
VSI OpenVMS

VSI DECnet-Plus Problem Solving

Document Number: DO-DNTPPS-01A

Publication Date: October 2021

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS Integrity Version 8.4-2
VSI OpenVMS Alpha Version 8.4-2L1

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

VSI DECnet-Plus Problem Solving

Copyright © 2021 VMS Software, Inc. (VSI), Burlington, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

UNIX is a registered trademark of The Open Group.

ii

VSI DECnet-Plus Problem Solving

Preface .. ix
1. Intended Audience ... ix
2. Related Documents .. ix
3. VSI Encourages Your Comments .. ix
4. OpenVMS Documentation .. ix
5. Typographical Conventions ... x

Chapter 1. Fault-Isolation Overview ... 1
1.1. Understanding the DECnet-Plus Network Model ... 1

1.1.1. OSI Network Layer Functions .. 1
1.1.2. DNA Layer Functions ... 2
1.1.3. TCP/IP Interoperability .. 3

1.2. Classifying Problems .. 3
1.2.1. Reproducible Problems .. 3
1.2.2. Intermittent Problems .. 3
1.2.3. Transient Problems .. 3

1.3. DECnet-Plus Component Relationships ... 3
1.3.1. Component Relationships (OpenVMS Only) ... 3
1.3.2. Component Relationships (UNIX Only) .. 4

1.4. Methods for Isolating Faults ... 5
1.4.1. Questions to Ask Yourself ... 5
1.4.2. Fault Isolation in the DECnet-Plus Environment ... 6
1.4.3. DECnet-Plus Fault-Isolation Methodology .. 6
1.4.4. Isolating Faults for Reproducible Problems ... 6
1.4.5. Isolating Faults for Intermittent or Transient Problems ... 7
1.4.6. Documenting the Fault-Isolation Process and Problem Solution 7

Chapter 2. Preparing for Problem Solving ... 9
2.1. DECnet-Plus Symptom Table ... 9
2.2. Types of Problem-Solving Information .. 10

2.2.1. Definitions .. 11
2.2.2. Tools and Commands to Use .. 11

2.3. Understanding Your Network Topology ... 12
2.3.1. The decnet_migrate Tool .. 12
2.3.2. When to Use the decnet_migrate Tool .. 13
2.3.3. References ... 13

2.4. Recognizing Node Names and Synonyms .. 13
2.4.1. Identifying Node Names .. 13
2.4.2. Finding Node Names and Node Synonyms ... 14

2.5. Finding the Operating System and Version .. 14
2.6. Getting DECnet-Plus Circuit Information .. 14

2.6.1. Routing DECnet-Plus Circuit Information for Problem Solving 14
2.6.2. Finding Routing Circuit Names, Types, States, and Adjacencies 15
2.6.3. Considerations for Broadcast Circuit Adjacencies .. 15

2.7. Preparing to Find a Network Path ... 15
2.7.1. Types of Network Information to Find .. 15
2.7.2. Finding Node Addresses for Node Names ... 16
2.7.3. Determining Network Entity Titles for DECnet-Plus Nodes 17
2.7.4. Converting Phase IV Addresses to NSAPs .. 17
2.7.5. Converting NSAP Addresses to Phase IV Format .. 17

2.8. Tracing DECnet-Plus Network Paths ... 18
2.8.1. Tracing the Network Path of DECnet-Plus Nodes .. 18
2.8.2. Tracing a Network Path in a Mixed Environment .. 20

iii

VSI DECnet-Plus Problem Solving

2.8.3. X.25 DA Circuit Considerations ... 20
2.8.4. NCL Takes Long Time While Translating Addresses to Names 21

Chapter 3. Testing Network Reachability ... 23
3.1. Types of Network Reachability Tests ... 23

3.1.1. Types of Loopback Tests ... 24
3.1.2. Using Loopback Tests on Phase IV Nodes .. 24
3.1.3. Types of dts/dtr Tests ... 24

3.2. OSI Echo Function Overview (UNIX Only) .. 25
3.2.1. OSI ping Command Syntax .. 25
3.2.2. Restrictions ... 25

3.3. Node-Level Loopback Tests Overview .. 26
3.3.1. When to Use Node-Level Loopback Tests ... 26
3.3.2. Analyzing Local-to-Local Node Loopback Test Results 26
3.3.3. Log File for Local-to-Local Node Loopback Tests ... 26
3.3.4. Local-to-Local Node Loopback Figure .. 26
3.3.5. Analyzing Local-to-Remote Node Loopback Test Results 27
3.3.6. Local-to-Remote Loopback Test Figure .. 27

3.4. Running Node-Level Loopback Tests .. 28
3.4.1. Node-Level Loopback Command Parameters .. 28
3.4.2. Example of Node-Level Loopback Test .. 28

3.5. Circuit-Level Loopback Test Overview ... 28
3.5.1. Circuit-Level Loopback Test Figure .. 29
3.5.2. Identifying Node Addresses for Circuit-Level Loopback Tests 29

3.6. Preparing for Circuit-Level Loopback Tests ... 29
3.6.1. Example of Circuit-Level Loopback Preparation ... 30

3.7. Running Circuit-Level Loopback Tests .. 31
3.7.1. Circuit-Level Loopback Command Parameters .. 31
3.7.2. Example of Circuit-Level Loopback Test .. 32

3.8. Running Circuit-Level Loopback Tests with Assistance .. 32
3.8.1. When to Use Assistance .. 32
3.8.2. Using Assistance for Fault Isolation ... 32
3.8.3. Starting a Circuit-Level Loopback Test with Assistance 33
3.8.4. Assistance Parameters .. 33
3.8.5. Example of Circuit-Level Loopback Test with Full Assistance 34
3.8.6. Example of Circuit-Level Loopback Test with Transmit Assistance 34
3.8.7. Example of Circuit-Level Loopback Test with Receive Assistance 35

3.9. Running LAN Loopback Tests with LLC Messages ... 35
3.9.1. Starting the LAN Loopback Test .. 35
3.9.2. LAN Loopback Test Command Parameters ... 36
3.9.3. Determining Logical Link Control Types on a Remote Node 36

3.10. Running dts/dtr Tests .. 36
3.10.1. Starting dts/dtr Tests .. 36
3.10.2. dts Command Syntax ... 37
3.10.3. General Command Syntax Conventions .. 38
3.10.4. Examples of Using dts/dtr Test Command Procedures 38

3.11. Running dts/dtr Connect Tests ... 39
3.11.1. dts/dtr Connect Test Command Syntax .. 39
3.11.2. Example of dts/dtr Connect Test Command ... 40

3.12. Running dts/dtr Data Tests .. 40
3.12.1. dts/dtr Data Test Command Syntax ... 40
3.12.2. Example of dts/dtr Data Test Command .. 41

3.13. Running dts/dtr Disconnect Tests .. 42

iv

VSI DECnet-Plus Problem Solving

3.13.1. dts/dtr Disconnect Test Command Syntax ... 42
3.13.2. Example of dts/dtr Disconnect Test Command ... 43

3.14. Running dts/dtr Interrupt Tests .. 43
3.14.1. Interrupt Test Command Syntax ... 43
3.14.2. Example of dts/dtr Interrupt Test Command .. 44

Chapter 4. Solving Problems Using DECnet Over TCP/IP ... 45
4.1. Local IP Address Displays As 0.0.0.0 ... 45
4.2. Troubleshooting .. 45

Chapter 5. Solving DECnet-Plus Application Problems .. 47
5.1. Underlying Components for DECnet/OSI Applications (OpenVMS Only) 48
5.2. Underlying Components for DECnet/OSI Applications (UNIX Only) 48
5.3. Symptoms of DECnet-Plus Application Problems .. 49

5.3.1. Problem Symptoms for All Systems ... 49
5.3.2. Problem Symptoms for OpenVMS Systems Only .. 50
5.3.3. Problem Symptoms for UNIX Systems Only .. 51

5.4. Isolating DECnet-Plus Application Faults .. 52
5.4.1. Tools to Use .. 52
5.4.2. References ... 52

5.5. Using Event Logging and Log Files .. 53
5.5.1. Enabling Network Event Logging (OpenVMS Only) ... 53
5.5.2. Using the FTAM Responder Log File (OpenVMS Only) 53

5.6. Isolating Faults Using Management Tools (OpenVMS Only) .. 54
5.7. Tracing Overview ... 55

5.7.1. Trace Files .. 55
5.7.2. Security Information in Tracing .. 55

5.8. Tracing Outbound FTAM and Virtual Terminal Connections ... 55
5.8.1. Generating a Readable Trace File ... 56
5.8.2. ositrace Command Options (UNIX Only) ... 56

5.9. Tracing Inbound FTAM and Virtual Terminal Connections ... 57
5.9.1. Inbound FTAM and VT Tracing (UNIX) .. 57
5.9.2. Inbound FTAM Tracing (OpenVMS) .. 57
5.9.3. Inbound VT Tracing (OpenVMS) ... 58

5.10. Reading Trace Files .. 59
5.10.1. Interpreting Trace Information .. 59

5.11. Correcting FTAM Application Problems .. 60
5.12. Correcting FTAM File-Handling Problems ... 61

5.12.1. Checking Foreign Filename Formats ... 61
5.12.2. Correcting File Problems .. 61

5.13. Correcting General FTAM Connection Problems .. 62
5.14. Correcting FTAM and Virtual Terminal Connection Problems (UNIX Only) 63

5.14.1. Address in Use .. 63
5.14.2. Network Is Unreachable ... 64
5.14.3. Connection Refused ... 64
5.14.4. Connection Timed Out ... 64

5.15. Correcting FTAM and Virtual Terminal Responder Problems (OpenVMS Only) 64
5.15.1. Correcting Unexpected Termination Problems ... 64
5.15.2. Correcting Responder Starting Problems ... 65

5.16. Correcting FTAM and Virtual Terminal Responder Problems (UNIX Only) 65
5.17. Correcting FTAM Environment Problems (OpenVMS Only) 65
5.18. Correcting Target SAP Connection Problems ... 66

5.18.1. Correcting FTAM Physical and Data Link Problems .. 66

v

VSI DECnet-Plus Problem Solving

5.18.2. Correcting Network Connection Problems ... 66
5.18.3. Correcting FTAM and VT Transport Problems .. 68
5.18.4. Correcting FTAM and VT Session Problems (OpenVMS Only) 69
5.18.5. Correcting FTAM and VT Presentation Problems (OpenVMS Only) 69

5.19. Correcting Problems with Applications Using OSAK ... 70
5.19.1. Correcting Connection Problems .. 70
5.19.2. Correcting Unexpected Termination Problems ... 71
5.19.3. Correcting Programming Problems ... 71

Chapter 6. Solving Session Control Problems .. 73
6.1. Underlying Components for Session Control (OpenVMS Only) 73
6.2. Underlying Components for Session Control (UNIX Only) ... 74

6.2.1. References ... 75
6.3. Symptoms of Session Control Problems .. 75
6.4. Isolating Session Control Faults .. 76

6.4.1. Tools and Commands to Use .. 77
6.4.2. Fault-Isolation Methodology .. 77

6.5. Correcting Unknown Application Problems ... 78
6.6. Correcting Application Too Busy Problems ... 80
6.7. Correcting Access Control Problems ... 80

6.7.1. Correcting Proxy Access Problems (OpenVMS Only) .. 81
6.7.2. Correcting Proxy Access Problems (UNIX Only) .. 81
6.7.3. Correcting Node Name Validation Problems ... 82

6.8. Correcting Insufficient Resource Problems .. 83
6.9. Correcting Timed Out Problems .. 83
6.10. Correcting Node Name Resolution Problems ... 84

6.10.1. Monitoring Search Path Processing (OpenVMS Only) 84
6.10.2. Tracing Node Name Resolution Problems (UNIX Only) 85
6.10.3. Displaying Search Path Information .. 85
6.10.4. Identifying Namespace Consistency Problems ... 85

6.11. Examining the DECnet-Plus Naming Cache (OpenVMS Only) 85
6.11.1. Managing the Naming Cache ... 86
6.11.2. Dumping the Naming Cache .. 86

Chapter 7. Solving Transport Problems .. 87
7.1. Underlying Components (OpenVMS Only) .. 87
7.2. Underlying Components (UNIX Only) .. 88
7.3. Symptoms of Transport Problems ... 89
7.4. Isolating Transport Layer Problems ... 89

7.4.1. Tools to Use .. 89
7.4.2. Fault-Isolation Methodology .. 90

7.5. Correcting Connection Problems ... 90
7.5.1. Checking Ports .. 90
7.5.2. Checking NSAP Counters .. 91

7.6. Correcting OSI Transport Over CLNS Connection Problems .. 93
7.7. Correcting OSI Transport Over CONS (X.25) Connection Problems 94
7.8. Troubleshooting RFC 1006 ... 95

7.8.1. Common Problems .. 95
Chapter 8. Solving Network Layer Problems ... 97

8.1. Underlying Entities (OpenVMS Only) ... 97
8.2. Underlying Entities (UNIX Only) ... 98
8.3. Symptoms of Network Layer Problems ... 99
8.4. Isolating Network Layer Problems .. 100

vi

VSI DECnet-Plus Problem Solving

8.4.1. Tools to Use .. 100
8.4.2. Fault-Isolation Methodology ... 100

8.5. Finding Underlying Entities .. 100
8.5.1. Finding the Underlying Entities for HDLC Circuits ... 101
8.5.2. Finding the HDLC Circuits for a Physical Device .. 101
8.5.3. Finding the Underlying Entities for DDCMP Circuits (OpenVMS Only) 101
8.5.4. Finding the DDCMP Circuits for a Physical Device (OpenVMS Only) 102
8.5.5. Finding the Underlying Entities for CSMA-CD Circuits 102
8.5.6. Finding the CSMA-CD Circuit for a Physical Device 103
8.5.7. Finding the Underlying Entities for FDDI Circuits ... 103
8.5.8. Finding the FDDI Circuit for a Physical Device .. 103
8.5.9. Finding the Underlying Entities for Token Ring Circuits (UNIX Only) 104
8.5.10. Finding the Token Ring Circuit for a Physical Device (UNIX Only) 104

8.6. Correcting Configuration Problems .. 104
8.6.1. Correcting DDCMP (OpenVMS Only) and HDLC Data Link Configuration
Problems ... 105
8.6.2. Correcting CSMA-CD Data Link Configuration Problems 105

8.7. Correcting Connectivity Problems ... 106
Appendix A. Using the OSAKtrace Utility ... 107
Appendix B. DECnet-Plus Application Tracing Examples .. 109

B.1. DECnet-Plus Application Trace Example .. 109
B.1.1. Association Establishment — Initiator .. 109
B.1.2. Association Establishment — Responder .. 113
B.1.3. Passing User Data — Responder .. 118

vii

VSI DECnet-Plus Problem Solving

viii

Preface
VSI DECnet-Plus for OpenVMS Problem Solving Guide describes how to use DECnet-Plus tools to
isolate and correct simple DECnet-Plus problems in the OpenVMS and UNIX environments.

1. Intended Audience
VSI DECnet-Plus for OpenVMS Problem Solving Guide is for network managers and system
managers who work in a DECnet-Plus environment.

Assumed knowledge
Readers of this book are expected to have a basic understanding of DECnet and OSI networking
concepts. It is assumed that readers have experience with DECnet-Plus network management tools
such as the Network Control Language (NCL), and DECnet Phase IV tools, such as the Network
Control Program (NCP).

2. Related Documents
• DECnet Phase IV management documentation

• Phase IV network troubleshooting documentation

• DECnet-Plus network management documentation

• DECnet-Plus NCL reference documentation

• OSI Applications Kernel (OSAK) documentation

• DECdns or other name service documentation

• DECdts documentation

• The Common Trace Facility Use manual

• X.25 problem-solving documentation

• FTAM and Virtual Terminal documentation

3. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who
have OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

4. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation
webpage at https://vmssoftware.com/resources/documentation/.

ix

Preface

5. Typographical Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified,
references to OpenVMS Cluster systems or clusters in this document are synonymous with
VMScluster systems.

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for
OpenVMS software.

The following conventions are also used in this manual:

Convention Meaning
Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled

Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the key

labeled PF1 and then press and release another key or a pointing device button.
Return In examples, a key name enclosed in a box indicates that you press a key on the

keyboard. (In text, a key name is not enclosed in a box.)
… A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

[|] In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal

x

Preface

Convention Meaning
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

Other conventions are:

• All numbers are decimal unless otherwise noted.

• All Ethernet addresses are hexadecimal.

xi

Preface

xii

Chapter 1. Fault-Isolation Overview
A necessary part of any type of problem solving is fault isolation. Fault isolation is the process used
to determine the source of a problem. Quick and efficient fault isolation is key to resolving network
problems.

Topics in This Chapter
The topics in this chapter are:

• Understanding the DECnet-Plus Network Model (Section 1.1)

• Classifying Problems (Section 1.2)

• DECnet-Plus Component Relationships (Section 1.3)

• Methods for Isolating Faults (Section 1.4)

1.1. Understanding the DECnet-Plus Network
Model
When working in the DECnet-Plus environment, it is useful to understand the network model that the
DECnet-Plus software uses. Figure 1.1 illustrates the network architecture on which DECnet-Plus is
based.

Figure 1.1. DECnet-Plus Network Model

1.1.1. OSI Network Layer Functions
Table 1.1 briefly describes the functions of the OSI network layers.

Table 1.1. OSI Network Layers

OSI Layer Name Function
7 Application Contains the application services and supporting protocols

that use the lower layers. Allows distributed processing
and access.

1

Chapter 1. Fault-Isolation Overview

OSI Layer Name Function
6 Presentation Coordinates data and data format conversion to meet the

needs of individual application processes.
5 Session Organizes and structures the interaction between pairs of

communicating application processes
4 Transport Transfers data between end systems and has error recovery

and flow control. Supported protocol classes are:

• Class 0 (TP0) – Simple protocol class for highly
reliable network services

• Class 2 (TP2) – Same as Class 0 with multiplexing
feature

• Class 4 (TP4) – Provides error detection and recovery
for highly unreliable network services

3 Network Permits communications between network entities in
open systems, whether they are adjacent systems on the
same subnetwork or are connected by a path that crosses
multiple subnetworks and intermediate systems. DECnet-
Plus supports Connection-Oriented Network Service
(CONS) and Connectionless-mode Network Service
(CLNS), as well as communications between Phase IV and
DECnet-Plus systems.

2 Data Link Specifies the technique for moving data along network
links between defined points on the network, and tells how
to detect and correct errors in the Physical layer.

1 Physical Connects systems to the physical communications media.

1.1.2. DNA Layer Functions
Table 1.2 briefly describes the functions of DNA network layers.

Table 1.2. DNA Network Layers

DNA Layer Name Function
7 DNA Application Includes user-written programs and user-level services.

It is used by operators and system programmers to plan,
control, and maintain the operation of DECnet-Plus
networks.

6 and 5 DNA Session Control Allows communication between programs, regardless of
either program's location through the use of DNA naming
services. It also provides access control and authentication
functions, and acts as a bridge between applications and
the transport services.

4 Network Services
Protocol (NSP)

Allows interoperability with Phase IV systems.

3, 2, and 1 Same as described in Section 1.1.1

2

Chapter 1. Fault-Isolation Overview

1.1.3. TCP/IP Interoperability
The DECnet/OSI for UNIX applications, FTAM and Virtual Terminal, support RFC 1006 and can
use TCP/IP transport services. This manual does not include problem-solving information for TCP/IP
networks. Refer to your TCP/IP documentation for this information.

1.2. Classifying Problems
Before you try to correct problems, try to classify the type of problem that exists. The following
sections describe typical problem classifications.

1.2.1. Reproducible Problems
A reproducible problem consistently produces the same error message or symptom when reproduced
under the same conditions.

Some reproducible problems produce different error messages or symptoms that can ultimately
have the same underlying cause. These types of reproducible problems are considered inconsistent.
Inconsistent problems generally involve several protocols or several layers of an architecture. The
different error messages result from the ways different applications encounter the problem in the
protocols and the architectural layers.

1.2.2. Intermittent Problems
An intermittent problem appears occasionally and displays the same error message or symptoms in
the same circumstances. You can occasionally reproduce intermittent errors. Intermittent errors can
occur when threshold values for various parameters are reached. Usually, during normal use, these
thresholds are not reached; however, the thresholds can be reached during peak use and errors can
result.

1.2.3. Transient Problems
Transient problems occur only occasionally, and can rarely be reproduced. Because you cannot
reliably reproduce transient problems, they are by far the most difficult errors to isolate and fix.

As with intermittent problems, transient problems can result when threshold values for various
parameters are reached. Because transient errors tend to occur at peak usage times, historical
performance data is helpful in determining the cause of the problem.

1.3. DECnet-Plus Component Relationships
Figure 1.2 and Figure 1.3 show the relationships between the individual components in the DECnet-
Plus environment on OpenVMS and UNIX systems. Use this information as a guide when you need to
identify problems in a specific DECnet-Plus layer.

For information and problem solving procedures relating to X.400, DECdns, and DECdts software,
refer to the appropriate software documentation.

1.3.1. Component Relationships (OpenVMS Only)
Figure 1.2 shows the OpenVMS component relationships.

3

Chapter 1. Fault-Isolation Overview

Figure 1.2. Component Relationships (OpenVMS)

1.3.2. Component Relationships (UNIX Only)
DECnet-Plus applications that use the X/Open Transport Interface (XTI) can use the TCP transport
services in addition to the OSI transport services. This manual does not contain information about
TCP/IP networks; refer to your TCP/IP documentation.

Figure 1.3 shows the component relationships for UNIX.

4

Chapter 1. Fault-Isolation Overview

Figure 1.3. Component Relationships (UNIX)

1.4. Methods for Isolating Faults
When attempting to isolate faults, consider the following:

• The conditions that existed when an error appeared

• The relationships between DECnet-Plus components

• The type of problem you have: reproducible or intermittent

• The changes you made prior to the error appearing

1.4.1. Questions to Ask Yourself
Answers to the following questions can help identify a starting point for problem solving:

• Which components, systems, or applications are working correctly?

• When did you first notice the problem?

• Did you see any error messages?

• What were you doing when the problem occurred?

• Can you re-create the problem?

5

Chapter 1. Fault-Isolation Overview

• Did you recently add or change hardware or software?

• How often has the problem occurred since you first noticed it?

1.4.2. Fault Isolation in the DECnet-Plus Environment
Problem symptoms do not always indicate which DECnet-Plus component is the cause of the
problem. To clarify where the problem exists, use another operation or application that relies on the
same underlying services or components as the operation that failed.

The figures in Sections 1.3.1 and 1.3.2 show the relationship between the components in the DECnet-
Plus environment.

1.4.3. DECnet-Plus Fault-Isolation Methodology
Isolating and solving network problems often requires a variety of approaches. You can use the
general methodology illustrated in Figure 1.4 as a starting point for fault isolation.

Figure 1.4. Fault-Isolation Methodology (General)

1.4.4. Isolating Faults for Reproducible Problems
You can use the following procedure when reproducible problems occur:

1. Find network activities that are similar, where one activity succeeds and the other fails. For
example; if the OpenVMS command set host fails, try a similar operation to the same remote
node. Then try the set host operation from the same local node to a different remote node.

6

Chapter 1. Fault-Isolation Overview

2. Determine the most recent time when the operation succeeded. Then determine what has changed
in the network since then.

1.4.5. Isolating Faults for Intermittent or Transient
Problems
You can use the following procedure when intermittent or transient problems occur:

1. Collect as much information as possible regarding the state of the network when the problem
appears. This information includes any type of trace information that application trace utilities
provide.

2. Examine historical and trace data to determine if any patterns exist; for example, if the FTAM
application fails only when attempting a directory operation on a specific vendor's system.

3. Try to reproduce the problem by re-creating the state of the system when the problem first
appeared.

4. If you can reproduce the problem, follow the process described in Section 1.4.4.

1.4.6. Documenting the Fault-Isolation Process and
Problem Solution
Documenting the steps you used to isolate a problem makes reporting the situation to VSI
representatives easier if you are unable to solve the problem yourself.

Always record the following:

• The conditions under which problems occurred

• The hardware and software version numbers used in your network

• The processes you used to identify problems

• The information you collected about the problems

• The procedures you used to solve problems

7

Chapter 1. Fault-Isolation Overview

8

Chapter 2. Preparing for Problem
Solving
This chapter describes the types of information that can help you isolate and correct DECnet-Plus
problems.

Topics in This Chapter
The topics in this chapter are:

• DECnet-Plus Symptom Table (Section 2.1)

• Types of Problem-Solving Information (Section 2.2)

• Understanding Your Network Topology (Section 2.3)

• Recognizing Node Names and Synonyms (Section 2.4)

• Finding the Operating System and Version (Section 2.5)

• Getting DECnet-Plus Circuit Information (Section 2.6)

• Preparing to Find a Network Path (Section 2.7)

• Tracing DECnet-Plus Network Paths (Section 2.8)

2.1. DECnet-Plus Symptom Table
Table 2.1 describes symptoms of common DECnet-Plus problems. Use this table when preparing to
start your fault isolation process.

Table 2.1. DECnet-Plus Symptom Table

Symptom: Possible Cause: Refer To:
Access control rejected Session Control application

entities, proxy access, or node
name validation

Chapter 6

Application failed but no errors
were found in the upper layers

Transport or network error Chapter 7

Chapter 8
Application too busy Remote application is receiving

too many connection requests
before it or Session Control can
process them

Chapter 6

DECnet-Plus application
connection attempts fail

Application or network problem Chapter 5 (OpenVMS only) or
Chapter 8

Entities were not available when
tracing a path between a routing
circuit and the physical device

Routing circuit or data link is not
enabled or created

Chapter 8

9

Chapter 2. Preparing for Problem Solving

Symptom: Possible Cause: Refer To:
FTAM or Virtual Terminal
responder fails (OpenVMS only)

FTAM or Virtual Terminal
application

Chapter 5

FTAM file does not look correct
(OpenVMS only)

FTAM application Chapter 5

Object is unknown at remote
node

Namespace problem Chapter 6

Remote node is shut or shutting
down

Remote DECnet process exited
or remote node failed

Chapter 6

Remote node is unreachable Incompatible tower information
exists, or a network problem

Chapter 6

Chapter 8
Session Control has insufficient
resources

All available Session Control
ports are in use

Chapter 6

System configuration is correct
but the routing circuit does not
work

Routing connectivity Chapter 8

Timed out Session Control, transport or
network problem

Chapter 6

Chapter 7

Chapter 8
Unable to communicate with any
DECdns server

DECdns problem DECdns manuals

Unknown application at remote
node

DECnet-Plus application
missing or defined incorrectly

Session Control application
entities or proxy access

Chapter 5 (OpenVMS only) or
Chapter 6

User-written application
problem affects the OSAK
software (OpenVMS only)

Programming error Chapter 5

User-written application fails OSAK (OpenVMS only) or XTI
programming error

Chapter 5 (OpenVMS only) or
XTI programming manuals

User-written DECnet-
Plus application terminates
unexpectedly

Remote application or OSI
Transport

Chapter 5 (OpenVMS only) or
Chapter 7

Wrong information displayed or
wrong account accessed

Proxy access problem or use of
invalid username and password

Chapter 6

2.2. Types of Problem-Solving Information
The information that you often need when you try to isolate and solve DECnet-Plus problems
includes:

• The type of problem (see Section 1.2)

• Network topology, including:

10

Chapter 2. Preparing for Problem Solving

• Node names and types (end node, level 1 router, level 2 router)

• Operating system

• Networking software in use

• Types of routing circuits in use

• Routing circuit adjacencies

• The network path from one node to another

• Naming information (node names and Phase IV node synonyms)

2.2.1. Definitions
A network topology shows the physical and logical locations of components in a network. A current
map of the physical and logical locations of all of the devices on your network is important in helping
you find specific devices quickly.

A Phase IV node synonym is a Phase–IV–style node name that enables applications that do not
support the length of a DECnet-Plus full name to continue to use a six–character Phase–IV–style node
name.

A routing circuit is a logical path between adjacent nodes. DECnet Phase IV circuit names are based
on the hardware type used by the lines connecting nodes. A DECnet-Plus circuit name can be in any
format.

A network path is the path data takes from one end system to another end system in the same or a
different area.

2.2.2. Tools and Commands to Use
Table 2.2 shows the tools and commands you can use to find information about your network.

Table 2.2. Problem Solving Tools and Commands

To Find: Use: And Refer To:
Common Trace Facility Common Trace Facility Use

manual
DECnet-Plus application traces
(OpenVMS only)

Chapter 5

Network protocol information

Network Control Language NCL reference documentation
NCP for Phase IV nodes DECnet Phase IV

documentation
NCL for DECnet-Plus nodes DECnet-Plus NCL reference

documentation

Network topology

decnet_migrate for
networks that use WAN router
products

DECnet-Plus network
management documentation

Routing circuit adjacencies NCP for Phase IV nodes DECnet Phase IV
documentation

11

Chapter 2. Preparing for Problem Solving

To Find: Use: And Refer To:
NCL for DECnet-Plus nodes DECnet-Plus network

management documentation
The following for quick
reachability tests:

• The UNIX command
dlogin address or the
OpenVMS command set
host address

• The UNIX command dls
address or the OpenVMS
command directory
address

• OSI Ping for UNIX systems
only

Chapter 3Node reachability

Loopback and dts/dtr tests
for more detailed testing

Chapter 3

For DECnet-Plus nodes, the
NCL command show node
node-id implementation

DECnet-Plus NCL reference
documentation

DECnet software version

For Phase IV nodes, the NCP
command tell node-id
show exec

DECnet Phase IV management
documentation

2.3. Understanding Your Network Topology
There are many ways to collect network topology information. Two methods are:

• Creating reports using the decnet_migrate tool

• Tracing potential data paths from one end system to another using the decnet_migrate tool

2.3.1. The decnet_migrate Tool
You can use the decnet_migrate tool to get the following information for each node in your
network:

• Basic information, including:

• Name

• Address

• Type of DECnet software in use (Phase IV or DECnet-Plus)

• Routing type

• Node identification string

• Adjacent nodes for each node

12

Chapter 2. Preparing for Problem Solving

• Defined target network applications (or objects) for each node

• Routing circuit IDs and costs for each node

• Maximum routing hops, cost, and network buffer size

• Areas known to level 2 routers in the network

You can also use the decnet_migrate show path function to trace network routes between one
node and another.

2.3.2. When to Use the decnet_migrate Tool
Use this tool when you need a detailed map of parts or all of the complete network topology. If you
have routers that use the Simple Network Management Protocol (SNMP), the decnet_migrate
tool cannot collect information about them. Use the tools those routers provide to collect network
topology information.

Collecting this information with the decnet_migrate tool can take a significant amount of time
depending on the options you select.

2.3.3. References
The DECnet-Plus network management documentation explains how to use the decnet_migrate
commands collect, report, and show path in detail. Sections 2.8.1 and 2.8.2 describe which
NCL and NCP commands to use to trace network paths in the DECnet-Plus environment.

2.4. Recognizing Node Names and Synonyms
It is useful to have node name information when trying to isolate faults. Node names reflect either a
Phase IV or DECnet-Plus style.

2.4.1. Identifying Node Names
Table 2.3 shows the differences between Phase IV and DECnet-Plus node names.

Table 2.3. Phase IV and DECnet-Plus Node Name Differences

Characteristics Example
Phase IV node names are:

• Up to six alphanumeric characters

• Stored in a local network database

MYNODE

DECnet-Plus node names are:

• Typically, longer than six alphanumeric characters

• Divided into the following elements:

• Namespace nickname for DECdns or Local for the Local
namespace

• Directory names

ABC:.eng.node1

13

Chapter 2. Preparing for Problem Solving

Characteristics Example
• Node name

• Stored in the DECdns distributed namespace or the Local
namespace.

2.4.2. Finding Node Names and Node Synonyms
Use the following commands to find a system's node synonym or to find a DECnet-Plus full node
name from a system's node synonym:

To Find A: Use This decnet_register Command:
Phase IV synonym decnet_register> show node node-id

Full node name decnet_register> show node node-id

2.5. Finding the Operating System and
Version
Do the following to find your system's current operating system and version:

1. Log in to the system and look at the system prompt.

If the Prompt Is: Then the Operating System Is:
Username: OpenVMS
login: UNIX

2. If the operating system version does not appear when you log in, enter one of the following
commands:

If the Operating System Is: Enter:
OpenVMS $ show system

UNIX strings /vmunix|grep '(Rev')

2.6. Getting DECnet-Plus Circuit Information
To find basic routing circuit information, use Network Control Program (NCP) commands for Phase
IV nodes and Network Control Language (NCL) commands for DECnet-Plus nodes. Refer to your
NCP documentation for information about NCP commands.

2.6.1. Routing DECnet-Plus Circuit Information for
Problem Solving
The following information can be useful when you need to solve routing circuit problems:

• Routing circuit name

• Routing circuit type

• Routing circuit state

14

Chapter 2. Preparing for Problem Solving

• Routing circuit adjacencies

2.6.2. Finding Routing Circuit Names, Types, States,
and Adjacencies
Do the following to find a circuit name, type, and state:

To Find Routing Circuit: Enter This NCL Command:
Name ncl> show node node-id routing circuit * name

Type ncl> show node node-id routing circuit * type

State ncl> show node node-id routing circuit * state

Routing circuit adjacencies result from nodes exchanging identification information. Finding circuit
adjacencies is a quick way to:

• Confirm that a routing circuit is working

• Check the identity of the adjacent node

Routing circuit adjacencies exist for wide area network (WAN) circuits, and local area network (LAN)
circuits. Use the following NCL command to find routing circuit adjacencies:

ncl> show node node-id routing circuit circuit-id -
_ncl> adjacency * all status

2.6.3. Considerations for Broadcast Circuit
Adjacencies
When you look at broadcast circuit adjacencies, the output can be extensive because many adjacencies
can exist at one time. It can be more useful to request certain types of information rather than all
information.

For example, you could use the following NCL command:

ncl> show node node-id1 routing circuit circuit-1 adjacency -
_ncl> node-id2 type

2.7. Preparing to Find a Network Path
Tracing a path from one end system to another can isolate network reachability problems and also
can provide network topology information. The information in this section describes the type of
information you need before you trace a network path.

2.7.1. Types of Network Information to Find
Use the Network Control Program (NCP) to get network path information from Phase IV nodes. Use
the Network Control Language (NCL) to get network path information from DECnet-Plus nodes.
Table 2.4 lists the information you need to trace a network path and how to identify this information.

Table 2.4. Types of Network Information to Trace

Information Description
Node Addresses Nodes have addresses that DECnet uses when sending data

through a network. Phase IV nodes only have one node address;

15

Chapter 2. Preparing for Problem Solving

Information Description
DECnet-Plus nodes can have up to six NSAP addresses; three that
NSP use and three that OSI Transport use.

Phase IV node addresses and NSAP addresses are different.
However, you can translate a Phase IV node address into an NSAP
address.
Phase IV Node Addresses: NSAP Addresses:
Are called node numbers. Are called network service

access points (NSAPs).
Are 2 bytes in length. Can be up to 20 bytes (40

hexadecimal digits) in length.
Contain an area number (1 – 63)
and a node number (1 – 1023).

DECnet-Plus Phase IV–
compatible addresses contain:

1. Phase IV prefix (the IDP–
Initial Domain Part).

2. Local area number - this is
equivalent to a Phase IV area
number.

3. ID; a 6-byte field that is
formatted like a 48-bit
IEEE address and uniquely
identifies a node within its
area. This is equivalent to a
Phase IV node number.

4. A 1-byte NSAP selector
that identifies the user of
the Network layer, either
NSP or OSI transport. The
hexadecimal number %x21
indicates OSI transport; the
hexadecimal number %x20
indicates NSP.

Network entity titles (NETs) Used to identify a node when it is not necessary to identify the
transport software in use. A NET has the same format as an NSAP
with a selector byte of %x00.

System type A system can be an end system, a level 1 router, or a level 2 router.

2.7.2. Finding Node Addresses for Node Names
A Phase IV node has one address; a DECnet-Plus node can have multiple NSAP addresses. You can
determine a node's address as follows:

For This Node Type: Enter:
Phase IV The NCP command:

tell node-spec show exec

16

Chapter 2. Preparing for Problem Solving

For This Node Type: Enter:
DECnet-Plus The NCL command:

show node node-id routing port * nsap address

If you cannot get the remote node's address in this manner, you need to log in to that system directly.

2.7.3. Determining Network Entity Titles for DECnet-
Plus Nodes
A network entity title (NET) has the same format as a system's network service access
point (NSAP), except the last two digits are set to 00. For example, if the NSAP is
49::00-0D:AA-00-04-00-7F-34:20, the NET is 49::00-0D:AA-00-04–00-7F-34:00.

2.7.4. Converting Phase IV Addresses to NSAPs
If you know a system's Phase IV address, you can do the following to convert it to an NSAP (see your
DECnet introduction documentation for details about NSAPs):

Step Action
1 Ensure that the NSAP local area is in the Phase IV area in hexadecimal

notation. For example, the Phase IV area 1 becomes the NSAP local area
00-01, and the Phase IV area 63 becomes the NSAP local area 00-3F.

2 Convert the Phase IV node ID to the NSAP node ID:

a. Use the formula (area * 1024) + ID to convert the Phase IV area
and ID to a single decimal value.

b. Convert the value from step (a) to a four-digit hexadecimal number, and
swap the first and last pairs of the hexadecimal digits.

c. Use the number from step (b) as the last four digits of the NSAP's node
ID field, and add the prefix aa-00-04-00.

Example of Phase IV Address Conversion

In this example, the network IDP (initial domain part) is 41:45436192:, the DSP(domain-specific
part) is local-area:node-id:20, the Phase IV address is 43.258, and the node uses the NSP
transport. You create the NSAP as follows:

IDP and selector -> 41:45436192:local-area:node-id:20
43 decimal -> 2B hexadecimal (local area)
(43 * 1024) + 258) -> 44290 decimal
44290 decimal -> AD02 hexadecimal
AD02 swapped -> 02AD hexadecimal (node ID)

Resulting NSAP -> 41:45436192:00-2b:aa-00-04-00-02-ad:20

2.7.5. Converting NSAP Addresses to Phase IV Format
If you know a system's NSAP, you can do the following to convert it to a Phase IV address:

17

Chapter 2. Preparing for Problem Solving

Step Action
1 Check that the local area is less than or equal to 63 decimal or 3F

hexadecimal and the node ID field begins with aa-00-04-00. If both of
these conditions do not exist, then the NSAP does not contain a Phase IV
address and cannot be converted. If it does, go to the next step.

2 Extract the last four digits of the node ID field.
3 Swap the last two pairs of digits, and convert the value to decimal.
4 Calculate the Phase IV area and ID values:

a. area = value/1024

b. id = value - (area * 1024)

If the calculated area value is not equal to the area value obtained from the
NSAP's local area field, the NSAP does not contain a valid Phase IV address.

Example of NSAP Conversion
In this example, the NSAP is 37:81076541234:00-19:aa-00-04-00-62-64:21. You calculate the Phase
IV address as follows:

19 hexadecimal (from local area) -> 25 decimal
62-64 (from node-id) -> 6462 hexadecimal
6462 hexadecimal -> 25698 decimal
25698/1024 -> area of 25
25698 - (25 * 1024) -> node ID of 98

Resulting Phase IV address -> 25.98

2.8. Tracing DECnet-Plus Network Paths
You can trace a network path for a pure DECnet-Plus environment and for a mixed environment that
has DECnet-Plus and Phase IV nodes.

2.8.1. Tracing the Network Path of DECnet-Plus Nodes
You can trace the path from one node to another with the following command:

$ run decnet_migrate
DECNET_MIGRATE>sho path from
NAMES:.NETA.NODEA to NAMES:.NETB.NODEB

Do the steps in the following table to trace a network path from one DECnet-Plus end system to
another:

Step Action
1 Find the destination NSAPs.
2 Analyze the NSAPs to find the area addresses of the destination system.
3 Find a DECnet-Plus router that the source node uses. Do the following:

a. Find the source node's routing circuits. Use the following NCL command:

ncl> show routing circuit * all

18

Chapter 2. Preparing for Problem Solving

Step Action
b. Select a circuit whose state is ON, and use the following NCL command

to display the NET of the associated router:

ncl> show routing circuit circuit-id -
_ncl> adjacency * all

The LAN address in the display may show the actual node name of the
router. You can use this or the NET in this procedure. A LAN address is
not displayed in all situations. For example, if tracing a path from an X.25
DA circuit, no LAN address is displayed.

A DECnet-Plus router may not exist. See the procedure in Section 2.8.2 if
the next node in the path is a Phase IV router. If the next node in the path is a
third-party router, see that system's documentation.

4 If the router you find in the previous step is in the same area as your
destination node, go to the next step. If the router is in a different area than
the destination node, do the following:

a. Search the router's destination area database for the destination area. Use
the following NCL command (on OpenVMS systems, the router-id is
the router's node name or the NSAP without punctuation and prefixed
with net$ – for example, net$490013AA00040089FF20; on UNIX
systems, the router-id can be the router's NET or the node name):

ncl> show node router-id routing -
_ncl> destination area destination-area all

Note

You can also use the decnet_register utility to display information
about node names.

b. Look at the routing circuit adjacency that the previous command displays.
Use the following NCL command (On UNIX systems, the router-id can
be the router's NET or the node name):

ncl> show node router-id routing -
_ncl> circuit circuit-id adjacency -
_ncl> adjacency-id all

This command displays the NET for the next router in the path. If the
next router is not in the same area as the destination node, repeat steps a
and b until you locate a router in the same area.

5 When you find a router located in the same area as the destination node, do
the following:

a. Search the router's destination node database to find the circuit adjacency
that the router uses to reach the next node in the path. Use the following
NCL command:

ncl> show node router-id routing destination -
_ncl> node node-id all

19

Chapter 2. Preparing for Problem Solving

Step Action
b. Show the routing adjacency to determine the next node in the path. Use

the following NCL command:

ncl> show node router-id routing circuit -
_ncl> circuit-id adjacency adjacency-id all

c. If the adjacency leads to another router, repeat steps (a) and (b) until you
reach the adjacency that connects to the destination node.

2.8.2. Tracing a Network Path in a Mixed Environment
Your network can contain DECnet-Plus and Phase IV nodes. If you start to trace a path from a
DECnet-Plus node and the next router in the path is a Phase IV router, do the following:

Step Action
1 Exit NCL and invoke NCP (or invoke NCP at the NCL prompt).
2 Use NCP to get the Phase IV node address of your destination node and the

router.
3 Find the next node in the path. Use the following NCP commands (the

router-id can be the node name or the Phase IV address):

ncp> tell phase_iv-node-id show node -
_ncp> destination-node-address

4 If the next node in the path is not the destination node, repeat the commands
in step 3, using the next node that the show node command displays as the
next-node-id, until you reach the destination node.

5 If NCP returns an error message, the next node in the path could be a
DECnet-Plus node. Do the following:

a. Exit NCP and invoke NCL.

b. Repeat steps 4 or 5 in Section 2.8.1.

2.8.3. X.25 DA Circuit Considerations
If you are tracing a network path from an X.25 DA circuit, you cannot use NSAP or NET information
to find the next node in the path. Use the following procedure to help you trace a path from an X.25
DA circuit:

Step Action
1 Find the reachable address subentity that has a prefix that best matches your

required destination NSAP.
2 Select a DTE from the DTE Addresses attribute and determine the node

address (NSAP or Phase IV synonym) associated with the remote DTE
address.

3 If you cannot determine the node address, try to log in to the remote node
using X.29 (PAD) and continue tracing the network path from the remote
node.

20

Chapter 2. Preparing for Problem Solving

2.8.4. NCL Takes Long Time While Translating
Addresses to Names
When NCL displays a node address in response to a SET or SHOW command, it uses the services of
DECdns to translate the address into a node name and displays the name along with the address.

If there is a problem with accessing a remote name server that prevents the translation from
completing, NCL may take a long time translating addresses to names. If this happens, enter a Ctrl/Y
to terminate NCL, then make the following definition prior to executing NCL:

$ DEFINE NCL$ENVIRONMENT NOBACKTRANS

This causes NCL to bypass the address-to-name translation. To use this option on
a systemwide basis, add this logical definition (with the /SYSTEM qualifier) to
SYS$MANAGER:NET$LOGICALS.COM.

21

Chapter 2. Preparing for Problem Solving

22

Chapter 3. Testing Network
Reachability
This chapter describes the network reachability tests you can use in the DECnet-Plus environment.

Topics In This Chapter
The topics in this chapter are:

• Types of Network Reachability Tests (Section 3.1)

• OSI Echo Function Overview (UNIX Only) (Section 3.2)

• Node-Level Loopback Tests Overview (Section 3.3)

• Running Node-Level Loopback Tests (Section 3.4)

• Circuit-Level Loopback Test Overview (Section 3.5)

• Preparing for Circuit-Level Loopback Tests (Section 3.6)

• Running Circuit-Level Loopback Tests (Section 3.7)

• Running Circuit-Level Loopback Tests with Assistance (Section 3.8)

• Running LAN Loopback Tests with LLC Messages (Section 3.9)

• Running dts/dtr Tests (Section 3.10)

• Running dts/dtr Connect Tests (Section 3.11)

• Running dts/dtr Data Tests (Section 3.12)

• Running dts/dtr Disconnect Tests (Section 3.13)

• Running dts/dtr Interrupt Tests (Section 3.14)

3.1. Types of Network Reachability Tests
You can use the following network reachability tests:

Test Description
Quick reachability Provides a fast indication that a remote node is reachable using

applications such as dlogin or set host with the node address
instead of the node name. If you cannot connect to a node using its
node name but can connect to it using the address, the cause could be a
naming service problem.

For UNIX systems, you can also use OSI Echo function (OSI ping).

23

Chapter 3. Testing Network Reachability

Test Description
Loopback Loopback tests (node level, circuit level, and LAN with LLC test

messages) let you thoroughly use network software and hardware by
sending data through various network components and returning that
data to its source for comparison.

DECnet Test Sender and
Receiver (dts/dtr)

Throughput tests that allow you to load test the ability of different
systems to exchange data. The dts/dtr tests are also useful if you
want to check Transport layer connections.

Parameters are available to regulate such variables as message length,
test duration, and type of data used.

X.25 and OSI Transport
IVP (OpenVMS systems
only)

These tests check if the X.25 or OSI transport software is working
correctly. Your installation documentation describes them.

3.1.1. Types of Loopback Tests
You can use the loopback tests described in this section for DECnet-Plus systems. Refer to your
DECnet Phase IV documentation if you need details about similar tests for Phase IV systems.

Test Type Description
Node level Checks the logical link capabilities of a node by exchanging test data

between DECnet tasks in two different nodes or in the same node. You
use NCL to run this test, which enables you to connect to a loopback
mirror application. The types of node-level tests are:

• Local-to-Local loopback tests, which evaluate the local node's
DECnet software using an internal logical link path; no physical
device is used.

• Local-to-Remote loopback tests, which verify network operation
between the local node and a remote node.

Circuit level Checks a DECnet circuit by looping test data between a mop task and
the communication hardware on one or two systems.

3.1.2. Using Loopback Tests on Phase IV Nodes
To perform loopback tests when logged in to a Phase IV node, use NCP commands (see your DECnet
Phase IV documentation for details). To perform loopback tests when logged in to a DECnet-Plus
node, use NCL commands, even if you are testing a remote Phase IV node.

3.1.3. Types of dts/dtr Tests
The dts/dtr program provides the following basic tests:

Test Description
Connect test Verifies that the receiving node (dtr node) can process connection

requests and return acceptance and rejection messages with or without
optional user data.

24

Chapter 3. Testing Network Reachability

Test Description
Data test Provides a full range of tests from very simple data sink operations

through data integrity checking.
Disconnect test Verifies that the receiving node (dtr node) can send out disconnect

messages with or without optional user data.
Interrupt test Provides a full range of test capabilities from very simple data sink

operations through data integrity checking.

3.2. OSI Echo Function Overview (UNIX Only)
DECnet/OSI for UNIX implements an OSI Echo function (OSI ping). This function enables an ISO
8473 network-entity to generate a special type of PDU, the Echo Request PDU, also known as OSI
ping, which is sent to the requested destination in order to elicit an Echo Response PDU from that
destination.

This implementation supports both RFC 1139 and Amendment X to ISO 8473. It is important to
realize that not all OSI systems support the OSI Echo function. Consequently, an attempt to ping such
a system will not succeed even though that system is functioning normally.

3.2.1. OSI ping Command Syntax
The OSI ping command syntax is:

/usr/sbin/oping [options] host [datasize] [npackets]

The host is a DECnet/OSI node name, node synonym or NSAP (preceded by %x). For example:
abc:.xyz.node1 node1 %x49000caa000400192000

The following table describes the optional arguments for this command:

Option Description
-l More verbose statistics are printed, including packet

sequence and round-trip time estimate.
Options

-s Uses the short term implementation of RFC 1139 (see
Section 3.2.2). Same statistics as for the -l option are
printed.

datasize If no data size is specified, the default value of 64 bytes is used for the data
portion.

npackets If no npackets are specified and the -l option is used, oping will send
approximately 1 echo request per second until stopped by the user. If
npackets is specified, exactly npackets echo requests will be sent.

3.2.2. Restrictions
Several different implementations of OSI Echo function exist in the industry. Before Amendment X to
ISO8473 existed, various vendors implemented RFC 1139 (an Echo function for ISO 8473).

RFC 1139 offers two possible implementation mechanisms. The first, called "The Short Term
Implementation Mechanism" uses special NSAP selectors in the data PDUs conveying the echo

25

Chapter 3. Testing Network Reachability

messages. The second, called "The Long Term Implementation Mechanism," uses special PDU types
for Echo request and Echo Response PDUs.

Amendment X to ISO 8473 implements the "Long Term Mechanism"which OSI ping uses by default.
To interoperate with the "Short Term Implementation Mechanism", use the -s option if an attempt to
ping a system using the default mechanism fails.

3.3. Node-Level Loopback Tests Overview
Use the node-level loopback tests first; if further testing is desired, use the circuit-level loopback tests.

3.3.1. When to Use Node-Level Loopback Tests
Use the local-to-local loopback test to verify operation of the local Network, Application, Session
Control, Transport layers, and part of the Routing layer.

Use the local-to-remote loopback test to verify operation of all levels of network software on the local
and remote nodes you are testing.

3.3.2. Analyzing Local-to-Local Node Loopback Test
Results
If a looped message returns with an error, the test stops and NCL displays a message specifying the
reason for the failure. If the loopback test completes successfully, there is no output.

A failure of this test indicates a problem with the local node software, such as the network being
turned off or access control to the mirror not being properly established. If the local-to-local loopback
test fails, check the log file for additional information on the cause of the failure.

If the local-to-local loopback test succeeds, perform a local-to-remote loopback test. If the local-to-
remote test fails, try the circuit-level tests to determine if the hardware is at fault.

3.3.3. Log File for Local-to-Local Node Loopback Tests
The OpenVMS log file for local-to-local loopback test failures is net$server.log. You find this
file in the mirro$server account if you set up a mirror account when you installed the DECnet-
Plus software. If the mirror account does not exist, the location of the net$server.log file
depends on the type of account from which the test is initiated.

For example, if the account from which the test initiates has an account on the target system, then
the net$server.log file is located in the account on the target system. If this account does not
exist on the target system, the connection is not completed. Additionally, if the initiating system uses a
proxy account to connect to the target system, then the net$server.log file is found in the proxy
account.

The UNIX log file for local-to-local loopback test failures is /usr/adm/syslog.dated/dd-
mmm-hh.mm/daemon.log.

3.3.4. Local-to-Local Node Loopback Figure
Figure 3.1 illustrates a local-to-local loopback test.

26

Chapter 3. Testing Network Reachability

Figure 3.1. Local-to-Local Loopback Test

3.3.5. Analyzing Local-to-Remote Node Loopback Test
Results
If the previous local-to-local tests were successful and this test fails, a problem exists with either
the remote node or the network. Try the test again with a different remote node. If the second test
succeeds, a problem with the first remote node that you used probably caused the failure. If the test
fails, a network problem probably caused the failure.

3.3.6. Local-to-Remote Loopback Test Figure
Figure 3.2 illustrates a local-to-remote loopback test.

Figure 3.2. Local-to-Remote Loopback Test

27

Chapter 3. Testing Network Reachability

3.4. Running Node-Level Loopback Tests
When you start this test, identify the node to which you want to loop test messages with the node's full
name. This node must be reachable over circuits that are in the On state.

Use the following NCL command to start a node-level loopback test:

ncl> loop [node node-id] loopback application [parameter,] -
_ncl> name node-id

The node node-id parameter identifies the node from which you start the test. The default value
of this parameter is 0. The name node-id parameter identifies the node to which you want to loop.

3.4.1. Node-Level Loopback Command Parameters
You can specify any of the following optional parameters:

Parameter Description
format Specifies the type of binary information used to perform the test.

Specify this value as a pair of hexadecimal digits such as format=FF.
The hexadecimal value 55, a combination of ones and zeros, is the
default.

count Specifies the number of data blocks to be sent during the test. Specify a
number from 1 (default) through 65,535.

length Specifies the length in bytes of each block to be looped. This value
must be a decimal integer from 1 through n. The value of n must be less
than the smaller buffer size of the two tasks involved in the test. The
default is 40 bytes.

3.4.2. Example of Node-Level Loopback Test
In the following test, a network manager attempts to loop 10 messages to node BOSTON. The result
is that the message is not looped because node BOSTON is unreachable.

ncl> loop loopback application count 10, name boston
node 0 Loopback Application at 1991-04-22-13:00:27.725-04:00I0.212

FAILED IN DIRECTIVE: Loop DUE TO: Error specific to this entity’s class

REASON: Connection Failed
Description: The Connection to the remote mirror failed
ncl>

3.5. Circuit-Level Loopback Test Overview
These tests use a low-level data link interface rather than the logical links used by the node-level tests.
They use DECnet software to loop data through the circuit-to-circuit service software in the adjacent
node and back to the local node. You can specify optional parameters for assistance in testing a remote
node (see Section 3.8.4).

On non-LAN circuits, you can loop test data through a passive loopback connector or through an
active remote system. On LAN circuits, the remote system ultimately returns the test data.

28

Chapter 3. Testing Network Reachability

3.5.1. Circuit-Level Loopback Test Figure
Figure 3.3 illustrates a circuit-level loopback test.

Figure 3.3. Circuit-Level Loopback Test

3.5.2. Identifying Node Addresses for Circuit-Level
Loopback Tests
Unique Ethernet addresses identify nodes on Ethernet circuits. If the node is running DECnet Phase
IV, or is a DECnet-Plus node that has a Phase IV node synonym, this physical address is the one that
DECnet created using the DECnet node address. If the node is not running DECnet, the physical
address is the default hardware address of the node.

3.6. Preparing for Circuit-Level Loopback
Tests
Do the following before you run a circuit-level software loopback test:

Step Action
1 Use the NCL command show mop state to check that the mop entity is

in the On state.
2 Use the NCL command show mop circuit * name, function to

check that the circuit to be tested has loop requester function enabled.
If the mop entity or the circuit is not in the appropriate state, use the NCL
commands create mop circuit circuit-id type type-id to
start them. For example, you could use the following commands:
ncl>create mop circuit csmacd-0 type csma-cd

This creates the MOP circuit, csmacd-0.

3

ncl>set mop circuit csmacd-0 link name -

29

Chapter 3. Testing Network Reachability

Step Action
_ncl>csma-cd station csmacd-0

This customizes the entity definition for the circuit csmacd-0.
You can also start them with an NCL command script, such as /var/
share/dna/scripts on a UNIX system.
On an OpenVMS system, you can use: @sys$system:startup
network mop

4 Determine the physical device associated with a mop circuit as follows:

a. Use the NCL command show mop circuit circuit-id all
characteristics to show the circuit characteristics.

b. Use the NCL command show data link all status to show the
status of the corresponding data link.

3.6.1. Example of Circuit-Level Loopback Preparation
In this example, the output from the NCL commands shows:

1. The mop entity is in the On state.

2. Circuit-1, the circuit to be tested, has the loopback function enabled.

3. mop circuit circuit-1 is associated with device xna0.

 ncl> show mop state

Node 0 MOP
AT 1994-1-04-1-13:27:12/325-05:00I0.176

Status
 State = On

 ncl> show mop circuit * name, function

Node 0 MOP Circuit *
AT 1994-04-1-13:27:30.095-05:00I0.178

Identifiers

 Name = circuit-1

Status

 Functions = {
 Loop Requester,
 Load Requester,
 Load Server,
 Dump Server
 }

 ncl> show mop circuit circuit-1 all char

Node 0 MOP Circuit circuit-1

30

Chapter 3. Testing Network Reachability

AT 1992-04-01-13:38:27.747-05:00I0.198

Characteristics

 Type = CSMA-CD
 Link Name = CSMA-CD Station csmacd-1
 Retransmit Timer = 4
 Known Clients Only = False

ncl> show csma-cd station csmacd-1 all status

Node 0 CSMA-CD Station csmacd-1
AT 1992-04-01-13:39:27.557-05:00I0.204

Status

 UID = 535AD8E0-F037-11C9-B60F-08002B16A872
 Communication Port = xna0
 Hardware Address = 08-00-2b-16-a8-72
 State = On
 MAC Address = aa-00-04-00-50-30
 Receive Mode = Normal

3.7. Running Circuit-Level Loopback Tests
Use the NCL command loop mop circuit circuit-id [parameter] or loop mop
client client-id to start a circuit-level loopback test.

Typically, you specify a client entity unless you need to test communication with a system that has
no corresponding client entity. The circuit-level loopback command parameters are the same for both
commands.

If you specify a LAN circuit, specify the address for the target communications hardware. For
example, you enter:

ncl> loop mop circuit circuit-1 address -
_ncl> AA-00-04-00-79-34

If you specify a synchronous or asynchronous circuit (for example, HDLC or DDCMP) you do not
need to specify the address.

3.7.1. Circuit-Level Loopback Command Parameters
You can specify any of the following parameters:

Parameter Description
format Specifies the type of binary information used for the test. This is specified as

a pair of hexadecimal digits such as format=FF. The hexadecimal value 55, a
combination of ones and zeros, is the default.

count Specifies the number of data blocks to be sent during the test. It is a number
from 1 (default) through 65,535.

length Specifies the length (in bytes) of each block to be looped. This value must
be a decimal integer in the range of 1 through n, where n is determined by
the circuit and buffer sizes available on the local and remote systems. On the
Ethernet, the allowable length is from 1 byte to the maximum length of the

31

Chapter 3. Testing Network Reachability

Parameter Description
data pattern, which varies according to the level of assistance. The default is
40 bytes.
Level of Assistance Maximum Length
No assistance 1486 bytes
Transmit or receive assistance 1478 bytes
Full assistance 1470 bytes

assistant
address

Specifies the address of the system to be used as an assistant node. An
assistant node is a remote system that helps you interrogate another remote
node.

assistant
system

Specifies the node-id of the system to be used as an assistant node. Use this
only for LANs.

assistance
type

Specifies the level of assistance you want to use (see Section 3.8.4.)

3.7.2. Example of Circuit-Level Loopback Test
In this test, the software attempts to send 10 messages through the circuit called circuit-1.

ncl> loop mop circuit circuit-1 address aa-00-03-00-ff-08, count 10

3.8. Running Circuit-Level Loopback Tests
with Assistance
DECnet supports the use of an assistant node to aid you in interrogating a remote node. You can use
the assistance feature for LAN circuits only.

3.8.1. When to Use Assistance
You might choose one form of assistance over another for the following reasons:

• If the target node to which you want to transmit is not receiving messages from your node, you
can request assistance in transmitting messages to it.

• If your node is able to transmit messages to the target node but unable to receive messages from
it, you can send a message directly to the target node and request the assistant's aid in receiving a
message back.

• If you encounter difficulties in both sending and receiving messages, you can request the
assistant's aid for both operations.

3.8.2. Using Assistance for Fault Isolation
Running the circuit-level loopback tests with assistance in the following order can help you isolate
connection problems:

1. Run a direct loopback test (with no assistance). If this test succeeds, the target system is reachable.

2. If the direct loopback test fails, use full assistance. If this test succeeds, the target system is
reachable. The local system or the LAN could be the cause of your problem.

32

Chapter 3. Testing Network Reachability

3. If the loopback test with full assistance fails, run loopback tests with transmit or receive assistance
to determine if the problem occurs during transmittal or receipt of data.

3.8.3. Starting a Circuit-Level Loopback Test with
Assistance
Use one of the following NCL commands to start a circuit-level loopback test with assistance:

ncl> loop mop circuit circuit-id address address -
_ncl> assistance type [assistance type]

If you already defined a MOP client with circuit and address attributes, omit the circuit-id and
address parameters and just identify the client as follows:

ncl> loop mop client client-name

If no MOP client is defined:

ncl> loop mop circuit circuit-id address address,
-_ncl> assistance type [assistance type]

3.8.4. Assistance Parameters
When you specify either the assistant system or assistant address parameter without
an assistance type, you receive full assistance by default. The following table describes the
assistance type values:

Assistance Type Value Description
assistance type none No assistance is used.
assistance type full This assistance type aids in transmitting loop

messages to and receiving messages from a
remote node (default value).

assistance type receive This assistance type aids in receiving loop
messages from a remote node.

assistance type transmit This assistance type aids in transmitting loop
messages to a remote node.

Example of Assistant Address Command
In this example, you request the node described by the LAN physical address AA-00-04-00-15-04 to
assist you in testing the node described by the LAN physical address AA-00-04-00-18-04. Because
assistant address is specified without the assistant type parameter, full assistance is
given.

ncl> loop mop circuit circuit-1 address aa-00-04-00-18-04, -
_ncl> assistant address aa-00-04-00-15-04

Example of Assistant System Command
In this example, you request node THRUSH to assist in testing node LOON by transmitting the
loopback data to node LOON. THRUSH must already be defined in the MOP client database, with a
value for its circuit and address.

ncl> loop mop client loon, assistant system -
_ncl> thrush, assistant type transmit

33

Chapter 3. Testing Network Reachability

3.8.5. Example of Circuit-Level Loopback Test with Full
Assistance
Figure 3.4 illustrates a loopback test between the circuit for Node1 and Node3, with Node2 providing
assistance. The NCL command is:

ncl> loop mop client Node3, assistant system Node2

Figure 3.4. Circuit-Level Loopback Test with Full Assistance

3.8.6. Example of Circuit-Level Loopback Test with
Transmit Assistance
Figure 3.5 illustrates a loopback test between Node1 and Node3, with Node2 providing transmit
assistance. The NCL command is:

ncl> loop mop client Node3, assistant system Node2, -
_ncl> assistance type transmit

Figure 3.5. Circuit-Level Loopback Test with Transmit Assistance

34

Chapter 3. Testing Network Reachability

3.8.7. Example of Circuit-Level Loopback Test with
Receive Assistance
Figure 3.6 illustrates a loopback test between Node1 and Node3, with Node2 providing receive
assistance. The NCL command is:

ncl> loop mop client Node3, assistant system Node2 -
_ncl> assistance type receive

Figure 3.6. Circuit-Level Loopback Test with Receive Assistance

3.9. Running LAN Loopback Tests with LLC
Messages
This test allows you to perform LAN loopback tests that use IEEE 802.3 logical link control (LLC)
test messages.

3.9.1. Starting the LAN Loopback Test
Do the following to start a LAN loopback test:

Step Action
1 Make sure the circuit you want to test has the Test Requester function

enabled.
2 Enter one of the following NCL commands:

ncl> test mop circuit circuit-id address -
_ncl> lan-address [parameter]
ncl>test mop client client-name [parameter]

Typically, you specify a client entity, unless you need to test communication
with a system that has no corresponding client entity. The LAN loopback test
command parameters are the same for both commands.

35

Chapter 3. Testing Network Reachability

3.9.2. LAN Loopback Test Command Parameters
The following table describes the test command parameters for the LAN loopback test:

Parameter Description
count count Specifies the number of messages you want to

loop. The default is 1.

If the test fails, NCL displays the number of
messages that successfully looped.

length length Specifies the length of the data part of each test
message. The maximum and minimum permitted
values depend on the particular data link that you
use. The default is 40.

format format Specifies the value of each byte in the test data
message. The hexadecimal value 55, which is
a pattern of alternating ones and zeros, is the
default.

sap sap Specifies the service access point on the target
system to which the test message is sent as 2
hexadecimal digits. The default is 00.

3.9.3. Determining Logical Link Control Types on a
Remote Node
You can use the NCL command query to determine the logical link control (LLC) types that a
remote system supports. The query command sends an IEEE 802.2 LLC XID command to a remote
system and receives an XID response in return. The circuit must have the Query Requester function
enabled before you can use the query command.

You can apply the query command to a circuit or client entity. Typically, you use a client entity,
unless you need to query a system that has no corresponding client entity. You can use the same
attributes for either a client or a circuit. For example, you can use either of the following commands:

ncl> query mop client client-name SAP sap
ncl> query mop circuit circuit-id SAP sap

In both commands, sap is the service access point on the target node, specified as 2 hexadecimal
digits, to which the XID message is sent. The default is 00.

3.10. Running dts/dtr Tests
The dtr program functions as a slave to dts and exists as defined object 63 at the remote node.
The dts program initiates each test by issuing a connect request to dtr. The dts program passes
parameter information pertinent to the type of test requested to dtr in the optional data of the
connection request. You can use the dts user interface to customize the test to be performed by
issuing commands with options.

3.10.1. Starting dts/dtr Tests
Do the following to start dts/dtr tests:

36

Chapter 3. Testing Network Reachability

Step Action
1 Be sure that all of the DECnet protocol layers (Session Control, Transport, Routing, and

Data Link) are in the on state.
Enter one of the following commands:
OpenVMS Systems: UNIX Systems:
$ run sys$system:dtsend % dts

2

The system responds with a message and a prompt similar to the following:

DTS initiated on Mon Feb 26 13:06:22 1994
(DECnet/OSI for DIGITAL UNIX)
DTS>

3 Enter dts commands at the command prompt.
4 To end testing, type exit in response to the dts prompt. The dts program displays a

termination message on your screen when it exits, and the system prompt reappears.

You can also enter dts commands with a dts command file (see Section 3.10.4). You can press the
up arrow key to recall previously entered commands.

3.10.2. dts Command Syntax
Use the following format to enter dts commands:

test [qualifiers] [test-specific-qualifiers]

The following table describes the command components.

Component Description
Specifies the type of test, which must be one of the following:
connect Connect test
data Data test
disconnect Disconnect test

test

interrupt Interrupt test
Specifies any number of the following optional qualifiers. These
qualifiers remain in effect for all applicable tests until you change
them or exit from dts. A slash (/) must precede each qualifier.
Qualifier Description

qualifiers

/nodename = node-id The name or address of the
DECnet node on which you
want dtr to run. You must
specify it once and then the
default will be that node name.
If you run dtr on a remote
node, you must run it on a
default nonprivileged account
(guest account), because you
cannot specify access-control
information with this qualifier.

37

Chapter 3. Testing Network Reachability

Component Description
The node-id can be 0, a Phase
IV address or on a UPROD
system, a DECnet-Plus NSAP
address. If any part is different
from the dts sender node default,
it should be specified.

/print or /noprint (default) Tells dts whether to print (log)
test results.

/statistics
or /nostatistics (default)

Tells dts whether to print
statistics on data and interrupt
tests.

/display or /nodisplay
(default)

Tells dts whether to print the
data and interrupt messages
transmitted to dtr during data
and interrupt tests.

/speed = number Specifies the test line speed
in bits per second (default=0);
dts uses this data for reporting
statistics.

/transport = transport
name

For UNIX systems only.
Specifies the transport protocol
to use, where the transport
name is either dna_nsp or
dna_tp4.

test-specific-
qualifiers

Specifies any number of test-specific qualifiers, as defined in the
sections that describe each test. Test-specific qualifiers apply to the
current test only.

3.10.3. General Command Syntax Conventions
The dts command syntax uses the following conventions:

• All test names and qualifiers can be abbreviated to the first three or more unique characters.

• The default values for a qualifier remain in effect until a different value is specified. The specified
value then becomes the new default for all following tests until that value is changed.

3.10.4. Examples of Using dts/dtr Test Command
Procedures
The following OpenVMS example shows how to instruct dts to process the commands contained in
the file dts.com and to redirect the output to the file dts.log.

$ run sys$system:dtsend/output=dts.log

The following UNIX example shows how to instruct dts to process the commands contained in the
file dtsscript and to redirect the output to logging file dts.log.

% dts <dtsscript >dts.log

38

Chapter 3. Testing Network Reachability

3.11. Running dts/dtr Connect Tests
You can perform the following connect tests:

Test Description
Connect reject without user data The dts node sends a connection request to the dtr node.

The dtr node returns a rejection message that does not contain
optional data.

Connect accept without user data The dts node sends a connection request to the dtr node. The
dtr node returns an acceptance message that does not contain
optional data.

Connect reject with standard
user data

The dts node sends a connection request to the dtr node. The
dtr node returns a rejection message that contains a standard
string of optional data. If the transport is NSP, it is 16 bytes and, if
the transport is TP4, it is 32 bytes.

Connect accept with standard
user data

The dts node sends a connection request to the dtr node. The
dtr node returns an acceptance message that contains a standard
string of optional data. If the transport is NSP, it is 16 bytes and, if
the transport is TP4, it is 32 bytes.

Connect reject with received
user data used as reject user data

The dts node sends a connection request that contains optional
data to the dtr node. The dtr node returns a rejection message
that contains the same optional data.

Connect accept with received
user data used as accept user
data.

The dts node sends a connection request that contains optional
data to the dtr node. The dtr node returns an acceptance
message that contains the same optional data.

3.11.1. dts/dtr Connect Test Command Syntax
Do the following to start a connect test:

1. Invoke NCL on the dtr node and enter the following command:

ncl>set session control application dtr user name= "username"

The equal sign (=) in this command is optional.

2. Invoke dts on the dts node.

3. Enter the following command:

connect [qualifiers] [test-specific-qualifiers]

The following table describes the test-specific-qualifiers.

Qualifier Description
Specifies the type of test, where subtest can be:
accept Connect accept test (default)

/type = subtest

reject Connect reject test
/return= type or
noreturn

Specifies the type of data returned by dtr. The type can be:

39

Chapter 3. Testing Network Reachability

Qualifier Description
standard Standard user data
received Received user data
/noreturn No optional user data returned

(default)
/transport=dna_nsp or
dna_tp4

For UNIX systems only. Defaults to the first available protocol
tower.

3.11.2. Example of dts/dtr Connect Test Command
This command invokes a connect accept test (by default) with remote node MONTRL.

dts> connect/nodename=montrl/return=received

The dtr program returns received user data as part of the test.

3.12. Running dts/dtr Data Tests
You can perform the following data tests:

Test Description
Sink test The dtr program ignores all data received. No sequence or

content validation is performed.
Sequence test Data messages transmitted by dts to dtr include a 4-byte

sequence number. If a message is received out of sequence, dtr
aborts the logical link and the test.

Pattern test Data messages transmitted to dtr have both a sequence number
and a standard data pattern. If neither the sequence number nor the
received data matches the expected data, dtr aborts the logical
link and the test.

Echo test Data messages received by dtr are transmitted back to dts,
which checks the sequence number and data for the returned
messages. If either is incorrect, dts aborts the link and the test.

3.12.1. dts/dtr Data Test Command Syntax
Invoke dts and use this command to start a data test:

data [qualifiers][test-specific-qualifiers]

On OpenVMS systems, the value of the node qualifier must be a minimum of 4 characters.

The following table describes the test-specific-qualifiers.

Qualifier Description
Specifies the type of test, where subtest can be:
sink Sink test (default)
sequence Sequence test

/type= subtest

pattern Pattern test

40

Chapter 3. Testing Network Reachability

Qualifier Description
echo Echo test

/size= number Specifies data message length in bytes.

On OpenVMS systems, number is a value from 5 to 4,095.

On UNIX systems, number is a value from 1 to 2,048
(default=128).

The minimum value for number on a sequence test is 4 and on
a pattern test is 5. A size of 4,095 returns an error message on an
echo test.
Specifies duration of the test in one of the following formats:
seconds= number Range: 1 to 60 (1 to 59 on

OpenVMS)
minutes= number Range: 1 to 60 (1 to 59 on

OpenVMS)
hours= number Range: 1 to 24

/test-duration

On OpenVMS systems, the default is seconds=30.

On UNIX systems, the default is seconds=15.
Specifies type of flow control, if any, where type can be:
segment Segment flow control
message Message flow control (default, if

/flow is specified)

/flow= type or /noflow
(default)

If dtr is running on OpenVMS software, it must use the system
default.

/rqueue= number
or /squeue= number

For UNIX systems only. Specifies the number of pending receives
for dtr to maintain, where number is a value from 1 to 16
(default = 1). If the remote system is a DECnet-Plus node, this
parameter is ignored.

/nak= number or /noack For UNIX systems only. Specifies the number of segments between
negative acknowledgments (NAKs). If the remote system is a
DECnet-Plus node, this parameter is ignored.

/back= number or / noback For UNIX systems only. Specifies the number of segments before
back pressuring. If the remote system is a DECnet-Plus node, this
parameter is ignored.

/transport=dna_nsp or
dna_tp4

For UNIX systems only. Defaults to the first available protocol
tower.

3.12.2. Example of dts/dtr Data Test Command
This command invokes the data test with the sink subtest (by default). The dts program sends
messages to dtr on node JONES (by default from a previous command). The message size is
512 bytes, and the test lasts 30 seconds. The transport protocol is printed only when you specify a
transport.

dts> data/size=512/seconds=30

41

Chapter 3. Testing Network Reachability

 DTS –I– Test started at 11:23:30
 DTS –I– Test finished at 11:24:00

Test parameters:
 Target node "jones"
 Test duration (sec) 30
 Message size (bytes) 512

Summary statistics:
 Total messages SENT 48
 Total bytes SENT 24576
 Messages per second 1.60
 Bytes per second 819.20
 Line throughput (baud) 6553

3.13. Running dts/dtr Disconnect Tests
You can perform the following disconnect tests:

Test Description
Disconnect without data The dtr node sends a disconnect message that does not contain user

data to the dts node.
Abort without user data The dtr node sends an abort message that does not contain user data to

the dts node.
Disconnect with standard
user data

The dtr node sends a disconnect message that contains a standard
string of optional data to the dts node. If the transport is NSP, this is
16 bytes, and if the transport is TP4, it is 32 bytes.

Abort with standard user
data

The dtr node sends an abort message that contains a standard string of
optional data to the dts node. If the transport is NSP, this is 16 bytes,
and if the transport is TP4, it is 32 bytes.

Disconnect with received
connect user data used as
disconnect user data

The dts node sends a message containing optional user data to the
dtr node. The dtr node returns a disconnect message containing the
same optional data to the dts node.

Abort with received
connect user data used as
abort user data

The dts node sends a message containing optional user data to the
dtr node. The dtr node returns an abort message containing the same
optional data to the dts node.

3.13.1. dts/dtr Disconnect Test Command Syntax
Invoke dts and use the following command to start a disconnect test:

disconnect [qualifiers][test-specific-qualifiers]

The following table describes the test-specific-qualifiers.

Qualifier Description
Specifies the type of test, where subtest can be:
synchronous Synchronous disconnect test for UNIX

systems only

type= subtest

abort Disconnect abort test (default)

42

Chapter 3. Testing Network Reachability

Qualifier Description
Specifies the type of data returned by dtr. The type can
be:
standard Standard user data
received Received user data

/return= type or /noreturn

The /noreturn qualifier causes no optional user data to
be returned (default).

3.13.2. Example of dts/dtr Disconnect Test Command
This command invokes a synchronous disconnect test with remote node PARIS.

dts> disconnect/nodename=paris/type=synchronous

The dtr program will not return any optional user data.

3.14. Running dts/dtr Interrupt Tests
You can perform the following interrupt tests:

Test Description
Sink test The dtr program ignores all interrupt data received. No sequence or

content validation is performed.
Sequence test Interrupt messages transmitted by dts to dtr contain a 4-byte

sequence number. If a message is received out of sequence, dtr aborts
the logical link and the test.

Pattern test Interrupt messages transmitted to dtr have both a sequence number
and a standard data pattern. If neither the sequence number nor the data
pattern received matches the expected data, dtr aborts the logical link
and the test.

Echo test Interrupt messages received by dtr are transmitted back to dts, which
checks the sequence number and data of the returned messages. If either
is incorrect, dts aborts the link and the test.

3.14.1. Interrupt Test Command Syntax
Invoke dts and use this command to start an interrupt test:

interrupt [qualifiers][test-specific-qualifiers]

The following table describes the test-specific-qualifiers:

Qualifier Description
Specifies the type of test, where subtest can be:
sink Sink test (default)
sequence Sequence test
pattern Pattern test

/type= subtest

echo Echo test

43

Chapter 3. Testing Network Reachability

Qualifier Description
size= number Specifies data message length in

bytes, where number is a value
from 0 to 16 (default = 16). The
minimum value for number
on a sequence test is 4 and on a
pattern test is 5. The minimum
value for number on an echo
test is 5.

Specifies duration of the test in one of the following formats:
seconds= number Range: 1 to 60 (1 to 59 on

OpenVMS)
minutes= number Range: 1 to 60 (1 to 59 on

OpenVMS)
hours= number Range: 1 to 24

test-duration

The default is seconds=15.
/rqueue= number
or /squeue= number

For UNIX systems only. Specifies number of pending receives
for dtr to maintain, where number is a value from 1 to 16
(default=1). If the remote system is a DECnet-Plus node, this
parameter is ignored.

3.14.2. Example of dts/dtr Interrupt Test Command
This command invokes the interrupt test with the pattern subtest. The dts program sends
interrupt messages to dtr on node DALLAS, where test information is to be printed. The default
message size value is used and the test lasts for 30 seconds.

dts> interrupt/nodename=dallas/print/type=pat/seconds=30

 DTS –I– Test started at 17:44:10
 DTS –I– Test finished at 17:44:40

Test parameters:

Target node "dallas"
Test duration (sec) 30
Message size (bytes) 16

Summary statistics:
Total messages SENT 2734
Total bytes SENT 43744
Messages per second 91.1
Bytes per second 1458
Line throughput (baud) 11665

44

Chapter 4. Solving Problems Using
DECnet Over TCP/IP
This chapter describes solving problems using DECnet over TCP/IP.

Topics In This Chapter
The topics in this chapter are:

• Local IP Address Displays As 0.0.0.0 (Section 4.1)

• Troubleshooting (Section 4.2)

4.1. Local IP Address Displays As 0.0.0.0
Some TCP/IP products do not support a "read local address" function through the PWIP
(PATHWORKS Internet Protocol) driver interface. As a workaround, OSI transport tells Session
Control/Node Agent that the node local IP address is 0.0.0.0.

Therefore, the following address is correct:

NCL> SHOW NODE 0 address
 Address =
 {
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number = 19] ,
 [DNA_OSItransportV1 , 'DEC0'H] ,
 [DNA_OSInetwork , 49::00-33:AA-00-04-00-FF-FF:21]
) ,
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV2 , number = 19] ,
 [DNA_OSItransportV1 , 'DEC0'H] ,
 [DNA_IP , 0.0.0.0]
) ,
 (
 [DNA_CMIP-MICE] ,
 [DNA_SessionControlV3 , number = 19] ,
 [DNA_NSP] ,
 [DNA_OSInetwork , 49::00-33:AA-00-04-00-FF-FF:20]
)
 }

4.2. Troubleshooting
If you have problems getting DECnet over TCP/IP to start up properly, check the following:

1. Verify that you have an OSI transport template with network service attribute defined as RFC
1006.

Issue the command:

45

Chapter 4. Solving Problems Using DECnet Over TCP/IP

NCL> SHOW OSI TRANSPORT TEMPLATE * WITH NETWORK SERVICE = rfc1006

If you do not have a template defined, then you must execute NET$CONFIGURE Option 4 and
replace your OSI transport startup script.

2. Verify that you have started TCP/IP, and that your product supports the PWIP interface. If you are
using VSI TCP/IP Services for OpenVMS, be sure that you have executed the following command
procedure:

SYS$STARTUP:UCX$PWIP_STARTUP.COM

3. Verify that the PWIP interface is properly registered. Using the management tool of the TCP/IP
product installed, verify that the RFC 1006 listener ports defined in OSI transport are known by
TCP/IP.

If you are running TCP/IP Services for OpenVMS, use the following command:

$ UCX SHOW DEVICE
 Port Remote
Device_socket Type Local Remote Service Host

 bg3 STREAM 23 0 TALENT 0.0.0.0
 bg4 DGRAM 520 0 0.0.0.0
 bg7 STREAM 399 0 0.0.0.0
 bg9 STREAM 102 0 0.0.0.0

In this case, we are looking for the two listen ports 399 and 102.

If IP addresses work and IP names do not, use your TCP/IP management tool to verify that your
BIND server knows about the name.

46

Chapter 5. Solving DECnet-Plus
Application Problems
This chapter describes how to isolate and correct common DECnet-Plus application problems.

Definition
In this chapter, the term DECnet/OSI applications refers to FTAM, Virtual Terminal (VT), and any
application that uses the OSI Applications Kernel (OSAK) application programming interface (API).

This manual does not discuss other applications considered to be OSI applications, such as X.400
products.

Topics in This Chapter
The topics in this chapter are:

• Underlying Components for DECnet-Plus Applications (OpenVMS Only) (Section 5.1)

• Underlying Components for DECnet-Plus Applications (UNIX Only) (Section 5.2)

• Symptoms of DECnet-Plus Application Problems (Section 5.3)

• Isolating DECnet-Plus Application Faults (Section 5.4)

• Using Event Logging and Log Files (Section 5.5)

• Isolating Faults Using Management Tools (OpenVMS Only) (Section 5.6)

• Tracing Overview (Section 5.7)

• Tracing Outbound FTAM and Virtual Terminal Connections (Section 5.8)

• Tracing Inbound FTAM and Virtual Terminal Connections (Section 5.9)

• Reading Trace Files (Section 5.10)

• Correcting FTAM Application Problems (Section 5.11)

• Correcting FTAM File-Handling Problems (Section 5.12)

• Correcting General FTAM Connection Problems (Section 5.13)

• Correcting FTAM and Virtual Terminal Connection Problems (Only) (Section 5.14)

• Correcting FTAM and Virtual Terminal Responder Problems (Only) (Section 5.15)

• Correcting FTAM and Virtual Terminal Responder Problems (Only) (Section 5.16)

• Correcting FTAM Environment Problems (OpenVMS Only) (Section 5.17)

47

Chapter 5. Solving DECnet-Plus Application Problems

• Correcting Target SAP Connection Problems (Section 5.18)

• Correcting Problems with Applications Using OSAK (Section 5.19)

5.1. Underlying Components for DECnet/OSI
Applications (OpenVMS Only)
Figure 5.1 shows the underlying DECnet/OSI components that DECnet/OSI applications on
OpenVMS systems use. Use this information as a guide during fault isolation.

Figure 5.1. Underlying DECnet/OSI Components (OpenVMS)

5.2. Underlying Components for DECnet/OSI
Applications (UNIX Only)
Figure 5.2 shows the underlying DECnet/OSI components used by DECnet/OSI applications on
UNIX systems. Use this information as a guide during fault isolation.

48

Chapter 5. Solving DECnet-Plus Application Problems

Figure 5.2. Underlying DECnet/OSI Components (UNIX)

5.3. Symptoms of DECnet-Plus Application
Problems
The following tables show the symptoms of possible DECnet-Plus application problems on both
OpenVMS and UNIX systems, on OpenVMS systems only, and on UNIX systems only.

5.3.1. Problem Symptoms for All Systems
Table 5.1 describes DECnet-Plus application problems that can occur on either OpenVMS or UNIX
systems.

Table 5.1. Symptoms and Problems for All Systems

Symptom Possible Problem See:
Connection attempts fail. Reasons for failure include:

• User name, password, or
both used in commands are
incorrect.

Section 5.11 or 5.13.

49

Chapter 5. Solving DECnet-Plus Application Problems

Symptom Possible Problem See:
• A responder is not listening

on the remote address that
the initiator specified.

• Errors exist in the local
database file.

An FTAM or Virtual Terminal
responder fails.

Reasons for failure include:

• The requested transport
provider is not available.

• The command syntax used
to start an operation was
entered incorrectly.

• An error exists in the format
specified in the command
line or the local database file.

• Multiple OSI applications
are using the same transport
selector.

Section 5.11, 5.14.1, or 5.16.

An FTAM file does not have the
expected attributes.

Requested format is not
supported and must be
converted.

Section 5.12.2.

A user-written OSI application
terminates unexpectedly.

Reasons for failure include:

• Protocol

• Network

• Loss of network connection

• Remote entry aborted
connect

Section 5.19 or FTAM API
documentation.

A problem with a user-written
application affects the OSAK
software.

There is a coding error in the
application or in the way the
application uses the OSAK
application programming
interface.

Section 5.19 or OSAK
documentation.

5.3.2. Problem Symptoms for OpenVMS Systems Only
Table 5.2 describes DECnet-Plus application problems that can occur on OpenVMS systems only.

Table 5.2. Symptoms and Problems for OpenVMS

Symptom Possible Problem See:
Connection attempts fail. Reasons for failure include:

• OpenVMS environment is
not set up correctly.

Section 5.13, 5.17, or 5.15.

50

Chapter 5. Solving DECnet-Plus Application Problems

Symptom Possible Problem See:
• FTAM application is not set

up correctly.

• A responder is not listening
on the remote address that
the initiator specified.

• A remote entity sent a refuse
PDU.

An FTAM responder fails. There is a problem with the
OSAK$SERVER_V3.

Section 5.13.

A VT responder terminates
unexpectedly.

Resources are exhausted. Section 5.15.

A VT responder will not start. Another responder is already
running.

Section 5.15.

5.3.3. Problem Symptoms for UNIX Systems Only
Table 5.3 describes DECnet-Plus application problems that can occur on UNIX systems only.

Table 5.3. Symptoms and Problems for UNIX

Symptom Possible Problem See:
Connection attempts fail. Reasons for failure include:

• A listener and responder
need to be running on the
same system (for example,
for a gateway node).

• A listener/responder is not
listening on the remote
address that the initiator
specified.

• Syntax for alias entry in the
local database file /etc/
isoapplications is
wrong.

• An incorrect transport
template was specified in the
local database file /etc/
isoapplications.

• A remote entity sent a refuse
PDU.

Section 5.14.

An FTAM or VT responder fails. There is a problem with
the ftam_listener or
vt_listener process.

Section 5.16.

51

Chapter 5. Solving DECnet-Plus Application Problems

5.4. Isolating DECnet-Plus Application Faults
Before trying any correction procedures, confirm that you have a DECnet-Plus application problem.
Use an application other than the one that failed, such as dlogin or set host, to try to establish a
connection to the remote node.

If you can establish a connection, a problem with the failed application is likely the cause; use the
trace utilities for further fault isolation. If you cannot establish a connection, the problem is probably
not application-specific; use the network reachability tests described in Chapter 3, or check the
underlying components that the application uses.

5.4.1. Tools to Use
Table 5.4 shows the tools you can use to isolate DECnet-Plus application faults.

Table 5.4. Tools for Isolating Application Faults

For Problems with: Use: And See:
Error messages:

• Check error messages
displayed on the user's
terminal.

• Check error messages
displayed on the system
console.

• On UNIX, check the /usr/
adm/syslog.dated/*/
daemon.log file.

• On OpenVMS for
FTAM, check osif
$responder.log file
located in your default login
directory.

OSI application documentation
and Section 5.5.

Any DECnet-Plus application

Tracing utility, ositrace. Section 5.8.
DECnet-Plus applications on
OpenVMS systems

Event logging. OSAK, FTAM and Virtual
Terminal documentation.

FTAM and Virtual Terminal on
OpenVMS systems

OSAK application database
and sys$system:
isoapplications.dat file.

FTAM/VT documentation.

Applications that use OSAK
software

OSAK trace utility. OSI application documentation
or the OSAK programming
documentation.

5.4.2. References
Refer to your FTAM and Virtual Terminal documentation for further information about these
applications. Refer to your OSAK documentation for information about applications that utilize the
OSAK API.

52

Chapter 5. Solving DECnet-Plus Application Problems

5.5. Using Event Logging and Log Files
On OpenVMS systems, event logging and log files help you isolate FTAM and Virtual
Terminal problems. After you enable logging, the system writes events to the sys
$manager:operator.log file.

On UNIX systems, FTAM and Virtual Terminal error messages appear on the operator's console. The
system writes responder error messages to the /usr/adm/syslog.dated/*/daemon.log file.
You do not need to do anything to enable error logging.

5.5.1. Enabling Network Event Logging (OpenVMS
Only)
Enabling network event logging on an OpenVMS system can help you quickly identify FTAM or
Virtual Terminal problems. Do the following to enable event logging of network and license events:

Step Action
1 Enable OPER privileges with the following DCL command:

$ set process/priv=oper

2 Ensure that OPCOM is running. If you do not know how to do this, get help
from your system manager.

3 Do one of the following:

• To display subsequent errors on a dedicated terminal, enable error
logging to the terminal by entering the following DCL command:

$ reply/enable=(network,license)

• Type the log file sys$manager:operator.log and examine it.
4 For events at the Data Link layer, specify the event types you want. For both

X.25 and IEEE 802.3 events, see your NCL reference documentation. For
X.25 events only, see your OSI Transport and X.25 documentation.

5.5.2. Using the FTAM Responder Log File (OpenVMS
Only)
Each FTAM responder process on an OpenVMS system creates a log file of its activity during a
process. If you are trying to track the responder's operations, this log file may contain pertinent
information, depending on where the problem occurs.

Normally, a responder process creates a log file in the SYS$LOGIN directory of the account specified
by the user on the FTAM command line.

Responder Log Set Up
Ensure that your system is set up correctly to use the responder log:

Step Action
1 Check for WORLD:READ protection on osif$responder.com.

53

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
2 Check that the responder has WRITE access (for osif$responder.log)

into the login account's default directory.
3 If you are using an account other than the default FTAM responder account,

make sure that the account has a BYTLM of more than 20,000. If not, you
may experience "service provider abort" errors.

5.6. Isolating Faults Using Management Tools
(OpenVMS Only)
You can use management tools to isolate FTAM or VT faults on OpenVMS systems. Do the following
when you use management tools for this purpose:

For this Connection: Do the Following: To Verify:
Inbound to a given address
(FTAM only)

Use NCL commands to check
inbound address in OSAK
application database:

show osak application

The following values:

• Presentation selector

• Session selector

• Transport selector

• File name of responder
command file

• User name

• Login password of user
name (if any) (you need
system privileges to do this)

• Account name (optional)

• AP-title (optional, not
verified)

• AE-qualifier (optional, not
verified)

Outbound to a given address Examine

sys$system:
 isoapplications.dat

The following values:

• Alias

• Presentation selector

• Session selector

• Transport selector

• OSI transport address
(NSAP, TSAP, Provider)

• AP-title (optional)

54

Chapter 5. Solving DECnet-Plus Application Problems

For this Connection: Do the Following: To Verify:
• AE-qualifier (optional)

• Session version (optional)

• All field delimiters

5.7. Tracing Overview
Tracing allows you to examine FTAM and Virtual Terminal connections to other OSI systems. The
trace operation traces the protocol data units (PDUs) that the Application, ACSE, Presentation, and
Session layers send or receive. Tracing is a two-step process. First, you create a binary trace file
during a regular FTAM or VT connection. Then you use the ositrace utility to convert the binary
file to a readable text file.

5.7.1. Trace Files
The ositrace utility formats the binary trace information. You can redirect output into a file using
appropriate mechanisms. By default, the file is written to the default output device.

The ositrace utility creates a new file for each trace in the default directory of the process where
tracing is enabled. It also creates a new version of the trace file for each new connection it traces.

5.7.2. Security Information in Tracing
For either initiator or responder traces, if a file specification contains security information, the output
for an FTAM or VT Protocol Control Information (PCI) trace contains the initiator identity (which
maps to a user name) and the filestore password (which maps to a login password) in plain ASCII
text. Trace files containing this information should be securely stored or deleted immediately after the
trace data is analyzed.

5.8. Tracing Outbound FTAM and Virtual
Terminal Connections
This section describes how to trace FTAM and Virtual Terminal connections to other OSI initiator
systems. The original file that the trace operation creates contains binary information. The
ositrace utility converts the binary file to a readable text file.

For OpenVMS Systems: For UNIX Systems:
define OSAK_TRACE ON setenv OSAK_TRACE on

The trace file is created in your current working directory with the name init_xxxx.bin, where
xxxx is the time and date.

An alternate method of generating a trace for FTAM is to create the following definitions in the
initiator process (OpenVMS only):

define osif$trace_enable FTAM_PCI, ACSE_PCI, PRESENTATION_PCI, SESSION
define osif$trace osif$init.trace

This creates the file osif$init.trace. It contains the same information as the trace generated by
setting OSAK_TRACE to ON, and you can use ositrace to generate a readable form.

55

Chapter 5. Solving DECnet-Plus Application Problems

5.8.1. Generating a Readable Trace File
The command syntax for starting the ositrace utility is:

For OpenVMS Systems: For UNIX Systems:
ositrace input-file [output-file] ositrace [options] input-file

[output-file]

The input-file specifies the binary trace file that is created when you define the trace logical
names on OpenVMS systems or specify the -T option, or define the environment variables, on UNIX
systems.

The output-file redirects the output to the specified file instead of displaying the output on the
default device or file.

On OpenVMS, define OSITRACE:

$ OSITRACE:== $OSITRACE

5.8.2. ositrace Command Options (UNIX Only)
The trace records of all the components are processed by default if you do not specify one or more of
the command options. Table 5.5 describes the ositrace command options on UNIX systems.

Table 5.5. ositrace Command Options

Option Description
-h Displays a brief help message that includes usage syntax and valid command

options.
-F Displays trace records only for the FTAM components. The trace monitors

protocol control information (PCI) and file-access data unit (FADU)
components.

An FTAM PCI trace monitors the inbound and outbound FTAM service
primitives. The trace output logs PCI octets and analyzes the FTAM PCI.

An FTAM FADU trace monitors the inbound and outbound file structure
data. The trace is formatted into two columns: the left column logs the octets
of data and the right column logs the text equivalents of the octets.

-V Displays trace records only for the Virtual Terminal components. The trace
monitors protocol control information (PCI).

A Virtual Terminal PCI trace monitors the inbound and outbound Virtual
Terminal service primitives. The trace output logs PCI octets and analyzes
the Virtual Terminal PCI.

The trace is formatted into two columns: the right column logs the octets of
data and the left column logs the text equivalents of the octets.

-A Displays trace records only for the ACSE layer. The trace monitors the
inbound and outbound ACSE service primitives. The trace output logs PCI
octets and analyzes the ACSE PCI.

56

Chapter 5. Solving DECnet-Plus Application Problems

Option Description
-P Displays trace records only for the Presentation layer. The trace monitors the

inbound and outbound presentation service primitives. The trace output logs
presentation PDU (PPDU) octets and analyzes the presentation PCI.

-S Displays trace records only for the session layer. The trace monitors the
inbound and outbound session service primitives. The trace output logs
session PDU (SPDU) octets and analyzes the session PCI.

-f Filters timestamps. This option causes all timestamps to appear as the string
xx-xxx-xxxx, xx:xx:xx and allows the comparison of two trace files using the
diff command.

5.9. Tracing Inbound FTAM and Virtual
Terminal Connections
This section describes how to trace FTAM and Virtual Terminal connections from other OSI systems.

5.9.1. Inbound FTAM and VT Tracing (UNIX)
• Log into the root account.

• Set the environment variable OSAK_TRACE to on.

setenv OSAK_TRACE on

• Start a VT or FTAM listener.

vt_listener mynode-alias

This creates 10 resp_xxxx.bin files, where xxxx is the time and date. The default queue
length is ten for the number of outstanding transport connect indications. The oldest .bin file
contains the trace of the first association, the next youngest contains the second association, and so
on.

• To stop the trace, kill the current listener process, and unset the OSAK_TRACE environment
variable:

ps auxw | grep ftam
 root 3380 0.0 ftam_listener mynode-alias

kill -9 3380

unsetenv OSAK_TRACE

5.9.2. Inbound FTAM Tracing (OpenVMS)
Edit the file sys$system:osif$responder.com to contain the following line:

$ define osak_trace on

The file resp_xxxx.bin is created in the default directory of the responder process, where xxxx
is the time and date.

Alternatively, you can edit the file osif$responder.com to uncomment the following lines:

57

Chapter 5. Solving DECnet-Plus Application Problems

$! DEFINE /LOG osif$trace_enable FTAM-PCI,ACSE-PCI,PRESENTATION-PCI,SESSION
$! DEFINE /LOG osif$trace osif$responder.trace

The next inbound connection causes an FTAM trace file called osif$responder.trace to be
created in the default login directory (SYS$LOGIN) of the specified account.

To trace the DAP gateway, you can choose one of the following options:

1. Define osak_trace in the file sys$system:osif$gtwy_login.com.

2. Define osif$trace and osif$trace_enable in the file sys$system:osif
$gtwy_login.com.

The trace file will be created in the default directory of the OSIF$GTWY account.

The trace file created may then be formatted using ositrace as discussed in Section 5.8.1.

5.9.3. Inbound VT Tracing (OpenVMS)
• Stop the current VT responder (SYS$STARTUP:VT_STOP.COM).

• Copy SYS$SYSTEM:VTPAD.EXE to SYS$COMMON:[SYSEXE]VT_RESPONDER.EXE.

• Define the logical name OSAK_TRACE to equate to the value ON.

$ define osak_trace on

• Make sure your process has the following privileges:

CMKRNL, WORLD, SYSPRV, TMPMBX, SYSNAM, DETACH, NETMBX, SYSLCK, OPER,
PRMMBX

• Issue the command:

RUN SYS$SYSTEM:VT_RESPONDER.EXE

At this point, the VT responder is executing in your process context, and eight(or the value specified
by the VT$VT_RJOBLIM logical name) resp_xxxx.bin files will be created in your current
directory.

As each new connection made to the VT responder terminates, a new resp_xxxx.bin file is
created, and a previous resp_xxx.bin file now contains trace information. This is done in a first
in, first out manner; the oldest .bin file contains the trace of the first association, the next youngest
contains the second association, and so on.

Once you have collected all of the required trace data, use Ctrl/C and terminate the VT responder.
Any resp_xxxx.bin files with a size of 0 may be deleted. Resp_xxxx.bin files which have
non-zero sizes may be analyzed using ositrace (see Section 5.8.1 for more information).

The regular VT responder may now be restarted using the SYS$STARTUP:VT_START.COM
procedure.

The VT/LAT or VT/TELNET gateways may also be traced in a similar manner by copying
VTPAD.EXE to VT_LAT_GTWY.EXE or VT_TELNET_GTWY.EXE respectively.

The LAT/VT or TELNET/VT gateways may be traced by copying VTPAD.EXE to
LAT_VT_GTWY.EXE or TELNET_VT_GTWY.EXE respectively. However, the trace files produced
will be named init_xxxx.bin to reflect the fact that we are now acting as an initiator.

58

Chapter 5. Solving DECnet-Plus Application Problems

5.10. Reading Trace Files
Open systems transmit PCI and file data in the form of octet strings. For each component being
traced, the tracing utility logs the octets of PCI, file data, or both, sent or received by that component.
The trace utility transcribes the octets into a sequence of hexadecimal digits. For PCI data, the utility
also translates the data into ASN.1 (abstract-syntax notation). These translations correspond to
the PCI definition of the component's service primitives. PCI definitions are part of the protocol
specification of each FTAM or Virtual Terminal component.

You can compare tracing output to the corresponding PCI definition, to determine whether the
encoding of PCI data is correct and whether the parameter values are valid. You can also compare
the actual sequences of parameters with the valid sequences defined by the protocol. For information
about FTAM and VT components, see your FTAM and Virtual Terminal documentation.

5.10.1. Interpreting Trace Information
The readable file that the ositrace utility creates contains the following information about the
protocol data units (PDUs) for each traced layer (see the example in this section and in Appendix B):

1. A timestamp (day, date, and time) precedes the formatted textual output of the file that the trace
utility generates. The timestamp indicates when the trace started. Another timestamp that indicates
when the trace ended appears at the end of the file.

2. The time (hh:mm:ss) that the outbound or inbound PDUs were sent or received.

3. The direction of the PDUs: a left arrow (< -) indicates inbound PDUs and a right arrow (- >)
indicates outbound PDUs.

4. The layer for which the PDUs are being traced: FTAM, Virtual Terminal (VT), ACSE,
Presentation, or Session.

5. The hexadecimal dump of the PDUs formatted from left to right into eight columns of eight-
character (1 octet) sequences.

6. The textual translation of PCI data in ASN.1 notation (columns 1-72), followed by the first three
hexadecimal bytes of the hexadecimal sequence being described (columns 73-80).

Trace Example
 10:11:57.08 OSI trace started Wed Jan 30 10:11:57 1992

 10:11:58.20 –> Session
 0dff0148 05061301 00160102 14020002 33028080 34020103 c1ff0130 3180a080

 80010100 00a28081 02808082 020103a4 80308002 01010605 28c27b02 01308006
 02510100 00000030 80020103 060528c2 7b020230 80060251 01000000 00308002
 01050605 28c27b02 03308006 02510100 00000030 80020107 060528c2 7b020430
 80060251 01000000 00308002 01090606 2bce0f01 02023080 06025101 00000000
 30800201 0b060452 01000130 80060251 01000000 00000088 02060089 03054000
 61803080 02010ba0 7b6080a1 80060528 c27b0101 0000a280 06052bce 0f070100
 00a38002 01010000 be802880 020101a0 4da08082 01008302 03408403 05070085
 02058086 0100a780 4e0528c2 7b05014e 0528c27b 05024e05 28c27b05 034e062b
 ce0f0105 09000056 0776696e 63656e74 710a1908 6e69636b 73746572 00000000
 00000000 00000000 00000000
 connect-spdu 0d ff 01

 connect/accept-item 05 06

59

Chapter 5. Solving DECnet-Plus Application Problems

 protocol-options = NULL 13 01
 version-number = 2 16 01 02
 session-user-requirements = '0000000000000010'B 14 02 00
 (duplex functional unit)
 calling-ssap-identifier = 33 02 80
 called-ssap-identifier = 34 02 01
 user-data c1 ff 01

5.11. Correcting FTAM Application Problems
Do the following if you isolate the problem as an FTAM application problem:

Step Action
1 Check that the initiator ID (user name) is a valid identifier on the responder's

system.

For the FTAM responder, the initiator ID must be a valid user name for that
system. If the user name requires a password, it must be supplied as well.

2 Check that the filestore password is a valid account password for the user
name. For a FTAM responder, the filestore password must be the same as the
login password.

Not all FTAM vendors map the filestore password to the login password. If
using third-party FTAM products, check the appropriate documentation for
further information.

3 If an account field is being sent to the FTAM responder on an OpenVMS
system, check that the field is valid (0 to 8 characters).

4 On OpenVMS, check that the remote account specified by the initiator has
read and execute access to the responder account's login command file.

On OpenVMS systems, if there is no login command file, check that the
symbol LGICMD points at NL: (the null device).

5 On OpenVMS, check that the remote account specified by the initiator has
read and execute access to the responder command file (for example, osif
$responder.com).

6 Check that the protection on input directories and files allows remote reading.
7 Check that the protection on output directories allows remote writing.
8 Check the following in the local database file:

• For outbound connections, check that an alias is defined in the alias
database.

• Remember that aliases and their definitions are assumed to be all
uppercase on OpenVMS, because OpenVMS is not case-sensitive.

Because UNIX is case-sensitive, interoperability problems between
UNIX and OpenVMS may occur if you do not use mixed-case address
definitions carefully. Therefore, VSI recommends that you use only
uppercase address definitions for PSEL, SSEL, and TSEL when trying
to communicate between case-sensitive and case-insensitive operating
systems such as UNIX and OpenVMS.

60

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
• Make sure the local database entry specifies a correct AE-qualifier, AP-

title, PSEL, SSEL, TSEL, and NSAP. If the PSEL, SSEL, TSEL entries
are represented as ASCII characters, be sure the case is correct.

• Make sure that the NSAP, provider name, and template name are
consistent and valid. For example, be careful not to mix RFC 1006
specifications with OSI specifications.

5.12. Correcting FTAM File-Handling
Problems
This section contains suggestions for dealing with possible file-handling problems.

5.12.1. Checking Foreign Filename Formats
On OpenVMS systems, when specifying a foreign file name, you must enclose the name in double
quotation marks (" "), so RMS does not parse the name. Enclose the file name in double quotation
marks to preserve the case of the file name. It is best to ensure that all file names are in uppercase.

On UNIX systems, when specifying foreign file names, you must enclose the name in single quotation
marks (' ').

Be aware that case sensitivity may be an issue when transferring files between OpenVMS and UNIX
systems.

5.12.2. Correcting File Problems
If copied files appear to have extra characters, the remote FTAM implementation may be having
problems handling the ISO 8859 character set. You can identify this problem if you display a file and
see repeated escape sequences in the data. These escape sequences are the ISO 8859 character set
identifiers. The remote FTAM implementation should have handled these. Refer to the supplier of that
implementation for further information.

Other file problems may be related to the way the file was transferred. Problems can occur if the
requested format is unsupported. The FTAM implementation must convert the file to a supported
format before it can transfer it properly (see your FTAM management documentation). If an FTAM
file on an OpenVMS system file does not look correct, the software probably transferred it as an
FTAM-3 file, which is the default format.

Do the following to check FTAM file formats:

On OpenVMS Systems: On UNIX Systems:
Enter this command:

$ dir/application_protocol=ftam/
full filename

Enter this command:

% ols -A application-name::file

The displayed record tells you the format of the file, which can be:

• Stream – FTAM-1

• Variable Length – FTAM-2

61

Chapter 5. Solving DECnet-Plus Application Problems

• Undefined – FTAM-3

5.13. Correcting General FTAM Connection
Problems
If your system environment is set up correctly and a connection attempt fails, do the following:

Step Action
1 Check that the osak$server_v3.exe process (OpenVMS systems

only) or the ftam_listener process (systems only) is running. Do the
following:

• On OpenVMS systems, do one of the following:

• Enter the OpenVMS command show system and look for the
processes:

OSAK$SERVER_V3
OSAK$NETMAN

• Enter the following DCL command:

$ show process osak$server_v3.exe

If osak$server_v3.exe is running, a summary of the process
appears.

• On UNIX systems, enter the following command:

% ps axuw | grep ftam_listener

2 If necessary, start the osak$server_v3.exe process (OpenVMS only) or
the ftam_listener process (only) by doing one of the following:

• On OpenVMS systems, start the osak$server_v3.exe process
from a process with SYSPRV privileges by entering the following DCL
commands:

$ @sys$startup:osak$start.com
$ @sys$startup:osif$startup.com

• On UNIX systems, run the file /etc/osi_applstartup as root.
3 Invoke NCL and use the command show node to see if the OSI transport

software is running. For example:

ncl> show node 0 osi transport state

If OSI transport is running, NCL displays a message stating that the status
state equals on. For example:

Show Node 0 OSI Transport
 at 199201-10-15::53.63400 + 00:00 I 00.00000

Status
 State = On

62

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
If OSI transport is not running, NCL displays a message stating that the status
state equals off. For example:

Show Node 0 OSI Transport
 at 1992-01-10-15:41:53.63400 + 00:00 I 00.00000

Status
 State = Off

4 If OSI transport is not running, do one of the following:

• On an OpenVMS system, exit NCL and execute the OSI transport
startup command file sys$startup:osit$startup.com from an
account with SYSPRV. After restarting OSI transport, restart the OSAK
$SERVER_V3.EXE.

• On a UNIX system, exit NCL and execute the file /etc/
start_osi_transport.ncl as root.

5 Check that the underlying DECnet software is running. From a privileged
account, type the following at the NCL prompt:

ncl> show session control state

The state should be On.
6 If you want to make a connection over an X.25 or Internet network from an

OpenVMS system, you must have the X.25 software installed and running.

5.14. Correcting FTAM and Virtual Terminal
Connection Problems (UNIX Only)
If no error messages appear when you try to establish a connection but the connection attempt fails,
create an initiator trace for the command that failed, as described in Section 5.8.

Use the procedures in the following sections if errors appear.

5.14.1. Address in Use
If the message is Address in Use, do the following:

Step Action
1 Examine /etc/isoapplications for incorrect entries. Check that all

entries contain the appropriate components and delimiters.

If you find errors, correct them and retry the operation. If the file is correct,
go to step 2.

2 Check that another process is not listening on the same transport address. Do
the following:

a. Use either the ps axuw | grep ftam or ps axuw | grep vt
command to see if another process is running.

63

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
b. If no process is running, use the following NCL command to look for

descriptions of local transport selectors in use:

show osi transport * all

If any transport service access points TSAPs match the one that the
ftam_listener or vt_listener is trying to use, then the
ftam_listener or vt_listener must use a different one.

5.14.2. Network Is Unreachable
If the message is Network is unreachable, check that a listener/responder process is running
on the remote node that can accept your connection request. There may be no way to reach the remote
node.

Also, verify that the transport provider specified by the initiating entry is available on the responding
entity.

5.14.3. Connection Refused
If the message is Connection refused, the Transport layer received a disconnect from the
remote system. Retry the operation or specify a different remote node. You can also check a trace, if it
exists, for a diagnostic message that indicates why the remote system refused the connection.

5.14.4. Connection Timed Out
If the message is Connection timed out, the remote node did not respond to your connection
request. There may be no way to reach the remote node or no responder listening on the specified
address.

5.15. Correcting FTAM and Virtual Terminal
Responder Problems (OpenVMS Only)
Use the procedures in this section if an FTAM or VT responder on an OpenVMS system either
terminates unexpectedly or will not start.

5.15.1. Correcting Unexpected Termination Problems
Try the following if an FTAM or Virtual Terminal responder on OpenVMS systems terminates
unexpectedly:

Step Action
1 Examine the operator log for events prior to the failure. If indicated, change

system parameters.
2 If no error exists in the operator log, or if changing system parameters does

not correct the problem, perform a trace of the operation.
3 Check that there are no problems with the OSI transport provider (see

Chapter 7).

64

Chapter 5. Solving DECnet-Plus Application Problems

5.15.2. Correcting Responder Starting Problems
Try the following if an FTAM or Virtual Terminal responder on OpenVMS systems will not start:

Step Action
1 Use the DCL command show system to check that a responder is not

already running on the same node.

The application startup file usually prevents this from happening; check the
startup file to see if it was incorrectly modified.

2 Check the alias database to see if another application is using the same TSAP.
3 Check that there are no problems with the OSI transport provider (see

Chapter 7).

5.16. Correcting FTAM and Virtual Terminal
Responder Problems (UNIX Only)
Try the following if you have FTAM or Virtual Terminal responder problems on UNIX systems:

Step Action
1 If the responder does not start, check the /usr/adm/syslog.dated/*/

daemon.log file for errors that the ftam_listener or vt_listener
generated. If no errors exist, go to step 2.

2 Start the responder (using ftamd or ologind) at the terminal and use the
tracing option to generate a trace file.

3 Correct errors indicated by the trace file.
4 Make sure the addresses and transport options specified in the /etc/

isoapplications file are correct.

5.17. Correcting FTAM Environment Problems
(OpenVMS Only)
FTAM connections to remote systems can fail if the OpenVMS environment is not set up correctly. If
any connections fail, first check that the size of the sysgen parameter, maxbuf, is at least 2048.

If inbound connections fail, check the following items in your OpenVMS environment:

Step Action
1 Check the address database:

• Make sure a valid user name and password are specified for the local
application address.

• Make sure the AP-title, AE-qualifier, PSAP, SSAP, TSAP, and NSAP on
both the initiating and responding systems are correct and match.

2 Make sure the responder's default directory has write access and sufficient
space for writing log files.

3 Check the local account where the responder runs to see that:

65

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
• BYTLM is set to at least 20,000 bytes.

• The account allows network operation (NETMBX and TMPMBX
privileges).

• NETWORK is enabled for the account in AUTHORIZE.

• If a restricted account is used, an accessible login.com file exists, or
the symbol LGICMD points to NL: (the null device).

4 Check to see if maximum activity levels are being exceeded for networking
processes, transport connections, X.25 connections, and other processes.

5 Check the disk to make sure it:

• Has sufficient space to receive an inbound data transfer.

Use the FTAM command directory/app=ftam/size= all to
determine the blocks used and blocks allocated for a file on any FTAM
system on your open-systems network.

• Is not write-locked.

5.18. Correcting Target SAP Connection
Problems
Connections can fail if a problem with a specific service access point exists. The following procedures
describe how to correct problems in the OSI layers.

5.18.1. Correcting FTAM Physical and Data Link
Problems
Do the following to verify that the network topology can reach the remote system:

Step Action
1 On OpenVMS systems only, look at the DECnet OPCOM messages to check

that the remote system is available.

On UNIX systems only, check the /usr/adm/syslog.dated/*/
daemon.log file.

2 Check that the physical network wires are connected.

5.18.2. Correcting Network Connection Problems
Use NCL commands to do the following:

For Direct X.25 Access:

Step Action
1 Check that the X.25 address in use is correct:

66

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
• For inbound connection attempts, ensure that the source system uses

your DTE address and the appropriate subaddress or call value (if used).
Source systems would use the transport subaddress of your X.25 transport
template.

If Call User Data is used in place of a subaddress, ensure that the value
of the Call User Data is correct. Some systems do not send out Call User
Data by default.

• For outbound connection attempts, ask the target system manager to
verify the DTE address and transport subaddress that form the X.25
address in your OSI transport address.

Some systems require that Call User Data 03010100 be present to select
the ISO transport application at the target system. Ensure that the value of
the Call User Data, if used, is correct.

2 Check that both systems are using the agreed-upon call value for the network.
3 Check local DNIC usage to determine if it needs a leading zero (0) or one (1).
4 Check to see if international DNIC usage is always required.
5 See the X.25 problem-solving documentation for further assistance.

For Direct IEEE 802 Access:

Step Action
1 Check that the physical address in use is correct. Do the following:

• For inbound connection attempts, ensure that the remote system uses the
physical address for the Ethernet device that connects your system to the
IEEE 802 subnetwork shared by your systems.

• For outbound connection attempts, ask the target system manager to
verify the physical address that you are using in your OSI transport
address.

For Internet Access:

Step Action
1 Check that the NSAP addressing information is correct:

• Check that the specified transport provider is rfc1006.

• Check that the specified NSAP is a 4-byte Internet address.

• For inbound connection attempts, ensure that the remote system manager
is using a valid network service access point (NSAP) address in the iso
applications database.

• For outbound connection attempts, ask the system manager of the target
system to verify that the NSAP address specified in your OSI transport
address identifies the NSAP of the target system.

67

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
Check that the adjacency addressing is defined and is correct:
For X.25 subnetwork access:

• For inbound connection attempts, ensure that the adjacent system uses
your DTE address and the appropriate subaddress (if used). Adjacent
systems would use the transport subaddress of your X.25.

• For outbound connection attempts, ask the adjacent system manager
to verify the DTE address and Internet subaddress that form the X.25
address in your adjacency address.

• Check that both systems are using the agreed-upon call value for the
subnetwork.

2

For IEEE 802 subnetwork access:

• For inbound connection attempts, ensure that the adjacent system uses the
physical address for the Ethernet device that connects your system to the
IEEE 802 subnetwork shared by your systems.

• For outbound connection attempts, ask the adjacent system manager to
verify the physical address that you are using in your adjacency address.

• Check that the routing database is correct for the current configuration.

Use NCL to confirm that the target system is assigned the correct
adjacency address. Also, if other types of routing information are required
as indicated in your OSI transport management documentation, ensure
those values are correct.

Run an OSI transport trace to learn whether the Internet packets are
getting through. See your OSI transport documentation for further
information.

5.18.3. Correcting FTAM and VT Transport Problems
Do the following to correct transport problems:

Step Action
1 Check that the transport selectors for the initiator and responder match.

The transport selector is the right-hand selector in an upper-layer address.

On OpenVMS systems, display any upper-layer address defined for a
responder or initiator. For example:

• For inbound connections, use the NCL command show osak
application * paddress.

• For outbound connections, check the file sys
$system:isoapplications.dat.

On UNIX systems, check the /etc/isoapplications file.

68

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
2 Check the format of the TSAP value to see if it is hexadecimal or ASCII.
3 Make sure that timers are not causing a disconnect too quickly; for example,

the keepalive timer of the network service should be used.
4 Check that the correct transport template name is in use.
5 If you use Internet, check the addresses used and routing table entry.
6 If you use null Internet, check the OSI transport template to see if the inactive

area address supplied matches the routing circuit.
7 Look at the transport counters to see if the transport software is working. See

your DECnet-Plus management documentation for further information.

5.18.4. Correcting FTAM and VT Session Problems
(OpenVMS Only)
Do the following to correct FTAM and VT problems at the Session layer on OpenVMS systems:

Step Action
1 Check that the session selectors for inbound and outbound connections

match.

The session selector is the middle selector in an upper-layer address.

For inbound connections, if you need addressing information for the FTAM
responder, use the NCL command show osak application.

For outbound connections, check the file sys
$system:isoapplications.dat.

2 Check that the session versions of the two systems are compatible.

An FTAM responder can accept either version 1 or 2. If both versions are
proposed on an F-INITIALIZE indication, the responder chooses version 2.
By default, an FTAM initiator proposes version 2. However, you can override
the default by entering version 1 or versions 1 and 2 into the alias entry for a
given remote application.

To define the session version for an alias, edit the alias entry in sys
$system:isoapplications.dat.

3 Check whether the values used are hexadecimal or ASCII, and whether the
values are correct.

5.18.5. Correcting FTAM and VT Presentation
Problems (OpenVMS Only)
Do the following to correct connection problems at the Presentation layer:

Step Action
1 Check that the presentation selectors on the initiator and responder systems

match.

69

Chapter 5. Solving DECnet-Plus Application Problems

Step Action
The presentation selector is the left-hand selector in an upper-layer address.

For inbound connections, if you need addressing information for the FTAM
responder, use the NCL command show osak application.

For outbound connections, check the file sys
$system:isoapplications.dat.

2 Check if there are common syntaxes for ACSE-PCI, FTAM-PCI, FTAM-
FADU, unstructured binary, and unstructured text. FTAM uses the basic
encoding rules of a single ASN.1 type as its transfer syntax.

3 Check whether the values used are hexadecimal or ASCII, and whether the
values are correct.

5.19. Correcting Problems with Applications
Using OSAK
OSI application failures can indicate that a problem exists with their use of the OSI Applications
Kernel (OSAK) software. Check the application's documentation to determine if the application has
any dependencies on the OSAK software or uses the OSAK application programming interface.

Refer to the following documentation for more information about OSAK software and the OSAK
application programming interface:

• DECnet-Plus network management documentation

• OSAK Programming and Programming Reference documentation

• Documentation for any applications that use the OSAK software

5.19.1. Correcting Connection Problems
Do the following if an application that uses OSAK software has connection problems:

Step Action
1 Use the Common Trace Facility or the OSAK trace utility to get a transport

trace and examine the output for the following:

a. Check that a transport connection was established. There should be a
Connect Confirm (CC) transport protocol data unit (TPDU) in the trace.

b. If no CC TPDU exists, and the application uses the OSAK programming
interface, check that the called_aei parameter that the initiator supplies
matches the local address of the responder.

c. Check that the Data Transfer (DT) protocol data unit (PDU) containing
the upper-layer connect was received.

2 If possible, examine the application's log file to check that the local
application received the upper-layer connect.

3 Check that quotas were not exceeded.

70

Chapter 5. Solving DECnet-Plus Application Problems

5.19.2. Correcting Unexpected Termination Problems
Do the following if the application terminates unexpectedly:

Step Action
1 Check the OSAK event sink (OpenVMS only) or the NCL event sink (UNIX

only) for evidence of protocol errors.
2 Create a transport trace using the OSAK trace utility, with the Errors option

enabled.

If errors exist, report them to the originator of the PDU; this is the local
system for outbound messages and the remote system for inbound messages.
There can be errors in the PDU that tracing cannot detect, so you cannot
assume that the PDU is correct even if no errors are reported.

If no errors exist, check the lower layers of your network.

5.19.3. Correcting Programming Problems
Do the following for programming problems:

Step Action
1 Check that optional parameters are set to null.
2 Make sure you have sufficient workspace.
3 Check that you have allocated enough buffers.
4 Make sure that the application checks returned status information.

71

Chapter 5. Solving DECnet-Plus Application Problems

72

Chapter 6. Solving Session Control
Problems
This chapter describes how to isolate and correct Network Architecture (NA) application faults that
can be a result of a Session Control problem. NA application failures can also be a result of:

• Application-specific problems (refer to the application's documentation)

• Name service problems (see Section 6.10)

Topics In This Chapter
The topics in this chapter are:

• Underlying Components for Session Control (OpenVMS Only) (Section 6.1)

• Underlying Components for Session Control (UNIX Only) (Section 6.2)

• Symptoms of Session Control Problems (Section 6.3)

• Isolating Session Control Faults (Section 6.4)

• Correcting Unknown Application Problems (Section 6.5)

• Correcting Application Too Busy Problems (Section 6.6)

• Correcting Access Control Problems (Section 6.7)

• Correcting Insufficient Resource Problems (Section 6.8)

• Correcting Timed Out Problems (Section 6.9)

• Correcting Node Name Resolution Problems (Section 6.10)

• Examining the DECnet-Plus Naming Cache (OpenVMS Only) (Section 6.11)

6.1. Underlying Components for Session
Control (OpenVMS Only)
Figure 6.1 shows the direct underlying components that the Session Control software on OpenVMS
systems use. Use this information as a guide during fault isolation.

73

Chapter 6. Solving Session Control Problems

Figure 6.1. Underlying Components for Session Control (OpenVMS)

6.2. Underlying Components for Session
Control (UNIX Only)
Figure 6.2 shows the direct underlying components that the Session Control software on UNIX
systems use. Use this information as a guide during fault isolation.

74

Chapter 6. Solving Session Control Problems

Figure 6.2. Underlying Components for Session Control (UNIX)

6.2.1. References
Refer to your application's documentation if you determine that an application-specific problem
caused a failure. Refer to Section 6.10 if you determine that a name service problem caused a failure.

6.3. Symptoms of Session Control Problems
The symptoms in Table 6.1 indicate that the local system attempted to establish a connection to the
remote system, but a problem with the Session Control software, or with the naming information that
Session Control uses, prevented the requested operation from completing.

Table 6.1. Symptoms of Session Control Problems

Symptom Possible Problem See:
The address that the application
used does not match the data in
the Session Control application
database on the remote node.

Section 6.5Unknown application at remote
node or object is unknown at
remote node

You attempted to connect to the
wrong node.

Access control rejected Proxy access is not defined
correctly.

Section 6.7

75

Chapter 6. Solving Session Control Problems

Symptom Possible Problem See:
Node name validation on source
node failed or an invalid user
name or password was used.

Section 6.7.3

Application too busy The remote node is receiving too
many connection requests before
the application or the Session
Control software can process
them.

Section 6.6

Remote node is unreachable Incompatible tower information
exists for the source and
destination node.

Section 6.10

Session Control has insufficient
resources

Maximum number of available
ports are all in use.

Section 6.8

Local cache did not contain the
correct information and Session
Control took too long to retrieve
naming information from a
remote server.

Section 6.9 or Section 6.10

Outgoing or incoming request
timer is set too low.

Timed out

Server application does not
declare itself (for example,
on an OpenVMS system,
when the application used
IO$ACPCONTROL,
GET_CONNECTION or during
process creation).

Wrong information displayed or
wrong account accessed

Proxy entries on local node do
not match those on the remote
node and the system logs you in
to a default user account.

Section 6.7.2 or 6.7.1

Unable to obtain the address for
a node

The name service is not
available.

The name service search path is
not correctly set up.

Section 6.10

6.4. Isolating Session Control Faults
Session Control problems can be the cause of NA application failures that are not application specific.
Session Control problems can occur because of:

• Name service problems (see Section 6.10)

• Session Control entity problems

• Transport layer problems (see Chapter 7)

• Network layer problems (see Chapter 8)

76

Chapter 6. Solving Session Control Problems

Before trying any correction procedures, do the following to isolate theproblem to the appropriate
area:

Step Action
1 Try to establish a connection using a different application.

If the connection succeeds, an application-specific problem exists. Refer to
the documentation for the application that failed.

If the connection attempt fails, Session Control cannot complete the
connection request. Continue fault-isolation procedures to determine if
the problem is caused by the namespace operation, Session Control entity
problems, or a lower-layer problem.

2 Check whether the remote node is reachable. Use quick reachability or
loopback tests or trace the network path between the nodes. Or, try using a
different source node to connect to the remote node.

If the source node cannot reach the remote node, check the nodes in the path
to determine the problem.

If the remote node is reachable, go to the next step.
3 Attempt to connect to the remote node using the remote node's address.

If the connection succeeds, check the naming information that Session
Control uses. See Section 6.10.

If the connection fails, check the lower-layer operation on the local and
remote node (see Chapters 7 and 8).

6.4.1. Tools and Commands to Use

To: Use This Tool or Command:
Quickly confirm that remote node is reachable. set host or dlogin with node address. If test

succeeds, examine your DECdns namespace or
local database.

Confirm the remote node is reachable. Loopback tests, see Section 3.1.1
Examine the Session Control component. NCL Session Control commands
Check naming information. Trace facility, see Section 6.10

6.4.2. Fault-Isolation Methodology
Use Figure 6.3 as a guideline for isolating Session Control faults.

77

Chapter 6. Solving Session Control Problems

Figure 6.3. Fault-Isolation Methodology (Session Control)

6.5. Correcting Unknown Application
Problems
This type of message can appear if:

78

Chapter 6. Solving Session Control Problems

• The end-user specifications on the target system do not match the end-user specifications that the
application uses on the originating system.

• The file that an application invokes on an incoming request exists and the account using it cannot
execute the file.

Check that you (or the application) used the correct node name. If the correct node name was used, do
the following to fix this problem:

Step Action
1 Use the following NCL command to get information about applications that

activate an image file or command procedure when they receive incoming
requests (referred to as initiator applications):

ncl> show session control application * -
_ncl> all characteristics

2 Examine the display for the following information:

• Address – This is the application's object names or numbers.
number=XX indicates the object number; name=xxx indicates the
object = 0, with the specified name.

• User name – This is the account under which the application runs for
default access.

• Image name – This is the file that is the target for the connection.
3 Identify the applications that are daemons (referred to as declared

responders). Use one of the following NCL commands:

For OpenVMS systems:

• ncl> show session control port * all attributes, -
_ncl> with creation time > timestamp

• ncl> show session control port * all attributes, -
_ncl> with direction=incoming

For UNIX systems:

• ncl> show session control port * all attributes, -
_ncl> with creation time > timestamp

• ncl> show session control port * all attributes, -
_ncl> with direction=listening

4 Identify the local end user address. This address is the object name or number
of the application. Use the following NCL command:

ncl> show session control port * -
_ncl> local end user address

5 Check the following:

• The value of the Address attribute and the object name or number that the
originator of the incoming request used match these values on the remote
node.

79

Chapter 6. Solving Session Control Problems

Step Action
• The file indicated by the Image Name field:

• If the file does not exist, copy it from another location or reinstall the
application.

• If the account specified in the User Name field cannot access the file,
change the file's access so the account can use it.

• The value of the Local End User Address field and the object name or
number that the originator of the incoming request used match these
values on the remote node.

6.6. Correcting Application Too Busy
Problems
If you occasionally receive an application too busy problem, retry the operation after a short wait. If
you frequently receive this message, do the following:

Step Action
1 Refer to the application's documentation to determine if the application is

configured properly.
2 On UNIX systems: Check the maximum instance characteristic for the

application. Use the following NCL command:

ncl> show session control application -
_ncl> application-id all

If the maximum instances characteristic is equal to any value other
than 0, it may be set too low. Use the following NCL command to reset this
characteristic:

ncl> set session control application -
_ncl> application-id maximum instance value

6.7. Correcting Access Control Problems
Access control problems can occur if proxy access is not enabled correctly or if the software cannot
find or validate specified node names. Do the following to determine what type of access control
problem you have:

Step Action
1 Make sure the user name that you or an application use is defined in the

application or object database on the remote node.
2 Check to see if the failed application is checking for proxy access.

For OpenVMS systems, see Section 6.7.1. For UNIX systems, use an NCL
command similar to one of the following to look at the session control ports
in use:

ncl> show session control port * proxy requested, -
_ncl> with direction=listening

80

Chapter 6. Solving Session Control Problems

Step Action
If the proxy requested status is false, either the application did not
request proxy access or outgoing proxy on the remote node is not enabled.
Refer to the application's documentation or the following proxy access
correction procedures.

3 Check the session control tower maintenance database to ensure the node is
registered correctly. Use the following NCL command:

ncl> show node node-id session control tower -
_ncl> maintenance name all

You can use an asterisk (*) instead of the name to display information for all
nodes.

6.7.1. Correcting Proxy Access Problems (OpenVMS
Only)
Do the following to check the proxy access:

Step Action
1 Invoke the authorize utility and use the following command to check the

proxy account:

uaf> show/proxy *

2 If the proxy account is not set up correctly, use authorize commands to
reset the proxy account values.

3 If you cannot access the proxy account, check to see if Session Control
created an intrusion record for your client account on the target node. Issue
the following DCL command:

$ show intrusion

4 If login attempts exceed the set acceptable number of times for the system,
a break-in record will exist and the system may have disabled the account.
Check the account using the authorize utility to see if the account was
disabled.

6.7.2. Correcting Proxy Access Problems (UNIX Only)
Do the following to correct proxy access problems:

Step Action
1 Look at the Outgoing Proxy characteristic on the originating node (client

system). Use the following NCL command:

ncl> show session control outgoing proxy

2 If the Outgoing Proxy characteristic on the originating node is FALSE, use
the following NCL command to change it to TRUE:

ncl> set session control outgoing proxy true

3 Look at the Incoming Proxy characteristic on the target node. Use the
following NCL commands:

81

Chapter 6. Solving Session Control Problems

Step Action
ncl> show session control incoming proxy
ncl> show session control application
_ncl> application-id incoming proxy

4 If the Incoming Proxy characteristic on the target node is set to FALSE, use
the following NCL commands to change it to TRUE:

ncl> set session control incoming proxy true
ncl> set session control application -
_ncl> application-id incoming proxy true

5 Check that Session Control Proxy entities are defined correctly. Use the
following NCL command:

ncl> show session control proxy name -
_ncl> all characteristics

Look at the following characteristics:

• Target user – Should specify a valid account on the target system.

• Applications – If empty, any application can use the proxy. If applications
are listed, only those applications can use the proxy.

• Type – If explicit, the originating system must specify a target user name
that matches the target name of the proxy entry.

If default, the originating system does not need to specify a target user
name.

• Source end users – Must specify the source node and user name that
matches the source node and user name on the originating system.

6 If proxy entry on remote node is not defined correctly, modify existing proxy
entry. Use NCL commands similar to the following:

ncl> set session control proxy -
_ncl> simple-name target user latin1-string, -
_ncl> type default

ncl> set session control proxy simple-name -
_ncl> source end users -
_ncl> {[Node=node-id,End User=address]}

7 If you need to allow more than one end user to use the proxy entry, add
additional source end-user information. Use the following NCL command:

ncl> add session control proxy simple-name -
_ncl> source end users -
_ncl> {[node =node-id, EndUser=id]}

6.7.3. Correcting Node Name Validation Problems
A failure occurring when the remote system attempts to validate a node name can cause an access
control problem. Do the following:

82

Chapter 6. Solving Session Control Problems

Step Action
1 Check that the information in the namespace is correct (see your naming

service documentation). Use the cdi$trace program on the destination
system to obtain additional information (see Section 6.10.1).

2 If a Phase IV system cannot connect to a DECnet-Plus system, and the
DECnet-Plus system is using DECdns:

a. Use the decnet_register tool to check that the backtranslation soft
links exist.

b. Check that the tower maintenance update is succeeding. Use the
following NCL command:

ncl> show node node-id session control tower -
_ncl> maintenance fullname all status

If the last failure reason status attribute shows no error, check
that the namespace is being updated correctly (refer to your DECdns
documentation).

3 Make sure that the correct protocol towers information exists for the Node
module on the local system.

4 Check that the node name in the synonym directory is correct.

6.8. Correcting Insufficient Resource
Problems
Do the following if you have insufficient Session Control resource problems on a local or remote
node:

Step Action
1 Determine if the remote node is a Phase IV system or DECnet-Plus system.
2 If the problem occurs on a Phase IV system, use NCP to examine the

maximum links (or maximum alias links). Use the following command:

ncp> tell node-id show executor characteristics

If the problem occurs on a DECnet-Plus system, use NCL to look at the
Session Control ports. Use the following command:

ncl> show session control port * all

3 Look at links or ports currently in use on the remote system. You can increase
the links if necessary. Look at the link activity and the operation of the
application to determine if you need more links or ports. Otherwise, examine
the application operation to ensure it is configured properly.

6.9. Correcting Timed Out Problems
If you receive occasional timed-out errors, it is possible that Session Control had to take extra time to
locate a specified node address. In this case, retry the failed operation. If you receive frequent timed-
out errors, do the following:

83

Chapter 6. Solving Session Control Problems

Step Action
1 If making a connection to an OpenVMS system, see if the complete

login.com file is executed. If the remote system executes the complete
login.com file when it receives a connect request, edit the file so only the
necessary command lines execute.

If the login.com file is not causing a problem, go to step 2.
2 Look at the incoming and outgoing request timer values. Use the following

NCL command:

ncl> show session control all characteristics

3 If the timer values seem too low, reset the values. Use NCL commands
similar to the following:

ncl> set session control incoming timer seconds

6.10. Correcting Node Name Resolution
Problems
This section describes how to monitor DECnet-Plus node name and address resolution and search path
processing.

During DECnet-Plus configuration, the system administrator sets up one or more name services on
each node. This setup procedure includes generation of an NCL startup script that contains the name
service search path information for the node.

The name service search path describes the following information:

• The order in which the name services are to be searched for node name and address information

• One or more naming templates for each name service to determine how DECnet-Plus should
interpret abbreviated node names entered by users

For more information on name service configuration and search paths, refer to your DECnet-Plus
installation and configuration guides.

For more information on DECdns, refer to VSI DECnet-Plus for OpenVMS DECdns Management
Guide.

6.10.1. Monitoring Search Path Processing (OpenVMS
Only)
You can use either the Common Trace Facility or the cdi$trace program to obtain naming trace
information.

Use the following command to invoke the Common Trace Facility:

$ Trace Start "SESSION CDI *"

Including the CDI parameter restricts trace facility output to node name and address resolution
messages.

Use the following command to run cdi$trace, a program located in SYS$SYSTEM. For example:

84

Chapter 6. Solving Session Control Problems

$ run sys$system:cdi$trace

You can use the following procedure to redirect cdi$trace output to a file:

1. Define a DCL foreign command symbol:

$ cdi$trace == "$cdi$trace"

2. Specify the name of the file to contain the cdi$trace output:

$ cdi$trace trace.log

The output file may occasionally be missing the last few records of the trace. This is a known
problem.

Although cdi$trace has known problems when run during a LAT terminal session (on an LT
device), a workaround is to issue the DCL spawn command first.

6.10.2. Tracing Node Name Resolution Problems (UNIX
Only)
You can trace DECnet-Plus node name and address resolution and search path processing on UNIX
systems by setting the environment variable CDITRACE to a non-zero number before using DECnet-
Plus applications. For example, > setenv CDITRACE 2

6.10.3. Displaying Search Path Information
Do the following to display the forward translation (node name to address) and backtranslation
(address to node name) search paths for a system:

To: Use This Tool or Command:
Display the forward translation search path. ncl> show session control naming -

_ncl> search path

Display the backtranslation search path. ncl> show session control
 backtranslation -
_ncl> search path

6.10.4. Identifying Namespace Consistency Problems
Using the decnet_register tool, you can verify that the reverse address mapping links and the
synonym links for a node are set up properly in a name service.

The following decnet_register command reads the information for a node from a name service,
checks the information for consistency, and prints messages describing any inconsistencies:

decnet_register> show node node-id full

6.11. Examining the DECnet-Plus Naming
Cache (OpenVMS Only)
DECnet-Plus uses an in-memory naming cache to improve performance of name and address
resolution for all supported name services. This naming cache supersedes the existing DECdns cache
for storage of name and addressing information.

85

Chapter 6. Solving Session Control Problems

DECnet-Plus uses this naming cache rather than the DECdns cache, for name and address resolution
requests for all three name services: DECdns, Local, and DNS/BIND.

The DECdns cache still exists and DECnet-Plus continues to use it to resolve the special namespace
nicknames:, local:, and domain:. The prefixes local: and domain: on a node full name,
indicate to DECnet-Plus the name service where the name and addressing information is stored.

Note that the DECdns cache continues to exist. Applications other than DECnet-Plus (for example,
DFS) that use DECdns directly will continue to use the existing DECdns cache.

6.11.1. Managing the Naming Cache
Using NCL commands, you can manage two naming cache parameters, the checkpoint interval and
the timeout period, and flush entries from the in-memory naming cache.

Refer to your network management guide for information on managing the in-memory naming cache.

6.11.2. Dumping the Naming Cache
Use the following procedure to dump the contents of the naming cache:

1. Checkpoint the cache to disk. One way to force a checkpoint is by setting the checkpoint interval.
For example:

$ MCR NCL Set Session Control Naming Cache Checkpoint Interval 8:0:0

For improved performance, CDI checkpointing is deferred for up to 15 minutes after a checkpoint
request. Wait to examine the file until the checkpoint actually occurs. If you monitor the CDI
activity with cdi$trace, you will see the checkpoint occur.

2. Dump the on-disk checkpoint file by running cdi_cache_dump, a program located in SYS
$SYSTEM.

For example:

$ run sys$system:cdi_cache_dump

Refer to your network management guide for information on managing the in-memory naming cache.

86

Chapter 7. Solving Transport
Problems
If you determine that an application failure is neither an application-specific, Session Control,
or naming service problem, the next area to examine is the Transport layer. For the DECnet-Plus
product, this means a problem could exist with either the OSI transport or Network Service Protocol
(NSP) software.

Topics In This Chapter
The topics in this chapter are:

• Underlying Components (OpenVMS Only) (Section 7.1)

• Underlying Components (UNIX Only) (Section 7.2)

• Symptoms of Transport Problems (Section 7.3)

• Isolating Transport Layer Problems (Section 7.4)

• Correcting Connection Problems (Section 7.5)

• Correcting OSI Transport Over CLNS Connection Problems (Section 7.6)

• Correcting OSI Transport Over CONS (X.25) Connection Problems (Section 7.7)

• Troubleshooting RFC 1006 (Section 7.8)

7.1. Underlying Components (OpenVMS Only)
Figure 7.1 shows the direct underlying components that the NSP and OSI transport components use
on OpenVMS systems. Use this information as a guide when isolating transport problems.

87

Chapter 7. Solving Transport Problems

Figure 7.1. Underlying Components (OpenVMS)

7.2. Underlying Components (UNIX Only)
Figure 7.2 shows the direct underlying components that the NSP and OSI transport components use
on DECnet-Plus systems. Use this information as a guide when isolating transport problems.

88

Chapter 7. Solving Transport Problems

Figure 7.2. Underlying Components (UNIX)

7.3. Symptoms of Transport Problems
If attempts to connect to a remote node fail or time out and you cannot find any problems in the upper
layers, it is possible that a Transport layer problem is the cause of the failure.

7.4. Isolating Transport Layer Problems
If you cannot isolate an application failure at the Session Control layer, the problem could be at the
Transport layer. Or, the problem could exist at the Network layer, but examining the Transport layer
provides you with information that will help you isolate the problem in the Network layer.

7.4.1. Tools to Use
Use the following tools to isolate Transport layer problems:

Tool And Refer To:
NCL commands for the NSP and OSI transport
modules

NCL reference documentation

dts/dtr tests, with /transport qualifier
(DECnet-Plus)

Chapter 3

Common Trace Facility DECnet-Plus Common Trace Facility (CTF) Use

89

Chapter 7. Solving Transport Problems

7.4.2. Fault-Isolation Methodology
Use Figure 7.3 as a guideline for isolating Transport layer problems.

Figure 7.3. Fault-Isolation Methodology (Transport)

7.5. Correcting Connection Problems
If it is unclear where transport connection problems are occurring, look at the related ports and NSAP
counters. You can also use the Common Trace Facility.

7.5.1. Checking Ports
If you check OSI transport and NSP ports, you can see whether logical links between systems are
being established. Do the following to check the ports:

Step Action
1 Disable the Transport layer software that you are not checking. Use one of

the following NCL commands:

ncl> disable OSI transport
ncl> disable NSP

If you disable either transport software, any connections that are currently
using it are disconnected. The user can reconnect to the remote system

90

Chapter 7. Solving Transport Problems

Step Action
(which then uses the other transport) if it supports the other transport and
there are no other transport problems.

2 Initiate a connection to the target system.
3 Use the following NCL command to identify the transport port information

for the Session Control ports in which you are interested (depending on
which end of the connection you are checking, you specify direction as
incoming or outgoing):

ncl> show session control port * all status, with -
_ncl> direction=value

4 Display the information for the appropriate Transport layer port with one of
the following NCL commands:

ncl> show NSP port port-id all attributes
ncl> show OSI transport port port-id all attributes

5 Check that the local NSAP and remote NSAP information used in the
connection refers to the expected systems. Another cause of failure is
incompatible NSAPs. A DECnet-Plus system needs a Phase-IV compatible
address to allow communication between the DECnet-Plus system and a
Phase IV system.

6 Examine counter information (such as user PDUs received or user PDUs
sent) to determine if port is actively in use.

7 Reenable the transport software that you disabled. If you could not identify
any connection problems, repeat this procedure with the transport software
that you previously disabled.

7.5.2. Checking NSAP Counters
Do the following to get information about connections between two systems:

Step Action
1 Determine the local NSAPs for the system you want to examine. Use one of the

following NCL commands:

ncl>show nsp local nsap * name
ncl>show osi transport local nsap * name

Each transport can have up to three NSAPs.
2 Determine the remote NSAPs for the system you want to examine. You need to

examine all combinations of local and remote NSAPs. Use one or both of the following
NCL commands:

ncl> show nsp local nsap nsap-address -
_ncl> remote nsap * name
ncl> show osi transport local nsap nsap-address -
_ncl> remote nsap * name

3 Check the counters on the source system. Use one of the following NCL commands:

ncl> show nsp local nsap nsap-address -
_ncl> remote nsap nsap-address all attributes

91

Chapter 7. Solving Transport Problems

Step Action
ncl> show osi transport local nsap nsap-address -
_ncl> remote nsap nsap-address all attributes

4 Try to establish a connection to the target system. If you cannot connect to the target
system, check the remote system or try to reach the remote system from a different
node.
Check the counters on the source system.
If: Then:
The Connects Sent counter increments, the
source node initiated a connect request to
the target node.

Do one or both of the following:

• Check the target node for incoming
connections. See step 6 of this
procedure.

• A network problem can exist. See
Chapter 8.

5

The Connects Sent counter does not
increment, either a problem exists on
the source system which prevents the
system or application from attempting the
connection, or a naming service problem
exists.

Do one of the following:

• Check the application.

• Check naming service operation. See
your naming service documentation.

If the source node is sending outgoing connect requests, check the counters on the
target system.
If: Then:
The Connects Received counter increments
but connection fails, there is a problem on
the target node.

Examine the remote node to determine the
problem.

6

The Connects Received counter does not
increment, a network problem may exist on
either system that prevents the connections.

Do any of the following:

• Perform network reachability tests (see
Chapter 3).

• Trace a path from the source node
to the target node to determine if
all systems in the expected path are
available.

• Check the appropriate routing circuits
and data links (see Chapter 8).

7 If you disabled transport entities, re-enable them, after checking the transport
connection, with one of the following NCL commands:

ncl> enable nsp
ncl> enable osi transport

92

Chapter 7. Solving Transport Problems

7.6. Correcting OSI Transport Over CLNS
Connection Problems
Do the following to correct transport problems if you are running OSI transport over CLNS
connections:

Step Action
1 Check the outgoing OSI connection. Use the following NCL command to

identify the OSI transport template and network service (CONS or CLNS):

ncl> show osi transport template * all attributes

2 Check to see if the source node is sending connect requests. Do the
following:

• Use CTF to trace OSI transport for outgoing connect requests.

• Check the OSI transport local and remote NSAP counters before and after
attempting the connection.

If connect requests are not being sent, check the application or the Network
layer of the source node.

If connect requests are being sent, go to the next step in this procedure.
3 Check to see if the destination node is receiving incoming connect requests:

• Use CTF to trace OSI transport for incoming connect requests.

• Check OSI local and remote NSAP counters for connects received before
and after the connect attempt.

If incoming requests are not received, trace the network path between the
source and destination node, and check the appropriate routing circuits or
data links.

If incoming requests are received, go to the next step in this procedure.
4 Check the remote node to determine if an application on the destination node

is available to receive connect requests.

a. For OSI applications such as FTAM or Virtual Terminal, refer to the
application documentation to check that the application is defined
correctly.

b. For other applications, use the NCL command show session
control application application-id all. For example,
to verify the application definition for system operations on an OpenVMS
system, enter the following command:

ncl> show session control application fal all

Check that the node synonym characteristic is set to true, the image
name is sys$system:fal.exe, and the address is 17. If these
values are incorrect, use NCL commands to correct them.

93

Chapter 7. Solving Transport Problems

7.7. Correcting OSI Transport Over CONS
(X.25) Connection Problems
Do the following to correct transport problems if you are running OSI transport over CONS
connections:

Step Action
1 Check that the source node is using a CONS template. Use the following

NCL command:

ncl> show osi transport template * all attributes

2 Check that the CONS template exists. Use the following NCL command:

ncl> show x25 access template template_id -
_ncl> all characteristics

If the template does not exist, create the appropriate template (see your
DECnet-Plus network management documentation).

If the template does exist, go to the next step.
3 Check to see if the source node is sending connect requests. Do one of the

following:

• Use CTF to trace OSI transport for outgoing connect requests.

• Look at the OSI transport local and remote NSAP counters before and
after attempting the connection.

If connect requests are not being sent, check the application or the network
layer of the source node. See your X.25 documentation for information.

If connect requests are being sent, go to the next step in this procedure.
4 Check to see if the destination node is receiving incoming connect requests:

• Use CTF to trace OSI transport for incoming connect requests.

• Look at the OSI transport local and remote NSAP counters for connects
received before and after the connect attempt.

If incoming requests are not received, trace the network path between the
source and destination node and check the appropriate routing circuits or data
links.

If incoming requests are received, go to the next step in this procedure.
5 Determine if an application on the destination node is available to receive

connect requests. Do the following:

• For OSI applications such as FTAM or Virtual Terminal, refer to the
application documentation to check that the application is defined
correctly.

94

Chapter 7. Solving Transport Problems

Step Action
• For other applications, use the NCL command show session

control application application-id all. For example, to
verify the application definition for system operations on a UNIX system,
enter the following command:

ncl> show session control application fal all

Check that the node synonym characteristic is set to true, the
image name is usr/sbin/fal, and the address is number=17.
If these values are incorrect, use NCL commands to correct them.

7.8. Troubleshooting RFC 1006
Some general techniques for RFC 1006 troubleshooting include:

• Run the rfc1006d daemon in -debug mode to obtain printed information messages about the
daemon's activities.

• Use the example programs to help you isolate the application behavior that is causing the problem.
Use them to test RFC 1006 connectivity with a remote node or the local node.

• During RFC 1006 application debugging, use the example programs as a way to test your
assumptions about the behavior of XTI for RFC 1006 and to supplement the documentation.

RFC 1006 is layered on TCP/IP. Refer to your TCP/IP operational information for details.

7.8.1. Common Problems
While troubleshooting, you may encounter these problems:

• rfc1006d appears to exit as soon as you run it

Note that rfc1006d obeys standard UNIX daemon conventions;therefore, you will see a shell
prompt immediately after running the program, even if rfc1006d is still running, because
rfc1006d will run itself as a background process even if not explicitly directed to do so.

To see if it is still running, use this command:

ps -aef | grep rfc1006d

If you start an rfc1006d process while another rfc1006d is already running, an error message
will be written into the syslog file. The number in square brackets is the process ID. The
following is an example of such an error message:

Jul 20 16:25:12 itsdoa rfc1006d[408]: t_bind: errno=Address already in
 use,
t_errno=System error

• rfc1006d is not running

Under normal conditions, rfc1006d is started up at system boot time by a shell script named
/sbin/rc3.d/S28.70rfc1006. Make sure that script is present. Run it and see whether
rfc1006d stays running. Check the system log file for error messages from rfc1006d. (Check
both daemon.log and kern.log.)

95

Chapter 7. Solving Transport Problems

• Client cannot connect to server

Determine if the remote node can be reached by any TCP application. If it cannot, use TCP/IP
network troubleshooting techniques.

If the remote node can be reached by a TCP application, make sure that the remote RFC 1006 has
a daemon running and listening to the TCP port to which the local node is connected. This port
should be port 102 under normal conditions.

Next, make sure that the server application is running and listening for the TSAP-ID in the client's
destination RFC 1006 address.

• Client gets TSYSERR value in t_errno variable and ENETDOWN in errno variable

This error is returned by the kernel to the RFC 1006 application whenever the rfc1006d
daemon dies or is not running. Verify that the rfc1006d daemon is running. The TSYERR and
ENETDOWN symbols are defined in the <xti.h> and <errno.h> include files respectively.

• Connections hang

See if the RFC 1006 kernel is having trouble getting buffer space. You can do this with the
command:

dbx -k /vmunixdbx) p r1006_allocb_failures0dbx)

This value is normally zero. If it is not zero, either a large number of concurrent RFC 1006
sessions or competition with other streams applications for kernel streams buffer space could be
the problem.

• XTI RFC 1006 application gets TSYSERR value in t_errno variable and EPROTO value in
errno variable

This means that a protocol error was detected by RFC 1006. A protocol error is an unexpected
behavior by either the network or the remote application. An error message containing information
about the protocol error should have been logged in the system log file. Forward this information
to VSI, along with a method of reproducing the problem or a precise description of what was
going on when the problem happened. The TSYERR and EPROTO errors are defined in the
<xti.h> and <errno.h> include files respectively.

96

Chapter 8. Solving Network Layer
Problems
This chapter describes how to use routing circuit and data link information to isolate and correct
simple DECnet-Plus network layer problems.

Topics In This Chapter
The topics in this chapter are:

• Underlying Entities (OpenVMS Only) (Section 8.1)

• Underlying Entities (UNIX Only) (Section 8.2)

• Symptoms of Network Layer Problems (Section 8.3)

• Isolating Network Layer Problems (Section 8.4)

• Finding Underlying Entities (Section 8.5)

• Correcting Configuration Problems (Section 8.6)

• Correcting Connectivity Problems (Section 8.7)

8.1. Underlying Entities (OpenVMS Only)
To isolate problems at the Network layer, you need to be able to identify the data link entities that the
Routing layer uses and the physical entities associated with the data link entities.

Figure 8.1 illustrates the users of the data links that you find in a DECnet-Plus for OpenVMS system.

97

Chapter 8. Solving Network Layer Problems

Figure 8.1. Underlying Entities (OpenVMS)

8.2. Underlying Entities (UNIX Only)
To isolate problems at the Network layer, you need to be able to identify the data link entities that the
Routing layer uses and the physical entities associated with the data link entities.

Figure 8.2 illustrates the users of the data links that you find in a DECnet-Plus for UNIX system.

98

Chapter 8. Solving Network Layer Problems

Figure 8.2. Underlying Entities (UNIX)

8.3. Symptoms of Network Layer Problems
The symptoms in Table 8.1 indicate that a routing-circuit or data link problem exists.

Table 8.1. Symptoms of Network Layer Problems

Symptom Possible Problem See
Entities were not available when
tracing a path between a routing
circuit and the physical device.

One or more of the entities had a
State characteristic set to off.

An error appeared when you
tried to enable an entity.

Configuration Section 8.6

An application failed but no
errors were found in the upper
layers

Configuration or connectivity Section 8.6 or 8.7

The configuration is correct but
the routing circuit does not work

Connectivity Section 8.7

99

Chapter 8. Solving Network Layer Problems

8.4. Isolating Network Layer Problems
If you think you have a Network layer problem, first check the physical connections between systems
before you examine routing circuits and their underlying entities.

8.4.1. Tools to Use
Use NCL commands to check routing circuits in the Network layer.

8.4.2. Fault-Isolation Methodology
Use Figure 8.3 as a guideline when you isolate circuit connectivity and configuration faults. The
following sections in this chapter describe related correction procedures.

Figure 8.3. Fault-Isolation Methodology (Circuit Connectivity)

8.5. Finding Underlying Entities
To isolate routing circuits and data link problems in the Network layer, you need to be able to identify
the underlying entities for specific routing circuits.

For each routing circuit type, there is a corresponding data link entity displayed with the set of circuit
characteristics. The X.25 Protocol module provides information about the associated data link entities
for X.25 circuits. Refer to your NCL and X.25 documentation for more details about X.25 circuits.

100

Chapter 8. Solving Network Layer Problems

8.5.1. Finding the Underlying Entities for HDLC
Circuits
If you know the routing circuit ID, you can identify the associated underlying entities, including the
physical device entity by doing the following:

Step Action
1 Set the NCL default entity to the node whose circuits you want to check.

If you cannot reach a remote node over the network, log into that system
directly to check the circuits.

2 Find the data link entity for the routing circuit that you want to check. Use
the following NCL command:

ncl> show routing circuit circuit-id -
_ncl> data link entity

3 Examine the physical line characteristic of the data link entity module. Use
the following NCL command:

ncl> show hdlc link link-name logical station

4 Examine the physical device entity to identify the communications device.
Use the following NCL command:

ncl> show modem connect line line-id -
_ncl> communications port

8.5.2. Finding the HDLC Circuits for a Physical Device
If you know the physical device entity, you can identify the associated routing circuit by doing the
following:

Step Action
1 Find the Modem Connect entity connected to the physical device. Use the

following NCL command:

ncl> show modem connect line * comm port

2 Examine the Modem Connect data port entity for the communications port.
Use the following NCL command:

ncl> show modem connect data port * all status

3 Examine the HDLC port entity's attributes for one that contains the same
client as displayed in the previous step. The client characteristic indicates the
routing circuit. Use the following NCL command:

ncl> show HLDC port * all status

8.5.3. Finding the Underlying Entities for DDCMP
Circuits (OpenVMS Only)
If you know the routing circuit ID, you can identify the associated underlying entities, including the
physical device entity by doing the following:

101

Chapter 8. Solving Network Layer Problems

Step Action
1 Set the NCL default entity to the node whose circuits you want to check.

If you cannot reach a remote node over the network, log into that system
directly to check the circuits.

2 Find the data link entity for the routing circuit that you want to check. Use
the following NCL command:

ncl> show routing circuit circuit-id -
_ncl> data link entity

3 Examine the physical line characteristic of the data link entity module. Use
the following NCL command:

ncl> show ddcmp link link-name physical line

4 Examine the physical device entity to identify the communications device.
Use the following NCL command:

ncl> show modem connect line line-id comm port

8.5.4. Finding the DDCMP Circuits for a Physical
Device (OpenVMS Only)
If you know the physical device entity, you can identify the associated routing circuit by doing the
following

Step Action
1 Find the Modem Connect entity connected to the physical device. Use the

following NCL command:

ncl> show modem connect line * comm port

2 Examine the Modem Connect entity for the communications port. Use the
following NCL command:

ncl> show modem connect data port * all status

3 Examine the DDCMP port entity's attributes for the client characteristic.
The client characteristic indicates the routing circuit. Use the following NCL
command:

ncl> show DDCMP port * all status

8.5.5. Finding the Underlying Entities for CSMA-CD
Circuits
If you know the routing circuit ID, you can identify the associated underlying entities, including the
physical device entity by doing the following:

Step Action
1 Set the NCL default entity to the node whose circuits you want to check. If

you cannot reach a remote node over the network, you need to log into that
system directly to check the circuits.

2 Find the data link entity. Use the following NCL command:

102

Chapter 8. Solving Network Layer Problems

Step Action
ncl> show routing circuit circuit-id -
_ncl> data link entity

3 Examine the communication port characteristic of the data link entity to
identify the communications port. Use the following NCL command:

ncl> show csma-cd station station-id comm port

8.5.6. Finding the CSMA-CD Circuit for a Physical
Device
If you know the physical device entity, you can identify the associated routing circuit by doing the
following:

Step Action
1 Find the CSMA-CD station entity connected to the physical device. Use the

following NCL command:

ncl> show csma-cd station * comm port

2 Examine the CSMA-CD port entity's attributes to find the routing circuit. Use
the following NCL command:

ncl> show csma-cd port * client,station

8.5.7. Finding the Underlying Entities for FDDI Circuits
If you know the routing circuit ID, you can identify the associated underlying entities, including the
physical device entity by doing the following:

Step Action
1 Set the NCL default entity to the node whose circuits you want to check.

If you cannot reach a remote node over the network, log into that system
directly to check the circuits.

2 Find the data link entity for the routing circuit that you want to check. Use
the following NCL command:

ncl> show routing circuit circuit-id -
_ncl> data link entity

3 Examine the physical port characteristic of the data link entity to identify the
physical port. Use the following NCL command:

ncl> show fddi station station-id -
_ncl> communication port

8.5.8. Finding the FDDI Circuit for a Physical Device
If you know the physical device entity, you can identify the associated routing circuit by doing the
following:

Step Action
1 Find the FDDI station entity connected to the physical device. Use the

following NCL command:

103

Chapter 8. Solving Network Layer Problems

Step Action
ncl> show fddi station * -
_ncl> communication port

2 Examine the FDDI port entity's attributes to find the routing circuit. Use the
following NCL command:

ncl> show fddi port * client

8.5.9. Finding the Underlying Entities for Token Ring
Circuits (UNIX Only)
If you know the routing circuit ID, you can identify the associated underlying entities, including the
physical device entity by doing the following:

Step Action
1 Set the NCL default entity to the node whose circuits you want to check.

If you cannot reach a remote node over the network, log into that system
directly to check the circuits.

2 Find the data link entity for the routing circuit that you want to check. Use
the following NCL command:

ncl> show routing circuit circuit-id -
_ncl> data link entity

3 Examine the physical port characteristic of the data link entity to identify the
physical port. Use the following NCL command:

ncl> show token ring station station-id -
_ncl> communication port

8.5.10. Finding the Token Ring Circuit for a Physical
Device (UNIX Only)
If you know the physical device entity, you can identify the associated routing circuit by doing the
following:

Step Action
1 Find the Token Ring station entity connected to the physical device. Use the

following NCL command:

ncl> show token ring station * communication port

2 Examine the Token Ring port entity's attributes to find the routing circuit.
Use the following NCL command:

ncl> show token ring port * client, station

8.6. Correcting Configuration Problems
If you suspect there is a routing circuit configuration problem, check the routing circuit's state. If
state=off, use the NCL command enable to set the state to on.

104

Chapter 8. Solving Network Layer Problems

If: Then Do This:
Error appears Check the characteristics of the data link entity associated with the

routing circuit.
No error appears Check that the routing circuit state remains on.

For HDLC circuits, if the state does not remain on, the system should
generate an event indicating why.

8.6.1. Correcting DDCMP (OpenVMS Only) and HDLC
Data Link Configuration Problems
Do the following to correct problems with DDCMP or HDLC data links (only OpenVMS on Alpha
systems support DDCMP entities):

1. Check the state of the appropriate link and logical station entities. Use the NCL commands
similar to the following (use ddcmp instead of hdlc only when checking DDCMP entities for
OpenVMS):

ncl> show hdlc link link-id state

ncl> show hdlc link link-id logical station station-id

2. If the state=off, use the enable command to change the state to on.

If: Then Do This:
Error appears Check the characteristics of the entity indicated in the error message.
No error appears Check that the state remains on.

For HDLC circuits, if state does not remain on, check the Modem
Connect module.

3. If the state=on, check and record the value of the protocol state attribute of the local
station entity.

If Attribute Value Is: Then:
Running All devices and entities appear to be operating properly.
Starting or Initializing The data link is attempting to connect with the remote system. If the

link remains in this state for a significant amount of time, it could be
that the data being transmitted is not received by the remote node. This
indicates you have a connectivity problem.

Halted or Inoperative One of the related entities is disabled. Check the states of the related
entities.

Error The threshold number of attempts to synchronize the link was reached.
Check the counters for the logical station entity.

8.6.2. Correcting CSMA-CD Data Link Configuration
Problems
Do the following to correct CSMA-CD data link configuration problems:

105

Chapter 8. Solving Network Layer Problems

Step Action
1 Check that the CSMA-CD station exists. Use the following NCL

command:

ncl> show csma-cd station station-id state

2 If the device does not exist, issue the appropriate command to create the
device (see your installation documentation).

If an error appears when you try to create the device, check the entity
specified in the message.

3 If the device does exist, check the entity's state.

If the state is off, enable the device.

If the state is on, and the data link still does not operate correctly, the cause is
most likely a connectivity problem.

8.7. Correcting Connectivity Problems
If your configuration seems correct but the routing circuit does notwork, it is possible that a
connectivity problem is the cause of the failure. Do the following:

Step Action
1 Check the physical connections. For example:

• Check that all cables are connected correctly.

• If using a modem, check the indicators to see if they provide any
indication of a problem.

2 For WAN links (HDLC), check the Modem Connect status to see if the
modem control leads are asserted correctly.

3 Determine if data is being sent and received. You can:

• Check entity Transmit and Receive counters to see if they are
incrementing.

• If there appear to be no data flows, use loopback tests to see how far data
can be transmitted and received.

4 Look to see if circuit adjacencies exist. Use the following NCL command:

ncl> show circuit circuit-id * adjacency * all

106

Appendix A. Using the OSAKtrace
Utility
The OSAKtrace utility captures a record of what happens during an OSI information exchange. The
OSAKtrace utility is not an implementation of any OSI standard; there is no ISO standard for OSI
tracing.

You can use OSAKtrace to show that application programs that use the OSAK routines conform
with the standards, and to identify any problems that may arise when one OSI application works with
another over a network.

Information on using the OSAKtrace utility appears in OSAK Programming, and descriptions of the
trace emitter calls appear in OSAK Programming Reference.

107

Appendix A. Using the OSAKtrace Utility

108

Appendix B. DECnet-Plus Application
Tracing Examples
This appendix contains an example of a trace output for the FTAM and Virtual Terminal software.

The trace output for FTAM and Virtual Terminal operations on UNIX and OpenVMS is very similar;
this appendix shows the trace output as it appears on a UNIX system.

B.1. DECnet-Plus Application Trace Example
This section provides an example of the default output of the ositrace utility. This example traces
the result of the FTAM omv command on a UNIX system.

B.1.1. Association Establishment — Initiator
The initiator requests a session connection.

10:11:57.08 OSI trace started Wed Jan 30 10:11:57 1994
10:11:58.20 –> Session
 0dff0148 05061301 00160102 14020002 33028080 34020103 c1ff0130 3180a080
 80010100 00a28081 02808082 020103a4 80308002 01010605 28c27b02 01308006
 02510100 00000030 80020103 060528c2 7b020230 80060251 01000000 00308002
 01050605 28c27b02 03308006 02510100 00000030 80020107 060528c2 7b020430
 80060251 01000000 00308002 01090606 2bce0f01 02023080 06025101 00000000
 30800201 0b060452 01000130 80060251 01000000 00000088 02060089 03054000
 61803080 02010ba0 7b6080a1 80060528 c27b0101 0000a280 06052bce 0f070100
 00a38002 01010000 be802880 020101a0 4da08082 01008302 03408403 05070085
 02058086 0100a780 4e0528c2 7b05014e 0528c27b 05024e05 28c27b05 034e062b
 ce0f0105 09000056 0776696e 63656e74 710a1908 6e69636b 73746572 00000000
 00000000 00000000 00000000

 connect-spdu 0d ff 01
 connect/accept-item 05 06
 protocol-options = NULL 13 01
 version-number = 2 16 01 02
 session-user-requirements = '0000000000000010'B 14 02 00
 (duplex functional unit)
 calling-ssap-identifier = 33 02 80
 called-ssap-identifier = 34 02 01
 user-data c1 ff 01

Presentation Connection — Initiator
The initiator requests a presentation connection. The negotiation of abstract syntaxes takes place
during this time.

10:11:58.20 –> Presentation
 3180a080 80010100 00a28081 02808082 020103a4 80308002 01010605 28c27b02
 01308006 02510100 00000030 80020103 060528c2 7b020230 80060251 01000000
 00308002 01050605 28c27b02 03308006 02510100 00000030 80020107 060528c2
 7b020430 80060251 01000000 00308002 01090606 2bce0f01 02023080 06025101
 00000000 30800201 0b060452 01000130 80060251 01000000 00000088 02060089
 03054000 61803080 02010ba0 7b6080a1 80060528 c27b0101 0000a280 06052bce
 0f070100 00a38002 01010000 be802880 020101a0 4da08082 01008302 03408403

109

Appendix B. DECnet-Plus Application Tracing Examples

 05070085 02058086 0100a780 4e0528c2 7b05014e 0528c27b 05024e05 28c27b05
 034e062b ce0f0105 09000056 0776696e 63656e74 710a1908 6e69636b 73746572
 00000000 00000000 00000000 00000000
 CP PPDU SET = 31 80
 {
 [0] IMPLICIT SET = a0 80
 {
 [0] IMPLICIT mode-selector INTEGER = normal-mode 80 01 01
 }
 [2] IMPLICIT SEQUENCE = a2 80
 {
 [1] IMPLICIT calling-presentation-selector OCTET STRING = 81 02
 '8080'H
 [2] IMPLICIT called-presentation-selector OCTET STRING = 82 02
 '0103'H
 [4] IMPLICIT presentation-context-definition-list a4 80
 SEQUENCE =
 {
 SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 abstract-syntax-name OBJECT IDENTIFIER = 06 05 28
 {1 0 8571 2 1}
 SEQUENCE = 30 80
 {
 transfer-syntax-name OBJECT IDENTIFIER = {2 1 1} 06 02 51
 }
 }
 SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 3 02 01 03
 abstract-syntax-name OBJECT IDENTIFIER = 06 05 28
 {1 0 8571 2 2}
 SEQUENCE = 30 80
 {
 transfer-syntax-name OBJECT IDENTIFIER = {2 1 1} 06 02 51
 }
 }
 SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 5 02 01 05
 abstract-syntax-name OBJECT IDENTIFIER = 06 05 28
 {1 0 8571 2 3}
 SEQUENCE = 30 80
 {
 transfer-syntax-name OBJECT IDENTIFIER = {2 1 1} 06 02 51
 }
 }
 SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 7 02 01 07
 abstract-syntax-name OBJECT IDENTIFIER = 06 05 28
 {1 0 8571 2 4}
 SEQUENCE = 30 80
 {
 transfer-syntax-name OBJECT IDENTIFIER = {2 1 1} 06 02 51
 }
 }

110

Appendix B. DECnet-Plus Application Tracing Examples

 SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 9 02 01 09
 abstract-syntax-name OBJECT IDENTIFIER = 06 06 2b
 {1 3 9999 1 2 2}
 SEQUENCE = 30 80
 {
 transfer-syntax-name OBJECT IDENTIFIER = {2 1 1} 06 02 51
 }
 }
 SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 11 02 01 0b
 abstract-syntax-name OBJECT IDENTIFIER = {2 2 1 0 1} 06 04 52
 SEQUENCE = 30 80
 {
 transfer-syntax-name OBJECT IDENTIFIER = {2 1 1} 06 02 51
 }
 }
 }
 [8] IMPLICIT presentation-requirements BIT STRING = '00'B 88 02 06
 ()
 [9] IMPLICIT user-session-requirements BIT STRING = 89 03 05
 '01000000000'B
 (duplex)
 [APPLICATION 1] IMPLICIT fully-encoded-data SEQUENCE = 61 80
 {
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 11 02 01 0b
 single-asn1-type [0] ANY = a0 7b

 – Abstract Syntax Name
 – ACSE-PCI
 – Presentation Context Identifier
 – 11

ACSE Association Request — Initiator
The initiator requests an ACSE association. The application context is set at this time.

10:11:58.20 –> ACSE
 6080a180 060528c2 7b010100 00a28006 052bce0f 07010000 a3800201 010000be
 80288002 0101a04d a0808201 00830203 40840305 07008502 05808601 00a7804e
 0528c27b 05014e05 28c27b05 024e0528 c27b0503 4e062bce 0f010509 00005607
 76696e63 656e7471 0a19086e 69636b73 74657200 00000000 00000000 00000000
 000000
 [APPLICATION 0] IMPLICIT aarq SEQUENCE = 60 80
 {
 application-context-name [1] a1 80 06
 application-context-name OBJECT IDENTIFIER =
 {1 0 8571 1 1}
 called-ap-title [2] ap-title OBJECT IDENTIFIER = a2 80 06
 {1 3 9999 7 1}
 called-ae-qualifier [3] ae-qualifier INTEGER = 1 a3 80 02
 [30] IMPLICIT user-information SEQUENCE = be 80
 {
 IMPLICIT EXTERNAL SEQUENCE = 28 80

111

Appendix B. DECnet-Plus Application Tracing Examples

 {
 indirect-reference INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 4d

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

FTAM Initialization Request — Initiator
The initiator requests an FTAM initialization to establish the FTAM regime. The negotiating of
service class and functional unit, the listing of supported document types, and the passing of the
initiator ID and password occur at this time.

10:11:58.20 –> FTAM
 a0808201 00830203 40840305 07008502 05808601 00a7804e 0528c27b 05014e05
 28c27b05 024e0528 c27b0503 4e062bce 0f010509 00005607 76696e63 656e7471
 0a19086e 69636b73 74657200 00000000 00000000 00000000 000000

 [0] IMPLICIT f-initialize-request SEQUENCE = a0 80
 {
 [2] IMPLICIT present-context-management 82 01 00
 BOOLEAN = false
 [3] IMPLICIT service-class BIT STRING = 83 02 03
 '01000'B (management-class)
 [4] IMPLICIT functional-units BIT STRING = 84 03 05
 '00000111000'B
 (limited-file-management,
 enhanced-file-management,
 grouping)
 [5] IMPLICIT attribute-groups BIT STRING = 85 02 05
 '100'B (storage)
 [6] IMPLICIT ftam-quality-of-service 86 01 00
 INTEGER = no-recovery
 [7] IMPLICIT contents-type-list SEQUENCE = a7 80
 {
 [APPLICATION 14] IMPLICIT document-type-name 4e 05 28
 OBJECT IDENTIFIER = {1 0 8571 5 1}
 (ftam-1)
 [APPLICATION 14] IMPLICIT document-type-name 4e 05 28
 OBJECT IDENTIFIER = {1 0 8571 5 2}
 (ftam-2)
 [APPLICATION 14] IMPLICIT document-type-name 4e 05 28
 OBJECT IDENTIFIER = {1 0 8571 5 3}
 (ftam-3)
 [APPLICATION 14] IMPLICIT document-type-name 4e 06 2b
 OBJECT IDENTIFIER = {1 3 9999 1 5 9}
 (nbs-9)
 }
 [APPLICATION 22] IMPLICIT initiator-identity 56 07
 GRAPHIC STRING = smith
 filestore-password [APPLICATION 17] 71 0a 19
 GraphicString GRAPHIC STRING = mypassword
 }
 }
 }
 }

112

Appendix B. DECnet-Plus Application Tracing Examples

 }
 }
 }

B.1.2. Association Establishment — Responder
The peer FTAM application response indicates that the session connect request is accepted.

10:11:58.70 <– Session
 0ee40506 13010016 01021402 00023402 0103c1d2 3180a080 80010100 00a280a5
 80308080 01008102 51010000 30808001 00810251 01000030 80800100 81025101
 00003080 80010081 02510100 00308080 01008102 51010000 30808001 00810251
 01000000 00880206 00890305 40006180 30800201 0ba06761 80a18006 0528c27b
 01010000 a2030201 00a305a1 03020100 be802880 020101a0 3fa18080 02078082
 01008302 03408403 05070085 02058086 0100a780 4e0528c2 7b05014e 062bce0f
 0105094e 0528c27b 05034e05 28c27b05 02000088 01010000 00000000 00000000
 00000000 0000

 accept-spdu 0e e4
 connect/accept-item 05 06
 protocol-options = NULL 13 01
 version-number = 2 16 01 02
 session-user-requirements = '0000000000000010'B 14 02 00
 (duplex functional unit)
 called-ssap-identifier = 34 02 01
 user-data c1 d2

Presentation Connect Request — Responder
The responder accepts the presentation connection request and notifies the requestor of the status of
the negotiated abstract and transfer syntaxes.

10:11:58.70 <– Presentation
 3180a080 80010100 00a280a5 80308080 01008102 51010000 30808001 00810251
 01000030 80800100 81025101 00003080 80010081 02510100 00308080 01008102
 51010000 30808001 00810251 01000000 00880206 00890305 40006180 30800201
 0ba06761 80a18006 0528c27b 01010000 a2030201 00a305a1 03020100 be802880
 020101a0 3fa18080 02078082 01008302 03408403 05070085 02058086 0100a780
 4e0528c2 7b05014e 062bce0f 0105094e 0528c27b 05034e05 28c27b05 02000088
 01010000 00000000 00000000 00000000 0000

 cpa-ppdu SET = 31 80
 {
 [0] IMPLICIT SET = a0 80
 {
 [0] IMPLICIT mode-selector INTEGER = normal-mode 80 01 01
 }
 [2] IMPLICIT SEQUENCE = a2 80
 {
 [5] IMPLICIT presentation-context-definition-result-list a5 80
 SEQUENCE =
 {
 SEQUENCE = 30 80
 {
 [0] IMPLICIT result INTEGER = acceptance 80 01 00
 [1] IMPLICIT transfer-syntax-name OBJECT IDENTIFIER = 81 02 51
 {2 1 1}
 }

113

Appendix B. DECnet-Plus Application Tracing Examples

 SEQUENCE = 30 80
 {
 [0] IMPLICIT result INTEGER = acceptance 80 01 00
 [1] IMPLICIT transfer-syntax-name OBJECT IDENTIFIER = 81 02 51
 {2 1 1}
 }
 SEQUENCE = 30 80
 {
 [0] IMPLICIT result INTEGER = acceptance 80 01 00
 [1] IMPLICIT transfer-syntax-name OBJECT IDENTIFIER = 81 02 51
 {2 1 1}
 }
 SEQUENCE = 30 80
 {
 [0] IMPLICIT result INTEGER = acceptance 80 01 00
 [1] IMPLICIT transfer-syntax-name OBJECT IDENTIFIER = 81 02 51
 {2 1 1}
 }
 SEQUENCE = 30 80
 {
 [0] IMPLICIT result INTEGER = acceptance 80 01 00
 [1] IMPLICIT transfer-syntax-name OBJECT IDENTIFIER = 81 02 51
 {2 1 1}
 }
 SEQUENCE = 30 80
 {
 [0] IMPLICIT result INTEGER = acceptance 80 01 00
 [1] IMPLICIT transfer-syntax-name OBJECT IDENTIFIER = 81 02 51
 {2 1 1}
 }
 }
 [8] IMPLICIT presentation-requirements BIT STRING = '00'B 88 02 06
 ()
 [9] IMPLICIT user-session-requirements BIT STRING = 89 03 05
 '01000000000'B
 (duplex)
 [APPLICATION 1] IMPLICIT fully-encoded-data SEQUENCE = 61 80
 {
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 11 02 01 0b
 single-asn1-type [0] ANY = a0 67

 – Abstract Syntax Name
 – ACSE-PCI
 – Presentation Context Identifier
 – 11

ACSE Association Request Accepted — Responder
The peer application accepts the ACSE association request.

10:11:58.70 <– ACSE
 6180a180 060528c2 7b010100 00a20302 0100a305 a1030201 00be8028 80020101
 a03fa180 80020780 82010083 02034084 03050700 85020580 860100a7 804e0528
 c27b0501 4e062bce 0f010509 4e0528c2 7b05034e 0528c27b 05020000 88010100
 00000000 00000000 00000000 000000
 [APPLICATION 1] IMPLICIT aare SEQUENCE = 61 80

114

Appendix B. DECnet-Plus Application Tracing Examples

 {
 application-context-name [1] a1 80 06
 application-context-name OBJECT IDENTIFIER =
 {1 0 8571 1 1}
 result [2] associate-result INTEGER = accepted a2 03 02
 result-source-diagnostic [3] acse-service-user [1] a3 05 a1
 INTEGER INTEGER = null
 [30] IMPLICIT user-information SEQUENCE = be 80
 {
 IMPLICIT EXTERNAL SEQUENCE = 28 80
 {
 indirect-reference INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 3f

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

Initialization Request Accepted — Responder
The peer application accepts the FTAM initialization request by sending an F-INITIALIZE response.
If the state and action results are absent, then success is the default.

10:11:58.70 <– FTAM
 a1808002 07808201 00830203 40840305 07008502 05808601 00a7804e 0528c27b
 05014e06 2bce0f01 05094e05 28c27b05 034e0528 c27b0502 00008801 01000000
 00000000 00000000 00000000 00
 [1] IMPLICIT f-initialize-response SEQUENCE = a1 80
 {
 [0] IMPLICIT protocol-version BIT STRING = 80 02 07
 '1'B
 (version-1)
 [2] IMPLICIT present-context-management 82 01 00
 BOOLEAN = false
 [3] IMPLICIT service-class BIT STRING = 83 02 03
 '01000'B
 (management-class)
 [4] IMPLICIT functional-units BIT STRING = 84 03 05
 '00000111000'B
 (limited-file-management,
 enhanced-file-management,
 grouping)
 [5] IMPLICIT attribute-groups BIT STRING = 85 02 05
 '100'B
 (storage)
 [6] IMPLICIT ftam-quality-of-service 86 01 00
 INTEGER = no-recovery
 [7] IMPLICIT contents-type-list SEQUENCE = a7 80
 {
 [APPLICATION 14] IMPLICIT document-type-name 4e 05 28
 OBJECT IDENTIFIER = {1 0 8571 5 1}
 (ftam-1)
 [APPLICATION 14] IMPLICIT document-type-name 4e 06 2b
 OBJECT IDENTIFIER = {1 3 9999 1 5 9}
 (nbs-9)
 [APPLICATION 14] IMPLICIT document-type-name 4e 05 28
 OBJECT IDENTIFIER = {1 0 8571 5 3}

115

Appendix B. DECnet-Plus Application Tracing Examples

 (ftam-3)
 [APPLICATION 14] IMPLICIT document-type-name 4e 05 28
 OBJECT IDENTIFIER = {1 0 8571 5 2}
 (ftam-2)
 }
 [8] IMPLICIT checkpoint-window INTEGER = 1 88 01 01
 }
 }
 }
 }
 }
 }
 }

Passing User Data — Initiator
Session and presentation protocol data units (PDUs) carry the FTAM PDUs.

10:11:59.05 –> Session
 01000100 61803080 020101a0 07b68080 01030000 00003080 020101a0 19a68073
 80a08019 07657861 6d706c65 00000000 43020002 00000000 30800201 01a01db0
 806880a0 80190f72 656e616d 65645f65 78616d70 6c650000 00000000 00003080
 020101a0 04a88000 00000030 80020101 a004b880 00000000 0000

 data-spdu 01 00
 give-tokens-spdu 01 00

10:11:59.05 –> Presentation
 61803080 020101a0 07b68080 01030000 00003080 020101a0 19a68073 80a08019
 07657861 6d706c65 00000000 43020002 00000000 30800201 01a01db0 806880a0
 80190f72 656e616d 65645f65 78616d70 6c650000 00000000 00003080 020101a0
 04a88000 00000030 80020101 a004b880 00000000 0000

 [APPLICATION 1] IMPLICIT fully-encoded-data SEQUENCE = 61 80
 {
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 07

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

FTAM PDUs Grouping
The FTAM PDUs are packaged inside one P-DATA through grouping by the F-BEGIN-GROUP and
F-END-GROUP primitives. The virtual filestore actions requested are selecting a file, renaming the
file, and deselecting the file.

10:11:59.05 –> FTAM
 b6808001 03000000 00308002 0101a019 a6807380 a0801907 6578616d 706c6500
 00000043 02000200 00000030 80020101 a01db080 6880a080 190f7265 6e616d65
 645f6578 616d706c 65000000 00000000 00308002 0101a004 a8800000 00003080
 020101a0 04b88000 00000000 00

 [22] IMPLICIT f-begin-group-request SEQUENCE = b6 80

116

Appendix B. DECnet-Plus Application Tracing Examples

 {
 [0] IMPLICIT threshold INTEGER = 3 80 01 03
 }
 }
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 19

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.05 –> FTAM
 a6807380 a0801907 6578616d 706c6500 00000043 02000200 00000030 80020101
 a01db080 6880a080 190f7265 6e616d65 645f6578 616d706c 65000000 00000000
 00308002 0101a004 a8800000 00003080 020101a0 04b88000 00000000 00
 [6] IMPLICIT f-select-request SEQUENCE = a6 80
 {
 [APPLICATION 19] IMPLICIT attributes SEQUENCE = 73 80
 {
 [0] IMPLICIT select-attributes SEQUENCE = a0 80
 {
 filename-attribute GRAPHIC STRING = example 19 07
 }
 }
 [APPLICATION 3] IMPLICIT requested-access BIT STRING = 43 02 00
 '00000010'B
 (change-attributes)
 }
 }
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 1d

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.05 –> FTAM
 b0806880 a080190f 72656e61 6d65645f 6578616d 706c6500 00000000 00000030
 80020101 a004a880 00000000 30800201 01a004b8 80000000 000000
 [16] IMPLICIT f-change-attributes-request SEQUENCE = b0 80
 {
 [APPLICATION 8] IMPLICIT attributes SEQUENCE = 68 80
 {
 [0] IMPLICIT filename SEQUENCE = a0 80
 {
 filename-attribute GRAPHIC STRING = renamed_example 19 0f
 }
 }
 }
 }
 PDV-list SEQUENCE = 30 80
 {

117

Appendix B. DECnet-Plus Application Tracing Examples

 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 04

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.05 –> FTAM
 a8800000 00003080 020101a0 04b88000 00000000 00
 [8] IMPLICIT f-deselect-request SEQUENCE = a8 80
 {
 }
 }
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 04

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.05 –> FTAM
 b8800000 00000000
 [24] IMPLICIT f-end-group-request SEQUENCE = b8 80
 {
 }
 }
 }

B.1.3. Passing User Data — Responder
Session and presentation protocol data units (PDUs) carry the FTAM PDUs.

10:11:59.42 <– Session
 01000100 61803080 020101a0 04b78000 00000030 80020101 a028a780 7380a080
 191a2f75 73722f75 73657273 2f76696e 63656e74 2f657861 6d706c65 00000000
 00000000 30800201 01a01db1 806880a0 80190f72 656e616d 65645f65 78616d70
 6c650000 00000000 00003080 020101a0 04a98000 00000030 80020101 a004b980
 00000000 0000

 data-spdu 01 00
 give-tokens-spdu 01 00

10:11:59.42 <– Presentation
 61803080 020101a0 04b78000 00000030 80020101 a028a780 7380a080 191a2f75
 73722f75 73657273 2f76696e 63656e74 2f657861 6d706c65 00000000 00000000
 30800201 01a01db1 806880a0 80190f72 656e616d 65645f65 78616d70 6c650000
 00000000 00003080 020101a0 04a98000 00000030 80020101 a004b980 00000000
 0000

 [APPLICATION 1] IMPLICIT fully-encoded-data SEQUENCE = 61 80
 {
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01

118

Appendix B. DECnet-Plus Application Tracing Examples

 single-asn1-type [0] ANY = a0 04

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

Sending Responses to Requests — Responder
The FTAM responder sends one response for each of the requests that the initiator sent. Each response
must be successful or the whole group fails. Since the state and action results are not present, the
default of success is assumed.

10:11:59.42 <– FTAM
 b7800000 00003080 020101a0 28a78073 80a08019 1a2f7573 722f7573 6572732f
 76696e63 656e742f 6578616d 706c6500 00000000 00000030 80020101 a01db180
 6880a080 190f7265 6e616d65 645f6578 616d706c 65000000 00000000 00308002
 0101a004 a9800000 00003080 020101a0 04b98000 00000000 00

 [23] IMPLICIT f-begin-group-response SEQUENCE = b7 80
 {
 }
 }
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 28

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.42 <– FTAM
 a7807380 a080191a 2f757372 2f757365 72732f76 696e6365 6e742f65 78616d70
 6c650000 00000000 00003080 020101a0 1db18068 80a08019 0f72656e 616d6564
 5f657861 6d706c65 00000000 00000000 30800201 01a004a9 80000000 00308002
 0101a004 b9800000 00000000
 [7] IMPLICIT f-select-response SEQUENCE = a7 80
 {
 [APPLICATION 19] IMPLICIT attributes SEQUENCE = 73 80
 {
 [0] IMPLICIT select-attributes SEQUENCE = a0 80
 {
 filename-attribute GRAPHIC STRING = 19 1a
 /usr/users/smith/example
 }
 }
 }
 }
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 1d

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier

119

Appendix B. DECnet-Plus Application Tracing Examples

 – 1

10:11:59.42 <– FTAM
 b1806880 a080190f 72656e61 6d65645f 6578616d 706c6500 00000000 00000030
 80020101 a004a980 00000000 30800201 01a004b9 80000000 000000
 [17] IMPLICIT f-change-attributes-response SEQUENCE = b1 80
 {
 [APPLICATION 8] IMPLICIT attributes SEQUENCE = 68 80
 {
 [0] IMPLICIT filename SEQUENCE = a0 80
 {
 filename-attribute GRAPHIC STRING = renamed_example 19 0f
 }
 }
 }
 }
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 04

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.42 <– FTAM
 a9800000 00003080 020101a0 04b98000 00000000 00

 [9] IMPLICIT f-deselect-response SEQUENCE = a9 80
 {
 }
 }
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 04

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.42<– FTAM
 b9800000 00000000
 [25] IMPLICIT f-end-group-response SEQUENCE = b9 80
 {
 }
 }
 }

Association Termination — Initiator
The initiator requests the termination of the FTAM regime. Session sends a finish-spdu, ACSE
sends an association release request, and FTAM sends an F-TERMINATE request.

10:11:59.53 –> Session
 092a1101 01c12561 80308002 010ba018 62808001 00be8028 80020101 a004a280

120

Appendix B. DECnet-Plus Application Tracing Examples

 00000000 00000000 00000000
 finish-spdu 09 2a
 transport-disconnect = '00000001'B 11 01 01
 (transport connection is released)
 user-data c1 25

10:11:59.53 –> Presentation
 61803080 02010ba0 18628080 0100be80 28800201 01a004a2 80000000 00000000
 00000000 00
 [APPLICATION 1] IMPLICIT fully-encoded-data SEQUENCE = 61 80
 {
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 11 02 01 0b
 single-asn1-type [0] ANY = a0 18

 – Abstract Syntax Name
 – ACSE-PCI
 – Presentation Context Identifier
 – 11

10:11:59.53 –> ACSE
 62808001 00be8028 80020101 a004a280 00000000 00000000 00000000
 [APPLICATION 2] IMPLICIT rlrq-ppdu SEQUENCE = 62 80
 {
 [0] IMPLICIT reason INTEGER = normal 80 01 00
 [30] IMPLICIT user-information SEQUENCE = be 80
 {
 IMPLICIT EXTERNAL SEQUENCE = 28 80
 {
 indirect-reference INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 04

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.53 –> FTAM
 a2800000 00000000 00000000 0000
 [2] IMPLICIT f-terminate-request SEQUENCE = a2 80
 {
 }
 }
 }
 }
 }

Association Termination — Responder
The responder sends a response for each of the initiator's requests. Session sends a disconnect-
spdu, ACSE sends an association release response, and FTAM sends an F-TERMINATE response.

10:11:59.65 <– Session
 0a27c125 61803080 02010ba0 18638080 0100be80 28800201 01a004a3 80000000
 00000000 00000000 00
 disconnect-spdu 0a 27
 user-data c1 25

121

Appendix B. DECnet-Plus Application Tracing Examples

10:11:59.65 <– Presentation
 61803080 02010ba0 18638080 0100be80 28800201 01a004a3 80000000 00000000
 00000000 00
 [APPLICATION 1] IMPLICIT fully-encoded-data SEQUENCE = 61 80
 {
 PDV-list SEQUENCE = 30 80
 {
 presentation-context-identifier INTEGER = 11 02 01 0b
 single-asn1-type [0] ANY = a0 18

 – Abstract Syntax Name
 – ACSE-PCI
 – Presentation Context Identifier
 – 11

10:11:59.65 <– ACSE
 63808001 00be8028 80020101 a004a380 00000000 00000000 00000000
 [APPLICATION 3] IMPLICIT rlre-ppdu SEQUENCE = 63 80
 {
 [0] IMPLICIT reason INTEGER = normal 80 01 00
 [30] IMPLICIT user-information SEQUENCE = be 80
 {
 IMPLICIT EXTERNAL SEQUENCE = 28 80
 {
 indirect-reference INTEGER = 1 02 01 01
 single-asn1-type [0] ANY = a0 04

 – Abstract Syntax Name
 – FTAM-PCI
 – Presentation Context Identifier
 – 1

10:11:59.65 <– FTAM
 a3800000 00000000 00000000 0000
 [3] IMPLICIT f-terminate-response SEQUENCE = a3 80
 {
 }
 }
 }
 }
 }

10:11:59.77 OSI trace ended Wed Jan 30 10:11:59 1994

122

	VSI DECnet-Plus Problem Solving
	Table of Contents
	Preface
	1. Intended Audience
	2. Related Documents
	3. VSI Encourages Your Comments
	4. OpenVMS Documentation
	5. Typographical Conventions

	Chapter 1. Fault-Isolation Overview
	1.1. Understanding the DECnet-Plus Network Model
	1.1.1. OSI Network Layer Functions
	1.1.2. DNA Layer Functions
	1.1.3. TCP/IP Interoperability

	1.2. Classifying Problems
	1.2.1. Reproducible Problems
	1.2.2. Intermittent Problems
	1.2.3. Transient Problems

	1.3. DECnet-Plus Component Relationships
	1.3.1. Component Relationships (OpenVMS Only)
	1.3.2. Component Relationships (UNIX Only)

	1.4. Methods for Isolating Faults
	1.4.1. Questions to Ask Yourself
	1.4.2. Fault Isolation in the DECnet-Plus Environment
	1.4.3. DECnet-Plus Fault-Isolation Methodology
	1.4.4. Isolating Faults for Reproducible Problems
	1.4.5. Isolating Faults for Intermittent or Transient Problems
	1.4.6. Documenting the Fault-Isolation Process and Problem Solution

	Chapter 2. Preparing for Problem Solving
	2.1. DECnet-Plus Symptom Table
	2.2. Types of Problem-Solving Information
	2.2.1. Definitions
	2.2.2. Tools and Commands to Use

	2.3. Understanding Your Network Topology
	2.3.1. The decnet_migrate Tool
	2.3.2. When to Use the decnet_migrate Tool
	2.3.3. References

	2.4. Recognizing Node Names and Synonyms
	2.4.1. Identifying Node Names
	2.4.2. Finding Node Names and Node Synonyms

	2.5. Finding the Operating System and Version
	2.6. Getting DECnet-Plus Circuit Information
	2.6.1. Routing DECnet-Plus Circuit Information for Problem Solving
	2.6.2. Finding Routing Circuit Names, Types, States, and Adjacencies
	2.6.3. Considerations for Broadcast Circuit Adjacencies

	2.7. Preparing to Find a Network Path
	2.7.1. Types of Network Information to Find
	2.7.2. Finding Node Addresses for Node Names
	2.7.3. Determining Network Entity Titles for DECnet-Plus Nodes
	2.7.4. Converting Phase IV Addresses to NSAPs
	2.7.5. Converting NSAP Addresses to Phase IV Format

	2.8. Tracing DECnet-Plus Network Paths
	2.8.1. Tracing the Network Path of DECnet-Plus Nodes
	2.8.2. Tracing a Network Path in a Mixed Environment
	2.8.3. X.25 DA Circuit Considerations
	2.8.4. NCL Takes Long Time While Translating Addresses to Names

	Chapter 3. Testing Network Reachability
	3.1. Types of Network Reachability Tests
	3.1.1. Types of Loopback Tests
	3.1.2. Using Loopback Tests on Phase IV Nodes
	3.1.3. Types of dts/dtr Tests

	3.2. OSI Echo Function Overview (UNIX Only)
	3.2.1. OSI ping Command Syntax
	3.2.2. Restrictions

	3.3. Node-Level Loopback Tests Overview
	3.3.1. When to Use Node-Level Loopback Tests
	3.3.2. Analyzing Local-to-Local Node Loopback Test Results
	3.3.3. Log File for Local-to-Local Node Loopback Tests
	3.3.4. Local-to-Local Node Loopback Figure
	3.3.5. Analyzing Local-to-Remote Node Loopback Test Results
	3.3.6. Local-to-Remote Loopback Test Figure

	3.4. Running Node-Level Loopback Tests
	3.4.1. Node-Level Loopback Command Parameters
	3.4.2. Example of Node-Level Loopback Test

	3.5. Circuit-Level Loopback Test Overview
	3.5.1. Circuit-Level Loopback Test Figure
	3.5.2. Identifying Node Addresses for Circuit-Level Loopback Tests

	3.6. Preparing for Circuit-Level Loopback Tests
	3.6.1. Example of Circuit-Level Loopback Preparation

	3.7. Running Circuit-Level Loopback Tests
	3.7.1. Circuit-Level Loopback Command Parameters
	3.7.2. Example of Circuit-Level Loopback Test

	3.8. Running Circuit-Level Loopback Tests with Assistance
	3.8.1. When to Use Assistance
	3.8.2. Using Assistance for Fault Isolation
	3.8.3. Starting a Circuit-Level Loopback Test with Assistance
	3.8.4. Assistance Parameters
	3.8.5. Example of Circuit-Level Loopback Test with Full Assistance
	3.8.6. Example of Circuit-Level Loopback Test with Transmit Assistance
	3.8.7. Example of Circuit-Level Loopback Test with Receive Assistance

	3.9. Running LAN Loopback Tests with LLC Messages
	3.9.1. Starting the LAN Loopback Test
	3.9.2. LAN Loopback Test Command Parameters
	3.9.3. Determining Logical Link Control Types on a Remote Node

	3.10. Running dts/dtr Tests
	3.10.1. Starting dts/dtr Tests
	3.10.2. dts Command Syntax
	3.10.3. General Command Syntax Conventions
	3.10.4. Examples of Using dts/dtr Test Command Procedures

	3.11. Running dts/dtr Connect Tests
	3.11.1. dts/dtr Connect Test Command Syntax
	3.11.2. Example of dts/dtr Connect Test Command

	3.12. Running dts/dtr Data Tests
	3.12.1. dts/dtr Data Test Command Syntax
	3.12.2. Example of dts/dtr Data Test Command

	3.13. Running dts/dtr Disconnect Tests
	3.13.1. dts/dtr Disconnect Test Command Syntax
	3.13.2. Example of dts/dtr Disconnect Test Command

	3.14. Running dts/dtr Interrupt Tests
	3.14.1. Interrupt Test Command Syntax
	3.14.2. Example of dts/dtr Interrupt Test Command

	Chapter 4. Solving Problems Using DECnet Over TCP/IP
	4.1. Local IP Address Displays As 0.0.0.0
	4.2. Troubleshooting

	Chapter 5. Solving DECnet-Plus Application Problems
	5.1. Underlying Components for DECnet/OSI Applications (OpenVMS Only)
	5.2. Underlying Components for DECnet/OSI Applications (UNIX Only)
	5.3. Symptoms of DECnet-Plus Application Problems
	5.3.1. Problem Symptoms for All Systems
	5.3.2. Problem Symptoms for OpenVMS Systems Only
	5.3.3. Problem Symptoms for UNIX Systems Only

	5.4. Isolating DECnet-Plus Application Faults
	5.4.1. Tools to Use
	5.4.2. References

	5.5. Using Event Logging and Log Files
	5.5.1. Enabling Network Event Logging (OpenVMS Only)
	5.5.2. Using the FTAM Responder Log File (OpenVMS Only)

	5.6. Isolating Faults Using Management Tools (OpenVMS Only)
	5.7. Tracing Overview
	5.7.1. Trace Files
	5.7.2. Security Information in Tracing

	5.8. Tracing Outbound FTAM and Virtual Terminal Connections
	5.8.1. Generating a Readable Trace File
	5.8.2. ositrace Command Options (UNIX Only)

	5.9. Tracing Inbound FTAM and Virtual Terminal Connections
	5.9.1. Inbound FTAM and VT Tracing (UNIX)
	5.9.2. Inbound FTAM Tracing (OpenVMS)
	5.9.3. Inbound VT Tracing (OpenVMS)

	5.10. Reading Trace Files
	5.10.1. Interpreting Trace Information

	5.11. Correcting FTAM Application Problems
	5.12. Correcting FTAM File-Handling Problems
	5.12.1. Checking Foreign Filename Formats
	5.12.2. Correcting File Problems

	5.13. Correcting General FTAM Connection Problems
	5.14. Correcting FTAM and Virtual Terminal Connection Problems (UNIX Only)
	5.14.1. Address in Use
	5.14.2. Network Is Unreachable
	5.14.3. Connection Refused
	5.14.4. Connection Timed Out

	5.15. Correcting FTAM and Virtual Terminal Responder Problems (OpenVMS Only)
	5.15.1. Correcting Unexpected Termination Problems
	5.15.2. Correcting Responder Starting Problems

	5.16. Correcting FTAM and Virtual Terminal Responder Problems (UNIX Only)
	5.17. Correcting FTAM Environment Problems (OpenVMS Only)
	5.18. Correcting Target SAP Connection Problems
	5.18.1. Correcting FTAM Physical and Data Link Problems
	5.18.2. Correcting Network Connection Problems
	5.18.3. Correcting FTAM and VT Transport Problems
	5.18.4. Correcting FTAM and VT Session Problems (OpenVMS Only)
	5.18.5. Correcting FTAM and VT Presentation Problems (OpenVMS Only)

	5.19. Correcting Problems with Applications Using OSAK
	5.19.1. Correcting Connection Problems
	5.19.2. Correcting Unexpected Termination Problems
	5.19.3. Correcting Programming Problems

	Chapter 6. Solving Session Control Problems
	6.1. Underlying Components for Session Control (OpenVMS Only)
	6.2. Underlying Components for Session Control (UNIX Only)
	6.2.1. References

	6.3. Symptoms of Session Control Problems
	6.4. Isolating Session Control Faults
	6.4.1. Tools and Commands to Use
	6.4.2. Fault-Isolation Methodology

	6.5. Correcting Unknown Application Problems
	6.6. Correcting Application Too Busy Problems
	6.7. Correcting Access Control Problems
	6.7.1. Correcting Proxy Access Problems (OpenVMS Only)
	6.7.2. Correcting Proxy Access Problems (UNIX Only)
	6.7.3. Correcting Node Name Validation Problems

	6.8. Correcting Insufficient Resource Problems
	6.9. Correcting Timed Out Problems
	6.10. Correcting Node Name Resolution Problems
	6.10.1. Monitoring Search Path Processing (OpenVMS Only)
	6.10.2. Tracing Node Name Resolution Problems (UNIX Only)
	6.10.3. Displaying Search Path Information
	6.10.4. Identifying Namespace Consistency Problems

	6.11. Examining the DECnet-Plus Naming Cache (OpenVMS Only)
	6.11.1. Managing the Naming Cache
	6.11.2. Dumping the Naming Cache

	Chapter 7. Solving Transport Problems
	7.1. Underlying Components (OpenVMS Only)
	7.2. Underlying Components (UNIX Only)
	7.3. Symptoms of Transport Problems
	7.4. Isolating Transport Layer Problems
	7.4.1. Tools to Use
	7.4.2. Fault-Isolation Methodology

	7.5. Correcting Connection Problems
	7.5.1. Checking Ports
	7.5.2. Checking NSAP Counters

	7.6. Correcting OSI Transport Over CLNS Connection Problems
	7.7. Correcting OSI Transport Over CONS (X.25) Connection Problems
	7.8. Troubleshooting RFC 1006
	7.8.1. Common Problems

	Chapter 8. Solving Network Layer Problems
	8.1. Underlying Entities (OpenVMS Only)
	8.2. Underlying Entities (UNIX Only)
	8.3. Symptoms of Network Layer Problems
	8.4. Isolating Network Layer Problems
	8.4.1. Tools to Use
	8.4.2. Fault-Isolation Methodology

	8.5. Finding Underlying Entities
	8.5.1. Finding the Underlying Entities for HDLC Circuits
	8.5.2. Finding the HDLC Circuits for a Physical Device
	8.5.3. Finding the Underlying Entities for DDCMP Circuits (OpenVMS Only)
	8.5.4. Finding the DDCMP Circuits for a Physical Device (OpenVMS Only)
	8.5.5. Finding the Underlying Entities for CSMA-CD Circuits
	8.5.6. Finding the CSMA-CD Circuit for a Physical Device
	8.5.7. Finding the Underlying Entities for FDDI Circuits
	8.5.8. Finding the FDDI Circuit for a Physical Device
	8.5.9. Finding the Underlying Entities for Token Ring Circuits (UNIX Only)
	8.5.10. Finding the Token Ring Circuit for a Physical Device (UNIX Only)

	8.6. Correcting Configuration Problems
	8.6.1. Correcting DDCMP (OpenVMS Only) and HDLC Data Link Configuration Problems
	8.6.2. Correcting CSMA-CD Data Link Configuration Problems

	8.7. Correcting Connectivity Problems

	Appendix A. Using the OSAKtrace Utility
	Appendix B. DECnet-Plus Application Tracing Examples
	B.1. DECnet-Plus Application Trace Example
	B.1.1. Association Establishment — Initiator
	B.1.2. Association Establishment — Responder
	B.1.3. Passing User Data — Responder

