
VSI OpenVMS

I/O User’s Reference Manual

Document Number: DO-DIOURM-01A

Publication Date: August 2019

This manual is intended for system programmers who want to take advantage of the
time and space savings that result from direct use of I/O drivers. OpenVMS users
who do not require such detailed knowledge of I/O drivers can use the device-inde-
pendent services described in the OpenVMS Record Management Services Refer-
ence Manual.

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS I64 Version 8.4-1H1
VSI OpenVMS Alpha 8.4-2L1

VMS Software, Inc. (VSI)
Bolton, Massachusetts, USA

I/O User’s Reference Manual:

Copyright © 2019 VMS Software, Inc. (VSI), Bolton, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or
other countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group

UNIX is a registered trademark of The Open Group.

The VSI OpenVMS documentation set is available on DVD.

ii

I/O User’s Reference Manual

Preface .. xi
1. About VSI ... xi
2. Intended Audience ... xi
3. Document Structure ... xi
4. Device Driver Support for OpenVMS Alpha and Integrity servers 64-Bit Addressing xii
5. About VSI OpenVMS Alpha VXXXXXXXX .. xii
6. Typographical Conventions .. xiii
7. VSI Encourages Your Comments .. xiv
8. How to Order Additional Documentation .. xiv

Chapter 1. ACP-QIO Interface .. 1
1.1. ACP Functions and Encoding ... 2
1.2. File Information Block (FIB) .. 3
1.3. ACP Subfunctions .. 7

1.3.1. Directory Lookup .. 8
1.3.1.1. Input Parameters ... 8
1.3.1.2. Operation ... 9
1.3.1.3. Directory Entry Protection ... 11

1.3.2. Access .. 11
1.3.2.1. Input Parameters ... 11
1.3.2.2. Operation ... 12

1.3.3. Extend .. 12
1.3.3.1. Input Parameters ... 12
1.3.3.2. Operation ... 14

1.3.4. Truncate .. 14
1.3.4.1. Input Parameters ... 14
1.3.4.2. Operation ... 15

1.3.5. Read/Write Attributes .. 15
1.3.5.1. Input Parameters ... 16
1.3.5.2. Attribute Descriptions ... 19

1.4. ACP-QIO Record Attributes Area ... 21
1.5. ACP-QIO Attributes Statistics Block ... 23
1.6. Major Functions ... 24

1.6.1. Create File .. 24
1.6.1.1. Input Parameters ... 25
1.6.1.2. Disk ACP Operation ... 26
1.6.1.3. Directory Entry Creation ... 27
1.6.1.4. Magnetic Tape ACP Operation .. 27

1.6.2. Access File .. 27
1.6.2.1. Input Parameters ... 28
1.6.2.2. Operation ... 29

1.6.3. Deaccess File .. 29
1.6.3.1. Input Parameters ... 29
1.6.3.2. Operation ... 29

1.6.4. Modify File ... 30
1.6.4.1. Input Parameters ... 30
1.6.4.2. Operation ... 30

1.6.5. Delete File .. 31
1.6.5.1. Operation ... 31

1.6.6. Movefile Subfunction .. 32
1.6.6.1. Calling the Movefile Subfunction .. 32

1.6.7. Mount ... 35
1.6.8. ACP Control ... 35

iii

I/O User’s Reference Manual

1.6.8.1. Input Parameters ... 35
1.6.8.2. Magnetic Tape Control Functions .. 36
1.6.8.3. Miscellaneous Disk Control Functions ... 37
1.6.8.4. Disk Quotas .. 37

1.7. I/O Status Block ... 39
Chapter 2. Disk Drivers .. 41

2.1. Driver Features .. 41
2.1.1. Data Check ... 41
2.1.2. Effects of a Failure During an I/O Write Operation .. 42
2.1.3. Error Recovery .. 43
2.1.4. SCSI Disk Class Driver ... 43
2.1.5. Audio Extensions to the SCSI Disk Class Driver ... 44

2.2. Disk Driver Device Information .. 44
2.3. Disk Function Codes .. 44

2.3.1. Read ... 49
2.3.2. Write ... 49
2.3.3. Sense Mode ... 50
2.3.4. Set Density .. 51
2.3.5. Search ... 51
2.3.6. Pack Acknowledge .. 51
2.3.7. Unload .. 52
2.3.8. Available ... 52
2.3.9. Seek .. 52
2.3.10. Write Check .. 52
2.3.11. Audio Extensions ... 53

2.3.11.1. $QIO Interface to Audio Functionality of the SCSI Disk Class Dri-
ver .. 54
2.3.11.2. Defining an Audio Control Block (AUCB) ... 55
2.3.11.3. Error Handling in Applications Using SCSI Audio Functions 58
2.3.11.4. Using CD-ROM to Store Both Data and Audio Information 59
2.3.11.5. Programming Audio Applications .. 59

2.4. I/O Status Block ... 60
2.5. Disk Driver Programming Example ... 60

Chapter 3. Magnetic Tape Drivers .. 69
3.1. Magnetic Tape Controllers and Drives ... 69
3.2. Magnetic Tape Driver Device Information ... 69
3.3. Magnetic Tape Function Codes ... 70

3.3.1. Read ... 74
3.3.2. Write ... 75
3.3.3. Rewind ... 76
3.3.4. Skip File ... 76
3.3.5. Skip Record .. 77

3.3.5.1. Logical End-of-Volume (EOV) Detection .. 78
3.3.6. Write End-of-File .. 78
3.3.7. Rewind Offline .. 78
3.3.8. Unload .. 79
3.3.9. Sense Tape Mode .. 79
3.3.10. Set Mode ... 79
3.3.11. Multiple Tape Density Support ... 82
3.3.12. Data Security Erase ... 82
3.3.13. Modify .. 82

iv

I/O User’s Reference Manual

3.3.14. Pack Acknowledge .. 82
3.3.15. Available ... 83
3.3.16. Flush ... 83

3.4. I/O Status Block ... 83
3.5. Magnetic Tape Drive Programming Examples ... 83

Chapter 4. Mailbox Driver ... 93
4.1. Mailbox Operations .. 93

4.1.1. Creating Mailboxes .. 93
4.1.2. Deleting Mailboxes .. 95
4.1.3. Mailbox Protection .. 95
4.1.4. Mailbox Message Format ... 96

4.2. Mailbox Driver Device Information .. 96
4.3. Mailbox Function Codes ... 96

4.3.1. Read ... 97
4.3.2. Write ... 99
4.3.3. Write End-of-File Message ... 101
4.3.4. Set Attention AST ... 102
4.3.5. Wait for Writer/Reader ... 104
4.3.6. Set Protection .. 105
4.3.7. Get Mailbox Information .. 105

4.4. I/O Status Block ... 106
4.5. Mailbox Driver Programming Examples .. 107

Chapter 5. Terminal Driver ... 117
5.1. Terminal Driver Features .. 117

5.1.1. Input Processing .. 118
5.1.1.1. Command-Line Editing and Command Recall 118
5.1.1.2. Control Characters and Special Keys .. 118
5.1.1.3. Read Verify .. 121
5.1.1.4. Escape and Control Sequences ... 121
5.1.1.5. Type-Ahead Feature .. 123
5.1.1.6. Line Terminators ... 124
5.1.1.7. Special Operating Modes ... 124

5.1.2. Output Processing .. 124
5.1.2.1. Duplex Modes .. 124
5.1.2.2. Formatting of Output .. 125
5.1.2.3. SET HOST Facility and Output Buffering .. 125

5.1.3. Dialup Support .. 127
5.1.3.1. Modem Signal Control .. 127
5.1.3.2. Hangup on Logging Out .. 129
5.1.3.3. Preservation of a Process Across Hangups .. 130

5.1.4. Terminal/Mailbox Interaction ... 130
5.1.5. Autobaud Detection ... 131
5.1.6. Out-of-Band Control Character Handling .. 132

5.2. Terminal Driver Device Information .. 132
5.2.1. Terminal Characteristics Categories .. 137

5.3. Terminal Function Codes .. 139
5.3.1. Read .. 139

5.3.1.1. Function Modifier Codes for Read QIO Functions 140
5.3.1.2. Read Function Terminators .. 141
5.3.1.3. Itemlist Read Operations ... 142
5.3.1.4. Read Verify Function .. 146

v

I/O User’s Reference Manual

5.3.2. Write ... 147
5.3.2.1. Function Modifier Codes for Write QIO Functions 148
5.3.2.2. Write Function Carriage Control .. 148

5.3.3. Set Mode ... 150
5.3.3.1. Hangup Function Modifier .. 153
5.3.3.2. Enable Ctrl/C AST and Enable Ctrl/Y AST Function Modifiers 154
5.3.3.3. Set Modem Function Modifier ... 155
5.3.3.4. Loopback Function Modifier ... 155
5.3.3.5. Enable Out-of-Band AST Function Modifier .. 156
5.3.3.6. Broadcast Function Modifier ... 158

5.3.4. LAT Port Driver QIO Interface ... 158
5.3.4.1. LAT Port Types .. 159
5.3.4.2. LAT Port Driver Functions .. 159
5.3.4.3. Creating and Configuring LAT Entities .. 160
5.3.4.4. Obtaining Information About LAT Entities ... 169
5.3.4.5. Programming Application Ports ... 182
5.3.4.6. Programming Application Services and Dedicated Ports 184
5.3.4.7. Programming Forward Ports .. 184
5.3.4.8. Queue Change Notification .. 185
5.3.4.9. Hangup Notification .. 186
5.3.4.10. Sense Mode and Sense Characteristics .. 186

5.4. I/O Status Block ... 189
5.5. Terminal Driver Programming Examples ... 191

Chapter 6. Pseudoterminal Driver ... 223
6.1. Pseudoterminal Operations .. 223

6.1.1. Creating a Pseudoterminal .. 223
6.1.2. Canceling a Request .. 224
6.1.3. Deleting a Pseudoterminal .. 224

6.2. Pseudoterminal Driver Features ... 224
6.3. Pseudoterminal Driver Device Information .. 225
6.4. I/O Buffers ... 225
6.5. Pseudoterminal Functions ... 226

6.5.1. Reading Data ... 226
6.5.2. Writing Data .. 226
6.5.3. Using Write with Echo ... 227
6.5.4. Flow Control ... 227
6.5.5. Event Notification .. 227

6.5.5.1. Input Flow Control ... 227
6.5.5.2. Output Stop .. 228
6.5.5.3. Output Resume ... 228
6.5.5.4. Characteristics Changed .. 228
6.5.5.5. Output Abort .. 228
6.5.5.6. Terminal Driver Read Events ... 228

6.6. Pseudoterminal Driver Programming Example ... 229
6.6.1. Design Overview ... 229

Chapter 7. Shadow-Set Virtual Unit Driver ... 239
7.1. Introduction .. 239
7.2. Configurations .. 239

7.2.1. Supported Hardware .. 240
7.2.2. Compatible Disk Drives and Volumes .. 240

7.3. Driver Functions ... 240

vi

I/O User’s Reference Manual

7.3.1. Read and Write Functions .. 241
7.4. Error Processing ... 242

Chapter 8. Using the OpenVMS Generic SCSI Class Driver .. 243
8.1. Overview of SCSI .. 243
8.2. OpenVMS SCSI Class/Port Architecture .. 243
8.3. Overview of the OpenVMS Generic SCSI Class Driver .. 244
8.4. Accessing the OpenVMS Generic SCSI Class Driver ... 247
8.5. SCSI Port Features Under Application Control ... 247

8.5.1. Setting the Data Transfer Mode .. 248
8.5.2. Enabling Disconnection and Reselection ... 248
8.5.3. Disabling Command Retry ... 248
8.5.4. Setting Command Timeouts ... 249

8.6. Configuring a Device Using the Generic Class Driver .. 249
8.7. Assigning a Channel to GKDRIVER ... 250
8.8. Issuing a $QIO Request to the Generic Class Driver ... 250
8.9. Generic SCSI Class Driver Device Information .. 253
8.10. Call a Generic SCSI Class Driver .. 253

Chapter 9. Local Area Network (LAN) Device Drivers ... 259
9.1. Local Area Network (LAN) Terminology .. 259
9.2. Supported LAN Devices ... 261
9.3. Supported Industry Standards .. 263
9.4. LAN I/O Architecture ... 265

9.4.1. LAN Data Structures ... 265
9.4.2. Hardware Configuration ... 266
9.4.3. Software Modules .. 266
9.4.4. Application APIs ... 267

9.4.4.1. QIO API ... 267
9.4.4.2. VCI API ... 268

9.4.5. LAN Addressing .. 268
9.4.5.1. Ethernet Address Classifications .. 269
9.4.5.2. Selecting an Ethernet Physical Address .. 269
9.4.5.3. Ethernet Physical and Multicast Address Values 269
9.4.5.4. Token Ring Functional Address Mapping ... 270

9.4.6. LAN Frame Formats .. 271
9.4.6.1. Ethernet Frames .. 272
9.4.6.2. FDDI Frames .. 273
9.4.6.3. Token Ring Frames ... 273
9.4.6.4. ATM ELAN Frames .. 274
9.4.6.5. Ethernet (Ethernet Version 2, DIX) Frame Format 274
9.4.6.6. 802 (IEEE 802.x LLC) Frame Format .. 275
9.4.6.7. 802 Extended (IEEE 802.x LLC/SNAP) Frame Format 277

9.4.7. Packet Padding .. 278
9.4.8. Protocol Type and PID Sharing .. 279

9.5. LAN Devices ... 279
9.5.1. Driver-Specific Internal Counters ... 280
9.5.2. Device-Specific Functions .. 280
9.5.3. Ethernet LAN Devices ... 280

9.5.3.1. DEMNA Ethernet Device .. 281
9.5.3.2. SGEC/TGEC Ethernet Devices .. 281
9.5.3.3. LANCE Ethernet Devices .. 281
9.5.3.4. LEMAC Ethernet Devices ... 282

vii

I/O User’s Reference Manual

9.5.3.5. 3C589 Ethernet Device ... 283
9.5.3.6. Tulip Ethernet and Fast Ethernet Devices ... 283
9.5.3.7. Intel 82559 Fast Ethernet Devices .. 285
9.5.3.8. DEGPA Gigabit Ethernet Devices .. 286
9.5.3.9. Broadcom 5700 Gigabit Ethernet Devices .. 286
9.5.3.10. Intel 82540 Gigabit Ethernet Devices ... 287
9.5.3.11. Neterion XFRAME 10–Gigabit Ethernet Devices 288
9.5.3.12. Shared Memory Ethernet Device .. 288

9.5.4. FDDI LAN Devices ... 288
9.5.4.1. DEMFA FDDI Device .. 288
9.5.4.2. DEFZA FDDI Device ... 288
9.5.4.3. PDQ FDDI Devices .. 289

9.5.5. Token Ring LAN Devices .. 289
9.5.5.1. TMS380 Token Ring Devices .. 290

9.5.6. ATM LAN Devices .. 291
9.5.6.1. OTTO ATM Devices ... 291
9.5.6.2. FORE ATM Devices ... 291
9.5.6.3. Permanent Virtual Circuits (PVC) .. 292
9.5.6.4. Switched Virtual Circuits (SVC) .. 292
9.5.6.5. LAN Emulation over an ATM Network .. 292
9.5.6.6. LAN Emulation Topology ... 293
9.5.6.7. Classical IP Over an ATM Network ... 294
9.5.6.8. Specifying the User to Network Interface (UNI) 294
9.5.6.9. Enabling SONET/SDH .. 294
9.5.6.10. Booting ... 294
9.5.6.11. Configuring an Emulated LAN (ELAN) ... 294

9.6. LAN Device Information .. 295
9.7. LAN Function Codes .. 296

9.7.1. Read .. 297
9.7.2. Write ... 300
9.7.3. Set Mode and Set Characteristics .. 303

9.7.3.1. Set Controller Mode .. 303
9.7.3.2. Set Mode Parameters for Packet Formats .. 315
9.7.3.3. Set Mode Parameter Validation ... 315

9.7.4. Shutdown Controller .. 316
9.7.5. Enable Attention AST .. 316
9.7.6. IO$M_SET_MAC Functional Modifier to IO$M_SETMODE 316
9.7.7. IO$M_UPDATE_MAP Functional Modifier to IO$_SETMODE 319
9.7.8. IO$M_ROUTE Functional Modifier to IO$_SETMODE 320
9.7.9. Sense Mode and Sense Characteristics .. 321
9.7.10. IO$M_SENSE_MAC Functional Modifier to IO$_SENSEMODE 323
9.7.11. IO$M_SHOW_MAP Functional Modifier to IO$_SENSEMODE 325
9.7.12. IO$M_SHOW_ROUTE Functional Modifier to IO$_SENSEMODE 326
9.7.13. I/O Status Block .. 327

9.8. Application Programming Notes .. 327
9.8.1. Promiscuous Mode .. 327
9.8.2. Local Area Network Programming Examples .. 328

Chapter 10. Optional Features for Improving I/O Performance 337
10.1. Fast I/O .. 337

10.1.1. Fast I/O Benefits .. 337
10.1.2. Using Buffer Objects ... 338
10.1.3. Differences Between Fast I/O Services and $QIO .. 339

viii

I/O User’s Reference Manual

10.1.4. Using Fast I/O Services .. 340
10.1.4.1. Using Fandles ... 340
10.1.4.2. Modifying Existing Applications .. 340
10.1.4.3. I/O Status Area (IOSA) ... 341
10.1.4.4. $IO_SETUP .. 341
10.1.4.5. $IO_PERFORM[W] .. 341
10.1.4.6. $IO_CLEANUP .. 342
10.1.4.7. Fast I/O FDT Routine (ACP_STD$FASTIO_BLOCK) 342

10.1.5. Additional Information ... 342
10.2. Fast Path (Alpha and Integrity servers Only) .. 342

10.2.1. Using Fast Path Features .. 343
10.2.1.1. Preferred CPU Selection .. 343
10.2.1.2. Optimizing Application Performance .. 344

10.2.2. Managing Fast Path ... 344
10.2.2.1. Fast Path System Parameters ... 344
10.2.2.2. Identifying and Setting a Port's Preferred CPU 346

10.2.3. Fast Path Restrictions ... 348
10.2.4. Special Considerations for Fast Path on Multi-RAD Systems 349

Appendix A. I/O Function Codes ... 351
A.1. ACP-QIO Interface Driver ... 351
A.2. Disk Drivers .. 352
A.3. Magnetic Tape Drivers ... 353
A.4. Mailbox Driver .. 354
A.5. Terminal Driver ... 355
A.6. Local Area Network Device Drivers ... 356
A.7. Fast I/O Function Codes and Modifiers .. 357
A.8. Fast Path Function Code and Modifiers .. 357

Appendix B. IO$_DIAGNOSE Function for SCSI Class Drivers 359
Appendix C. DEC Multinational Character Set and Terminal Escape Se-
quences/Modes .. 365

C.1. DEC Multinational Character Set .. 365
C.2. Terminal Sequences and Modes .. 372

Appendix D. Control Connection Routines .. 375
PTD$CANCEL ... 375
PTD$CREATE .. 376
PTD$DELETE .. 379
PTD$READ .. 380
PTD$READW .. 382
PTD$SET_EVENT_NOTIFICATION .. 382
PTD$WRITE .. 385

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notifi-
cation Routines ... 389

E.1. DDT Intercept Establisher Routines .. 389
E.2. Device Configuration Notification Routines ... 394

Appendix F. Programming USB Generic Drivers .. 399
F.1. USB Device Structure ... 399
F.2. Driver Model ... 399

F.2.1. Driver Actions ... 399
F.3. Supported $QIO Functions .. 400

ix

I/O User’s Reference Manual

F.3.1. IO$_READxBLK ... 400
F.3.2. IO$_WRITExBLK ... 400
F.3.3. IO$_SET MODE/CHAR .. 401

F.3.3.1. Enable Unplug notification AST .. 401
F.3.3.2. Associate channel .. 401
F.3.3.3. Set pipe state .. 401
F.3.3.4. Send a control request ... 402

F.3.4. IO$_SENSEMODE/CHAR ... 403
F.3.4.1. Get number of pipes .. 403
F.3.4.2. Get pipe handles ... 403
F.3.4.3. Get pipe direction ... 403
F.3.4.4. Get pipe type .. 403
F.3.4.5. Get pipe state .. 404
F.3.4.6. Get pipe size ... 404
F.3.4.7. Get pipe descriptor .. 404
F.3.4.8. Get pipe descriptor .. 405
F.3.4.9. Get interface descriptor ... 405

F.3.5. Cancel I/O ... 406
F.3.6. Error Handling ... 406
F.3.7. Example .. 406
F.3.8. USB Device Configuration ... 407

F.3.8.1. The Basics of Configuration .. 408
F.3.8.2. Plugging In A New Device .. 408
F.3.8.3. The Generic List ... 408
F.3.8.4. Device Configuration .. 409
F.3.8.5. Interface Configuration .. 412

F.3.9. Permanent Devices and Tentative Devices ... 419
F.3.9.1. Controlling Device Permanence and Loading .. 419

x

Preface

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enter-
prise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience
This manual is intended for system programmers who want to take advantage of the time and space
savings that result from direct use of I/O drivers. OpenVMS users who do not require such detailed
knowledge of I/O drivers can use the device-independent services described in the OpenVMS Record
Management Services Reference Manual.

Users of this manual are expected to obtain and reference any additional documentation specific to
their hardware. Users are expected to know how to identify the various devices involved in their in-
stallation and be familiar with the console commands that are available on their system.

3. Document Structure
This manual is organized into the following chapters and appendixes:

• Chapter 1 describes the Queue I/O (QIO) interface to file system ancillary control processes
(ACPs).

Chapters 2 through 9 describe the use of file-structured and real-time I/O device drivers, the drivers
for storage devices such as disks and magnetic tapes, and supported devices:

• Chapter 2 discusses the disk drivers.

• Chapter 3 discusses the magnetic tape drivers.

• Chapter 4 discusses the mailbox driver.

• Chapter 5 discusses the terminal driver.

• Chapter 6 discusses the pseudoterminal driver.

• Chapter 7 discusses the shadow-set virtual unit driver.

• Chapter 8 discusses the Generic Small Computer System Interface (SCSI) class driver.

• Chapter 9 discusses the local area network (LAN) device drivers.

• Chapter 10 describes optional features to improve OpenVMS Alpha I/O performance.

xi

Preface

• Appendix A summarizes the QIO function codes, arguments, and function modifiers used by the
drivers listed previously.

• Appendix B describes the enhanced IO$_DIAGNOSE function for SCSI class drivers.

• Appendix C lists the DEC Multinational character set and the ANSI and DIGITAL private escape
sequences for terminals.

• Appendix D describes the calling conventions for the pseudoterminal driver's control connection
routines.

• Appendix E describes the DDT intercept establisher routines and device configuration notification
routines that enable third-party applications to run in an OpenVMS SCSI or Fibre Channel multi-
path configuration.

• Appendix F describes the SYS$UGDRIVER.EXE generic driver, which allows users to support
USB devices such as scanners and smart-card readers without writing a USB device driver.

4. Device Driver Support for OpenVMS Alpha
and Integrity servers 64-Bit Addressing
The OpenVMS Alpha and Integrity server operating systems provide support for 64-bit virtual mem-
ory addressing, which makes the 64-bit virtual address space defined by the architecture available to
the OpenVMS Alpha and Integrity server operating systems and to application programs. In the 64-bit
virtual address space, both process-private and system virtual address space extend beyond 2 GB. By
using 64-bit addressing features, programmers can create images that map and access data beyond the
limits of 32-bit virtual addresses.

Input and output operations can be performed directly to and from the 64-bit addressable space by
means of RMS services, the $QIO system service, and most of the device drivers supplied with Open-
VMS Alpha and Integrity server systems. A device driver declares support for 64-bit addresses indi-
vidually by I/O function code. Disk and tape device drivers support 64-bit addresses for data transfers
to and from disk and tape devices on the virtual, logical, and physical read and write functions. For
example, the OpenVMS SCSI disk class driver, SYS$DKDRIVER, supports 64-bit addresses on the
IO$_READVBLK and IO$_WRITEVBLK functions, but not on the IO$_AUDIO function. The de-
vice drivers, function codes, and $QIO arguments that support 64-bit addressing are indicated in the
appropriate chapters of this manual.

For more information about the OpenVMS device drivers that support 64-bit addressing, see the VSI
OpenVMS Programming Concepts Manual. To find out how to modify a customer-written device dri-
ver to support 64-bit addressing, see the VSI OpenVMS Guide to Upgrading Privileged-Code Appli-
cations Manual.

5. About VSI OpenVMS Alpha VXXXXXXXX
VSI OpenVMS Alpha Version XXXXXXXX is an Alpha operating system release that has been sole-
ly developed and marketed by VMS Software, Inc. Hewlett Packard Enterprise (HPE) will not provide
support and does not warranty any VSI OpenVMS Alpha versions.

Please disregard any reference in this manual that implies HPE support for any VSI OpenVMS Alpha
version.

xii

Preface

6. Typographical Conventions
The following conventions are used in this manual:

Convention Meaning
Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key labeled

Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the

key labeled PF1 and then press and release another key (x) or a pointing de-
vice button.

... A horizontal ellipsis in examples indicates one of the following possibili-
ties:− Additional optional arguments in a statement have been omitted.− The
preceding item or items can be repeated one or more times.− Additional para-
meters, values, or other information can be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one. In installation or up-
grade examples, parentheses indicate the possible answers to a prompt, such
as:

Is this correct? (Y/N) [Y]

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the com-
mand line. However, you must include the brackets in the syntax for directo-
ry specifications and for a substring specification in an assignment statement.
In installation or upgrade examples, brackets indicate the default answer to a
prompt if you press Enter without entering a value, as in:

Is this correct? (Y/N) [Y]

| In command format descriptions, vertical bars separate choices within brack-
ets or braces. Within brackets, the choices are optional; within braces, at least
one choice is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the com-
mand line.

bold type Bold type represents the name of an argument, an attribute, or a reason. Bold
type also represents the introduction of a new term.

italic type Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Inter-
nal error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX

xiii

Preface

Convention Meaning
command and pathnames, PC-based commands and folders, and certain ele-
ments of the C programming language.

- A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Non-
decimal radices —binary, octal, or hexadecimal—are explicitly indicated.

7. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending elec-
tronic mail to the following Internet address: <docinfo@vmssoftware.com>.

8. How to Order Additional Documentation
For information about how to order additional documentation, email the VSI OpenVMS information
account: <info@vmssoftware.com>. We will be posting links to documentation on our corpo-
rate website http://www.vmssoftware.com soon.

xiv

http://www.vmssoftware.com

Chapter 1. ACP-QIO Interface
An ancillary control process (ACP) is a process that interfaces between the user process and the dri-
ver, and performs functions that supplement the driver's functions. Virtual I/O operations involving
file-structured devices (disks and magnetic tapes) often require ACP intervention. In most cases, ACP
intervention is requested by OpenVMS Record Management Services (RMS) and is transparent to
the user process; however, user processes can request ACP functions directly by issuing a Queue I/O
(QIO) request and specifying an ACP function code.

Executing physical and logical input/output (I/O) operations on a device that is managed by a file
ACP interferes with the operation of the ACP, and can result in unpredictable consequences such as
system failure.

In addition to the ACP, the XQP (extended QIO processor) facility supplements the QIO driver's func-
tions when performing virtual I/O operations on file-structured devices; however, rather than being a
separate process, the XQP executes as a kernel-mode thread in the process of its caller.

An XQP is provided to support Files-11 ODS-2 and ODS-5 (On-Disk Structure Level 2 and 5) disks
as the base file system, and an ACP is provided for ANSI standard X3.27 magnetic tapes.

There are also ACPs to support the ISO 9660 CD-ROM disk structure (Files-11 C) and High Sierra
CD-ROM disk structure (Files-11 D). Collectively, these ACPs are called Files-11 C/D.

This chapter describes the QIO interface to ACPs for disk and magnetic tape devices (file system
ACPs). The sample program in Chapter 10 performs QIO operations to the magnetic tape ACP.

This chapter also describes a number of structures and field names of the form xxx$name. A MACRO
program can define symbols of this form by invoking the $xxxDEF macro.

The following macros are available in SYS$LIBRARY:STARLET.MLB:

• $IODEF

• $FIBDEF

• $ATRDEF

• $SBKDEF

The following macros are available in SYS$LIBRARY:LIB.MLB:

• $FATDEF

• $DQFDEF

• $FCHDEF

Programs written in BLISS-32 can use these symbols by referencing them and including the correct li-
brary, SYS$LIBRARY:STARLET.L32 (for the macros listed under SYS$LIBRARY:STARLET.ML-
B), and SYS$LIBRARY:LIB.L32 (for the macros listed under SYS$LIBRARY:LIB.MLB).

References to ANSI refer to the American National Standard Magnetic Tape Labels and File Struc-
tures for Information Interchange, ANSI X3.27-1978.

1

Chapter 1. ACP-QIO Interface

1.1. ACP Functions and Encoding
Ancillary control process (ACP) functions can be expressed using seven function codes and four
function modifiers. The function codes are:

• IO$_CREATE—Creates a directory entry or file

• IO$_ACCESS—Searches a directory for a specified file and accesses the file, if found

• IO$_DEACCESS—Deaccesses a file and, if specified, writes the final attributes in the file header

• IO$_MODIFY—Modifies the file attributes and file allocation

• IO$_DELETE—Deletes a directory entry and file header

• IO$_MOUNT—Informs the ACP when a volume is mounted; requires MOUNT privilege

• IO$_ACPCONTROL—Performs miscellaneous control functions

The function modifiers are:

• IO$M_ACCESS—Opens a file on the user's channel

• IO$M_CREATE—Creates a file

• IO$M_DELETE—Deletes a file or marks it for deletion

• IO$M_DMOUNT—Dismounts a volume

In addition to the function codes and modifiers, ACPs take five device- or function-dependent argu-
ments, as shown in Figure 1.1. The first argument, P1, is the address of the file information block
(FIB) descriptor. Section 1.2 describes the FIB in detail.

The second argument, P2, is an optional argument used in directory operations. It specifies the address
of the descriptor for the file name string to be entered in the directory.

Argument P3 is the address of a word to receive the resultant file name string length. The resultant
string is not padded. The actual length is returned in P3. Argument P4 is the address of a descriptor
for a buffer to receive the resultant file name string. Both of these arguments are optional.

Figure 1.1. ACP Device- or Function-DependentArguments

The fifth argument, P5, is an optional argument containing the address of the attribute control block.
Section 1.3.5 describes the attribute control block in detail.

2

Chapter 1. ACP-QIO Interface

All areas of memory specified by the descriptors must be capable of being read or written to.

Figure 1.2 shows the format for the descriptors. The count field is the length in bytes of the item de-
scribed.

Figure 1.2. ACP Device/Function Argument Descriptor Format

Note

Starting with OpenVMS Version 8.4, volumes and files up to 2 TB in size are supported. This has an
implication for the virtual and logical block numbers (VBN and LBN) and block counts referenced in
structures such as the File Information Block (FIB) and in the I/O arguments in the call interfaces.

In the previous versions of OpenVMS, these fields are interpreted as SIGNED 32-bit integers. Bit 31,
the 'signbit', is necessarily zero. Starting with OpenVMS Version 8.4, these fields are interpreted as
UNSIGNED 32-bit integers. Bit 31 can now contain 1-bit, to accommodate block numbers and counts
up to 4 million (4,294,967,296); 4 million blocks = 2 Terabytes (TB).

Applications and programs that continue to interpret these fields as SIGNED, apparently receive nega-
tive values for volume or file sizes between 1 TB and 2 TB. Ensure that the applications and programs
are upgraded to avoid these errors.

The following are some of the fields that are now interpreted as UNSIGNED 32–bit integers:

• FIB$L_EXVBN

• FIB$L_MOV_SVBN

• FIB$L_MOV_VBNCNT

• FIB$L_LOC_ADDR

• FAT$L_HIBLK

• FAT$L_EFBLK

• SBK$L_STLBN

• SBK$L_FILESIZE

1.2. File Information Block (FIB)
The file information block (FIB) contains much of the information that is exchanged between the user
process and the ACP. The FIB must be writable.

The FIB is passed by a descriptor (see Figure 1.2). A short FIB can be used in ACP calls that do not
need arguments near the end of the FIB. The ACP treats the omitted portion of the FIB as if it were 0.
Figure 1.3 shows the format of a typical short FIB that would be used to open an existing file.

3

Chapter 1. ACP-QIO Interface

Figure 1.3. Typical Short FIB

Table 1.1 gives a brief description of the FIB fields. More detailed descriptions are provided in Sec-
tion 1.3 and Section 1.6.

Table 1.1. Contents of the FIB

Field Meaning
FIB$L_ACCTL Contains flag bits that control the access to the file. Section 1.3.1.1,

Section 1.3.2.1, Section 1.6.1.1, and Section 1.6.4.1 and Sec-
tion 1.6.5 describe the FIB$L_ACCTL field flag bits.

FIB$L_ACL_STATUS Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1.7. If no ACL attributes are given,
SS$_NORMAL is returned here.

FIB$L_ACLCTX Maintains position context when processing ACL attributes from
the attribute (P5) list.

FIB$B_ALALIGN Contains the interpretation mode of the allocation (FIB$W_AL-
LOC) field.
Contains the desired physical location of the blocks be-
ing allocated. Interpretation of the field is controlled by the
FIB$B_ALALIGN field. The following subfields are defined:
Subfield Meaning
FIB$W_LOC_FID Three-word related file ID for RFI

placement.
FIB$W_LOC_NUM Related file number.
FIB$W_LOC_SEQ Related file sequence number.
FIB$B_LOC_RVN Related file relative volume num-

ber(RVN) or placement RVN.
FIB$B_LOC_NMX Related file number extension.
FIB$L_LOC_ADDR Placement logical block number (LBN),

cylinder, or virtual block number
(VBN).

FIB$W_ALLOC

FIB$B_ALOPTS Contains option bits that con-
trol the placement of allocated

4

Chapter 1. ACP-QIO Interface

Field Meaning
blocks. Section 1.3.3.1 describes the
FIB$B_ALOPTS field flag bits.

FIB$L_ALT_ACCESS A 32-bit mask that represents an access mask to check against file
protection; for example, opens a file for read access and checks
whether it can be deleted. The mask has the same configuration as
the standard protection mask.

FIB$W_CNTRLFUNC In an IO$_ACPCONTROL function, this field contains the code
that specifies which ACP control function is to be performed (see
Section 1.6.8). This field overlays FIB$W_EXCTL.

FIB$L_CNTRLVAL Contains a control function value used in an IO$_ACPCONTROL
function (see Section 1.6.8). The interpretation of the value de-
pends on the control function specified in FIB$W_CNTRLFUNC.
This field overlays FIB$L_EXSZ.
Contains the file identifier of the directory file.

For Files-11 On-Disk Structure Level 1 and Level 2, the following
subfields are defined:
Subfield Meaning
FIB$W_DID_NUM File number.
FIB$W_DID_SEQ File sequence number.
FIB$W_DID_RVN Relative volume number (only for mag-

netic tape devices).
FIB$B_DID_RVN Relative volume number (only for disk

devices).

FIB$W_DID

FIB$B_DID_NMX File number extension (only for disk
devices).

FIB$W_EXCTL Contains flag bits that specify extend control for disk devices. Sec-
tion 1.3.3.1 and Section 1.3.4.1 describe the FIB$W_EXCTL field
flag bits.

FIB$L_EXSZ Specifies the number of blocks to be allocated in an extend opera-
tion on a disk file.

FIB$L_EXVBN Specifies the starting disk file virtual block number at which a file
is to be truncated.
Specifies the file identification. You supply the file identifier when
it is known; the ACP returns the file identifier when it becomes
known; for example, as a result of a create or directory lookup. A
0 file identifier can be specified when an operation is performed on
a file that is already open on a particular channel. The ACP returns
the file identifier of the open file.

For Files-11 On-Disk Structure Level 1 and Level 2, the following
subfields are defined:
Subfields Meaning
FIB$W_FID_NUM File number.

FIB$W_FID

FIB$W_FID_SEQ File sequence number.

5

Chapter 1. ACP-QIO Interface

Field Meaning
FIB$W_FID_RVN Relative volume number (only for mag-

netic tape devices).
FIB$B_FID_RVN Relative volume number (only for disk

devices).
FIB$B_FID_NMX File number extension (only for disk

devices).
FIB$W_FID_DIRNUM Directory number of the file identifier.

This is the path table record number of
the directory that describes the file.

FIB$L_FID_RECNUM Record number of the first directory
record for the file within the current di-
rectory.

FIB$B_NAME_FORMAT_IN Contains the format of the input file specification. Section 1.3.1.1
describes the FIB$B_NAME_FORMAT_IN field flagbits.

FIB$B_NAME_FOR-
MAT_OUT

Contains the format of the output file specification. Section 1.3.1.1
describes the FIB$B_NAME_FORMAT_OUT field flag bits.

FIB$W_NMCTL Contains flag bits that control the processing of a name string in a
directory operation. Section 1.3.1.1 and Section 1.6.1.1 describe
the FIB$W_NMCTL field flag bits.
Access status. Applies to all major functions. The following bits
are supported:
Subfields Meaning
FIB$V_ALT_REQ Set to indicate whether the alternate ac-

cess bit is required for the current oper-
ation. If not set, the alternate access bit
is optional.

FIB$V_ALT_GRANTED If FIB$V_ALT_REQ = 0, the FIB bit
returned from the file system is set if
the alternate access check succeeded.

Programmers can control the security
information being propagated as well as
the source of this information by setting
the following bits (which apply only to
the IO$_CREATE and IO$_MODIFY
functions).

FIB$V_DIRACL Propagate the ACL from the parent di-
rectory to the file, assuming the file is a
directory file.

FIB$V_
EXCLPREVIOUS

Set to indicate that propagation may not
occur from a previous version of the
file.

FIB$L_STATUS

FIB$V_ALIAS_ENTRY Set on any file system operation where
the directory backlink in the file header
is different (and nonzero) from the di-
rectory id specified in the FIB.

6

Chapter 1. ACP-QIO Interface

Field Meaning
FIB$V_NOCOPYACL Set to indicate that the ACL should not

be propagated from the parent directory
(or a previous version of the file) to the
file.

FIB$V_
NOCOPYOWNER

Set to indicate that the owner UIC
should not be propagated from the par-
ent directory (or a previous version of
the file) to the file.

FIB$V_NOCOPYPROT Set to indicate that the UIC-based pro-
tection should not be propagated from
the parent directory (or a previous ver-
sion of the file) to the file.

FIB$V_PROPAGATE Propagate attributes from the parent
directory (or previous version of the
file). If you set the FIB$V_NOCOPY-
ACL, FIB$V_NOCOPYOWNER, or
FIB$V_NOCOPYPROT bits, you must
also set FIB$V_PROPAGATE or a
SS$_BADPARAM error results.

FIB$W_VERLIMIT Contains the version limit of the directory entry.
FIB$L_WCC Maintains position context when processing wildcard directory op-

erations.
FIB$B_WSIZE Controls the size of the file window used to map a disk file. If a

window size of 255 is specified, the file is completely mapped by
using segmented windows.

1.3. ACP Subfunctions
The operations that the ACP performs can be organized into two categories: major ACP functions and
subfunctions. Each ACP operation performs one major function. That function is specified byan I/O
function code, such as IO$_ACCESS, IO$_CREATE, or IO$_MODIFY. While executing the major
function, one or more subfunctions can be performed. A subfunction is an operation such as looking
up, accessing, or extending a file. Most subfunctions can be executed by more than one of the major
functions. Sections 1.3.1 through 1.3.5 describe the following subfunctions indetail:

• Directory Lookup

• Access

• Extend

• Truncate

• Read/Write Attributes

Section 1.6, which contains the descriptions of the major functions, lists the subfunctions available to
each major function.

7

Chapter 1. ACP-QIO Interface

1.3.1. Directory Lookup
The directory lookup subfunction is used to search for a file in a disk directory or on a magnetic
tape. This subfunction can be invoked using the major functions IO$_ACCESS, IO$_MODIFY,
IO$_DELETE, and IO$_ACPCONTROL. A directory lookup occurs if the directory file ID field in
the FIB (FIB$W_DID) is a nonzero number.

1.3.1.1. Input Parameters
Table 1.2 lists the FIB fields that control the processing of a lookup subfunction.

Table 1.2. FIB Fields (Lookup Control)

Field Subfields Meaning
 Name string control. The following name

control bits are applicable to a lookup op-
eration:

FIB$V_ALLNAM Set to match all name field values.
FIB$V_ALLTYP Set to match all field type values.
FIB$V_ALLVER Set to match all version field values.
FIB$V_CASE_
SENSITIVE

When set, performs case-sensitive lookup;
when clear, performs case-blind lookup.

FIB$V_FINDFID Set to search a directory for the file ID in
FIB$W_FID.

FIB$V_NAMES_8BIT Caller can accept (8-bit) ODS-2 or ISO
Latin-1 formats.

FIB$V_NAMES_16BIT Caller can accept (16-bit) Unicode
(UCS-2) formats.

FIB$W_NMCTL

FIB$V_WILD Set if name string contains wildcards. Set-
ting this bit causes wildcard context to be
returned in FIB$L_WCC.

FIB$W_FID File identification. The file ID of the file
found is returned in this field.

FIB$W_DID Contains the file identifier of the directory
file. This field must be a nonzero number.

FIB$L_WCC Maintains position context when process-
ing wildcard directory operations.

 The following access control flag is ap-
plicable to a lookup subfunction:

FIB$L_ACCTL

FIB$V_REWIND Set to rewind magnetic tape before
lookup. If not set, a magnetic tape is
searched from its current position.

 Contains the format of the input file speci-
fication. The following formats are valid:

FIB$C_ODS2 ODS-2 Format (default)
FIB$C_ISO_LATIN ISO Latin-1 Format

FIB$B_NAME_FOR-
MAT_IN

FIB$C_UCS2 Unicode (UCS-2) Format

8

Chapter 1. ACP-QIO Interface

Field Subfields Meaning
 Contains the format of the output file

specification. The following formats are
valid:

FIB$C_ODS2 ODS-2 Format (default)
FIB$C_ISO_LATIN ISO Latin-1 Format

FIB$B_NAME_FORMAT_
OUT

FIB$C_UCS2 Unicode (UCS-2) Format

QIO arguments P2 through P5 (see Figure 1.1) are passed as values. The second argument, P2, speci-
fies the address of the descriptor for the file name string to be searched for in the directory.

The file name string must have one of the following two formats:

name.type;version name.type.version

The name and type can be any combination of alphanumeric characters, and the dollar sign ($), aster-
isk (*), and percent (%) characters. The version must consist of numeric characters optionally preced-
ed by a minus sign (-) (only for disk devices) or a single asterisk. The total number of alphanumeric
and percent characters in the name field and in the type field must not exceed 39. Any number of ad-
ditional asterisks can be present.

If any of the bits FIBV_ALLNAM, FIBV_ALLTYP, and FIB$V_ALLVER are set, then the con-
tents of the corresponding field in the name string are ignored and the contents are assumed to be an
asterisk.

Note that the file name string cannot contain a directory string. The directory is specified by the
FIB$W_DID field (see Table 1.1). Only RMS can process directory strings.

Argument P3 is the address of a word to receive the resultant file name string length. Argument P4 is
the address of a descriptor for a buffer to receive the resultant file name string. The resultant string is
not padded. The P3 and P4 arguments are optional.

The name and type can be any combination of alphanumeric characters, and the dollar sign ($), aster-
isk (*), and percent (%) characters. The version must consist of numeric characters optionally preced-
ed by a minus sign (-) (only for disk devices) or a single asterisk. The total number of alphanumeric
and percent characters in the name field and in the type field must not exceed 39. Any number of ad-
ditional asterisks can be present.

If any of the bits FIBV_ALLNAM, FIBV_ALLTYP, and FIB$V_ALLVER are set, then the con-
tents of the corresponding field in the name string are ignored and the contents are assumed to be an
asterisk.

Note that the file name string cannot contain a directory string. The directory is specified by the
FIB$W_DID field (see Table 1.2). Only RMS can process directory strings.

Argument P3 is the address of a word to receive the resultant file name string length. Argument P4 is
the address of a descriptor for a buffer to receive the resultant file name string. The resultant string is
not padded. The P3 and P4 arguments are optional.

1.3.1.2. Operation
The system searches either the directory file specified by FIB$W_DID or the magnetic tape for the
file name specified in the P2 file name parameter. The actual file name found and its length are re-

9

Chapter 1. ACP-QIO Interface

turned in the P3 and P4 length and result string buffers. The file ID of the file found is returned in
FIB$W_FID and can be used in subsequent operations as the major function is processed.

Zero and negative version numbers have special significance in a disk lookup operation. Specifying 0
as a version number causes the latest version of the file to be found. Specifying -1 locates the second
most recent version, -2 the third most recent, and so forth. Specifying a version of -0 locates the low-
est numbered version of the file. For magnetic tape lookups, a version number of 0 locates the first oc-
currence of the file encountered; negative version numbers are not allowed.

Wildcard lookups are performed by specifying the appropriate wildcard characters in the name
string and setting FIB$V_WILD. (The name control bits FIBV_ALLNAM, FIBV_ALLTYP, and
FIB$V_ALLVER can also be used in searching for wildcard entries, but they are intended primarily
for compatibility mode use.) On the first lookup, FIB$L_WCC should contain zero entries. On each
lookup, the ACP returns a nonzero value in FIB$L_WCC, which must be passed back on the next
lookup call. In addition, you must pass the resultant name string returned by the previous lookup using
the P4 result string buffer, and its length in the P3 result length word. This string is used together with
FIB$L_WCC to continue the wildcard search at the correct position in the directory.

To perform a lookup by file ID, set the name control bit FIB$V_FINDFID. When this bit is set, the
system searches the directory for an entry containing the file ID specified in FIB$W_FID, and the
name of the entry found is returned in the P3 and P4 result parameters. Note that if a directory con-
tains multiple entries with the same file ID, only the first entry can be located with this technique.

Lookups by file ID should be done only when the file name is not available, because lookups by this
method are often significantly slower than lookups by file name.

Because not all programs can handle all of the available name formats, the FIB$W_NMCTL flags
govern the name formats, and are returned as follows:

• FIB$V_ NAMES_8BIT clear

FIB$V_ NAMES_16BIT clear

Only ODS-2 format names are returned. Note that this includes specifications that were original-
ly in ISO Latin-1 format or Unicode (UCS-2) format but converted to ODS-2 format before being
stored on the volume. All specifications are converted to uppercase before being returned.

• FIB$V_ NAMES_8BIT set

FIB$V_ NAMES_16BIT clear

Only those file specifications stored in ODS-2 and ISO Latin-1 formats are returned. The value
in the FIB$B_NAME_FORMAT_OUT field indicates the format of the particular name being re-
turned. ODS-2 format file specifications are not converted to uppercase before being returned.

• FIB$V_ NAMES_8BIT clear

FIB$V_ NAMES_16BIT set

All file specifications are returned in Unicode (UCS-2) format.

• FIB$V_ NAMES_8BIT set

FIB$V_ NAMES_16BIT set

File specifications are returned in the format stored on the volume. This is the simplest format
compatible with the file name syntax and the characters it contains. For example, a specification

10

Chapter 1. ACP-QIO Interface

originally in Unicode format that only contains characters that are part of the ISO Latin-1 charac-
ter set are returned in ISO Latin-1 format.

1.3.1.3. Directory Entry Protection
A directory entry is protected with the same protection code as the file itself. For example, if a direc-
tory file is protected against delete access, then the file name has the same protection. Consequent-
ly, a nonprivileged user (that is, a user who is not the volume owner, or a user who does not have
SYSPRV) cannot rename a file because renaming a file is essentially the same as deleting the file
name. This protection is applied regardless of the protection on the directory file.

Nonprivileged users can neither write directly into a .DIR;1 directory file nor turn off the directory bit
in a directory file header.

1.3.2. Access
The access subfunction is used to open a file so that virtual read or write operations can be performed.
This subfunction can be invoked using the major functions IO$_CREATE and IO$_ACCESS (see
Section 1.6.1 and Section 1.6.2). An access subfunction is performed if the IO$M_ACCESS modifier
is specified in the I/O function code.

1.3.2.1. Input Parameters
Table 1.3lists the FIB fields that control the processing of an access subfunction.

Table 1.3. FIB Fields (Access Control)

Field Subfields Meaning
 Specifies field values that control access to the

file. The following access control bits are applic-
able to the access subfunction:

FIB$V_WRITE Set for write access; clear for read-only access.
FIB$V_NOREAD Set to deny read access to others. (You must have

write privilege to the file to use this option.)
FIB$V_NOWRITE Set to deny write access to others.
FIB$V_NOTRUNC Set to prevent the file from being truncated; clear

to allow truncation.
FIB$V_CONTROL Set for control access. If this bit is set, you can-

not access the file if you do not have control ac-
cess.

FIB$V_NO_READ_
DATA

Set to deny read access to the file.

FIB$V_DLOCK Set to enable deaccess lock (close check). Used
only for disk devices.

FIB$V_UPDATE Set to position at the start of a magnetic tape file
when opening a file for write; clear to position at
end-of-file.

FIB$L_ACCTL

FIB$V_READCK Set to enable read checking of the file. Virtual
reads to the file are performed using a data check
operation.

11

Chapter 1. ACP-QIO Interface

Field Subfields Meaning
FIB$V_WRITECK Set to enable write checking of the file. Virtu-

al writes to the file are performed using a data
check operation.

FIB$V_EXECUTE Set to access the file in execute mode. The pro-
tection check is made against the EXECUTE bit
instead of the READ bit. Valid only for requests
issued from SUPERVISOR, EXEC, or KERNEL
mode.

FIB$V_NOLOCK Set to override exclusive access to the file, allow-
ing you to access the file when another user has
the file open with FIB$V_NOREAD specified.
You must have SYSPRV privilege to use this op-
tion. FIB$V_NOREAD and FIB$V_NOWRITE
must be clear for this option to work.

You must have either SYSPRV privilege or con-
trol access to use this option.

FIB$V_NORECORD Set to inhibit recording of the file's modification
and expiration dates. If not set, the file's expira-
tion date can be modified, depending on the file
retention parameters of the volume.

FIB$V_SEQONLY Set to inform the file system that the file is to be
processed sequentially only.

FIB$B_WSIZE Controls the size of the file window used to map
a disk file. The ACP uses the volume default if
FIB$B_WSIZE is 0. A value of 1 to 127 indi-
cates the number of retrieval pointers to be al-
located to the window. A value of -1 indicates
that the window should be as large as necessary
to map the entire file. Note that the window is
charged to the user's BYTELIM quota.

FIB$W_FID Specifies the file identification of the file to be
accessed.

1.3.2.2. Operation

The file is opened according to the access control specified (see Table 1.3).

1.3.3. Extend
The extend subfunction is used to allocate space to a disk file. This subfunction can be invoked us-
ing the major I/O functions IO$_CREATE and IO$_MODIFY (see Section 1.6.1 and Section 1.6.4).
The extend subfunction is performed if the bit FIB$V_EXTEND is set in the extend control word
FIB$W_EXCTL.

1.3.3.1. Input Parameters

Table 1.4 lists the FIB fields that control the processing of an extend subfunction.

12

Chapter 1. ACP-QIO Interface

Table 1.4. FIB Fields (Extend Control)

Field Subfields Meaning
 Extend control flags. The following flags are ap-

plicable to the extend subfunction:
FIB$V_EXTEND Set to enable extension.
FIB$V_NOHDREXT Set to inhibit generation of extension file head-

ers.
FIB$V_ALCON Allocates the maximum amount of contiguous

space.

If both FIB$V_ALCON and FIB$V_ALCONB
are set, a single contiguous area, whose size is
the largest available but not greater than the size
requested, is allocated.

FIB$V_FILCON Marks the file as contiguous. This bit can only be
set if the file does not have space already allocat-
ed to it.

FIB$W_EXCTL

FIB$V_ALDEF Allocates the extend size (FIB$L_EXSZ) or the
system default, whichever is greater.

FIB$L_EXSZ Specifies the number of blocks to allocate to the
file.

The number of blocks actually allocated for this
operation is returned in this longword. More
blocks than requested can be allocated to meet
cluster boundaries.

FIB$L_EXVBN Returns the starting virtual block number of the
blocks allocated. FIB$L_EXVBN must initially
contain 0 blocks.

 Contains option bits that control the placement of
allocated blocks. The following bits are defined:

FIB$V_EXACT Set to require exact placement; clear to specify
approximate placement. If this bit is set and the
specified blocks are not available, the extend op-
eration fails.

FIB$B_ALOPTS

FIB$V_ONCYL Set to locate allocated space within a cylin-
der. This option functions correctly only when
FIB$V_ALCON or FIB$V_ALCONB is speci-
fied.

 Contains the interpretation mode of the alloca-
tion (FIB$W_ALLOC)field. One of the follow-
ing values can be specified:

(zero) No placement data. The remainder of the alloca-
tion field is ignored.

FIB$B_ALALIGN

FIB$C_CYL Location is specified as a byte relative volume
number (RVN) in FIB$B_LOC_RVN and a
cylinder number in FIB$L_LOC_ADDR.

13

Chapter 1. ACP-QIO Interface

Field Subfields Meaning
FIB$C_LBN Location is specified as a byte RVN in

FIB$B_LOC_RVN, followed by a longword log-
ical block number (LBN) in FIB$L_LOC_AD-
DR.

FIB$C_VBN Location is specified as a longword virtual block
number (VBN) of the file being extended in
FIB$L_LOC_ADDR. A 0 VBN or one that fails
to map indicates the end of the file.

FIB$C_RFI Location is specified as a three-word file ID in
FIB$W_LOC_FID,followed by a longword VBN
of that file in FIB$L_LOC_ADDR. A 0 file ID
indicates the file being extended. A 0 VBN or
one that fails to map indicates the end of that file.

 Contains the desired physical location of the
blocks being allocated. Interpretation of the field
is controlled by the FIB$B_ALALIGN field. The
following subfields are defined:

FIB$W_LOC_FID Three-word related file ID for RFI placement.
FIB$W_LOC_NUM Related file number.
FIB$W_LOC_SEQ Related file sequence number.
FIB$B_LOC_RVN Related file RVN or placement RVN.
FIB$B_LOC_NMX Related file number extension.

FIB$W_ALLOC

FIB$L_LOC_ADDR Placement LBN, cylinder, or VBN.

1.3.3.2. Operation

The specified number of blocks are allocated and appended to the file. The virtual block number as-
signed to the first block allocated is returned in FIB$L_EXVBN. The actual number of blocks allocat-
ed is returned in FIB$L_EXSZ.

The actual number of blocks allocated is also returned in the second longword of the user's I/O sta-
tus block. If a contiguous allocation (FIB$V_ALCON) fails, the size of the largest contiguous space
available on the disk is returned in the second longword of the user's I/O status block.

1.3.4. Truncate
The truncate subfunction is used to remove space from a disk file. This subfunction can be invoked by
the major I/O functions IO$_DEACCESS and IO$_MODIFY (see Section 1.6.3 and Section 1.6.4).
The truncate subfunction is performed if the bit FIB$V_TRUNC is set in the extend control word
FIB$W_EXCTL.

1.3.4.1. Input Parameters

Table 1.5 lists the FIB fields that control the processing of a truncate subfunction.

14

Chapter 1. ACP-QIO Interface

Table 1.5. FIB Fields (Truncate Control)

Field Subfields Meaning
 Extend control flags. The following flags are applic-

able to the truncate subfunction:
FIB$V_TRUNC Must be set to enable truncation.

FIB$W_EXCTL

FIB$V_MARKBAD Set to append the truncated blocks to the bad block
file, instead of returning them to the free storage
pool. Only one cluster can be deallocated. This is
most easily accomplished by specifying the last
VBN of the file in FIB$L_EXVBN. SYSPRV privi-
lege or ownership of the volume is required to deal-
locate blocks to the bad block file.

FIB$L_EXSZ Returns the actual number of blocks deallocated.
FIB$L_EXSZ must initially contain a value of 0.

FIB$L_EXVBN Specifies the first virtual block number to be re-
moved from the file. The actual starting virtual
block number of the truncate operation is returned
in this field.

1.3.4.2. Operation
Blocks are deallocated from the file, starting with the virtual block specified in FIB$L_EXVBN
and continuing through the end of the file. The actual number of blocks deallocated is returned
in FIB$L_EXSZ. The virtual block number of the first block actually deallocated is returned in
FIB$L_EXVBN. Because of cluster round-up, this value might be greater than the value specified. If
FIB$V_MARKBAD is specified, the truncation VBN is rounded down instead of up, and the value
returned in FIB$L_EXVBN might be less than that specified.

The number of blocks by which FIB$L_EXVBN was rounded up is returned in the second longword
of the I/O status block.

The truncate subfunction normally requires exclusive access to the file at run time. This means, for
example, that a file cannot be truncated while multiple writers have access to it.

An exception occurs when a truncate subfunction is requested for a write-accessed file that allows
other readers. Although the truncate subfunction returns success status in this instance, the actual file
truncation (the return of the truncated blocks to free storage) is deferred until the last reader deaccess-
es the file. If a new writer accesses the file after the truncate subfunction is requested, but before the
last deaccess, the deferred truncation is ignored.

Once the truncate operation has started, the file is locked from other writers for the duration of the
truncate operation. Attempts to access the file for shared write access during this time results in an
SS$_ACCONFLICT error.

1.3.5. Read/Write Attributes
The read and write attributes subfunctions are used for operations such as reading and writing file pro-
tection and creating and revising dates. A read or write attributes operation is invoked by specifying
an attribute list with the QIO parameter P5. A read attributes operation can be invoked by the major I/
O function IO$_ACCESS (see Section 1.6.2); a write attributes operation can be invoked by the major
I/O functions IO$_CREATE, IO$_DEACCESS, and IO$_MODIFY (see Section 1.6.1, Section 1.6.3,
and Section 1.6.4).

15

Chapter 1. ACP-QIO Interface

1.3.5.1. Input Parameters

The read or write attributes subfunction is controlled by the attribute list specified by P5. The list con-
sists of a variable number of two longword control blocks, terminated by a 0 longword, as shown in
Figure 1.4.The maximum number of attribute control blocks in one list is 30. Table 1.6 describes the
attribute control block fields.

Figure 1.4. Attribute Control Block Format

Table 1.6. Attribute Control Block Fields

Field Meaning
ATR$W_SIZE Specifies the number of bytes of the attribute to be written, or the size of

the buffer into which the attribute is to be read. Legal values for writing
attributes are from 0 to the maximum size of the particular attribute (see
Table 1.7), and legal values for the reading attributes are from 0 to the
maximum unsigned 16-bit integer.

ATR$W_TYPE Identifies the individual attribute to be read or written.
ATR$L_ADDR Contains the buffer address of the memory space to or from which the at-

tribute is to be transferred. The attribute buffer must be writable.

Table 1.7 lists the valid attributes for ACP-QIO functions. The maximum size (in bytes) is determined
by the required attribute configuration. For example, the Radix-50 file name (ATR$S_FILNAM) us-
es only 6 bytes, but it is always accompanied by the file type and file version, so a total of 10 bytes is
required. Each attribute has two names: one for the code (for example, ATR$C_UCHAR) and one for
the size (for example, ATR$S_UCHAR).

Table 1.7. ACP-QIO Attributes

Attribute Name1 Maximum
Size (bytes)

Meaning

ATR$C_ACCDATE2 8 Corresponds to POSIX st_atime and reflects the last time
a file was accessed.

ATR$C_ACCESS_MODE 1 Access mode for following attribute descriptors.
ATR$C_ACLEVEL3 4 5 6 1 File access level.
ATR$C_ACLLENGTH6 7 4 Returns the size, in bytes, of the object's ACL.
ATR$C_ADDACLENT8 6 7 255 Adds an ACE to the beginning of the ACL when the

ACE context value is 0; to the end of the ACL when the

16

Chapter 1. ACP-QIO Interface

Attribute Name1 Maximum
Size (bytes)

Meaning

ACE context value is -1; or at a location pointed to by a
prior ATR$C_FNDACETYP or ATR$C_FNDACLENT.

ATR$C_ALCONTROL 14 Compatibility mode allocation data.
ATR$C_ASCDATES3 9 35 Revision count (2 binary bytes), revision date, creation

date, and expiration date, in ASCII. Format: DDMM-
MYY (revision date), HHMMSS (time), DDMMMYY
(creation date), HHMMSS (time), DDMMMYY (expira-
tion date). (The format contains no embedded spaces or
commas.)

ATR$C_ASCNAME 252
(ODS-5)

86 (ODS-2)

File name, type, and version, in ASCII, including punctu-
ation. Format: name.type;version.

Magnetic tape: contains 17-character file identifier
(ANSI a); no version number. Overrides all other file
name and file type specifications if supplied on input op-
erations. If specified on an access operation and you want
only a value to be returned, specify (in ATR$W_SIZE) a
buffer of greater than 17 bytes.

See Section 1.3.5.2 for additional information.
ATR$C_ATTDATE2 8 Corresponds to POSIX st_ctime and reflects the last time

a file attribute was modified.
ATR$C_BACKLINK6 6 File back link pointer.
ATR$C_BAKDATE4 5 10 6 8 64-bit backup date and time.
ATR$C_BLOCKSIZE 2 Magnetic tape block size.
ATR$C_BUFFER_OF-
FSET9

2 Offset length for ANSI magnetic tape header label buffer.

ATR$C_CREDATE 8 64-bit creation date and time.
ATR$C_DELACLENT8 6 7 255 Deletes an access control entry pointed to by the buffer

address or, if the buffer address is 0, the ACE pointed to
by a prior ATR$C_FNDACETYP or ATR$C_FNDA-
CLENT.

ATR$C_DELETE_ALL7 6 8 255 Delete the entire ACL, including protected entries.
ATR$C_DELETEACL7 6 8 255 Deletes the entire ACL with the exception of protected

ACEs.
ATR$C_DIRSEQ6 2 Directory update sequence count.
ATR$C_ENDLBLAST 4 End of magnetic tape label processing; provides AST

control block.
ATR$C_EXPDAT3 7 Expiration date in ASCII. Format: DDMMMYY.
ATR$C_EXPDATE3 8 64-bit expiration date and time.
ATR$C_FILE_SPEC6 4098

(ODS-5)

512
(ODS-2)

Convert FID to file specification. See Section 1.3.5.2 for
additional information.

17

Chapter 1. ACP-QIO Interface

Attribute Name1 Maximum
Size (bytes)

Meaning

ATR$C_FILNAM 10 6-byte Radix-50 file name plus ATR$C_FILTYP and
ATR$C_FILVER. See Section 1.3.5.2 for additional in-
formation.

ATR$C_FILTYP 4 2-byte Radix-50 file type plus ATR$C_FILVER. See
Section 1.3.5.2 for additional information.

ATR$C_FILVER 2 2-byte binary version number. See Section 1.3.5.2 for ad-
ditional information.

ATR$C_FNDACLENT6 7 255 Locates an ACE pointed to by its buffer address.
ATR$C_FNDACETYP6 7 255 Locates an ACE of the type pointed to by its buffer ad-

dress.
ATR$C_FPRO3 4 2 File protection.
ATR$C_GRANT_ACE6 7 255 Return an ACE that grants or denies access to the object.
ATR$C_HDR1_ACC 1 ANSI magnetic tape header label accessibility character.
ATR$C_HEADER 512 Complete file header. This attribute is read only.
ATR$C_HIGHWATER6 4 High-water mark (user read-only).
ATR$C_JOURNAL6 1 Journal control flags.
ATR$C_LINKCOUNT 2 Count of hardlinks.
ATR$C_MATCHING_
ACE10 6

255 ACE used to gain access (if any). This attribute can only
be retrieved on the initial file access or create operation.

ATR$C_MODACLENT8 6 7 255 Replaces the ACE pointed to by a prior ATR$C_FN-
DACETYP or ATR$C_FNDACLENT with the ACE
pointed to by its buffer address.

ATR$C_MODDATE2 8 Corresponds to POSIX st_mtime and reflects the last
time data was modified.

ATR$C_NEXT_ACE6 7 4 Advance to the next ACE in the ACL.
ATR$C_PRIVS_USED6 4 Privileges used to gain access. This attribute can only be

retrieved on the initial file access or create operation.
ATR$C_READACE6 7 255 Reads the ACE pointed to by ATR$C_FNDACETYP or

ATR$C_FNDACLENT into the buffer.
ATR$C_READACL6 7 512 Reads the entire ACL or as much as will fit in the sup-

plied buffer. Only complete ACEs are transferred.
ATR$C_RECATTR4 32 Record attribute area. Section 1.4 describes the record at-

tribute area in detail.
ATR$C_RESERVED11 380 Modifies the reserve area.
ATR$C_REVDATE3 4 8 64-bit revision date and time.
ATR$C_RPRO6 2 2-byte record protection.
ATR$C_SEMASK6 8 File security mask and limit.
ATR$C_STATBLK 32 Statistics block. This attribute is read only. Section 1.5

describes the statistics block in detail.
ATR$C_UCHAR3 9 4 4-byte file characteristics. (The file characteristics bits

are listed following this table.)

18

Chapter 1. ACP-QIO Interface

Attribute Name1 Maximum
Size (bytes)

Meaning

ATR$C_USERLABEL 80 User file label. This attribute is not supported for disk de-
vices.

ATR$C_UIC3 4 4-byte file owner UIC.
ATR$C_UIC_RO 4 4-byte file owner UIC. This attribute is read only.

1Attributes with an ATR$C_ prefix have two names: one with the ATR$C prefix for the code and one with an ATR$S_ prefix for the size,
which is not included in the list.
2Not supported by all ACPs. Maintained on ODS-5 volumes when access dates are enabled using the DCL INITIALIZE or SET VOLUME
commands. Not maintained on ODS-2 volumes.
3Protected(can be written to only by system or owner).
4Locked (cannot be written to while the file is locked).
5For Files-11 C/D; returns 0.
6Not supported for Files-11 On Disk Structure Level 1 or magnetic tapes.
7The status from this attribute operation is returned in FIB$L_ACL_STATUS.
8Exclusive access required. This operation does not complete successfully if other readers or writers are allowed.
9Not supported on writer operations to MTAACP; defaults are returned on read operations.
10Can be written only by the system, owner, or someone holding READALL privilege.
11The actual length available can decrease if the file is extended in a noncontiguous manner or if an ACL is applied to the file.

Table 1.8 lists the bits contained in the file characteristics longword, which is read with the
ATR$C_UCHAR attribute.

Table 1.8. File Characteristics Bits

Bits Meaning
FCH$M_NOBACKUP Do not back up file.
FCH$M_READCHECK Verify all read operations.
FCH$M_WRITCHECK Verify all write operations.
FCH$M_CONTIGB Keep file as contiguous as possible.
FCH$M_LOCKED File is deaccess-locked.
FCH$M_CONTIG File is contiguous.
FCH$M_BADACL File's ACL is corrupt.
FCH$M_SPOOL File is an intermediate spool file.
FCH$M_DIRECTORY File is a directory.
FCH$M_BADBLOCK File contains bad blocks.
FCH$M_MARKDEL File is marked for deletion.
FCH$M_ERASE Erase file contents before deletion.
FCH$M_ASSOCIATED1 File has an associated file.
FCH$M_EXISTENCE1 Suppress existence of file.
FCH$M_NOMOVE Disable move file operations on this file.
FCH$M_NOSHELVABLE File is not shelvable.
FCH$M_SHELVED File is shelved.

1Files-11 C/D only.

1.3.5.2. Attribute Descriptions
This section contains descriptions of the following attribute codes that are listed in Table 1.6:

19

Chapter 1. ACP-QIO Interface

• ATR$C_ASCNAME

• ATR$C_FILE_SPEC

• ATR$C_FILNAM

• ATR$C_FILTYP

• ATR$C_FILVER

ATR$C_ASCNAME

The ATR$C_ASCNAME attribute allows the file specification stored in a file's primary file header to
be read and written.

Reading the ATR$C_ASCNAME Attribute

ForODS-5 volumes, the file specification is returned in the supplied buffer, and the name format is re-
turned in the FIB$B_ASCNAME_FORMAT cell.

The format in which the name is returned is controlled by the settings of the FIB$V_NAMES_8BIT
and FIB$V_NAMES_16BIT flags in the same way as the output file specification parameter. A pseu-
do name can be returned in place of the actual file specification if the format is not one of those the
calling program can accept.

Unlike the output file specification parameter, the length of a file specification contained in the ASC-
NAME attribute is not passed back explicitly. To determine the length of the file specification, the
calling program must search the attribute buffer for the first occurrence of the padding character. If
neither the FIB$V_NAMES_8BIT nor the FIB$V_NAMES_16BIT flag is set, the buffer is padded
with space (note that only ODS-2 format names are returned in this case). If one or more of the flags
are set, the attribute buffer is padded with zeros.

Note

The file system does not enforce a minimum length on the attribute buffer. If the file specification is
longer than the attribute buffer, the value returned is truncated without signaling an error or warning.

In contrast, the file system does enforce a maximum size for the attribute buffer. Supplying a larger
buffer returns a BADPARAM error.

Writing the ATR$C_ASCNAME Attribute

The ASCNAME attribute can only be written for files on ODS-2 or ODS-5 volumes provided that the
FIB$V_NAMES_8BIT and FIB$V_NAMES_16BIT flags are clear.

The ability to write this attribute is only intended to provide compatibility with existing applications
that do so. New and modified programs should not write this attribute. Changing its value can prevent
a file from being permanently deleted.

In those cases where it is legal to write the attribute, the contents of the attribute buffer (up to 252
bytes) are copied to the file name field in the file header. For ODS-5 headers, the format is set to
ODS-2, and the file name length is set to the offset of the first space character. This can be 252 bytes
or the length of the supplied buffer, whichever is the least.

20

Chapter 1. ACP-QIO Interface

ATR$C_FILE_SPEC

The FILE_SPEC attribute is a read-only attribute that returns the physical file specification in the
form:

DDnn:[DIR1.DIR2_DIRn]name.type;1

The file name returned is that from the file header, which may be different from that in the directory.
The specification may be incomplete if any errors are encountered while reading the file headers of
any of the directories in the path.

For files on ODS-5 volumes, the path may contain file names that are in any of the three name for-
mats. This creates a number of problems; for instance, the presence of periods in a directory name
could return an ambiguous path specification. To avoid this and other problems, the file system makes
use of services provided by RMS to translate the file specification and the components of the path to
their escaped form.

If the escaped form of the path is longer than can be accommodated by the buffer for the attribute, one
or more directories in the path may be replaced by the DID of the rightmost of those replaced. This
process is identical to that performed by RMS.

However, if the file specification, even after DID abbreviation, is longer than can be accommodated
by the buffer, the file name is truncated. The file specification string returned to the user buffer has a
2-byte count prefix. The count contains the number of bytes for the untruncated file specification. If
the count is greater than the size of the user buffer (minus the two bytes that contain the count), the
user can conclude that the returned file specification has been truncated.

ATRC_FILNAM, ATRC_FILTYP, and ATR$C_FILVER

The first two of these attributes allow the file name and file type to be read and written using
Radix-50 encoding. This encoding scheme enables 3 characters to be packed into a 16-bit word. On-
ly 38 characters in the ODS-2 format set are valid for Radix-50 names, with the exceptions being dash
(-) and underscore (_).

The maximum component lengths of a Radix-50 encoded file specification are:

• File name: 15 characters (10 bytes)

• File type: 6 characters (4 bytes)

As a result of the additional character and length restrictions, only a subset of legal ODS-2 file names
is can be expressed in the Radix-50 encoding.

The file system only attempts to read or write the three attributes if the format of the existing file
name in the file header is ODS-2. If this is not the case, a NORAD50 error will be returned. If the ex-
isting file name is in ODS-2 format, but is incompatible with the Radix-50 encoding or the length lim-
its on Radix-50 file names, a BADFILENAME error will be returned.

The ATR$C_FILVER attribute allows the file version number in the file header to be read or written
as a 2-byte integer. As the process requires the existing file name to be converted into a Radix-50 file
name, the previous restriction also applies to this attribute.

1.4. ACP-QIO Record Attributes Area
Figure 1.5 shows the format of the record attributes area.

21

Chapter 1. ACP-QIO Interface

Figure 1.5. ACP-QIO Record Attributes Area

Table 1.9 lists the record attributes values and their meanings.

Table 1.9. ACP Record Attributes Values

Field Value Meaning
FAT$B_TYPE Record type. Contains FAT$V_RTYPE and FAT$V_FILEORG.

Record type. The following bit values are defined:
FAT$C_FIXED Fixed-length record
FAT$C_VARIABLE Variable-length record
FAT$C_VFC Variable-length record with fixed control
FAT$C_UNDEFINED Undefined record format (stream binary)
FAT$C_STREAM RMS stream format
FAT$C_STREAMLF Stream terminated by LF

FAT$V_RTYPE

FAT$C_STREAMCR Stream terminated by CR
File organization. The following bit values are defined:
FAT$C_DIRECT Direct file organization1

FAT$C_INDEXED Indexed file organization
FAT$C_RELATIVE Relative file organization

FAT$V_RTYPE

FAT$C_SEQUENTIAL Sequential file organization
Record attributes. The following bit values are defined:
FAT$M_FORTRANCC Fortran carriage control
FAT$M_IMPLIEDCC Implied carriage control
FAT$M_PRINTCC Print file carriage control
FAT$M_NOSPAN No spanned records

FAT$B_RATTRIB

FAT$M_MSBRCW2 Record count word (RCW) is MSB formatted
FAT$W_RSIZE Record size in bytes.
FAT$L_HIBLK3 Highest allocated VBN. The ACP maintains this field when the file is ex-

tended or truncated. Attempts to modify this field in a write attributes op-
eration are ignored.

22

Chapter 1. ACP-QIO Interface

Field Value Meaning
FAT$W_HIBLKH High-order 16 bits
FAT$W_HIBLKL Low-order 16 bits
End of file VBN
FAT$W_EFBLKH High-order 16 bits

FAT$L_EFBLK3 4

FAT$W_EFBLKL Low-order 16 bits
FAT$W_FFBYTE First free byte in FAT$L_EFBLK.
FAT$B_BKTSIZE Bucket size, in blocks.
FAT$B_VFCSIZE Size in bytes of fixed-length control for VFC records.
FAT$W_MAXREC Maximum record size, in bytes.
FAT$W_DEFEXT Default extend quantity.
FAT$W_GBC Global buffer count.
FAT$W_VERSIONS Default version limit; valid only if the file is a directory.
FAT$L_GBC32 Enhanced longword global buffer count.

Record attributes flags. The following bit values are defined:
FAT$M_GBC_PER-
CENT

Interpret value in FAT$L_GBC32 as a percent
instead of count.

FAT$B_RECATTR_
FLAGS

FAT$M_GBC_DE-
FAULT

RMS should set default for global buffer count
and ignore any values in FAT$W_GBC or
FAT$L_GBC32.

1Defined but not implemented.
2Variable-length record format (FAT$C_VARIABLE) only.
3Inverted format field. The high- and low-order 16 bits are transposed for compatibility with PDP-11 software.
4When the end-of-file position corresponds to a block boundary; by convention, FAT$L_EFBLK contains the end-of-file VBN plus 1 and
FAT$W_FFBYTE contains 0.

1.5. ACP-QIO Attributes Statistics Block
Figure 1.6 shows the format of the attributes statistics block. Table 1.10 lists the contents of this
block.

Figure 1.6. ACP-QIO Attributes Statistics Block

23

Chapter 1. ACP-QIO Interface

Table 1.10. Contents of the Statistics Block

Field Subfields Meaning
 Contains the starting LBN of the file if the file is

contiguous. If the file is not contiguous, this field
contains a value of 0. The LBN appears as an in-
verted longword (the high- and low-order 16 bits
are transposed for PDP-11 compatibility). The fol-
lowing subfields are defined:

SBK$W_STLBNH Starting LBN (high-order 16 bits)

SBK$L_STLBN

SBK$W_STLBNL Starting LBN (low-order 16 bits)
 Contains the size of the file in blocks. The file size

appears as an inverted longword (the high- and low-
order 16 bits are transposed for PDP-11 compatibili-
ty). The following subfields are defined:

SBK$W_FILESIZH File size (high-order 16 bits)

SBK$L_FILESIZE

SBK$W_FILESIZL File size (low-order 16 bits)
SBK$B_ACNT1 Access count (low byte). Field is for PDP-11 com-

patibility.
SBK$B_LCNT1 Lock count (low byte). Field is for PDP-11 compat-

ibility.
SBK$L_FCB System pool address of the file's file control block.
SBK$W_ACNT1 Access count (number of channels with file open

currently).
SBK$W_LCNT1 Lock count (the number of access operations that

have locked the file against writers).
SBK$W_WCN1 Writer count (the number of channels that currently

have the file open for write).
SBK$W_TCNT1 Truncate lock count (the number of access opera-

tions that have locked the file against truncation).
SBK$L_READS Number of read operations executed for the file on

this channel.
SBK$L_WRITES Number of write operations executed for the file on

this channel.
1Accesses from processes on the local node in a cluster are counted.

1.6. Major Functions
The following sections describe the operation of the major ACP functions. Each section describes the
required and optional parameters for a particular function, as well as the sequence in which the func-
tion is performed. For clarity, when a major function invokes a subfunction, the input parameters used
by the subfunction are omitted.

1.6.1. Create File
Create file is a virtual I/O function that creates a directory entry or a file on a disk device, or a file on
a magnetic tape device.

24

Chapter 1. ACP-QIO Interface

The following is the function code:

• IO$_CREATE

The following are the function modifiers:

• IO$M_CREATE—Creates a file.

• IO$M_ACCESS—Opens the file on your channel.

• IO$M_DELETE—Marks the file for deletion (applicable only to disk devices).

1.6.1.1. Input Parameters
The following are the device- or function-dependent arguments for IO$_CREATE:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional).

• P3—The address of the word that is to receive the length of the resultant file namestring (option-
al).

• P4—The address of a descriptor for a buffer that is to receive the resultant file namestring (option-
al).

• P5—The address of a list of attribute descriptors (optional).

Table 1.11 lists fields in the FIB that are applicable to the IO$_CREATE operation.

Table 1.11. IO$_CREATE and the FIB

Field Subfields Meaning
 Specifies field values that control access to the

file. The following bits are applicable to the
IO$_CREATE function:

FIB$V_REWIND Set to rewind magnetic tape before creating the
file. Any data currently on the tape is overwrit-
ten.

FIB$V_CURPOS Set to create magnetic tape file at the current
tape position. (Note: a magnetic tape file is
created at the end of the volume set if neither
FIB$V_REWIND nor FIB$V_CURPOS is set.)
If the tape is not positioned at the end of a file,
FIB$V_CURPOS creates a file at the next file
position. Any data currently on the tape past the
current file position is overwritten.

FIB$L_ACCTL

FIB$V_WRITETHRU Specifies that the file header is to be written back
to the disk. If not specified and the file is opened,
writing of the file header can be deferred to some
later time.

FIB$W_CNTRL-
FUNC

 Specifies the following value, which allows you
to control actions subsequent to EOT detection
on a magnetic tape file.

25

Chapter 1. ACP-QIO Interface

Field Subfields Meaning
FIB$W_FID Contains the file ID of the file created or entered.
FIB$W_DID Contains the file identifier of the directory file.

 Controls the processing of the file name in a di-
rectory operation. The following bits are applica-
ble to the IO$_CREATE function:

FIB$V_NEWVER Set to create a file of the same name with the
next higher version number. Only for disk de-
vices.

FIB$V_SUPERSEDE Set to supersede an existing file of the same
name, type, and version. Only for disk devices.

FIB$V_LOWVER Seton return if a lower numbered version of the
file exists. Only for disk devices.

FIB$W_NMCTL

FIB$V_HIGHVER Seton return if a higher numbered version of the
file exists. Only for disk devices.

FIB$W_VERLIMIT Specifies the version limit for the directory en-
try created. Used only for disk devices and only
when the first version of a new file is created. If
0, the directory default is used. If a directory op-
eration was performed, FIB$W_VERLIMIT al-
ways contains the actual version limit of the file.

FIB$L_ACL_S-
TATUS

 Status of the requested ACL attribute opera-
tion, if any. The ACL attributes are included
in Table 1.7. If no ACL attributes are given,
SS$_NORMAL is returned here.

FIB$L_STATUS Access status. Programmers can control the secu-
rity information being propagated as well as the
source of this information by setting the follow-
ing bits.

1.6.1.2. Disk ACP Operation
If the modifier IO$M_CREATE is specified, a file is created. The file ID of the file created is re-
turnedin FIB$W_FID. If the modifier IO$M_DELETE is specified, the file is marked for deletion.

If a non-zero directory ID is specified in FIB$W_DID, a directory entry is created. The file name
specified by parameter P2 is entered in the directory, together with the file ID in FIB$W_FID. (Ta-
ble 1.2 describes the format for the file name string.) Wildcards are not permitted. Negative version
numbers are treated as equivalent to a 0 version number. If a result string buffer and length are speci-
fied by P3 and P4, the actual file name entered, and its length, are returned.

The version number of the file receives the following treatment:

• If the version number in the specified file name is 0 or negative, the directory entry created gets a
version number one greater than the highest previously existing version of that file (or version 1 if
the file did not previously exist).

• If the version number in the specified file name is a nonzero number and FIB$V_NEWVER is set,
the directory entry created gets a version number one greater than the highest previously existing
version of that file, or the specified version number, whichever is greater.

26

Chapter 1. ACP-QIO Interface

• If the version number in the specified file name is a nonzero number and the directory already
contains a file of the same name, type, and version, the previously existing file is set aside for
deletion if FIB$V_SUPERSEDE is specified. If FIB$V_SUPERSEDE is not specified, the create
operation fails with a SS$_DUPFILNAM status.

• If, after creating the new directory entry, the number of versions of the file exceeds the version
limit, the lowest numbered version is set aside for deletion.

• If the file did not previously exist, the new directory entry is given a version limit as follows: the
version limit is taken from FIB$W_VERLIMIT if it is a nonzero number; if it is 0, the version
limit is taken from the default version limit of the directory file; if the default version limit of the
directory file is 0, the version limit is set to 32,767 (the highest possible number).

The file name string entered in the directory is returned using the P3 and P4 result string parameter-
s,if present. The file name string is also written into the header. If no directory operation is requested
(FIB$W_DID is 0), the file name string specified by P2, if any, is written into the file header.

If an attribute list is specified by P5, a write attributes subfunction is performed (see Section 1.3.5).

If the modifier IO$M_ACCESS is specified, the file is opened (see Section 1.3.2).

If the extend enable bit FIB$V_EXTEND is specified in the FIB, an extend subfunction is performed
(see Section 1.3.3).

Finally, if a file was set aside for deletion (IO$M_DELETE is specified), that file is deleted. If the
file is deleted because the FIB$V_SUPERSEDE bit was set, the alternate success status SS$_SU-
PERSEDE is returned in the I/O status block. If the file is deleted because the version limit was ex-
ceeded, the alternate success status SS$_FILEPURGED is returned.

If an error occurs in the operation of an IO$_CREATE function, all actions performed to that point are
reversed (the file is neither created nor changed), and the error status is returned to the user in the I/O
status block.

1.6.1.3. Directory Entry Creation
Creating a new version of a file eliminates default access to the previously highest version of the
file. For example, creating RESUME.TXT;4 masks RESUME.TXT;3 so the DCL command TYPE
RESUME.TXT yields the contents of version 4, not version 3. To protect the contents of the earli-
er version of a file, the creator of a file must have write access to the previous version of a file of the
same name.

1.6.1.4. Magnetic Tape ACP Operation
No operation is performed unless the IO$M_CREATE modifier is specified. The magnetic tape is po-
sitioned as specified by FIB$V_REWIND and FIB$V_CURPOS, and the file is created. The name
specified by the P2 parameter is written into the file header label.

If P5 specifies an attribute list, a write attributes subfunction is performed (see Section 1.3.5).

If the modifier IO$M_ACCESS is specified, the file is opened (see Section 1.3.2).

1.6.2. Access File
This virtual I/O function searches a directory on a disk device or a magnetic tape for a specified file
and accesses that file if found.

The following is the function code:

27

Chapter 1. ACP-QIO Interface

• IO$_ACCESS

The following are the function modifiers:

• IO$M_CREATE—Creates a file.

• IO$M_ACCESS—Opens the file on your channel.

1.6.2.1. Input Parameters
The following are the device- or function-dependent arguments for IO$_ACCESS:

• P1—The address of the file information block (FIB)descriptor.

• P2—The address of the file name string descriptor(optional).

• P3—The address of the word that is to receive the length of the resultant file namestring (option-
al).

• P4—The address of a descriptor for a buffer that is to receive the resultant file namestring (option-
al).

• P5—The address of a list of attribute descriptors(optional).

Table 1.12 lists FIB fields that are applicable to the IO$_ACCESS operation.

Table 1.12. IO$_ACCESS and the File Information Block

Field Subfields Meaning
FIB$W_CNTRL-
FUNC

 Specifies the value that allows the user to control
actions subsequent to EOT detection on a mag-
netic tape file.

FIB$W_VERLIMIT Receives the version limit for the file. Applicable
only if FIB$W_DID is a nonzero number (if a di-
rectory lookup is done). Used only for disk de-
vices.

FIB$L_ACL_S-
TATUS

 Status of the requested ACL attribute opera-
tion, if any. The ACL attributes are included
in Table 1.7.If no ACL attributes are given,
SS$_NORMAL is returned here. (For Files-11 C/
D, this field is always set to SS$_NORMAL.)

 Alternate access status. The following bits are
supported:

FIB$V_ALT_REQ Set to indicate whether the alternate access bit is
required for the current operation. If not set, the
alternate access bit is optional.

FIB$L_STATUS

FIB$V_ALT_GRANTED If FIB$V_ALT_REQ = 0 and the alternate access
check succeeded, the FIB bit returned from the
file system is set.

FIB$L_ALT_ACCESS A 32-bit mask that represents an access mask
to check against file protection; for example, to
open a file for read and to check whether it can
be deleted. The mask has the same configuration
as the standard protection mask.

28

Chapter 1. ACP-QIO Interface

1.6.2.2. Operation
If a nonzero directory file ID is specified in FIB$W_DID, a lookup subfunction is performed (see
Section 1.3.1.) The version limit of the file found is returned in FIB$W_VERLIMIT.

If the directory search fails with a “file not found” condition and the IO$M_CREATE function mod-
ifier is specified, the function is reexecuted as a CREATE. In that case, the argument interpretations
for IO$_CREATE, rather than those for IO$_ACCESS, apply.

If IO$M_ACCESS is specified, an access subfunction is performed to open the file (see Sec-
tion 1.3.2).

If P5 specifies an attribute list, a read attributes subfunction is performed (see Section 1.3.5).

1.6.3. Deaccess File
De access file is a virtual I/O function that deaccesses a file and, if specified, writes final attributes in
the file header.

The following is the function code:

• IO$_DEACCESS

IO$_DEACCESS takes no function modifiers.

1.6.3.1. Input Parameters
The following are the device- or function-dependent arguments for IO$_DEACCESS:

• P1—The address of the file information block (FIB)descriptor.

• P5—The address of a list of attribute descriptors(optional).

The following FIB fields are applicable to the IO$_DEACCESS function:

Field Meaning
FIB$W_FID File ID of the file being deaccessed. This field can contain a value

of 0. If it does not, it must match the file identifier of the accessed
file.

FIB$L_ACL_STATUS Status of the requested ACL attribute operation, if any. The ACL
attributes are included in Table 1.7. If no ACL attributes are given,
SS$_NORMAL is returned here. (For Files-11 C/D, this field is al-
ways set to SS$_NORMAL.)

1.6.3.2. Operation
For disk files, if P5 specifies an attribute control list and the file was accessed for a write operation,
a write attributes subfunction is performed (see Section 1.3.5). If the file was opened for write, no at-
tributes were specified, and FIB$V_DLOCK was set when the file was accessed, the deaccess lock bit
is set in the file header, inhibiting further access to that file.

For disk files, if the truncate enable bit FIB$V_TRUNC is specified in the FIB, a truncate subfunction
is performed (see Section 1.3.4).

Finally, the file is closed. Trailer labels are written for a magnetic tape file that was opened for write.

29

Chapter 1. ACP-QIO Interface

1.6.4. Modify File
Modify file is a virtual I/O function that modifies the file attributes or allocation of a disk file. The
IO$_MODIFY function is not applicable to magnetic tape; that is, the function returns success, but no
action is performed.

The following is the function code:

• IO$_MODIFY

The following is the function modifier:

• IO$M_MOVEFILE

1.6.4.1. Input Parameters
The following are the device- or function-dependent arguments for IO$_MODIFY:

• P1—The address of the file information block (FIB)descriptor.

• P2—The address of the file name string descriptor (optional). If specified, the directory is
searched for the name.

• P3—The address of the word that is to receive the length of the resultant file name string (option-
al).

• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (op-
tional).

• P5—The address of a list of attribute descriptors(optional).

The following FIB fields are applicable to the IO$_MODIFY function:

Field Subfields Meaning
 Specifies field values that control access to the file.

The following bit is applicable to the IO$_MODI-
FY function:

FIB$L_ACCTL

FIB$V_WRITETHRU Specifies that the file header is to be written back
to the disk. If not specified and the file is currently
open, writing of the file header can be deferred to
some later time.

FIB$W_VERLIMIT If a nonzero number, specifies the version limit for
the file.

FIB$L_ACL_S-
TATUS

 Status of the requested ACL attribute operation. The
ACL attributes are listed in Table 1.7. If no ACL at-
tributes are given, SS$_NORMAL is returned here.

1.6.4.2. Operation
If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction is executed (see Sec-
tion 1.3.1). If a nonzero version limit is specified in FIB$W_VERLIMIT and the directory entry found
is the latest version of that file, the version limit is set to the value specified.

If P5 specifies an attribute list, a write attributes subfunction is performed (see Section 1.3.5).

30

Chapter 1. ACP-QIO Interface

The file can be either extended or truncated. If FIB$V_EXTEND is specified in the FIB, an extend
subfunction is performed (see Section 1.3.3). If FIB$V_TRUNC is specified in the FIB, a truncate
subfunction is performed (see Section 1.3.4). Extend and truncate operations cannot be performed at
the same time.

1.6.5. Delete File
Delete file is a virtual I/O function that removes a directory entry or file header from a disk volume.

The following is the function code:

• IO$_DELETE

The following is the function modifier:

• IO$M_DELETE—Deletes the file (or marks it for deletion).

The following are the device- or function-dependent arguments for IO$_DELETE:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional).

• P3—The address of the word that is to receive the length of the resultant file name string (option-
al).

• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (op-
tional).

The following FIB fields are applicable to the IO$_DELETE function:

Field Subfields Meaning
 Specifies field values that control access to the

file. The following bits are applicable to the
IO$_DELETE function:

FIB$V_NOLOCK (Al-
pha only)

Allows the caller to mark a file for delete that is
currently open for write access. When the file is
closed, it is automatically deleted. The file cannot
be accessed by new callers after it has been marked
for delete.

FIB$L_ACCTL

FIB$V_WRITETHRU Specifies that the file header is to be written back
to the disk. If not specified and the file is currently
open, writing of the file header can be deferred to
some later time.

FIB$W_DID Contains the file identifier of the directory file. This
field must be a nonzero number.

FIB$W_FID Specifies the file identification to bedeleted.

1.6.5.1. Operation
If a nonzero directory ID is specified in FIB$W_DID, a lookup subfunction is performed (see Sec-
tion 1.3.1). The file name located is removed from the directory.

31

Chapter 1. ACP-QIO Interface

If the function modifier IO$M_DELETE is specified, the file is marked for deletion. If the file is
notcurrently open, it is deleted immediately. If the file is open, it is deleted when the last accessor
closes it.

1.6.6. Movefile Subfunction
The move file subfunction permits you to move the contents of a file, or part of the contents of a file,
to a new disk location. This subfunction can, for example, form the basis of a disk defragmentation
application.

You can disable movefile operations on specific user files by specifying the /NOMOVE qualifier on
the SET FILE command. Use the DIRECTORY/FULL and the DUMP/HEADER commands to find
out if movefile operations are disabled on a file.

1.6.6.1. Calling the Movefile Subfunction
A program can invoke a movefile subfunction by issuing a QIO request using the function code
IO$_MODIFY and the function modifier IO$M_MOVEFILE. This section describes the various input
parameters that control the processing of movefile operations together with an operational description.

1.6.6.1.1. Input Parameters

Table 1.13 lists the FIB fields that control the processing of a movefile subfunction.

Table 1.13. FIB Fields (Movefile)

Field Subfields Meaning
Movefile control flag. The following flags are ap-
plicable:

FIB$V_NOVERIFY Inhibits comparison of the moved blocks. If this
flag is clear, the movefile operation verifies that the
operation was carried out correctly by comparing
the moved blocks to the original blocks.

FIB$L_ACCTL

FIB$V_CHANGE_
VOL

Enables the movefile operation to move blocks
from one volume to another within a volume set.

The movefile operation clears this flag if the speci-
fied file is a directory.

FIB$W_FID Specifies the file identification of the file to be
moved.
Movefile control flags. The following flag applies
to the movefile operation. All other FIB$W_EX-
CTL flags must be clear.

FIB$V_ALCON Specifies that the movefile operation must allocate
contiguous disk space to the moved blocks. If the
necessary contiguous space is not available, the
movefile operation fails.

The movefile operation sets this flag if the file was
previously marked as contiguous.

FIB$W_EXCTL

FIB$V_ALCONB Specifies that the movefile operation should attempt
to allocate contiguous disk space to the moved

32

Chapter 1. ACP-QIO Interface

Field Subfields Meaning
blocks. That is, if the movefile operation cannot al-
locate contiguous space to all the moved blocks, it
allocates contiguous space to as many of the blocks
as possible.

The movefile operation sets this flag if the file was
previously marked as contiguous best try.

FIB$V_FILCON Specifies that the entire file must be made contigu-
ous. Do not set this flag without also setting the
FIB$V_ALCON flag.

If the FIB$V_FILCON flag is set, and either the
FIB$V_ALCON flag is clear or the file would not
be made contiguous by moving the specified virtual
blocks, the movefile operation fails.

The movefile operation sets this flag if the file was
previously marked as contiguous.

FIB$V_NOPLACE Specifies that placement information is not recorded
in the file header.

If this flag is clear and you specify exact placement
for the moved blocks, placement information for
those blocks will be recorded in the file header. If
this flag is set, the placement information is not
recorded.

You specify exact placement through
the FIBV_EXACT, FIBC_LBN, and
FIB$L_LOC_ADDR fields.
Flags that control the placement of the allocat-
ed blocks. Currently, only the FIB$V_EXACT
flag applies to the movefile operation. All other
FIB$B_ALOPTS flags must be clear. The following
flag is applicable:

FIB$B_ALOPTS

FIB$V_EXACT Set to require exact placement. If this flag is set and
the specified blocks are not available, the movefile
operation fails.

FIB$B_ALALIGN Contains the interpretation mode of the allocation
field (FIB$W_ALLOC). You can specify a field
value of 0 or you can specify the symbolic value
FIB$C_LBN. If you specify 0, the allocation field is
ignored.
Contains the desired location of the blocks being al-
located. Interpretation of the field is controlled by
the FIB$B_ALALIGN field. The following sub-
fields are defined:

FIB$W_ALLOC

FIB$B_LOC_RVN Specifies the relative volume number (RVN) of
the volume to which the blocks are moved. Do not

33

Chapter 1. ACP-QIO Interface

Field Subfields Meaning
specify a value for this field unless you have set the
FIB$V_CHANGE_VOL flag.

FIB$L_LOC_ADDR If the FIB$C_LBN and FIB$V_EXACT flags are
set, specifies the starting logical address to which
the blocks are moved.

FIB$L_MOV_SVBN Specifies the virtual block number (VBN) of the
first block to be moved.

The starting VBN must correspond to the first block
of a disk cluster. The value must be greater than 0
and it must not exceed the number of virtual blocks
allocated to the file. If you specify an invalid value,
the movefile operation fails.

FIB$L_MOV_
VBNCNT

Specifies the number of consecutive virtual blocks
to be moved.

This value must be a multiple of the disk clus-
ter size, and it must not exceed the difference be-
tween the greatest VBN allocated to the file and the
FIB$L_MOV_SVBN value. If you specify a val-
ue of 0, the movefile operation moves all the virtual
blocks between the FIB$L_MOV_SVBN value and
the greatest VBN.

If you specify an invalid value, the movefile opera-
tion fails.

1.6.6.1.1.1. Operation

A program can perform a movefile operation on a file if the following conditions are met:

• The program has write and control access to the file.

• The file is closed.

• Movefile operations are not disabled on the file.

Movefile operations are automatically disabled on critical system files. You can disable movefile op-
erations on specific user files by specifying the /NOMOVE qualifier with the SET FILE command.

• The operation is not interrupted.

If the movefile operation is interrupted by any other operation, such as a read or write operation, the
movefile operation aborts and the file remains in its original position.

The movefile operation moves a specified number of consecutive virtual blocks to new logical blocks
on disk, beginning with the virtual block specified in the FIB$L_SVBN field.

The number of blocks moved is specified in the FIB$L_VBNCNT field. To move an entire file, speci-
fy FIB$L_VBNCNT as 0 and FIB$L_SVBN as 1.

To specify a starting logical block for the moved blocks, specify the logical block address in the
FIB$L_LOC_ADDR subfield and set the FIB$C_LBN and the FIB$V_EXACT flags.

34

Chapter 1. ACP-QIO Interface

To move the blocks to another volume, or move blocks that span more than one volume, set the
FIB$V_CHANGE_VOL flag of the FIB$L_ACCTL field. Use the FIB$B_LOC_RVN subfield of the
FIB$W_ALLOC field to specify the volume to which the blocks are moved. If you do not specify a
volume, the blocks are moved to the volume containing the first virtual block. Note that you cannot
move blocks of a directory file to another volume.

If the file was previously marked as contiguous, the movefile operation sets the FIB$V_ALCON,
FIB$V_ALCONB, and FIB$V_FILCON flags. This ensures that a contiguous file is not fragmented
by a movefile operation.

For virtual blocks beyond the file's highwater mark, the movefile operation allocates new logical
blocks but does not copy the contents. The position of the file's highwater mark remains unchanged.

1.6.7. Mount
On Alpha and Integrity server systems, mount is a virtual I/O function that informs the ACP when a
disk or magnetic tape volume is mounted. MOUNT privilege is required. IO$_MOUNT takes no ar-
guments or function modifiers. This function is part of the volume mounting operation only, and it is
not meant for general use. Most of the actual processing is performed by the MOUNT command or
the Mount Volume ($MOUNT) system service.

1.6.8. ACP Control
ACP Control is a virtual I/O function that performs ancillary control functions, depending on the argu-
ments specified.

The following is the function code:

• IO$_ACPCONTROL

The following is the function modifier:

• IO$M_DMOUNT—Dismounts a volume.

1.6.8.1. Input Parameters
The following are the device- or function-dependent arguments for IO$_ACPCONTROL:

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional).

• P3—The address of the word that is to receive the length of the resultant file name string (option-
al).

• P4—The address of a descriptor for a buffer that is to receive the resultant file name string (op-
tional).

Table 1.14 lists FIB fields that control the processing of the IO$_ACPCONTROL function.

Table 1.14. IO$_ACPCONTROL and the FIB

Field Subfields Meaning
FIB$W_CNTRLFUNC Specifies the control function to be performed.

This field overlays FIB$W_EXCTL.

35

Chapter 1. ACP-QIO Interface

Field Subfields Meaning
FIB$L_CNTRLVAL1 Specifies additional function-dependent data.

This field overlays FIB$L_EXSZ.
FIB$L_ACL_STATUS Status of the requested ACL attribute opera-

tion, if any. The ACL attributes are included
in Table 1.7. If no ACL attributes are given,
SS$_NORMAL is returned here. For Files-11 C/
D, this field is always set to SS$_NORMAL.
Alternate access status. The following bits are
supported:

FIB$V_ALT_REQ Set to indicate whether the alternate access bit is
required for the current operation. If not set, the
alternate access bit is optional.

FIB$L_STATUS1

FIB$V_ALT_GRANT-
ED

If FIB$V_ALT_REQ = 0 and the alternate access
check succeeded, the FIB bit returned from the
file system is set.

FIB$L_ALT_AC-
CESS1

A 32-bit mask that represents an access mask
to check against file protection; for example, to
open a file for read and to check whether it can
be deleted or not. The mask has the same config-
uration as the standard protection mask.

1Not supported or valid for Files-11 C/D.

1.6.8.2. Magnetic Tape Control Functions
Table 1.15 lists the FIB field applicable to magnetic tape operations.

Table 1.15. Magnetic Tape Operations and the FIB

Field Subfields Meaning
Several ACP control functions are used for magnet-
ic tape positioning. These functions are specified
by supplying a FIB with P1 containing the FIB de-
scriptor address. Modifiers and parameters P2, P3,
and P4 are not allowed. These functions clear se-
rious exceptions in magnetic tape drivers. The fol-
lowing control functions can be specified to control
magnetic tape positioning:

FIB$C_REWINDFIL Rewind to beginning-of-file.
FIB$C_REWINDVOL Rewind to beginning-of-volume set.
FIB$C_POSEND Position to end-of-volume set.
FIB$C_NEXTVOL Force next volume.
FIB$C_SPACE Space n blocks forward or backward. The

FIB$L_CNTRLVAL field specifies the number of
magnetic tape blocks to space forward if positive or
to space backward if negative.

FIB$W_CNTRL-
FUNC

FIB$C_CLSEREXCP If set, clears the serious exception in the magnetic
tape driver (see FIB$C_USEREOT in Section 1.6.1
and Section 1.6.2). If writing, allows you to write

36

Chapter 1. ACP-QIO Interface

Field Subfields Meaning
data blocks beyond the EOT marker, which can
result in the magnetic tape not conforming to the
ANSI standard for magnetic tapes (see ANSI Stan-
dard X3.27-1978). If reading, allows you to handle
the move to the next volume or to stop reading the
tape. Do not attempt to read past EOV.

1.6.8.3. Miscellaneous Disk Control Functions

Several ACP control functions are available for disk volume control. The following function does not
use parameters P2, P3, and P4:

IO$M_DMOUNT Specifying the dismount modifier on the IO$_ACPCNTRLfunction executes
a dismount QIO. No parameters in the FIB are used; the FIB can be omitted.
This function does not perform a dismount by itself, but is used to synchro-
nize the ACP with the DISMOUNT command and the Dismount Volume
($DISMOUNT) system service.

The FIB$W_CNTRLFUNC field of the FIB specifies the following miscellaneous control functions
(with no modifier on the IO$_ACPCONTROL function code). These functions use no other parame-
ters.

FIB$C_REMAP Remap a file. The file window for the file open on the user's channel is
remapped so that it maps the entire file.

FIB$C_LOCK_VOL Allocation lock the volume. Operations that change the file structure, such
as file creation, deletion, extension, and deaccess, are not permitted. If such
requests are queued to the file system for an allocation-locked volume, they
are not processed until the FIB$C_UNLK_VOL function is issued to unlock
the volume.

To issue the FIB$C_LOCK_VOL function, you must have either a system
UIC or SYSPRV privilege, or be the owner of the volume.

FIB$C_UNLK_VOL Unlock the volume. Cancels FIB$C_LOCK_VOL. To issue this function,
you must have either a system UIC or SYSPRV privilege, or be the owner of
the volume.

1.6.8.4. Disk Quotas

Disk quota enforcement is enabled by a quota file on the volume, or relative volume 1 if the file is
on a volume set. The quota file appears in the volume's master file directory (MFD) under the name
QUOTA.SYS;1. This section describes the control functions that operate on the quota file.

Table 1.16 lists the enable and disable quota control functions.

Table 1.16. Disk Quota Functions (Enable/Disable)

Value Meaning
FIB$C_ENA_QUOTA Enable the disk quota file. If a nonzero directory file ID is specified in

FIB$W_DID, a lookup subfunction is performed to locate the quota file (see

37

Chapter 1. ACP-QIO Interface

Value Meaning
Section 1.3.1). To issue this function, you must have either a system UIC or
SYSPRV privilege, or be the owner of the volume.

The quota file specified by FIB$W_FID, if present, is accessed by the ACP,
and quota enforcement is turned on. By convention, the quota file is named
[0,0]QUOTA.SYS;1. Therefore, FIB$W_DID should contain the value 4,4,0
and the name string specified with P2 should be “QUOTA.SYS;1”.

FIB$C_DSA_QUOTA Disable the disk quota file. The quota file is deaccessed and quota enforce-
ment is turned off. To issue this function, you must have either a system UIC
or SYSPRV privilege, or be the owner of the volume.

Table 1.17 lists the quota control functions that operate on individual entries in the quota file. Each
operation transfers quota file data to and from the ACP using a quota data block. This block has the
same format as a record in the quota file. Figure 1.7 shows the format of this block.

Table 1.17. Disk Quota Functions (Individual Entries)

Value Meaning
FIB$C_ADD_QUOTA Add an entry to the disk quota file, using the UIC and quota specified in the

P2 argument block. FIB$C_ADD_QUOTA requires write access to the quo-
ta file.
Examine a disk quota file entry. The entry whose UIC is specified in the P2
argument block is returned in the P4 argument block, and its length is re-
turned in the P3 argument word. Using two flags in FIB$L_CNTRLVAL,
it is possible to search through the quota file using wildcards. The two flags
are:
FIB$V_ALL_MEM Match all UIC members
FIB$V_ALL_GRP Match all UIC groups

FIB$C_EXA_QUOTA

The ACP maintains position context in FIB$L_WCC. On the first examine
call, you specify 0 in FIB$L_WCC; the ACP returns a nonzero value so that
each succeeding examine call returns the next matching entry.

Read access to the quota file is required to examine all nonuser entries.
Modify a disk quota file entry. The quota file entry specified by the UIC in
the P2 argument block is modified according to the values in the block, as
controlled by the following three flags in FIB$L_CNTRLVAL:
FIB$V_MOD_PERM Change the permanent quota
FIB$V_MOD_OVER Change the overdraft quota
FIB$V_MOD_USE Change the usage data

FIB$C_MOD_QUO-
TA

The usage data can be changed only if the volume is locked by
FIB$C_LOCK_VOL (see Section 1.6.8.3). FIB$C_MOD_QUOTA requires
write access to the quota file.

The P3 and P4 arguments return the modified quota entry to you.

By using the flags FIB$V_ALL_MEM and FIB$V_ALL_GRP, you can
search through the quota file using wildcards just as you would with the
FIB$C_EXA_QUOTA function.

38

Chapter 1. ACP-QIO Interface

Value Meaning
FIB$C_REM_QUOTA Remove a disk quota file entry whose UIC is specified in the P2 argument

block. FIB$C_REM_QUOTA requires write access to the quota file.

The P3 and P4 arguments return the removed quota file entry to you.

By using the flags FIB$V_ALL_MEM and FIB$V_ALL_GRP, you can
search through the quota file using wildcards just as you would with the
FIB$C_EXAQUOTA function.

Figure 1.7. Quota File Transfer Block

IO$_ACPCONTROL functions that transfer quota file data between the caller and the ACP use the
following device- or function-dependent arguments:

• P2—The address of a descriptor for the quota data block being sent to the ACP.

• P3—The address of a word that returns the data length.

• P4—The address of a descriptor for a buffer to receive the quota data block returned from the
ACP.

1.7. I/O Status Block
Figure 1.8 shows the I/O status block (IOSB) for ACP-QIO functions. Appendix A lists the status re-
turns for these functions. (The OpenVMS system messages documentation provides explanations and
suggested user actions for these returns.)

The file ACP returns a completion status in the first longword of the IOSB. In an extend operation, the
second longword is used to return the number of blocks allocated to the file. If a contiguous extend
operation (FIB$V_ALCON) fails, the second longword is used to return the size of the file after trun-
cation.

Values returned in the IOSB are most useful during operations in compatibility mode. When execut-
ing programs in the native mode, use the values returned in FIB locations.

39

Chapter 1. ACP-QIO Interface

Figure 1.8. IOSB Contents — ACP-QIO Functions

If an extend operation (including CREATE) was performed, IOSB+4 contains the number of blocks
allocated, or the largest available contiguous space if a contiguous extend operation failed. If a trun-
cate operation was performed, IOSB+4 contains the number of blocks added to the file size to reach
the next cluster boundary.

40

Chapter 2. Disk Drivers
This chapter describes the use of disk drivers that support the disk devices listed in the Software Prod-
uct Description for the OpenVMS Operating System (SPD 82.35.xx). The chapter also includes de-
scriptions of many of the supported disks and controllers; however, not all supported devices are de-
scribed here. For the definitive list of supported devices, see Software Product Description for the
OpenVMS Operating System

All disk drivers support Files-11 On-Disk Structure Level 1 and Level 2 file structures. Access to
these file structures is through the DCL commands INITIALIZE and MOUNT, followed by the RMS
calls described in the OpenVMS Record Management Utilities Reference Manual. Files in RT-11 for-
mat can be read or written with the file exchange facility EXCHANGE.

2.1. Driver Features
Disk drivers provide the following features:

• Multiple controllers of the same type (except RB730), for example, more than one MBA or
RK611 can be used on the system

• Multiple disk drives per controller (the exact number depends on the controller)

• Different types of disk drives on a single controller

• Static dual porting (MBA drives only)

• Overlapped seeks (except RL02, RX01, RX02, and TU58)

• Data checks on a per-request, per-file, or per-volume basis (except RX01 and RX02)

• Full recovery from power failure for online disk drives with volumes mounted

• Extensive error recovery algorithms, such as error code correction and offset (except RB02, RL02,
RX01, RX02, and TU58); for DSA disks, these algorithms are implemented in the controller

• Dynamic, as well as static, bad block handling

• Logging of device errors in a file that can be displayed by field service personnel or customer per-
sonnel

• Online diagnostic support for drive level diagnostics

• Multiple-block, noncontiguous, virtual I/O operations at the driver level

• Logical-to-physical sector translation (RX01 and RX02 only)

The following sections describe these features in greater detail.

2.1.1. Data Check
A data check is made after successful completion of a read or write operation and, except for the
TU58, compares the data in memory with the data on disk to make sure they match.

41

Chapter 2. Disk Drivers

Disk drivers support data checks at the following levels:

• Per request—You can specify the data check function modifier (IO$M_DATACHECK) on a read
logical block, write logical block, read virtual block, write virtual block, read physical block, or
write physical block operation. IO$M_DATACHECK is not supported for the RX01 and RX01
drivers.

• Per volume—You can specify the characteristics “data check all reads” and “data check all writes”
when the volume is mounted. The VSI OpenVMS DCL Dictionary describes volume mounting
and dismounting. The VSI OpenVMS System Services Reference Manual describes the Mount
Volume ($MOUNT) and Dismount Volume ($DISMOUNT) system services.

• Per file—You can specify the file access attributes “data check on read” and “data check on
write.” File access attributes are specified when the file is accessed. Chapter 1 of this manual and
the OpenVMS Record Management Services Reference Manual describe file access.

Offset recovery is performed during a data check, but error code correction (ECC) is not performed
(see Section 2.1.3). For example, if a read operation is performed and an ECC correction is applied,
the data check would fail even though the data in memory is correct. In this case, the driver returns a
status code indicating that the operation was completed successfully, but the data check could not be
performed because of an ECC correction.

Data checks on read operations are extremely rare, and you can either accept the data as is, treat the
ECC correction as an error, or accept the data but immediately move it to another area on the disk vol-
ume.

A data check operation directed to a TU58 does not compare the data in memory with the data on
tape. Instead, either a read check or a write check operation is performed (see Section 2.3.1 and Sec-
tion 2.3.2).

2.1.2. Effects of a Failure During an I/O Write Operation
The operating system ensures that when an I/O write operation returns a successful completion status,
the data is available on the disk or tape media. Applications that must guarantee the successful com-
pletion of a write operation can verify that the data is on the media by specifying the data check func-
tion modifier IO$M_DATACHECK. Note that the IO$M_DATACHECK data check function, which
compares the data in memory with the data on disk, affects performance because the function incurs
the overhead of an additional read operation to the media.

If a system failure occurs while a multiple-block write operation is in progress, the operating system
does not guarantee the successful completion of the write operation. (OpenVMS does guarantee sin-
gle-block write operations to DSA drives.) When a failure interrupts a write operation, the data may
be left in any one of the following conditions:

• The new data is written completely to the disk blocks on the media, but a completion status was
not returned before the failure.

• The new data is partially written to the media so that some of the disk blocks involved in the I/O
contain the data from the write operation in progress, and the remainder of the blocks contain the
data that was present before the write operation.

• The new data was never written to the disk blocks on the media.

To guarantee that a write operation either finishes successfully or (in the event of failure) is redone or
rolled back as if it were never started, use additional techniques to ensure data correctness and recov-

42

Chapter 2. Disk Drivers

ery. For example, using database journaling and recovery techniques allows applications to recover
automatically from failures such as the following:

• Permanent loss of the path between a CPU data buffer containing the data being written and the
disk being written to during a multiple-block I/O operation. Communication path loss can occur
due to node or controller failure or a failure of node-to-node communications.

• Failure of a CPU (such as a system failure, system halt, power failure, or system shutdown) during
a multiple-block write operation.

• Mistaken deletion of a file.

• Corruption of file system pointers.

• File corruption due to a software error or incomplete bucket write operation to an indexed file.

• Cancellation of an in-progress multiple-block write operation.

2.1.3. Error Recovery
Error recovery in the operating system is aimed at performing all possible operations to complete an I/
O operation successfully. Error recovery operations fall into the following categories:

• Handling special conditions such as power failure and interrupt timeout.

• Retrying nonfatal controller and drive errors. For DSA and SCSI disks, this function is imple-
mented by the controller.

• Applying error correction information (not applicable for RB02, RL02, RX01, RX02, and TU58
drives). For DSA and SCSI disks, error correction is implemented by the controller.

• Offsetting read heads to try to obtain a stronger recorded signal (not applicable for RB02, RL02,
RB80, RM80, RX01, RX02, and TU58 drives). For DSA and SCSI disks, this function is imple-
mented by the controller.

The error recovery algorithm uses a combination of these four types of error recovery operations to
complete an I/O operation:

• Power failure recovery consists of waiting for mounted drives to spin up and come on line, fol-
lowed by reexecution of the I/O operation that was in progress at the time of the power failure.

• Device timeout is treated as a nonfatal error. The operation that was in progress when the timeout
occurred is reexecuted up to eight times before a timeout error is returned.

• Nonfatal controller/drive errors are executed up to eight times before a fatal error is returned.

• All normal error recovery procedures (nonspecial conditions) can be inhibited by specifying the
inhibit retry function modifier (IO$M_INHRETRY). If any error occurs and this modifier is speci-
fied, the virtual, logical, or physical I/O operation is immediately terminated, and a failure status is
returned. This modifier has no effect on power recovery and timeout recovery.

2.1.4. SCSI Disk Class Driver
Although SCSI disks do not conform to DSA, they do support the following error recovery features:

43

Chapter 2. Disk Drivers

• Static and dynamic bad block replacement (BBR)

• Error correction code (ECC)

• Reexecution of read or write operations within the SCSI drive

• Reexecution of read or write operations by the SCSI disk class driver

All SCSI disks supplied by HPE implement the REASSIGN BLOCKS command, which relocates da-
ta for a specific logical block to a different physical location on the disk. The SCSI disk class driver
reassigns the block in the following instances: (1) when the retry threshold is exceeded during an at-
tempt to read or write a block of data on the disk or (2) when an irrecoverable error occurs during a
write operation.

Unlike DSA, there is no forced error flag in SCSI. Blocks that produce irrecoverable errors during
read operations are not reassigned in order to prevent undetected loss of user data. Instead, the SCSI
disk class driver returns the SS$_PARITY status whenever a read operation results in an irrecoverable
error.

2.1.5. Audio Extensions to the SCSI Disk Class Driver
The operating system provides audio functionality through the SCSI disk class driver. The SCSI disk
class driver provides an interface by which the audio commands can be issued to SCSI devices. These
commands can be issued through the QIO function call. This functionality is available for devices,
such as CD-ROMs that have audio capability.

The IO$_AUDIO function code allows the SCSI disk class driver to process the SCSI audio com-
mands. An Audio Control Block (AUCB) must be defined for a specific SCSI audio command. This
AUCB provides the SCSI disk class driver with command-specific arguments and control informa-
tion. An application program must use the IO$_AUDIO function code and provide the AUCB for the
SCSI driver to process the audio commands.

For more information, see Section 2.3.11.1.

2.2. Disk Driver Device Information
You can obtain information on all disk device characteristics by using the Get Device/Volume Infor-
mation ($GETDVI) system service (see the VSI OpenVMS System Services Reference Manual).

$GETDVI returns disk characteristics when you specify the item codes DVI$_DEVCHAR and
DVI$_DEVCHAR2.

See the Help files for disk device characteristics.

2.3. Disk Function Codes
Disk drivers can perform logical, virtual, and physical I/O functions. Foreign-mounted devices do not
require privilege to perform logical and virtual I/O requests.

Logical and physical I/O functions allow access to volume storage and require only that the issu-
ing process have access to the volume; however, DSA disks and the Shadow disk class driver (DU-
DRIVER) do not accept physical QIO data transfers or seek operations.

44

Chapter 2. Disk Drivers

Note

The results of logical and physical I/O operations are unpredictable if an ancillary control process
(ACP) or extended QIO processing (XQP) is present.

Virtual I/O functions require an ACP for Files-11 On-Disk Structure Level 1 files or an XQP for
Files-11 On-Disk Structure Level 2 files. Virtual I/O functions must be executed in a prescribed or-
der. First, you create and access a file, then you write information to that file, and lastly you deaccess
the file. Subsequently, when you access the file, you read the information and then deaccess the file.
Delete the file when the information is no longer useful.

The volume to which a logical or virtual function is directed must be mounted for the function actual-
ly to be executed. If it is not mounted, either a “device not mounted” or “invalid volume” status is re-
turned in the I/O status block.

Table 2.1 lists the logical, virtual, and physical disk I/O functions and their function codes. Chapter 1
describes the QIO level interface to the disk device ACP.

Table 2.1. Disk I/O Functions

Function Code Arguments Type1 Function Modifiers Function
IO$_ACCESS P1, [P2],

[P3], [P4],
[P5]

V IO$M_CREATE
IO$M_ACCESS

Search a directory for a
specified file and access
the file if found.

IO$_ACPCONTROL P1,[P2],
[P3], [P4],
[P5]

V IO$M_DMOUNT Perform miscellaneous
control functions.

IO$_AVAILABLE P Clear volume valid;
make DSA units avail-
able.

IO$_CREATE P1,[P2],
[P3], [P4],
[P5]

V IO$M_CREATE
IO$M_ACCESS
IO$M_DELETE

Create a directory entry
or a file.

IO$_DEACCESS P1,[P2],
[P3], [P4],
[P5]

V Deaccess a file and, if
specified, write final at-
tributes in the file head-
er.

IO$_DELETE P1,[P2],
[P3],[P4],
[P5]

V IO$M_DELETE Remove a directory en-
try or file header, or
both.

IO$_FORMAT P1 P Set density (RX02 only).
IO$_MODIFY P1,[P2],

[P3], [P4],
[P5]

V Modify the file attributes
or allocation, or both.

IO$_PACKACK P Update UCB fields if
RX02; initialize volume
valid on other devices.
Bring DSA units on line.

IO$_READLBL2 P1,P2,P3 L IO$M_DATACHECK3 Read logical block.

45

Chapter 2. Disk Drivers

Function Code Arguments Type1 Function Modifiers Function
IO$M_INHRETRY

IO$_READPBLK2 P1,P2,P3 P IO$M_DATACHECK3

IO$M_INHRETRY
IO$M_INHSEEK4

Read physical block.5

IO$_READVBLK2 P1,P2,P3 V IO$M_DATACHECK3

IO$M_INHRETRY
Read virtual block.

IO$_SEARCH P1 P Search for specified
block or sector (only for
TU58).

IO$_SEEK P1 P Seek to specified cylin-
der.5

IO$_SENSECHAR P Sense the device-depen-
dent characteristics and
return them in the I/O
status block.

IO$_SENSEMODE L Sense the device-depen-
dent characteristics and
return them in the I/O
status block.

IO$_SETPRFPATH P1 P IO$M_FORCEPTH Specifies a preferred
path for DSA disks.

IO$_UNLOAD P Clear volume valid;
make DSA units avail-
able and spin down the
volume.

IO$_WRITECHECK2 P1,P2,P3 P Verify data written to
disk by a previous write
QIO.3

IO$_WRITELBLK2 P1,P2,P3 L IO$M_DATACHECK3

IO$M_ERASE
IO$M_INHRETRY

Write logical block.

IO$_WRITEPBLK2 P1,P2,P3 P IO$M_DATACHECK3

IO$M_ERASE
IO$M_INHRETRY
IO$M_INHSEEK4

IO$M_DELDATA6

Write physical block.5

IO$_WRITEVBLK2 P1,P2,P3 V IO$M_DATACHECK3

IO$M_ERASE
IO$M_INHRETRY

Write virtual block.

1V = virtual; L = logical; P = physical.
2On OpenVMS Alpha, P1 supports a 64-bit address.
3Not for RX01 and RX02 disks.
4Not for TU58, TX01, RX02, RB02 and RL02 drives.
5Not for DSA and SCSI disks.
6RX02 only.

The function-dependent arguments for IO$_CREATE, IO$_ACCESS, IO$_DEACCESS, IO$_MOD-
IFY, and IO$_DELETE are as follows:

46

Chapter 2. Disk Drivers

• P1—The address of the file information block (FIB) descriptor.

• P2—The address of the file name string descriptor (optional). If specified, the name is entered in
the directory specified by the FIB.

• P3—The address of the word that is to receive the length of the resulting file name string (option-
al).

• P4—The address of a descriptor for a buffer that is to receive the resulting file name string (op-
tional).

• P5—The address of a list of attribute descriptors (optional). If specified, the indicated attributes
are read (IO$_ACCESS) or written (IO$_CREATE, IO$_DEACCESS, and IO$_MODIFY).

The function-dependent arguments for IO$_READVBLK, IO$_READLBLK, IO$_WRITEVBLK,
and IO$_WRITELBLK are as follows:

• P1—The starting virtual address of the buffer that is to receive the data from a read operation; or,
in the case of a write operation, the virtual address of the buffer that is to be written on the disk.
On OpenVMS Alpha, P1 can be a 64-bit address.

• P2—The number of bytes that are to be read from the disk, or written from memory to the disk.
An even number must be specified if the controller is an RK611, RL11, RX211, or UDA50.

• P3—The starting virtual/logical disk address of the data to be transferred in a read operation; or, in
a write operation, the disk address of the area that is to receive the data.

In a virtual read or write operation, the address is expressed as a block number within the file,
that is, block 1 of the file is virtual block 1. (Virtual block numbers are converted to logical block
numbers using mapping windows that are set up by the file system ACP process.)

In a logical read or write operation, the address is expressed as a block number relative to the start
of the disk. For example, the first sector on the disk contains block 0 (or at least the beginning of
block 0).

The function-dependent arguments for IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEP-
BLK functions that include the IO$M_ERASE function modifier are as follows:

• P1—The starting virtual address of the buffer that contains a 4-byte, user-specified erase pattern.
If the P1 address is 0, a longword of 0 is used for the erase pattern. If the P1 address is nonzero,
the contents of the 4 bytes starting at that address is used as the erase pattern. User can specify a
P1 address of 0 to lower system overhead. On OpenVMS Alpha, P1 can be a 64-bit address.

Note

DSA disk controllers provide controlled, assisted erasing for the IO$M_ERASE modifier (with virtual
and logical write functions) only when the erase pattern is all zeros. If a nonzero erase pattern is used,
there is a significant performance degradation with these disks. DSA disks do not accept physical QIO
transfers.

• P2—The number of bytes of erase pattern to write to the disk. The number specified is rounded up
to the next highest block boundary (512 bytes).

• P3—The starting virtual, logical, or physical disk address of the data to be erased.

47

Chapter 2. Disk Drivers

The function-dependent arguments for IO$_WRITECHECK, IO$_READPBLK, and IO$_WRITEP-
BLK are as follows:

• P1—The starting virtual address of the buffer that is to receive the data in a read operation; or, in a
write operation, the starting virtual address of the buffer that is to be written on the disk. Passed by
reference. On OpenVMS Alpha and OpenVMS Integrity server, P1 can be a 64-bit address.

• P2—The number of bytes that are to be read from the disk, or written from memory to the disk.
Passed by value. An even number must be specified if the controller is an RK611, RL11, or
UDA50.

• P3—The starting physical disk address of the data to be read in a read operation; or, in a write
operation, the starting physical address of the disk area that is to receive the data. Passed by val-
ue. The address is expressed as sector, track, and cylinder in the format shown in Figure 2.1. (On
the RX01 and RX02, the high word specifies the track number rather than the cylinder number.)
Check the UCB of a currently mounted device to determine the maximum physical address value
for that type of device.

Note

On the RB80 and RM80, do not address cylinders 560 and 561. These two cylinders are used for diag-
nostic testing only.

The function-dependent argument for IO$_SEARCH is as follows:

• P1—The physical disk address where the tape is positioned. The address is expressed as sector,
track, and cylinder in the format shown in Figure 2.1.

Figure 2.1. Starting Physical Address

The function-dependent argument for IO$_SEEK is as follows:

• P1—The physical cylinder number where the disk heads are positioned. The address is expressed
in the format shown in Figure 2.2.

Figure 2.2. Physical Cylinder Number Format

The function-dependent argument for IO$_FORMAT is as follows:

• P1—The density at which an RX02 diskette is reformatted (see Section 2.3.4).

48

Chapter 2. Disk Drivers

2.3.1. Read
The read function reads data into a specified buffer from disk starting at a specified disk address.

The operating system provides the following read function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPBLK—Read physical block

If a read virtual block function is directed to a volume that is mounted foreign, that function is con-
verted to read logical block. If a read virtual block function is directed to a volume that is mounted
structured, the volume is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: P1, P2, and P3. These arguments are
described in Section 2.3.

The data check function modifier (IO$M_DATACHECK) can be used with all read functions. If this
modifier is specified, a data check operation is performed after the read operation completes. A data
check operation is also performed if the volume that has been read, or the volume on which the file
resides (virtual read) has the characteristic “data check all reads.” Furthermore, a data check is per-
formed after a virtual read if the file has the attribute “data check on read.” The RX01 and RX02 dri-
vers do not support the data check function.

If IO$M_DATACHECK is specified with a read function code to a TU58, or if the volume read has
the characteristic “data check all reads,” a read check operation is performed. This alters certain TU58
hardware parameters when the tape is read. (The read threshold in the data recovery circuit is in-
creased; if the tape has any weak spots, errors are detected.)

The data check function modifier to a disk or tape can return five error codes in the I/O status block:

SS$_CTRLERR SS$_DRVERR SS$_MEDOFL
SS$_NONEXDRV SS$_NORMAL

If no errors are detected, the disk or tape data is considered reliable.

The inhibit retry function modifier (IO$M_INHRETRY) can be used with all read functions. If this
modifier is specified, all error recovery attempts are inhibited. IO$M_INHRETRY takes precedence
over IO$M_DATACHECK. If both are specified and an error occurs, there is no attempt at error re-
covery and no data check operation is performed. If an error does not occur, the data check operation
is performed.

2.3.2. Write
The write function writes data from a specified buffer to disk starting at a specified disk address.

The operating system provides the following write function codes:

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITELBLK—Write logical block

49

Chapter 2. Disk Drivers

• IO$_WRITEPBLK—Write physical block

If a write virtual block function is directed to a volume that is mounted foreign, the function is con-
verted to write logical block. If a write virtual block function is directed to a volume that is mounted
structured, the volume is handled in the same way as for a file-structured device.

Three function-dependent arguments are used with these codes: P1, P2, and P3. These arguments are
described in Section 2.3.

The data check function modifier (IO$M_DATACHECK) can be used with all write operations. If
this modifier is specified, a data check operation is performed after the write operation completes. A
data check operation is also performed if the volume written, or the volume on which the file resides
(virtual write), has the characteristic “data check all writes.” Furthermore, a data check is performed
after a virtual write if the file has the attribute “data check on write.” The RX01 and RX02 drivers do
not support the data check function.

If IO$M_DATACHECK is specified with a write function code to a TU58, or if the volume written
has the characteristic “data check all writes,” a write check operation is performed. The write check
verifies data written on the tape. First, the specified data is written on the tape. Then the tape is re-
versed and the TU58 controller reads the data internally to perform a checksum verification. If the
checksum verification is unsuccessful after eight attempts, the write check operation is aborted and an
error status is returned.

The inhibit retry function modifier (IO$M_INHRETRY) can be used with all write functions. If that
modifier is specified, all error recovery attempts are inhibited. IO$M_INHRETRY takes precedence
over IO$M_DATACHECK. If both IO$M_INHRETRY and IO$M_DATACHECK are specified and
an error occurs, there is no attempt at error recovery, and no data check operation is performed. If an
error does not occur, the data check operation is performed. IO$M_INHRETRY has no effect on DSA
disks.

The write deleted data function modifier (IO$M_DELDATA) can be used with the write physical
block (IO$_WRITEPBLK) function to the RX02. If this modifier is specified, a deleted data address
mark instead of the standard data address mark is written preceding the data. Otherwise, the operation
of the IO$_WRITEPBLK function is the same; write data is transferred to the disk. When a success-
ful read operation is performed on this data, the status code SS$_RDDELDATA is returned in the I/O
status block rather than the usual SS$_NORMAL status code.

The IO$M_ERASE function modifier can be used with all write function codes to erase a user-select-
ed part of a disk. This modifier propagates an erase pattern through the specified range. Section 2.3
describes the write function arguments to be used with IO$M_ERASE.

2.3.3. Sense Mode
Sense mode operations obtain current disk device-dependent characteristics that are returned to the
caller in the second longword of the I/O status block (see Figure 2.6). The operating system provides
the following function codes:

• IO$_SENSEMODE—Sense characteristics

• IO$_SENSECHAR—Sense characteristics

IO$_SENSEMODE is a logical function. IO$_SENSECHAR is a physical I/O function and requires
the access privilege necessary to perform physical I/O. No device- or function-dependent arguments
are used with either function.

50

Chapter 2. Disk Drivers

2.3.4. Set Density
The set density function assigns a new density to an entire RX02 diskette. The diskette is also refor-
matted: new data address marks are written (single or double density) and all data fields are zeroed.
Set density is a physical I/O function and requires the access privilege necessary to perform physical
I/O. The following function code is provided:

• IO$_FORMAT

IO$_FORMAT takes the following function-dependent argument:

• P1—The density at which the diskette is reformatted:

• 0 = single density (default)

• 1 = single density

• 2 = double density

The set density operation should not be interrupted before it is completed (about 15 seconds). If the
operation is interrupted, the resulting diskette might contain illegal data address marks in both densi-
ties. The diskette must then be completely reformatted and the function reissued.

2.3.5. Search
The search function positions a TU58 magnetic tape to the block specified. Search is a physical I/O
function and requires the access privilege necessary to perform physical I/O. The operating system
provides a single function code:

• IO$_SEARCH

This function code takes the following function-dependent argument:

• P1—Specifies the block where the read/write head is positioned. The low byte contains the sector
number in the range 0 to 127; the high byte contains the track number in the range 0 to 3.

IO$_SEARCH can save time between read and write operations. For example, nearly 30 seconds are
required to completely rewind a tape. If the last read or write operation is near the end of the tape and
the next operation is near the beginning of the tape, the search operation can begin after the last opera-
tion completes, and the tape rewinds while the process is otherwise occupied. (The search QIO is not
completed until the search is completed. Consequently, if a $QIOW system service request is issued,
the process is held up until the search is completed.)

2.3.6. Pack Acknowledge
The pack acknowledge function sets the volume valid bit for all disk devices. Pack acknowledge is
a physical I/O function and requires the access privilege to perform physical I/O. If directed to an
RX02 disk, pack acknowledge also determines the diskette density and updates the device-dependent
information returned by $GETDVI item codes DVI$_CYLINDERS, DVI$_TRACKS, DVI$_SEC-
TORS, DVI$_DEVTYPE, DVI$_CLASS, and DVI$_MAXBLOCK. If directed to a DSA disk, pack
acknowledge also sends the online packet to the controller. The following function code is provided:

• IO$_PACKACK

This function code takes no function-dependent arguments.

51

Chapter 2. Disk Drivers

IO$_PACKACK must be the first function issued when a volume (pack, cartridge, or diskette)
is placed in a disk drive. IO$_PACKACK is issued automatically when the DCL commands
INITIALIZE or MOUNT are issued.

For DSA disks, the IO$_PACKACK function locks the drive's port selector on the port that initiated
the pack acknowledge function.

In addition, the IO$_PACKACK function updates device-dependent information about DSA disks re-
turned by $GETDVI.

2.3.7. Unload
The unload function clears the volume valid bit for all disk drives, makes DSA disks available, and is-
sues an unload command to the drive (spins down the volume). The unload function reverses the func-
tion performed by pack acknowledge (see Section 2.3.6). The following function code is provided:

• IO$_UNLOAD

This function takes no function-dependent arguments.

2.3.8. Available
The available function clears the volume valid bit for all disk drives; that is, it reverses the function
performed by pack acknowledge (see Section 2.3.6). No unload function is issued to the drive; there-
fore, those drives capable of spinning down do not spin down. The following function code is provid-
ed:

• IO$_AVAILABLE

This function takes no function-dependent arguments.

2.3.9. Seek
The seek function directs the read/write heads to move to the cylinder specified in the P1 argument
(see Section 2.3 and Figure 2.2).

2.3.10. Write Check
The write check function verifies that data was written to disk correctly. The data to be checked is ad-
dressed using physical disk addressing (sector, track, and cylinder) (see Figure 2.1). If the request is
directed to a DSA disk, you must specify a logical block number, even though IO$_WRITECHECK
is a physical I/O function. The following function code is provided:

• IO$_WRITECHECK

A write QIO must be used to write data to disk before you enter this command. IO$_WRITECHECK
then reads the same block of data and compares it with the data in the specified buffer. Three func-
tion-dependent arguments are used with this code: P1, P2, and P3. These arguments are described in
Section 2.3.

IO$_WRITECHECK is similar to the IO$M_DATACHECK function modifier for write QIOs, ex-
cept that IO$_WRITECHECK does not write the data to disk; it is specified after data is written by
a separate write QIO. Nonprivileged processes can use the IO$M_DATACHECK modifier with

52

Chapter 2. Disk Drivers

IO$_WRITEVBLK (which does not require access privilege) to determine whether data is written
correctly. The RX01 and RX02 drivers do not support the write check function.

The write check function and the data check function modifier to a TU58 can return six error
codes in the I/O status block: SS$_NORMAL, SS$_CTRLERR, SS$_DRVERR, SS$_MEDOFL,
SS$_NONEXDRV, and SS$_WRTLCK.

2.3.11. Audio Extensions
The OpenVMS operating system provides audio functionality through the SCSI disk class driver. The
SCSI disk class driver provides an interface by which the audio commands can be issued to SCSI de-
vices. The audio commands can be issued through the QIO function call. This functionality is avail-
able for devices, such as CD-ROMs which have audio capability.

The function code IO$_AUDIO allows the SCSI disk class driver to process the SCSI audio com-
mands. An Audio Control Block (AUCB) must be defined for a specific SCSI audio command. The
AUCB provides the SCSI disk class driver with command-specific arguments and control informa-
tion. An application program must use the IO$_AUDIO function code and provide the AUCB in order
for the SCSI driver to process the audio commands.

For more information, see

This section describes the SCSI disk class driver audio commands and the $QIO interface by which
the operating system provides audio functionality to the SCSI disk.

Table 2.2 lists the SCSI audio commands supported by the SCSI disk class driver.

Table 2.2. SCSI Disk Class Driver Audio Commands

Command Audio Function Code1 Description
Play Audio MSF AUDIO_PLAY_AUDIO_MSF

(5)
Requests the CD-ROM to begin an audio play-
back operation. The two required command
arguments specify absolute starting and ending
addresses of the playback in terms of minutes,
seconds, and frame (MSF).

Play Audio Track AUDIO_PLAY_AUDIO_
TRACK (6)

Requests the CD-ROM to begin an audio play-
back operation. The two required command
arguments specify the starting and ending
tracks of the playback in terms of track num-
ber and index.

Play Audio AUDIO_PLAY_AUDIO (4) Requests the CD-ROM to begin an audio
playback operation. The two required com-
mand arguments specify the starting logical
block address (LBA) and the transfer count, in
blocks, of the playback.

Pause AUDIO_PAUSE (0) Requests the CD-ROM to suspend any active
audio operations. In response, the CD-ROM
enters the hold-track state, muting the audio
output after playing the current block.

Resume AUDIO_RESUME (1) Requests the CD-ROM to resume any ac-
tive audio operations. In response, the CD-
ROM exits the hold-track state and resumes

53

Chapter 2. Disk Drivers

Command Audio Function Code1 Description
playback at the block following the last block
played.

Get Status AUDIO_GET_STATUS (9) Requests from the CD-ROM the status of the
currently active playback operation, as well
as the state of the current block. The Get Sta-
tus command corresponds to the SCSI II Read
Sub-channel command (READ SUBQ).

Set Volume AUDIO_SET_VOLUME (11) Requests the CD-ROM to adjust the output
channel selection and volume settings for
ports 0 through 3. The Set Volume command
corresponds to the SCSI II Mode Select com-
mand for the CD-ROM Audio Control Para-
meters page.

Get Volume AUDIO_GET_VOLUME (12) Requests from the CD-ROM the output chan-
nel selection and volume settings for ports 0
through 3. The Get Volume command corre-
sponds to the SCSI II Mode Sense command
for the CD-ROM Audio Control Parameters
page.

Prevent Removal AUDIO_PREVENT_
REMOVAL (2)

Prevents the removal of the CD caddy from
the CD-ROM drive.

Allow Removal AUDIO_ALLOW_REMOVAL
(3)

Allows the removal of the CD caddy from the
CD-ROM drive.

Get TOC AUDIO_GET_TOC (10) Requests from the CD-ROM a list of each
track on the disk, including information about
the audio or data contents of each track. Ap-
plications that require a detailed knowledge
of the organization of a CD-ROM can use this
function to obtain that information. The Get
TOC command corresponds to the SCSI II
Read TOC command.

1Symbolic values for the function codes of SCSI audio commands are defined in SYS$EXAMPLES:CDVERIFY.C. Numeric values appear
within parentheses in this table column.

2.3.11.1. $QIO Interface to Audio Functionality of the SCSI Disk
Class Driver

To employ the audio functions of the RRD42 CD-ROM reader, the application program issues a call
to the $QIO system service using the following format:

status=SYS$QIO ([efn] ,[chan] ,func [,iosb] [,astadr] [,astprm] [,p1] [,p2]
 [,p3] [,p4] [,p5] [,p6])

Arguments

[efn]

[chan]

[iosb]

54

Chapter 2. Disk Drivers

[astadr]

[astprm]

These arguments apply to the $QIO system service completion, not to device interrupt actions. For an
explanation of these arguments, see the description of the $QIO system service in the VSI OpenVMS
System Services Reference Manual.

func

The IO$_AUDIO function code allows the SCSI disk class driver to process SCSI audio commands.

p1

Address of an audio control block (AUCB). The $QIO system service passes a SCSI audio command
and command-specific control information to the SCSI disk class driver in the AUCB structure (see
Section 2.3.11.2).

p2

Size of the AUCB.

2.3.11.2. Defining an Audio Control Block (AUCB)
An application program that issues a call to the $QIO system service that specifies the IO$_AUDIO
function code in the func argument must supply the address of an AUCB structure in the p1 argument
and its size in the p2 argument.

An AUCB defines a specific SCSI audio command and provides the SCSI disk class driver with
command-specific arguments and control information. Table 2.3 defines the fields that appear in an
AUCB; these fields are shown in Figure 2.3. See SYS$EXAMPLES:CDROM_AUDIO.C for a code
example that shows how an AUCB is defined in the C programming language.

Figure 2.3. Audio Control Block (AUCB)

55

Chapter 2. Disk Drivers

Table 2.3. Contents of AUCB

Field Use
Audio Function Code Numeric or symbolic code representing the audio function desired

by the application program. (See Table 2.2.) The application pro-
gram must provide a valid audio function code for each operation.

AUCB Version Number Version of the AUCB and SCSI disk class driver audio inter-
face. For the current version of the interface the value of this field
should be 1. This field must never contain a zero.
This field is audio command-specific and contains the first argu-
ment of the function as follows:
Audio Function Code1 Field Contents
AUDIO_PLAY_AUDIO_MSF
(5)

Starting Frames|(Sec shifted left
8 bits)|(Min shifted left 16 bits)

AUDIO_PLAY_AUDIO_
TRACK (6)

Starting (Track shifted left 8
bits) |Index

AUDIO_PLAY_AUDIO (4) Starting logical block address.
AUDIO_GET_STATUS (9) 0 if LBA format, 1 if MSF for-

mat. See the SCSI II specifica-
tion for information about these
formats.

AUDIO_SET_VOLUME (11) Longword representing the val-
ues to be used to determine the
new output channel selection
and volume settings for CD-
ROM ports 0 through 3. Fig-
ure 2.4 shows the format of this
longword. Note that many CD-
ROM drives do not support ports
2 and 3.

AUDIO_GET_VOLUME (12) Longword to receive the current
values determining output chan-
nel selection and volume settings
for CD-ROM ports 0 through 3.
Figure 2.4 shows the format of
this longword. Note that many
CD-ROM drives do not support
ports 2 and 3.

Argument 1

AUDIO_GET_TOC (10) 0 if LBA format, 1 if MSF for-
mat. See the SCSI II specifica-
tion for information about these
formats.

This field is audio command-specific and contains the second ar-
gument of the function as follows:
Audio Function Code1 Field Contents

Argument 2

AUDIO_PLAY_AUDIO_MSF
(5)

Starting frames|(sec shifted left 8
bits)|(min shifted left 16 bits)

56

Chapter 2. Disk Drivers

Field Use
AUDIO_PLAY_AUDIO_
TRACK (6)

Ending(track shifted left 8 bits)|
index

AUDIO_PLAY_AUDIO (4) Transfer count in number of
contiguous blocks to be played

AUDIO_GET_TOC (10) Starting track
Reserved Must be zero.
Destination Buffer Address Address of the application program's buffer from which the status

from a GET_STATUS or GET_TOC function is returned.
Destination Buffer Count Size, in bytes, of the destination buffer specified in the Destination

Buffer Address field. For the GET_STATUS function, this field
must contain the value 48 to receive complete status information.
For the GET_TOC function, this field must contain the value 804
to receive full status. The SCSI disk class driver truncates the sta-
tus data, if the destination buffer size is smaller than the size of the
data.

Destination Buffer Transfer
Count

The SCSI disk class driver returns to this field the actual num-
ber of bytes transferred to the buffer specified in the Destination
Buffer Address field.

Before accessing data returned by the GET_TOC or GET_S-
TATUS commands, an application program must check the con-
tents of this field to determine precisely how many bytes were re-
turned by the CD-ROM.

The application program initializes this field to zero.
Operating System Command
Status

Completion status of the SCSI audio function. This value is also
returned in the I/O status block of specified in the iosb argument
to the $QIO system service call. See Table 2.4 for a description of
these status codes.

The application program initializes this field to zero.
SCSI Command Status (option-
al)

SCSI status of the current operation. The SCSI disk class driver re-
turns the SCSI status byte for the SCSI audio command described
by this AUCB in the low byte of the low-order word of this field.
It returns the sense key in the low byte of the high-order word. See
the SCSI specification for information regarding SCSI status and
SCSI sense keys.

The application program initializes this field to zero.
Sense Data Buffer Address (op-
tional)

Address of buffer to which the SCSI disk class driver returns sense
data when errors occur during audio function execution. When this
field is specified, in the event of a check condition on an Audio
command, the SCSI disk class driver automatically issues a Re-
quest Sense command to retrieve the Sense Key/Sense Data from
the target. The target returns this data to the buffer specified in this
field before the failing $QIO audio function completes.

57

Chapter 2. Disk Drivers

Field Use
Sense Data Buffer Count (op-
tional)

Size, in bytes, of the buffer specified in the Sense Data Buffer Ad-
dress field. During request sense processing, the target device trun-
cates the sense data to fit in this buffer.

Sense Data Buffer Transfer
Count (optional)

Actual number of bytes of sense data returned to the application in
the buffer specified in the Sense Data Buffer Address field.

The application program initializes this field to zero.
Reserved Must be zero.

1For any function code not listed in this table, this field contains a zero.

The output channel selection and volume settings for CD-ROM ports as used by the SET_VOLUME
function appear as shown in Figure 2.4.

2.3.11.3. Error Handling in Applications Using SCSI Audio Func-
tions
As indicated in Table 2.3, the AUCB provides for three levels of error status reporting:

• Condition values, returned in the Operating System Command Status field of the AUCB, as well
as in the I/O status block of specified in the iosb argument to the $QIO system service call. (See
Table 2.4 for a description of these status codes.)

If this status is SS$_NORMAL, the function has completed without error. If the status is not
SS$_NORMAL, the application program should check the SCSI Command Status field and the
Sense Data buffer to fully determine the cause of the failure.

Figure 2.4. Output Channel Selection and Volume Settings for CD-ROM Ports as Used
by the SET_VOLUME Function

• SCSI command status, returned in the SCSI Command Status field of the AUCB. The SCSI disk
class driver returns to this field SCSI status as well as the sense key in the event of a check condi-
tion SCSI status. The sense key can be used to determine the first level of error reporting support-
ed by SCSI. See the SCSI specification for further information.

• Sense data, returned in the buffer specified in the Sense Data Buffer Address field of the AUCB.
Sense data bytes are assigned as defined in the SCSI II specification. Sophisticated programmers
can use the data in this to obtain detailed information about the error-causing condition.

If the CD-ROM device is currently software-enabled (that is, the volume has been mounted) and a
unit attention is detected, then mount verification is initiated by the driver. However, if the CD-ROM
is not software-enabled, the event returns to the application issuing the Audio $QIO function.

58

Chapter 2. Disk Drivers

Table 2.4. Status Codes Returned to the IOSB and AUCB by the SCSI Disk Class Driver

Code Meaning
SS$_NORMAL AUCB command completed successfully.
SS$_ABORT Returned by the SCSI disk port driver. In general, you should retry

commands that fail with this status.
SS$_BADPARM The driver detected an illegal value or missing value in the AUCB.
SS$_CTRLERR CD-ROM failed some part of its initialization sequence. When this

status is returned, it is unlikely that the CD-ROM is usable.
SS$_DEVOFFLINE Device returned a not-ready sense key or failed the TEST UNIT

READY/START sequence.
SS$_DRVERR CD-ROM failed to execute the command, either because the drive has

failed or an illegal command was issued. Such a command could be a
command that requested the drive to issue an audio command to a data
track or attempted to perform a play operation on nonexistent tracks.

SS$_ILLIOFUNC Illegal I/O function was specified in the func argument of the $QIO
request.

SS$_IVADDR Specified block number is larger than UCB$L_MAXBLOCK.
SS$_MEDOFL Last command failed because the drive detected the removal and re-

placement of the CD carrier, or the unsuccessful completion of a Re-
quest Sense command after a check condition error. In general, you
should not retry commands that fail with this status.

SS$_NOPRIV Caller does not have sufficient privileges to execute this function.
If the CD-ROM has not been mounted before an IO$_READVBLK
function is issued, this status may be returned.

SS$_OPINCOMPL Number of bytes requested is less than the number of bytes returned.
SS$_PARITY Nonrecoverable media error (does not apply to audio functions).
SS$_RECOVERR Recovered media error (does not apply to audio functions).
SS$_VOLINV CD-ROM has not been mounted.
SS$_WRITLCK Write operations not permitted on read-only devices.

2.3.11.4. Using CD-ROM to Store Both Data and Audio Information
To make effective use of mixed data and audio CDs, an application program requires detailed knowl-
edge of the particular CD being played. The application program must know which tracks include data
and which tracks include audio so it can use commands appropriate to the different track types. Issu-
ing an audio command on a data track results in the command failing with a status of SS$_DRVERR.

By default, the SCSI disk class driver transfers all requests issued to a CD-ROM in blocks of 512
bytes. This byte amount is referred to as the default block size. Before attempting to issue READ
operations to the CD-ROM, you must ensure that the CD-ROM has been mounted as foreign or as
a Files-11 volume. The application program can then determine, by issuing a GET_TOC function,
which tracks (and, therefore, which logical blocks) contain data and which contain audio information.

2.3.11.5. Programming Audio Applications
The following list contains information useful in avoiding problems when writing code using the
SCSI audio interfaces:

59

Chapter 2. Disk Drivers

• If you do not know the type of file system on the CD-ROM, you should mount the CD-ROM as
foreign and issue a $QIO request with the logical block I/O read function (IO$_READLBLK) to
read individual data blocks. The default block size for all CD-ROMs is 512 bytes.

• When using the GET_TOC command to obtain CD-ROM address information in LBA format, be
advised that the byte ordering of the returned data is in big-endian form. SYS$EXAMPLES:C-
DROM_AUDIO.C contains an example of how to perform this exchange.

• Before attempting to issue a $QIO request with the virtual block I/O read function (IO$_READ-
VBLK) to the CD-ROM, ensure that the CD-ROM has been mounted. Typically, you have to for-
eign mount non-Files-11 disks. If an IO$_READVBLK $QIO request is issued to an unmounted
CD, the request fails with a status of SS$_NOPRIV.

2.4. I/O Status Block
Figure 2.5 shows the I/O status block (IOSB) for all disk device QIO functions except sense mode.
Figure 2.6 shows the I/O status block for the sense mode function. Figure 2.6 lists the status messages
for all functions and devices. (The OpenVMS system messages documentation provides explanations
and suggested user actions for these messages.)

Figure 2.5. IOSB Contents

The byte count is a 32-bit integer that gives the actual number of bytes transferred to or from the
process buffer.

Figure 2.6. IOSB Contents for the Sense Mode Function

The second longword of the I/O status block for the sense mode function returns information about
the cylinder, track, and sector configurations for the particular device.

2.5. Disk Driver Programming Example
A sample MACRO 32 disk driver program, DISK_DRIVER.MAR, is shown in Example 2.1. This
sample program provides an example of optimizing access time to a disk file. The program creates a
file using Record Management Services (RMS), stores information concerning the file, and closes the
file. The program then accesses the file and reads and writes to the file using the Queue I/O ($QIO)
system service.

Example 2.1. DISK_DRIVER.MAR Disk Driver Programming Example

; **
;

 .TITLE Disk Driver Programming Example
 .IDENT /01/

60

Chapter 2. Disk Drivers

;
; Define necessary symbols.
;

 $FIBDEF ;Define file information block Offsets
 $IODEF ;Define I/O function codes
 $RMSDEF ;Define RMS-32 Return Status Values
;
; Local storage
;
; Define number of records to be processed.
;

NUM_RECS=100 ;One hundred records

;
; Allocate storage for necessary data structures.
;
; Allocate File Access Block.
;
; A file access block is required by RMS-32 to open and close a
; file.
;
FAB_BLOCK: ;
 $FAB ALQ = 100,- ;Initial file size is to be
 - ;100 blocks
 FAC = PUT,- ;File Access Type is output
 FNA = FILE_NAME,- ;File name string address
 FNS = FILE_SIZE,- ;File name string size
 FOP = CTG,- ;File is to be contiguous
 MRS = 512,- ;Maximum record size is 512
 - ;bytes
 NAM = NAM_BLOCK,- ;File name block address
 ORG = SEQ,- ;File organization is to be
 - ;sequential
 REM = FIX ;Record format is fixed length
;
; Allocate file information block.
;
; A file information block is required as an argument in the
; Queue I/O system service call that accesses a file.
;
FIB_BLOCK: ;
 .BLKB FIB$K_LENGTH ;

;
; Allocate file information block descriptor.
;

FIB_DESCR: ;
 .LONG FIB$K_LENGTH ;Length of the file
 ;information block
 .LONG FIB_BLOCK ;Address of the file
 ;information block

61

Chapter 2. Disk Drivers

;
; Allocate File Name Block
;
; A file name block is required by RMS-32 to return information
; concerning a file (for example, the resultant file name string
; after logical name translation and defaults have been applied).
;

NAM_BLOCK: ;
 $NAM ;

;
; Allocate Record Access Block
;
; A record access block is required by RMS-32 for record
; operations on a file.
;
RAB_BLOCK:
 $RAB FAB = FAB_BLOCK,- ;File access block address
 RAC = SEQ,- ;Record access is to be
 - ;sequential
 RBF = RECORD_BUFFER,- ;Record buffer address
 RSZ = 512 ;Record buffer size
;
; Allocate direct address buffer
;

BLOCK_BUFFER:
 .BLKB 1024 ;Direct access buffer is 1024
 ;bytes

;
; Allocate space to store channel number returned by the $ASSIGN
; Channel system service.
;
DEVICE_CHANNEL: ;
 .BLKW 1 ;

;
; Allocate device name string and descriptor.
;

DEVICE_DESCR: ;
 .LONG 20-10 ;Length of device name string
 .LONG 10$;Address of device name string
10$: .ASCII /SYS$DISK/ ;Device on which created file
 ;will reside
20$: ;Reference label to calculate
 ;length
;
; Allocate file name string and define string length symbol.
;

FILE_NAME: ;
 .ASCII /SYS$DISK:MYDATAFIL.DAT/ ;File name string

62

Chapter 2. Disk Drivers

FILE_SIZE=.-FILE_NAME ;File name string length

;
; Allocate I/O status quadword storage.
;

IO_STATUS: ;
 .BLKQ 1 ;
;
; Allocate output record buffer.
;

RECORD_BUFFER: ;
 .BLKB 512 ;Record buffer is 512 bytes
;
; **
;
; Start Program
;
; **

;
; The purpose of the program is to create a file called MYDATAFIL.DAT
; using RMS-32; store information concerning the file; write 100
; records, each containing its record number in every byte;
; close the file; and then access, read, and write the file directly,
; using the Queue I/O system service. If any errors are detected, the
; program returns to its caller with the final error status in
; register R0.

 .ENTRY DISK_EXAMPLE,^M,R3,R4,R5,R6> ;Program starting
 ;address

;
; First create the file and open it, using RMS-32.
;
PART_1: ;First part of example
 $CREATE FAB = FAB_BLOCK ;Create and open file
 BLBC R0,20$;If low bit = 0, creation
 ;failure

;
; Second, connect the record access block to the created file.
;

 $CONNECT RAB = RAB_BLOCK ;Connect the record access
 ;block
 BLBC R0,30$;If low bit = 0, creation
 ;failure
;
; Now write 100 records, each containing its record number.
;

 MOVZBL #NUM_RECS,R6 ;Set record write loop count

63

Chapter 2. Disk Drivers

;
; Fill each byte of the record to be written with its record number.
;

10$: SUBB3 R6,#NUM_RECS+1,R5 ;Calculate record number

 MOVC5 #0,(R6),R5,#512,RECORD_BUFFER ;Fill record buffer

;
; Now use RMS-32 to write the record into the newly created file.
;

 $PUT RAB = RAB_BLOCK ;Put record in file
 BLBC R0,30$;If low bit = 0, put failure
 SOBGTR R6,10$;Any more records to write?
;
; The file creation part of the example is almost complete. All that
; remains to be done is to store the file information returned by
; RMS-32 and close the file.
;

 MOVW NAM_BLOCK+NAM$W_FID,FIB_BLOCK+FIB$W_FID ;Save file
 ;identification
 MOVW NAM_BLOCK+NAM$W_FID+2,FIB_BLOCK+FIB$W_FID+2 ;Save
 ;sequence number
 MOVW NAM_BLOCK+NAM$W_FID+4,FIB_BLOCK+FIB$W_FID+4 ;Save
 ;relative volume
 $CLOSE FAB = FAB_BLOCK ;Close file
 BLBS R0,PART_2 ;If low bit set, successful
 ;close
20$ RET ;Return with RMS error status
;
; Record stream connection or put record failure.
;
; Close file and return status.
;
30$: PUSHL R0 ;Save error status
 $CLOSE FAB = FAB_BLOCK ;Close file
 POPL R0 ;Retrieve error status
 RET ;Return with RMS error status
;
; The second part of the example illustrates accessing the previously
; created file directly using the Queue I/O system service, randomly
; reading and writing various parts of the file, and then deaccessing
; the file.
;
; First, assign a channel to the appropriate device and access the
; file.
PART_2: ;
 $ASSIGN_S DEVNAM = DEVICE_DESCR,- ;Assign a channel to file
 CHAN = DEVICE_CHANNEL ;device
 BLBC R0,20$;If low bit = 0, assign
 ;failure
 MOVL #FIB$M_NOWRITE!FIB$M_WRITE,- ;Set for read/write
 FIB_BLOCK+FIB$L_ACCTL ;access

64

Chapter 2. Disk Drivers

 $QIOW_S CHAN = DEVICE_CHANNEL,- ;Access file on device channel
 FUNC = #IO$_ACCESS!IO$M_ACCESS,- ;I/O function is
 - ;access file
 IOSB = IO_STATUS,- ;Address of I/O status
 - ;quadword
 P1 = FIB_DESCR ;Address of information block
 ;descriptor
 BLBC R0,10$;If low bit = 0, access
 ;failure
 MOVZWL IO_STATUS,R0 ;Get final I/O completion
 ;status

 BLBS R0,30$;If low bit set, successful
 ;I/O function
10$: PUSHL R0 ;Save error status
 $DASSGN_S CHAN = DEVICE_CHANNEL ;Deassign file device channel
 POPL R0 ;Retrieve error status
20$: RET ;Return with I/O error status
;
; The file is now ready to be read and written randomly. Since the
; records are fixed length and exactly one block long, the record
; number corresponds to the virtual block number of the record in the
; file. Thus a particular record can be read or written simply by
; specifying its record number in the file.
;
; The following code reads two records at a time and checks to see
; that they contain their respective record numbers in every byte.
; The records are then written back into the file in reverse order.
; This results in record 1 having the old contents of record 2 and
; record 2 having the old contents of record 1, and so forth. After
; the example has been run, it is suggested that the file dump
; utility be used to verify the change in data positioning.
;

30$ MOVZBL #1,R6 ;Set starting record (block)
 ;number
;
; Read next two records into block buffer.
;

40$: $QIO_S CHAN = DEVICE_CHANNEL,- ;Read next two records from
 - ;file channel
 FUNC = #IO$_READVBLK,- ;I/O function is read virtual
 - ;block
 IOSB = IO_STATUS,- ;Address of I/O status
 - ;quadword
 P1 = BLOCK_BUFFER,- ;Address of I/O buffer
 P2 = #1024,- ;Size of I/O buffer
 P3 = R6 ;Starting virtual block of
 ;transfer
 BSBB 50$;Check I/O completion status
;
; Check each record to make sure it contains the correct data.
;

 SKPC R6,#512,BLOCK_BUFFER ;Skip over equal record

65

Chapter 2. Disk Drivers

 ;numbers in data

 BNEQ 60$;If not equal, data match
 ;failure
 ADDL3 #1,R6,R5 ;Calculate even record number

 SKPC R5,#512,BLOCK_BUFFER+512 ;Skip over equal record
 ;numbers in data
 BNEQ 60$;If not equal, data match
 ;failure
;
; Record data matches.
;
; Write records in reverse order in file.
;

 $QIOW_S CHAN = DEVICE_CHANNEL,- ;Write even-numbered record in
 - ;odd slot
 FUNC = #IO$_WRITEVBLK,- ;I/O function is write virtual
 - ;block
 IOSB = IO_STATUS,- ;Address of I/O status
 - ;quadword
 P1 = BLOCK_BUFFER+512,- ;Address of even record buffer
 P2 = #512,- ;Length of even record buffer
 P3 = R6 ;Record number of odd record
 BSBB 50$;Check I/O completion status
 ADDL3 #1,R6,R5 ;Calculate even record number
 $QIOW_S CHAN = DEVICE_CHANNEL,- ;Write odd numbered record in
 - ;even slot
 FUNC = #IO$_WRITEVBLK,- ;I/O function is write virtual
 - ;block
 IOSB = IO_STATUS,- ;Address of I/O status
 - ;quadword
 P1 = BLOCK_BUFFER,- ;Address of odd record buffer
 P2 = #512,- ;Length of odd record buffer
 P3 = R5 ;Record number of even record
 BSBB 50$;Check I/O completion status
 ACBB #NUM_RECS-1,#2,R6,40$;Any more records to be read?

 BRB 70$;

;
; Check I/O completion status.
;

50$: BLBC R0,70$;If low bit = 0, service
 ;failure
 MOVZWL IO_STATUS,R0 ;Get final I/O completion
 ;status
 BLBC R0,70$;If low bit = 0, I/O function
 RSB ;failure
;
; Record number mismatch in data.
;

60$: MNEGL #4,R0 ;Set dummy error status value

66

Chapter 2. Disk Drivers

;
; All records have been read, verified, and odd/even pairs inverted
;
70$: PUSHL R0 ;Save final status
 $QIOW_S CHAN = DEVICE_CHANNEL,- ;Deaccess file
 FUNC = #IO$_DEACCESS ;I/O function is deaccess file
 $DASSGN_S CHAN = DEVICE_CHANNEL ;Deassign file device channel
 POPL R0 ;Retrieve final status
 RET ;

 .END DISK_EXAMPLE

67

Chapter 2. Disk Drivers

68

Chapter 3. Magnetic Tape Drivers
This chapter describes the use of magnetic tape drivers, drives, and controllers.

3.1. Magnetic Tape Controllers and Drives
The following sections describe magnetic tape controllers and drives; however, note that not all sup-
ported devices are described here. See the Software Product Description for the OpenVMS Operating
System (SPD 82.35.xx) for the definitive list of supported devices.

3.2. Magnetic Tape Driver Device Information
You can obtain information on all magnetic tape device characteristics by using the Get Device/Vol-
ume Information ($GETDVI) system service. (See the VSI OpenVMS System Services Reference
Manual.)

See the Help files for more information on the $GETDVI system service.

$GETDVI returns magnetic tape characteristics when you specify the item codes DVI$_DEVCHAR,
DVI$_DEVCHAR2, DVI$_DEVDEPEND, and DVI$_DEVDEPEND2. Tables Table 3.1, Table 3.2,
and Table 3.3 list these characteristics. The $DEVDEF macro defines the device-independent charac-
teristics, the $MTDEF macro defines the device-dependent characteristics, and the $MT2DEF macro
defines the extended device characteristics. The extended device characteristics apply only to the
TU81-Plus tape drive.

Table 3.1. Magnetic Tape Device-Independent Characteristics

Characteristic1 Meaning
Dynamic Bits (Conditionally Set)

DEV$M_AVL Device is on line and available.
DEV$M_FOR Volume is foreign.
DEV$M_MNT Volume is mounted.
DEV$M_RCK Perform data check on all read operations.
DEV$M_WCK Perform data check on all write operations.

Static Bits (Always Set)
DEV$M_FOD Device is file-oriented.
DEV$M_IDV Device is capable of input.
DEV$M_ODV Device is capable of output.
DEV$M_SQD Device is capable of sequential access.
DEV$M_WBC2 Device is capable of write-back caching.

1Defined by the $DEVDEF macro.
2This bit is located in DVI$_DEVCHAR2.

Table 3.2. Device-Dependent Information for Tape Devices

Characteristic1 Meaning
MT$M_LOST If set, the current tape position is unknown.
MT$M_HWL If set, the selected drive is hardware write-locked.

69

Chapter 3. Magnetic Tape Drivers

Characteristic1 Meaning
MT$M_EOT If set, an end-of-tape (EOT) condition was encountered by the last opera-

tion to move the tape in the forward direction.
MT$M_EOF If set, a tape mark was encountered by the last operation to move the tape.
MT$M_BOT If set, a beginning-of-tape (BOT) marker was encountered by the last oper-

ation to move the tape in the reverse direction.
MT$M_PARITY If set, all data transfers are performed with even parity. If clear (normal

case), all data transfers are performed with odd parity. Only nonreturn-to-
zero-inverted recording at 800 bits/inch can have even parity.
Specifies the density at which all data transfer operations are performed.
Possible density values are as follows:
MT$K_GCR_6250 Group-coded recording, 6250 bits/inch
MT$K_PE_1600 Phase-encoded recording, 1600 bits/inch
MT$K_NRZI_800 Nonreturn-to-zero-inverted recording, 800 bits/

inch

MT$V_DENSITY

MT$S_DENSITY

MT$K_BLK_833 Cartridge block mode recording2

Specifies the format in which all data transfers are performed. A possible
format value is as follows:

MT$V_FORMAT
MT$S_FORMAT

MT$K_NORMAL11 Normal PDP-11 format. Data bytes are recorded
sequentially on tape with each byte occupying ex-
actly one frame.

MT$_FASTSKIP_USEDIf set, the most recent IO$_SKIPFILE function was performed using
the optimized SCSI space-by-file-marks algorithm. (See Section 3.3.4
for more information about the IO$M_ALLOWFAST modifier to the
IO$_SKIPFILE function.)

1Defined by the $MTDEF macro.
2Only for the TK50 and TZ30 tape drives.

Table 3.3. Device-Dependent Information for Tape Devices

Characteristic1 Meaning
MT2$V_WBC_ENABLE If set, write-back caching is enabled for this unit.
MT2$V_RDC_DISABLE If set, read caching is disabled for this unit.

1Defined by the $MT2DEF macro. Only for the TU81-Plus. Initial device status will show both of these bits cleared; write-back caching will
be disabled, read caching will be enabled.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and class names, which are defined
by the $DCDEF macro. DVI$_DEVBUFSIZ returns the buffer size. The buffer size is the default to
be used for tape transfers (normally 2048 bytes). The device class for magnetic tapes is $DCTAPE,
and the device type is determined by the magnetic tape model. For example, the device type for the
TA78 is DT$_TA78; for the TA81 it is DT$_TA81.

This function code takes no function-dependent arguments.

3.3. Magnetic Tape Function Codes
The magnetic tape driver can perform logical, virtual, and physical I/O functions. Foreign-mounted
devices do not require privileges to perform logical and virtual I/O requests.

70

Chapter 3. Magnetic Tape Drivers

Logical and physical I/O functions to magnetic tape devices allow sequential access to volume storage
and require only that the requesting process have direct access to the device. The results of logical and
physical I/O operations are unpredictable if an ACP is present.

Virtual I/O functions require intervention by an ACP and must be executed in a prescribed order. The
normal order is to create and access a file, write information to that file, and deaccess the file. Subse-
quently, when you access the file, you read the information and then deaccess the file. You can write
over the file when the information it contains is no longer useful and the file has expired.

Any number of bytes (from a minimum of 14 to a maximum of 65,535) can be read from or written
into a single block by a single request. The number of bytes itself has no effect on the applicable quo-
tas (direct I/O, buffered I/O, and AST). Reading or writing any number of bytes subtracts the same
amount from a quota.

The volume to which a logical or virtual function is directed must be mounted for the function actual-
ly to be executed. If it is not, either a “device not mounted” or “invalid volume” status is returned in
the I/O status block.

Table 3.4 lists the logical, virtual, and physical magnetic tape I/O functions and their function codes.
These functions are described in more detail in the following paragraphs. Chapter 1 describes the QIO
level interface to the magnetic tape device ACP. Chapter 10 describes features to improve perfor-
mance for larger file transfers.

Table 3.4. Magnetic Tape I/O Functions

Function Code Arguments Type1 Function Modifiers Function
IO$_ACCESS P1,[P2],

[P3], [P4],
[P5]

V IO$M_CREATE
IO$M_ACCESS

Search a tape for a spec-
ified file and access
the file if found and
IO$M_ACCESS is set. If
the file is not found and
IO$M_CREATE is set,
create a file at end-of-tape
(EOT) marker.

IO$_ACPCONTROL P1,[P2],
[P3], [P4],
[P5]

V IO$M_DMOUNT Perform miscellaneous
control functions.2

IO$_AVAILABLE P Clear volume valid bit.
IO$_CREATE P1,[P2][,

[P3], [P4],
[P5]

V IO$M_CREATE
IO$M_ACCESS

Create a file.

IO$_DEACCESS P1,[P2],
[P3], [P4],
[P5]

V Deaccess a file and, if
the file has been written,
write out trailer records.

IO$_DSE3 P IO$M_NOWAIT Erase a prescribed section
of the tape.

IO$_FLUSH L Flush the controller cache
to tape.

IO$_MODIFY P1,[P2],
[P3], [P4],
[P5]

V Write user labels.

71

Chapter 3. Magnetic Tape Drivers

Function Code Arguments Type1 Function Modifiers Function
IO$_PACKACK P Initialize volume valid bit.
IO$_READLBLK 4 P1,P2 L IO$M_DATACHECK5

IO$M_INHRETRY
IO$M_REVERSE6

Read logical block.

IO$_READPBLK P1,P2 P IO$M_DATACHECK5

IO$M_INHRETRY
IO$M_REVERSE6

Read physical block.

IO$_READVBLK P1,P2 V IO$M_DATACHECK5

IO$M_INHRETRY
IO$M_REVERSE6

Read virtual block.

IO$_REWIND L IO$M_INHRETRY
IO$M_NOWAIT
IO$M_RETENSION

Reposition tape to the be-
ginning-of-tape (BOT)
marker.

IO$_REWINDOFF L IO$M_INHRETRY
IO$M_NOWAIT
IO$M_RETENSION

Rewind and unload the
tape on the selected drive.

IO$_SENSECHAR [P1],[P2]7 P IO$M_INHRETRY Sense the tape character-
istics and return them in
the I/O status block.

IO$_SENSEMODE [P1],[P2]7 L IO$M_INHRETRY Sense the tape character-
istics and return them in
the I/O status block.

IO$_SETCHAR P1,[P2]7 P Set tape characteristics for
subsequent operations.

IO$_SETMODE P1,[P2]7 L Set tape characteristics for
subsequent operations.

IO$_SKIPFILE P1 L IO$M_INHRETRY
IO$M_NOWAIT8

IO$M_ALLOWFAST

Skip past a specified num-
ber of tape marks in either
a forward or reverse di-
rection.

IO$_SKIPRECORD P1 L IO$M_INHRETRY
IO$M_NOWAIT8

Skip past a specified num-
ber of blocks in either a
forward or reverse direc-
tion.

IO$_UNLOAD L IO$M_INHRETRY
IO$M_NOWAIT

Rewind and unload the
tape on the selected drive.

IO$_WRITELBLK P1,P2 L IO$M_ERASE9

IO$M_DATACHECK5

IO$M_INHRETRY
IO$M_INHEXTGAP10

IO$M_NOWAIT8

Write logical block.

IO$_WRITEOF L IO$M_INHRETRY
IO$M_INHEXTGAP10

IO$M_NOWAIT

Write an extended inter-
record gap followed by a
tape mark.

IO$_WRITEPBLK P1,P2 P IO$M_ERASE9

IO$M_DATACHECK5
Write physical block.

72

Chapter 3. Magnetic Tape Drivers

Function Code Arguments Type1 Function Modifiers Function
IO$M_INHRETRY
IO$M_INHEXTGAP10

IO$M_NOWAIT8

IO$_WRITEVBLK P1,P2 V IO$M_DATACHECK5

IO$M_INHRETRY
IO$M_INHEXTGAP10

IO$M_NOWAIT8

Write virtual block.

1V = virtual; L = logical; P = physical.
2See Section 1.6.8.
3Only for TMSCP and SCSI drives, and TZK50, and TZ30 tape devices.
4On OpenVMS Alpha and Integrity systems, P1 supports a 64-bit address.
5Not for TS04 and TU80 tape devices.
6Not for TUK50 and TQK50 tape devices.
7The P1 and P2 arguments for IO$_SENSEMODE and IO$_SENSECHAR and the P2 argument for IO$_SETMODE and IO$_SETCHAR
are for TMSCP and SCSI drives only.
8Only for RV20, TA90, and TU81-Plus drives.
9Takes no arguments; valid only for TMSCP and SCSI drives, and TZK50 and TZ30 tape devices.
10Only for TE16, TU45, and TU77 tape devices.

The function-dependent arguments for IO$_CREATE, IO$_ACCESS, IO$_DEACCESS, IO$_MOD-
IFY, IO$_ACPCONTROL are as follows:

• P1—The address of the file information block (FIB) descriptor.

• P2—Optional. The address of the file name string descriptor. If specified with IO$_ACCESS, the
name identifies the file being sought. If specified with IO$_CREATE, the name is the name of the
created file.

• P3—Optional. The address of the word that is to receive the length of the resultant file name
string.

• P4—Optional. The address of a descriptor for a buffer that is to receive the resultant file name
string.

• P5—Optional. The address of a list of attribute descriptors. If specified with IO$_ACCESS, the
attributes of the file are returned to the user. If specified with IO$_CREATE, P5 is the address of
the attribute descriptor list for the new file. All file attributes for IO$_MODIFY are ignored.

See Chapter 1 for more information on these functions.

The function-dependent arguments for IO$_READVBLK, IO$_READLBLK, IO$_READPBLK,
IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK are as follows:

• P1—The starting virtual address of the buffer that is to receive the data in the case of a read opera-
tion; or, in the case of a write operation, the virtual address of the buffer that is to be written on the
tape. On OpenVMS Alpha, P1 can be a 64-bit address.

• P2—The length of the buffer specified by P1.

The function-dependent argument for IO$_SKIPFILE and IO$_SKIPRECORD is:

• P1—The number of tape marks to skip over in the case of a skip file operation; or, in the case of a
skip record operation, the number of blocks to skip over. If a positive number is specified, the tape
moves forward; if a negative number is specified, the tape moves in reverse. (The maximum num-
ber of tape marks or records that P1 can specify is 32,767.)

73

Chapter 3. Magnetic Tape Drivers

Example 3.1 shows the correct method of defining the P1 parameter in an IO$_SKIPRECORD QIO.

Example 3.1. Defining the P1 Parameter in a IO$_SKIPRECORD QIO

 .
 .
 .
TAPE_CHAN:
 .WORD 0
IOSB: .WORD 0
 .WORD 0
 .LONG 0
DEVICE: .ASCID /127MUA0:/
RECORD: .LONG 2000
;
 .PSECT CODE,EXE,NOWRT
;
 .ENTRY MT_IO,^M

;
 $ASSIGN_S CHAN=TAPE_CHAN,-
 DEVNAM=DEVICE
 BLBC R0,EXIT_ERROR
;
 $QIOW_S CHAN=TAPE_CHAN,-
 FUNC=#IO$_SKIPRECORD,-
 IOSB=IOSB,-
 P1=RECORD
 BLBC R0,EXIT_ERROR
 $EXIT_S R0
 .
 .
 .
EXIT_ERROR:
 $EXIT_S R0
 .END MT_IO

3.3.1. Read
The read function reads data into a specified buffer in the forward or reverse direction starting at the
next block position.

The operating system provides the following read function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPBLK—Read physical block

If a read virtual block function is directed to a volume that is mounted foreign, it is converted to a read
logical block function. If a read virtual block function is directed to a volume that is mounted struc-
tured, the volume is handled the same way as a file-structured device.

Two function-dependent arguments are used with these codes: P1 and P2. These arguments are de-
scribed in Section 3.3.

74

Chapter 3. Magnetic Tape Drivers

If the read function code includes the reverse function modifier (IO$M_REVERSE), the drive reads
the tape in the reverse direction instead of the forward direction. IO$M_REVERSE cannot be speci-
fied for the TUK50 and TQK50 devices.

The data check function modifier (IO$M_DATACHECK) can be used with all read functions. If this
modifier is specified, a data check operation is performed after the read operation completes. (The
drive performs a space reverse or space forward between the read and data check operations.) A data
check operation is also performed if the volume that was read, or the volume on which the file resides
(virtual read), has the characteristic “data check all reads.” Furthermore, a data check is performed af-
ter a virtual read if the file has the attribute “data check on read.” The TS04 and TU80 tape drives do
not support the data check function.

For read physical block and read logical block functions, the drive returns the status SS$_NORMAL
(not end-of-tape status) if either of the following conditions occurs and no other error condition exists:

• The tape is positioned past the end-of-tape (EOT) position at the start of the read (forward or re-
verse) operation.

• The tape enters the EOT region as a result of the read (forward) operation.

The transferred byte count reflects the actual number of bytes read.

If the drive reads a tape mark during a logical or physical read operation in either the forward or re-
verse direction, any of the following conditions can return an end-of-file (EOF) status:

• The tape is positioned past the EOT position at the start of the read operation.

• The tape enters the EOT region as a result of the read operation.

• The drive reads a tape mark as a result of a read operation but the tape does not enter the EOT re-
gion.

An EOF status is also returned if the drive attempts a read operation in the reverse direction when the
tape is positioned at the beginning-of-tape (BOT) marker. All conditions that cause an EOF status re-
sult in a transferred byte count of zero.

If the drive attempts to read a block that is larger than the specified memory buffer during a logical
or physical read operation, a data overrun status is returned. The buffer receives only the first part
of the block. On a read in the reverse direction (on drives other than the TK50 and TZ30) the buffer
receives only the latter part of the block. The transferred byte count is equal to the actual size of the
block. Read reverse starts at the top of the buffer. Therefore, the start of the block is at P1 plus P2 mi-
nus the length read. The TUK50 and TZ30 cannot actually perform read reverse operations; they must
be simulated by the driver. Therefore, the data returned are those that would have been returned had
the block been read in the forward direction.

It is not possible to read a block that is less than 14 bytes in length. Records that contain less than 14
bytes are termed “noise blocks” and are completely ignored by the driver.

3.3.2. Write
The write function writes data from a specified buffer to tape in the forward direction starting at the
next block position.

The operating system provides the following write function codes:

• IO$_WRITEVBLK—Write virtual block

75

Chapter 3. Magnetic Tape Drivers

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block

If a write virtual block function is directed to a volume that is mounted foreign, the function is con-
verted to a write logical block. If a write virtual block function is directed to a volume that is mounted
structured, the volume is handled the same way as a file-structured device.

Two function-dependent arguments are used with these codes: P1 and P2. These arguments are de-
scribed in Section 3.3“Magnetic Tape Function Codes”.

The IO$M_ERASE function modifier can be used with the IO$_WRITELBLK and IO$_WRITEP-
BLK function codes to erase a user-selected part of a tape. This modifier propagates an erase pattern
of all zeros from the current tape position to 10 feet past the EOT position and then rewinds to the
BOT marker.

The data check function modifier (IO$M_DATACHECK) can be used with all write functions. If this
modifier is specified, a data check operation is performed after the write operation completes. (The
drive performs a space reverse between the write and the data check operations.) The driver forces a
data check operation when an error occurs during a write operation. This ensures that the data can be
reread. A data check operation is also performed if the volume written, or the volume on which the
file resides (virtual write), has the characteristic “data check all writes.” Furthermore, a data check is
performed after a virtual write if the file has the attribute “data check on write.” The TS04 and TU80
tape drives do not support the data check function.

If the IO$M_NOWAIT function modifier is specified, write-back caching is enabled on a per-com-
mand basis. IO$M_NOWAIT is applicable only to TU81-Plus drives.

If the drive performs a write physical block or a write logical block operation, an EOT status is re-
turned if either of the following conditions occurs and no other error condition exists:

• The tape is positioned past the EOT position at the start of the write operation.

• The tape enters the EOT region as a result of the write operation.

The transferred byte count reflects the size of the block written. It is not possible to write a block less
than 14 bytes in length. An attempt to do so results in the return of a bad parameter status for the QIO
request.

3.3.3. Rewind
The rewind function repositions the tape to the beginning-of-tape (BOT) marker.

If the IO$M_NOWAIT function modifier is specified, the I/O operation is completed when the rewind
is initiated. Otherwise, I/O completion does not occur until the tape is positioned at the BOT marker.

If the IO$M_RETENSION function modifier is specified and the device supports the retention oper-
ation, the rewind function positions the tape to the physical-end-of-tape (EOT) marker and rewinds
the tape to the BOT marker. If the tape does not support the IO$M_RETENSION modifier, a SS$_IL-
LIOFUNC error is returned.

IO$_REWIND has no function-dependent arguments.

3.3.4. Skip File
The skip file function (IO$_SKIPFILE) skips past a specified number of tape marks in either a for-
ward or reverse direction. A function-dependent argument (P1) is provided to specify the number of

76

Chapter 3. Magnetic Tape Drivers

tape marks to be skipped, as shown in Figure 3.1. If a positive file count is specified, the tape moves
forward; if a negative file count is specified, the tape moves in reverse. (The actual number of files
skipped is returned as an unsigned number in the I/O status block.)

Figure 3.1. IO$_SKIPFILE Argument

Only tape marks (when the tape moves in either direction) and the BOT marker (when the tape moves
in reverse) are counted during a skip file operation. The BOT marker terminates a skip file function
in the reverse direction. The end-of-tape (EOT) marker does not terminate a skip file function in ei-
ther the forward or reverse direction. A negative skip file function leaves the tape positioned just be-
fore a tape mark (at the end of a file) unless the BOT marker is encountered, whereas a positive skip
file function leaves the tape positioned just past the tape mark.

A skip file function in the forward direction can also be terminated if two consecutive tape marks are
encountered. Section 3.3.5.1 describes this feature.

The IO$M_ALLOWFAST modifier can be used with the IO$_SKIPFILE function to provide better
performance on SCSI tape drives that support the SCSI space-by-file-marks command and the SCSI
read position command.

When the IO$M_ALLOWFAST modifier is specified, a tape operation skips over consecutive tape
marks that are not immediately before the end-of-data position on the medium. However, if two con-
secutive tape marks are detected immediately before the end-of-data position on the tape, the tape is
positioned between these two tape marks and the SS$_ENDOFVOLUME status is returned.

The IO$M_ALLOWFAST modifier allows a SCSI tape subsystem to use the optimized
IO$_SKIPFILE if it is capable. If a specific tape device does not adequately support the optimized
IO$_SKIPFILE that uses the SCSI space-by-file-marks command, the tape subsystem uses the stan-
dard space-by-records algorithm.

3.3.5. Skip Record
The skip record function skips past a specified number of physical tape blocks in either a forward or
reverse direction. A device- or function-dependent argument (P1) specifies the number of blocks to
skip, as shown in Figure 3.2. If a positive block count is specified, the tape moves forward; if a neg-
ative block count is specified, the tape moves in reverse. The actual number of blocks skipped is re-
turned as an unsigned number in the I/O status block. If a tape mark is detected, the count is the num-
ber of blocks skipped, plus 1 (forward tape motion) or minus 1 (reverse tape motion).

Figure 3.2. IO$_SKIPRECORD Argument

A skip record operation is terminated by the end-of-file (EOF) marker when the tape moves in either
direction, by the BOT marker when the tape moves in reverse, and by the EOT marker when the tape
moves forward.

A skip record function in the forward direction can also be terminated if the tape was originally posi-
tioned between two tape marks. Section 3.3.5.1 describes this feature.

77

Chapter 3. Magnetic Tape Drivers

3.3.5.1. Logical End-of-Volume (EOV) Detection
A skip file or skip record operation that uses the standard space-by-records algorithm is terminated
when two consecutive tape marks are encountered when the tape moves in the forward direction. Af-
ter the operation terminates, the tape remains positioned between the two tape marks that were detect-
ed. The I/O status block (IOSB) returns the status SS$_ENDOFVOLUME and the actual number of
files (or records) skipped during the operation prior to the detection of the second tape mark. The skip
count is returned in the high-order word of the first longword of the IOSB.

An optimized skip file that uses the IO$M_ALLOWFAST modifier is terminated when the end-of-
data position is encountered. If two consecutive tape marks immediately precede the end-of-data po-
sition on the tape, the tape is positioned between these two tape marks. The SS$_ENDOFVOLUME
status and the skip count are returned in the IOSB.

Subsequent skip record (or skip file) requests terminate immediately when the tape is positioned be-
tween the two tape marks, producing no net tape movement and returning the SS$_ENDOFVOLUME
status with a skip count of zero.

To move the tape beyond the second tape mark, you must employ another I/O function. For example,
the IO$_READLBLK function, if issued after receipt of the SS$_ENDOFVOLUME status return, ter-
minates with an SS$_ENDOFFILE status and with the tape positioned just past the second tape mark.
From this new position, other skip functions could be issued to produce forward tape motion (assum-
ing there is additional data on the tape).

If three consecutive tape marks are encountered during a skip file function, you must issue two
IO$_READLBLK functions, the first to get the SS$_ENDOFFILE return and the second to position
the tape past the third tape mark.

3.3.6. Write End-of-File
The write end-of-file (EOF) function writes an extended interrecord gap (of approximately 3 inches
for nonreturn-to-zero-inverted (NRZI) recording and 1.5 inches for phase-encoded (PE) recording)
followed by a tape mark. No device- or function-dependent arguments are used with IO$_WRITEOF.

An end-of-tape (EOT) status is returned in the I/O status block if either of the following conditions is
present and no other error conditions occur:

• A write EOF function is executed while the tape is positioned past the EOT marker.

• A write EOF function causes the tape position to enter the EOT region.

3.3.7. Rewind Offline
The rewind offline function rewinds and unloads the tape on the selected drive.

The I/O operation is completed as soon as the tape movement is initiated. The actual finish of the me-
chanical rewind or unload operation may occur long after the I/O operation completes.

If the IO$M_RETENSION function modifier is specified and the device supports the retention
operation, the rewind offline function positions the tape to the physical end-of-tape (EOT) mark-
er and rewinds the tape to the beginning-of-tape (BOT) marker. If the tape does not support the
IO$M_RETENSION modifier, a SS$_ILLIOFUNC error is returned.

No device- or function-dependent arguments are used with IO$_REWINDOFF.

78

Chapter 3. Magnetic Tape Drivers

3.3.8. Unload
The unload function rewinds and unloads the tape on the selected drive. The unload function is func-
tionally the same as the rewind offline function. If the IO$M_NOWAIT function modifier is specified,
the I/O operation is completed as soon as the rewind operation is initiated. No device- or function-de-
pendent arguments are used with IO$_UNLOAD.

3.3.9. Sense Tape Mode
The sense tape mode function senses the current device-dependent and extended device characteristics
(see Tables Table 3.2 and Table 3.3).

The operating system provides the following function codes:

• IO$_SENSEMODE—Sense mode

• IO$_SENSECHAR—Sense characteristics

Sense mode requires logical I/O privilege. Sense characteristics requires physical I/O privilege. For
TMSCP and SCSI drives, the sense mode function returns magnetic tape information in a user-sup-
plied buffer, which is specified by the following function-dependent arguments:

• P1—Optional. Address of a user-supplied buffer.

• P2—Optional. Length of a user-supplied buffer.

If P1 is not zero, the sense mode buffer returns the tape characteristics. (If P2=8, the second longword
of the buffer contains the device-dependent characteristics. If P2=12, the second longword contains
the device-dependent characteristics and the third longword contains the tape densities that the drive
supports and the extended tape characteristics.) The extended characteristics are identical to the infor-
mation returned by DVI$_DEVDEPEND2 (see Table 3.3). Figure 3.3 shows the contents of the P1
buffer.

Figure 3.3. Sense Mode P1 Buffer

3.3.10. Set Mode
Set mode operations affect the operation and characteristics of the associated magnetic tape device.
The operating system defines two types of set mode functions: set mode and set characteristics.

79

Chapter 3. Magnetic Tape Drivers

Set mode requires logical I/O privilege. Set characteristics requires physical I/O privilege. The follow-
ing function codes are provided:

• IO$_SETMODE—Set mode

• IO$_SETCHAR—Set characteristics

These functions take the following device- or function-dependent arguments (other arguments are ig-
nored):

• P1—The address of a characteristics buffer.

• P2—Optional. The length of the characteristics buffer. The default is 8 bytes. If a length of 12
bytes is specified, the third longword (which is for TMSCP and SCSI drives only) specifies the
extended tape characteristics.

Figure 3.4 shows the P1 characteristics buffer for IO$_SETMODE. Figure 3.5 shows the same buffer
for IO$_SETCHAR.

Figure 3.4. Set Mode Characteristics Buffer for IO$_SETMODE

Figure 3.5. Set Mode Characteristics Buffer for IO$_SETCHAR

The first longword of the P1 buffer for the set characteristics function contains information on device
class and type, and the buffer size. The device class for tapes is DC$_TAPE.

The $DCDEF macro defines the device type and class names. The buffer size is the default to be used
for tape transfers (this default is normally 2048 bytes).

80

Chapter 3. Magnetic Tape Drivers

The second longword of the P1 buffer for both the set mode and set characteristics functions con-
tains the tape characteristics. Table 3.5 lists the tape characteristics and their meanings. The $MTDEF
macro defines the symbols listed. If P2=12, the third longword contains the extended tape character-
istics for TMSCP and SCSI drives, which are listed in Table 3.6. The extended tape characteristics
are defined by the $MT2DEF macro and are identical to the information returned by DVI$_DEVDE-
PEND2.

Table 3.5. Set Mode and Set Characteristics Magnetic Tape Characteristics

Characteristic1 Meaning
MT$M_PARITY If set, all data transfers are performed with even parity. If clear (normal case),

all data transfers are performed with odd parity. Even parity can be selected on-
ly for nonreturn-to-zero-inverted recording at 800 bits/inch. Even parity cannot
be selected for phase-encoded recording (tape density is MT$K_PE_1600) or
group-coded recording (tape density is MT$K_GCR_6250) and is ignored.
Specifies the density at which all data transfers are performed. Tape density can
be set only when the selected drive's tape position is at the BOT marker. Possi-
ble density values are as follows:
MT$K_DEFAULT Default system density.
MT$K_GCR_6250 Group-coded recording, 6250 bits/inch.
MT$K_PE_1600 Phase-encoded recording, 1600 bits/inch.
MT$K_NRZI_800 Nonreturn-to-zero-inverted recording, 800 bits/inch.

MT$V_DENSITY
MT$S_DENSITY

MT$K_BLK_833 Cartridge block mode recording.2

Specifies the format in which all data transfers are performed. Possible format
values are as follows:
MT$K_DEFAULT Default system format.

MT$V_FORMAT
MT$S_FORMAT

MT$K_NORMAL11 Normal PDP-11 format. Data bytes are recorded se-
quentially on tape with each byte occupying exactly
one frame.

1Defined by the $MTDEF macro.
2 Only for the TK50 and TZ30.

Table 3.6. Extended Device Characteristics for Tape Devices

Characteristic1 Meaning
MT2$V_WBC_ENABLE Enable write-back caching on a per-unit basis.
MT2$V_RDC_DISABLE Disable read caching on a per-unit basis.

1Defined by the $MT2DEF macro. Only for TU81-Plus drives.

Application programs that change specific magnetic tape characteristics should perform the following
steps, as shown in Section 3.5“Magnetic Tape Drive Programming Examples”:

1. Use the IO$_SENSEMODE function to read the current characteristics.

2. Modify the characteristics.

3. Use the set mode function to write back the results.

Failure to follow this sequence results in clearing any previously set characteristic.

81

Chapter 3. Magnetic Tape Drivers

3.3.11. Multiple Tape Density Support
As of Version 7.2, OpenVMS Alpha permits the selection of any density and any compression sup-
ported by a tape drive. You can write to tapes using any density and any compression algorithm sup-
ported by the tape drive. Exchanging tapes among tape drives with different default settings for densi-
ty or compression is much easier with this enhancement.

Multiple tape density support is provided by changes in the QIO interface. These changes are guid-
ed by device/density tables in system libraries and the corresponding class drivers. This enhance-
ment functions with tape drives that support multiple tape density switching via the standard MOD-
E_SENSE and MODE_SELECT mechanisms. All density and compression options available for a
given drive is accessible by the system. The QIO interface uses MT3DEF to identify the drives, and to
match them with their density and compression code options. Some newer drives may not be included
in the module.

Note

After the media has been initialized to a specific density, it retains that density until the media is ini-
tialized to a different density. For example, if an HPE media has been initialized with TK86 density,
the DCL command MOUNT/DENSITY=TK85 will have no effect because the media is initialized at
TK86 density. Likewise, BACKUP/DENSITY=TK85 will have no effect if the media is initialized at
TK86 density. However, BACKUP/DENS=TK85/INITIALIZE initializes the media to TK85 density.

These enhancements allow IO$_SETMODE and IO$_SENSEMODE to function with most density
values and a wider variety of drives. The system management utilities BACKUP and MOUNT take
advantage of this added functionality. For more information about multiple tape density support with
these utilities, see the VSI OpenVMS System Management Utilities Reference Manual. For more infor-
mation about enhancements in INITIALIZE, see the VSI OpenVMS DCL Dictionary.

3.3.12. Data Security Erase
The data security erase function erases all data from the current position of the volume to 10 feet be-
yond the EOT reflective strip, and then rewinds the tape to the BOT marker. It is a physical I/O func-
tion and requires the access privilege necessary to perform physical I/O functions. The following
function code is provided:

• IO$_DSE

If the function is issued when a tape is positioned at the BOT marker, all data on the tape is erased.

IO$_DSE takes no device- or function-dependent arguments.

3.3.13. Modify
Specifying the ATR$C_USERLABEL or ATR$C_ENDLBLAST attributes with IO$_MODIFY re-
sults in a bad attribute error. If any other attributes are specified, the IO$_MODIFY function is treated
as a no-operation; that is, the function returns success, but no action is performed.

3.3.14. Pack Acknowledge
The pack acknowledge function sets the volume valid bit for all magnetic tape devices. It is a physical
I/O function and requires the access privilege to perform physical I/O. The following function code is
provided:

82

Chapter 3. Magnetic Tape Drivers

• IO$_PACKACK

IO$_PACKACK must be the first function issued when a volume is placed in a magnetic tape drive.
IO$_PACKACK is issued automatically when the DCL commands INITIALIZE or MOUNT are is-
sued.

3.3.15. Available
The available function clears the volume valid bit for all magnetic tape drives, that is, it reverses the
function performed by the pack acknowledge function (see the Section 3.3.14). A rewind of the tape
is performed (applicable to all tape drives). No unload function is issued to the drive. The following
function code is provided:

• IO$_AVAILABLE

This function takes no function-dependent arguments.

3.3.16. Flush
The flush function is used to ensure that all previously issued cached commands have fully complet-
ed. Normally, hosts use this function to establish or maintain synchronization with write-back cached
commands issued to the specified tape unit. The I/O request does not complete until all cached data is
written successfully to the media in the exact order that the user specified.

• IO$_FLUSH

This function code takes no function-dependent arguments.

3.4. I/O Status Block
The I/O status block (IOSB) for QIO functions on magnetic tape devices is shown in Figure 3.6. Ap-
pendix A lists the status returns for these functions. (The OpenVMS system messages documentation
provides explanations and suggested user actions for these returns.) Table 3.2 (in Section 3.2) lists the
device-dependent data returned in the second longword. The IO$_SENSEMODE function can be used
to return that data.

Figure 3.6. IOSB Contents

The byte count is the actual number of bytes transferred to or from the process buffer or the number
of files or blocks skipped. (If an IO$_SKIPRECORD function is terminated by the detection of a tape
mark, the count returned in the IOSB is an unsigned number reflecting the number of blocks skipped,
plus 1.

3.5. Magnetic Tape Drive Programming Exam-
ples
This section presents magnetic tape driver programming examples.

83

Chapter 3. Magnetic Tape Drivers

Example 3.2 shows the recommended sequence for changing a device characteristic. It retrieves the
current characteristics using an IO$_SENSEMODE request, sets the new characteristics bits, and then
uses IO$_SETMODE to set the new characteristics.

Example 3.3 shows ways of specifying sense mode and set mode, both with and without a user buffer
specified, and with user buffers of different lengths.

In addition, Example 3.4 shows how data is written to and read from magnetic tape through the mag-
netic tape ACP.

Example 3.2. Device Characteristic Program Example

$QIOW_S - ; Get current
 characteristics.
 FUNC = #IO$_SENSEMODE,- ; - Sense mode
 CHAN = CHANNEL,- ; - Channel
 IOSB = IO_STATUS,- ; - IOSB
 P1 = BUFFER,- ; - User buffer supplied
 P2 = #12 ; - Buffer length = 12
 .
 .
 .
(Check for errors)
 .
 .
 .
(Set desired characteristics bits)
 .
 .
 .

$QIOW_S - ; Set new characteristics.
 FUNC = #IO$_SETMODE,- ; - Set Mode
 CHAN = CHANNEL,- ; - Channel
 IOSB = IO_STATUS,- ; - IOSB
 P1 = BUFFER,- ; - User buffer address
 P2 = #12 ; - Buffer length = 12
 .
 .
 .
(Check for errors)
 .
 .
 .

Example 3.3. Set Mode and Sense Mode Program Example

 .PSECT IMPURE, NOEXE, NOSHR

 $IODEF

DEVICE_NAME: ; Name of device
 .ASCID /MUA0/ ;

CHANNEL: ; Channel to device
 .WORD 0 ;

84

Chapter 3. Magnetic Tape Drivers

BUFFER: .BLKL 3 ; Set/Sense characteristics
 ; buffer

IO_STATUS: ; Final I/O status
 .QUAD 0 ;

 .PSECT CODE, RD, NOWRT, EXE

 .ENTRY MAIN,^M

$ASSIGN_S - ; Assign a channel to device
 DEVNAM = DEVICE_NAME,- ;
 CHAN = CHANNEL ;

BSBW ERR_CHECK2 ; Check for errors

$QIOW_S - ; Get current characteristics
 FUNC = #IO$_SENSEMODE,- ; No user buffer supplied
 CHAN = CHANNEL,- ;
 IOSB = IO_STATUS ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Get current characteristics
 FUNC = #IO$_SENSEMODE,- ; User buffer supplied,
 length
 CHAN = CHANNEL,- ; defaulted
 IOSB = IO_STATUS,- ;
 P1 = BUFFER ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Get current characteristics
 FUNC = #IO$_SENSEMODE,- ; User buffer supplied,
 length
 CHAN = CHANNEL,- ; = 8
 IOSB = IO_STATUS,- ;
 P1 = BUFFER,- ;
 P2 = #8 ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Get extended
 characteristics
 FUNC = #IO$_SENSEMODE,- ; User buffer supplied,
 length
 CHAN = CHANNEL,- ; = 12
 IOSB = IO_STATUS,- ;
 P1 = BUFFER,- ;
 P2 = #12 ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S

85

Chapter 3. Magnetic Tape Drivers

 FUNC = #IO$_SETMODE,- ; Length defaulted
 CHAN = CHANNEL,- ;
 IOSB = IO_STATUS,- ;
 P1 = BUFFER ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Set new characteristics
 FUNC = #IO$_SETMODE,- ; Length = 8
 CHAN = CHANNEL,- ;
 IOSB = IO_STATUS,- ;
 P1 = BUFFER,- ;
 P2 = #8 ;

BSBW ERR_CHECK ; Check for errors

$QIOW_S - ; Set extended characteristics
 FUNC = #IO$_SETMODE,- ; Length = 12
 CHAN = CHANNEL,- ;
 IOSB = IO_STATUS,- ;
 P1 = BUFFER,- ;
 P2 = #12 ;

BSBW ERR_CHECK ; Check for errors

RET

 .ENABLE LSB

ERR_CHECK:
 BLBS IO_STATUS,ERR_CHECK2 ; Continue if good IOSB
 MOVZWL IO_STATUS,-(SP) ; Otherwise, set up for stop
 BRB 10$; Branch to common code

ERR_CHECK2:
 BLBS R0,20$; Continue if good status
 PUSHL R0 ; Otherwise, set up for stop
10$: CALLS #1,G^LIB$STOP ; Stop execution

20$: RSB

 .DISABLE LSB

 .END MAIN

Example 3.4. MAGNETIC_TAPE.MAR Device Characteristic Program Example

; ***
;

 .TITLE MAGTAPE PROGRAMMING EXAMPLE

86

Chapter 3. Magnetic Tape Drivers

 .IDENT /01/

;
; Define necessary symbols.
;

 $FIBDEF ;Define file information block
 ;symbols
 $IODEF ;Define I/O function codes
;
; Allocate storage for the necessary data structures.
;

;
; Allocate magtape device name string and descriptor.
;

TAPENAME: ;
 .LONG 20-10 ;Length of name string
 .LONG 10$;Address of name string
10$: .ASCII /TAPE/ ;Name string
20$: ;Reference label

;
; Allocate space to store assigned channel number.
;

TAPECHAN: ;
 .BLKW 1 ;Tape channel number
;
; Allocate space for the I/O status quadword.
;

IOSTATUS: ;
 .BLKQ 1 ;I/O status quadword
;
; Allocate storage for the input/output buffer.
;

BUFFER: ;
 .REPT 256 ;Initialize buffer to
 .ASCII /A/ ;contain 'A'
 .ENDR ;
;
; Now define the file information block (FIB), which the ACP uses
; in accessing and deaccessing the file. Both the user and the ACP
; supply the information required in the FIB to perform these
; functions.
;

FIB_DESCR: ;Start of FIB
 .LONG ENDFIB-FIB ;Length of FIB
 .LONG FIB ;Address of FIB
FIB: .LONG FIB$M_WRITE!FIB$M_NOWRITE ;Read/write access allowed
 .WORD 0,0,0 ;File ID
 .WORD 0,0,0 ;Directory ID

87

Chapter 3. Magnetic Tape Drivers

 .LONG 0 ;Context
 .WORD 0 ;Name flags
 .WORD 0 ;Extend control
ENDFIB: ;Reference label

;
; Now define the file name string and descriptor.
;

NAME_DESCR: ;
 .LONG END_NAME-NAME ;File name descriptor
 .LONG NAME ;Address of name string
NAME: .ASCII "MYDATA.DAT;1" ;File name string
END_NAME: ;Reference label
;
; ***
;
; Start Program
;
; ***
;

; The program first assigns a channel to the magnetic tape unit and
; then performs an access function to create and access a file called
; MYDATA.DAT. Next, the program writes 26 blocks of data (the letters
; of the alphabet) to the tape. The first block contains all A's, the
; next, all B's, and so forth. The program starts by writing a block of
; 256 bytes, that is, the block of A's. Each subsequent block is reduced
; in size by two bytes so that by the time the block of Z's is written,
; the size is only 206 bytes. The magtape ACP does not allow the reading
; of a file that has been written until one of three events occurs:
; 1. The file is deaccessed.
; 2. The file is rewound.
; 3. The file is backspaced.
; In this example the file is backspaced zero blocks and then read in
; reverse (incrementing the block size every block); the data is
; checked against the data that is supposed to be there. If no data
; errors are detected, the file is deaccessed and the program exits.
;

 .ENTRY MAGTAPE_EXAMPLE,^M,R4,R5,R6,R7,R8>

;
; First, assign a channel to the tape unit.
;

 $ASSIGN_S TAPENAME,TAPECHAN ;Assign tape unit
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out

;
; Now create and access the file MYDATA.DAT.
;

88

Chapter 3. Magnetic Tape Drivers

 $QIOW_S CHAN=TAPECHAN,- ;Channel is magtape
 FUNC=#IO$_CREATE!IO$M_ACCESS!IO$M_CREATE,-;Function
 - ;is create
 IOSB=IOSTATUS,- ;Address of I/O status
 - ;word
 P1=FIB_DESCR,- ;FIB descriptor
 P2=#NAME_DESCR ;Name descriptor
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out

;
; LOOP1 consists of writing the alphabet to the tape (see previous
; description).
;

 MOVL #26,R5 ;Set up loop count
 MOVL #256,R3 ;Set up initial byte count
 ;in R3
LOOP1: ;Start of loop
 $QIOW_S CHAN=TAPECHAN,- ;Perform QIOW to tape channel
 FUNC=#IO$_WRITEVBLK,- ;Function is write virtual
 - ;block
 P1=BUFFER,- ;Buffer address
 P2=R3 ;Byte count
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out
;
; Now decrement the byte count in preparation for the next write
; operation and set up a loop count for updating the character
; written; LOOP2 performs the update.

 SUBL2 #2,R3 ;Decrement byte count for
 ;next write
 MOVL R3,R8 ;Copy byte count to R8 for
 ;LOOP2 count
 MOVAL BUFFER,R7 ;Get buffer address in R7
LOOP2: INCB (R7)+ ;Increment character
 SOBGTR R8,LOOP2 ;Until finished
 SOBGTR R5,LOOP1 ;Repeat LOOP1 until alphabet
 ;complete

;
; The alphabet is now complete. Fall through LOOP1 and update the
; byte count so that it reflects the actual size of the last block
; written to tape.
;

 ADDL2 #2,R3 ;Update byte count

;
; The tape is now read, but first the program must perform one of
; the three functions described previously before the ACP allows
; read access. The program performs an ACP control function,
; specifying skip zero blocks. This is a special case of skip reverse
; and causes the ACP to allow read access.
;

89

Chapter 3. Magnetic Tape Drivers

 CLRL FIB+FIB$L_CNTRLVAL ;Set up to space zero blocks
 MOVW #FIB$C_SPACE,FIB+FIB$W_CNTRLFUNC ;Set up for space
 ;function
 $QIOW_S CHAN=TAPECHAN,- ;Perform QIOW to tape channel
 FUNC=#IO$_ACPCONTROL,- ;Perform an ACP control
 - ;function
 P1=FIB_DESCR ;Define the FIB
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out

;
; Read the file in reverse.
;

 MOVL #26,R5 ;Set up loop count
 MOVB #^A/Z/,R6 ;Get first character in
 R6
LOOP3: ;
 MOVAL BUFFER,R7 ;And buffer address to R7
 $QIOW_S CHAN=TAPECHAN,- ;Channel is magtape
 FUNC=#IO$_READVBLK!IO$M_REVERSE,- ;Function is read
 - ;reverse
 IOSB=IOSTATUS,- ;Define I/O status
 quadword
 P1=BUFFER,- ;And buffer address
 P2=R3 ;R3 bytes
 CMPW #SS$_NORMAL,R0 ;Success?
 BSBW ERRCHECK ;Find out

;
; Check the data read to verify that it matches the data written.
;

 MOVL R3,R4 ;Copy R3 to R4 for loop count
CHECKDATA: ;
 CMPB (R7)+,R6 ;Check each character
 BNEQ MISMATCH ;If error, print message
 SOBGTR R4,CHECKDATA ;Continue until finished
 DECB R6 ;Go through alphabet in reverse
 ADDL2 #2,R3 ;Update byte count by 2 for
 ;next block
 SOBGTR R5,LOOP3 ;Read next block
;
; Now deaccess the file.
;

 $QIOW_S CHAN=TAPECHAN,- ;Channel is magtape
 FUNC=#IO$_DEACCESS,- ;Deaccess function
 P1=FIB_DESCR,- ;File information block (required)
 IOSB=IOSTATUS ;I/O status

;
; Deassign the channel and exit.
;

90

Chapter 3. Magnetic Tape Drivers

EXIT: $DASSGN_S CHAN=TAPECHAN ;Deassign channel
 RET ;Exit

;
; If an error had been detected, a program would normally
; generate an error message here. But for this example the
; program simply exits.
;

MISMATCH: ;
 BRB EXIT ;Exit

ERRCHECK: ;
 BNEQ EXIT ;If not success, exit
 RSB ;Otherwise, return

 .END MAGTAPE_EXAMPLE

91

Chapter 3. Magnetic Tape Drivers

92

Chapter 4. Mailbox Driver
The operating system supports a virtual device, called a mailbox, that is used for communication be-
tween processes. Mailboxes provide a controlled, synchronized method for processes to exchange da-
ta. Although mailboxes transfer information much like other I/O devices, they are not hardware de-
vices. Rather, mailboxes are a software-implemented way to perform read and write operations be-
tween processes.

For additional information about using mailboxes, see VSI OpenVMS Programming Concepts and the
VSI OpenVMS System Services Reference Manual.

4.1. Mailbox Operations
This section describes the following mailbox operations:

• Creating mailboxes

• Deleting mailboxes

• Protecting mailboxes

4.1.1. Creating Mailboxes
To create a mailbox and assign a channel and logical name to it, a process uses the Create Mailbox
and Assign Channel ($CREMBX) system service. A logical name can optionally be associated with
the mailbox. If a logical name is specified for the mailbox, the system enters the logical name in a log-
ical name table and gives it an equivalence name of MBAn, where n is a unique unit number.

$CREMBX also establishes the characteristics of the mailbox. These characteristics include a protec-
tion mask, a permanence indicator, maximum message size, buffer quota, and direction in which I/
O can be performed (read, write, or read/write). A mailbox is created as either temporary or perma-
nent; both types require privilege to create. Applications and restrictions on how to use temporary and
permanent mailboxes are described in the following sections. (See the VSI OpenVMS System Services
Reference Manual for additional information on creating mailboxes.)

Other processes can assign additional channels to a mailbox using either the $CREMBX or the Assign
I/O Channel ($ASSIGN) system service. The mailbox is identified by its logical name both when it is
created and when it is assigned channels by cooperating processes. Channels assigned to the mailbox
can specify the direction that I/O can be performed on the channel.

Figure 4.1 shows the use of $CREMBX and $ASSIGN.

93

Chapter 4. Mailbox Driver

Figure 4.1. Multiple Mailbox Channels

If sufficient dynamic memory for the mailbox data structure is not available when a mailbox is creat-
ed, a resource wait occurs if resource wait mode is enabled.

When a mailbox is created, a certain amount of space is specified for buffering messages that have
been written to the mailbox but have not yet been read. The bufquo argument to the $CREMBX sys-
tem service specifies this amount or quota. If that argument is omitted, its value defaults to the system
parameter DEFMBXBUFQUO.

A message written to a mailbox, in the absence of an outstanding read request, is queued to the mail-
box, and the size of the message (the QIO P2 argument) is subtracted from the available buffering
space. After the message is read, it is added back to the available buffering space.

If a process attempts to write to a mailbox that is full or has insufficient buffering space and if the
process has resource wait enabled (which is the default case), the process is placed in miscellaneous
resource wait mode until sufficient space is available in the mailbox. If resource wait is not enabled,
the I/O completes with the status return SS$_MBFULL in the I/O status block (IOSB).

Channels can be assigned to mailboxes as bidirectional (read/write), read only, or write only. This al-
lows for greater synchronization between users of the mailbox. To specify a unidirectional channel to
the mailbox, specify the flags argument for the $CREMBX or $ASSIGN system services.

The flags argument is a longword bit mask that enables you to specify that the channel assigned to the
mailbox is a read-only or write-only channel. If the flags argument is not specified, the default chan-
nel behavior is read/write. A channel assigned to the mailbox as read only is considered a reader. A
channel assigned to the mailbox as write only is considered a writer. A channel assigned to the mail-
box as read/write is considered both a reader and a writer.

For the $ASSIGN system service, the $AGNDEF macro defines a symbolic name for each flag bit.
These flags are as follows:

94

Chapter 4. Mailbox Driver

• AGN$M_READONLY— When this flag is specified, $ASSIGN assigns a read-only channel to
the mailbox device. An attempt to issue a $QIO WRITE operation on the mailbox channel causes
an illegal I/O operation error.

• AGN$M_WRITEONLY— When this flag is specified, $ASSIGN assigns a write-only channel to
the mailbox device. An attempt to issue a $QIO READ operation on the mailbox channel causes
an illegal I/O operation error.

For the $CREMBX system service, the $CMBDEF macro defines a symbolic name for each flag bit.
These flags are as follows:

• CMB$M_READONLY— When this flag is specified, $CREMBX assigns a read-only channel to
the mailbox device. An attempt to issue a $QIO WRITE operation on the mailbox channel causes
an illegal I/O operation error.

• CMB$M_WRITEONLY— When this flag is specified, $CREMBX assigns a write-only channel
to the mailbox device. An attempt to issue a $QIO READ operation on the mailbox channel caus-
es an illegal I/O operation error.

See the VSI OpenVMS System Services Reference Manual for a syntax description of the $CREMBX
and $ASSIGN system services.

The programming examples at the end of this section (Section 4.5) show mailbox creation, inter-
process communication, and synchronization.

4.1.2. Deleting Mailboxes
As each process finishes using a mailbox, it deassigns the channel using the Deassign I/O Channel
($DASSGN) system service. Temporary mailboxes or permanent mailboxes that have been marked
for deletion are actually deleted when no more channels are assigned to them.

If a mailbox channel is deassigned, any incomplete I/O requests on the mailbox channel for the
process deassigning the channel are removed.

Permanent mailboxes that have not been marked for deletion must be explicitly deleted using the
Delete Mailbox ($DELMBX) system service. An explicit deletion can occur at any time. As is true for
temporary mailboxes, the mailbox is deleted when no processes have channels assigned to it.

When a temporary mailbox is deleted, its message buffer quota is returned to the process that created
it. (No quota charge is made for permanent mailboxes.)

4.1.3. Mailbox Protection
Mailboxes (both temporary and permanent) are protected by a code, or mask, that is similar to the
code used in protecting volumes. As with volumes, four types of users (defined by UIC) can gain ac-
cess to a mailbox: SYSTEM, OWNER, GROUP, and WORLD; however, only three types of access—
logical I/O, read, and write—are meaningful to users of a mailbox. Therefore, when creating a mail-
box, you can specify logical I/O, read, and write access to the mailbox separately for each type of
user. Logical I/O access is required for any mailbox operation. The set protection function modifier
provides additional control of mailbox access (see Section 4.3.6).

For additional information on temporary mailboxes and mailbox protection, see the description of the
$CREMBX system service in the VSI OpenVMS System Services Reference Manual.

95

Chapter 4. Mailbox Driver

4.1.4. Mailbox Message Format
There is no standardized format for mailbox messages and none is imposed on users.

4.2. Mailbox Driver Device Information
You can obtain information on mailbox characteristics by using the Get Device/Volume Information
($GETDVI) system service. (See the VSI OpenVMS System Services Reference Manual.)

$GETDVI returns mailbox characteristics when you specify the item code DVI$_DEVCHAR. Ta-
ble 4.1 lists these characteristics, which are defined by the $DEVDEF macro.

Table 4.1. Mailbox Characteristics

Characteristic1 Meaning
Dynamic Bits (Conditionally Set)
DEV$M_SHR Device is shareable.
DEV$M_AVL Device is available.
Static Bits (Always Set)
DEV$M_REC Device is record-oriented.
DEV$M_IDV Device is capable of input.
DEV$M_ODV Device is capable of output.
DEV$M_MBX Device is a mailbox.

1Defined by the $DEVDEF macro.

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device type names, which are
defined by the $DCDEF macro. The device class for mailboxes is DC$_MAILBOX. The device type
is DT$_MBX (or DT$_SHRMBX if the mailbox is a shared memory mailbox). DVI$_DEVBUFSIZ
returns the buffer size, which is the maximum message size in bytes.

DVI$_DEVDEPEND returns a longword field in which the two low-order bytes contain the number
of messages in the mailbox. (The two high-order bytes are not used and should be ignored.) This in-
formation can also be obtained through the Get Mailbox Information function (see Section 4.3.7).

DVI$_UNIT returns the mailbox unit number. Using mailbox to hold a termination message for a sub-
process or a detached process requires that the parent process obtain this number to pass to the mbx-
unt argument of the $CREPRC system service.

4.3. Mailbox Function Codes
The mailbox I/O functions are:

• read

• write

• write end-of-file

• set attention AST

• wait for writer/reader

• set protection

96

Chapter 4. Mailbox Driver

• get mailbox information

No buffered I/O byte count quota checking is performed on mailbox I/O messages. Instead, the byte
count or buffer quota of the mailbox is checked for sufficient space to buffer the message being sent.
The buffered I/O quota and AST quota are also checked.

4.3.1. Read
Read mailbox functions are used to obtain messages written to the mailbox. The operating system pro-
vides the following mailbox function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPBLK—Read physical block

IO$_READVBLK, IO$_READLBLK, and IO$_READPBLK all perform the same operation. To is-
sue a read request, a process can specify any of the read function codes.

The following device- or function-dependent arguments are used with these codes:

• P1—The starting virtual address of the buffer that is to receive the message. If P2 specifies a ze-
ro-length buffer, P1 is ignored. On OpenVMS Alpha and Integrity server, P1 can be a 64-bit ad-
dress.

• P2—The size of the buffer in bytes (limited by the maximum message size for the mailbox). A ze-
ro-length buffer may be specified. If a message longer than the buffer is read, the alternate success
status SS$_BUFFEROVF is returned in the I/O status block. In such cases, the message is truncat-
ed to fit the buffer. The driver does not provide a means for recovering the deleted portion of the
message.

The following function modifiers can be specified with a read request:

• IO$M_WRITERCHECK—Completes the I/O operation with SS$_NOWRITER status if the mail-
box is empty and no write channels are assigned to the mailbox. If no writer is assigned to the
mailbox when the $QIO is issued and no data is in the mailbox, the $QIO completes immediately.
If no data is in the mailbox but a writer is assigned, the $QIO operation completes when either a
message is written or all writers deassign their channels to the mailbox. IO$M_WRITERCHECK
is ignored if the channel on which it is issued is read/write because a writer is always assigned.

• IO$M_NOW—Completes the I/O operation immediately with no wait for a write request from an-
other process.

• IO$M_STREAM—Ignores QIO record boundaries. The read operation transfers message data
to the user's buffer until either P2 bytes are transferred, all message data currently in the mail-
box is transferred, or an end-of-file message is encountered. If a WRITEOF message is within
the records required to be read in order to fulfill the request for P2 bytes, the read request termi-
nates successfully with the bytes it was able to read before finding the WRITEOF message and
the end-of-file message becomes the first message in the mailbox. The next read request process-
es the end-of-file message. If the read request is a READ STREAM, then the request must be for
greater than 0 bytes. $QIO READ STREAM can return fewer than P2 bytes with a return value of
SS$_NORMAL if the mailbox is emptied by the $QIO READ STREAM request or a WRITEOF
message is encountered.

Figure 4.2 shows $QIO READ STREAM operations.

97

Chapter 4. Mailbox Driver

Figure 4.2. $QIO READ STREAM Operation

A READ IO$M_STREAM (without IO$M_NOW specified) on an empty mailbox waits until some
data has been written to the mailbox. It terminates with:

• 0 bytes read if the next data written is an end-of-file message.

• Fewer than P2 bytes read if the next data written is less than P2 bytes but greater than 0 bytes.
(READ IO$M_STREAM ignores writes of 0 bytes.)

• P2 bytes read if the next data written is greater than or equal to P2 bytes.

If a $QIO READ STREAM is fulfilled by multiple $QIO WRITE requests, the sender PID returned in
the IOSB of the $QIO READ STREAM reflects the first write request. A $QIO READ STREAM is
charged BUFQUO for the request. This BUFQUO is released when the read request is met. A $QIO
READ STREAM request that would cause BUFQUO to be exceeded for the mailbox when the mail-
box has no writes pending returns an SS$_EXQUOTA error.

A $QIO READ STREAM issued to a mailbox that would cause BUFQUO to be exceeded because
BUFQUO is occupied by write requests still executes. This happens because by allowing the mail-
box to temporarily exceed BUFQUO, BUFQUO is freed. Similarly, a $QIO WRITE that is issued
to a mailbox that would cause BUFQUO to be exceeded, because the BUFQUO is occupied by read
stream requests, still executes.

Reads of 0 bytes are handled differently depending on which functional modifiers are specified.
If IO$M_STREAM is specified, then the $QIO returns SS$_NORMAL with 0 bytes read. The
contents of the mailbox remain exactly as they were before the $QIO was issued. A $QIO READ

98

Chapter 4. Mailbox Driver

STREAM of 0 bytes does not remove a 0 byte record, nor does it remove an end-of-file marker. If
IO$M_STREAM is not specified, then $QIO returns one of the following:

• SS$_NORMAL (if 0 bytes were written with the corresponding $QIO WRITE performed)

• SS$_BUFFEROVF (if the corresponding $QIO WRITE wrote more than 0 bytes with 0 bytes
read)

• SS$_ENDOFFILE (if a WRITEOF function was performed as the corresponding $QIO write
function)

For a 0-byte nonstream read, a record is actually removed from the mailbox to meet the $QIO READ
request. Note that the use of the word “immediately” does not imply that synchronization of the $QIO
request should not be performed.

Figure 4.3 shows the read mailbox functions. In this figure, Process A reads a mailbox message writ-
ten by Process B. As the figure indicates, a mailbox read request requires a corresponding mailbox
write request (except in the case of an error). The requests can be made in any sequence; the read re-
quest can either precede or follow the write request.

Figure 4.3. Read Mailbox

If Process A issues a read request before Process B issues a write request, one of two events can oc-
cur. If Process A did not specify the function modifier IO$M_NOW, Process A's request is queued
before Process B issues the write request. When Process B's write request occurs, the data is trans-
ferred from Process B, through the system buffers, to Process A to complete the I/O operation.

However, if Process A did specify the IO$M_NOW function modifier, the read operation is complet-
ed immediately. That is, no data is transferred from Process B to Process A, and Process A's request is
not queued. In this case, the I/O status returned to Process A is SS$_ENDOFFILE.

If Process B sends a message (with no function modifier; see Section 4.3.2) before Process A issues a
read request (with or without a function modifier), Process A finds a message in the mailbox. The data
is transferred and the I/O operation is completed immediately, regardless of whether IO$M_NOW is
specified on the read request.

4.3.2. Write
Write mailbox functions are used to transfer data from a process to a mailbox. The operating system
provides the following mailbox function codes:

99

Chapter 4. Mailbox Driver

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block

IO$_WRITEVBLK, IO$_WRITELBLK, and IO$_WRITEPBLK all perform the same operation. To
issue a write request, a process can specify any of the write function codes.

These function codes take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer that contains the message being written. If P2 speci-
fies a zero-length buffer, P1 is ignored. On OpenVMS Alpha and Integrity servers, P1 can be a 64-
bit address.

• P2—The size of the buffer in bytes (limited by the maximum message size for the mailbox). A ze-
ro-length buffer produces a zero-length message to be read by the mailbox reader.

The following function modifiers can be specified with a write request:

• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER
status, if no read channels are assigned to the mailbox. If a $QIO WRITE with IO$M_READ-
ERCHECK is issued and is outstanding and all read channels assigned to the mailbox are then de-
assigned, the $QIO completes with SS$_NOREADER status. IO$M_READERCHECK is ignored
if the channel on which it is issued is bidirectional read/write, because there is always a reader as-
signed. If SS$_NOREADER is returned for a write request, the $QIO WRITE operation does not
place any data in the mailbox. If SS$_NOREADER is returned for a write end-of-file message re-
quest, the $QIO WRITE operation does not place the end-of-file marker in the mailbox.

• IO$M_NOW—Completes the I/O operation immediately without waiting for another process
to read the mailbox message. $QIO WRITE, without IO$M_NOW specified, does not complete
until the data is read. $QIO WRITE NOW completes when the data is in the mailbox. If both
IO$M_READERCHECK and IO$M_NOW are specified and no read channel is assigned to the
mailbox, a status of SS$_NOREADER is returned and the data is not placed in the mailbox. If a
read channel is assigned, the IO$M_READERCHECK modifier is ignored.

• IO$M_NORSWAIT—If the mailbox is full, the I/O operation fails with a status re-
turn of SS$_MBFULL rather than placing the process in resource wait mode. Note that
IO$M_NORSWAIT does not disable resource waits that may occur elsewhere in the $QIO opera-
tion. For example, IO$M_NORSWAIT does not affect any resource waiting that occurs when I/O
processing routines try to allocate an I/O request packet while passing the I/O request to the mail-
box driver.

A $QIO WRITE of 0 bytes causes a 0-byte long message to be placed in the mailbox. When this data
is read by a $QIO READ without IO$M_STREAM specified, the $QIO READ returns an SS$_NOR-
MAL status and 0 bytes. When this data is read by a $QIO READ STREAM in an attempt to read P2
bytes (P2 being greater than 0), the data is ignored. However, a $QIO READ STREAM of 0 bytes has
no effect on the mailbox. A $QIO WRITE READERCHECK of 0 bytes, when no read channel is as-
signed to the mailbox, returns an SS$_NOREADER error and the 0-byte record is not placed in the
mailbox. A message that is 0 bytes long is charged 1 byte of mailbox BUFQUO.

Figure 4.4 shows the write mailbox function. In this figure, Process A writes a message to be read by
Process B. As in the read request example, a mailbox write request requires a corresponding mailbox
read request (unless an error occurs) and the requests can be made in any sequence.

100

Chapter 4. Mailbox Driver

If Process A issues a write request before Process B issues a read request, one of two events can oc-
cur. If Process A did not specify the function modifier IO$M_NOW, Process A's write request is
queued before Process B issues a read request. When this request occurs, the data is transferred from
Process A to Process B to complete the I/O operation.

However, if Process A did specify the IO$M_NOW function modifier, the write operation is complet-
ed immediately. The data is available to Process B and is transferred when Process B issues a read re-
quest.

If Process B issues a read request (with no function modifier) before Process A issues a write request
(with or without the function modifier), Process A finds a request in the mailbox. The data is trans-
ferred and the I/O operation is completed immediately.

Figure 4.4. Write Mailbox

4.3.3. Write End-of-File Message
Write end-of-file message functions are used to insert a special message in the mailbox. The process
that reads the end-of-file message is returned the status code SS$_ENDOFFILE in the I/O status
block. The message count of the Get Mailbox Information function reflects this end-of-file message;
however, the mailbox byte count of this function does not include end-of-file markers. An end-of-file
message is charged 1 byte of mailbox BUFQUO.

This function takes no arguments. The operating system provides the following function code:

• IO$_WRITEOF—Write end-of-file message

The following function modifiers can be specified with a write end-of-file request:

• IO$M_READERCHECK—Completes the I/O operation immediately, with SS$_NOREADER
status, if no read channels are assigned to the mailbox. If a $QIO WRITEOF with IO$M_READ-
ERCHECK is issued and is outstanding and all read channels assigned to the mailbox are then de-
assigned, the $QIO completes with SS$_NOREADER status. IO$M_READERCHECK is ignored
if the channel on which it is issued is bidirectional read/write, because there is always a reader as-
signed. If SS$_NOREADER is returned for a write end-of-file message request, the $QIO WRI-
TEOF operation does not place the end-of-file marker in the mailbox.

• IO$M_NOW—Completes the I/O operation immediately without waiting for another process to
read the mailbox message. If both IO$M_READERCHECK and IO$M_NOW are specified, and

101

Chapter 4. Mailbox Driver

no read channel is assigned to the mailbox, a status of SS$_NOREADER is returned and the end-
of-file message is not placed in the mailbox.

• IO$M_NORSWAIT—If the mailbox is full, the I/O operation fails with a status re-
turn of SS$_MBFULL instead of placing the process in resource wait mode. Note that
IO$M_NORSWAIT does not disable resource waits that may occur elsewhere in the $QIO opera-
tion. For example, IO$M_NORSWAIT does not affect any resource waiting that occurs when I/O
processing routines try to allocate an I/O request packet while passing the I/O request to the mail-
box driver.

4.3.4. Set Attention AST
Set attention AST functions specify that an asynchronous system trap (AST) be delivered to the re-
questing process in the following cases:

• When a cooperating process places a read request for which no write request is pending in a desig-
nated mailbox. This is called an unsolicited read request.

• When a cooperating process places a write request for which no read request is pending in a desig-
nated mailbox. This is called an unsolicited write request.

• When room becomes available in the mailbox.

If a message exists in the mailbox when a request to enable a write attention AST is issued, the AST
routine is activated immediately. If no message exists, the AST is delivered when a write request mes-
sage arrives; therefore, the requesting process need not repeatedly check the mailbox status. You must
have both logical I/O and read access to the mailbox prior to performing a set attention AST function.

The operating system provides the following function codes:

• IO$_SETMODE!IO$M_READATTN—Read attention AST

• IO$_SETMODE!IO$M_WRTATTN—Write attention AST

• IO$_SETMODE!IO$M_MB_ROOM_NOTIFY—Room in the mailbox attention AST

These function codes take the following device- or function-dependent arguments:

• P1—AST address (request notification is disabled if the address is 0)

• P2—AST parameter returned in the argument list when the AST service routine is called

• P3—Access mode to deliver AST; maximized with requester's mode

These functions are enabled only once; they must be explicitly reenabled after the AST has been de-
livered if you desire repeat notification. All types of enable functions, and more than one of each type,
can be set at the same time. The number of enable functions is limited only by the AST quota for the
process.

Figure 4.5 shows the write attention AST function. In this figure, an AST is set to notify Process A
when Process B sends an unsolicited message.

102

Chapter 4. Mailbox Driver

Figure 4.5. Write Attention AST (Read Unsolicited Data)

Process A uses the IO$_SETMODE!IO$M_WRTATTN function to request an AST. When Process B
sends a message to the mailbox, the AST is delivered to Process A. Process A responds to the AST by
issuing a read request to the mailbox. The data is then transferred to complete the I/O operation.

If several requesting processes have set ASTs for unsolicited messages at the same mailbox, all ASTs
are delivered when the first unsolicited message is placed in the mailbox; however, only the first
process to respond to the AST with a read request receives the data. Therefore, when the next process
to respond to an AST issues a read request to the mailbox, it might find the mailbox empty. If this re-
quest does not include the function modifier IO$M_NOW, it is queued before the next message ar-
rives in the mailbox.

Figure 4.6 shows the read attention AST function. In this figure, an AST is set to notify Process A
when Process B issues a read request for which no message is available.

103

Chapter 4. Mailbox Driver

Figure 4.6. Read Attention AST

Process A uses the IO$_SETMODE!IO$M_READATTN function to specify an AST. When Process
B issues a read request to the mailbox, the AST is delivered to Process A. Process A responds to the
AST by sending a message to the mailbox. The data is then transferred to complete the I/O operation.

If several requesting processes set ASTs for read requests for the same mailbox, all ASTs are deliv-
ered when the first read request is placed in the mailbox. Only the first process to respond with a write
request is able to transfer data to Process B.

4.3.5. Wait for Writer/Reader
The wait for writer/reader mailbox driver function waits until a channel is assigned to the mailbox
with the requested access direction. This function returns immediately if a channel is already assigned
to the mailbox with the proper access direction. This function always returns immediately if issued
on a bidirectional mailbox channel. Any channel assigned bidirectionally to the mailbox satisfies both
types of wait requests.

The wait function requires the same synchronization techniques as all other $QIO functions. $QIO
Wait should not be issued without any synchronization of its completion. If no synchronization is per-
formed, the program behaves as if no $QIO Wait function had been issued (except for the small delay
caused by issuing the $QIO Wait).

The following function codes and modifiers are provided:

• IO$_SETMODE!IO$M_READERWAIT—Waits for a read channel to be assigned to the mail-
box.

• IO$_SETMODE!IO$M_WRITERWAIT—Waits for a write channel to be assigned to the mail-
box.

These function codes require no function-dependent arguments.

These functions are enabled only once. Once the $QIO operation completes, these functions must be
explicitly reenabled.

104

Chapter 4. Mailbox Driver

4.3.6. Set Protection
The set protection functions allow the user to set volume protection on a mailbox (see Section 4.1.3).
The requester must either be the owner of the mailbox or have BYPASS privilege. The OpenVMS op-
erating system provides the following function code:

• IO$_SETMODE!IO$M_SETPROT—Set protection

This function code takes the following device- or function-dependent argument:

• P2—A volume protection mask

The protection mask specified by P2 is a 16-bit mask with 4 bits for each class of owner: SYSTEM,
OWNER, GROUP, and WORLD, as shown in Figure 4.7.

Figure 4.7. Protection Mask

Only logical I/O, read, and write functions have meaning for mailboxes. A clear (0) bit implies that
access is allowed. If P2 is 0 or unspecified, the mask is set to allow all read, write, and logical opera-
tions.

The I/O status block for the set protection function (see Figure 4.10) returns SS$_NORMAL in the
first word if the request was successful. If the request was not successful, the $QIO system service re-
turns SS$_NOPRIV and both longwords of the I/O status block are returned as zeros.

4.3.7. Get Mailbox Information
The get mailbox information function allows the user to find out the number of unread messages and
bytes in the mailbox. The following function code is provided:

• IO$_SENSEMODE—Get mailbox contents information

The following function codes and modifiers are provided:

• IO$_SENSEMODE!IO$M_READERCHECK—If a $QIO SENSEMODE with IO$M_READ-
ERCHECK is issued and no read channels are assigned to the mailbox, then the SS$_NOREAD-
ER condition value is returned in the IOSB.

• IO$_SENSEMODE!IO$M_WRITERCHECK—If a $QIO SENSEMODE with
IO$M_WRITERCHECK is issued and no write channels are assigned to the mailbox, then the
SS$_NOWRITER condition value is returned in the IOSB.

These function codes require no function-dependent arguments.

The I/O status block for the get information function (see Figure 4.11).

105

Chapter 4. Mailbox Driver

4.4. I/O Status Block
The I/O status blocks (IOSB) for mailbox read, write, set protection, and get mailbox information QIO
functions are shown in Figures Figure 4.8, Figure 4.9, Figure 4.10, and Figure 4.11.

Appendix A lists the I/O status returns for these functions. In addition to the IOSB return values, the
following statuses can be returned in R0 by the call to the system service:

• SS$_ACCVIO

• SS$_EXQUOTA

• SS$_ILLIOFUNC

• SS$_INSFMEM

• SS$_MBFULL

• SS$_MBTOOSML

• SS$_NOPRIV

• SS$_NORMAL

(The OpenVMS system messages documentation provides explanations and suggested user actions for
both types of returns.)

Figure 4.8. IOSB Contents — Read Function

Figure 4.9. IOSB Contents— Write Function

Figure 4.10. IOSB Contents— Set Protection Function

Figure 4.11. IOSB Contents — Get Mailbox Information Function

106

Chapter 4. Mailbox Driver

4.5. Mailbox Driver Programming Examples
This section contains the following programming examples:

• Example 4.1 shows a MACRO32 program that creates a mailbox and puts mail into it.

• Example 4.2 assigns a read-only channel to the mailbox.

• Example 4.3 assigns a write-only channel to the mailbox.

Example 4.1 creates a mailbox and puts mail into it; no matching read is pending on the mailbox.
First, the program shows that if the function modifier IO$M_NOW is not used when mail is deposit-
ed, the write function waits until a read operation is performed. In this case, IO$M_NOW is specified
and the program continues after the mail is left in the mailbox.

Next, the mailbox is read. If there is no mail in the mailbox, the program waits because IO$M_NOW
is not specified. IO$M_NOW should be specified if there is any doubt about the availability of data in
the mailbox, and it is important for the program not to wait.

It is up to the user to coordinate the data that goes into and out of mailboxes. In this example, the
process reads its own message. Normally, two mailboxes are used for interprocess communication:
one for sending data from process A to process B, and one for sending data from process B to process
A. If a program is arranged in this manner, there is no possibility of a process reading its own mes-
sage.

Note

The table for temporary mailbox names can be redefined to be a group table. This allows the process-
es in other jobs with same group number to use the same logical name to access the mailbox. For ex-
ample, LNM$TEMPORARY_MAILBOX can be redefined to any shareable table that the process
has write access to. In this case, it could be redefined to LNM$GROUP if the process has GRPNAM
privlege or if the group table allows the process to write to it. See the description of the $CREMBX
service in the System Services Reference Manual for more information.

Example 4.2 andExample 4.3 work together from two separate processes and show the unidirectional
mailbox synchronization features. With the default definition of LNM$TEMPORARY_MAILBOX,
the logical name for the mailbox is created in the job logical name table. The processes running both
example programs should be in the same job.

Example 4.2 performs the following functions:

1. Assigns a read-only channel to the mailbox.

2. Waits for another program to assign a writable channel to the mailbox.

3. Reads, using the IO$M_WRITERCHECK function modifier, what has been written to the mail-
box. Each record is echoed to SYS$OUTPUT.

4. When SS$_NOWRITER is returned from the read operation, goes back to Step 2 and waits for an-
other writer.

Example 4.3 is a writer to the mailbox. It performs the following functions:

1. Assigns a write-only channel to the mailbox.

2. Waits for a reader.

107

Chapter 4. Mailbox Driver

3. Gathers user input until the user enters Ctrl/Z, then writes that input to the mailbox.

Example 4.1. Mailbox Driver Program Example 1

; ***
;

 .TITLE MAILBOX DRIVER PROGRAM EXAMPLE
 .IDENT /01/

;
; Define necessary symbols.
;

 $IODEF ;Define I/O function codes

;
; Allocate storage for necessary data structures.
;

;
; Allocate output device name string and descriptor.
;

DEVICE_DESCR: ;
 .LONG 20-10 ;Length of name string
 .LONG 10$;Address of name string
10$: .ASCII /SYS$OUTPUT/ ;Name string of output device
20$: ;Reference label

;
; Allocate space to store assigned channel number.
;

DEVICE_CHANNEL: ;
 .BLKW 1 ;Channel number

;
; Allocate mailbox name string and descriptor.
;

MAILBOX_NAME: ;
 .LONG ENDBOX-NAMEBOX ;Length of name string
 .LONG NAMEBOX ;Address of name string
NAMEBOX: .ASCII /146_MAIN_ST/ ;Name string
ENDBOX: ;Reference label

;
; Allocate space to store assigned channel number.
;

MAILBOX_CHANNEL: ;
 .BLKW 1 ;Channel number

;
; Allocate space to store the outgoing and incoming messages.
;

108

Chapter 4. Mailbox Driver

IN_BOX_BUFFER: ;
 .BLKB 40 ;Allocate 40 bytes for
 ;received message
 IN_LENGTH=.-IN_BOX_BUFFER ;Define input buffer length

OUT_BOX_BUFFER: ;
 .ASCII /SHEEP ARE VERY DIM/ ;Message to send
 OUT_LENGTH=.-OUT_BOX_BUFFER ;Define length of message to
 ;send

;
; Finally, allocate space for the I/O status quadword.
;

STATUS: ;
 .QUAD 1 ;I/O status quadword

;
; ***
;
; Start Program
;
; ***
;

;
; The program first creates a mailbox and assigns a channel to the
; process output device. Then a message is placed in the mailbox and
; a message is received from the mailbox (the same message). Finally,
; the program prints the contents of the mailbox on the process output
; device.
;

START: .WORD 0 ;Entry mask
 $CREMBX_S CHAN=MAILBOX_CHANNEL,- ;Channel is the mailbox
 PROMSK=#^X0000,- ;No protection
 BUFQUO=#^X0060,- ;Buffer quota is hex 60
 LOGNAM=MAILBOX_NAME,- ;Logical name descriptor
 MAXMSG=#^X0060 ;Maximum message is hex 60
 CMPW #SS$_NORMAL,R0 ;Successful mailbox creation?
 BSBW ERROR_CHECK ;Find out
 $ASSIGN_S - ;Assign channel
 DEVNAM=DEVICE_DESCR,- ;Device descriptor
 CHAN=DEVICE_CHANNEL ;Channel
 CMPW #SS$_NORMAL,R0 ;Successful channel assign?
 BSBW ERROR_CHECK ;Find out

;
; The program now writes to the mailbox using a write request that
; includes the function modifier IO$M_NOW so that it need not wait for
; a read request to the mailbox before continuing to the next step in
; the program.
;

 $QIOW_S FUNC=#IO$_WRITEVBLK!IO$M_NOW,- ;Write message NOW
 CHAN=MAILBOX_CHANNEL,- ;to the mailbox channel
 P1=OUT_BOX_BUFFER,- ;Write buffer
 P2=#OUT_LENGTH ;Buffer length

109

Chapter 4. Mailbox Driver

 CMPW #SS$_NORMAL,R0 ;Successful write request?
 BSBW ERROR_CHECK ;Find out

;
; Read the mailbox.
;

 $QIOW_S FUNC=#IO$_READVBLK,- ;Read the message
 CHAN=MAILBOX_CHANNEL,- ;in the mailbox channel
 IOSB=STATUS,- ;Define status block to
 - ;receive message length
 P1=IN_BOX_BUFFER,- ;Read buffer
 P2=#IN_LENGTH ;Buffer length
 CMPW #SS$_NORMAL,R0 ;Successful read request?
 BSBW ERROR_CHECK ;Find out

;
; The program now determines how much mail is in the mailbox (this
; information is in STATUS+2) and then prints the mailbox message on
; the process output device.
;

 MOVZWL STATUS+2,R2 ;Byte count into R2
 $QIOW_S FUNC=#IO$_WRITEVBLK,- ;Write function to the
 CHAN=DEVICE_CHANNEL,- ;output device channel
 P1=IN_BOX_BUFFER,- ;Address of buffer to write
 P2=R2,- ;How much to write
 P4=#32 ;Carriage control

;
; Finally, deassign the channel and exit.
;

EXIT: $DASSGN_S CHAN=DEVICE_CHANNEL ;Deassign channel
 RET ;Return

;
; This is the error-checking part of the program. Normally, some kind
; of error recovery would be attempted at this point if an error was
; detected. However, this example program simply exits.
;

ERROR_CHECK: ;
 BNEQ EXIT ;System service failure, exit
 RSB ;Otherwise, return

 .END START

Example 4.2 assigns a read-only channel to the mailbox.

Example 4.2. Mailbox Driver Program Example 2

/*
 * MAILBOX_READER.C
 * C program to demonstrate features of the Mailbox driver.
 * This program is a Mailbox READER. It assigns a READ_ONLY channel to the
 * mailbox. Its partner program is a Mailbox WRITER.
 * Compile with Compaq C on VAX or Alpha systems:

110

Chapter 4. Mailbox Driver

 * $ CC MAILBOX_READER
 * $ LINK MAILBOX_READER
 * /
#include <stdio.h> /* Standard C I/O */
#include <descrip.h> /* Descriptor structure definitions */
#include <lib$routines.h> /* LIB$ RTL function definitions */
#include <starlet.h> /* System service definitions */
#include <ssdef.h> /* System Service status code definitions */
#include <cmbdef.h> /* CREMBX definitions */
#include <efndef.h> /* Event Flag definitions */
#include <iodef.h> /* I/O definitions */

#define $ARRAY_DESCRIPTOR(name,size,array_name) \
 static char array_name[size]; \
 struct dsc$descriptor_s name = \
 { size, DSCK_DTYPE_T, DSCK_CLASS_S, array_name }
int main(void)
{
/*
 * Message limits are intentionally small to facilitate demonstration of
 * error conditions.
 */
#define max_msg_len 64 /* Maximum output string size */
#define mailbox_maxmsg 64 /* Maximum mailbox message size */
#define mailbox_bufquo 128 /* Total buffer space in mailbox */
$DESCRIPTOR(mailbox_name_desc,"MAILBOX_EXAMPLE");
$DESCRIPTOR(EOF_string_desc,
 "End of file read ... waiting for another WRITER");
$ARRAY_DESCRIPTOR(read_buffer_desc,max_msg_len,read_buffer);

#pragma member_alignment save
#pragma nomember_alignment LONGWORD
 struct io_status_block { /* I/O status block */
 unsigned short int condition;
 unsigned short int count;
 unsigned int dev;
 } iosb;
#pragma member_alignment restore

int status, mailbox_channel;

/*
 * Create a temporary mailbox with a READONLY channel. Its logical name
 * will be entered into the LNM$TEMPORARY_MAILBOX logical name table.
 */

 status = sys$crembx(0,&mailbox_channel,mailbox_maxmsg,mailbox_bufquo,
 0,0,&mailbox_name_desc,CMB$M_READONLY);
 if (status != SS$_NORMAL)
 (void) lib$signal(status);

/*
 * Mark the mailbox for deletion. This step is not necessary for a
 temporary
 * mailbox, but is included as an illustration.
 */
 (void) sys$delmbx(mailbox_channel);
/*

111

Chapter 4. Mailbox Driver

 * Loop forever, first waiting until a WRITE channel is assigned to the
 mailbox
 * and then reading data from it until the WRITER deassigns.
 */
 while (TRUE)
 {
 /* First, check to see if there is a WRITER assigned to the mailbox
 */
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_SENSEMODE|IO$M_WRITERCHECK, &iosb,
 0,0,
 0,0,0,0,0,0);

 /* If there was no WRITER, then wait for one.*/
 if ((unsigned int) iosb.condition == SS$_NOWRITER)
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_SETMODE|IO$M_WRITERWAIT,
 &iosb,
 0,0,
 0,0,0,0,0,0);

 /*
 * While the status is good, READ from the mailbox, and echo the
 * data to SYS$OUTPUT.
 */
 while (status == SS$_NORMAL)
 {
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_READVBLK|IO$M_WRITERCHECK,
 &iosb,
 0,0,
 read_buffer_desc.dsc$a_pointer,max_msg_len,
 0,0,0,0);
 if (status != SS$_NORMAL)
 (void) lib$signal(status);
 status = iosb.condition;

 if (status == SS$_NORMAL)
 {
 read_buffer_desc.dsc$w_length = iosb.count;
 (void) lib$put_output(&read_buffer_desc);
 }
 else if (status == SS$_ENDOFFILE)
 {
 (void) lib$put_output(&EOF_string_desc);
 }
 }
 }
}

Example 4.3 assigns a write-only channel to the mailbox.

112

Chapter 4. Mailbox Driver

Example 4.3. Mailbox Driver Program Example 3

/*
 * MAILBOX_WRITER.C
 * C program to demonstrate features of the Mailbox driver.
 * This program is a Mailbox WRITER. It assigns a WRITE_ONLY channel to the
 * mailbox. It's partner program is a Mailbox READER.
 * Compile with Compaq C on VAX or Alpha systems:
 * $ CC MAILBOX_WRITER
 * $ LINK MAILBOX_WRITER
 */

#include <stdio.h> /* Standard C I/O */
#include <descrip.h> /* Descriptor structure definitions */
#include <lib$routines.h> /* LIB$ RTL function definitions */
#include <rmsdef.h> /* RMS status code definitions */
#include <starlet.h> /* System service definitions */
#include <ssdef.h> /* System Service status code definitions */
#include <cmbdef.h> /* CREMBX definitions */
#include <efndef.h> /* Event Flag definitions */
#include <iodef.h> /* I/O definitions */

#define $ARRAY_DESCRIPTOR(name,size,array_name) \
 static char array_name[size]; \
 struct dsc$descriptor_s name = \
 { size, DSCK_DTYPE_T, DSCK_CLASS_S, array_name }

void enable_room_ast(int mailbox_channel, int efn);
void more_room_ast(int efn);

volatile int ast_enabled = FALSE;
int main(void)
{
/*
 * Message limits are intentionally small to facilitate demonstration of
 * error conditions.
 */
#define max_msg_len 128 /* Maximum input string size */
#define mailbox_maxmsg 64 /* Maximum mailbox message size */
#define mailbox_bufquo 128 /* Total buffer space in mailbox */
$DESCRIPTOR(mailbox_name_desc,"MAILBOX_EXAMPLE");
$DESCRIPTOR(prompt_string_desc,
 "DATA TO SEND TO MAILBOX (<CTRL Z> to terminate) >>>");
$ARRAY_DESCRIPTOR(write_buffer_desc,max_msg_len,write_buffer);

#pragma member_alignment save
#pragma nomember_alignment LONGWORD
struct io_status_block { /* I/O status block */
 unsigned short int condition;
 unsigned short int count;
 unsigned int dev;
 } iosb;
#pragma member_alignment restore

int status, mailbox_channel, wait_efn;

/*
 * Create a temporary mailbox with a WRITEONLY channel. Its logical name

113

Chapter 4. Mailbox Driver

 * will be entered into the LNM$TEMPORARY_MAILBOX logical name table.
 */

 status = sys$crembx(0,&mailbox_channel,mailbox_maxmsg,mailbox_bufquo,
 0,0,&mailbox_name_desc,CMB$M_WRITEONLY);
if (status != SS$_NORMAL) (void) lib$signal(status);

/*
 * Mark the mailbox for deletion. This step is not necessary for a
 temporary
 * mailbox, but is included as an illustration.
 */
 (void) sys$delmbx(mailbox_channel);

/*
 * Reserve an event flag to use with "room in mailbox" AST notifications.
 */
 status = lib$get_ef(&wait_efn);
 if (status != SS$_NORMAL)
 (void) lib$signal(status);

/*
 * Loop forever, first waiting until a READ channel is assigned to the
 mailbox
 * and then write data until there is no more data to write.
 */
 while (TRUE)
 {
 /*
 * Wait for a READER to assign a channel. If a READER is already
 * assigned, this will return immediately.
 */
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_SETMODE|IO$M_READERWAIT,
 &iosb,
 0,0,
 0,0,0,0,0,0);
 while (status)
 {
 write_buffer_desc.dsc$w_length = max_msg_len;
 status = lib$get_input(
 &write_buffer_desc,
 &prompt_string_desc,
 &write_buffer_desc.dsc$w_length);

 /* If at end of file (user typed <CTRL Z>) then write EOF to
 * the mailbox, deassign the channel, and exit.
 * The writer should not deassign the channel while the write
 EOF
 * operation is pending, since the write would be cancelled and
 * the reader would never receive the EOF. Omitting IO$M_NOW
 in
 * this QIOW insures that it will not complete until the reader
 * has actually read the EOF from the mailbox.
 */
 if (status == RMS$_EOF)

114

Chapter 4. Mailbox Driver

 { (void) sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_WRITEOF|IO$M_READERCHECK,
 &iosb,
 0,0,0,0,
 0,0,0,0);
 (void) sys$dassgn(mailbox_channel);
 (void) sys$exit(SS$_NORMAL);
 }

 /* Write the message into the mailbox. If there isn't enough
 * room, try again until it fits.
 * Note that if the NORSWAIT function modifier had been
 eliminated
 * below, then the ROOM_NOTIFY and the retry loop could have
 been
 * removed. ROOM_NOTIFY was used in this example simply to show
 * its use. It would be more appropriately used when the
 program
 * has other things it can be working on, as opposed to the
 * example below in which the program is not doing anything
 except
 * WAITING for room in the mailbox.
 */
 do
 {
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_WRITEVBLK|IO$M_READERCHECK|IO$M_NOW|IO$M_NORSWAIT,
 &iosb,
 0,0,
 write_buffer_desc.dsc$a_pointer,
 write_buffer_desc.dsc$w_length,
 0,0,0,0);
 if (status == SS$_NORMAL)
 {
 /* If there is no longer a reader, just exit. */
 if ((unsigned int) iosb.condition == SS$_NOREADER)
 {
 (void) sys$dassgn(mailbox_channel);
 (void) sys$exit(iosb.condition);
 }
 }
 else if (status == SS$_MBFULL)
 {
 if (ast_enabled)
 /*
 * Wait here until the AST routine sets the event
 * flag. A read might have already occurred, in
 which
 * case the wait will return immediately.
 */
 (void) sys$waitfr(wait_efn);
 else
 /*
 * The mailbox was full a moment ago at the time of

115

Chapter 4. Mailbox Driver

 * write, but a read might have already occurred
 and
 * the mailbox might be empty now. It is possible
 * that no more reads will complete (and deliver
 * the AST) before the next write. So enable the
 AST
 * and try the write one more time before waiting
 for
 * the event flag.
 */
 enable_room_ast(mailbox_channel, wait_efn);
 } else /* An unexpected error condition */
 (void) lib$signal(status);
 }
 while (status != SS$_NORMAL);
 }
 }
}
void enable_room_ast(int mailbox_channel, int efn)
/*
 * This routine requests AST delivery when there is room in the mailbox.
 * AST delivery may be triggered by a read or a cancelled I/O.
 */
{
 int status;

 ast_enabled = TRUE;
 status = sys$clref(efn);

 /*
 * This QIOW returns immediately, whether there is room in the mailbox
 * or not. Even if there is room in the mailbox now, the AST is
 * NOT delivered immediately, but only later when a read or cancel
 * I/O occurs on the mailbox.
 */
 status = sys$qiow(
 EFN$C_ENF,
 mailbox_channel,
 IO$_SETMODE|IO$M_MB_ROOM_NOTIFY,
 0,0,0,
 more_room_ast,efn,0,0,0,0);
}
void more_room_ast(int efn)
/*
 * This AST routine is called when there is room to write more data into
 * the mailbox.
 */
{
 ast_enabled = FALSE;
 (void) sys$setef(efn);
}

116

Chapter 5. Terminal Driver
This chapter describes the use of the terminal driver (TTDRIVER) and the LAT port driver (LT-
DRIVER). The terminal driver supports the asynchronous, serial line multiplexers. The terminal dri-
ver also supports the console terminal. The LAT port driver accommodates I/O requests from applica-
tion programs; for example to make connections to remote devices, such as a printer, on a server (see
Section 5.3.4).

5.1. Terminal Driver Features
The terminal driver provides the following features:

• Input processing

• Command-line editing and command recall

• Control characters and special keys

• Input character validation (read verify)

• American National Standard Institute (ANSI) escape sequence detection

• Type-ahead feature

• Specifiable or default input terminators

• Special operating modes, such as NOECHO and PASTHRU

• Output processing

• Efficiency

• Limited full-duplex operation

• Formatted or unformatted output

• Dialup support

• Modem control

• Hangup on logout

• Preservation of process across hangups

• Miscellaneous

• Terminal/mailbox interaction

• Autobaud detection

• Out-of-band control character handling

Note

Not all terminal controllers support all terminal driver capabilities.

117

Chapter 5. Terminal Driver

5.1.1. Input Processing
The terminal driver defines many terminal characteristics and read function modifiers, which provide
a wide range of options to an application program. These options allow multiple levels of control over
the terminal driver's input process, ranging from the default of command-line editing that provides a
highly flexible user interface, to the PASTHRU mode, which inhibits input process interpretation of
data.

5.1.1.1. Command-Line Editing and Command Recall

The terminal driver input process defines a bounded set of line editing functions. You can access these
functions with control keys on all keyboards, and with some special keys on certain keyboards as
well. You can move the cursor in single-character increments (left arrow or Ctrl/D, right arrow or Ctr-
l/F) or in multicharacter increments, to the beginning of the line (Ctrl/H) or end of the line (Ctrl/E).
The terminal driver supports both insert character and overstrike character modes. The insert or over-
strike mode is the terminal's default characteristic1 at the beginning of a read operation, but you can
change it with the toggle insert/overstrike key (Ctrl/A). You can delete characters in word increments
(Ctrl/J or line feed) and beginning-of-the-line increments (Ctrl/U).

When you use the terminal driver's editing functions, the following restrictions result:

• You cannot move the cursor to a previous line after a line wrap.

• You cannot insert a character if the insertion would force a line wrap or if a tab follows the current
cursor position.

• You cannot delete a word at the beginning of a line after a line wrap.

• You cannot assign the line editing function to other keys.

Command recall, initiated by Ctrl/B or the up arrow, returns the last line entered to the command-line
buffer. At this point, you edit or reenter the line by pressing the Return key. DCL extends command
recall up to the last 254 commands by using the TRM$M_TM_NORECALL modifier to disable the
terminal driver's recall mechanism.

Any control key that is not defined by line editing is ignored. For application programs that require
control key input but do not perform QIO functions with special read modifiers, the SET TERMI-
NAL/NOLINE_EDIT DCL command disables command-line editing.

5.1.1.2. Control Characters and Special Keys

A control character is a character that controls action at the terminal rather than passing data to a
process. An ASCII control character has a code between 0 and 31, and 127 (hexadecimal 0 through
1F, and 7F); that is, all normal control characters plus DELETE. (Table C-1 lists the numeric values
for all control characters.) You enter some control characters at the terminal by simultaneously press-
ing the Ctrl key and a character key, such as Ctrl/x. Table 5.1 lists the terminal control characters. You
can change control character echo strings (Ctrl/C, Ctrl/Y, Ctrl/O, and Ctrl/Z) on a systemwide basis
(see the VSI OpenVMS System Management Utilities Reference Manual). You enter special keys,
such as Return, Line Feed, and Escape, by pressing a single key. Several of the control characters do
not function as described if the DCL command SET TERMINAL/LINE_EDIT is not specified. See

1VSI suggests that new users specify overstrike mode.

118

Chapter 5. Terminal Driver

the VSI OpenVMS DCL Dictionary for information on line editing function keys and the SET TER-
MINAL command.

Table 5.1. Terminal Control Characters

Control Character Meaning
Cancel (Ctrl/C) Gains the attention of the enabling process if the user program has

enabled a Ctrl/C AST. If a Ctrl/C AST is not enabled, Ctrl/C is
converted to Ctrl/Y (see Section 5.3.3.2).

The terminal performs a carriage-return/line-feed combination
(carriage return followed by a line feed), echoes CANCEL, and
performs another carriage-return/line-feed combination. If the ter-
minal has the ReGIS characteristic or if Ctrl/Y is pressed, the can-
cel ReGIS escape sequence is sent.

Additional consequences of Ctrl/C are as follows:

• The type-ahead buffer is emptied.

• Ctrl/S and Ctrl/O are reset.

• All queued and in-progress write operations and all in-progress
read operations are successfully completed. The status return is
SS$_CONTROLC, or SS$_CONTROLY if Ctrl/C is converted
to Ctrl/Y.

The F6 key maps to Ctrl/C on the following terminal types:
LK201, LK46W, LK461, LK463, and other compatible LK-series
keyboards.

Note that Ctrl/C is generally translated to Ctrl/Y for processing
within DCL, unless you have a Ctrl/C handler. Use LIB$EN-
ABLE_CTRL and LIB$DISABLE_CTRL to get Ctrl/C and Ctrl/
Y handled within your application. Example 5.4 shows a program-
ming example that demonstrates Ctrl/Y and Ctrl/C handling under
OpenVMS.

Delete Character (DELETE) Removes the last character entered from the input stream.

DELETE (decimal 127 or hexadecimal 7F) is ignored if there are
currently no input characters. Hardcopy terminals echo the delet-
ed character enclosed in backslashes. For example, if the charac-
ter z is deleted, \z\is echoed (the second backslash is echoed after
the next non-DELETE character is entered). Terminals that have
the TT$M_SCOPE characteristic echo DELETE by removing the
character.

Delete line (Ctrl/U) Purges current input data. When Ctrl/U is entered before the end of
a read operation, the current input line is deleted. (In the case of a
line wrap, Ctrl/U deletes only a line at a time.) If line editing is en-
abled (SET TERMINAL/LINE_EDIT is specified), the data from
the beginning of the line to the current cursor position is deleted.

119

Chapter 5. Terminal Driver

Control Character Meaning
Delete word (Ctrl/J or F13)
(Line feed)

Deletes the word before the cursor. Word terminators are all con-
trol characters, space, comma, dash, period, and ! ' # $ & ' () + @
[\] ^ {| ~ / : ; = ? (see Appendix C).

Discard output (Ctrl/O) Discards output. Action is immediate. All output is discarded
until the next read operation, the next write operation with a
IO$M_CANCTRLO modifier, or the receipt of the next Ctrl/O.
The terminal echoes OUTPUT OFF. The current write operation (if
any) and write operations performed while Ctrl/O is in effect are
completed with a status return of SS$_CONTROLO.

A second Ctrl/O, which reenables output, echoes OUTPUT ON.
Ctrl/C, Ctrl/Y, and Ctrl/T cancel Ctrl/O.

End of line (Ctrl/E) Moves the cursor to the end of the line.
Exit (Ctrl/Z or F10) Echoes EXIT when Ctrl/Z is entered as a read terminator. By con-

vention, Ctrl/Z constitutes end-of-file.
Interrupt (Ctrl/Y) Ctrl/Y is a special interrupt or attention character that is used to

invoke the command interpreter for a logged-in process. Ctrl/Y
can be enabled with an IO$M_CTRLYAST function modifier to a
IO$_SETCHAR or IO$_SETMODE function code. The command
interpreter's Ctrl/Y AST handler always takes precedence over a
user program's Ctrl/Y AST handler

Entering Ctrl/Y results in an AST to an enabled process to sig-
nify that the user entered Ctrl/Y from the terminal. The terminal
performs a carriage-return/line-feed combination, echoes INTER-
RUPT, and performs another carriage-return/line-feed combina-
tion if the AST and echo are enabled. Ctrl/Y is ignored (and not
echoed) if the process is not enabled for the AST.

Additional consequences of Ctrl/Y are as follows:

• The type-ahead buffer is flushed.

• Ctrl/S and Ctrl/O are reset.

• All queued and in-progress write operations and all in-progress
read operations are successfully completed with a 0 transfer
count. The status return is SS$_CONTROLY.

• The cancel ReGIS escape sequence is sent.
Move cursor left (Ctrl/D) Moves the cursor one position to the left.
Move cursor right (Ctrl/F) Moves the cursor one position to the right.
Move cursor to beginning of line
(Ctrl/H or F12) (Backspace)

Moves the cursor to the beginning of the line.

Purge type-ahead (Ctrl/X) Purges the type-ahead buffer and performs a Ctrl/U operation. Ac-
tion is immediate. If a read operation is in progress, the operation
is equivalent to Ctrl/U.

Recall (Ctrl/B or up arrow) Recalls the last command entered. DCL extends recall to several
commands.

120

Chapter 5. Terminal Driver

Control Character Meaning
Redisplay input (Ctrl/R) Redisplays current input. When Ctrl/R is entered during a read

operation, a carriage-return/line-feed combination is echoed on
the terminal, and the current contents of the input buffer are dis-
played. If the current operation is a read with prompt (IO$_READ-
PROMPT) operation, the current prompt string is also displayed.
Ctrl/R has no effect if the characteristic TT$M_NOECHO is set.

Restart output (Ctrl/Q) Controls data flow; used by terminals and the driver. Restarts da-
ta flow to and from a terminal if previously stopped by Ctrl/S. The
action occurs immediately with no echo. Ctrl/Q is also used to so-
licit read operations.

Ctrl/Q is meaningless if the line does not have the characteristic
TT$M_TTSYNC, the characteristic TT$M_READSYNC, or is not
currently stopped by Ctrl/S.

RET (Return) If used during a read (input) operation, RET echoes a carriage-re-
turn/line-feed combination. All carriage returns are filled on termi-
nals with TT$M_CRFILL specified.

Stop output (Ctrl/S) Controls data flow; used by both terminals and the terminal driver.
Ctrl/S stops all data flow; the action occurs immediately with no
echo. Ctrl/S is also used to stop read operations. Ctrl/S is meaning-
ful only if the terminal has either the TT$M_TTSYNC characteris-
tic or the TT$M_READSYNC characteristic.

TAB(Ctrl/I) Tabs horizontally. Advances to the next tab stop on terminals with
the characteristic TT$M_MECHTAB, but the terminal driver as-
sumes tab stops on MODULO 8 (multiples of 8) cursor positions.
On terminals without this characteristic, enough spaces are output
to move the cursor to the next MODULO 8 position.

Status (Ctrl/T) Displays the current time. Ctrl/T also displays the current node and
user name, the name of the image that is running, and information
about system resources that have been used during the current ter-
minal session.

Toggle insert/overstrike (Ctrl/A
or F14)

Changes current edit mode from insert to overstrike, or from
overstrike to insert. The default mode (as set with SET TERMI-
NAL/LINE_EDIT) is reset at the beginning of each line.

5.1.1.3. Read Verify

The read verify instructions provided by the terminal driver allow validation of data as each character
is entered. Invalid characters are not echoed and terminate the operation. The terminal driver does not
support full function field processing. Large data entry applications should use one of the DECforms,
FMS, or TDMS layered products, which support the entire data entry environment.

5.1.1.4. Escape and Control Sequences

Escape and control sequences provide additional terminal control not furnished by the control charac-
ters and special keys (see Section 5.1.1.2). Escape sequences are strings of two or more characters, be-
ginning with the escape character (decimal 27 or hexadecimal 1B), which indicate that control infor-
mation follows. Many terminals send and respond to such escape sequences to request special charac-
ter sets or to indicate the position of a cursor.

121

Chapter 5. Terminal Driver

The set mode characteristic TT$M_ESCAPE (see Table 5.4) is used to specify that terminal lines can
generate valid escape sequences. Also, the read function modifier IO$M_ESCAPE allows any read
operation to terminate on an escape sequence regardless of whether TT$M_ESCAPE is set. If either
TT$M_ESCAPE or IO$M_ESCAPE is set, the terminal driver verifies the syntax of the escape se-
quences. The sequence is always considered a read function terminator and is returned in the read
buffer; a read buffer can contain other characters that are not part of an escape sequence, but a com-
plete escape sequence always terminates a read operation. The return information in the read buffer
and the I/O status block includes the position and size of the terminating escape sequence in the data
record (see Section 5.3.1.4).

Any escape sequence received from a terminal is checked for correct syntax. If the syntax is not cor-
rect, SS$_BADESCAPE is returned as the status of the I/O. If the escape sequence does not fit in the
user buffer, SS$_PARTESCAPE is returned. If SS$_PARTESCAPE is returned, the application pro-
gram must issue enough single-character read requests, without timeout, to read the remaining char-
acters in the escape sequence, while parsing the syntax of the rest of the escape sequence. Use of the
TRM$_ESCTRMOVR item code prevents SS$_PARTESCAPE errors. No syntax integrity is guaran-
teed across read operations. Escape sequences are never echoed. Valid escape sequences take any of
the following forms (hexadecimal notation):

ESC <int>...<int><fin>(7-bit environment)

CSI <int>...<int><fin>(8-bit environment)

The keywords in the escape sequences indicate the following:

ESC The ESC key, a byte (character) of 1B. This character introduces the escape sequence
in a 7-bit environment.

CSI The control sequence introducer, a byte (character) of 9B. This character introduces the
escape sequence in a 8-bit environment.

<int> An “intermediate character” in the range of 20 to 2F. This range includes the space
character and 15 punctuation marks. An escape sequence can contain any number of in-
termediate characters, or none.

<fin> A “final character” in the range of 30 to 7E. This range includes uppercase and lower-
case letters, numbers, and 13 punctuation marks.

Three additional escape sequence forms are as follows:

ESC <;> <20-2F>...<30-7E>
ESC <20-2F>...<30-7E>
ESC <O><20-2F>...<40-7E>

Control sequences, as defined by the ANSI standard, are escape sequences that include control para-
meters. Control sequences have the following format:

ESC [<par>...<par><int>...<int><fin>(7-bit environment)

CSI <par>...<par><int>...<int><fin>(8-bit environment)

The keywords in the control sequences indicate the following:

ESC The ESC key, a byte (character) of 1B.
[A control sequence, a byte (character) of 5B.
CSI The control sequence introducer, a byte (character) of 9B.

122

Chapter 5. Terminal Driver

<par> A parameter specifier in the range of 30 to 3F.
<int> An “intermediate character” in the range of 20 to 2F.
<fin> A “final character” in the range of 40 to 7E.

For example, the position cursor control sequence is ESC [Pl ; Pc H where Pl is the desired line posi-
tion and Pc is the desired column position.

The user guides for the various terminals list valid escape and control sequences. For example, the
VT100 User Guide lists the escape and control sequences for VT100 terminals.

Section 5.1.1.2 describes control character functions during escape sequences.

Table C.2 lists the valid ANSI and DIGITAL private escape sequences for terminals that have the
TT2$M_ANSICRT, TT2$M_DECCRT, TT2$M_DECCRT2, TT2$M_AVO, TT2$M_EDIT, and
TT2$M_BLOCK characteristics (see Table 5.5). Table C.2 also lists assumed and selectable ANSI
modes and selectable DIGITAL private modes. Only the names of the escape sequences and modes
are listed (for more information, see the specific user guide for the various terminals). Unless other-
wise noted, the operation of escape sequences and modes is identical to the particular terminals that
implement these features.

5.1.1.5. Type-Ahead Feature
Input (data received) from a terminal is always independent of concurrent output (data sent) to a ter-
minal. This feature is called type-ahead. Type-ahead is allowed on all terminals, unless explicitly dis-
abled by the set mode characteristic, inhibit type-ahead (TT$M_NOTYPEAHD; see Table 5.4 and
Section 5.3.3).

Data entered at the terminal is retained in the type-ahead buffer until the user program issues an I/O
request for a read operation. At that time, the data is transferred to the program buffer and echoed at
the terminal where it was typed.

Deferring the echo until the read operation is active allows the user process to specify function
code modifiers that modify the read operation. These modifiers can include, for example, noecho
(IO$M_NOECHO) and convert lowercase characters to uppercase (IO$M_CVTLOW) (see Ta-
ble 5.6).

If a read operation is already in progress when the data is typed at the terminal, the data transfer and
echo are immediate.

The action of the driver when the type-ahead buffer fills depends on the set mode characteristic
TT$M_HOSTSYNC (see Table 5.4 and Section 5.3.3). If TT$M_HOSTSYNC is not set, Ctrl/G (bell)
is returned to inform you that the type-ahead buffer is full. The buffer must then be emptied, at which
time a status of SS$_DATAOVERUN is returned. If TT$M_HOSTSYNC is set, the driver stops input
by sending a Ctrl/S and the terminal responds by sending no more characters. These warning opera-
tions begin eight characters before the type-ahead buffer fills unless the TT2$M_ALTYPEAHD char-
acteristic is set. In that case, the system generation parameter TTY_ALTALARM is used. The driver
sends a Ctrl/Q to restart transmission when the type-ahead buffer empties completely, and the user has
posted another READ QIO.

The type-ahead buffer length is variable, with possible values in the range of 0 through 32,767.
The length can be set on a systemwide basis through use of the system generation parameter
TTY_TYPAHDSZ. Terminal lines that do a large amount of bulk input should use the characteris-
tic TT2$M_ALTYPEAHD, which allows the use of a larger type-ahead buffer specified by the sys-
tem generation parameters TTY_ALTYPAHD and TTY_ALTALARM. (TTY_ALTYPAHD specifies

123

Chapter 5. Terminal Driver

the total size of the alternate type-ahead buffer; TTY_ALTALARM specifies the threshold at which a
Ctrl/S is sent.)

Certain input-intensive applications, such as block mode input terminals, can take advantage of an op-
timization in the driver. If a terminal has the characteristic TT2$M_PASTHRU and the read function
IO$M_NOECHO is specified, data is placed directly into the read buffer and thereby eliminates the
overhead for moving the data from the type-ahead buffer.

5.1.1.6. Line Terminators
A line terminator is the control sequence that you type at the terminal to indicate the end of an input
line. Optionally, the application can specify a particular line terminator or class of terminators for read
operations.

Terminators are specified by an argument to the QIO request for a read operation. By default, they can
be any ASCII control character except FF, VT, LF, TAB, or BS (see Appendix C). If line editing is en-
abled, the only terminators are CR, Ctrl/Z, or an escape sequence. Control keys that do not have an
editing function are nonfunctioning keys. If included in the request, the argument is a user-selected
group of characters (see Section 5.3.1.2).

All characters are 7-bit ASCII characters unless data is input on an 8-bit terminal (see Section 5.3.1).
The characteristic TT$M_EIGHTBIT determines whether a terminal uses the 7-bit or 8-bit charac-
ter set; see Table 5.4. All input characters (except some special keys; see Section 5.1.1.2) are tested
against the selected terminators. The input is terminated when a match occurs or your input buffer
fills.

The terminal driver notifies the job controller to initiate login when it detects a carriage-return ter-
minator on a line with no current process (provided the line is not a secure server or the type-ahead
feature has not been disabled). A bell character is sent when the notification occurs. A notification
character other than the bell character may be specified by setting the system generation parameter
TTY_AUTOCHAR.

5.1.1.7. Special Operating Modes
The terminal driver supports many special operating modes for terminal lines. (Table 5.4 and Ta-
ble 5.5 list these modes.) All special modes are enabled or disabled by the set mode and set character-
istics functions (see Section 5.3.3).

5.1.2. Output Processing
Output handling is designed to be very efficient in the terminal driver. For example, on multiplexers
that support both silo and direct memory access (DMA) output, the driver considers record size to de-
cide dynamically which mode will result in the least overhead. The block size specified by the system
generation parameter TTY_DMASIZE is the minimum size block that can be used in a DMA opera-
tion.

5.1.2.1. Duplex Modes
The terminal driver can execute in either half- or full-duplex mode. These modes describe the terminal
driver software, specifically the ordering algorithms used to service read and write requests, not the
terminal communication lines.

In half-duplex mode, all read and write requests are inserted onto one queue. The terminal driver re-
moves requests from the head of this queue and executes them one at a time; all requests are executed
sequentially in the order in which they were issued.

124

Chapter 5. Terminal Driver

In full-duplex mode, read requests (and all other requests except write requests) are inserted onto one
queue and write requests onto another. The existence of two queues allows the driver to recognize the
presence of two requests, such as a read request and a write request at the same time. However, the
driver does not execute the read request and the write request simultaneously. When it is ready to ser-
vice a request, the driver decides which request—the read request or the write request—to process
next.

The following terms describe the state of a read request:

• A read request is active when the terminal driver removes that request from the head of the I/O
queue.

• A read request is started when the terminal driver moves the first character into the read buffer.

In the terminal driver, write requests usually have priority. A write request can interrupt an active, but
not started, read request.

The terminal driver does not start a read request until all outstanding writes are completed. This
means that a read request could be removed from the head of the read queue while write requests are
outstanding, but the first character is not moved into the read buffer until all outstanding writes are
completed.

Once a read request is started, all write requests are queued until the read completes. However, during
a read operation many write requests can be executed before the first input character is entered at the
terminal. Terminal lines that have the TT$M_NOECHO characteristic, or read functions that include
the IO$M_NOECHO function modifier, do not inhibit write operations in full-duplex mode.

If a write function specifies the IO$M_BREAKTHRU modifier, the write operation is not blocked,
even by an active read operation. IO$M_BREAKTHRU does not change the order in which write op-
erations are queued.

When all I/O requests are entered using the Queue I/O Request and Wait ($QIOW) system service,
there can be only one current I/O request at a time. In this case, the order in which requests are ser-
viced is the same for both half- and full-duplex modes.

The type-ahead buffer always buffers input data for which there is no current read request, in both
half- and full-duplex modes.

5.1.2.2. Formatting of Output
By default, output data is subject to formatting by the terminal driver. This formatting includes ac-
tions such as wrapping, tab expansion, uppercase, and fallback conversions. Applications that do not
require formatting of data can write with the IO$M_NOFORMAT modifier and thereby reduce over-
head. IO$M_NOFORMAT overrides all formatting except fallback translation. Setting the PASTHRU
mode (TT2$M_PASTHRU) is equivalent to writing with the noformat modifier.

Fallback conversions occur regardless of formatting mode.

5.1.2.3. SET HOST Facility and Output Buffering
The SET HOST facility emulates the terminal driver in the way it writes data to the terminal by stop-
ping the display as soon as the abort character is entered. However, the SET HOST facility behaves
differently from the terminal driver in that it buffers output data from the program that is executing.
Occasionally, this causes a perception problem for the user when the program is aborted with a Ctrl/C,
Ctrl/Y, or an out-of-band abort character. The user expects the program to terminate and the display to
stop immediately.

125

Chapter 5. Terminal Driver

CTDRIVER and RTPAD

When used between two systems, the SET HOST facility consists of two components: RTPAD on
the local node and CTDRIVER on the remote node. Both components buffer output data to enhance
performance when using wide area networks. CTDRIVER performs the initial buffering, queues the
buffers for network transfer, and returns a successful write status. The user should note that the lo-
cal terminal display reflects the output of the executing program after the data has been buffered and
transferred over the network—not as the output buffers are filled on the remote node.

The delay between execution of an application and the display of its output can lead to several anom-
alies in the effects of Ctrl/C, Ctrl/Y, and out-of-band abort characters.

Output Line Not in Sequence Following an Abort Character

After you enter an abort character (Ctrl/C, Ctrl/Y, or an out-of-band abort character) that causes the in-
put or output to be aborted, it is possible to receive an additional line of output. This occurs when the
application program calls $QIO (either directly or indirectly through RMS or language support rou-
tines) to output data to a buffer at the same time the abort character is entered.

When CTDRIVER receives the abort character (Ctrl/C, Ctrl/Y, or an out-of-band abort character)
from the network, it flushes the current output buffers and aborts any pending read operations. How-
ever, if the application program calls $QIO with a write operation when the abort character is entered,
the $QIO write data is still buffered and then displayed. The data may not be the next output in se-
quence from the user's point of view, since all the previous output buffers in CTDRIVER were flushed
and the data in them was not displayed.

When using the terminal driver, the effect of an abort character on the display screen is different. The
terminal driver does not buffer output from the application during program execution. If the applica-
tion program has just called $QIO with a write operation when the abort character is entered, then the
$QIO write data is displayed. Because all write operations are sequential and do not complete until the
output is actually displayed, the additional line displayed is in sequence. There is no break in the data.
Normally, the user does not notice that there is an additional line.

Extra Input Prompt Following an Abort Character

For connections between systems, the CTERM protocol allows CTDRIVER to synchronize with RT-
PAD before displaying any more data on the terminal.

Processing Abort Characters

The abort character AST is delivered after the message describing the aborted read operation has been
received. Therefore, the read status should be set very shortly after the abort character AST is deliv-
ered to the application. Note, however, these are still two asynchronous events, and the application
must still synchronize with the completing read operation.

Captive Command Procedures and Ctrl/Y

CTDRIVER and RTPAD emulate the terminal driver in that the current read operation and all pend-
ing write operations abort when Ctrl/Y is entered. However, the pending write operations also include
all the buffered output that occurred and that would have been output before the Ctrl/Y was entered
but due to the buffering was not.

The effect of the buffering can be confusing if a Ctrl/Y is entered when a captive command procedure
is executing. During execution of captive command procedures, DCL has a Ctrl/Y pending. When this
AST is delivered, DCL only reenables it; no other action is performed. In that case, if the program be-
ing executed only performs output, it appears that the program was aborted by the Ctrl/Y. Actually,

126

Chapter 5. Terminal Driver

the program completed execution before the Ctrl/Y was entered, and the Ctrl/Y merely discarded all
the buffered output.

5.1.3. Dialup Support
The operating system supports modem control (for example, Bell 103A, Bell 113, or equivalent) for
all supported multiplexers in autoanswer, full-duplex mode. The terminal driver does not support half-
duplex operations on modems such as the Bell 202. Also not supported are modems that use circuit
108/1 (connect data set to line signal) in place of the data terminal ready (DTR) signal. Most U.S. and
European modems use the data terminal ready signal, which is the signal supported by the operating
system.

5.1.3.1. Modem Signal Control
Dialup lines with the characteristic TT$M_MODEM are monitored periodically to detect a change in
the modem carrier signals data set ready (DSR), calling indicator (RING), or request to send (RTS).
The system generation parameter TTY_SCANDELTA establishes the dialup monitoring for multi-
plexers that do not support modem signal transition interrupts, such as the DZ series of controllers.

If a line's carrier signal is lost, the driver waits 2 seconds for the carrier signal to return. If bit 0 of the
system generation parameter TTY_DIALTYPE is set to 1, the driver does not wait. Bit 0 is 0 by de-
fault for countries with Bell System standards, but that bit should be set to 1 for countries with Inter-
national Telegraph and Telephone Consultative Committee (CCITT) standards. If the carrier signal is
not detected during this time, the line is hung up. The hangup action can signal the owner of the line,
through a mailbox message, that the line is no longer in use. (No dial-in message is sent; the unsolicit-
ed character message is sufficient when the first available data is received.) The line is not available
for a minimum of 2 seconds after the hangup sequence begins. The hangup sequence is not reversible.
If the line hangs up, all enabled Ctrl/Y and out-of-band ASTs are delivered; the Ctrl/Y AST P2 ar-
gument is overwritten with SS$_HANGUP. The I/O operation in progress is canceled, and the status
value SS$_HANGUP is returned in the I/O status block. DCL is responsible for process deletion after
Ctrl/Y is delivered. If the process is suspended, DCL cannot run, and therefore deletion cannot occur,
until the process is resumed.

Note

Some systems provide built-in serial lines using 6-pin modular jacks. These lines do not provide the
minimum required modem signals. Although the hardware may allow a dial-out connection to be es-
tablished, hangup cannot be detected and process deletion does not occur on these lines.

For terminals with the TT$M_MODEM characteristic, TT$M_REMOTE reflects the state of the car-
rier signal. TT$M_REMOTE is set when the carrier signal changes from off to on, and cleared when
the carrier signal is lost.

A line that does not have TT$M_MODEM set does not respond to modem signals or set the DTR sig-
nal. Modem signals can be set and sensed manually through use of the IO$M_MAINT function modi-
fier (see Section 5.3.3.3).

The terminal driver default modem protocol meets the requirements of the United States and of Euro-
pean countries. This protocol is capable of working in automatic answer mode and can also perform
manually dialed outgoing calls. The protocol supports the requirements of most known international
telephone networks. Enhanced modem features are used on multiplexers that support them; processor
polling is not necessary. The protocol also functions in a subset mode for the multiplexers that do not
support full modem signals.

127

Chapter 5. Terminal Driver

Table 5.2 lists the control and data signals used in a full modem control mode configuration (in a two-
way simultaneous, symmetrical transmit mode). Figure 5.1 is a flowchart that shows a typical signal
sequence for a terminal operation in this mode. The flowchart shows the states that the modem tran-
sition code goes through to detect different types of transitions in modem state. These transitions al-
low the driver to detect loss of lines that have been idle for several minutes. Modem states do not af-
fect the ability of the system to transmit characters.

Figure 5.1. Modem Control: Two-Way Simultaneous Operation

Set mode function modifiers are provided to allow a process to activate or deactivate modem control
signals (see Section 5.3.3.3).

Bit 1 of the system generation parameter TTY_DIALTYPE enables alternate modem protocol on a
system-wide basis. If bit 1 is 0 (the default), the RING signal is not used. If bit 1 is 1, the modem pro-
tocol delays setting the DTR signal until the RING signal is detected.

Remote terminal connections have a timeout feature for the security of dialup lines. If no channel is
assigned to the port within 30 seconds, or a port with an assigned channel is not allocated, the DTR

128

Chapter 5. Terminal Driver

signal is dropped. Such action prevents an unused terminal from tying up a line. However, there are
configurations (such as a printer connected to a remote line) in which the line should not be dropped
even though it is not being used interactively. To bypass the 30-second timeout, set the system gener-
ation parameter TTY_DIALTYPE to 4. (Note that if TTY_DIALTYPE is equal to 4, all dialup lines
skips the timeout waiting for a channel to be assigned.)

Table 5.2. Control and Data Signals

Signal Source Meaning
Transmitted data
(TxD)

Computer The data originated by the computer and transmitted through
the modem to one or more remote terminals.

Received data (RxD) Modem The data generated by the modem in response to telephone line
signals received from a remote terminal and transferred to the
computer.

Request to send (RTS) Computer If present (ON condition), RTS directs the modem to assume
the transmit mode. If not present(OFF condition), RTS directs
the modem to assume the nontransmit mode after all transmit
data has been transmitted.

Clear to send (CTS) Modem Indicates whether the modem is ready (ON condition) or not
ready (OFF condition) to transmit data on the telephone line.

Data set ready (DSR) Modem If present (ON condition), DSR indicates that the modem is
ready to transmit and receive; that is, the modem is connected
to the line and is ready to exchange further control signals with
the computer to initiate the exchange of data.
If DSR is not present (OFF condition), the modem is not ready
to transmit and receive. If DSR is detected, the operating sys-
tem initiates a 30-second timer. This ensures that the phone
line is disconnected if CARRIER is not detected.

Data channel received
line signal detector
(CARRIER)

Modem If present (ON condition), CARRIER indicates that the re-
ceived data channel line signal is within appropriate limits, as
specified by the modem. If not present (OFF condition), the re-
ceived signal is not within appropriate limits.

Data terminal ready
(DTR)

Computer If present (ON condition), DTR indicates that the comput-
er is ready to operate, prepares the modem to connect to the
telephone line, and maintains the connection after it has been
made by other means. DTR can be present whenever the com-
puter is ready to transmit or receive data. If DTR is not present
(OFF condition), the modem disconnects the modem from the
line.

Calling indicator
(RING)

Modem Indicates whether a calling signal is being received by the mo-
dem. Bit 1 of the system generation parameter TTY_DIAL-
TYPE must be set (=1). If RING is detected, the operating sys-
tem initiates a 30-second timer. This ensures that the phone
line is disconnected if CARRIER is not detected.

5.1.3.2. Hangup on Logging Out
By default, logging out on a line with modem signals will not break the connection. If
TT2$M_HANGUP is set, modem signals are dropped when the process logs out. If TT2$M_MOD-
HANGUP is set, no privilege is required to change the state of TT2$M_HANGUP. By setting

129

Chapter 5. Terminal Driver

TT2M_HANGUP, system managers can prevent nonprivileged users who are not logged in from tying
up a dial-in line.

5.1.3.3. Preservation of a Process Across Hangups
Virtual terminal support provides disconnect table terminals that allow a connection to a physical ter-
minal line to be broken without losing the job.

On Alpha and Integrity server systems, the following SYSMAN command allows terminals to be dis-
countable terminals:

SYSMAN> IO CONNECT VTA0/NOADAPTER/DRIVER=SYS$TTDRIVER

After this command is entered, a terminal with the TT2$M_DISCONNECT characteristic logs in as
VTAn:, rather than with the physical terminal name. When a terminal is set up in this manner, no in-
put or output operations are allowed to the physical device; I/O is automatically redirected to the ap-
propriate virtual terminal.

Following are four ways in which a terminal can become disconnected:

• Modem signals between the host and the terminal are lost.

• A user presses the BREAK key on a terminal that has the TT2$M_SECURE characteristic.

• A user enters the DCL command DISCONNECT.

• A user enters the DCL command CONNECT/CONTINUE.

After validated as a user, you can connect to a disconnected process in either of the following ways:

• Allow the login process to make the connection.

• Enter the DCL command CONNECT.

5.1.4. Terminal/Mailbox Interaction
Mailboxes are virtual I/O devices used to communicate between processes. The terminal I/O driver
can use a mailbox to communicate with a user process. Chapter 4 describes the mailbox driver.

A user program can use the Assign I/O Channel ($ASSIGN) system service to associate a mailbox
with one or more terminals. The terminal driver sends messages to this mailbox when terminal-related
events that require the attention of the user image occur.

Mailboxes used in this way carry status messages, not terminal data, from the driver to the user pro-
gram. For example, when data is received from a terminal for which no read request is outstanding
(unsolicited data), a message is sent to the associated mailbox to indicate data availability. On receiv-
ing this message, the user program reads the channel assigned to the terminal to obtain the data. Mes-
sages are sent to mailboxes under the following conditions:

• Unsolicited data in the type-ahead buffer. The use of the associated mailbox can be enabled and
disabled as a subfunction of the read and write requests (see Section 5.3.1 and Section 5.3.2). (Ini-
tially, mailbox messages are enabled on all terminals. This is the default state.) Therefore, the user
process can enter into a dialogue with the terminal after an unsolicited data message arrives. Then,
after the dialogue is over, the user process can reenable the unsolicited data message function on
the last I/O exchange. Only one message is sent between read operations.

130

Chapter 5. Terminal Driver

• Terminal hangup. When a remote line loses the carrier signal, it hangs up; a message is sent to the
mailbox. When hangup occurs on lines that have the characteristic TT$M_REMOTE set, the line
returns to local mode.

• Broadcast messages. If the characteristic TT2$M_BRDCSTMBX is set, broadcasts sent to a termi-
nal are placed in the mailbox (this is independent of the state of TT$M_NOBRDCST).

Messages placed in the mailbox have the following content and format (see Figure 5.2):

• Message type. The codes MSG$_TRMUNSOLIC (unsolicited data), MSG$_TRMHANGUP
(hangup), and MSG$_TRMBRDCST (terminal broadcast) identify the type of message. Message
types are identified by the $MSGDEF macro.

• Device unit number to identify the terminal that sent the message.

• Counted string to specify the device name.

• Controller name.

• Message (for broadcasts).

Figure 5.2. Terminal Mailbox Message Format

Interaction with a mailbox associated with a terminal occurs through standard QIO functions and
ASTs. Therefore, the process need not have outstanding read requests to an interactive terminal to re-
spond to the arrival of unsolicited data. The process need only respond when the mailbox signals the
availability of unsolicited data. Chapter 4 contains an example of mailbox programming.

The ratio of terminals to mailboxes is not always one to one. One user process can have many termi-
nals associated with a single mailbox.

5.1.5. Autobaud Detection
If you specify the /AUTOBAUD qualifier with the SET TERMINAL command, automatic baud rate
detection is enabled, allowing the terminal baud rate to be set when you log in. The baud rate is set
at login by pressing the Return key two or more times separated by an interval of at least one sec-
ond. (Pressing a key other than Return might detect the wrong baud rate; if this occurs, wait for the lo-
gin procedure to time out before continuing.) The supported baud rates are 110, 150, 300, 600, 1200,
1800, 2400, 3600, 4800, 9600, and 19,200. Most Alpha systems can autobaud up to 57600. Parity is
allowed on these lines.

131

Chapter 5. Terminal Driver

The autobaud function works with either even parity or no parity, but not with odd parity. If a line is
set to even parity and has 7 bits of data, the line automatically switches to no parity if a terminal not
generating parity attempts to log in.

The SET TERMINAL qualifier /EIGHT_BIT specifies that the terminal uses 8-bit ASCII
code. /NOEIGHT_BIT, which is the default, specifies 7-bit ASCII code. (If parity is specified, the
parity bit is separate from the data bits.) The optimal settings for automatic baud rate detection on
HPE terminals are /NOEIGHT_BIT/PARITY=EVEN or /EIGHT_BIT/NOPARITY, although auto-
matic baud rate detection also works with other combinations, such as /NOEIGHT_BIT/NOPARITY.

Table 5.5 describes the terminal characteristic TT2$M_AUTOBAUD, which allows the baud rate to
be set automatically at login.

It is not usually recommended to specify the /FRAME qualifier with the SET TERMINAL command.
The terminal driver selects the frame size (the number of data bits that the device can transmit) based
on how the /PARITY and /EIGHT_BIT qualifiers are set. It might be necessary to change these values
if the terminal is not made by HPE.

5.1.6. Out-of-Band Control Character Handling
All control characters (0 through 1F hexadecimal) can be enabled as out-of-band characters. Typ-
ing one of these characters immediately delivers an AST to the requesting process. DCL uses this
mechanism to sense whether Ctrl/T has been entered. Out-of-band character options allow using the
IO$M_INCLUDE function modifier to include the character in the data stream and the IO$M_T-
T_ABORT function modifier to abort the current input or output operation.

5.2. Terminal Driver Device Information
You can obtain information on terminal characteristics by using the Get Device/Volume Information
($GETDVI) system service. (See the VSI OpenVMS System Services Reference Manual.) The sense
mode function provides an alternative means to obtain terminal characteristics; see Section 5.3.4.10.

$GETDVI returns terminal characteristics when you specify the item codes DVI$_DEVCHAR,
DVI$_DEVDEPEND, and DVI$_DEVDEPEND2. Table 5.3, Table 5.4, and Table 5.5 list these char-
acteristics. Terminal characteristics are normally set during system generation to any one of, or a com-
bination of, the values listed in Table 5.4. DVI$_DEVDEPEND returns a longword field in which the
three low-order bytes contain the device-dependent characteristics and the high-order byte contains
the page length. Page length can have a value in the range of 0 through 255. The $DEVDEF macro
defines the device-independent characteristics, the $TTDEF macro defines the device-dependent char-
acteristics, and the $TT2DEF macro defines the extended device-dependent characteristics.

DVI$_DEVCLASS and DVI$_DEVTYPE return the device class and device type names, which
are defined by the $DCDEF and $TTDEF macros, respectively. The device class for terminals is
DC$_TERM. The terminal model determines the device type. For example, the device type for the
VT240 is TT$_VT200_SERIES. DVI$_DEVBUFSIZ returns the page width, which can be a value in
the range of 1 through 511. The driver does not accept a value of 0.

Table 5.3. Terminal Device-Independent Characteristics

Characteristic Meaning
DEV$M_AVL Terminal is on line and available.
DEV$M_CCL Carriage control is enabled.
DEV$M_DET Terminal is detached.

132

Chapter 5. Terminal Driver

Characteristic Meaning
DEV$M_IDV Terminal is capable of input.
DEV$M_ODV Terminal is capable of output.
DEV$M_OPR Terminal is enabled as an operator console.
DEV$M_REC Device is record-oriented.
DEV$M_RTT Terminal has remote terminal UCB extension.
DEV$M_SPL Device is spooled.
DEV$M_TRM Device is a terminal.
DEV$M_NET Terminal line is allocated for DECnet use.

Table 5.4. Terminal Characteristics

Value1 Meaning
TT$M_CRFILL Terminal requires fill after the Return key is pressed (the fill type can be

specified by the set mode function P4 argument).
TT$M_EIGHTBIT Terminal uses the 8-bit ASCII character set (see Appendix C). Terminals

without this characteristic use the 7-bit ASCII code. In this case, the eighth
bit is masked out on received characters and is ignored on output charac-
ters. The eighth bit is meaningful only if TT$M_EIGHTBIT is set.

TT$M_ESCAPE Terminal generates escape sequences (see Section 5.1.1.4). Escape se-
quences are validated for syntax.

TT$M_HALFDUP Terminal is in half-duplex mode (see Section 5.1.2.1). All read and write
requests are executed sequentially.

TT$M_HOSTSYNC The host system is synchronized to the terminal. Ctrl/Q and Ctrl/S are
used to control data flow and thus keep the type-ahead buffer from filling.
TT$M_HOSTSYNC should always be set on LAT terminals.

TT$M_LFFILL Terminal requires fill after the line-feed character is processed. (The fill can
be specified by the set mode P4 argument.)

TT$M_LOWER Terminal has the lowercase character set. Unless the terminal is in the
PASTHRU mode or IO$M_NOFORMAT is specified, all input and echoed
lowercase characters (hexadecimal 61 to 7A) are converted to uppercase if
TT$M_LOWER is not set. (The character ALTMODE (decimal 125 and
126, or hexadecimal 7D and 7E) converts to ESCAPE on terminals that do
not have the lowercase characteristic TT$M_LOWER set.)

TT$M_MBXDSABL Mailboxes associated with the terminal do not receive notification of un-
solicited input or hangup (see Section 5.1.3). This bit can be set by the
IO$M_DSABLMBX function modifier for read requests and cleared by the
IO$M_ENABLMBX function modifier for write requests.

TT$M_MECHFORM Terminal has mechanical form feed. The terminal driverpasses form feeds
directly to the terminal instead of expanding to line feeds.

TT$M_MECHTAB Terminal has mechanical tabs and is capable of tab expansion. To accom-
plish correct line wrapping, the terminal driver assumes there are eight
spaces between tab stops.

TT$M_MODEM Terminal line is connected to a modem. If TT$M_MODEM is set, the ter-
minal driver automatically handles modem control. If TT$M_MODEM
is not set, all modem signals are ignored. If TT$M_MODEM is set and

133

Chapter 5. Terminal Driver

Value1 Meaning
then cleared, a hangup is declared on the terminal line if that line is in
the remote state (TT$M_REMOTE is set). If DTR and RTS are set with
IO$_SETMODE!IO$M_SET_MODEM!IO$M_MAINT on a nonmodem
port, DTR and RTS goes off and then back on when the port is set for mo-
dem.

TT$M_MODEM is not supported for LAT devices.
TT$M_NOBRDCST Terminal does not receive any broadcast messages.
TT$M_NOECHO Input characters are not echoed on this terminal line (see Section 5.1.1.5).
TT$M_NOTYPEAHD Data must be solicited by a read operation. Data is lost if received in the

absence of an outstanding read request (if it is unsolicited data). Disables
type-ahead feature (see Section 5.1.1.5). If this characteristic is set, login
attempts on this line are disabled. See Section 5.1.3.1 for information on
modem signal control.

TT$M_READSYNC Read synchronization is enabled. The host explicitly solicits all read opera-
tions by entering a Ctrl/Q and terminates the operation by entering a Ctrl/S.
TT$M_READSYNC is not applicable to LAT terminals.

TT$M_REMOTE Dialup characteristic is enabled. The terminal returns to local mode when a
hangup occurs on the terminal line (see Section Section 5.1.3). This charac-
teristic cannot be changed; it is only informational.

TT$M_SCOPE Terminal is a video screen display (CRT terminal), for example, the VT100
or VT240 terminals.

TT$M_TTSYNC The terminal is synchronized to the host system. Output to the terminal is
controlled by terminal-generated Ctrl/Q or Ctrl/S. TT$M_TTSYNC is not
applicable to LAT terminals unless TT$M_PASTHRU is set and TT$M_T-
TSYNC is disabled, in which case the LAT session is placed in PASSALL
mode.

TT$M_WRAP A carriage-return/line-feed combination should be inserted if the cursor
moves beyond the right margin. If TT$M_WRAP is not set, no carriage-re-
turn/line-feed combination is sent. The operating system does not support
hardware-provided wrapping functions.

1Defined by the $TTDEF macro. The prefix can be TT$M_ or TT$V_. TT$M_ is a bit mask whose bit corresponds to the specific field;
TT$V_ is a bit number.

Table 5.5. Extended Terminal Characteristics

Value1 Meaning
TT2$M_ALTYPEAHD Alternate type-ahead buffer size is enabled. Use the alternate type-

ahead buffer size specified during system generation (see Sec-
tion 5.1.1.5). If a type-ahead buffer already exists for a terminal
line, there is no effect when this characteristic is set for that line.
TT2$M_ALTYPEAHD should be set prior to using the terminal, such
as in the startup command procedure. You can only set TT2$M_AL-
TYPEAHD; this characteristic cannot be cleared until the system is re-
booted.

TT2$M_ANSICRT ANSI CRT terminal is enabled. This characteristic is set by the SET
TERMINAL command. TT2$M_ANSICRT is a subset of the ANSI
standard with no DIGITAL private escape sequences (see Appen-
dix C). It is also a subset of the VT100 family terminals (because

134

Chapter 5. Terminal Driver

Value1 Meaning
TT2$M_ANSICRT is a subset of TT2$M_DECCRT) and the VT100.
Terminals with this characteristic must provide a display of at least 24
lines, each with 80 columns.

TT2$M_APP_KEYPAD Notifies application programs of state to set the keypad to when exit-
ing.

TT2$M_AUTOBAUD Automatic baud rate detection is enabled. This characteristic allows
the baud rate to be set automatically when you log in. (The baud rate
is set when one or more carriage returns are entered during the login
procedure.) Terminals are set to a permanent speed of 9600 baud. If
TT2$M_AUTOBAUD is specified, the permanent speed must not be
changed while this characteristic is in use on a given terminal line. See
Section 5.1.5 for additional information on automatic baud rate detec-
tion.

TT2$M_AVO Advanced video is enabled. This characteristic provides the termi-
nal with blink, bold, and flashing fields as well as a full screen of 132
character lines. TT2$M_AVO is set by the SET TERMINAL com-
mand. Appendix C lists the valid escape sequences for terminals with
the TT2$M_AVO characteristic.

TT2$M_BLOCK Block mode is enabled. This characteristic is set by the SET TERMI-
NAL command. TT2$M_BLOCK defines additional ANSI-defined
and DIGITAL private escape sequences (see Appendix C). Terminals
with this characteristic are capable of local editing and block mode
transmission (XON/XOFF flow control must be honored), and have
protected fields. If the terminal is used for large amounts of block in-
put, TT2$M_ALTYPEAHD should also be specified.

TT2$M_BRDCSTMBX Mailbox broadcasts messages. Broadcast messages are sent to an asso-
ciated mailbox, if one exists.

TT2$M_COMMSYNC Enables devices such as asynchronous printers to be connected to ter-
minal ports. Flow control is handled by EIA modem signals instead
of XON/XOFF. Setting TT2$M_COMMSYNC activates the DTR
and RTS signals; data is sent once the DSR and CTS signals are also
present. If either of these signals is not present, printing stops. When
both signals are present again, printing resumes.

Do not set TT2$M_COMMSYNC on a line connected to a modem
that is intended for interactive use. TT2$M_COMMSYNC disables
the modem terminal characteristic that disconnects a user process
from the terminal line in case of a modem phone line failure. With
TT2$M_COMMSYNC set, the next call on the terminal line could be
attached to the previous user's process. TT2$M_COMMSYNC should
also not be used in combination with XON/XOFF, TT$M_TTSYNC,
or TT$M_HOSTSYNC. TT2$M_COMMSYNC and TT$M_MODEM
are mutually exclusive.

TT2$M_DECCRT DIGITAL CRT terminal. This characteristic is set by the SET TER-
MINAL command for all terminals that are upward-compatible
with VT100 family terminals. TT2$M_DECCRT is a superset of
TT2$M_ANSICRT. Additional ANSI-defined as well as most DIGI-
TAL private escape sequences are allowed for terminals with this
characteristic (see Appendix C); maintenance modes, VT52 mode, and

135

Chapter 5. Terminal Driver

Value1 Meaning
the use of the LED displays are not defined by TT2$M_DECCRT.
Not all VT100 family terminals implement these features. The pres-
ence of the advanced video feature cannot be assumed because it is a
VT100 option. This restricts the use of graphics attributes. However,
the TT2$M_AVO characteristic can be used to determine whether ad-
ditional graphic attributes are available.

TT2$M_DECCRT2 DIGITAL CRT terminal. This characteristic is set by the SET TER-
MINAL command for all terminals that are upward-compatible
with VT200 family terminals. TT2$M_DECCRT2 is a superset of
TT2$M_DECCRT.

TT2$M_DECCRT3 DIGITAL CRT terminal. This characteristic is set by the SET TER-
MINAL command for all terminals that are upward-compatible
with VT300 family terminals. TT2$M_DECCRT3 is a superset of
TT2$M_DECCRT2.

TT2$M_DECCRT4 DIGITAL CRT terminal. This characteristic is set by the SET TER-
MINAL command for all terminals that are upward-compatible
with VT400 family terminals. TT2$M_DECCRT4 is a superset of
TT2$M_DECCRT3.

TT2$M_DIALUP Terminal is a dialup line. Used by LOGINOUT for the disable dialup
control.

TT2$M_DISCONNECT Allows terminal disconnect when a hangup occurs (that is, when mo-
dem signals are lost, when the DCL commands DISCONNECT or
CONNECT/CONTINUE are entered, or when the BREAK key is
pressed on a terminal that has the TT2$M_SECURE characteristic).
These terminals are created as VTAn:. (See the description for the
DCL command CONNECT/DISCONNECT in the VSI OpenVMS
DCL Dictionary.)

TT2$M_DMA Direct memory access (DMA) mode. This characteristic enables the
use of DMA mode for asynchronous DMA multiplexers. It is ignored
by non-DMA controllers.

TT2$M_DRCS Terminal supports loadable character fonts. This characteristic is set
with the DCL command SET TERMINAL/SOFT_CHARACTERS.

TT2$M_EDIT Terminal edit. This characteristic is set by the SET TERMINAL com-
mand for all terminals that support ANSI-defined advanced editing
functions. These functions include the ability to insert or delete a line
and the ability to insert or delete characters in an existing line. Ter-
minals with this characteristic are a superset of TT2$M_DECCRT.
Appendix C lists the valid escape sequences for terminals with the
TT2$M_EDIT characteristic.

TT2$M_EDITING Line editing is allowed.
TT2$M_FALLBACK2 Output is transformed from the 8-bit multinational character set to a 7-

bit ASCII character set on terminals that do not support the 8-bit char-
acter set (see Appendix C).

TT2$M_HANGUP Terminal hangup. Terminal lines connected through modems are hung
up when a process logs out or is deleted. The state of this characteris-
tic cannot be changed unless TT2$M_MODHANGUP is enabled or
the process has either LOG_IO or PHY_IO privilege.

136

Chapter 5. Terminal Driver

Value1 Meaning
TT2$M_INSERT Sets default mode for insert or overstrike at the beginning of each read

operation.
TT2$M_LOCALECHO Local echo. This characteristic is used with TT$M_NOECHO. If

both characteristics are set, only terminators and special control char-
acters are echoed. Use of this mode is restricted to command-line
read operations. Application programs that use the IO$M_NOE-
CHO function modifier will not necessarily work if TT2$M_LO-
CALECHO is set. Local echo is also not compatible with line editing
(TT2$M_EDITING).

TT2$M_MODHANGUP Modify hangup. If specified, TT2$M_HANGUP can be modified
without privilege. Otherwise, logical or physical I/O privilege is re-
quired.

TT2$M_PASTHRU Terminal is in PASTHRU mode; all input and output data is in 7- or
8-bit binary format (no data interpretation occurs). Data is terminated
when the buffer is full or when the data that is read matches the speci-
fied terminator. If the characteristic TT$M_TTSYNC is set, Ctrl/S and
Ctrl/Q interpretation does occur.

TT2$M_PRINTER DIGITAL CRT terminal with a local printer port.
TT2$M_REGIS ReGIS graphics. The terminal supports the ReGIS graphics instruction

set.
TT2$M_SIXEL SIXEL graphics. The terminal supports the SIXEL graphics instruc-

tion set.
TT2$M_SECURE For use with nonmodem, nonautobaud lines. This characteristic guar-

antees that no process is connected to the terminal after the BREAK
key is pressed. If TT2$M_SECURE is not set, BREAK is a null key.

TT2$M_SETSPEED Set speed. If specified, either LOG_IO or PHY_IO privilege is re-
quired to change terminal speed. TT2$M_SETSPEED is not support-
ed for LAT devices.

TT2$M_SYSPWD System password. This characteristic specifies that the login proce-
dure should require the system password before the user name prompt
is displayed.

TT2$M_XON XON/XOFF control. If a set mode function is performed on a termi-
nal in the Ctrl/S state, and if TT2$M_XON is set, output is resumed.
Users must note that the driver attempts to resume stopped (XOFF)
output on the line. However, restarting the output may not be success-
ful in all cases. The XON/XOFF feature does not work on all termi-
nals, for example, the VT220.

1Defined by the $TT2DEF macro. The prefix can be TT2$M_ or TT2$V_. TT2$M_ is a bit mask in which the bit set corresponds to the spe-
cific field; TT2$V_ is a bit number.
2If an attempt is made to turn on TT2$V_FALLBACK for a disconnected virtual terminal (_VTAx:) or if the Terminal Fallback Facility
(TFF) has not been activated, the status code SS$_BADPARAM is returned. For more information on TFF, see the OpenVMS Terminal
Fallback Utility (available on the Documentation CD-ROM).

5.2.1. Terminal Characteristics Categories
The set mode and set characteristics functions (see Section 5.3.3) and the DCL command SET TER-
MINAL are used to change terminal characteristics. The VSI OpenVMS DCL Dictionary describes the
SET TERMINAL command.

137

Chapter 5. Terminal Driver

To customize terminal behavior and usage, the operating system divides terminal characteristics into
the following categories:

• Format effectors—The following characteristics allow you to specify terminal-dependent format-
ting requirements:

TT$M_CRFILL TT$M_EIGHTBIT TT$M_LFFILL
TT$M_LOWER TT2$M_LOCALECHO TT$M_MECHFORM
TT$M_MECHTAB TT$M_NOECHO TT$M_SCOPE
TT$M_WRAP

• Generic terminal capabilities—The following characteristics specify generic terminal features
available to applications programs:

TT2$M_ANSICRT TT2$M_AVO TT2$M_BLOCK
TT2$M_DECCRT TT2$M_DECCRT2 TT2$M_DECCRT3
TT2$M_DECCRT4 TT2$M_DRCS TT2$M_EDIT
TT2$M_PRINTER TT2$M_REGIS TT2$M_SIXEL

Their use allows execution of these programs without knowledge of the actual terminal type. For
example, a program should check for TT2$M_DECCRT rather than for VT100 or VT101.

• Protocol—The following characteristics control protocols used by the terminal:

TT$M_ESCAPE TT$M_HALFDUP TT$M_HOSTSYNC
TT2$M_PASTHRU TT$M_TTSYNC

• System management—The following characteristics, normally set only at system startup, allow
the system manager to regulate terminal usage:

TT2$M_ALTYPEAHD TT2$M_AUTOBAUD TT2$M_DIALUP
TT2$M_DISCONNECT TT2$M_DMA TT2$M_HANGUP
TT$M_MODEM TT$M_NOTYPEAHD TT2$M_MODHANGUP
TT2$M_SECURE TT2$M_SETSPEED TT2$M_SYSPWD
TT2$M_COMMSYNC

• User preference—The following characteristics allow you to customize the terminal operating
mode:

TT2$M_APP_KEYPAD TT2$M_FALLBACK TT2$M_EDITING
TT2$M_INSERT TT$M_NOBRDCST

• Miscellaneous—The following characteristics provide greater program control of terminal opera-
tions:

TT2$M_BRDCSTMBX TT$M_MBXDSABL TT2$M_XON138

Chapter 5. Terminal Driver

5.3. Terminal Function Codes
The basic terminal I/O functions are read, write, set mode, set characteristics, sense mode, and sense
characteristics. All I/O functions can take function modifiers.

5.3.1. Read
When a read function code is issued, the user-specified buffer is filled with characters from the associ-
ated terminal. The operating system provides the following read function codes:

• IO$_READVBLK—Read virtual block

• IO$_READLBLK—Read logical block

• IO$_READPROMPT—Read with prompt

Read operations are terminated if either of the following two conditions occurs:

• The user buffer is full.

• The received character is included in a specified terminator mask (see Section 5.3.1.2).

The following device- or function-dependent arguments are used with the read function codes. The
codes can take all six arguments (P1 through P6) on QIO requests. The descriptions for these argu-
ments differ when itemlist read operations are performed (see Section 5.3.1.3).

• P1—The starting virtual address of the buffer that is to receive the data read.

• P2—The size of the buffer that is to receive the data read in bytes. (The system generation para-
meter, MAXBUF, and the terminal driver limit the maximum size of the buffer. The terminal dri-
ver only functions with buffer sizes less than 32718 bytes.)

• P3—Read with timeout, timeout count (see Table 5.6, IO$M_TIMED).

• P4—The read terminator descriptor block address (see Section 5.3.1.2).

• P5—The starting virtual address of the prompt buffer that is to be written to the terminal; for read
with prompt operations using the IO$_READPROMPT function code. (This argument is specified
as a value rather than an address as in the P1 argument.)

• P6—The size of the prompt buffer that is to be written to the terminal; for read with prompt opera-
tions using the IO$_READPROMPT function code.

In a read with prompt operation, the P5 and P6 arguments specify the address and size of a prompt
string buffer containing data to be written to the terminal before the input data is read. In a read with
prompt operation, both read and write operations are performed on the specified terminal. The prompt
string buffer is formatted like any other write buffer. If cursor position specifiers are supplied, they are
not interpreted by the driver but passed to the terminal.

During a read with prompt operation, pressing Ctrl/O (which is turned off at the start of any read op-
eration) stops the prompt string. If you press either Ctrl/U or Ctrl/X, the entire prompt string is written
out again, and the current input is ignored. If you press Ctrl/R, the current prompt string and input are
written to the terminal.

139

Chapter 5. Terminal Driver

Depending on the terminal type and your input, the prompt string can be very simple or quite com-
plex—from single command prompts to screen fills followed by input data. It is recommended that
prompt strings contain only one leading line feed.

In PASTHRU mode, data received from the associated terminal is placed in the user buffer as binary
information without interpretation. (Prompts are not refreshed after a broadcast in PASTHRU mode.)

5.3.1.1. Function Modifier Codes for Read QIO Functions
Eight function modifiers can be specified with IO$_READVBLK, IO$_READLBLK, and
IO$_READPROMPT. Table 5.6 lists these function modifiers and IO$_EXTEND, which is described
in Section 5.3.1.3. All read function modifiers are supported for LAT devices.

Table 5.6. Read QIO Function Modifiers for the Terminal Driver

Code Consequence
IO$M_CVTLOW Lowercase alphabetic characters (hexadecimal 61 to 7A) are converted to

uppercase when transferred to the user buffer or echoed. This characteris-
tic is used only for IO$_READLBLK, IO$_READVBLK, and IO$_READ-
PROMPT.

IO$M_DSABLMBX The mailbox is disabled for unsolicited data.
IO$M_ESCAPE A valid ANSI escape sequence is recognized as a valid delimiter for the read

operation. The TT$M_ESCAPE characteristic is overridden by this modifier
for the current read operation.

IO$M_EXTEND This characteristic provides additional functionality for read operations (see
Section 5.3.1.3). Do not specify IO$M_EXTEND with other function modi-
fiers.

IO$M_NOECHO Characters are not echoed as they are entered at the keyboard. The termi-
nal line can also be set to a “no echo” mode by the set mode characteris-
tic TT$M_NOECHO, which inhibits all read operation echoing. Setting
IO$M_NOECHO also disables line editing.

IO$M_NOFILTR The terminal does not interpret Ctrl/U, Ctrl/R, or DEL. They are passed to
the user. IO$M_NOFILTR explicitly disables line editing.

IO$M_PURGE The type-ahead buffer is purged before the read operation begins.
IO$M_TIMED The P3 argument specifies the maximum time (seconds) that can elapse be-

tween characters received from the terminal (the timeout value for the oper-
ation), only if IO$M_TIMED is specified as a modifier on the read function
code.

Note that if you are using a timeout in an item list of a $QIO read to a termi-
nal driver, the timeout on an extend read must go into the item list.

Because driver timing operates on a 1-second timer, a 2-second timeout
must be specified to guarantee a 1-second wait. The timer starts when the
prompt echo is started. If the read time exceeds the time specified in P3, a
timeout error (SS$_TIMEOUT) is returned in the read IOSB. All input char-
acters received before the read operation timed out are returned in the user's
buffer.

A read with timeout operation, in which the timeout value is 0, empties the
type-ahead buffer into the user buffer until the proper termination condition

140

Chapter 5. Terminal Driver

Code Consequence
is reached (buffer full, termination character detected, or type-ahead buffer
empty). The read operation then returns the count of characters read and, if a
terminator is read, SS$_NORMAL; SS$_TIMEOUT is returned if no termi-
nator is read. In either case the offset to terminator in the IOSB always indi-
cates the number of characters read.

If a write request is active and there is no prompt string, the read request
generally times out with zero bytes of data being returned.

If a read operation is interrupted by either a broadcast write or a synchro-
nous write request, the timer operation is restarted.

IO$M_TRMNOECHO The termination character (if any) is not echoed. There is no formal termina-
tor if the buffer is filled before the terminator is typed.

5.3.1.2. Read Function Terminators

The P4 argument to a read QIO function either specifies the terminator set for the read function or
points to the location containing the terminator set. If P4 is 0, all ASCII characters with a code in the
range 0 through 31 (hexadecimal 0 through 1F), except LF, VT, FF, TAB, and BS, are terminators (see
Appendix C). This is the RMS standard terminator set. The delete character (hexadecimal 7F) and 8-
bit controls in the range 128 through 159, and 255 (hexadecimal 80 through 9F, and FF) are also ter-
minators. If line editing is enabled, only Return, Ctrl/Z, or an escape sequence terminates a read oper-
ation.

If P4 does not equal 0, it contains the address of a quadword that either specifies a terminator char-
acter bit mask or points to a location containing that mask. (Note that if P4 references an address in
a MACRO program, a number sign (#) must precede the address; for example, P4=#TMASK.) The
quadword has a short form and a long form, as shown in Figure 5.3. In the short form, the correspon-
dence is between the bit number and the binary value of the character; the character is a terminator
if the bit is set. For example, if bit 0 is set, NULL is a terminator; if bit 9 is set, TAB is a terminator.
If a character is not specified, it is not a terminator. Since ASCII control characters are in the range 0
through 31, the short form can be used in most cases.

The long form allows use of a more comprehensive set of terminator characters. Any mask equal to or
greater than 1 byte is acceptable. For example, a mask size of 16 bytes allows all 7-bit ASCII charac-
ters to be used as terminators; a mask size of 32 bytes allows all 8-bit characters to be used as termina-
tors for 8-bit terminals.

If the terminator mask is all zeros, there are no specified terminators. The read operation ends when
the specified number of bytes (characters) have been transferred to the input buffer.

Certain control keys will not act as terminators unless IO$M_NOFILTR is specified or the line has the
TT2$M_PASTHRU characteristic (see Section 5.1.1.2).

141

Chapter 5. Terminal Driver

Figure 5.3. Short and Long Forms of Terminator Mask Quadwords

5.3.1.3. Itemlist Read Operations

Itemlist read operations provide expanded software features to read QIO requests. The operating sys-
tem provides the following combination of function code and modifier:

• IO$_READVBLK!IO$M_EXTEND—Itemlist read virtual block

No other function modifiers can be specified in an itemlist read request.

Note

Itemlist read features supported by the terminal driver are not supported by all DECnet terminal emu-
lators.

The itemlist read function code and modifier combination takes the following device- or function-de-
pendent arguments:

• P1—The starting virtual address of the buffer that is to receive the data read.

• P2—The size of the buffer that is to receive the data read in bytes. If required, the P2 size includes
additional space for an overflow buffer to hold an escape sequence terminator (see item code TR-
M$_ESCTRMOVR in Table 5.7).

Note

The IO$_READxBLK and IO$_WRITExBLK are limited by the system parameter MAXBUF as well
as the terminal driver. The terminal driver only functions with buffer sizes less than 32718 bytes.

• P3—The access mode at which the itemlist is to be probed (optional).

• P5—The address of the itemlist buffer.

• P6—The length in bytes of the itemlist buffer.

P4 is not meaningful for itemlist read operations. P5 points to a series of item descriptors. Figure 5.4
shows the format for these descriptors. You cannot repeat the same item code in the same item list.

142

Chapter 5. Terminal Driver

Figure 5.4. Itemlist Read Descriptor

Table 5.7 lists the item codes that can be specified in the first longword of the item descriptors.

Table 5.7. Item Codes for Terminal Driver Itemlist Read Operations

Item Code Meaning
TRM$_ALTECHSTR Alternate echo string. The buffer length word contains the length of the

string. The data address word contains the address of the string. The alter-
nate echo string is written to the terminal after the first character is entered.

This item code for character validating read mode (TRM$K_EM_RDVERI-
FY) editing only.
Extended editing modes. The immediate data longword specifies extended
editing mode values. The buffer length word must be zero. The following
editing modes are supported:
TRM$K_EM_DEFAULT Normal read mode. This is the default if

TRM_EDITMODE is not present in the
itemlist.

TRM$_EDITMODE

TRM$K_EM_RDVERIFY Character Validating read mode. See Sec-
tion 5.3.1.4.

TRM$_ESCTRMOVR Escape terminator overflow size. Specifies the number of bytes that may be
used to hold an escape sequence terminator. This number should be included
in P2, the buffer size argument, in addition to the space required for the da-
ta to be read. Note that this overflow area is for the terminator only; it is not
available for user data.

TRM$_ESCTRMOVR is useful in preventing partial escape errors, which
return SS$_PARTESCAPE. This overflow buffer ensures that all the charac-
ters in an escape sequence terminator fits in the user buffer, thus eliminating
the need for additional single-character read operations.

TRM$_FILLCHR A 2-byte value that indicates the fill and clear character for TR-
M$K_EM_RDVERIFY. The first byte of the immediate data longword
specifies the clear character; the second byte specifies the fill character.

This item code is for character validating read mode (TRM$K_EM_RD-
VERIFY) editing only.

TRM$_INIOFFSET Indicates the character in the initial string where echoing starts. The immedi-
ate data longword specifies the character.

TRM$_INISTRNG Specifies a string to preload into the read buffer (P1). The buffer length
word contains the length of the string. The data longword contains the ad-
dress of the string. TRM$_INISTRNG must be specified if the edit mode is

143

Chapter 5. Terminal Driver

Item Code Meaning
TRM$K_EM_RDVERIFY, and must be the same length as specified by TR-
M$_PICSTRNG.
Read modifiers. The immediate data longword contains a 32-bit value that
specifies modifiers to read operations. The read operations are defined in
$TRMDEF. The buffer length word must be zero. The following bits are de-
fined:
TRM$M_TM_ARROWS The terminal interprets the left and right

arrow keys (TRM$K_EM_RDVERIFY
mode only). The arrow keys are not put in
the buffer and do not terminate the read.
TRM$_ESCTRMOVR must be greater
than or equal to 5.

TRM$M_TM_AUTO_TAB This bit creates an autotab mode field
(TRM$K_EM_RDVERIFY mode only).

TRM$M_TM_CVTLOW Lowercase alphabetic characters (hexa-
decimal 61 to 7A) are converted to upper-
case when transferred to the user buffer or
echoed.

TRM$M_TM_DSABLMBX The mailbox is disabled for unsolicited da-
ta and for receiving hangup messages.

TRM$M_TM_ESCAPE A valid ANSI escape sequence is recog-
nized as a valid delimiter for the read op-
eration.

TRM$M_TM_NOCLEAR Fill characters are not replaced with clear
characters after a nonfill character occurs
(TRM$K_EM_RDVERIFY mode only).

TRM$M_TM_NOECHO Characters are not displayed as they are
entered at the keyboard.

TRM$M_TM_NOEDIT This bit inhibits advanced editing for this
read operation.

TRM$M_TM_NOFILTR The terminal does not interpret DEL, Ctrl/
U, or Ctrl/R, but passes them to you. This
characteristic explicitly disables line edit-
ing.

TRM$M_TM_NORECALL This bit inhibits command recall (Ctrl/B)
by the terminal driver.

TRM$M_TM_OTHERWAY This bit sets left-justify fields to insert
mode and right-justify fields to overstrike
mode (TRM$K_EM_RDVERIFY mode
only). TRM$M_TM_TOGGLE must
equal 1.

TRM$M_TM_PURGE The type-ahead buffer is purged before the
read operation begins.

TRM$_MODIFIERS

TRM$M_TM_R_JUST This bit creates a right-justified field (TR-
M$K_EM_RDVERIFY mode only).

144

Chapter 5. Terminal Driver

Item Code Meaning
TRM$M_TM_TERM_ARROW The read operation is terminated when the

left arrow key is pressed at the left margin
or when the right arrow key is pressed at
the right margin (TRM$K_EM_RDVERI-
FY mode only). TRM$M_TM_ARROWS
must be enabled.

TRM$M_TM_TERM_DEL The read operation is terminated when the
DELETE key is pressed at the left margin
(TRM$K_EM_RDVERIFY mode only).

TRM$M_TM_TOGGLE Enables Ctrl/A to function as a toggle key
between insert mode and overstrike mode
(TRM$K_EM_RDVERIFY mode only).
Left-justify insert mode shifts characters
to the right; right-justify insert mode shifts
characters to the left. Shifted characters
are not checked for validity in their new
positions.

TRM$M_TM_TIMED TRM$_TIMEOUT specifies the maxi-
mum time (seconds) that can elapse be-
tween characters received from the ter-
minal; that is, the timeout value for the
operation. TRM$M_TM_TIMED is as-
sumed set if TRM$_TIMEOUT is includ-
ed in the itemlist. See the description of
IO$M_TIMED in Table 5.6.

TRM$M_TM_TRMNOECHO The termination character (if any) is not
displayed. There is no formal terminator if
the buffer is filled before the terminator is
typed.

All other bits must be zero.
Character validation string. The buffer length word contains the length
of the string, which must be the same as the length specified by TR-
M$_INISTRNG. The data address word contains the address of the string.
TRM$_PICSTRNG must be specified if the edit mode is TRM$K_EM_RD-
VERIFY.

Note that this item code is for character validating read mode (TR-
M$K_EM_RDVERIFY) editing only.

The format of the character validation string is 1 byte per input character.
Each byte is a bit mask. The following values are provided:
Value Meaning
TRM$M_CV_UPPER Uppercase alphabetic
TRM$M_CV_LOWER Lowercase alphabetic
TRM$M_CV_NUMERIC Numeric (0-9)

TRM$_PICSTRNG

TRM$M_CV_NUMPUNC Numeric punctuation (+ - .)

145

Chapter 5. Terminal Driver

Item Code Meaning
TRM$M_CV_PRINTABLE Printable ASCII character
TRM$M_CV_ANY Any character
If no values are set, the corresponding character specified by TR-
M$_INISTRNG is used. Appendix C lists the multinational character set.

TRM$_PROMPT Specifies a prompt string. The buffer length word contains the length of the
prompt. The data address word contains the address of the prompt string.
See Section 5.3.1 for information on how carriage control specifiers in a
prompt string are handled.

TRM$_TERM The buffer length word determines the format of the nondefault terminator
mask. If the buffer length word is zero, then the data longword is used as a
short form mask. If the buffer length word is nonzero, then a mask n bytes
long is available at the specified address.

TRM$_TIMEOUT Read timeout. See the description of IO$M_TIMED in Table 5.6.

5.3.1.4. Read Verify Function
When using the read verify function, the terminal driver performs input validation based on charac-
ter attributes. (Read verification bypasses the optionally specified termination mask (TRM$_TERM).)
Validation is performed one character at a time as data is entered. Invalid characters are not echoed,
and cause the read operation to complete. It is then up to the application program to handle the error
appropriately.

The initial string describes the initial contents of the input field. This string may consist of data and
marker characters. The clear character is displayed on the screen for each occurrence of the fill char-
acter in the initial string buffer.

The picture string is a string of bytes where each byte corresponds to one character of the field being
entered. Each byte specifies a mask of legal character types for that character position. If the byte is
left as zero, then that position is a marker character, and the character from the initial string is echoed
for that position.

For left-justified fields, the prompt data is output to the terminal, followed by an optional number
(TRM$_INIOFFSET) of initial string characters. Leading marker characters are always output follow-
ing the prompt, leaving the cursor at the leftmost data position. As each character is entered, it is val-
idated and then echoed, advancing the cursor position. Additional marker characters are skipped as
they are encountered. If an input character fails the validation, the read operation is completed with
the invalid character as the terminator.

For right-justified fields, the prompt is output and is followed by the initial string. (In general, TR-
M$_INIOFFSET is set to the length of TRM$_INISTRNG for right-justified fields.) The cursor po-
sition remains one position to the right of the initial string. For proper operation, right-justified fields
cannot have mixed picture definitions. After each character is input, the entire prompt and input fields
are output. Therefore, the prompt should include a cursor positioning escape sequence.

The definition of full field is different for left- and right-justified read operations. For left-justified
fields, full field is detected when the character corresponding to the last nonmarker position in the pic-
ture string has been entered. For right-justified fields, full field is detected when a character other than
the fill character is shifted into the leftmost, nonmarker position in the field.

If the modifier TRM$M_TM_AUTO_TAB is set in TRM$_MODIFIERS, then detection of a full
field terminates the read operation. In the event of autotab termination, the terminator character in the

146

Chapter 5. Terminal Driver

IOSB is null. If the autotab option is not selected, then termination occurs when one more character is
typed to a full field. Applications can detect this condition when the terminating character index is one
character beyond the end of the field. The extra character is reported as the terminator. In a left-justi-
fied field, the IOSB index to the terminator is zero-based; in a right-justified field, this index is one-
based.

If a read verify function is interrupted by an asynchronous write operation, the read verify is complet-
ed with status SS$_OPINCOMPL.

No line editing functions other than the delete character function are supported for read verify.

5.3.2. Write
Write operations display the contents of a user-specified buffer on the associated terminal. The operat-
ing system provides the following write I/O functions, which are listed with their function codes:

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITELBLK—Write logical block

• IO$_WRITEPBLK—Write physical block

The write function codes can take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer that is to be written to the terminal.

• P2—The number of bytes that are to be written to the terminal. (The system generation parameter,
MAXBUF, and the terminal driver limit the maximum size of the buffer. The terminal driver only
functions with buffer sizes less than 32718 bytes.)

• P4—Carriage control specifier except for write physical block operations. (Write function carriage
control is described in Section 5.3.2.2.)

P3, P5, and P6 are not meaningful for terminal write operations.

In write virtual block and write logical block operations, the buffer (P1 and P2) is formatted for the se-
lected terminal and includes the carriage control information specified by P4.

Unless TT$M_MECHFORM is specified, multiple line feeds are generated for form feeds. The num-
ber of line feeds generated depends on the current page position and the length of the page. By pro-
ducing a carriage return after the last line feed, a form feed also moves the cursor to the left margin.
Multiple spaces are generated for tabs if the characteristics of the selected terminal do not include
TT$M_MECHTAB (this does not apply to write physical block operations). Tab stops occur every
eight characters or positions.

CTDRIVER and Buffered Output

CTDRIVER, a component of the SET HOST facility, buffers output from remote terminals in order
to package multiple output requests into a single network transfer. As a result, control is returned ear-
ly to the user with a status of SS$_NORMAL when the output buffer has been filled and successfully
queued.

Note that this output might not be displayed if the user enters an abort character or a Ctrl/O.

147

Chapter 5. Terminal Driver

5.3.2.1. Function Modifier Codes for Write QIO Functions
Five function modifiers can be specified with IO$_WRITEVBLK, IO$_WRITELBLK, and
IO$_WRITEPBLK. Table 5.8 lists these function modifiers. All write function modifiers are support-
ed for LAT devices.

Table 5.8. Write QIO Function Modifiers for the Terminal Driver

Code Consequence
IO$M_BREAKTHRU Allows breakthrough read regardless of the current active state.
IO$M_CANCTRLO Turns off Ctrl/O (if it is in effect) before the write operation. Otherwise, the

data cannot be displayed.
IO$M_ENABLMBX Enables use of the mailbox associated with the terminal for notification that

unsolicited data is available.
IO$M_NOFORMAT Allows you to specify write functions without interpretation or format; in ef-

fect, the terminal line is in a temporary PASTHRU mode.
IO$M_REFRESH If a read operation is interrupted by a write operation (by either a write

breakthrough1 or any other type of write), the terminal displays the current
read data when the read function is restarted.

1Any interruption caused by the execution of the $BRDCST or the $BRKTHRU system service broadcasting messages to terminals is re-
ferred to as a “write breakthrough.”

5.3.2.2. Write Function Carriage Control
The P4 argument is a longword that specifies carriage control. Carriage control determines the next
printing position on the terminal. P4 is ignored in a write physical block operation. Figure 5.5shows
the P4 longword format.

Figure 5.5. P4 Carriage Control Specifier

Only bytes 0, 2, and 3 in the longword are used. Byte 1 is ignored. If the low-order byte (byte 0) is not
0, the contents of the longword are interpreted as a FORTRAN carriage control specifier. Table 5.9
lists the possible byte 0 values (in hexadecimal) and their meanings.

Table 5.9. FORTRAN Write Function Carriage Control

Byte 0 Value
(hexadecimal)

ASCII Character Meaning

20 (space) Single-space carriage control (sequence: carriage-re-
turn/line-feed combination, print buffer contents, return1).

30 0 Double-space carriage control (sequence: carriage-re-
turn/line-feed combination, carriage-return/line-feed combi-
nation, print buffer contents, return1).

31 1 Page eject carriage control (sequence: form feed, print
buffer contents, return).

2B + Overprint carriage control; allows double printing for em-
phasis or special effects (sequence: print buffer contents, re-
turn).

148

Chapter 5. Terminal Driver

Byte 0 Value
(hexadecimal)

ASCII Character Meaning

24 $ Prompt carriage control (sequence: carriage-return/line-feed
combination, print buffer contents).

All other values Same as ASCII space character: single-space carriage con-
trol.

1A carriage-return/line-feed combination is a carriage return followed by a line feed.

If the low-order byte (byte 0) is 0, bytes 2 and 3 of the P4 longword are interpreted as the prefix and
postfix carriage control specifiers. The prefix (byte 2) specifies the carriage control before the buffer
contents are printed. The postfix (byte 3) specifies the carriage control after the buffer contents are
printed. The sequence is as follows:

1. Prefix carriage control

2. Print

3. Postfix carriage control

The prefix and postfix bytes, although interpreted separately, use the same encoding scheme. Ta-
ble 5.10 shows this encoding scheme in hexadecimal.

With several exceptions, Figure 5.6 shows the prefix and postfix hexadecimal coding that produces
the carriage control functions listed in Table 5.9. Prefix and postfix coding provides an alternative
way to achieve these controls.

In the first example in Figure 5.6, the prefix/postfix hexadecimal coding for a single-space carriage
control (carriage-return/line-feed combination, print buffer contents, return) is obtained by placing the
value 1 in the second (prefix) byte and the sum of the bit 7 value (80) and the return value (D) in the
third postfix byte.

 80 (bit 7 = 1)
+ D (return)
—-
 8D (postfix = return)

Table 5.10. Write Function Carriage Control (P4 byte 0 = 0)

Prefix/Postfix Bytes (Hexadecimal)
Bit 7 Bits 0—6 Meaning
0 0 No carriage control is specified (NULL).
0 1—7F Bits 0 through 6 are a count of carriage-return/line-feed

combinations.
Bit 7 Bit 6 Bit 5 Bits 0—4 Meaning
1 0 0 0—1F Output the single ASCII control character specified by the

configuration of bits 0 through 4 (7-bit character set).
1 1 0 0—1F Output the single ASCII control character specified by the

configuration of bits 0 through 4, which are translated as
ASCII characters 128 through 159 (8-bit character set; see
Appendix C).

1 1 1 0—1F Reserved.

149

Chapter 5. Terminal Driver

Figure 5.6. Write Function Carriage Control (Prefix and Postfix Coding)

5.3.3. Set Mode
Set mode operations affect the operation and characteristics of the associated terminal line. The oper-
ating system provides two types of set mode functions: set mode and set characteristics.

The set mode function affects the mode and temporary characteristics of the associated terminal line.
Set mode is a logical I/O function and requires no privilege. (If you do not have LOG_IO or PHY_IO
privilege, the terminal driver does not accept a set mode request to a terminal that does not have the
extended terminal characteristic TT2$M_SETSPEED, even if no request for a change of speed is
made. Privilege is not required if TT2$M_SETSPEED is set but no attempt to change the speed is
made.) The following function code is provided:

• IO$_SETMODE

The set characteristics function affects the permanent characteristics of the associated terminal line.
Set characteristics is a physical I/O function and requires the privilege necessary to perform physical
I/O. The following function code is provided:

• IO$_SETCHAR

The set mode and set characteristics functions take the following device- or function-dependent argu-
ments if no function modifiers are specified:

• P1—Address of characteristics buffer

• P2—Length of characteristics buffer (default length is 8 bytes, maximum is 16 bytes)

• P3—Speed specifier (bits 0 through 7 = transmit; 8 through 15 = receive)

• P4—Fill specifier (bits 0 through 7 = CR fill count; bits 8 through 15 = LF fill count)

150

Chapter 5. Terminal Driver

• P5—Parity flags

The P1 argument points to a variable-length block, as shown in Figure 5.7. With the exception of ter-
minal characteristics, the contents of the block are the same for both the set mode and set characteris-
tics functions.

Figure 5.7. Set Mode and Set Characteristics Buffers

In the buffer, the device class is DC$_TERM, which is defined by the $DCDEF macro. The termi-
nal type is defined by the $TTDEF macro; for example, TT$_LA36. The page width is a value in the
range of 1 through 511. The page length is a value in the range of 0 through 255. Table 5.4 lists the
values for terminal characteristics. Table 5.5 lists the extended terminal characteristics. Characteristics
values are defined by the $TTDEF, $TT2DEF, and $TT3DEF macros.

Note

Make sure that the selected device is a terminal before performing any set mode function, particularly
when using SYS$INPUT or SYS$OUTPUT.

The P3 argument defines the device speed, such as TT$C_BAUD_300. The low eight bits specify the
transmit speed, and the high eight bits specify the receive speed. If no receive speed is specified, the
indicated transmit speed is used for both transmitting and receiving. If neither the transmit nor the re-
ceive speed is specified (P3 = 0), the baud rate is not changed. The terminal driver ignores the receive
speed bits for interfaces that do not support split-speed operation. Though speeds up to 115.2 K baud
can be specified, not all controllers support all speed combinations. See the associated hardware docu-
mentation to determine which speeds are supported by your controller.

P4 contains fill counts for the carriage-return and line-feed characters. Bits 0 through 7 specify the
number of fill characters used after a carriage return. Bits 8 through 15 specify the number of fill char-
acters used after a line feed.

P4 is applicable only if TT$M_CRFILL or TT$M_LFFILL is specified as a terminal characteristic for
the current QIO request; see

The P3 argument defines the device speed, such as TT$C_BAUD_300. The low eight bits specify the
transmit speed, and the high eight bits specify the receive speed. If no receive speed is specified, the
indicated transmit speed is used for both transmitting and receiving. If neither the transmit nor the re-
ceive speed is specified (P3 = 0), the baud rate is not changed. The terminal driver ignores the receive

151

Chapter 5. Terminal Driver

speed bits for interfaces that do not support split-speed operation. Though speeds up to 115.2 K baud
can be specified, not all controllers support all speed combinations. See the associated hardware docu-
mentation to determine which speeds are supported by your controller.

P4 contains fill counts for the carriage-return and line-feed characters. Bits 0 through 7 specify the
number of fill characters used after a carriage return. Bits 8 through 15 specify the number of fill char-
acters used after a line feed.

P4 is applicable only if TT$M_CRFILL or TT$M_LFFILL is specified as a terminal characteristic for
the current QIO request; see Table 5.4.

Several parity flags can be specified in the P5 argument:

• TT$M_ALTRPAR—Alter parity. If set, check the state of TT$M_PARITY and TT$M_ODD and,
if indicated, change the parity. Otherwise, ignore these bits.

• TT$M_PARITY—Enable parity on terminal line if set, disable if clear.

• TT$M_ODD—Parity is odd if set.

• TT$M_ALTDISPAR—Alter dismiss parity errors. If set, check the state of TT$M_DISPARERR.

• TT$M_DISPARERR—Dismiss parity errors. If this mode is set, a character with a parity error is
passed to the reader. An error message is not reported.

.

Several parity flags can be specified in the P5 argument:

• TT$M_ALTRPAR—Alter parity. If set, check the state of TT$M_PARITY and TT$M_ODD and,
if indicated, change the parity. Otherwise, ignore these bits.

• TT$M_PARITY—Enable parity on terminal line if set, disable if clear.

• TT$M_ODD—Parity is odd if set.

• TT$M_ALTDISPAR—Alter dismiss parity errors. If set, check the state of TT$M_DISPARERR.

• TT$M_DISPARERR—Dismiss parity errors. If this mode is set, a character with a parity error is
passed to the reader. An error message is not reported.

Note

If parity is enabled, the DZ11 generates a parity check bit to detect parity mismatch. Unless
TT$M_DISPARERR is enabled, parity errors that occur during an I/O read operation are fatal to the
operation. Parity errors that occur on input characters (that is, keys pressed on the keyboard) when no
I/O operation is in progress might result in a character loss.

• TT$M_BREAK—Generate a break if set. The break is in effect until this bit is turned off.
TT$M_BREAK is supported by the LTDRIVER for terminal servers that support the break capa-
bility, such as the DECserver 200 and DECserver 500. However, in the case of LAT terminals, the
terminal server controls the duration of the break.

• TT$M_ALTFRAME—If set, the four low-order bits of P5 become the frame size. Note that the
frame size is for data bits only and is exclusive of parity. TT$M_ALTFRAME is supported for
frame sizes of 7 and 8 for LAT devices.

152

Chapter 5. Terminal Driver

To take the existing parity settings, modify them, and use them in the set mode or set characteristic
function, move the byte starting at the second nibble of the buffer that is going to be used in the P5 ar-
gument. For example, the following instructions change the parity from even to odd:

insv iosb+6, #4, #8, flags
bisl #tt$m_altrpar!tt$m_odd!tt$m_parity, flags

The following instruction then resets the parity to its original state:

bicl #tt$m_odd!tt$m_parity, flags

See Section 5.1.5 for information about the SET TERMINAL/FRAME command.

Application programs that change terminal characteristics should perform the following steps:

1. Use the IO$_SENSEMODE function to read the current characteristics.

2. Modify the characteristics.

3. Use the set mode function to write back the results.

4. If the characteristic is intended to be reset when the image exits, the application must perform this
operation.

Failure to follow this sequence results in clearing any previously set characteristic.

Two stop bits are used only for data rates less than or equal to 150 baud; higher data rates default to
one stop bit.

The set mode and set characteristics functions can take the enable Ctrl/C AST, enable Ctrl/Y AST, en-
able out-of-band AST, hangup, set modem, broadcast, and loopback function modifiers that are de-
scribed in the following sections.

Note

If an attempt is made to turn on TT2$V_FALLBACK for a disconnected virtual terminal (_VTAx:) or
if the Terminal Fallback facility has not been activated, the status code SS$_BADPARAM is returned.
For more information on TFF, see the OpenVMS Terminal Fallback Utility Manual (available on the
Documentation CD-ROM).

5.3.3.1. Hangup Function Modifier
The hangup function disconnects a terminal that is on a dialup line. (Dialup lines are described in Sec-
tion 5.3.3.) The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_HANGUP

• IO$_SETCHAR!IO$M_HANGUP

The hangup function modifier takes no arguments. SS$_NORMAL is returned in the I/O status block.

Note

For remote terminals, the hangup function breaks the network connection to the local system, ending
the remote terminal session.

153

Chapter 5. Terminal Driver

5.3.3.2. Enable Ctrl/C AST and Enable Ctrl/Y AST Function Modi-
fiers

Both set mode functions can take the enable Ctrl/C AST and enable Ctrl/Y AST function modifiers.
These function modifiers request the terminal driver to queue an AST for the requesting process when
you press Ctrl/C or Ctrl/Y. The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_CTRLCAST—Enable Ctrl/C AST

• IO$_SETMODE!IO$M_CTRLYAST—Enable Ctrl/Y AST

These function code modifier pairs take the following device- or function-dependent arguments:

• P1—Address of the AST service or 0 if the corresponding AST is disabled

• P2—AST parameter

• P3—Access mode to deliver AST (maximized with caller's access mode)

If the respective enabling is in effect, pressing Ctrl/C or Ctrl/Y gains the attention of the enabling
process (see Table 5.1).

Enable Ctrl/C and Ctrl/Y AST are one-time enabling function modifiers. After the AST occurs, it
must be explicitly reenabled by one of the two function code combinations before an AST can occur
again. This function code is also used to disable the AST. The function is subject to AST quotas.

You can have more than one Ctrl/C or Ctrl/Y enabled; pressing Ctrl/C, for example, results in the de-
livery of all Ctrl/C ASTs. ASTs are queued and delivered to the user process on a first-in/first-out ba-
sis for each access mode. However, ASTs are processed in the reverse order of the Ctrl/C AST or Ctrl/
Y AST requests that have been issued to the terminal driver (on a last-in/first-out basis).

If no enable Ctrl/C AST is present, the holder of an enable Ctrl/Y AST receives an AST when Ctrl/C
is pressed; carriage-return/line-feed combination, Ctrl/Y, and Return are echoed.

Figure 5.9 shows the relationship of Ctrl/C and Ctrl/Y with the out-of-band function. If Ctrl/C or
Ctrl/Y is an enabled out-of-band character, any out-of-band ASTs specified for this character are de-
livered. If IO$M_INCLUDE function modifier is included in the out-of-band AST request for this
character, an enabled Ctrl/C or Ctrl/Y AST is also delivered.

Enable Ctrl/C AST requests are flushed by the Cancel I/O on the Channel ($CANCEL) system ser-
vice. Enable Ctrl/Y AST requests are flushed by the Deassign I/O Channel ($DASSGN) system ser-
vice.

Ctrl/Y is normally used to gain the attention of the command interpreter and to input special com-
mands such as DEBUG, STOP, and CONTINUE. Programs that are run from a command interpreter
should not enable Ctrl/Y. Because ASTs are delivered on a first-in/first-out basis, the command inter-
preter's AST routine gets control first, and might not allow the program's AST to be delivered at all.
Programs that require the use of Ctrl/Y should use the LIB$DISABLE_CTRL RTL routine to disable
DCL recognition of Ctrl/Y.

See Example 5.4 for a programming example that demonstrates Ctrl/Y and Ctrl/C handling under
OpenVMS.

Section 5.1.1.2 describes other effects of Ctrl/C and Ctrl/Y.

154

Chapter 5. Terminal Driver

5.3.3.3. Set Modem Function Modifier
The set modem function modifier is used in maintenance operations to allow a process to activate and
deactivate modem control signals. Both set mode and set characteristics functions can take the set mo-
dem function modifier. The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_SET_MODEM!IO$M_MAINT

• IO$_SETCHAR!IO$M_SET_MODEM!IO$M_MAINT

Note

For LAT devices, the set modem field for maintenance operations of the IO$M_SET_MO-
DEM!IO$M_MAINT function modifier is unsupported and may return unpredictable results.

These function code modifier pairs take the following device- or function-dependent argument:

• P1—The address of a quadword block that specifies which modem control signals to activate or
deactivate

Figure 5.8 shows the format of this block.

The modem on and modem off fields, in combination or separately, can specify one or more of the
following values:

• TT$M_DS_RTS—Request to send (RTS)

• TT$M_DS_DTR—Data terminal ready (DTR)

Figure 5.8. Set Mode P1 Block

• TT$M_DS_SECTX—Transmitted backward channel data (Sec Txd)

The $TTDEF macro defines the values for these values. These values can only be specified if the ter-
minal characteristic TT$M_MODEM is not set. Otherwise, an error (SS$_ABORT) occurs.

Note

The set modem function is not supported for remote terminals. The status SS$_DEVREQERR is re-
turned in the I/O status block. Because the DMF32 does not provide the secondary transmitted da-
ta signal (Sec Txd), the driver sets the secondary request to send the signal. Users should connect a
jumper cable between pins 14 and 19 on the DMF32.

5.3.3.4. Loopback Function Modifier
The loopback function modifier is used in maintenance operations to place the terminal line in a hard-
ware loopback mode. Data transmitted to a line in this mode is returned as receive data. If the con-
troller does not support loopback mode or the terminal line has the TT$M_MODEM characteristic

155

Chapter 5. Terminal Driver

set, an error status (SS$_ABORT) is returned. Both set mode functions can take the loopback function
modifier.

Note

The loopback function is not supported for remote terminals. The status SS$_DEVREQERR is re-
turned in the I/O status block.

The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_LOOP!IO$M_MAINT

• IO$_SETCHAR!IO$M_LOOP!IO$M_MAINT

Data transmitted in the loopback mode should only be written in records less than or equal to the
size of the type-ahead buffer (see Section 5.1.1.5). Programs that use the loopback function modifier
should incorporate a 1-second delay to allow the controller to enable the loopback mode after the re-
quest is posted. Write requests should also include the IO$M_NOFORMAT function modifier to pre-
vent terminal driver from formatting input or output data.

The operating system provides another function modifier to reset a terminal line previously placed in
loopback mode. The following combinations of function code and modifier are provided:

• IO$_SETMODE!IO$M_UNLOOP!IO$M_MAINT

• IO$_SETCHAR!IO$M_UNLOOP!IO$M_MAINT

Programs that use the unloop function modifier should incorporate a 1-second delay to allow the con-
troller to reset the loopback mode after the request is posted.

Note

IO$M_LOOP and IO$M_UNLOOP are not supported for LAT devices.

5.3.3.5. Enable Out-of-Band AST Function Modifier
The enable out-of-band AST function modifier requests that the terminal driver queue an AST for the
requesting process when you enter any one of 32 control characters. The following combinations of
function code and modifier are provided:

• IO$_SETMODE!IO$M_OUTBAND—Enable out-of-band AST

• IO$_SETCHAR!IO$M_OUTBAND—Enable out-of-band AST

These function code modifier pairs take the following device- or function-dependent arguments:

• P1—Address of the AST service or 0 if the AST entered on this channel is to be canceled. (The
AST parameter is the out-of-band character.)

• P2—Address of a character mask with the same format as the short form terminator mask (see
Section 5.3.1.2).

• P3—Access mode to deliver AST (maximized with the caller's access mode).

The IO$_SETMODE!IO$M_OUTBAND function can optionally take the following function modi-
fiers:

156

Chapter 5. Terminal Driver

• IO$M_INCLUDE—Include the character typed in the data stream.

• IO$M_TT_ABORT—Allow current read and write operations to be aborted. (The IOSB for abort-
ed operations returns the status SS$_CONTROLC.)

If an out-of-band AST is in effect, pressing any control character specified in the P2 mask gains the
attention of the enabling process. Figure 5.9 shows the relationship of the out-of-band function with
some of the control characters.

You can have only one out-of-band AST enabled per channel.

Out-of-band ASTs are repeating ASTs; they continue to be delivered until specifically disabled. Out-
of-band AST enables are flushed by the Cancel I/O on Channel ($CANCEL) system service.

Figure 5.9. Relationship of Out-of-Band Function with Control Characters

157

Chapter 5. Terminal Driver

5.3.3.6. Broadcast Function Modifier
The broadcast function modifier allows you to turn on or turn off selected broadcast requester identi-
fiers (IDs). The following combination of function code and modifier is provided:

• IO$_SETMODE!IO$M_BRDCST

This function code modifier pair takes the following device- or function-dependent arguments:

• P1—A buffer that contains the bits that specify the requester IDs to be broadcast

• P2—The length of the P1 buffer (default is 8 bytes)

The first longword of P1 is reserved for use by HPE facilities, as shown in Table 5.11. The symbols
are defined in the system macro library ($BRKDEF). The second longword is for customer use to
specify selected bits. If any bit is set in the P1 buffer, that particular requester ID is turned off for
broadcast.

Table 5.11. Broadcast Requester IDs

Bit Meaning
BRK$C_DCL Disables broadcasts by Ctrl/T
BRK$C_GENERAL Disables broadcasts by the DCL command REPLY and the SYS$BRDCST

system service
BRK$C_MAIL Disables broadcasts by the Mail utility
BRK$C_PHONE Disables broadcasts by the Phone utility
BRC$C_QUEUE Disables broadcasts about batch and print queues
BRK$C_SHUT-
DOWN

Disables broadcasts about system shutdown

BRK$C_URGENT Disables broadcasts labeled URGENT by the REPLY command
BRK$C_USERn Disables broadcasts by images associated with the specified value; n can be

any decimal integer between 1 and 16

5.3.4. LAT Port Driver QIO Interface
The LAT port driver (LTDRIVER) accommodates I/O requests from application programs for connec-
tions to remote devices on one or more terminal servers; for connections to remote services; and for
configuring LTDRIVER and retrieving configuration information about LTDRIVER. A remote de-
vice, such as a printer, can be shared in a LAT configuration. Before an application program can ac-
cess a remote device, the system manager must create logical devices and map them to physical de-
vices connected to terminal servers. Creating and mapping these logical devices can be done either
with the LAT Control Program (LATCP) utility or with a $QIO request from a program that has OP-
ER privilege. Once mapped, application programs can establish and terminate connections to these re-
mote devices.

This section describes the capabilities of the QIO interface to the LAT port driver (LTDRIVER). The
QIO interface allows application programs to access and modify information contained in the LT-
DRIVER data structures and to initiate events and obtain status information. You must use these QIO
functions to establish a connection to a remote device or service from an application program.

The LTDRIVER responds to TEST SERVICE commands issued at terminal servers that support the
TEST SERVICE command, such as the DECserver 200 and DECserver 500 servers.

158

Chapter 5. Terminal Driver

LAT devices can use all read and write function modifiers listed for the terminal driver function codes
except those modifiers that apply to modems (see Section 5.3.1 and Section 5.3.2).

The operating system does not support the following set mode or set characteristics function code
modifiers for LAT devices:

• IO$M_LOOP

• IO$M_UNLOOP

• TT$M_ALTRPAR

• TT$M_ALTFRAME

• TT$M_MODEM

• TT$M_READSYNC

• TT2$M_SETSPEED

With LAT devices, the terminal server, rather than the host, handles flow control to the physical de-
vice. A separate flow control mechanism exists between the server and the host.

5.3.4.1. LAT Port Types

QIO functions can be used to create the following LAT port types:

• Application Port. This type of port can be used to connect to a remote device (typically a printer)
on a terminal server or to a dedicated port on another LAT service node. This is the default port
type. See Section 5.3.4.5 for a description of programming an application port.

• Dedicated Port. This type of port specifies that the logical port on your node is dedicated to an ap-
plication service. When users on a terminal server (or on another node that supports outgoing con-
nections) request a connection to this service name, they are connected to a dedicated port. See
Section 5.3.4.6 for a description of programming a dedicated port and application service.

• Forward Port. This type of port is used for outgoing LAT connections (to remote services) and is
created by assigning a channel to the LAT template device _LTA0: with the $ASSIGN system ser-
vice.

QIO functions can also be used to configure and read information about these ports; for more in-
formation:

• See Section 5.3.4.3 for a description of configuring a LAT port

• See Section 5.3.4.4 for a description of reading configuration information about a LAT port

• See Section 5.3.4.7 for a description of programming a forward port in order to make a con-
nection to a LAT service

5.3.4.2. LAT Port Driver Functions

The operating system provides the following combinations of function code and modifier:

159

Chapter 5. Terminal Driver

• IO$_TTY_PORT!IO$M_LT_CONNECT. Requests that the LAT port driver make a connection
to a remote device on a server (or dedicated port on another LAT service node) or to a remote ser-
vice, depending on whether the port is an application port or a forward port respectively. For ded-
icated ports, this QIO completes when an incoming connection to the port is established. See Sec-
tion 5.3.4.5 for a description of programming an application port, Section 5.3.4.6 for a description
of programming a dedicated port, and Section 5.3.4.7 for a description of programming a forward
port.

• IO$_TTY_PORT!IO$M_LT_DISCON. Depending on the port type, requests that the LAT port
driver terminate the LAT connection to the remote device, service, or local application service.
IO$M_FLUSH_DATA can be specified in the P2 argument to IO$M_LT_DISCON. The flush
flag indicates that any data not delivered to the remote device is to be flushed when the disconnect
is issued.

• IO$_TTY_PORT!IO$M_LT_SETMODE. Requests that the LAT port driver create or configure a
LAT entity. See Section 5.3.4.3 for more information.

• IO$_TTY_PORT!IO$M_LT_SENSEMODE. Requests that the LAT port driver return configura-
tion information about a LAT entity. See Section 5.3.4.4 for more information.

5.3.4.3. Creating and Configuring LAT Entities

The LAT SETMODE $QIO function (IO$_TTY_PORT!IO$M_LT_SETMODE) is used to create,
delete, and modify LAT nodes, services, ports, and links.

Creation, deletion, or modification of any entity requires the OPER privilege.

The LAT SETMODE $QIO function accepts four arguments: P1, P2, P3, and P4. P1 is the address of
an item list; P2 is the length of this item list.

P3 specifies the type of entity to which the SETMODE operation applies. The entity type can be one
of five types:

• Node (LAT$C_ENT_NODE). Only the local node name may be specified, with the exception of a
SETMODE itemlist containing no item codes other than LAT$_ITM_COUNTERS.

• Service (LAT$C_ENT_SERVICE). Only local service names may be specified, with the excep-
tion of a SETMODE itemlist containing no item codes other than LAT$_ITM_COUNTERS.

• Link (LAT$C_ENT_LINK). The data link associated with the LAN.

• Port (LAT$C_ENT_PORT).

• Queue Entry (LAT$C_ENT_QUEUE_ENTRY). Indicates queue entry entities. When this entity is
used, the only valid SETMODE operation is delete.

The value for the entity type occupies the low-order 16 bits (bits 0--15) of the P3 parameter. For all
four entity types, bits 16--19 are used as a status field to indicate the expected current status of the en-
tity. These bits are used to decide whether the entity needs to be created before its characteristics are
set. The possible values for this field are:

• LAT$C_ENTS_OLD—The entity must already exist. An SS$_NOSUCHDEV error is returned if
the entity does not exist.

160

Chapter 5. Terminal Driver

• LAT$C_ENTS_NEW—The entity must be created. An SS$_DUPLNAM error is returned if the
entity already exists.

• LAT$C_ENTS_UNK—If the entity does not exist, it is created. If it does exist, its characteristics
are modified.

• LAT$C_ENTS_DEL—If the entity exists, delete it. Otherwise, an SS$_NOSUCHDEV error is re-
turned and the item list is not used.

P4 may contain the address of an entity name string descriptor. If this parameter is omitted (contains
a 0 or the address of a descriptor that points to an empty buffer), a default may be used in some cases.
The defaults for each entity type are as follows:

• LAT$C_ENT_NODE—The local node.

• LAT$C_ENT_SERVICE—No default; you must specify the service name.

• LAT$C_ENT_LINK—The string LAT$LINK.

• LAT$C_ENT_PORT—The device name associated with the currently assigned channel (the
CHAN parameter of the $QIO function).

SETMODE can return the following status codes:

• SS$_NOPRIV—No privilege to complete the desired operation.

• SS$_ACCVIO—Part of the argument list or itemlist is not addressable.

• SS$_BADPARAM—One of the parameters in the itemlist is in error. If this value is returned, the
second longword of the IOSB contains the item code of the parameter in error.

SETMODE Item Codes

Each item in the itemlist consists of a one-word (16-bit) item code, followed by a value associated
with the item.

Item codes in which the bit named LAT$V_STRING is zero take a longword value. The associated
value is contained in the longword immediately following the item code in the itemlist. Item codes in
which this bit is 1 take a counted string for their value. The byte immediately following the item code
contains a byte count, which describes the length of the string that immediately follows it.

If you set bit LAT$V_CLEAR in the item code to 1, the current value associated with the item code is
cleared or set to its default value. In this case, the actual value specified in the itemlist is ignored, al-
though the byte count field skips to the next item in the itemlist.

Figure 5.10 shows an example of a SETMODE itemlist.

161

Chapter 5. Terminal Driver

Figure 5.10. Example SETMODE Itemlist

This SETMODE itemlist is the P1 parameter for a $QIO SETMODE function on the local node. P4 is
omitted, and P3 is #LAT$C_ENT_NODE!$C_ENTS_OLD@16>. P2 is the length of the itemlist (52).
A $QIO SETMODE function for this itemlist would perform the following operations:

1. Set the state of the node to on.

2. Set the LAT keepalive timer to 40 seconds.

3. Set the node identification to LTC CLUSTER.

4. Set the LAT circuit timer to 160 milliseconds.

5. Enable LAT outbound connections.

6. Turn on user groups 2, 8, 10, 11, 12, 16, and 19. LAT$_ITM_USER_GROUPS is represented by a
bit field.

7. Set the outgoing session limit to five sessions.

For each entity type, only a subset of item codes may be set. Table 5.12 lists the item codes that may
be set for the LAT$C_ENT_NODE entity type.

Table 5.12. LAT$C_ENT_NODE Item Codes

Item Code Meaning
Operating state of the LAT protocol. The following values
are allowed:

LAT$_ITM_STATE

LAT$C_OFF Turns off LAT protocol process-
ing. No new connections allowed

162

Chapter 5. Terminal Driver

Item Code Meaning
in either direction. Existing con-
nections are terminated immedi-
ately. This is the default.

LAT$C_SHUT Disallows new LAT connections
in either direction. Existing con-
nections are allowed to remain ac-
tive.

LAT$C_ON Turns on LAT protocol process-
ing.

LAT$_ITM_CIRCUIT_TIMER Circuit timer value in milliseconds. Valid values are 10 to
1000 milliseconds. The default is 80 milliseconds.

LAT$_ITM_CPU_RATING CPU rating. Valid values are 0 to 100. If this value is 0, then
the CPU rating value is not used in the rating calculation.
See the VSI OpenVMS System Management Utilities Refer-
ence Manual for a complete description of this feature.

LAT$_ITM_DEVICE_SEED Overrides the default lower boundary for new LTA devices.
Valid values are 0 to 9999; the default is 0. See the VSI
OpenVMS System Management Utilities Reference Manual
for more information on this feature.

LAT$_ITM_KEEPALIVE_TIMER Keepalive timer value in seconds. Valid values are 10 to 255
seconds. The default is 20 seconds.

LAT$_ITM_MULTICAST_TIMER Multicast timer value in seconds. Valid values are 10 to 180
seconds. The default is 60 seconds.

LAT$_ITM_NODE_LIMIT Maximum number of nodes in LAT database. The default is
0, where the maximum is determined by system resources.

LAT$_ITM_RETRANSMIT_LIMIT LAT retransmit limit. Valid values are 4 to 120 retransmis-
sions. The default is 8 retransmissions.
Controls whether the node allows the use of the MASTER
side of the LAT protocol for outbound connections. Valid
values are:
LAT$C_DISABLED Server mode disabled (this is the

default).

LAT$_ITM_SERVER_MODE

LAT$C_ENABLED Server mode enabled.
Indicates whether the node is to respond to service inquiries
originating from a remote system. These inquiries are not
necessarily directed at services being offered by the node.
See the VSI OpenVMS System Management Utilities Ref-
erence Manual for a complete description of this feature.
Valid values are:
LAT$C_DISABLED Service responder disabled (this is

the default).

LAT$_ITM_SERVICE_RESPONDER

LAT$C_ENABLED Service responder enabled.
LAT$_ITM_OUT-
GOING_SES_LIMIT

Maximum number of outgoing LAT sessions. A value of 0,
which is the default, indicates that the limit is determined by
system resources.

163

Chapter 5. Terminal Driver

Item Code Meaning
LAT$_ITM_INCOMING_SES_LIMIT Maximum number of interactive LAT sessions. A value of

0, which is the default, indicates that the limit is determined
by system resources.
Controls whether inbound connections can be accepted.
Valid values are:
LAT$C_DISABLED Inbound connections disabled.

LAT$_ITM_CONNECTIONS

LAT$C_ENABLED Inbound connections enabled (this
is the default).

LAT$_ITM_NODE_NAME Causes the LAT node name to be set to the given name.
This item code may be specified only if the entity status
field of the P3 parameter is LAT$C_ENTS_NEW; other-
wise, a LAT$_ENTNOTFOU error results.

LAT$_ITM_IDENTIFICATION Node identification string. The default is the translation of
SYS$ANNOUNCE.

LAT$_ITM_SERVICE_GROUPS Specifies a default service group code bit mask. This mask
is then used when creating new local services. The default is
group code 0 enabled and all others disabled when the LAT
software is initialized.

Note that the use of the LAT$V_CLEAR bit is an exception
for this parameter code. If you clear bit LAT$V_CLEAR,
group codes corresponding to the group code mask, as
specified in the itemlist, are set. Alternatively, if you set
LAT$V_CLEAR, group codes corresponding to the group
code mask, as specified in the itemlist, are cleared.

LAT$_ITM_USER_GROUPS LAT group codes to be used when attempting outbound
connections using the MASTER side of the LAT protocol.
The default is all group codes disabled when the LAT soft-
ware is initialized.

Note that the use of the LAT$V_CLEAR bit is an exception
for this parameter code. If you clear bit LAT$V_CLEAR,
group codes corresponding to the group code mask, as
specified in the itemlist, are set. Alternatively, if you set
LAT$V_CLEAR, group codes corresponding to the group
code mask, as specified in the itemlist, are cleared.

LAT$_ITM_COUNTERS Node counters block. Allows for zeroing of all node coun-
ters. This item code may be specified only if the entity sta-
tus field of the P3 parameter is LAT$C_ENTS_OLD and
the LAT$V_CLEAR bit is set. Violating either of these two
rules results in a returned status of SS$_BADPARAM.

LAT$_ITM_MAXIMUM_UNITS Maximum unit number. Sets the highest value for a LTA
unit number. Must be between 1 and 9999; defaults to 9999.

LAT$_ITM_HI_CIRCUITS1 Indicates the highest number the resource attained since the
host was initialized for LAT connections to node.

LAT$_ITM_CUR_CIRCUITS1 Indicates current count of active connections to node.
LAT$_ITM_MAX_CIRCUITS1 Indicates maximum allowed virtual circuits to node.

164

Chapter 5. Terminal Driver

Item Code Meaning
LAT$_ITM_HI_SESSIONS1 Indicates highest number the resource attained since the

host was initialized for LAT sessions.
LAT$_ITM_CUR_SESSIONS1 Indicates current number of active sessions.
LAT$_ITM_MAX_SESSIONS1 Indicates maximum possible sessions.
LAT$_ITM_HI_OUT_QUEUE1 Indicates highest number the resource attained since the

host was initialized of outgoing queued connect requests.
LAT$_ITM_CUR_OUT_QUEUE1 Indicates current count of outgoing queued connect re-

quests.
LAT$_ITM_MAX_OUT_QUEUE1 Indicates maximum number of simultaneous outgoing

queued connect requests.
LAT$_TIM_HI_IN_QUEUE1 Indicates highest number the resource attained since the

host was initialized of incoming queued requests.
LAT$_ITM_CUR_IN_QUEUE1 Indicates current number of entries in the incoming connect

queue.
LAT$_ITM_CUR_IN_QUEUE1 Indicates maximum number of entries allowed on the in-

coming connect queue.
LAT$_ITM_HI_SAMS_QUEUED1 Indicates highest number the resource attained since the

host was initialized of outstanding, unprocessed service an-
nouncement messages by LATACP.

LAT$_ITM_CUR_SAMS_QUEUED1 Indicates current number of outstanding, unprocessed ser-
vice announcement messages on LATACP's queue.

LAT$_ITM_MAX_SAMS_QUEUED1 Indicates maximum number of outstanding, unprocessed
service announcement messages allowed on LATACP's
queue. If this limit is ever reached, subsequent service an-
nouncement messages are not delivered or processed by
LATACP.

LAT$_ITM_HI_SOL_QUEUED1 Indicates highest number the resource attained since the
host was initialized of outstanding, unprocessed solicit in-
formation messages by LATACP.

LAT$_ITM_CUR_SOL_QUEUED Indicates current number of outstanding, unprocessed solicit
information messages on LATACP's queue.

LAT$_ITM_MAX_SOL_QUEUED1 Indicates maximum number of outstanding, unprocessed so-
licit information messages allowed on LATACP's queue.
If this limit is ever reached, subsequent solicit information
messages are not delivered or processed by LATACP.

LAT$_ITM_HI_AVAIL_SVCS1 Indicates highest number the resource attained since the
host was initialized by the number of available services in
LATACP database.

LAT$_ITM_CUR_AVAIL_SVCS1 Indicates count of currently available LAT services in LAT-
ACP database.

LAT$_ITM_MAX_AVAIL_SVCS1 Indicates maximum number of available services possible in
LATACP database.

LAT$_ITM_HI_REACH_NODES1 Indicates highest number the resource attained since the
host was initialized of reachable nodes in LATACP data-
base.

165

Chapter 5. Terminal Driver

Item Code Meaning
LAT$_ITM_CUR_REACH_NODES1 Indicates current number of reachable nodes in LATACP

database.
LAT$_ITM_MAX_REACH_NODES1 Indicates maximum number of nodes allowed in LATACP

database.
LAT$_ITM_HI_LCL_SVCS Indicates highest number the resource attained since the

host was initialized of locally offered services.
LAT$_ITM_CUR_LCL_SVCS1] Indicates current count of locally offered service.
LAT$_ITM_MAX_LCL_SVCS1] Indicates maximum number of locally offered services.
LAT$_ITM_DISCARDED_NODES1 Indicates number of discarded service announcement mes-

sages.
LAT$_ITM_SERVICE_CLASSES1 Indicates returned service class bit mask for supported ser-

vice classes on node. It is returned for both local and remote
nodes. If service class 1 is enabled, then bit 1 is set in this
mask. When bit setting equals 1, this indicates the corre-
sponding service class for that bit is enabled. That is, when
bit 3 equal 1, then service class 3 is enabled.

LAT$_ITM_LARGE_BUFFERS Indicates in Boolean logic whether or not the LAT software
is using large packet support by default.

LAT$_ITM_ANNOUNCEMENTS Indicates in Boolean logic whether or not the LAT software
is transmitting LAT service advertisement messages.

1Alpha and Integrity servers specific

Table 5.13 lists the item codes that may be set for the LAT$C_ENT_SERVICE entity type.

Table 5.13. LAT$C_ENT_SERVICE Item Codes

Item Code Meaning
LAT$_ITM_RATING Static LAT service rating. The default is the dynamic rating

calculation. Static ratings can be between 0 and 255.
LAT$_IETEM_IDENTIFICATION Service identification string. The default is the translation of

SYS$ANNOUNCE.
Defines the type of service. Valid values are:
LAT$C_ST_GENER-
AL

Creates a general timesharing ser-
vice.

LAT$C_ST_
APPLICATION

Creates a special application ser-
vice that must then be associated
with ports dedicated to accepting
connections to this service (dedi-
cated ports).

LAT$_ITM_SERVICE_TYPE

LAT$C_ST_LIMITED1 Indicates that the service is limit-
ed.

LAT$_ITM_COUNTERS Service counters block. Allows for zeroing of all ser-
vice counters. This item code may be specified only if
the entity status field is LAT$C_ENTS_OLD and the
LAT$V_CLEAR bit is set. Violating either of these two
rules results in a returned status of SS$_BADPARAM.

166

Chapter 5. Terminal Driver

Item Code Meaning
LAT$_ITM_PASSWORD1 Indicates that if a value of LAT$C_ENABLED is indicat-

ed, then the service is password protected. Indicates that if a
value of LAT$C_DISABLED is indicated, then the service
is not password protected.

LAT$_ITM_LIM_PORT_BLOCK1 Indicates a subblock contained in an itemlist, which has a
list of limited ports associated with the named service. This
subblock may be repeated several times; that is, once for
each limited LAT device associated with the specified ser-
vice.

1Alpha and Integrity servers specific

Table 5.14 lists the item codes that may be set for the LAT$C_ENT_LINK entity type.

Table 5.14. LAT$C_ENT_LINK Item Codes

Item Code Meaning
Operating state of the LAT protocol. Valid values are:
LAT$C_OFF Turns off LAT protocol process-

ing. No new connections allowed
in either direction. Existing con-
nections are terminated immedi-
ately.

LAT$C_SHUT Disallows new LAT connections
in either direction. Existing con-
nections are allowed to remain ac-
tive.

LAT$_ITM_STATE

LAT$C_ON Turns on LAT protocol process-
ing. This is the default.

LAT$_ITM_DEVICE_NAME The name of the local area network (LAN) device to be
used for this link. The default is hardware-dependent.
Specifies whether to use the DECnet address when starting
the LAT protocol on the LAN controller associated with this
link. Valid values are:
LAT$C_DISABLED DECnet address use disabled.

LAT$_ITM_DECNET_ADDRESS

LAT$C_ENABLED DECnet address use enabled (this
is the default).

LAT$_ITM_COUNTERS Link counters block. Allows for zeroing of all link coun-
ters. This item code may be specified only if the entity sta-
tus field is LAT$C_ENTS_OLD and the LAT$V_CLEAR
bit is set. Violating either of these two rules results in a re-
turned status of SS$_BADPARAM.

Table 5.15 lists the item codes that may be set for the LAT$C_ENT_PORT entity type.

Table 5.15. LAT$C_ENT_PORT Item Codes

Item Code Meaning
LAT$_ITM_PORT_TYPE Type of port. Valid values are:

167

Chapter 5. Terminal Driver

Item Code Meaning
LAT$C_PT_
APPLICATION

Application port for solicited con-
nections.

LAT$C_PT_
DEDICATED

Dedicated port associated with a
local application service.

LAT$C_PT_
LIMITED1

Indicates that the port type is lim-
ited.

Controls whether the solicited connection requests queued
or nonqueued access. Valid values are:
LAT$C_DISABLED Queued access disabled.

LAT$_ITM_QUEUED

LAT$C_ENABLED Queued access enabled (this is the
default).

Controls the class driver that the LAT driver communicates
with when a connection is established. This item code can
be used only with an entity status of LAT$C_ENTS_NEW.
Therefore, the service class must be specified when the de-
vice is created. An attempt to change the service class of
an existing device returns SS$_BADPARAM. Valid values
are:
LAT$C_SERVCLASS_
INTERACTIVE

Service class 1, TTDRIVER (this
is the default).

LAT$C_SERVCLASS_
XTRANSPORT

Service class 3, X Protocol.

LAT$_ITM_SERVICE_CLASS

LAT$C_SERVCLASS_
FONT

Service class 4, X fonts.

LAT$_ITM_DISPLAY_NUMBER For X devices, this is the binary value of the display num-
ber, which may need to be transmitted in some LAT mes-
sages. Values range from 0--255, with a default of 0. This
item code has meaning only when used with service class-
es 3 and 4 (LAT$C_SERVCLASS_XTRANSPORT AND
LAT$C_SERVCLASS_FONT).

LAT$_ITM_TARGET_NODE_NAME Target node name for connection. This parameter must be
specified for application ports and may optionally be speci-
fied for forward ports.

LAT$_ITM_TARGET_SERVICE_
NAME

Target service name for connection. This parameter must
be specified for forward ports and may optionally be speci-
fied for application ports. For dedicated ports, this parame-
ter specifies the local application service to which the port
should be associated.

LAT$_ITM_TARGET_PORT_NAME Target port name for connection. This parameter may op-
tionally be specified for application ports or forward ports;
it is ignored for all other kinds of ports.

LAT$_ITM_SERVICE_PASSWORD Password string for remote service on forward ports. This
parameter must be specified to access services that are pro-
tected with a password. This parameter is ignored if it is
specified for a service that is not protected with a password.

168

Chapter 5. Terminal Driver

Item Code Meaning
LAT$_ITM_DIALUP1 Indicates if an LAT device tells a remote node that the con-

nection is coming from a dialing source. Possible values are
LAT$C_ENABLED or LAT$C_DISABLED.

LAT$_ITM_AUTOPROMPT1 Indicates if a connect request has autoprompt en-
abled. Possible values are LAT$C_ENABLED or
LAT$C_DISABLED.

1Alpha and Integrity servers specific

5.3.4.4. Obtaining Information About LAT Entities
The LAT SENSEMODE $QIO function (IO$_TTY_PORT!IO$M_LT_SENSEMODE) is used to ob-
tain information about LAT nodes, services, ports, and links.

The LAT SENSEMODE $QIO function accepts four arguments: P1, P2, P3, and P4. P1 is the address
of a buffer into which information about the desired entity is returned. The information is returned
in the form of an item list. Unlike system services such as $GETDVI or $GETJPI, you do not select
which items of information are returned. P2 is the length of the buffer specified in P1, in bytes. The
number of bytes of information returned in the P1 buffer is returned in IOSB+2.

P3 specifies the type of entity to which the SENSEMODE operation applies. The entity type can be
one of five types:

• Node (LAT$C_ENT_NODE). Node, including the local node.

• Service (LAT$C_ENT_SERVICE). Service, including local services.

• Link (LAT$C_ENT_LINK). Data link associated with the LAN.

• Port (LAT$C_ENT_PORT).

• Queue Entry (LAT$C_ENT_QUEUE_ENTRY). Indicates queue entry entities.

The value for the entity type occupies the low-order 16 bits (bits 0--15) of the P3 parame-
ter. Bits 16--23 are used as a flag field. Two bits are currently defined within this field:
LAT$V_SENSE_NEXT and LAT$V_SENSE_FULL. If the LAT$V_SENSE_NEXT bit is 0, infor-
mation about the current entity described by the P3 and P4 parameters is returned to the user; if this
bit is 1, information about the next entity that logically follows the one described by P4 is returned. If
LAT$V_SENSE_FULL is 0, only those item codes marked SUMMARY in the following tables are
returned; if this bit is 1, all item codes that describe the entity specified by the P3 and P4 parameters
are returned.

P4 may contain the address of an entity name string descriptor. If this parameter is omitted (contains a
zero or the address of a descriptor that points to an empty string) and the LAT$V_SENSE_NEXT bit
is set, information about the first entity that matches the entity type supplied by P3 is returned.

If P4 is omitted and the LAT$V_SENSE_NEXT bit is 0, a default entity name may be used in some
cases. The defaults for each entity type are as follows:

• LAT$C_ENT_NODE—The local node.

• LAT$C_ENT_SERVICE—No default; you must specify the service name.

• LAT$C_ENT_LINK—The string LAT$LINK.

169

Chapter 5. Terminal Driver

• LAT$C_ENT_PORT—The device name associated with the currently assigned channel (the
CHAN parameter of the $QIO function.)

SENSEMODE can return the following failure return codes:

• SS$_NOPRIV—No privilege to complete the desired operation

• SS$_ACCVIO—Part of the argument list or item list is not addressable

5.3.4.4.1. SENSEMODE Item Codes

Each item in the itemlist starts with a one-word (16-bit) item code that describes the type of informa-
tion contained in the item. The item code is followed by a value associated with the item.

Item codes in which the bit named LAT$V_STRING is 0 take a longword value. The associated value
is contained in the longword immediately following the item code in the itemlist. Item codes in which
this bit is 1 take a counted string for their value. The byte immediately following the item code con-
tains a byte count, which describes the length of the string that immediately follows it.

Table 5.16 lists the item codes that are returned for the LAT$C_ENT_NODE entity type. Item codes
noted as LOCAL are returned only if the information being returned is for the local node. Item codes
noted as REMOTE are returned only if the information being returned is for a remote node. Item
codes noted as BOTH are returned for both types of nodes.

Table 5.16. LAT$C_ENT_NODE Item Codes

Item Code Meaning
LAT$_ITM_NODE_NAME
(BOTH, SUMMARY)

LAT node name for the node.

LAT$_ITM_IDENTIFICATION
(BOTH, SUMMARY)

Node identification string.

Type of node. Possible values are:
LAT$C_NT_LOCAL Node is local node.

LAT$_ITM_NODE_TYPE (BOTH,
SUMMARY)

LAT$C_NT_REMOTE Node is remote node.
Operating state of the LAT protocol. Possible values are:
LAT$C_ON New connections are allowed and

the LAT protocol is running.

LAT$_ITM_STATE (LOCAL,
SUMMARY)

LAT$C_OFF New connections are not allowed.
The LAT protocol is not running.

No new connections are allowed.
Currently active connections are
still maintained. The LAT proto-
col remains running only until the
last active session is disconnected,
at which time the node is placed in
the OFF state.

Current status of remote node. This item code is present only if
a LAT virtual circuit does not currently exist between the local
node and this remote node. Possible values are:
LAT$C_REACHABLE Remote node is reachable.

LAT$_ITM_NODE_STATUS (RE-
MOTE, SUMMARY)

LAT$C_ Remote node is unreachable.

170

Chapter 5. Terminal Driver

Item Code Meaning
UNREACHABLE
LAT$C_UNKNOWN Remote node status is unknown.

LAT$_ITM_CONNECTED_
COUNT (REMOTE, SUMMARY)

Number of LAT sessions from the local node to this remote
node. This item code replaces the LAT$_ITM_NODE_S-
TATUS item code for remote nodes to which a LAT virtual
circuit currently exists.

LAT$_ITM_SERVICE_GROUPS
(BOTH)

A bit mask of LAT group codes that are serviced by the node.

LAT$_ITM_PROTOCOL_
VERSION (BOTH)

LAT protocol version string.

LAT$_ITM_DATALINK_
ADDRESS (REMOTE)

LAN address used by the node.

LAT$_ITM_NODE_LIMIT Maximum number of nodes in LAT database. The default is 0,
where the maximum is determined by system resources.

LAT$_ITM_RETRANSMIT_
LIMIT

LAT retransmit limit. Possible values are 4 to 120 retransmis-
sions. The default is 8 retransmissions.

LAT$_ITM_MAXIMUM_UNITS
(LOCAL)

Maximum LTA unit number.

Controls whether the node allows the use of the MASTER side
of the LAT protocol for outbound connections. Possible values
are:
LAT$C_DISABLED Server mode disabled (this is the

default).

LAT$_ITM_SERVER_MODE (LO-
CAL)

LAT$C_ENABLED Server mode enabled.
Indicates whether the node is to respond to service inquiries
originating from a remote system. These inquiries are not nec-
essarily directed at services being offered by the node. See the
VSI OpenVMS System Management Utilities Reference Manu-
al for more information on this feature. Possible values are:
LAT$C_DISABLED Service responder disabled (this is

the default).

LAT$_ITM_SERVICE_
RESPONDER (LOCAL)

LAT$C_ENABLED Service responder enabled.
LAT$_ITM_OUTGOING_SES_
LIMIT (LOCAL)

Maximum number of outgoing LAT sessions. A value of 0,
which is the default, indicates that the limit is determined by
system resources.

LAT$_ITM_INCOMING_SES_
LIMIT (LOCAL)

Maximum number of interactive LAT sessions. A value of 0,
which is the default, indicates that the limit is determined by
system resources.

LAT$_ITM_USER_GROUPS (LO-
CAL)

Bit mask of LAT group codes to be used when attempting out-
bound connections using the MASTER side of the LAT proto-
col.

LAT$_ITM_CIRCUIT_TIMER
(BOTH)

Circuit timer value in milliseconds. Possible values are 10 to
1000 milliseconds. The default is 80 milliseconds.

171

Chapter 5. Terminal Driver

Item Code Meaning
LAT$_ITM_CPU_RATING (LO-
CAL)

CPU rating.

LAT$_ITM_KEEPALIVE_TIMER
(LOCAL)

Keepalive timer value in seconds. Possible values are 10 to
255 seconds. The default is 20 seconds.

LAT$_ITM_MULTICAST_TIMER
(BOTH)

Multicast timer value in seconds. Possible values are 10 to 180
seconds. The default is 20 seconds.
Indicates whether inbound connections (interactive sessions)
can be accepted. Possible values are:
LAT$C_DISABLED Inbound connections disabled.

LAT$_ITM_CONNECTIONS
(BOTH)

LAT$C_ENABLED Inbound connections enabled (this
is the default).

LAT$C_ITM_LARGE_BUFFERS Indicates in Boolean logic whether the LAT software is using
large packet support by default.

LAT$C_ITM_
ANNOUNCEMENTS

Indicates in Boolean logic whether the LAT software is trans-
mitting LAT service advertisement messages.

Node service information is presented as a list of node service subblocks, with each subblock contain-
ing information about one particular service offered by the node. The subblock item code LAT$_IT-
M_NODE_SVC_BLOCK has the LAT$V_STRING bit set to 1, and the string length byte actually
contains the length of the entire subblock. Each subblock itself is an itemlist and consists of the item
codes listed in Table 5.17.

Table 5.17. Node Service Subblock Item Codes

Item Code Meaning
LAT$_ITM_SERVICE_NAME
(BOTH)

Name of a LAT service offered by the node.

Status of the service. Possible values are:
LAT$C_AVAILABLE Service available.

LAT$_ITM_SERVICE_S-
TATUS (BOTH)

LAT$C_UNAVAILABLE Service unavailable.
Type of service. Possible values are:
LAT$C_ST_GENERAL Creates a general timesharing ser-

vice.

LAT$_ITM_SERVICE_TYPE
(LOCAL)

LAT$C_ST_APPLI-
CATION

Creates a special application service
that must then be associated with
ports dedicated to accepting con-
nections to this service (dedicated
ports).

LAT$_ITM_RATING (BOTH) LAT service rating associated with the service.
Type of LAT rating calculation being done by this node. Possible
values are:
LAT$C_STATIC Static rating calculation

LAT$_ITM_RATING_TYPE
(LOCAL)

LAT$C_DYNAMIC Dynamic rating calculation
LAT$_ITM_IDENTIFI-
CATION (BOTH)

Identification string associated with the service.

172

Chapter 5. Terminal Driver

On Alpha and Integrity server systems, port counters information is presented as a counters subblock.
The subblock item code LAT$_ITM_COUNTERS has the LAT$V_STRING bit set to 1, and the
string length byte actually contains the length of the entire subblock. The subblock itself is an itemlist
and consists of the item codes listed in Table 5.18.

Table 5.18. Node Counters Item Codes

Item Codes Meaning
LAT$_ITM_CTPRT_LCL Indicates number of local accesses to port.
LAT$_ITM_CTPRT_SLCA Indicates number of solicitations accepted.
LAT$_ITM_CTPRT_SLCR Indicates number of solicitations rejected.
LAT$_ITM_CTPRT_ISOLA Indicates number of incoming solicitations accepted.
LAT$_ITM_CTPRT_ISOLR Indicates number of incoming solicitations rejected.
LAT$_ITM_CTPRT_FRAMERR Indicates number of framing errors for named port. Re-

turned in port counter subblock.
LAT$_ITM_CTPRT_PARERR Indicates number of parity errors for named port. Returned

in port counter subblock.
LAT$_ITM_CTPRT_OVERRUN Indicates number of data overruns for named port. Returned

in port counter subblock.
LAT$_ITM_PASSWORD_
FAILURES

Indicates password failures.

Node counters information is presented as a counters subblock. The subblock item code LAT$_IT-
M_COUNTERS has the LAT$V_STRING bit set to 1, and the string length byte actually contains the
length of the entire subblock. The subblock itself is an itemlist and consists of the item codes listed in
Table 5.19.

Table 5.19. Node Counters Item Codes

Item Codes Meaning
LAT$_ITM_CTNOD_SSZ (BOTH) Seconds since zeroed
LAT$_ITM_CTNOD_MSGR (BOTH) Messages received
LAT$_ITM_CTNOD_MSGT (BOTH) Messages transmitted
LAT$_ITM_CTNOD_SLTR (BOTH) Slots received
LAT$_ITM_CTNOD_SLTT (BOTH) Slots transmitted
LAT$_ITM_CTNOD_BYTR (BOTH) Bytes received
LAT$_ITM_CTNOD_MNA (BOTH) Multiple node addresses
LAT$_ITM_CTNOD_DUP (BOTH) Duplicates received
LAT$_ITM_CTNOD_MRT (BOTH) Messages retransmitted
LAT$_ITM_CTNOD_ILM (BOTH) Illegal messages received
LAT$_ITM_CTNOD_ILS (BOTH) Illegal slots received
LAT$_ITM_CTNOD_SLCA (BOTH) Solicitations accepted
LAT$_ITM_CTNOD_SLCR (BOTH) Solicitations rejected
LAT$_ITM_CTNOD_TER (LOCAL) Transmit errors
LAT$_ITM_CTNOD_RES (LOCAL) Resource errors

173

Chapter 5. Terminal Driver

Item Codes Meaning
LAT$_ITM_CTNOD_NTB (LOCAL) No transmit buffer
LAT$_ITM_CTNOD_TMO (LOCAL) Virtual circuit timeout
LAT$_ITM_CTNOD_DOB (LOCAL) Discarded output bytes
LAT$_ITM_CTNOD_LSTER (LOCAL) Last transmit error
LAT$_ITM_CTNOD_MCBXMT (LOCAL) Number of multicast bytes transmitted
LAT$_ITM_CTNOD_MCBRCV (LOCAL) Number of multicast bytes received
LAT$_ITM_CTNOD_MCMXMT (LOCAL) Number of multicast messages transmitted
LAT$_ITM_CTNOD_MCMRCV (LOCAL) Number of multicast messages received
LAT$_ITM_CTNOD_SOLFAIL (LOCAL) Number of solicitation failures
LAT$_ITM_CTNOD_ATLOS (LOCAL) Number of times attention slot data was lost
LAT$_ITM_CTNOD_DATLOS (LOCAL) Number of times user data was lost
LAT$_ITM_CTNOD_NOREJ (LOCAL) Number of times a reject slot could not be sent
LAT$_ITM_CTNOD_LOSCT (LOCAL) Number of times remote node counters were lost
LAT$_ITM_CTNOD_LOSSAM (LOCAL) Number of service announcement messages lost
LAT$_ITM_CTNOD_NOSAM (LOCAL) Number of times a service announcement mes-

sage could not be sent
LAT$_ITM_CTNOD_NOSTS (LOCAL) Number of times node status was lost
LAT$_ITM_CTNOD_NOXMT (LOCAL) Number of times no link was available for a

transmit
LAT$_ITM_CTNOD_CTLERR (LOCAL) Number of controller errors
LAT$_ITM_CTNOD_CERRCOD (LOCAL) Lost controller error
LAT$_ITM_CTNOD_ISOLA (LOCAL) Number of incoming solicitations accepted
LAT$_ITM_CTNOD_ISOLR (LOCAL) Number of incoming solicitations rejected
LAT$_ITM_CTNOD_PROTO (LOCAL) Protocol error count
LAT$_ITM_CTNOD_XSTR (REMOTE)1 Indicates that the node attempted to start up too

many LAT sessions for a specific virtual circuit
1Alpha and Integrity servers specific

Several protocol errors are also included in a separate subblock. The protocol errors item code is
LAT$_ITM_PROTOCOL_ERRORS and has LAT$V_STRING set (the size of the subblock is con-
tained in the first byte following the item code). The item codes and the events they represent are list-
ed in Table 5.20.

Table 5.20. Protocol Error Item Codes

Item Codes Meaning
LAT$_ITM_CTPRO_IVM (LOCAL) Invalid message type received.
LAT$_ITM_CTPRO_ISM (LOCAL) Invalid start message received.
LAT$_ITM_CTPRO_IVS (LOCAL) Invalid sequence number received.
LAT$_ITM_CTPRO_NIZ (LOCAL) Zero-node index received.
LAT$_ITM_CTPRO_ICI (LOCAL) Node circuit index out of range.
LAT$_ITM_CTPRO_CSI (LOCAL) Node circuit sequence invalid.

174

Chapter 5. Terminal Driver

Item Codes Meaning
LAT$_ITM_CTPRO_NLV (LOCAL) Node circuit index no longer valid.
LAT$_ITM_CTPRO_HALT (LOCAL) Circuit was forced to halt.
LAT$_ITM_CTPRO_MIZ (LOCAL) Invalid master slot index.
LAT$_ITM_CTPRO_SIZ (LOCAL) Invalid slave slot index.
LAT$_ITM_CTPRO_CRED (LOCAL) Invalid credit field.
LAT$_ITM_CTPRO_RCSM (LOCAL) Repeat creation of slot by master.
LAT$_ITM_CTPRO_RDSM (LOCAL) Repeat disconnection of slot by master.
LAT$_ITM_CTPRO_INVCLASS (LOCAL) Indicates the number of times a LAT message was

received with an invalid service class specified in
that message (local node only).

LAT$_ITM_CTPRO_EXCSTART (LOCAL)1 Indicates that a remote node attempted to start up
too many LAT sessions. When a virtual circuit is
started between two LAT nodes, the maximum
number of sessions on that virtual circuit is nego-
tiated. If the master node attempts to create more
sessions than the maximum number of sessions
on a virtual circuit, then the operating system re-
jects the excess connections and increments this
counter.

1Alpha and Integrity servers specific

Table 5.21 lists the item codes that are returned for the LAT$C_ENT_SERVICE entity type. As in
Table 5.16, item codes noted as LOCAL are returned only if the information being returned is for
a locally offered service. Item codes noted as REMOTE are returned only if the information being
returned is for a service offered by a remote node. Item codes noted as BOTH are returned for both
types of services.

Table 5.21. LAT$C_ENT_SERVICE Item Codes

Item Code Meaning
LAT$_ITM_SERVICE_NAME
(BOTH, SUMMARY)

Service name.

Status of the specified service. Possible values are:
LAT$C_AVAILABLE Service available.

LAT$_ITM_SERVICE_STATUS
(BOTH, SUMMARY)

LAT$C_UNAVAILABLE Service unavailable.
Type of service. Possible values are:
LAT$C_ST_GENERAL General timesharing service.

LAT$_ITM_SERVICE_TYPE (LO-
CAL,SUMMARY)

LAT$C_ST_APPLI-
CATION

Special application service asso-
ciated with ports dedicated to ac-
cepting connections to this ser-
vice.

LAT$_ITM_IDENTIFICATION
(BOTH, SUMMARY)

Service identification string, as advertised by the highest rated
node that currently offers the service.

Service node information is presented as a list of service node subblocks, with each subblock contain-
ing information about one particular node that offers the service. The subblock item code LAT$_IT-

175

Chapter 5. Terminal Driver

M_SVC_NODE_BLOCK has the LAT$V_STRING bit set to 1, and the string length byte actually
contains the length of the entire subblock. Each subblock itself is an itemlist and consists of the item
codes listed in Table 5.22.

Table 5.22. Service Node Subblock Item Codes

Item Code Meaning
LAT$C_ITM_NODE_NAME
(BOTH)

Name of a LAT node that offers the selected service.

Current state of the LAT protocol on the local node. Possible
values are:
LAT$C_ON New connections are allowed, and

the LAT protocol is running.
LAT$C_OFF New connections are not allowed,

and any current connections are ab-
normally terminated. The LAT pro-
tocol is not running.

LAT$_ITM_STATE (LOCAL)

LAT$C_SHUT No new connections are allowed.
Currently active connections are
still maintained. The LAT protocol
remains running only until the last
active sessions is disconnected, at
which time the node is placed in the
OFF state.

Current status of the remote node. This item code is present on-
ly if a LAT virtual circuit does not currently exist to the remote
node. Possible values are:
LAT$C_REACHABLE Remote node is reachable.
LAT$C_
UNREACHABLE

Remote node is unreachable.

LAT$_ITM_NODE_STATUS (RE-
MOTE)

LAT$C_UNKNOWN Remote node status is unknown.
LAT$_ITM_CONNECTED_
COUNT (REMOTE)

Number of LAT sessions from the local node to this remote
node. This item code replaces the LAT$_ITM_NODE_S-
TATUS item code for remote nodes to which a LAT virtual cir-
cuit currently exists.

LAT$_ITM_RATING (BOTH) LAT service rating associated with the service.
LAT$_ITM_RATING_TYPE (LO-
CAL)

Type of LAT rating calculation being done by this node. Possi-
ble values are LAT$C_STATIC and LAT$C_DYNAMIC.

LAT$_ITM_IDENTIFICATION
(BOTH)

Identification string associated with the service.

Service counters information is presented as a counters subblock. The subblock item code LAT$_IT-
M_COUNTERS has the LAT$V_STRING bit set, and the string length byte actually contains the
length of the entire subblock. Each subblock itself is an itemlist and consists of the item codes listed
in Table 5.23.

176

Chapter 5. Terminal Driver

Table 5.23. Service Counters Subblock Item Codes

Item Codes Meaning
LAT$_ITM_CTSRV_SSZ
(BOTH)

Seconds since zeroed.

LAT$_ITM_CTSRV_MCNA
(BOTH)

Outgoing connections attempted (the number of times the local
node has attempted to connect to the service offered on a remote
node).

LAT$_ITM_CTSRV_MCNC
(BOTH)

Outgoing connections completed (the number of times the local
node successfully connected to the service offered on a remote
node).

LAT$_ITM_CTSRV_SCNA
(BOTH)

Incoming connections accepted (the number of times the local
node has accepted a connection request from a remote node to
the locally offered service).

LAT$_ITM_CTSRV_SCNR
(BOTH)

Incoming connections rejected (the number of times the local
node rejected a connection request from a remote node to the lo-
cally offered service).
If the selected service is an application service offered by the lo-
cal node, a list of one or more port subblocks is included in the
itemlist. These subblocks describe the dedicated port or ports as-
sociated with this application service, with each subblock de-
scribing one particular port. The subblock item code LAT$_IT-
M_DED_PORT_BLOCK has the LAT$V_STRING bit set, and
the string length byte actually contains the length of the entire
subblock. Each subblock itself is an itemlist and currently con-
sists only of the following item code:

LAT$_ITM_D-
ED_PORT_BLOCK (LOCAL)

LAT$_ITM_PORT_NAME
(LOCAL)

Name of the dedicated port.

LAT$_ITM_PASSWORD_
FAILURE

Indicates password failures.

Table 5.24 lists the item codes that are returned for the LAT$C_ENT_LINK entity type.

Table 5.24. LAT$C_ENT_LINK Item Codes

Item Codes Meaning
LAT$_ITM_LINK_NAME
(SUMMARY)

Link name (such as LAT$LINK).

State of the link. Possible values are:
LAT$C_ON New connections are allowed, and

the LAT protocol is running.
LAT$C_OFF New connections are not allowed,

and any current connections are
abnormally terminated. The LAT
protocol is not running.

LAT$_ITM_STATE (SUMMA-
RY)

LAT$C_SHUT No new connections are allowed.
Currently active connections are
still maintained. The LAT proto-
col remains running only until the

177

Chapter 5. Terminal Driver

Item Codes Meaning
last active session is disconnected,
at which time the node is placed in
the OFF state.

LAT$_ITM_DEVICE_NAME
(SUMMARY)

The name of the LAN device used for the link.

LAT$_ITM_DATALINK_
ADDRESS

The LAN device's current physical address for the link.

Indicates whether the link attempts to use the default DECnet
LAN address when starting the data link controller (enabling the
LAT protocol). Possible values are:
LAT$C_DISABLED DECnet LAN address use dis-

abled.

LAT$_ITM_DECNET_
ADDRESS

LAT$C_ENABLED DECnet LAN address use enabled
(this is the default.

Link counters information is presented as a counters subblock. The subblock item code LAT$_IT-
M_COUNTERS has the LAT$V_STRING bit set, and the string length byte actually contains the
length of the entire subblock. Because the link counters are independent of the protocol type, they
include not only LAT messages and events, but also all other protocol messages and events (that is,
DECnet) associated with the same LAN device. The counters are actually maintained by the LAN de-
vice driver and are identified within the subblock by the nonprotocol-specific item codes listed in Ta-
ble 5.25.

Table 5.25. Link Counters Item Codes

Item Codes Meaning
NMA$C_CTLIN_ZER Seconds since zeroed
NMA$C_CTLIN_DBR Messages received
NMA$C_CTLIN_DBS Messages transmitted
NMA$C_CTLIN_MBL Multicast messages received
NMA$C_CTLIN_MBS Multicast messages transmitted
NMA$C_CTLIN_BRC Bytes received
NMA$C_CTLIN_BSN Bytes transmitted
NMA$C_CTLIN_MBY Multicast bytes received
NMA$C_CTLIN_MSN Multicast bytes transmitted
NMA$C_CTLIN_RFL Receive errors
NMA$C_CTLIN_SFL Transmit errors
NMA$C_CTLIN_OVR Data overrun
NMA$C_CTLIN_UBU User buffer unavailable
NMA$C_CTLIN_SBU System buffer unavailable
NMA$C_CTLIN_LBE Local buffer errors
NMA$C_CTLIN_BS1 Messages sent, single collisions
NMA$C_CTLIN_BSM Messages sent, multiple collisions
NMA$C_CTLIN_BID Messages sent, initially deferred

178

Chapter 5. Terminal Driver

Item Codes Meaning
NMA$C_CTLIN_CDC Transmit collision detection check failure

Table 5.26 lists additional link counter item codes of the LINK entity.

Table 5.26. Additional Link Counters Item Codes

Item Codes Meaning
LAT$_ITM_CTLAT_RMSG Count of LAT messages received through link
LAT$_ITM_CTLAT_RBYT Count of bytes for LAT received through link
LAT$_ITM_CTLAT_XMSG Count of LAT messages transmitted through link
LAT$_ITM_CTLAT_XBYT Count of bytes for LAT transmitted through link
LAT$_ITM_CTLAT_MUL_RMSG Count of LAT multicast messages received through link
LAT$_ITM_CTLAT_MUL_RBYT Count of multicast bytes for LAT received through link
LAT$_ITM_CTLAT_MUL_XMSG Count of LAT multicast messages transmitted through link
LAT$_ITM_CTLAT_MUL_XBYT Count of multicast bytes for LAT transmitted through link
LAT$_ITM_LAT_DEV_
CTR_BLOCK

This block contains the LAT-specific counters for the speci-
fied link. Counters returned in this block are the ones defined
above (with CTLAT in their name). These counters are LAT-
specific for the link (device). They do not include counts from
other protocols using the same adapter.

The counter item codes listed in Table 5.26 are used by LATCP in the display generated by the com-
mand:

$SHOW LINK /COUNTER

The display looks similar to the following:

Link Name: LAT$LINK
Device Name: _XQA1:

Seconds Since Zeroed: 65535
Messages Received: 7080630 Messages Sent:
 2135394
LAT Messages Received: 1484817 LAT Messages Sent:
 2086167
Multicast Msgs Received: 5578139 Multicast Msgs Sent:
 10775
LAT Multicast Msgs Received: 5093417 LAT Multicast Msgs Sent:
 9142
Bytes Received: 678189475 Bytes Sent:
 1312778402
LAT Bytes Received: 107809441 LAT Bytes Sent:
 1278118808
Multicast Bytes Received: 602984574 Multicast Bytes Sent:
 1696264
LAT Multicast Bytes Received: 565264261 LAT Multicast Bytes Sent:
 1448342
System Buffer Unavailable: 1638401 User Buffer Unavailable:
 1
Unrecognized Destination: 65537 Data Overrun:
 1

179

Chapter 5. Terminal Driver

Receive Errors: 7 Transmit Errors:
 1

Receive Errors (bitmask = 001) - Transmit Errors (bitmask = 001)
 -
 Block Check Error: Yes Excessive Collisions: Yes
 Framing Error: No Carrier Check Failure: No
 Frame Too Long: No Short Circuit: No
 Frame Status Error: No Open Circuit: No
 Frame Length Error: No Frame Too Long: No
 Remote Failure To Defer: No
 Transmit Underrun: No
 Transmit Failure: No

CSMACD Specific Counters
————————

Transmit CDC Failure: 1

Messages Transmitted -
 Single Collision: 5208
 Multiple Collisions: 4732
 Initially Deferred: 0

Table 5.27 lists the item codes that are returned for the LAT$C_ENT_PORT entity type.

Table 5.27. LAT$C_ENT_PORT Item Codes

Item Code Meaning
LAT$_ITM_PORT_NAME_SUMMARY Name of the port (such as _LTA15:).
LAT$_ITM_PORT_TYPE_SUMMARY Type of port.

Possible values are:
LAT$_PT_FORWARD Forward port used for outgoing LAT

connections or for management func-
tions.

LAT$_PT_INTERACTIVE Interactive port created as the result of
an incoming LAT connection request.

LAT$_PT_APPLICATION Application port for solicited connec-
tions.

LAT$_PT_DEDICATED Dedicated port associated with a local
service.

LAT$_ITM_QUEUED Controls whether the solicited connec-
tion requests queued or nonqueued ac-
cess.

Possible values are:
LAT$C_DISABLED Queued access disabled.

LAT$C_ENABLED Queued access enabled (this is the de-
fault).

LAT$_ITM_SERVICE_CLASS Indicates the class driver with which
the device is communicating. This item
code can be used only with an entity

180

Chapter 5. Terminal Driver

Item Code Meaning
status of LAT$C_ENTS_NEW. There-
fore, the service class must be specified
when the device is created. An attempt
to change the service class of an exist-
ing device returns SS$_BADPARAM.

Possible values are:
LAT$C_SERVCLASS_
INTERACTIVE

Service class 1, TTDRIVER (this is the
default).

LAT$C_SERVCLASS_
TESTSERVICE

Service class 2, TEST SERVICE.

LAT$C_SERVCLASS_
XTRANSPORT

Service class 3, X Protocol.

LAT$C_SERVCLASS_
FONT

Service class 4, X fonts.

LAT$_ITM_DISPLAY_NUMBER Display number value for the device.
This field has meaning for services
classes 3 and 4 (X) only. It returns a
value of 0 for all other service classes.

LAT$_ITM_DISCONNECT_REASON Reason (if any) for the last disconnect
on the port. If it is not a 0--19 LAT re-
jection code, it is a LAT message code.
The 0--19 LAT rejection code mean-
ings are listed in Table 5.31.

LAT$C_PT_STATE_DISCONNECTING1 Name of service to which this port is
connected. For forward and application
ports, this is the name of the remote
service to which the port is connected
(if any). For interactive and dedicated
ports, this is the name of the local ser-
vice that accepted the remote-initiated
connection.

LAT$_ITM_CONNECTED_NODE_NAME1 Name of remote node to which this port
is connected.

LAT$_ITM_CONNECTED_PORT_NAME1 Name of remote port to which this port
is connected.

LAT$_ITM_CONNECTED_LINK_NAME1 Name of the link on which the LAT
connection exists.

LAT$_ITM_TARGET_SERVICE_NAME2 Target service name for connection of
forward or application ports. For dedi-
cated ports, this item code specifies the
local service with which the port is as-
sociated.

LAT$_ITM_TARGET_NODE_NAME2 Target node name for connection of
forward or application ports.

LAT$_ITM_TARGET_PORT_NAME2 Target port name for connection of for-
ward or application ports.

181

Chapter 5. Terminal Driver

Item Code Meaning
LAT$_ITM_NODE_QUEUE_POSITION3 Indicates current node queue position

for connect request. Returned during
SENSEMODE of port entity.

LAT$_ITM_SERVICE_QUEUE_POSITION3 Indicates current service queue position
for connect request. Returned during
SENSEMODE of port entity.

LAT$_ITM_PORT_STATE Current port state.
Possible values are:
LAT$C_PT_STATE_
INACTIVE

Port is inactive.

LAT$C_PT_STATE_
CONNECTING

Port connection in progress but not
complete.

LAT$C_PT_STATE_
ACTIVE

Port has active LAT connection.

LAT$C_PT_STATE_
DISCONNECTING

Port LAT connection in process of ter-
minating.

1Returned only when the LTA port has an active LAT connection.
2Shows information about how the port is set up. May be returned even if there is no current LAT connection.
3Alpha and Integrity servers specific

On Alpha and Integrity server systems, the item codes for queue entries are listed in Table 5.28.

Table 5.28. LAT SENSEMODE Queue Entries

Item Code Meaning
LAT$_ITM_QUEUED_ENTRY_ID
(SUMMARY)

Indicates by string the queue entry ID name.

LAT$_ITM_NODE_QUEUE_
POSITION (SUMMARY)

Indicates the current position of entry in node wide queue.

LAT$_ITM_SERVICE_QUEUE_
POSITION (SUMMARY)

Indicates the current position of entry in service wide queue.

LAT$_ITM_NODE_NAME (SUM-
MARY)

Indicates where the remote node name queue entry came
from.

LAT$_ITM_SERVICE_NAME (SUM-
MARY)

Indicates the target service name to which the queue entry is
queued (if specified).

LAT$_ITM_PORT_NAME (SUMMA-
RY)

Indicates the target port name to which the entry is queued
(if specified).

LAT$_ITM_LINK_NAME Returns the link name on which the queued request is ac-
tive.

LAT$_ITM_DATALINK_
ADDRESS

Returns the remote node that issued the request’s data link
address.

5.3.4.5. Programming Application Ports
An application port is used to connect to a remote device (typically a printer) on a terminal server or
to a dedicated port on another LAT service node. The LAT port driver can only connect to a remote
device if the device is currently not in use. Table 5.29 lists the conditions that can occur when an ap-

182

Chapter 5. Terminal Driver

plication program issues an IO$M_LT_CONNECT request for a connection to a remote device. After
a request is queued on the terminal server (or dedicated port on another LAT service node), the QIO
request is not completed until the connection is established, rejected, or times out.

Table 5.29. IO$M_LT_CONNECT Request Status

Event IOSB Status Explanation
Connection established SS$_NORMAL The connection is successful, and the port is

ready for use.
Connection timeout SS$_TIMEOUT The connection did not complete because

communication was never established with the
remote end. IOSB+2 contains LAT$_CON-
TIMEOUT.

Connection rejected SS$_ABORT. IOSB+2
contains LAT rejection
code or LAT facility mes-
sage code.

The connection cannot be made. The LAT port
driver updates the I/O status block. The LAT
rejection codes (0--19) are listed in Table 5.31.

Connection request SS$_ILLIOFUNC The QIO request is not to an application, dedi-
cated, or forward port. The LAT port driver re-
jects the request immediately.

Connection already estab-
lished on port

SS$_DEVACTIVE The QIO request is for a port already in use.
The LAT port driver rejects the request imme-
diately.

Incorrectly configured
LAT port

SS$_DEVREQERR The LAT port is incorrectly configured. This
may mean that the port type was neither for-
ward nor application nor dedicated, because a
forward port had no service name mapped or
because an application port had no node name
mapped.

Insufficient resources SS$_INS FMEM The QIO request failed because the LAT port
driver could not get system memory to com-
plete the connection.

Before the application port can be used, it must be mapped to a remote node name, and either the port
name or the service name of the remote terminal server port. (These names must be defined locally on
the terminal server.) The application port is mapped with the IO$M_LT_SETMODE modifier, speci-
fying the following items in the P1 itemlist parameter:

• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of the ter-
minal server where the application device is located.

• LAT$_ITM_TARGET_PORT_NAME—The port name.

• LAT$_ITM_TARGET_SERVICE_NAME—The service name.

The queued status of the connection can also be mapped to the port by specifying the LAT$_IT-
M_QUEUED item in the P1 itemlist parameter. Valid values for this item are:

• LAT$C_ENABLED—Port has queued status. This is the default.

• LAT$C_DISABLED—The port does not have queued status.

183

Chapter 5. Terminal Driver

5.3.4.6. Programming Application Services and Dedicated Ports
Rather than the normal time sharing service offered by the operating system, application programs can
make use of LAT application services that allow terminal server users (or users on systems with out-
going connections) to connect to a specialized application. To do this, the system manager must create
LAT ports that are dedicated to a particular application service. (Alternatively, this LAT port creation
can be done from a program using the QIOs discussed in previous sections, providing OPER privi-
lege.) When the remote user makes the connection to the application service, the connection is direct-
ly to the application program that controls a LAT port (LTA device) associated with the service. In this
case the prompt, Username:, is not received. Follow these steps to create an application service:

1. Define the dedicated ports in LAT$SYSTARTUP.COM and execute the command procedure in
SYSTARTUP_VMS.COM. (For additional information, see the VSI OpenVMS System Manage-
ment Utilities Reference Manual and the VSI OpenVMS System Manager's Manual.)

2. Run the application program. Within the application program, allocate dedicated ports with
the same name as those defined in LAT$SYSTARTUP.COM. Use the Assign I/O Channel
($ASSIGN) system service to assign service channels to the ports.

3. Post a read request to the dedicated ports. When the terminal user connects to the service and
presses the Return key, the application program can perform I/O to the dedicated port.

4. To break the connection, use the Deassign I/O Channel ($DASSGN) system service to deassign
the channel and the Deallocate Device ($DALLOC) system service to deallocate the device. The
application program must reallocate the port and reassign the channel in preparation for the next
connection.

An example of the application service concept is a program that provides the time of day. For this ex-
ample, the system manager includes the following lines in LAT$SYSTARTUP.COM (or enters them
manually in the LATCP program):

CREATE SERVICE TIME/ID="At the tone, the time will be"/APPLICATION
CREATE PORT LTA99:/DEDICATED
SET PORT LTA99:/SERVICE=TIME

An application program then assigns a channel to device LTA99. When a terminal server user types
CONNECT TIME, the user is connected to this application program, and the program prints out the
time of day. The program then deassigns the channel, which disconnects the server user.

A system manager may associate more than one LAT port with the same service. In that case, the ap-
plication program that offers the service should assign channels to all of the LTA devices created for
that service.

5.3.4.7. Programming Forward Ports
An outbound LAT connection to a remote service node can be made using a forward port. The LAT
port driver can connect to a remote service node only if outgoing connections are enabled on the local
node. Outgoing connections can be enabled with LATCP or with a LAT SETMODE QIO to the local
node. In addition, user group codes on the local node must match the service group codes of the ser-
vice to which they are being connected. LATCP can list the services to which the local node can con-
nect. (For additional information, see the VSI OpenVMS System Management Utilities Reference Man-
ual.) Before the forward port can be used to make an outbound LAT connection, it must be mapped to
a service and optionally, a node and port. The forward port is mapped with the IO$M_LT_SETMODE
modifier, specifying the following items in the P1 item list parameter:

184

Chapter 5. Terminal Driver

• LAT$_ITM_TARGET_SERVICE_NAME—The service name. The service name is the name of
the service to which to connect.

• LAT$_ITM_TARGET_NODE_NAME—The node name. The node name is the name of a specif-
ic service node offering the service.

• LAT$_ITM_TARGET_PORT_NAME—The port name. The port name is the name of a specific
port on the target node. The LAT$_ITM_TARGET_NODE_NAME item must be supplied when
supplying this item.

• LAT$_ITM_SERVICE_PASSWORD—The password. The password is required for access to a
password-protected service.

A LAT SETMODE QIO on a forward port does not require OPER privilege if the port name is not
specified in the P4 parameter. In other words, the LAT SETMODE QIO must be to the port corre-
sponding to the CHAN parameter (the forward port attained by assigning a channel to _LTA0:). Note
that SS$_NOPRIV is returned if you attempt to change the port type by specifying the LAT$_IT-
M_PORT_TYPE item code in the P1 itemlist parameter. If the P4 parameter is specified, the LAT port
driver also returns SS$_NOPRIV.

Table 5.29 lists the conditions that can occur when an application program issues an IO$M_LT_CON-
NECT request for a connection to a remote service node. The QIO request is completed when a ses-
sion is established with the service node. Once the connection completes, data can be read and written
to the port with the QIO read and write functions.

5.3.4.8. Queue Change Notification

On Alpha and Integrity server systems, the IO$M_LT_QUE_CHG_NOTIF function modifier for
$QIO allows a process to enable an attention asynchronous system trap (AST), which is used with the
LAT $QIO connect request. The IO$M_LT_QUE_CHG_NOTIF function is available only for APPLI-
CATION and FORWARD LAT devices.

If a $QIO connect request has been issued to a remote node and that request has been queued, this at-
tention AST is set each time the queue position changes. This AST can be used as long as the $QIO
connect request is queued. Like a Ctrl/Y AST, it is set only once; it must be reenabled after each com-
pletion.

If the LAT $QIO connect succeeds or if a LAT connection exists for the intended service, the AST
completes with the SS$_DEVACTIVE status code.

If the LAT device does not have the queued characteristic, issuing the IO$M_LT_QUE_CHG_NOTIF
function results in the return of SS$_DEVREQERR status code.

The implementation of IO$M_LT_QUE_CHG_NOTIF is shown in the following C example:

status - sys$qiow (
 0, /* efn */
 ltchannel, /* channel */
 IO$_TTY_PORT|IO$M_LT_QUE_CHG_NOTIF,
 /* function */
 q_iosb, /* iosb */
 0, /* astadr */
 0, /* astprm */
 queue_pos_change, /* P1 = ast routine */
 0, 0, 0, 0, 0); /* P2 through P6 not used */

185

Chapter 5. Terminal Driver

When a queue position change occurs, the AST routine is called with a 32-bit value. If this value is 0,
then the LAT connect $QIO is about to complete, if it has not already. If the value is not 0, the lower
word of 16 bits indicates the service queue position, and the upper word of 16 bits indicates the node
queue position.

5.3.4.9. Hangup Notification

To allow notification by the terminal driver of abnormal termination during I/O operations, enable a
Ctrl/Y AST on the channel. This ensures that the terminal driver notifies application programs of an
abnormal connection termination. Note that the operating system does not return an AST parameter to
the Ctrl/Y AST routine.

When an application with a pending read or write request has an abnormal LAT connection comple-
tion, the terminal driver returns a SS$_HANGUP status in the first word of the IOSB. The reason for
the abnormal LAT connection completion can be attained with a LAT SENSEMODE QIO request to
the port. Search the resulting P1 itemlist for the value corresponding to the LAT$_ITM_DISCON-
NECT_REASON item code. The value is either a LAT reject code or a LAT facility message. The
LAT$V_SENSE_FULL bit must be set in the P3 parameter in order to receive this information.

If IOSB indicates an abnormal completion (SS$_ABORT, see Table 5.29) on a IO$M_LT_CON-
NECT modifier QIO, the LAT port driver returns the reason for the abnormal completion in IOSB+2.
The reason can also be attained with the LAT SENSEMODE QIO function.

5.3.4.10. Sense Mode and Sense Characteristics

The sense mode and sense characteristics functions sense the characteristics of the terminal and return
them to the caller in the I/O status block. The following function codes are provided:

• IO$_SENSEMODE

• IO$_SENSECHAR

IO$_SENSEMODE returns the temporary characteristics of the terminal (the characteristics associat-
ed with the current process), and IO$_SENSECHAR returns the permanent characteristics of the ter-
minal. IO$_SENSEMODE is a logical I/O function and requires no privilege. IO$_SENSECHAR is a
physical I/O function and requires the privilege necessary to perform physical I/O.

These function codes take the following device- or function-dependent arguments:

• P1—Address of a characteristics buffer

• P2—Length of characteristics buffer (default length is 8 bytes)

For remote terminals, specify a P2 value of 8 or 12 only.

The P1 argument points to a variable-length block, as shown in Figure 5.11.

186

Chapter 5. Terminal Driver

Figure 5.11. Sense Mode Characteristics Buffer

In the buffer, the device class is DC$_TERM, which is defined by the $DCDEF macro. The terminal
type is defined by the $TTDEF macro, such as TT$_LA36. The maximum entry for the buffer size
(page width) is 255. Table 5.4 lists the values for terminal characteristics. Table 5.5 lists the extended
terminal characteristics. Characteristics values are defined by the $TTDEF macro.

The sense mode and sense characteristics functions can take the type-ahead count, read modem, and
broadcast function modifiers described in the following sections.

5.3.4.10.1. Type-ahead Count Function Modifier

The type-ahead count function modifier returns the count of characters presently in the type-ahead
buffer and a copy of the first character in the buffer. In this case, the P1 argument points to a charac-
teristics buffer returned by IO$M_TYPEAHDCNT. Figure 5.12 shows the format of this buffer.

Figure 5.12. Sense Mode Characteristics Buffer (type-ahead)

5.3.4.10.2. Read Modem Function Modifier

The read modem function modifier allows access to controller-dependent information. The following
combinations of function code and modifier are provided:

• IO$_SENSEMODE!IO$M_RD_MODEM

• IO$_SENSECHAR!IO$M_RD_MODEM

These function code modifier pairs take the following device- or function-dependent argument:

• P1—The address of a quadword block

Figure 5.13 shows the format of this block.

Figure 5.13. Sense Mode P1 Block

187

Chapter 5. Terminal Driver

The receive modem field returns the value of the current input modem signals. Any or all of the fol-
lowing signals can be returned:

• TT$M_DS_DSR—Data set ready (DSR)

• TT$M_DS_RING—Calling indicator (RING)

• TT$M_DS_CARRIER—Data channel received line signal detector (CARRIER)

• TT$M_DS_CTS—Ready for sending (CTS)

• TT$M_DS_SECREC—Received backward channel data (Sec RxD)

The $TTDEF macro defines the symbols for the receive modem field.

The controller type field returns the type of terminal controller in use by the currently active terminal
line. The $DCDEF macro defines the symbols for the following types of controllers:

• DT$_DZ11—DZ11 and DZV11

• DT$_DZ32—DZ32

• DT$_DMF32—DMF32

• DT$_DMB32—DMB32

• DT$_DMZ32—DMZ32

• DT$_DHV—DHV11

• DT$_DHU—DHU11

• DT$_LAT—LAT server

Note

For LAT devices, the receive modem field of the IO$M_RD_MODEM function modifier does not re-
turn any valid modem signal data.

The IO$M_RD_MODEM function modifier is not supported for remote terminals. The status
SS$_DEVREQERR is returned in the I/O status block.

5.3.4.10.3. Broadcast Function Modifier

The broadcast function modifier returns those bits that have been set by the set mode function modi-
fier IO$M_BRDCST (see Table 5.11 in Section 5.3.3.6). The following combination of function code
and modifier is provided:

• IO$_SENSEMODE!IO$M_BRDCST

This function code modifier pair takes the following device- or function-dependent arguments:

• P1—A buffer that contains the bits that specify the requester IDs to be broadcast. (If the bit is set
in the first longword, that particular command is turned off for broadcast.)

• P2—The length of the P1 buffer.

188

Chapter 5. Terminal Driver

5.4. I/O Status Block
The I/O status block (IOSB) formats for the read, write, set mode, set characteristics, sense mode,
sense characteristics, and LAT port driver I/O functions are shown in Figures Figure 5.14, Figure 5.16,
Figure 5.17, and Figure 5.18. Figure 5.15 shows the IOSB format for the itemlist read function. Ap-
pendix A lists the status returns for these functions. (The OpenVMS system messages documentation
provides explanations and suggested user actions for these returns.)

In Figure 5.14, the offset to terminator at IOSB+2 is the count of characters before the terminator
character (see Section 5.3.1.2). The terminator character is in the buffer at the offset specified in IOSB
+2. When the buffer is full, the offset at IOSB+2 is equal to the requested buffer size. At the same
time, IOSB+4 is equal to 0. In the case of multiple character escape sequences that act as terminators,
the terminator at IOSB+4 is the first character (ESC) of the escape sequence. IOSB+6 contains the
size of the terminator string, usually 1. However, in an escape sequence, IOSB+6 contains the size of
the validated escape sequence (see Section 5.1.1.4). The sum of IOSB+2 and IOSB+6 is the number
of characters in the buffer.

Figure 5.14. IOSB Contents—Read Function

In Figure 5.15 the terminator position word contains a number, the character of which is determined
by the mode of operation. For itemlist read operations that do not specify TRM$K_EM_RDVERI-
FY, this word contains the number of characters from the end of the buffer to the cursor location at the
time the terminator character was received. If TRM$K_EM_RDVERIFY is specified, the terminator
position word contains the offset into the buffer from the nonverified character.

Figure 5.15. IOSB Contents—Itemlist Read Function

The byte at IOSB+5 passes the status information, listed in Table 5.30, on TRM$K_EM_RDVERI-
FY operations in which TRM$M_TM_ARROWS or TRM$M_TM_TOGGLE is set in TRM$_MOD-
IFIERS.

Table 5.30. Byte IOSB+5 Status Information

Bit Interpretation
7 (sign bit) 0 to indicate rest of bits valid. This applies to insert/overstrike

and arrow key read verify functionality only.
6--2 Always 0 if bit 7 is equal to 0. Not used; reserved for future use.

189

Chapter 5. Terminal Driver

Bit Interpretation
1 TRM$V_ST_OTHERWAY Set to indicate that read is terminated in left-justify insert mode

or right-justify overstrike mode.
0 TRM$V_ST_FIELD_FULL Read terminated on an autotab field full condition. IOSB+7 con-

tains an index to the cursor.

In Figure 5.16, the remote terminal driver does not return the number of lines output or the cursor po-
sition.

Figure 5.16. IOSB Contents—Write Function

In Figure 5.17, the TT driver attempts to return the correct data in IOSB after a SETMODE or
SETCHAR. To be sure the returned data is correct, the user should follow the SETMODE or
SETCHAR with a SENSEMODE or SENSECHAR.

Figure 5.17. IOSB Contents—Set Mode, Set Characteristics, Sense Mode, and Sense
Characteristics Functions

When an application program makes an I/O request for a connection to a remote device on a terminal
server, the LAT port driver places status information about the request into the first word of the I/O
status block, as shown in Figure 5.18. Table 5.29 lists the possible status returns.

If the server rejects the request, the LAT port driver returns a numeric LAT rejection code in the sec-
ond word of the I/O status block. Table 5.31 lists the LAT rejection codes.

Figure 5.18. IOSB Contents—LAT Port Driver Function

Table 5.31. LAT Rejection Codes

Value Reason
0 Reason is unknown.
1 User requested disconnect.
2 System shutdown in progress.

190

Chapter 5. Terminal Driver

Value Reason
3 Invalid slot received.
4 Invalid service class received.
5 Insufficient resources to satisfy request.
6 Service in use.
7 No such service.
8 Service is disabled.
9 Service is not offered on the requested port.
10 Port name is unknown.
11 Invalid password.
12 Entry is not in queue.
13 Immediate access rejected (server queue full).
14 Access denied (group code mismatch).
15 Corrupted solicit request.
16 COMMAND_TYPE code is illegal/not supported.
17 Start slot cannot be sent.
18 Queue entry deleted by local node.
19 Inconsistent or illegal request parameters.

5.5. Terminal Driver Programming Examples
The C program LAT.C shown in Example 5.1 initiates and maintains an outbound LAT session from
the local node. It demonstrates the following LAT $QIO functions:

• Cloning the LAT template device (LTA0:)

• IO$M_LT_SETMODE

• IO$M_LT_CONNECT (on forward port)

• IO$M_LT_SENSEMODE

Example 5.1. LAT.C Terminal Driver Programming Example

#module LAT_FORWARD_CONNECT "X1.0-001"/*
**++
**
** MODULE DESCRIPTION:
**
** In initiating and maintaining an outbound LAT session from the
 local
** node, this program demonstrates the following LAT $QIO functions:
**
** o Cloning the LAT template device (LTA0:)
** o IO$M_LT_SETMODE
** o IO$M_LT_CONNECT (on forward port)
** o IO$M_LT_SENSEMODE
**
**--

191

Chapter 5. Terminal Driver

*/

/*
**
** INCLUDE FILES
**
*/
#include /* VMS Descriptor Definitions */
#include /* I/O Function Codes Definitions */
#include /* LAT Definitions */
#include /* System Service Return Status */
 /* Code Definitions
 */
#include /* Terminal Characteristics */
#include /* Terminal Extended */
 /* Characteristics
 */
/*
**
** MACRO DEFINITIONS
**
*/

/*
** Service name which the session will be to.
*/

#define SERVICE_NAME "LAT_SERVICE"

#define SERVICE_NAME_LENGTH 11

/*
** For the sake of clarity, the sizes of the buffers used for reading from
** and writing to the LTA and TT devices are set to the values below. In
** order to gain maximum throughput from this program, the following system
** parameters can be set:
**
** o TTY_ALTYPAHD - 1500
** o TTY_TYPAHDSZ - 80
**
** To get the best performance from this program without touching these
** system parameters on your system, modify the program to set the size of
** the buffers to the following:
**
** o LTA_BUFFER_SIZE = MIN(TTY_ALTYPAHD, 1500)
** o TT_BUFFER_SIZE = MIN(TTY_TYPAHDSZ, 132)
*/

#define LTA_MAXBUF 1500
#define TT_MAXBUF 80

/*
** Size of the LAT SENSEmode itemlist.
*/

192

Chapter 5. Terminal Driver

#define MAX_SENSE_ITEMLIST_SIZE 1500

/*
** Character user can press to terminate the LAT connection (CTRL+\).
*/

#define CONNECTION_TERMINATOR 0x1C

/*
**
** FUNCTION PROTOTYPES
**
*/

unsigned long SetDeviceChars(void);
void ConnectAST(void);
void LTAreadChannelAST(void);
void TTreadChannelAST(void);
void LTAhangupHandler(void);
void EndSession(void);
void ExitHandler(void);

/*
**
** GLOBAL DATA
**
*/

char *LTAbuffer, /* LTA device I/O buffer */
 TTbuffer, / TT device I/O buffer */

 /*
 ** Text for LAT reject codes. Note that some LAT
 ** implementations will return a 0 reject code to
 ** indicate a normal disconnect.
 */

 *LATrejectTable[] = {
 "Unknown",
 "User requested disconnect",
 "System shutdown in progress",
 "Invalid slot received",
 "Invalid service class received",
 "Insufficient resources at server",
 "Port or service in use",
 "No such service",
 "Service is disabled",
 "Service is not offeredon the requested port",
 "Port name is unknown",
 "Invalid service password",
 "Remote entry is not in queue",
 "Immediate access rejected",
 "Access denied",
 "Corrupted request",
 "Requested function is not supported",
 "Session cannot be started",
 "Queue entry deleted by server",

193

Chapter 5. Terminal Driver

 "Illegal request parameters" };

unsigned short LTAchannel, /* LTA device I/O channel
 */
 TTchannel, /* TT device I/O channel
 */
 LTA_QIOiosb[4], /* IOSB for LTA device functions
 */
 TT_QIOiosb[4]; /* IOSB for TT device functions
 */

unsigned long ReadTerminatorMask[2] = { 0, 0 },
 /* $QIO read terminator mask
 */
 SavedTTdeviceChar[3],
 /* Saved TT device characteristics
 */
 DeviceCharBuffSize = sizeof(SavedTTdeviceChar);
 /* Size of device characteristics
 buffer*/
 ExitConditionValue, /* Exit condition value of program
 */
 LATrejectTableSize =/* Number of elements in LAT reject tbl
 */
 sizeof(LATrejectTable) / sizeof(LATrejectTable[0]);

/*
** Itemlist for setting LAT port with the target service name.
*/

struct {
 unsigned short item_code;
 char item_byte_count;
 char item_value[SERVICE_NAME_LENGTH];
} PortSetmodeItemlist = {
 LAT$_ITM_TARGET_SERVICE_NAME, SERVICE_NAME_LENGTH, SERVICE_NAME
};

/*
** Exit handler block.
*/

struct {
 unsigned long flink;
 void (*exit_handler)();
 unsigned long arg_count;
 unsigned long *exit_status;
} ExitHandlerBlock = { 0, ExitHandler, 1, };

/*
** Devices which channels are assigned to.
*/

$DESCRIPTOR(LTAtemplateDSC, "LTA0:");
$DESCRIPTOR(TTchannelDSC, "SYS$COMMAND");

194

Chapter 5. Terminal Driver

main()
{
 /*
 ** Local Variables:
 */

 unsigned long status,
 portSetmodeItemlistSize =
 sizeof(PortSetmodeItemlist);

 /*
 ** BEGIN:
 **
 ** Declare an exit handler.
 */

 if (!((status = sys$dclexh()) & 1))
 lib$signal(status);

 /*
 ** Assign a channel to LTA0: to get a forward LAT port and assign a
 ** channel to the terminal.
 */

 if (!((status = sys$assign(, , 0, 0)) & 1))
 lib$signal(status);
 if (!((status = sys$assign(, , 0, 0)) & 1))
 lib$signal(status);

 /*
 ** Allocate memory for the channel data buffers.
 */

 LTAbuffer = malloc(LTA_MAXBUF);
 TTbuffer = malloc(TT_MAXBUF);

 /*
 ** Set device characteristics for the two channels.
 */

 if (!((status = SetDeviceChars()) & 1))
 lib$signal(status);

 /*
 ** Do SETmode $QIO to set the port entity with the target service
 name
 ** specified in the item list.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_TTY_PORT|IO$M_LT_SETMODE,
 _QIOiosb, 0, 0,
 ,
 portSetmodeItemlistSize,

195

Chapter 5. Terminal Driver

 LAT$C_ENT_PORT|(LAT$C_ENTS_OLD << 0x10),
 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Enable a CTRL+Y AST on the LAT channel.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_SETMODE|IO$M_CTRLYAST,
 _QIOiosb, 0, 0,
 LTAhangupHandler,
 0, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Post the first read (with AST) on the LTA device to ensure that
 the
 ** first burst of data from the target service is not lost. It is
 very
 ** important that the first read is queued before doing the connect
 ** $QIO to ensure no data lossage.
 */

 if (!((status = sys$qio(
 0,
 LTAchannel,
 IO$_READVBLK|IO$M_NOECHO,
 _QIOiosb,
 LTAreadChannelAST, 0,
 LTAbuffer,
 1, 0, , 0, 0)) & 1))
 lib$signal(status);

 /*
 ** Do the LAT connect $QIO and hibernate until program exit. The
 ** ConnectAST will execute when the connection completes and post
 the
 ** initial read on the TT channel.
 */

 if (!((status = sys$qio(
 0,
 LTAchannel,
 IO$_TTY_PORT|IO$M_LT_CONNECT,
 _QIOiosb,
 ConnectAST, 0, 0, 0, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 sys$hiber();

} /* END - main() */

196

Chapter 5. Terminal Driver

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine sets device characteristics of the LTA and TT devices.
** The HOSTSYNC, NOBRDCST, EIGHTBIT and PASTHRU characteristics are
 set
** on the LTA device. The ESCAPE and TTSYNC characteristics are
 cleared.
**
** The TTSYNC, HOSTSYNC, EIGHTBIT, and PASTHRU characteristics are set
** on the TT device. The ESCAPE characteristic is cleared. The TT
** characterisitcs are also saved for restoration at program exit.
**
**--
*/

unsigned long SetDeviceChars(void)
{
 /*
 ** Local Variables:
 */

 unsigned long status,
 deviceChar[3];

 /*
 ** BEGIN:
 **
 ** Mask and set the characteristics of the LTA device. Sense the
 ** current characteristics, and mask in and set the new ones.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_SENSEMODE,
 _QIOiosb, 0, 0,
 ,
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 deviceChar[1] =
 (deviceChar[1] | (TT$M_HOSTSYNC | TT$M_NOBRDCST
 | TT$M_EIGHTBIT))
 & ~TT$M_ESCAPE & ~TT$M_TTSYNC;
 deviceChar[2] |= TT2$M_PASTHRU;

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_SETMODE,

197

Chapter 5. Terminal Driver

 &TT_QIOiosb, 0, 0,
 &deviceChar
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Repeat the procedure for TT device characteristics. However,
 save
 ** the current characteristics for restoration at program exit.
 */

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_SENSEMODE,
 $TT_QIOiosb, 0, 0,
 &SavedTTdeviceChar
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1))
 lib$signal(TT_QIOiosb[0]);

 deviceChar[0] = SavedTTdeviceChar[0];
 deviceChar[1] = (SavedTTdeviceChar[1] |
 (TT$M_TTSYNC | TT$M_HOSTSYNC | TT$M_EIGHTBIT)) & ~TT$M_ESCAPE;
 deviceChar[2] = SavedTTdeviceChar[2] | TT2$M_PASTHRU;

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_SETMODE,
 &TT_QIOiosb, 0, 0,
 &deviceChar
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1))
 lib$signal(TT_QIOiosb[0]);

 return(status);

} /* END - SetDeviceChars */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine is an AST which executes when the connect $QIO
 completes.
** First the IOSB is checked. If the connection timed out or was
 aborted,
** simply end the session. Any other abnormal status causes the
 program
** to exit.

198

Chapter 5. Terminal Driver

**
** Otherwise the connection completed successfully and a read on the
 TT
** channel is posted.
**
**--
*/

void ConnectAST()
{
 /*
 ** Local Variables:
 */

 unsigned long status;

 /*
 ** BEGIN:
 **
 ** If the status in the IOSB indicates that the connection timed
 out
 ** or aborted, call the session end routine. Any other abnormal
 ** status causes program exit.
 */

 if ((LTA_QIOiosb[0] == SS$_TIMEOUT) || (LTA_QIOiosb[0]
 == SS$_ABORT))
 EndSession();

 if (!(LTA_QIOiosb[0] & 1))
 sys$exit(LTA_QIOiosb[0]);

 /*
 ** The connection completed successfully! Post a read (with AST)
 on
 ** the TT device and return.
 */

 if (!((status = sys$qio(
 0,
 TTchannel,
 IO$_READVBLK|IO$M_NOECHO,
 &TT_QIOiosb,
 TTreadChannelAST, 0,
 TTbuffer,
 1, 0, &ReadTerminatorMask 0, 0)) & 1))
 lib$signal(status);

 return;

} /* END - ConnectAST */

/*
**++
**

199

Chapter 5. Terminal Driver

** FUNCTIONAL DESCRIPTION:
**
** This routine is an AST which executes when the first character read
 on
** the LTA channel completes. It does a "flush" read of the channel
 to
** drain any data out of the ALTYPAHD buffer and writes the data to
 the
** TT channel. It then posts another read on the channel.
**
**--
*/

void LTAreadChannelAST(void)
{
 /*
 ** Local Variables:
 */

 unsigned long status;

 /*
 ** BEGIN:
 **
 ** If the status in the IOSB indicates channel hangup, simply end
 the
 ** session. Signal any other abnormal status.
 */

 if (LTA_QIOiosb[0] == SS$_HANGUP)
 EndSession();
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Do a "flush" read of the LTA device. This is done by doing a
 timed
 ** read with a 0 timeout. There may or may not be any data to
 drain.
 ** This method is more efficient than using single character reads.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_READVBLK|IO$M_TIMED|IO$M_NOECHO,
 _QIOiosb, 0, 0,
 LTAbuffer+1,
 LTA_MAXBUF-1, 0,
 &ReadTerminatorMask, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1) && (LTA_QIOiosb[0] != SS$_TIMEOUT))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** The second word of the IOSB contains the number of characters
 ** read. Write the characters plus 1 for the initial read to the
 ** TT device.

200

Chapter 5. Terminal Driver

 */

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_WRITEVBLK,
 _QIOiosb, 0, 0,
 LTAbuffer,
 LTA_QIOiosb[1]+1, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1))
 lib$signal(TT_QIOiosb[0]);

 /*
 ** Post another read on the LTA device.
 */

 if (!((status = sys$qio(
 0,
 LTAchannel,
 IO$_READVBLK|IO$M_NOECHO,
 <A_QIOiosb,
 LTAreadChannelAST, 0,
 LTAbuffer,
 1, 0, &ReadTerminatorMask, 0, 0)) & 1))
 lib$signal(status);

 return;

} /* END - LTAreadChannelAST */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine is an AST which executes when the first character read
 on
** the TT channel completes. It does a "flush" read of the channel to
** drain any data out of the TYPAHD buffer and writes the data to the
** LTA channel. It then posts another read on the channel.
**
**--
*/

void TTreadChannelAST(void)
{
 /*
 ** Local Variables:
 */

 unsigned long status;

 /*
 ** BEGIN:

201

Chapter 5. Terminal Driver

 **
 ** If the user pressed the connection terminator character, do a
 LAT
 ** disconnect $QIO and exit.
 */

 if (*TTbuffer == CONNECTION_TERMINATOR)
 {
 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_TTY_PORT|IO$M_LT_DISCON,
 _QIOiosb, 0, 0, 0, 0, 0, 0, 0, 0)) &
 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);
 return;
 }

 /*
 ** Do a "flush" read of the TT device. This is done by doing a
 timed
 ** read with a 0 timeout. There may or may not be any data to
 drain.
 */

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_READVBLK|IO$M_TIMED|IO$M_NOECHO,
 _QIOiosb, 0, 0,
 TTbuffer+1,
 TT_MAXBUF-1, 0,
 &ReadTerminatorMask, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1) && (TT_QIOiosb[0] != SS$_TIMEOUT))
 lib$signal(TT_QIOiosb[0]);

 /*
 ** The second word of the IOSB contains the number of characters
 ** read. Write the characters plus 1 for the initial read to the
 ** TT device.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_WRITEVBLK,
 _QIOiosb, 0, 0,
 TTbuffer,
 TT_QIOiosb[1]+1, 0, 0, 0, 0)) & 1))
 lib$signal(status);

 /*
 ** If the status in the IOSB indicates channel hangup, simply end
 ** the session. Signal any other abnormal status.

202

Chapter 5. Terminal Driver

 */

 if (LTA_QIOiosb[0] == SS$_HANGUP)
 EndSession();
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Post another read on the LTA device.
 */

 if (!((status = sys$qio(
 0,
 TTchannel,
 IO$_READVBLK|IO$M_NOECHO,
 _QIOiosb,
 TTreadChannelAST, 0,
 TTbuffer,
 1, 0, &ReadTerminatorMask, 0, 0)) & 1))
 lib$signal(status);

 return;

} /* END - TTreadChannelAST */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine is the CTRL+Y AST for the LTA channel. It executes
 when
** a hangup on the LTA channel is recognized (connection timed out or
** aborted). It will call the session end routine if it hasn't
 already
** been called by ConnectAST.
**
** NOTE: CTRL+Y ASTs for application ports will NOT execute when the
** connection is disconnected.
**
**--
*/

void LTAhangupHandler(void)
{
 /*
 ** BEGIN:
 **
 ** Call the session end routine and return.
 */

 EndSession();
 return;

} /* END - LTAhanghupHandler */

203

Chapter 5. Terminal Driver

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This routine is executed at session end. It will do a $QIO
 SENSEmode
** and search the resulting itemlist to find the reason for the LAT
** disconnect. The reason for the disconnect is displayed on the
** terminal and the image exits.
**
**--
*/

void EndSession(void)
{

 /*
 ** Local Variables:
 */

 struct ITEM_ENTRY *itemlistEntry;
 unsigned long status;
 char *senseItemlist =
 malloc(MAX_SENSE_ITEMLIST_SIZE),
 *itemlistEntryPointer;

 /*
 ** BEGIN:
 **
 ** Do the SENSEmode on the port.
 */

 if (!((status = sys$qiow(
 0,
 LTAchannel,
 IO$_TTY_PORT|IO$M_LT_SENSEMODE,
 <A_QIOiosb, 0, 0,
 senseItemlist,
 MAX_SENSE_ITEMLIST_SIZE,
 LAT$C_ENT_PORT|(LAT$M_SENSE_FULL << 0x10),
 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(LTA_QIOiosb[0] & 1))
 lib$signal(LTA_QIOiosb[0]);

 /*
 ** Set up two pointers used to traverse the itemlist.
 */

 itemlistEntry = (struct ITEM_ENTRY *) senseItemlist;
 itemlistEntryPointer = senseItemlist;

 /*
 ** Search the itemlist for the LAT$_ITM_DISCONNECT_REASON code to
 find

204

Chapter 5. Terminal Driver

 ** out why the connection terminated.
 */

 while (itemlistEntry->LAT$R_ITM_CODE.LAT$W_ITEMCODE !=
 LAT$_ITM_DISCONNECT_REASON)
 {
 /*
 ** If the current itemcode being checked has a string
 value,
 ** advance the pointer to the next itemcode by skipping
 ** BCNT bytes plus 3 bytes for the BCNT byte itself and the
 ** 2 byte itemcode.
 */

 if (itemlistEntry->
 LAT$R_ITM_CODE.LAT$R_ITM_BITS.LAT$V_STRING)
 itemlistEntryPointer +=
 itemlistEntry->LAT$R_ITEM_VALUE.
 LAT$R_ITEM_COUNTED_STRING.LAT$B_ITEM_BCNT +
 3;

 /*
 ** If the current itemcode being checked has a scalar
 value,
 ** advance the pointer to the next itemcode by skipping 6
 ** bytes for the itemcode and the 4 byte scalar.
 */

 else
 itemlistEntryPointer += 6;
 itemlistEntry = (struct ITEM_ENTRY *) itemlistEntryPointer;
 }

 /*
 ** If the disconnect reason is a LAT reject code, print out the
 ** text corresponding to the code and set the exit condition value
 ** to SS$_NORMAL.
 */

 if (itemlistEntry->LAT$R_ITEM_VALUE.LAT$L_ITEM_SCALAR_VALUE <=
 LATrejectTableSize)
 {
 printf("\nSession disconnected. Reason: %s\n\n\n",
 LATrejectTable[itemlistEntry->LAT$R_ITEM_VALUE.
 LAT$L_ITEM_SCALAR_VALUE]);
 ExitConditionValue = SS$_NORMAL;
 }

 /*
 ** The scalar value is a LAT facility message code. Set the exit
 ** condition value to be the scalar. Upon image exit, the
 ** corresponding LAT facility message will be displayed.
 */

 else
 ExitConditionValue =

205

Chapter 5. Terminal Driver

 itemlistEntry-
>LAT$R_ITEM_VALUE.LAT$L_ITEM_SCALAR_VALUE;

 sys$exit(ExitConditionValue);

} /* END - EndSession */

/*
**++
**
** FUNCTIONAL DESCRIPTION:
**
** This is the program exit handler which is executed upon image exit.
** It will cancel all pending I/O on the two channels and restore the
** TT channel characteristics.
**
**--
*/

void ExitHandler(void)
{
 /*
 ** Local Variables:
 */

 unsigned long status;

 /*
 ** BEGIN:
 **
 ** Cancel I/O on the channels, reset terminal characteristics and
 ** return.
 */

 if (!((status = sys$cancel(LTAchannel)) & 1))
 lib$signal(status);
 if (!((status = sys$cancel(TTchannel)) & 1))
 lib$signal(status);

 if (!((status = sys$qiow(
 0,
 TTchannel,
 IO$_SETMODE,
 &TT_QIOiosb, 0, 0,
 &SavedTTDeviceChar,
 DeviceCharBuffSize, 0, 0, 0, 0)) & 1))
 lib$signal(status);
 if (!(TT_QIOiosb[0] & 1))
 lib$signal(TT_QIOiosb[0]);

 return;

} /* END - ExitHandler */

The MACRO 32 program FULL_DUPLEX_TERMINAL.MAR (Example 5.2) shows several I/O op-
erations using the full-duplex capabilities of the terminal. This program shows some important con-

206

Chapter 5. Terminal Driver

cepts about terminal driver programming: assigning an I/O channel, performing full-duplex I/O opera-
tions, enabling Ctrl/C AST requests, and itemlist read operations. The program is designed to run with
a terminal set to full-duplex mode.

The initialization code queues a read request to the terminal and enables Ctrl/C AST requests. The
main loop then prints out a random message every three seconds. When you enter a message on the
terminal, the read AST routine prints an acknowledgment message and queues another read request.
If you press Ctrl/C, the associated AST routine cancels the I/O operation on the assigned channel and
exits to the command interpreter.

Example 5.2. FULL_DUPLEX_TERMINAL.MAR Terminal Driver Programming
Example

 .TITLE FULL_DUPLEX TERMINAL PROGRAMMING EXAMPLE
 .IDENT /05/

; **
;
; TERMINAL PROGRAM
;
; **

 .SBTTL DECLARATIONS
 .DISABLE GLOBAL

;
; Declare the external symbols and MACRO libraries.
;

 .EXTERNAL LIB$GET_EF
 .LIBRARY 'SYS$LIBRARY:LIB.MLB'
 .LIBRARY 'SYS$LIBRARY:STARLET.MLB'
;
; Define symbols
;

 $IODEF ; Define I/O function codes
 $QIODEF ; Define QIO definition codes
 $SSDEF ; Define the system service status codes
 $TRMDEF ; Define itemlist read codes
 $TTDEF ; Terminal characteristic definitions

;
; Define macros
;
 .SHOW
 .MACRO ITEM LEN=0,CODE,VALUE
 .WORD LEN
 .WORD TRM$_'CODE'
 .LONG VALUE
 .LONG 0
 .ENDM ITEM
 .NOSHOW

;

207

Chapter 5. Terminal Driver

; Declare exit handler control block
;
EXIT_HANDLER_BLOCK:
 .LONG 0 ; System uses this for pointer
 .LONG EXIT_HANDLER ; Address of exit handler
 .LONG 1 ; Argument count for handler
 .LONG STATUS ; Destination of status code
STATUS: .BLKL 1 ; Status code from $EXIT

;
; Allocate terminal descriptor and channel number storage
;

TT_DESC:
 .ASCID /SYS$INPUT/ ; Logical name of terminal
TT_CHAN:
 .BLKW 1 ; TT channel number storage

;
; Define acknowledgment message. This is done right above input buffer
; so that we can concatenate the two together when the acknowledgment
; message is issued.
;

ACK_MSG:
 .ASCII <CR> /Following input acknowledged: /
ACK_MSGLEN=.-ACK_MSG ; Calculate length of message

;
; Allocate input buffer
;

IN_BUFLEN = 20 ; Set length of buffer
IN_BUF:
 .BLKB IN_BUFLEN ; Allocate character buffer
IN_IOSB:
 .BLKQ 1 ; Input I/O status block
;
; Define out-of-band ast character mask
;
CNTRLA_MASK:
 .LONG 0
 .LONG ^B0010 ; Control A mask

;
; Define old terminal characteristics buffer
;
OLDCHAR_BUF_LEN = 12
OLDCHAR_BUF:
 .BLKB OLDCHAR_BUF_LEN

;
; Define new terminal characteristics buffer
;
NEWCHAR_BUF_LEN = 12
NEWCHAR_BUF:

208

Chapter 5. Terminal Driver

 .BLKB NEWCHAR_BUF_LEN

;
; Define carriage control symbols
;

 CR=^X0D ; Carriage return
 LF=^X0A ; Line feed

;
; Define output messages
;
; Output messages are accessed by indexing into a table of
; longwords with each message described by a message address and
; message length
;

ARRAY: ; Table of message addresses and
 ; lengths
 .LONG 10$; First message address
 .LONG 15$; First message length
 .LONG 20$
 .LONG 25$
 .LONG 30$
 .LONG 35$
 .LONG 40$
 .LONG 45$
;
; Define messages
;

10$: .ASCII <CR>/RED ALERT! RED ALERT!/
15$=.-10$
;
20$: .ASCII <CR>/ALL SYSTEMS GO/
25$=.-20$
;
30$: .ASCII <CR>/WARNING..INTRUDER ALARM/
35$=.-30$
;
40$: .ASCII <CR>/** SYSTEM OVERLOAD **/
45$=.-40$
;
; Static QIO packet for message output using QIO$_G form
;

WRITE_QIO:
 $QIO EFN=SYNC_EFN, - ; QIO packet
 FUNC=IO$_WRITEVBLK!IO$M_BREAKTHRU!IO$M_REFRESH, -
 IOSB=SYNC_IOSB

;
; Declare the required I/O status blocks.
;
SYNC_IOSB:: .BLKQ 1 ; I/O status block for synchronous terminal
 processing.

209

Chapter 5. Terminal Driver

;
; Declare the required event flags.
;
ASYNC_EFN:: .BLKL 1 ; Event flag for asynchronous terminal
 processing.
SYNC_EFN == WRITE_QIO + 4 ; Event flag for sync terminal
 processing.
TIMER_EFN:: .BLKL 1 ; Event flag for timer processing.

;
; Timer storage
;

WAITIME:
 .LONG -10*1000*1000*3,-1 ; 3 second delta time
TIME:
 .BLKQ 1 ; Current storage time used for
 ; random number

 .PAGE
 .SBTTL START - MAIN ROUTINE
 .ENABLE LOCAL_BLOCK
;++
;
; Functional description:
;
; **
;
; Start program
;
; **
;
; The following code performs initialization functions.
; It is assumed that the terminal is already in
; FULL-DUPLEX mode.
;
; NOTE: When doing QIO_S calls, parameters P1 and P3-P6 should be
; passed by value, while P2 should be passed by reference.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
;--
 .ENTRY START ^M < >

; Get the required event flags.

 PUSHAL ASYNC_EFN
 CALLS # 1, G^ LIB$GET_EF ; Get EFN for async terminal
 operations.
 BLBC R0, 10$; Error - branch.
 PUSHAL SYNC_EFN
 CALLS # 1, G^ LIB$GET_EF ; Get EFN for sync terminal
 operations.

210

Chapter 5. Terminal Driver

 BLBC R0, 10$; Error - branch.
 PUSHAL TIMER_EFN
 CALLS # 1, G^ LIB$GET_EF ; Get EFN for timer operations.
 BLBC R0, 10$; Error - branch.

; Initialize the terminal characteristics.

 $ASSIGN_S DEVNAM=TT_DESC,-; Assign terminal channel using
 CHAN=TT_CHAN ; logical name and channel number
 BLBC R0, 10$; Error - branch.
 BSBW CHANGE_CHARACTERISTICS ; Change the characteristics of
 ; terminal
 BSBW ENABLE_CTRLCAST ; Allow Ctrl/C traps
 BSBW ENABLE_OUTBANDAST ; Enable Ctrl/A out-of-band AST
 BSBW ENABLE_READ ; Queue read
 MOVZWL TT_CHAN, WRITE_QIO+8 ; Insert channel into
 BRB LOOP ; static QIO packet

10$:
 BRW ERROR

;
; This loop outputs a message based on a random number and then
; delays for 3 seconds
;

LOOP:
 $GETTIM_S TIMADR=TIME ; Get random time
 BLBC R0, 10$; Error - branch.
 EXTZV #6, #2, TIME, R0 ; Load random bits into switch
 MOVQ ARRAY[R0], - ; Load message address
 WRITE_QIO+QIO$_P1 ; and size into QIO
 ; packet

;
; Issue QIO write using packet defined in data area
;

 $QIOW_G WRITE_QIO
 BLBC R0, 10$; QIO error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch.

;
; Delay for 3 seconds before issuing next message
;

 $SETIMR_S EFN=TIMER_EFN,- ; Timer service
 DAYTIM=WAITIME ; will set event flag
 ; in 3 seconds
 BLBC R0, 10$; Error - branch.
 $WAITFR_S EFN=TIMER_EFN ; Wait for event flag
 BLBS R0, LOOP ; No error if set
 BRB 10$; Error - branch.

211

Chapter 5. Terminal Driver

 .DISABLE LOCAL_BLOCK

 .PAGE
 .SBTTL CHANGE_CHARACTERISTICS - CHANGE CHARACTERISTICS OF TERMINAL
;++
;
; Functional description:
;
; Routine to change the characteristics of the terminal.
;
; Input parameters:
; None
;
; Output parameters:
; R0 - status from $QIO call.
; R1 - R5 destroyed
;
;--
;

CHANGE_CHARACTERISTICS:
 $QIOW_S EFN=SYNC_EFN, - ; Get current terminal
 characteristics
 CHAN=TT_CHAN, -
 FUNC=#IO$_SENSEMODE, -
 IOSB=SYNC_IOSB, -
 P1=OLDCHAR_BUF, -
 P2=#OLDCHAR_BUF_LEN
 BLBC R0, 10$; Error if clear
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Error - branch

 $DCLEXH_S EXIT_HANDLER_BLOCK ; Declare exit handler to reset
 ; characteristics
 BLBC R0, 10$; Error - branch.
 MOVC3 #OLDCHAR_BUF_LEN, - ; Move old characteristics into
 OLDCHAR_BUF, - ; new characteristics buffer
 NEWCHAR_BUF
 BISL2 #TT$M_NOBRDCST, - ; Set nobroadcast bit
 NEWCHAR_BUF+4 ; ...
 $QIOW_S EFN=SYNC_EFN, - ; Set current terminal
 characteristics
 CHAN=TT_CHAN, -
 FUNC=#IO$_SETMODE, -
 IOSB=SYNC_IOSB, -
 P1=NEWCHAR_BUF, -
 P2=#NEWCHAR_BUF_LEN
 BLBC R0, 10$; QIO error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch.
 RSB
10$:
 BRW ERROR

 .PAGE
 .SBTTL ENABLE_CTRLCAST - ENABLE Ctrl/C AST

212

Chapter 5. Terminal Driver

;++
;
; Functional description:
;
; Routine to allow Ctrl/C recognition.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
;--
;

ENABLE_CTRLCAST:
 $QIOW_S EFN=SYNC_EFN, -
 CHAN=TT_CHAN, -
 FUNC=#IO$_SETMODE!IO$M_CTRLCAST, -
 IOSB=SYNC_IOSB, -
 P1=CTRLCAST, - ; AST routine address
 P3=#3 ; User mode
 BLBC R0, 10$; Error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch.
 RSB

10$:
 BRW ERROR

 .PAGE
 .SBTTL ENABLE_OUTBANDAST - ENABLE Ctrl/A AST
;++
;
; Functional description:
;
; Routine to allow CNTRL/A recognition.
;
; Input parameters:
; None
;
; Output parameters:
; None
;

ENABLE_OUTBANDAST:
 $QIOW_S EFN=SYNC_EFN, -
 CHAN=TT_CHAN, -
 FUNC=#IO$_SETMODE!IO$M_OUTBAND, -
 IOSB=SYNC_IOSB, -
 P1=CTRLAAST, - ; AST routine address
 P2=#CNTRLA_MASK, - ; Character mask
 P3=#3 ; User mode
 BLBC R0, 10$; QIO error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch.

213

Chapter 5. Terminal Driver

 RSB

10$:
 BRW ERROR

 .PAGE
 .SBTTL ENABLE_READ - QUEUE A READ TO THE TERMINAL.
;++
;
; Functional description:
;
; Routine to queue a read operation to the terminal.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
; Define item list for itemlist read
;
ITEM_LST:
 ITEM 0, MODIFIERS, - ; Convert lowercase to
 TRM$M_TM_CVTLOW!TRM$M_TM_NOEDIT ; upper and inhibit line
 ITEM 6, TERM,MASK_ADDR ; editing
 ; Set up terminator mask

ITEM_LEN = . - ITEM_LST
MASK_ADDR:
 .LONG 1@^XD ; Terminator mask is
 ; <CR>
.WORD 1@4 ; and "$"ENABLE_READ:
 $QIO_S EFN=ASYNC_EFN, - ; Must not be QIOW form or read
 will block
 CHAN=TT_CHAN, - ; process
 FUNC=#IO$_READVBLK!IO$M_EXTEND, -
 IOSB=IN_IOSB, -
 ASTADR=READAST, - ; AST routine to execute
 P1=IN_BUF, - ; on
 P2=#IN_BUFLEN, -
 P5=#ITEM_LST, - ; Itemlist read address
 P6=#ITEM_LEN ; Itemlist read size
 BLBC R0, 10$; QIO error - branch.

; The queued read operation will not affect write operations due
; to the fact that breakthru has been set for the write operations.

 RSB

10$:
 BRW ERROR

 .PAGE
 .SBTTL READAST - AST ROUTINE FOR READ COMPLETION
 .ENABLE LOCAL_BLOCK
;++
;

214

Chapter 5. Terminal Driver

; Functional description:
;
; AST routine to execute on read completion.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
;--
;

10$:
 MOVZWL IN_IOSB, R0 ; Get the terminal driver status
20$:
 BRW ERROR ; Exit with error status.

 .ENTRY READAST ^M < R2, R3, R4, R5 > ; Procedure entry
 mask

 BLBC IN_IOSB, 10$; Terminal driver error - branch
 MOVZWL IN_IOSB+2, R0 ; Get number of characters read
 into R0
 ADDL2 #ACK_MSGLEN, R0 ; Add size of fixed acknowledge
 message
 $QIO_S EFN=ASYNC_EFN, - ; Issue acknowledge message
 CHAN=TT_CHAN, - ; Note, ACK must be asynchronous
 (QIO)
 FUNC=#IO$_WRITEVBLK, - ; and the terminal driver write
 status
 P1=ACK_MSG, - ; is ignored (no IOSB and AST
 routine).
 P2=R0 ; Specify IOSB and AST routine if
 output
 ; must be displayed on the
 terminal.
 BLBC R0, 20$; QIO error - branch

;
; Process read message
;
; .
; .
; .
;(user-provided code to decode command inserted here)
; .
; .
; .

 BSBW ENABLE_READ ; Queue next read
 RET ; Return to mainline loop

 .DISABLE LOCAL_BLOCK

 .PAGE

215

Chapter 5. Terminal Driver

 .SBTTL CTRLAAST - AST ROUTINE FOR Ctrl/A
 .SBTTL CTRLCAST - AST ROUTINE FOR Ctrl/C
 .SBTTL ERROR - EXIT ROUTINE
;++
;
; Functional description:
;
; AST routine to execute when Ctrl/C or Ctrl/A is entered.
;
; Input parameters:
; None
;
; Output parameters:
; None
;

CTRLCAST::
CTRLAAST::
 .WORD ^M < > ; Procedure entry mask
 MOVL #SS$_NORMAL, R0 ; Put success in R0

ERROR::
 $EXIT_S R0 ; Exit
 RSB

 .PAGE
 .SBTTL EXIT_HANDLER - EXIT HANDLER ROUTINE
;++
;
; Functional description:
;
; Exit handler routine to execute when image exits. It cancels
; any outstanding I/O on this channel and resets the terminal
; characteristics to their original state.
;
; Input parameters:
; None
;
; Output parameters:
; None
;
;--
;

 .ENTRY EXIT_HANDLER ^M< >
 $CANCEL_S CHAN=TT_CHAN ; Flush any I/O on queue
 $QIOW_S EFN=SYNC_EFN, - ; Reset terminal characteristics
 CHAN=TT_CHAN, -
 FUNC=#IO$_SETMODE, -
 IOSB=SYNC_IOSB, -
 P1=OLDCHAR_BUF, -
 P2=#OLDCHAR_BUF_LEN
 BLBC R0, 10$; QIO error - branch.
 MOVZWL SYNC_IOSB, R0 ; Get the terminal driver status.

10$:
 RET

216

Chapter 5. Terminal Driver

 .END START

The MACRO 32 program READ_VERIFY.MAR (Example 5.3) shows the read verify function. The
program shows a typical build of itemlists (both the right and left fields), channel assignment, a right-
and left-justified read verify operation, and then the read QIO operation.

Example 5.3. READ_VERIFY.MAR Terminal Driver Programming Example

 .TITLE READ_VERIFY - Read Verify Coding Example
 .IDENT 'V05-000'

 .SBTTL DECLARATIONS
 .DISABLE GLOBAL

;
; Declare the external system routines and MACRO libraries.
;
 .EXTERNAL LIB$GET_EF
 .EXTERNAL SCR$ERASE_PAGE

 .LIBRARY 'SYS$LIBRARY:LIB.MLB'
 .LIBRARY 'SYS$LIBRARY:STARLET.MLB'
;
; Include files:
;
 $IODEF
 $TRMDEF
;
; Macros:
;
.MACRO ITEM LEN=0,CODE,VALUE
 .WORD LEN
 .WORD TRM$_'CODE'
 .LONG VALUE
 .LONG 0
.ENDM ITEM

;
; Equated symbols:
;
INBUF_LEN = 20
ESC = ^X1B

;
; Own storage:
;
; Build item lists for the read verify QIO
;

;
; Right-justified field
;
R_ITEM_LIST:
 ITEM CODE = MODIFIERS, -
 VALUE = TRM$M_TM_R_JUST ; Right justify

217

Chapter 5. Terminal Driver

 ITEM CODE = EDITMODE, -
 VALUE = TRM$K_EM_RDVERIFY ; Enable read verify

 ITEM CODE = PROMPT, -
 VALUE = R_PROMPT_ADDR, -
 LEN = R_PROMPT_LEN ; Set up prompt

 ITEM CODE = INISTRNG, -
 VALUE = R_INISTR_ADDR, -
 LEN = R_INISTR_LEN ; Set up initial string

 ITEM CODE = INIOFFSET, -
 VALUE = R_INISTR_LEN

 ITEM CODE = PICSTRNG, -
 VALUE = R_PICSTR_ADDR, -
 LEN = R_PICSTR_LEN ; Set up picture string

 ITEM CODE = FILLCHR, -
 VALUE = <^A/* /> ; clear = *, fill = space

R_ITEM_LIST_LEN = .-R_ITEM_LIST

R_PROMPT_ADDR:
 .ASCII /[12;12H$/
R_PROMPT_LEN = .-R_PROMPT_ADDR

R_INISTR_ADDR:
 .ASCII / , /
R_INISTR_LEN = .-R_INISTR_ADDR

MASK = TRM$M_CV_NUMERIC!TRM$M_CV_NUMPUNC

R_PICSTR_ADDR:
 .BYTE MASK
 .BYTE MASK
 .BYTE MASK
 .BYTE 0 ; Marker character
 .BYTE MASK
 .BYTE MASK
 .BYTE MASK
R_PICSTR_LEN = .-R_PICSTR_ADDR
;
; Left-justified field
;
L_ITEM_LIST:
 ITEM CODE = MODIFIERS, -
 VALUE = TRM$M_TM_CVTLOW!TRM$M_TM_AUTO_TAB
 ; Upcase input and
 ; complete on field full

 ITEM CODE = EDITMODE, -
 VALUE = TRM$K_EM_RDVERIFY ; Enable read verify

 ITEM CODE = PROMPT, -
 VALUE = L_PROMPT_ADDR, -
 LEN = L_PROMPT_LEN ; Set up prompt

218

Chapter 5. Terminal Driver

 ITEM CODE = INISTRNG, -
 VALUE = L_INISTR_ADDR, -
 LEN = L_INISTR_LEN ; Set up initial string

 ITEM CODE = INIOFFSET, -
 VALUE = 0

 ITEM CODE = PICSTRNG, -
 VALUE = L_PICSTR_ADDR, -
 LEN = L_PICSTR_LEN ; Set up picture string

 ITEM CODE = FILLCHR, -
 VALUE = <^A/* /> ; clear = *, fill = space

L_ITEM_LIST_LEN = .-L_ITEM_LIST

L_PROMPT_ADDR:
 .ASCII /[13;12H Enter Date: /
L_PROMPT_LEN = .-L_PROMPT_ADDR

L_INISTR_ADDR:
 .ASCII / - - /
L_INISTR_LEN = .-L_INISTR_ADDR

MASK1 = TRM$M_CV_NUMERIC
MASK2 = TRM$M_CV_UPPER!TRM$M_CV_LOWER

L_PICSTR_ADDR:
 .BYTE MASK1
 .BYTE MASK1
 .BYTE 0 ; Marker character
 .BYTE MASK2
 .BYTE MASK2
 .BYTE MASK2
 .BYTE 0 ; marker character
 .BYTE MASK1
 .BYTE MASK1
L_PICSTR_LEN = .-L_PICSTR_ADDR

IN_IOSB: .BLKL 2
TT_CHAN: .BLKW 1
INBUF: .BLKB INBUF_LEN
SYSINPUT: .ASCID /SYS$INPUT/
SYNC_EFN: .BLKL 1

 .PAGE

 .ENTRY READ_VERIFY ^M < >

;
; Get the required event flags.
;

 PUSHAL SYNC_EFN
 CALLS # 1, G^ LIB$GET_EF
 BLBC R0, ERROR ; Error - branch
;

219

Chapter 5. Terminal Driver

; Assign the channel to SYS$INPUT
;

 $ASSIGN_S -
 CHAN = TT_CHAN -
 DEVNAM = SYSINPUT ; SYS$INPUT
 BLBC R0, ERROR ; Branch on error

;
; Clear the screen
;

 CLRQ -(SP)
 CALLS #2, G^ SCR$ERASE_PAGE
 BLBC R0, ERROR

;
; Do the right-justified read operation
;

 PUSHL #R_ITEM_LIST_LEN
 PUSHAB R_ITEM_LIST
 CALLS #2, DO_READ
 BLBC R0, ERROR

;
; Do the left-justified read operation
;

 PUSHL #L_ITEM_LIST_LEN
 PUSHAB L_ITEM_LIST
 CALLS #2, DO_READ
 BLBC R0, ERROR

ERROR:
 RET

 .PAGE
;++
;
; DO_READ - do the actual QIO
;
; Inputs:
;
; 4(AP) the address of the itemlist
; 8(AP) the length of the itemlist
;
;--

 .ENTRY DO_READ, ^M

 $QIOW_S EFN=SYNC_EFN, -
 CHAN = TT_CHAN, -
 FUNC = #$_READVBLK!IO$M_EXTEND>, -
 IOSB = IN_IOSB, -
 p1 = inbuf, -

220

Chapter 5. Terminal Driver

 p2 = #inbuf_len, -
 p5 = 4(AP), -
 P6 = 8(AP)
 BLBC R0, 10$; QIO error - branch
 MOVZWL IN_IOSB, R0 ; Get the terminal driver status.
 BLBC R0, 10$; Terminal driver error - branch

; Handle the input...

10$:
 RET
 .END READ_VERIFY

Example 5.4. LIB$XXABLE_CTRL.C Terminal Driver Programming Example

//Demonstrates CTRL-Y and CTRL-C handling under OpenVMS,

//as well as
//some basic dynamic string descriptor operations and a few other
//string-related operations.
////To build and use:
//$ CC/DECC LIB$XXABLE_CTRL
//$ LINK LIB$XXABLE_CTRL
//$ RUN LIB$XXABLE_CTRL
/*#include <descrip.h>>#include <iodef.h>>
#include <libclidef.h>>#include <lib$routines.h>>
#include <ssdef.h>>#include <starlet.h>>
#include <stdio.h>>#include <stsdef.h
>>void CtrlYHandler()*/
 {
 int RetStat;
 $DESCRIPTOR(Y, "<CTRL/Y>>was detected");
 RetStat = lib$put_output();
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return;
 RetStat = lib$enable_ctrl($M_CLI_CTRLY);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return;
 return;
 }

void CtrlCHandler()
 {
 int RetStat;
 $DESCRIPTOR(Y, "<CTRL/C>>was detected");
 RetStat = lib$put_output();
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return;
 RetStat = lib$enable_ctrl($M_CLI_CTRLY);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return;
 return;
 }

main()
 {
 int RetStat;
 unsigned short int IOChan;

221

Chapter 5. Terminal Driver

 unsigned short int GotLen;
 struct dsc$descriptor GotDsc = { 0, DSCK_DTYPE_T, DSCK_CLASS_D, NULL };
 $DESCRIPTOR(Prompt, "Enter CTRL/Y, CTRL/C, or any characters and
 RETURN:");
 $DESCRIPTOR(Exiting, "Exiting");
 $DESCRIPTOR(TTDsc, "TT:");

 RetStat = lib$disable_ctrl($M_CLI_CTRLY);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = sys$assign(, , 0, 0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = sys$qiow(0, IOChan, IO$_SETMODE|IO$M_CTRLYAST, 0, 0, 0,
 CtrlYHandler, 0, 0, 0, 0, 0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = sys$qiow(0, IOChan, IO$_SETMODE|IO$M_CTRLCAST, 0, 0, 0,
 CtrlCHandler, 0, 0, 0, 0, 0);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = lib$get_input(, ,);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = sys$dassgn(IOChan);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = lib$enable_ctrl($M_CLI_CTRLY);
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = lib$put_output();
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 RetStat = lib$sfree1_dd();
 if (!$VMS_STATUS_SUCCESS(RetStat))
 return RetStat;
 return SS$_NORMAL;
 }

222

Chapter 6. Pseudoterminal Driver
This chapter describes the use of the pseudoterminal driver (FTDRIVER) and the pseudoterminal
software.

A pseudoterminal is a software device that appears as a real terminal to an application communicat-
ing with it, but does not require the existence of a physical terminal. A pseudoterminal consists of two
components: the pseudoterminal device and a control program. The control program acts like a key-
board; that is, anything written to the control program appears on the pseudoterminal device as if the
keystrokes had been typed in at a physical terminal. The control program also acts like a viewport to
the pseudoterminal device; that is, the control program reads anything that is written by the system to
the pseudoterminal device.

A pseudoterminal allows an application to be set up on the control side of the link to communicate
with another application that is on the pseudoterminal side. This arrangement allows development of
applications that either simulate users or monitor the communication between a real user (at a physical
terminal) and an application. As with other devices, the work of the pseudoterminal is performed by a
device driver and is tightly coupled to the operating system.

The pseudoterminal driver software includes a set of control connection routines. Applications can use
these routines to perform pseudoterminal operations and functions. Appendix D provides the calling
conventions for these routines.

6.1. Pseudoterminal Operations
This section contains information on the following pseudoterminal operations:

• Creating a pseudoterminal

• Canceling a request

• Deleting a pseudoterminal

6.1.1. Creating a Pseudoterminal
To create a pseudoterminal, use the PTD$CREATE routine described in Appendix D. When a
pseudoterminal is created, it inherits the current system terminal default attributes unless you specify
an alternate set of characteristics. In either case, you cannot use PTD$CREATE to alter the following
startup attributes:

• TT$M_CRFILL is cleared. To change this attribute, issue the SET MODE $QIO function.

• TT$M_LFFILL is cleared. To change this attribute, issue the SET MODE $QIO function.

• TT$M_MODEM is cleared. This attribute cannot be changed.

• TT$M_REMOTE is cleared. This attribute cannot be changed.

• TT$M_HOSTSYNC is set. To change this attribute, issue the SET MODE $QIO function.

• TT$M_TTSYNC is set. To change this attribute, issue the SET MODE $QIO function.

• TT2$M_DMA is cleared. To change this attribute, issue the SET MODE $QIO function. Chang-
ing it does not alter the behavior of TTDRIVER or the pseudoterminal.

223

Chapter 6. Pseudoterminal Driver

• TT2$M_AUTOBAUD is cleared. To change this attribute, issue the SET MODE $QIO function.
Changing it does not alter the behavior of TTDRIVER or the pseudoterminal.

• TT2$M_FALLBACK is cleared. To change this attribute, issue the SET MODE $QIO function.

• TT2$M_HANGUP is cleared. To change this attribute, issue the SET MODE $QIO function.

• TT2$M_DCL_MAILBX is cleared. This attribute cannot be changed.

When you create a pseudoterminal, you can specify a repeating asynchronous system trap (AST) to be
delivered when the terminal connection is freed. This AST can be supplied only when the pseudoter-
minal is created, and it cannot be deleted. A terminal is freed when a process logs out or deassigns the
last channel to the device. The AST allows the control program to determine whether or not a user of
a pseudoterminal is using it. At this point, the control program can reuse or delete the pseudoterminal
by deassigning the control channel.

6.1.2. Canceling a Request
To cancel a queued control connection request, the control program uses the PTD$CANCEL routine.
This routine enables the pseudoterminal driver to differentiate between control requests and terminal
requests that are being canceled. This routine cannot be used to flush event notification ASTs.

6.1.3. Deleting a Pseudoterminal
To delete the pseudoterminal, the control program uses the PTD$DELETE routine. When a pseudoter-
minal is deleted, any process that is using the pseudoterminal (except the control process) is discon-
nected. If you have the TT2$M_DISCONNECT bit set in the default terminal characteristics parame-
ter (TTY_DEFCHAR2) and virtual terminals have been enabled (see Section 5.1.2.3), you get a virtu-
al terminal upon logging in to a pseudoterminal. In this case, the process is not logged out, but the vir-
tual terminal is disconnected from the pseudoterminal.

The PTD$DELETE request causes any pending I/O for the control program to be aborted. It deletes
any queued event notification ASTs and returns the I/O buffers to the application. It also causes the
pseudoterminal unit control block (UCB) to be deleted once the reference count returns to zero.

Note

If an application exits without calling PTD$DELETE, the pseudoterminal is still deleted.

6.2. Pseudoterminal Driver Features
The terminal portion of a pseudoterminal is similar to a regular terminal. The pseudoterminal driver
provides the following features:

• Type-ahead buffer

• Specifiable or default line terminators

• Special operating modes, such as NOECHO and PASTHRU

• Escape sequence detection

• Terminal/mailbox interaction

224

Chapter 6. Pseudoterminal Driver

• Terminal control characters, such as Ctrl/S and Ctrl/Q for starting and stopping output, Ctrl/O for
discarding output, and all other special characters that are handled by the standard terminal driver

• Limited full-duplex operation (simultaneously active read and write requests)

For more information on these features, see Section 5.1.

6.3. Pseudoterminal Driver Device Informa-
tion
The pseudoterminal inherits its device characteristics from the system default parameters, with the fol-
lowing exceptions:

• The device inherits initial device characteristics from the SYSGEN-supplied default values. You
can modify the device characteristics during device creation by supplying new characteristics.

• The HOSTSYNC terminal characteristic is always set.

• The device is set to NOMODEM and cannot be set to MODEM.

• The device is set not to time output character transmission. Hardware controllers time output char-
acter transmission to determine whether the controller is broken.

You can obtain information on pseudoterminal characteristics by using the Get Device/Volume Infor-
mation ($GETDVI) system service, as described in Section 5.2 and the VSI OpenVMS System Services
Reference Manual.

Applications should assign a channel other than the control channel to read data from, write
data to, read, or alter the pseudoterminal characteristics. An attempt to perform such I/O with
the control channel, or any other attempt to queue an illegal or unsafe I/O request, results in an
SS$_CHANINTLK error.

6.4. I/O Buffers
When you create a pseudoterminal, you must provide at least one page to be used as an I/O buffer.

On Alpha and Integrity server systems, you can allocate one page and divide it into I/O buffers as
needed.

No read or write request should reference more than one I/O buffer at a time. The I/O buffers must
be page aligned; therefore, you should create these pages with the $EXPREG system service or the
LIB$GET_VM_PAGE routine. The pages are owned by the driver until you delete the pseudotermi-
nal. The application is responsible for managing the pages and cannot use buffers that are owned by
another pseudoterminal. The application must decide whether to delete the buffers when they are freed
by the driver or to reuse them.

The I/O buffers must be valid pages in virtual address space. Creating or deleting an I/O buffer does
not alter the contents of the pages.

The low-order word of the status information longword contains the status of the request. The high-or-
der word of the status information longword contains the actual number of bytes that are read or writ-
ten.

Assume that an I/O buffer starting at 200 hexadecimal is available for use. If you want to read 20
bytes from the pseudoterminal, the readbuf address would be 200, and the readbuf_len would be 20.

225

Chapter 6. Pseudoterminal Driver

An application can use the rest of this buffer for other purposes, including reading or writing to the
pseudoterminal. Figure 6.1 shows how the buffer would look.

Figure 6.1. Buffer Layout

6.5. Pseudoterminal Functions
This section discusses the following pseudoterminal functions:

• Reading data

• Writing data

• Using write with echo

• Flow control

• Event notification

6.5.1. Reading Data
To read data from the pseudoterminal, the control program uses the PTD$READ routine. When a
PTD$READ routine is called, the operating system queues a read operation. The read operation
completes when the pseudoterminal has characters to output. The read request queries TTDRIVER
whether there is data found to be returned. If so, the resulting string of characters is returned. If a read
request is issued and no data is available, the read request is queued and then completed at a later
time. In this case, the routine always returns at least one character. The read request may complete
even when there are no characters available to output. In this rare case when TTDRIVER indicates
that there is no more data to be output and there is really no data, the read operation completes with
zero bytes of data.

An application that issues an asynchronous pseudoterminal read can use the $SYNCH system service
to find out when the read completed. The efn argument for the $SYNCH service must be the same as
the efn specified in the original PTD$READ call, and the iosb for the $SYNCH service must match
the readbuf of the PTD$READ call.

6.5.2. Writing Data
To write data to the pseudoterminal, the control program uses the PTD$WRITE routine. The write re-
quest allows you to specify a buffer to receive any output that the write request generates; you do not
need to issue a separate read request to read this data. When you use an echo buffer, the control appli-
cation can significantly reduce the number of I/O requests required.

An application can issue only one write request at a time. Once the write request completes, the appli-
cation must check the write buffer status longword to see whether all the data supplied was written. If
not, the application must issue additional write requests until all the data has been accepted.

226

Chapter 6. Pseudoterminal Driver

6.5.3. Using Write with Echo
If a read request is pending when a write-with-echo request is issued, the echo data is placed in the
echo buffer. If more data is echoed than can fit in the echo buffer, the remaining data is placed in the
pending read requests buffer. If no pending read exists, the data is held by the driver until another re-
quest that can take the data is issued. Both the read and the write with echo must use completion ASTs
to allow the driver to report request completions to the application in the correct order.

If an application is not using the write-with-echo capability, the application should avoid using com-
pletion ASTs if possible. Unnecessary use of completion ASTs significantly increases the number of
instructions needed to complete a read or write operation.

When using write with echo, both the wrtbuf and echobuf arguments contain I/O status information.
An application must check both of these status longwords if the PTD$WRITE completes successful-
ly. If a write operation wrote no characters, characters might still be in the echo buffer. If no data was
echoed, the status in the echobuf is SS$_NORMAL with zero bytes transferred.

6.5.4. Flow Control
By default, the driver attempts to notify the control program of data overrun or loss. The pseudotermi-
nal sends an XOFF AST when the type-ahead buffer is getting full. Once the pseudoterminal delivers
an XOFF AST, the pseudoterminal also returns a status of SS$_DATAOVERUN with the actual num-
ber of characters input. This prevents a single request from flooding the type-ahead buffer. If a control
program makes repeated attempts to insert data after receiving the SS$_DATAOVERUN message, it
can flood the terminal type-ahead buffer. When the type-ahead buffer has filled, the pseudoterminal
returns the status of SS$_DATALOST.

If the control program is writing to the terminal or terminal driver, it should let the terminal and ter-
minal driver handle flow control. To do this, the application should enable all three input flow control
notification ASTs. The control program should write a DC1 to the terminal if an XON AST is deliv-
ered. It should write a DC3 to a terminal if an XOFF AST is delivered, and write a BELL character to
the terminal if the BELL AST is delivered. These signals allow the terminal to decide what to do with
the flow control data. The application should ignore the SS$_DATAOVERUN and SS$_DATALOST
return status and continue writing data to the pseudoterminal.

6.5.5. Event Notification
This section describes how the pseudoterminal driver provides notification of important driver events.

6.5.5.1. Input Flow Control

The driver provides three ways to indicate when the class driver wants to stop input and one way to
signal when it is safe to resume output:

• The driver returns a status of SS$_DATAOVERUN and the number of characters input for the
control program write.

• The control program can enable a BELL attention AST to be delivered when the class driver calls
the PTD$SET_TERMINAL_NOTIFICATION routine. This AST is delivered if the pseudoter-
minal does not have the HOSTSYNC attribute set. If only a BELL or only an XOFF AST event
is enabled and an XOFF or a BELL AST needs to be delivered, the AST that is available is deliv-
ered.

227

Chapter 6. Pseudoterminal Driver

• The control program can enable an XOFF attention AST to be delivered when the class dri-
ver calls the PTD$SET_TERMINAL_NOTIFICATION routine. This AST is delivered if the
pseudoterminal has the HOSTSYNC attribute set.

• The control program can enable an XON attention AST to be delivered when the class driver
calls the PTD$SET_TERMINAL_NOTIFICATION routine. This AST is delivered only if the
pseudoterminal has the HOSTSYNC attribute set.

6.5.5.2. Output Stop
The Output Stop AST tells the control program that the terminal driver is stopping output. This keeps
the control program from having to determine whether an XOFF written to the control side is being
treated by the terminal driver as flow control or data.

6.5.5.3. Output Resume
The Output Resume AST tells the control program that the terminal driver wants to resume output.
This AST can be delivered at any time, even if output is active or has previously been stopped. The
control program should always restart output processing when it receives this AST.

6.5.5.4. Characteristics Changed
The Characteristics Changed AST tells the control program that the terminal driver has called the
pseudoterminal CHANGE CHARACTERISTICS routine. This routine is called whenever the termi-
nal driver has changed the device characteristics. The control program should then read the pseudoter-
minal characteristics to determine what has changed.

6.5.5.5. Output Abort
The Output Abort AST tells the control program that the terminal driver has called the pseudotermi-
nal ABORT OUTPUT routine. This routine is called when the terminal driver wants to flush any out-
standing output data. The control program should flush any internally buffered data when this AST is
received.

6.5.5.6. Terminal Driver Read Events
Three special event types notify the control program when a terminal read request starts and finish-
es. By default, the pseudoterminal does not deliver the read notification ASTs associated with these
events. The PTD$SET_EVENT_NOTIFICATION routine must be used explicitly to enable or disable
their delivery.

• Start Read—Tells the control program that the terminal driver is starting a read request. Some ap-
plications require this in order to know when to start inputting a logged session script. The special
event types are:

• Middle Read—Tells the control program that the terminal driver has finished writing the prompt
string if one was supplied.

• End Read—Tells the control program that the terminal driver has finished a read request.

Once an event notification AST is enabled, it continues to be delivered until it is canceled, or until the
device is deleted. This characteristic allows the control program to enable the AST once, which great-
ly reduces the risk of missing multiple rapid occurrences of an event. If the driver cannot get sufficient
resources to deliver the notification AST, that report is lost. Only one AST per event is allowed, and
attempts to specify multiple ASTs result in use of the last one specified.

228

Chapter 6. Pseudoterminal Driver

To enable or disable event notification, the control program uses the PTD$SET_EVENT_NOTIFI-
CATION routine, which is described in Appendix D.

6.6. Pseudoterminal Driver Programming Ex-
ample
Example 6.1 shows how to use the pseudoterminal. (The example is also included in the SYS$EX-
AMPLES directory.) This section begins with a brief overview of the example. The example itself
briefly discusses each module; the pseudocode for that module follows its discussion.

The scenario chosen for this example is a simple terminal session logging utility that uses most of
the pseudoterminal capabilities. This example also shows how to use the write-with-echo capability,
which provides a significant gain in performance.

6.6.1. Design Overview
The design approach writes the log record in a main loop that hibernates when it has no work to do.
The loop uses ASTs to read keystrokes from the terminal, write to the pseudoterminal, and write data
to the terminal. When a block of characters is written to the terminal, that block is placed into a queue
of blocks to be written to the log file, and a wake request is issued. Logging is stopped if you log out
of the subprocess, if you enter the stop logging character Ctrl\, or if a severe error occurs during da-
ta processing. When any of these events occur, all outstanding log records are written before the pro-
gram exits.

One major design consideration is how flow control should be handled — either by attempting to en-
force flow control, or by letting the terminal and terminal driver handle it. In this example, the termi-
nal and terminal driver handle flow control; the driver sends XON, XOFF, or BELL characters to the
terminal as necessary.

One of the six I/O buffers is permanently reserved as the terminal read buffer. This buffer is passed di-
rectly to the terminal read $QIO. This eliminates having to move data that is read from the terminal
into the read buffer. The other five buffers are placed in a queue and are allocated and deallocated as
needed. This pool of buffers reserves the first two longwords to be used as queue headers and tradi-
tional IOSBs. The third longword and the I/O status longwords are used by the pseudoterminal driver.

Example 6.1. Sample Pseudocode for Pseudoterminal Driver Program

/*
** Main Routine
**
** Function: Intitializes the environment and then hibernates, waiting
** to be awakened. When awakened, the program checks to see whether it
** is exiting, or whether more log data is available. If more data is
** available, the data is appended to the current log record and checked
** to see whether a log record should be written. A log record is written
** either when maxbuf characters are in the log buffer,
** or when it finds a <CR>character pair. The algorithm
** allows an unlimited number of <NULL>fill characters to occur
** between the <CR>and the <LF>. If the program is
** exiting, it closes the log file, deletes the pseudoterminal, resets
 the
** terminal, and exits.
*/
Initialize environments (This includes creating pseudoterminal, the log
 file

229

Chapter 6. Pseudoterminal Driver

 and starting up the subprocess.)

If (Initialization OK) Then
 Do
 while (I/O buffer to log)
 Data size = number of bytes in I/O buff
 For all data in I/O buffer
 If (cr_seen) Then
 If (current char == <LF>) Then
 write current log buffer
 reset cr_seen
 point to start of log buffer
 Else if (current char != <NULL>) Then
 insert <CR>and current char into log buffer
 move log buffer ptr over 2 characters
 reset cr_seen
 Endif
 Else if (current character != <CR>) Then
 insert character into log buffer
 move log buffer ptr over 1 character
 Else
 set cr_seen
 Endif

 If (log buffer ptr >= IOC$GW_MAX-48) Then
 write log buffer
 reset log buffer pointer
 reset cr_seen
 Endif
 Endloop
 Free I/O buffer call free_io_buffers
 Endwhile
 If (not exiting) Then
 Wait for more to do call SYS$HIBER
 Endif
 Until ((exiting) and (no I/O buffers to log))

 close log file
 If ((close failed) and (exit reason is SS$_NORMAL)) Then
 set exit to status to failure reason
 Endif
 If (subprocess still running) Then
 call SYS$FORCEX to run down the subprocess
 Endif
 call PTD$CANCEL to flush all pending pseudoterminal read requests
 call SYS$CANCEL to flush all terminal requests
 call PTD$DELETE to delete the pseudoterminal
 If ((delete failed) and (exit reason is SS$_NORMAL)) Then
 set exit to status to failure reason
 Endif
 reset terminal to startup condition using SYS$QIOW
 If ((terminal reset failed) and (exit reason is SS$_NORMAL)) Then
 exit to status to failure reason
 Endif
Endif
call LIB$SIGNAL and report exit reason
Exit

230

Chapter 6. Pseudoterminal Driver

/*
**
** Initialization Code
**
** Function: This routine sets the terminal characteristics, creates the
** pseudoterminal, starts up the subprocess, and opens the log file. If
** any of these steps fail, the program undoes any steps already done and
** returns to the main routine.
**
*/

read the maximum buffer size from IOC$GW_MAXBUF
Assign a channel to SYS$INPUT
If (assign ok) Then
 Read the terminal characteristics from the terminal
 If (read of terminal characteristics ok) Then
 Open log file with maximum record size of IOC$GW_MAXBUF
 If (open ok) Then
 Create the pseudoterminal with characteristics of terminal
 If (create ok) then
 Place 4 of the buffers on the queue of free I/O buffers
 Copy terminal characteristics and modify them to NOECHO and
 PASTHRU
 Set the terminal characteristics use modified value
 If (set ok) Then
 Get device name of pseudoterminal use SYS$GETDVI
 If (get ok) Then
 Create subprocess
 If (create ok) Then
 Enable XON, XOFF, BELL, SET_LINE event notification
 ASTs
 If (AST setup OK) Then
 Call PTD$READ to start reading from the
 pseudoterminal
 ASTADR = ft_read_ast
 ASTPRM = buffer address
 READBUF = I/O buffer + 8
 READBUF_LEN = 500
 If (read ok) Then
 Call SYS$QIO and read a single character from
 the
 keyboard ASTADR = kbd_read_ast
 If (read failed) Then
 Call PTD$CANCEL to flush queued
 pseudoterminal read
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it

231

Chapter 6. Pseudoterminal Driver

 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Reset terminal to original state
 Close log file and delete it
 Endif
 Else
 Call PTD$DELETE to delete pseudoterminal
 Close log file and delete it
 Endif
 Else
 Close log file and delete it
 Endif
 Endif
 Endif
Endif

/*
** kbd_read_ast
**
** Function: This routine is called every time data is read from the
 terminal.
** If the program is exiting, then the routine exits without restarting
 the
** read. The character read is checked to see if the terminate
 processing
** character Ctrl\ was entered. If the terminate processing character was
** entered, the exiting state is set and a SYS$WAKE is issued to start the
** main routine. Now an attempt is made to obtain an I/O buffer in which
** to store echoed output. If an I/O buffer is unavailable, a simple
** PTD$WRITE is issued; a PTD$WRITE with echo is issued if a buffer is
** available. If the write completes successfully, another read is issued
** to the keyboard.
**
*/

If (not exiting) Then
 If (read ok) Then
 Search input data for Ctrl\
 Allocate a read buffer call allocate_io_buffer
 If (got a buffer) Then
 Call PTD$WRITE to write characters to pseudoterminal
 ASTADR = ft_echo_ast
 ASTPRM = allocated I/O buffer
 WRTBUF = read I/O buffer
 WRTBUF_LEN = number of characters read
 ECHOBUF = allocated I/O buffer
 ECHOBUF_LEN = 500
 Else
 Call PTD$WRITE to write characters to pseudoterminal
 WRTBUF = read I/O buffer
 WRTBUF_LEN = number of characters read
 Endif

232

Chapter 6. Pseudoterminal Driver

 If (write setup ok)
 If ((write status is ok) or (write status is SS$_DATALOST))
 Issue another single character read to terminal with
 ASTADR = kbd_read_ast, with data going to read I/O
 buffer
 If (read setup failed) Then
 Set exit flag
 Set exiting reason to SS$_NORMAL
 Endif
 Else
 Set exit flag
 Set exiting reason to SS$_NORMAL
 Endif
 Else
 Set exit flag
 Set exiting reason to SS$_NORMAL
 Endif
 Else
 Set exit flag
 Set exiting reason to read failure status
 Endif
 If (exiting) Then
 Wake the mainline call SYS$WAKE
 Endif
Endif

/*
** terminal_output_ast
**
** Function: This routine is called every time an I/O buffer is written
** to the terminal. If the terminal write request completes successfully,
** it inserts the I/O buffer into the queue of I/O buffers to be logged.
** If the I/O buffer is the only entry on the queue, it issues a SYS$WAKE
** to start the main routine. To prevent spurious wake requests,
** SYS$WAKE is not issued if multiple entries are already on
** the queue. If a terminal write error occurs, the routine sets the
** exit flag and wakes the main routine.
**
*/
If (terminal write completed ok) Then
 insert I/O buffer onto logging queue
 If (this is only entry on queue) Then
 wake the mainline call SYS$WAKE
 Endif
Else
 set exit flag
 set exiting reason to terminal write error reason
 wake the mainline call SYS$WAKE
Endif

/*
**
** ft_read_ast
**
** Function: This routine is called when a pseudoterminal read request
** completes. It writes the buffer to the terminal and attempts to start
** another read from the pseudoterminal. If the program is not exiting,

233

Chapter 6. Pseudoterminal Driver

** this routine writes the buffer to the terminal and does not start
 another
** pseudoterminal read.
**
*/
If (not exiting)
 If (Pseudoterminal read ok) Then
 write buffer to the terminal ASTADR = terminal_output_ast
 If (write setup ok) Then
 Allocate another read buffer call allocate_io_buffer
 If (got a buffer) Then
 Call PTD$READ to restart reads from the pseudoterminal.
 ASTADR = ft_read_ast
 ASTPRM = buffer address
 READBUF = I/O buffer + 8
 READBUF_LEN = 500
 If (read setup failed) Then
 Set exit flag
 Set exiting reason to read failure reason
 Wake the mainline call SYS$WAKE
 Endif
 Else
 Set read stopped flag
 Endif
 Else
 Set exit flag
 Set exiting reason to terminal write failure reason
 Wake the mainline call SYS$WAKE
 Endif
 Else
 Set exit flag
 Set exiting reason to terminal read failure reason
 Wake the mainline call SYS$WAKE
 Endif
Endif

/*
**
** ft_echo_ast
**
** Function: This routine is called if a write to the pseudoterminal used
** an ECHO buffer. If any data was echoed, the output is written to the
** terminal. If no data was echoed, the I/O buffer is freed so it can be
** used later. If the program is exiting, this routine exits.
**
*/
If (not exiting) Then
 If (ECHO buffer has data) Then
 Write the buffer to the terminal with ASTADR = terminal_output_ast
 If (error setting up write) Then
 Set exit flag
 Set exiting reason to write failure reason
 Wake mainline call SYS$WAKE
 Endif
 Else
 Free I/O buffer call free_io_buffers
 Endif
Endif

234

Chapter 6. Pseudoterminal Driver

/*
** free_io_buffers
**
** Function: This routine places a free I/O buffer on the queue of
 available
** I/O buffers. It also restarts any stopped read operations from the
** pseudoterminals. This routine disables AST delivery while it is
 running
** in order to synchronize reading and resetting the read stopped flag.
**
*/
If (not exiting) Then
 Disable AST deliver using SYS$SETAST
 If (Pseudoterminal reads not stopped) Then
 Insert I/O buffer on the interlocked queue of free I/O buffers
 Else
 Call PTD$READ to restart reads from the pseudoterminal.
 ASTADR = ft_read_ast
 ASTPRM = buffer address
 READBUF = I/O buffer + 8
 READBUF_LEN = 500
 If (no error starting read) Then
 Clear read stopped flag
 Else
 Set exit flag
 Set exit reason to read setup reason
 Endif
 Endif
 Enable AST delivery using SYS$SETAST
Endif

/*
**
** allocate_io_buffer
**
** Function: This routine obtains a free I/O buffer from the queue of
** available I/O buffers. If the program is exiting, this routine
** returns an SS$_FORCEDEXIT error.
**
*/
If (not exiting) Then
 remove a I/O buffer from the interlocked queue of I/O buffers
 If (queue empty) Then
 exit with reason LIB$_QUEWASEMP
else
 exit with reason SS$_FORCEDEXIT
Endif

/*
** subprocess_exit
**
** Function: This routine is called when the subprocess has completed
** and exited. This routine checks whether the program is already exiting.
** If not, then the routine indicates that the program is exiting and
 wakes
** up the main program.
**

235

Chapter 6. Pseudoterminal Driver

*/
If (not exiting) Then
 indicate subprocess no longer running
 set exit status to SS$_NORMAL
 indicate exiting
 call SYS$WAKE to start up main loop
Endif

/*
** xon_ast
**
** Function: This routine is called for the pseudoterminal driver to
 signal
** that it is ready to accept keyboard input. The routine attempts to send
** an XON character to the terminal by sending XON DC1 using SYS$QIO.
** If the attempt fails, it is not retried.
**
*/
If (not exiting) Then
 call SYS$QIO to send a <DC1>character to the terminal
Endif

/*
** bell_ast
**
** Function: This routine is called when the pseudoterminal driver wants
** to warn the user to stop sending keyboard data. The routine attempts
** to ring the terminal bell by sending the BELL character to the terminal
** using SYS$QIO. If the attempt fails, it is not retried.
**
*/
If (not exiting) Then
 call SYS$QIO to send a <BELL>character to the terminal
Endif

/*
** xoff_ast
**
** Function: This routine is called when the pseudoterminal driver wants
 to
** signal that it will stop accepting keyboard input. The routine
 attempts
** to send an XOFF character to the terminal by sending XOFF DC3 to the
** terminal using SYS$QIO. If the attempt fails, it is not retried.
**
*/
If (not exiting) Then
 call SYS$QIO to send a <DC3>character to the terminal
Endif

/*
** set_line_ast
**
** Function: This routine is called when the pseudoterminal device
** characteristics change. The routine reads the current pseudoterminal
** characteristics, changes the characteristics to set PASTHRU and NOECHO,
** and applies the characteristics to the input terminal. If the attempt
** to alter the terminal characteristics fails, it is not retried.

236

Chapter 6. Pseudoterminal Driver

**
*/
If (not exiting) Then
 call SYS$QIOW to read the pseudoterminals characteristics
 If (not error) Then
 Set the alter the just read characteristics to have PASTHRU and
 NOECHO
 attributes
 call SYS$QIO to set the terminal characteristics.
 Endif
Endif

237

Chapter 6. Pseudoterminal Driver

238

Chapter 7. Shadow-Set Virtual Unit
Driver
This chapter provides an overview of HPE Volume Shadowing for OpenVMS and describes the use
of the shadow-set virtual unit driver (SHDRIVER).

7.1. Introduction
HPE Volume Shadowing for OpenVMS ensures that data is available for applications and end users
by duplicating data on multiple disks. Because the same data is recorded on multiple disk volumes, if
one disk fails, the remaining disk or disks can continue to service I/O requests. This ability to shadow
disk volumes is sometimes referred to as disk mirroring.

Volume shadowing supports the clusterwide shadowing of a variety of storage systems. Volume shad-
owing also supports shadowing of all mass storage control protocol (MSCP) served disks. For more
information about Volume Shadowing supported devices, see the Volume Shadowing for OpenVMS
Software Product Description.

You can mount multiple compatible disk volumes, including the system disk, to form a shadow set.
Each disk in the shadow set is known as a shadow set member. Volume Shadowing for OpenVMS
logically binds the shadow set devices together and represents them as a single virtual device called a
virtual unit. This means that multiple members of the shadow set, represented by the virtual unit, ap-
pear to applications and users as a single, highly available disk.

Volume Shadowing features include:

• Controller independence. Shadow set members can be located on any node in an OpenVMS Clus-
ter that has Volume Shadowing enabled.

• Clusterwide, homogeneous shadow-set maintenance functions.

• Ability to survive controller, disk, and media failures transparently.

• Shadowing functions that do not affect application I/O.

Applications and users read and write data to and from a shadow set using the same commands and
program language syntax and semantics that are used for nonshadowed I/O operations. Volume shad-
owed sets are managed and monitored using the same commands and utilities that are used for non-
shadowed disks. The only difference is that access is through the virtual unit, not to individual de-
vices.

SHDRIVER, the driver that controls the virtual unit functions, is described in Section 7.3.

For more detailed information on HPE Volume Shadowing for OpenVMS, see the Volume Shadowing
for OpenVMS manual.

7.2. Configurations
HPE Volume Shadowing for OpenVMS does not depend on specific hardware in order to operate. All
shadowing functions can be performed on Alpha and Integrity server systems running the OpenVMS
operating system. Shadow set members must have the same physical geometry (that is, the same num-

239

Chapter 7. Shadow-Set Virtual Unit Driver

ber of identical logical blocks (LBNs)) and members can be located anywhere in an OpenVMS Clus-
ter.

7.2.1. Supported Hardware
Volume shadowing requires a minimum of one Alpha or Integrity server computer and disk drives.

See the most recent Volume Shadowing for OpenVMS Software Product Descriptions(SPD 27.29.xx)
for additional information about hardware requirements.

7.2.2. Compatible Disk Drives and Volumes
Volume shadowing requires compatibility among the physical units (disk drives and volumes) that
form a shadow set. For example:

• Units must be Files-11 On-Disk Structure Level 2 (ODS-2 or ODS-5) data disks.

• Units and controllers must conform to DSA and OpenVMS MSCP, or must be SCSI FC compli-
ant.

• Units should not have hardware write protection enabled. Hardware write protection stops the vol-
ume shadowing software from maintaining identical volumes. However, the shadow set virtual
unit may be mounted software write-locked with the /NOWRITE qualifier to MOUNT.

7.3. Driver Functions
This section describes the major virtual unit functions supported by SHDRIVER. In addition to the
virtual unit functions described in this section, SHDRIVER supports all OpenVMS disk functions.
SHDRIVER receives QIO operations from application programs and is a client of the disk class dri-
vers DUDRIVER. Applications access the shadow set as they would access a standard OpenVMS
disk.

Table 7.1 summarizes the major SHDRIVER functions.

Note

The MOUNTSHAD, ADDSHADMBR, COPYSHAD, SETCHAR, and REMSHADMBR functions
are reserved for the internal use. Use of these functions by customer or third-party provided software
may cause unpredictable results including system crashes and data corruption.

Table 7.1. Functions of the Shadow Set Virtual Unit Driver

Function Description
MOUNTSHAD Creates a virtual unit
ADDSHADMBR Evaluates a physical member and adds members
COPYSHAD Triggers and controls copy operations
REMSHADMBR Removes a physical member
AVAILABLE Virtual unit dissolution
SENSECHAR Verifies shadow set status
READ Directs I/O to a physical member

240

Chapter 7. Shadow-Set Virtual Unit Driver

Function Description
WRITE Propagates a write operation to all physical members
SETCHAR Sets characteristics of the shadow set

7.3.1. Read and Write Functions
With minor changes, the read and write functions for SHDRIVER operate the same as for the disk
class driver (see Section 2.3.1 and Section 2.3.2).

During an SHDRIVER read operation, the host directs the read to the member volume, which will
likely return the data the fastest. See the Volume Shadowing for OpenVMSmanual for more informa-
tion about controlling this behavior.

During a write operation, SHDRIVER directs the write to each member volume. The write operations
for each member volume usually proceed in parallel; the virtual unit write operation terminates when
all writes have completed. The write function for SHDRIVER takes the IO$M_VUEX_FC function
modifier; this modifier should not be used by application programs.

The read and write SHDRIVER functions, as well as all user functions, are issued by user pro-
grams. All other SHDRIVER functions are invoked by MOUNT and DISMOUNT commands, or the
$MOUNT and $DISMOUNT system services.

Remember that volume shadowing provides data availability by protecting against hardware problems
or communication path problems that might cause a disk volume to be a single point of failure. If a
write request is made to a shadow set, but the system fails before a completion status is returned from
all of the shadow set members, it is possible that:

• All members might contain the new data.

• All members might contain the old data.

• Some members might contain new data and others might contain old data.

When the system recovers, volume shadowing performs a merge operation to ensure that the corre-
sponding blocks on each shadow set member contain the same data (right or wrong); therefore, the
goal here is not one of data correctness but of data availability. Volume shadowing is designed to
make the data on all disks identical, then, if necessary, incorrect data can be reconciled either by the
user reentering the data or by an application automatically employing database or journaling tech-
niques.

For example, when used with volume shadowing, OpenVMS RMS journaling allows you to develop
applications that can automatically recover from failures such as:

• Permanent loss of the path between a CPU data buffer containing the data being written and the
disk being written to during a multiple block I/O operation. Communication path loss can occur
due to node failure or a failure of node-to-node communications.

• Failure of a CPU (such as a system crash, halt, power failure, or system shutdown) during a multi-
ple block write I/O operation.

• Mistaken deletion of a file.

• Corruption of file system pointers.

241

Chapter 7. Shadow-Set Virtual Unit Driver

• OpenVMS RMS file corruption due to a software error or incomplete bucket write operation to an
indexed file.

• Cancellation of an in-progress multiple block write operation.

For more information about shadowing merge operations, see the Volume Shadowing for OpenVMS
manual.

7.4. Error Processing
Shadow set recovery and repair are handled by volume processing, which replaces mount verifica-
tion for shadow sets. Membership failure decisions are made by the host system. Device errors that re-
sult in inaccessibility of physical member units first utilize the class driver's connection walking algo-
rithm. If that fails, a local decision is made on the shadow set membership. The rules are:

• If some, but not all, members of the set are accessible, then the local node sequentially adjusts the
membership and notifies the other hosts.

• If no members are accessible, no modifications to the set membership are made.

There are two types of volume processing: active and passive. Active volume processing handles error
processing on a local node. Triggered by a failed I/O operation, active volume processing also con-
trols mount verification functions, member removal, and failover. Passive volume processing is trig-
gered by lock messages or by a cluster event. Passive volume processing revalidates shadow set mem-
bership, ensures that the shadow set reflects changes made outside the shadow set, and handles the
following functions:

• Member additions from other nodes

• Member removals from other nodes

• A new node mounting the shadow set

• A node dismounting the shadow set

• A system crash on a node that has the shadow set mounted

For more information, see the Volume Shadowing for OpenVMS manual.

242

Chapter 8. Using the OpenVMS
Generic SCSI Class Driver
This chapter describes the use of the OpenVMS Generic Small Computer System Interface (SCSI)
class driver.

8.1. Overview of SCSI
The American National Standard for information systems — Small Computer System Interface-2
(SCSI-2) specification defines mechanical, electrical, and functional requirements for connecting
small computers to a wide variety of intelligent devices, such as rigid disks, flexible disks, magnetic
tape devices, printers, optical disks, and scanners. It specifies standard electrical bus signals, timing,
and protocol, as well as a standard packet interface for sending commands to devices on the SCSI bus.

Certain OpenVMS systems employ the SCSI bus as an I/O bus. For these systems, you can use a
SCSI-compliant disk and tape drives. The operating system also allows devices including disk drives,
tape drives, and scanners, produced by different suppliers, to be connected to the SCSI bus of such a
system.

SCSI has been widely adopted by manufacturers for a variety of peripheral devices; however, because
the ANSI SCSI standard is broad in scope, not all devices that implement its specifications can fully
interrelate on the bus. HPE fully supports SCSI-compliant equipment sold or supplied by HPE. Proper
operation of products not sold or supplied by HPE cannot be assured.

For more information, see the following documents:

• American National Standard for Information Systems — Small Computer System Interface-2
(SCSI-2) specification (X3T9.2/86-109)

Copies of this document can be purchased from: Global Engineering Documents, 2805 McGaw,
Irvine, California 92714, United States; or (800) 854-7179 or (714) 261-1455. See document
X3.131-198X.

• American National Standard for Information Systems — Small Computer System Interface speci-
fication (X3.131-1986)

Copies of this document can be obtained from: American National Standards Institute, Inc., 1430
Broadway, New York, New York, 10018. This document is now known as the SCSI-1 standard.

Consider two additional documents to help third-party vendors prepare SCSI peripherals and peripher-
al software for use with DIGITAL workstations.

• The Small Computer System Interface: An Overview (EK-SCSISOV-001) provides a general de-
scription of the DIGITAL SCSI third-party support program.

• The Small Computer System Interface: A Developer's Guide (EK-SCSIS-SP-001) presents the de-
tails of implementation of SCSI within DIGITAL operating systems.

8.2. OpenVMS SCSI Class/Port Architecture
The operating system employs a class/port driver architecture to communicate with devices on the
SCSI bus. The class/port design allows the responsibilities for communication between the operating
system and the device to be cleanly divided between two separate driver modules (see Figure 8.1).

243

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

Figure 8.1. OpenVMS SCSI Class/Port Interface

The SCSI port driver transmits and receives SCSI commands and data. It knows the details of trans-
mitting data from the local processor's SCSI port hardware across the SCSI bus. Although it under-
stands SCSI bus phases, protocol, and timing, it has no knowledge of which SCSI commands the de-
vice supports, what status messages it returns, or the format of the packets in which this information is
delivered. Strictly speaking, the port driver is a communications path. When directed by a SCSI class
driver, the port driver forwards commands and data from the class driver onto the SCSI bus to the de-
vice. On any given OpenVMS system, a single SCSI port driver handles bus-level communications
for all SCSI class drivers that may exist on the system.

The SCSI class driver acts as an interface between the user and the SCSI port, translating an I/O
function as specified in a user's $QIO request to a SCSI command targeted to a device on the SCSI
bus. Although the class driver knows about SCSI command descriptor buffers, status codes, and da-
ta, it has no knowledge of underlying bus protocols or hardware, command transmission, bus phas-
es, timing, or messages. A single class driver can run on any given OpenVMS system, in conjunction
with the SCSI port driver that supports that system. The operating system supplies a standard SCSI
disk class driver and a standard SCSI tape class driver to support its disk and tape SCSI devices.

8.3. Overview of the OpenVMS Generic SCSI
Class Driver
The OpenVMS generic SCSI class driver provides a mechanism by which an application program can
control a SCSI device that cannot be controlled by the standard OpenVMS disk and tape class drivers.
By means of a Queue I/O Request ($QIO) system service call, a program can pass to the generic SCSI
class driver a pre-formatted SCSI command descriptor block. The generic SCSI class driver, in con-
junction with the standard OpenVMS SCSI port driver, delivers this SCSI command to the device,
manages any transfer of data from the device to a user buffer, and returns SCSI status to the applica-
tion.

In effect, an application using the generic SCSI class driver implements details of device control usu-
ally managed within device driver code. The programmer of such an application must understand

244

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

which SCSI commands the device supports and which SCSI status values the device returns. The pro-
grammer must also be aware of the device's timeout requirements, data transfer capabilities, and com-
mand retry behavior.

The application program sets up the characteristics of the connection the generic SCSI class driver
uses when delivering commands to, exchanging data with, and receiving status from the device. The
program associates each I/O operation the device can perform with a specific SCSI command. When
it receives a request for a particular operation, the application program creates the specific command
descriptor block that, when passed to the device, causes it to perform that operation.

The application initiates all transactions to the SCSI device by means of a $QIO call to the generic
SCSI class driver, supplying the address and length of the SCSI command descriptor block, plus the
parameters of any data transfer operation, in the call. When the transaction completes and the applica-
tion program regains control, it interprets the returned status value, processes any returned data, and
services any failure. To avoid conflicts with other applications accessing the same device, an applica-
tion may need to explicitly allocate the device.

Because the generic SCSI class driver has no knowledge of specific device errors, it neither logs de-
vice errors nor implements error recovery. An application using the driver must manage device-spe-
cific errors itself. To service an error returned on a single transaction, the application must issue addi-
tional $QIO requests and initiate further transactions to the device. If more precise or more efficient
error recovery is required for a device, the developer should consider writing a third-party SCSI class
driver, as described in the OpenVMS VAX Device Support Manual. A third-party SCSI class driver
can log errors associated with device activity by using the method described in the OpenVMS VAX
Device Support Manual.

A third-party class driver is the only means of supporting devices that themselves generate transac-
tions on the SCSI bus, such as notification of a device selection event to the host processor. See the
description of asynchronous event notification (AEN) in the OpenVMS VAX Device Support Manual.

Figure 8.2 shows the flow of a $QIO request through the generic SCSI class driver and the port driver.

245

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

Figure 8.2. Generic SCSI Class Driver Flow

When direct access to a target device on the SCSI bus is required, the generic SCSI class driver is
loaded for that device, as described in Section 8.6“Configuring a Device Using the Generic Class Dri-
ver”. An application program using the generic class driver performs the following tasks to issue a
command to the target device:

1. Calls the Assign I/O Channel ($ASSIGN) system service to assign a channel to the generic SCSI
class driver, and to allocate the device for the application's exclusive use.

2. Formats a SCSI command descriptor block.

3. Formats any data to be transferred to the device.

4. Calls the Queue I/O Request ($QIO) system service to request the generic SCSI class driver to
send the SCSI command descriptor block to the port driver.

5. Upon completion of the I/O request, interprets the SCSI status byte and any data returned from the
target device.

These operations are described in following sections.

246

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

Note

Because incorrect or malicious use of the generic SCSI class driver can result in SCSI bus hangs and
lead to SCSI bus resets, DIAGNOSE and PHY_IO or LOG_IO privileges are required to access the
driver. An application program can be designed in such a way as to filter user I/O requests, which al-
lows nonprivileged users access to some device functions.

8.4. Accessing the OpenVMS Generic SCSI
Class Driver
Interactive commands and procedure calls can use the OpenVMS generic SCSI class driver to ac-
cess devices on the SCSI bus. However, it is unlikely that a user application would access a device on
the SCSI bus by directly using the $QIO interface of the generic SCSI class driver. First of all, any
user process directly using the $QIO interface would require DIAGNOSE and PHY_IO or LOG_IO
privileges. Under normal circumstances, it would be a system security risk to grant DIAGNOSE and
PHY_IO or LOG_IO privileges to many system users. Secondly, it would be cumbersome for end
users of the device to identify, format, and issue SCSI commands to the device. Rather, it would be
more efficient to develop an interface that hides these details.

A utility program, installed with the DIAGNOSE and PHY_IO or LOG_IO privileges, can provide
nonprivileged users with a command-line interface to a SCSI device. The utility translates interac-
tive commands provided by the user into the appropriate set of SCSI commands and sends them to
the device using the $QIO interface provided by the generic SCSI class driver. The utility checks user
commands to ensure that only valid SCSI commands are sent to the device. For information about in-
stalling images with privileges, see the VSI OpenVMS System Manager's Manual and the VSI Open-
VMS System Management Utilities Reference Manual.

A privileged shareable image can provide system applications with a procedure interface to a SCSI
device. The image contains a set of procedures that translate operations specified by the caller into the
appropriate set of SCSI commands. The SCSI commands are sent to the device through the $QIO in-
terface of the generic SCSI class driver. The privileged shareable image checks its caller's parameters
to ensure that only valid SCSI commands are sent to the device. For information about creating share-
able images, see the VSI OpenVMS Programming Concepts manual.

8.5. SCSI Port Features Under Application
Control
The standard OpenVMS SCSI port driver provides mechanisms by which the generic SCSI class dri-
ver can control the nature of data transfers and command transmission across the SCSI bus. An appli-
cation uses the $QIO interface to tailor these mechanisms to the specific device it supports. Among
the features under application program control are the following:

• Data transfer mode

• Disconnection and reselection

• Command retry

• Command time-outs

The following sections discuss these features.

247

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

8.5.1. Setting the Data Transfer Mode
The SCSI bus defines two data transfer modes, asynchronous and synchronous. In asynchronous
mode, for each REQ from a target there is an ACK from the host prior to the next REQ from the tar-
get. Synchronous mode allows higher data transfer rates by allowing a pipelined data transfer mecha-
nism where, for short bursts (defined by the REQ-ACK offset), the target can pipeline data to an ini-
tiator without waiting for the initiator to respond.

Whether or not a port or a target device allows synchronous data transfers, it is harmless for the pro-
gram to set up the connection to use such transfers. If synchronous mode is not supported, the port dri-
ver automatically uses asynchronous mode.

For example, to use synchronous mode in a transfer, a programmer using the generic SCSI class dri-
ver must ensure that both the SCSI port and the SCSI device involved in the transfer support synchro-
nous mode. The SCSI port of the VAXstation 3520/3540 system allows both synchronous and asyn-
chronous transfers, whereas that of OpenVMS 3100 systems supports only asynchronous transfers.

To set up a connection to use synchronous data transfer mode, a program using the generic SCSI class
driver sets the syn bit in the flags field of the generic SCSI descriptor, the address of which is passed
to the driver in the p1 argument to the $QIO request.

8.5.2. Enabling Disconnection and Reselection
The ANSI SCSI specification defines a disconnection facility that allows a target device to yield own-
ership of the SCSI bus while seeking or performing other time-consuming operations. When a target
disconnects from the SCSI bus, it sends a sequence of messages to the initiator that cause it to save
the state of the I/O transfer in progress. Once this is done, the target releases the SCSI bus. When the
target is ready to complete the operation, it reselects the initiator and sends to it another sequence of
messages. This sequence uniquely identifies the target and allows the initiator to restore the context of
the suspended I/O operation.

Whether disconnection should be enabled or disabled on a given connection depends on the nature
and capabilities of the device involved in the transfer, as well as on the configuration of the system. In
configurations where there is a slow device present on the SCSI bus, enabling disconnection on con-
nections that transfer data to the device can increase bus throughput. By contrast, systems where most
of the I/O activity is directed towards a single device for long intervals can benefit from disabling dis-
connection. By disabling disconnection when there is no contention on the SCSI bus, port drivers can
increase throughput and decrease the processor overhead for each I/O request.

By default, the OpenVMS class/port interface disables the disconnect facility on a connection. To en-
able disconnection, an application program using the generic SCSI class driver sets the dis bit of the
flags field of the generic SCSI descriptor, the address of which is passed to the driver in the p1 argu-
ment to the $QIO call.

8.5.3. Disabling Command Retry
The SCSI port driver implements a command retry mechanism, which is enabled on a given connec-
tion by default.

When the command retry mechanism is enabled, the port driver retries up to three times any I/O oper-
ation that fails during the COMMAND, Message, Data, or STATUS phases. For instance, if the port
driver detects a parity error during the Data phase, it aborts the I/O operation, logs an error, and retries
the I/O operation. It repeats this sequence twice more, if necessary. If the I/O operation completes

248

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

successfully during a retry attempt, the port driver returns success status to the class driver. However,
if all retry attempts fail, the port driver returns failure status to the class driver.

An application may need to disable the command retry mechanism under certain circumstances. For
example, repeated execution of a command on a sequential device may produce different results than
are intended by a single command request. A tape drive could perform a partial write and then repeat
the write without resetting the tape position.

An application program using the generic SCSI class driver can disable the command retry mecha-
nism by setting the dpr bit of the flags field of the generic SCSI descriptor, the address of which is
passed to the driver in the p1 argument to the $QIO request.

8.5.4. Setting Command Timeouts
The SCSI port driver implements several timeout mechanisms, some governed by the ANSI SCSI
specification and others required by OpenVMS. The time-outs required by OpenVMS include the fol-
lowing:

Timeout Description
Phase change time-
out

Maximum number of seconds for a target to change the SCSI bus phase or com-
plete a data transfer. (This value is also known as the DMA timeout.)

Upon sending the last command byte, the port driver waits this many seconds for
the target to change the bus phase lines and assert REQ (indicating a new phase).
Or, if the target enters the DATA IN or DATA OUT phase, the transfer must be
completed within this interval.

Disconnect time-
out

Maximum number of seconds, from the time the initiator receives the DISCON-
NECT message, for a target to reselect the initiator so that it can proceed with
the disconnected I/O transfer

An application program using the generic SCSI class driver is responsible for maintaining both of
these timeout values. It has the following options:

• Accepting a connection's default value. The default value for both timeouts is 20 seconds.

• Altering the connection's default value. To modify the default values, the class driver specifies
nonzero values for the phase change timeout and disconnect timeout fields of the generic SCSI
descriptor, the address of which is passed to the driver in the p1 argument to the $QIO system ser-
vice call.

8.6. Configuring a Device Using the Generic
Class Driver
If a third-party-supplied SCSI device requires that the generic class driver be loaded, it must be con-
figured by an explicit SYSGEN CONNECT command, as follows:

$ RUN SYS$SYSTEM:SYSGEN
SYSGEN> CONNECT GKpd0u /NOADAPTER

On Alpha systems, GK is the device mnemonic for the generic SCSI class driver (GKDRIVER); p
represents the SCSI port ID (for instance, the controller ID Aor B); d represents the SCSI device ID
(a digit from 0 to 7); 0 signifies the digit zero; and u represents the SCSI logical unit number (a digit
from 0 to 7).

249

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

Multiple devices residing on any SCSI bus in the system can share GKDRIVER as a class driver, as
long as a CONNECT command is issued for each target device that requires the driver.

Because just one connection can exist through the SCSI port driver to each target, the generic class
driver cannot be used for a target if a different SCSI class driver is already connected to that target.
For example, if the SCSI disk class driver has a connection to device ID 2 on the SCSI bus identified
by SCSI port ID B (DKB200), the generic class driver cannot be used to communicate with this disk.
An attempt to connect GKDRIVER for this target results in GKB200 being placed off line.

8.7. Assigning a Channel to GKDRIVER
An application program assigns a channel to the generic SCSI class driver using the standard call to
the $ASSIGN system service, as described in the VSI OpenVMS System Services Reference Manual.
The application program specifies a device name and a word to receive the channel number.

8.8. Issuing a $QIO Request to the Generic
Class Driver
The format of the Queue I/O Request ($QIO) system service that initiates a request to the SCSI gener-
ic class driver is as follows. This explanation concentrates on the special elements of a $QIO request
to the SCSI generic class driver. For a detailed description of the $QIO system service, see the VSI
OpenVMS System Services Reference Manual.

High-Level Language Format
SYS$QIO ([efn] ,chan ,func ,iosb ,[astadr] ,[astprm] ,p1 ,p2 [,p3]
[,p4] [,p5] [,p6])

Arguments
chan I/O channel assigned to the device to which the request is directed. The chan ar-

gument is a word value containing the number of the channel, as returned by the
Assign I/O Channel ($ASSIGN) system service.

func Longword value containing the IO$_DIAGNOSE function code. Only the
IO$_DIAGNOSE function code is implemented in the generic SCSI class driver.

iosb The iosb argument is required in a request to the generic SCSI class driver; it
has the following format:

The status code provides the final status indicating the success or failure of the
SCSI command. The SCSI status byte contains the status value returned from
the target device, as defined in the ANSI SCSI specification. The transfer count
field specifies the actual number of bytes transferred during the SCSI bus DATA
IN or DATA OUT phase

250

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

[efn], [astadr],
[astprm]

These arguments apply to $QIO system service completion. For an explanation
of these arguments, see the VSI OpenVMS System Services Reference Manual.

p1 Address of a generic SCSI descriptor of the following format:

p2 Length of the generic SCSI descriptor.

Descriptor Fields
opcode Currently, the only supported opcode is 1, indicating a pass-through function.

Other opcode values are reserved for future expansion.
Bit map having the following format:

Bits in the flags bit map are defined as follows:
Field Definition
dir Direction of transfer.

If this bit is set, the target is expected at some time to enter the DA-
TA IN phase to send data to the host. To facilitate this, the port driver
maps the specified data buffer for write access.

If this bit is clear, the target is expected at some time to enter the DA-
TA OUT phase to receive data from the host. To facilitate this, the
port driver maps the specified data buffer for read access.

The generic SCSI class driver ignores the dir flag if either the SCSI
data address or SCSI data length field of the generic SCSI descrip-
tor is zero.

flags

dis Enable disconnection.

If this bit is set, the target device is allowed to disconnect during the
execution of the command.

251

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

If this bit is clear, the target cannot disconnect during the execution of
the command.

Note that targets that hold on to the bus for long periods of time with-
out disconnecting can adversely affect system performance. See Sec-
tion 8.5.2 for additional information.

syn Enable synchronous mode.

If this bit is set, the port driver uses synchronous mode for data trans-
fers, if both the host and target allow this mode of operation.

If this bit is clear, or synchronous mode is not supported by either the
host or target, the port driver uses asynchronous mode for data trans-
fers.

See Section 8.5.1 for additional information.
dpr Disable port retry.

If this bit is clear, the port driver retries, up to three times, any com-
mand that fails with a timeout, bus parity, or invalid phase transition
error.

If this bit is set, the port driver does not retry commands for which it
detects failure.

See Section 8.5.3 for additional information.
SCSI command ad-
dress

Address of a buffer containing a SCSI command.

SCSI command
length

Length of the SCSI command. The maximum length of the SCSI command is
128 bytes.

SCSI data address Address of a data buffer associated with the SCSI command.

If the dir bit is set in the flags field, data is written into this buffer during the ex-
ecution of the command. Otherwise, data is read from this buffer and sent to the
target device.

If the SCSI command requires no data to be transferred, then the SCSI data ad-
dress field should be clear.

SCSI data length Length, in bytes, of the data buffer pointed to by the SCSI data addressfield.
The maximum data buffer size is 65,535 bytes.

If the SCSI command requires no data to be transferred, then this field should be
clear.

SCSI pad length This field is used to accommodate SCSI device classes that require that the
transfer length be specified in terms of a larger data unit than the count of bytes
expressed in the SCSI data length field. If the total amount of data requested in
the SCSI command does not match that specified in the SCSI data length field,
this field must account for the difference.

For example, suppose an application program is using the generic class driver to
read the first 2 bytes of a disk block. The length field in the SCSI READ com-
mand contains 1 (indicating one logical block, or 512 bytes), while the SCSI da-

252

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

ta length field contains a 2. The SCSI pad length field must contain the differ-
ence, 510 bytes.

For most transfers, this field should contain 0. Failure to initialize the SCSI pad
length field properly causes port driver timeouts and SCSI bus resets.

phase change time-
out

Maximum number of seconds for a target to change the SCSI bus phase or com-
plete a data transfer. A value of 0 causes the SCSI port driver's default phase
change timeout value of 4 seconds to be used.

See Section 8.5.4 for additional information.
disconnect timeout Maximum number of seconds for a target to reselect the initiator to proceed with

a disconnected I/O transfer. A value of 0 causes the SCSI port driver's default
disconnect timeout value of 4 seconds to be used.

See Section 8.5.4 for additional information.

8.9. Generic SCSI Class Driver Device Infor-
mation
A call to the Get Device/Volume Information ($GETDVI) system service returns the following infor-
mation for any device serviced by the generic SCSI class driver. (See the description of the $GETDVI
system service in the VSI OpenVMS System Services Reference Manual.)

$GETDVI returns the following device characteristics when you specify the item code DVI$_DE-
VCHAR:

DEV$M_AVL Available device
DEV$M_IDV Input device
DEV$M_ODV Output device
DEV$M_SHR Shareable device
DEV$M_RND Random-access device

DVI$DEVCLASS returns the device class, which is DC$_MISC; DVI$DEVTYPE returns the device
type, which is DT$_GENERIC_SCSI.

8.10. Call a Generic SCSI Class Driver
Example 8.1 is an application that uses the generic SCSI class driver to send a SCSI INQUIRY com-
mand to a device.

Example 8.1. Generic SCSI Class Driver Call Example

/*
**
* © 2017 Hewlett-Packard Development Company, L.P.
*
* Confidential computer software. Valid license from HPE and/or its
* subsidiaries required for possession, use, or copying.
*
* Consistent with FAR 12.211 and 12.212, Commercial Computer Software,
* Computer Software Documentation, and Technical Data for Commercial Items
* are licensed to the U.S. Government under vendor's standard commercial

253

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

* license.
*
* Neither HPE nor any of its subsidiaries shall be liable for technical or
* editorial errors or omissions contained herein. The information in this
* document is provided "as is" without warranty of any kind and is subject
* to change without notice. The warranties for HPE products are set forth
* in the express limited warranty statements accompanying such products.
* Nothing herein should be construed as constituting an additional
* warranty.
*
*/

#ifdef VAX
#module gktest "V01-03"
#else
#pragma module gktest "V01-03"
#endif

/*
**++
** FACILITY: SYS$EXAMPLES
**
** MODULE DESCRIPTION:
**
** GKTEST -- Generic SCSI device inquiry example. This program
** uses the SCSI generic class driver to send an inquiry command
** to a device on the SCSI bus and send the resulting status to
** stdout. PHY_IO and DIAGNOSE privileges are needed to run this
** program.
**

** AUTHORS:
**
** Hewlett-Packard
**
** CREATION DATE: 28-Aug-2017 (adapted from previous OpenVMS version)
**
** DESIGN ISSUES:
**
** To be appropriately upwardly-compatible, it would be better
** that this module use a SCSI descriptor structure definition
** from an appropriate header file (something like scsidef.h).
** At the time of most recent modification, no such file was
** available for OpenVMS.
**
**
** MODIFICATION HISTORY:
**
** X-1 DCP001 28-Aug-2017
** Use structure members that are more "type-sensitive".
**
** X-2 DCP002 11-Sep-2017
** Modifications to platform-specific macro names.
** X-3 05-Oct-2017
** Modify status checking to return proper error code from
** $qio.
**--

254

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

*/

/*
**
** INCLUDE FILES
**
*/

#include <stdio.h>
#include <ctype.h>
#include <iodef.h>
#include <descrip.h>
#include <starlet.h>

/*
** "De-comment" (and if necessary modify) the following if the
** appropriate header file becomes available:
#include <scsidef.h>
*/

/*
**
** MACRO DEFINITIONS
**
*/

#define GK_EFN 0 /* Event flag number */

#define INQUIRY_OPCODE 0x12 /* Operation code for SCSI inquiry */
#define INQUIRY_DATA_LENGTH 0x24 /* Length of inquiry buffer */

/*
** SCSI definitions:
**
** Ideally, these definitions should come from a header file provided
** with the system. At the time that this example was written and at
** the time of last update, no such file was available. For now, we
** define right here fields we need from the SCSI descriptor for this
** example; this should be replaced with the appropriate #include,
** should such a header file become available. The reader should note
** that some of the field names and types in that header file may
** differ slightly from what's shown here; when and if the header file
** becomes available, code which does depend on the names should use
** the appropriate header file names. Code which depends on getting
** the types right may need to re-cast these members when referencing
** them.
*/

/* Generic SCSI command descriptor */

struct SCSI$DESC {
 unsigned int SCSI$L_OPCODE; /* SCSI Operation Code */
 unsigned int SCSI$L_FLAGS; /* SCSI Flags Bit Map */
 char * SCSI$A_CMD_ADDR; /* ->SCSI command buffer */

255

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

 unsigned int SCSI$L_CMD_LEN; /* SCSI command length, bytes */
 char * SCSI$A_DATA_ADDR; /* ->SCSI data buffer */
 unsigned int SCSI$L_DATA_LEN; /* SCSI data length, bytes */
 unsigned int SCSI$L_PAD_LEN; /* SCSI pad length, bytes */
 unsigned int SCSI$L_PH_CH_TMOUT; /* SCSI phase change timeout, sec */
 unsigned int SCSI$L_DISCON_TMOUT; /* SCSI disconnect timeout, sec */
 unsigned int SCSI$L_RES_1; /* Reserved */
 unsigned int SCSI$L_RES_2; /* Reserved */
 unsigned int SCSI$L_RES_3; /* Reserved */
 unsigned int SCSI$L_RES_4; /* Reserved */
 unsigned int SCSI$L_RES_5; /* Reserved */
 unsigned int SCSI$L_RES_6; /* Reserved */
 } ;

/* SCSI Input/Output Status Block */

#ifdef __ALPHA
#pragma member_alignment save
#pragma nomember_alignment
#endif

struct SCSI$IOSB {
 unsigned short int SCSI$W_VMS_STAT; /* VMS status code */
 unsigned long int SCSI$L_IOSB_TFR_CNT; /* Actual #bytes transferred */
 char SCSI$B_IOSB_FILL_1;
 unsigned char SCSI$B_IOSB_STS; /* SCSI device status */
 };

#ifdef __ALPHA
#pragma member_alignment restore
#endif

/* SCSI status codes and flag field constants */

#define SCSI$K_GOOD_STATUS 0
#define SCSI$K_READ 0X1 /* direction of transfer=read */
#define SCSI$V_FL_ENAB_DIS 1 /* enable disconnects */
#define SCSI$K_FL_ENAB_DIS 0X2 /* enable disconnects */

/* end of SCSI definitions */

/* data declarations */

char scsi_status,
 inquiry_command[6] = {INQUIRY_OPCODE, 0, 0, 0,
 INQUIRY_DATA_LENGTH, 0},
 inquiry_data[INQUIRY_DATA_LENGTH],
 gk_device[] = {"GKA0"};

main ()

{

 unsigned short int gk_chan,
 transfer_length;
 int i,

256

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

 status;

/* Set up the descriptor with the SCSI information to be sent to the target
 */

 struct SCSI$DESC gk_desc = { 1, /* Pass-through - the only code
 defined */
 SCSI$K_READ|SCSI$K_FL_ENAB_DIS, /* flags */
 &inquiry_command[0], /* command addr */
 6, /* command length*/
 &inquiry_data[0], /* data addr */
 INQUIRY_DATA_LENGTH, /* data length */
 0, /* pad length */
 180, /* phase timeout */
 60, /* disconnect timeout */
 0, 0, 0, 0, 0, 0 }; /* reserved */

 struct SCSI$IOSB gk_iosb ;

 $DESCRIPTOR (gk_device_desc, gk_device);

/* Assign the device channel */
 status = sys$assign (&gk_device_desc, &gk_chan, 0, 0);
 if (!(status & 1))
 {
 printf ("Unable to assign channel to %s", &gk_device[0]);
 sys$exit (status);
 }

/* Issue the QIO to send the inquiry command and receive the inquiry data
 */

 status = sys$qiow (GK_EFN, gk_chan, IO$_DIAGNOSE, &gk_iosb, 0,
 0,
 &gk_desc, 15*4, 0, 0, 0, 0);

/* Check the various returned status values */
 if (!(status & 1)) sys$exit (status);

/* Was VMS Status OK from QIO? */

 if (!(gk_iosb.SCSI$W_VMS_STAT & 1))
 sys$exit (gk_iosb.SCSI$W_VMS_STAT);

/* Yes, was SCSI Status OK from QIO? */

 if (gk_iosb.SCSI$B_IOSB_STS != SCSI$K_GOOD_STATUS)
 {
 printf ("Bad SCSI status returned: %02.2x\n",
 gk_iosb.SCSI$B_IOSB_STS);
 sys$exit (1);
 }

/* The command succeeded. Display the SCSI data returned from the target */

257

Chapter 8. Using the OpenVMS Generic SCSI Class Driver

 transfer_length = gk_iosb.SCSI$L_IOSB_TFR_CNT;
 printf ("SCSI inquiry data returned %lu bytes of data: ",
 transfer_length);
 for (i=0; i<transfer_length; i++)
 {
 if (isprint (inquiry_data[i]))
 printf ("%c", inquiry_data[i]);
 else
 printf (".");
 }
 printf ("\n");
}

258

Chapter 9. Local Area Network (LAN)
Device Drivers
This chapter describes the use of LAN drivers that support the LAN devices listed in the Software
Product Description for the OpenVMS Operating System (SPD 82.35.xx). Most of the LAN devices
are described here, but see the Software Product Description for the OpenVMS Operating System for
the definitive list of supported devices.

The LAN drivers support two user interfaces or APIs, QIO and VCI (VMS Communications Inter-
face). This chapter describes the QIO interface to the LAN drivers, primarily. But most of the QIO
functionality applies to the VCI interface as well. And the description of the other features and charac-
teristics of the LAN devices and LAN drivers applies equally to either interface.

The LAN drivers are composed of a set of LAN common routines that implement the user interfaces
plus a LAN port driver for each different type of LAN device. The LAN drivers comprise the Data
Link layer as defined by the OSI Model defined in Section 9.1.

9.1. Local Area Network (LAN) Terminology
The following is a list of terms relevant to local area networks:

• Ethernet — A network communications technology using coaxial or twisted-pair cable, original-
ly developed by Intel, Xerox, and Digital. It has a data transmission rate of 10 megabits/second. It
is characterized by the use of the CSMA/CD network access method. It is described by the IEEE
802.3 standard. Ethernet is also used as an adjective to describe Ethernet characteristics, such as
an Ethernet address, or an Ethernet application.

• Fast Ethernet — Ethernet operating at 100 megabits/second over twisted-pair cable or multimode
fiber. Fast Ethernet devices support 10 and 100 megabits/second operation over twisted-pair media
or 100 megabits/second over multimode fiber.

• Gigabit Ethernet — Ethernet operating at 1000 megabits/second over twisted-pair cable or multi-
mode fiber. Gigabit Ethernet devices support 10, 100, and 1000 megabits/second operation over
twisted-pair media or 1000 megabits/second over multimode fiber.

• FDDI — Fiber Distributed Data Interface, a token-passing network communications technology
characterized by use of a dual ring configuration to improve availability upon failure of a node
or connection. It has a data transmission rate of 100 megabits/second. It operates over multimode
fiber or twisted-pair cable. It is described by the American National Standards Institute (ANSI)
standard X3T9.5.

• Token Ring — A token-passing network communications technology characterized by a star
topology in most implementations. It has a data transmission rate of 4 or 16 megabits/second. It
operates over twisted-pair cable. It is described by the IEEE 802.5 standard.

• ATM — Asynchronous Transfer Mode, a cell-based network communications technology, where
network data is divided into 48-byte chunks and transferred across the network with a 5-byte
header that contains addressing and control information. The ATM Forum describes the commu-
nications protocol, and specifies how it is to be used to interoperate with Ethernet networks, in the
LAN Emulation (LANE) standard. To interoperate with Ethernet, the ATM device hardware trans-
parently breaks transmit packets into 48-byte chunks and adds a 5-byte header and transmits the

259

Chapter 9. Local Area Network (LAN) Device Drivers

cells onto the ATM network. On receive, it transparently re-assembles the 48-byte chunks to con-
struct each receive packet.

• IEEE — Institute of Electrical and Electronics Engineers, an organization that, among other activ-
ities, develops and maintains standards for the computer and electronics industries, including the
802 standards that define local area networking.

• ANSI — American National Standards Institute, an organization that develops and maintains stan-
dards for the computer and communications industries

• 802.3 — The IEEE standard for Ethernet network technology, including 802.3u for Fast Ethernet,
and 802.3z for Gigabit Ethernet.

• 802.5 — The IEEE standard for Token Ring network technology.

• CSMA/CD — Carrier Sense Multiple Access with Collision Detection, the network access proto-
col used on half-duplex Ethernet networks to resolve contention between nodes competing for ac-
cess to the network medium.

• NIC — Network Interface Card. Other terms that may be used interchangeably include Adapter,
Controller, Device, Card, Port. LAN On Motherboard (LOM) is a variant where the NIC hardware
is included on a system board. A multiport adapter consists of multiple adapters on one card, so,
for example, a quad Ethernet NIC may be referred to as a 4-port card. A combo adapter consists of
multiple adapters, some Ethernet and some storage, SCSI or Fibre Channel.

• Bus — Data and control paths that connect the functional units of a computer. In relation to LAN
devices, it refers to the hardware interface between the CPU and the I/O devices. Each LAN de-
vice connects to a particular type of bus, such as PCI, PCI-X, PCI-Express, EISA, ISA, XMI, Tur-
boChannel, each of which typically has multiple slots to accommodate several I/O devices.

• Duplex — A characteristic of a 2-way communication channel that indicates whether the channel
can allow transmission in both directions at the same time (full-duplex) or not (half-duplex).

• Flow Control — A technique where the flow of data along a communications channel is adjust-
ed to ensure that the receiving side can handle incoming data without loss. Many network applica-
tions implement flow control techniques in software. Here, this term refers to the implementation
of flow control in hardware independent of the network application or protocol, as specified by the
IEEE 802.3x standard. The receiver side hardware sends special packets, called pause frames, that
asks the transmitting side to stop transmitting for a certain amount of time. When the receiver has
caught up, it sends a pause frame with a zero time to re-enable the transmitter.

• Packet — A unit of data transmission on the network, also called frame. It consists of a header,
body of data, and a Cyclic Redundancy Check (CRC). The frame may be encapsulated by addi-
tional data needed for the particular network technology. Note that LAN Emulation over ATM im-
poses packet concepts over the underlying cell-based network technology.

• Jumbo Frames — Oversize Ethernet packets, where the range of sizes on Ethernet is from 64-1518
bytes, jumbo frames are packets ranging in size from 1519 to 9216 bytes depending on the hard-
ware and software implementation.

• Link Up/Down — Network connection state, for Ethernet devices. Most Ethernet devices that
connect to twisted-pair cables have the ability to detect if an active link connection exists. When
both ends of the network connection can detect a valid connection, the link is considered to be 'up'
and the Ethernet device is capable of using the network channel to transmit and receive packets.

260

Chapter 9. Local Area Network (LAN) Device Drivers

When the Ethernet device cannot detect a valid connection, the link is considered 'down' and the
device will not transmit or receive over the network communications path.

• Ring Available/Unavailable — Network connection state, for FDDI, Token Ring, or ATM de-
vices.

• Open Systems Interconnect (OSI) Model — Defines the following seven layers in a networking
framework:

• (7) Application Layer

• (6) Presentation Layer

• (5) Session Layer

• (4) Transport Layer

• (3) Network Layer

• (2) Data Link Layer

• (1) Physical Layer

• Port — One end of a communications channel, or the channel itself. When correlated to the OSI
Model, port may refer to a communications channel at various layers. At the physical layer, a port
is a LAN device, so a quad Ethernet device is said to be a 4-port card. At the data link layer, the
LAN drivers allow multiple applications to run on one LAN device. Each application will have
opened a port to the LAN driver. At the application layer, an application may allow multiple ports
to be opened to it, with the application itself doing the multiplexing of the ports through itself to
the underlying network. An example of this would be a network application written to send and
receive data over a TCP/IP port.

In this chapter, applications open a port to the LAN driver to communicate over a particular LAN
device. In OpenVMS terms, opening a port is done by assigning a channel.

• User — Refers to the application that has opened a port to the LAN driver. A LAN device may be
described as having a number of different users. Each user would have opened a port to the LAN
device. Examples of users are LAT, TCP/IP, DECnet, Clusters (NISCA).

In this chapter, the terms application and user may be used interchangeably.

9.2. Supported LAN Devices
Table 9.1 and Table 9.2 show the LAN devices supported by the OpenVMS Integrity server operating
system. Table 9.2 lists additional information for the devices listed in Table 9.1. Most of the LAN de-
vices are described here, but see the Software Product Description for the OpenVMS Operating Sys-
tem (SPD 82.35.xx) for the definitive list of supported devices.

Table 9.1. Supported OpenVMS Integrity server Systems LAN Devices, Part 1

Medium Medium Type I/O Bus Device Name OpenVMS
Name

DECnet
Name

OpenVMS Device
Type

Ethernet 100BaseTX PCI A5230A EW EWA DT$_EW_DE500
Ethernet 4x100BaseTX PCI A5506B EW EWA DT$_EW_DE500

261

Chapter 9. Local Area Network (LAN) Device Drivers

Medium Medium Type I/O Bus Device Name OpenVMS
Name

DECnet
Name

OpenVMS Device
Type

Ethernet 100BaseTX PCI 82559 (LOM) EW EWA DT$_EI_82559
Ethernet 1000BaseSX PCI-X A6847A EW EWA DT$_EW_BCM5701
Ethernet 1000BaseTX PCI-X A6825A EW EWA DT$_EW_BCM5701
Ethernet 2x1000BaseSX PCI-X A7011A EI EIA DT$_EI_82540
Ethernet 2x1000BaseTX PCI-X A7012A EI EIA DT$_EI_82540
Ethernet 1000BaseTX PCI-X Intel 82546

(LOM)
EI EIA DT$_EI_82540

Ethernet 1000BaseSX PCI-X AB352A EW EWA DT$_EW_BCM5703
Ethernet 1000BaseSX PCI-X A9782A EW EWA DT$_EW_BCM5703
Ethernet 1000BaseTX PCI-X A9784A EW EWA DT$_EW_BCM5703
Ethernet 1000BaseTX PCI-X AB290A EW EWA DT$_EW_BCM5703
Ethernet 2x1000BaseTX PCI-X AB465A EW EWA DT$_EW_BCM5704
Ethernet 1000BaseTX PCI BCM5701

(LOM)
EW EWA DT$_EW_BCM5701

Ethernet 1000BaseT PCI-e AD337A EI EIA DT$_EI_82540
Ethernet 1000BaseSX PCI-e AD338A EI EIA DT$_EI_82540
Ethernet 1000BaseT PCI-e AD339A EI EIA DT$_EI_82540
Ethernet 2-p 1Gb Mezz PCI-e NC360M EI EIA DT$_EI_82540
Ethernet 4-p GbE Mezz PCI-e NC364M EI EIA DT$_EI_82540

Table 9.2. Supported OpenVMS Integrity server Systems LAN Devices, Part 2

Device OpenVMS Device Type OpenVMS
Version

Driver Name

A5230A DT$_EW_DE500 V8.2 SYS$EWDRIVER_DE500BA.EXE
A5506B DT$_EW_DE500 V8.2 SYS$EWDRIVER_DE500BA.EXE
82559 (LOM) DT$_EI_82559 V8.2 SYS$EIDRIVER.EXE
A6847A DT$_EW_BCM5701 V8.2 SYS$EW5700.EXE
A6825A DT$_EW_BCM5701 V8.2 SYS$EW5700.EXE
A7011A DT$_EI_82540 V8.2 SYS$EI1000.EXE
A7012A DT$_EI_82540 V8.2 SYS$EI1000.EXE
Intel 82546
(LOM)

DT$_EI_82540 V8.2 SYS$EI1000.EXE

AB352A DT$_EI_82540 V8.2 SYS$EI1000.EXE
A9782A DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE
A9784A DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE
AB290A DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE
AB465A DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE
BCM5701
(LOM)

DT$_EW_BCM5701 V8.2 SYS$EW5700.EXE

262

Chapter 9. Local Area Network (LAN) Device Drivers

Device OpenVMS Device Type OpenVMS
Version

Driver Name

BCM5703
(LOM)

DT$_EW_BCM5703 V8.2 SYS$EW5700.EXE

BCM5704
(LOM)

DT$_EW_BCM5704 V8.2 SYS$EW5700.EXE

AB545A DT$_EI_82540 V8.2 SYS$EI1000.EXE
AD193A DT$_EI_82540 V8.3 SYS$EI1000.EXE
AD194A DT$_EI_82540 V8.3 SYS$EI1000.EXE
AD331A DT$_EI_82540 V8.3 SYS$EI1000.EXE
AD332A DT$_EI_82540 V8.3 SYS$EI1000.EXE
AD337A DT$_EI_82540 V8.3–1H1 SYS$EI1000.EXE
AD338A DT$_EI_82540 V8.3 SYS$EI1000.EXE
AD339A DT$_EI_82540 V8.3 SYS$EI1000.EXE
NC360M DT$_EI_82540 V8.3 SYS$EI1000.EXE
NC364M DT$_EI_82540 V8.3 SYS$EI1000.EXE

Note

A5230A is a DE500-BA equivalent made by Adaptec.

A5506B is a DE504-BA equivalent made by IntraServer.

A9782A and A9784A are combo Qlogic FibreChannel plus Gigabit Ethernet devices.

AB465A is a combo dual Qlogic FibreChannel plus dual Gigabit Ethernet device.

AD193A and AD194A are combo Qlogic FibreChannel plus Gigabit Ethernet devices.

BCM5701 (LOM) is embedded in the rx2600 and rx8620 systems.

BCM5703 (LOM) is embedded in the rx8640 systems.

BCM5704 (LOM) is embedded in the rx2660 and BL860c systems.

Intel 82546 (LOM) is embedded in the rx1620 and rx2620 systems.

100BaseTX devices can do 10BaseT as well.

1000BaseTX devices can do 10BaseT and 100BaseTX as well.

1000BaseSX is 1000 Mb/s multimode fiber.

9.3. Supported Industry Standards
Ethernet drivers support the following features and standards:

• Ethernet and IEEE 802.3 packet format

263

Chapter 9. Local Area Network (LAN) Device Drivers

• Physical layer identified as 10Base5 (ThickWire), 10Base2 (ThinWire), and 10BaseT (twist-
ed-pair)

• Fast Ethernet physical layer identified as type 100BaseTX

• Gigabit Ethernet physical layer identified as 1000BaseT for unshielded twisted-pair (UTP),
1000BaseSX for multimode fiber-optic cables

• Gigabit and 10 Gigabit Ethernet implementation of jumbo frames, a de facto industry standard us-
ing a maximum frame size larger than the standard Ethernet maximum of 1518 bytes, generally up
to 9018 bytes

FDDI drivers support the following features and standards:

• FDDI packet format

• Transmission and reception of frame control (FC) priority

• ANSI X3.139-1987 FDDI Media Access Control (MAC)

• ANSI X3.148-1988 FDDI Physical Layer Protocol (PHY)

• ANSI X3.166-1990 FDDI Physical Layer Medium Dependent (PMD)

Token Ring drivers support the following features and standards:

• IEEE 802.5 packet format

• Transmission and reception of priority bits in the access control (AC) field and the frame control
(FC) field

• Transmission of source routing header information

• Reception of route information (RI)

ATM drivers over ELAN support the following features and standards:

• Ethernet and IEEE 802.3 packet format

• UNI Version 3.0 or 3.1 signaling protocol

• LAN emulation (LANE) Version 1.0

• Maximum frame sizes of 1516, 4544, and 9234 bytes

All LAN drivers support the following features:

• 802.2 packet format

• IEEE 802.2 Class I service including the unnumbered information (UI), exchange identification
(XID) commands and responses, and TEST commands and responses

• IEEE 802.2 Class II service may be specified where the functions are provided by the user appli-
cation

• Six-byte destination and source address fields

264

Chapter 9. Local Area Network (LAN) Device Drivers

9.4. LAN I/O Architecture
The OpenVMS LAN software employs a class/port driver architecture to allow LAN applications to
communicate with other nodes over the LAN device and the network.

The class driver is implemented by a collection of execlets known as the LAN common routines. The
LAN common routines implement two APIs, QIO and VCI. LAN applications interface to the LAN
device port drivers using these APIs in a common manner across each type of LAN (Ethernet, FD-
DI, Token Ring, ATM, and Shared Memory). An execlet for each LAN medium minimizes the dif-
ferences between them so applications can operate transparently over different types of LANs. LAN
over ATM emulates Ethernet and uses the Ethernet LAN common routines. ATM needs a significant
amount of additional support code to provide LAN emulation (LANE) and Classical IP (CLIP) sup-
port. This support code is located in an ATM execlet. LAN over Shared Memory also emulates Eth-
ernet and uses the Ethernet LAN common routines. No additional support code is needed for Shared
Memory.

The port drivers operate the LAN hardware, and there is one port driver for each type of LAN device.
Many of the port drivers operate multiple variations of similar hardware. One port driver for ATM
emulates Ethernet and another emulates IP (called Classical IP). The port driver for Shared Memory
emulates Ethernet. Unlike the port drivers that directly control LAN hardware, the emulated port dri-
vers are pseudo drivers that implement a pseudo hardware interface in software.

When correlated to the OSI Model, the LAN implementation occupies the bottom two layers, the
LAN common routines and LAN port drivers constitute the Data Link Layer, and the LAN device
hardware the Physical Layer and parts of the Data Link Layer. The LAN drivers are often called the
data link drivers.

9.4.1. LAN Data Structures
The OpenVMS I/O subsystem describes devices in terms of a Unit Control Block (UCB). There is
a UCB for each device, which may be an actual physical device or a pseudo or virtual device. LAN
devices include physical devices, NICs located in PCI buses, for example; and virtual devices, a
shared memory emulated Ethernet device, an ATM emulated LAN device, a LAN Failover device, or
a VLAN device. The LAN drivers define an extension to the standard VMS UCB that includes addi-
tional fields needed to provide LAN context.

When a LAN application wants to use a LAN device, it assigns a channel (opens a port) to the UCB
associated with the LAN device. When this occurs, the VMS I/O subsystem makes a copy of the de-
vice UCB and associates the channel with this cloned UCB. Then the application can activate the
channel by specifying the desired characteristics of the channel, such as protocol type and what multi-
cast addresses to enable. The unit 0 UCB is called the template UCB. Each non-zero UCB represents
a channel to the device and contains application-specific channel characteristics.

Each LAN driver also maintains another structure, the LAN Station Block (LSB), which contains
LAN common information as well as device-specific data. For each LAN device there is one LSB and
a corresponding unit 0 UCB. The LSB contains device-specific data the would be inappropriate to in-
clude in the UCB structures such as device rings and device counters.

In summary, the UCBs contain application-specific data. The LSBs contain device and driver-specif-
ic data. There is one LSB and one template UCB per LAN device that are created and initialized dur-
ing device discovery. Whenever an application opens a channel to a particular LAN device, the tem-
plate UCB is cloned to a newly created cloned UCB which represents the channel. There is one cloned

265

Chapter 9. Local Area Network (LAN) Device Drivers

UCB for each channel. When the channel is deassigned, the cloned UCB ceases to exist along with
any context associated with the channel.

Additional data structures are defined to allow applications to send and receive I/O requests to the
LAN drivers, as described in the following QIO and VCI sections.

9.4.2. Hardware Configuration
When the system boots, system support code probes the I/O buses looking for I/O devices. On Alpha
and Integrity server systems, device configuration is done by comparing device IDs found during bus
probing with entries in the file SYS$SYSTEM:SYS$CONFIG.DAT. This file includes the set of sup-
ported LAN devices on Alpha and Integrity server systems, as well as entries for other I/O devices
supported such as SCSI, FibreChannel, USB, ATA and others.

9.4.3. Software Modules
OpenVMS LAN software consists of LAN common routines, LAN port drivers, LAN Control Pro-
grams, and LAN diagnostic software listed in Table 9.3.

Table 9.3. LAN Software Module

Location Module Architecure Function
SYS$LOADABLE_
IMAGES

SYS$LAN.EXE Alpha, Integrity
servers

LAN common routines,
common across all me-
dia types

SYS$LOADABLE_
IMAGES

SYS$LAN_CSMACD.EXE Alpha, Integrity
servers

LAN common routines,
Ethernet-specific sup-
port

SYS$LOADABLE_
IMAGES

SYS$LAN_FDDI.EXE Alpha LAN common routines,
FDDI-specific support

SYS$LOADABLE_
IMAGES

SYS$LAN_TR.EXE Alpha LAN common routines,
Token ring-specific sup-
port

SYS$LOADABLE_
IMAGES

SYS$LAN_ATM.EXE Alpha LAN common routines,
ATM-specific support

SYS$LOADABLE_
IMAGES

NET$CSMACD.EXE Alpha, Integrity
servers

DECnet-Plus network
management support
routines for Ethernet

SYS$LOADABLE_
IMAGES

NET$FDDI.EXE Alpha DECnet-Plus network
management support
routines for FDDI

SYS$SYSTEM SYS$CONFIG.DAT Alpha, Integrity
servers

Device ID entries for
file-based device con-
figuration

SYS$SYSTEM LANCP.EXE Alpha, Integrity
servers

LAN Control Program

SYS$SYSTEM LANACP.EXE Alpha, Integrity
servers

LAN Auxiliary Con-
trol Program, including
MOP server

266

Chapter 9. Local Area Network (LAN) Device Drivers

Location Module Architecure Function
SYS$LIBRARY SDA$SHARE.EXE Alpha, Integrity

servers
System Dump Analyzer
or System Analyzer

SYS$LIBRARY LAN$SDA.EXE Alpha, Integrity
servers

SDA extension for LAN
drivers

SYS$LOADABLE_
IMAGES

LAN port drivers Alpha, Integrity
servers

LAN port drivers

The NET$ modules are only loaded when DECnet-Plus is configured on the system. SYS$CON-
FIG.DAT includes LAN devices as well as any other I/O devices. LAN support represents only a
small portion of the SDA.EXE and SDA$SHARE.EXE images.

On Alpha and Integrity servers, these routines are separate execlets.

9.4.4. Application APIs
The LAN common routines provide two APIs to allow applications to interface to the LAN drivers
and ultimately to send and receive data over the network. The APIs allow an application to initialize a
port (assign a channel), send a packet over the port, receive a packet from the port, and do other man-
agement functions such as set port characteristics, obtain port characteristics and counters, and to shut
down the port (deassign the channel).

The APIs are:

• QIO — An unprivileged interface to the LAN drivers, designed for user mode code.

• VCI — A privileged interface to the LAN drivers that runs in kernel mode at IPL 8, designed to be
very efficient.

9.4.4.1. QIO API
The QIO API is implemented in the LAN common routines to interface between an application and
the LAN port driver in user mode. The QIO subsystem passes I/O requests from the application to the
LAN driver. The LAN driver performs the requested I/O and returns status and data to the application.

An application calls SYS$QIO with a function code, function modifiers, and addresses of buffers that
provide any information needed, such as a buffer containing transmit data, transmit header data, a
buffer to contain receive data and receive header data, and buffers for setmode and sensemode func-
tions. This information is passed to the LAN driver via the P1-P6 QIO parameters.

The LAN common routines translate the I/O function in the QIO request to a transmit, receive, sense-
mode, setmode, or diagnose operation and passes the request on to the LAN port driver.

The LAN port driver does the transmit request, retrieves the receive packet, collects sensemode data,
sets characteristics, or does the diagnose function, and passes the results back through the LAN com-
mon routines, back through the QIO subsystem, and back to the application.

QIO operations do buffered I/O. This, in addition to considerable validation of the QIO request,
makes for a robust user mode interface, but less efficient from a performance standpoint than the VCI
interface.

9.4.4.1.1. QIO Program Operation

The following sequence shows a typical application sequence, to start a port, do transmits and re-
ceives, then shut down a port:

267

Chapter 9. Local Area Network (LAN) Device Drivers

1. Use the Assign I/O Channel ($ASSIGN) system service to assign I/O channels to one or more of
the LAN device names and devices specified in Title not available through Table 9.3. $ASSIGN
creates a new unit control block (UCB), to which the channel for the port is assigned.

2. Start the port with the set mode function and startup function modifier (see Section 9.7.3.1. You
must supply the required P2 buffer parameters listed in Table 9.33).

3. Perform read, write, and sense mode operations as needed.

4. Shut down the port with the set mode function and shutdown function modifier (see Sec-
tion 9.7.4).

5. Use the Deassign I/O Channel ($DASSGN) system service to deassign the I/O channel.

The sample programs described in Section 9.8.2 illustrate a QIO implementation.

9.4.4.2. VCI API

The VCI API is implemented in the LAN common routines to interface between the application and
the LAN port driver in kernel mode at IPL 8. The VCI application calls VCI routines in kernel mode
at IPL 8. The VCI routines are part of the LAN common routines. There are routines to initiate a port
management request (to start, stop, and change a port) and to initiate a transmit request. The VCI ap-
plication provides routines that the LAN common routines calls for transmit, receive, and port man-
agement completion.

An applications calls a VCI initiation routine with an I/O request that contains the transmit buffer or
pointers to the transmit data, or the port management buffer data.

The LAN common routines process the transmit or port management request and passes the request
on to the LAN port driver.

The LAN port driver does the transmit request, or sets characteristics, and passes the results back
through the LAN common routines, and back to the VCI application by calling the application's com-
pletion routine. When a receive packet arrives, the LAN common routines passes the receive buffer to
the VCI application by calling the application's receive completion routine. When the application has
completed processing the receive data, it returns the receive buffer to the LAN common routines by
calling a return receive buffer routine.

VCI operations do direct I/O, avoiding buffer copies in most cases. VCI applications are considered
trusted applications, so must abide by the VCI specification to gain that trust and to ensure system in-
tegrity is maintained operating in kernel mode with privileges.

9.4.5. LAN Addressing
Each LAN device is identified by a hardware address that is intended to uniquely identify the LAN
device and local system as a node on the network. The hardware address is a 48-bit address known as
a MAC address or Ethernet address.

Ethernet addresses are represented by the Ethernet standard as six pairs of hexadecimal digits (six
bytes), separated by hyphens (for example, AA-01-23-45-67-FF). The bytes are displayed from left
to right in the order in which they are transmitted; bits within each byte are transmitted from right to
left. In this example, byte AA is transmitted first; byte FF is transmitted last. (See the description of
NMA$C_PCLI_PHA in Table 9.33, Section 9.7.3.1, for the internal representation of addresses.)

268

Chapter 9. Local Area Network (LAN) Device Drivers

For Token Ring networks, the address is often given in bit-reversed form, called canonical format,
separated by colons. For example, AA-01-23-45-67-FF in canonical format is 55:80:C4:A2:E6:FF.

Upon application, IEEE assigns a block of addresses to a producer of LAN nodes. Thus, every manu-
facturer has a unique set of addresses to use. Normally, one address out of the assigned block of phys-
ical addresses is permanently associated with each device (usually in read-only memory). This address
is known as the hardware address or MAC address of the device. Each individual device has a unique
hardware address.

9.4.5.1. Ethernet Address Classifications

An Ethernet address can be a physical address of a single node or a multicast address, depending on
the value of the low-order bit of the first byte of the address (this bit is transmitted first). Following
are the two types of node addresses:

• Physical address—The unique address of a single node on a LAN. The least significant bit of the
first byte of a physical address is 0. (For example, in physical address AA-00-03-00-FC-00, byte
AA in binary is 1010 1010, and the value of the low-order bit is 0.) This is also called an individ-
ual address or unicast address.

• Multicast address—A multi-destination address of one or more nodes on a given LAN. The least
significant bit of the first byte of a multicast address is 1. (For example, in the multicast address
0B-22-22-22-22-22, byte 0B in binary is 0000 1011, and the value of the low-order bit is 1. This is
the first bit of the address as transmitted over the wire.)

9.4.5.2. Selecting an Ethernet Physical Address

The OpenVMS interface to the LAN controllers allows you to set a physical address of the controller.
The selection of the physical address of a LAN controller is different for Ethernet and FDDI.

For Ethernet, all users of the controller must agree on this address. The first user of the controller
chooses the physical address; any additional users of the controller must specify either the same phys-
ical address, no physical address, or change the address (if allowed). When all channels to the con-
troller are shut down, the next user to start a channel chooses the physical address. The controller's
physical address is always chosen on the first successful startup when there are no active ports. If the
address is not chosen at this time, the controller's hardware address is used as the physical address.

For Ethernet, the Can Change Address parameter allows the physical address to be changed even
though there are active users. If all current users of the controller have set the NMA$C_PCLI_CCA
parameter to NMA$C_STATE_ON, then the physical address can be changed.

For FDDI, each port using a controller may specify its own unique physical address. Any combination
of sharing of physical addresses is also allowed across the ports of an FDDI controller. For example,
ports A, B, and C may use one unique physical address and ports D and E may use another unique ad-
dress.

9.4.5.3. Ethernet Physical and Multicast Address Values

The following shows the multicast addresses assigned for use in cross-company communications:

Value Meaning
FF-FF-FF-FF-FF-FF Broadcast

269

Chapter 9. Local Area Network (LAN) Device Drivers

Value Meaning
CF-00-00-00-00-00 Loopback assistance

The following lists the commonly used multicast addresses.

Value Meaning
AB-00-00-01-00-00 Dump/load assistance
AB-00-00-02-00-00 Remote console
AB-00-00-03-00-00 Level 1 and Level 2 routers
AB-00-00-04-00-00 All end nodes
09-00-2B-02-00-00 Level 2 routers
AB-00-00-05-00-00 through AB-00-03-FF-FF-FF Reserved for future use
AB-00-03-00-00-00 LAT
AB-00-04-00-00-00 through AB-00-04-00-FF-FF For use by OpenVMS customers for their own ap-

plications
AB-00-04-01-00-00 through AB-00-04-01-FF-FF Local area VMScluster
AB-00-04-02-00-00 through AB-00-04-FF-FF-FF Reserved for future use
09-00-2B-01-00-00 Bridge management
09-00-2B-01-00-01 Bridge hello multicast

9.4.5.4. Token Ring Functional Address Mapping

Except for the global broadcast address (FF-FF-FF-FF-FF-FF), Token Ring hardware does not sup-
port the 802 standard group LAN address mechanism. Instead, it uses functional addresses. Func-
tional addresses are locally administered group addresses (multicast addresses). The first two bytes of
the address are always 03-00 (canonical format), and the remaining four bytes contain a bit mask that
specifies which of the 32 possible combination masks is being described.

Because most OpenVMS LAN applications use standard multicast addresses, a mechanism has been
designed to map functional addresses to globally and locally administered multicast addresses. This
allows applications to use the same multicast addresses that are used in the other LAN media.

Table 9.4 shows the default mapping used by the OpenVMS Alpha Token Ring drivers:

Table 9.4. Address Mappings of Token Ring Drivers

Multicast Address Functional Ad-
dress

Bit-Reversed Description

09-00-2B-00-00-04 03-00-00-00-02-00 C0:00:00:00:40:00 ISO 9542 All End-system Network
Entities

09-00-2B-00-00-05 03-00-00-00-01-00 C0:00:00:00:80:00 ISO 9542 All Intermediate System
Network Entities

CF-00-00-00-00-00 03-00-00-08-00-00 C0:00:00:10:00:00 Loopback Assistance
AB-00-00-01-00-00 03-00-02-00-00-00 C0:00:40:00:00:00 MOP Dump/Load
AB-00-00-02-00-00 03-00-04-00-00-00 C0:00:20:00:00:00 MOP Remote Console

270

Chapter 9. Local Area Network (LAN) Device Drivers

Multicast Address Functional Ad-
dress

Bit-Reversed Description

AB-00-00-03-00-00 03-00-08-00-00-00 C0:00:10:00:00:00 DNA L1 Routers
09-00-2B-02-00-00 03-00-08-00-00-00 C0:00:10:00:00:00 DNA L2 Routers
09-00-2B-02-01-0A 03-00-08-00-00-00 C0:00:10:00:00:00 DECnet Phase IV — TRN — All

Phase IV — TRN Routers
AB-00-00-04-00-00 03-00-10-00-00-00 C0:00:08:00:00:00 DNA End nodes
09-00-2B-02-01-0B 03-00-10-00-00-00 C0:00:08:00:00:00 Phase IV Prime Unknown
09-00-2B-00-00-07 03-00-20-00-00-00 C0:00:04:00:00:00 PCSA NETBIOS Emulation
09-00-2B-00-00-0F 03-00-40-00-00-00 C0:00:02:00:00:00 Local Area Transport (LAT)
09-00-2B-02-01-04 03-00-80-00-00-00 C0:00:01:00:00:00 LAT Directory Service Solicit (to

slave)
09-00-2B-02-01-07 03-00-00-02-00-00 C0:00:00:40:00:00 LAT Directory Service Solicit — X

Service Class
09-00-2B-04-00-00 03-00-00-04-00-00 C0:00:00:20:00:00 LAST
09-00-2B-02-01-00 03-00-00-00-08-00 C0:00:00:00:10:00 DNA Naming Service Advertise-

ment
09-00-2B-02-01-01 03-00-00-00-10-00 C0:00:00:00:08:00 DNA Naming Service Solicitation
09-00-2B-02-01-02 03-00-00-00-20-00 C0:00:00:00:04:00 DNA Time Service
03-00-00-00-00-01 03-00-00-00-00-01 C0:00:00:00:00:80 NETBUI Emulation

If an application needs to change or add mappings, QIOs exist for performing such operations. If the
system or network manager has a requirement regarding mapping of the functional addresses, the
LAN control program (LANCP) utility may be used to manage the mapping. The following example
maps the multicast address AB-01-01-01-02-03 to functional address 03-00-00-01-00-00 on Token
Ring device ICA0:

$MCR LANCP

LANCP>SET DEVICE/MAP= -

_LANCP> (MULTICAST=AB-01-01-01-02-03,-

_LANCP> FUNCTIONAL=00-01-00-00) ICA0:

Note that it is possible for more than one multicast address to map to the same functional address. In
all cases, the use of the functional address is associated with an individual application's protocol.

9.4.6. LAN Frame Formats
Several different LAN physical layer protocols are supported by OpenVMS with some differences in
frame formats. The following sections describe the similarities and differences in these frame formats.
Despite differences, the QIO interface to the LAN drivers is designed to allow applications to run over
the different media with few changes to the application.

The frame formats available in the LAN media are shown in Figure 9.1.

271

Chapter 9. Local Area Network (LAN) Device Drivers

Figure 9.1. LAN Frame Formats

Note that Ethernet provides two frame formats and the FDDI provides one frame format. The 802.1
header is an optional extension to the 802.2 header.

9.4.6.1. Ethernet Frames
There are two headers for Ethernet frames:

• Ethernet header

• IEEE 802.3 header

Figure 9.2 illustrates an Ethernet frame with an Ethernet header.

Figure 9.2. Ethernet Frame with Ethernet Header

The Ethernet header consists of the DA, SA, and PTY fields. Ethernet frames must be at least 64 bytes
in length, which means that the minimum data length is 46 bytes. Applications select Ethernet format
by specifying NMA$C_LINFM_ETH (the default) as the value for NMA$C_PCLI_FMT in their P2
characteristics buffer. If the amount of actual data to be transmitted is less than 46 bytes, the Ethernet
drivers transmit extra bytes of zero after the application data.

272

Chapter 9. Local Area Network (LAN) Device Drivers

Figure 9.3 illustrates a Ethernet frame with an IEEE 802.3 header.

Figure 9.3. Ethernet Frame with IEEE 802.3 Header

The IEEE 802.3 format is similar to the Ethernet format, except the PTY field is replaced by the LEN
field.

9.4.6.2. FDDI Frames
Figure 9.4 illustrates the format of FDDI frames.

Figure 9.4. FDDI Frame Format

9.4.6.3. Token Ring Frames
Figure 9.5 illustrates the format of Token Ring frames.

Figure 9.5. Token Ring Frame Format

273

Chapter 9. Local Area Network (LAN) Device Drivers

9.4.6.4. ATM ELAN Frames

Figure 9.6 illustrates the format of LAN emulation data frame format for the IEEE 802.3 and Ethernet
Header.

Figure 9.6. LAN Emulation Data Frame Format with IEEE 802.3/Ethernet Header

9.4.6.5. Ethernet (Ethernet Version 2, DIX) Frame Format

The Ethernet format specifies a two-byte protocol type field followed by an optional length field. The
length field is included in transmit packets and expected in receive packets with the PAD parameter is
enabled. The following sections describe these features.

9.4.6.5.1. Ethernet Protocol Types

Every Ethernet frame has a 2-byte protocol type field. This field is used to determine the port to which
a packet belongs. When an application starts a port, it specifies the protocol type to be used on that
port. Packets sent over that port always have the protocol type inserted in the packet header by the
LAN driver, and packets received for that protocol type are delivered to the application that owns the
port. Valid protocol types are in the range 05-DD through FF-FF.

The following lists the cross-company protocol types:

Value Meaning
08-00 IP protocol
08-06 Address resolution protocol (ARP)
86-DD IP protocol Version 6 (IPV6)
90-00 Ethernet Loopback protocol

The following list some commonly used protocol types.

Value Meaning
60-01 DNA Dump/load (MOP)

274

Chapter 9. Local Area Network (LAN) Device Drivers

Value Meaning
60-02 DNA Remote Console (MOP)
60-03 DNA Routing
60-04 Local Area Transport (LAT)
60-05 Diagnostics
60-06 Customer use
60-07 System Communication Architecture (SCA)
80-38 Bridge
80-3C DNA Naming Service
80-3D CSMA/CD Encryption
80-3E DNA Time Service
80-3F LAN Traffic Monitor
80-40 NETBIOS Emulator (PCSG)
80-41 Local Area System Transport (LAST)

9.4.6.6. 802 (IEEE 802.x LLC) Frame Format

The IEEE 802 packet formats accepted for a port depend on the service enabled on that port. All 802
packet formats have an 802.2 header. The service on the port determines the valid values for the 802.2
fields.

When a port is started, the NMA$C_PCLI_SRV parameter in the P2 buffer selects the service on that
port. A value of NMA$C_LINSR_CLI specifies Class I service and a value of NMA$C_LINSR_USR
specifies er-supplied service (the default).

9.4.6.6.1. 802 Service Access Point (SAP) Types

Every IEEE 802 frame has a 1-byte Service Access Point (SAP) field. This field identifies where the
packet came from, the source port on the sending node. And it identifies the destination port for the
packet on the receiving node. When an application starts a port, it specifies the SAP value that iden-
tifies the port. Packets sent over that port always have SAP value inserted into the SSAP field in the
packet header by the LAN driver, and packets received for the SAP value in the DSAP field are deliv-
ered to the application that owns the port. Also, when transmitting a packet, the application specifies
the destination SAP value, in addition to the destination address. And when receiving a packet, the ap-
plication is given the source SAP value as well as the source address.

The following lists some commonly used SAP values.

Value Meaning
FE DECnet-V Link State Routing
F0 Pathworks

9.4.6.6.2. Class I Service Packet Format

For Class I service, only three packet formats are transmitted and received: UI, XID, and TEST. Fig-
ure 9.7 shows the 802.2 header format for Class I service.

275

Chapter 9. Local Area Network (LAN) Device Drivers

Figure 9.7. Class I Service 802.2 Header

The control field for an 802 packet is always an unnumbered control field. The unnumbered control
field, which is always 1 byte in length, is passed by the P4 argument of the write QIO and can be one
of the following binary values:

• UI command (00000011)

This is the unnumbered information command. It is the method used to transmit data from one
user to another and is the most widely used control field value.

The UI command can be specified by using NMA$C_CTLVL_UI.

• XID command (101p1111)

This is the exchange identification command. It is used to convey information about the port.
The “p” bit is the poll bit and can be either 0 or 1. This command can be specified by using
NMA$C_CTLVL_XID for a “0” poll bit or NMA$C_CTLVL_XID_P for a “1” poll bit.

• XID response (101f1111)

The XID response is a response to an XID command. The “f” bit is the final bit and matches the
poll bit from the XID command.

• TEST command (111p0011)

The TEST command is used to test a connection. The “p” bit is the poll bit and can be either
0 or 1. This command can be specified by using NMA$C_CTLVL_TEST for a “0” poll bit or
NMA$C_CTLVL_TEST_P for a “1” poll bit.

• TEST response (111f0011)

The TEST response is a response to a TEST command. The “f” bit is the final bit and matches the
poll bit from the TEST command.

An 802 format port with Class I service is allowed to transmit UI, XID, and TEST commands. An 802
format port with Class I service is allowed to receive UI commands and XID and TEST responses.

For more information on these control field values and response messages, see the IEEE 802.2 Stan-
dard.

9.4.6.6.3. User-Supplied Service Packet Format

The user provides the control field values, which are documented in the IEEE 802.2 Standard. The
user-supplied packet format is the generic packet format as specified in the IEEE 802.2 Standard.
Class I packets (see Section 9.4.6.6.2) are a subset of this generic packet format; therefore, if the con-
trol field value of the user-supplied packet is UI, XID, or TEST, the packet is the same as a Class I

276

Chapter 9. Local Area Network (LAN) Device Drivers

packet. Note that Class II packets, as defined in the IEEE 802.2 Standard, include the UI, XID, and
TEST command/response formats.

9.4.6.6.4. Service Access Point (SAP) Use and Restrictions

The IEEE 802.2 Standard places restrictions on both user SAPs and source SAPs (SSAPs). All SAPs
are 8 bits long. Figure 9.8 shows the format of destination SAPs (DSAPs) and SSAPs.

Figure 9.8. DSAP and SSAP Format

Definition of the least significant bit depends on whether the SAP is a source SAP (SSAP) or a desti-
nation SAP (DSAP). For a DSAP field, the least significant bit distinguishes group SAPs (bit 0 = 1)
from individual SAPs (bit 0 = 0). For an SSAP field, the least significant bit distinguishes commands
(bit 0 = 0) from responses (bit 0 = 1). Because these two bits are located at the same bit position with-
in the SAP field, a group SAP cannot be used as an SSAP. If this were allowed, a group SAP would
be interpreted as an individual SAP with the command/response bit set to 1, thus implying a response.
The IEEE 802.2 Standard reserves for its own definition all SAP addresses with the second least sig-
nificant bit set to 1. You should use these SAP values for their intended purposes, as defined in the
IEEE 802.2 Standard.

Up to four group SAPs can be enabled on each 802 port. The group SAPs enabled on a controller do
not have to be unique for each port; for example, two 802 format ports can have the same group SAP
enabled. This allows a single packet coming into the controller to be duplicated and passed to each
port on the controller that has the group SAP enabled—assuming the packet has a DSAP value that
is a group SAP. If the received packet has an individual SAP for a DSAP, the packet goes to, at most,
one port.

9.4.6.7. 802 Extended (IEEE 802.x LLC/SNAP) Frame Format
The 802E format uses the 802.2 and 802.1 headers, as shown in Figure 9.9.

Figure 9.9. 802 Extended Header

For an 802E packet format, the DSAP and SSAP fields are always set to the SNAP SAP (AA hex).
The SNAP SAP value is a special SAP value reserved for 802 extended format packets. The SNAP
SAP value distinguishes an 802 packet from an 802 extended packet. The only valid control field val-
ue for 802 extended packets is UI (unnumbered information).

9.4.6.7.1. 802E PID Types

Every SNAP frame has a 5-byte protocol ID (PID) field. This field is used to determine the port to
which a packet belongs. When an application starts a port, the it specifies the PID to be used on that

277

Chapter 9. Local Area Network (LAN) Device Drivers

port. Packets sent over that port always have the PID inserted in the packet header by the LAN driver,
and packets received for that PID are delivered to the application that owns the port.

The following lists the cross-company PID values.

Value Meaning
08-00-2B-90-00 Loopback protocol

The following lists some commonly used PID values.

Value Meaning
08-00-2B-60-02 Loopback protocol
08-00-2B-60-01 DNA Dump/load (MOP)
08-00-2B-60-02 DNA Remote Console (MOP)
08-00-2B-80-3C DNA Naming Service
08-00-2B-80-3E DNA Time Service
08-00-2B-80-48 Availability Manager (AMDS)

9.4.7. Packet Padding
This section describes the PAD parameter NMA$C_PCLI_PAD, which is used only in the Ethernet
packet format.

All Ethernet frames must be at least 64 bytes in length. This includes the Ethernet header, the user
data, and the CRC. If the user data, CRC, and Ethernet header together are less than 64 bytes, zero
padding bytes are inserted between the user data and the CRC to make a 64-byte packet. This packet
padding cannot be turned off.

The PAD parameter directs the LAN drivers to place a data-size field in the packet between the stan-
dard header and the user data. If padding is on (NMA$C_STATE_ON is specified), a 2-byte length
field is inserted after the Protocol Type field and before the user data.

If the PAD parameter is off (NMA$C_STATE_OFF is specified), Ethernet packets have the following
characteristics:

• Packets transmitted are padded with null bytes as needed (CSMA/CD only).

• Packets transmitted do not include the size field.

• The length of user data in the packets received is always between 46 and 1500 bytes (9000 bytes
for jumbo frames) for CSMA/CD, and 0 to 4470 for FDDI. For example, if a 10-byte packet is
transmitted, it is received as 46 bytes because the driver cannot determine the amount of user data
in the packet—only the amount of user data plus padded null bytes.

If the PAD parameter is on (NMA$C_STATE_ON is specified), Ethernet packets have the following
characteristics:

• Packets transmitted are padded with null bytes as needed (CSMA/CD only).

278

Chapter 9. Local Area Network (LAN) Device Drivers

• Packets transmitted include the size field.

• The length of user data in the packets received is always between 0 and 1498 bytes (8998 bytes for
jumbo frames) for CSMA/CD, and 0 to 4468 bytes for FDDI. The driver uses the size field to de-
termine the amount of user data in the packet. The size field is not included in the data returned to
the user.

9.4.8. Protocol Type and PID Sharing
Protocol types and PIDs are usually nonshareable; however, an application may benefit from a shared
protocol implementation. The protocol access parameter (NMA$C_PCLI_ACC) allows a protocol
type or PID to be opened in either of two shareable modes: shared-default (NMA$C_ACC_SHR) and
shared-with-destination (NMA$C_ACC_LIM).The LAN drivers also provide the nonshareable exclu-
sive mode (NMA$C_ACC_EXC). (See Table 9.33.) The rules and requirements for using each mode
are as follows:

• The exclusive mode is the default if no access mode is supplied as a P2 buffer parameter. This
mode of operation does not allow the protocol to be shared by other users. Any attempt to start up
another protocol of the same type results in an error status of SS$_BADPARAM.

• The shared-with-destination mode is a protocol type or PID/destination address pairing that allows
multiple users to share a protocol type or PID and to communicate with a different node.

For a given shared protocol type or PID, there can be many “shared-with-destination” users; each
user communicates with a different destination address. Any attempt to start a port with a destina-
tion address that is in use results in an error status of SS$_BADPARAM.

When a “shared-with-destination” user passes the set mode P2 buffer, the buffer must contain a
destination address in the NMA$C_PCLI_DES parameter. This destination address is used as the
destination address in all messages transmitted, and the user receives messages only from this ad-
dress.

• The shared-default mode is the default user of a shared protocol type or PID. There can be only
one such user for each shared protocol type or PID. A “shared-default” user does not have to exist
if a protocol type or PID is shared, but there can be no more than one such user per shared proto-
col type or PID.

The “shared-default” user receives all messages for the shared protocol type or PID, but not for
any of the “shared-with-destination” users. The “shared-default” user also receives all messages
matching both the shared protocol type or PID and any multicast address enabled by the “shared-
default” user.

The “shared-default” user can only transmit to multicast addresses and physical addresses that are
not enabled by any of the “shared-with-destination” users sharing the same protocol type or PID.

If there is no “shared-default” user of a protocol type or PID, incoming messages from nodes not
among the “shared-with-destination” users for that protocol type or PID are ignored.

9.5. LAN Devices
This section describes each LAN device, giving a list of device variants and device characteristics.
Some port drivers for these devices provide additional counters and device-specific functions that
are useful for troubleshooting purposes. This additional data is described in a text file on the system,
SYS$HELP:LAN_COUNTERS_AND_FUNCTIONS.TXT.

279

Chapter 9. Local Area Network (LAN) Device Drivers

9.5.1. Driver-Specific Internal Counters
Driver-specific internal counters consist of data maintained by a particular LAN driver that is not
common across all LAN drivers or is not suitable for inclusion in LAN statistics and error counters.

The LANCP command SHOW DEVICE/INTERNAL_COUNTERS displays the internal counters
maintained by a port driver. Some counters are special debug counters. These are not displayed unless
the additional qualifier /DEBUG is specified. Counters that are zero are not displayed unless the addi-
tional qualifier /ZERO is specified.

The LAN$SDA SDA extension also displays the complete set of internal counters with the command
LAN INTERNAL/DEVICE=devname.

Some Alpha and Integrity servers LAN drivers do not provide a LANCP or LAN$SDA mechanism
for reading these counters. For these drivers, use SDA to display the internal counters using the com-
mand SHOW LAN/INTERNAL/DEVICE=devname.

The definition of these counters may change from one driver version to the next. Some counters fields
describe device or driver information that is useful for debug of the driver but is not particularly inter-
esting otherwise. This includes such fields as device register contents. The definition of these counters
fields may be omitted from the SYS$HELP text file.

9.5.2. Device-Specific Functions
The device-specific functions provide additional functionality that is useful for troubleshooting and
validation of the port driver. These functions may change from one driver version to the next. And
some functions may be incorporated into LANCP as a standard device command. These functions are
supported on Alpha and Integrity server systems only.

9.5.3. Ethernet LAN Devices
In general terms, Ethernet includes Fast Ethernet, Gigabit Ethernet, and 10 Gigabit Ethernet devices.
The following media types are used:

• 10Base2 (thinwire or BNC) — Ethernet running over thin shielded coaxial cable, half-duplex on-
ly.

• 10Base5 (thickwire or AUI) — Ethernet running over thick shielded coaxial cable, half-duplex on-
ly.

• 10BaseT — Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It uses two
of the four pairs of wires to provide full-duplex communication.

• 100BaseTX — Fast Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It
uses two of the four pairs of wires to provide full-duplex communication.

• 100BaseFX — Fast Ethernet running over multimode optical fiber cable. It uses two strands of
fiber to provide full-duplex communication.

• 1000BaseT — Gigabit Ethernet running over Category 5 unshielded twisted-pair cabling (UTP). It
uses two of the four pairs of wires to provide full-duplex communication.

• 1000BaseSX — Gigabit Ethernet running over multimode optical fiber cable. It uses two strands
of fiber to provide full-duplex communication.

280

Chapter 9. Local Area Network (LAN) Device Drivers

• 10GBaseSR — 10 Gigabit Ethernet running over multimode optical fiber cable. It uses two
strands of fiber to provide full-duplex communication.

9.5.3.1. DEMNA Ethernet Device
The DEMNA is an XMI bus Ethernet device that is supported on Alpha systems that have an XMI
bus. There are several variants of the DEBNA, the DEBNK, DEBNT, and DEBNI. Each device is im-
plemented using a LANCE chip. Firmware on the device operates the LANCE chip.

Table 9.5. DEMNA Characteristics

Device Bus Characteristics
DEMNA XMI 10Base5 (thickwire) Ethernet only
DEBNI BI 10Base5 (thickwire), Ethernet only
DEBNT BI 10Base5 (thickwire), Ethernet + TK50 combo adapter
DEBNK BI 10Base5 (thickwire), Ethernet + TK50 combo adapter
DEBNA BI 10Base5 (thickwire), Ethernet + TK50 combo adapter

9.5.3.2. SGEC/TGEC Ethernet Devices
The Third Generation Ethernet Controller (TGEC) is embedded in the Alpha-based Digital 4000 sys-
tem.

Table 9.6. SGEC/TGEC Characteristics

Device Bus Characteristics
TGEC Alpha 10Base2 (thinwire)

9.5.3.3. LANCE Ethernet Devices
The LANCE is a widely used Ethernet chip used in Alpha systems. It is used in embedded (LOM)
configurations in Alpha systems, and in QBUS and TURBOchannel-based NICs in Alpha systems.

Table 9.7. LANCE Characteristics

Device Bus Characteristics
LANCE Alpha LOM, 10Base2 (thinwire)
PMAD Alpha TURBOchannel NIC, 10Base5 (thickwire)
DELTA Alpha Dual TURBOchannel, 10Base5 (thickwire)
DE422 Alpha EISA, 10BaseT (UTP), 10Base2 (thinwire)
DE200 Alpha ISA, 10Base2 (thinwire), 10Base5 (thickwire)
DE201 Alpha ISA, 10BaseT (UTP)
DE202 Alpha ISA, 10Base2 (thinwire), 10BaseT (UTP)

9.5.3.3.1. LANCE Hardware Configuration

For implementations that include both the 10Base2 and 10Base5 ports, a switch next to the physical
connectors determines the port selection.

The DE422 includes a jumper block on the NIC that selects 10BaseT or 10Base2.

281

Chapter 9. Local Area Network (LAN) Device Drivers

The DE20x NICs are configured by a 12-pin DIP switch on the NIC. See the DE20x User Guide for
details.

9.5.3.4. LEMAC Ethernet Devices
The DE203 and variants are based on the LEMAC chip. These NICs are used on ISA-based Alpha
workstations, primarily the AlphaStation 200 and 400 system.

Table 9.8. LEMAC Characteristics

Device Characteristics
DE203 10Base2 (thinwire)
DE204 10BaseT (UTP)
DE205 10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)

9.5.3.4.1. ISA LEMAC Hardware Configuration

The DE203 NIC and variants are configured by the console of AlphaStations 200 and 400 systems us-
ing the 'isacfg' console utility. First, an ISA slot number is chosen, then the IRQ, IO base address, and
DMA channel address. Then the slot is configured with the selected characteristics. When the system
is reset or power-cycled, the console configures the device as specified.

For complete information on using 'isacfg' from your console prompt, see the hardware documenta-
tion associated with your system for more information.

The ISA slot number is any one of three available slots that is not already in use. The physical loca-
tion of the NIC in the ISA bus is of no consequence as any free slot can be assigned to the NIC.

To initialize the 'isacfg' data at the console prompt:

>>> isacfg -init

To add a DE205 in slot 1, using IRQ 15:

>>> add_de205>>>isacfg -slot 1 -dev 0 -mod -irq 15

To display the ISA configuration data for slot 1:

>>>isacfg -slot 1
===
handle: DE200-LE
etyp: 1
slot: 1
dev: 0
enadev: 1
totdev: 1
iobase0: 300 iobase1: 8000000000000000
iobase2: 8000000000000000 iobase3: 8000000000000000
iobase4: 8000000000000000 iobase5: 8000000000000000
membase0: d0000 memlen0: 10000
membase1: 8000000000000000 memlen1: 8000000000000000
membase2: 8000000000000000 memlen2: 8000000000000000
rombase: 8000000000000000 romlen: 8000000000000000
dma0: 80000000 irq0: f
dma1: 80000000 irq1: 80000000
dma2: 80000000 irq2: 80000000

282

Chapter 9. Local Area Network (LAN) Device Drivers

dma3: 80000000 irq3: 80000000
 ===

To display the ISA configuration at the console prompt, showing, in this example, a DE203 config-
ured in slot 1, and two DW110 Token Ring NICs configured in slots 2 and 3.

>>> show config

 ISA
 Slot Device Name Type Enabled BaseAddr IRQ
 DMA
 0
 0 MOUSE Embedded Yes 60 12
 1 KBD Embedded Yes 60 1
 2 COM1 Embedded Yes 3f8 4
 3 COM2 Embedded Yes 2f8 3
 4 LPT1 Embedded Yes 3bc 7
 5 FLOPPY Embedded Yes 3f0 6
 2
 1 0 DE200-LE Singleport Yes 300 15
 2 0 DW11 Singleport Yes a20 10
 7
 3 0 DW11 Singleport Yes 1a20 5
 6

9.5.3.5. 3C589 Ethernet Device
The 3COM 3C589 PCMCIA NIC is used on the Tadpole AlphaBook notebook system. There are two
variants:

Table 9.9. 3C589 Characteristics

Device Characteristics
3C589B 10Base2 (thinwire), 10BaseT (UTP)
3C589D 10Base2 (thinwire), 10BaseT (UTP)

9.5.3.6. Tulip Ethernet and Fast Ethernet Devices
Tulip refers to an Ethernet chip designed by Digital Equipment Corporation. It also refers to later Fast
Ethernet versions of the chip that maintain a similar programming interface, so can be controlled by
the same driver with few changes.

Table 9.10. Tulip Ethernet and Fast Ethernet Characteristics

Device Bus Characteristics
DE425 EISA 10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)
DE434 PCI 10BaseT (UTP)
DE435 PCI 10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)
DE436 PCI Quad DE435
DE450 PCI 10Base2 (thinwire), 10Base5 (thickwire), 10BaseT (UTP)
DE500-XA PCI 10BaseT (UTP), 100BaseTX (UTP), auto-negotiation not support-

ed
DE500-AA PCI 10BaseT (UTP), 100BaseTX (UTP), auto-negotiation supported

283

Chapter 9. Local Area Network (LAN) Device Drivers

Device Bus Characteristics
DE500-BA PCI 10BaseT (UTP), 100BaseTX (UTP), auto-negotiation supported
DE500-FA PCI 100BaseFX (multimode fiber), auto-negotiation not supported
DE504-BA PCI Quad DE500-BA
P2SE PCI Combo SCSI + DE434
P2SE+ PCI Combo SCSI + DE500-XA
21142 PCI LOM, Digital Personal Workstation, all modes depending on MAU

options, auto-negotiation supported
21143 PCI LOM, Alpha Professional Workstation XP900/XP1000, all modes

depending on MAU options, auto-negotiation supported
A5230A PCI DE500-BA equivalent
A5506B PCI DE504-BA equivalent

9.5.3.6.1. Tulip Hardware Configuration

The DE425 and DE435 contain a hardware jumper block that selects twisted-pair or AUI as noted on
the printed circuit board. AUI includes 10Base2 (thinwire) or 10Base5 (thickwire) and this selection
is made by setting a console environment variable, by a driver autosense algorithm, or by a LANCP
command to set the media type, speed, and duplex mode.

On Alpha systems prior to OpenVMS Version 7.1, the Tulip driver autosenses the media connection if
needed.

On Alpha systems starting with OpenVMS Version 7.1, the Tulip driver uses the setting of a console
environment variable to select the media connection, speed, duplex mode, and auto-negotiation set-
ting. The console environment variable is called EWx0_MODE where x is the controller letter (for ex-
ample, A, B, C, ...). The console environment variable is set with the command:

SET EWx0_MODE media_selection

The media_selection is defined by Table 9.11.

Table 9.11. Tulip Hardware Media Selection

Media selection What is selected
Twisted-pair 10BaseT (UTP) half-duplex
Full duplex, twisted-pair 10BaseT (UTP) full-duplex
AUI 10Base5 (thickwire)
BNC 10Base2 (thinwire)
Fast 100BaseTX (UTP) half-duplex
FastFD (full duplex) 100BaseTX (UTP) full-duplex
Autonegotiate Auto-negotiate speed and duplex (UTP)

During driver initialization, a message is sent to the operator's console to indicate the console selec-
tion.

If a console environment variable has been set with an unsupported media type for the actual device,
then the driver selects a default media type.

284

Chapter 9. Local Area Network (LAN) Device Drivers

An Alpha system console may assign a controller letter to an adapter differently from OpenVMS, be-
cause OpenVMS EW devices include Tulip, DEGPA, and Broadcom 5700, but the console only rec-
ognizes Tulip devices as EW devices. In this case, you can compare the MAC address listed for the
device at the console SHOW CONFIG and the LANCP SHOW CONFIG commands.

On Integrity server systems, there is no console environment variable equivalent, so the default setting
is auto-negotiation.

On Alpha and Integrity server systems, you can override the console environment variable setting or
default setting of auto-negotiation by defining the speed, duplex mode, and auto-negotiation settings
in the LANCP permanent device database.

9.5.3.7. Intel 82559 Fast Ethernet Devices
82559 refers to a Fast Ethernet chip designed by Intel Corporation, either the 82558 or the 82559 chip.
These chips are implemented in PCI bus NICs or a embedded PCI bus on the system board. Both
chips support auto-negotiation. Table 9.12 lists the Intel 82559 Fast Ethernet characteristics.

Table 9.12. Intel 82559 Fast Ethernet Characteristics

Device Characteristics
DE600-AA 10BaseT (UTP), 100BaseTX (UTP)
DE602-AA Dual DE600-AA
DE602-BA Dual DE600-AA
DE602-BB Dual DE600-AA
DE602-TA Dual DE600-AA daughter card for the DE602
DE602-FA Dual 100BaseFX (multimode fiber) daughter card for the DE602
Trifecta Combo SCSI + DE600
82559ER LOM, 10BaseT (UTP), 100BaseTX (UTP)
82559 LOM, 10BaseT (UTP), 100BaseTX (UTP)

9.5.3.7.1. 82559 Hardware Configuration

On Alpha systems, the 82559 driver uses the setting of a console environment variable to select the
media connection, speed, and duplex mode. The console environment variable is called EIx0_MODE
where x is the controller letter (e.g., A, B, C, ...). The console environment variable is set with the
command:

SET EWx0_MODE media_selection

The media_selection is defined by Table 9.13.

Table 9.13. Hardware Media Selection

Media selection What is selected
Twisted-pair 10BaseT (UTP) half-duplex
Full-duplex, twisted-pair 10BaseT (UTP) full-duplex
Fast 100BaseTX (UTP) half-duplex
FastFD (full-duplex) 100BaseTX (UTP) full-duplex
Autonegotiate Auto-negotiate speed and duplex (UTP)

285

Chapter 9. Local Area Network (LAN) Device Drivers

During driver initialization, a message is sent to the operator's console to indicate the console selec-
tion.

If a console environment variable has been set to an unsupported speed and duplex for the actual de-
vice, then the driver selects auto-negotiation.

On Integrity server systems, there is no console environment variable equivalent, so the default setting
is auto-negotiation.

On Alpha and Integrity server systems, you can override the console environment variable setting or
default setting of auto-negotiation by defining the speed, duplex mode, and auto-negotiation settings
in the LANCP permanent device database.

9.5.3.8. DEGPA Gigabit Ethernet Devices
The DEGPA series of Gigabit Ethernet NICs uses the Tigon2 chip, designed by Alteon Networks..

Table 9.14 lists and describes the devices and drivers of the DEGPA.

Table 9.14. DEGPA Devices

Device Characteristics
DEGPA-SA 1000BaseSX (multimode fiber)
DEGPA-TA 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

9.5.3.8.1. DEGPA Hardware Configuration

The DEGPA NICs are supported only on Alpha systems. The DEGPA is not a bootable device and
has no console support, therefore has no console environment variable mode setting for configuration,
and the default setting is auto-negotiation.

You can override the default setting of auto-negotiation by defining the speed, duplex mode, and au-
to-negotiation settings in the LANCP permanent device database.

9.5.3.9. Broadcom 5700 Gigabit Ethernet Devices
The Broadcom 5700 refers to a family of Gigabit Ethernet chips designed by Broadcom Corporation.
The 5700 NICs described here use three almost identical variants, the 5701, 5703, and 5704 chips.

Table 9.15. Broadcom 5700 Characteristics

Device Bus Characteristics
DEGXA-SA PCI 1000BaseSX (multimode fiber)
DEGXA-TA PCI 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
DEGXA-SB PCI-X 1000BaseSX (multimode fiber)
DEGXA-TB PCI-X 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
BCM5703 (LOM) PCI 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
A6847A PCI 1000BaseSX (multimode fiber)
A6825A PCI 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
AB352A PCI-X 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
A9782A PCI-X 1000BaseSX (multimode fiber)
A9784A PCI-X 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)

286

Chapter 9. Local Area Network (LAN) Device Drivers

Device Bus Characteristics
AB465A PCI-X 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
BCM5701 (LOM) PCI 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT (UTP)
BCM704 (LOM) PCI 2x10BaseT (UTP), 10BaseT (UTP), 100BaseTX (UTP),

1000BaseT (UTP)
BCM5709 (LOM) PCI 2x10BaseT (UTP), 10BaseT (UTP), 100BaseTX (UTP),

1000BaseT (UTP)

9.5.3.9.1. 5700 Hardware Configuration

On Alpha systems, the 5700 driver uses the setting of a console environment variable to select the
speed and duplex mode. The console environment variable is called EGx0_MODE where x is the con-
troller letter (e.g., A, B, C, ...). The console environment variable is set with the command:

SET EGx0_MODE media_selection

The media_selection is defined by Table 9.16.

Table 9.16. 5700 Hardware Media Selection

Media selection What is selected
auto Auto-negotiate speed and duplex (UTP)
10mbps 10BaseT (UTP) half-duplex
10mbps_full_duplex 10BaseT (UTP) full-duplex
100mbps 100BaseTX (UTP) half-duplex
100mbps_full_duplex 100BaseTX (UTP) full-duplex
1000mbps 1000BaseT (UTP) half-duplex
1000mbps_full_duplex 1000BaseT (UTP) full-duplex

During driver initialization, a message is sent to the operator's console to indicate the console selec-
tion.

If a console environment variable has been set with an unsupported media type for the actual device,
then the driver selects a default media type.

An Alpha system console may assign a controller letter to an adapter differently from OpenVMS,
since OpenVMS EW devices include Tulip, DEGPA, Broadcom 5700, but the console only recog-
nizes 5700 devices as EW devices. In this case you can compare the MAC address listed for the de-
vice at the console SHOW CONFIGURATION and LANCP SHOW CONFIGURATION commands.

On Integrity server systems, there is no console environment variable equivalent, so the default setting
is auto-negotiation.

On Alpha and Integrity server systems, you can override the console environment variable setting or
default setting of auto-negotiation by defining the speed, duplex mode, and auto-negotiation settings
in the LANCP permanent device database.

9.5.3.10. Intel 82540 Gigabit Ethernet Devices
The Intel 82540 refers to a family of Gigabit Ethernet chips designed by Intel Corporation. The vari-
ants used on these NICs include the 82540, 82546, and 82571 chips.

287

Chapter 9. Local Area Network (LAN) Device Drivers

Table 9.17. Intel 82540 Characteristics

Device Bus Characteristics
A7011A PCI-X Dual 1000BaseSX (multimode fiber)
A7012A PCI-X Dual 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT

(UTP)
Intel 82546 (LOM) PCI-X Dual 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT

(UTP)
AB352A PCI-X Dual 10BaseT (UTP), 100BaseTX (UTP), 1000BaseT

(UTP)

9.5.3.10.1. 82540 Hardware Configuration

The 82540 devices are supported only on Integrity server systems. The default setting is auto-negotia-
tion.

You can override the default setting of auto-negotiation by defining the speed, duplex mode, and au-
to-negotiation settings in the LANCP permanent device database.

9.5.3.11. Neterion XFRAME 10–Gigabit Ethernet Devices
XFRAME refers to a family of 10–Gigabit Ethernet adapters from Neterion. The variants used include
the AB287A and AD385A.

9.5.3.12. Shared Memory Ethernet Device
The Shared Memory device is an emulated Ethernet device that uses Galaxy Shared Memory on Al-
pha systems. Each Galaxy partion is considered a network node. The driver uses shared memory to
send packet data from one node to another. Applications see the Shared Memory device as just anoth-
er Ethernet device.

9.5.4. FDDI LAN Devices
FDDI devices support the following media

• Multimode optical fiber, using two strands of fiber to provide full-duplex communication.

• Category 5 unshielded twisted-pair cabling (UTP), using two of the four pairs of wires to provide
full duplex communication.

9.5.4.1. DEMFA FDDI Device
The DEMFA is an XMI bus FDDI device that is supported on Alpha systems that have an XMI bus.
The DEMFA is a firmware based FDDI controller that uses an Motorola 68000 microprocessor to im-
plement a host interface and the necessary FDDI support functionality.

Table 9.18. DEMFA FDDI Characteristics

Device Bus Characteristics
DEMFA XMI Multimode fiber, 100 megabits/second

9.5.4.2. DEFZA FDDI Device
The DEFZA is a TurboChannel FDDI device supported on Alpha TURBOchannel-based systems.

288

Chapter 9. Local Area Network (LAN) Device Drivers

Table 9.19. DEFZA FDDI Characteristics

Device Bus Characteristics
DEFZA TurboChannel Multimode fiber, 100 megabits/second

9.5.4.3. PDQ FDDI Devices
The PDQ chip forms the basis of a family of FDDI devices. These are shown in Table 9.20.

Table 9.20. PDQ FDDI Characteristics

Device Bus Characteristic
DEFQA-SA QBUS Multimode fiber, single attached station (SAS), 100

megabits/second
DEFQA-DA QBUS Multimode fiber, dual attached station (DAS), 100

megabits/second
DEFQA-SF QBUS UTP, single attached station (SAS), 100 megabits/second
DEFQA-DF QBUS UTP, dual attached station (DAS), 100 megabits/second
DEFTA-AA TurboChannel Multimode fiber, single attached station (SAS), 100

megabits/second
DEFTA-DA TurboChannel Multimode fiber, dual attached station (DAS), 100

megabits/second
DEFTA-UA TurboChannel UTP, single attached station (SAS), 100 megabits/second
DEFTA-MA TurboChannel UTP, dual attached station (DAS), 100 megabits/second
DEFAA-AA FutureBus+ Multimode fiber, single attached station (SAS), 100

megabits/second
DEFAA-DA FutureBus+ Multimode fiber, dual attached station (DAS), 100

megabits/second
DEFEA-AA EISA Multimode fiber, single attached station (SAS), 100

megabits/second
DEFEA-DA EISA Multimode fiber, dual attached station (DAS), 100

megabits/second
DEFEA-UA EISA UTP, single attached station (SAS), 100 megabits/second
DEFEA-MA EISA UTP, dual attached station (DAS), 100 megabits/second
DEFPA-AA PCI Multimode fiber, single attached station (SAS), 100

megabits/second
DEFPA-DA PCI Multimode fiber, dual attached station (DAS), 100

megabits/second
DEFPA-UA PCI UTP, single attached station (SAS), 100 megabits/second
DEFPA-MA PCI UTP, dual attached station (DAS), 100 megabits/second

9.5.5. Token Ring LAN Devices
Token Ring devices support the following media types:

• STP — Shielded twisted-pair cabling, type 1 STP, using 2 pairs of wires in crossover form. The
cables have DB-9 connectors on them.

289

Chapter 9. Local Area Network (LAN) Device Drivers

• UTP — Unshielded twisted-pair cabling, type 3 UTP, using 2 pairs of wires in crossover form to
provide full-duplex communications.

9.5.5.1. TMS380 Token Ring Devices

The Texas Instruments TMS380 chip forms the basis of a family of Token Ring devices. These are
shown in Table 9.21.

Table 9.21. TMS380 Token Ring Characteristics

Device Bus Characteristics
DETRA TurboChannel 4/16 megabits/second, STP or UTP
DW300 EISA 4/16 megabits/second, STP or UTP
DW110 ISA 4/16 megabits/second, STP or UTP, aka P1392+
TC4048 PCI 4/16 megabits/second, STP or UTP, made by Thomas Con-

rad Corporation
M8154 PCI 4/16 megabits/second, STP or UTP, made by Racore Com-

puter Products, Inc.

9.5.5.1.1. ISA TMS380 Hardware Configuration

The DW110 is a bus mastering DMA device on the ISA bus. In addition to setting up the ISA I/O pa-
rameters, you may configure ring speed (4 or 16 megabits/second) and media (UTP or STP). By using
LANCP you can also configure ring speed and media during system startup. Example 9.1 shows how
to configure the OpenVMS software to use the DW110 device.

The method for configuring an ISA TMS380 device is to type 'isacfg' at the console prompt (>>>).
For complete information on using 'isacfg' from your console prompt, see the hardware documenta-
tion associated with your system for more information.

The following example illustrates a configuration of:

• Slot 4

• IRQ 10

• DMA channel 7

• Base %x4e20

• Shielded twisted pair (STP)

• Ring speed of 16

Example 9.1. Using the 'isacfg' at Console Prompt with the DW110

>>> isacfg -slot 4 -etyp 1 -ena 1 -irq0 %xa -dmachan0 7
 -iobase0 %x4e20 -handle "DW11,STP,16" -mk

The -mk command makes an isacfg entry for an ISA device at slot 4. It is a Single port type of device
(-etyp 1). The -handle parameter tells the operating system that this is a DW110 device, that STP me-
dia is to be used, and the ring speed is 16.

290

Chapter 9. Local Area Network (LAN) Device Drivers

9.5.6. ATM LAN Devices
Asynchronous transfer mode (ATM) is a cell-oriented switching technology that uses fixed-length
packets to carry different types of data.

The ATM communicates by first establishing endpoints between two computers with a virtual circuit
(VC) through one or more ATM switches. ATM then provides a physical path for data flow between
the endpoints by either a permanent virtual circuit (PVC), or a switched virtual circuit (SVC).

OpenVMS provides LAN Emulation Client (LEC) support over ATM. The LAN Emulation Client
software supports IEEE/802.3 Emulated LANs, and UNI 3.0 or UNI 3.1 and the following maximum
frame size (in bytes): 1516, 4544, and 9234.

The Emulated LAN driver provides the means for communicating over the LAN ATM. The device
type for the Emulated LAN device is DT$_EL_ELAN.

The device name for the Emulated LAN is:

ELcu

where c is the controller and u is the unit number (for example, ELA0).

ATM devices support the following media types:

• Multimode optical fiber, using two strands of fiber to provide full-duplex communication.

• Category 5 unshielded twisted-pair cabling (UTP), using two of the four pairs of wires to provide
full-duplex communication.

9.5.6.1. OTTO ATM Devices

OTTO refers to a family of ATM adapters developed by Digital Equipment Corporation. The Tur-
boChannel adapter is named OTTO. The PCI DGLPB adapter is named OPPO. OTTO and OPPO are
programmable logic designs where the driver loads firmware onto the adapters to program the FPGA
devices. The DGLPA is a single chip ATM adapter that is a considerably different implementation but
lumped into this same category.

Table 9.22. OTTO ATM Characteristics

Device Bus Characteristics
DGLTA TurboChannel 155 megabits/second (OC3), multimode fiber
DGLPB PCI 155 megabits/second (OC3), multimode fiber
DGLPA-UA PCI 155 megabits/second (OC3), UTP
DGLPA-FA PCI 155 megabits/second (OC3), multimode fiber

The OTTO drivers support ATM LAN Emulation according to the ATM LANE standards, and Classi-
cal IP over ATM according to RFC 1577.

9.5.6.2. FORE ATM Devices

The DAPBA and DAPCA are ATM adapters made by Fore Networks, Inc., now part of Marconi Cor-
poration, Plc.

291

Chapter 9. Local Area Network (LAN) Device Drivers

The FORE drivers support ATM LAN Emulation according to the ATM LANE standards.

Table 9.23. FORE ATM Characteristics

Device Characteristics
DAPBA-UA 155 megabits/second (OC3), UTP
DAPBA-FA 155 megabits/second (OC3), multimode fiber
DAPCA-FA 622 megabits/second (OC12), multimode fiber

For each DAPBA, increase the SYSGEN parameter NPAGEVIR by 3000000. For each DAPCA,
increase NPAGEVIR by 6000000. To do this, add the ADD_NPAGEVIR parameter to MOD-
PARAMS.DAT and then run AUTOGEN. For example, add the following command to MOD-
PARAMS.DAT on a system with two DAPBAs and one DAPCA:

ADD_NPAGEVIR = 12000000

The following restrictions apply to the DAPBA and DAPCA adapters.

• The adapter cannot be located on a PCI bus that is located behind a PCI-to-PCI bridge. Systems
that have this configuration are the following:

• HPE Personal AlphaWorkstation 600 (MIATA GL)

• AlphaStation 1000A (Noritake)

• HPE Professional Workstation XP1000 (MONET)

• AlphaServer 2000 and 2100 (SABLE)

• Classical IP is not supported.

9.5.6.3. Permanent Virtual Circuits (PVC)
Permanent Virtual Circuits are set up and torn down by prior arrangement. They are established
manually by a user before the sending of any data between endpoints on a network. Some PVCs are
defined directly on the switch; others are predefined for use in managing switched virtual circuits
(SVCs).

9.5.6.4. Switched Virtual Circuits (SVC)
Switched virtual circuits require no operator interaction to create and manage connections between
endpoints. Software sets up and tears down connections dynamically as they are needed through the
request of an endpoint.

9.5.6.5. LAN Emulation over an ATM Network
LAN emulation over an ATM network network allows existing applications to run essentially un-
changed while also allowing the applications to run on computers directly connected to the ATM net-
work. The LAN emulation hides the underlying ATM network at the media access control (MAC) lay-
er, which provides device driver interfaces.

Table 9.24 shows the four components that make up a LAN emulation over an ATM network. Of the
four components, OpenVMS supports only the LAN emulation client (LEC). The remaining compo-
nents are provided by the ATM switch.

292

Chapter 9. Local Area Network (LAN) Device Drivers

Table 9.24. Components of LAN Emulation over an ATM Network

Component Function
LAN emulation client
(LEC)

Provides a software driver that runs on a network client and enables LAN
clients to connect to an ATM network.

LAN emulation server
(LES)

Maintains a mapping between LAN and ATM addresses by resolving
LAN media access control (MAC) addresses with ATM addresses.

Broadcast and Unknown
Server (BUS)

Maintains connections with every LAN emulation client (LEC) in the net-
work. For broadcast messages, the BUS sends messages to every attached
LEC. The LECs then forward the message to their respectively attached
LANs. For multicast messages, the BUS sends messages to only those
LECs that have devices in the multicast group. For a LEC that wants to
send a regular message whose destination MAC address is unknown, the
BUS can be used to determine this address.

LAN emulation configu-
ration server (LECS)

Provides a service for LAN emulation clients by helping to determine
which emulated LAN each of the LEC's registered users should join,
since each client can specify which emulated LAN to join.

The LEC exists on all ATM-attached computers that participate in the LAN emulation configuration.
LEC provides the ATM MAC-layer connectionless function that is transparent to the LAN-type appli-
cations. The LEC, LES, and BUS can exist on one ATM-attached computer or on separate computers.
The server functions usually reside inside an ATM switch, but can be implemented on client systems.

9.5.6.6. LAN Emulation Topology
Figure 9.10 shows the topology of a typical emulated LAN over ATM.

Figure 9.10. Emulated LAN Topology

293

Chapter 9. Local Area Network (LAN) Device Drivers

9.5.6.7. Classical IP Over an ATM Network

Classical IP (CLIP) implements a data-link level device that has the same semantics as an Ethernet in-
terface (802.3). This interface is used by a TCP/IP protocol to transmit 802.3 (IEEE Ethernet) frames
over an ATM network. The model that OpenVMS follows for exchanging IP datagrams over ATM is
based on RFC 1577 (Classical IP over ATM).

For information on using LANCP commands to manage Classical IP, see the VSI OpenVMS System
Management Utilities Reference Manual.

9.5.6.8. Specifying the User to Network Interface (UNI)

The ATM software is set to autosense the UNI version by default. Setting bit 3 of the system parame-
ter, LAN_FLAGS, to 1 enables UNI 3.0 over all ATM adapters. Setting bit 4 of the system parameter,
LAN_FLAGS, to 1 enables UNI 3.1 over all ATM adapters.

9.5.6.9. Enabling SONET/SDH

The ATM drivers have the capability of operating with either synchronous optical network
(SONET) or Synchronous Digital Hierarchy (SDH) framing. Setting bit 0 of the system parameter,
LAN_FLAGS, to 1 enables SDH framing. Setting bit 0 of the system parameter, LAN_FLAGS, to 0
enables SONET framing (default). For this to take affect, the system parameter must be specified cor-
rectly before the ATM adapter driver is loaded.

9.5.6.10. Booting

OpenVMS Alpha does not support ATM adapters as boot devices.

9.5.6.11. Configuring an Emulated LAN (ELAN)

The LANCP utility sets up an Emulated LAN (ELAN). If the ELAN is defined in the permanent data-
base, these settings take effect at boot time. To define the commands in the permanent database for
specific adapters, you invoke the DEFINE DEVICE commands. Once these commands define the
adapters in the permanent database, the ELAN can be started during system startup.

You can also invoke the LANCP SET commands to start up an ELAN after the system is booted.

The following example shows the DEFINE DEVICE commands that define the adapter in the perma-
nent database:

$ mcr lancp
LANCP> define device ela0/elan=create
LANCP> define device ela0/elan=(parent=hwa0,type=csmacd,size=1516)
LANCP> define device ela0/elan=(descr="An ATM ELAN")
LANCP> define device ela0/elan=enable=startup
LANCP> list dev ela0/param

Device Characteristics, Permanent Database, for ELA0:
 Value Characteristic
 —— —————
 HWA0 Parent ATM device
 "An ATM ELAN" Emulated LAN description
 1516 Emulated LAN packet size
 CSMA/CD Emulated LAN type

294

Chapter 9. Local Area Network (LAN) Device Drivers

 Yes Emulated LAN enabled for startup
LANCP> exit
$

The following example shows the SET DEVICE commands required for setting up an ELAN with the
desired parameters. Note that some of the commands generate a console message.

$ mcr lancp
LANCP> set dev ela0/elan=create

%%%%%%%%%%% OPCOM 26-MAR-2017 16:57:12.89 %%%%%%%%%%%
Message from user SYSTEM on ALPHA1
LANACP LAN Services
Found LAN device ELA0, hardware address 00-00-00-00-00-00

LANCP> set dev ela0/elan=(parent=hwa0,type=csmacd,size=1516)
LANCP> set dev ela0/elan=(descr="An ATM ELAN")
LANCP> set dev ela0/elan=enable=startup

%ELDRIVER, LAN Emulation event at 26-MAR-1996 16:57:28.78
%ELDRIVER, LAN Emulation startup: Emulated LAN 1 on device ELA0

LANCP> sho dev ela/char

 Device Characteristics ELA0:
 Value Characteristic
 —— —————
 Normal Controller mode
 External Internal loopback mode
 CSMA/CD Communication medium
 16 Minimum receive buffers
 32 Maximum receive buffers
 No Full duplex enable
 No Full duplex operational
 Unspecified Line media
 10 Line speed (megabits/second)
 CSMA/CD Communication medium
 "HWA0" Parent ATM Device
 "An ATM ELAN" Emulated LAN Description
 3999990000000008002B LAN Emulation Server ATM Address
 A57E80AA000302FF1300
 Enabled Emulated LAN State
LANCP> exit
$

For information about using LANCP and system manager commands with qualifiers for LAN emula-
tion over ATM networks, see the VSI OpenVMS System Management Utilities Reference Manual and
VSI OpenVMS System Manager's Manual.

9.6. LAN Device Information
You can obtain information on controller characteristics by using the Get Device/Volume Information
($GETDVI) system service. (See the VSI OpenVMS System Services Reference Manual.)

$GETDVI returns controller characteristics when you specify the item code DVI$_DEVCHAR.
Table 9.25 lists these characteristics, which are defined by the $DEVDEF macro and in the file
SYS$LIBRARY:DEVDEF.H.

295

Chapter 9. Local Area Network (LAN) Device Drivers

Table 9.25. Ethernet Controller Device Characteristics

Characteristic Meaning
Static Bits (Always Set)

DEV$M_AVL Device is available.
DEV$M_IDV Input device.
DEV$M_NET Network device.
DEV$M_ODV Output device.

DVI$_DEVTYPE and DVI$_DEVCLASS return the device type and device class names, which are
defined by the $DCDEF macro and in the file SYS$LIBRARY:DCDEF.H. The device class name for
the LAN Ethernet controllers listed in Section 9.2 is always DC$_SCOM.

DVI$_DEVBUFSIZ returns the maximum message size. The maximum send or receive message
size depends on the packet format and whether padding (NMA$C_PCLI_PAD) is enabled (see Sec-
tion 9.7.1 and Section 9.7.2). DVI$_DEVDEPEND returns the unit and line status bits and the error
summary bits in a longword field as shown in Figure 9.11.

Figure 9.11. DVI$_DEVDEPEND Returns

Table 9.26 lists the status values and their meanings. These values are defined by the $XMDEF
macro. XM$M_STS_ACTIVE is set when the port is started. XM$M_STS_BUFFAIL and
XM$M_STS_TIMO are dynamically set and cleared by the LAN driver.

Table 9.26. Ethernet Controller Unit and Line Status

Status Meaning
XM$M_STS_ACTIVE Port is active.
XM$M_STS_BUFFAIL Attempt to allocate a system receive buffer failed.
XM$M_STS_TIMO Timeout occurred.

The error summary bits are set when an error occurs. They are read-only bits. If an error is fatal, the
Ethernet port is shut down. Table 9.27 lists the error summary bit values and their meanings.

Table 9.27. Error Summary Bits

Error Summary Bit Meaning
XM$M_ERR_FATAL Hardware or software error occurred on the controller.

9.7. LAN Function Codes
The LAN drivers can perform logical, virtual, and physical I/O operations. The basic functions are
read, write, set mode, set characteristics, sense mode, and sense characteristics. Table 9.28 lists these
functions and their codes. The following sections describe these functions in greater detail.

296

Chapter 9. Local Area Network (LAN) Device Drivers

Table 9.28. LAN I/O Functions

Function Code Arguments Type1 Function Modifiers Function
IO$_READLBLK2 P1,P2,[P5] L IO$M_NOW Read logical block.
IO$_READVBLK3 P1,P2,[P5] V IO$M_NOW Read virtual block.
IO$_READPBLK2 P1,P2,[P5] P IO$M_NOW Read physical block.
IO$_WRITELBLK4 P1,P2,

[P4],P5
L IO$M_RESPONSE Write logical block.

IO$_WRITEVBLK4 P1,P2,
[P4],P5

V IO$M_RESPONSE Write virtual block.

IO$_WRITEPBLK4 P1,P2,
[P4],P5

P IO$M_RESPONSE Write physical block.

IO$_SETMODE P1,[P2],P32 L IO$M_CTRL
IO$M_STARTUP
IO$M_SHUTDOWN
IO$M_ATTNAST
IO$M_SET_MAC
IO$M_UPDATE_MAP
IO$M_ROUTE

Set controller character-
istics and controller state
for subsequent operations.

IO$_SETCHAR P1,[P2],P32 P IO$M_CTRL
IO$M_STARTUP
IO$M_SHUTDOWN
IO$M_ATTNAST
IO$M_SET_MAC
IO$M_UPDATE_MAP
IO$M_ROUTE

Set controller character-
istics and controller state
for subsequent operations.

IO$_SENSEMODE [P1],[P2] L IO$M_CTRL
IO$M_SENSE_MAC
IO$M_SHOW_MAP
IO$M_SHOW_ROUTE

Sense controller charac-
teristics and return them
in specified buffers.

IO$_SENSECHAR [P1],[P2] P IO$M_CTRL
IO$M_SENSE_MAC
IO$M_SHOW_MAP
IO$M_SHOW_ROUTE

Sense controller charac-
teristics and return them
in specified buffer.

1V= virtual, L=logical, P=physical (There is no functional difference in these operations.)
2On OpenVMS Alpha and Integrity servers , P1 and P5 support 64-bit addresses.
3On OpenVMS Alpha, P1, P4, and P5 support 64-bit address.
4 The P1 and P3 arguments are only for attention AST QIOs.

Note that the LAN device drivers do not differentiate among logical, virtual, and physical I/O func-
tions; all are treated identically.

9.7.1. Read
Read functions directly transfer data from a packet received from another port on the Ethernet into the
virtual memory address space of the user process. The operating system provides the following func-
tion codes:

• IO$_READLBLK—Read logical block

297

Chapter 9. Local Area Network (LAN) Device Drivers

• IO$_READVBLK—Read virtual block

• IO$_READPBLK—Read physical block

Received messages are buffered in system memory and then copied to the user's buffer when a read
operation is performed.

The read functions take the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer that is to receive data. On OpenVMS Alpha and In-
tegrity server systems, P1 can be a 64-bit address.

• P2—The size of the receive buffer in bytes.

• P5—The address of a buffer where the LAN driver returns packet header information. This is an
optional argument. The information returned depends on the packet format enabled with the set
mode QIO. The size of the buffer must be 14 bytes for an Ethernet format packet, 16 bytes for
an IEEE 802 format packet, and 20 bytes for an 802 extended format packet. Note that the infor-
mation returned is not the entire packet header but the header information less any length or size
fields. The IOSB, if specified, is where the packet length information is returned. For FDDI, if re-
ceived access control (RAC) is on, then 1 byte must be added to these sizes.

For Token Ring, this buffer must be at least 54 bytes in length due to a possible variable length
source routing header.

If NMA$C_PCLI_PRM (see Table 9.33) is enabled, the P5 buffer must be at least 20 bytes for
Ethernet and 21 bytes for FDDI. Figure 9.12 shows the format of the three buffers. On OpenVMS
Alpha and Integrity server systems, P5 can be a 64-bit address.

298

Chapter 9. Local Area Network (LAN) Device Drivers

Figure 9.12. Read Function P5 Buffer

The P1 and P2 arguments must always be specified; the P5 argument is optional. However, if P5 is
not specified, you will not be able to determine the source of the received message .

If the size of the user data in a receive message is larger than the value of the NMA$C_PCLI_BUS
parameter, the message is not given to the user, even if there is sufficient space in the user's receive
buffer.

If the size of the user data in a receive message is larger than the size specified in P2 (and less
than or equal to the value of the NMA$C_PCLI_BUS parameter), the P1 buffer is filled and
SS$_DATAOVERUN is returned in the I/O status block.

Table 9.29 lists the maximum user data sizes that can be received for Ethernet, FDDI, and Token Ring
protocols.

299

Chapter 9. Local Area Network (LAN) Device Drivers

Table 9.29. Maximum User Data Sizes for Ethernet, FDDI, and Token Ring

Packet Format Ethernet FDDI Token Ring
Ethernet format without padding 1500 4470 4418
Ethernet format with padding 1498 4468 4416
802 format with 1-byte CTL field 1497 4475 4423
802 format with 2-byte CTL field 1496 4474 4422
802E format 1492 4470 4418

Table 9.30 lists the maximum user data sizes that can be received for LAN emulation over ATM pro-
tocol.

Table 9.30. Maximum User Data Sizes for LAN Emulation over ATM

Packet Format ATM
ELAN size:

1516 4544 9234

Ethernet format without padding 1500 4528 9218
Ethernet format with padding 1498 4526 9216
802 format with 1-byte CTL field 1497 4525 9215
802 format with 2-byte CTL field 1496 4524 9214
802E format 1492 4520 9210

For 802 format packets, the P5 buffer always contains the DSAP and SSAP in the bytes at offset 12
and 13. The next one or two bytes (offsets 14 and 15) following the SSAP contain the control field
value. For Class I service, the control field value is always 1 byte in length and is always placed in the
byte at offset 14 of this buffer. For user-supplied service, you have to determine the length of the con-
trol field value according to the IEEE 802.2 Standard.

For Token Ring, if received access control (RAC) is on, the first byte of the P5 buffer contains the
frame control (FC) field.

For FDDI, if RAC is on, the first byte of the P5 buffer contains the FC field.

The read functions can take the following function modifier:

• IO$M_NOW—Complete the read operation immediately with a received message (if no message
is currently available, return a status of SS$_ENDOFFILE in the I/O status block).

9.7.2. Write
Write functions provide for the direct transfer of data from the virtual memory address space of the
user process to the communications medium. The operating system provides the following function
codes:

• IO$_WRITELBLK—Write logical block

• IO$_WRITEVBLK—Write virtual block

• IO$_WRITEPBLK—Write physical block

300

Chapter 9. Local Area Network (LAN) Device Drivers

Transmitted messages are copied from the buffer of the requesting process to a system buffer for
transmission.

The write function takes the following device- or function-dependent arguments:

• P1—The starting virtual address of the buffer containing the data to be transmitted. On OpenVMS
Alpha and Integrity server systems, P1 can be a 64-bit address.

• P2—The size of the buffer in bytes.

• P4—The address of a quadword that points to a buffer that contains the DSAP and CTL field val-
ues (optional). (See Section 9.4.6.6.4.) The first longword is the buffer length; the second long-
word is the address of the buffer. This argument is used only for ports with the 802 packet format.
The format of the buffer is:

On OpenVMS Alpha and Integrity server systems, P4 can be a 64-bit address.

• P5—The address of a 6-byte buffer that contains the destination address. For FDDI, if XFC is
specified as zero on startup, the first byte of the P5 buffer contains the low-order 3 bits of the FC
field to be transmitted. On OpenVMS Alpha and Integrity server systems, P5 can be a 64-bit ad-
dress.

If the device is in promiscuous mode (NMA$C_PCLI_PRM; see Table 9.33), you must pass a
larger buffer with additional information positioned after the destination address. For Ethernet
packet format, the buffer must be 8 bytes with the 2-byte protocol type following the destination
address. For 802 packet format, the buffer must be 7 bytes with the 1-byte source SAP following
the destination address. For 802 extended packet format, the buffer must be 11 bytes with the 5-
byte protocol identifier following the destination address. The Source SAP cannot be a group SAP
or the SNAP SAP. Figure 9.13 shows the format of the P5 buffer. For FDDI with XFC specified as
zero on startup, 1 byte must be added to these sizes for the FC field.

Figure 9.13. Write Function P5 Buffer

Table 9.31 lists the maximum user data sizes that can be specified by P2 and received for Ethernet,
FDDI, and Token Ring protocols.

Table 9.31. Maximum Message Sizes for Ethernet, FDDI, and Token Ring

Packet Format Ethernet FDDI Token Ring
Ethernet format without padding 1500 4470 4418
Ethernet format with padding 1498 4468 4416

301

Chapter 9. Local Area Network (LAN) Device Drivers

Packet Format Ethernet FDDI Token Ring
802 format with 1-byte CTL field 1497 4475 4423
802 format with 2-byte CTL field 1496 4474 4422
802E format 1492 4470 4418

Table 9.32 lists the maximum user data sizes that can be specified by P2 and received for LAN emula-
tion over ATM protocol.

Table 9.32. Maximum Message Sizes for LAN Emulation over ATM

Packet Format ATM
ELAN size:

1516 4544 9234

Ethernet format without padding 1500 4528 9218
Ethernet format with padding 1498 4526 9216
802 format with 1-byte CTL field 1497 4525 9215
802 format with 2-byte CTL field 1496 4524 9214
802E format 1492 4520 9210

If P2 specifies a message size larger than that allowed, the driver returns the status SS$_IVBUFLEN
in the I/O status block.

If the P4 buffer is specified, it must be at least 3 bytes long. The first byte is always the DSAP; the
next two bytes are used to determine the CTL field value. The DSAP value cannot be the SNAP SAP.

The CTL field value is either a 1-byte or 2-byte value. If the two least significant bits of the low-order
byte of the CTL field contain the bit values 11, just the low-order byte of the CTL field is used as the
CTL field value. Otherwise, both bytes of the CTL field are used as the CTL field value.

If the driver uses only the low-order byte of the CTL field, you still must pass at least a 3-byte buffer.
In this case, the driver uses the low-order byte of the CTL field and ignores the high-order byte.

If Class I service is enabled, only 1-byte CTL field values can be passed. If user-supplied service is
enabled, then both 1- and 2-byte CTL field values are valid. If Class I service is enabled, the CTL
field value must be one of the three command values: UI, XID, or TEST.

Regarding 802 ports, you can receive packets for the SAP enabled with the IO$_SETMODE or
IO$_SETCHAR QIOs and can transmit packets destined for a different SAP. This is similar to an Eth-
ernet port receiving packets for one protocol type and transmitting packets with a different protocol
type (which is not possible with the current Ethernet $QIO interface). It is expected that most 802 for-
mat applications wants to process only receive packets from a source SAP that matches the SAP en-
abled on their port. To do this, the read function (see Section 9.7.1) has been enhanced to return the
source SAP to you. To verify that the source SAP of an incoming packet matches the SAP enabled on
the port, you need only match the source SAP returned by the read function with the SAP enabled on
the port.

The write function can take the following function modifier:

• IO$M_RESPONSE—Transmit a response packet (sets the low-order bit in the SSAP field). This
allows users with user-supplied service enabled to respond to certain 802 format command pack-
ets. IO$M_RESPONSE can be specified only when you have the 802 packet format enabled. The
802 packet format ports, with Class I service enabled, result in an error if you attempt to transmit a
response message with a CTL field value of unnumbered information (UI).

302

Chapter 9. Local Area Network (LAN) Device Drivers

9.7.3. Set Mode and Set Characteristics
The operating system provides the following two function codes:

• IO$_SETMODE

• IO$_SETCHAR

Other than the privilege check, these two function codes are treated the same by the LAN drivers.
This section refers to the IO$_SETMODE function code only, even though applications can use either
function code.

The set mode function code is used to perform many different functions. These different functions are
distinguished by the modifiers set with the function code. The LAN drivers support the following set
mode requests:

• IO$_SETMODE!IO$M_CTRL — Set or modify port attributes

• IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP — Set port attributes and start port

• IO$_SETMODE!IO$M_SET_MAC — Set medium attributes

• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN — Shut down port

• IO$_SETMODE!IO$M_ATTNAST — Enable attention AST

• IO$M_SETMODE!IO$M_UPDATE_MAP — Update functional address mapping table (Token
Ring only)

• IO$M_SETMODE!IO$M_ROUTE — Update source routing cache table (Token Ring only)

The following sections describe these functions in detail.

9.7.3.1. Set Controller Mode
Once a port is created using the $ASSIGN system service, you can set the port attributes and start the
port using the requests listed in the previous section. Note that in most cases only IO$_SETMOD-
E!IO$M_CTRL!IO$M_STARTUP is issued because it sets the port attributes and starts the port with
one request. IO$_SETMODE!IO$M_CTRL is most often used to modify port attributes after the port
has been started.

If the function modifier IO$M_STARTUP is specified, the LAN port is started. If IO$M_STARTUP
is not specified, the specified characteristics are modified.

This function takes the following device- or function-dependent argument:

• P2—The address of a quadword descriptor for an extended characteristics buffer. The first long-
word of the descriptor is the buffer length; the second longword is the address of the buffer. The
P2 argument is optional.

The P2 buffer consists of a series of 6-byte or counted string entries. The first word of each entry con-
tains the parameter identifier (ID) of an attribute, followed by either a longword that contains one of
the (binary) values that can be associated with the parameter ID or a counted string. Counted strings
consist of a word that contains the size of the character string followed by the character string. Fig-
ure 9.14 shows the format for this buffer.

303

Chapter 9. Local Area Network (LAN) Device Drivers

Figure 9.14. P2 Extended Characteristics Buffer

Table 9.33 is an alphabetic listing of the parameter IDs and values that can be specified in the P2
buffer. These parameter IDs are applicable to all LAN controllers, except where otherwise noted.
The $NMADEF macro defines these values. The $NMADEF macro is included in the macro library
SYS$LIBRARY:LIB.MLB. (Table 9.33 lists the parameters that can be used with each of the pack-
et formats, and indicates which are required, which are optional, and which generate the SS$_BAD-
PARAM error.)

If the status SS$_BADPARAM is returned in the first word of the I/O status block, the second long-
word contains the parameter ID of the parameter in error.

Table 9.33. P2 Attributes

Parameter ID Meaning
NMA$C_PCLI_ACC Protocol access mode. This optional parameter determines the ac-

cess mode for the protocol type. NMA$C_PCLI_ACC is valid only
for ports using Ethernet packet format.

NMA$C_PCLI_ACC is valid for ports using 802E packet format.

One of the following values can be specified:

• NMA$C_ACC_EXC — Exclusive mode (default)

• NMA$C_ACC_SHR — Shared-default user mode

• NMA$C_ACC_LIM — Shared-with-destination mode

Section 9.4.8 provides a description of protocol type sharing.

Section 9.4.8 provides a description of protocol type PID sharing.

NMA$C_PCLI_ACC is passed as a longword value.
NMA$C_PCLI_BFN Number of receive buffers to preallocate (default = 1). NMA$C_P-

CLI_BFN can have a maximum value of 255. This optional para-
meter is specified on a per-port basis.

NMA$C_PCLI_BFN is passed as a longword value.

NMA$C_PCLI_BFN represents the number of receive messages
the LAN driver holds for a port when the port has no read QIOs
posted to the driver.

304

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
NMA$C_PCLI_BUS Any message received for this port that is larger than this parame-

ter value is discarded.

Maximum allowable port receive data size, that is, message length
(default = 512 bytes). NMA$C_PCLI_BUS can have a maximum
value of 9234.This optional parameter is specified on a per-port
basis. It is passed as a longword value.

NMA$C_PCLI_CCA Can change address. This optional parameter enables applications
to start before DECnet starts. DECnet may attempt to set the phys-
ical address of the controller when it starts. Ethernet devices sup-
port only one physical address, and so all applications that are us-
ing the same device must also use the same physical address. If ap-
plications that do not use the DECnet address start before DECnet,
DECnet is not able to start on that controller unless the other ap-
plications that have already started have all specified NMA$C_P-
CLI_CCA to be ON.

This parameter is not applicable to FDDI because FDDI devices
can run with more than one physical address; however, no error is
returned if this parameter is supplied for FDDI devices. The appli-
cation receives no indication whatsoever that the physical address
has changed. This parameter is passed as a longword. One of the
following values can be specified:

• NMA$C_STATE_ON — The physical address can be
changed.

• NMA$C_STATE_OFF — The physical address cannot be
changed (default).

NMA$C_PCLI_CON[1] Controller mode. This optional parameter determines whether
transmit packets are to be looped back at the controller. One of the
following values can be specified:

NMA$C_LINCN_NOR — Normal mode (default)

NMA$C_LINCN_LOO — Loopback mode

The only messages looped back are those acceptable to the con-
troller as receive messages, that is, those messages that possess at
least one of the following characteristics:

• Matching physical address (see Section 9.4.5)

• Matching multicast address (see Section 9.4.5)

• Promiscuous mode (NMA$C_PCLI_PRM) is in the ON state

• Destination address is a multicast address and all multicasts are
enabled (NMA$C_PCLI_MLT is in the ON state)

NMA$C_PCLI_CON affects all ports on a single controller. It is
passed as a longword value.

305

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
For the DELUA, DEBNA, DEBNI, DEQTA, PMAD, DEMNA,
and DESVA, the following list shows the maximum amount of
user data that can be looped:

Ethernet format without padding — 18 bytes

Ethernet format with padding — 16 bytes

802 format with 1-byte CTL field — 15 bytes

802 format with 2-byte CTL field — 14 bytes

802 extended format—10 bytes

When the DEUNA is in loopback mode, the driver always enables
echo mode (NMA$C_PCLI_EKO is in the ON state).

Not all devices support loopback mode. If normal mode is not
specified, the request is completed with SS$_BADPARAM status.

NMA$C_PCLI_CRC1 Cyclic redundancy check (CRC) generation state for transmitted
messages (optional). One of the following values can be specified:

NMA$C_STATE_ON — Controller generates a CRC (default).N-
MA$C_STATE_OFF — Controller does not generate a CRC.N-
MA$C_PCLI_CRC affects all ports on a single controller. There
is no effect onchecking a receive message’s CRC (it is always
checked). NMA$C_PCLI_CRC is passed as a longword value.

If NMA$C_PCLI_CRC is turned off, all users of the controller
must supply the 4-byte CRC value for all messages transmitted.
The CRC is passed at the end of the P1 transmit buffer; the addi-
tional 4 bytes are included in the size of the P1 buffer. The CRC
value is not checked for correctness.

For the DEQNA, DELQA, and Token Ring devices, the
NMA$C_PCLI_CRC parameter cannot be turned off.

For the DEQNA, DELQA, and Token Ring devices, the
NMA$C_PCLI_CRC parameter cannot be turned off.

Not all devices support user-supplied CRC. If a controller-gener-
ated CRC is specified, the request is completed with SS$_BAD-
PARAM status.

NMA$C_PCLI_DES Shared protocol destination address. Passed as a counted string
that consists of a modifier word (NMA$C_LINMC_SET or
NMA$C_LINMC_CLR) followed by a 6-byte (48-bit) physical
destination address. The size of the counted string must always
be 8. NMA$C_PCLI_DES only has meaning when protocol ac-
cess (NMA$C_PCLI_ACC) is defined as shared-with-destination
mode (NMA$C_ ACC_LIM). The destination address specified
must be a physical address—not a multicast address—and it must
be unique among all ports sharing the same protocol. NMA$C_P-

306

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
CLI_DES is required when the access mode is defined as ‘‘shared-
with-destination.’’

NMA$C_PCLI_DES should not be specified on a port where the
802 or 802E packet format is selected (NMA$C_PCLIFMT is set
to NMA$C_LIFM_802 or NMA$C_LIFM_802E). For 802 pack-
et format, the concept of shared protocol type is handled by using
group SAPs.

NMA$C_PCLI_DES should not be specified on a port where
the 802 packet format is selected (NMA$C_PCLIFMT is set to
NMA$C_LIFM_802). For 802 packet format, the concept of
shared protocol type is handled by using group SAPs.

Section 9.4.8 provides a description of protocol type sharing.

Section 9.4.8 provides a description of protocol type PID sharing.
NMA$C_PCLI_EKO1 Echo mode. Applicable only to the DEUNA device driver.

If echo mode is on, transmitted messages are returned to the
sender. This optional parameter controls the condition of the half-
duplex bit in the DEUNA mode register. One of the following val-
ues can be specified:

NMA$C_STATE_OFF — Does not echo transmit messages (de-
fault)

NMA$C_STATE_ON — Echoes transmit messages

If NMA$C_STATE_ON is specified, the only transmitted mes-
sages echoed are those acceptable to the DEUNA as receive mes-
sages, that is, those messages that have at least one of the follow-
ing characteristics:

• Matching physical address (see Section 9.4.5)

• Matching multicast address (see Section 9.4.5)

• Promiscuous mode (NMA$C_PCLI_PRM) is in the ON state

• Destination address is a multicast address and all multicasts are
enabled (NMA$C_PCLI_MLT is in the ON state)

If the DEUNA is placed in loopback mode (NMA$C_LINC-
N_LOO is specified in the NMA$C_PCLI_CON parameter), the
driver enables echo mode.

NMA$C_PCLI_EKO affects all ports on a single controller. It is
passed as a longword value.

NMA$C_PCLI_FMT Packet format. This optional parameter specifies the packet format
as either Ethernet, IEEE 802, or 802 extended. This characteristic
is passed as a longword value and affects single ports on a single
controller. One of the following values can be specified:

307

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
NMA$C_LINFM_ETH — Ethernet packet format (default)

NMA$C_LINFM_802 — 802 packet format

NMA$C_LINFM_802E — 802 extended packet format

NMAC_PCLI_PTY, NMAC_PCLI_ACC, and NMA$C_P-
CLI_DES should only be specified on those ports where the Ether-
net packet format (NMA$C_LINFM_ ETH) is selected.

NMAC_PCLI_SRV, NMAC_PCLI_SAP, and NMA$C_P-
CLI_GSP should only be specified on those ports where the 802
packet format (NMA$C_LINFM_802) is selected.

NMA$C_PCLI_PID should only be specified on those ports where
the 802 extended packet format (NMA$C_LINFM_802E) is se-
lected.

NMA$C_PCLI_GSP Group SAP. This is an optional parameter if the 802 packet format
is selected (NMA$C_PCLIFMT is set to NMA$C_LINFM_802).
If the Ethernet or 802 extended packet format is selected,
NMA$C_PCLI_GSP cannot be specified. Group SAPs can be
shared among multiple ports on the same controller. If the 802
packet format is selected, NMA$C_PCLI_GSP defines up to four
802 group SAPs that are to be enabled for matching incoming
packets to complete read operations on this port. By default, no
group SAPs are enabled.

NMA$C_PCLI_GSP is passed as a longword value and is read as
four 8-bit unsigned integers. Each integer must be either a group
SAP or zero. To enable a single group SAP on a port, you need on-
ly specify the group SAP value to be enabled in one of the four in-
tegers and place a value of zero in the three remaining integers. To
disable group SAPs on the port, you need only place a value of ze-
ro in all four integers and issue the QIO.

If this characteristic is correctly specified, any group SAPs that
were previously enabled on the port are now replaced by the SAPs
specified by the current request.

NMA$C_PCLI_ILP1 Internal loopback mode. This optional parameter places the de-
vice in internal loopback mode (not for the DEUNA, DEQNA, or
DELQA devices). One of the following values can be specified:

NMA$C_STATE_OFF — Not in internal loopback mode (default)

NMA$C_STATE_ON — Internal loopback mode

If NMA$C_STATE_ON is specified, the NMA$C_PCLI_CON
parameter must be in loopback (NMA$C_LINCN_LOO) mode.

When the controller is in loopback mode (generally for testing), it
can loop packets in external loopback or internal loopback. This
parameter places the controller in one of these loopback modes.

308

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
NMA$C_PCLI_ILP is passed as a longword value and affects all
ports on the controller.

Not all devices support loopback mode. If NMA$C_STATE_OFF
is not specified, the request is completed with SS$_BADPARAM
status.

NMA$C_PCLI_MCA Multicast address (optional). Passed as a counted string that con-
sists of a modifier word followed by a list of 6-byte (48-bit) mul-
ticast addresses. The value specified in the modifier word deter-
mines whether the addresses are set or cleared. If NMA$C_LINM-
C_CAL is specified, all multicast addresses in the list are ignored.

The following mode values can be specified in the low byte of the
modifier word:

NMA$C_LINMC_CLR — Clear the multicast addresses.

NMA$C_LINMC_CAL — Clear all multicast addresses.

NMA$C_LINMC_SET — Set the multicast addresses.

The driver filters all multicast addresses on a per-port basis; there-
fore, only messages received with the port's physical address or the
multicast addresses enabled on the port are used to complete the
user's read operations.

Note that each LAN controller supports a limited number of mul-
ticast addresses. If this limit is exceeded, the LAN driver enables
the “accept all multicast” feature on the controller and all multicast
packets on the LAN must be filtered by the LAN driver. This may
cause a minor performance loss.

NMA$C_PCLI_MCA is specified on a per-port basis.
NMA$C_PCLI_MLT Multicast address state. This optional parameter instructs the con-

troller hardware whether to accept all multicast addresses for this
port. One of the following values can be specified:

NMA$C_STATE_ON — Accept all multicast addresses.

NMA$C_STATE_OFF — Do not accept all multicast addresses
(default).

NMA$C_PCLI_MLT allows you to receive all multicast address
packets that also match the port's protocol type, SAP, or protocol
identifier.

Generally, you enable only your individual set of multicast ad-
dresses using the NMA$C_PCLI_MCA parameter, and leave the
NMA$C_PCLI_MLT parameter in the off state.

There could be a minor performance loss when the NMA$C_P-
CLI_MLT parameter is in the ON state because the LAN driver

309

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
may have to process all multicast addresses on the medium; the
number of multicast addresses on the line determines the amount
of processing required.

The NMA$C_PCLI_MLT parameter is passed as a longword val-
ue.

NMA$C_PCLI_PAD Use message size field on transmit and receive messages (option-
al). One of the following values can be specified:

NMA$C_STATE_ON — Insert message size field (default)

NMA$C_STATE_OFF — No size field

NMA$C_PCLI_PAD affects only the protocol type that issued the
set mode request. It is passed as a longword value.

On Ethernet, if padding is enabled on Ethernet format packets,
the driver adds a 2-byte count field to the transmitted data. This
field allows short packets (packets fewer than 46 bytes long) to
be received with the proper length returned by the driver. The
minimum Ethernet packet contains 46 bytes of user data. When
fewer than 46 bytes are sent, the packet is padded and the receiv-
er always receives 46 bytes of data. When padding is enabled,
the maximum message size for transmit or receive operations
is 1498 bytes (8998 bytes for jumbo packets) and the minimum
is zero bytes. See Section 9.4.6.5.1 for additional information.
NMA$C_PCLI_PAD should be specified only on a port where the
Ethernet packet format is selected (NMA$C_PCLI_FMT is set to
NMA$C_LINFM_ETH).

For FDDI, the same 2-byte count field is added; however, because
FDDI packets can be as short as 22 bytes, FDDI transmit requests
are never padded.

NMA$C_PCLI_PHA1 Physical address (optional). It is passed as a counted string that
consists of a modifier word followed by the 48-bit physical ad-
dress. If the request is to clear the physical address or to set the
physical address to the default address, the physical address (if
present) is not read.

One of the following mode values can be specified in the low byte
of the modifier word:

NMA$C_LINMC_SET — Set the string value.

NMA$C_LINMC_CLR — Clear the physical address.

NMA$C_LINMC_SDF — Set the physical address to the de-
fault address. For CSMA/CD, the default address is construct-
ed by appending the low-order word of the system parameter
SCSSYSTEMID to the constant DECnet header (AA-00-04-00). If
SCSSYSTEMID is zero, and NMA$C_LINMC_SDF is specified,
the hardware address is used as the default.

310

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
If not specified for Ethernet, the default is the current address set
by a previous set mode function on this controller, or the hardware
address if no address was defined by a previous set mode function.
If not specified for FDDI, the default is the hardware address.

The physical address must be passed as a 6-byte (48-bit) quantity.
The first byte is the least significant byte. A return value of -1 on a
sense mode request implies that a physical address is not defined.

The NMA$C_PCLI_PHA parameter affects all ports on a single
controller. If the address specified is already being used on the ex-
tended LAN, SS$_IVADDR is returned.

NMA$C_PCLI_PID Protocol identifier. This parameter is required for, and valid on-
ly on, ports that use 802 extended format packets. NMA$C_P-
CLI_PID is passed as a counted 5-byte string, which is the unique
protocol identifier required for each 802 extended format user.

All protocol identifiers specified on a controller must be unique ex-
cept when the PID is being shared.

NMA$C_PCLI_PID may only be specified on a port when the 802
extended packet format is selected; that is, NMA$C_PCLIFMT is
set to NMA$C_LIFM_802E.

NMA$C_PCLI_PRM Promiscuous (optional). One of the following values can be speci-
fied:

• NMA$C_STATE_ON—Promiscuous mode enabled.

• NMA$C_STATE_OFF—Promiscuous mode off.

The NMA$C_PCLI_PRM parameter is passed as a longword val-
ue.

Only one port on each controller can be active with promiscuous
mode enabled. Enabling promiscuous mode requires PHY_IO priv-
ilege.

THe NMA$C_PCLI_PRM parameter is passed as a longword val-
ue.

Do not use the promiscuous mode for normal usage.

Some Token Ring devices do not support real promiscuous access
to the ring.

See Section 9.8.1 for additional information.
NMA$C_PCLI_PTY Protocol type. This value is read as a 16-bit unsigned integer and

must be unique on the controller except when the protocol type is
being shared. For Ethernet format ports, this is a required parame-
ter.

Valid protocol types are in the range 05-DD through FF.

311

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
NMA$C_PCLI_PTY may only be specified on a port where the
Ethernet packet format is selected (NMA$C_PCLI_FMT is set to
NMA$C_LINFM_ETH).

NMA$C_PCLI_PTY is passed as a longword value; however, only
the low-order word is used.

NMA$C_PCLI_RAC Receive access control (Token Ring only). This optional parameter
specifies whether the application receives a copy of the access con-
trol (AC) field for each Token Ring frame received. It is passed as
a longword value. It must be passed with one of the following val-
ues:

• NMA$C_STAT_ON — Application gets a copy of the AC for
each Token Ring frame received.

• NMA$C_STATE_OFF — Application does not get a copy of
the AC for each Token Ring frame received.

The AC is returned in the P5 buffer. The P5 buffer size for Token
Ring should always be a minimum of 54 bytes. This is due to the
variable size of the Token Ring header.

NMA$C_PCLI_RES Restart. This optional parameter allows the user to enable the auto-
matic port restart feature of the LAN drivers. One of the following
values can be specified:

• NMA$C_LINRES_DIS — Disable automatic restart (default)

• NMA$C_LINRES_ENA — Enable automatic restart

The LAN drivers shut down all users of a controller if there is a fa-
tal error on the controller or if the LAN driver determines that the
controller has stopped functioning. All outstanding I/O operations
on the LAN driver are completed with either an SS$_ABORT or
SS$_TIMEOUT status.

All ports that have the NMA$C_PCLI_RES parameter enabled (set
to NMA$C_LINRES_ENA) have the port automatically restarted
by the LAN driver approximately one second after it has been shut
down due to a fatal error. If the user issues read or write QIOs to
the port during the time the port is shut down, the driver completes
the QIOs with an SS$_OPINCOMPL status.

All ports that have the automatic restart feature disabled must be
restarted by the application program when the port is shut down
by the LAN driver. The application program should wait approx-
imately 2 seconds to allow the LAN driver to stabilize. Once the
LAN driver shuts down a port, it attempts a maximum of 30 con-
secutive automatic restarts. If there are 30 consecutive failures to
restart the port, the port remains shut down.

Note that it is unusual to have fatal errors on a LAN controller or
to have a LAN driver detect that a LAN controller has stopped

312

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
functioning. Having the ability to automatically restart a user's port
makes the program easier to design because the program does not
have to take into account the possibility of the LAN driver shutting
down the port.

NMA$C_PCLL_RFC Receive frame control (FDDI only). This optional parameter spec-
ifies whether the application receives a copy of the Frame Con-
trol (FC) field for each FDDI frame received. It is passed as a long-
word value. However, only the low-order byte is used. It must be
passed with one of the following values:

• NMA$C_STATE_ON — Application gets a copy of the FC for
each FDDI frame received.

• NMA$C_STATE_OFF — Application gets a copy of the FC
for each FDDI frames (default).

For $QIO Read operations, the FC is passed to the application in
the P5 buffer. The following are the sizes required for the P5 buffer
for various packet formats and settings of NMA$C_PCLI_RFC:

• Ethernet (NMA$C_LINFM_ETH) — 14 if NMA$C_S-
TATE_OFF is specified, 15 if NMA$C_STATE_ON is speci-
fied.

• 802 (NMA$C_LINFM_802) — 16 if NMA$C_STATE_OFF
is specified, 17 if NMA$C_STATE_ON is specified.

• 802E (NMA$C_LINFM_802E) — 20 if NMA$C_S-
TATE_OFF is specified, 21 if NMA$C_STATE_ON is speci-
fied.

Receiving the FC requires one additional byte of space in the
P5 buffer. The FC is the first byte in the P5 buffer, immediate-
ly preceding the 6-byte destination address. The size of the P5
buffer required does not change from the CSMA/CD sizes if
NMA$C_PCLI_RFC is set to NMA$C_STATE_OFF.

NMA$C_PCLI_SAP 802 format SAP. This parameter is required if the 802
packet format is selected (NMA$C_PCLI_FMT is set to
NMA$C_LINFM_802)> NMA$C_PCLI_SAP defines an 802 SAP
and is read as an 8-bit unsigned integer. The least significant bit
of the SAP must be 0 and the SAP cannot be the null SAP (all 8
bits equal 0) or the SNAP SAP. NMA$C_PCLI_SAP is passed as a
longword value. However, only the low-order byte is used.

The SAP specified by NMA$C_PCLI_SAP is the SAP used to
match incoming packets to complete read requests. It is used as the
source SAP (SSAP) in all transmissions (write QIOs). Because it is
illegal to transmit using a group SAP as the source SAP, the SAP
specified by this NMA$C_PCLI_SAP cannot be a group SAP.
NMA$C_PCLI_GSP describes how to set up group SAPs on a
port.

313

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
All individual SAPs specified on a controller must be unique on
that controller; therefore, the SAP specified using the NMA$C_P-
CLI_SAP parameter is checked for uniqueness on the controller.

NMA$C_PCLI_SRMODE Sets the source routing (SR) mode for the $QIO user (Token Ring
only). This optional parameter allows the application to perform
the source routing discovery. It must be passed with one of the fol-
lowing values:

• NMA$C_SR_TRANSPARENT — Application source rout-
ing is transparent. This is the default when this parameter is not
specified.

• NMA$C_SR_SELF — This shuts off the automatic route dis-
covery exploration message for this user.

The $QIOs exist to further manipulate the source routing cache.
Use the NMA$C_SR_TRANSPARENT mode for applications.

NMA$C_PCLI_SRV Port service. This optional parameter specifies the service sup-
plied by the driver for the port. It can only be specified if the
802 packet format is selected (NMA$C_PCLI_FMT is set to
NMA$C_LINFM_802). This characteristic is passed as a longword
value. One of the following values can be specified:

• NMA$C_LINSR_USR — User supplied service (default)

• NMA$C_LINSR_CLI — Class I service
NMAC$C_PCLI_XAC Transmit access control (Token Ring only). This is an optional pa-

rameter that enables applications to control the setting of the priori-
ty bits in the access control (AC) for frames being transmitted in a
$QIO write operations. When set to a wanted value, all subsequent
transmits use this AC value.

NMA$C_PCLI_XFC Transmit frame control (FDDI) only). NMA$C_PCLI_XFC is
an optional parameter that enables applications to control the set-
ting of the priority bits in the FC for frames being transmitted in
a $QIO write operation. NMA$C_PCLI_XFC is passed as a long-
word parameter that has many valid settings. If specified with a
value of 0, the application supplies an FC value on each $QIO
write operation. The FC value to be used in this case is supplied
in the P5 buffer for the $QIO write operation. If the parameter is
specified with a value other than 0, that value is inserted into the
FC field of every transmit by the FDDI drivers. NO FC is present
in the P5 buffer for the $QIO write in this case. If this parameter is
not specified, the default setting (0) of the priority bits is used.

Regardless of how the FC is supplied, the value specified must be
valid. The allowable values for FC are between 50 hexadecimal
and 57 hexadecimal. If NMA$C_PCLI_XFC is specified with a
nonzero value outside the valid range, the application receives a

314

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
SS$_BADPARAM error. The priority bits are the three low-order
bits.

1If the LAN controller is active and you do not specify this parameter, the parameter defaults to current setting. If the LAN controller is not
controller is not active, this parameter defaults to the default value indicated.

9.7.3.2. Set Mode Parameters for Packet Formats
Table 9.34 summarizes the use of the set mode parameters for the Ethernet, 802, and 802 extended
(802E) packet formats.

Table 9.34. Set Mode Parameters for Packet Formats

Parameter ID Ethernet IEEE 802 802E
FMT Default Required Required
PTY Required Error Error
SAP Error Required Error
PID Error Error Required
ACC Optional Error Error
DES Optional Error Error
PAD Optional Error Error
SRV Error Optional Error
GSP Error Optional Error
BFN, BUS, CCA, CON,
CRC, EKO, ILP, MCA,
MLT, PHA, PRM,
RAC, RES, RFC, SR-
MODE, XAC, XFC

Optional OPT OPT

9.7.3.3. Set Mode Parameter Validation
When starting a LAN port, the LAN driver checks that the mode of the new port is compatible with
the mode of the LAN ports already started. There are two sets of compatibility checks: one for ports
running in shared mode and one for all ports.

The following parameters must match for all ports on the same controller:

• NMA$C_PCLI_CON

• NMA$C_PCLI_CRC

• NMA$C_PCLI_EKO

• NMA$C_PCLI_ILP

• NMA$C_PCLI_PHA (need only match for Ethernet controllers)

Once a port is started, only the following parameters can be changed:

• NMA$C_PCLI_GSP

• NMA$C_PCLI_MCA

315

Chapter 9. Local Area Network (LAN) Device Drivers

9.7.4. Shutdown Controller
The shutdown controller function shuts down the LAN port. On completion of a shutdown request all
outstanding I/O requests are completed. This port cannot be used again until another startup request
has been issued (see Section 9.7.3.1).

The following function code is used to shut down a port:

• IO$_SETMODE!IO$M_CTRL!IO$M_SHUTDOWN—Shut down port

The shutdown controller function takes no device- or function-dependent arguments.

9.7.5. Enable Attention AST
This function requests that an attention AST be delivered to the requesting process when a status
change occurs on the assigned port. An AST is queued when a message is available and there is no
waiting read request. The enable attention AST function is legal at any time, regardless of the condi-
tion of the unit status bits.

The following function code and modifier is used to enable an attention AST:

• IO$_SETMODE!IO$M_ATTNAST—Enable attention AST

This function takes the following device- or function-dependent arguments:

• P1—The address of an AST service routine or 0 for disable

• P2—Ignored

• P3—Access mode to deliver AST

The enable attention AST function enables an attention AST to be delivered to the requesting process
once only. After the AST occurs, it must be explicitly reenabled by the function before the AST can
occur again. The function is subject to AST quotas.

The AST service routine is called with an argument list. The first argument is the current value of the
second longword of the I/O status block (see Section 9.7.13).

9.7.6. IO$M_SET_MAC Functional Modifier to
IO$M_SETMODE
The IO$M_SET_MAC qualifier, when used with IO$_SETMODE, is used to set medium specific pa-
rameters. The Token Ring parameters require PHY_IO privilege to be set. Table 9.35 shows the pa-
rameters that may be set for Ethernet. Table 9.36 shows the parameters that may be set for FDDI. Ta-
ble 9.37 shows the parameters that may be set for Token Ring, and Table 9.38 shows the parameters
that may be set for ATM.

Table 9.35. Parameters of IO$M_SET_MAC for Ethernet

Parameter ID Meaning
MA$C_PCLI_FDE Enables or disables full duplex operation. The values for this para-

meter are NMA$C_STATE_ON or NMA$C_STATE_OFF.
NMA$C_PCLI_LINEMEDIA Sets the connection media type for the Ethernet adapter. Valid val-

ues for this parameter are:

• NMA$C_MEDIA_AUTO

316

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
• NMA$C_MEDIA_AUI

• NMA$C_MEDIA_BNC

• NMA$C_MEDIA_TP
NMA$C_PCLI_LINESPEED Sets the speed of the Ethernet adapter. Valid values for this para-

meter are:

• 0—Used to autosense the speed.

• 10—Sets the speed to 10 megabits/second.

• 100—Sets the speed to 100 megabits/second.

• 1000—Sets the speed to 1000 megabits/second.

• 10000—Sets the speed to 10 gigabits/second.

Table 9.36. Parameters of IO$M_SET_MAC for FDDI

Parameter ID Meaning
NMA$C_PCLI_TREQ Requested value for token rotation timer, ANSI MAC T_req para-

meter. Units are in 80 nanoseconds, the default is 8000, minimum
is 4000, and maximum is 167772.

NMA$C_PCLI_TVX Maximum time between arrivals of a valid frame or unrestricted
token, ANSI MAC TVX parameter. Units are in 80 nanoseconds,
the default is 2621, minimum is 2500, and maximum is 5222.

NMA$C_PCLI_REST_TTO Restricted token timeout which limits how long a single restrict-
ed mode dialog may last before being terminated. Units are in mil-
liseconds, the default is 1000, minimum is 0, and maximum is
10000.

NMA$C_PCLI_RPE Ring purge enable. If 1 (TRUE), this link participates in the Ring
Purger election and, if elected, perform the Ring Purger function.

NMA$C_PCLI_NIF_TARG Neighbor information frame target.
NMA$C_PCLI_SIF_CONF_
TARG

Station information frame configuration target. A 6-byte string
specifying the LAN address of the target. Used only by DEC-
net/OSI.

NMA$C_PCLI_SIF_OP_TARG Station information frame operation target. A 6-byte string specify-
ing the LAN address of the target. Used only by DECnet/OSI.

NMA$C_PCLI_ECHO_TARG Echo test target. A 6-byte string specifying the LAN address of the
target. Used only by DECnet/OSI.

NMA$C_PCLI_ECHO_DAT Data pattern to use for the echo test. Used only by DECnet/OSI.
NMA$C_PCLI_ECHO_LEN Length of the echo packet. Used only by DECnet/OSI.

Table 9.37. Parameters of IO$M_SET_MAC for Token Ring

Parameter ID Meaning
NMA$C_PCLI_RNG_SPD Sets the speed of the ring. This longword may be either:

317

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
• NMA$C_LINRNG_FOUR — Used for 4 Mb/s rings.

• NMA$C_LINRNG_SIXTN — Used for 16 Mb/s rings.

The default is NMA$C_LINRNG_SIXTN.
NMA$C_PCLI_LINEMEDIA Sets the connection media type for the Token Ring adapter. Valid

values for this longword parameter are:

• NMA$C_MEDIA_STP

• NMA$C_MEDIA_UTP

The default is NMA$C_MEDIA_STP.
NMA$C_PCLI_ETR Controls the Early Token release feature of the Token Ring hard-

ware. This feature can greatly improve throughput, and is only
valid on 16 Mb/s rings. The values for this longword parameter are
NMA$C_STATE_ON or NMA$C_STATE_OFF. The default is
NMA$C_STATE_ON.

NMA$C_PCLI_
MONCONTEND

Specifies whether the controller participates in the monitor con-
tention process when another adapter detects the need for con-
tention and initiates the process. The values for this longword pa-
rameter are NMA$C_STATE_ON or NMA$C_STATE_OFF. The
default is NMA$C_STATE_OFF.

NMA$C_PCLI_CACHE_ENT The number of source routing (SR) entries to make available for
caching. The default is 200, minimum is 20, and maximum is
2000. Each cache entry consumes 64 bytes.

NMA$C_PCLI_ROUTEDIS The source routing discovery timer. This is the amount of seconds
to wait after the transmission of ring explorer packets before de-
claring the route of a path to be unknown. The default is 2 seconds,
minimum is 1, and maximum is 255.

NMA$C_PCLI_A_TIM The source routing aging timer. After traffic is neither received
from nor sent to a given node for this number of seconds, the en-
try is marked stale. After the entry is marked stale, rediscovery is
required to communicate with the node. The default is 60 seconds,
minimum is 1, and maximum is 65535.

NMA$C_PCLI_SRC_ROU Enables and disables source routing. The values for this long-
word parameter are NMA$C_LINSRC_ENA or NMA$C_LINSR-
C_DIS. The default is NMA$C_LINSRC_ENA.

NMA$C_PCLI_AUTH_PR Specifies the highest priority that a user may transmit a frame. The
priority is set within the NMA$C_PCLI_XAC parameter. The de-
fault for this parameter is 3, minimum is 0, and maximum is 6.

Table 9.38. Parameters of IO$M_SET_MAC for ATM

Parameter ID Meaning
NMA$C_PCLI_MED Medium. This longword parameter defaults to and may only be

set to NMA$C_LINMD_CSMACD.

318

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
NMA$C_PCLI_BUS Buffer size. This longword parameter specifies the requested

maximum packet size of the emulated LAN. The value may be
either 1516, 4544, or 9234.

NMA$C_PCLI_ELAN_PAR Parent device name. This is a 3- or 4-character string parame-
ter that specifies the name of the ATM device to associate with
this emulated LAN.

NMA$C_PCLI_NET ELAN name. This is a string of up to 64 characters that speci-
fies the name of the emulated LAN to join.

NMA$C_PCLI_ELAN_DESC ELAN description. This is a string of up to 64 characters long
that provides additional description of the emulated LAN for
status displays.

NMA$C_PCLI_LES_HWA LES ATM address. This is specified as a 40-character string as
the hexadecimal representation of a 20-byte ATM address.

NMA$C_PCLI_ELAN_STATE_
REQ

ELAN change state request value. This longword parameter di-
rects the driver to either start or shutdown the emulated LAN.
Start is specified by a value of 2. Shutdown is specified by a
value of 4.

NMA$C_PCLI_EVENT_REQ Event mask request. If set to 1, this longword parameter directs
the driver to set the event reporting mask to the value given by
the event parameter.

NMA$C_PCLI_EVENT Event mask value. This is a longword bit mask that controls
the event reporting done by the driver. A bit set in the mask
enables the reporting of corresponding event(s).

9.7.7. IO$M_UPDATE_MAP Functional Modifier to
IO$_SETMODE
Using Token Ring only, the IO$M_UPDATE_MAP qualifier, when used with IO$_SETMODE,
manipulates the adapter's functional address mapping table. Figure 9.15 shows the format of the P2
buffer for this operation. This QIO requires PHY_IO privilege.

Figure 9.15. Format of IO$M_UPDATE_MAP Setmode P2 Buffer

The subfunction is one of the following:

• NMA$C_MAP_CHANGE — This function adds or changes a mapping in the functional address
table. If the specified multicast entry does not exist, an entry is created with the specified function-
al address mask. If the specified multicast entry does exist, the corresponding functional address
mask is changed to the specified mask. All users who currently have the multicast enabled when

319

Chapter 9. Local Area Network (LAN) Device Drivers

the functional mask is changed will automatically update the functional address table as part of
this operation.

Possible errors returned include the following:

• SS$_DEVICEFULL — This error indicates that there is insufficient space in the mapping ta-
ble to complete the request. The multicast to functional address mapping table has 200 entries.

• NMA$C_MAP_DELETE — This function deletes the specified MC address in the table. For this
function, the functional address mask is not required to pass the P2 buffer. If the functional ad-
dress mask is passed, its contents are ignored.

Possible errors returned include the following:

• SS$_BADPARAM — This error indicates that the specified multicast address cannot be found
in the table.

The following example maps multicast address AB-01-01-01-02-03 to the functional address
03-00-00-01-00-00 for device ICA0:

LANCP>SET DEVICE/MAP= -_LANCP>(MULTICAST=AB-01-01-01-02-03, -
_LANCP>FUNCTIONAL=00-01-00-00) ICA0:

The following example deletes the mapping of the multicast address of AB-01-01-01-02-03 for the
device ICA0:

LANCP>SET DEVICE/NOMAP=(MULTICAST=AB-01-01-01-02-03) ICA0:

9.7.8. IO$M_ROUTE Functional Modifier to IO$_SET-
MODE
For Token Ring only, the IO$M_ROUTE qualifier, when used with IO$_SETMODE, manipulates the
source routing cache table. This command is successful only when source routing is enabled. Source
routing is enabled with the set mac qualified set mode QIO. Figure 9.16 shows the format of the P2
buffer. This QIO requires the PHY_IO privilege.

Figure 9.16. Format of the IO$M_ROUTE P2 Buffer

The subfunction is one of the following:

320

Chapter 9. Local Area Network (LAN) Device Drivers

• NMA$C_SR_ADD — This function adds or changes a source routing cache entry. It enters the
LAN address into the table with the enclosed routing information. The routing information string
format is documented in Section 9.4.6.3. If RI_size is passed as 0, the entry is created (or modi-
fied) to be in the EXPLORING state (this is useful for users who are doing their own source rout-
ing). If the RC 'Lth' field is 0, the LAN address is entered in the table as being in the local state.

Possible errors returned include:

• SS$_INSFMEM — The source routing cache is full.

• SS$_BADPARAM — An invalid RI string was passed or invalid sizes were passed.

• SS$_IVMODE — Source routing is not enabled.

• NMA$C_SR_DELETE — This function deletes a source routing cache entry. The RI_size and
the routing information string are not required for this QIO. If one or both of the fields are passed
for this operation, they are ignored. The result of this command is to put the entry into the deleted
state. When the entry goes into the deleted state, it is deleted within 10 minutes.

Possible errors returned include the following:

• SS$_BADPARAM — The requested entry could not be found.

9.7.9. Sense Mode and Sense Characteristics
The sense mode function returns the port attributes in the specified buffer. These attributes include the
device characteristics described in Section 9.6“LAN Device Information” and, with the exceptions
noted below, the attributes listed in Table 9.33.

The following combinations of function code and modifier are provided:

• IO$_SENSEMODE!IO$M_CTRL—Read characteristics

• IO$_SENSECHAR!IO$M_CTRL—Read characteristics

• IO$_SENSEMODE!IO$M_SENSE_MAC—Medium specific characteristics

• IO$_SENSEMODE!IO$M_SHOW_MAP—Returns current functional address to multicast ad-
dress mapping (Token Ring only)

• IO$_SENSEMODE!IO$M_SHOW_ROUTE—Returns current source routing cache table (Token
Ring only)

These functions take the following device- or function-dependent arguments:

• P1—The address of a two-longword buffer where the device characteristics are stored. (Fig-
ure 9.17 shows the format for, and Section 9.6 describes the contents of, the P1 buffer.) The P1 ar-
gument is optional.

• P2—The address of a quadword descriptor where the attributes buffer is stored. The first long-
word of the descriptor is the buffer length; the second longword is the address of the buffer. The
P2 argument is optional.

The P2 buffer is not read by the LAN driver. The driver stores the port's attributes in the buffer,
which contains multiple entries. The format of each entry depends on whether a longword or a
counted string is returned, as shown in Figure 9.18. Each parameter ID contains a string indicator
bit (bit 12) that describes whether the data item is a string or a longword.

321

Chapter 9. Local Area Network (LAN) Device Drivers

Except for the following differences, P2 returns the same attributes as those listed in Table 9.31:

• All parameters that are valid for the enabled packet format are returned (see Table 9.32).

• The sense-mode P2 buffer does not return the modifier word for the NMA$C_PCLI_PHA,
NMA$C_PCLI_MCA, and NMA$C_PCLI_DES parameter IDs.

• The NMA$C_PCLI_DES parameter is only returned on Ethernet ports whose access mode is set
to “shared with destination.”

• In addition to the parameter IDs listed in Table 9.31, the sense-mode P2 buffer contains the fol-
lowing parameter IDs1:

Parameter ID Meaning
NMA$C_PCLI_FCA List of the currently enabled functional addresses (Token Ring on-

ly). Each 32-bit entry corresponds respectively with the items re-
turned under NMA$C_PCLI_MCA.

NMA$C_PCLI_HWA Hardware address. Describes the value for the hardware address.
The hardware address is the default physical address when no
physical address has been specified and there are no active users
on the controller. NMA$C_PCLI_HWA is returned in the same
format as NMA$C_PCLI_PHA.

NMA$C_PCLI_MBS Maximum packet length. NMA$C_PCLI_MBS is a longword,
read-only parameter. The value returned reflects the largest data
packet that the application can receive for its packet format and
type of LAN, measured in bytes. The values for Ethernet, FDDI,
and Token Ring are:

Packet Format Ethernet FDDI Token Ring
Ethernet format without padding 1500 4470 4418
Ethernet format with padding 1498 4468 4416
802 format with 1-byte CTL field 1497 4475 4423
802E format 1492 4470 4418

The values for LAN emulation over ATM are:

Packet Format ATM
ELAN size:

1516 4544 9234

Ethernet format without padding 1500 4528 9218
Ethernet format with padding 1498 4526 9216
802 format with 1-byte CTL field 1497 4525 9215
802E format 1492 4520 9210

Figure 9.17. Sense Mode P1 Characteristics Buffer

1Alpha specific.

322

Chapter 9. Local Area Network (LAN) Device Drivers

It is suggested that a size of 250 bytes be used for the P2 buffer. This allows space for additional para-
meters that may be returned in future releases of OpenVMS.

All attributes that fit into the buffer specified by P2 are returned; however, if all the attributes cannot
be stored in the buffer, the I/O status block returns the status SS$_BUFFEROVF. The second word of
the I/O status block contains the number of bytes used in the P2 buffer (see Section 9.7.13).

Figure 9.18. Sense Mode Attribute Buffer

9.7.10. IO$M_SENSE_MAC Functional Modifier to
IO$_SENSEMODE
The IO$M_SENSE_MAC qualifier, when used with IO$_SENSEMODE, returns the parameters spec-
ified in Section 9.7.6. In addition to the set mac parameters, Table 9.39 shows the returns of the fol-
lowing parameters:

Table 9.39. Parameters of IO$M_SENSE_MAC

Parameter ID Meaning
NMA$C_PCLI_T_NEG The negotiated value of the token rotation timer (ANSI MAC para-

meter T_neg) (FDDI only).
NMA$C_PCLI_DAT The duplicate address test flag (FDDI only). If set, this indicates

that there is another station on the ring with the same hardware
LAN address.

NMA$C_PCLI_UNA Upstream neighbor's address (FDDI and Token Ring). This is a
string parameter specifying the 6-byte LAN address of the up-
stream neighbor. Not all devices may support this feature.

NMA$C_PCLI_OLD_UNA The old (previous) upstream neighbor address (FDDI only). Neigh-
bor addresses change as nodes insert and deinsert into the ring.

NMA$C_PCLI_UN_DAT The upstream neighbor's duplicate address test flag (FDDI only).
NMA$C_PCLI_DNA The downstream neighbor's LAN address (FDDI only).
NMA$C_PCLI_OLD_DNA The old (previous) downstream neighbor's LAN address (FDDI

only).

323

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
NMA$C_PCLI_RPS The current ring purger state (FDDI only). This longword parame-

ter is one of the following values:

• 0 — Off

• 1 — Candidate

• 2 — Non-purger

• 3 — Purger
NMA$C_PCLI_RER The latest ring error reason (FDDI only). This longword parameter

is one of the following values:

• 0 — No Error

• 5 — Ring Init initiated

• 6 — Ring Init received

• 7 — Ring beaconing initiated

• 8 — Duplicate address detected

• 9 — Duplicate token detected

• 10 — Ring purger error

• 11 — FCI strip error

• 12 — Ring op oscillation

• 14 — PC trace initiated

• 15 — PC trace received
NMA$C_PCLI_NBR_PHY Neighbor's PHY type (FDDI only). This longword parameter is

one of the following values:

• 0 — A

• 1 — B

• 2 — S

• 3 — M

• 4 — Unknown
NMA$C_PCLI_RJR Ring reject reason (FDDI only). This longword parameter is one of

the following values:

• 0 — None

• 1 — Local LCT

• 2 — Remote LCT

324

Chapter 9. Local Area Network (LAN) Device Drivers

Parameter ID Meaning
• 3 — LCT both sides

• 4 — LEM reject

• 5 — Topology error

• 6 — Noise reject

• 7 — Remote reject

• 8 — Trace in progress

• 9 — Trace received-disabled

• 10 — Standby

• 11 — LCT protocol error
NMA$C_PCLI_LEE Link error estimate (FDDI only). The longword value is a negative

exponent of 10 representing the Link error rate. For example, the
value of X represents the error rate of 10^X.

NMA$C_PCLI_RNG_NUM The longword value contains the ring number that the controller is
running on (Token Ring only). It is only valid for a controller that
is started, and also only valid for rings that have a ring parameter
server that is configured for providing this information.

9.7.11. IO$M_SHOW_MAP Functional Modifier to
IO$_SENSEMODE
For Token Ring only, the IO$M_SHOW_MAP qualifier, when used with IO$_SENSEMODE, returns
the current setting of the mapping table. The P2 buffer is filled with the current multicast to function-
al address mapping information. The entries are 16 bytes long and are in the format shown in Fig-
ure 9.19. This QIO requires PHY_IO privilege.

Figure 9.19. Format of IO$M_SHOW_MAP P2 Buffer

The multicast address and functional address mask are returned in canonical format (that is, not bit-re-
versed). The following errors may occur:

• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the
operation.

• SS$_BADPARAM — Not able to get read access to buffer or zero length buffer passed.

325

Chapter 9. Local Area Network (LAN) Device Drivers

9.7.12. IO$M_SHOW_ROUTE Functional Modifier to
IO$_SENSEMODE
For Token Ring only, the IO$M_SHOW_ROUTE qualifier, when used with IO$_SENSEMODE,
returns the current value of the source routing cache table. Each entry is 64 bytes long. Figure 9.20
shows the format of the returned P2 buffer.

Figure 9.20. Format of IO$M_SHOW_ROUTE P2 Buffer

Table 9.40 shows possible states of the entry.

Table 9.40. State of the Entry

Value Name Description
0 LOCAL Address is reachable on the attached ring.
1 STALE Entry is stale (inactive).
2 UNKNOWN Route to the address is unknown.
3 DELETED Entry is marked for deletion.
4 KNOWN Route is known and the route is stored in the routing information

string.

326

Chapter 9. Local Area Network (LAN) Device Drivers

Value Name Description
5 EXPLORING Route to the address is currently being explored.

The LAN address is returned in canonical format (that is, not bit-reversed). The timers are record-
ed as seconds before expiration. The transmit and receive timers are initialized from the NMA$C_P-
CLI_A_TIM parameter, the discovery timer is initialized from the NMA$C_PCLI_ROUTEDIS para-
meter, and the stale timer is initialized to 10 minutes (600 seconds). The following errors may occur:

• SS$_BUFFEROVF — The passed buffer is not large enough to hold all the data required for the
operation.

• SS$_BADPARAM — Not able to get read access to buffer or zero length buffer passed.

9.7.13. I/O Status Block
The I/O status block (IOSB) for all LAN driver functions is shown in Figure 9.21. Appendix A lists
the completion status returned for these functions. (The OpenVMS system messages documentation
provides explanations and suggested user actions for these status codes.)

Figure 9.21. IOSB Contents

The first longword of the IOSB returns, in addition to the completion status, either the size (in bytes)
of the data transfer or the size (in bytes) of the attribute buffer (P2) returned by a sense mode function.
The second longword returns the unit and line status bits listed in Table 9.26 and the error summary
bits listed in Table 9.27.

9.8. Application Programming Notes
This section contains information to assist you in writing application programs that use the LAN de-
vice drivers. Section 9.8.1 discusses the additional rules required for application programs that you in-
tend to run in promiscuous mode. Section 9.8.2 describe the Ethernet and 802 sample programs.

9.8.1. Promiscuous Mode
The LAN drivers allow only one port per controller to enable promiscuous mode (NMA$C_P-
CLI_PRM specified as NMA$C_STATE_ON). A port running in promiscuous mode usually places
an additional load on the CPU because the LAN device is configured to deliver all received packets to
the LAN driver regardless of destination address or multicast filtering. The LAN driver then has deliv-
er the packets to the promiscuous port as well as a copy to the intended recipient.

Table 9.41 details additional rules for ports running in promiscuous mode.

Table 9.41. Rules for Promiscuous Mode Operation

I/OFunction Rule
IO$_SETMODE
IO$_SETCHAR

It is not necessary to specify a unique identifier (a protocol type, SAP, or
protocol identifier parameter ID) in the P2 buffer.

327

Chapter 9. Local Area Network (LAN) Device Drivers

I/OFunction Rule
The port cannot be running in shared mode.

IO$_WRITE The user can only transmit packets in the packet format previously speci-
fied with a set mode QIO when the user was started. The unique identifier
for the packet format must be included in the P5 buffer following the des-
tination address (see Section 9.7.2).

IO$_READ The LAN driver completes the promiscuous user's read requests with Eth-
ernet, 802, and 802 extended packets. Because any packet format can be
used to complete a read request, the P5 parameter (if specified) must be at
least 20 bytes in length (21 bytes for FDDI with RFC turned on).

All Ethernet format packets are processed as if they have no size field
specified after the protocol type. Therefore, Ethernet packets are always
returned with 46 to 1500 bytes of data. If the Ethernet packet contains a
size field, it is returned as part of the user data in the first word of the P1
buffer.

The promiscuous user should use the information returned in the P5
buffer to determine the packet format. If the application program first
filled the P5 buffer with zeros, the program can determine the format of
the packet received by scanning the P5 buffer after the read request is
completed.

9.8.2. Local Area Network Programming Examples
The MACRO program LANETH.MAR (Example 9.2 shows the typical use of QIO functions in driver
operations such as establishing the protocol type, starting the port, and transmitting and receiving da-
ta. The program sends a LOOPBACK packet and waits for the packet to be returned.

The C program LAN802E.C (Example 9.3) shows how to initialize an 802E port and how to send and
receive packets on that port. This program sends a LOOPBACK packet and waits for the packet to be
returned.

Example 9.2. LANETH.MAR Local Area Network Programming Example

.TITLE LAN SAMPLE TEST PROGRAM

.IDENT /X03/

.PSECT RWDATA,WRT,NOEXE,PAGE

; This LAN test program sends a MOP loopback message to the Loopback
 Assistant
; Multicast address and waits for a response. The program uses the LAN
 device
; EWA0. To use a different device, change the device name in the program or
; define the desired lan device as EWA0.
;
* To build on VAX, Alpha, I64:
; $ MACRO/OBJECT=LANETH/LIST=LANETH SYS$LIBRARY:ARCH_DEFS.MAR+SYS$DISK:
[]LANETH
; $ LINK LANETH
;
; To run:
; $ RUN LANETH

328

Chapter 9. Local Area Network (LAN) Device Drivers

 .LIBRARY "SYS$LIBRARY:LIB.MLB"

 $IODEF ; Define I/O functions and modifiers
 $NMADEF ; Define Network Management parameters

; Setmode parameter buffer and descriptor. Since the loopback protocol does
; not include a length word following the protocol type, we have to
 explicitly
; turn off padding since the default is on.
SETPARM:

.WORD NMA$C_PCLIFMT ; Packet format

.LONG NMA$C_LIFM_ETH ; Ethernet

.WORD NMA$C_PCLI_PTY ; Protocol type

.LONG ^X0090 ; Loopback

.WORD NMA$C_PCLI_PAD ; Padding

.LONG NMA$C_STATE_OFF ; Off
SETPARMLEN = .-SETPARM

SETPARMDSC:
 .LONG SETPARMLEN
 .ADDRESS SETPARM

; Sensemode parameter buffer and descriptor. This is used to get our
 physical
; address to put into the loopback message.

SENSEBUF:
 .BLKB 512
SENSELEN=.-SENSEBUF

SENSEDSC:
 .LONG SENSELEN
 .ADDRESS SENSEBUF

; P2 transmit data buffer.

XMTBUF: .WORD 00 ; Skip count
 .WORD 02 ; Forward request
FORW: .BLKB 6 ; Forward address
 .WORD 01 ; Reply request
 .WORD 00
XMTBUFLEN = .-XMTBUF ; Size of transmit buffer

; P5 transmit destination address, the Loopback Assistant Multicast
 Address.
XMTP5: .BYTE ^XCF,0,0,0,0,0

; P2 receive data buffer.

RCVBUF: .BLKB 512
RCVBUFLEN = .-RCVBUF ; Size of receive buffer

; P5 receive header buffer.
RCVP5:

RCVDA: .BLKB 6
RCVSA: .BLKB 6

329

Chapter 9. Local Area Network (LAN) Device Drivers

RCVPTY: .BLKB 2

; Messages used to display status of this program.

GMSG: .ASCID "Successful test"
LMSG: .ASCID "No response"
EMSG: .ASCID "Error occurred while running test"
DMSG: .ASCID "LAN device not found"

; Miscellaneous data.

IOSB: .BLKQ 1 ; I/O status block
DEVCHAN: .BLKL 1 ; Returned port number
LANDSC: .ASCID 'EWA0' ; Device to use for test

;***
;
; Start of code
;
;***

 .PSECT CODE,EXE,NOWRT,PAGE
 .ENTRY START,^M<>

; Assign a port to the LAN device.

 $ASSIGN_S DEVNAM=LANDSC,CHAN=DEVCHAN
 BLBS R0,10$; Branch if succeeded
 MOVAL DMSG,R9 ; Get address of error message
 BRW EXIT ; Print message and exit

; Set up the port's characteristics.

10$: MOVAL EMSG,R9 ; Assume error message address
 $QIOW_S FUNC=#<IO$_SETMODE!IO$M_CTRL!IO$M_STARTUP>,-
 CHAN=DEVCHAN,IOSB=IOSB,-
 P2=#SETPARMDSC
 BLBC R0,20$; Branch if failed
 MOVZWL IOSB,R0 ; Get status from IOSB
 BLBS R0,30$; Branch if succeeded
20$: BRW EXIT ; Print message and exit

; Issue the SENSEMODE QIO to get our physical address for the loopback
; message.

30$: $QIOW_S FUNC=#<IO$_SENSEMODE!IO$M_CTRL>,-
 CHAN=DEVCHAN,IOSB=IOSB,-
 P2=#SENSEDSC
 BLBC R0,20$; Branch if failed
 MOVZWL IOSB,R0 ; Get status from IOSB
 BLBC R0,20$; Branch if failed

; Locate the PHA parameter in the SENSEMODE buffer and copy it into the
; LOOPBACK transmit message. The PHA parameter is a string parameter.

 MOVAB SENSEBUF,R0 ; Start at beginning of buffer
40$: BBS #^XC,(R0),50$; Branch if a string parameter
 ADDL #6,R0 ; Skip over longword parameter

330

Chapter 9. Local Area Network (LAN) Device Drivers

 BRB 40$; Check next parameter

50$: BICW3 #^XF000,(R0)+,R1 ; Get type field less flag bits
 CMPW R1,#NMA$C_PCLI_PHA ; Is this the PHA parameter?
 BEQL 60$; Branch if so
 ADDW (R0)+,R0 ; Skip over string parameter
 BRW 40$; Check next parameter
.IF NOT_DEFINED VAX
 .DISABLE FLAGGING
.ENDC
60$: MOVL 2(R0),FORW ; Copy our address to the loopback
 MOVW 6(R0),FORW+4 ; packet we are about to transmit
.IF NOT_DEFINED VAX
 .ENABLE FLAGGING
.ENDC

; Transmit the loopback message.

 $QIOW_S FUNC=#IO$_WRITEVBLK,CHAN=DEVCHAN,IOSB=IOSB,-
 P1=XMTBUF,P2=#XMTBUFLEN,P5=#XMTP5
 BLBC R0,70$; Branch if failed
 MOVZWL IOSB,R0 ; Get status from IOSB
 BLBS R0,80$; Branch if succeeded
70$: BRW EXIT ; Print message and exit

; Look for a response. We use the NOW function modifier on the READ so that
; we don't hang here waiting forever if there is no response. If there is
 no
; response in 1000 receive attempts, we declare no response status.

80$: MOVL #1000,R2 ; Check 1000 times
90$: $QIOW_S FUNC=#IO$_READVBLK!IO$M_NOW,CHAN=DEVCHAN,IOSB=IOSB,-
 P1=RCVBUF,P2=#RCVBUFLEN,P5=#RCVP5
 BLBC R0,EXIT ; Branch if failed
 MOVZWL IOSB,R0 ; Get status from IOSB
 BLBS R0,100$; Branch if succeeded
 CMPL R0,#SS$_ENDOFFILE ; Was there just no message available?
 BNEQ EXIT ; Branch if failed
 SOBGTR R2,90$; Try again

; No response in 1000 attempts.

 MOVAL LMSG,R9 ; Get address of lost message
 BRW EXIT ; Print message and exit

; Received a message.

100$: MOVAL GMSG,R9 ; Get address of success message

; The test is done. Call LIB$PUT_OUTPUT to display the test status.

EXIT: PUSHL R9 ; P1 = Address of message to print
 CALLS #1,G^LIB$PUT_OUTPUT ; Print the message
 $EXIT_S ; Exit

 .END START

331

Chapter 9. Local Area Network (LAN) Device Drivers

Example 9.3. LAN802.C Local Area Network Programming Example

/***
* LAN Sample Test Program
*
* This LAN test program sends a MOP loopback message to the Loopback
 Assistant
* Multicast address and waits for a response. The program uses the LAN
 device
* EWA0. To use a different device, change the device name in the program
 or
* define the desired lan device as EWA0.
*
* To build on VAX:
* $ CC LAN802E
* $ LINK LAN802E,SYS$INPUT:/OPT
* SYS$SHARE:VAXCRTL.EXE/SHARE
*
* Note: NMADEF.H must be supplied containing definitions for:
*
* #define NMA$C_PCLIFMT 2770
* #define NMA$C_PCLI_PID 2774
* #define NMA$C_PCLI_PHA 2820
* #define NMA$C_LIFM_802E 0
*
* To build on Alpha, I64:
* $ CC LAN802E+SYS$LIBRARY:SYS$LIB_C.TLB/LIB
* $ LINK LAN802E
*
* To run:
* $ RUN LAN802E
***/

#include <ctype> /* Character type classification macros/routines
 */
#include <descrip> /* For VMS descriptor manipulation */
#include <iodef> /* I/O function code definitions */
#include "nmadef.h" /* LAN parameter definitions */
#include <ssdef> /* System service return status code definitions */
#include <starlet> /* System library routine prototypes */
#include <stdio> /* ANSI C Standard Input/Output */
#include <stdlib> /* General utilities */
#include <string> /* String handling */
#include <stsdef> /* VMS status code definitions */

#define $SUCCESS(status) (((status) & STS$M_SUCCESS) == SS$_NORMAL)
#define $FAIL(status) (((status) & STS$M_SUCCESS) != SS$_NORMAL)
#pragma nomember_alignment struct parm_802e
{
short pcli_fmt; /* Format - 802E */ int fmt_value;
short pcli_pid; /* Protocol ID - 08-00-2B-90-00 */ short pid_length;
char pid_value[5];
} setparm_802e = {NMA$C_PCLIFMT, NMA$C_LIFM_802E,
NMA$C_PCLI_PID, 5, 8,0,0x2B,0x90,0};

struct setparmdsc
{
int parm_len;

332

Chapter 9. Local Area Network (LAN) Device Drivers

void *parm_buffer;
};

struct setparmdsc setparmdsc_loop = { sizeof(setparm_802e),&setparm_802e};

struct p5_param /* P5 Receive header buffer */
{
unsigned char da[6]; unsigned char sa[6]; char misc[20];
};

struct iosb /* IOSB structure */
{
short w_err; /* Completion status */
short w_xfer_size; /* Transfer size */
short w_addl; /* Additional status */
short w_misc; /* Miscellaneous */
};

struct ascid /* Device descriptor for assign */
{
short w_len; short w_info; char *a_string;
} devdsc = {4,0,"EWA0"};

struct iosb qio_iosb; /* IOSB structure */
struct p5_param rcv_param; /* Receive header structure */
struct p5_param xmt_param = { /* Transmit header structure */
0xCF,0,0,0,0,0};
char rcv_buffer[512]; /* Receive buffer */

char xmt_buffer[20] = { /* Transmit buffer */
0,0, /* Skip count */
2,0, /* Forward request */
0,0,0,0,0,0, /* Forward address */
1,0, /* Reply request */
0,0};

char sense_buffer[512]; /* Sensemode buffer */

struct setparmdsc sensedsc_loop =
 {sizeof(sense_buffer),sense_buffer};

/*
* MAIN
*/

main(int argc, char *argv[])
{
int i, j; /* Scratch */
int chan; /* Channel assigned */
int status; /* Return status */

/*
* Start a channel.
*/

status =
 sys$assign(&devdsc,&chan
,0,0); if

333

Chapter 9. Local Area Network (LAN) Device Drivers

 ($FAIL(status))
 exit(status);
status =
 sys$qiow(0,chan,IO$_SETMODE|IO$M_CTRL|IO$M_STARTUP,&qio_iosb,0,0,
0,&setparmdsc_loop,0,0,0,0); if ($SUCCESS(status)) status =
 qio_iosb.w_err;
if ($FAIL(status)) {
 printf("IOSB addl status = %04X
 %04X\n",qio_iosb.w_addl,qio_iosb.w_misc);
 exit(status);
}

/*
* Issue the SENSEMODE QIO to get our physical address for the
loopback message.
*/

status =
sys$qiow(0,chan,IO$_SENSEMODE|IO$M_CTRL,&qio_iosb,0,0,0,
&sensedsc_loop,0,0,0,0); if ($SUCCESS(status)) status =
qio_iosb.w_err;
if ($FAIL(status)) {
 printf("IOSB addl status = %04X
%04X\n",qio_iosb.w_addl,qio_iosb.w_misc);
exit(status);
}

/*
* Locate the PHA parameter in the SENSEMODE buffer and copy it
into the
* LOOPBACK transmit message. The PHA parameter is a string
parameter.
*/

j = 0;
while (j < sizeof(sense_buffer)) {
i = (sense_buffer[j] +
(sense_buffer[j+1] << 8)); if
(0x1000 & i) {
if ((i & 0xFFF) == NMA$C_PCLI_PHA) {
memcpy(&xmt_buffer[4],&sense_buffer[j+4],6); break;
}
j += (sense_buffer[j+2] + (sense_buffer[j+3] << 8)) + 4;
} else
j += 6; /* Skip over longword parameter */
}

/*
* Transmit the loopback message.
*/

status =
 sys$qiow(0,chan,IO$_WRITEVBLK,&qio_io
 sb,0,0,&xmt_buffer[0],
 sizeof(xmt_buffer),0,0,&xmt_param,0);
if ($SUCCESS(status)) status
= qio_iosb.w_err; if
($FAIL(status)) {

334

Chapter 9. Local Area Network (LAN) Device Drivers

printf("IOSB addl status = %04X
 %04X (on transmit)\n",
 qio_iosb.w_addl,qio_iosb.w_mis
 c);
exit(status);
}

/*
* Look for a response. We use the NOW function modifier on the READ so that
* we don't hang here waiting forever if there is no response. If there is
 no
* response in 1000 receive attempts, we declare no response status.
*/

for (i=0;i<1000;i++) {
status =
 sys$qio(0,chan,IO$_READVBLK|IO$M_NOW,
 &qio_iosb,0,0,&rcv_buffer[0],
 sizeof(rcv_buffer),0,0,rcv_param,0);
if ($SUCCESS(status)) status
= qio_iosb.w_err; if
($SUCCESS(status)) break;
}
if
($SUCCESS(status)
)
printf("Successful test\n");
else
printf("No response\n");
}

335

Chapter 9. Local Area Network (LAN) Device Drivers

336

Chapter 10. Optional Features for
Improving I/O Performance
Two features of OpenVMS Alpha and Integrity servers provide dramatically improved I/O perfor-
mance: Fast I/O and Fast Path. These features are designed to promote OpenVMS as a leading plat-
form for database systems. Performance improvement results from reducing the CPU cost per I/O re-
quest and improving symmetric multiprocessing (SMP) scaling of I/O operations. The CPU cost per I/
O is reduced by optimizing code for high-volume I/O and by using better SMP CPU memory cache.
SMP scaling of I/O is increased by reducing the number of spinlocks taken per I/O and by substituting
finer-granularity spinlocks for global spinlocks.

The improvements follow a natural division that already exists between the device-independent and
device-dependent layers in the OpenVMS I/O subsystem. The device-independent overhead is ad-
dressed by Fast I/O, which is a set of lean system services that can substitute for certain

$QIO operations. Using these services requires some coding changes in existing applications, but the
changes are usually modest and well contained. The device-dependent overhead is addressed by Fast
Path, which is an optional performance feature that creates a “fast path” to the device. It requires no
application changes.

Fast I/O and Fast Path can be used independently; however, together they can provide a 45 percent re-
duction in CPU cost per I/O on uniprocessor systems and a 52 percent reduction on multiprocessor
systems.

10.1. Fast I/O
Fast I/O is a set of three system services that were developed as a $QIO alternative built for speed.
These services are not a $QIO replacement; $QIO is unchanged, and $QIO interoperation with these
services is fully supported. Rather, the services substitute for a subset of $QIO operations, namely, on-
ly the high-volume read/write I/O requests.

The Fast I/O services support 64-bit addresses for data transfers to and from disk and tape devices.

10.1.1. Fast I/O Benefits
The performance benefits of Fast I/O result from streamlining high-volume I/O requests. The Fast I/O
system service interfaces are optimized to avoid the overhead of general-purpose services. For exam-
ple, I/O request packets (IRPs) are now permanently allocated and used repeatedly for I/O rather than
allocated and deallocated anew for each I/O.

The greatest benefits stem from having user data buffers and user I/O status structures permanently
locked down and mapped using system space. This allows Fast I/O to do the following:

• For direct I/O, avoid per-I/O buffer lockdown or unlocking.

• For buffered I/O, avoid allocation and deallocation of a separate system buffer, because the user
buffer is always addressable.

• Complete Fast I/O operations at IPL 8, thereby avoiding the interrupt chaining usually required by
the more general-purpose $QIO system service. For each I/O, this eliminates the IPL 4 IOPOST
interrupt and a kernel AST.

337

Chapter 10. Optional Features for Improving I/O Performance

In total, Fast I/O services eliminate four spinlock acquisitions per I/O (two for the MMG spinlock and
two for the SCHED spinlock). The reduction in CPU cost per I/O is 20 percent for uniprocessor sys-
tems and 10 percent for multiprocessor systems.

10.1.2. Using Buffer Objects
The lockdown of user-process data structures is accomplished by buffer objects. A “buffer object”
is process memory whose physical pages have been locked in memory and double-mapped into sys-
tem space. After creating a buffer object, the process remains fully pageable and swappable and the
process retains normal virtual memory access to its pages in the buffer object.

If the buffer object contains process data structures to be passed to an OpenVMS system service, the
OpenVMS system can use the buffer object to avoid any probing, lockdown, and unlocking overhead
associated with these process data structures. Additionally, double-mapping into system space allows
the OpenVMS system direct access to the process memory from system context.

To date, only the $QIO system service and the Fast I/O services have been changed to accept buffer
objects. For example, a buffer object allows a programmer to eliminate I/O memory management
overhead. On each I/O, each page of a user data buffer is probed and then locked down on I/O initia-
tion and unlocked on I/O completion. Instead of incurring this overhead for each I/O, it can be done
once at buffer object creation time. Subsequent I/O operations involving the buffer object can com-
pletely avoid this memory management overhead.

Two system services can be used to create and delete buffer objects, respectively, and can be called
from any access mode. To create a buffer object, the $CREATE_BUFOBJ system service is called.
This service expects as inputs an existing process memory range and returns a buffer handle for the
buffer object. The buffer handle is an opaque identifier used to identify the buffer object on future I/O
requests. The $DELETE_BUFOBJ system service is used to delete the buffer object and accepts as in-
put the buffer handle. Although image rundown deletes all existing buffer objects, it is good form for
the application to clean up properly.

A 64-bit equivalent version of the $CREATE_BUFOBJ system service ($CREATE_BUFOBJ_64)
can be used to create buffer objects from the new 64-bit P2 or S2 regions. The $DELETE_BUFOBJ
system service can be used to delete 32-bit or 64-bit buffer objects.

Buffer objects require system management. Because buffer objects tie up physical memory, extensive
use of buffer objects requires system management planning. All the bytes of memory in the buffer ob-
ject are deducted from a systemwide system parameter called MAXBOBMEM (maximum buffer ob-
ject memory). System managers must set this parameter correctly for the application loads that run on
their systems.

The MAXBOBMEM parameter defaults to 100 Alpha pages, but for applications with large
buffer pools it will likely be set much larger. To prevent user-mode code from tying up excessive
physical memory, user-mode callers of $CREATE_BUFOBJ must have a new system identifier,
VMS$BUFFER_OBJECT_USER, assigned. This new identifier is automatically created in an Open-
VMS Version 7.0 upgrade if the file SYS$SYSTEM:RIGHTSLIST.DAT is present. The system man-
ager can assign this identifier with the DCL command SET ACL command to a protected subsystem
or application that creates buffer objects from user mode. It may also be appropriate to grant the iden-
tifier to a particular user with the Authorize utility command GRANT/IDENTIFIER (for example, to
a programmer who is working on a development system).

There is currently a restriction on the type of process memory that can be used for buffer objects.
Global section memory cannot be made into a buffer object.

338

Chapter 10. Optional Features for Improving I/O Performance

10.1.3. Differences Between Fast I/O Services and
$QIO
The precise definition of high-volume I/O operations optimized by Fast I/O services is important. I/O
that does not comply with this definition either is not possible with the Fast I/O services or is not opti-
mized. The characteristics of the high-volume I/O optimized by Fast I/O services can be seen by con-
trasting the operation of Fast I/O system services to the $QIO system service as follows:

• The $QIO system service I/O status block (IOSB) is replaced by an I/O status area (IOSA) that is
larger and quadword aligned. The transfer byte count returned in IOSA is 64 bits, and the field is
aligned on a quadword boundary. Unlike the IOSB, which is optional, the IOSA is required.

• User data buffers must be aligned to a 512-byte boundary.

• All user process structures passed to the Fast I/O system services must reside in buffer objects.
This includes the user data buffer and the IOSA.

• Only transfers that are multiples of 512 bytes are supported.

• Only the following function codes are supported: IO$_READVBLK, IO$_READLBLK,
IO$_WRITEVBLK, andIO$_WRITELBLK.

• Only I/O to disk and tape devices is optimized for performance.

• No event flags are used with Fast I/O services. If application code must use an event flag in rela-
tion to a specific I/O, then the Event No Flag EFN (EFN$C_ENF) can be used. This event flag is
a no-overhead EFN that can be used in situations when an EFN is required by a system service in-
terface but has no meaning to an application.

For example, Fast I/O services do not use EFNs, so the application cannot specify a valid EFN
associated with the I/O to the $SYNCH system service with which to synchronize I/O comple-
tion. To resolve this issue, the application can call the $SYNCH system service passing as argu-
ments: EFN$C_ENF and the address of the appropriate IOSA. Specifying EFN$C_ENF signifies
to $SYNCH that no EFN is involved in the synchronization of the I/O. Once the IOSA has been
written with a status and byte count, return from the $SYNCH call occurs. The IOSA is now the
central point of synchronization for a given Fast I/O (and is the only way to determine whether the
asynchronous I/O is complete).

• To minimize arguments passing overhead to these services, the $QIO parameters P3 through P6
are replaced by a single argument that is passed directly by the Fast I/O system services to device
drivers. For disk-like devices, this argument is the media address (VBN or LBN) of the transfer.
For drivers with complex parameters, this argument is the address of a descriptor or of a buffer
specific to the device and function.

• Segmented transfers are supported by Fast I/O but are not fully optimized. There are two major
causes of segmented transfers. The first is disk fragmenting. While this can be an issue, it is as-
sumed that sites seeking maximum performance have eliminated the overhead of segmenting I/O
due to fragmentation.

A second cause of segmenting is issuing an I/O that exceeds the port's maximum limit for a sin-
gle transfer. Transfers beyond the port maximum limit are segmented into several smaller trans-
fers. Some ports limit transfers to 64KB. If the application limits its transfers to less than 64KB,
this type of segmentation should not be a concern.

339

Chapter 10. Optional Features for Improving I/O Performance

10.1.4. Using Fast I/O Services
The three Fast I/O system services are:

• $IO_SETUP—-Sets up an I/O

• $IO_PERFORM[W]—-Performs an I/O request

• $IO_CLEANUP—Cleans up an I/O request

10.1.4.1. Using Fandles
A key concept behind the operation of the Fast I/O services is the file handle or fandle. A fandle is
an opaque token that represents a “setup” I/O. A fandle is needed for each I/O outstanding from a
process.

All possible setup, probing, and validation of arguments is performed off the mainline code path
during application startup with calls to the $IO_SETUP system service. The I/O function, the AST
address, the buffer object for the data buffer, and the IOSA buffer object are specified on input to
$IO_SETUP service, and a fandle representing this setup is returned to the application.

To performan I/O, the $IO_PERFORM system service is called, specifying the fandle, the channel,
the data buffer address, the IOSA address, the length of the transfer, and the media address (VBN or
LBN) of the transfer.

If the asynchronous version of this system service, $IO_PERFORM, is used to issue the I/O, then the
application can wait for I/O completion using a $SYNCH specifying EFN$C_ENF and the appropri-
ate IOSA. The synchronous form of the system service, $IO_PERFORMW, is used to issue an I/O
and wait for it to complete. Optimum performance comes when the application uses AST completion;
that is, the application does not issue an explicit wait for I/O completion.

To clean up a fandle, the fandle can be passed to the $IO_CLEANUP system service.

10.1.4.2. Modifying Existing Applications
Modifying an application to use the Fast I/O services requires a few source-code changes. For exam-
ple:

1. A programmer adds code to create buffer objects for the IOSAs and data buffers.

2. The programmer changes the application to use the Fast I/O services. Not all $QIOs need to be
converted. Only high-volume read/write I/O requests should be changed.

A simple example is a “database writer” program, which writes modified pages back to the data-
base. Suppose the writer can handle up to 16 simultaneous writes. At application startup, the pro-
grammer would add code to create 16 fandles by 16 $IO_SETUP system service calls.

3. In the main processing loop within the database writer program, the programmer replaces the
$QIO calls with $IO_PERFORM calls. Each $IO_PERFORM call uses one of the 16 available
fandles. While the I/O is in progress, the selected fandle is unavailable for use with other I/O re-
quests. The database writer is probably using AST completion and recycling fandle, data buffer,
and IOSA once the completion AST arrives.

If the database writer routine cannot return until all dirty buffers are written (that is, it must wait
for all I/O completions), then $IO_PERFORMW can be used. Alternatively $IO_PERFORM calls

340

Chapter 10. Optional Features for Improving I/O Performance

can be followed by $SYNCH system service calls passing the EFN$C_ENF argument to await I/O
completions.

The database writer runs faster and scale better because I/O requests now use less CPU time.

4. When the application exits, an $IO_CLEANUP system service call is done for each fandle re-
turned by a prior $IO_SETUP system service call. Then the buffer objects are deleted. Image run-
down performs fandle and buffer object cleanup on behalf of the application, but it is good form
for the application to clean up properly.

10.1.4.3. I/O Status Area (IOSA)
The central point of synchronization for a given Fast I/O is its IOSA. The IOSA replaces the $QIO
system service's IOSB argument. Larger than the IOSB argument, the byte count field in the IOSA is
64 bits and quadword aligned. Unlike the $QIO system service, Fast I/O services require the caller to
supply an IOSA and require the IOSA to be part of a buffer object.

The IOSA context field can be used in place of the $QIO system service ASTPRM argument. The

$QIO ASTPRM argument is typically used to pass a pointer back to the application on the completion
AST to locate the user context needed for resuming a stalled user-thread; however, for the $IO_PER-
FORM system service, the ASTPRM on the completion AST is always the IOSA. Because there is no
user-settable ASTPRM, an application can store a pointer to the user-thread context for this I/O in the
IOSA context field and retrieve the pointer from the IOSA in the completion AST.)

10.1.4.4. $IO_SETUP
The $IO_SETUP system service performs the setup of an I/O and returns a unique identifier for this
setup I/O, called a fandle, to be used on future I/Os. The $IO_SETUP arguments used to create a giv-
en fandle remain fixed throughout the life of the fandle. This has implications for the number of fan-
dles needed in an application. For example, a single fandle can be used only for reads or only for
writes. If an application module has up to 16 simultaneous reads or writes pending, then potentially 32
fandles are needed to avoid any $IO_SETUP calls during mainline processing.

The $IO_SETUP system service supports an expedite flag, which is available to boost the priority of
an I/O among the other I/O requests that have been handed off to the controller. Unrestrained use of
this argument is useless, because if all I/O is expedited, nothing is expedited. Note that this flag re-
quires the use of ALTPRI and PHY_IO privilege.

10.1.4.5. $IO_PERFORM[W]
The $IO_PERFORM[W] system service accepts a fandle and five other variable I/O parameters for
the high-performance I/O operation. The fandle remains in use to the application until the

$IO_PERFORMW returns or if $IO_PERFORM is used until a completion AST arrives.

The CHAN argument to the fandle contains the data channel returned to the application by a previous
file operation. This argument allows the application the flexibility of using the same fandle for differ-
ent open files on successive I/Os; however, if the fandle is used repeatedly for the same file or chan-
nel, then an internal optimization with $IO_PERFORM is taken.

Note that $IO_PERFORM was designed to have no more than six arguments to take advantage of the
VSI OpenVMS Calling Standard, which specifies that calls with up to six arguments can be passed en-
tirely in registers.

341

Chapter 10. Optional Features for Improving I/O Performance

10.1.4.6. $IO_CLEANUP
A fandle can be cleaned up by passing the fandle to the $IO_CLEANUP system service.

10.1.4.7. Fast I/O FDT Routine (ACP_STD$FASTIO_BLOCK)
Because $IO_PERFORM supports only four function codes, this system service does not use the gen-
eralized function decision table (FDT) dispatching that is contained in the $QIO system service. In-
stead, $IO_PERFORM uses a single vector in the driver dispatch table called DDT$PS_FAST_FDT
for the four supported functions. The DDT$PS_FAST_FDT field is a FDT routine vector that indi-
cates whether the device driver called by $IO_PERFORM is set up to handle Fast I/O operations. A
nonzero value for this field indicates that the device driver supports Fast I/O operations and that the I/
O can be fully optimized.

If the DDT$PS_FAST_FDT field is zero, then the driver is not set up to handle Fast I/O operations.
The $IO_PERFORM system service tolerates such device drivers, but the I/O is only slightly opti-
mized in this circumstance.

The OpenVMS disk and tape drivers that ship as part of OpenVMS Version 7.0 have added the fol-
lowing line to their driver dispatch table (DDTAB) macro:

FAST_FDT=ACP_STD$FASTIO_BLOCK,- ; Fast-IO FDT routine

This line initializes the DDT$PS_FAST_FDT field to the address of the standard Fast I/O FDT rou-
tine, ACP_STD$FASTIO_BLOCK.

If you have a disk or tape device driver that can handle Fast I/O operations, you can add this
DDTAB macro line to your driver. If you cannot use the standard Fast I/O FDT routine, ACP_ST-
D$FASTIO_BLOCK, you can develop your own based on the model presented in this routine.

10.1.5. Additional Information
See the VSI OpenVMS System Services Reference Manual for additional information about the follow-
ing Fast I/O system services:

• $CREATE_BUFOBJ

• $DELETE_BUFOBJ

• $CREATE_BUFOBJ_64

• $IO_SETUP

• $IO_PERFORM

• $IO_CLEANUP

To see a sample program that demonstrates the use of buffer objects and the Fast I/O system services,
see the IO_PERFORM.C program in the SYS$EXAMPLES directory.

10.2. Fast Path (Alpha and Integrity servers
Only)
Fast Path is an optional feature designed to improve I/O performance. Three factors serve to throttle
performance for OpenVMS on SMP systems.

342

Chapter 10. Optional Features for Improving I/O Performance

1. Time spent by a CPU waiting for memory to be faulted into its cache.

2. Contention for the SCS/IOLOCK8 spinlock.

3. Contention for the primary CPU on which all I/O completion is processed.

Fast Path addresses these factors as follows:

1. Select a secondary CPU for a given device or port and cause all I/O for that device to originate
and complete on that CPU. This offloads the primary CPU and reduces cache faults.

2. Replace dependence upon SCS/IOLOCK8 spinlock by providing a port-specific spinlock whenev-
er possible.

3. For the most common I/O requests, preallocate resources and provide an optimized path through
the mainline code.

Using Fast Path features does not require source-code changes. It does require major changes to de-
vice drivers, so it has been implemented only for the newer high-performance devices. These current-
ly service many CI, Fibre Channel, parallel SCSI, and LAN devices.

Table 10.1 lists the supported ports for each OpenVMS Alpha version.

Table 10.1. Supported Ports for Each Version of OpenVMS Alpha and Integrity servers

Version Supported Ports
7.3-2 SMART Array 53xx, many LAN devices
7.3-1 KZPEA
7.3 CIXCD, CIPCA, KGPSA, KZPBA
7.1 CIXCD, CIPCA
7.0 CIXCD

Prior to OpenVMS Alpha Version 7.3-1, all hardware interrupts took place on the primary CPU. In-
terrupts from Fast Path enabled devices would have to be redirected from the primary CPU to a ''pre-
ferred'' CPU. However, this redirection still involved the primary CPU, and also incurred interproces-
sor overhead.

Starting with OpenVMS Alpha Version 7.3-1, hardware interrupts that are targeted for a ''preferred''
CPU go directly to the ''preferred'' CPU, thereby eliminating any I/O processing in the primary CPU.
This major Fast Path enhancement is known as distributed interrupts.

Note

This feature is available on Fibre Channel, CI, and some SCSI ports on AlphaServer DS20, ES40/45,
and GS series systems.

For more information about Fibre Channel, SCSI, and CI configurations, see Guidelines for OpenVMS
Cluster Configurations.

10.2.1. Using Fast Path Features
10.2.1.1. Preferred CPU Selection
All Fast Path ports are assignable to CPUs. You can set a system parameter specifying the set of CPUs
that are allowed to serve as preferred CPUs. This set is called the set of allowable CPUs. At any point

343

Chapter 10. Optional Features for Improving I/O Performance

in time, the set of CPUs that currently can have ports assigned to them, called the set of usable CPUs,
is the intersection of the set of allowable CPUs, and the current set of running CPUs.

Each Fast Path Port is initially assigned to a CPU by the FASTPATH_SERVER process that runs
at port initialization time. This process executes an automatic assignment algorithm that spreads Fast
Path ports evenly among the usable CPUs. The FASTPATH_SERVER process also runs whenever a
secondary CPU is started, and whenever the set of system parameters specifying the allowable CPUs
is changed.

If the primary CPU is in the set of allowable CPUs, the initial distribution is biased against the prima-
ry CPU in that a port will only be assigned to the primary after ports have been assigned to each of the
other usable CPUs.

To identify a device or port's current preferred CPU, you can use either $GETDVI or the SHOW
DEVICE/FULL command. To identify the Fast Path ports currently assigned to a CPU, you use the
SHOW CPU /FULL command.

You can directly assign a Fast Path port to a CPU, or request the system to automatically select the
port's preferred CPU from a specific set of CPUs. To do this, you either issue a $QIO or use the SET
DEVICE/PREFERRED_CPU command. This also sets the port's User Preferred CPU to be the select-
ed CPU.

You can clear the port's User Preferred CPU by issuing either a $QIO, or by using the SET DE-
VICE/NOPREFERRED CPU DCL command.

You can redistribute the system assignable Fast Path ports across a subset of the set of usable CPUs by
calling the $IO_FASTPATH system service.

10.2.1.2. Optimizing Application Performance

Processes running on a port's preferred CPU have an inherent advantage when issuing I/O to a port in
that the overhead to assign the I/O to the preferred CPU can be avoided. An application process can
use the $PROCESS_AFFINITY system service to assign itself to the preferred CPU of the device to
which the majority of its I/O is sent.

With proper attention to assignment, a process's execution need never leave the preferred CPU. This
presents a scalable process and I/O scheme for maximizing multiprocessor system operation. Like
most RISC systems, Alpha system performance is highly dependent on the performance of CPU
memory caches. Process assignment and preferred CPU assignment are two keys to minimizing the
memory stalls in the application and in the operating system, thereby maximizing multiprocessor sys-
tem throughput.

10.2.2. Managing Fast Path
This section describes how to manage Fast Path.

10.2.2.1. Fast Path System Parameters

There are three FAST_PATH system parameters:

• FAST_PATH

• FAST_PATH_PORTS

344

Chapter 10. Optional Features for Improving I/O Performance

• IO_PREFER_CPUS

These parameters can be used to control Fast Path as follows:

FAST_PATH FAST_PATH is a static system parameter that enables (1) or disables (0) the
Fast Path performance features for all Fast Path-capable ports.

Fast Path is enabled by default.
FAST_PATH_PORTS is a 32-bit mask. Once Fast Path has been enabled
by setting FAST_PATH to 1, FAST_PATH_PORTS can be used to selec-
tively disable Fast Path for some specific adapter types. The value of the
FAST_PATH_PORTS system parameter is the sum of the values of the bits
that have been set. Below the bit mask is described:
Bit Mask Description
0 00000001 0 = Fast Path is ENABLED for KZPBA ports

when FAST_PATH is set to 1.
 1 = Fast Path is DISABLED for KZPBA ports.
1 00000002 0 = Fast Path is ENABLED for KGPSA ports

when FAST_PATH is set to 1.
 1 = Fast Path is DISABLED for KGPSA ports.
2 00000004 0 = Fast Path is ENABLED for KZPEA ports

when FAST_PATH is set to 1.
 1 = Fast Path is DISABLED for KZPEA ports.
3 00000008 0 = Fast Path is ENABLED for LAN ports when

FAST_PATH is set to 1.
 1 = Fast Path is DISABLED for LAN ports.
4 00000010 0 = Fast Path is ENABLED for KZPDC ports

when FAST_PATH is set to 1.
 1 = Fast Path is DISABLED for KZPDC ports.

FAST_PATH_PORTS

The remaining bits are reserved for possible future adapter types.

The default setting for FAST_PATH_PORTS is 0; therefore, all supported
ports are enabled.

Note that CI drivers are not controlled by FAST_PATH_PORTS. Fast Path
for CI is enabled and disabled exclusively by the FAST_PATH system para-
meter.

IO_PREFER_CPUS IO_PREFER_CPUS is a dynamic system parameter that controls the set of
CPUs available for use as Fast Path preferred CPUs.

IO_PREFER_CPUS is a CPU bit mask specifying the CPUs that are al-
lowed to serve as preferred CPUs and thus can be assigned a Fast Path port.
CPUs whose bit is set in the IO_PREFER_CPUS bit mask are enabled for
Fast Path port assignment. IO_PREFER_CPUS defaults to -1, which speci-
fies that all CPUs are allowed to be assigned Fast Path ports.

You may want to disable the primary CPU from serving as a preferred CPU
by clearing its bit in IO_PREFER_CPUS. This reserves the primary for use
by non-Fast Path IO operations.

345

Chapter 10. Optional Features for Improving I/O Performance

Changing the value of IO_PREFER_CPUS causes the FASTPATH_SERV-
ER process to execute the automatic assignment algorithm that spreads Fast
Path ports evenly among the new set of usable CPUs.

10.2.2.2. Identifying and Setting a Port's Preferred CPU
Following are the commands used to identify and set a preferred CPU for a port.

DCL SHOW DEVICE/FULL or $GET-
DVIDVI$_PREFERRED_CPU

To identify the preferred CPU for any Fast Path-capable
device when Fast Path is enabled, use the DCL command
SHOW DEVICE/FULL to display — whether or not the
device supports Fast Path — the current preferred CPU ID
and, if set, the User Preferred CPU ID for a port or disk de-
vice.

Alternatively, the $GETDVI system service or the DCL
F$GETDVI lexical function returns the preferred CPU for
a given device or file. The $GETDVI system service item
code is DVI$_PREFERRED_CPU, and the F$GETDVI
item code string argument is PREFERRED_CPU. The re-
turn argument is a 32-bit CPU bit mask with a bit set indi-
cating the preferred CPU. A return argument containing a
bit mask of zero indicates that no preferred CPU exists, ei-
ther because Fast Path is disabled or the device is not a Fast
Path-capable device. The return argument serves as a CPU
bit mask input argument to the $PROCESS_AFFINITY
system service. The argument can be used to assign an ap-
plication process to the optimal preferred CPU.

For an application seeking optimal Fast Path benefits, you
can code each application process to identify and run on the
preferred CPU where the majority of the process' I/O activi-
ty occurs.

A high-availability feature of OpenVMS Cluster Systems
is that dual-pathed devices automatically fail over to a sec-
ondary path, if the primary path becomes inoperable. Be-
cause a Fast Path device could fail over to another path or
port, and thereby, to another preferred CPU, an application
should occasionally reissue the $GETDVI in a timer thread
to check that process assignment is optimal.

DCL SHOW CPU /FULL You can use this DCL command to identify whether a CPU
is enabled for use as a preferred CPU, and the current set of
ports assigned to that CPU.

DCL SET DEVICE/PRE-
FERRED_CPU and /NOPRE-
FERRED_CPU

These commands allow you to specify a CPU or a set of
candidate CPUs from which the operating system chooses
the CPU to assign to the Fast Path port. The chosen CPU is
called the preferred CPU for this Fast Path port. The Fast
Path port's interrupt I/O completion processing and I/O ini-
tiation processing is performed on this preferred CPU.

In addition to selecting the preferred CPU, the User Pre-
ferred CPU is set for this port. Setting the User Pre-

346

Chapter 10. Optional Features for Improving I/O Performance

ferred CPU prevents the port from being reassigned to
another CPU unless the User Preferred CPU is being
stopped. The qualifier can be negated. When the /NOPRE-
FERRED_CPUS qualifier is specified, the User Preferred
CPU is cleared for the port, but it still remains a Fast Path
port, and the current preferred CPU is not changed.

If both /PREFERRED_CPUS and /NOPRE-
FERRED_CPUS are specified on the same command line, /
NOPREFERRED_CPUS is ignored.

$QIO IO$_SETPRFPATH
! IO$M_PREFERRED_CPU
[!IO$M_SYS_ASSIGNABLE]

You can change the assignment of a Fast Path port to a CPU
by issuing a $QIO IO$_SETPRFPATH (Set Preferred Path)
to the port device, for example, PNA0. The IO$M_PRE-
FERRED_CPU modifier must be set, and the $QIO argu-
ment P1 must be set to either 0 or the address of a 32-bit
CPU bit mask with a bit set indicating the new preferred
CPU. On return from the I/O, the port and its associated de-
vices are all assigned to a new preferred CPU. Note that ex-
plicitly setting the preferred CPU overrides any default as-
signment of Fast Path ports to CPUs. This interface allows
you the flexibility to load balance I/O activity over multiple
CPUs in an SMP system. This is important because I/O ac-
tivity can change over the course of a day or week.

The $QIO passes in either a set containing one or more can-
didate CPUs, or 0 as a wildcard value indicating the set of
usable CPUs. If the candidate set contains only one CPU,
you are explicitly designating the new preferred CPU.If the
candidate set contains multiple CPUs, you are requesting
use of the automatic preferred CPU assignment algorithm to
select a suitable CPU from the candidate set.

Including the IO$M_SYS_ASSIGNABLE modifier in-
hibits setting the selected CPU as the device's User Pre-
ferred CPU.

The $QIO orthe SET DEVICE/PREFERRED_CPU com-
mand makes a best effort to assign the port to a CPU. How-
ever, it is possible for this request to return failure for the
following reasons:

• There is no intersection between the candidate set and
the node's set of usable CPUs.

• There is resource contention. If after a reasonable effort
the request is unable to acquire a key system resource,
the request fails. Some key resources include Fast Path
spinlock, the CPU mutex, and a CPU transition lock.

If the $QIO or SET DEVICE/PREFERRED_CPU returns
failure, you should consider retrying either immediately
or after a short delay. It is possible that a large number of

347

Chapter 10. Optional Features for Improving I/O Performance

ports were being reassigned, and the request failed due to
resource contention.

$IO_FASTPATH The $IO_FASTPATH system service performs operations
on the set of Fast Path devices and CPUs enabled for Fast
Path use. The $IO_FASTPATHW system service completes
synchronously. That is, it returns after the operation is com-
plete.

The FP$K_BALANCE_PORTS function code specifies that
the system service is to distribute the set of system assign-
able Fast Path ports across the intersection of a caller-sup-
plied set of candidate CPUs.

10.2.3. Fast Path Restrictions
Fast Path restrictions include the following:

• Only high-volume I/Os are optimized.

Fast Path streamlines the operation of high-volume I/O. I/O that does not meet the definition of
high-volume is not optimized.

A high-volume Fast Path I/O is a read or write operation to a Fast Path device without special I/O
modifiers issued at a time when necessary resources have been pre-allocated and there are no cir-
cumstances restricting I/O operations.

• Send-credits resource must be managed for DSA controllers.

Applications seeking maximum performance must ensure the availability of sufficient I/O re-
sources.

The only I/O resource that a Fast Path user needs to be concerned about is send credits. Send cred-
its are extended by DSA controllers to host systems and represent the maximum number of I/Os
that can be outstanding at any given point in time. If an application sends an unlimited number of
simultaneous I/Os to a controller, it is likely that some I/O will back up waiting for send credits.

You can tell whether the send-credit limit is being exceeded by using the DCL command SHOW
CLUSTER/CONTINUOUS, followed by an ADD CONNECTIONS, CR_WAIT

command. Rapidly increasing credit-wait counts for the disk-class driver connections (a
LOC_PROC_NAME name of VMS$DISK_CL_DRVR) is a sign that an application may be in-
curring send-credit waits.

To ensure sufficient send credits, some controllers, like the HSC and HSJ, allow the number of
send credits to vary; however, not all controllers have this flexibility, and different controllers
have different send-credit limits. The best workaround is to know your application access patterns
and look for send-credit waits.

If the number of send credits is being exhausted on one node, then add another controller to spread
the load over multiple controllers. An alternative is to rework the application to load balance con-
troller activity throughout the cluster, spreading a given controller's disk load over multiple nodes
and allowing an application to exceed the send credits allotted to one node.

348

Chapter 10. Optional Features for Improving I/O Performance

10.2.4. Special Considerations for Fast Path on Mul-
ti-RAD Systems
On systems supporting multiple resource affinity domains (RADs), the best performance for Fast Path
ports is usually obtained by setting the Fast Path preferred CPU assignment to a CPU within the same
RAD as the port.

The FASTPATH_SERVER restricts its distribution of ports accordingly whenever possible. If a port
should be within a RAD without available Fast Path CPUs, the system sets the preferred CPU to the
primary CPU.

Because you can override this assignment by the methods described in this chapter, care should be
taken that reassignment does not sacrifice the performance improvements provided by localizing ac-
tivity to a single RAD.

349

Chapter 10. Optional Features for Improving I/O Performance

350

Appendix A. I/O Function Codes
This appendix lists the function codes and function modifiers defined in the $IODEF macro. The ar-
guments for these functions are also listed.

A.1. ACP-QIO Interface Driver
This section lists the function codes and function modifiers for the ACP-QIO interface driver.

Functions Arguments Modifiers
IO$_CREATE
IO$_ACCESS

P1 — FIB descriptor address IO$M_CREATE1

IO$M_ACCESS1

IO$_DEACCESS P2 — file name string address IO$M_DELETE2

IO$M_DMOUNT3

IO$_MODIFY
IO$_DELETE

P3 — result string length address

IO$_ACPCONTROL P4 — result string descriptor address
P5 — attribute list address

IO$_MOUNT None None
QIO Status Returns
SS$_ACCONFLICT SS$_ACPVAFUL SS$_BADATTRIB
SS$_BADCHKSUM SS$_BADFILEHDR SS$_BADFILENAME
SS$_BADFILEVER SS$_BADIRECTORY SS$_BADPARAM
SS$_BADQFILE SS$_BLOCKCNTERR SS$_CREATED
SS$_DEVICEFULL SS$_DIRFULL SS$_DIRNOTEMPTY
SS$_DUPDSKQUOTA SS$_DUPFILENAME SS$_ENDOFFILE
SS$_EXBYTLM SS$_EXDISKQUOTA SS$_FCPREADERR
SS$_FCPREWNDERR SS$_FCPSPACERR SS$_FCPWRITERR
SS$_FILELOCKED SS$_FILENUMCHK SS$_FILEPURGED
SS$_FILESEQCHK SS$_FILESTRUCT SS$_FILNOTEXP
SS$_HEADERFULL SS$_IBCERROR SS$_IDXFILEFULL
SS$_ILLCNTRFUNC SS$_NODISKQUOTA SS$_NOMOREFILES
SS$_NOPRIV SS$_NOQFILE SS$_NOSUCHFILE
SS$_NOTAPEOP SS$_NOTLABELMT SS$_NOTPRINTED4

SS$_NOTVOLSET SS$_OVRDSKQUOTA SS$_QFACTIVE
SS$_QFNOTACT SS$_SERIOUSEXCP SS$_SUPERSEDE
SS$_TAPEPOSLOST SS$_TOOMANYVER SS$_WRITLCK
SS$_WRONGACP

1Only for IO$_CREATE and IO$_ACCESS
2Only for IO$_CREATE and IO$_DELETE
3Only for IO$_ACPCONTROL
4The second longword of the IOSB contains a job controller status code.

351

Appendix A. I/O Function Codes

A.2. Disk Drivers
This section lists the function codes and function modifiers for the disk drivers.

Functions Arguments Modifiers
IO$_READVBLK P1 — buffer address IO$M_INHSEEK1

IO$_READLBLK P2 — byte count
P3 — disk address

IO$M_DATACHECK2

IO$_READPBLK IO$M_DELDATA3

IO$_WRITEVBLK IO$M_INHRETRY
IO$M_ERASE4

IO$_WRITELBLK
IO$_WRITEPBLK
IO$_WRITECHECK P1 — buffer address

P2 — byte count
P3 — disk address

None

IO$_SENSECHAR None None
IO$_SENSEMODE
IO$_PACKACK
IO$_AVAILABLE
IO$_UNLOAD
IO$_SEARCH P1 — read/write head position None
IO$_SEEK P1 — seek to specified cylinder None
IO$_FORMAT5 P1 — RX02 density None
IO$_SETPRFPATH P1 — node or HSx name IO$_FORCEPATH
IO$_CREATE
IO$_ACCESS

P1 — FIB descriptor address IO$M_CREATE
IO$M_ACCESS
IO$M_DELETE
IO$M_DMOUNT

IO$_DEACCESS P2 — file name string address
IO$_MODIFY P3 — result string length address
IO$_DELETE P4 — result string descriptor address
IO$_ACPCONTROL P5 — attribute list address
QIO Status Returns
SS$_ABORT SS$_CANCEL SS$_CTRLERR
SS$_DATACHECK SS$_DATAOVERUN SS$_DRVERR
SS$_FORCEDERR SS$_FORMAT SS$_ILLIOFUNC
SS$_IVADDR SS$_IVBUFLEN SS$_MEDOFL
SS$_NONEXDRV SS$_NORMAL SS$_OPINCOMPL
SS$_PARITY SS$_RCT SS$_RDDELDATA
SS$_TIMEOUT SS$_UNSAFE SS$_VOLINV

352

Appendix A. I/O Function Codes

Functions Arguments Modifiers
SS$_WASECC SS$_WRITLCK

1Only for IO$_READPBLK and IO$_WRITEPBLK (not for TU58, RX01, RX02, RB02, or RL02)
2Not for RX01 and RX02
3Only for IO$_RWRITEPBLK on RX02
4Only for write functions
5Not for DSA disks

A.3. Magnetic Tape Drivers
This section lists the function codes and function modifiers for the magnetic tape drivers.

Functions Arguments Modifiers
IO$_READVBLK P1— buffer address IO$M_DATACHECK1

IO$_READLBLK P2 — byte count IO$M_INHRETRY
IO$_READPBLK IO$M_REVERSE2

IO$_WRITEVBLK P1 — buffer address IO$M_DATACHECK1

IO$_WRITELBLK P2 — byte count IO$M_INHRETRY
IO$M_INHEXTGAP3

IO$_WRITEPBLK IO$M_NOWAIT4

IO$M_ERASE5

IO$_SETMODE
IO$_SETCHAR

P1 — characteristics buffer address
P2 — characteristics buffer length6

IO$_CREATE
IO$_ACCESS
IO$_DEACCESS
IO$_MODIFY
IO$_ACPCONTROL

P1 — FIB descriptor address
P2 — file name string address
P3 — result string length address
P4 — result string descriptor address
P5 — attribute list address

IO$M_CREATE7

IO$M_ACCESS7

IO$M_DMOUNT8

IO$_SKIPFILE P1 — skip n tape marks IO$M_ALLOWFAST9

IO$M_INHRETRY
IO$M_NOWAIT4

IO$_SKIPRECORD P1 — skip n blocks IO$M_INHRETRY
IO$M_NOWAIT4

IO$_REWIND
IO$_REWINDOFF
IO$_UNLOAD

None IO$M_INHRETRY
IO$M_NOWAIT4

IO$M_RETENSION
IO$_WRITEOF None IO$M_INHEXTGAP3

IO$M_INHRETRY
IO$M_NOWAIT4

IO$_SENSEMODE
IO$_SENSECHAR

P1 — characteristics buffer address6

P2 — characteristics buffer length6
IO$M_INHRETRY

IO$_DSE10 None None
IO$_PACKACK
IO$_AVAILABLE

QIO Status Returns
SS$_ABORT SS$_CANCEL SS$_CTRLERR

353

Appendix A. I/O Function Codes

Functions Arguments Modifiers
SS$_DATACHECK SS$_DATAOVERUN SS$_DEVOFFLINE
SS$_DRVERR SS$_ENDOFFILE SS$_ENDOFTAPE
SS$_ENDOFVOLUME SS$_FORMAT SS$_ILLIOFUNC
SS$_MEDOFL SS$_NONEXDRV SS$_NORMAL
SS$_OPINCOMPL SS$_PARITY SS$_SERIOUSEXCP
SS$_TIMEOUT SS$_UNSAFE SS$_VOLINV
SS$_WRITLCK

1Not for TS04 and TU80
2Not for TK50
3Only for TE16, TU45, and TU77
4Only for TU81-Plus drives
5IO$M_REASE takes no arguments; only for IO$_WRITEBLK and IO$_WRITEPBLK on TMSCP drives.
6Only for TMSCP drives
7Onlyfor IO$_CREATE and IO$_ACCESS
8Only for IO$_ACPCONTROL
9Only for local SCSI drives
10Only for TU78, TU81, TA81, and TA78

A.4. Mailbox Driver
This section lists the function codes and function modifiers for the mailbox driver.

Functions Arguments Modifiers
IO$_READVBLK
IO$_READLBLK
IO$_READPBLK
IO$_WRITEVBLK
IO$_WRITELBLK
IO$_WRITEPBLK

P1 — buffer address
P2 — buffer size

IO$M_NOW
IO$M_NORSWAIT1

IO$M_READERCHECK1

IO$M_WRITERCHECK2

IO$M_STREAM2

IO$_WRITEOF None IO$M_NOW
IO$M_READERCHECK
IO$M_STREAM

IO$_SETMODE
!IO$M_READATTN

P1 — AST address None

IO$_SETMODE
!IO$M_WRTATTN

P2 — AST parameter

IO$_SETMODE
!IO$MB_ROOM_NOTIFY

P3 — access mode

IO$_SETMODE
!IO$M_READERWAIT

None None

IO$_SETMODE
!IO$M_WRITERWAIT3

IO$_SETMODE
!IO$M_SETPROT

P2 — volume protec-
tion mask

None

IO$_SENSEMODE
!IO$M_READERCHECK3

None None

354

Appendix A. I/O Function Codes

Functions Arguments Modifiers
IO$_SENSEMODE
!IO$M_WRITERCHECK3

QIO Status Returns in R0
SS$_ACCVIO SS$_EXQUOTA SS$_ILLIOFUNC SS$INFMEM
SS$MBFULL SS$_MBTOOSML SS$_NOPRIV SS$_NORMAL
IOSB Status Returns
SS$_ABORT SS$_BUFFEROVF SS$_CANCEL SS$_ENDOFFILE
SS$_NOREADER SS$_NORMAL SS$_NOWRITER

1Only for write functions
2Only for read functions
3VAX specific

A.5. Terminal Driver
This section lists the function codes and function modifiers for the terminal driver.

Functions Arguments Modifiers
IO$_READVBLK
IO$_READLBLK
IO$_READPROMPT

P1 — buffer address
P2 — buffer size
P3 — timeout
P4 — read terminator block address
P5 — prompt string buffer address
P6 — prompt string buffer size1

IO$M_NOECHO
IO$M_CVTLOW
IO$M_NOFILTR
IO$M_TIMED
IO$M_PURGE
IO$M_DSABLMBX
IO$M_TRMNOECHO
IO$M_ESCAPE

IO$_READVBLK P1 — buffer address
P2 — buffer size
P3 — access mode to probe item list
P4 — (zero)
P5 — itemlist buffer address
P6 — itemlist buffer size

IO$M_EXTEND2

IO$_WRITEVBLK
IO$_WRITELBLK
IO$_WRITEPBLK

P1 — buffer address
P2 — buffer size
P3 — (ignored)
P4 — carriage control specifier3

IO$M_CANCTRLO
IO$M_ENABLMBX
IO$M_NOFORMAT
IO$M_REFRESH
IO$M_BREAKTHRU

IO$_SETMODE
IO$_SETCHAR

P1 — characteristics buffer address
P2 — characteristics buffer size
P3 — speed specifier
P4 — fill specifier
P5 — parity flags

IO$_SETMODE
IO$_SETCHAR

None IO$M_HANGUP

IO$_SETMODE P1 — buffer address
P2 — buffer size

IO$M_BRDCST

IO$_SETMODE
IO$_SETCHAR

P1 — AST service routine address
P2 — AST parameter

IO$M_CTRLCAST
IO$M_CTRLYAST

355

Appendix A. I/O Function Codes

Functions Arguments Modifiers
P3 — access mode to deliver AST

IO$_SETMODE
IO$_SETCHAR

P1 — AST service routine address
P2 — character mask address
P3— access mode to deliver AST

IO$M_OUTBAND
IO$M_TT_ABORT4

IO$M_INCLUDE
IO$_SETMODE
IO$_SETCHAR

P1 — address of control signals IO$M_SET_MODEM5

IO$M_MAINT
IO$_SETMODE
IO$_SETCHAR

None IO$M_LOOP5

IO$M_UNLOOP5

IO$M_MAINT
IO$_TTY_PORT IO$M_LT_CONNECT
IO$_TTY_PORT P1 — itemlist address6

P2 — queued status
IO$M_LT_DISCON
IO$M_LT_MAP_PORT

IO$_TTY_PORT P1 — service name descriptor address
P2 — service rating

IO$M_LT_RATING

IO$_TTY_PORT P1 — itemlist address
P2 — itemlist length
P3 — entity type
P4 — entity string descriptor

IO$M_LT_SENSEMODE

IO$_TTY_PORT P1 — itemlist address
P2 — itemlist length
P3 — entity type
P4 — entity string descriptor

IO$M_LT_SETMODE

IO$_SENSEMODE
IO$_SENSECHAR

P1 — characteristics buffer address
P2 — characteristics buffer size

IO$M_TYPEAHDCNT

IO$_SENSEMODE
IO$_SENSECHAR

P1 — address of input modem signal
block

IO$M_RD_MODEM

IO$_SENSEMODE P1 — buffer address
P2 — buffer size

IO$M_BRDCST

QIO Status Returns
SS$_ABORT SS$_BADESCAPE SS$_BADPARAM
SS$_CANCEL SS$_CHANINTLK SS$_CONTROLC
SS$_CONTROLO SS$_CONTROLY SS$_DATAOVERUN
SS$_INCOMPAT SS$_NORMAL SS$_PARITY
SS$_PARTESCAPE SS$_TIMEOUT

1Only for IO$_READPROMPT
2Only for itemlist read function. Do not specify with other modifiers.
3Only for IO$_WRITEBLK and IO$_WRITEVBLK
4Only with IO$M_OUTBAND
5Only with IO$M_MAINT
6Item list: IO$V_LT_MAP_NODENAM, IO$V_LT_MAP_PORNAM, IO$V_LT_MAP_SRVNAM, IO$V_LT_MAP_LNKNAM, and
IO$V_LT_MAP_NETADR.

A.6. Local Area Network Device Drivers
This section lists the function codes and function modifiers for the local area network drivers.

356

Appendix A. I/O Function Codes

Functions Arguments Modifiers
IO$_READLBLK
IO$_READVBLK
IO$_READPBLK
IO$_WRITELBLK
IO$_WRITEVBLK
IO$_WRITEPBLK

P1 — buffer address
P2 — buffer size
P4 — 802 format fields (optional)1

P5 — destination address (optional)1

IO$M_NOW2

IO$M_RESPONSE3

IO$_SETMODE
IO$_SETCHAR

P2 — extended characteristics buffer
(optional)4

IO$M_CTRL
IO$M_STARTUP
IO$M_SHUTDOWN

IO$_SETMODE
IO$_SETCHAR

P1 — AST service address
P3 — access mode to deliver AST

IO$M_ATTNAST

IO$_SENSEMODE
IO$_SENSECHAR

P1 — device characteristics buffer (op-
tional)
P2 — extended characteristics buffer
(optional)

IO$M_CTRL

QIO Status Returns
SS$_ABORT SS$_ACCVIO SS$_BADPARAM
SS$_BUFFEROVF SS$_COMMHARD SS$_CTRLERR
SS$_DATACHECK SS$_DATAOVERUN SS$_DEVACTIVE
SS$_DEVALLOC SS$_DEVINACT SS$_DEVOFFLINE
SS$_DEVREQERR SS$_DISCONNECT SS$_DUPUNIT
SS$_ENDOFFILE SS$_EXQUOTA SS$_INFMEM
SS$_INFMAPREG SS$_IVBUFLEN SS$_MEDOFL
SS$_NOPRIV SS$_NORMAL SS$_OPINCOMPL
SS$_TIMEOUT SS$_TOOMUCHDATA

1See text for complete contents
2Only for read functions
3Only for write functions
4Use only with IO$M_CTRL alone or with IO$_STARTUP; that is, the set controller mode

A.7. Fast I/O Function Codes and Modifiers
This section lists the function codes and parameters for the $IO_SETUP system service.

Functions Arguments
IO$_READVBLK bufobj - user's buffer
IO$_READLBLK iosobj — I/O Status Area (IOSA)
IO$_WRITEVBLK astadr — Completion AST routine
IO$_WRITELBLK flags — longword mask
 return_fandle — fandle address

A.8. Fast Path Function Code and Modifiers
This section lists the function code and function modifiers for Fast Path.

357

Appendix A. I/O Function Codes

Function Argument Modifiers
IO$_SETPRFPATH P1 — CPU mask

None
IO$M_PREFERRED_CPU
IO$M_SYS_ASSIGNABLE

358

Appendix B. IO$_DIAGNOSE Function
for SCSI Class Drivers
Asof OpenVMS Version 7.0, the $QIO IO$_DIAGNOSE function has been enhanced to support 64-
bit addressing for the following SCSI class drivers: GKDRIVER, DKDRIVER, and MKDRIVER.
This means that the virtual addresses specified within the S2DGB may now be 64-bit virtual addresses
if the user application requests it.

The $QIO IO$_DIAGNOSE arguments are still as follows:

Argument Use
P1 S2DGB base address
P2 S2DGB length
P3 Reserved, should be 0
P4 Reserved, should be 0
P5 Reserved, should be 0
P6 Reserved, should be 0

The SCSI Diagnose Buffer (S2DGB) defined in STARLET now allows two formats, one for 32-bit
addressing and one for 64-bit addressing. The 32-bit format is identical to the one supported on Open-
VMS Alpha Version 6.2.

Figure B.1 shows the 32-bit S2DGB format. Figure B.2 shows the 64-bit S2DGB format.

Figure B.1. OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 32-Bit Layout

359

Appendix B. IO$_DIAGNOSE Function for SCSI Class Drivers

Figure B.2. OpenVMS SCSI-2 Diagnose Buffer (S2DGB) 64-Bit Layout

A user application must specify which one of the two S2DGB formats is to be used by passing a for-
mat value in S2DGB$L_OPCODE. Specifically, S2DGB$L_OPCODE must be assigned a value of
either OP_XCDB32 (= 1) to request 32-bit format, or OP_XCDB64 (= 2) to request 64-bit format.
Once the value of OP_XCDB64 has been specified, the user application is obligated to use the 64-bit
S2DGB format and, in particular, to use the 64-bit names for S2DGB fields as described below. Like-
wise, an opcode value of OP_XCDB32 obligates the user application to use the 32-bit names for the
fields.

The correct length of the structure is defined by the constant S2DGB$K_XCDB32_LENGTH (val-
ue:60-decimal), as well as by the constant S2DGB$K_XCDB64_LENGTH (value: 60-decimal).

The fields in the S2DGB are in the sections that follow. Whenever a field has two different names
for the 32-bit and 64-bit cases, the 32-bit name is given first, and the 64-bit name is given after it in
parentheses. Also, except for fields that contain addresses, all fields are unsigned longwords.

S2DGB$L_OPCODE
This field should contain either S2DGB$K_OP_XCDB32 or S2DGB$K_OP_XCDB64, depending on
whether the user application intends to supply 32-bit virtual addresses or 64-bit virtual addresses, re-
spectively, in the other fields of the S2DGB.

S2DGB$L_FLAGS
This field should contain the bit fields shown in the following table. Note that these bit definitions
start at bit 0 and omit no bits. This is required for compatibility with the IO$_DIAGNOSE interface
available in OpenVMS Alpha Version 6.1 and earlier.

Table B.1. S2DGB$L_FLAGS Bit Fields

BitField Description
S2DGB$V_READ This bit should be 1 if the operation being performed is a read. If

the operation is a write, this bit should be 0.

360

Appendix B. IO$_DIAGNOSE Function for SCSI Class Drivers

BitField Description
S2DGB$V_DISCPRIV This bit should contain the DiscPriv bit value to be used in

the IDENTIFY message sent with this operation. If S2DG-
B$V_TAGGED_REQ is 1, then this bit is ignored. Note that
S2DGB$V_DISCPRIV may be ignored by some ports uncondi-
tionally.

S2DGB$V_SYNCHRONOUS This bit is ignored because its value is beyond the control of the
user in SCSI-2 drivers.

S2DGB$V_OBSOLETE1 This bit is ignored. In previous releases, it represented the dis-
abling of command retries, which is now beyond the control of the
user in SCSI-2 drivers.

S2DGB$V_TAGGED_REQ When this bit is 1, the operation is processed as using tagged com-
mand queuing and S2DGB$V_TAG should define the tag value to
be used. When this bit is 0, the operation is processed without ben-
efit of tagged command queuing.

Note that although some ports do not support tagged command
queuing, setting this bit to 1 will inhibit changing the values
of S2DGB$L_32PADCNT (S2DGB$L_64PADCNT), S2DG-
B$L_32DSCTMO (S2DGB$L_64DSCTMO), and S2DG-
B$L_32PHSTMO (S2DGB$L_64PHSTMO), and causes S2DG-
B$V_DISCPRIV to be ignored. Note also that some ports simu-
late untagged operations using appropriately tagged operations. If
S2DGB$V_TAGGED_REQ is 1, then this 3-bit field should con-
tain one of the following coded constant values:

• S2DGB$K_SIMPLE indicates that the command is to be sent
with the SIMPLE queue tag.

• S2DGB$K_ORDERED indicates that the command is to be
sent with the ORDERED queue tab.

• S2DGB$K_EXPRESS indicates that the command is to be sent
with the HEAD OF QUEUE queue tag.

• IfS2DGB$V_TAGGED_REQ is 0, then this field is ignored.
Ports that do not support tagged command queuing always ig-
nore the S2DGB$V_TAG field and send all commands as un-
tagged operations.

Note that automatic contingent allegiance processing is not acces-
sible through the IO$_DIAGNOSE function. Also, even though
this is a 3-bit field,only 2 bits are currently being utilized. That is,
the 3 constants above represent values, not bit positions.

S2DGB$V_AUTOSENSE When this bit is 1, S2DGB$L_32SENSEADDR andS2DG-
B$L_32SENSELEN CONDITION or COMMAND TERMI-
NATED status is returned, REQUEST SENSE data is returned
in the buffer defined by S2DGB$L_32SENSEADDR and S2DG-
B$L_32SENSELEN.

When S2DGB$V_AUTOSENSE is 0, the buffer described by
S2DGB$L_32SENSEADDR and S2DGB$L_32SENSELEN is ig-

361

Appendix B. IO$_DIAGNOSE Function for SCSI Class Drivers

BitField Description
nored. In such cases, the class driver saves the autosense data in
pool and returns it to the next IO$_DIAGNOSE, if and only if that
IO$_DIAGNOSE has a REQUEST SENSE CDB.

All other bits in S2DGB$L_FLAGS should be 0.

S2DGB$L_32CDBADDR (S2DGB$PQ_64CDBADDR)
This field should contain the 32-bit (or 64-bit) virtual address of the SCSI command data block (CDB)
to be sent to the target by this IO$_DIAGNOSE operation.

Note that S2DGB$L_32CDBADDR is a pointer to a longword, while S2DGB$PQ_64CDBADDR is a
pointer to a quadword.

S2DGB$L_32CDBLEN (S2DGB$L_64CDBLEN)
This field should contain the number of bytes in the SCSI command data block (CDB) to be sent to
the target by this IO$_DIAGNOSE operation. (Legal values: 2 to 248; however, some ports may re-
strict CDBs to smaller lengths. Recommended values: 2 to 16.)

S2DGB$L_32DATADDR (S2DGB$PQ_64DATADDR)
This field should contain the 32-bit (or 64-bit) virtual address of the DATAIN or DATAOUT buffer
to be used with this SCSI operation. If the CDB being sent to the target does not use a DATAIN or
DATAOUT buffer, then this field should be 0.

Note that S2DGB$L_32DATADDR is a pointer to a longword, while S2DGB$PQ_64DATADDR is a
pointer to a quadword.

S2DGB$L_32DATLEN (S2DGB$L_64DATLEN)
This field should contain the number of bytes in the DATAIN or DATAOUT buffer associated with
this operation. If the CDB being sent to the target does not use a DATAIN or DATAOUT buffer, then
this field should be 0. (Legal values: 0 to UCB$L_MAXBCNT. Recommended values: 0 to 65,536.
All ports are required to support at least 65,536 byte data transfers.)

S2DGB$L_32PADCNT (S2DGB$L_64PADCNT)
This field should contain the number of padding DATAIN or DATAOUT bytes required by this opera-
tion. If S2DGB$V_TAGGED_REQ is 1, then the PAD count value is not its default value. (Legal val-
ues: 0 to the maximum number of bytes in a disk block on this system minus one.

Current legal values: 0 to 511.)

S2DGB$L_32PHSTMO (S2DGB$L_64PHSTMO)
This field should contain the number of seconds that the port driver should wait for a phase transition
to occur or for delivery of an expected interrupt. If S2DGB$V_ TAGGED_REQ is 1 or this field con-
tains a 0 or 1, then the current phase transition timeout setting will not be changed. (Legal values: 0 to
65,535 (about 18 hours).)

362

Appendix B. IO$_DIAGNOSE Function for SCSI Class Drivers

S2DGB$L_32DSCTMO (S2DGB$L_64DSCTMO)
This field should contain the number of seconds that the port driver should wait for a disconnected
transaction to reconnect. If S2DGB$V_TAGGED_REQ is 1 or this field contains a 0 or 1, then the
current disconnect timeout setting will not be changed. (Legal values: 0 to 65,535 (about 18 hours).)

S2DGB$L_32SENSEADDR (S2DGB$PQ_64SENSEAD-
DR)
IfS2DGB$V_AUTOSENSE is 1, then this field should contain the 32-bit (or 64-bit) virtual address of
the sense buffer to be used by this SCSI operation. If S2DGB$V_AUTOSENSE is 0, this field is ig-
nored.

Note that S2DGB$L_32SENSEADDR is a pointer to a longword, while S2DGB$PQ_64SENSEAD-
DR is a pointer to a quadword.

S2DGB$L_32SENSELEN (S2DGB$L_64SENSELEN)
If S2DGB$V_AUTOSENSE is 1, then this field should contain the number of bytes in the sense
buffer associated with this operation. (Legal values: 0 to 255. Note that a value of 0 instructs the class
driver to discard any sense data received. Recommended value: 18. Some ports may restrict the num-
ber of sense bytes to 18.) If S2DGB$V_AUTOSENSE is 0, this field is ignored.

The following example shows how to set up a 64-bit S2DGB:

#include /* Define S2DGB*/
#include _pointers.h> /* Define VOID_PQ */
 S2DGB diag_desc;
/* Set up some default S2DGB descriptor values */

diag_desc.s2dgb$l_opcode = OP_XCDB64 /* Use 64-bits*/
diag_desc.s2dgb$l_flags = (S2DGB$M_READ | /* Flags*/
S2DGB$M_TAGGED_REQ | S2DGB$M_AUTOSENSE);
diag_desc.s2dgb$v_tag = S2DGB$K_SIMPLE; /* SIMPLE que tag */
diag_desc.s2dgb$pq_64cdbaddr = (VOID_PQ)([0]); /* Command addr*/
diag_desc.s2dgb$l_64cdblen = 6; /* Command length */
diag_desc.s2dgb$pq_64dataddr = (VOID_PQ)([0]); /* Data addr*/
diag_desc.s2dgb$l_64datlen = 20; /* Data length*/
diag_desc.s2dgb$l_64padcnt = 0; /* Pad length*/
diag_desc.s2dgb$l_64phstmo = 20; /* Phase timeout */
diag_desc.s2dgb$l_64dsctmo = 10; /* Disc timeout*/
diag_desc.s2dgb$pq_64senseaddr = (VOID_PQ)([0]); /* Autosense addr*/
diag_desc.s2dgb$l_64senselen = 255; /* Sense length*/
diag_desc.s2dgb$l_reserved_1 = 0; /* Reserved*/
.
.

.

status = sys$qiow(0, target_chan, IO$_DIAGNOSE, , 0, 0,
_desc, S2DGB$K_XCDB64_LENGTH, 0, 0, 0, 0);

If all arguments are valid, the class driver invokes the necessary port functions to send the CDB,
transfer the data, and return, save or discard sense data as defined by the input S2DGB. Up on com-
pletion, the return IOSB has the following format:

363

Appendix B. IO$_DIAGNOSE Function for SCSI Class Drivers

The DKDRIVER, GKDRIVER, and MKDRIVER class drivers, which implement other QIO func-
tions, might intermix other tagged requests with IO$_DIAGNOSE requests. The order in which re-
quests are sent generally matches the order in which requests are presented to the driver. An exception
to this ordering occurs when the driver receives REQUEST SENSE for which autosense data previ-
ously has been recovered and stored. In this case, the IO$_DIAGNOSE completes immediately and
no command is sent to the target.

The DKDRIVER, GKDRIVER, and MKDRIVER class drivers permit only one IO$_DIAGNOSE op-
eration to be active (in the start I/O routine) at a given time, except as described in the next paragraph.
However, applications must single thread IO$_DIAGNOSE requests to properly detect the presence
of sense data and send the required REQUEST SENSE command. For example, if three reads are is-
sued with no waiting and the first read gets a CHECK CONDITION, the sense data is discarded by
the target when the second read arrives.

The DKDRIVER, GKDRIVER, and MKDRIVER drivers permit more than one IO$_DIAGNOSE op-
eration to be active (in the start I/O routine) only when all active operations have the S2DGB$V_AU-
TOSENSE flag equal to 1. Upon encountering the first IO$_DIAGNOSE with S2DGB$V_AU-
TOSENSE equal to 0, the class driver applies the restrictions described in the previous paragraph.

364

Appendix C. DEC Multinational
Character Set and Terminal Escape
Sequences/Modes
This appendix includes tables for the DEC Multinational character set and for terminal escape se-
quences and modes.

C.1. DEC Multinational Character Set
Table C.1 lists the DEC Multinational character set. The DEC Multinational character set is an 8-bit
character set with 256 characters. The first 128 characters in the set correspond to the ASCII character
set.

Table C.1. DEC Multinational Character Set

Hex
Code

Octal
Code

Decimal
Code

Char or
Abbrev.

Description

ASCII Control Characters
00 000 000 NUL null character
01 001 001 SOH start of heading (Ctrl/A)
02 002 002 STX start of text (Ctrl/B)
03 003 003 ETX end of text (Ctrl/C)
04 004 004 EOT end of transmission (Ctrl/D)
05 005 005 ENQ enquiry (Ctrl/E)
06 006 006 ACK acknowledge (Ctrl/F)
07 007 007 BEL bell (Ctrl/G)
08 010 008 BS backspace (Ctrl/H)
09 011 009 HT horizontal tabulation (Ctrl/I)
0A 012 010 LF line feed (Ctrl/J)
0B 013 011 VT vertical tabulation (Ctrl/K)
0C 014 012 FF form feed (Ctrl/L)
0D 015 013 CR carriage return (Ctrl/M)
0E 016 014 SO shift out (Ctrl/N)
0F 017 015 SI shift in (Ctrl/O)
10 020 016 DLE data link escape (Ctrl/P)
11 021 017 DC1 device control 1 (Ctrl/Q)
12 022 018 DC2 device control 2 (Ctrl/R)
13 023 019 DC3 device control 3 (Ctrl/S)
14 024 020 DC4 device control 4 (Ctrl/T)
15 025 021 NAK negative acknowledge (Ctrl/U)
16 026 022 SYN synchronous idle (Ctrl/V)

365

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Hex
Code

Octal
Code

Decimal
Code

Char or
Abbrev.

Description

17 027 023 ETB end of transmission block (Ctrl/W)
18 030 024 CAN cancel (Ctrl/X)
19 031 025 EM end of medium (Ctrl/Y)
1A 032 026 SUB substitute (Ctrl/Z)
1B 033 027 ESC escape
1C 034 028 FS file separator
1D 035 029 GS group separator
1E 036 030 RS record separator
1F 037 031 US unit separator
ASCII Special and Numeric Characters
20 040 032 SP space
21 041 033 ! exclamation point
22 042 034 ' quotation marks (double quote)
23 043 035 # number sign
24 044 036 $ dollar sign
25 045 037 % percent sign
26 046 038 & ampersand
27 047 039 ' apostrophe (single quote)
28 050 040 (opening parenthesis
29 051 041) closing parenthesis
2A 052 042 * asterisk
2B 053 043 + plus
2C 054 044 , comma
2D 055 045 — hyphen or minus
2E 056 046 . period or decimal point
2F 057 047 / slash
30 060 048 0 zero
31 061 049 1 one
32 062 050 2 two
33 063 051 3 three
34 064 052 4 four
35 065 053 5 five
36 066 054 6 six
37 067 055 7 seven
38 070 056 8 eight
39 071 057 9 nine
3A 072 058 : colon

366

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Hex
Code

Octal
Code

Decimal
Code

Char or
Abbrev.

Description

3B 073 059 ; semicolon
3C 074 060 < less than
3D 075 061 = equals
3E 076 062 > greater than
3F 077 063 ? question mark
ASCII Alphabetic Characters
40 100 064 @ commercial at sign
41 101 065 A uppercase A
42 102 066 B uppercase B
43 103 067 C uppercase C
44 104 068 D uppercase D
45 105 069 E uppercase E
46 106 070 F uppercase F
47 107 071 G uppercase G
48 110 072 H uppercase H
49 111 073 I uppercase I
4A 112 074 J uppercase J
4B 113 075 K uppercase K
4C 114 076 L uppercase L
4D 115 077 M uppercase M
4E 116 078 N uppercase N
4F 117 079 O uppercase O
50 120 080 P uppercase P
51 121 081 Q uppercase Q
52 122 082 R uppercase R
53 123 083 S uppercase S
54 124 084 T uppercase T
55 125 085 U uppercase U
56 126 086 V uppercase V
57 127 087 W uppercase W
58 130 088 X uppercase X
59 131 089 Y uppercase Y
5A 132 090 Z uppercase Z
5B 133 091 [left bracket
5C 134 092 \ backslash
5D 135 093] right bracket
5E 136 094 ^ circumflex

367

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Hex
Code

Octal
Code

Decimal
Code

Char or
Abbrev.

Description

5F 137 095 _ underscore
60 140 096 ` grave accent
61 141 097 a lowercase a
62 142 098 b lowercase b
63 143 099 c lowercase c
64 144 100 d lowercase d
65 145 101 e lowercase e
66 146 102 f lowercase f
67 147 103 g lowercase g
68 150 104 h lowercase h
69 151 105 i lowercase i
6A 152 106 j lowercase j
6B 153 107 k lowercase k
6C 154 108 l lowercase l
6D 155 109 m lowercase m
6E 156 110 n lowercase n
6F 157 111 o lowercase o
70 160 112 p lowercase p
71 161 113 q lowercase q
72 162 114 r lowercase r
73 163 115 s lowercase s
74 164 116 t lowercase t
75 165 117 u lowercase u
76 166 118 v lowercase v
77 167 119 w lowercase w
78 170 120 x lowercase x
79 171 121 y lowercase y
7A 172 122 z lowercase z
7B 173 123 { left brace
7C 174 124 | vertical line
7D 175 125 } right brace (ALTMODE)
7E 176 126 ~ tilde (ALTMODE)
7F 177 127 DEL rubout (DELETE)
80 200 128 — [reserved]
81 201 129 — [reserved]
82 202 130 — [reserved]
83 203 131 — [reserved]

368

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Hex
Code

Octal
Code

Decimal
Code

Char or
Abbrev.

Description

84 204 132 IND index
85 205 133 NEL next line
86 206 134 SSA start of selected area
87 207 135 ESA end of started area
88 210 136 HTS horizontal tab set
89 211 137 HTJ horizontal tab set with justification
8A 212 138 VTS vertical tab set
8B 213 139 PLD partial line down
8C 214 140 PLU partial line up
8D 215 141 RI reverse index
8E 216 142 SS2 single shift 2
8F 217 143 SS3 single shift 3
90 220 144 DCS device control string
91 221 145 PU1 private use 1
92 222 146 PU2 private use 2
93 223 147 STS set transmit state
94 224 148 CCH cancel character
95 225 149 MW message waiting
96 226 150 SPA start of protected area
97 227 151 EPA end of protected area
98 230 152 — [reserved]
99 231 153 — [reserved]
9A 232 154 — [reserved]
9B 233 155 CSI control sequence introducer
9C 234 156 ST string terminator
9D 235 157 OSC operating system command
9E 236 158 PM privacy message
9F 237 159 APC application
A0 240 160 — [reserved]
A1 241 161 ¡ inverted exclamation point
A2 242 162 ¢ cent sign
A3 243 163 £ pound sign
A4 244 164 — [reserved]
A5 245 165 ¥ yen sign
A6 246 166 — [reserved]
A7 247 167 § section sign
A8 250 168 ¤ general currency sign

369

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Hex
Code

Octal
Code

Decimal
Code

Char or
Abbrev.

Description

A9 251 169 © copyright sign
AA 252 170 ª feminine ordinal indicator
AB 253 171 << angle quotation mark left
AC 254 172 — [reserved]
AD 255 173 — [reserved]
AE 256 174 — [reserved]
AF 257 175 — [reserved]
B0 260 176 ° degree sign
B1 261 177 ± plus/minus sign
B2 262 178 ² superscript 2
B3 263 179 ³ superscript 3
B4 264 180 — [reserved]
B5 265 181 µ micro sign
B6 266 182 ¶ paragraph sign, pilcrow
B7 267 183 placeholder middle dot
B8 270 184 — [reserved]
B9 271 185 ¹ superscript 1
BA 272 186 º masculine ordinal indicator
BB 273 187 >> angle quotation mark right
BC 274 188 1/4 fraction one-quarter
BD 275 189 1/2 fraction one-half
BE 276 190 — [reserved]
BF 277 191 ¿ inverted question mark
C0 300 192 À uppercase A with grave accent
C1 301 193 Á uppercase A with acute accent
C2 302 194 Â uppercase A with circumflex
C3 303 195 Ã uppercase A with tilde
C4 304 196 Ä uppercase A with umlaut (diaeresis)
C5 305 197 Å uppercase A with ring
C6 306 198 AE uppercase AE diphthong
C7 307 199 Ç uppercase C with cedilla
C8 310 200 È uppercase E with grave accent
C9 311 201 É uppercase E with acute accent
CA 312 202 Ê uppercase E with circumflex
CB 313 203 Ë uppercase E with umlaut (diaeresis)
CC 314 204 Ì uppercase I with grave accent
CD 315 205 Í uppercase I with acute accent

370

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Hex
Code

Octal
Code

Decimal
Code

Char or
Abbrev.

Description

CE 316 206 Î uppercase I with circumflex
CF 317 207 Ï uppercase I with umlaut (diaeresis)
D0 320 208 — [reserved]
D1 321 209 Ñ uppercase N with tilde
D2 322 210 Ò uppercase O with grave accent
D3 323 211 Ó uppercase O with acute accent
D4 324 212 Ô uppercase O with circumflex
D5 325 213 Õ uppercase O with tilde
D6 326 214 Ö uppercase O with umlaut (diaeresis)
D7 327 215 OE uppercase OE ligature
D8 330 216 Ø uppercase O with slash
D9 331 217 Ù uppercase U with grave accent
DA 332 218 Ú uppercase U with acute accent
DB 333 219 Û uppercase U with circumflex
DC 334 220 Ü uppercase U with umlaut (diaeresis)
DD 335 221 Ÿ uppercase Y with umlaut (diaeresis)
DE 336 222 — [reserved]
DF 337 223 B German lowercase sharp s
E0 340 224 à lowercase a with grave accent
E1 341 225 á lowercase a with acute accent
E2 342 226 â lowercase a with circumflex
E3 343 227 ã lowercase a with tilde
E4 344 228 ä lowercase a with umlaut (diaeresis)
E5 345 229 å lowercase a with ring
E6 346 230 æ lowercase ae diphthong
E7 347 231 ç lowercase c with cedilla
E8 350 232 è lowercase e with grave accent
E9 351 233 é lowercase e with acute accent
EA 352 234 ê lowercase e with circumflex
EB 353 235 ë lowercase e with umlaut (diaeresis)
EC 354 236 ì lowercase i with grave accent
ED 355 237 í lowercase i with acute accent
EE 356 238 î lowercase i with circumflex
EF 357 239 ï lowercase i with umlaut (diaeresis)
F0 360 240 — [reserved]
F1 361 241 ñ lowercase n with tilde
F2 362 242 ò lowercase o with grave accent

371

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Hex
Code

Octal
Code

Decimal
Code

Char or
Abbrev.

Description

F3 363 243 ó lowercase o with acute accent
F4 364 244 ô lowercase o with circumflex
F5 365 245 õ lowercase o with tilde
F6 366 246 ö lowercase o with umlaut (diaeresis)
F7 367 247 oe lowercase oe ligature
F8 370 248 ø lowercase o with slash
F9 371 249 ù lowercase u with grave accent
FA 372 250 ú lowercase u with acute accent
FB 373 251 û lowercase u with circumflex
FC 374 252 ü lowercase u with umlaut (diaeresis)
FD 375 253 ÿ lowercase y with umlaut (diaeresis)
FE 376 254 — [reserved]
FF 377 255 — [reserved]

C.2. Terminal Sequences and Modes
Table C.2 lists the valid ANSI and DIGITAL private escape sequences for terminals that have the
TT2$M_ANSICRT, TT2$M_DECCRT, TT2$M_AVO, TT2$M_EDIT, and TT2$M_BLOCK charac-
teristics (see Section 5.1.1.4).

Table C.2 also lists assumed and selectable ANSI modes and selectable DIGITAL private modes.
Only the names of the escape sequences and modes are listed (for more information, see the specific
VT100-, VT200-, or VT300- family user's guide). Unless otherwise noted, the operation of escape se-
quences and modes is identical to the particular VT100-, VT200-, or VT300- family terminals that im-
plement these features.

Table C.2. Sequences and Modes

Name Valid Parame-
ters'

ANSICRT' DECCRT AVO' EDIT BLOCK

ANSI-Defined Escape Sequences
CPR All x x
CUB All x x
CUD All x x
CUF All x x
CUP All x x
CUU All x x
DSR 0,3,5,6 x x
ED 0,1,2 x x
EL 0,1,2 x x
HVP All x x
IND x x

372

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Name Valid Parame-
ters'

ANSICRT' DECCRT AVO' EDIT BLOCK

NEL x x
RI x x
RIS x x
SCS UK,ASCII,0 x
SCS UK,ASCII x x
SGR 0,4,7 x x
SGR 0,1,4,5,7 x
DA Terminal-spe-

cific
x

HTS x
RM Class-specific x
SM Class-specific x
TBC 0,3 x
DCH All x x
DL All x x
IL All x x
DIGITAL Private Escape Sequences
DECDHDL 2,3 x
DECDWL 6 x
DECKPAM x
DECKPNM x
DECRC 8 x
DECSC 7 x
DECSTBM All x
DECSWL 5 x
DECPRO 0,1,4,5,7,254 x
DECTTC 0,1 x
DECXMIT 5 x
ANSI Selectable Modes (Set with ANSI SM/RM)
IRM 4 x x
GATM 1 x x
ERM 6 x
TTM 16 x
DIGITAL Private Selectable Modes (Set with ANSI SM/RM)
DECCKM 1 x
DECANM 2 x
DECCOLM 3 x

373

Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes

Name Valid Parame-
ters'

ANSICRT' DECCRT AVO' EDIT BLOCK

DECSCLM 4 x
DECSCNM 5 x
DECOM 6 x
DECAWM 7 x
DECARM 8 x
DECEDM 10 x
DECEKEM 16 x
DECLTM 11 x
DECSCFDM 13 x
DECTEM 14 x
ANSI Assumed Modes
CRM Reset Reset
EBM Reset Reset
ERM Set Set 2
FEAM Reset Reset
FETM Reset Reset
GATM N/A N/A 2
HEM N/A N/A
IRM Reset Reset 2 2
KAM Reset Reset
MATH N/A N/A
PUM Reset Reset
SATM N/A N/A
SRTM Reset Reset
TSM Reset Reset
TTM N/A N/A 2
VEM N/A N/A

374

Appendix D. Control Connection
Routines
This appendix lists and describes the calling conventions for the pseudoterminal driver control con-
nection routines. The routines appear in this section in alphabetical order.

Table D.1 lists the control connection routines and their functions:

Table D.1. Control Connection Routines

Routine Name Description
PTD$CANCEL Cancels a queued control connection read request
PTD$CREATE Creates a pseudoterminal
PTD$DELETE Deletes a pseudoterminal
PTD$READ Reads data from the pseudoterminal
PTD$READW Reads data from the pseudoterminal and waits for read to

complete
PTD$SET_EVENT_NOTIFICATION Enables or disables terminal event notification ASTs
PTD$WRITE Writes data to the pseudoterminal

PTD$CANCEL
PTD$CANCEL — Cancel Queued Request. Cancels a queued control connection read request.

Format
PTD$CANCEL chan

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
chan

OpenVMSusage: channel
type: word (unsigned)
access: read only
mechanism: by value

375

Appendix D. Control Connection Routines

Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be sued
for PTD$XXX operations.

Return Values
SS$_NORMAL Normal successful completion.
SS$_DEVOFFLINE Device is off line and request cannot proceed.
SS$_IVCHAN Illegal channel.
SS$_NOPRIV Insufficient privilege to perform request.

PTD$CREATE
PTD$CREATE — Create a Pseudoterminal. Creates a new pseudoterminal with a unique device
name.

Format
PTD$CREATE chan [,acmode] [,charbuff] [,bufflen] [,astadr] [,astprm]
[,ast_acmode], inadr

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
chan

OpenVMS usage: channel
type: word (unsigned)
access: write only
mechanism: by value

Number of the channel that is assigned to the new pseudoterminal. This argument is the address of a
word into which PTD$CREATE writes the channel number. This channel is only intended to be used
for PTD$XXX operations.

acmode

OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

376

Appendix D. Control Connection Routines

Access mode to be associated with the channel. The most privileged access mode is the access mode
of the caller. I/O operations on the channel can be performed only from equal and more privileged ac-
cess modes.

charbuff

OpenVMS usage: device_characteristics
type: longword(unsigned)
access: read only
mechanism: by reference

Address of buffer containing the device characteristics. This information is used to set up the
pseudoterminal's initial characteristics. This buffer can be 12, 16, or 20 bytes long.

Figure D.1 shows the format of this buffer:

Figure D.1. Device Characteristics Buffer

bufflen

OpenVMS usage: word_unsigned
type: word(unsigned)
access: read only
mechanism: by value

Length of the characteristics buffer (either 12, 16, or 20 bytes). This argument is required if you sup-
ply the charbuff argument.

astadr

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when the terminal connection deassigns the last channel to the
pseudoterminal. This argument is the procedure value of this routine. This is a repeating AST and is
active until the control connection deletes the pseudoterminal.

astprm

OpenVMS usage: user_arg
type: longword (unsigned)

377

Appendix D. Control Connection Routines

access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by astadr.

ast_acmode

OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the AST is to be declared. The most privileged access mode is the access
mode of the caller. The resulting mode is the access mode at which the AST is declared.

inadr

OpenVMS usage: address_range
type: longword (unsigned)
access: read only
mechanism: by reference

Address of a two-longword array containing the starting and ending virtual addresses in the virtual ad-
dress space of the process (either P0 or P1 regions) to be used as I/O buffers. The array contains, in
order, the starting and ending virtual addresses. The addresses supplied to inadr must express an inte-
gral number of CPU-specific pages. The lower address must be on a

CPU-specific page boundary, and the higher address must be one less than a CPU-specific page
boundary. Together these addresses form a range from lowest to highest bytes. The pages must al-
ready exist and must be fully contained in either P0 or P1 space. All pages in the range must:

• Have identical page protection

• Be writable in the mode of the caller

• Be owned by the same access mode

• Be owned in a mode equal to or less privileged than the caller

• Be of the same page type (process or global)

Description
PTD$CREATE creates a new pseudoterminal with a unique device name. This device name is in the
form FTA n:, where n is the unit number.

When a pseudoterminal is created, it inherits the current system terminal default attributes unless you
specify an alternate set of characteristics.

Return Values
SS$_NORMAL Normal successful completion.

378

Appendix D. Control Connection Routines

SS$_ACCVIO Unable to read one of the arguments.
SS$_BADPARAM Bad Parameter Value.
SS$_EXBYTLM Insufficient BYTLM to create device or map buffers.
SS$_EXQUOTA Insufficient quota to create device.
SS$_EXASTLM Insufficient AST quota for notification AST.
SS$_INFMEM Insufficient memory to create device.
SS$_INSFWSL Insufficient working set limit to map buffers.
SS$_IVSECFLG Invalid process or global section flags.
SS$_NOPRIV No privilege for attempted operation.
SS$_PAGPNWNVIO Page owner violation.
SS$_VA_IN_USE Virtual address already in use.

PTD$DELETE
PTD$DELETE — Delete a Pseudoterminal. Forces the pseudoterminal to be deleted and frees the
channel.

Format
PTD$DELETE chan

Returns
OpenVMS usage: longword (unsigned)
type: write
access: by value

Argument
chan

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be used
for PTD$XXX operations.

Description
PTD$DELETE forces the pseudoterminal to be deleted and frees the channel assigned to the
pseudoterminal. When a pseudoterminal is deleted, any process using the pseudoterminal (except the
control program) is disconnected. A PTD$DELETE request causes any pending I/O for the control
program to be aborted. It deletes any queued event notification ASTs and returns the I/O buffers back

379

Appendix D. Control Connection Routines

to the application. It also causes the pseudoterminal unit control block (UCB) to be deleted once the
reference count returns to zero.

Return Values
SS$_NORMAL Normal successful completion.
SS$_DEVOFFLINE Device is off line and request cannot proceed.
SS$_IVCHAN Illegal channel.
SS$_NOPRIV Insufficient privilege to perform request.

PTD$READ
PTD$READ — Read Data from Pseudoterminal. Reads data from the pseudoterminal. The PT-
D$READ routine completes asynchronously; that is, it returns to the caller without waiting for the da-
ta to be read.For synchronous completion, use the PTD$READW routine. The PTD$READW routine
is identical to the PTD$READ routine in every way, except that PTD$READW returns to the caller
after the data is read.

Format
PTD$READ [efn], chan [.astadr] [,astprm] readbuf, readbuf_len

Returns
OpenVMS usage: longword(unsigned)
type: write only
access: by value

Arguments
efn

OpenVMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by value

Number of the event flag to be set when PTD$READ returns the requested information. If you do not
specify this argument, event flag 0 is used. When PTD$READ begins execution, it clears this flag.

chan

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

380

Appendix D. Control Connection Routines

Number of the I/O channel assigned to the new pseudoterminal. This channel is only intended to be
used for PTD$XXX operations.

astadr

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when PTD$READ completes. If you specify astadr, the AST rou-
tine executes at the same access mode as the caller of the PTD$READ routine.

astprm

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr argument.

readbuf

OpenVMS usage: char_string
type: character coded text string
access: write only
mechanism: by reference

Address of the read I/O status longword. The first character position in an I/O buffer to receive all out-
put is this address plus 4. The readbuf argument must be in the range specified in the inadr argument
of the PTD$CREATE routine; otherwise, an SS$_ACCVIO status is returned.

readbuf_len

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

Number of characters that can be read from the pseudoterminal and stored in the buffer specified by
readbuf.

Description
The PTD$READ routine reads data from the pseudoterminal. The read request completes with a mini-
mum of one character and a maximum of the number of characters specified by the readbuf_len argu-
ment.

381

Appendix D. Control Connection Routines

When a PTD$READ routine is called, the operating system queues a read operation. The read
operation completes when the pseudoterminal has characters to output. The read request queries
TTDRIVER whether there is data found to be returned. If so, the resulting string of characters is re-
turned. If a read request is issued and no data is available, the read request is queued and then com-
pleted at a later time. In this case, the routine always returns at least one character. The read re-
quest may complete even when there are no characters available to output. In this rare case when
TTDRIVER indicates that there is no more data to be output and there is really no data, the read oper-
ation completes with zero bytes of data.

Return Values
SS$_NORMAL Normal successful completion.
SS$_ACCVIO Unable to read an argument, or invalid read buffer address.
SS$_DEVOFFLINE Device is off line and request cannot proceed.
SS$_EXASTLM Insufficient AST quota for notification AST.
SS$_ILLEFC Illegal event flag cluster.
SS$_INFMEM Insufficient memory.
SS$_IVBUFLEN Buffer size supplied is illegal.
SS$_IVCHAN Illegal channel.
SS$_NOPRIV Insufficient privilege to perform request.
SS$_UNASEFC Unassociated event flag cluster.

PTD$READW
PTD$READW — Read Data from Pseudoterminal and Wait. Reads data from the pseudoterminal.
The PTD$READW routine completes synchronously; that is, it returns to the caller after the data
has been read. For asynchronous completion, use the PTD$READ routine. The PTD$READ routine
is identical to the PTD$READW routine in every way except that PTD$READ returns to the caller
without waiting for the data to be read.

D.5.1 Format
PTD$READW [efn], chan [.astadr] [,astprm] readbuf, readbuf_len

PTD$SET_EVENT_NOTIFICATION
PTD$SET_EVENT_NOTIFICATION — Enable or Disable Terminal Event Notification ASTs. En-
ables or disables a number of repeating terminal event notification ASTs.

Format
PTD$SET_EVENT_NOTIFICATION chan, astadr [,astprm] [,acmode], type

Returns
OpenVMS usage: longword (unsigned)

382

Appendix D. Control Connection Routines

type: write only
access: by value

Arguments
chan

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel assigned to the pseudoterminal. This channel is only intended to be used
for PTD$XXX operations.

astadr

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Address of the notification AST service routine, or zero if the AST is to be canceled.

astprm

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr argument.

acmode

OpenVMS usage: access_mode
type: longword (unsigned)
access: read only
mechanism: by value

Access mode for which the AST is to be declared. The most privileged access mode is the access
mode of the caller. The resulting mode is the access mode at which the AST is declared.

type

OpenVMS usage: type_longword
type: longword (unsigned)
access: read only

383

Appendix D. Control Connection Routines

mechanism: by value

Value that indicates which notification AST to enable. The $PTDDEF macro defines the symbolic
names listed in Table D.2.

Table D.2. Symbolic Names Defined by $PTDDEF Macro

Symbolic Name Description
PTD$C_SEND_XON Deliver notification AST when the pseudoterminal is ready to ac-

cept input. This AST is not delivered if the pseudoterminal is set to
NO HOSTSYNC.

PTD$C_SEND_BELL Deliver notification AST when the pseudoterminal wants to stop
input and signal it with a bell character.

PTD$C_SEND_XOFF Deliver notification AST when the pseudoterminal wants to stop
input and signal it with a DC3 character.

PTD$C_STOP_OUTPUT Deliver notification AST when the pseudoterminal is stopping out-
put.

PTD$C_RESUME_OUTPUT Deliver notification AST when the pseudoterminal is resuming
output.

PTD$C_CHAR_CHANGED Deliver notification AST when the pseudoterminal has changed
some device characteristic.

PTD$C_ABORT_OUTPUT Deliver notification AST when the pseudoterminal wants to abort
output.

PTD$C_START_READ Deliver notification AST when the pseudoterminal is starting an
application's read request. This AST is delivered only if read event
notification has been enabled.

PTD$C_MIDDLE_READ Deliver notification AST when the pseudoterminal has finished
sending an application's read request prompt string. This AST is
delivered only if read event notification has been enabled.

PTD$C_END_READ Deliver notification AST when the pseudoterminal has finished an
application's read request. This AST is delivered only if read event
notification has been enabled.

PTD$C_ENABLE_READ Enable terminal read event AST delivery. If this code is used, you
cannot supply the astadr argument.

PTD$C_DISABLE_READ Disable terminal read event AST delivery. If this code is used, you
cannot supply the astadr argument.

Description
PTD$SET_EVENT_NOTIFICATION enables or disables the repeating terminal event notification
ASTs listed in Table D.2. After an event notification AST is enabled, it remains in effect until it is dis-
abled or until the device is deleted.

Return Values

SS$_NORMAL Normal successful completion.
SS$_ACCVIO Unable to read an argument, or invalid I/O buffer address.

384

Appendix D. Control Connection Routines

SS$_BADPARAM An astadr, astprm, or acmode argument was not zero when en-
abling or disabling r3ad notification.

SS$_DEVOFFLINE Device is off line and request cannot proceed.
SS$_EXASTLM Insufficient AST quota for notification AST.
SS$_INFMEM Insufficient memory.
SS$_IVCHAN Illegal channel.
SS$_NOPRIV Insufficient privilege to perform request.

PTD$WRITE
PTD$WRITE — Write Data to Pseudoterminal. Inputs data to the pseudoterminal and reads any im-
mediately echoed characters.

Format
PTD$WRITE chan [.astadr] [,astprm] wrtbuf, wrtbuf_len [,echobuf]
[,echobuf_len]

Returns
OpenVMS usage: longword (unsigned)
type: write only
access: by value

Arguments
chan

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by value

Number of the I/O channel assigned to the new pseudoterminal. This channel is only intended to be
used for PTD$XXX operations.

astadr

OpenVMS usage: ast_procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

AST service routine to be executed when PTD$READ completes. If you specify astadr, the AST rou-
tine executes at the same access mode as the caller of the PTD$WRITE routine.

astprm

385

Appendix D. Control Connection Routines

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

AST parameter to be passed to the AST service routine specified by the astadr argument.

wrtbuf

OpenVMS usage: char_string
type: character coded text string
access: write only
mechanism: by reference

Address of the read I/O status longword. The first character position in an I/O buffer to receive all out-
put is this address plus 4. The wrtbuf argument must be in the range specified in the inadr argument
of the PTD$CREATE routine; otherwise, an SS$_ACCVIO status is returned.

wrtbuf_len

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

Number of characters to be written to the pseudoterminal. These characters appear as input to the ter-
minal side of the pseudoterminal.

echobuf

OpenVMS usage: char_string
type: character coded text string
access: write only
mechanism: by reference

Address of the echo I/O status longword. The first character position in an I/O buffer to receive all
output is this address plus 4. The echobuf must be in the range specified by the inadr argument of the
PTD$CREATE routine; otherwise an SS$_ACCVIO status is returned.

echobuf_len

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by value

Number of characters that can be read from the pseudoterminal. If an echo buffer is specified, up to
echobuf_len characters can be stored in it.

386

Appendix D. Control Connection Routines

Description
PTD$WRITE inputs data to the pseudoterminal and reads any immediately echoed characters. PT-
D$WRITE allows you to specify a buffer to receive any output generated by the write; you do not
need to issue a separate read request to read this data.

Return Values
SS$_NORMAL Normal successful completion.
SS$_ACCVIO Unable to read an argument, or invalid read buffer address.
SS$_DATALOST The terminal driver type-ahead buffer is full and character written

was lost.
SS$_DATEAOVERUN The terminal type-ahead buffer is getting full; attempts to send

more data might result in loss of characters.
SS$_DEVOFFLINE Device is off line and request cannot proceed.
SS$_EXASTLM Insufficient AST quota for notification AST.
SS$_INFMEM Insufficient memory.
SS$_IVBUFLEN Buffer size supplied is illegal.
SS$_IVCHAN Illegal channel.
SS$_NOPRIV Insufficient privilege to perform request.

387

Appendix D. Control Connection Routines

388

Appendix E. DDT Intercept
Establisher Routines and Device
Configuration Notification Routines
The DDT intercept establisher routines and device configuration notification routines are designed for
use in applications for OpenVMS x86-64, OpenVMS I64, and OpenVMS Alpha that are developed by
third-party application providers.

The DDT intercept establisher routines are used for establishing driver dispatch table (DDT) inter-
cepts of OpenVMS device drivers. They can be used by any privileged kernel-mode application that
alters the DDT. These routines allow intercepting calls into the driver by way of DDT entry points so
that multiple intercepts work correctly.

The device configuration notification routines provide notification of device configuration by way of
a callback. These routines enhance the functionality of the DDT intercept establisher routines but are
not limited to use with them.

Using the DDT intercept establisher routines and device configuration notification routines in third-
party kernel-mode applications, such as disk caching products and SCSI disk-shadowing applications,
enable these applications to run in an OpenVMS SCSI or Fibre Channel multipath configuration. Any
third-party applications that rely on altering the DDT of the OpenVMS Alpha SCSI disk-class driver
(SYS$DKDRIVER.EXE), the SCSI tape-class driver (SYS$MKDRIVER), or the SCSI generic-class
driver (SYS$GKDRIVER) require using these routines to ensure correct functioning.

E.1. DDT Intercept Establisher Routines
The DDT intercept establisher routines provide a mechanism to intercept calls through a driver dis-
patch table (DDT). Third-party applications that modifies the DDT directly can be revised to use the
appropriate DDT intercept establisher routines, so that they function properly in an OpenVMS SCSI
or Fibre Channel configuration. These routines establish intercepts on a per-UCB basis.

There can be multiple declarations of DDT intercepts. Figure E.1 illustrates multiple DDT declara-
tions.

Figure E.1. DDT Intercepts

The DDT intercept establisher routines are:

• IOC_STD$ESTABLISH_DDT_CANCEL

• IOC_STD$ESTABLISH_DDT_ALTSTART

• IOC_STD$ESTABLISH_DDT_START

389

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

• IOC_STD$ESTABLISH_DDT_MNTVER

If there are multiple declarations of DDT intercepts, they are called in descending order, from the
highest level DDT (DDT$K_ITCLVL_TOP) to the lowest-level DDT (DDT$K_ITCLVL_DRVR).

Although the standard driver cancel, altstart, start, and mntver routines do not return a
status, the intermediate routines must return either SS$_SUPERSEDE or SS$_CHAINW status. Any
other return value results in a bugcheck. As the return value suggests, the SS$_SUPERSEDE return
value from the intermediate routine supersedes the lower-level call to the DDT intercept routines. The
SS$_CHAINW return value from the intermediate routine causes the next lower-level DDT intercept
routines to be called.

The intercept DDTs are placed in the DDT chain according to their level. The top-level DDT is al-
ways the dispatcher DDT, and the bottom-level DDT is always the driver-level DDT. Other DDTs are
placed in descending order between the top-level DDT and the driver-level DDT.

Intercept Levels
The following intercept levels are defined and reserved to OpenVMS:

• DDT$K_ITCLVL_TOP 32767

• DDT$K_ITCLVL_HSM 24576

• DDT$K_ITCLVL_MPDEV 4096

• DDT$K_ITCLVL_DRVR 0

The valid intercept levels are from 4097 to 32766, except for 24576, which is reserved for the HSM
interval. You can define as many intercepts as needed in that range.

Restrictions
The following restrictions exist:

• Third-party intercepts are allowed only in the primary path UCB.

• Multipath currently does not support intercepts in the secondary path UCB.

• The flag parameter is required. It is a placeholder for future development, and the value must be
zero.

IOC_STD$ESTABLISH_DDT_START
IOC_STD$ESTABLISH_DDT_START — Establishes the intercept of the DDT$PS_START_2 rou-
tine.

Calling Convention
int ioc_std$establish_ddt_start (UCB *ucb, int (*start_itc_routine)(IRP
 *irp, UCB *ucb), int level,int flag)

Input
ucb Pointer to a UCB whose DDT$PS_START_2 is to be intercepted.

390

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

start_itc_routine The intercepting start routine. This routine is called before the driver’s
start routine. The calling convention of the start routine is the same as the
standard DDT$PS_START_2 routine, except that this routine must return one of
the following status values:

SS$_CHAINW — The next start routine should be called.
SS$_SUPERSEDE — No more start routines should be called.

Any other return value results in a bugcheck.
level Level of DDT to be intercepted. Currently, multipath does not support an inter-

cept level below MPDEV intercept.
flag Placeholder for future development; must be zero.

Return Value
SS$_NORMAL
DDT intercept added successfully.

This routine may also return various other error status values, including any status returned on a fail-
ure to allocate pool.

Synchronization Environment
Caller must be in kernel mode, IPL at or below UCB fork IPL.

Almost all use of the DDT within OpenVMS requires holding the UCB fork lock. This is why this
routine acquires and conditionally releases the UCB fork lock to change the DDT.

IOC_STD$ESTABLISH_DDT_ALTSTART
IOC_STD$ESTABLISH_DDT_ALTSTART — Establishes the intercept of the DDT$PS_ALTS-
TART_2 routine.

Calling Convention
int ioc_std$establish_ddt_altstart (UCB *ucb, int (*altstart_itc_routine)
 (IRP *irp, UCB *ucb), int level,int flag)

Input

ucb Pointer to a UCB whose DDT$PS_ALTSTART_2 is to be intercepted.
altstart_itc_routine The intercepting altstart routine. This routine is called before the driver’s

altstart routine. The calling convention of the altstart routine is the
same as the standard DDT$PS_ALTSTART_2 routine, except that this routine
must return one of the following status values:

SS$_CHAINW — The next altstart routine should be called.
SS$_SUPERSEDE — No more altstart routines should be called.

Any other return value results in a bugcheck.
level Level of DDT to be intercepted. Currently, multipath does not support an inter-

cept level below MPDEV intercept.

391

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

flag Placeholder for future development; must be zero.

Return Value
SS$_NORMAL
DDT intercept added successfully.

This routine may also return various other error status values, including any status returned on a fail-
ure to allocate nonpaged pool.

Synchronization Environment
Caller must be in kernel mode, IPL at or below UCB fork IPL.

Almost all use of the DDT within OpenVMS requires holding the UCB fork lock. This is why this
routine acquires and conditionally releases the UCB fork lock to change the DDT.

IOC_STD$ESTABLISH_DDT_CANCEL
IOC_STD$ESTABLISH_DDT_CANCEL — Establishes the intercept of the DDT$PS_CANCEL_2
routine.

Calling Convention
int ioc_std$establish_ddt_cancel (UCB *ucb, int (*cancel_itc_routine)
 (int chan, IRP *irp,PCB *pcb,UCB *ucb, int reason), int level,int flag)

Input

ucb Pointer to a UCB whose DDT$PS_CANCEL_2 is to be intercepted.
cancel_itc_routine The intercepting cancel routine. This routine is called before the driver’s

cancel routine. The calling convention of the cancel routine is the same as
the standard DDT$PS_CANCEL_2 routine, except that this routine must return
one of the following status values:

SS$_CHAINW — The next cancel routine should be called.
SS$_SUPERSEDE — No more cancel routines should be called.

Any other return value results in a bugcheck.
level Level of DDT to be intercepted. Currently, multipath does not support an inter-

cept level below MPDEV intercept.
flag Placeholder for future development; must be zero.

392

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

Return Value
SS$_NORMAL
DDT intercept added successfully.

This routine may also return various other error status values, including any status returned on a fail-
ure to allocate nonpaged pool.

Synchronization Environment
Caller must be in kernel mode, IPL at or below UCB fork IPL.

Almost all use of the DDT within OpenVMS requires holding the UCB fork lock. This is why this
routine acquires and conditionally releases the UCB fork lock to change the DDT.

IOC_STD$ESTABLISH_DDT_MNTVER
IOC_STD$ESTABLISH_DDT_MNTVER — Establishes the intercept of the DDT$PS_MNTVER_2
routine.

Calling Convention
int ioc_std$establish_ddt_mntver (UCB *ucb, int(*mntver_itc_routine)
 (IRP *irp, UCB *ucb), int level,int flag)

Input

ucb Pointer to a UCB whose DDT$PS_MNTVER_2 is to be intercepted.
mntver_itc_routine The intercepting mntver routine. This routine is called before the driver’s

mntver routine. The calling convention of the mntver routine is the same as
the standard DDT$PS_MNTVER_2 routine, except that this routine must return
one of the following status values:

SS$_CHAINW — The next mntver routine should be called.
SS$_SUPERSEDE — No more mntver routines should be called.

Any other return value results in a bugcheck.
level Level of DDT to be intercepted. Currently, multipath does not support an inter-

cept level below MPDEV intercept.
flag Placeholder for future development; must be zero.

Return Value
SS$_NORMAL
DDT intercept added successfully.

This routine may also return various other error status values, including any status returned on a fail-
ure to allocate pool.

Synchronization Environment
Caller must be in kernel mode, IPL at or below UCB fork IPL.

393

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

Almost all use of the DDT within OpenVMS requires holding the UCB fork lock. This is why this
routine acquires and conditionally releases the UCB fork lock to change the DDT.

E.2. Device Configuration Notification Rou-
tines
The device configuration notification routines provide notification of device configuration by way of
a callback. These routines enhance the functionality of the DDT intercept establisher routines but are
not limited to use with them.

The device configuration notification routines are:

• IOC_STD$DEVCONFIG_REGISTER — A kernel mode “registration” routine that privileged
code can call

• IOC_STD$DEVCONFIG_DEREGISTER — A complementary routine to revoke the registration

The registration routine specifies a device class and a callback routine address. Subsequently, when
any new device of that class is configured, the specified callback routine is called before the device
becomes visible to other threads of execution.

The callback routine can call any of the DDT intercept establisher routines for that device and thus
guarantees that the driver intercept is in place before any I/O could possibly be issued to the driver.

IOC_STD$DEVCONFIG_REGISTER
IOC_STD$DEVCONFIG_REGISTER — Delivers a notification via a callback when a new device of
a specified device class is configured on this system. The callback notification occurs when a device
is first configured on a system. Notification is not provided when an additional path or a new MSCP
server is added for an existing device. The notification mechanism remains in effect until it is revoked
by a call to the IOC_STD$DEVCONFIG_DEREGISTER routine.

Calling Convention
int ioc_std$devconfig_register(int flags, int devclass, void
 (*devconfigured)(UCB*ucb, int64 user_param), int64 user_param,
 int64 *ret_handle);

Input

flags Reserved to OpenVMS; must be zero. All other values result in a SS$_BAD-
PARAM error.

devclass The device class value, DC$_xxx from devdef.h in STARLET, for which noti-
fication is desired. Any value greater than 0 and less than 256 is supported. All
other values result in a SS$_BADPARAM error.

devconfigured Address of the caller’s desired callback routine, which must be in S0/S1 space.
When a new device is configured, this routine is called after the device UCB has
been linked into the I/O database and sufficiently initialized so that the I/O data-
base mutex is about to be released. This is after the appropriate driver’s structure
initialization routine has been called but before the driver’s unit initialization is
called. The IPL is at the UCB fork IPL, and the UCB fork lock is held.

394

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

user_param Arbitrary 64-bit integer parameter that is passed to the callback routine. Can be
used by the callback routine as a context parameter. The same combination of
devclass value, devconfigured value, and user_param value cannot be registered
twice.

Output
ret_handle 64-bit “handle” that can be used with the IOC_STD$DEVCON-

FIG_DEREGISTER routine to revoke this notification request. The caller should
treat the ret_handle value as an “opaque” quantity. A ret_handle value of zero is
returned if the routine fails.

Return Values
SS$_NORMAL
Notification was successfully delivered.

SS$_BADPARAM
The flags or devclass parameter values are invalid.

SS$_IVADDR
The callback routine address is not in S0/S1 space.

SS$_CBKEXISTS
Callback already exists for this combination of devclass, devconfigured, and user_param values. Mul-
tiple registration request for exactly the same notification routine, device class, and parameter are not
allowed.

Other return values:
Other error return values are possible, including any error return from an attempt to allocate nonpaged
pool.

Synchronization Environment
This routine must be called from kernel mode, process context, IPL 2 or lower. It returns at the entry
IPL. This routine declares an SPLIPLHIGH fatal bugcheck if the entry IPL is greater than 2.

Access to the list of registered device configuration callbacks is protected by the I/O database mu-
tex. Therefore, this routine acquires the I/O database mutex for write access and may put the calling
process into a resource wait state. This routine releases the I/O database mutex and restore the entry
IPL before returning to the caller.

IOC_STD$DEVCONFIG_DEREGISTER
IOC_STD$DEVCONFIG_DEREGISTER — Revokes a device configuration notification callback
that was previously enabled by a call to IOC_STD$DEVCONFIG_REGISTER.

Calling Convention
int ioc_std$devconfig_deregister(int64 ret_handle);

Input
ret_handle 64-bit “handle” that was returned by a prior call to IOC_STD$DEVCON-

FIG_DEREGISTER.

395

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

Return Values
SS$_NORMAL
Successfully revoked notification.

SS$_NOSUCHCBK
Did not find a registered device configuration callback with the specified handle, or the handle value
is invalid.

Synchronization Environment
This routine must be called from kernel mode, process context, IPL 2 or lower. It returns at the entry
IPL. This routine will declare a SPLIPLHIGH fatal bugcheck if the entry IPL is greater than 2.

Access to the list of registered device configuration callbacks is protected by the I/O database mu-
tex. Therefore, this routine acquires the I/O database mutex for write access and may put the calling
process into a resource wait state. This routine releases the I/O database mutex before returning to the
caller.

Device Configuration Callback Routine

Functional Description
The device configuration callback routine is a caller-specified routine. It is established as a device
configuration callback routine by a call to the IOC_STD_$DEVCONFIG_REGISTER routine.

The device configuration callback routine is called after a new device UCB has been linked into the
I/O database and sufficiently initialized such that the I/O database mutex is about to be released. This
is after the appropriate driver’s structure initialization routine has been called but before the driver’s
unit init routine is called.

The device configuration routine must be accessible in system context. Therefore, the address of the
device configuration routine must be in S0/S1 space. This is enforced by the IOC_STD$DEVCON-
FIG_REGISTER routine.

The callback is not invoked when an additional path or a new MSCP server is added for an existing
device, even though an additional UCB could be created for the new path.

Calling Convention
void (*devconfigured)(UCB *ucb, int64 user_param);

Input

ucb Address of the UCB that was just linked into the I/O database.
user_param 64-bit value that was specified on the call to IOC_STD$DEVCON-

FIG_REGISTER that established this callback routine.

Return Values
None.

396

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

Synchronization Environment
The device configuration callback routine is called in kernel mode at UCB fork IPL, with the UCB
fork lock held. The I/O database mutex is held for write access.

Note that the environment of the device configuration callback routine is not appropriate for calls to
IOC_STD$DEVCONFIG_REGISTER and IOC_STD$DEVCONFIG_DEREGISTER.

397

Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines

398

Appendix F. Programming USB
Generic Drivers
This appendix describes the USB generic driver, SYS$UGDRIVER.EXE, which allows users to sup-
port USB devices such as scanners and smart card readers without having to write a USB device dri-
ver. This is analogous to GKDRIVER for SCSI, which enables programmers to interface to SCSI de-
vices without having to write a full OpenVMS device driver.

The device name of the SYS$UGDRIVER driver is UGAx:. The generic driver allows users to sup-
port USB devices that are not part of the USB Human Interface Device (HID). This document de-
scribes various capabilities of the generic driver and provides a simple example of how to use it.

F.1. USB Device Structure
A USB device usually comprises one or more interfaces, with each interface having one or more con-
figurations. Each interface contains one or more communications paths called pipes. Each pipe be-
haves like a virtual circuit in a network.

By default, the control pipe is opened to identify a device and to match a driver for the device. The
control pipe is a bidirectional pipe: You send commands out over the pipe and, optionally, receive data
back.

Three other types of pipes are the interrupt, bulk, and isochronous pipes. The interrupt pipe is used
to report an insertion and removal of a card. Bulk input and bulk output pipes are used to move data
on and off the card.

As part of configuring a device, the driver opens all the necessary pipes and sets the desired configu-
ration.

Note

OpenVMS currently does not support isochronous pipes.

F.2. Driver Model
This section describes a simple fictional device and lists the steps an application takes to use the
generic USB driver to control the device. This fictional device is a smart-card reader that does not
conform to the smart-card device class. This reader has one interface that uses the vendor-specific
class “sub class” and protocol types of 0xff. It has a bulk-in pipe, a bulk-out pipe, an interrupt pipe,
and the required control pipe.

Assume that the steps necessary for the USB configuration to load a driver are complete. (How device
configuration works and how to obtain the information necessary for configuration are discussed lat-
er.) With these assumptions, plug the device into the system.

F.2.1. Driver Actions
At this point, the generic driver has opened all the pipes for the chosen interface and is waiting for an
application to assign a channel to it. The first channel assigned must be associated with the control
pipe before it can be used for anything else.

399

Appendix F. Programming USB Generic Drivers

1. The application now associates a channel to the interrupt pipe, the bulk-in pipe, and the bulk-out
pipe.

2. The application next determines the type of pipe it has and other data about the device that it needs
by using the IO$_SETCHAR and IO$_SENSECHAR functions.

3. The application then issues a “read” to the interrupt to determine if a card is present in the reader.
If a card is present, the application uses the control pipe and the bulk in and bulk out pipes to ex-
change data with the smart card.

F.3. Supported $QIO Functions
This section describes the $QIO function codes that the generic driver supports.

F.3.1. IO$_READxBLK
The driver treats read virtual, logical, and physical in the same way. Note that normal $QIO process-
ing rules for logical and physical block I/O still apply and are enforced by the $QIO dispatching code.
When a read is queued to a pipe, the driver checks to see if there is an outstanding I/O for that pipe.
If one is found, the request is placed in the I/O queue of the pipe. If no I/O is outstanding, the driver
starts the I/O queue for that pipe.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of buffer in which to store results
P2 Size of buffer in bytes
P3 Flag USB$_SHORT_XFER_OK allows fewer bytes than requested to complete the I/O
P4 Pipe handle

Status return codes are the usual OpenVMS ones for I/O devices. Because USB device status codes
are a longword in length, after first checking the status word of the I/O status block, the application
must check the second longword of the I/O status block. The second longword contains the USB sta-
tus code for the request. The status word in the IOSB can indicate success but have a USB error in the
second longword, shown as follows:

Xfer size bytes OpenVMS Status
USB Status

F.3.2. IO$_WRITExBLK
The driver treats virtual, logical, and physical writes in the same way. Note that normal $QIO process-
ing rules for logical and physical block I/O still apply and are enforced by the $QIO dispatching code.

When a write is queued to a pipe, the driver checks to see if there is an outstanding I/O for that pipe.
If one is found, the request is placed in the I/O queue of the pipe. If no I/O is outstanding, the driver
starts an I/O queue for that pipe.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of buffer from which to read date

400

Appendix F. Programming USB Generic Drivers

P2 Size of buffer in bytes
P3 Flag USB$_SHORT_XFER_OK allows fewer bytes than requested to complete the I/O
P4 Pipe handle

Status return codes are the usual OpenVMS ones for I/O devices. Because USB device status codes
are a longword in length, after first checking the status word of the I/O status block, the application
must check the second longword of the I/O status block. The second longword contains the USB sta-
tus code for the request. (The status word in the IOSB can indicate success but have a USB error in
the second longword.)

F.3.3. IO$_SET MODE/CHAR
F.3.3.1. Enable Unplug notification AST

This item allows an application to associate an AST that is delivered if a device is unplugged. You can
use any channel to enable this AST. Use the control channel for this AST. To cancel the AST, do not
supply an AST routine address and parameter.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 AST routine address
P2 AST parameter
P3 UG$_ENABLE_AST
P4 Access mode

F.3.3.2. Associate channel

Use this command to associate an OpenVMS channel to a pipe and to break the association of a chan-
nel to a pipe.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Unused
P2 Unused
P3 UG$_ASSOCIATE associates a channel to a pipe; UG$_DISASSOCIATE breaks an associa-

tion
P4 Pipe handle

F.3.3.3. Set pipe state

Use this command to set the state of a pipe. The driver treats parameters from the $QIO P1-P6 as fol-
lows:

P1 Unused
P2 Pipestate values are UG$_PIPE_STATE_ACTIVE, UG$_PIPE_STATE_STALED, and

UG$_PIPE_STATE_IDLE.
P3 UG$_SET_PIPE_STATE

401

Appendix F. Programming USB Generic Drivers

P4 Pipe handle

F.3.3.4. Send a control request
Use this command to send a device request to the device control pipe. For more details about device
requests, see section 9.3 USB 1.1 or 2.0 specifications at http://www.usb.org/developers/docs/.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of setup data; see the following table.
P2 Must be 8.
P3 UG$_DEVICE_REQUEST.
P4 Pipe handle.
P5 Address of buffer to receive data if there is a data phase.
P6 Flag USB$_SHORT_XFER_OK allows fewer bytes than requested to complete the I/O.

The following table shows the P1 buffer:

Offset Field Size Description
0 bmRequestType 1 Characteristics of the request:

B7:

0–Host to device

1–Device to host

B6..5 Type

0–Standard

1–Class

2–Vendor

3–Reserved

B4..0 Recipient

0–Device

1–Interface

2–Endpoint

3–Other

4...31–Reserved
1 bRequest 1 See the USB Specification [http://www.usb.org/devel-

opers/docs/].
2 wValue 2 Word sized field varies according to the request.
4 wIndex 2 Word sized field varies according to the request.

402

http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/
http://www.usb.org/developers/docs/

Appendix F. Programming USB Generic Drivers

Offset Field Size Description
6 wlength 2 Number of bytes to transfer if there is a data phase.

F.3.4. IO$_SENSEMODE/CHAR
F.3.4.1. Get number of pipes
Use this command to obtain the number of pipes. Make this the first operation that an application per-
forms using the driver. Use the channel for the control connection for this operation.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of longword to store the number of pipes
P2 Size of buffer in bytes must be 4.
P3 UG$_GET_PIPE_COUNT

F.3.4.2. Get pipe handles
Use this command to obtain all the pipe handles. The buffer must have one quadword for each pipe of
the device.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of buffer to hold pipe handles
P2 Size of buffer in bytes
P3 UG$_GET_PIPE_HANDLES

F.3.4.3. Get pipe direction
Use this command to obtain the direction of a pipe associated with its handle. The driver treats para-
meters from the $QIO P1-P6 as follows:

P1 Address of buffer to store pipe direction. Legal returns are USB$_XFER_OUT,
USB$XFER_IN, and USB$XFER_SETUP.

P2 Must be 4.
P3 UG$_GET_PIPE_TYPE
P4 Pipe handle

F.3.4.4. Get pipe type
Use this command to obtain the type of pipe associated with its handle. The driver treats parameters
from the $QIO P1-P6 as follows:

P1 Address of buffer to store pipe type. Types are UG$_PIPE_TYPE_CON-
TROL, UG$_PIPE_TYPE_BULK, UG$_PIPE_TYPE_INTERRUPT,
UG$_PIPE_TYPE_ISOCHRONOUS (The last type is currently not supported.)

P2 Must be 4.
P3 UG$_GET_PIPE_TYPE

403

Appendix F. Programming USB Generic Drivers

P4 Pipe handle

F.3.4.5. Get pipe state
Use this command to obtain the state of the pipe.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of buffer to hold the pipe state. Values of the pipe state are UG$_PIPE_STATE_AC-
TIVE, UG$_PIPE_STATE_STALLED, UG$_PIPE_STATE_IDLE.

P2 Must be 4.
P3 UG$_GET_PIPE_STATE
P4 Pipe handle

F.3.4.6. Get pipe size
Use this command to obtain the size of the largest transfer on the pipe. (This is really the largest size
that is sent on the bus in one transfer.) Actual requests can be larger. The driver takes care of splitting
the transfer up into appropriately sized bus transfers.

The driver treats parameters from the $QIO P1-P6 as follows:

P1 Address of buffer to hold pipe size
P2 Must be 4.
P3 UG$_GET_PIPE_SIZE
P4 Pipe handle

F.3.4.7. Get pipe descriptor
Use this routine is used to obtain the device descriptor from the device. The driver treats parameters
from the $QIO P1-P6 as follows:

P1 Address of buffer to receive the device descriptor. The format of the buffer is shown in
Table F.1.

P2 Size of buffer in bytes.
P3 UG$_GET_PIPE_SIZE
P4 UG$_GET_DEVICE_DESCRIPTOR

Table F.1. Format of the Device Descriptor

unsigned char ug$b_blength Descriptor length in bytes
unsXigned char ug$b_bdescriptortype Descriptor type constant 0X01
unsigned shortint ug$w_bcdusb BCD-encoded specification release number
unsigned char ug$b_bdeviceclass Device class code
unsigned char ug$b_bdevicesubclass Device sub class code
unsigned char ug$b_bdeviceprotocol Device protocol
unsigned char ug$b_bmaxpacket Maximum packet size for control pipe; 8, 16, 32,

64 are valid.

404

Appendix F. Programming USB Generic Drivers

unsigned shortint ug$w_idvendor Vendor ID
unsigned shortint ug$w_idproduct Product ID
unsigned shortint ug$w_bcddevice BCD encoded device release number.
unsigned char ug$b_imanufacturer Index of string descriptor that describes the man-

ufacturer.
unsigned char ug$b_iproduct Index of string descriptor that describes the prod-

uct.
unsigned char ug$b_iserailnumber ndex of string descriptor of device serial number.
unsigned char ug$b_bnumconfigurations Number of possible device configurations.

F.3.4.8. Get pipe descriptor
Use this routine is used to obtain the device descriptor from the device. The driver treats parameters
from the $QIO P1-P6 as follows:

P1 Address of buffer to receive the device descriptor. The format of the buffer is shown in
Table F.1.

P2 Size of buffer in bytes.
P3 UG$_GET_PIPE_SIZE
P4 UG$_GET_DEVICE_DESCRIPTOR

Table F.2. Format of the Device Descriptor

unsigned char ug$b_blength Descriptor length in bytes
unsXigned char ug$b_bdescriptortype Descriptor type constant 0X01
unsigned shortint ug$w_bcdusb BCD-encoded specification release number
unsigned char ug$b_bdeviceclass Device class code
unsigned char ug$b_bdevicesubclass Device sub class code
unsigned char ug$b_bdeviceprotocol Device protocol
unsigned char ug$b_bmaxpacket Maximum packet size for control pipe; 8, 16, 32,

64 are valid.
unsigned shortint ug$w_idvendor Vendor ID
unsigned shortint ug$w_idproduct Product ID
unsigned shortint ug$w_bcddevice BCD encoded device release number.
unsigned char ug$b_imanufacturer Index of string descriptor that describes the man-

ufacturer.
unsigned char ug$b_iproduct Index of string descriptor that describes the prod-

uct.
unsigned char ug$b_iserailnumber ndex of string descriptor of device serial number.
unsigned char ug$b_bnumconfigurations Number of possible device configurations.

F.3.4.9. Get interface descriptor
Use this command to obtain the interface descriptor from the device. The driver treats parameters
from the $QIO P1-P6 as follows:

405

Appendix F. Programming USB Generic Drivers

P1 Address of buffer to receive the interface descriptor. The format of the buffer is shown in
Table F.3.

P2 Size of buffer in bytes.
P3 UUG$_GET_INTERFACE_DESCRIPTOR

Table F.3. Format of the Interface Descriptor

unsigned char ug$b_blength Descriptor length in bytes
unsigned char ug$b_bdescriptortype Descriptor type constant 0X04
unsigned char ug$b_binterfacenumber Zero-based count of this interface
unsigned char ug$b_balternatesetting Used to select alternate setting for the interface
unsigned char ug$b_bnumendpoints Number of endpoints for the interface
unsigned char ug$b_binterfaceclass Interface class code
unsigned char ug$b_binterfacesubclass Interface subclass code
unsigned char ug$b_binterfaceprotocol Interface protocol

F.3.5. Cancel I/O
When you issue a cancel on a channel, the driver checks the I/O queue of the channel, flushes any
queued requests, and returns them with a status of SS$_CANCEL. Any pending I/O to the pipe
is aborted using the USB abort pipe code. In that situation, the status in the I/O status block is
SS$_ABORT, and the second longword has the status that is returned from the aborted I/O.

If you deassign a channel, the association between the channel number and the pipe is broken. Deas-
signing the channel does not close the pipe. The pipes are closed only when the device is unplugged.
Therefore, you can reuse a device without unplugging it from the system and plugging it back in.

F.3.6. Error Handling
You can encounter any number of errors while developing code to support a device. One common er-
ror that you is USB$_STALL, the common way USB devices indicate that the command they just re-
ceived is invalid. Unfortunately, it is also possible to receive this in normal operation if the device is
simply too busy to acknowledge the request.

F.3.7. Example
An example program is in SYS$COMMON:[SYSHLP.EXAMPLES.USB],:ug_example.c. This
program is a simple example of how to use the UG driver to control a USB device. In this case, it
loops two PL2303 USB to RS232 controllers and exchanges data. Note that this example does not ex-
ercise all the capabilities of the UG driver, nor does it work on all PL2303-based controllers. Some
PL230- based controllers require additional setup, which is not shown in this example.

To compile the example, copy the programs ug_example.c and ugdef.h from sys$com-
mon:[syshlp.examples.usb] to a local directory where you have write access, then compile
and link them; no special switches are needed. To run the program, you must add both PL2303 de-
vices into the system. To do this, follow the steps in Section F.3.8.

The example program follows steps that are the usual ones for any device you want to control:

1. Assign a channel to the device or devices.

406

Appendix F. Programming USB Generic Drivers

2. Find out how many pipes the device has

3. Verify that you are communicating with the correct device. The program does this by reading the
device descriptor and checking it against what it expects to find.

4. Associate an OpenVMS channel to a pipe and obtain the pipe type and direction.

5. Perform any required device-specific setup.

6. Exchange data with the device.

F.3.8. USB Device Configuration
USB device configuration is as simple as adding some text lines to SYS$USER_CONFIG.DAT; it is
also simple to do wrong.

You perform USB configuration with the same files that you use to configure device controllers
for OpenVMS: SYS$CONFIG.DAT and SYS$USER_CONFIG.DAT. Both files are located in the
SYS$SYSTEM: directory. As you might expect, user-written drivers add their configuration records
to SYS$USER_CONFIG.DAT; OpenVMS does not modify the contents – even across O/S upgrades.

The contents of the files are evaluated: SYS$USER_CONFIG.DAT is evaluated first, and SYS$CON-
FIG.DAT second, allowing a user-written configuration record to supersede a system-supplied record.

USB is different from normal OpenVMS device configuration in several respects:

• The devices are not classic bus-based controllers, but, rather, devices connected to a peripheral
bus.

• You can attach and remove devices at will, even at runtime, which requires USB drivers to be
loaded on the fly as well as made offline on the fly.

• Simple vendor/device identification matching, which is performed for other buses, is not sufficient
to determine which driver to load for a USB device.

• USB device drivers are part of a larger “stack” of drivers; the controller port driver, the HUB dri-
ver, or the HID driver are involved in aspects of configuration and operation of the device. A USB
device driver is a pseudo-driver in the sense that it does not directly talk to the device, but passes
messages to other drivers that can talk to the USB bus and send messages to and receive messages
from USB devices.

• The USB protocol was developed to allow device-to-driver matching to be done on multiple lev-
els, depending on the type of device and the needs of the driver.

• Device discovery is asynchronous on the USB bus, and it is not feasible to poll the bus to find de-
vices. Instead, devices are configured in response to an event from a HUB device indicating that
it has a new device to report. HUBs are both external devices that provide additional slots, and a
Root HUB is built onto the controller to which the initial USB connections are attached.

• You can attach and remove devices at will, even at runtime, which requires USB drivers to be
loaded on the fly as well as made offline on the fly.

The UGDRIVER is the basis of a “generic” driver. It is the functional equivalent of the SCSI GK-
DRIVER for USB devices; it implements simple logic that takes care of USB housekeeping and al-
lows a user to read and write raw data packets to the USB device.

407

Appendix F. Programming USB Generic Drivers

Section F.3.8.1, describes how to (configure UGDRIVER to a specific device or a specific class of de-
vices), and how to make sure that UGDRIVER does not interfere with the configuration of other de-
vices and their drivers.

F.3.8.1. The Basics of Configuration
USB devices include the device itself and one or more Interfaces. Most devices present a single inter-
face. An interface can be serviced by a single driver, or by multiple drivers. A single driver can also
service multiple interfaces. Though this procedure seems complex, for the typical USB device, there
is only one interface.

When a new device is discovered by a HUB, the HUB driver collects information about the device
and sends a message to the USB Configuration Manager (UCM), which is a background process that
hibernates, waiting to service configuration events. UCM is the code that knows how to perform de-
vice-to -driver matching and how to load device drivers. UCM also maintains an on-disk database of
device-to-driver mappings that it previously performed and made permanent (persistent). This data-
base allows a device always to obtain the same OpenVMS device name each time it is plugged in.

F.3.8.2. Plugging In A New Device
The HUB driver collects information about the device and its interfaces, and then requests UCM to at-
tempt to configure and load a device driver for it. The HUB driver does this in the following methods:

• First it tries to configure the device as a “DEVICE,” the simplest type of configuration; it ig-
nores the interface information. Devices can be identified by vendor_id, product_id, revision, de-
vice_class, device_subclass, anddevice_protocol.

• If a driver is not successfully configured, then the HUB driver asks UCM to try to configure the
device as an “INTERFACE”—for each interface the device presents (which is usually only one).
Interfaces are identified by vendor_id, product_id, revision, interface_class, interface_subclass,
and interface_protocol. The vendor and product ID codes and revision value are inherited from the
device.

Note

This discussion excludes Human Interface Devices. These devices involve human interaction—such
as a mouse, keyboard, joystick, simulator, tablet, or game pad—and are handled by a special HID dri-
ver. HID devices are identified by a two-byte value of Usage Page and Usage Type; these values are
combined into a 16-bit value “TAG,” and device- driver matching is performed by searching for a
matching TAG value. The UG driver can be used to talk to a HID device, but it cannot be loaded us-
ing the HID Usage Page/Type values. A second generic HID driver is needed for that purpose.

F.3.8.3. The Generic List
UCM now has the device information it needs to match to a device driver. To do this, it examines the
Generic list. It has created this list by reading the SYS$USER_CONFIG.DAT file and the SYS$CON-
FIG.DAT file, searching for records that contain a private section with a USB_CONFIG_TYPE
record.

The records in the file are simple; each record starts with a DEVICE keyword and ends with
an END_DEVICE keyword. USB records are pseudo-devices in the sense that they provide no
ADAPTER type and do not have a conventional device ID. Instead, using the BEGIN_PRIVATE and
END_PRIVATE construct, they provide USB-specific information. Within this private data area, each
line starts with a USB keyword.

408

Appendix F. Programming USB Generic Drivers

The following table lists the USB keywords:

Keyword Description
USB_CONFIG_TYPE Tells UCM how the driver is to be configured – as a DEVICE, IN-

TERFACE or TAG method.
USB_CLASS_DRIVER Used for specialized drivers that are class drivers for other USB

drivers such as the HID driver. You do not need to use it. The val-
ues are SINGLE_INSTANCE and MULTIPLE_INSTANCE.

VENDOR_ID Vendor ID
PRODUCT_ID Product ID
RELEASE_NUMBER Revision number
DEVICE_CLASS The device class code
DEVICE_SUB_CLASS Device subclass
DEVICE_PROTOCOL Device protocol
BEGIN_INTERFACE Starts an interface definition. (There can be multiple interface defi-

nitions.)
INTERFACE_CLASS Interface class
INTERFACE_SUB_CLASS Interface subclass
INTERFACE_PROTOCOL Interface protocol
END_INTERFACE Ends an interface definition.
HID_USAGE_DATA The Usage Page/Type TAG for HID devices
USAGE_TAG An alternate TAG type used by HID-like drivers for performing

TAG lookups; for example, the EDGEPORT Serial Multiplexer us-
es this.

USB_LOGGING Used to enable some extra logging (not available to normal drivers
– used by CLASS drivers)

In addition, the standard DEVICE and DRIVER keywords must be included outside the BEGIN_PRI-
VATE and END_PRIVATE section, telling UCM the device name and driver name to use for the de-
vice.

UCM parses this data into a data structure and creates an in-memory Generic list of all the USB de-
vices that are in the files. The queue is in the same order as the devices appear in the file, and the
SYS$USER_CONFIG.DAT records come before the SYS$CONFIG.DAT records.

The data in this list is used to match against the configuration request that the HUB driver makes. The
matching process can be considered complex.

F.3.8.4. Device Configuration
In device configuration, the hub driver asks UCM to configure the device by device, not by interface
or tag.

Note

In general, drivers do not use device configuration; rather, they use interface configuration. The most
common use of device configuration is to load special device classes such as hub devices. For a gener-

409

Appendix F. Programming USB Generic Drivers

al driver, the only practical use of device configuration is to force the loading of a specific device dri-
ver, regardless of any other configuration records that might otherwise match.

The match logic for a device that has not been connected to the system before is not a simple compari-
son of all the fields in search of a match. The reason is that a driver (and its configuration record) can
match a variety of devices; this is a generic driver. Alternatively, you might have a vendor-specific
driver.

The driver class code can be 0-255, and 255 can have special meanings: If the device code is zero, the
device present has no device class, no subclass, and no protocol; all of these fields are 0. If the class is
255 (0xFF), the protocol is vendor-specific and must match the vendor ID.

A set of tests determines whether a generic record matches the configuration request. The tests are
not all equal: A“priority” is assigned to each test. All the generic records are scanned. A record that
matches is compared against the previous match; if the new match has a greater priority, it is used. If
no records have matched, a zero is used. This matching means the following:

• Higher priority matches win over lower ones.

• Duplicate matches of the same priority ignore subsequent matches.

In this manner, records are created so that drivers are selected from more specific to less specific. The
following tests are in order of priority—from best match to worst match. When only a field is includ-
ed, both the configuration request and the generic list entry field must match. When a generic field
must be 0 (because omitting the field in the device record in the file sets it to zero), the request field is
ignored.

Match 1:

• Vendor ID

• Product ID

• Release Number

• Device Class

• Device Subclass

• Device Protocol

Match 2:

• Vendor ID

• Product ID

• Release Number

• Device Class

• Device Subclass

• Generic Device Protocol must be 0

Match 3:

410

Appendix F. Programming USB Generic Drivers

• Vendor ID

• Product ID

• Release Number

• Generic Device Protocol must be 0

Match 4:

• Vendor ID

• Product ID

• Generic Record Release Number must be 0

• Generic Device Protocol must be 0

Match 5:

• Generic Vendor ID must be 0

• Generic Product ID must be 0

• Generic Release Number must be 0

• Device Class (not 255)

• Device Subclass

• Device Protocol

Match 6:

• Generic Vendor ID must be 0

• Generic Product ID must be 0

• Generic Release Number must be 0

• Device Class (not 255)

• Device Subclass

The matching tests show that an entry that is fully qualified always matches before a more generic
one.

Note that there is no explicit testing for a Device Class of 0 because the standard requires that devices
with a class field of 0 have the subclass and protocol set to 0. The preceding tests handle classes of 0
correctly.

All tests in which the device class cannot be 255 require that the generic record contain no vendor ID
(and, by implication, no product ID and no Release Number). This allows the hub record, for exam-
ple, which has no vendor or product IDs, to match against all devices with a class code of

9. However, a user record that provides only the vendor and product IDs claims a device with a class
code of 9 over the generic hub record.

411

Appendix F. Programming USB Generic Drivers

The tests might be tuned to provide a finer granularity, but, in general, the current tests provide all the
control a user might need for configuring a device.

F.3.8.5. Interface Configuration

An interface configuration means that the hub driver asks UCM to configure the device by interface—
not by device or tag. The match logic for a device interface that has not been connected to the system
before is not simply a comparison of all the fields looking for a match, because you can have an inter-
face driver (and a configuration record for it) that can match a variety of devices; this is a generic dri-
ver. However, you might have a vendor-specific driver.

The interface class code can be 0 through 255. The value 255 has a unique meaning: If the class is 255
(0xFF), the interface is vendor-specific and must match the vendor ID.

A set of tests determines if a generic record matches the configuration request. The tests are not all
equal – a “priority” is assigned to each test, and all the generic records are scanned. A record that
matches is compared against the previous match (or against zero if no matches are found). If the new
match has a greater priority, it is used. This matching means the following:

• Higher priority matches win over lower ones.

• Duplicate matches of the same priority ignore subsequent matches.

In this manner of matching, records can be created so that drivers are selected from more specific to
less specific. The following tests are in order of priority—from best match to worst match.

When only one field is given, both the configuration request and the generic list entry field must
match. When a generic field must be 0 (because omitting the field in the device record in the file sets
it to 0), the request field is ignored.

Match 1:

• Vendor ID

• Product ID

• Interface Class

• Interface Subclass

• Interface Protocol

Match 2:

• Vendor ID

• Product ID

• Interface Class

• Interface Subclass

• Generic Interface Protocol must be 0

Match 3:

412

Appendix F. Programming USB Generic Drivers

• Vendor ID

• Interface Class must be 255

• Interface Subclass

• Interface Protocol

Match 4:

• Vendor ID

• Interface Class must be 255

• Interface Subclass

• Generic Interface Protocol must be 0

Match 5:

• Generic Vendor ID must be 0

• Generic Product ID must not be 255

• Interface Subclass

• Interface Protocol

Match 6:

• Generic Vendor ID must be 0

• Interface Class must not be 255

• Interface Subclass

Just as in device matching, the order is from strongest match to weakest match, from more specific to
less specific, from vendor-specific to generic.

As an example, you might find an inexpensive tablet on the Internet and want to write a driver for it.
First, you must configure the device to obtain its device information, so you must plug it in. Using the
UCM command SHOW EVENT, you can look at events on the USB bus.

Example F.1. Configuring a Device to Obtain Device Information

UCM> show event/since=today
Date Time Type Priority Component
--
15-MAY-2017 13:23:14.54 DRIVER NORMAL HUBDRIVER
Message: Configured device UCM0 using driver SYS$HUBDRIVER:

15-MAY-2017 13:23:16.83 DRIVER NORMAL HUBDRIVER
Message: Configured device UCM0 using driver SYS$HUBDRIVER:

15-MAY-2017 13:25:05.27 DRIVER NORMAL HUBDRIVER
Message: Configured device HID0 using driver SYS$MOUDRIVER:

413

Appendix F. Programming USB Generic Drivers

UCM>

This example shows the events from today. The first two are HUB devices; the last event, however, is
your device. To obtain more information, ask for INFORMATIONAL events:

UCM> sho event/since=today/priority=informational
Date Time Type Priority Component
--
15-MAY-2017 13:23:14.52 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for DeviceClass/DeviceSubClass = 0x9/0x0

15-MAY-2017 13:23:14.52 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for DeviceClass/DeviceSubClass = 0x9/0x0

15-MAY-2017 13:23:14.54 UNKNOWN INFORMATIONAL UCM DEVICE UCM0
Message: VENDOR_ID = 4113
PRODUCT_ID = 0
RELEASE_NUMBER = 0
BUS_NUMBER = 0
PATH = 0.0.0.0.0.0
DEVICE_CLASS = 9
DEVICE_SUB_CLASS = 0
DEVICE_PROTOCOL = 0
NUMBER_OF_INTERFACES = 1
NUMBER_OF_CONFIGURATIONS = 1
CONFIGURATION_NUMBER = 0.

15-MAY-2017 13:23:14.54 UCM INFORMATIONAL SYS$HUBDRIVER.EXE
Message: Loaded single instance class driver for UCM0.

15-MAY-2017 13:23:14.77 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for DeviceClass/DeviceSubClass = 0x9/0x0

15-MAY-2017 13:23:16.83 UNKNOWN INFORMATIONAL UCM DEVICE UCM0
Message: VENDOR_ID = 1033
PRODUCT_ID = 89
RELEASE_NUMBER = 256
BUS_NUMBER = 1
PATH = 1.0.0.0.0.0
DEVICE_CLASS = 9
DEVICE_SUB_CLASS = 0
DEVICE_PROTOCOL = 0
NUMBER_OF_INTERFACES = 1
NUMBER_OF_CONFIGURATIONS = 1
CONFIGURATION_NUMBER = 0.

15-MAY-2017 13:23:16.83 UCM INFORMATIONAL SYS$HUBDRIVER.EXE
Message: Loaded single instance class driver for UCM0.

15-MAY-2017 13:25:04.94 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for DeviceClass/DeviceSubClass = 0x0/0x0

15-MAY-2017 13:25:04.94 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for InterfaceClass/InterfaceSubClass/Protocol = 0

x3/0x0/0x0

414

Appendix F. Programming USB Generic Drivers

15-MAY-2017 13:25:04.99 UNKNOWN INFORMATIONAL UCM DEVICE HID0
Message: VENDOR_ID = 2250
PRODUCT_ID = 16
RELEASE_NUMBER = 261
BUS_NUMBER = 1
PATH = 1.2.0.0.0.0
DEVICE_CLASS = 0
DEVICE_SUB_CLASS = 0
DEVICE_PROTOCOL = 0
NUMBER_OF_INTERFACES = 1
CONFIGURATION_VALUE = 1
INTERFACE_NUMBER = 0
INTERFACE_PROTOCOL = 0
INTERFACE_CLASS = 3
INTERFACE_SUB_CLASS = 0
NUMBER_OF_CONFIGURATIONS = 1
MANUFACTURER_STRING = AIPTEK International Inc. PRODUCT_STRING = USB Tablet
 Series Version 1.05 CONFIGURATION_NUMBER = 0
CURRENT_INTERFACE = 0.

15-MAY-2017 13:25:04.99 UCM INFORMATIONAL SYS$HIDDRIVER.EXE
Message: Loaded single instance class driver for HID0.

15-MAY-2017 13:25:05.00 DRIVER INFORMATIONAL HIDDRIVER
Message: Find a driver for usage page 0001 usage type 0002

15-MAY-2017 13:25:05.27 UNKNOWN INFORMATIONAL UCM DEVICE MOU
Message: BUS_NUMBER = 1
PATH = 1.2.0.0.0.0.HID_USAGE_DATA = 65538.

UCM>

This display provides more information. The last section shows the device, which uses an Interface
Class of 3, the class that causes the Human Interface Driver (HID) to claim it.

To configure your driver (UGDRIVER), assume that you want to handle only this device (because the
generic Interface driver for this class is HID) and currently no way exists to provide user-written HID
drivers.

Edit SYS$USER_CONFIG.DAT to add the following record:

device = "CyberTablet 12000"
name = UG
driver = sys$ugdriver
begin_private
usb_config_type = interface
vendor_id = 2250
product_id = 16
begin_interface
interface_class = 3
interface_sub_class = 0
interface_protocol = 0
end_interface
end_private
end_device

This new record indicates that if a device has the vendor code of 2250, and product ID of 16, and In-
terface Class of 3, and Protocol and Subclass of 0, load the UGDRIVER and call the device UG.

415

Appendix F. Programming USB Generic Drivers

All numbers came from the event information. You must include a vendor and product code because
you do not want other devices, such as a generic mouse or some other vendor’s tablet, to use your dri-
ver.

You then must reload the database for UCM by using the RELOAD or RESTART command. The dif-
ference between the two commands is that a RESTART (besides reading in new configuration data)
also removes any in-memory structures that might have been built by earlier device events.

In this case, you create a MOU0 (USB MOUSE) device; MOU0, by default, is never saved as a per-
manent device (see the description of permanent devices). To reduce the amount of information in the
event file, you must reset it, then you unplug the device and plug it back in as shown in the following
example:

$ UCM
Universal Serial Bus Configuration Manager, Version V1.0 UCM> restart
Restart UCM Server? [N]: y
Waiting for UCM Server image to exit....
Waiting for UCM Server image to restart....
%USB-S-SRVRRESTART, Identification of new UCM Server is 0000021E
UCM> set log/new
UCM> show event
Date Time Type Priority Component
--
15-MAY-2017 13:47:13.58 DECONFIGURED NORMAL HUBDRIVER
Message: Deconfiguring device on bus 1 at port 2 bus tier 2 usb address 3

15-MAY-2017 13:47:14.76 UCM NORMAL SYS$UGDRIVER.EXE
Message: Tentative device UGA0 proposed... auto-loading driver.

15-MAY-2017 13:47:14.78 UCM NORMAL UGA
Message: Auto-perm converting tentative device UGA0 into permanent device.

15-MAY-2017 13:47:14.88 DRIVER NORMAL HUBDRIVER
Message: Configured device UGA0 using driver SYS$UGDRIVER:

UCM>

The messages indicate that the device was loaded.

If you display INFORMATIONAL data, you see the following additional information:

UCM> show event/priority=all
Date Time Type Priority Component
--
15-MAY-2017 13:47:13.58 DECONFIGURED NORMAL HUBDRIVER
Message: Deconfiguring device on bus 1 at port 2 bus tier 2 usb address 3

15-MAY-2017 13:47:14.71 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for DeviceClass/DeviceSubClass = 0x0/0x0

15-MAY-2017 13:47:14.71 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for InterfaceClass/InterfaceSubClass/Protocol =
 0x3/0x0/0x0

15-MAY-2017 13:47:14.76 UNKNOWN INFORMATIONAL UCM DEVICE UGA
Message: VENDOR_ID = 2250
 PRODUCT_ID = 16
 RELEASE_NUMBER = 261

416

Appendix F. Programming USB Generic Drivers

 BUS_NUMBER = 1
 PATH = 1.2.0.0.0.0
 DEVICE_CLASS = 0
 DEVICE_SUB_CLASS = 0
 DEVICE_PROTOCOL = 0
 NUMBER_OF_INTERFACES = 1
 CONFIGURATION_VALUE = 1
 INTERFACE_NUMBER = 0
 INTERFACE_PROTOCOL = 0
 INTERFACE_CLASS = 3
 INTERFACE_SUB_CLASS = 0
 NUMBER_OF_CONFIGURATIONS = 1
 MANUFACTURER_STRING = AIPTEK International Inc.
 PRODUCT_STRING = USB Tablet Series Version 1.05
 CONFIGURATION_NUMBER = 0
 CURRENT_INTERFACE = 0.

15-MAY-2017 13:47:14.76 UCM NORMAL SYS$UGDRIVER.EXE
Message: Tentative device UGA0 proposed... auto-loading driver.

15-MAY-2017 13:47:14.78 UCM NORMAL UGA
Message: Auto-perm converting tentative device UGA0 into permanent device.

15-MAY-2017 13:47:14.88 DRIVER NORMAL HUBDRIVER
Message: Configured device UGA0 using driver SYS$UGDRIVER:

UCM>

The most significant part of the device configuration is that it does not interfere with other devices
with the same interface class; for example, the joystick also uses class 3, subclass 0, and protocol 0.
However, if you plug in a joystick, it correctly uses the HID driver, which uses the generic match for
Interface Class 3 to load the joystick driver (AGDRIVER), as shown in the following example:

UCM> show event/priority=all
Date Time Type Priority Component
--
15-MAY-2017 13:47:13.58 DECONFIGURED NORMAL HUBDRIVER
Message: Deconfiguring device on bus 1 at port 2 bus tier 2 usb address 3

15-MAY-2017 13:47:14.71 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for DeviceClass/DeviceSubClass = 0x0/0x0

15-MAY-2017 13:47:14.71 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for InterfaceClass/InterfaceSubClass/Protocol =
 0x3/0x0/0x0

15-MAY-2017 13:47:14.76 UNKNOWN INFORMATIONAL UCM DEVICE UGA
Message: VENDOR_ID = 2250
 PRODUCT_ID = 16
 RELEASE_NUMBER = 261
 BUS_NUMBER = 1
 PATH = 1.2.0.0.0.0
 DEVICE_CLASS = 0
 DEVICE_SUB_CLASS = 0
 DEVICE_PROTOCOL = 0
 NUMBER_OF_INTERFACES = 1
 CONFIGURATION_VALUE = 1
 INTERFACE_NUMBER = 0

417

Appendix F. Programming USB Generic Drivers

 INTERFACE_PROTOCOL = 0
 INTERFACE_CLASS = 3
 INTERFACE_SUB_CLASS = 0
 NUMBER_OF_CONFIGURATIONS = 1
 MANUFACTURER_STRING = AIPTEK International Inc.
 PRODUCT_STRING = USB Tablet Series Version 1.05
 CONFIGURATION_NUMBER = 0
 CURRENT_INTERFACE = 0.

15-MAY-2017 13:47:14.76 UCM NORMAL SYS$UGDRIVER.EXE
Message: Tentative device UGA0 proposed... auto-loading driver.

15-MAY-2017 13:47:14.78 UCM NORMAL UGA
Message: Auto-perm converting tentative device UGA0 into permanent device.

15-MAY-2017 13:47:14.88 DRIVER NORMAL HUBDRIVER
Message: Configured device UGA0 using driver SYS$UGDRIVER:

15-MAY-2017 14:16:46.55 DECONFIGURED NORMAL HUBDRIVER
Message: Deconfiguring device on bus 1 at port 2 bus tier 2 usb address 3

15-MAY-2017 14:16:49.46 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for DeviceClass/DeviceSubClass = 0x0/0x0

15-MAY-2017 14:16:49.46 DRIVER INFORMATIONAL HUBDRIVER
Message: Find a driver for InterfaceClass/InterfaceSubClass/Protocol =
 0x3/0x0/0x0

15-MAY-2017 14:16:49.49 UNKNOWN INFORMATIONAL UCM DEVICE HID0
Message: VENDOR_ID = 1699
 PRODUCT_ID = 13630
 RELEASE_NUMBER = 256
 BUS_NUMBER = 1
 PATH = 1.2.0.0.0.0
 DEVICE_CLASS = 0
 DEVICE_SUB_CLASS = 0
 DEVICE_PROTOCOL = 0
 NUMBER_OF_INTERFACES = 1
 CONFIGURATION_VALUE = 1
 INTERFACE_NUMBER = 0
 INTERFACE_PROTOCOL = 0
 INTERFACE_CLASS = 3
 INTERFACE_SUB_CLASS = 0
 NUMBER_OF_CONFIGURATIONS = 1
 MANUFACTURER_STRING = Saitek
 PRODUCT_STRING = Cyborg evo Wireless
 CONFIGURATION_NUMBER = 0
 CURRENT_INTERFACE = 0.

15-MAY-2017 14:16:49.49 UCM INFORMATIONAL SYS$HIDDRIVER.EXE
Message: Loaded single instance class driver for HID0.

15-MAY-2017 14:16:49.50 DRIVER INFORMATIONAL HIDDRIVER
Message: Find a driver for usage page 0001 usage type 0005

15-MAY-2017 14:16:49.63 UNKNOWN INFORMATIONAL UCM DEVICE AGA
Message: BUS_NUMBER = 1
PATH = 1.2.0.0.0.0.HID_USAGE_DATA = 65541.

418

Appendix F. Programming USB Generic Drivers

15-MAY-2017 14:16:49.63 UCM NORMAL SYS$AGDRIVER.EXE
Message: Tentative device AGA0 proposed... auto-loading driver.

15-MAY-2017 14:16:49.65 UCM NORMAL AGA
Message: Auto-perm converting tentative device AGA0 into permanent device.

15-MAY-2017 14:16:49.78 DRIVER NORMAL HUBDRIVER
Message: Configured device HID0 using driver SYS$AGDRIVERR:

UCM>

The following section describes the message reporting that the device is tentative and is converted in-
to a permanent device.

F.3.9. Permanent Devices and Tentative Devices
USB devices have OpenVMS device names assigned to them when they are configured; however, if
you plug in multiple devices of the same type, in a different order or in different places, they all might
have different names. Worse still, the USB bus discovery is asynchronous, and between each boot, the
order of device discovery might be different.

It is not advisable for two printers, for example, to change names randomly when the system is boot-
ed.

The UCM tries to ensure that names are persistent (permanent) across boots and across hot-plugs.
UCM uses two strategies to do this:

• Serial Number—If a device has a serial number, the vendor/product code part must be unique.

• Path—The USB bus is a hierarchical topology. Each device can be described by the level (HUB
level) and port within the HUB. A path is a six- digit value similar to 1.2.0.0.0.0.

When a device is configured, UCM looks in a database of PERMANENT devices to determine if this
device has been seen before. If it has not, the device is configured (as described previously), and the
complete information about the device is stored in the permanent database, including the OpenVMS
name that was used for it.

In general, the matching of devices in the permanent database is not a heuristic; it is, rather, an exact
match.

The exception to this is TEMPLATE devices. Currently, only two—the Mouse and Keyboard—exist.
These devices have preallocated entries in the permanent database. A flag tells UCM that if a Mouse
or Keyboard is plugged in always to create MOU0 and KBD0, no matter where they are plugged in.
Mice and keyboards do not have serial numbers, and it would not be user-friendly to create MOU1 in-
stead of MOU0 simply because someone plugged the connectors into a different USB slot. However,
this dates from when making devices permanent and configuring and loading the OpenVMS device
was a manual process.

F.3.9.1. Controlling Device Permanence and Loading
You can use the UCM commands SET AUTO and SHOW AUTO to restrict the automatic recognition
of new devices. This can be useful when debugging your USB device or debugging its configuration.
For example:

$ UCM SET AUTO/ENABLE=(LOAD)/DISABLE=(PERM)

419

Appendix F. Programming USB Generic Drivers

This command allows the device to be loaded but does not save it in the permanent (on disk) database.

$ UCM SET AUTO/DISABLE

This command disables automatic loading of the device. Instead, the device is made “Tentative” –
that is, UCM knows that the device is there and what driver to load but requires the UCM command
ADD DEVICE to cause it to be made permanent. In addition, the device must then be hot-swapped
(unplugged and plugged back in again).

The default is SET AUTO/ENABLE, which enables auto-load and auto-perm. The SHOW AUTO
command displays the current settings.

In addition, you can set EXCLUDE and INCLUDE lists. For more information, see the UCM section
of the VSI OpenVMS System Management Utilities Manual.

420

	I/O User’s Reference Manual
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Device Driver Support for OpenVMS Alpha and Integrity servers 64-Bit Addressing
	5. About VSI OpenVMS Alpha VXXXXXXXX
	6. Typographical Conventions
	7. VSI Encourages Your Comments
	8. How to Order Additional Documentation

	Chapter 1. ACP-QIO Interface
	1.1. ACP Functions and Encoding
	1.2. File Information Block (FIB)
	1.3. ACP Subfunctions
	1.3.1. Directory Lookup
	1.3.1.1. Input Parameters
	1.3.1.2. Operation
	1.3.1.3. Directory Entry Protection

	1.3.2. Access
	1.3.2.1. Input Parameters
	1.3.2.2. Operation

	1.3.3. Extend
	1.3.3.1. Input Parameters
	1.3.3.2. Operation

	1.3.4. Truncate
	1.3.4.1. Input Parameters
	1.3.4.2. Operation

	1.3.5. Read/Write Attributes
	1.3.5.1. Input Parameters
	1.3.5.2. Attribute Descriptions

	1.4. ACP-QIO Record Attributes Area
	1.5. ACP-QIO Attributes Statistics Block
	1.6. Major Functions
	1.6.1. Create File
	1.6.1.1. Input Parameters
	1.6.1.2. Disk ACP Operation
	1.6.1.3. Directory Entry Creation
	1.6.1.4. Magnetic Tape ACP Operation

	1.6.2. Access File
	1.6.2.1. Input Parameters
	1.6.2.2. Operation

	1.6.3. Deaccess File
	1.6.3.1. Input Parameters
	1.6.3.2. Operation

	1.6.4. Modify File
	1.6.4.1. Input Parameters
	1.6.4.2. Operation

	1.6.5. Delete File
	1.6.5.1. Operation

	1.6.6. Movefile Subfunction
	1.6.6.1. Calling the Movefile Subfunction
	1.6.6.1.1. Input Parameters
	1.6.6.1.1.1. Operation

	1.6.7. Mount
	1.6.8. ACP Control
	1.6.8.1. Input Parameters
	1.6.8.2. Magnetic Tape Control Functions
	1.6.8.3. Miscellaneous Disk Control Functions
	1.6.8.4. Disk Quotas

	1.7. I/O Status Block

	Chapter 2. Disk Drivers
	2.1. Driver Features
	2.1.1. Data Check
	2.1.2. Effects of a Failure During an I/O Write Operation
	2.1.3. Error Recovery
	2.1.4. SCSI Disk Class Driver
	2.1.5. Audio Extensions to the SCSI Disk Class Driver

	2.2. Disk Driver Device Information
	2.3. Disk Function Codes
	2.3.1. Read
	2.3.2. Write
	2.3.3. Sense Mode
	2.3.4. Set Density
	2.3.5. Search
	2.3.6. Pack Acknowledge
	2.3.7. Unload
	2.3.8. Available
	2.3.9. Seek
	2.3.10. Write Check
	2.3.11. Audio Extensions
	2.3.11.1. $QIO Interface to Audio Functionality of the SCSI Disk Class Driver
	2.3.11.2. Defining an Audio Control Block (AUCB)
	2.3.11.3. Error Handling in Applications Using SCSI Audio Functions
	2.3.11.4. Using CD-ROM to Store Both Data and Audio Information
	2.3.11.5. Programming Audio Applications

	2.4. I/O Status Block
	2.5. Disk Driver Programming Example

	Chapter 3. Magnetic Tape Drivers
	3.1. Magnetic Tape Controllers and Drives
	3.2. Magnetic Tape Driver Device Information
	3.3. Magnetic Tape Function Codes
	3.3.1. Read
	3.3.2. Write
	3.3.3. Rewind
	3.3.4. Skip File
	3.3.5. Skip Record
	3.3.5.1. Logical End-of-Volume (EOV) Detection

	3.3.6. Write End-of-File
	3.3.7. Rewind Offline
	3.3.8. Unload
	3.3.9. Sense Tape Mode
	3.3.10. Set Mode
	3.3.11. Multiple Tape Density Support
	3.3.12. Data Security Erase
	3.3.13. Modify
	3.3.14. Pack Acknowledge
	3.3.15. Available
	3.3.16. Flush

	3.4. I/O Status Block
	3.5. Magnetic Tape Drive Programming Examples

	Chapter 4. Mailbox Driver
	4.1. Mailbox Operations
	4.1.1. Creating Mailboxes
	4.1.2. Deleting Mailboxes
	4.1.3. Mailbox Protection
	4.1.4. Mailbox Message Format

	4.2. Mailbox Driver Device Information
	4.3. Mailbox Function Codes
	4.3.1. Read
	4.3.2. Write
	4.3.3. Write End-of-File Message
	4.3.4. Set Attention AST
	4.3.5. Wait for Writer/Reader
	4.3.6. Set Protection
	4.3.7. Get Mailbox Information

	4.4. I/O Status Block
	4.5. Mailbox Driver Programming Examples

	Chapter 5. Terminal Driver
	5.1. Terminal Driver Features
	5.1.1. Input Processing
	5.1.1.1. Command-Line Editing and Command Recall
	5.1.1.2. Control Characters and Special Keys
	5.1.1.3. Read Verify
	5.1.1.4. Escape and Control Sequences
	5.1.1.5. Type-Ahead Feature
	5.1.1.6. Line Terminators
	5.1.1.7. Special Operating Modes

	5.1.2. Output Processing
	5.1.2.1. Duplex Modes
	5.1.2.2. Formatting of Output
	5.1.2.3. SET HOST Facility and Output Buffering

	5.1.3. Dialup Support
	5.1.3.1. Modem Signal Control
	5.1.3.2. Hangup on Logging Out
	5.1.3.3. Preservation of a Process Across Hangups

	5.1.4. Terminal/Mailbox Interaction
	5.1.5. Autobaud Detection
	5.1.6. Out-of-Band Control Character Handling

	5.2. Terminal Driver Device Information
	5.2.1. Terminal Characteristics Categories

	5.3. Terminal Function Codes
	5.3.1. Read
	5.3.1.1. Function Modifier Codes for Read QIO Functions
	5.3.1.2. Read Function Terminators
	5.3.1.3. Itemlist Read Operations
	5.3.1.4. Read Verify Function

	5.3.2. Write
	5.3.2.1. Function Modifier Codes for Write QIO Functions
	5.3.2.2. Write Function Carriage Control

	5.3.3. Set Mode
	5.3.3.1. Hangup Function Modifier
	5.3.3.2. Enable Ctrl/C AST and Enable Ctrl/Y AST Function Modifiers
	5.3.3.3. Set Modem Function Modifier
	5.3.3.4. Loopback Function Modifier
	5.3.3.5. Enable Out-of-Band AST Function Modifier
	5.3.3.6. Broadcast Function Modifier

	5.3.4. LAT Port Driver QIO Interface
	5.3.4.1. LAT Port Types
	5.3.4.2. LAT Port Driver Functions
	5.3.4.3. Creating and Configuring LAT Entities
	5.3.4.4. Obtaining Information About LAT Entities
	5.3.4.4.1. SENSEMODE Item Codes

	5.3.4.5. Programming Application Ports
	5.3.4.6. Programming Application Services and Dedicated Ports
	5.3.4.7. Programming Forward Ports
	5.3.4.8. Queue Change Notification
	5.3.4.9. Hangup Notification
	5.3.4.10. Sense Mode and Sense Characteristics
	5.3.4.10.1. Type-ahead Count Function Modifier
	5.3.4.10.2. Read Modem Function Modifier
	5.3.4.10.3. Broadcast Function Modifier

	5.4. I/O Status Block
	5.5. Terminal Driver Programming Examples

	Chapter 6. Pseudoterminal Driver
	6.1. Pseudoterminal Operations
	6.1.1. Creating a Pseudoterminal
	6.1.2. Canceling a Request
	6.1.3. Deleting a Pseudoterminal

	6.2. Pseudoterminal Driver Features
	6.3. Pseudoterminal Driver Device Information
	6.4. I/O Buffers
	6.5. Pseudoterminal Functions
	6.5.1. Reading Data
	6.5.2. Writing Data
	6.5.3. Using Write with Echo
	6.5.4. Flow Control
	6.5.5. Event Notification
	6.5.5.1. Input Flow Control
	6.5.5.2. Output Stop
	6.5.5.3. Output Resume
	6.5.5.4. Characteristics Changed
	6.5.5.5. Output Abort
	6.5.5.6. Terminal Driver Read Events

	6.6. Pseudoterminal Driver Programming Example
	6.6.1. Design Overview

	Chapter 7. Shadow-Set Virtual Unit Driver
	7.1. Introduction
	7.2. Configurations
	7.2.1. Supported Hardware
	7.2.2. Compatible Disk Drives and Volumes

	7.3. Driver Functions
	7.3.1. Read and Write Functions

	7.4. Error Processing

	Chapter 8. Using the OpenVMS Generic SCSI Class Driver
	8.1. Overview of SCSI
	8.2. OpenVMS SCSI Class/Port Architecture
	8.3. Overview of the OpenVMS Generic SCSI Class Driver
	8.4. Accessing the OpenVMS Generic SCSI Class Driver
	8.5. SCSI Port Features Under Application Control
	8.5.1. Setting the Data Transfer Mode
	8.5.2. Enabling Disconnection and Reselection
	8.5.3. Disabling Command Retry
	8.5.4. Setting Command Timeouts

	8.6. Configuring a Device Using the Generic Class Driver
	8.7. Assigning a Channel to GKDRIVER
	8.8. Issuing a $QIO Request to the Generic Class Driver
	8.9. Generic SCSI Class Driver Device Information
	8.10. Call a Generic SCSI Class Driver

	Chapter 9. Local Area Network (LAN) Device Drivers
	9.1. Local Area Network (LAN) Terminology
	9.2. Supported LAN Devices
	9.3. Supported Industry Standards
	9.4. LAN I/O Architecture
	9.4.1. LAN Data Structures
	9.4.2. Hardware Configuration
	9.4.3. Software Modules
	9.4.4. Application APIs
	9.4.4.1. QIO API
	9.4.4.1.1. QIO Program Operation

	9.4.4.2. VCI API

	9.4.5. LAN Addressing
	9.4.5.1. Ethernet Address Classifications
	9.4.5.2. Selecting an Ethernet Physical Address
	9.4.5.3. Ethernet Physical and Multicast Address Values
	9.4.5.4. Token Ring Functional Address Mapping

	9.4.6. LAN Frame Formats
	9.4.6.1. Ethernet Frames
	9.4.6.2. FDDI Frames
	9.4.6.3. Token Ring Frames
	9.4.6.4. ATM ELAN Frames
	9.4.6.5. Ethernet (Ethernet Version 2, DIX) Frame Format
	9.4.6.5.1. Ethernet Protocol Types

	9.4.6.6. 802 (IEEE 802.x LLC) Frame Format
	9.4.6.6.1. 802 Service Access Point (SAP) Types
	9.4.6.6.2. Class I Service Packet Format
	9.4.6.6.3. User-Supplied Service Packet Format
	9.4.6.6.4. Service Access Point (SAP) Use and Restrictions

	9.4.6.7. 802 Extended (IEEE 802.x LLC/SNAP) Frame Format
	9.4.6.7.1. 802E PID Types

	9.4.7. Packet Padding
	9.4.8. Protocol Type and PID Sharing

	9.5. LAN Devices
	9.5.1. Driver-Specific Internal Counters
	9.5.2. Device-Specific Functions
	9.5.3. Ethernet LAN Devices
	9.5.3.1. DEMNA Ethernet Device
	9.5.3.2. SGEC/TGEC Ethernet Devices
	9.5.3.3. LANCE Ethernet Devices
	9.5.3.3.1. LANCE Hardware Configuration

	9.5.3.4. LEMAC Ethernet Devices
	9.5.3.4.1. ISA LEMAC Hardware Configuration

	9.5.3.5. 3C589 Ethernet Device
	9.5.3.6. Tulip Ethernet and Fast Ethernet Devices
	9.5.3.6.1. Tulip Hardware Configuration

	9.5.3.7. Intel 82559 Fast Ethernet Devices
	9.5.3.7.1. 82559 Hardware Configuration

	9.5.3.8. DEGPA Gigabit Ethernet Devices
	9.5.3.8.1. DEGPA Hardware Configuration

	9.5.3.9. Broadcom 5700 Gigabit Ethernet Devices
	9.5.3.9.1. 5700 Hardware Configuration

	9.5.3.10. Intel 82540 Gigabit Ethernet Devices
	9.5.3.10.1. 82540 Hardware Configuration

	9.5.3.11. Neterion XFRAME 10–Gigabit Ethernet Devices
	9.5.3.12. Shared Memory Ethernet Device

	9.5.4. FDDI LAN Devices
	9.5.4.1. DEMFA FDDI Device
	9.5.4.2. DEFZA FDDI Device
	9.5.4.3. PDQ FDDI Devices

	9.5.5. Token Ring LAN Devices
	9.5.5.1. TMS380 Token Ring Devices
	9.5.5.1.1. ISA TMS380 Hardware Configuration

	9.5.6. ATM LAN Devices
	9.5.6.1. OTTO ATM Devices
	9.5.6.2. FORE ATM Devices
	9.5.6.3. Permanent Virtual Circuits (PVC)
	9.5.6.4. Switched Virtual Circuits (SVC)
	9.5.6.5. LAN Emulation over an ATM Network
	9.5.6.6. LAN Emulation Topology
	9.5.6.7. Classical IP Over an ATM Network
	9.5.6.8. Specifying the User to Network Interface (UNI)
	9.5.6.9. Enabling SONET/SDH
	9.5.6.10. Booting
	9.5.6.11. Configuring an Emulated LAN (ELAN)

	9.6. LAN Device Information
	9.7. LAN Function Codes
	9.7.1. Read
	9.7.2. Write
	9.7.3. Set Mode and Set Characteristics
	9.7.3.1. Set Controller Mode
	9.7.3.2. Set Mode Parameters for Packet Formats
	9.7.3.3. Set Mode Parameter Validation

	9.7.4. Shutdown Controller
	9.7.5. Enable Attention AST
	9.7.6. IO$M_SET_MAC Functional Modifier to IO$M_SETMODE
	9.7.7. IO$M_UPDATE_MAP Functional Modifier to IO$_SETMODE
	9.7.8. IO$M_ROUTE Functional Modifier to IO$_SETMODE
	9.7.9. Sense Mode and Sense Characteristics
	9.7.10. IO$M_SENSE_MAC Functional Modifier to IO$_SENSEMODE
	9.7.11. IO$M_SHOW_MAP Functional Modifier to IO$_SENSEMODE
	9.7.12. IO$M_SHOW_ROUTE Functional Modifier to IO$_SENSEMODE
	9.7.13. I/O Status Block

	9.8. Application Programming Notes
	9.8.1. Promiscuous Mode
	9.8.2. Local Area Network Programming Examples

	Chapter 10. Optional Features for Improving I/O Performance
	10.1. Fast I/O
	10.1.1. Fast I/O Benefits
	10.1.2. Using Buffer Objects
	10.1.3. Differences Between Fast I/O Services and $QIO
	10.1.4. Using Fast I/O Services
	10.1.4.1. Using Fandles
	10.1.4.2. Modifying Existing Applications
	10.1.4.3. I/O Status Area (IOSA)
	10.1.4.4. $IO_SETUP
	10.1.4.5. $IO_PERFORM[W]
	10.1.4.6. $IO_CLEANUP
	10.1.4.7. Fast I/O FDT Routine (ACP_STD$FASTIO_BLOCK)

	10.1.5. Additional Information

	10.2. Fast Path (Alpha and Integrity servers Only)
	10.2.1. Using Fast Path Features
	10.2.1.1. Preferred CPU Selection
	10.2.1.2. Optimizing Application Performance

	10.2.2. Managing Fast Path
	10.2.2.1. Fast Path System Parameters
	10.2.2.2. Identifying and Setting a Port's Preferred CPU

	10.2.3. Fast Path Restrictions
	10.2.4. Special Considerations for Fast Path on Multi-RAD Systems

	Appendix A. I/O Function Codes
	A.1. ACP-QIO Interface Driver
	A.2. Disk Drivers
	A.3. Magnetic Tape Drivers
	A.4. Mailbox Driver
	A.5. Terminal Driver
	A.6. Local Area Network Device Drivers
	A.7. Fast I/O Function Codes and Modifiers
	A.8. Fast Path Function Code and Modifiers

	Appendix B. IO$_DIAGNOSE Function for SCSI Class Drivers
	Appendix C. DEC Multinational Character Set and Terminal Escape Sequences/Modes
	C.1. DEC Multinational Character Set
	C.2. Terminal Sequences and Modes

	Appendix D. Control Connection Routines
	PTD$CANCEL
	PTD$CREATE
	PTD$DELETE
	PTD$READ
	PTD$READW
	PTD$SET_EVENT_NOTIFICATION
	PTD$WRITE

	Appendix E. DDT Intercept Establisher Routines and Device Configuration Notification Routines
	E.1. DDT Intercept Establisher Routines
	IOC_STD$ESTABLISH_DDT_START
	IOC_STD$ESTABLISH_DDT_ALTSTART
	IOC_STD$ESTABLISH_DDT_CANCEL
	IOC_STD$ESTABLISH_DDT_MNTVER

	E.2. Device Configuration Notification Routines
	IOC_STD$DEVCONFIG_REGISTER
	IOC_STD$DEVCONFIG_DEREGISTER
	Device Configuration Callback Routine

	Appendix F. Programming USB Generic Drivers
	F.1. USB Device Structure
	F.2. Driver Model
	F.2.1. Driver Actions

	F.3. Supported $QIO Functions
	F.3.1. IO$_READxBLK
	F.3.2. IO$_WRITExBLK
	F.3.3. IO$_SET MODE/CHAR
	F.3.3.1. Enable Unplug notification AST
	F.3.3.2. Associate channel
	F.3.3.3. Set pipe state
	F.3.3.4. Send a control request

	F.3.4. IO$_SENSEMODE/CHAR
	F.3.4.1. Get number of pipes
	F.3.4.2. Get pipe handles
	F.3.4.3. Get pipe direction
	F.3.4.4. Get pipe type
	F.3.4.5. Get pipe state
	F.3.4.6. Get pipe size
	F.3.4.7. Get pipe descriptor
	F.3.4.8. Get pipe descriptor
	F.3.4.9. Get interface descriptor

	F.3.5. Cancel I/O
	F.3.6. Error Handling
	F.3.7. Example
	F.3.8. USB Device Configuration
	F.3.8.1. The Basics of Configuration
	F.3.8.2. Plugging In A New Device
	F.3.8.3. The Generic List
	F.3.8.4. Device Configuration
	F.3.8.5. Interface Configuration

	F.3.9. Permanent Devices and Tentative Devices
	F.3.9.1. Controlling Device Permanence and Loading

