and all details are displayed (equivalent to /FULL). Available OpenVMS process quota
and SYSGEN parameter information is only displayed when /FULL is specified.

/[class-name]

This qualifier causes data for only the specified class to be displayed. If this qualifier is omitted,
the default is to display information for all classes.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

432

Chapter 11. ACMSMGR Commands

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/STORED

When specified with the /BRIEF qualifier, this qualifier causes field values from the ACMSGEN
file (not those active in memory) to be displayed. The /STORED qualifier is effective only
when used with the /CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command displays information about the QTIs on the target nodes. The /BRIEF and /FULL
qualifiers control the format of information to be displayed.

See Section 9.10 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class to which the data
belongs has been enabled for the QTI. The Collect State field indicates whether or not information is
being collected for that class.

Examples

$ ACMSMGR SHOW QTI /NODE=KAZONS /RUNTIME
ACMS Remote Management -- Command line utility
ACMS V5.0 QTI Table Display Time: 18-APR-2001
 13:41:11.09
 Runtime Started Current Task Tasks Tasks Current Errors
Node Class Queues Tasks Retries Success Failed Submitrs Queued
------ -------- ------- ------- -------- -------- -------- --------

kazons enabled 3 17 4361 14859 5783 5 1329

This command displays summary run-time information for the QTI on node KAZONS. Authorization
is performed for the user specified by the logical name ACMS$MGMT_USER, or by proxy if the
logical is not defined.

433

Chapter 11. ACMSMGR Commands

11.40. ACMSMGR SHOW SERVER

ACMSMGR SHOW SERVER
ACMSMGR SHOW SERVER — Displays information about one or more ACMS application server
types on one or more nodes.

Format
ACMSMGR SHOW SERVER [/qualifiers]

Command Qualifier Default
/APPL=application-name * (all applications)
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ID,

or /RUNTIME) is specified. Otherwise, /BRIEF.
/[class-name] * (all applications)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/CLASS=keyword * (all).
/SERVER=server-name * (all servers)
/USER=user-name Translation of logical ACMS$MGMT_USER.

Privileges Required
ACMS$MGMT_READ

Parameters
None.

Qualifiers
/APPL=application-name

Use this qualifer to specify a particular ACMS application to display. Wildcard matching is
performed on the name provided; use of asterisks (*) is allowed.

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
If no class qualifier (/CONFIG, /ERROR, /ID, or /RUNTIME) is specified, this qualifier is
ignored and all details are displayed (equivalent to /FULL).

/[class-name]

This qualifier causes data for only the specified class to be displayed. If this qualifier is omitted,
the default is to display information for all classes.

434

Chapter 11. ACMSMGR Commands

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/SERVER=server-name

This qualifier specifies a particular ACMS application server to display. Wildcard matching is
performed on the name provided; use of asterisks (*) is allowed.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command displays information about ACMS application servers on the target node. The /BRIEF
and /FULL qualifiers control the format of information to be displayed.

See Section 9.11 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class to which the data
belongs has been enabled for the server. The Collect State field indicates whether or not information is
being collected for that class.

Examples
$ ACMSMGR SHOW SERVER /NODE=VLCROW /RUNTIME

435

Chapter 11. ACMSMGR Commands

ACMS Remote Management -- Command line utility
ACMS V5.0 SER Table Display Time: 18-APR-2001
 13:59:33.60
 Runtime Application Current Waiting Server
 Server
Node Class Name Server Name Servers Tasks Starts
 Failures
------ ------- ----------- -------------------- ------- ----- ------

VLCROW enabled LDT_APPL_A TESTSRV01 2 0 2 0
VLCROW enabled LDT_APPL_A TESTSRV1D 0 0 3419 0
VLCROW enabled LDT_APPL_A TESTSRV2D 1 0 19 0
VLCROW enabled LDT_APPL_A TESTSRV3D 1 0 1 0
VLCROW enabled LDT_APPL_A TESTSRV05 0 0 0 0
VLCROW enabled LDT_APPL_A TLOAD001S 4 0 6 0
VLCROW enabled LDT_APPL_A TLOAD002S 1 0 1 0
VLCROW enabled LDT_APPL_A DBMSLSRV1 1 0 1 0
VLCROW enabled LDT_APPL_A DBMSLSRV2 1 0 1 0
VLCROW enabled LDT_APPL_A RDBLSRV1 1 0 44 0
VLCROW enabled LDT_APPL_A RMSRSERVR 1 0 33 0
VLCROW enabled LDT_APPL_A TCT_LDT_PROC_SERVER 1 0 1 0
VLCROW enabled LDT_APPL_A TCT_LDT_CHAIN_SERVER 1 0 1 0
VLCROW enabled LDT_APPL_A TCT_LDT_DCL_SERVER 0 0 0 0
VLCROW enabled LDT_APPL_A RI_DCL_SERVER 2 0 9 0
VLCROW enabled LDT_APPL_A RI_V3016_FMS_SERVER 1 0 1 0
VLCROW enabled LDT_APPL_A RI_V3016_RI_SERVER 1 0 1 0
VLCROW enabled LDT_APPL_A VF_V3111_SERVER 0 0 0 0
VLCROW enabled LDT_APPL_A LDT_CS_V3111_SERVER 3 0 3 0
VLCROW enabled LDT_APPL_A TESTV32_RMS_SERVER 8 0 28 0
VLCROW enabled LDT_APPL_A TESTV32_RDB_SERVER 8 0 375 0
VLCROW enabled LDT_APPL_A TESTV32_DBMS_SERVER 8 0 47 0
VLCROW enabled LDT_APPL_A TESTV32_SQL_SERVER 8 0 405 0
VLCROW enabled LDT_APPL_A TESTV32_RM_SERVER 4 0 4 0
VLCROW enabled LDT_APPL_A GEN_INPUT_SERVER 4 0 24 0
VLCROW enabled LDT_APPL_A NOOP_SERVER 4 0 4 0
VLCROW enabled LDT_APPL_A UNUSED_VF_V32 0 0 0 0
VLCROW enabled LDT_APPL_A V_SERVER_W_DCL 1 0 1 0
VLCROW enabled LDT_APPL_A I_SERVER_W_DCL 1 0 1 0
VLCROW enabled LDT_APPL_A DETASK_SERVER 2 0 3 0

This command displays summary run-time information for all servers on node VLCROW.
Authorization is performed for the user specified by the logical name ACMS$MGMT_USER, or by
proxy if the logical is not defined.

11.41. ACMSMGR SHOW TRAP

ACMSMGR SHOW TRAP
ACMSMGR SHOW TRAP — Displays SNMP trap configurations for one or more nodes.

Format
ACMSMGR SHOW TRAP [/qualifiers]

Command Qualifier Default

436

Chapter 11. ACMSMGR Commands

/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

437

Chapter 11. ACMSMGR Commands

Notes

This command displays Remote Manager SNMP trap configuration information. SNMP traps are
generated only if the SNMP interface is started. Changes to this table take effect immediately after
they are processed.

See Section 9.13 for a description of each field displayed.

Examples
$ ACMSMGR SHOW TRAP
ACMS Remote Management -- Command line utility
ACMS V5.0 Trap Table Display Time: 18-APR-2001
 13:59:38.69
Node Entity Entity Name Parameter Min Max Sev Alarms Alarm Time
------ ------- ----------- --------- --- --- --- ------

VLCROW * * exists 1 -1 I 0 17-NOV-1858
 00:00:00.00

This command displays SNMP traps that have been configured on the node specified by the logical
name ACMS$MGMT_SERVER_NODE. Authorization is performed for the user specified by the
logical name ACMS$MGMT_USER, or by proxy if the logical is not defined.

11.42. ACMSMGR SHOW TSC

ACMSMGR SHOW TSC
ACMSMGR SHOW TSC — Displays information about TSCs on one or more remote nodes.

Format

ACMSMGR SHOW TSC [/qualifiers]

Command Qualifier Default
/ACTIVE See Notes.
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ID, /

POOL, or) is specified. Otherwise, /BRIEF.
/[class-name] * (all)
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/STORED See Notes.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

438

Chapter 11. ACMSMGR Commands

Parameters

None.

Qualifiers

/ACTIVE

When specified with the /BRIEF qualifier, this qualifier causes active ACMSGEN field values to
be displayed. /ACTIVE is effective only when used with the /CONFIG qualifier. If /BRIEF is not
specified, or if /FULL is specified, this qualifier has no effect (both active and stored values are
displayed).

/ALL

This qualifier displays all available TSC data, including data for processes that are no longer
running. When TSC processes are stopped, the TSC table row they were occupying is marked for
reuse. If the row has not been reused, the data remains available for display. This qualifier allows
that data to be displayed. Inactive rows are flagged with an asterisk (*) in the output.

To inhibit the display of old data, do not specify this qualifier. By default, only data for currently
running processes is displayed.

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.
If no class qualifier (/CONFIG, /ERROR, /ID, /POOL, or /RUNTIME) is specified, this qualifier
is ignored and all details are displayed (equivalent to /FULL). Available OpenVMS process quota
and SYSGEN parameter information is only displayed when /FULL is specified.

/[class-name]

This qualifier causes data for only the specified class to be displayed. If this qualifier is omitted,
the default is to display information for all classes.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

439

Chapter 11. ACMSMGR Commands

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/STORED

When specified with the /BRIEF qualifier, this qualifier causes field values from the ACMSGEN
file (not those active in memory) to be displayed. The /STORED qualifier is effective only
when used with the /CONFIG qualifier. If /BRIEF is not specified, or if /FULL is specified, this
qualifier has no effect (both active and stored values are displayed).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command displays information about the TSCs on the target nodes. The /BRIEF and /FULL
qualifiers control the format of information to be displayed.

/ACTIVE is the default when the CONFIG class is being displayed.

See Section 9.15 for a discussion of each field displayed.

Note that some information may not be current, depending on whether the class to which the data
belongs has been enabled for the TSC. The Collect State field indicates whether or not information is
being collected for that class.

Examples

• $ ACMSMGR SHOW TSC /NODE=VLCROW /CONFIG
ACMS Remote Management -- Command line utility
ACMS V5.0 TSC Table Display Time: 18-APR-2001
 13:59:43.00
 A Config Run CP Max Max TTS Perm
 Min
 Node S Class State User Name Slots Logins Per CP CPs
 CPIs
------------ -- -------- -------- ------------ ----- ------ -------
 ----- -----
VLCROW A enabled started LT$TSC_V31 20 400 20 4
 0

This command displays summary Configuration class information for the TSC on node
VLCROW. Authorization is performed for the user specified by the logical name ACMS

440

Chapter 11. ACMSMGR Commands

$MGMT_USER, or by proxy if the logical is not defined. Since the /FULL qualifier was not
supplied, only summary information is displayed.

• $ ACMSMGR SHOW TSC /NODE=VLCROW
ACMS Remote Management -- Command line utility
ACMS V5.0 TSC Table Display Time: 18-APR-2001
 13:59:40.62
===
Node IDENTIFICATION

 --
VLCROW ID Class Collection State enabled
Process Name ACMS01TSC001000
PID 37C00251
User Name LT$TSC_V31
Start Time 18-APR-2001 14:49:18.98
End Time (null)

Node CONFIGURATION Active Stored
------ ---------------------------------- --------------- -------------
VLCROW Config Class Collection State enabled
TSC Running State started
TSC Username LT$TSC_V31 LT$TSC_V31
TSC Base Priority 4 4
CP Username LT$CP_V40 LT$CP_V40
CP Base Priority 4 4
CP Slots 20 20
Max Logins (D) 400 400
Max TTS per CP (D) 20 20
Permanent CPs (D) 4 4
Min CP slots (D) 0 0
Working Set Default 65008 65001
Working Set Extent 322992 90000
Working Set Quota 65536 65536
AST Limit 1999 1999
Byte Limit 1775409 1777777
Direct I/O Limit 15000 15000
Buffered I/O Limit 10000 10000
Enqueue Limit 10000 10000
Page File Quota 500000 500000
Timer Queue Limit 500 500

Node RUNTIME
------ --
VLCROW Runtime Class Collection State enabled
Gauges Current Max Limit Max Time
-------------------------------- --------- ------- -------

Logins 2 4 60 18-APR-2001
 15:49:55.13
CP Slots Used 4 4 4 18-APR-2001
 18:21:19.78
Terminals per CP (avg) 1 1 20 14-APR-2001
 15:50:19.34

Process Quotas Current Max Limit Max Time
----------------------------- ---------- -------- -------

441

Chapter 11. ACMSMGR Commands

Working Set Size 65008 65008 322992 18-APR-2001
 18:21:19.78
AST Limit 4 (0%) 5 (0%) 1999 11-APR-2001
 15:50:19.34
Byte Limit 0 (0%) 0 (0%) 1775409 18-APR-2001
 18:21:19.78
Direct I/O Limit 0 (0%) 0 (0%) 15000 18-APR-2001
 18:21:19.78
Buffered I/O Limit 2 (0%) 2 (0%) 10000 18-APR-2001
 18:21:19.78
Enqueue Limit 0 (0%) 0 (0%) 10000 18-APR-2001
 18:21:19.78
File Limit 1 (0%) 1 (0%) 1001 18-APR-2001
 18:21:19.78
Page File Quota 6704 (1%) 6704 (1%) 500000 18-APR-2001
 18:21:19.78
Timer Queue Limit 3 (0%) 3 (0%) 500 11-APR-2001
 09:14:55.49
Channel Count 15 15

Node POOL
------ --
VLCROW Pool Class Collection State enabled

 Process Pool Pct Time
 --- -----

 Pool Size 262144
 Current Free (bytes) 259760 (99%)
 Minimum Free (bytes) 259760 (99%) 19-APR-2001
 13:59:32.98
 Largest Current Free Block (bytes) 65536
 Minimum Largest Free Block (bytes) 65536 19-APR-2001
 13:59:32.98
 Allocation Failures 0
 Garbage Collections 0

Node ERROR
------ --
VLCROW Error Class Collection State enabled
 Error Count 0
 Last Error Message 0
 Time of Last Error (null)

This command displays all Configuration class information for the TSC on node VLCROW.
Authorization is performed for the user specified by the logical name ACMS$MGMT_USER,
or by proxy if the logical is not defined. Since neither the /FULL nor the /BRIEF qualifier was
supplied, and no specific class was selected, all TSC information is displayed.

11.43. ACMSMGR SHOW USER

ACMSMGR SHOW USER
ACMSMGR SHOW USER — Displays Remote Manager user information for a server on one or
more nodes. Information about both proxy and nonproxy users is displayed.

442

Chapter 11. ACMSMGR Commands

Format

ACMSMGR SHOW USER [/qualifiers]

Command Qualifier Default
/[BRIEF,FULL] /BRIEF
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

Parameters

None.

Qualifiers

/[BRIEF,FULL]

This qualifier causes detailed information about each user to be displayed. When the qualifier is
omitted, only summary information is displayed.

/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

443

Chapter 11. ACMSMGR Commands

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command displays information about each user currently logged in to the Remote Manager
server. The following fields are displayed:

• Server Node: The node from which the information was obtained.

• Client Id: A unique identifier for each client.

• Username: The name of the local (server node) account to which the user is logged in. This is the
user name that is being used for authorization.

• Proxy: A flag indicating whether the user is logged in using an ACMS proxy. A value of zero (0)
indicates that the login is not proxy based; a value of 1 indicates that the login is proxy based.

• Login Node: The node from which the client logged in. This node may not be the same as the
server node.

If the /FULL qualifier is specified, the following additional information is displayed:

• Credentials expiration: The date and time at which the user's credentials will expire.

• UIC: The UIC of the account from which the login was initiated.

• Proxy UIC: The UIC of the account on the server node that is used for authorization.

Examples
• $ ACMSMGR SHOW USERS

ACMS Remote Management -- Command line utility
ACMS V5.0 User Table Display Time: 18-APR-2001
 13:59:45.09
 Server Client Login
 Node Id Username Proxy Node
------------ -------- ------------ ----- -----------------------------
 gocrow 16 LT_SUT 1 gocrow.zko.dec.com
 gocrow 17 LT_SUT 1 vlcrow.zko.dec.com
 vlcrow 16 LT_SUT 1 vlcrow.zko.dec.com
 vlcrow 20 LT_SUT 1 vlcrow.zko.dec.com

This command displays summary information about users who have logged in to Remote Manager
on the node specified by the logical name ACMS$MGMT_ SERVER_NODE. Authorization is
performed for the user specified by the logical name ACMS$MGMT_USER, or by proxy if the
logical is not defined. In this example, all users logged in using proxy (Proxy = 1).

444

Chapter 11. ACMSMGR Commands

• $ ACMSMGR SHOW USERS /FULL /NODE=VLCROW
ACMS Remote Management -- Command line utility
ACMS V5.0 User Table Display Time: 18-APR-2001
 13:59:47.07
 Node User Information
------------- ---
 VLCROW Client id 16
 Username LT_SUT
 Login Node vlcrow.zko.dec.com
 Credentials expiration 18-APR-2002 13:59:47.07
 Proxy Flag 1
 UIC [208,40]
 Proxy UIC [197,3]

 Node User Information
------------- ---
 VLCROW Client id 18
 Username LT_SUT
 Login Node vlcrow.zko.dec.com
 Credentials expiration 18-APR-2001 14:44:01.02
 Proxy Flag 1
 UIC [197,3]
 Proxy UIC [197,3]

This command displays all information about users who have logged in to Remote Manager on
the node specified by the logical name ACMS$MGMT_ SERVER_NODE. Authorization is
performed for the user specified by the logical name ACMS$MGMT_USER, or by proxy if the
logical is not defined. In this example, both users logged in using proxy (Proxy = 1).

11.44. ACMSMGR SHOW VERSION

ACMSMGR SHOW VERSION
ACMSMGR SHOW VERSION — Displays the current version of ACMSMGR and its related
software components. This command (and its qualifiers) is only for use with systems running ACMS
Version 4.4 or higher.

Format

ACMSMGR SHOW VERSION [/qualifiers]

Command Qualifier Default
/INTERVAL=interval Command is executed once.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/OUT=file-name None
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_READ

445

Chapter 11. ACMSMGR Commands

Parameters
None.

Qualifiers
/INTERVAL=interval

This qualifier causes the command to be reissued automatically at a specified interval (in
seconds). Use either Ctrl/C or Ctrl/Y to interrupt the command. If this qualifier is not specified,
the command is executed only once.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Examples
$ ACMSMGR SHOW VERSION /NODE=GOCROW
ACMS Remote Management -- Command line utility
ACMS V5.0 ACMS Version Display Time: 18-APR-2001 13:59:47.07
 Node Version Information
------------- ---
 local ACMSMGR Version ACMS V5.0
 GOCROW ACMS Version V5.0
 MGMT Header Version 2
 MGMT EXC Header Version 2
 MGMT Config File Version 2

446

Chapter 11. ACMSMGR Commands

This command displays the current version of the ACMSMGR installed locally as well as the location
and version of the related software components.

11.45. ACMSMGR START EXC

ACMSMGR START EXC
ACMSMGR START EXC — Starts an ACMS application on one or more remote nodes.

Format
ACMSMGR START EXC [/qualifiers]

Command Qualifier Default
/APPLICATION=application-name Qualifier is required.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/APPLICATION=application-name

This required qualifier specifies a particular ACMS application to start. The full application name
must be specified.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

447

Chapter 11. ACMSMGR Commands

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/START APPL. This command is
executed synchronously. If the command completes successfully, the application has been started on
the target nodes. If not, error messages are displayed.

Examples
$ ACMSMGR START EXC/APPL=VR_APPL/NODE=SPARKS

This command starts the VR_APPL application on node SPARKS.

11.46. ACMSMGR START QTI

ACMSMGR START QTI
ACMSMGR START QTI — Starts an ACMS Queued Task Initiator (QTI) on one or more remote
nodes.

Format

ACMSMGR START QTI [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

448

Chapter 11. ACMSMGR Commands

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command is equivalent to the ACMSOPER command ACMS/START QTI. This command is
executed synchronously. If the command completes successfully, the application has been started on
the target nodes. If not, error messages are displayed.

Examples
$ ACMSMGR START QTI/NODE=SPARKS

This command starts the QTI on node SPARKS.

11.47. ACMSMGR START SYSTEM

ACMSMGR START SYSTEM
ACMSMGR START SYSTEM — Starts an ACMS run-time system on one or more remote nodes.

Format
ACMSMGR START SYSTEM [/qualifiers]

Command Qualifier Default
/NOAUDIT Start system with auditing enabled.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/QTI Start system without QTI running.
/NOTERMINALS Start system with TSC and CPs running.
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

449

Chapter 11. ACMSMGR Commands

Parameters

None.

Qualifiers

/NOAUDIT

This qualifier starts the system with auditing disabled. If this qualifier is not specified, the system
is started with auditing enabled.

There is no "/AUDIT" qualifier to start ACMS with auditing enabled. Rather as the notes below
describe, just start ACMS without the /NOAUDIT qualifier in order for ACMS to start with
auditing enabled.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/QTI

This qualifier starts the system with QTI running. If this qualifier is not specified, the system is
started with QTI in stopped state.

There is no "/NOQTI" qualifier to start ACMS with QTI stopped. Rather as the notes below
describe, just start ACMS without the /QTI qualifier in order for ACMS to start with QTI stopped.

/NOTERMINALS

This qualifier starts the system without the TSC and CPs running. If this qualifier is not specified,
the system is started with the TSC and CPs running.

There is no "/TERMINALS" qualifier to start ACMS with the TSC and CPs running. Rather as
the notes below describe, just start ACMS without the /NOTERMINALS qualifier in order for
ACMS to start without the TSC and CPs running.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

450

Chapter 11. ACMSMGR Commands

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command is equivalent to the ACMSOPER command ACMS/START SYS. This command is
executed synchronously. If the command completes successfully, the system has been started on the
target nodes. If not, error messages are displayed.

If no qualifiers are specified with this command, the equivalent ACMSOPER command is ACMS/
START SYS/NOQTI/TERMINALS/AUDIT. In other words, the default values for the ACMSMGR
START SYS command are /AUDIT, /TERMINALS, and /NOQTI. If you want to override a default
you may use /NOAUDIT, /NOTERMINALS, or /QTI however you may not specify any of the
defaults directly. You may only select them by leaving out the qualifier and taking the default.

Examples
$ ACMSMGR START SYSTEM/NODE=SPARKS/NOTERMINALS

This command starts the ACMS run-time system on node SPARKS, without the QTI, TSC, or CPs
running.

11.48. ACMSMGR START TERMINALS

ACMSMGR START TERMINALS
ACMSMGR START TERMINALS — Starts an ACMS TSC and any associated CPs on one or more
remote nodes.

Format
ACMSMGR START TERMINALS [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

451

Chapter 11. ACMSMGR Commands

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command is equivalent to the ACMSOPER command ACMS/START TERMINALS. This
command is executed synchronously. If the command completes successfully, the application has been
started on the target nodes. If not, error messages are displayed.

Examples
$ ACMSMGR START TERMINALS/NODE=SPARKS

This command starts the TSC on node SPARKS.

11.49. ACMSMGR START TRACE_MONITOR

ACMSMGR START TRACE_MONITOR
ACMSMGR START TRACE_MONITOR — This command requests the Remote Manager on the
target nodes to start the ACMS$TRACE_MON process. The ACMS$TRACE_MON process is an
intermediate process used by the Remote Manager to communicate with ACMS run-time processes to
enable and disable collections.

Format
ACMSMGR START TRACE_MONITOR [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

452

Chapter 11. ACMSMGR Commands

Parameters
None.

Qualifiers
/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command requests the Remote Manager to start the ACMS$TRACE_MON process on the target
node. The ACMS$TRACE_MON process is an intermediate process used by the Remote Manager to
communicate with ACMS run-time processes to enable and disable collections.

In general, external entities do not require a startup or shutdown request of the trace monitor process.
The Remote Manager starts the trace monitor during process initialization and stops it during process
shutdown. Additionally, the Remote Manager starts the trace monitor anytime it is needed if it is not
already started. Once started, the trace monitor continues running until the Remote Manager shuts
down.

After issuing the start command to the trace monitor, the Remote Manager waits for a period of up to
trace_start_wait_time (a Parameter table parameter that is dynamic and expressed in seconds). If the
trace monitor fails to start during that period, the ACMSMGR command returns an error.

Examples
$ ACMSMGR START TRACE_MONITOR

This command starts the ACMS$TRACE_MON process on the node specified by the logical name
ACMS$MGMT_SERVER_NODE. Authorization is performed for the user specified by the logical

453

Chapter 11. ACMSMGR Commands

name ACMS$MGMT_USER, or based on an ACMS proxy on the target node if the logical is not
defined. If the process is successfully started, no messages are displayed.

11.50. ACMSMGR STOP EXC

ACMSMGR STOP EXC
ACMSMGR STOP EXC — Stops an ACMS application on one or more remote nodes.

Format

ACMSMGR STOP EXC [/qualifiers]

Command Qualifier Default
/APPLICATION=application-name Qualifier is required.
/CANCEL Wait for executing tasks to complete.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE.
/USER=user-name Translation of logical ACMS$MGMT_USER.

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

Qualifiers

/APPLICATION=application-name

This required qualifier specifies a particular ACMS application to start. The entire application
name must be specified.

/CANCEL

This qualifier stops the application without waiting for currently executing tasks to complete.
If this qualifier is omitted, any tasks currently executing are allowed to complete before the
application is stopped.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

454

Chapter 11. ACMSMGR Commands

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes

This command is equivalent to the ACMSOPER command ACMS/STOP APPL. This command is
executed synchronously. If the command completes successfully, the application has been stopped on
the target nodes. If not, error messages are displayed.

Examples
$ ACMSMGR STOP EXC/APPL=VR_APPL/NODE=SPARKS

This command stops the VR_APPL application on node SPARKS.

11.51. ACMSMGR STOP MANAGER

ACMSMGR STOP MANAGER
ACMSMGR STOP MANAGER — Stops the Remote Manager on the target nodes.

Format

ACMSMGR STOP MANAGER [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required

ACMS$MGMT_OPER

Parameters

None.

455

Chapter 11. ACMSMGR Commands

Qualifiers
/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command requests an orderly shutdown of the Remote Manager process. This command may
take several minutes to complete if any of the interfaces is in a noninterruptible state when the
command is issued.

If the command fails to complete successfully, an alternative means of stopping the Remote Manager
is to use the DCL command STOP/ID.

The Remote Manager can be restarted only by logging in to the target node and running the ACMS
$MGMT_STARTUP command procedure.

Examples
$ ACMSMGR STOP MANAGER

This command stops the Remote Manager on the node specified by the logical name ACMS
$MGMT_SERVER_NODE. Authorization is performed for the user specified by the logical ACMS
$MGMT_USER, or is based on an ACMS proxy on the target node if the logical is not defined. If the
server is successfully stopped, no messages are displayed.

11.52. ACMSMGR STOP QTI

ACMSMGR STOP QTI
ACMSMGR STOP QTI — Stops an ACMS Queued Task Initiator (QTI) on one or more remote
nodes.

456

Chapter 11. ACMSMGR Commands

Format
ACMSMGR STOP QTI [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command is equivalent to the ACMSOPER command ACMS/STOP QTI. This command is
executed synchronously. If the command completes successfully, the QTI has been stopeed on the
target nodes. If not, error messages are displayed.

Examples
$ ACMSMGR STOP QTI/NODE=SPARKS

457

Chapter 11. ACMSMGR Commands

This command stops the QTI on node SPARKS.

11.53. ACMSMGR STOP SYSTEM

ACMSMGR STOP SYSTEM
ACMSMGR STOP SYSTEM — Stops an ACMS run-time system on one or more remote nodes.

Format
ACMSMGR STOP SYSTEM [/qualifiers]

Command Qualifier Default
/CANCEL Wait for executing tasks to complete.
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/CANCEL

This qualifier stops the ACMS run-time system without waiting for currently executing tasks
to complete. If not specified, any tasks currently executing are allowed to complete before the
application is stopped.

/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

458

Chapter 11. ACMSMGR Commands

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command is equivalent to the ACMSOPER command ACMS/STOP SYSTEM. This command is
executed synchronously. If the command completes successfully, the application has been stopped on
the target nodes. If not, error messages are displayed.

Examples
$ ACMSMGR STOP SYS/NODE=SPARKS/CANCEL

This command stops the ACMS run-time system on node SPARKS. All currently executing tasks,
servers, and users are canceled. ACMSMGR

11.54. ACMSMGR STOP TERMINALS

ACMSMGR STOP TERMINALS
ACMSMGR STOP TERMINALS — Stops the TSC and any related CPs on one or more remote
nodes.

Format
ACMSMGR STOP TERMINALS [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

Parameters
None.

Qualifiers
/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

459

Chapter 11. ACMSMGR Commands

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command is equivalent to the ACMSOPER command ACMS/STOP TERMINALS. This
command is executed synchronously. If the command completes successfully, the terminal subsystem
has been stopped on the target nodes. If not, error messages are displayed.

Examples
$ ACMSMGR STOP TERMINALS/NODE=SPARKS/CANCEL

This command stops the ACMS terminal subsystem on node SPARKS.

11.55. ACMSMGR STOP TRACE_MONITOR

ACMSMGR STOP TRACE_MONITOR
ACMSMGR STOP TRACE_MONITOR — Stops the ACMS$TRACE_MON process on the target
node.

Format
ACMSMGR STOP TRACE_MONITOR [/qualifiers]

Command Qualifier Default
/NODE=node-name Translation of logical ACMS

$MGMT_SERVER_NODE
/USER=user-name Translation of logical ACMS$MGMT_USER

Privileges Required
ACMS$MGMT_OPER

460

Chapter 11. ACMSMGR Commands

Parameters
None.

Qualifiers
/NODE=node-name

This qualifier specifies a fully- or partially-qualified TCP/IP host name. This name must match
the current DECnet host name. IP addresses and host names (or aliases) that exceed six characters
or include mixed case are not allowed.

If the /NODE qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_SERVER_NODE. If the logical is defined, the value of the logical
is used by default.

In order for the command to execute, either the /NODE qualifier must be provided on the
command line, or the ACMS$MGMT_SERVER_NODE logical must be defined.

/USER=user-name

This qualifier specifies the name of the OpenVMS account on the server node to be used for
authorization. If this qualifier is specified, an explicit login must already have been completed
successfully (see Section 11.10).

If the /USER qualifier is not specified, the ACMSMGR utility checks for the presence of the
logical name ACMS$MGMT_USER. If the logical is defined, the value of the logical is used by
default.

If the /USER qualifier is not specified and the ACMS$MGMT_USER logical is not defined, the
ACMSMGR utility attempts proxy access. See Section 4.4.1.2 for a discussion of proxy access.

Notes
This command requests the Remote Manager to stop the ACMS$TRACE_MON process on the target
node. The ACMS$TRACE_MON process is an intermediate process used by the Remote Manager to
communicate with ACMS run-time processes to enable and disable collections.

In general, external entities do not require a startup or shutdown request of the trace monitor process.
The Remote Manager starts the trace monitor during process initialization and stops it during process
shutdown. Additionally, the Remote Manager starts the trace monitor anytime it is needed if it is not
already started. Once started, the trace monitor continues running until the Remote Manager shuts
down.

After issuing the stop command to the trace monitor, the Remote Manager waits for a period of up to
trace_start_wait_time (a Parameter table parameter that is dynamic and expressed in seconds). If the
trace monitor fails to stop during that period, the ACMSMGR command returns an error.

Examples
$ ACMSMGR STOP TRACE_MONITOR

This command stops the ACMS$TRACE_MON process on the node specified by the logical name
ACMS$MGMT_SERVER_NODE. Authorization is performed for the user specified by the logical

461

Chapter 11. ACMSMGR Commands

name ACMS$MGMT_USER, or based on an ACMS proxy on the target node if the logical is not
defined. If the process is successfully stopped, no messages are displayed.

462

Chapter 12. ACMSSNAP Commands
This chapter provides reference information about ACMSSNAP utility commands. Note that this
utility and its commands are designed to run locally on a Remote Manager Version 4.4 or higher
system.

12.1. ACMSSNAP Overview
The ACMSSNAP utility is used to display information collected in an ACMS Remote Manager data
snapshot file. ACMSSNAP runs locally and requires local access to data snapshot files. This means
that although a data snapshot file may have been created on a remote node, that file must be directly
accessible to the local process running the ACMSSNAP utility.

The ACMSSNAP utility only displays information from the data snapshot file. It does not modify the
data in the file or make modifications to the ACMS run-time system.

12.1.1. Command Format
The format for ACMSSNAP commands is as follows:

ACMSSNAP> verb object qualifiers

The following verbs are supported:

• CLOSE

• EXIT

• HELP

• NEXT

• OPEN

• PREV

• QUIT

• RESET

• SHOW

• TRACE

Most verbs have associated objects and qualifiers. The following sections list the objects and any
qualifiers for each ACMSSNAP command.

12.1.2. Command Objects and Qualifiers
The objects and qualifiers for the ACMSSNAP commands are summarized in the table below.

Table 12.1. ACMSSNAP Command Objects and Qualifiers

Objects Qualifiers
CLOSE Command

463

Chapter 12. ACMSSNAP Commands

Objects Qualifiers
None None
EXIT Command
None None
HELP Command
None None
NEXT Command
[number] None
OPEN Command
[file-name] /AT, /CP_SLOTS, /MAX_AGENTS, /

MAX_APPL, /SUMMARY
PREV Command
[number] None
QUIT Command
None None
RESET Command
None /ALL
SHOW Command
ACC /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /

OUT, /POOL, /PREV, /RUNTIME
AGENT /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /

OUT, /POOL, /PREV, /RUNTIME
CP /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /

OUT, /POOL, /PREV, /RUNTIME
EXC /APPL, /AT, /BRIEF, /CONFIG, /FULL, /ID, /

NEXT, /OUT, /POOL, /PREV, /RUNTIME
GROUP /APPL, /AT, /BRIEF, /CONFIG, /FULL, /ID, /

NEXT, /OUT, /POOL, /PREV, /RUNTIME
QTI /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /

OUT, /POOL, /PREV, /RUNTIME
SERVER /APPL, /AT, /BRIEF, /CONFIG, /FULL, /ID, /

NEXT, /OUT, /POOL, /PREV, /RUNTIME
TSC /AT, /BRIEF, /CONFIG, /FULL, /ID, /NEXT, /

OUT, /POOL, /PREV, /RUNTIME
TRACE Command
None None

12.2. ACMSSNAP CLOSE Command

ACMSSNAP CLOSE
ACMSSNAP CLOSE — Closes the current data snapshot file.

464

Chapter 12. ACMSSNAP Commands

Format
ACMSSNAP> CLOSE

Privileges Required
None.

Parameters
None.

Qualifiers
None.

Notes
Only one snapshot file can be open at a time.

Examples
ACMSSNAP> CLOSE

This command closes the current data snapshot file.

12.3. ACMSSNAP EXIT Command
ACMSSNAP EXIT
ACMSSNAP EXIT — Ends the current ACMSSNAP session.

Format
ACMSSNAP> EXIT

Privileges Required
None.

Parameters
None.

Qualifiers
None.

Notes
This command ends the current ACMSSNAP session and returns control to DCL. It is equivalent to
the QUIT command.

Examples
ACMSSNAP> EXIT

465

Chapter 12. ACMSSNAP Commands

This command ends the current ACMSSNAP session.

12.4. ACMSSNAP HELP Command

ACMSSNAP HELP
ACMSSNAP HELP — Displays help information about the ACMS Remote Manager Data Snapshot
Utility (ACMSSNAP) and its commands.

Format
ACMSSNAP> HELP

Privileges Required
None.

Parameters
None.

Qualifiers
None.

Notes
Online help is available for each ACMSSNAP command. Each help topic summarizes the valid
syntax, abbreviations, parameters, and qualifiers for a particular command and also indicates all
default and required values.

For a comprehensive list of ACMS utilities that offer online help or for further instructions on how to
invoke help, see ACMS Help.

Examples
ACMSSNAP> HELP

This command invokes online help for the ACMSSNAP utility and displays a list of available topics.

12.5. ACMSSNAP NEXT Command

ACMSSNAP NEXT
ACMSSNAP NEXT — Reads the next sequence of snapshot records.

Format
ACMSSNAP> NEXT [number]

Privileges Required
None.

466

Chapter 12. ACMSSNAP Commands

Parameters
number

A numeric value that indicates the number of records to be read. If a value is not specified, the
default value of 1 record is used.

Qualifiers
None.

Notes
Use the NEXT command to move forward incrementally in a data snapshot file. When the NEXT
command is issued, the ACMSSNAP utility reads the next record or series of records from the
currently open snapshot file in chronological order. If a number is not specified with this command,
NEXT moves forward one record at a time.

Note that the NEXT and PREV commands are not intended to be the primary means of navigation
through a data snapshot file. Use the ACMSSNAP SHOW/AT command to first identify an
approximate timeframe for the ACMS activity that you want to view. Then use the NEXT or PREV
command to move forward or backward incrementally from that timeframe.

If tracing is turned on (TRACE command), header information is displayed for each record read.

Examples
ACMSSNAP> NEXT 10

This command reads the next 10 records in the data snapshot file. These records overlay any previous
records for this entity and class.

12.6. ACMSSNAP OPEN Command

ACMSSNAP OPEN
ACMSSNAP OPEN — Opens the specified data snapshot file.

Format
ACMSSNAP> OPEN file-name [/qualifiers]

Command Qualifier Default
/AT=time None
/CP_SLOTS=value The value of ACMS

$MGMT_SNAP_CP_SLOTS, or if not defined,
3.

/MAX_AGENTS=value The value of ACMS
$MGMT_SNAP_MAX_AGENTS, or if not
defined, 2.

/MAX_APPLS=value The value of ACMS
$MGMT_SNAP_CP_SLOTS, or if not defined,
10.

467

Chapter 12. ACMSSNAP Commands

Command Qualifier Default
/SUMMARY None

Privileges Required
None.

Parameters
file-name

This required parameter specifies an OpenVMS file specification or logical that indicates the
name and location of the data snapshot file.

Qualifiers
/AT=time

This qualifier moves through the open data snapshot file to the first record equal to or greater than
the specified time. The format of time is DD-MMMYY: hh:mm:ss.nn. Partial dates and times (for
example, 10-OCT or 09:00) are supported.

/CP_SLOTS=value

This qualifier reserves space for CP records in a statically-sized internal table. CP records are
stored in the table by process name. These records are not removed from the table until the
snapshot file is closed. If there is insufficient space in the table, data for subsequent CP processes
is discarded. (A warning message is issued if the CP table becomes full and TRACE is turned
on). Specifying this qualifier overrides the value of the logical name ACMS$MGMT_SNAP_CP_
SLOTS, if defined. The default value is 3.

/MAX_AGENTS=value

This qualifier determines the number of different AGENT processes that can be read while the
file is open. AGENT data is stored internally in a statically sized table, with one row for each
unique AGENT process name found. If there is insufficient space in the table to hold all the
AGENT records in the file, AGENT records are discarded. This qualifier overrides the ACMS
$MGMT_SNAP_MAX_ AGENTS logical name, which is an alternative way of specifying
this value. Specifying this qualifier overrides the value of the logical name ACMS$MGMT_
SNAP_MAX_AGENTS, if defined. The default value is 2.

/MAX_APPLS=value

This qualifier reserves space for EXC records in a statically-sized internal table. EXC records
are stored in the table by application name. These records are not removed from the table until
the snapshot file is closed. If there is insufficient space in the table, data for subsequent EXC
processes is discarded. (A warning message is issued if the EXC table becomes full and TRACE
is turned on). Specifying this qualifier overrides the value of the logical name ACMS$MGMT_
SNAP_MAX_APPL, if defined. The default value is 10.

/SUMMARY

This qualifier scans the entire data snapshot file and displays a summary report that shows the
total number of records written (per entity, class, and file) as well as the time when the first and
last record was written (per entity).

468

Chapter 12. ACMSSNAP Commands

Notes
Data snapshot files are RMS indexed files. You can open a snapshot file with the ACMSSNAP utility
even if it is currently being written to by an ACMS Remote Manager process.

Examples
ACMSSNAP> OPEN ACMS$MGMT_SNAPSHOT /SUMMARY /CP_SLOTS=10 /MAX_APPL=5
ACMS Remote Management -- Snapshot utility
 Compiling summary statics ...

Entity # Recs First
 Record Last Record All Id Cfg Rt
 Pool Error
------ ------ ---------------------- ---------------------- ---- --- --- --
 ---- -----
acc 42 7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 42 0 0 0
 0 0
tsc 42 7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 42 0 0 0
 0 0
qti 0 0 0 0 0
 0 0
cp 184 7-JUN-2001 14:00:56.69 7-JUN-2001 14:21:32.19 184 0 0 0
 0 0
exc 204 7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 204 0 0 0
 0 0
server 6496 7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 6496 0 0 0
 0 0
group 3032 7-JUN-2001 14:01:28.01 7-JUN-2001 14:21:32.19 3032 0 0 0
 0 0
mgr 0 0 0 0 0
 0 0

 10000 Records Read
MAX_APPL = 10 (use /MAX_APPL on OPEN or define ACMS$MGMT_SNAP_MAX_APPL to
 change)
CP_SLOTS = 10 (use /CP_SLOTS on OPEN or define ACMS$MGMT_SNAP_CP_SLOTS to
 change)

This command opens the data snapshot file referenced by the ACMS$MGMT_ SNAPSHOT logical,
scans all the records, and displays a summary report. The CP_SLOTS and MAX_APPLS values are
explicitly set.

12.7. ACMSSNAP PREV Command
ACMSSNAP PREV
ACMSSNAP PREV — Scans the previous sequence of snapshot records.

Format
ACMSSNAP> PREV [number]

Privileges Required
None.

469

Chapter 12. ACMSSNAP Commands

Parameters
number

A numeric value that indicates the number of records to be read. If a value is not specified, the
default value of 1 record is used.

Qualifiers
None.

Notes
Use the PREV command to move backward incrementally in a data snapshot file. When the PREV
command is issued, the ACMSSNAP utility reads the previous record or series of records from the
currently open snapshot file in reverse chronological order. If a number is not specified with this
command, PREV moves backward one record at a time.

Note that the NEXT and PREV commands are not intended to be the primary means of navigation
through a data snapshot file. Use the SHOW/AT=date-time command to first identify an approximate
timeframe for the ACMS activity that you want to view. Then use the NEXT or PREV command to
move forward or backward incrementally from that timeframe.

If tracing is turned on (TRACE command), header information is displayed for each record read.

Examples
ACMSSNAP> PREV 10

This command scans and reads the previous 10 data snapshot records. These records overlay any
previous records for this entity and class.

12.8. ACMSSNAP QUIT Command

ACMSSNAP QUIT
ACMSSNAP QUIT — Ends the current ACMSSNAP session.

Format
ACMSSNAP> QUIT

Privileges Required
None.

Parameters
None.

Qualifiers
None.

470

Chapter 12. ACMSSNAP Commands

Notes
This command ends the current ACMSSNAP session and returns control to DCL. It is equivalent to
the EXIT command.

Examples
ACMSSNAP> QUIT

This command ends the current ACMSSNAP session.

12.9. ACMSSNAP RESET Command

ACMSSNAP RESET
ACMSSNAP RESET — Clears the local memory tables.

Format
ACMSSNAP> RESET [/qualifiers]

Command Qualifier Default
/ALL None

Privileges Required
None.

Parameters
None.

Qualifiers
/ALL

This qualifier instructs the ACMSSNAP utility to place the file pointer at the beginning of the
data snapshot file. If this qualifier is not specified, the local memory tables are cleared; however,
the file pointer remains at the current position within the data snapshot file.

Notes
Use the RESET command to remove all data snapshot records from internal data tables and clear the
local memory buffer.

Specifying the /ALL qualifier is equivalent to closing and reopening the data snapshot file; the
position marker is moved to the beginning of the data snapshot file. Without the /ALL qualifier, the
internal tables are cleared, but the location of the position marker is not changed.

Examples
ACMSSNAP> RESET /ALL

This command clears the local buffer of all data snapshot records and places the position marker at the
beginning of the data snapshot file.

471

Chapter 12. ACMSSNAP Commands

12.10. ACMSSNAP SHOW Command

ACMSSNAP SHOW
ACMSSNAP SHOW — Locates and displays information from one or more data snapshot records.

Format
ACMSSNAP> SHOW entity [/qualifiers]

Command Qualifier Default
/APPL=application-name None. Valid for EXC, SERVER, and Task Group

only.
/AT=time None
/[BRIEF,FULL] /FULL if no class qualifier (/CONFIG, /ID, /

POOL, or /RUNTIME) is specified. Otherwise, /
BRIEF.

/[class-name] * (all)
/GROUP=group-name Valid for Task Group only.
/NEXT=value None
/OUT=file-name None
/PREV=value None
/SERVER=server-name Valid for Server only.

Privileges Required
None.

Parameters
entity

This parameter can be one of the following ACMS entities: ACC, AGENT, CP, EXC, GROUP,
QTI, SERVER, or TSC.

Qualifiers
/APPL=application-name

This qualifier specifies the application for which you want to view information. This qualifier is
only valid when specified with the EXC, SERVER, or GROUP entity.

/AT=time

This qualifier moves through the available data snapshot records and displays the first record
equal to or greater than the specified time. The format of time is DD-MMM-YY:hh:mm:ss.nn.
Partial dates and times (for example, 10-OCT or 09:00) are supported.

/[BRIEF,FULL]

This qualifier causes either summary (/BRIEF) or detailed (/FULL) information to be displayed.

472

Chapter 12. ACMSSNAP Commands

/[CONFIG,ID,POOL,RUNTIME]

This qualifier causes data for the class to be displayed. If no class qualifier is specified, this
qualifier is ignored and all details are displayed (equivalent to /FULL).

/GROUP=group-name

This qualifier specifies the ACMS task group for which you want to view information. Wildcard
matching is performed on the name provided. This qualifier is only valid when specified with the
GROUP entity.

/NEXT=value

Use this qualifier to display the specified number of records (in chronological order) for an entity.
Data is displayed for each record found. If /FULL is not specified, a timestamp that indicates
when the record was created is also displayed. A value is required with this qualifier.

/OUT=file-name

This qualifier causes output to be written to the specified file. If this qualifier is not specified,
output is displayed to the terminal (SYS$OUTPUT).

/PREV=value

Use this qualifier to display the specified number of records (in reverse chronological order) for
an entity. Data is displayed for each record found. If /FULL is not specified, a timestamp that
indicates when the record was created is also displayed. A value is required with this qualifier.

/SERVER=server-name

This qualifier specifies the ACMS procedure server for which you want to view information.
Wildcard matching is performed on the name provided. This qualifier is only valid when specified
with the SERVER entity.

Notes
The data shown for each entity parallels the format of the equivalent ACMSMGR command with the
following exceptions:

• A timestamp is appended within square brackets to the output of /BRIEF displays. This is
provided as a navigational aid.

• The node name is derived from the translation of the UCX$INET_HOST logical on the system the
snapshot file was created. In ACMSMGR, the node name is taken from whatever was specified by
the client when the ACMSMGR command was issued (such as from the /NODE qualifier or from
the ACMS$MGMT_SERVER_NODE logical).

Data is written to snapshot files based on entries in the Collection table. As a result, only specific
classes of information for a given entity may have been stored. Show commands for entities and
classes that were not stored may display their default collection values along with a state value of
disabled. The storage state for the collection row must be enabled for the actual data to be stored.

The /AT qualifier is intended to be the initial means of navigation by locating a specific entity record
for a point in time. The ACMSSNAP utility uses the date given with the /AT qualifier and reads either
backwards or forwards through the file until it finds a record for the specified entity. If the timestamp
of the record is greater than the one specified, the utility begins reading backwards through the file
until it finds an entity record with a time stamp equal to or less than the one specified.

473

Chapter 12. ACMSSNAP Commands

If end or beginning of file is reached first, the search ends and an end-of-file message is displayed.
Otherwise, the requested data is displayed. The end result is that when the command completes, a
record is shown which is either at the exact time requested, or is the record just before or just after the
time requested. You can then use the /NEXT or /PREV qualifier to navigate chronologically through
adjacent records.

Special timestamps are used to deal with beginning and end of file conditions. If the beginning of file
is reached, the current timestamp is forced to be NULL (17-NOV-1958 00:00:00.00). If the end of file
is reached, the current timestamp is forced to be 17-NOV-3000 00:00:00.00. To recover from these
situations, a single NEXT or PREV command will read either the first or last record in the file.

Examples
• ACMSSNAP> SHOW ACC /RUNTIME /AT="7-JUN-2001 14:21"

ACMS Remote Management -- Snapshot utility
 Runtime DECnet ---- Users ---- --Applications- Application
 Node Class Object Current Maximum Current Maximum Starts
 ------- -------- ------- ------- ------- ------- ------- ------------
 sparks enabled started 97 100 5 5 5 [7-
JUN-2001-14:20:31.98]

This command displays ACC runtime information for the record written on June 7, 2001 at
14:20:31.98.

• ACMSSNAP> SHOW ACC /POOL /FULL
ACMS Remote Management -- Snapshot utility
 ===
 Node POOL

 --
sparks Pool Class Collection State enabled
 MSS Gauge Current Max Time

 --
 MSS Objects 1859 1881 7-JUN-2001
 14:19:12.45
 MSS Maxbuf Message Counters Current Time
 ---------------------------------- -----------------

 MSS Msg Size 0 to 1024 bytes 13927
 MSS Msg Size 1025 to 2048 bytes 94
 MSS Msg Size 2049 to 4096 bytes 15
 MSS Msg Size 4097 to 8192 bytes 41
 MSS Msg Size 8193 to 16384 bytes 0
 MSS Msg Size 16385 to 32768 bytes 0
 MSS Msg Size 32769 to 65536 bytes 0
 MSS Message Counter Overflow Resets 0
 (null)
 MSS Process Pool Pct Time
 -- -----

 Pool Size (bytes) 524288
 Current Free (bytes) 516688 (98%)
 Minimum Free (bytes) 515664 (98%) 7-
JUN-2001 14:18:16.00
 Largest Current Free
 Block (bytes) 65536

474

Chapter 12. ACMSSNAP Commands

 Minimum Largest Free
 Block (bytes) 65536 7-
JUN-2001 14:20:56.00
 Allocation Failures 0
 Garbage Collections 0
 MSS Shared Pool Pct Time
 -- ----

 Pool Size (bytes) 33792000
 Current Free (bytes) 33624344 (99%)
 Minimum Free (bytes) 33620712 (99%) 7-
JUN-2001 14:14:25.98
 Largest Current Free
 Block (bytes) 65536
 Minimum Largest Free
 Block (bytes) 65536 7-
JUN-2001 14:20:56.00
 Allocation Failures 0
 Garbage Collections 0
 WS/TWS Pools (for all EXCs) Current Max
 Time
 ---------------------------------- --------- ---------

 TWS Pool Size Total (pagelets) 562800 562800 7-
JUN-2001 14:20:55.99
 TWSC Pool Size Total (pagelets) 22500 22500 7-
JUN-2001 14:20:55.99
 WS Pool Largest Used (bytes) 536 536 7-
JUN-2001 14:20:55.99
 WSC Pool Largest Used (bytes) 848 848 7-
JUN-2001 14:20:55.99
 TWS Pool Largest Used (bytes) 73728 73728 7-
JUN-2001 14:20:55.99
 TWSC Pool Largest Used (bytes) 1792 1792 7-
JUN-2001 14:20:55.99
 WS/TWS Pools (for all EXCs) Current Min
 Time
 ---------------------------------- --------- ---------

 WS Pool Minimum Free (bytes) 130536 130536 7-
JUN-2001 14:20:55.99
 WSC Pool Minimum Free (bytes) 64688 64688 7-
JUN-2001 14:20:55.99
 TWS Pool Minimum Free (bytes) 3809280 3809280 7-
JUN-2001 14:20:55.99
 TWSC Pool Minimum Free (bytes) 152704 152704 7-
JUN-2001 14:20:55.99

This command displays ACC pool information from the same record.

12.11. ACMSSNAP TRACE Command

ACMSSNAP TRACE
ACMSSNAP TRACE — Toggles tracing information on and off.

475

Chapter 12. ACMSSNAP Commands

Format
ACMSSNAP> TRACE

Privileges Required
None.

Parameters
None.

Qualifiers
None.

Notes
The main function of tracing is to display the node, timestamp, entity, and class type for the record
being read. Tracing also provides some warning information when the internal CP or EXC tables
become full.

The TRACE command either turns tracing on or off, depending on the current state. A status message
is displayed when the command is issued that indicates which action was performed.

Examples
ACMSSNAP> TRACE

This command activates tracing for the current ACMSSNAP session.

476

Appendix A. Remote Manager Logical
Names
This appendix contains information about the Remote Manager logical names used by the Remote
Manager server and the Remote Manager client (ACMSMGR utility).

A.1. Remote Manager Server
The following list describes the logical names used by the Remote Manager server. If these logical
names are present, they must be defined at a level that will be translated by the Remote Manager
server. In general, these should be defined as system logicals.

• ACMS$MGMT_ALLOW_PROXY_ACCESS

If defined as 1 or TRUE, the Remote Manager will perform proxy authorization using the
ACMSPROXY.DAT file. If not defined, only explicit (user name and password) authorization is
allowed.

• ACMS$MGMT_CONFIG

File specification for the configuration file. If not defined, the default is SYS$SYSROOT:
[SYSEXE]ACMS$MGMT_CONFIG.ACM. The default file extension is .ACM.

• ACMS$MGMT_TEMP

Pointer to a directory that the Remote Manager server uses for writing and reading temporary
command procedures used to modify the ACMS run-time system. If not defined when the
Remote Manager server is started, the Remote Manager will define this as a system logical with a
translation of SYS$MANAGER.

• ACMS$MGMT_LOG

File specification for the Remote Manager log. If not defined, the default is ACMS
$MGMT_LOG.LOG in the default directory of the Remote Manager.

A.2. Remote Manager Client (ACMSMGR
Utility)
The following us a list of logical names used by the ACMSMGR utility:

• ACMS$MGMT_USER

Defines the user name for Remote Manager authentication and authorization. This logical name
should not be defined if proxy access is being used. If ACMS$MGMT_USER is not defined, the
ACMSMGR utility either creates a user name (during login) or searches for the credentials file
for this user. This logical name can be overriden by using the /USER qualifier on ACMSMGR
commands.

• ACMS$MGMT_SERVER_NODE

477

Appendix A. Remote Manager Logical Names

Defines the fully or partially qualified TCP/IP node name. ACMS$MGMT_SERVER_NODE
determines the nodes to which the ACMSMGR command is submitted. ACMS
$MGMT_SERVER_NODE can be specified as a comma-separated list, in which case an attempt
is made to execute the command on each node in the list serially. This logical name can be
overridden by using the /NODE qualifier to ACMSMGR commands.

• ACMS$MGMT_CREDS_DIR

Defines the directory in which the ACMSMGR stores and looks for credentials files. Credentials
files are created by the ACMSMGR LOGIN command and are specific to a process on a node. See
Section 4.4.1.1 for more information.

478

Appendix B. RPC Procedures and
Corresponding Rights Identifiers
Table B.1 lists RPC procedures and their corresponding rights identifiers.

Table B.1. RPC Procedures and Corresponding Rights Identifiers

Procedure Rights Identifier
ACMSMGMT_ADD_COLLECTION_1 ACMS$MGMT_WRITE
ACMSMGMT_ADD_TRAP_1 ACMS$MGMT_OPER
ACMSMGMT_DELETE_COLLECTION_1 ACMS$MGMT_WRITE
ACMSMGMT_DELETE_TRAP_1 ACMS$MGMT_OPER
ACMSMGMT_GET_ACC_1 ACMS$MGMT_READ
ACMSMGMT_GET_MGR_STATUS_1 ACMS$MGMT_READ
ACMSMGMT_GET_PARAM_1 ACMS$MGMT_READ
ACMSMGMT_GET_QTI_1 ACMS$MGMT_READ
ACMSMGMT_GET_TSC_1 ACMS$MGMT_READ
ACMSMGMT_LIST_COLLECTIONS_1 ACMS$MGMT_READ
ACMSMGMT_LIST_CP_1 ACMS$MGMT_READ
ACMSMGMT_LIST_EXC_1 ACMS$MGMT_READ
ACMSMGMT_LIST_INTERFACES_1 ACMS$MGMT_READ
ACMSMGMT_LIST_LOG_1 ACMS$MGMT_READ
ACMSMGMT_LIST_PROC_1 ACMS$MGMT_READ
ACMSMGMT_LIST_SERVER_1 ACMS$MGMT_READ
ACMSMGMT_LIST_TG_1 ACMS$MGMT_READ
ACMSMGMT_LIST_TRAP_1 ACMS$MGMT_READ
ACMSMGMT_LIST_USERS_1 ACMS$MGMT_READ
ACMSMGMT_REPLACE_SERVER_1 ACMS$MGMT_OPER
ACMSMGMT_RESET_LOG_1 ACMS$MGMT_WRITE
ACMSMGMT_SET_ACC_1 ACMS$MGMT_OPER
ACMSMGMT_SET_COLLECTION_1 ACMS$MGMT_WRITE
ACMSMGMT_SET_EXC_1 ACMS$MGMT_OPER
ACMSMGMT_SET_INTERFACE_1 ACMS$MGMT_WRITE
ACMSMGMT_SET_PARAM_1 ACMS$MGMT_WRITE
ACMSMGMT_SET_QTI_1 ACMS$MGMT_OPER
ACMSMGMT_SET_SERVER_1 ACMS$MGMT_OPER
ACMSMGMT_SET_TRAP_1 ACMS$MGMT_OPER
ACMSMGMT_SET_TSC_1 ACMS$MGMT_OPER
ACMSMGMT_START_ACC_1 ACMS$MGMT_OPER
ACMSMGMT_START_EXC_1 ACMS$MGMT_OPER

479

Appendix B. RPC Procedures and Corresponding Rights Identifiers

Procedure Rights Identifier
ACMSMGMT_START_QTI_1 ACMS$MGMT_OPER
ACMSMGMT_START_TRACE_MONITOR_1 ACMS$MGMT_OPER
ACMSMGMT_START_TSC_1 ACMS$MGMT_OPER
ACMSMGMT_STOP_1 ACMS$MGMT_OPER
ACMSMGMT_STOP_ACC_1 ACMS$MGMT_OPER
ACMSMGMT_STOP_EXC_1 ACMS$MGMT_OPER
ACMSMGMT_STOP_QTI_1 ACMS$MGMT_OPER
ACMSMGMT_STOP_TRACE_MONITOR_1 ACMS$MGMT_OPER
ACMSMGMT_STOP_TSC_1 ACMS$MGMT_OPER

480

Appendix C. RPC Procedures and
Corresponding Rights Identifiers
This appendix contains the error messages related to the Remote Manager server process, as well as
the ACMSMGR, ACMSCFG, and ACMSSNAP utilities.

C.1. Server Messages
The following error messages pertain to the ACMS Remote Manager server process.

Message: 2MANY_USERS, the maximum number of users has been reached

• Explanation: The user could not be logged in because the maximum number of concurrent users
has been reached. This maximum is determined by the max_logins parameter, which is a dynamic
parameter (that is, it can be changed dynamically).

• User Action: Either log some users out, or increase the value of the max_ logins parameter. You
can use the ACMSMGR SHOW USERS command to determine which users are already logged
in to the Remote Manager. Note that in order to issue that command or to increase the max_logins
parameter, you must be logged in.

Message: ACCTEXP, account is expired

• Explanation: This status is returned during user login if the account associated with the user
name has expired.

• User Action: Either remove or modify the account expiration.

Message: ACMSPARFAIL, attempt to read ACMSPAR.ACM failed. See audit log for details.

• Explanation: This status is returned when the Remote Manager cannot access the ACMSGEN
parameters file ACMSPAR.ACM.

• User Action: Examine the Remote Manager log file (using ACMSMGR SHOW LOG) and
correct the problem.

Message: AUTHUPDFAIL, attempt to update the OpenVMS Authorization file failed. See audit log
for details.

• Explanation: This status is returned when the Remote Manager is unable to write to the SYSUAF
during an attempt to update an OpenVMS system parameter.

• User Action: Examine the Remote Manager log file (using ACMSMGR SHOW LOG) and
correct the problem.

Message: BADDAY, network access is prohibited for this day of week for this account

• Explanation: This status is returned during user login if the UAF record for this user does not
allow network access on this day of the week. Day-of-week restrictions on network access are set
by system administrators or security personnel.

• User Action: Either wait until an authorized day of the week to access the Remote Manager, or
modify the network access portion of the UAF for this user.

481

Appendix C. RPC Procedures and Corresponding Rights Identifiers

Message: BADHOUR, network access is prohibited for this hour for this account

• Explanation: This status is returned during user login if the UAF record for this user does not
allow network access during this time of day. Time-of-day restrictions on network access are set
by system administrators or security personnel.

• User Action: Either wait until an authorized hour to access the Remote Manager, or modify the
network access portion of the UAF for this user.

Message: CREDS_DATA_ERR, credentials file is corrupt

• Explanation: The credentials file for this user has been corrupted. The file has been opened, but
the client process cannot parse the contents of the file.

• User Action: The user should log in to the Remote Manager again. This will create a new
credentials file.

Message: DISUSER, account is disusered

• Explanation: This status is returned during user login if the account associated with the user
name has the DISUSER flag set.

• User Action: Clear the DISUSER flag on the UAF record for the account.

Message: DUPLICATE_ROW, table row exists

• Explanation: An attempt was made to add a row to either the Trap or the Collection table, but the
row already exists.

• User Action: Either modify the existing row, or add a new row with unique data.

Message: ERRBOTHFLAGS, both current and active flags were set. They are mutually exclusive. No
updates performed.

• Explanation: This status is returned when a request is made to modify Configuration data for
an entity by setting both the current_flag (/CURRENT) and active_flag (/ACTIVE) parameters.
These flags are mutually exclusive; the Remote Manager rejects the request.

• User Action: Resubmit the RPC call or ACMSMGR SET command setting only one flag per call
or command.

Message: ERRSTOPSNP, attempt to stop snapshot thread failed. General internal error.

• Explanation: An attempt was made to stop a data snapshot thread by setting the storage_state
parameter to DISABLED or deleting a row in the Collection table. The attempt failed due to a
CMA exception.

• User Action: This is a non-recoverable error. Reissue the RPC call or ACMSMGR command. If
the problem persists, restart the Remote Manager process.

Message: FLTRDBCORRUPT, the filter file database is corrupt.

• Explanation: This status is returned when the Remote Manager error filter database is non-
readable.

• User Action: Shut down ACMS and the Remote Manager. Delete the file SYS$SYSTEM:ACMS
$MGMT_ERROR_FILTER.DAT;*, and restart ACMS and the Remote Manager. If you have

482

Appendix C. RPC Procedures and Corresponding Rights Identifiers

previously saved the contents of the error filter database (with ACMSMGR SAVE FILTER), you
can restore the database with the following command:

$ ACMSMGR ADD FILTER /FILE=file-name

where file-name is a full OpenVMS file specification (node::device:[directory]file.ext) for the
error filter file.

Message: FLTRDBFULL, the filter database is fulls

• Explanation: This status is returned while attempting to add an error message filter record to a
database that is at capacity.

• User Action: Delete one or more error filter records using the ACMSMGR DELETE FILTER
command.

Message: FLTRDBINIT, the filter file global section is not initialized

• Explanation: This status is returned while attempting to access the error filter database without
the global section initialized.

• User Action: Report this error to your HP support representative.

Message: EVNT_MBX_FUL, event mailbox is full

• Explanation: This status code has not been implemented.

• User Action: No action is required.

Message:

• Explanation:

• User Action:

Message: FAIL, operation failed

• Explanation: The function requested could not be performed.

• User Action: The appropriate action depends on the function being called. In general, additional
information is displayed by the ACMSMGR command in conjunction with this error code. That
information should be more indicative of the reason for failure. If this status was returned by an
RPC, the failure occurred in the Remote Manager process; a second-level error code is returned in
the output record.

Message: INFO, operation completed with information message

• Explanation: The ACMS Remote Manager service completed without error but has logged an
informational message. Informational messages are for debugging and auditing purposes.

• User Action: No action is required.

Message: INTERNALERR, an internal error has occurred. See audit log for details

• Explanation: A request was to update the runtime ACMS system, but an unexpected error was
returned by the DCL manager subsystem.

483

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• User Action: Examine the Remote Manager log for related informational messages. If the
problem persists, restart the Remote Manager process.

Message: INV_CLNTID, client id is invalid

• Explanation: A request was made to the Remote Manager with an invalid client id. The client
id is a unique value assigned to each client and used to verify client authorization. If the client id
is not known to the Remote Manager, it either belongs to an old log in that has expired and been
purged, or it was never valid.

• User Action: The user should log in to the Remote Manager again.

Message: INVVAR, invalid variable value was provided

• Explanation: This status code is obsolete.

• User Action: No action required.

Message: LOGIN_EXPIRED, login credentials have expired, please log in again

• Explanation: The credentials you used to log in to the Remote Manager have expired. Credentials
are granted when the user logs in and are valid for a period of time equal to the value of the
login_creds_lifetime parameter at the time of login. After that time, the credentials expire and
must be re-created by logging in to the Remote Manager again.

Note that while proxy credentials also expire, they are automatically recreated at the end of the
expiration period. Therefore, this status is never returned to proxy users.

• User Action: The user must log in to the Remote Manager again.

Message: MSGEXISTS, message already exists

• Explanation: An attempt was made to add an existing error message record to the filter database.

• User Action: No action required.

Message: NOACCFLTRDB, the filter database cannot be read or written

• Explanation: The memory address returned for error filter global section is not allowing read or
write operations.

• User Action: Examine the OWNER and GROUP protections on the file SYS$SYSTEM:ACMS
$MGMT_ERROR_FILTER.DAT. Check the user accounts for the related ACMS Remote
Manager processes to verify that they have READ and WRITE access to the file. The file owner
and the ACMS accounts should be in the same group. All members of this group should have read
and write access to the file.

Message: NOAPPLQUAL, /APPL qualifier missing

• Explanation: The command ACMSMGR SET EXC requires that you use an /APPL qualifier to
specify the application for which stored values are being set. If the /APPL qualifier is missing, the
error NOAPPLQUAL will be returned.

• User Action: Re-enter the ACMSMGR SET EXC command with a /APPL qualifier.

Message: NO_CREDS_FILE, credentials file not found

484

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• Explanation: The credentials file for the user either could not be found or could not be opened
by the client process. The credentials file is created when a user explicitly logs in to the Remote
Manager (that is, when the user supplies a user name and password). A separate credentials
file is created for each node to which a particular process logs in. The logical name ACMS
$MGMT_CREDS_DIR is used to point to the directory containing credentials files.

• User Action: Verify that the ACMS$MGMT_CREDS_DIR logical is pointing to a valid disk and
directory in which a credentials file has been created; verify that the process has read access to the
files in the directory. If necessary, the process may have to log in to the Remote Manager again to
create a new credentials file.

Message: NOINTERVAL, storage interval not supplied. Cannot enable a thread without an internal.
Resubmit with an interval.

• Explanation: An API call was made to either the acms$mgmt_set_ collection_2 or acms
$mgmt_add_collection_2 function, but no value was specified for the storage interval.

• User Action: Reissue the call making sure that a valid storage_interval is specified prior to setting
the storage_state to ENABLED.

Message: NOMEM, memory allocation failed

• Explanation: An internal memory allocation by the Remote Manager failed. This can occur
during a request for data, a call to add a record to a table, or during server initialization while it is
loading initial configuration information. In the first two instances, the Remote Manager continues
to run; in the third, the Remote Manager exits.

• User Action: Increase the amount of memory available to the Remote Manager. If the problem is
due to insufficient physical or virtual memory, try allocating more page or swap space. If physical
and virtual memory are not exhausted, try increasing the memory quotas for the account in which
the Remote Manager is running. Be sure to check SYSGEN PQL quotas to ensure that the quotas
you grant to the Remote Manager are allowed by the system.

After making more memory available to the Remote Manager, you must restart the Remote
Manager process.

Message: NOMORE_DATA, no more data is available

• Explanation: There is no more data that satisfies the query. This message is provided on list
RPCs that can return more than one buffer of data. If a list RPC is called and this status is not
returned, then more data is available that satisfies the query criteria. If this status is returned, then
there is no more data to retrieve for this query.

• User Action: No action is required. The query is complete.

Message: NOMSGINTBL, message not in filter database

• Explanation: An attempt was made to access an error message code that does not currently exist
in the error filter database.

• User Action: Verify that the error message code is correct and that it exists in the filter database.
To display the error message codes currently being filtered, use the ACMSMGR SHOW FILTER
command.

Message: NONETACCESS, network access is prohibited for this account

485

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• Explanation: This status is returned during user login if the account associated with the user
name has not been granted network access. Network access is required, even if the user is logged
in to same node on which the Remote Manager is running.

• User Action: Grant network access to the account.

Message: NO_NODELOGICAL, cannot translate logical UCX$INET_HOST to get node name

• Explanation: The logical name UCX$INET_HOST could not be translated by the client process.
This logical is used to determine the current host name, which is used during client authentication.
It is defined by the UCX or TCP/IP layered product when it is started. If this logical is not defined,
UCX or TCP/IP is not started; either a different TCP/IP networking package is being used, or
something has gone wrong with the logical name.

• User Action: Verify that the UCX or TCP/IP layered product is started. If it is not, start it and
then reissue the command. If it is started, contact your system administrator to determine why the
logical is not defined.

Message: NOPROXY, proxy access is not enabled

• Explanation: This status is returned when a user attempts to access a Remote Manager
function without explicitly logging in, and proxy access has not been enabled on the Remote
Manager node. Proxy access is enabled on the node by defining the system logical ACMS
$MGMT_ALLOW_PROXY_ ACCESS to be TRUE, true, T, t, Y, y, or 1. The translation of this
logical is cached by the Remote Manager when the RPC thread is started.

• User Action: If proxy access is not supposed to be enabled, then there is no action to perform. If
proxy access is to be allowed, define the ACMS$MGMT_ ALLOW_PROXY_ACCESS system
logical, with a translation value of TRUE, true, T,t, Y, y or 1. Then restart the Remote Manager
and resubmit the RPC.

Message: NOREINIT, filter file cannot be re-initialized

• Explanation: The Remote Manager attempted to reinitialize the filter database. This is result of
an internal consistency check that failed. The error should not have occurred.

• User Action: Report this error to your HP support representative.

Message: NORIGHT, user does not hold the proper rights identifier

• Explanation: Access to Remote Manager functions is restricted by a set of rights identifiers; the
account being used to access the function must have the appropriate rights identifier. If this status
code is returned, the account does not have the appropriate rights identifier.

• User Action: Grant the appropriate rights identifier to the user’s account. If a proxy account is
being used, the rights identifier must be granted to the proxy account.

Message: NOSTOP, interface cannot be used to stop itself

• Explanation: An attempt was made to stop an interface by using that interface. The Remote
Manager does not allow either the RPC or the SNMP interface to be used to stop themselves.

• User Action: If you need to stop the RPC interface and cannot use the ACMSMGR command,
stop the Remote Manager either by using the DCL command STOP/ID or by using the UCX
$SNMP_REQUEST (or TCPIP$SNMP_REQUEST) program. These programs are located in SYS
$SYSTEM; the OID to use is 1.3.6.1.4.1.36.2.18.48.4.1.3.1.

486

Appendix C. RPC Procedures and Corresponding Rights Identifiers

To stop the SNMP interface, you must use the ACMSMGR SET INTERFACE command, or
you must stop the Remote Manager (using either the ACMSMGR STOP command or the DCL
command STOP/ID).

Message: NOSUCHAPPL, /APPL application does not exist

• Explanation: The command ACMSMGR SET EXC requires that you use an /APPL qualifier to
specify the application for which stored values are being set. NOSUCHAPPL is returned if the
application you specify is not active.

• User Action: Re-enter the ACMSMGR SET EXC command specifying an active application in
the /APPL qualifier.

Message: NOTENABLED, cannot disable storage if it is not enabled

• Explanation: An attempt was made to set the storage_state for a Collection record to DISABLED
when it already was disabled. No action was performed by the Remote Manager.

• User Action: No action is required.

Message: NOTFILTERFILE, the file is not an error filter text file

• Explanation: This status is returned when the file specified in the ACMSMGR ADD FILTER/
FILER command does not meet the format requirements for an error filter file.

• User Action: Verify that the file specification is correct. If the specification is correct, review
ACMSMGR online help for details about the formatting requirements for an error filter file. The
first line of the file must contain the string %%ACMS Filter File V1.00. If it does not, the Remote
Manager will not consider it a valid error filter file.

Message: NOT_FOUND, record not found

• Explanation: An attempt was made to delete a row from the Collection table, but that row does
not exist.

• User Action: Modify the request to include the proper identification information for the row
(entity type, class, and name).

Message: NOT_MAPPED, ACMSMGMT global section is not available on node <nodename>

• Explanation: This status code is returned if a Remote Manager function was requested that
requires access to the ACMSMGMT global section, but the global section does not exist. The
global section is created by the ACMS ACC during system startup. This status code indicates that
the ACMS ACC is not running or that it has not yet created the global section.

• User Action: Start the ACMS run-time system in order to create the global section. The ACMS
run-time system can be started by using either the ACMSMGR START SYSTEM command or the
ACMS/START SYSTEM command.

Message: NOT_VALID, entity data is stale, please resubmit query or wait until later

• Explanation: The entity record in the global section is not valid. If this status code is returned, it
means that the entity has never been started on the Remote Manager node. If the entity had been
running at one time but no longer is, a severity level of WARN is returned and the record_state is
set to INACTIVE.

487

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• User Action: No action is required. However, if the entity is started on the Remote Manager node,
the data will become available.

Message: NO_UPD_CLS, class cannot be modified

• Explanation: An attempt was made to add, delete, or modify a Collection table record for the Id
or Config class. These records cannot be modified.

• User Action: No action is required. There is no way to modify the default collection records for
the Id or Config classes.

Message: PROXY_FAILED, proxy access attempt failed

• Explanation: An attempt to verify proxy information for this client failed. A more specific
message indicating why the proxy failed is written to the Remote Manager log. Reasons for proxy
authentication failure include:

• No proxy record is in the ACMSPROXY.DAT file.

• The proxy account is disusered.

• There is a problem with the network access for the account (does not have network access
allowed, is outside of the allowed network access days or times).

• The proxy account has expired.

• An internal error occurred during processing.

• User Action: First check the Remote Manager log for any additional information related to
the login attempt. Then verify that none of the conditions listed are preventing the login from
succeeding.

Message: PWDEXP, password has expired

• Explanation: The password entered by the user has expired in the UAF on the server node.

• User Action: The user must either change the password or have it unexpired by a system or
security administrator.

Message: PWDFAIL, invalid password

• Explanation: The password entered for the user during user login does not match the one stored
in the UAF for this user on the server node.

• User Action: Resubmit the login request for the user with the correct password.

Message: SECCHKFAIL, security check failed. You do not hold the ACMS$MGMT_ SYSUPD
rights identifier

• Explanation: A request was made to modify one or more OpenVMS SYSGEN parameters with
the Remote Manager; however, the user does not have the proper rights identifier. The request was
denied.

• User Action: Ask the ACMS system manager to grant the user account the ACMS
$MGMT_SYSUPD rights identifier.

Message: SNPRUNNING, failure creating timer thread entry. Thread already running?

488

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• Explanation: A request was made to set the storage_state for a Collection record to ENABLED;
however, an internal error was raised.

• User Action: Examine the Remote Manager log for additional messages that describe the
source of the problem. Reissue the command. If the problem persists, try deleting and adding the
Collection record. If the problem remains, restart the Remote Manger process.

Message: SUCCESS, operation completed

• Explanation: The ACMS Remote Manager service completed without error.

• User Action: No action is required.

Message: TABLE_FULL, collection table is full. Non dynamic parameter total_entity_slots controls
size

• Explanation: An attempt was made to add a row to the Collection table, but there are no empty
slots. The maximum number of rows in the Collection table is determined by the nondynamic
parameter total_entity_slots.

• User Action: To make the table bigger, modify this parameter in the configuration file (using the
ACMSCFG command), and restart the ACMS run-time system. The Remote Manager can be left
running.

Alternatively, delete unneeded rows from the Collection table.

Message: THREADRUNNING, inconsistent state detected. Snapshot state is disabled but thread is
running! Cannot enable running thread

• Explanation: A request was made to set the storage_state for a Collection record to ENABLED.
While processing the row, the Remote Manager discovered that a snapshot thread had already
been assigned to this record. This condition is most likely due to a previous, unsuccessful attempt
to end a snapshot operation.

• User Action: Examine the Remote Manager log for additional messages that describe the
source of the problem. Reissue the command. If the problem persists, try deleting and adding the
Collection record. If the problem remains, restart the Remote Manger process.

Message: VRSNMISMAT, filter file version mismatch

• Explanation: The Remote Manager error filter file may be corrupted, or the format may have
changed in this version of ACMS.

• User Action: Shut down ACMS and the Remote Manager. Delete the file SYS$SYSTEM:ACMS
$MGMT_ERROR_FILTER.DAT;*, and restart ACMS and the Remote Manager. If you have
previously saved the contents of the error filter database (with ACMSMGR SAVE FILTER), you
can restore the database with the following command:

$ ACMSMGR ADD FILTER /FILE=file-name

where file-name is a full OpenVMS file specification (node::device:[directory]file.ext) for the
error filter file.

Message: WARN, operation completed with warning, Not all operations completed successfully

• Explanation: The ACMS Remote Manager service did not complete successfully; some of the
actions requested could not be completed. This status is returned in the following situations:

489

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• Multiple fields were specified on an update function, at least one of which failed. For example,
a call may have been made to the set parameters function (acmsmgmt_set_param_1) to update
more than one parameter, and one of the values specified was invalid. For these functions, a
list of fields is returned with status codes for each field.

• A call to start or stop an ACMS process was executed, and a warning was returned. Starting
or stopping ACMS processes is performed by ACMS OPER, which may return warning
messages. In this case, a set of messages is returned describing the cause for the warning.

• A call to display ACMS process information was made, and old (stale) data was returned.
This can occur when an ACMS process is no longer running, and a show function requests
data for that process. For instance, if the TSC was running and then had been stopped, and the
acmsmgmt_ get_tsc_1 function is called, the tsc record is returned with WARN status.

• User Action: No action is required; however, the record_state field of any record returned should
be checked. The Remote Manager flags old data with a record_state of MGMT$K_INACTIVE.

If this status is returned as the result of an ACMSMGR command, old (inactive) records are
flagged with an asterisk (*) preceding the node name.

Message: WRONG_NODE, current node does not match node in credentials file!

• Explanation: The node name stored in the credentials file does not match the node name on
which the current process created it. Either the file is corrupt, or it has been tampered with.

• User Action: The user should log in to the Remote Manager again. This will create a new
credentials file.

Message: WRONG_PID, current pid does not match pid in credentials file!

• Explanation: The PID stored in the credentials file does not match that of the current process.
Either the file is corrupt, or it has been tampered with.

• User Action: The user should log in to the Remote Manager again. This will create a new
credentials file.

Message: XLATE_FAILED, an attempt to translate a symbolic error name failed

• Explanation: An attempt was made to add an error filter record using the symbolic name for the
error message. The translation of the symbolic name to its hexadecimal value failed.

• User Action: Verify that you have specified the symbolic name correctly. If the problem persists,
try entering the record using the hexadecimal value of the error message that you want to filter.

C.2. ACMSMGR Messages
The following error messages pertain to the ACMSMGR process.

Message: 2MANYCLASSES, too many class qualifiers were specified.

• Explanation: Each ACMSMGR command allows either one class or all classes to be displayed
at the same time. To display all classes, do not include a class qualifier with the command. To
display a particular class, include that qualifier with the command. You cannot specify more than
one class qualifier with a given command.

490

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• User Action: Modify the command to include a maximum of one class qualifier, and resubmit the
command. To learn more about the valid class qualifiers for a given command verb and object, use
the ACMSMGMR HELP command.

Message: ACTUPDINV, /active was specified for <field>, but this value is not dynamic. No update
was performed

• Explanation: An attempt was made to modify Configuration class data for an entity using
ACMSMGR SET <entity> /ACTIVE command; however, one of the specified variables does not
have an active value.

• User Action: Reissue the command either without the /ACTIVE qualifier or with only variables
that have an active value. For a list of variables and their valid values, see the ACMSMGR online
help.

Message: BADTIME, invalid time <time>

• Explanation: The time specification provided for the command qualifier could not be parsed.
Time specifications can include date and time, date only or time only. The date and time should
be specified as a quoted string in the format DDMMMYYYY HH:MM:SS.hh. Partial strings are
accepted (for example, "1NOV" or "10:00").

• User Action: Modify the command to include a valid time specification. To learn more about
valid time values, use the ACMSMGR HELP command.

Message: BADVALUE, invalid qualifier, cannot interpret value <value>

• Explanation: The value provided for a command qualifier is invalid. It is either out of the range
of acceptable values or is an invalid type.

• User Action: Modify the command qualifier to include a valid value. To learn more about valid
values for a given qualifier, use the ACMSMGR HELP command.

Message: CREDSFOUND, credentials for node <node> found, they will be used

• Explanation: This message is obsolete.

• User Action: No action is required.

Message: ENCRYPTFAIL, encryption routine failure on <username>

• Explanation: An attempt to encrypt the user name indicated for client authentication failed.

• User Action: Make sure the user name is correct and reenter it.

Message: END_TOO_SOON, end time must be greater than begin time

• Explanation: While adding or modifying a row in the Collection table, an attempt was made to
specify a storage_end_time earlier than the current storage_begin_time.

• User Action: Reissue the command, ensuring that storage_end_time is later than the
storage_begin_time; or omit storage_end_time or storage_begin_time to accept the default value.

Message: FILEOPENERR, could not open file <filename> for write

• Explanation: This message is displayed when the /OUT qualifier to ACMSMGR command
specifies an invalid or inaccessible file specification. The reason could be an invalid disk or device

491

Appendix C. RPC Procedures and Corresponding Rights Identifiers

name, an incorrect logical name in the file specification, insufficient privileges for writing to the
directory or file, or a full device.

• User Action: Ensure that the client process can access the directory and file in the file
specification, and resubmit the command.

Message: HOSTNAMEFAIL, can’t translate UCX$INET_HOST name, aborting...

• Explanation: The logical name UCX$INET_HOST could not be translated by the client process.
This logical is used to determine the current host name, which is used during client authentication.
The logical is defined by the UCX or TCP/IP layered product when it is started. If the logical is
not defined, either UCX or TCP/IP is not started, a different TCP/IP networking package is being
used, or something has gone wrong with the logical name.

• User Action: Verify that the UCX or TCP/IP layered product is started. If it is not, start it and
then reissue the command. If it is started, contact your system administrator to determine why the
logical is not defined.

Message: INACTDATA, some or all data is old and may not accurately reflect the running system

• Explanation: The data being displayed may contain information about processes that are no
longer running. Old, or stale, data is displayed only if the /ALL qualifier was included with the
command. The old records are flagged with an asterisk (*) in the first character of the node name.

• User Action: No action is required. Remove the /ALL qualifier if you do not want to see old data.

Message: LOGIN_FAIL, login failed

• Explanation: The attempt to log in failed. The reason might be an invalid user name or password.
The Remote Manager log will contain more information about the reason for failure.

• User Action: Consult the Remote Manager log on the target node for more information about the
failure (using the ACMSMGR SHOW LOG command). Correct the problem and resubmit the
login request.

Message: NAME2BIG, username is too long, please reenter

• Explanation: The user name specified exceeds the maximum allowed length of 12 characters.

• User Action: Modify the user name to be no longer than 12 characters and reenter it.

Message: NOCLIENTS, no clients created, cannot continue

• Explanation: No client attaches were successful. Previous messages will have been displayed
indicating the particular reasons that the client attaches failed. Without attaching a client to a
server, work can not be performed.

• User Action: Determine and remedy the reason for the client attach failures then resubmit the
command.

Message: NOCLNT_ATTACH, cannot create client for node <node-name>

• Explanation: An attempt to attach to the server on the node indicated in the command failed. If
more than one server name was in the list to be processed, the next server will be tried. No further
attempt will be made to submit commands to the node for which the attached client failed.

492

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• User Action: Verify that the node name is correct and that the Remote Manager is running on the
node indicated. In some networks, it may be necessary to use a fully qualified TCP/IP node name.
If the Remote Manager is running, verify that the Portmapper is running on the node and that the
RPC interface in the Remote Manager has been started.

Message: NOCOMPND, compound name is not allowed for this entity (only server and group).

• Explanation: An attempt was made to add a collection record using a compound name for an
entity that is not a server or group. Compound names (that is, names that contain an application
specification and a process specification) are valid for only servers and groups.

• User Action: Modify the command so it does not include a compound name. For more help about
adding collection records, use the ACMSMGR HELP ADD COLLECTION command.

Message: NOCREDS, could not get credentials for <node::user>

• Explanation: The credentials file for the user either could not be found or could not be opened
by the client process. The credentials file is created when a user explicitly logs in to the Remote
Manager (that is, the user supplies a user name and password). A separate credentials file is
created for each node to which a particular process logs in. The logical name ACMS$MGMT_
CREDS_DIR is used to point to the directory containing credentials files.

Note that credentials files are process-specific (PID) and node specific.

• User Action: Verify that the ACMS$MGMT_CREDS_DIR logical is pointing to a valid disk and
directory in which a credentials file has been created; verify that the process has read access to the
files in the directory. The process may have to log in to the Remote Manager again to create a new
credentials file.

Message: NODATA, no <entity-type> data was found for <node-name>

• Explanation: The request to get information about the entity type indicated in the message
returned no data. This message occurs when no instances of the particular process are running.

• User Action: No action is required. If the process had been running previously, you may be able
to see the information by resubmitting the command with the /ALL qualifier.

Message: NOFACILITY, facility must be specified when setting trace level

• Explanation: This message is obsolete.

• User Action: No action is required.

Message: NONODE, node must be specified as a logical or an argument

• Explanation: Each ACMSMGR command needs a node name to be specified. The node name
can be specified either as a command qualifier (for example, /NODE=mynode) or by the logical
name ACMS$MGMT_SERVER_NODE. Multiple nodes can be specified in a comma-separated
list (for example, /NODE=node1,node2). To specify a list of nodes when defining the logical
name ACMS$MGMT_SERVER_NODE, enclose the entire list in double quotation marks. For
example:

$ DEFINE ACMS$MGMT_SERVER_NODE "NODE1,NODE2"

• User Action: Modify the command to include the /NODE qualifier, or define the logical ACMS
$MGMT_SERVER_NODE to include at least one node name.

493

Appendix C. RPC Procedures and Corresponding Rights Identifiers

Message: NORMAL, operation completed

• Explanation: The command completed successfully.

• User Action: No action is required.

Message: NOVAL, qualifier <qualifier> requires a value string

• Explanation: The qualifier indicated requires a value string, but none was provided.

• User Action: Modify the command to include a valid value string and resubmit the command. To
learn more about the valid values for a given qualifier, use the ACMSMGR HELP command.

Message: OLDDATA, this data is old and may not accurately reflect the running system

• Explanation: The data being displayed may contain information about processes that are no
longer running. Old, or stale, data is displayed only if the /ALL qualifier was included with the
command. The old records are flagged with an asterisk (*) in the first character of the node name.

• User Action: No action is required. Remove the /ALL qualifier if you do not want to see old data.

Message: PARAMFAIL, parameter update failed for parameter <parameter>. ACMS is not available
or does not respond.

• Explanation: A request to update an interval value failed because the Remote Manager could not
pass the changed value to the ACMS process.

• User Action: Examine the Remote Manager log for additional messages that might provide more
information about the failure, and ensure that the ACMS trace monitor is running (process ACMS
$TRACE_MON). If the trace monitor is not running, check whether the trace monitor logical
ACMS$TRACE_MBX is defined.

Also ensure that the ACMS Remote Manager has been started (ACMSMGR START SYS). If the
problem persists, restart ACMS and the Remote Manager.

Message: PASS2BIG, password is too long, please reenter

• Explanation: The password specified exceeds the maximum allowed length of 32 characters.

• User Action: Modify the password to be no longer than 32 characters and reenter it.

Message: QUALCONFLICT, qualifier <qualifier> is not supported in combination with other
qualifier(s) on this command line

• Explanation: Multiple, mutually exclusive qualifiers were provided for an ACMSMGR
command.

• User Action: Review the qualifiers and determine which are mutually exclusive. Reissue the
command with the appropriate combination of qualifiers. For a list of variables and their valid
values, see the ACMSMGR online help.

Message: STORUPDINV, /stored was specified for <field>, but this value cannot be stored. No
update was performed

• Explanation: An attempt was made to modify Configuration class data for an entity using
ACMSMGR SET <entity> /STORED command; however, one of the specified variables does not
have a stored value.

494

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• User Action: Reissue the command either without the /STORED qualifier or with only variables
that have a stored value. For a list of variables and their valid values, see the ACMSMGR online
help.

Message: UNKCMD, unrecognized command <command>

• Explanation: The command verb indicated in the message is not valid.

• User Action: Modify the command to include a valid command verb. To learn more about valid
verbs, use the ACMSMGR HELP command.

Message: UNKCMDOBJ, unrecognized object <command object> for this command

• Explanation: The command object indicated in the message is not valid.

• User Action: Modify the command to include a valid command object. To learn more about valid
command objects, use the ACMSMGR HELP command.

Message: USE_PROXY, username not supplied, proxy access will be attempted

• Explanation: This message is obsolete.

• User Action: No action is required.

Message: WRONGPARAM, parameter type is not valid for this entity type, please correct and
reexecute command

• Explanation: The parameter type in the command is not valid for the entity type specified. Each
parameter is valid for only a particular set of entity types; the combination specified is not a valid
pair.

• User Action: Modify the command to include a valid combination of entity type and parameter.
To learn more about valid combinations, use the ACMSMGR HELP command.

Message: WRONGQUAL, qualifier <qualifier> is not supported for this verb and object, please
correct and re-execute command

• Explanation: A command qualifier was specified that is not valid for the verb/object combination
specified.

• User Action: Modify the command to include a valid qualifier. To learn more about the valid
qualifiers for a verb/object combination, use the ACMSMGR HELP command.

C.3. ACMSCFG Messages
The following error messages pertain to the ACMSCFG process.

Message: ADDREC, record does not exist, creating new record from defaults

• Explanation: This message is obsolete.

• User Action: No action is required.

Message: BAD_TIME, invalid time <time>

• Explanation: This status code has not been implemented yet.

495

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• User Action: No action is required.

Message: BAD_VALUE, invalid qualifier, cannot interpret value <value>

• Explanation: A null or invalid value was provided to a qualifier.

• User Action: Correct the value and resubmit the command. To learn more about ACMSCFG
qualifiers and valid values, use the ACMSCFG HELP command.

Message: CLASS_REQ, collection class is required, please resubmit command

• Explanation: This status code has not been implemented yet.

• User Action: No action is required.

Message: CONFIG_NORMAL, operation completed

• Explanation: The ACMSCFG command completed successfully.

• User Action: No action is required.

Message:

• Explanation:

• User Action:

Message: END_TOO_EARLY, end time must be greater than begin time

• Explanation: This status code has not been implemented yet.

• User Action: No action is required.

Message: ENTITY_REQ, entity type is required, please resubmit command

• Explanation: A command was issued that requires an entity type to be specified.

• User Action: Resubmit the command, including the /ENTITY=<entity_type> qualifier and the
appropriate entity type.

Message: ERRADD, error adding record

• Explanation: This message is obsolete.

• User Action: No action is required.

Message: ERRDEL, error deleting record

• Explanation: An error occurred while a record was being deleted. This message is preceded by
a status message returned by RMS describing the error. The problem is usually an environmental
one—for example, a locked file, insufficient privileges, and so on.

• User Action: Refer to the message immediately preceding this one that describes the error
returned from RMS.

Message: ERROR_OPEN, could not open file <filename>

• Explanation: This message is obsolete.

496

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• User Action: No action is required.

Message: ERRUP, error updating record

• Explanation: An error occurred while a record was being updated. This message is preceded by
a status message returned by RMS describing the error. The problem is usually an environmental
one—for example, a locked file, insufficient privileges, and so on.

• User Action: Refer to the message immediately preceding this one that describes the error
returned from RMS.

Message: ID_REQ, entity name is required, please resubmit command

• Explanation: This status code has not been implemented yet.

• User Action: No action is required.

Message: IF_INVAL, invalid interface <interface>

• Explanation: The interface name indicated is unrecognizable.

• User Action: Modify the /INTERFACE qualifier to include a valid interface type. To learn about
valid interface types, use the ACMSCFG HELP command.

Message: IF_REQ, interface type is required, please resubmit command

• Explanation: The interface type is required in order to update the correct record. The command
that was submitted did not specify the interface type.

• User Action: Modify the command to include the /INTERFACE qualifier, along with the desired
interface type. To learn more about updating interfaces, use the ACMSCFG HELP command.

Message: INSUF_ARGS, insufficient arguments

• Explanation: An insufficient number of arguments was passed to the ACMSCFG utility. At least
one argument is required.

• User Action: Modify the command to include at least one argument. Use the ACMSCFG HELP
command to learn about the various ACMSCFG commands.

Message: INVPARAMTYPE, parameter type <parameter> is not valid for this entity type, please
correct and re-execute the command

• Explanation: The parameter type indicated is not valid for the entity type specified. Each
parameter is valid for only a particular set of entity types; the combination specified is not a valid
pair.

• User Action: Modify the command to include a valid combination of entity type and parameter.
To learn more about valid combinations, use the ACMSCFG HELP command.

Message: INVSTATE, invalid state <state>

• Explanation: The state indicated is unrecognizable.

• User Action: Modify the qualifier to include a valid state. To learn about valid states, use the
ACMSCFG HELP command.

497

Appendix C. RPC Procedures and Corresponding Rights Identifiers

Message: INVVALUE, qualifier <value> contains an invalid value, please correct and resubmit

• Explanation: A qualifier was specified with an invalid value.

• User Action: Modify the command to include a valid value with the qualifier. To learn more
about valid values for the qualifier, use the ACMSCFG HELP command.

Message: NAME_REQ, entity name is required, please resubmit command

• Explanation: This message is obsolete.

• User Action: No action is required.

Message: NODEFADD, records for this class cannot be added

• Explanation: An attempt was made to add a record for the Id and Config classes, which is not
allowed. New records for Id and Config classes cannot be added.

• User Action: Any attempt to add records for Id and Config classes will fail.

Message: NODEFDELETE, this record cannot be deleted, it is a mandatory default

• Explanation: An attempt was made to delete a record that cannot be deleted. Default collection
records for Id and Config classes cannot be deleted.

• User Action: Any attempt to delete these records will fail.

Message: NODEFDISABLE, collection cannot be disabled for this entity and class

• Explanation: An attempt was made to modify the default Id and Config class records, which is
not allowed. Default collection records for Id and Config classes cannot be deleted or modified.

• User Action: Any attempt to modify records for Id and Config classes will fail.

Message: NOFILE, unable to open file <filename>

• Explanation: The configuration file could not be opened. The specification for the file to be
opened is determined by the translation of the logical name ACMS$MGMT_CONFIG, or, if
the logical name is not defined, the default file name is SYS$SYSROOT:[SYSEXE]ACMS
$MGMT_CONFIG.ACM. The ACMSCFG utility will ask you whether or not you want to create
a new file.

• User Action: If the file does not exist and you would like to have a new file created with default
values, respond to the prompts. If the file does exist, investigate why it could not be opened by the
ACMSCFG utility.

Message: NO_QUAL, insufficient arguments—no qualifiers, please correct and resubmit

• Explanation: A command that requires at least one qualifier was submitted without any
qualifiers.

• User Action: Modify the command to contain at least one qualifier. To learn more about
ACMSCFG commands their qualifiers, use the ACMSCFG HELP command.

Message: NORECDEL, record does not exist, no record deleted

• Explanation: An attempt was made to delete a record that does not exist.

498

Appendix C. RPC Procedures and Corresponding Rights Identifiers

• User Action: Correct the command to include the correct record identifiers. For collection
records, entity type, class name, and entity name uniquely identify records; for trap records, entity
type, entity name, and parameter name uniquely identify records.

Message: NORECUP, record does not exist, no record updated

• Explanation: An attempt was made to update a record that does not exist.

• User Action: Correct the command to include the correct record identifiers. For collection
records, entity type, class name, and entity name uniquely identify records; for trap records, entity
type, entity name, and parameter name uniquely identify records. For interface records, interface
type uniquely identifies the record.

Message: NOT_ADDED, no record added

• Explanation: This message is obsolete.

• User Action: No action is required.

Message: NOUPDATES, no changes to make, no updates made

• Explanation: A command was issued to update the parameter record, but no parameters were
specified for update. No changes were made to the record.

• User Action: Modify the command to include at least one parameter to be modified.

Message: NULLQUAL, null qualifier <qualifier>, nothing to do

• Explanation: A qualifier was provided that requires a value, but no value was specified.

• User Action: Modify the command to include a valid value with the qualifier. To learn more
about valid values for the qualifier, use the ACMSCFG HELP command.

Message: PARAM_INVALID, parameter <parameter name> is not valid for this entity

• Explanation: This status code has not been implemented yet.

• User Action: No action is required.

Message: PARAM_REQ, parameter type is required, please resubmit command

• Explanation: This status code has not been implemented yet.

• User Action: No action is required.

Message: PAST_BEGIN, begin time must be in the future

• Explanation: This status code has not been implemented yet.

• User Action: No action is required.

Message: TIMERID_REQ, timer id is required, please resubmit command

• Explanation: This status code has not been implemented yet.

• User Action: No action is required.

499

Appendix C. RPC Procedures and Corresponding Rights Identifiers

Message: UNKCLASS, unrecognized class <class>

• Explanation: The class type indicated is unrecognizable.

• User Action: Modify the /CLASS qualifier to include a valid class. To learn about valid classes,
use the ACMSCFG HELP command.

Message: UNKENTITY, unrecognized entity <entity>

• Explanation: The entity type indicated is unrecognizable.

• User Action: Modify the /ENTITY qualifier to include a valid entity type. To learn about valid
entity types, use the ACMSCFG HELP command.

Message: UNKNOWN_OBJ, unknown obj <object>

• Explanation: The command object specified is not valid.

• User Action: Modify the command to include a valid command object. The valid command
objects vary depending on the command verb. Use the ACMSCFG HELP command to learn more
about valid command verbs and objects.

Message: UNKPARAM, unrecognized param <param>

• Explanation: The parameter indicated is unrecognizable.

• User Action: Modify the /PARAMETER qualifier to include a valid parameter name. To learn
about valid parameters, use the ACMSCFG HELP command.

Message: UNKQUAL, unrecognized qualifier <qualifier>, please correct and re-execute command

• Explanation: The qualifier indicated is unrecognized.

• User Action: Modify the command to include a valid qualifier. To learn more about valid
qualifiers, use the ACMSCFG HELP command.

Message: UNKVERB, unrecognized verb <verb>, please correct and resubmit

• Explanation: The verb indicated is unrecognized.

• User Action: Modify the command to include a valid verb. To learn more about valid verbs, use
the ACMSCFG HELP command.

Message: VALTOOBIG, value is too large: <value>, please correct and resubmit

• Explanation: A value was provided that is greater than the allowed maximum.

• User Action: Modify the command to include a valid value with the qualifier. To learn more
about valid values for the qualifier, use the ACMSCFG HELP command.

Message: VALTOOSMALL, value is too small: <value>, please correct and resubmit

• Explanation: A value was provided that is less than the allowed minimum.

• User Action: Modify the command to include a valid value with the qualifier. To learn more
about valid values for the qualifier, use the ACMSCFG HELP command.

500

Appendix C. RPC Procedures and Corresponding Rights Identifiers

C.4. ACMSSNAP Messages
The following error messages pertain to the ACMSSNAP process.

Message: FILEISOPEN, a file is already open. Use the CLOSE command to close the current file

• Explanation: A request was made to process an ACMS data snapshot file that is already open.
Only one file can be open at a time.

• User Action: No action is required.

Message: NOFILEOPEN, no file is open. Use the OPEN command to open a file first

• Explanation: A request was made to process an ACMS data snapshot file, but no file has been
opened. A data snapshot file must be open in order for the command to be executed.

• User Action: Use the ACMSSNAP OPEN command to open the file; then reissue the command.

501

Appendix C. RPC Procedures and Corresponding Rights Identifiers

502

Index

Index

503

Index

504

	VSI ACMS for OpenVMSRemote Systems Management Guide
	Table of Contents
	Preface
	1. About this manual
	2. Document Structure
	3. Related Documents
	4. VSI Encourages Your Comments
	5. Conventions

	Part I. Introduction
	Chapter 1. Overview of Remote Management
	1.1. Architecture and Implementation
	1.2. Remote Management Capabilities

	Chapter 2. Getting Started with the ACMS Remote Manager
	2.1. Running the ACMS Remote Manager
	2.1.1. Server Node Setup
	2.1.1.1. Verify Portmapper (RPC) Setup
	2.1.1.2. Run the ACMS Postinstallation Procedure
	2.1.1.3. Define Process Logicals and Symbols
	2.1.1.4. Prepare the ACMS Environment
	2.1.1.5. Start the ACMS Remote Manager

	2.1.2. Client Node Setup
	2.1.2.1. Run ACMS_POST_INSTALL.COM
	2.1.2.2. Copy Files and Define Symbols

	2.1.3. Communicate with the Remote Manager

	2.2. TCP/IP Setup
	2.2.1. Set Up the Portmapper (RPC)
	2.2.1.1. Determine the Current Portmapper Configuration
	2.2.1.2. Remove the Existing Portmapper Configuration
	2.2.1.3. Configure the Portmapper

	2.2.2. Set Up SNMP
	2.2.2.1. Determine the Current SNMP Configuration
	2.2.2.2. Remove the Existing SNMP Configuration
	2.2.2.3. Configure SNMP
	2.2.2.4. Test SNMP

	2.3. Remote Manager Setup
	2.3.1. Run the Postinstallation Procedure
	2.3.2. Define Process Logicals and Symbols
	2.3.3. Review and Update the Configuration File
	2.3.4. Start the Remote Manager
	2.3.5. Communicate with the Remote Manager
	2.3.5.1. Using ACMSMGR and Logging In Explicitly
	2.3.5.2. Using ACMSMGR and a Proxy Account

	2.4. Troubleshooting the ACMS Remote Manager Startup
	2.4.1. Problems Starting ACMS
	2.4.2. Problems Starting the ACMS Remote Manager
	2.4.2.1. ACMS$MGMT_SERVER.OUT Messages
	2.4.2.2. Remote Manager Log Entries

	2.4.3. Problems with the ACMSMGR Utility
	2.4.3.1. ACMSMGMT-W-NOCLNT_ATTACH Messages
	2.4.3.2. ACMSMGR Hangs

	Chapter 3. Using the Remote Manager to Manage ACMS
	3.1. Overview of the Remote Manager Web Agent
	3.2. Remote Manager Web Agent Setup
	3.2.1. Install the Remote Manager Web Agent Software
	3.2.2. Install the VSI Management Agents for OpenVMS Software
	3.2.3. Assign Additional Rights Identifiers
	3.2.4. Start the Remote Manager Web Agent Process
	3.2.5. Enable Access to Remote Manager Hosts
	3.2.6. Stop the Remote Manager Web Agent

	3.3. Using the Remote Manager Web Agent
	3.3.1. Accessing the ACMS Remote Management Web Page
	3.3.2. Conventions
	3.3.3. Customizing the Display
	3.3.4. Selecting the Remote Manager Host

	3.4. Issuing Remote Manager Commands
	3.4.1. Using Show Commands
	3.4.2. Using Set Commands
	3.4.3. Using Start and Stop Commands
	3.4.4. Using Add and Delete Commands

	3.5. Troubleshooting the Remote Manager Web Agent
	3.5.1. Reporting Problems

	Chapter 4. Managing the Remote Manager
	4.1. Overview
	4.2. Configuring Remote Manager Startup
	4.2.1. How to Run the ACMSCFG Utility
	4.2.2. Displaying Current Values
	4.2.3. Changing Values

	4.3. Starting and Stopping the Remote Manager
	4.3.1. Remote Manager Startup
	4.3.2. Remote Manager Shutdown

	4.4. Logging In to the Remote Manager
	4.4.1. Authentication
	4.4.1.1. Logging In
	4.4.1.2. Proxy Accounts

	4.4.2. Authorization
	4.4.2.1. Read Access
	4.4.2.2. Write Access
	4.4.2.3. Operate Access

	4.5. Starting and Stopping Interfaces
	4.5.1. Using ACMSCFG to Enable or Disable Interfaces
	4.5.2. Using ACMSMGR to Start or Stop Interfaces

	4.6. Modifying Management Parameters
	4.6.1. Using ACMSCFG to Modify Management Parameters
	4.6.2. Using ACMSMGR to Modify Management Parameters

	4.7. Managing Log Files
	4.7.1. Setting Audit Levels
	4.7.2. Displaying Audit Messages
	4.7.3. Resetting the Audit Log

	Chapter 5. Using the Remote Manager to Manage ACMS
	5.1. Managing Data Collection
	5.1.1. Entities, Classes, Names, and Collections
	5.1.2. Starting and Stopping Collections
	5.1.2.1. Using ACMSCFG to Start or Stop Collections
	5.1.2.2. Using ACMSMGR to Start or Stop Collections
	5.1.2.3. Using SNMP to Start or Stop Collections

	5.2. Displaying Collected Data
	5.2.1. Using ACMSMGR to Display Collected Data

	5.3. Managing ACMS Using the Remote Manager
	5.3.1. Types of Variables
	5.3.1.1. Stored Variables
	5.3.1.2. Active Variables

	5.3.2. How the Remote Manager Makes Changes
	5.3.3. Using ACMSMGR to Modify the ACMS Run-Time System
	5.3.4. Using SNMP to Modify the ACMS Run-Time System
	5.3.4.1. Starting and Stopping Processes Using SNMP
	5.3.4.2. Adding and Deleting Rows Using SNMP
	5.3.4.3. Replacing Application Procedure Servers Using SNMP

	5.3.5. Using ONC RPC to Modify the ACMS Run-Time System

	Chapter 6. Management Programming Using ONC RPC
	6.1. ONC RPC Overview
	6.2. API Overview
	6.3. Initialization and Security
	6.3.1. Initialization Example

	6.4. Get Procedures
	6.4.1. Get Example

	6.5. List Procedures
	6.5.1. Linked List Example

	6.6. Set Procedures
	6.6.1. Set Example

	6.7. Delete Procedures
	6.7.1. Delete Example

	6.8. Add Procedures
	6.8.1. Add Example

	6.9. Start, Stop, and Replace Procedures
	6.9.1. Start Example

	Chapter 7. Management Programming Using SNMP
	7.1. SNMP Overview
	7.2. SNMP Security
	7.3. Initializing the SNMP Interface
	7.4. SNMP Tables
	7.4.1. Data Type Mapping
	7.4.2. Single-Row Tables
	7.4.3. Static Tables
	7.4.4. Dynamic Tables
	7.4.5. Servers and Task Groups

	7.5. SNMP GET Operations
	7.6. SNMP SET Operations
	7.7. Using SNMP to Start and Stop ACMS Entities
	7.8. SNMP Traps
	7.8.1. EXISTS Traps
	7.8.2. EVENT_SEVERITY Traps

	7.9. SNMP Debug Tracing
	7.9.1. Starting SNMP Debug Tracing
	7.9.2. Stopping SNMP Debug Tracing

	7.10. Remote Manager eSNMP Return Codes

	Part II. Reference Information
	Chapter 8. Management APIs
	8.1. Common RPC Fields
	8.1.1. Collection Classes
	8.1.2. Interface Types
	8.1.3. Enable States
	8.1.4. Entity Types
	8.1.5. Facility Types
	8.1.6. Running States
	8.1.7. Severity Codes
	8.1.8. Trap Parameters

	8.2. Thread-Safe and Non-Thread Safe Clients
	8.3. ACMSMGMT_ADD_COLLECTION_2
	ACMSMGMT_ADD_COLLECTION_2
	ACMSMGMT_ADD_ERR_FILTER_2
	ACMSMGMT_ADD_TRAP_1
	ACMSMGMT_DELETE_COLLECTION_1
	ACMSMGMT_DELETE_ERR_FILTER_2
	ACMSMGMT_DELETE_TRAP_1
	ACMSMGMT_GET_ACC_2
	ACMS$MGMT_GET_CREDS
	ACMSMGMT_GET_ERR_FILTER_2
	ACMSMGMT_GET_MGR_STATUS_1
	ACMSMGMT_GET_PARAM_2
	ACMSMGMT_GET_QTI_2
	ACMSMGMT_GET_TSC_2
	ACMSMGMT_GET_VERSION_2
	ACMSMGMT_LIST_COLLECTIONS_2
	ACMSMGMT_LIST_CP_2
	ACMSMGMT_LIST_EXC_2
	ACMSMGMT_LIST_INTERFACES_1
	ACMSMGMT_LIST_LOG_1
	ACMSMGMT_LIST_PROC_1
	ACMSMGMT_LIST_SERVER_1
	ACMSMGMT_LIST_TG_2
	ACMSMGMT_LIST_TRAP_1
	ACMSMGMT_LIST_USERS_1
	ACMSMGMT_REPLACE_SERVER_1
	ACMSMGMT_RESET_LOG_1
	ACMSMGMT_RESET_ERR_2
	ACMSMGMT_SAVE_ERR_FILTER_2
	ACMSMGMT_SET_ACC_2
	ACMSMGMT_SET_COLLECTION_2
	ACMSMGMT_SET_CP_2
	ACMSMGMT_SET_EXC_2
	ACMSMGMT_SET_INTERFACE_1
	ACMSMGMT_SET_PARAM_2
	ACMSMGMT_SET_QTI_2
	ACMSMGMT_SET_SERVER_1
	ACMSMGMT_SET_TRAP_1
	ACMSMGMT_SET_TSC_2
	ACMSMGMT_START_ACC_1
	ACMSMGMT_START_EXC_1
	ACMSMGMT_START_QTI_1
	ACMSMGMT_START_TRACE_MONITOR_1
	ACMSMGMT_START_TSC_1
	ACMSMGMT_STOP_1
	ACMSMGMT_STOP_ACC_1
	ACMSMGMT_STOP_EXC_1
	ACMSMGMT_STOP_QTI_1
	ACMSMGMT_STOP_TRACE_MONITOR_1

	Chapter 9. Remote Manager Reference Tables
	9.1. Data Types
	9.2. ACC Table
	9.2.1. Field Descriptions

	9.3. Agent Table
	9.3.1. Field Descriptions

	9.4. Collection Table
	9.4.1. Field Descriptions

	9.5. CP Table
	9.5.1. Field Descriptions

	9.6. EXC Table
	9.6.1. Field Descriptions

	9.7. Interfaces Table
	9.7.1. Field Descriptions

	9.8. Manager Status Table
	9.8.1. Field Descriptions

	9.9. Parameter Table
	9.9.1. Field Descriptions

	9.10. QTI Table
	9.10.1. Field Descriptions

	9.11. Server Table
	9.11.1. Field Descriptions

	9.12. Task Group Table
	9.12.1. Field Descriptions

	9.13. Trap Table
	9.13.1. Field Descriptions

	9.14. Valid Trap Minimums and Maximums
	9.14.1. Field Descriptions
	9.14.2. Valid Trap Minimums and Maximums
	9.14.3. SNMP Trap Format

	9.15. TSC Table
	9.15.1. Field Descriptions

	9.16. Users Table
	9.16.1. Field Descriptions

	Chapter 10. ACMSCFG Commands
	10.1. ACMSCFG Overview
	10.1.1. Command Format
	10.1.2. Command Objects and Qualifiers

	10.2. ACMSCFG ADD COLLECTION
	ACMSCFG ADD COLLECTION

	10.3. ACMSCFG ADD TRAP
	ACMSCFG ADD TRAP

	10.4. ACMSCFG DELETE COLLECTION
	ACMSCFG DELETE COLLECTION

	10.5. ACMSCFG DELETE TRAP
	ACMSCFG DELETE TRAP
	ACMSCFG HELP

	10.6. ACMSCFG SET COLLECTION
	ACMSCFG SET COLLECTION
	ACMSCFG SET INTERFACE
	ACMSCFG SET PARAMETER
	ACMSCFG SET TRAP
	ACMSCFG SHOW COLLECTION
	ACMSCFG SHOW CONTROL
	ACMSCFG SHOW INTERFACE
	ACMSCFG SHOW PARAMETER
	ACMSCFG SHOW TRAP

	Chapter 11. ACMSMGR Commands
	11.1. ACMSMGR Overview
	11.1.1. Command Format
	11.1.2. Command Objects and Qualifiers

	11.2. ACMSMGR ADD COLLECTION
	ACMSMGR ADD COLLECTION

	11.3. ACMSMGR ADD FILTER
	ACMSMGR ADD FILTER

	11.4. ACMSMGR ADD TRAP
	ACMSMGR ADD TRAP

	11.5. ACMSMGR DELETE COLLECTION
	ACMSMGR DELETE COLLECTION

	11.6. ACMSMGR DELETE FILTER
	ACMSMGR DELETE FILTER

	11.7. ACMSMGR DELETE TRAP
	ACMSMGR DELETE TRAP

	11.8.
	ACMSMGR HELP

	11.9. ACMSMGR LOGIN
	ACMSMGR LOGIN

	11.10. ACMSMGR LOGOUT
	ACMSMGR LOGOUT

	11.11. ACMSMGR REPLACE SERVER
	ACMSMGR REPLACE SERVER

	11.12. ACMSMGR RESET ERROR
	ACMSMGR RESET ERROR

	11.13. ACMSMGR RESET LOG
	ACMSMGR RESET LOG

	11.14. ACMSMGR SAVE FILTER
	ACMSMGR SAVE FILTER

	11.15. ACMSMGR SET ACC
	ACMSMGR SET ACC

	11.16. ACMSMGR SET AGENT
	ACMSMGR SET AGENT

	11.17. ACMSMGR SET COLLECTION
	ACMSMGR SET COLLECTION

	11.18. ACMSMGR SET CP
	ACMSMGR SET CP

	11.19. ACMSMGR SET EXC
	ACMSMGR SET EXC

	11.20. ACMSMGR SET INTERFACE
	ACMSMGR SET INTERFACE

	11.21. ACMSMGR SET PARAMETER
	ACMSMGR SET PARAMETER

	11.22. ACMSMGR SET QTI
	ACMSMGR SET QTI

	11.23. ACMSMGR SET SERVER
	ACMSMGR SET SERVER

	11.24. ACMSMGR SET TRAP
	ACMSMGR SET TRAP

	11.25. ACMSMGR SET TSC
	ACMSMGR SET TSC

	11.26. ACMSMGR SHOW ACC
	ACMSMGR SHOW ACC

	11.27. ACMSMGR SHOW AGENT
	ACMSMGR SHOW AGENT

	11.28. ACMSMGR SHOW COLLECTION
	ACMSMGR SHOW COLLECTION

	11.29. ACMSMGR SHOW CP
	ACMSMGR SHOW CP

	11.30. ACMSMGR SHOW ERROR
	ACMSMGR SHOW ERROR

	11.31. ACMSMGR SHOW EXC
	ACMSMGR SHOW EXC

	11.32. ACMSMGR SHOW FILTER
	ACMSMGR SHOW FILTER

	11.33. ACMSMGR SHOW GROUP
	ACMSMGR SHOW GROUP

	11.34. ACMSMGR SHOW INTERFACE
	ACMSMGR SHOW INTERFACE

	11.35. ACMSMGR SHOW LOG
	ACMSMGR SHOW LOG

	11.36. ACMSMGR SHOW MANAGER
	ACMSMGR SHOW MANAGER

	11.37. ACMSMGR SHOW PARAMETER
	ACMSMGR SHOW PARAMETER

	11.38. ACMSMGR SHOW PROCESS
	ACMSMGR SHOW PROCESS

	11.39. ACMSMGR SHOW QTI
	ACMSMGR SHOW QTI

	11.40. ACMSMGR SHOW SERVER
	ACMSMGR SHOW SERVER

	11.41. ACMSMGR SHOW TRAP
	ACMSMGR SHOW TRAP

	11.42. ACMSMGR SHOW TSC
	ACMSMGR SHOW TSC

	11.43. ACMSMGR SHOW USER
	ACMSMGR SHOW USER

	11.44. ACMSMGR SHOW VERSION
	ACMSMGR SHOW VERSION

	11.45. ACMSMGR START EXC
	ACMSMGR START EXC

	11.46. ACMSMGR START QTI
	ACMSMGR START QTI

	11.47. ACMSMGR START SYSTEM
	ACMSMGR START SYSTEM

	11.48. ACMSMGR START TERMINALS
	ACMSMGR START TERMINALS

	11.49. ACMSMGR START TRACE_MONITOR
	ACMSMGR START TRACE_MONITOR

	11.50. ACMSMGR STOP EXC
	ACMSMGR STOP EXC

	11.51. ACMSMGR STOP MANAGER
	ACMSMGR STOP MANAGER

	11.52. ACMSMGR STOP QTI
	ACMSMGR STOP QTI

	11.53. ACMSMGR STOP SYSTEM
	ACMSMGR STOP SYSTEM

	11.54. ACMSMGR STOP TERMINALS
	ACMSMGR STOP TERMINALS

	11.55. ACMSMGR STOP TRACE_MONITOR
	ACMSMGR STOP TRACE_MONITOR

	Chapter 12. ACMSSNAP Commands
	12.1. ACMSSNAP Overview
	12.1.1. Command Format
	12.1.2. Command Objects and Qualifiers

	12.2. ACMSSNAP CLOSE Command
	ACMSSNAP CLOSE

	12.3. ACMSSNAP EXIT Command
	ACMSSNAP EXIT

	12.4. ACMSSNAP HELP Command
	ACMSSNAP HELP

	12.5. ACMSSNAP NEXT Command
	ACMSSNAP NEXT

	12.6. ACMSSNAP OPEN Command
	ACMSSNAP OPEN

	12.7. ACMSSNAP PREV Command
	ACMSSNAP PREV

	12.8. ACMSSNAP QUIT Command
	ACMSSNAP QUIT

	12.9. ACMSSNAP RESET Command
	ACMSSNAP RESET

	12.10. ACMSSNAP SHOW Command
	ACMSSNAP SHOW

	12.11. ACMSSNAP TRACE Command
	ACMSSNAP TRACE

	Appendix A. Remote Manager Logical Names
	A.1. Remote Manager Server
	A.2. Remote Manager Client (ACMSMGR Utility)

	Appendix B. RPC Procedures and Corresponding Rights Identifiers
	Appendix C. RPC Procedures and Corresponding Rights Identifiers
	C.1. Server Messages
	C.2. ACMSMGR Messages
	C.3. ACMSCFG Messages
	C.4. ACMSSNAP Messages

	Index

