
VSI OpenVMS

DECnet-Plus
FTAM Programming

Document Number: DO-FTAMPG-01A

Publication Date: August 2021

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS Integrity Version 8.4-2
VSI OpenVMS Alpha Version 8.4-2L1

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

DECnet-PlusFTAM Programming

Copyright © 2021 VMS Software, Inc. (VSI), Burlington, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

UNIX is a registered trademark of The Open Group.

ii

DECnet-PlusFTAM Programming

Preface ... v
1. Intended Audience .. v
2. Related Documents ... v
3. VSI Encourages Your Comments ... v
4. OpenVMS Documentation ... v
5. Typographical Conventions ... v

Chapter 1. Introduction .. 1
1.1. Overview of the FTAM API ... 2
1.2. Using the FTAM API ... 2

1.2.1. Setting up an Association .. 2
1.2.2. Typical FTAM Protocol Exchange .. 3
1.2.3. Typical FTAM API Call Sequence ... 3

1.3. Mapping Block Types to Primitives .. 4
1.4. Handling API Calls .. 4
1.5. Managing the User Buffer .. 4
1.6. Handling User Data .. 5
1.7. Using Document Types .. 5

1.7.1. Using the FTAM-1 Document Type .. 5
1.7.2. Using the FTAM-2 Document Type .. 6
1.7.3. Using the FTAM-3 Document Type .. 6
1.7.4. Using the NBS-9 Document Type .. 6
1.7.5. Default Document Type Parameter Values .. 7

1.8. Passive Versus Active Responders .. 7
1.9. Using Presentation Addresses ... 8

1.9.1. Matching NSAPs and Templates .. 9
1.10. FTAM API Version 3.0 Applications With Version 3.2 ... 9
1.11. FTAM API Restrictions .. 10

Chapter 2. Building and Running API Programs .. 11
2.1. Compiling Programs with DEC C on OpenVMS VAX ... 11
2.2. Linking Programs on OpenVMS ... 11
2.3. Running Programs on OpenVMS .. 11
2.4. Compiling and Linking Programs on UNIX ... 12
2.5. FTAM API Example Files .. 12

Chapter 3. FTAM File Services .. 15
3.1. Service Sequences .. 15

3.1.1. Creating a New File and Writing Data .. 16
3.1.2. Deleting a File Using Grouping .. 16
3.1.3. Reading and Changing Attributes ... 16
3.1.4. Performing a Series of Writes and Reads .. 16
3.1.5. Transferring a File to a Peer System ... 17
3.1.6. Canceling a Data Transfer .. 17

3.2. FTAM File Services and Parameters .. 18
3.3. Parameter Block Description ... 21
3.4. Parameter Description ... 22

Chapter 4. Data Structures ... 33
4.1. FTAM Parameter Block .. 33
4.2. String Descriptor Specification .. 36
4.3. Binary Descriptor Specification ... 36
4.4. File Names .. 37
4.5. Diagnostics .. 37

iii

DECnet-PlusFTAM Programming

4.6. Contents Type Lists .. 38
4.7. Contents Type Parameter .. 38
4.8. Document Type Parameters .. 39
4.9. Application-Entity Entry ... 39
4.10. Application-Entity Address ... 40
4.11. Network Selector and Transport Options Queue (Version 3.0 Only) 40
4.12. Network Selector and Transport Provider Queue (Version 3.2 Only) 41
4.13. Transport Template Queue (Version 3.2 Only) .. 41
4.14. Concurrency Control .. 41
4.15. Access Control ... 42
4.16. Access Passwords ... 43
4.17. File Access Data Unit ... 43
4.18. File Access Data Unit Access Context ... 44
4.19. Charging .. 45
4.20. User Buffer .. 45

Chapter 5. Function Calls ... 47
osif_assign_port .. 47
osif_deassign_port ... 49
osif_get_event ... 51
osif_give_buffer .. 53
osif_send .. 55

Appendix A. Error Messages .. 59
Appendix B. Diagnostic Errors .. 63

iv

Preface
This manual provides information about the FTAM application programming interface (FTAM API)
that is part of the DECnet-Plus product set.

1. Intended Audience
The audience for this manual is OSI application programmers who require a basic understanding of
the upper-layer standards implemented by FTAM (File Transfer, Access, and Management) product.

2. Related Documents
VSI DECnet-Plus FTAM and Virtual Terminal Use and Management provides additional information
on the FTAM software.

Read the Release Notes before you read any other document in this set.

3. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who
have OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

4. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation
webpage at https://vmssoftware.com/resources/documentation/.

5. Typographical Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified,
references to OpenVMS Cluster systems or clusters in this document are synonymous with
VMScluster systems.

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for
OpenVMS software.

The following conventions are also used in this manual:

Convention Meaning
Ctrl/x A sequence such as Ctrl/ x indicates that you must hold down the key labeled

Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the key

labeled PF1 and then press and release another key or a pointing device button.

v

Preface

Convention Meaning
Return In examples, a key name enclosed in a box indicates that you press a key on the

keyboard. (In text, a key name is not enclosed in a box.)
… A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

[|] In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

Other conventions are:

• All numbers are decimal unless otherwise noted.

vi

Preface

• All Ethernet addresses are hexadecimal.

vii

Preface

viii

Chapter 1. Introduction
Accessing the FTAM protocol through a programmable interface, such as FTAM application
programming interface (FTAM API), requires a basic understanding of the portions of the complex
FTAM protocol that are supported by FTAM products. This manual explains the syntax and
programming codes of the FTAM API.

FTAM products are communications products that support file transfer and basic file management
between open systems. An open system is a computer system that contains implementations of the
seven layers of the Open Systems Interconnection (OSI) Reference Model for communications.

The FTAM API provides an interface to the FTAM protocol machine. The FTAM API is consistent
with all the specified FTAM file service primitives and with the structure and scope of other OSI
upper layer programming interfaces.

The FTAM API provides the functions specified in the FTAM standard (ISO 8571-3) by supporting
the following:

• Functional Units

• Read

• Write

• File Access

• Limited File Management

• Enhanced File Management

• Grouping

• FADU Locking

• Service Classes

• Unconstrained

• Management

• Transfer

• Transfer and Management

• Access

• Attribute Groups

• Storage

• Security

• Document Types

• FTAM-1

1

Chapter 1. Introduction

• FTAM-2

• FTAM-3

• NBS-9

Note

This document describes both the FTAM API Version 3.0 and the FTAM API Version 3.2. Sections
specific to either Version 3.0 or Version 3.2 are designated in the text. See Section 1.10 for issues
around using FTAM API applications written to earlier versions of the FTAM API with Version 3.2.

1.1. Overview of the FTAM API
The FTAM API is a low-level interface providing access to the FTAM protocol machine. To use the
FTAM API, you must have a good working knowledge of the FTAM standard. You should obtain a
copy of the FTAM standard (ISO 8571) for active reference purposes.

The FTAM API consists of the following function calls. Chapter 5 describes these calls in detail.

• osif_assign_port and osif_deassign_port are used to create and tear down the
connection to the remote system.

• osif_give_buffer is used locally to pass buffers to the FTAM API.

• osif_send and osif_get_event are used to send and receive FTAM service primitives to
and from the remote system.

Similar to the OSAK API, the FTAM API is a parameter block interface. That parameter block is
the osifpb structure. The osifpb is used by the FTAM API user to specify which FTAM service
primitive to send and what the parameters should be. It is also used by the FTAM API to tell the API
user which FTAM service primitive was received and what the parameters are. The osifpb structure
contains a field for each parameter in any of the FTAM primitives. In this document, parameter
refers to a field of the osifpb structure.

Chapter 4 describes the osifpb structure and the other structures used by the FTAM API.

1.2. Using the FTAM API
This section shows a typical way that the FTAM API can be used to establish an association and
perform a protocol exchange sequence with the peer entity.

1.2.1. Setting up an Association
The first call to the FTAM API is to the routine osif_assign_port. This routine returns a port
identifier which is the local identifier of the association.

Before requesting any additional services, use the osif_give_buffer call to provide FTAM with
buffers for receiving inbound events. FTAM returns these buffers on subsequent osif_get_event
calls.

2

Chapter 1. Introduction

1.2.2. Typical FTAM Protocol Exchange
A typical FTAM protocol exchange can resemble the following:

Operation FTAM Primitives
Send: f-initialize-request
Receive: f-initialize-response
Send: f-begin-group-request

f-create-request

f-open-request

f-end-group-request
Receive: f-begin-group-response

f-create-response

f-open-response

f-end-group-response
Send: f-write-request
Send: f-data-request, f-data-request, ...
Send: f-data-end-request
Send: f-transfer-end-request
Receive: f-transfer-end-response
Send: f-terminate-request
Receive: f-terminate-response

1.2.3. Typical FTAM API Call Sequence
To implement this typical protocol exchange, you should expect to see the following calls to the
FTAM API:

Call Purpose
osif_send send the f-initialize-request
osif_get_event receive the f-initialize-response
osif_send send the f-begin-group-request
osif_send send the f-create-request
osif_send send the f-open-request
osif_send send the f-end-group-request
osif_get_event receive the f-begin-group-response
osif_get_event receive the f-create-response
osif_get_event receive the f-open-response
osif_get_event receive the f-end-group-response
.

3

Chapter 1. Introduction

Call Purpose
.
.

1.3. Mapping Block Types to Primitives
The FTAM service primitives available through the FTAM API map to a set of constants that must be
set in the osif_block_type parameter of the osifpb structure. These constants are described in
Section 4.1.

These values determine the type of FTAM service primitive that a particular osifpb structure
represents. The block type will be set to one of the defined constants upon receipt of an incoming
FTAM event. A single value refers to either a request or an indication depending on the context in
which the osifpb structure is used.

For example, if an F-INITIALIZE-request is to be sent to an FTAM responder,then the
osif_block_type parameter must be set to OSIF_PBDEF_INIT_REQ. The osif_send
function call can then be used to send the F-INITIALIZE-request to the remote responder. If
the responder receives an osifpb as part of an osif_get_event function call and the
osif_block_type parameter is set to OSIF_PBDEF_INIT_REQ, then the osifpb received
describes an F-INITIALIZE-indication.

1.4. Handling API Calls
Except for the osif_get_event call, all API calls are blocking in nature. Blocking means that
control does not return to the user program until the requested call has completed successfully or
unsuccessfully. The osif_get_event call may be used either in blocking or non-blocking mode.
If it is used in non-blocking mode, the osif_get_event call can poll for events by using the
timeout parameter.

1.5. Managing the User Buffer
The API must be provided with buffers after a port is assigned but before any other operations. This is
accomplished with calls to osif_give_buffer. Once you give the API a buffer and the structure
that points at the buffer (osif_buffer_list structure) through the osif_give_buffer
function call, the API owns the buffer. You should not try to use the buffer until the APIreturns the
buffer to you. Buffers are returned to the user when you deassign the port using the buffer_list
argument of the osif_deassign_port function call or when an event is received by the
osif_get_event function call.

If the API has insufficient buffers to complete an osif_get_event request, the call returns
an OSIF_FAILURE status and the OSIF_NOBUFFS error. If this situation occurs, your
application should provide additional buffers using the osif_give_buffer call and retry the
osif_get_event call.

To avoid this situation, use the osif_give_buffer call before each call to osif_get_event:

osif_give_buffer(...)osif_get_event(...)

When an event is received successfully, the osif_get_eventcall might return user
buffers in the osifpb structure using the osif_returned_buffer parameter.
The osif_returned_buffer parameter might also return a null value. The

4

Chapter 1. Introduction

osif_returned_buffer parameter is a pointer to the osif_buffer_list structure which
points at the user buffer. Once you have finished using all the parameters in an osifpb structure,
you can reuse the buffers that the osif_returned_buffer parameter points at by passing them
back to the API using the osif_give_buffer call. Do not return buffers to the API before you are
finished using them, because information might be lost in the process.

1.6. Handling User Data
The user data, which corresponds to the F-DATA service primitive, is passed to the FTAM API
through the osif_userdata parameter of the osifpb. osif_userdata is implemented as an
osif_sdesc structure, which contains a pointer to the data buffer containing the user's file data, and
an integer which is the buffer length. Only one buffer can be used for each transfer. The FTAM API
does not support buffer chains. The FTAM API owns the buffer (that is, the user should not change
it) until the call returns. If the buffer contents change, the unpredictable results might cause the call to
fail.

For outgoing F-DATA requests, the buffer used is supplied by the user. Its allocation is a local matter.
The data buffer becomes available to the user when the osif_send function returns.

For incoming F-DATA indications, the specified buffer in the osif_userdata parameter is taken
from the osif_give_buffer pool. The buffer may or may not become available to the user upon
receipt of the F-DATA-indication (osif_get_event call). Buffers will be owned by the API
until the API relinquishes control of the buffer through the use of the osif_returned_buffer
parameter.

1.7. Using Document Types
Document types provide information about a file, including its intended use, structure, and scope. The
four supported document types are:

• FTAM-1 — Unstructured text files

• FTAM-2 — Sequential text files

• FTAM-3 — Unstructured binary files

• NBS-9 — NBS file directories

1.7.1. Using the FTAM-1 Document Type
An FTAM-1 document type indicates that data is sent as a stream of characters. The buffer and buffer
length must be specified in the osif_userdata parameter. Carriage control conversion is not
supplied by the API and must be performed by the API user before passing the F-DATA to the API.
The FTAM protocol machine handles the encoding of the data. Optional escape sequences specifying
ISO character set designation are stripped from incoming data before it is delivered to the user by the
FTAM protocol machine.

The following values are supported for the FTAM-1 document type parameters:

OSIF_MSL_UNLIMITED UnlimitedMaximum string length
Integer>0 Size given

String significance OSIF_STRSIG_VAR Variable

5

Chapter 1. Introduction

OSIF_STRSIG_FIX Fixed
OSIF_STRSIG_NS Not significant
OSIF_UC_PRINTABLE PrintableString
OSIF_UC_IA5 IA5String
OSIF_UC_GRAPHIC GraphicString
OSIF_UC_VISIBLE VisibleString

Universal class number

OSIF_UC_GENERAL GeneralString

1.7.2. Using the FTAM-2 Document Type
An FTAM-2 document type indicates that data is delivered to the user one file access data unit
(FADU) at a time. The user receives one osifpb structure per FADU which points to the FADU
through the osif_userdata parameter.

The following values are supported for the FTAM-2 document type parameters:

OSIF_MSL_UNLIMITED UnlimitedMaximum string length
Integer>0 Size Given
OSIF_STRSIG_VAR Variable
OSIF_STRSIG_FIX Fixed

String significance

OSIF_STRSIG_NS Not significant
OSIF_UC_PRINTABLE PrintableString
OSIF_UC_IA5 IA5String
OSIF_UC_GRAPHIC GraphicString
OSIF_UC_VISIBLE VisibleString

Universal class number

OSIF_UC_GENERAL GeneralString

1.7.3. Using the FTAM-3 Document Type
An FTAM-3 document type indicates that data is sent as a stream of octets. The buffer and buffer
length must be specified in the osif_userdata parameter. The FTAM protocol machine handles
the encoding of the data. Optional escape sequences specifying ISO character set designation are
stripped from incoming data before it is delivered to the user by the FTAM protocol machine.

The following values are supported for the FTAM-3 document type parameters:

OSIF_MSL_UNLIMITED UnlimitedMaximum string length
Integer>0 Size Given
OSIF_STRSIG_VAR Variable
OSIF_STRSIG_FIX Fixed

String significance

OSIF_STRSIG_NS Not significant

1.7.4. Using the NBS-9 Document Type
An NBS-9 document type indicates that FTAM initiators can read the contents of a remote directory
file. More information on the NBS-9 document type is in the NIST special publication, Stable

6

Chapter 1. Introduction

Implementation Agreements for Open Systems Interconnection Protocols Version 2 Edition 1. The file
contents are defined by the following abstract syntax (NBS-AS2):

 NBS_AS2 DEFINITIONS ::=
 BEGIN
 FileDirectoryEntry ::=[PRIVATE 2] Read-Attributes
 ReadAttributes ::=ISO8571-FTAM.ReadAttributes
 End

Thus, the file contents consist of records that are made up of the syntax of an F-READ-ATTRIBUTE-
response primitive. As a result, API users receiving NBS-9 data receive an osifpb structure with
all the relevant F-READ-ATTRIBUTE-response parameters filled in for each entry in the remote
directory.

The NBS-9 document type parameters are defined as a bit string in the osif_attribute_names
parameter of the osifpb. The bit string consists of the following bits:

read-filename(0)
read-permitted-actions(1)
read-contents-type(2)
read-storage-account(3)
read-date-and-time-of-creation(4)
read-date-and-time-of-last-modification(5)
read-date-and-time-of-last-read-access(6)
read-date-and-time-of-last-attribute-modification(7)
read-identity-of-creator(8)
read-identity-of-last-modifier(9)
read-identity-of-last-reader(10)
read-identity-of-last-attribute-modifier(11)
read-file-availability(12)
read-filesize(13)
read-future-filesize(14)
read-access-control(15)
read-legal-qualifications(16)
read-private-use(17)

1.7.5. Default Document Type Parameter Values
For the ISO document types (FTAM-1, FTAM-2, and FTAM-3), the following default parameter
values apply if one of the supported values listed for each document type is not specified.

• If the maximum string length parameter is not specified, then the default value is unlimited.

• There is no default for the string significance parameter. If the parameter is not specified, then the
length of the character strings is less than or equal to the maximum string length given.

• If the universal class number parameter is not specified, then the default value is GraphicString.

1.8. Passive Versus Active Responders
With the FTAM API, you can design an FTAM responder that is either an active application or a
passive application.

To use a passive application, do the following:

7

Chapter 1. Introduction

• Specify OSIF_ASSIGN_REDIRECT as the value for the port_flagsargument of the
osif_assign_port call.

• On OpenVMS, declare your FTAM responder as an OSAK application. Refer to the VSI DECnet-
Plus FTAM and Virtual Terminal Use and Management for instructions on how to perform this
operation. Once your responder is declared, the OSAK Server starts up your responder when a
connection request arrives for its address.

• On UNIX, start the FTAM listener and specify your FTAM responder as the responder to use.
Refer to the VSI DECnet-Plus FTAM and Virtual Terminal Use and Management for information
about starting up a listener.

Once started, the FTAM listener starts up your responder when a connection request arrives for the
specified address.

To use an active application, do the following:

• Specify OSIF_ASSIGN_RESPONDER as the value for the port_flags argument of the
osif_assign_port call.

• On both OpenVMS and UNIX, start the responder by running the responder executable image
directly in a process.

1.9. Using Presentation Addresses
A presentation address (p-address) specifies service access points (SAPs) for the service providers
of all the upper layers to be accessed. For FTAM product, a p-address always contains presentation,
session, and transport selectors. It also must have an NSAP. This information is contained in
the osif_local_p_addrs and osif_peer_p_addrs parameters of the osifpb. The
osif_ae_entry structure is used for these parameters.

The field p_address of the osif_ae_entry structure is used for the upper layer SAPs. The
SAPs should be specified in the following format:

psap.ssap.tsap.

Field descriptions:

psap is the presentation service access point. Its value can be any string.
ssap is the session service access point. Its value can be any string.
tsap is the transport service access point.

The p-address value can include character strings or octet strings. Octet strings must be preceded by
%x (or %X). Each selector is terminated on its right by a delimiter (.). If a particular selector is not
required, the delimiter (.) must still be included.

For example, if the SSAP is not required, then the format of the p-address might resemble the
following:

PSAP..TSAP.

For the FTAM API Version 3.0, the nsap_queue field of the osif_ae_entry structure contains
the NSAP, provider, and template information, where:

8

Chapter 1. Introduction

nsap is the network service access point. For a remote or local system, you must
ask the system manager of the network manager for this information.

provider is the transport type in use.
template defines the transport template in use.

For the FTAM API Version 3.2, the NSAP and provider information is contained in a linked list
pointed to by the nsap_queue_ptr field of the osif_ae_entry structure. The template
information is contained in a linked list pointed to by the template_queue_ptr field of the
osif_ae_entry structure. Chapter 3 provides more details about these data structures.

1.9.1. Matching NSAPs and Templates
FTAM API Version 3.2 provides the ability to disassociate specific NSAPs from specific templates.
That is, there is no one-to-one correlation between NSAP and template as there is in Version 3.0. The
user provides a list of potential NSAPs, along with the type of network service that each NSAP is
expected to use, and a list of potential transport templates.

The OSAK constants OSAK_C_CLNS, OSAK_C_CONS or OSAK_C_RFC1006 are used to indicate
whether the NSAP is appropriate for a CLNS, CONS or RFC 1006 network service. Note that
OSAK_C_RFC1006 is only valid for use on DECnet-Plus for UNIX or DECnet-Plus for OpenVMS
Version 6.0 or later.

When the FTAM API passes the NSAP and template lists to OSAK, OSAK attempts to establish an
association with each appropriate NSAP/template pair.

For example, suppose two NSAPs and two templates are passed:

NSAP List Template List
%x21 (CLNS) OSIT$LOOP_CONS
%x22 (CONS) OSIT$LOOP_CLNS

OSAK matches the first template in the list with an appropriate NSAP (in this case, the second NSAP
in the list), and constructs a final address to attempt an association. Using our example, the address
looks something like:

OSIT$LOOP_CONS%x22

If the association attempt fails with this particular template/NSAP pair, OSAK continues searching
the NSAP list looking for another NSAP appropriate for a CONS connection. Once OSAK attempts
all possible combinations within the NSAP list for the first template, OSAK attempts an association
with the next template in the template list, repeating the template/NSAP pairing operation until an
association is established, or until all valid combinations of template/NSAPs have been attempted.

1.10. FTAM API Version 3.0 Applications With
Version 3.2
As discussed in Section 1.9, with FTAM API Version 3.2, the osif_ae_entrystructure is
enhanced to provide additional addressing capabilities. In Version 3.2, the osif_ae_entry
structure contains two additional fields (see Section 4.9).

9

Chapter 1. Introduction

This change requires that FTAM API applications written to earlier versions of the API be recompiled
and relinked. However, no code changes are required unless you want to use the new addressing
capabilities.

The FTAM API checks the nsap_queue[0].nsap.lengthfield of the osif_ae_entry
structure to determine which API format is in use. If the value of length is non-zero, the API
determines that the FTAM Version 3.0 format is being used and ignores the new fields in the
osif_ae_entry structure. If the value of length is zero, the API determines that the Version 3.2
format is being used. In this case, the API ignores the nsap_queue array and instead looks for
information in the new fields.

1.11. FTAM API Restrictions
The following list describes known restrictions.

• This manual describes FTAM parameters that are part of attribute groups not supported in
the FTAM API code. Parameters for unsupported attribute groups should not be used when
programming with the FTAM API. For example, the use of abstract-syntax names and constraint
set names causes unknown results and should not be used.

• The osif_protocol_error vector and the osif_prot_error_count
variable are not filled in if OSIF_PROTOCOL_ERROR is returned by any function call.
OSIF_PROTOCOL_ERROR is used to signal that an error has occurred at a lower layer. The
osif_protocol_error vector is used to list all the errors that have occurred in the lower
layers.

• The FTAM API only supports a buffer list with one buffer. In other words, one P_DATA must be
contained in one user buffer. The size of user buffers passed to the FTAM API must be at least
8K bytes. If the buffer is less than 8K, then the user receives the OSIF_NOBUFFS error for the
osif_get_event function call.

• If a contents type list is not specified in the F-INITIALIZE-request primitive, the FTAM API
sends all the supported document types.

• The checkpoint window parameter defaults to one even though the recovery functional unit is not
supported.

• An error should be returned by the service provider when a universal class number is specified
with FTAM-3 files on F-OPEN and F-CREATE requests. Currently, the universal class number
information is ignored and no error is returned.

• The osif_fadu_locking parameter of the F-OPEN-request primitive is specified in the
documentation and the osif.h file, but it is not used by the FTAM API.

10

Chapter 2. Building and Running API
Programs
The programs that you have written for the FTAM application programming interface (FTAM API)
can be built on different operating systems. The following sections detail the differences you need to
consider for the supported operating systems. For examples of the items discussed, see the FTAM API
example files described in Section 2.5.

2.1. Compiling Programs with DEC C on
OpenVMS VAX
The FTAM API object library on OpenVMS VAX is built with VAX C. If you are compiling your
FTAM API application with DEC C, you must specify certain qualifiers on the CC command, as
follows:

$ CC/EXTERN_MODEL=COMMON_BLOCK/SHARE_GLOBALS example.c

example.c is the name of your program that uses the FTAM API.

2.2. Linking Programs on OpenVMS
To link programs using the OpenVMS operating system, use the following command:

$ LINK example.obj, API.OPT/OPTION

example.obj is the name of your program object file. API.OPT is a file containing the following
lines for OpenVMS VAX:

sys$library:osif$fmsg_ptr.obj, -
sys$library:osif$api.olb/lib, -
sys$library:osif$asn1code.olb/lib, -
sys$share:osak$osakshr.exe/share, -
sys$share:osak$prv.exe/share, -
sys$share:vaxcrtl.exe/share

Note that even if you are using DEC C instead of VAX C on your VAX system, you must link
with VAXCRTL.EXE. For OpenVMS Alpha, API.OPT is the same except do not link with
VAXCRTL.EXE (DECC$SHR.EXE is pulled in automatically for you).

2.3. Running Programs on OpenVMS
The following items must be set up properly in order for FTAM API programs to run on OpenVMS.

• FTAM must be able to find the contents type database. This database is contained in the file
SYS$LIBRARY:OSIF$OIDS.TXT. You may either create the logical name FTAMOIDS that
points to the database, or copy the database to the file FTAMOIDS in the directory where the API
application is run.

• OSAK requires the following privileges to be turned on in the process that is running the FTAM
API program:

11

Chapter 2. Building and Running API Programs

NETMBX,TMPMBX,SYSNAM,SYSLCK,PRMMBX

2.4. Compiling and Linking Programs on
UNIX
FTAM on UNIX Version 3.0 and later ships with a sharable library (the FTAM API on previous
versions shipped a static library for the API). The following example shows how to build with the
sharable library. See also the makefile for the FTAM API example files for an example of how to
build.

To compile and link C programs using the UNIX operating system Version 3.0 and later, use the
following command:

cc example.c -lftam -o example

where

cc is the command used to compile and link your program.
example.c is the name of your program that uses the FTAM API.
-lftam specifies the FTAM sharable library.
-o example specifies the name of the executable file that is created.

2.5. FTAM API Example Files
Sample programs are provided written in C to demonstrate how to use the FTAM API calls. Build
files are provided to demonstrate how to compile and link programs that use the FTAM API. These
example programs create, rename, and delete a file on the system running the example responder. The
example programs are located in the following files:

On OpenVMS:

sys$examples:osif_api_exam.c initiator side
sys$examples:osif_api_resp.c responder side
sys$examples:osif_api_bld.com build command procedure
sys$examples:osif_api_bld.opt linker options file

On UNIX:

/usr/examples/ftamapi/ftam_api_example.c initiator side
/usr/examples/ftamapi/ftam_resp.c responder side
/usr/examples/ftamapi/Makefile makefile

On OpenVMS, the address information supplied in the example programs work without modification
if the example initiator and example responder are run on the same OpenVMS system.

On UNIX, most of the address information supplied in the example programs work without
modification when running on the same system. However, you must set the following variable in the
initiator to be the NSAP of the system:

12

Chapter 2. Building and Running API Programs

REMOTE_NSAP NSAP of system running responder

If you wish to run the initiator and responder on different systems, see comments in the example
programs themselves for instructions.

To compile and link the example program, use the provided build files as follows.

On OpenVMS:

$ set default sys$common:[syshlp.examples]$ @osif_api_bld.com

On UNIX:

cd /usr/examples/ftamapi# make

To run the example programs, first run the example responder in one process, then run the example
initiator in a second process. Note that the example responder does not use the OSAK server on
OpenVMS or the ftam_listener on UNIX. The example responder executable is an active
application (see Section 1.8 for a discussion of passive versus active responders).

13

Chapter 2. Building and Running API Programs

14

Chapter 3. FTAM File Services
This chapter describes FTAM services and the sequences in which FTAM services can or must
occur. It also describes the parameters used by the services. For additional details, refer to the FTAM
standard (ISO 8571-3 and ISO 8571-4).

3.1. Service Sequences
In using the FTAM API, you must be aware of service sequences. These sequences are closely tied to
the FTAM regimes. The following list summarizes the sequences and functions of FTAM phases. It
also shows the correlations between different phases. For example, Phase 1 is associated with Phase 8
because establishing and ending an association are two activities that are closely related.

• Phase 1: Establishing an association

• Phase 2: Selecting or creating a file

• Phase 3: Opening a file

• Phase 4: Locating a FADU

• Phase 5: Transferring FADUs and erasing a FADU

• Phase 6: Closing a file

• Phase 7: Releasing a file

• Phase 8: Ending an association

Each of these phases provides specific services as follows.

Phase 1: F-INITIALIZE
Phase 2: F-CREATE, F-SELECT, F-READ-ATTRIBUTE, F-CHANGE-ATTRIBUTE
Phase 3: F-OPEN
Phase 4: F-LOCATE
Phase 5: F-READ, F-WRITE, F-DATA, F-DATA-END, F-TRANSFER-END, F-

CANCEL, F-ERASE
Phase 6: F-CLOSE
Phase 7: F-DELETE, F-DESELECT
Phase 8: F-TERMINATE, F-U-ABORT

Grouping is a convenience that allows you to combine several services into a single communications
unit. Grouping functions can occur at many points within an association. Note that the service
specifications used here represent the full series of service primitives associated with each service.

When using grouping, you must understand that service classes introduce restrictions. Service classes
are defined as combinations of functional units. As a result, grouping can occur only in certain
sequences as outlined in the FTAM standard (ISO 8571-3, Annex E). Matching F-BEGIN-GROUP
and F-END-GROUP services must occur within the same regime.

The following sections show some sample service sequences that you might use when performing
various operations.

15

Chapter 3. FTAM File Services

3.1.1. Creating a New File and Writing Data
F-INITIALIZE
 F-CREATE
 F-OPEN
 F-LOCATE
 F-WRITE
 F-DATA
 F-DATA-END
 F-TRANSFER-END
 F-CLOSE
 F-DESELECT
F-TERMINATE

3.1.2. Deleting a File Using Grouping
F-INITIALIZE
 F-BEGIN-GROUP
 F-SELECT
 F-DELETE
 F-END-GROUP
F-TERMINATE

3.1.3. Reading and Changing Attributes
F-INITIALIZE
 F-BEGIN-GROUP
 F-SELECT
 F-READ-ATTRIBUTE
 F-CHANGE-ATTRIBUTE
 F-DESELECT
 F-END-GROUP
F-TERMINATE

3.1.4. Performing a Series of Writes and Reads
F-INITIALIZE
 F-BEGIN-GROUP
 F-SELECT
 F-OPEN
 F-END-GROUP
 F-LOCATE
 F-WRITE

16

Chapter 3. FTAM File Services

 F-DATA
 F-DATA-END
 F-TRANSFER-END
 F-READ
 F-DATA
 F-DATA-END
 F-TRANSFER-END
 F-BEGIN-GROUP
 F-CLOSE
 F-DESELECT
 F-END-GROUP
F-TERMINATE

3.1.5. Transferring a File to a Peer System
F-INITIALIZE
 F-BEGIN-GROUP
 F-CREATE
 F-OPEN
 F-END-GROUP
 F-LOCATE
 F-WRITE
 F-DATA
 F-DATA-END
 F-TRANSFER-END
 F-BEGIN-GROUP
 F-CLOSE
 F-DESELECT
 F-END-GROUP
F-TERMINATE

3.1.6. Canceling a Data Transfer
In this service sequence, the F-CANCEL can be issued during the data transfer phase, in place of F-
DATA or F-DATA-END.

F-INITIALIZE
 F-BEGIN-GROUP
 F-SELECT
 F-OPEN
 F-END-GROUP
 F-LOCATE

17

Chapter 3. FTAM File Services

 F-READ or F-WRITE
 F-DATA | F-CANCEL
 F-DATA-END | F-CANCEL
 F-TRANSFER-END
 F-BEGIN-GROUP
 F-CLOSE
 F-DESELECT
 F-END-GROUP
F-U-ABORT

3.2. FTAM File Services and Parameters
When programming with the FTAM application programming interface (FTAM API), you must be
aware of how the FTAM standard is implemented. The FTAM primitives are used in various service
sequences to provide the FTAM file services. Each primitive has associated parameters that map to
specific descriptors in the osifpb parameter block. These relationships are shown in Table 3.1.

Table 3.1. FTAM Primitives and Corresponding Parameters

FTAM Primitive Parameters Descriptors
F-BEGIN-GROUP Threshold osif_threshold 1

F-CANCEL Action Result osif_action_result
 Diagnostic osif_diagnostic
F-CHANGE-ATTRIBUTE Action Result osif_action_result 2

Attributes osif_filename

osif_storage_account

osif_file_availability

osif_future_filesize

osif_access_control

osif_legal_qualification
Diagnostic osif_diagnostic 2

F-CLOSE Action Result osif_action_result
Diagnostic osif_diagnostic

F-CREATE State Result osif_state_result 2

Action Result osif_action_result 2

Override osif_override 1

Initial Attributes osif_filename

osif_permitted_actions

osif_contents_type

18

Chapter 3. FTAM File Services

FTAM Primitive Parameters Descriptors
osif_storage_account

osif_file_availability

osif_future_filesize

osif_access_control

osif_legal_qualification
Create Password osif_create_password 1

Requested Access osif_requested_access 1

Access Passwords osif_access_passwords 1

Concurrency Control osif_concurrency_control 1

Account osif_account 1

Diagnostic osif_diagnostic 2

F-DATA osif_userdata
F-DATA-END Action Result osif_action_result 1

Diagnostic osif_diagnostic 1

F-DELETE Action Result osif_action_result 2

Charging osif_charging 2

Diagnostic osif_diagnostic 2

F-DESELECT Action Result osif_action_result 2

Charging osif_charging 2

Diagnostic osif_diagnostic 2

F-END-GROUP — —
F-ERASE Action Result osif_action_result 2

FADU Identity osif_fadu 1

Diagnostic osif_diagnostic 2

F-INITIALIZE State Result osif_state_result 2

Action Result osif_action_result 2

Protocol Version osif_protocol_id
Implementation Information osif_implementation_information
Presentation Context
Management

osif_pres_ctx_mgmt

Service Class osif_service_class
Functional Units osif_functional_units
Attribute Groups osif_attribute_groups
FTAM Quality of Service osif_ftam_qual_service
Contents Type List osif_contents_type_list
Initiator Identity osif_initiator_identity 1

Account osif_account 1

19

Chapter 3. FTAM File Services

FTAM Primitive Parameters Descriptors
Filestore Password osif_filestore_password 1

Diagnostic osif_diagnostic 2

Checkpoint Window osif_checkpoint_window
Calling Presentation Address
and Application Title

osif_local_p_addrs

Called Presentation Address and
Application Title

osif_peer_p_addrs

F-LOCATE Action Result osif_action_result 2

FADU Identity osif_fadu
FADU Lock osif_fadu_lock 1

Diagnostic osif_diagnostic 2

F-OPEN State Result osif_state_result 2

Action Result osif_action_result 2

Processing Mode osif_processing_mode 1

Contents Type osif_contents_type
Concurrency Control osif_concurrency_control
Enable FADU Locking osif_fadu_locking 1

Diagnostic osif_diagnostic 2

Activity Identifier osif_activity_ident 1

Recovery Mode osif_recovery_mode
F-P-ABORT Action Result osif_action_result 1

Diagnostic osif_diagnostic 1

F-READ FADU Identity osif_fadu 1

Access Context osif_access_context 1

FADU Lock osif_fadu_lock 1

F-READ-ATTRIBUTE Action Result osif_action_result 2

Attribute Names osif_attribute_names 1

Attributes 2 osif_filename

osif_permitted_actions

osif_contents_type

osif_storage_account

osif_date_time_creation

osif_date_time_last_attmod

osif_date_time_last_read

osif_date_time_last_modif

osif_identity_creator

20

Chapter 3. FTAM File Services

FTAM Primitive Parameters Descriptors
osif_identity_last_modify

osif_identity_last_reader

osif_identity_last_attmod

osif_file_availability

osif_filesize

osif_future_filesize

osif_access_control

osif_legal_qualification
Diagnostic osif_diagnostic 2

F-SELECT State Result osif_state_result 2

Action Result osif_action_result 2

Attributes osif_filename
Requested Access osif_requested_access 1

Access Passwords osif_access_passwords 1

Concurrency Control osif_concurrency_control 1

Account osif_account 1

Diagnostic osif_diagnostic 2

F-TERMINATE Charging osif_charging 2

F-TRANSFER-END Action Result osif_action_result 2

Diagnostic osif_diagnostic 2

F-U-ABORT Action Result osif_action_result 1

Diagnostic osif_diagnostic 1

F-WRITE FADU Operation osif_fadu_operation 1

FADU Identity osif_fadu 1

FADU Lock osif_fadu_lock 1
1Used for request primitives only.
2Used for response primitives only.

3.3. Parameter Block Description
The API provides all the service primitives offered by ISO 8571 through the use of function calls and
data structures. The function calls allow services to be performed, and the data structures provide a
way for entering and receiving FTAM parameters from the FTAM protocol machine. The information
provided by the parameter block is referenced by the osif_send and osif_get_event calls
described in Chapter 5.

The FTAM parameter block (osifpb) describes the FTAM protocol data unit transmitted between
peer entities. All of the parameters used by the FTAM primitives, the application-wide types, and the
file attribute types are associated with a particular descriptor that has a particular format. Section 3.4
provides more details about the parameters and descriptors.

21

Chapter 3. FTAM File Services

Parameters are assigned to the osifpb parameter block through simple assignment statements. The
address or value of the parameters must be stored in the address or value field of the descriptor in
osifpb, depending on whether it is a string or an integer. If the value is a bit string, the value field of
the descriptor is filled in directly. The length of the parameters must also be assigned. If the length is
not assigned, the parameter is ignored.

If your parameter requires a choice of values, there is a type field that must be used to specify the type
of data. For example, if a parameter can be encoded as an octet string or a graphic string, the type
field must reflect the type. The type field is also used to specify a Null type parameter. The possible
values for the type field and their ASN.1 universal codes are:

OSIF_UC_BOOLEAN BOOLEAN
OSIF_UC_INTEGER INTEGER
OSIF_UC_BIT BIT STRING
OSIF_UC_OCTET OCTET STRING
OSIF_UC_NULL NULL
OSIF_UC_OBJECT_ID OBJECT IDENTIFIER
OSIF_UC_OBJECT_DSC ObjectDescriptor
OSIF_UC_EXTERNAL EXTERNAL
OSIF_UC_REAL REAL
OSIF_UC_ENUMERATED ENUMERATED
OSIF_UC_NUMERIC NumericString
OSIF_UC_PRINTABLE PrintableString
OSIF_UC_T61 T61String
OSIF_UC_VIDEOTEXT VideotexString
OSIF_UC_IA5 IA5String
OSIF_UC_UTCTIME UTCTime
OSIF_UC_GENERALTIME GeneralizedTime
OSIF_UC_GRAPHIC GraphicString
OSIF_UC_VISIBLE VisibleString
OSIF_UC_GENERAL GeneralString

If the parameter has a default and the length is zero, the default is applied by the API. If the length is a
non-zero value, then the default is not applied.

Chapter 4 provides more details on the FTAM parameter block data structure (osifpb) and the other
data structures used by the API to pass parameter information.

3.4. Parameter Description
This section describes the parameters of osifpb and their possible values. The parameters are listed
alphabetically. For more details about their usage, refer to the FTAM standard (ISO 8571-3 and ISO
8571-4).

osif_access_context (Access Context)

Specifies the file access structure for read operations. See Section 4.18 for more information.

22

Chapter 3. FTAM File Services

osif_access_control (Access Control attribute)

Defines conditions under which file access is valid. This value is set at file creation, but it can be
altered by the change attribute action. A condition consists of one or two terms stating the type of
access allowed (an action list term or a concurrency access term), together with a set of zero to three
terms testing for matching attribute values (initiator identity, access passwords, or calling AE-title).
See Section 4.15 for more information.

osif_access_passwords (Access Passwords)

Provides passwords for the actions specified in the requested access parameter. This parameter
is available only if the security attribute group has been negotiated. See Section 4.16 for more
information.

osif_account (Account)

Identifies the account to charge for the cost of a regime establishment. It is used to set the current
account activity attribute. If this parameter is not specified, the activity attribute is unset or retains
its previous value. The current account activity attribute reverts to its previous value at the end of a
regime.

osif_action_result (Action Result)

Passes on summarized information that is available in the diagnostic parameter. It has the following
possible values.

OSIF_SR_SUCCESS success, the default value
OSIF_TRANSIENT_ERROR transient-error
OSIF_PERMANENT_ERROR permanent-error

osif_activity_ident (Activity Identifier)

Used only when the recovery functional unit has been negotiated on F-INITIALIZE. Its value (an
integer) is used in reestablishing the data-transfer regime after a failure.

osif_application_context (Application Context Name)

Represents the properties of the association. The initiator proposes a name that the responder may
accept and return or the responder may return a different name. The application context name returned
by the responder is used for the established association.

osif_attribute_groups (Attribute Groups)

Negotiates the set of optional file attribute groups available for the association. The default value is
null (empty). The following values are also possible.

OSIF_ATG_STORAGE storage
OSIF_ATG_SECURITY security
OSIF_ATG_PRIVATE private

osif_attribute_names (Attribute Names)

Indicates which file attributes from the kernel or negotiated attribute groups are read. The possible
groups are the kernel group, the storage group, the security group, and the private group.

23

Chapter 3. FTAM File Services

The kernel group has the following possible values for file attributes.

OSIF_ATT_FILENAME file name
OSIF_ATT_PERMITTED_ACTIONS permitted actions
OSIF_ATT_CONTENTS_TYPE contents type

The storage group has the following possible values for file attributes.

OSIF_ATT_STORAGE_ACCOUNT storage account
OSIF_ATT_CREATION_TIME date and time of creation
OSIF_ATT_MODIFICATION_TIME date and time of last

modification
OSIF_ATT_READ_TIME date and time of last read access
OSIF_ATT_ATTRIBUTE_MODIFICATION_TIME date and time of last attribute

modification
OSIF_ATT_CREATOR_ID identity of creator
OSIF_ATT_MODIFIER_ID identity of last modifier
OSIF_ATT_READER_ID identity of last reader
OSIF_ATT_ATTRIBUTE_MODIFIER_ID identity of last attribute modifier
OSIF_ATT_FILE_AVAILABILITY file availability
OSIF_ATT_FILESIZE file size
OSIF_ATT_FUTURE_FILESIZE future file size

The security group has the following possible values for file attributes.

OSIF_ATT_ACCESS_CONTROL access control
OSIF_ATT_LEGAL_QUALIFICATIONS legal qualifications

The private group has the following possible value for file attributes.

OSIF_ATT_PRIVATE_USE private use

osif_block_size

Passes the size of the osifpb parameter block.

osif_block_type

Passes the function code for the FTAM primitive. See Section 4.1 for more information.

osif_character_sets

Describes the character sets used in the file if they are different from the default, ISO 646.

osif_charging (Charging)

Passes cost information attributed to the account during the regime being released. This parameter can
be used only if the account parameter was specified at the beginning of the regime. See Section 4.19
for more information.

24

Chapter 3. FTAM File Services

osif_checkpoint_window (Checkpoint Window)

Used only when the recovery functional unit has been negotiated, this parameter indicates the
maximum number of checkpoints that may remain unacknowledged. This integer value is inserted
only by the sender and is used for F-INITIALIZE-request and F-INITIALIZE-response.

osif_concurrency_control (Concurrency Control)

Defines the possible actions on a file and their respective access locks during a file-select or file-open
regime. See Section 4.14 for more information.

osif_contents_type (Contents Type attribute)

Identifies the abstract data type of the file contents. Its value is either a document type with optional
parameters or an abstract syntax and a constraint set name. See Section 4.7 for more information.

osif_contents_type_list (Contents Type List)

Lists the document types and abstract syntaxes and allows the negotiation of presentation context
when establishing the FTAM regime. This parameter is mandatory in certain classes if the
presentation context management functional unit is not being negotiated. See Section 4.6 for more
information.

osif_create_password (Create Password)

Describes the access control parameter create-password used by F-CREATE-request as a
character or octet string.

osif_date_time_creation (Date and Time of Creation attribute)

Indicates when the file was created in GeneralizedTime. It is set by the responder when the file is
created and refers to the local date and time of the responder. If this parameter is not supported, set the
type field of the descriptor to OSIF_UC_NULL. It cannot be altered by the change attribute action.

osif_date_time_last_attmod (Date and Time of Last Attribute Modification attribute)

Indicates when a file attribute value was last modified in GeneralizedTime. If this parameter is not
supported, set the type field of the descriptor to OSIF_UC_NULL. It is altered by the responder
whenever the change attribute action is successfully performed on one or more attributes. This
attribute is not modified by an implicit change to an attribute and it cannot be altered by the change
attribute action.

osif_date_time_last_modif (Date and Time of Last Modification attribute)

Indicates when the file contents were last modified in GeneralizedTime. If this parameter is not
supported, set the type field of the descriptor to OSIF_UC_NULL. It is altered by the responder
whenever the file has been opened for modification or extension and is closed. This attribute is
not altered unless the file is opened to allow change of the contents. It is not altered when the file
attributes are changed.

osif_date_time_last_read (Date and Time of Last Read Access attribute)

Indicates when the file contents were last read in GeneralizedTime. If this parameter is not supported,
set the type field of the descriptor to OSIF_UC_NULL. It is altered by the responder whenever the file
has been opened for reading and is closed. This attribute is not altered unless the file is opened and it
cannot be altered by the change attribute action.

25

Chapter 3. FTAM File Services

osif_diagnostic (Diagnostic)

Provides more details about the information given in the action result parameter for a successful
action, a transient error, or a permanent error. See Section 4.5 for more information.

osif_fadu (FADU Identity)

Specifies the target FADU to be used for file operations. The value of this parameter depends on the
file operation. See Section 4.17 for more information.

osif_fadu_lock (FADU Lock)

Sets individual FADU locks on or off. If this parameter is not specified, the locks remain unchanged.
Setting the locks ON changes the value from "not required" to "no access" and from "shared" to
"exclusive" until the lock is set OFF, the FADU is erased, or the file is closed. Setting the lock OFF
causes the lock to change back to its original value. The values for setting the locks ON and OFF are:

OSIF_FADU_LOCK_OFF off
OSIF_FADU_LOCK_ON on

osif_fadu_locking (Enable FADU Locking)

Indicates whether locking is on a per-FADU basis or on a file basis as a Boolean value. This
parameter is available only if the storage attribute group has been negotiated and the concurrency
control parameter is present.

osif_fadu_operation (FADU Operation)

Indicates the action to be taken by the filestore provider on receiving transferred data.

osif_file_availability (File Availability attribute)

Indicates the availability of the file. This parameter appears only in response PDUs and has the
following possible values:

no-value-available indicates that no value is available for this attribute by setting the
type field to OSIF_UC_NULL.

actual-values indicates when a file is available as follows:

OSIF_IMMEDIATE_AVAILABILITY — immediate availability

OSIF_DEFERRED_AVAILABILITY — deferred availability

osif_filename (File name attribute)

Describes a list of the file name parameters by providing a pointer to the osif_fn structure. This
attribute is set atfile creation, but can be altered by the change attribute action. See Section 4.4 for
more information.

osif_filesize (File size attribute)

Indicates the size of the file. This parameter appears only in response PDUs and has the following
possible values:

no-value-available indicates that no value is available for this attribute by setting the
type field to OSIF_UC_NULL

26

Chapter 3. FTAM File Services

actual-values indicates the size of a file

osif_filestore_password (Filestore Password)

Used by the responder to authenticate the initiator identity parameter. It is a character or octet string.

osif_ftam_qual_service (FTAM Quality of Service)

Indicates the susceptibility of the external file service user to errors. This parameter has the following
possible values:

OSIF_FQOS_NO_RECOVERY no-recovery, not susceptible to errors and no error
recovery provided

OSIF_FQOS_CLASS_1_RECOVERY class-1-recovery, susceptible to errors that
damage the data-transfer regime

OSIF_FQOS_CLASS_2_RECOVERY class-2-recovery, susceptible to errors that
damage the open or data-transfer regimes

OSIF_FQOS_CLASS_3_RECOVERY class-3-recovery, susceptible to errors that
damage the select, open, or data-transfer regimes,
or that disconnect the association

osif_functional_units (Functional Units)

Negotiates the file service functional units (except the kernel) available from the negotiated service
class for the association. This parameter has the following values:

OSIF_FU_READ read
OSIF_FU_WRITE write
OSIF_FU_FILE_ACCESS file-access
OSIF_FU_LIMIT_FILE_MGMT limited-file-management
OSIF_FU_ENH_FILE_MGMT enhanced-file-management
OSIF_FU_GROUPING grouping
OSIF_FU_FADU_LOCKING FADU-locking
OSIF_FU_RECOVERY recovery
OSIF_FU_RESTART_DATA_XFR restart-data-transfer

osif_future_filesize (Future File size attribute)

Indicates the size in octets to which a file may grow due to modification and extension. This integer
value is set at file creation, but it can be altered by the change attribute action.

osif_identity_creator (Identity of Creator attribute)

Indicates the value of the current initiator identity activity attribute at file creation as a GraphicString.
This attribute cannot be altered by using the change attribute action.

osif_identity_last_attmod (Identity of Last Attribute Modifier attribute)

Indicates the value of the current initiator identity as a GraphicString whenever the change attribute
action is successfully performed on one or more attributes. This attribute cannot be changed using the
change attribute action.

27

Chapter 3. FTAM File Services

osif_identity_last_modify (Identity of Last Modifier attribute)

Indicates the value of the current initiator identity activity attribute as a GraphicString whenever the
file has been opened for modification or extension and is closed. This attribute cannot be altered by
using the change attribute action.

osif_identity_last_reader (Identity of Last Reader attribute)

Indicates the value of the current initiator identity activity attribute as a GraphicString whenever
the file has been opened for reading and is closed. This attribute cannot be altered using the change
attribute action.

osif_implementation_information (Implementation Information)

Needed only if you want to distinguish versions of implementations on different equipment.

osif_initiator_identity (Initiator Identity)

Identifies the calling user as a GraphicString.

osif_legal_qualification (Legal Qualification attribute)

Indicates if the legal qualification for the security attribute group is available. This parameter appears
only in response PDUs and has the following possible values:

no-value-available indicates that no value is available for this attribute by setting the
type field to OSIF_UC_NULL.

actual-values indicates a value for the legal qualification attribute.

osif_local_p_addrs (Local Address (host system))

The structure containing the application entity addresses (AP-title and AE-qualifier), presentation
selector, session selector, transport selector, and up to five network service access points and transport
options (template and provider).

osif_peer_p_addrs (Target Address (system accepting the connection))

The structure containing the application entity addresses (AP-title and AE-qualifier), presentation
selector, session selector, transport selector, and up to five network service access points and transport
options (template and provider).

osif_override (Override)

Defines the action to take if the named file already exists according to one of the following values:

OSIF_OVR_CREATE_FAILURE create-failure
OSIF_OVR_SELECT_OLD_FILE select-old-file
OSIF_OVR_DEL_CRE_OLD_ATTRIB delete-and-create-with-old-attributes
OSIF_OVR_DEL_CRE_NEW_ATTRIB delete-and-create-with-new-attributes

osif_permitted_actions (Permitted Actions attribute)

Optional parameter that indicates the available actions and FADU identity groups with the following
values:

28

Chapter 3. FTAM File Services

OSIF_PA_READ read
OSIF_PA_INSERT insert
OSIF_PA_REPLACE replace
OSIF_PA_EXTEND extend
OSIF_PA_ERASE erase
OSIF_PA_READ_ATTRIBUTE read-attribute
OSIF_PA_CHANGE_ATTRIBUTE change-attribute
OSIF_PA_DELETE_FILE delete-file
OSIF_PA_TRAVERSAL traversal
OSIF_PA_REVERSE_TRAVERSAL reverse-traversal
OSIF_PA_RANDOM_ORDER random-order

osif_pres_ctx_mgmt (Presentation Context Management)

Indicates whether the context management functional unit is used during the FTAM open and
recovery procedures as a Boolean value.

osif_processing_mode (Processing Mode)

Establishes a subset of the valid actions negotiated in the select regime for use within the open regime
being established. It indicates the valid actions performed as a result of access control and bulk data
transfer requests and determines the filestore actions that the responding entity can perform. The
possible values are:

OSIF_PM_READ read
OSIF_PM_INSERT insert
OSIF_PM_REPLACE replace
OSIF_PM_EXTEND extend
OSIF_PM_ERASE erase

osif_prot_error_count (Protocol Error Count)

Indicates the number of returned errors. See Chapter 5 for more information.

osif_protocol_error

Contains a list of layer-specific errors. See Chapter 5 for more information.

osif_protocol_id (Protocol Version)

Indicates the protocol version. This parameter has a default value of version-1.

osif_recovery_mode (Recovery Mode)

Indicates the error recovery facilities available during the current open regime and the points at which
data transfer can resume according to one of the following values:

0 none
1 at-start-of-file

29

Chapter 3. FTAM File Services

2 at-any-active-checkpoint

osif_requested_access (Requested Access)

Indicates the actions performed when a file is selected or recovered according to the following values:

OSIF_AR_READ read
OSIF_AR_INSERT insert
OSIF_AR_REPLACE replace
OSIF_AR_EXTEND extend
OSIF_AR_ERASE erase
OSIF_AR_READ_ATTRIBUTE read-attribute
OSIF_AR_CHANGE_ATTRIBUTE change-attribute
OSIF_AR_DELETE_FILE delete-file

osif_returned_buffer

Is a pointer to osif_buffer_list structure. Buffers are returned to the user through this value. A
null value can be returned. See Section 1.5 for more information.

osif_scratchpad

Used by osifpb to manipulate data. See Section 4.1 for more information.

osif_service_class (Service Class)

Indicates the capability of the initiator. This parameter has the following possible values:

OSIF_CLASS_UNCONST unconstrained-class
OSIF_CLASS_MGMT management-class
OSIF_CLASS_XFR transfer-class
OSIF_CLASS_XFR_MGMT transfer-and-management-class
OSIF_CLASS_ACCESS access-class

osif_state_result (State Result)

Indicates the result of state changes. This parameter has the following values:

OSIF_SR_SUCCESS success
OSIF_SR_FAILURE failure

osif_storage_account (Storage Account attribute)

Identifies the accountable authority responsible for accumulated file storage charges as a
GraphicString.

osif_threshold (Threshold)

Specifies the number of primitives within a group that are analyzed without failing before any part of
the group can succeed.

30

Chapter 3. FTAM File Services

osif_userdata

Describes the buffer containing the F-DATA as a string descriptor.

31

Chapter 3. FTAM File Services

32

Chapter 4. Data Structures
The data structures described in this chapter allow the FTAM API to enter and receive FTAM
parameters from the FTAM protocol machine. You will find that within the structures, ASN.1
sequences and sets are implemented as linked lists.

4.1. FTAM Parameter Block
The osifpb structure is the main data structure of the FTAM API. This structure contains a
parameter for each parameter in any of the FTAM primitives. The FTAM primitives are distinguished
by the osif_block_type parameter. The set of valid block types are:

Function Code FTAM Service Primitive
OSIF_PBDEF_P_ABORT F-P-ABORT
OSIF_PBDEF_U_ABORT F-U-ABORT
OSIF_PBDEF_BG_REQ F-BEGIN-GROUP-request, F-BEGIN-GROUP-

indication
OSIF_PBDEF_BG_RSP F-BEGIN-GROUP-response, F-BEGIN-GROUP-

confirm
OSIF_PBDEF_CHAT_REQ F-CHANGE-ATTRIBUTES-request, F-

CHANGE-ATTRIBUTES-indication
OSIF_PBDEF_CHAT_RSP F-CHANGE-ATTRIBUTES-response, F-

CHANGE-ATTRIBUTES-confirm
OSIF_PBDEF_CRE_REQ F-CREATE-request, F-CREATE-indication
OSIF_PBDEF_CRE_RSP F-CREATE-response, F-CREATE-confirm
OSIF_PBDEF_CLOSE_REQ F-CLOSE-request, F-CLOSE-indication
OSIF_PBDEF_CLOSE_RSP F-CLOSE-response, F-CLOSE-confirm
OSIF_PBDEF_DATA_REQ F-DATA-request, F-DATA-indication
OSIF_PBDEF_DATA_END_REQ F-DATA-END-request, F-DATA-END-indication
OSIF_PBDEF_DELETE_REQ F-DELETE-request, F-DELETE-indication
OSIF_PBDEF_DELETE_RSP F-DELETE-response, F-DELETE-confirm
OSIF_PBDEF_DESELECT_REQ F-DESELECT-request, F-DESELECT-indication
OSIF_PBDEF_DESELECT_RSP F-DESELECT-response, F-DESELECT-confirm
OSIF_PBDEF_EG_REQ F-END-GROUP-request, F-END-GROUP-

indication
OSIF_PBDEF_INIT_REQ F-INITIALIZE-request, F-INITIALIZE-

indication
OSIF_PBDEF_INIT_RSP F-INITIALIZE-response, F-INITIALIZE-confirm
OSIF_PBDEF_NODE_DE_REQ Node descriptor data element
OSIF_PBDEF_OPEN_REQ F-OPEN-request, F-OPEN-indication
OSIF_PBDEF_OPEN_RSP F-OPEN-response, F-OPEN-confirm
OSIF_PBDEF_RAT_REQ F-READ-ATTRIBUTES-request, F-READ-

ATTRIBUTES-indication

33

Chapter 4. Data Structures

Function Code FTAM Service Primitive
OSIF_PBDEF_RAT_RSP F-READ-ATTRIBUTES-response, F-READ-

ATTRIBUTES-confirm
OSIF_PBDEF_READ_REQ F-READ-request, F-READ-indication
OSIF_PBDEF_SEL_REQ F-SELECT-request, F-SELECT-indication
OSIF_PBDEF_SEL_RSP F-SELECT-response, F-SELECT-confirm
OSIF_PBDEF_TERM_REQ F-TERMINATE-request, F-TERMINATE-

indication
OSIF_PBDEF_TERM_RSP F-TERMINATE-response, F-TERMINATE-

confirm
OSIF_PBDEF_TRANSFER_END_REQ F-TRANSFER-END-request, F-TRANSFER-

END-indication
OSIF_PBDEF_TRANSFER_END_RSP F-TRANSFER-END-response, F-TRANSFER-

END-confirm
OSIF_PBDEF_WRITE_REQ F-WRITE-request, F-WRITE-indication
OSIF_PBDEF_CANCEL_REQ F-CANCEL-request, F-CANCEL-indication
OSIF_PBDEF_CANCEL_RSP F-CANCEL-response, F-CANCEL-confirm
OSIF_PBDEF_LOCATE_REQ F-LOCATE-request, F-LOCATE-indication
OSIF_PBDEF_LOCATE_RSP F-LOCATE-response, F-LOCATE-confirm
OSIF_PBDEF_ERASE_REQ F-ERASE-request, F-ERASE-indication
OSIF_PBDEF_ERASE_RSP F-ERASE-response, F-ERASE-confirm

The use of the parameters is dependent on the FTAM primitive type. Any parameters that are not
within the scope of the specific FTAM primitive type are ignored by the FTAM API. The relationship
between the FTAM primitives and the parameters is shown in Table 3.1.

The osifpb structure has two parts — one for specific parameters and one for variable data. The
osif_scratchpaddescriptor is used to distinguish these parts.

For specific parameters, usage of the scratch pad for request and response primitives is a local issue
for the FTAM API user. The allocated data can be passed to the FTAM API locally through static or
dynamic means or the data can be referenced by the osifpb descriptors and stored in the scratch
pad.

For variable data, the usage of the scratch pad for indication and response primitives is different. The
scratch pad is filled in by the FTAM API and the underlying FTAM protocol machine. As a result, the
osifpb structures may point into the buffer supplied by the osif_give_buffercall or they may
point to the scratch pad. The buffers from the osif_give_buffer call are returned to the FTAM
API user in the osif_returned_buffer descriptor.

The following osifpb structure includes all the parameters that can be used by the FTAM API.

struct osifpb {

 unsigned int osif_block_type; /* block identifier */
 unsigned int osif_block_size; /* size of the block */
 struct osif_buffer_list *osif_returned_buffer;
 struct osif_prot_err osif_protocol_error;
 int osif_prot_error_count;

34

Chapter 4. Data Structures

 struct osif_faduac osif_access_context;
 struct osif_access_ctl osif_access_control;
 struct osif_apwd osif_access_passwords;
 struct osif_sdesc osif_account;
 struct osif_bdesc osif_action_result;
 struct osif_bdesc osif_activity_ident;
 struct osif_sdesc osif_application_context;
 struct osif_sdesc osif_arc_length;
 struct osif_bdesc osif_attribute_groups;
 struct osif_bdesc osif_attribute_names;
 struct osif_bdesc osif_character_sets;
 struct osif_charging_pb *osif_charging;
 struct osif_bdesc osif_checkpoint_window;
 struct osif_cc osif_concurrency_control;
 struct osif_ct osif_contents_type;
 struct osif_ctl *osif_contents_type_list;
 struct osif_sdesc osif_create_password;
 struct osif_sdesc osif_date_time_creation;
 struct osif_sdesc osif_date_time_last_attmod;
 struct osif_sdesc osif_date_time_last_modif;
 struct osif_sdesc osif_date_time_last_read;
 struct osif_sdesc osif_delete_password;
 struct osif_access_ctl osif_delete_values;
 struct osif_sdesc osif_define_context;
 struct osif_diagnostics_pb *osif_diagnostic;
 struct osif_sdesc osif_encryption_name;
 struct osif_faduid osif_fadu;
 struct osif_bdesc osif_fadu_lock;
 struct osif_sdesc osif_fadu_locking;
 struct osif_bdesc osif_fadu_operation;
 struct osif_fn *osif_filename;
 struct osif_bdesc osif_filesize;
 struct osif_bdesc osif_file_availability;
 struct osif_sdesc osif_filestore_password;
 struct osif_sdesc osif_ftam_coded;
 struct osif_bdesc osif_ftam_qual_service;
 struct osif_bdesc osif_functional_units;
 struct osif_bdesc osif_future_filesize;
 struct osif_sdesc osif_initiator_identity;
 struct osif_sdesc osif_identity_creator;
 struct osif_sdesc osif_identity_last_attmod;
 struct osif_sdesc osif_identity_last_modify;
 struct osif_sdesc osif_identity_last_reader;
 struct osif_sdesc osif_implementation_information;
 struct osif_access_ctl osif_insert_values;
 struct osif_sdesc osif_legal_qualification;
 struct osif_ae_entry osif_local_p_addrs;
 struct osif_bdesc osif_override;
 struct osif_ae_entry osif_peer_p_addrs;
 struct osif_bdesc osif_permitted_actions;
 struct osif_bdesc osif_pres_ctx_mgmt;
 struct osif_bdesc osif_processing_mode;
 struct osif_sdesc osif_protocol_id;
 struct osif_sdesc osif_remove_context;
 struct osif_bdesc osif_requested_access;
 struct osif_bdesc osif_recovery_mode;
 struct osif_bdesc osif_service_class;
 struct osif_bdesc osif_session_version;

35

Chapter 4. Data Structures

 struct osif_bdesc osif_state_result;
 struct osif_sdesc osif_storage_account;
 struct osif_bdesc osif_threshold;
 struct osif_sdesc osif_user_coded;
 struct osif_sdesc osif_userdata; /* User data used to */
 int osif_reserved; /* Reserved for alignment */
 unsigned char osif_scratchpad[SCRATCHPAD_SIZE];
};

More information on the descriptors and their associated parameters is found in Section 3.2 and
Section 3.4.

4.2. String Descriptor Specification
String parameters can be either character, bit, or octet strings. The following osif_sdesc structure
is used to specify the string descriptor.

struct osif_sdesc {
unsigned char *address;
unsigned short length;
unsigned char type;
unsigned char class;
};

Field descriptions:

address A pointer to the specified string.
length The length of the specified string.
type Defines the type of the string. For example, OSIF_UC_GRAPHIC

or OSIF_UC_OCTET.
class Defines the class of the string. For internal use only; users do not

need to specify any value.

4.3. Binary Descriptor Specification
Binary parameters are integers. The following osif_bdesc structure is used to specify the binary
descriptor.

struct osif_bdesc {
unsigned value;
unsigned short length;
unsigned char type;
unsigned char class;
};

Field descriptions:

value The value of the specified integer.
length The length of the integer in bytes.
type Defines the type of the integer.
class Defines the class of the integer. For internal use only; users do not

need to specify any value.

36

Chapter 4. Data Structures

4.4. File Names
File names can be specified as a sequence of graphic strings. Most profiles restrict file names to one
element. The following osif_fnstructure is used to pass a file name to the FTAM protocol machine
as a Null terminated linked list.

struct osif_fn {
struct osif_fn *next;
struct osif_sdesc filename;
};

Field descriptions:

next A pointer to the next filename element.
filename The osif_sdesc string descriptor describing the filename.

4.5. Diagnostics
Diagnostics are returned as part of a response primitive. Diagnostics can be passed as a sequence that
is a Null terminated linked list. The osif_diagnostics_pb structure follows.

struct osif_diagnostics_pb {
struct osif_diagnostics_pb *next
struct osif_bdesc diagnostic_type;
struct osif_bdesc error_identifier;
struct osif_bdesc error_observer;
struct osif_bdesc error_source;
struct osif_bdesc suggested_delay;
struct osif_sdesc further_details;
};

Field descriptions:

next A pointer to the next diagnostic in the sequence.
diagnostic_type One of the following values describing the type:

OSIF_INFORMATIVE_ERROR — informative

OSIF_TRANSIENT_ERROR — transient

OSIF_PERMANENT_ERROR — permanent
error_identifier A value describing the error that matches the diagnostic errors

found in ISO 8571-3. For your convenience, these values and
corresponding information are listed in Appendix B.

error_observer One of the following values indicating the observer of the error:

OSIF_INITIATING_USER — initiating file service user

OSIF_INITIATING_FPM — initiating file protocol machine

OSIF_RESPONDING_FPM — the responding file protocol
machine

37

Chapter 4. Data Structures

OSIF_RESPONDING_USER — the responding file service user
(filestore)

error_source One of the following values indicating the presumed source of the
error.

OSIF_NO_CATEGORIZATION — no categorization possible

OSIF_SUPPORTING_SERVICE — service supporting the file
protocol machines

suggested_delay The integer describing the suggested delay.
further_details The character string describing any extra information about the

error that the implementation wishes to provide.

4.6. Contents Type Lists
Contents type lists are part of the F-INITIALIZE service primitive. They are Null terminated
linked lists of osif_ctl structures. They describe the abstract syntaxes supported by FTAM
implementations and are used for negotiating the abstract syntaxes between cooperating FTAM
providers. The contents type list element contains either a document type name or an abstract syntax
name. If both are specified in the same osif_ctl structure, then the error OSIF_BAD_CNTTYLST
is returned.

struct osif_ctl {
struct osif_ctl *next
struct osif_sdesc abstract_syntax_name;
struct osif_sdesc document_name;
};

Field descriptions:

next A pointer to the next contents type list.
abstract_syntax_name The character string describing the abstract syntax name.
document_name The character string describing the document type name.

4.7. Contents Type Parameter
The contents type parameter is an optional parameter of the F-CREATE and F-OPEN primitives. The
contents type specifies either a document type name with its associated document parameters or an
abstract syntax name/constraint set name pair. Do not specify both in the same osif_ct structure.

struct osif_ct {
struct osif_sdesc abstract_syntax_name;
struct osif_sdesc constraint_set_name;
struct osif_sdesc document_name;
struct osif_dt_subparms document_param;
};

Field descriptions:

abstract_syntax_name The character string describing the abstract syntax
name.

38

Chapter 4. Data Structures

constraint_set_name The character string describing the constraint set name.
document_name The character string describing the document type

name, for example, FTAM-1 or NBS-9.
document_param The document type parameters for the specified

document.

4.8. Document Type Parameters
Document type parameters are specified as part of the contents type structure osif_ct. These
parameters are associated with each specification of the document type and describe the contents of
the document type.

struct osif_dt_subparms {
struct osif_bdesc max_string_length;
struct osif_bdesc string_significance;
struct osif_bdesc universal_class;
struct osif_bdesc attribute_names;
struct osif_bdesc max_record_length;
struct osif_bdesc record_significance;
};

Field descriptions:

max_string_length An integer describing the string length.
string_significance An integer describing the significance of strings.
universal_class An integer describing the type of strings found in the document.
attribute_names For specifying an NBS-9 document type.
max_record_length An integer describing the maximum length of records found in the

document.
record_significance An integer describing the significance of records in the document.

4.9. Application-Entity Entry
The application-entity entry is included as a parameter of the F-Initialize primitive. Some of the fields
of this structure are used for FTAM API Version 3.0 and some are used for FTAM API Version 3.2.

struct osif_ae_entry {
struct osif_ae_addr ae_addr;
struct osif_sdesc p_address; /* psap.ssap.tsap. */
struct osif_nsap_entry nsap_queue[OSIF_MAX_NSAPS];
struct osif_nsap_queue *nsap_queue_ptr;
struct osif_template_queue *template_queue_ptr;
};

Field descriptions:

ae_addr The structure containing the AP-title and AE-qualifier.
p_address The field containing a character string specifying the psel.ssel.tsel.

address.

Field descriptions:

39

Chapter 4. Data Structures

• psel — is the presentation selector

• ssel — is the session selector

• tsel — is the transport selector
nsap_queue The structure containing network selectors and transport options

for FTAM API Version 3.0.
nsap_queue_ptr A pointer to a linked list of structures containing network selectors

and transport providers for FTAM API Version 3.2.
template_queue_ptr A pointer to a linked list of transport template names for FTAM

API Version 3.2.

4.10. Application-Entity Address
The applications-entity address consists of both an application-entity qualifier and an application-title:

struct osif_ae_addr {
struct osif_sdesc ae_qualifier
struct osif_sdesc ap_title;
}:

Field descriptions:

ae_qualifier The character string describing the AE-qualifier.
ap_title The character string describing the AP-title. If integers are being

used, this must be a pointer to an integer.

4.11. Network Selector and Transport Options
Queue (Version 3.0 Only)
The network selector and transport options queue is defined as follows:

struct osif_nsap_entry {
struct osif_sdesc nsap;
struct osif_sdesc template;
struct osif_sdesc provider;
};

Field descriptions:

nsap The network service access point (NSAP). You can define up to
five NSAPs and use multihoming to establish a connection. Each
time a connection attempt fails, the initiator uses the next NSAP
until either a connection is established or no NSAPs remain.

template A character string defining which transport template is used. By
default, the transport template called "default" is used.

provider A character string specifying either the transport provider called
"OSI" (for OSI transport services), or "RFC1006" (for TCP/IP
services). By default, the transport provider called "OSI" is used.

40

Chapter 4. Data Structures

4.12. Network Selector and Transport
Provider Queue (Version 3.2 Only)
The network selector and transport provider queue is defined as follows:

struct osif_nsap_queue {
struct osif_nsap_queue *next;
struct osif_sdesc nsap;
struct osif_sdesc provider;
struct osif_bdesc network_svc;
};

Field descriptions:

next A pointer to the next NSAP queue entry.
nsap The network service access point. You can define up to five

NSAPs and use multihoming to establish a connection. See
Section 1.9.1 for a description of how the NSAPs and transport
templates are used.

provider A character string specifying either the transport provider called
"OSI" (for OSI transport services), or "RFC1006" (for TCP/IP
services). By default, the transport provider called "OSI" is used.

network_svc A constant used to indicate whether the NSAP is appropriate
for CLNS, CONS, or RFC1006 network service. Valid values
are the OSAK constants OSAK_C_CLNS, OSAK_C_CONS, or
OSAK_C_RFC1006.

4.13. Transport Template Queue (Version 3.2
Only)
The transport template queue is defined as follows:

struct osif_template_queue {
struct osif_template_queue *next;
struct osif_sdesc template_name;
};

Field descriptions:

next A pointer to the next template queue entry.
template_name A character string defining which transport template is used.

By default, the transport template called"default" is used. See
Section 1.9 for a description of how the NSAPs and transport
templates are used.

4.14. Concurrency Control
The concurrency control parameter is found in the F-SELECT, F-CREATE, and F-OPEN primitives.
It is used by initiators to request locks on actions performed on remote files. The osif_cc structure
follows.

41

Chapter 4. Data Structures

struct osif_cc {
struct osif_bdesc change_attrib_cc;
struct osif_bdesc delete_file_cc;
struct osif_bdesc erase_cc;
struct osif_bdesc extend_cc;
struct osif_bdesc insert_cc;
struct osif_bdesc read_attrib_cc;
struct osif_bdesc read_cc;
struct osif_bdesc replace_cc;
};

Field descriptions:

change_attrib_cc The bit string describing the concurrency key for change attributes.
delete_file_cc The bit string describing the concurrency key for delete.
erase_cc The bit string describing the concurrency key for erase.
extend_cc The bit string describing the concurrency key for extend.
insert_cc The bit string describing the concurrency key for insert.
read_attrib_cc The bit string describing the concurrency key for read attributes.
read_cc The bit string describing the concurrency key for read.
replace_cc The bit string describing the concurrency key for replace.

Each field above may have one of these values:

OSIF_CC_NOT_REQUIRED not required
OSIF_CC_SHARED shared
OSIF_CC_EXCLUSIVE exclusive
OSIF_CC_NO_ACCESS no-access

4.15. Access Control
The following osif_access_ctl structure allows you to specify the security required for file
operations.

struct osif_access_ctl {
struct osif_access_ctl *next;
struct osif_sdesc no_value_avail
struct osif_bdesc action_list;
struct osif_cc concurrency_access;
struct osif_sdesc identity;
struct osif_apwd passwords;
struct osif_ae_addr location;
};

Field descriptions:

*next Points to the next access control structure in the list.
action_list Lists the actions (read, insert, replace, extend, erase, read attribute,

change attribute, and delete file) that must be matched with the
access request attributes.

42

Chapter 4. Data Structures

concurrency_access The optional concurrency key value that corresponds to
concurrency locks (not required, shared, exclusive, and no access)
for each action.

identity An optional value that must match the initiator identity for the
association.

passwords An optional value that lists a password for each action that must
match the corresponding password in the access passwords
attribute.

location An optional application-entity title value that must match the
application-entity title attribute.

4.16. Access Passwords
Access passwords are part of the access control structure and are part of the F-CREATE and F-READ-
ATTRIBUTES primitives. The following osif_apwd structure provides the mechanism for setting
access passwords as required by the security attribute group.

struct osif_apwd {
struct osif_sdesc chng_attrib_password;
struct osif_sdesc delete_password;
struct osif_sdesc erase_password;
struct osif_sdesc extend_password;
struct osif_sdesc insert_password;
struct osif_sdesc read_attrib_password;
struct osif_sdesc read_password;
struct osif_sdesc replace_password;
};

Field descriptions:

chng_attrib_password The character or octet string describing the password for change
attributes.

delete_password The character or octet string describing the password for delete.
erase_password The character or octet string describing the password for erase.
extend_password The character or octet string describing the password for extend.
insert_password The character or octet string describing the password for insert.
read_attrib_password The character or octet string describing the password for read

attributes.
read_password The character or octet string describing the password for read.
replace_password The character or octet string describing the password for replace.

Note that the type field of the osif_sdesc structure must be set to OSIF_UC_GRAPHIC or
OSIF_UC_OCTET depending on the semantics of the password.

4.17. File Access Data Unit
The following osif_faduid structure specifies the target FADU to be used for file operations.

struct osif_faduid {
struct osif_bdesc fadu_number;

43

Chapter 4. Data Structures

struct osif_bdesc fadu_ref_begin_end;
struct osif_bdesc fadu_ref_first_last;
struct osif_bdesc fadu_ref_relative;
struct osif_bdesc name_list;
struct osif_bdesc single_name;
};

Field descriptions:

fadu_number Specifies the selected node by its number in the
preorder traversal sequence for the file access structure.

fadu_ref_begin_end Indicates that the "next" FADU in the preorder traversal
list will be the first one in the file structure if this
parameter is set to OSIF_FADU_ID_BEGIN, or that
the "previous" FADU is the last FADU in the file
structure if it is set to OSIF_FADU_ID_END.

fadu_ref_first_last Identifies the first FADU in the preorder traversal
sequence for the file structure if this parameter is set to
OSIF_FADU_ID_FIRST, or the last FADU if it is set to
OSIF_FADU_ID_LAST.

fadu_ref_relative Identifies the location of FADUs in terms of
"previous," "current," and "next" in relation to
the currently identified FADU and the preorder
traversal sequence of the file access structure by
setting this value to OSIF_FADU_ID_PREVIOUS,
OSIF_FADU_ID_CURRENT, and
OSIF_FADU_ID_NEXT respectively.

name_list Specifies a path of FADU identifiers from the root node
of the file to the node to be located.

single_name Identifies the specified FADU.

4.18. File Access Data Unit Access Context
The following osif_faduac structure is used to specify the file access structure for read
operations.

struct osif_faduac {
struct osif_bdesc fadu_context;
struct osif_bdesc fadu_level;
};

Field descriptions:

fadu_context Indicates one of the following file access structures:

OSIF_ACC_CTX_HA — Hierarchical all data units (HA)

OSIF_ACC_CTX_HN — Hierarchical no data units (HN)

OSIF_ACC_CTX_FA — Flat all data units (FA)

OSIF_ACC_CTX_FL — Flat one level data units (FL)

44

Chapter 4. Data Structures

OSIF_ACC_CTX_FS — Flat single data unit (FS)

OSIF_ACC_CTX_UA — Unstructured all data units (UA)

OSIF_ACC_CTX_US — Unstructured single data unit (US)
fadu_level An optional value used only if FL access context is selected.

4.19. Charging
The following osif_charging_pb structure is a Null terminated linked list that passes cost
information attributed to the account during the regime being released.

struct osif_charging_pb {
struct osif_charging_pb *next;
struct osif_sdesc charging_unit;
struct osif_bdesc charging_value;
struct osif_sdesc resource_identifier;
};

Field descriptions:

*next A pointer to the next charging structure.
charging_unit A GraphicString charging unit.
charging_value An integer charging value.
resource_identifier A GraphicString resource identifier.

4.20. User Buffer
The osif_buffer_list structure is for user data buffers. Information in these buffers is
referenced by the osifpb structure. These buffers are returned to the user as a result of a successful
osif_get_event or osif_deassign_port call.

struct osif_buffer_list {
struct osif_buffer_list *next;
int buffer_length;
char *bufferptr;
};

Field descriptions:

*next A pointer to the next buffer list structure.
buffer_length An integer describing the length of the buffer.
*bufferptr A pointer to the beginning of the user buffer.

45

Chapter 4. Data Structures

46

Chapter 5. Function Calls
This chapter describes the following FTAM application programming interface (FTAM API) function
calls:

• osif_assign_port

• osif_deassign_port

• osif_get_event

• osif_give_buffer

• osif_send

A success or failure value is returned as an indicator. Specific information detailing the cause
of a failure is returned in the error_code argument. If the error_codeargument is set to
osif_protocol_error, then the osif_protocol_error vector contains a list of layer-
specific errors in a null terminated list. The osif_protocol_error_count variable will be set
to the number of returned errors.

The rest of this chapter describes the calls and refers to osifpb and its descriptors which were
described in Section 4.1 and Section 3.4.

osif_assign_port
osif_assign_port — Creates a communication port.

Syntax
status=osif_assign_port(port_id,pb_ptr,port_flags,error_code)

Argument Data Type Passing Mechanism Access
port_id unsigned longword by reference write only
pb_ptr osifpb structure by reference read only
port_flags unsigned longword by value read only
error_code unsigned longword by reference write only

C Binding
osif_assign_port(port_id,pb_ptr,port_flags,error_code)

unsigned *port_id;
struct osifpb *pb_ptr;
unsigned port_flags;
unsigned *error_code;

Arguments
port_id

This argument is a reference to a communication port. It is used as an identifier to map FTAM events
to a specific process. Subsequent API functions must use this identifier.

47

Chapter 5. Function Calls

pb_ptr

This argument is a pointer to the osifpb structure, which is used to pass values to the API. This
argument is required if the program acts as a responder. This argument must be zero (null pointer) if
the program acts as an initiator.

port_flags

This argument indicates if the initiator or the responder is using osif_assign_port function call.
It accepts the following values:

OSIF_ASSIGN_INITIATOR initiator
OSIF_ASSIGN_RESPONDER responder (active)
OSIF_ASSIGN_REDIRECT responder (passive)

For more information about active and passive FTAM responders, see Section 1.8.

error_code

The error_code argument provides further information if the status returned from the call is
OSIF_FAILURE.

Description
This function call is used to establish a port for communication. A port identifier is returned to the
caller to be used in subsequent calls involving the particular association. A port must be assigned
for each FTAM initialization regime to be established. This call allows users to open connections to
the FTAM protocol machine. It can be used by an initiator or a responder. If the initiator is using this
call, the pb_ptr argument has no values that need to be passed to the API and the error_code
argument is set if an error occurs. If the responder is using this call, the pb_ptr argument must be
passed to the API with the following fields filled in (note that the local NSAP does not have to be
specified):

Local AE-qualifier osif_local_p_addrs.ae_addr.ae_qualifier.address

osif_local_p_addrs.ae_addr.ae_qualifier.length
Local AP-title osif_local_p_addrs.ae_addr.ap_title.address

osif_local_p_addrs.ae_addr.ap_title.length
Local presentation address osif_local_p_addrs.p_address.address

osif_local_p_addrs.p_address.length

Return Values
OSIF_FAILURE A port could not be assigned. The value returned in the argument

error_code provides further details. Possible values are:

OSIF_NOMEM — There was not enough memory for the
operation

OSIF_NOPORT — The call did not have a port identifier
OSIF_SUCCESS A port was assigned.

48

Chapter 5. Function Calls

Examples
This example illustrates the use of the osif_assign_port function by an initiator.

unsigned status;
unsigned error_status;
unsigned port_id;

status = osif_assign_port (&port_id,
 NULL,
 OSIF_ASSIGN_INITIATOR,
 &error_status);

This example illustrates the use of the osif_assign_port function by a responder. In this case,
the local AE-qualifier and AP-title are null.

unsigned status;
unsigned error_status;
unsigned port_id;

struct osifpb assign_pb;

memset(&assign_pb, 0, sizeof(assign_pb));

assign_pb.osif_local_p_addrs.p_address.address =
 (unsigned char *)LOCAL_P_ADDRESS;
assign_pb.osif_local_p_addrs.p_address.length =
 strlen (LOCAL_P_ADDRESS);

status = osif_assign_port(&port_id,
 &assign_pb,
 OSIF_ASSIGN_RESPONDER,
 &error_status);

osif_deassign_port
osif_deassign_port — Destroys a communication port.

Syntax
status=osif_deassign_port(port_id,user_buffer_listptr,port_flags,error_code)

Argument Data Type Passing Mechanism Access
port_id unsigned longword by value read only
user_buffer_listptr pointer to

osif_buffer_list
structure

by reference write only

port_flags unsigned longword by value read only
error_code unsigned longword by reference write only

C Binding
osif_deassign_port(port_id,user_buffer_listptr,port_flags,error_code)

49

Chapter 5. Function Calls

unsigned port_id;
struct osif_buffer_list **user_buffer_listptr;
unsigned port_flags;
unsigned *error_code;

Arguments
port_id

This argument is a reference to a communication port.

user_buffer_listptr

This argument contains a list of the buffers previously owned by the FTAM API that are being
returned to the user upon deassignment of the port.

port_flags

This argument has a value of OSIF_ASSIGN_INITIATOR or OSIF_ASSIGN_ RESPONDER and
indicates if the initiator or the responder is using the osif_deassign_port call.

This argument should be the same as the port_flags argument passed to the
osif_assign_port call, except that if OSIF_ASSIGN_REDIRECT was used on
osif_assign_port, OSIF_ASSIGN_RESPONDER should be used here.

error_code

The error_code argument provides further information if the status returned from the call is
OSIF_FAILURE.

Description
This function call is used to destroy a communication port. A reference to the port to be destroyed is
provided by the caller. This call allows users to close connections to the FTAM protocol machine.

Return Values
OSIF_FAILURE The port could not be deassigned. The value returned in the

argument error_code provides further details. A possible value
is:

OSIF_INVPORT — The call contained an invalid port identifier
OSIF_SUCCESS The port was deassigned.

Example
This example illustrates the use of the osif_deassign_port function by an initiator.

unsigned status;
unsigned error_status;
unsigned port_id;
struct osif_buffer_list *buffer_list;
struct osif_buffer_list *buf_entry;
struct osif_buffer_list *tmp_buf_entry;

50

Chapter 5. Function Calls

status = osif_deassign_port (port_id,
 &buffer_list,
 OSIF_ASSIGN_INITIATOR,
 &error_status);

if (buffer_list)
{
 for (buf_entry = buffer_list; buf_entry;)
 {
 free(buf_entry->bufferptr);
 tmp_buf_entry = buf_entry;
 buf_entry = buf_entry->next;
 free(tmp_buf_entry);
 }
}

osif_get_event
osif_get_event — Solicits inbound events from the FTAM API.

Syntax
status=osif_get_event(port_id,pb_ptr,timeout,error_code)

Argument Data Type Passing Mechanism Access
port_id unsigned longword by value read only
pb_ptr osifpb structure by reference write only
timeout signed longword by value read only
error_code unsigned longword by reference write only

C Binding
osif_get_event(port_id,pb_ptr,timeout,error_code)

unsigned port_id;
struct osifpb *pb_ptr;
long timeout;
unsigned *error_code;

Arguments
port_id

This argument is the reference of the communication port which is being solicited for reception of
inbound events.

pb_ptr

This argument is a reference to the osifpb user parameter block supplied by the user to the FTAM
API. The FTAM API fills in the appropriate parameters to describe the contents of the received
protocol data unit (PDU). For example, the osif_block_type parameter determines the type of
FTAM event received. If parameters have default values, they are applied by the FTAM API if the
parameter is not present in the PDU.

51

Chapter 5. Function Calls

This call can be used to allow the reuse of buffers. If the *osif_returned_buffer parameter
is filled in, the FTAM API user may reuse any of the buffers on the list. However, buffers must not
be reused until all the information in the received osifpb has been processed or information will be
lost.

timeout

This argument is the time in seconds indicating how long the osif_get_event call should wait
before returning to the user. If timeout is a positive value, it indicates the time in seconds to wait for
the call to complete. A timeout value of OSIF_WAIT_INFINITE indicates a synchronous call and the
call blocks indefinitely until an event is received. A timeout value of OSIF_WAIT_NONE indicates a
poll and the call returns immediately.

error_code

The error_code argument provides further information if the status returned from the call is
OSIF_FAILURE.

Description
This function is used to solicit inbound events on a specified port. This call receives an incoming
FTAM event in either synchronous or asynchronous mode, depending on the value of the timeout
argument.

For FTAM primitives, this call will populate the osifpb user parameter block with the function code
corresponding to the type of primitive received as well as the primitive-specific attribute values (or
length/address pairs in the case of strings).

For FTAM data, this call will:

• Copy the file data to a suitably-sized user-supplied buffer (if available).

• Fill in the user parameter block with the F-DATA function code.

• Fill in the data address parameter of the F-DATA user parameter block with the address of the
buffer containing the file data.

The osif_get_event call must be used in conjunction with the osif_give_buffer
function call. The osif_give_buffer call provides user-supplied buffers to the FTAM API
which uses these buffers to generate FTAM events. If no buffers have been supplied through the
osif_give_buffer call, then the osif_get_event call will fail.

Return Values
OSIF_FAILURE The FTAM protocol data unit could not be received. The value

returned in the argument error_code provides further details.
Possible values are:

OSIF_INVPORT — The call contained an invalid port identifier

OSIF_NO_EVENT — The event was not found during the timeout
period

OSIF_NOBUFFS — Buffers were unavailable or not large enough

52

Chapter 5. Function Calls

OSIF_NOMEM — There was not enough memory for the
operation

OSIF_XPORTFAILURE — There were failures at the Transport
level

OSIF_RECOVERY_EVENT - There is a recovery in progress
OSIF_SUCCESS A PDU was successfully received and passed to the caller.

Example
This example illustrates the use of the osif_get_event function.

unsigned port_id;
unsigned status;
unsigned error_status;
struct osifpb f_initialize_response;

memset(&f_initialize_response, 0, sizeof(f_initialize_response));

status = osif_get_event(port_id,
 &f_initialize_response,
 OSIF_WAIT_INFINITE,
 &error_status);

osif_give_buffer
osif_give_buffer — Posts a linked list of buffers to the port for reception of inbound events.

Syntax
status=osif_give_buffer(port_id,user_buffer_listptr,error_code)

Argument Data Type Passing Mechanism Access
port_id unsigned longword by value read only
user_buffer_listptr osif_buffer_list

structure
by reference read only

error_code unsigned longword by reference write only

C Binding
osif_give_buffer(port_id,user_buffer_listptr,error_code)

unsigned port_id;
struct osif_buffer_list *user_buffer_listptr;
unsigned *error_code;

Arguments
port_id

This argument is a reference to the port to which the buffers are being posted.

user_buffer_listptr

53

Chapter 5. Function Calls

This argument is the address of a linked list of buffers being posted to the interface for use
in receiving inbound events. Buffers are returned to the user as data (never as parameter
blocks) on reception of inbound events (osif_get_event) or when the port is deassigned
(osif_deassign_port).

error_code

The error_code argument provides further information if the status returned from the call is
OSIF_FAILURE.

Description
This routine is used to post buffers to a port for the purpose of receiving inbound events. These
buffers are used by the interface to return inbound events to the user. The buffers are returned to the
user on either osif_get_event calls or on an osif_deassign_port call. Buffers returned on
an osif_deassign_port call are unused and the contents are undefined.

Return Values
OSIF_FAILURE The buffers could not be posted to the interface. The value

returned in the argument error_code provides further details.
Possible values are:

OSIF_INVPORT — The call contained an invalid port identifier

OSIF_NOMEM — There was not enough memory for the
operation

OSIF_SUCCESS The buffers were successfully posted to the interface.

Example
This example illustrates the use of the osif_give_buffer function.

unsigned status;
unsigned error_status;
unsigned port_id;
struct osif_buffer_list *buffer_list;
int i;

for (i=0; i<5; i++)
{
 buffer_list = (struct osif_buffer_list *)
 malloc(sizeof(struct osif_buffer_list));

 if (!buffer_list)
 exit(0);

 buffer_list->next = 0;
 buffer_list->buffer_length = 8*1024;
 buffer_list->bufferptr = (char *) malloc(8*1024);

 status = osif_give_buffer(port_id,
 buffer_list,
 &error_status);
}

54

Chapter 5. Function Calls

osif_send
osif_send — Sends an FTAM protocol data unit to the cooperating implementation.

Syntax
status=osif_send(port_id,pb_ptr,error_code)

Argument Data Type Passing Mechanism Access
port_id unsigned longword by value read only
pb_ptr osifpb structure by reference read only
error_code unsigned longword by reference write only

C Binding
osif_send(port_id,pb_ptr,error_code)

unsigned port_id;
struct osifpb *pb_ptr;
unsigned *error_code;

Arguments
port_id

This argument is the reference of the communication port on which to send the protocol data unit.

pb_ptr

This argument is the address of the parameter block whose contents are to be encoded and sent to the
peer entity.

error_code

The error_code argument provides further information if the status returned from the call is
OSIF_FAILURE.

Description
This routine is used to send a protocol data unit (PDU) to a cooperating implementation. Upon
invocation, it validates each parameter of the osifpb user parameter block. If any of the parameters
in osifpb are invalid, the interface returns with an error. If all parameters are valid, then an FTAM
PDU is encoded and posted to the lower layers.

This call is used to create all the request and response FTAM PDUs. All the parameters required by
the specific FTAM service primitive must be in the osifpb that is passed to this call.

Return Values
OSIF_FAILURE The FTAM protocol data unit could not be sent. The value returned

in the argument error_code provides further details. Possible
values are listed in Appendix A.

55

Chapter 5. Function Calls

OSIF_SUCCESS A PDU was successfully encoded and posted to the lower layers.

Example
This example illustrates the use of the osif_send function.

unsigned port_id; /* port id */
char *init_id = "username"; /* initiator id */
char *fs_passwd = "password"; /* filestore password */
unsigned status; /* Call completion status */
unsigned error_status; /* Additional status info value */
struct osifpb f_initialize_request; /* Request parameter block */

struct osif_ctl ctlblk_1; /* Temp structures for building */
struct osif_ctl ctlblk_2; /* a contents type list */
struct osif_ctl ctlblk_3;
/*
* Zero fill the parameter block and
* contents type list blocks
*/
memset (&f_initialize_request, 0, sizeof(f_initialize_request));
memset (&ctlblk_1, 0, sizeof(ctlblk_1));
memset (&ctlblk_2, 0, sizeof(ctlblk_2));
memset (&ctlblk_3, 0, sizeof(ctlblk_3));
/*
* Set the f-initialize function code in the parameter block
*/
f_initialize_request.osif_block_type = OSIF_PBDEF_INIT_REQ;
f_initialize_request.osif_block_size = sizeof(f_initialize_request);
/*
* Store the systems presentation address in the parameter block
*/
f_initialize_request.osif_local_p_addrs.p_address.address =
 (unsigned char *)LOCAL_P_ADDRESS;
f_initialize_request.osif_local_p_addrs.p_address.length =
 strlen (LOCAL_P_ADDRESS);
f_initialize_request.osif_local_p_addrs.nsap_queue[0].nsap.address =
 (unsigned char *)LOCAL_NSAP;
f_initialize_request.osif_local_p_addrs.nsap_queue[0].nsap.length =
 strlen (LOCAL_NSAP);
f_initialize_request.osif_local_p_addrs.nsap_queue[0].template.address =
 (unsigned char *)LOCAL_TEMPLATE;
f_initialize_request.osif_local_p_addrs.nsap_queue[0].template.length =
 strlen (LOCAL_TEMPLATE);
f_initialize_request.osif_local_p_addrs.nsap_queue[0].provider.address =
 (unsigned char *)LOCAL_PROVIDER;
f_initialize_request.osif_local_p_addrs.nsap_queue[0].provider.length =
 strlen (LOCAL_PROVIDER);
/*
* Store the remote systems presentation address in the parameter block
*/
f_initialize_request.osif_peer_p_addrs.p_address.address =
 (unsigned char *)REMOTE_P_ADDRESS;
f_initialize_request.osif_peer_p_addrs.p_address.length =
 strlen (REMOTE_P_ADDRESS);
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].nsap.address =
 (unsigned char *)REMOTE_NSAP;

56

Chapter 5. Function Calls

f_initialize_request.osif_peer_p_addrs.nsap_queue[0].nsap.length =
 strlen (REMOTE_NSAP);
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].template.address =
 (unsigned char *)REMOTE_TEMPLATE;
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].template.length =
 strlen (REMOTE_TEMPLATE);
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].provider.address =
 (unsigned char *)REMOTE_PROVIDER;
f_initialize_request.osif_peer_p_addrs.nsap_queue[0].provider.length =
 strlen (REMOTE_PROVIDER);
/*
* Propose the transfer, management, and transfer and management
* service class. Note that the FTAM responder will choose the
* service class it will support for this association.
*/
f_initialize_request.osif_service_class.length = 4;
f_initialize_request.osif_service_class.value =
 (OSIF_CLASS_XFR_MGMT |
 OSIF_CLASS_MGMT |
 OSIF_CLASS_XFR);
/*
* Propose the read, write, limited file management, enhanced file
* management and grouping functional units.
*/
f_initialize_request.osif_functional_units.length = 4;
f_initialize_request.osif_functional_units.value =
 (OSIF_FU_READ |
 OSIF_FU_WRITE |
 OSIF_FU_LIMIT_FILE_MGMT |
 OSIF_FU_ENH_FILE_MGMT |
 OSIF_FU_GROUPING);
/*
* Propose the storage attribute group
*/
f_initialize_request.osif_attribute_groups.length = 4;
f_initialize_request.osif_attribute_groups.value =
 OSIF_ATG_STORAGE | OSIF_ATG_SECURITY;
/*
* Set the FTAM Quality of Service to no recovery
*/
f_initialize_request.osif_ftam_qual_service.length = 4;
f_initialize_request.osif_ftam_qual_service.value =
 OSIF_FQOS_NO_RECOVERY;
/*
* Tell the responder which files type we can support
* add FTAM-1, FTAM-2 and FTAM-3 to the contents_type_list
*/
ctlblk_1.document_name.address = (unsigned char *)"FTAM-1";
ctlblk_1.document_name.length = strlen(ctlblk_1.document_name.address);
ctlblk_1.next = &ctlblk_2;

ctlblk_2.document_name.address = (unsigned char *)"FTAM-2";
ctlblk_2.document_name.length = strlen(ctlblk_2.document_name.address);
ctlblk_2.next = &ctlblk_3;

ctlblk_3.document_name.address = (unsigned char *)"FTAM-3";
ctlblk_3.document_name.length = strlen(ctlblk_3.document_name.address);
ctlblk_3.next = 0;

57

Chapter 5. Function Calls

f_initialize_request.osif_contents_type_list = &ctlblk_1;
/*
* Store the filestore password and the initiator id in the
* parameter block.
* Note that the type field of the sdesc structure is used for the
* filestore password. This is because the password could be encoded
* as either a graphic string or an octet string. The type field
* tells the asn1 encoder how to encode this parameter.
*/
f_initialize_request.osif_filestore_password.address =
 (unsigned char *)fs_passwd;
f_initialize_request.osif_filestore_password.length =
 strlen(f_initialize_request.osif_filestore_password.address);
f_initialize_request.osif_filestore_password.type = OSIF_UC_GRAPHIC;

f_initialize_request.osif_initiator_identity.address =
 (unsigned char *) init_id;
f_initialize_request.osif_initiator_identity.length =
 strlen(f_initialize_request.osif_initiator_identity.address);
/*
* Send the f-initialize request to the remote responder
*/
status = osif_send(port_id,
 &f_initialize_request,
 &error_status);

58

Appendix A. Error Messages
The following table is a list of messages specific to the API. It also includes a short explanation of the
error message.

These are returned in the error_code argument of the osif_send call.

Message Meaning
OSIF_BAD_ACCCNTX Bad access context
OSIF_BAD_ACCCNTRL Bad access control
OSIF_BAD_ACCPWD Bad access password
OSIF_BAD_ACCOUNT Bad account
OSIF_BAD_ACTID Bad activity identifier
OSIF_BAD_ACTRES Bad action result
OSIF_BAD_APPCNTX Bad application contexts
OSIF_BAD_ARCLEN Bad arc length
OSIF_BAD_ATTNAM Bad attribute name
OSIF_BAD_ATTRGRP Bad attribute groups
OSIF_BAD_CCCNTRL Bad concurrency control
OSIF_BAD_CHARGE Bad charging
OSIF_BAD_CHATPWD Bad change attribute password
OSIF_BAD_CHKPWIN Bad checkpoint window
OSIF_BAD_CNTTYLST Bad contents type list
OSIF_BAD_CNTTYPE Bad contents type
OSIF_BAD_CREPWD Bad create password
OSIF_BAD_DELCNTX Bad delete contexts
OSIF_BAD_DELPWD Bad delete password
OSIF_BAD_DELVAL Bad delete value
OSIF_BAD_DIAG Bad diagnostic
OSIF_BAD_DTCRE Bad date and time of creation
OSIF_BAD_DTLATMD Bad date and time of last attribute modification
OSIF_BAD_DTLMOD Bad date and time of last modification
OSIF_BAD_DTLSTRD Bad date and time of last read
OSIF_BAD_ERAPWD Bad erase password
OSIF_BAD_EXTPWD Bad extend password
OSIF_BAD_FADU Bad file access data unit
OSIF_BAD_FADULK Bad FADU lock
OSIF_BAD_FADULKG Bad enable FADU locking
OSIF_BAD_FADUOP Bad FADU operation
OSIF_BAD_FILEAV Bad file availability
OSIF_BAD_FILENM Bad file name

59

Appendix A. Error Messages

Message Meaning
OSIF_BAD_FILESZ Bad file size
OSIF_BAD_FSPWD Bad filestore password
OSIF_BAD_FQOS Bad FTAM quality of service
OSIF_BAD_FUNITS Bad functional units
OSIF_BAD_FUTFISZ Bad future file size
OSIF_BAD_IDCRE Bad identity of creator
OSIF_BAD_IDLATMD Bad identity of last attribute modifier
OSIF_BAD_IDLMOD Bad identity of last modifier
OSIF_BAD_IDLREAD Bad identity of last reader
OSIF_BAD_IMPINFO Bad implementation information
OSIF_BAD_INITID Bad initiator identity
OSIF_BAD_INSPWD Bad insert password
OSIF_BAD_INVAL Bad insert values
OSIF_BAD_LAEQUAL Bad local AE-qualifier
OSIF_BAD_LAPTITLE Bad local AP-title
OSIF_BAD_LEQUAL Bad legal qualification
OSIF_BAD_LPADDR Bad local presentation address
OSIF_BAD_OVRRIDE Bad override
OSIF_BAD_PERACT Bad permitted actions
OSIF_BAD_PCTXMGT Bad presentation context management
OSIF_BAD_PROMODE Bad processing mode
OSIF_BAD_PROTID Bad protocol version
OSIF_BAD_PRVUSE Bad private use
OSIF_BAD_RAEQUAL Bad remote AE-qualifier
OSIF_BAD_RAPTITLE Bad remote AP-title
OSIF_BAD_RDATPWD Bad read attribute password
OSIF_BAD_RDPWD Bad read password
OSIF_BAD_RECMODE Bad recovery mode
OSIF_BAD_REMCNTX Bad remove contexts
OSIF_BAD_REQACC Bad requested access
OSIF_BAD_RPADDR Bad remote presentation address
OSIF_BAD_RPLPWD Bad replace password
OSIF_BAD_SRVCLASS Bad service class
OSIF_BAD_STOACC Bad storage account
OSIF_BAD_STRES Bad state result
OSIF_BAD_THRES Bad threshold
OSIF_BAD_USRDATA Bad user data
OSIF_BADITEMSIZE The call contained a bad item size

60

Appendix A. Error Messages

Message Meaning
OSIF_FAILURE The operation failed
OSIF_INVPORT The call contained an invalid port identifier
OSIF_NO_EVENT The event was not found during the timeout

period
OSIF_NOBUFFS Buffers were unavailable or not large enough
OSIF_NOMEM There was not enough memory for the operation
OSIF_NOPORT The call did not have a port identifier
OSIF_PARAMNORD The parameter could not be read
OSIF_PARAMNOWRT The parameter could not be written
OSIF_PROTOCOL_ERROR There are layer-specific protocol errors
OSIF_RECOVERY_EVENT There is a recovery in progress
OSIF_SUCCESS The operation succeeded
OSIF_XPORTFAILURE There were failures at the Transport level

61

Appendix A. Error Messages

62

Appendix B. Diagnostic Errors
This chapter provides all the constants returned as error identifiers with the osif_diagnostic
described in Section 3.4.

The identifiers and reason codes from ISO 8571-3 are provided with the following list of constants.

Identifier Constant Reason
General FTAM Diagnostics

0 OSIF_GEN_NOREASON No reason
1 OSIF_GEN_RESPERR Responder error (unspecific)
2 OSIF_GEN_SYSSHUT System shutdown
3 OSIF_GEN_MGMT FTAM management problem (unspecific)
4 OSIF_GEN_MGMACCT FTAM management, bad account
5 OSIF_GEN_MGMSECURITY FTAM management, security not passed
6 OSIF_GEN_DELAY Delay may be encountered
7 OSIF_GEN_INITERR Initiator error (unspecific)
8 OSIF_GEN_SUBSERR Subsequent error
9 OSIF_GEN_INSFRSRC Temporal insufficiency of resources
10 OSIF_GEN_VFSSEC Access request violates VFS security
11 OSIF_GEN_LCLSEC Access request violates local security

Protocol and Supporting Service Related Diagnostics
1000 OSIF_PRO_CNFPRMVAL Conflicting parameter values
1001 OSIF_PRO_UNSPRMVAL Unsupported parameter values
1002 OSIF_PRO_MNDPARAM Mandatory parameter not set
1003 OSIF_PRO_UNSPARAM Unsupported parameter
1004 OSIF_PRO_DUPPARAM Duplicated parameter
1005 OSIF_PRO_ILLPRMTYP Illegal parameter type
1006 OSIF_PRO_UNSPRMTYP Unsupported parameter types
1007 OSIF_PRO_PROT FTAM protocol error (unspecific)
1008 OSIF_PRO_PROTPROC FTAM protocol error, procedure error
1009 OSIF_PRO_PROTFUNC FTAM protocol error, functional unit error
1010 OSIF_PRO_PROTCORR FTAM protocol error, corruption error
1011 OSIF_PRO_LWRLYR Lower layer failure
1012 OSIF_PRO_LWRLYRADRS Lower layer addressing error
1013 OSIF_PRO_TIMEOUT Timeout
1014 OSIF_PRO_SYSSHUT System shutdown
1015 OSIF_PRO_ILLGRP Illegal grouping sequence
1016 OSIF_PRO_GRPTHRSH Grouping threshold violation
1017 OSIF_PRO_PDUINC Specific PDU request inconsistent with the

current requested access

63

Appendix B. Diagnostic Errors

Identifier Constant Reason
Association Related Diagnostics

2000 OSIF_ASC_ASCNOTALL Association with user not allowed
2001 OSIF_ASC_NOTDEFINED (not assigned)
2002 OSIF_ASC_SRVCCLS Unsupported service class
2003 OSIF_ASC_FUNCUNI Unsupported functional unit
2004 OSIF_ASC_ATTGRP Attribute group error (unspecific)
2005 OSIF_ASC_ATTGRPNS Attribute group not supported
2006 OSIF_ASC_ATTGRPNA Attribute group not allowed
2007 OSIF_ASC_BADACCT Bad account
2008 OSIF_ASC_ASCMGM Association management (unspecific)
2009 OSIF_ASC_ASCMGMADRS Association management - bad address
2010 OSIF_ASC_ASCMGMACCT Association management - bad account
2011 OSIF_ASC_CHKWINDLRG Checkpoint window error - too large
2012 OSIF_ASC_CHKWINDSML Checkpoint window error - too small
2013 OSIF_ASC_CHKWINDUNS Checkpoint window error - unsupported
2014 OSIF_ASC_COMMQOS Communications QoS not supported
2015 OSIF_ASC_INITID Initiator identity unacceptable
2016 OSIF_ASC_CTXMGMT Context management refused
2017 OSIF_ASC_ROLLBACK Rollback not available
2018 OSIF_ASC_CTLCUTRESP Contents type list cut by responder
2019 OSIF_ASC_CTLCUTPRES Contents type list by presentation service
2020 OSIF_ASC_INVPWD Invalid filestore password
2021 OSIF_ASC_INCSVC Incompatible service classes

Selection Related Diagnostics
3000 OSIF_SEL_FILNOTFND File name not found
3001 OSIF_SEL_SELATTR Selection attributes not matched
3002 OSIF_SEL_INITATT Initial attributes not possible
3003 OSIF_SEL_BADATTNAM Bad attribute name
3004 OSIF_SEL_NONEXFILE Non-existent file
3005 OSIF_SEL_FILEXISTS File already exists
3006 OSIF_SEL_FILNOCREATE File cannot be created
3007 OSIF_SEL_FILNODELETE File cannot be deleted
3008 OSIF_SEL_CONCTLNA Concurrency control not available
3009 OSIF_SEL_CONCTLNS Concurrency control not supported
3010 OSIF_SEL_CONCTLNP Concurrency control not possible
3011 OSIF_SEL_MORERESLOCK More restrictive lock
3012 OSIF_SEL_FILEBUSY File busy
3013 OSIF_SEL_FILENA File not available

64

Appendix B. Diagnostic Errors

Identifier Constant Reason
3014 OSIF_SEL_ACSCTLNA Access control not available
3015 OSIF_SEL_ACSCTLNS Access control not supported
3016 OSIF_SEL_ACSCTLINC Access control inconsistent
3017 OSIF_SEL_FILNAMTRNC File name truncated
3018 OSIF_SEL_INITATTALT Initial attributes altered
3019 OSIF_SEL_BADACCT Bad account
3020 OSIF_SEL_SELECTOLD Override selected existing file
3021 OSIF_SEL_RECROLD Override deleted and recreated file with old

attributes
3022 OSIF_SEL_RECRNEW Create override deleted and recreate file

with new attributes
3023 OSIF_SEL_OVERRIDE Create override - not possible
3024 OSIF_SEL_AMBFILSPEC Ambiguous file specification
3025 OSIF_SEL_INVCREPWD Invalid create password
3026 OSIF_SEL_INVDELPWD Invalid delete password on override
3027 OSIF_SEL_BADATTVAL Bad attribute value
3028 OSIF_SEL_RQSTACCS Requested access violates permitted

actions
3029 OSIF_SEL_FUNCUNIT Functional unit not available for requested

access
3030 OSIF_SEL_CREATED File created but not selected

File Management Related Diagnostics
4000 OSIF_MNG_ATTNONEX Attribute nonexistent
4001 OSIF_MNG_ATTNOREAD Attribute cannot be read
4002 OSIF_MNG_ATTNOCHNG Attribute cannot be changed
4003 OSIF_MNG_ATTNS Attribute not supported
4004 OSIF_MNG_BADATTNAM Bad attribute name
4005 OSIF_MNG_BADATTVAL Bad attribute value
4006 OSIF_MNG_ATTPARSUP Attribute partially supported
4007 OSIF_MNG_ATTVALND Additional set attribute value not distinct

Access Related Diagnostics
5000 OSIF_ACC_BADFADU Bad FADU (unspecific)
5001 OSIF_ACC_BADFADUSIZ Bad FADU - size error
5002 OSIF_ACC_BADFADUTYP Bad FADU - type error
5003 OSIF_ACC_BADFADUPS Bad FADU - poorly specified
5004 OSIF_ACC_BADFADULOC Bad FADU - bad location
5005 OSIF_ACC_FADUNONEXI FADU does not exist
5006 OSIF_ACC_FADUNA FADU not available (unspecific)
5007 OSIF_ACC_FADUNARD FADU not available for reading

65

Appendix B. Diagnostic Errors

Identifier Constant Reason
5008 OSIF_ACC_FADUNAWR FADU not available for writing
5009 OSIF_ACC_FADUNALOC FADU not available for location
5010 OSIF_ACC_FADUNAERA FADU not available for erasure
5011 OSIF_ACC_FADUNOINS FADU cannot be inserted
5012 OSIF_ACC_FADUNORPL FADU cannot be replaced
5013 OSIF_ACC_FADUNOLOC FADU cannot be located
5014 OSIF_ACC_BADDETYP Bad data element type
5015 OSIF_ACC_OPERNA Operation not available
5016 OSIF_ACC_OPERNS Operation not supported
5017 OSIF_ACC_OPERINC Operation inconsistent
5018 OSIF_ACC_CONCTLNA Concurrency control not available
5019 OSIF_ACC_CONCTLNS Concurrency control not supported
5020 OSIF_ACC_CONCTLINC Concurrency control inconsistent
5021 OSIF_ACC_PRCMODNA Processing mode not available
5022 OSIF_ACC_PRCMODNS Processing mode not supported
5023 OSIF_ACC_PRCMODINC Processing mode inconsistent
5024 OSIF_ACC_ACSCTXNA Access context not available
5025 OSIF_ACC_ACSCTXNS Access context not supported
5026 OSIF_ACC_BADWRITE Bad write (unspecific)
5027 OSIF_ACC_BADREAD Bad read (unspecific)
5028 OSIF_ACC_LCLERR Local failure (unspecific)
5029 OSIF_ACC_LCLFILSPACE Local failure - filespace exhausted
5030 OSIF_ACC_LCLDATCORR Local failure - data corrupted
5031 OSIF_ACC_LCLDEVFAIL Local failure - device failure
5032 OSIF_ACC_FUTSIZEXC Future file size exceeded

OSIF_ACC_UNDEFINED
5034 OSIF_ACC_FUTSIZINC Future file size increased
5035 OSIF_ACC_FUNCUNIT Functional unit invalid in processing mode
5036 OSIF_ACC_CNTTYPINC Contents type inconsistent
5037 OSIF_ACC_CNTTYPSMPL Contents type simplified
5038 OSIF_ACC_DUPFADUNAM Duplicate FADU name
5039 OSIF_ACC_DMGSELOPEN Damage to select/open regime
5040 OSIF_ACC_FADULOCKNA FADU locking not available on file
5041 OSIF_ACC_FADULOCKED FADU locked by another user

Recovery Related Diagnostics
6000 OSIF_REC_BADCHKPNT Bad checkpoint (unspecific)
6001 OSIF_REC_ACTVNOTUNI Activity not unique
6002 OSIF_REC_CHKOUTWIND Checkpoint outside window

66

Appendix B. Diagnostic Errors

Identifier Constant Reason
6003 OSIF_REC_ACTVNOEXIST Activity no longer exists
6004 OSIF_REC_ACTVNORECOG Activity not recognized
6005 OSIF_REC_NODOCKET No docket
6006 OSIF_REC_CORDOCKET Corrupt docket
6007 OSIF_REC_WAITRESTART File waiting restart
6008 OSIF_REC_BADRECPNT Bad recovery point
6009 OSIF_REC_NONEXRECPNT Non-existent recovery point
6010 OSIF_REC_RECMODNA Recovery mode not available
6011 OSIF_REC_RECMODINC Recovery mode inconsistent
6012 OSIF_REC_RECMODRED Recovery mode reduced
6013 OSIF_REC_ACSCTLNA Access control not available
6014 OSIF_REC_ACSCTLNS Access control not supported
6015 OSIF_REC_ACSCTLINC Access control inconsistent
6016 OSIF_REC_CNTTYPINC Contents type inconsistent
6017 OSIF_REC_CNTTYPSMPL Contents type simplified

67

Appendix B. Diagnostic Errors

68

	DECnet-PlusFTAM Programming
	Table of Contents
	Preface
	1. Intended Audience
	2. Related Documents
	3. VSI Encourages Your Comments
	4. OpenVMS Documentation
	5. Typographical Conventions

	Chapter 1. Introduction
	1.1. Overview of the FTAM API
	1.2. Using the FTAM API
	1.2.1. Setting up an Association
	1.2.2. Typical FTAM Protocol Exchange
	1.2.3. Typical FTAM API Call Sequence

	1.3. Mapping Block Types to Primitives
	1.4. Handling API Calls
	1.5. Managing the User Buffer
	1.6. Handling User Data
	1.7. Using Document Types
	1.7.1. Using the FTAM-1 Document Type
	1.7.2. Using the FTAM-2 Document Type
	1.7.3. Using the FTAM-3 Document Type
	1.7.4. Using the NBS-9 Document Type
	1.7.5. Default Document Type Parameter Values

	1.8. Passive Versus Active Responders
	1.9. Using Presentation Addresses
	1.9.1. Matching NSAPs and Templates

	1.10. FTAM API Version 3.0 Applications With Version 3.2
	1.11. FTAM API Restrictions

	Chapter 2. Building and Running API Programs
	2.1. Compiling Programs with DEC C on OpenVMS VAX
	2.2. Linking Programs on OpenVMS
	2.3. Running Programs on OpenVMS
	2.4. Compiling and Linking Programs on UNIX
	2.5. FTAM API Example Files

	Chapter 3. FTAM File Services
	3.1. Service Sequences
	3.1.1. Creating a New File and Writing Data
	3.1.2. Deleting a File Using Grouping
	3.1.3. Reading and Changing Attributes
	3.1.4. Performing a Series of Writes and Reads
	3.1.5. Transferring a File to a Peer System
	3.1.6. Canceling a Data Transfer

	3.2. FTAM File Services and Parameters
	3.3. Parameter Block Description
	3.4. Parameter Description

	Chapter 4. Data Structures
	4.1. FTAM Parameter Block
	4.2. String Descriptor Specification
	4.3. Binary Descriptor Specification
	4.4. File Names
	4.5. Diagnostics
	4.6. Contents Type Lists
	4.7. Contents Type Parameter
	4.8. Document Type Parameters
	4.9. Application-Entity Entry
	4.10. Application-Entity Address
	4.11. Network Selector and Transport Options Queue (Version 3.0 Only)
	4.12. Network Selector and Transport Provider Queue (Version 3.2 Only)
	4.13. Transport Template Queue (Version 3.2 Only)
	4.14. Concurrency Control
	4.15. Access Control
	4.16. Access Passwords
	4.17. File Access Data Unit
	4.18. File Access Data Unit Access Context
	4.19. Charging
	4.20. User Buffer

	Chapter 5. Function Calls
	osif_assign_port
	osif_deassign_port
	osif_get_event
	osif_give_buffer
	osif_send

	Appendix A. Error Messages
	Appendix B. Diagnostic Errors

