I II VMS Software

VSI OpenVMS

VSI TCPI/IP Services for OpenVMS
ONC RPC Programming

Document Number: DO-TCPONC-01A
Publication Date: September 2020
Revision Update Information: This is a new manual.

Operating System and Version: VS| OpenVMS Integrity Version 8.4-2
VS| OpenVMS Alpha Version 8.4-2L1

Software Version: VS| TCP/IP Services Version 5.7

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

VSI TCP/IP Services for OpenVMS ONC RPC Programming

I I I VMS Software

Copyright © 2020 VMS Software, Inc. (VSl), Burlington, Massachusetts, USA

L egal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

Theinformation contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and | A-64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

UNIX isaregistered trademark of The Open Group.

The VS| OpenVMS documentation set is available on DVD.

VS| TCP/IP Services for OpenVMS ONC RPC Programming

PrEface cooueeneiniiensnenieensnensnensnenssnnsssnsssnssssnsssssssssesssessasssssssssssssssssssssssssssssssssssassssassssssssssssassse vii
Lo ADOUL VST ottt e e e ettt e e e e e et vii
2. Intended AUIEIICE ...cocoiiiiiiiiiiiiiie ettt e et e e e e vii
3. DOCUMENT STIUCTUIEuviiiiiiiiiiiiiiiiiiitiiie e eeeeeee vii
4. Related DOCUMEILS ..oeeeviiiiiiiiiiiieeeiiiiiit ettt e e e s et e e e e e e e s s viii
5. VSI Encourages YOur COMMENTScceeeririririiiiiiiiiiiiiieieieiiieieeeeeeeeeeereeeteeeeeeeeeeeeeeeeeeeeeeeeeees X
6. COMVEITIONS .iiiiiiiiiieteeeee ittt e ettt e e e e e ettt ettt e e e e s et ettt eeesaa bbbttt eeeeeesaaaaereee X

Chapter 1. Introduction to Remote Procedure Callsueeueerveeniennsnensnnssnensnessnessanenns 1
L1 OVEIVIEW eeiiiiiiiiiiiiit ettt ettt et ettt e e e e ettt et e e e e ettt e e e e e saaibb et eeeeeeaanaas 1
1.2. The RPC MOEL ..cooiiiiiiiiiiiiiiiee ettt e e 1
1.3. RPC Procedure VETSIONScccceeiiiiiuiiitiieteetiiiiiiiieeeeeeeaeiiiiteeeeeee s sttt eeeeeessaeibeeeees 2
1.4. Using Portmapper to Determine the Destination Port Number of RPC Packets 2

1.4.1. Portmapper Notes for TCP/IP Servicescccuuvieiieeiriiiiiiiiiieieeeeiiiiiiiteeeeee e 3
1.4.2. Displaying Registered RPC SErVersccc.ueeeiiiiiiiiiiiiiiiiiieiiiiiieeeee e 3
1.5. RPC Independence from Transport Protocolcc.euviiiiiiiiiiiiiiiiiiiieiiiniiiiceceee e 3
1.6. External Data Representation (XDR)uuiuiiiiiiiiiiiiiiiiiiiiiieiiiiieeeeereeereeeeereeeeerereeeaeeeee. 4
1.7. Assigning Program NUMDETScccooeiiiiiiieeieiieeeeeeeeee e 5

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler 7
2.1. The RPCGEN Protocol COMPILETocueiiiiiiiiiiiiiiiiiiiiieee et 7
2.2. Simple Example: Using RPCGEN to Generate Client and Server RPC Code 7

2.2.1. RPC Protocol Specification File Describing Remote Procedurecccccceennne. 9
2.2.2. Implementing the Procedure Declared in the Protocol Specification 10
2.2.3. The Client Program That Calls the Remote Procedurecccceeeeiieiiinnnnnnne. 11
2.2.4. Running RPCGENoiiiiiiiiiiii et 13
2.2.5. Compiling the Client and Server Programsccccccoovvuuiiiiiieiiiinnniiiiiieeeeeenes 14
2.2.6. Copying the Server to a Remote System and Running Itc.cccciin, 14
2.3. Advanced Example: Using RPCGEN to Generate XDR Routinescccccccovvuuvieeeeenenn. 15
2.3.1. The RPC Protocol Specificationcceeeiimmiiiiiiiiieiiiiiiiiieeeeeeeeeeeeee e 15
2.3.2. Implementing the Procedure Declared in the Protocol Specification 16
2.3.3. The Client Program that Calls the Remote Procedureccccccoovniiiiieiiinnnnn. 18
2.3.4. Running RPCGENoiiiiiiiiiiii et 20
2.3.5. Compiling the File of XDR ROULINESovvvieiieiiiiiiiiiiiiieieiiiiiiieeeee e 20
2.3.6. Compiling the Client and Server Programsccccccovvuiiiiiiiiiiiiniiiiiiieeeeeenes 20
2.3.7. Copying the Server to a Remote System and Running Itc.cccciin, 20
I D 1<) 011 Tede Yo AN o) o] otz o o) o T H 21
2.5. TRE € PIEPIOCESSOT ...eteiiieiiiiiiiiiitteee e e ettt e e e ettt e e e e ettt e e e e e e et eeeeeeeeas 22
2.6. RPCGEN Programimingcceeeeiiiiuiiiiieieeeiiiiiiiieeteeeee sttt e e e e e e e siiiieeeeeeee e e 22
2.6.1. NEtWOTK TYPES cooeeeeeeieeeieeeeeeee e 23
2.6.2. User-Provided Define Statementsoooeuuviiiiieeeeiiiiiiiiiieeeee e e e 23
2.6.3. INETA SUPPOTL ...eeiiiiieiiiiiiitieee ettt e e e e e e 23
2.6.4. Dispatch Tablescccoeeeeeeieieieieeeeee e 23
2.7. Client ProOramimingccooeeiimiiiiiiieieeeeiiiiiitteee e e e ettt e e e e e et e e e e e e s eeiibeeeees 24
2.7.1. TIMEOUL CRANEESeveiieeiiiiiiiiiiieiee ettt e et e e e e ettt e e e e s e 25
2.7.2. Client AUthentiCatioNccooviuiiiiiiiieeiiiiiiiieeee e et e e e ee e e e e e 25
2.8. SErver PrOZIAMIMINGccoeiitiiiiiiiiiiietee ettt e e ettt e e e e s e ettt e e e e e e siibbeeeeeeeas 25
2.8.1. Handling BroadCastscoeiviiiiiiiiiiiiiiiiiiiieiieeeeeeeeeee e 25
2.8.2. Passing Data to Server Proceduresccccuveeiiiiiiiiiiiiiiiiiiiiecceee e, 26
2.9. RPC and XDR LanGUAZEScceeettimiimiiiiiiieeeeiiiiiietee e e e e ettt e e e e e s et eeeeee e e e 26
2.9.1. DEfINIHIONS .eeeiiiiiiiiiiiiiiietee ettt e e e et e e e e e e e 27
2.9.2. ENUMETALIONSvtiiiieiiiiiiiiiiieee et e ettt e e e ettt e e e e ettt e e e e e s aebbeeeeeeeas 27
2.9.3. TYPCACTS .o 27

iii

VS| TCP/IP Services for OpenVMS ONC RPC Programming

2.9.4, CONSTANTS .oeiiieieiiiei e 28
2.9.5. DEClarationsccooiiiiiiiiiiiiiiiii 28
2.9.0. STIUCLUIES ..oeiiiiiiiiiiiiiiiii et 29
2.9.7. UTIONS ..tttk nee e 30
2.9.8. PIOZIAMS ...uuunieiiiiiiiiiiiie e e e et e e e e e ettt e e e e e e e e eabt e e eeaeeeeassanaaeeeeeeesssennnns 30
2.9.9. SPECIAL CASCS ..vvvvvunieeeeiiiiiiiiiiiie e e et e ettt e e e e e e eeetaaa e e e eeeeeeeasstssaaeeeeraesssennnaeeens 31
2.10. Command RETEIENCEuuiei s 32
Chapter 3. RPC Application Programming Interfaceccoceveveercscercscercscnnscssanscnns 37
T B N o O - PP 37
3.2. Middle Layer of RPCoooiiiiiiiiiiiiicie et e e e e e e evaa e e e e e e eeeasaees 37
3.2.1. USING CAIIPC 1evviiiiiieie ettt e e e e e e e v bt e e e e e e e eaasraeeeeas 38
3.2.2. Using re@isterrpC and SVC TUNccuviuuiieeeereriiiiiiiieeeeereeerrieeaeeeeereerssnenneaeens 39
3.2.3. Using XDR Routines to Pass Arbitrary Data TYPesccceeeeeeriieiiiiieeeeeereeeiiiennnn. 40
3.2.4. User-Defined XDR ROULINESccceeviiiiiiiiiiiiiiiiiiii 41
3.2.5. XDR Serializing Defaultsccccceeeiiiiiiiiiiiieieiiiciiiceis e 43

3.3. Lowest Layer of RPC ... e e e e e e e e e e eeens 43
3.3.1. The Server Side and the Lowest RPC Layercveeeeeeeiiiiiiiiiiieeeeeeeeeeiiiennn. 43
3.3.2. The Client Side and the Lowest RPC Layercccccceeeeieeiiiiiiiiiieiee e, 46
3.3.3. Memory Allocation with XDRcooiiiiiiiiiiiiiiiiiiieee e 48

3.4, RAW RPC ..ottt e e e e et e e e e e et eeaeas 49
3.5. Miscellaneous RPC FEAtUIESeuuitiiiiiiiiiiiiiiiiiiiiiiiiieitieieteeteeteeeeeeeeeeeeeeeeeeeeeeeeeeeeeaeees 51
3.5.1. Using Select on the Server Sidecoovviiiiiiiieeeiiiieiiiiieie e e e e e 51
3.5.2. Broadcast RPC ... s 52
3.5.3. BAtCRING ..unieiiieiieee e e e e e e e e e e ea s 53

3.6. Authentication of RPC Callsccoiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieteteeeeeeeeeeeeeeeeeeeeee e 57
3.6.1. The Client Sideccooiiiiiiiiiiiiiiiiiii 57
3.6.2. The Server Sidecoooiiiiiiiiiiiiiii 58

3.7. Using the Internet Service Daemon (INETd)ooovviiiiiiiiiiiiiiiciie e, 60
3.8. Additional EXAMPIESceeiiiiiiiiiiiiie e e e e e e e e e e e aaaes 61
3.8.1. Program Versions on the Server Sidecccoeeeeiiiiiiiiiiiiieieeeiiiiiiceee e 61
3.8.2. Program Versions on the Client Sidec...ccoviviiiiiiiiiiieiiiiiiiciee e 62
3.8.3. Using the TCP TransSportuuuciieieriiiiiiiiiiiieeeeeeeeeiiiiieeeeeeeereerseeenaeeeeeeeenssnens 64
3.8.4. Callback ProCeduresuuuuuuuuuumeiiiiiiiiiiiiiiii e 67
Chapter 4. External Data Representation 73
4.1. Usefulness of XDRccooiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeee ettt 73
4.1.1. A Canonical Standard ... 76
4.1.2. The XDR LIDIAIY ..uuuiiiiiiiiiiiiiiiiieeeeee ettt e e e e e e eeeeateee e e e e e eeeasaatneeeeeaeeesssnnnnnns 76

4.2. XDR LiIbrary PriMItIVESccceciiiiiiiiiiieeeeeiiiiiiiiiiieeeeeeeeeviitisaeeeeeeeerssaenneeeeeseessssnnanens 78
4.2.1. Number and Single-Character Filterscccooveeiiiiiiiiiiiiiiiiiiiee e 78
4.2.2. Floating-Point FIlterSccccceiiiiiiiiiiiieee it e e e e e e e e e eeeees 79
4.2.3. Enumeration Filters ..o, 80
4.2.4. Possibility 0f NO Dataccoouiiiiiiiiiiiiiiiiiiiiie e e e e e e eeeeeeaaaeees 80
4.2.5. Constructed Data Type Filtersveeiiiiiiiiiiiiiiiiiee e 80
4.2.6. Non-filter Primitivescoooiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeee e 87

4.3. XDR Operation DIr€CHIONSuueuieeeeiiiiiiiiiiiieeeeeieiiiiiieiaeeeeeeeettieinsaeeeesesssssenaaaeeessesssnenns 88
4.4, XDR SHIEAM ACCESS ..eiiiieieiiiiieieieie e 88
4.4.1. Standard I/O StrEAMScceeeieieieeee e 88
4.4.2. MEMOTY SEICAIMS ...ceeeiiiiiiiiiieeeeereeeeitiiiaaeeeeeeeeerteeaaaeeeseessssnnnaaeesssesssssnnnaaaeasaees 88
4.4.3. Record (TCP/IP) StrEAIMSccvvuuuuieeeeeiiiiiiiiiieeeeeeeeeiiiieseeeeeeeeesssanaaeeeeeeessnennnns 89
4.4.4. XDR Stream Implementationccevuuuiiiireeeeiriiiiiiiiireeeeeeeeeviiiineeeeeeeeessseeens 90

4.5, AdVANCEA TOPICS ..ceeiviiiiiiiieeeeiiiiiiiicie e e e e ettt e e e e e e eeeaba s e eeeeeeesssaanaaeeeeaeeessannnnaeeens 91

VS| TCP/IP Services for OpenVMS ONC RPC Programming

Chapter 5. ONC RPC Client Routines 95
N1 06 1111 (')2 96
ENI 110101021 (S (<) £ TR 96
AULNUNTX CTEALE ...eeeiieieieeeii e 97
authunix_create defaultoooeiiiiiiiiii i 98
(02211 1y o« 99
CINE DIOAACASE .o 100
(o233 L o7 I T 101
(o2 b o o7) 1 (o) AT 102
CINE CTEALE .oeieiiiiieeie e 103
CINE CTEALE VRIS ..iiieeeeieeeee aeeeaaaeaeaeaaeeens 105
(o8 o L (1] 40) PP 106
(00 B0 <L) U 107
(o2 8oL (=1 1<) u (PP 107
CINE POTCALEEITOT ..eeeeeeeeeeeee et eeeeeeeeeaeeeaaaens 108
(o233 L 0TS w3 1 Lo 108
(0233 L 0TS 0 () 109
(0BT 1 (e 1 £l 4 (o) SO 109
(028 o L] 1S 0 1 1o TR 110
(o1 L] 1S 4 (o) TR 111
CINETAW CTEALEuvtvitititititetitieitteet ettt sttt sttt sttt s s snsnsnnnen 112
(o2 bo Lo o T3 (2| £ PSPPSR PPPRURPRPRPPPPPRS 113
CINtUAP DULCIEALE ..oeeeiiiiiiiieiieecceee e 114
CINEUAD CTCALE ...ttt sttt sessnssnnnnes 115
L MYAAAIESS ooeeeiiieieeiieee e 117
Lo A 11716 1« 5 117

Chapter 6. ONC RPC Portmapper ROULINESccoovuerecrirsnniccsssnricsssnnsecssssssscsssassessssnnes 119
PINAP GEUMAPS wevvvuueeeeeteiiiiiie e e e eeeetttti e e e e eeeeattba e e e eeeeeetttbaa e eeeeeeteebaa e eeeeeeeeebannneeeens 119
PIMNAP_ GEUMAPS VIS ...uuneeeeiiiiiiiiiieeeeeeeetttiie e e e eeeettttaaa e eeeeeeetabtbaa e eseeeeeeestnnnaeeeeeeeeesenannns 120
) B o351 010 o A PP PP PP PPN TPPPPPRPPRIN 120
Joauat: o e 0117 | R 121
J o0 o N AU PPPUPURPRRR 123
PINAP UISEE ...ieiiiiiiiiiiiie e e e e ettt e e e e ettt e e e e e e et eeatb e e e e eeeeetatbaa e e eeeeeeeatbaaaeeeeeeeeaeananns 123

Chapter 7. ONC RPC Server ROULINESccoovvveriicsisnricsssssnrecsssnsssssssssssesssssssssssssssssssnns 125
(o (4 o] PP 126
1< 75 g (<) 0] A 127
Y Ve 5113 10) AP 128
SVC_TTECAIES 1oiiiiiiiiiiiiiiiiiie et aa e e 128
SV GRLATES .eeeietiiiiiiee e e ettt ettt e e e e e et ettt e e e e e e e ettbbb e e e e e e e et tbbba e e e e e e e e eebbba e e eeeeeeaebaaans 129
Y (S 11 | 1< SRR 129
A {0 (e N A PP RPN 130
Y (14 1] 1<) TR 131
SVC TUIL 1.ueeeeetttiitie e e e e ettt ettt e e e e e et tetbbb e e e e e e et tebba e e e e eeeeeabbba e eeeeeeeabbba s eeeeeeaeabbaaeeeas 132
YOS 0T 1< 0 2R 133
SVC UNTEZISTET eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee eeaaeeaaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaens 133
SVCRIT_AUN L.ooiiiiiiiiii 134
Y VTS) o g« 517 T [P 135
SVCEIT TMOPTOC eettruiuneeeetettutuuaeeeeeeettauuaaeeeeeettattaaaeeeeettentaanaeeeeeteetatanaeeeeeeensannneeeens 135
SVCCIT TMOPTOE -.ueeeeeeettunuuieeeeeeettttuuaa e eeeeeetttttaaaa e eaeeeeaatnaaa e eeeeeetstsaanaseeeeeeeeesenannaeeeaeaeeens 136
SVCEIT PIOZVELS ettvtuineeeeeettttttuneeeeeettttttaa e eeeetttaaaaaa e eaeetetatsaaa e eaeeeeettsanaaeeeeeeeesennaannnns 136
Sy g 411 111 s SO PP 137

VS| TCP/IP Services for OpenVMS ONC RPC Programming

SVCEIT WEAKAULN ...ooiiiiiiiiiii e e e e e e e et et e e e e e e eeeabbaeaeeeaaaeees 137
SVCIAW CTCALE .evvvvvvuuueeeerrrrrruuenseeeeeeerssasenssaaeeesssssssnnnsaeasesssssssnnsasessessssssnsnnaeesessesssssnnneeens 138
A0 1 B0 (S | 1< PP UUPPPPRTPUIN 138
SVCECP CTCALE .ivivvivriiueeeeeeeettuiiiaeeeeeeeeeastennaaeeeaeesassennssaaeaessessssnnnaaeesssssssssnnsasassesssssnnnnnnns 139
SVCUADP DUTCTCALE ...iiiviiiiiiiie e e ettt e e e e e e e e e eb b e e e eeeeeeessbannaeeaaeeenees 140
SVCUAP. CTCALE .evvvvvveiieeeeiiiiiiiiiiieeeeeeeetttt i iseeeeeeeetestteaaeeaaesessssnnnaaeaeessssssnnnnaaesesesssssnnnnneens 141
D40 L (S 4 T (< (PP USPPPPRIN 141
XPIE UNTEEISTEL ...eieiiiiiiiiiieeeeeeeeeeitteeeeeeeeeeeaattaaaeeeeeeessstsennnaeeeeeersssssnnnaaeaeseessssnnnnaaaeaaeeees 142
CAUENENTICALE 1oiviiiiiiiiee e ittt e e e e e e e ettt e e e e e e e e ea it e e e e e e eeab b e eeaaeeeaaraanaas 142
Chapter 8. XDR Routine Reference 145
b (s L TO 1S o11cTe B 1<) o) A SRR 146
> (s LYy v | TR 147
XAr QULRUNIX PAINS .iiiiiiiiiiii e e e e e e ettt e e e e e e e e eaabt e e e eeeeeeassannnaaaeaaaeees 148
> € Ll o Yo o) KSR 148
b€ gl o) 74 1< UUPPPUPPRR 149
b€ ol o221 1 151 | SO SP 150
b€ ol o721 1131 T« UUPPPRURRRIN 150
D€L o1 s - OO UUUPPPUPPRt 151
b€ Lo (0101 o) (PSP PP SRPPPIN 152
Do 311111 NSO 152
b€ Lo 4 [L U UUPPPPPUUUN 153
D€ L § (< UUPPPPPPUTN 154
D Cs Lol 1174 1S U UUPPPPPURRN 154
b€ L 1o | APPSR 155
D€ Lol o) 1 1~ TP 156
b€ g o) 0T T || [P URSPPPPPIIN 156
XAr 0PAqUE QULN .ooiiiiie et e e e e e e r b eeaaaaaane 157
b Co ol o) 111 SO 157
> Co ol o) 00 =1 0 A 11 -SSP 158
b€ gl o) 0010 §] AU URSPPPPTUN 159
XAr PMAPLIST VINIS L.eneiiiiiiiiiiie ettt e e e e e e e e e vt e e e e e e e e e aaa b e e e e aeeearaaaaaeaas 159
AL POINTET L.uunieiiiiiiiiiiie e e e e e e e ettt e e e e e e ettt bt eeeeeeeaeesst e eeeaeeesssssnnnaaaesaessssssnnnaaaeaeeessses 160
b0 D (S (<) (52111 SO PP UPSPPPTUIN 161
b (s LD (1 [S161 116 B =) o) | 2SSO 161
AL TOPLYIMSE wevvnieeeeiiiiiiieie e et e e e e e e ettt e e e e e e e eeeasbt e eaeeeeeeabssanaaeeeeeeerssnnnaaaaaaaees 162
Do] 1 T) o AU USUPPPRPPN 163
b€ 13 611V UUPPPPPTRRN 163
AT T CHAT ettt e e e e e ettt e e e e e e e e e b e e e e e e aerbbr e aaaaaaees 164
Do o VI 117 1< (PP URPPPPRRUN 165
> € Lot 1 1 AR 165
b€ o b I (03 o V= SRR 166
b€ o b] 1) o O USPUPPRIN 166
D€ o V10103 s U UUPPUPPTRRN 167
b Cs g <To1 10) SO 168
D€ g0) T« KU PUP 169
Do LT 21 01 1 4 1 LU RRPRPPPTN 169
KATIMEIMN CICALE ...iiiviiiiiiiieee et e iiiiiiie e e e e eeeeettit e e e eeeeeeaaste e eeeeeeeesssennnaeeeeeasssssnnnnaeeaeeeesssnnnn 170
KAITEC CTEALE 1ovvvivviiiieeeeiiiiiiiiee e e e e e e ettt e e e e e et eetat e eeeeeeeeeassaaaaaeeeaeeessssnnnnaaeeeeeessssennnnnnns 171
b€ Lo (oo 1 e [0) 4 (1610) (o RPN 172
b€ 15 (<o) SO UPTRUUTRP 172
XAITEC SKIPTECOTA ...eiiiiiiiiiiiiee e e e e ettt e e e e e e e e eb it e e e e eeaeeaesaeneeeas 173
D0 L] 1 IO R (o 1 USSP 174

vi

Preface

The TCP/IP Services product is the VSI implementation of the TCP/IP networking protocol suite and
Internet services for OpenVMS 164, Alpha, and VAX systems.

TCP/IP Services provides a comprehensive suite of functions and applications that support industry-
standard protocols for heterogeneous network communications and resource sharing.

This VSI TCP/IP Services for OpenVMS ONC RPC Programming manual presents an overview
of high-level programming using open network computing remote procedure calls (ONC RPCs).
This manual also describes the RPC programming interface and how to use the RPCGEN protocol

compiler to create applications.

See the VSI TCP/IP Services for OpenVMS Installation and Configuration manual for information
about installing, configuring, and starting this product.

1. About VSI

VMS Software, Inc., (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

This manual assumes a knowledge of network theory and is for experienced programmers who want
to write network applicationsusing ONC RPC without needing to know about the underlying network.

3. Document Structure

This manual contains eight chapters:

Chapter 1 Provides an overview of high-level programming
through remote procedure calls (RPC), and
discusses the RPC mode land versions, external
data representation, and RPC independence from
network transport protocol.

This chapter is for anyone interested in ONC
RPC.

Chapter 2 Describes how to write RPC client and server
applications with the RPCGEN protocol compiler.
It also provides some information on RPCGEN,
client and server programming, debugging
applications, the C preprocessor, and RPC
language syntax. This chapter also describes how

vii

Preface

to create routines for external data representation
(XDR).

This chapter is for programmers who want to
use RPCGEN to write RPC-based network
applications.

Chapter 3 Describes the RPC programming interface
layers, XDR serialization defaults, raw RPC, and
miscellaneous RPC features.

This chapter is for programmers who need to
understand RPC mechanisms to write customized
network applications.

Chapter 4 Contains information about the XDR library.

This chapter is for programmers who want to
implement RPC and XDR on new systems.

Chapter 5 Contains descriptions of each of the RPC
subroutine calls commonly used by client
programs.

Chapter 6 Contains descriptions of each of the RPC

subroutine calls used by both client and server
programs to access the Portmapper service.

Chapter 7 Contains descriptions of each of the RPC
subroutine calls commonly used by client
programs.

Chapter 8 Contains descriptions of each of the XDR

subroutine calls.

4. Related Documents

The table below lists the documents available with this version of TCP/IP Services.

Table 1. TCP/IP Services Documentation

Manual Contents

VSI TCP/IP Services for OpenVMS Concepts This manual provides conceptual information
and Planning about TCP/IP networking on OpenVMS systems,
including general planning issues to consider
before configuring your system to use the TCP/IP
Services software.

This manual also describes the manuals in the
TCP/IP Services documentation set and provides
a glossary of terms and acronyms for the TCP/IP
Services software product.

VSI TCP/IP Services for OpenVMS Release The release notes provide version-specific

Notes information that supersedes the information in
the documentation set. The features,restrictions,
and corrections in this version of the software are

viii

Preface

Manual

Contents

described in the release notes. Always read the
release notes before installing the software.

VSI TCP/IP Services for OpenVMS Installation
and Configuration

This manual explains how to install and configure
the TCP/IP Services product.

VSI TCP/IP Services for OpenVMS User’s Guide

This manual describes how to use the applications
available with TCP/IP Services such as remote
file operations, email, TELNET, TN3270, and
network printing.

VSI TCP/IP Services for OpenVMS Management

This manual describes how to configure and
manage the TCP/IP Services product.

VSI TCP/IP Services for OpenVMS Management
Command Reference

This manual describes the TCP/IP Services
management commands.

VSI TCP/IP Services for OpenVMS Management
Command Quick Reference Card

This reference card lists the TCP/IP management
commands by component and describes the
purpose of each command.

VSI TCP/IP Services for OpenVMS UNIX
Command Equivalents Reference Card

This reference card contains information about
commonly performed network management tasks
and their corresponding TCP/IP management and
UNIX command formats.

VSI TCP/IP Services for OpenVMS ONC RPC
Programming

This manual presents an overview of high-level
programming using open network computing
remote procedure calls (ONC RPCs). This
manual also describes the RPC programming
interface and how to use the RPCGEN protocol
compiler to create applications.

VSI TCP/IP Services for OpenVMS Sockets API
and System Services Programming

This manual describes how to use the Sockets
API and OpenVMS system services to develop
network applications.

VSI TCP/IP Services for OpenVMS SNMP
Programming and Reference

This manual describes the Simple Network
Management Protocol (SNMP) and the SNMP
application programming interface (eSNMP).

It describes the subagents provided with TCP/

IP Services, utilities provided for managing
subagents, and how to build your own subagents.

VSI TCP/IP Services for OpenVMS Tuning and
Troubleshooting

This manual provides information about how to
isolate the causes of network problems and how
to tune the TCP/IP Services software for the best
performance.

VSI TCP/IP Services for OpenVMS Guide to
IPv6

This manual describes the IPv6 environment, the
roles of systems in this environment, the types
and function of the different IPv6 addresses, and
how to configure TCP/IP Services to access the
IPv6 network.

For a comprehensive overview of the TCP/IP protocol suite, refer to the book Internetworking with
TCP/IP:Principles, Protocols, and Architecture, by Douglas Comer.

ix

Preface

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <doci nf o@nssof t war e. con®. Users who
have OpenVMS support contracts through VSI can contact <suppor t @ nssof t war e. con® for
help with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

6. Conventions

VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified,
references to OpenVMS Cluster systems or clusters in this document are synonymous with
VMScluster systems.

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for
OpenVMS software.

The following conventions are also used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

A horizontal ellipsis in examples indicates one of the following possibilities:
» Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

O In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

Preface

Convention Meaning

(1] In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{} In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the

name of an argument, an attribute, or a reason.

italic text

Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE Uppercase text indicates a command, the name of a routine, the name of a file,

TEXT or the abbreviation for a system privilege.

Monospace Monospace type indicates code examples and interactive screen displays.

type
In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.

Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

Other conventions are:

¢ All numbers are decimal unless otherwise noted.

¢ All Ethernet addresses are hexadecimal.

Xi

Preface

xii

Chapter 1. Introduction to Remote
Procedure Calls

1.1. Overview

High-level programming through open network computing remote procedure calls (ONC RPC)
provides logical client-to-server communication for network application development — without the
need to program most of the interface to the underlying network. With RPC, the client makes a remote
procedure call that sends requests to the server, which calls a dispatch routine, performs the requested
service, and sends back a reply before the call returns to the client.

RPC does not require the client to be knowledgeable about the underlying network. For example, a

program can simply call a local C routine that returns the number of users on a remote system much
like making a system call. You can make remote procedure calls between different processes on the
same system.

1.2. The RPC Model

The remote procedure call model is similar to that of the local model, which works as follows:
1. The caller places arguments to a procedure in a specific location (such as an argument variable).
2. The caller temporarily transfers control to the procedure.

3. When the caller gains control again, it obtains the results of the procedure from the specified
location.

4. The caller then continues program execution.

As Figure 1.1 shows, the remote procedure call is similar to the local model, in that one thread of
control logically winds through two processes — that of the client (caller) and that of the server:

1. The client process sends a call message to the server process and blocks (that is, waits) for a
reply message. The call message contains the parameters of the procedure and the reply message
contains the procedure results.

2. When the client receives the reply message, it gets the results of the procedure.
3. The client process then continues executing.

On the server side, a process is dormant — awaiting the arrival of a call message. When one arrives,
the server process computes a reply that it then sends back to the requesting client. After this, the
server process becomes dormant again.

Figure 1.1 shows a synchronous RPC call, in which only one of the two processes is active at a

given time. The remote procedure call hides the details of the network transport. However, the RPC
protocol does not restrict the concurrency model. For example, RPC calls may be asynchronous so the
client can do another task while waiting for the reply from the server. Another possibility is that the
server could create a task to process a certain type of request automatically, freeing it to service other
requests. Although RPC provides a way to avoid programming the underlying network transport, it
still allows this where necessary.

Chapter 1. Introduction to Remote Procedure Calls

Figure 1.1. Basic Network Communication with Remote Procedure Call

Client Program on Machine A Service Daemon on Machine B

RPC call -
Invoke

Program

Call Procedure

Service
executes

Request
completed

Return reply
Program

continues | |

1.3. RPC Procedure Versions

Each RPC procedure is defined uniquely by program and procedure numbers. The program number
specifies a group of related remote procedures, each of which has a different procedure number. Each
program also has a version number so, when a minor change is made to a remote service (adding a
new procedure, for example), a new program number does not have to be assigned. When you want to
call a procedure to find the number of remote users, you must know the appropriate program, version,
and procedure numbers to use to contact the service. You can find this information in several places.
On UNIX systems, the / et ¢/ r pc file lists some RPC programs and the RPCINFO command lists
the registered RPC programs and corresponding version numbers running on a particular system. On
OpenVMS systems, the SHOW PORTMAPPER management command serves the same purpose as
the RPCINFO command.

Typically, a service provides a protocol description so you can write client applications that call the
service. The RPC Administrator at Sun Microsystems, Inc. has a list of programs that have been
registered with Sun (that is, have received port numbers from them), but you can write your own local
RPC programs. Knowing the program and procedure numbers is useful only if the program is running
on a system to which you have access.

1.4. Using Portmapper to Determine the
Destination Port Number of RPC Packets

The TCP/IP Services software starts the Portmapper network service when it receives the first
network request for the Portmapper port. Interaction between RPC programs and the Portmapper
occurs as follows:

1. After the system manager starts the Portmapper, it listens for UDP and TCP requests on port 111
of the host system.

Chapter 1. Introduction to Remote Procedure Calls

2. When an RPC server program activates on a system, it registers itself with its local Portmapper.
The Portmapper software keeps a table of all registered services.

3. To access the services available on a system, RPC client programs send RPC call messages to
a system's Portmapper specifying the program and version number with which they wish to
communicate.

4. The Portmapper program examines its local cache of registered RPC servers. If the server is
registered, then the Portmapper uses an RPC reply message to return the port number that the RPC
client program should use to communicate with the RPC server.

5. The RPC client program then uses the provided port number in all subsequent RPC calls.

Refer to the VSI TCP/IP Services for OpenVMS Management manual for more information about the
Portmapper service.

1.4.1. Portmapper Notes for TCP/IP Services

The Portmapper service on TCP/IP Services differs from Portmapper software on other hosts in the
following ways:

* When an RPC server that is registered with the Portmapper exits, the Portmapper purges any
registrations for that server program.

* An RPC process can only register or unregister its own Portmapper entries. Any attempt to
remove a registration for another RPC server will fail.

e The Portmapper includes its own mappings (on the UDP and TCP port 111). These mappings are
available using the pmap_get maps routine.

* All data structures used for the RPC prmap_XxXX routines are identical to other RPC
implementations with the exception of the two additional structures pmap_vns and
prapl i st _vns. These structures include the field pm_pi d which is the OpenVMS process ID.

1.4.2. Displaying Registered RPC Servers

You can display current RPC registration information known to the Portmapper program. On UNIX
systems use the r pci nf 0 command. On OpenVMS systems use the SHOW PORTMAPPER
management command. The r pci nf 0 or SHOW PORTMAPPER commands can also find the
RPC services registered on a specific host and report their port numbers and the transports for which
the services are registered. For more information, see the VSI TCP/IP Services for OpenVMS
Management Command Reference manual.

1.5. RPC Independence from Transport
Protocol

The RPC protocol is concerned only with the specification and interpretation of messages; it is
independent of transport protocols because it needs no information on how a message is passed
among processes.

Also, RPC does not implement any kind of reliability; the application itself must be aware of the
transport protocol type underlying RPC. With a reliable transport, such as TCP/IP, the application

Chapter 1. Introduction to Remote Procedure Calls

need not do much else. However, an application must use its own retransmission and timeout policy if
it is running on top of an unreliable transport, such as UDP/IP.

Because of transport independence, the RPC protocol does not actively interpret anything about
remote procedures or their execution. Instead, the application infers required information from the
underlying protocol (where such information should be specified explicitly). For example, if RPC
is running on top of an unreliable transport (such as UDP/IP) and the application retransmits RPC
messages after short timeouts, and if the application receives no reply, then it can infer only that a
certain procedure was executed zero or more times. If it receives a reply, then the application infers
that the procedure was executed at least once.

With a reliable transport, such as TCP/IP, the application can infer from a reply message that the
procedure was executed exactly once, but if it receives no reply message, it cannot assume the remote
procedure was not executed.

Note

Even with a connection-oriented protocol such as TCP, an application still needs timeouts and
reconnection procedures to handle server crashes.

ONC RPC is currently supported on both UDP/IP and TCP/IP transports. The selection of the
transport depends on the application requirements. The UDP transport, which is connectionless, is a
good choice if the application has the following characteristics:

e The procedures are idempotent; that is, the same procedure can be executed more than once
without any side effects. For example, reading a block of data is idempotent; creating a file is not.

» The size of both the arguments and results is smaller than the UDP packet size of 8K bytes.
* The server is required to handle as many as several hundred clients. The UDP server can do so
because it does not retain any information about the client state. By contrast, the TCP server holds

state information for each open client connection and this limits its available resources.

TCP (connection-oriented) is a good transport choice if the application has any of the following
characteristics:

* The application needs a reliable underlying transport.
* The procedures are non-idempotent.

* The size of either the arguments or the results exceeds 8K bytes.

1.6. External Data Representation (XDR)

RPC can handle arbitrary data structures, regardless of the byte order or structure layout convention
on a particular system. It does this by converting them to a network standard called external

data representation (XDR) before sending them over the network. XDR is a system-independent
description and encoding of data that can communicate between diverse systems, such as a VAX, Sun
workstation, IBM PC, or CRAY.

Converting from a particular system representation to XDR format is called serializing; the reverse
process is deserializing.

Chapter 1. Introduction to Remote Procedure Calls

1.7. Assigning Program Numbers

Program numbers are assigned in groups of 0x20000000 according to the following chart:

0x00000000 —Ox1fffffff Defined by Sun Microsystems
0x20000000 —Ox3fffffff Defined by user
0x40000000 —Ox5fffffff Transient

0x60000000 —Ox7fffffff Reserved

0x80000000 —OxOf ffffff Reserved

0xa0000000 — Oxbfffffff Reserved

0xc0000000 —Oxdf ffffff Reserved

0xe0000000 —Oxffffffff Reserved

Sun Microsystems administers the first range of numbers, which should be identical for all ONC RPC
users. An ONC RPC application for general use should have an assigned number in this first range.
The second range of numbers is for specific, user-defined customer applications, and is primarily

for debugging new programs. The third, called the Transient group, is reserved for applications that
generate program numbers dynamically. The final groups are reserved for future use, and are not used.

To register a protocol specification, send a request by network mail to rpc@sun.com, or write to:

RPC Admi ni strat or

Sun M crosyst ens

2550 Garcia Ave.

Mountai n View, CA 94043

Include a compilable RPCGEN .X file describing your protocol. You will then receive a unique
program number. See Chapter 2 for more information about RPCGEN .X files.

Chapter 1. Introduction to Remote Procedure Calls

Chapter 2. Writing RPC Applications
with the RPCGEN Protocol Compiler

2.1. The RPCGEN Protocol Compiler

The RPCGEN protocol compiler accepts a remote program interface definition written in RPC
language, which is similar to C. It then produces C language output consisting of: client skeleton
routines, server skeleton routines, XDR filter routines for both arguments and results, a header file
that contains common definitions, and optionally, dispatch tables that the server uses to invoke
routines that are based on authorization checks.

The client skeleton interface to the RPC library hides the network from the client program, and the
server skeleton hides the network from the server procedures invoked by remote clients. You compile
and link output files from RPCGEN as usual. The server code generated by RPCGEN supports
INETd. You can start the server using INETd or at the command line.

You can write server procedures in any language that has system calling conventions. To get an
executable server program, link the server procedure with the server skeleton from RPCGEN. To
create an executable client program, write an ordinary main program that makes local procedure calls
to the client skeletons, and link the program with the client skeleton from RPCGEN. If necessary, the
RPCGEN options enable you to suppress skeleton generation and specify the transport to be used by
the server skeleton.

The RPCGEN protocol compiler helps to reduce development time in the following ways:

» It greatly reduces network interface programming.

* It can mix low-level code with high-level code.

* For speed-critical applications, you can link customized high-level code with the RPCGEN output.
* You can use RPCGEN output as a starting point, and rewrite as necessary.

Refer to the RPCGEN command description at the end of this chapter for more information about
programming applications that use remote procedure calls or for writing XDR routines that convert
procedure arguments and results into their network format (or vice versa). For a discussion of RPC
programming without RPCGEN, see Chapter 3.

2.2. Simple Example: Using RPCGEN to
Generate Client and Server RPC Code

This section shows how to convert a simple routine — one that prints messages to the system console
on a single system (OPCOM on OpenVMS) — to an ONC RPC application that runs remotely over the
network. To do this, the RPCGEN protocol compiler is used to generate client and server RPC code.
Example 2.1 (see file SYSSCOMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]PRINTMSG.C) shows
the routine before conversion.

Compile and run the program shown in the example (you will need OPER privileges):

$ CC/ DECC PRI NTM5G

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

$ LI NK PRI NTMSG

$ MCR SYS$DI SK: [] PRI NTMSG " Red rubber ball"

%0000008080800 OPCOM 27- SEP-1995 14:39:22.59 %4888088808000
Message from user GEORGE on BOSTON

Red rubber bal

Message Del i ver ed!
$

If the pri nt message procedure at the bottom of the pri nt nsg. ¢ program of Example 2.1
were converted into a remote procedure, you could call it from anywhere in the network, instead of
only from the program where it is embedded. Before doing this, it is necessary to write a protocol
specification in RPC language that describes the remote procedure, as shown in the next section.

Example 2.1. Printing a Remote Message Without ONC RPC

/*

** printmeg.c: QpenVMS print a nessage on the consol e
*/

#i ncl ude

<descri p. h>
#i ncl ude

<opcdef . h>
#i ncl ude

<stdi o. h>
#i ncl ude

<stdlib. h>
#i ncl ude

<string. h>
extern int SYS$SNDOPR(struct dsc$descriptor_s *, unsigned short);
static int printnessage(char *);

mai n(argc, argv)
i nt argc;
char *argv[];

char *nessage;
int exit();

if (argc !'= 2) {
fprintf(stderr, "usage: %

<nmessage>\n", argv[O0]);
exit (1);
}

nessage = argv[1];

if (!printnessage(nessage)) {
fprintf(stderr,"%: couldn't print your nessage\n", argv[O0]);
exit (1);
}

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

printf("Message Delivered!\n");
exit (0);
}

/*
** Print a nessage to the console. Return a Bool ean indicating
** whet her the nmessage was actually printed.
*/
static int
print nessage(nsg)
char *msg;
{
struct dsc$descriptor_s desc;
uni on {
char buffer[256]; /* Preallocate space for text */
struct opcdef opc;

} message;
i nt status;
/*
** Build the nmessage request bl ock.
*/
message. opc. opc$b_ns_type = OPC$_RQ RQST;
nmessage. opc. opc$b_ns_target = OPC$SM _NM CENTRL;
message. opc. opc$w_nms_status = 0;
nmessage. opc. opc$l _ns_rqgstid = O;

strcpy((char *) &message. opc. opc$l _ns_text, neg);
desc. dsc$a_pointer = (char *) &message. opc;
desc.dsc$w | ength = (char *) &nessage.opc.opc$l _ns_text -
(char *) &nessage +
strlen((char *) &nmessage.opc.opc$l _ns_text);

/*
** Send the message to the console.
*/
status = SYS$SNDOPR(&desc, /* NMBGBUF */
0); /* CHAN */
if (status & 1)
return 1,
return O;

}

2.2.1. RPC Protocol Specification File Describing
Remote Procedure

To create the specification file, you must know all the input and output parameter types. In

Example 2.1, the pr i nt message procedure takes a string as input, and returns an integer as output.
Example 2.2 (see SYSSCOMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]MSG.X) is the RPC protocol
specification file that describes the remote version of the pr i nt nessage procedure.

Remote procedures are part of remote programs, so Example 2.2 actually declares a remote program
containing a single procedure, PRI NTMESSACE. By convention, all RPC services provide for a
NULL procedure (procedure 0), normally used for pinging. The RPC protocol specification file in
Example 2.2 declares the PRI NTMESSAGE procedure to be in version 1 of the remote program. No
NULL procedure (procedure 0) is necessary in the protocol definition because RPCGEN generates it
automatically.

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

In RPC language, the convention (though not a requirement) is to make all declarations in uppercase
characters. Notice that the argument type is St ri ng, notchar *, because achar * inCis
ambiguous. Programmers usually intend it to mean a null-terminated string of characters, but it could
also be a pointer to a single character or to an array of characters. In RPC language, a null-terminated
string is unambiguously of type st ri ng.

Example 2.2. RPC Protocol Specification File Simple Example

/*
* meg. X: Renpte nessage printing protocol
*/
pr ogr am MESSAGEPROG {

ver si on MESSAGEVERS ({

i nt PRI NTMESSACE(string) = 1;

} =1

} = 0x20000099;

2.2.2. Implementing the Procedure Declared in the
Protocol Specification

Example 2.3 (see SYSSCOMMON:[SYSHLP.EXAMPLES.TCPIP.RPCIMSG_SERVER.C) defines
the remote procedure declared in the RPC protocol specification file of the previous example.

Example 2.3. Remote Procedure Definition

/*

** neg_server.c: OpenVMS inplenentation of the renote procedure
** "printnmessage”

*/

#i ncl ude

<descrip.h> /* OpenVMsS descriptor definitions */

#i ncl ude

<opcdef.h> /* OpenVMs $SNDOPR() definitions */

#i ncl ude

<rpc/rpc.h> /[* always needed */

o

#i ncl ude "nsg. h" /* meg.h will be generated by RPCGEN */

extern int SYS$SNDOPR(struct dsc$descriptor_s *, unsigned short);

/*
** Renote version of "printnessage”
*/
int *
print nessage_1(nsg)
2]
char **nsg;
(3]
{

struct dsc$descriptor_s desc;

uni on {
char buffer[256]; /* Preallocate space for text */
struct opcdef opc;
} nessage;

10

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

static int result;

i nt status;

/*

** Build the nmessage request bl ock.

*/

nessage. opc. opc$b_ns_type = OPC$_RQ RQST;
nmessage. opc. opc$b_ns_target = OPC$SM _NM CENTRL;
message. opc. opc$w_nms_status = 0;

nmessage. opc. opc$l _ns_rqgstid = O;

strcpy((char *) &nmessage. opc.opc$l _ns_text, *nsg);
desc. dsc$a_pointer = (char *) &message. opc;
desc.dsc$w | ength = (char *) &nessage. opc.opc$l _ns_text -
(char *) &nessage +
strlen((char *) &nmessage.opc.opc$l _ns_text);
status = SYS$SNDOPR(&desc, /* NMBGBUF */
0); /* CHAN */
if (status & 1)

result = 1;

o

el se
result = O;
return & esult;

}

In this example, the declaration of the remote procedure, pri nt message_1, differs from that of the
local procedure pri nt nessage in four ways:

o

It includes the <r pc/ r pc. h> file and the " nsg. h" header files. The r pc/ r pc. h file is
located in the directory TCPIP$RPC:. To ensure portability in header files references, most of
the examples in this manual assume you have defined the symbol RPC to be equal to TCPIP
$RPC:

$ DEFI NE RPC TCPI P$RPC:

before using the RPCGEN compiler and the DECC compiler.

It has _1 appended to its name. In general, all remote procedures called by RPCGEN skeleton
routines are named by the following rule: The name in the procedure definition (here,

PRI NTMESSAGE) is converted to all lowercase letters, and an underscore (_) and version
number (here, 1) is appended to it.

It takes a pointer to a string instead of a string itself. This is true of all remote procedures -- they
always take pointers to their arguments rather than the arguments themselves; if there are no
arguments, specify voi d.

It returns a pointer to an integer instead of an integer itself. This is also characteristic of remote
procedures — they return pointers to their results. Therefore, it is important to have the result
declared as a st at i c; if there are no arguments, specify voi d.

2.2.3. The Client Program That Calls the Remote
Procedure

Example 2.4 declares the main client program, r pri nt nsg. c, that calls the remote procedure. (See
SYS$COMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]JRPRINTMSG.C.)

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

Example 2.4. Client Program that Calls the Remote Procedure

/*
** rprintnsg.c: renote QpenVMS version of "printnsg.c”
*/

#i ncl ude

<stdi 0. h>

#i ncl ude

<rpc/rpc. h> /* al ways needed */

#i ncl ude "msg. h" /* meg.h will be generated by RPCGEN */

mai n(argc, argv)
i nt argc;
char *argv[];

{
CLI ENT *cl
char *nmessage;
i nt *result;
char *server;
if (argc !'= 3) {
fprintf(stderr, "usage: % host nessage\n", argv[O0]);
exit(1l);
}
server = argv[1];
nmessage = argv[2];
/*
** Create client "handle" used for calling MESSAGEPROG on
** the server designated on the command line. W tel
** the RPC package to use the TCP protocol when
** contacting the server.
*/
cl = clnt_create(server, MESSAGEPROG MESSAGEVERS, "tcp");
o
if (cl == NULL) {
/*
** Couldn't establish connection with server.
** Print error nmessage and stop
*/
cl nt_pcreateerror(server);
exit(1l);
}
/*
** Call the renote procedure "printnessage" on the server
*/
result = printnmessage_1(&ressage, cl);
(2
if (result == NULL) {
(3
/*

** An error occurred while calling the server.
** Print error nessage and stop

*/

clnt_perror(cl, server);

12

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

exit(1l);
}
/*
** (Ckay, we successfully called the rennte procedure.
*/
if (*result == 0) {
o
/*
** Server was unable to print our nessage.
** Print error message and stop
*/
fprintf(stderr, "%: % couldn't print your nmessage\n", argv[O],
server);
exit(1l);
}
/*
** The message got printed on the server's console
*/
rintf("Message delivered to %s!\n", server);
p
exit(0);
}

In this example, the following events occur:

First, the RPC library routine cl nt _cr eat e creates a client "handle." The last parameter
tocl nt_createis"tcp", the transport on which you want to run your application.
(Alternatively, you could have used " udp"” .)

Next, the program calls the remote procedure pri nt nessage_1 in exactly the same way as
specified in meg_ser ver . c, except for the inserted client handle as the second argument.
The remote procedure call can fail in two ways: The RPC mechanism itself can fail or there can
be an error in the execution of the remote procedure. In the former case, the remote procedure,
print message 1, returns NULL.

In the later case, error reporting is application-dependent. In this example, the remote procedure
reports any error via *resul t .

2.2.4. Running RPCGEN

Use the RPCGEN protocol compiler on the RPC protocol specification file, MSG.X, (from
Example 2.2) to generate client and server RPC code automatically:

$ RPCGEN MsG. X

Using RPCGEN like this — without options — automatically creates the following files from the input
file MSG.X:

A header file called MSG.H that contains #def i ne statements for MESSAGEPROG
MESSAGEVERS, and PRI NTMESSAGE so you can use them in the other modules. You must
include MSG.H in both the client and server modules.

A file containing client skeleton routines. RPCGEN forms the client skeleton file name,

MSG_CLNT.C, by appending CLNT to the file name and substituting the file type suffix, .C.
The MSG_CLNT.C file contains only one client skeleton routine, pri nt message_1, referred to
in the r pri nt nsg client program.

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

* A file containing server skeleton routines. RPCGEN forms the server skeleton file name,
MSG SVC.C, by appending SVC to the file name and substituting the file type suffix, .C. The
NMBQg_SVcC. ¢ program calls the pri nt message_1 routine in the N"8Qg_Ser ver. ¢ program.

Note

The /TABLE option of RPCGEN creates an additional output file of index information for dispatching
service routines. See Section 2.6.4 for more information about dispatch tables.

2.2.5. Compiling the Client and Server Programs

After the RPCGEN protocol compilation, use two CC compilation statements to create a client
program and a server program:

» To create the client program called r pr i nt nsg, compile the client program, r pri nt nsg. c,
and the client skeleton program (msg_cl nt . ¢) from the original RPCGEN compilation, then
link the two object files together with the RPC object library:

$ CC/ DECC RPRI NTMsSG. C
$ CC/ DECC MSG_CLNT. C
$ LI NK RPRI NTMSG, MSG_CLNT, TCPI P$RPC: TCPI P$RPCXDR/ LI BRARY

* To create a server program called n"sg_ser ver, compile the server program msg_server. c
and the server skeleton program ("msg_Svc. €) from the original RPCGEN compilation, then link
the two object files together with the RPC object library:

$ CC/ DECC MSG_SERVER. C
$ CC/ DECC MSG_SVC. C
$ LI NK MSG_SERVER, MSG_SVC, TCPl P$RPC; TCPI P$RPCXDR/ LI BRARY

Note

If you want to use the shareable version of the RPC object library, reference the shareable version of
the library, SYSSSHARE:TCPIPSRPCXDR SHR/SHARE, in your LINK options file.

2.2.6. Copying the Server to a Remote System and
Running It

Copy the server program Nsg_Ser ver to a remote system called space in this example. Then, run
it as a detached process there:

$ RUN DETACHED MSG_SERVER

Note

You can invoke servers generated by RPCGEN from the command line as well as with port monitors
such as INETd, if you generate them with the /INET SERVICE option.

From a local system (ear t h) you can now print a message on the console of the remote system
space:

$ MCR SYS$DI SK: [] RPRI NTMSG "space" "Hello out there..."

14

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

The message Hel | 0 out there... appears on the console of the system Space. You can print a
message on any console (including your own) with this program if you copy the server to that system
and run it.

2.3. Advanced Example: Using RPCGEN to
Generate XDR Routines

Section 2.2 explained how to use RPCGEN to generate client and server RPC code automatically
to convert a simple procedure to one that runs remotely over the network. The RPCGEN protocol
compiler can also generate the external data representation (XDR) routines that convert local data
structures into network format (and vice versa).

The following sections present a more advanced example of a complete RPC service — a remote
directory listing service that uses RPCGEN to generate both the client and server skeletons as well as
XDR routines.

2.3.1. The RPC Protocol Specification

As with the simple example, you must first create an RPC protocol specification file. This file, DIR.X,
is shown in Example 2.5 (see SYSSCOMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]DIR.X).

Note

You can define types (such as r eaddi r _r es in Example 2.5) by using the st r uct , uni on, and
enumkeywords, but do not use these keywords in later variable declarations of those types. For
example, if you define uni on resul t s, you must declare it later by using r esul t s, not uni on
resul t s. The RPCGEN protocol compiler compiles RPC unions into C structures, so it is an error
to declare them later by using the uni on keyword.

Running RPCGEN on DIR.X creates four output files:
e Header file (DIR.H)

e Client skeleton file (DIR_CLNT.C)

» Server skeleton file (DIR_SVC.C)

* File of XDR routines (DIR_XDR.C)

The first three files have already been described. The fourth file, DIR_XDR.C, contains the XDR
routines that convert the declared data types into XDR format (and vice versa). For each data type
present in the . X file, RPCGEN assumes that the RPC/XDR library contains a routine with the name
of that data type prefixed by xdr _, for example, xdr _i nt . If the .X file defines the data type, then
RPCGEN generates the required XDR routines (for example, DIR_XDR.C). If the .X file contains no
such data types, then RPCGEN does not generate the file. If the program uses a data type but does not
define it, then you must provide that XDR routine. This enables you to create your own customized
XDR routines.

Example 2.5. RPC Protocol Specification File — Advanced Example

/*
* dir.x: Renote directory listing protocol
*/

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

/* maxi mum | ength of a directory entry */
const MAXNAMELEN = 255;
/* a directory entry */
typedef string nametype

<MAXNAMELEN>;

/[* alink in the listing */
typedef struct nanenode *naneli st;

/*
* A node in the directory listing
*/
struct nanenode {
nanet ype nane; /* nane of directory entry */
nanel i st next; /* next entry */
b
/*
* The result of a READDI R operati on.
*/
union readdir_res switch (int Errno) {
case 0O:
nanelist list; /* no error: return directory listing */
defaul t:
voi d; /* error occurred: nothing else to return */
I3
/*
* The directory programdefinition
*/

pr ogr am DI RPROG {
versi on DI RVERS {
readdir_res
READDI R(nanetype) =1
b= L
} = 0x20000076;

2.3.2. Implementing the Procedure Declared in the
Protocol Specification

Example 2.6 (see SYSSCOMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]DIR_SERVER.C) consists
of the di r _server. c program that implements the remote READDI R procedure from the previous
RPC protocol specification file.

Example 2.6. Remote Procedure Implementation

/*

** dir_server.c: renote OpenVNMS readdir inplenentation
*/

#i ncl ude

<errno. h>

#i ncl ude

<rns. h>

#i ncl ude

<rpc/rpc.h> [* Always needed */

#include "dir.h" /* Created by RPCGEN */

16

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

extern int SYS$PARSE(struct FAB *);
extern int SYS$SEARCH(struct FAB *);

extern char *malloc();

r
r

{

eaddir _res *
eaddi r _1(di rnane)
nanet ype *dirnane;

char expanded_nane[NAMBC_MAXRSS+1] ;

struct FAB fab

struct NAM nam

nanel i st nl;

nanel i st *nl p;

static readdir_res res; /* nust be static! */
char resul t ant _nanme[NAMBC_MAXRSS+1] ;

int exit();

/*

** Initialize the FAB.

*/

fab = cc$rms_fab;

fab. fab$l _fna = *dirnane;

fab. fab$b_fns = strlen(*dirnane);
fab.fab$l _dna = "SYS$DI SK: []*.*; *";
fab. fab$b_dns = strlen(fab.fab$l_dna);

/*

** [nitialize the NAM

*/

nam = cc$r ns_nam

nam nan$l _esa expanded_narne;
nam nantb_ess NAMBEC_MAXRSS;
nam nansl _rsa resul tant _narme;
nam nansb_rss NAMBEC_MAXRSS;
fab. f ab$l _nam = &nam

*
i* Parse the specification and see if it works.
*
i; (SYS$PARSE(&f ab) & 1) {
*
i* Free previous result
*
xgr_free(xdr_readdir_res, &res);

/*

** Collect directory entries.

** Menory all ocated here will be freed by xdr_free
** next tine readdir_1 is called

*/

nlp = &es.readdir_res_u.list;

whi | e (SYS$SEARCH(&f ab) & 1) {

resul tant _name[nam nanb_rsl] = '\0";
nl = (nanmenode *) nall oc(sizeof (nanenode));
*nlp = nl;

nl ->name = (char *) mall oc(nam nan$b_name +

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

nam nan$b_type +
nam nan$b_ver + 1);
strcpy(nl ->nanme, nam nansl _nane);
nlp = &nl ->next;

}
*nlp = NULL;
/*
** Return the result
*/

res.Errno = 0O;
} /* SYS$PARSE() */
el se
res. Errno = fab. fab$l _sts;

return &res;

}

2.3.3. The Client Program that Calls the Remote
Procedure

Example 2.7 (see SYSSCOMMON:[SYSHLP.EXAMPLES.TCPIP.RPC]RLS.C) shows the client
program, r | S. c, that calls the remote server procedure.

Example 2.7. Client Program that Calls the Server

/*

* rls.c: Renote directory listing client
*/

#i ncl ude

<errno. h>

#i ncl ude

<rns. h>

#i ncl ude

<stdi 0. h>

#i ncl ude

<rpc/rpc. h> /* always need this */
#include "dir.h"

mai n(argc, argv)
i nt argc;
char *argv[];

CLI ENT *cl

char *dir;
nanel i st nl

readdir _res *result;
char *server;

int exit();

if (argc !'= 3) {
fprintf(stderr, "usage: % host directory\n", argv[O0]);
exit(1);
}

18

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

server = argv[1];
dir = argv[2];

/*
** Create client "handle" used for calling D RPROG on
** the server designated on the command |ine. Use
** the tcp protocol when contacting the server.
*/
cl = clnt_create(server, D RPROG DIRVERS, "tcp");
if (cl == NULL) {
/*
** Couldn't establish connection with server.
** Print error message and stop
*/
cl nt _pcreateerror(server);
exit(1l);
}

/*
** Call the renpte procedure readdir on the server
*/
result = readdir_1(&dir, cl);
if (result == NULL) {
/*
** An RPC error occurred while calling the server.
** Print error message and stop
*/
clnt_perror(cl, server);
exit(1l);
}

/*
** (Ckay, we successfully called the renote procedure.
*/
if (result->Errno !'= 0) {
/*
** A renpte systemerror occurred.
** Print error message and stop
**/
errno = result->Errno;
perror(dir);
exit(1l);
}

/*
** Successfully got a directory listing.
** Print it out.

*/
for (nl =result->readdir_res_u.list;
nl = NULL;
nl = nl->next)
printf("%\n", nl->name);
exit(0);
}

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

2.3.4. Running RPCGEN

As with the simple example, you must run the RPCGEN protocol compiler on the RPC protocol
specification file DIR.X:

$ RPCGEN DI R X

RPCGEN creates a header file, DIR.H, an output file of client skeleton routines, DIR CLNT.C, and
an output file of server skeleton routines, DIR_SVC.C. For this advanced example, RPCGEN also
generates the file of XDR routines, DIR_XDR.C.

2.3.5. Compiling the File of XDR Routines

The next step is to compile the file of XDR routines, DIR_XDR.C:

$ CC/ DECC DI R_XDR

2.3.6. Compiling the Client and Server Programs

After the XDR compilation, use two CC and LINK sequences to create the client program and the
server program:

» To create the client program called r | s, compile the client program, RLS.C and the client
skeleton program from the original RPCGEN compilation DIR_CLNT.C. Then link the two object
files and the object file produced by the recent compilation of the file of XDR routines together
with the RPC object library:

$ CC/ DECC RLS. C
$ CC/ DECC DI R CLNT. C
$ LINK RLS, DI R_CLNT, DI R_XDR, TCPI P$RPC: TCP| P$RPCXDR/ LI BRARY

» To create the server program called di r _ser ver, compile the remote READDI R
implementation program, DIR_SERVER.C and the server skeleton program from the original
RPCGEN compilation, DIR_SVC.C. Then link the two object files and the object file produced by
the recent compilation of the file of XDR routines together with the RPC object library:

$ CC/ DECC DI R_SERVER. C
$ CC/ DECC DIR SVC. C
$ LINK DI R_SERVER, DI R_SVC, DI R_XDR, TCPI P$RPC: TCPI P$RPCXDR/ LI BRARY

Note

If you want to use the shareable version of the RPC object library, reference the shareable version of
the library, SYSSSHARE:TCPIPSRPCXDR_SHR, in your LINK options file.

2.3.7. Copying the Server to a Remote System and
Running It

Copy the server program di r _ser ver to a remote system called space in this example. Then, run
it as a detached process:

$ RUN DETACHED DI R_SERVER

20

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

From the local system ear t h invoke the RLS program to provide a directory listing on the system
where di r _ser ver is running in background mode. The following example shows the command
and output (a directory listing of / usr / pub on system space):

$ MCR SYS$DI SK: []RLS "space" "/usr/pub"

asci i
eqnchar
kbd
mar g8
tabclr
t abs

t abs4

Note

Client code generated by RPCGEN does not release the memory allocated for the results of the RPC
call. You can call xdr _f r ee to deallocate the memory when no longer needed. This is similar to
calling f r ee, except that you must also pass the XDR routine for the result. For example, after
printing the directory listing in the preceding example, you could call xdr _f r ee as follows:

xdr_free(xdr_readdir_res, result);

2.4. Debugging Applications

It is difficult to debug distributed applications that have separate client and server processes. To
simplify this, you can test the client program and the server procedure as a single program by linking
them with each other rather than with the client and server skeletons. To do this, you must first
remove calls to client creation RPC library routines (for example, cl nt _cr eat e). To create the
single debuggable file RLS.EXE, compile each file and then link them together as follows:

$ OC/ DECC RLS.C

$ CC/ DECC DI R CLNT. C

$ CC/ DECC DI R_SERVER C

$ CC/ DECC DI R _XDR C

% LI NK RLS, DI R_CLNT, DI R_SERVER, DI R_XDR, TCPI P$RPC: TCPI P$RPCXDR/ L| BRARY

The procedure calls are executed as ordinary local procedure calls and you can debug the program
with a local debugger. When the program is working, link the client program to the client skeleton
produced by RPCGEN and the server procedures to the server skeleton produced by RPCGEN.

There are two kinds of errors possible in an RPC call:
1. A problem with the remote procedure call mechanism.

This occurs when a procedure is unavailable, the remote server does not respond, the remote
server cannot decode the arguments, and so on. As in Example 2.7, an RPC error occurs if
resul t is NULL.

The program can print the reason for the failure by using cl nt _per r or, or it can return an error
string through cl nt _sperror.

2. A problem with the server itself.

21

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

As in Example 2.6, an error occurs if opendi r fails; that is why r eaddi r _r es is of type
uni on. The handling of these types of errors is the responsibility of the programmer.

2.5. The C Preprocessor

The C preprocessor, CC/DECC/PREPROCESSOR, runs on all input files before they are compiled,
so all the preprocessor directives are legal within an .X file. RPCGEN may define up to five macro
identifiers, depending on which output file you are generating. The following table lists these macros:

Identifier Usage

RPC_HDR For header file output
RPC_XDR For XDR routine output
RPC_SVC For server skeleton output
RPC_CLNT For client skeleton output
RPC_TBL For index table output

Also, RPCGEN does some additional preprocessing of the input file. Any line that begins with
a percent sign (99 passes directly into the output file, without any interpretation. Example 2.8
demonstrates this processing feature.

Example 2.8. Using the Percent Sign to Bypass Interpretation of a Line

/*
* time.x: Renpte tine protocol
*/
program Tl MEPROG {
version Tl MEVERS ({
unsi gned int TIMEGET(void) = 1,

} =1
} o= 44
#i f def RPC_SVC
% nt *
% i meget _1()
A
% static int thetine;
%

% thetime = time(0);
% return (& hetine);
%4

#endi f

Using the percent sign feature does not guarantee that RPCGEN will place the output where you
intend. If you have problems of this type, do not use this feature.

2.6. RPCGEN Programming

The following sections contain additional RPCGEN programming information about network types,
defining symbols, INETd support, and dispatch tables.

22

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

2.6.1. Network Types

By default, RPCGEN generates server code for both UDP and TCP transports. The /TRANSPORT
option creates a server that responds to requests on the specified transport. The following command
creates a UDP server from a file called PROTO.X:

$ RPCGEN / TRANSPORT=UDP PROTQ X

2.6.2. User-Provided Define Statements

The RPCGEN protocol compiler provides a way to define symbols and assign values to them. These
defined symbols are passed on to the C preprocessor when it is invoked. This facility is useful when,
for example, invoking debugging code that is enabled only when you define the DEBUG symbol.
For example, to enable the DEBUG symbol in the code generated from the PROTO.X file, use the
following command:

$ RPCGEN / DEFI NE=DEBUG PROTQ. X

2.6.3. INETd Support

The RPCGEN protocol compiler can create RPC servers that INETd can invoke when it receives
a request for that service. For example, to generate INETd support for the code generated for the
PROTO.X file, use the following command:

$ RPCGEN /| NET_SERVI CE PROTQ X

The server code in pr ot 0_svc. ¢ supports INETd. For more information on setting up entries for
RPC services, see Section 3.7.

In many applications, it is useful for services to wait after responding to a request, on the chance that
another will soon follow. However, if there is no call within a certain time (by default, 120 seconds),
the server exits and the port monitor continues to monitor requests for its services. You can use the /
TIMEOUT_SECONDS option to change the default waiting time. In the following example, the
server waits only 20 seconds before exiting:

$ RPCGEN /| NET_SERVI CE / TI MEQUT_SECONDS=20 PROTO. X

If you want the server to exit immediately, use /TIMEOUT_SECONDS = 0; if you want the server to
wait forever (a normal server situation), use /TIMEOUT _SECONDS = -1.

2.6.4. Dispatch Tables

Dispatch tables are often useful. For example, the server dispatch routine may need to check
authorization and then invoke the service routine, or a client library may need to control all details of
storage management and XDR data conversion. The following RPCGEN command generates RPC
dispatch tables for each program defined in the protocol description file, PROTO.X, and places them
in the file PROTO_TBL.I (the suffix .I indicates index):

$ RPCGEN / TABLE PROTO X

Each entry in the table isa st ruct rpcgen_t abl e defined in the header file, PROTO.H, as
follows:

struct rpcgen_table {
char *(*proc)();

23

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

xdr proc_t i nproc;
unsi gned len_in;
xdr proc_t out proc;
unsi gned | en_out;

In this definition:

* proc is a pointer to the service routine.

* i nproc is a pointer to the input (arguments) XDR routine.
* | en_i nis the length in bytes of the input argument.

e out proc is a pointer to the output (results) XDR routine.
* | en_out is the length in bytes of the output result.

The table di r prog_1_t abl e is indexed by procedure number. The variable di r prog_1 _nproc
contains the number of entries in the table. The f i nd_pr oc routine in the following example shows
how to locate a procedure in the dispatch tables.

struct rpcgen_table *
find_proc(proc)

| ong pr oc;
{
if (proc >= dirprog_1_nproc)
/* error */
el se
return (&dirprog 1 table[proc]);
}

Each entry in the dispatch table (in the file input_file TBL.I) contains a pointer to the corresponding
service routine. However, the service routine is not defined in the client code. To avoid generating
unresolved external references, and to require only one source file for the dispatch table, the actual
service routine initializer is RPCGEN_ACTI ON(pr oc_ver) . The following example shows the
dispatch table entry for the procedure pr i nt nessage with a procedure number of 1:

(char *(*)())RPCGEN_ACTI ON\(pri nt message_1),
xdr _wrapstring, 0,
xdr _int, 0,

With this feature, you can include the same dispatch table in both the client and the server. Use the
following def i ne statement when compiling the client:

#defi ne RPCGEN_ACTI ON(routine) O
Use the following def i ne statement when compiling the server:

#defi ne RPCGEN_ACTI ON(routine) routine

2.7. Client Programming

The following sections contain client programming information about default timeouts and client
authentication.

24

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

2.7.1. Timeout Changes

A call to cl nt _cr eat e sets a default timeout of 25 seconds for RPC calls. RPC waits for 25
seconds to get the results from the server. If it does not get any results, then this usually means that
one of the following conditions exists:

e The server is not running.

* The remote system has failed.

» The network is unreachable.

In such cases, the function returns NULL; you can print the error with cl nt _per r no.

Sometimes you may need to change the timeout value to accommodate the application or because the
server is slow or far away. Change the timeout by using cl nt _cont r ol . The code segment in the
following example demonstrates the use of cl nt _contr ol .

struct tinmeval tv;
CLI ENT *cl;

cl = clnt_create("sonehost", SOVEPROG SOVEVERS, "tcp");
if (cl == NULL) {

exit(1);
}
tv.tv_sec = 60; /* change timeout to 1 minute */
tv.tv_usec = 0; /* this should always be set */
clnt_control (cl, CLSET_TIMEQUT, &tv);

2.7.2. Client Authentication

By default, client creation routines do not handle client authentication. Sometimes, you may want the
client to authenticate itself to the server. This is easy to do, as shown in the following code segment:

CLI ENT *cl;
cl = clnt_create("sonehost"”, SOVEPROG SOVEVERS, "udp");
if (cl !'= NULL) {

/* To set UNI X style authentication */
cl->cl _auth = authunix_create_defaul t();

For more information on authentication, see Section 3.6.

2.8. Server Programming

The following sections contain server programming information about system broadcasts and passing
data to server procedures.

2.8.1. Handling Broadcasts

Sometimes, clients broadcast to determine whether a particular server exists on the network, or to
determine all the servers for a particular program and version number. You make these calls with
cl nt _br oadcast (for which there is no RPCGEN support). Refer to Section 3.5.2.

25

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

When a procedure is known to be called with broadcast RPC, it is best for the server not to reply
unless it can provide useful information to the client. Otherwise, servers could overload the network
with useless replies. To prevent the server from replying, a remote procedure can return NULL as its
result; the server code generated by RPCGEN can detect this and prevent a reply.

In the following example, the procedure replies only if it acts as an NFS server:

void *
reply_if_nfsserver()
{
char notnull; /* just here so we can use its address */
if (access("/etc/exports", F_OK)
<0 {
return (NULL); /* prevent RPC fromreplying */
}
/*

* return non-null pointer so RPC will send out a reply
*/
return ((void *)¬null);

}

If a procedure returns type voi d *, it must return a nonnull pointer if it wants RPC to reply for it.

2.8.2. Passing Data to Server Procedures

Server procedures often need to know more about an RPC call than just its arguments. For example,
getting authentication information is useful to procedures that want to implement some level of
security. This information is supplied to the server procedure as a second argument. (For details, see
the structure of SVC_r eq in Section 3.6.2.) The following code segment shows the use of SvCc_r eq,
where the first part of the previous pri nt message_1 procedure is modified to allow only root
users to print a message to the console:

int *

print nessage_1(nsg, rqstp)
char **negQ;
struct svc_req *rqgstp;

static int result; /* Must be static */
FI LE *f;
struct aut huni x_parns *aup;

aup = (struct authunix_parnms *)rqstp->rg_clntcred,
if (aup->aup_uid !'= 0) {

result = 0;

return (& esult);

}

/* Same code as before */

2.9. RPC and XDR Languages

The RPC language is an extension of the XDR language through the addition of the pr ogr am

and ver si on types. The XDR language is similar to C. For a complete description of the XDR
language syntax, see RFC 1014: XDR: External Data Representation Standard. For a description of
the RPC extensions to the XDR language, see RFC 1057: RPC: Remote Procedure Calls Protocol
Specification Version 2.

26

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

The following sections describe the syntax of the RPC and XDR languages, with examples and
descriptions of how RPCGEN compiles the various RPC and XDR type definitions into C type
definitions in the output header file.

2.9.1. Definitions

An RPC language file consists of a series of definitions:

definition-1list:
definition ";"
definition ";" definition-Iist

RPC recognizes the following definition types:

definition:

enumdefinition
typedef -definition
const-definition

decl aration-definition
struct-definition

uni on-definition
programdefinition

2.9.2. Enumerations

XDR enumerations have the same syntax as C enumerations:

enum definition:

"enuni enumident "{"

enum val ue-1|i st

wyn
enum val ue-1i st:

enum val ue

enumvalue "," enumval ue-|i st
enum val ue:

enum val ue-i dent

enum val ue-i dent "=" val ue

The following example defines an enumtype with three values:

enum col ortype {
RED = 0,
GREEN = 1,
BLUE = 2

i

This coding compiles into the following:

enum col ortype {
RED = 0,
GREEN = 1,
BLUE = 2,
I

t ypedef enum col ortype col ortype;

2.9.3. Typedefs

XDR t ypedef s have the same syntax as C t ypedef s:

27

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

typedef -definition:
"typedef" declaration

The following example in XDR defines an f name_t ype that declares file name strings with a
maximum length of 255 characters:

typedef string fnanme_type <255>;
The following example shows the corresponding C definition for this:

typedef char *fnane_type;

2.9.4. Constants

XDR constants are used wherever an integer constant is used (for example, in array size
specifications), as shown by the following syntax:

const -definition:
"const" const-ident "=" integer

The following XDR example defines a constant DOZEN equal to 12:
const DOZEN = 12;
The following example shows the corresponding C definition for this:

#defi ne DOZEN 12

2.9.5. Declarations

XDR provides only four kinds of declarations, shown by the following syntax:

decl arati on:
si mpl e-decl aration
fi xed-array-declaration
vari abl e-array-decl aration
poi nt er-decl aration

The following lists the syntax for each, followed by examples:

* Simple declarations

si mpl e-decl ar ati on:
type-ident variabl e-i dent

For example, col ort ype col or in XDR, is the same in C: col ortype col or.

* Fixed-length array declarations

fixed-array-decl aration:
type-ident variable-ident "[" value "]"

For example, col ortype pal ett e[8] in XDR, is the same in C: col ortype
pal ette[8].

* Variable-length array declarations

These have no explicit syntax in C, so XDR creates its own by using angle brackets, as in the
following syntax:

28

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

vari abl e-array-decl arati on:
type-ident variabl e-i dent
<" value ">"
type-ident variabl e-i dent

<t s

Specify the maximum size between the angle brackets. You can omit the value, indicating that the
array can be of any size, as shown in the following example:

i nt heights

<12>;/* at nost 12 itens */
i nt widths

<>;/* any nunber of itens */

Variable-length arrays have no explicit syntax in C, so RPCGEN compiles each of their
declarations into a St r uct . For example, RPCGEN compiles the hei ght s declaration into the
following st r uct :

struct {
u_int heights len;/* nunber of itens in array */
int *heights val;/* pointer to array */

} heights;

Here, the _| en component stores the number of items in the array and the _val component
stores the pointer to the array. The first part of each of these component names is the same as the
name of the declared XDR variable.

¢ Pointer declarations

These are the same in XDR as in C. You cannot send pointers over the network, but you can use
XDR pointers to send recursive data types, such as lists and trees. In XDR language, this type is
called opt i onal - dat a, not poi nt er, as in the following syntax:

opti onal - dat a:
type-ident "*"vari abl e-ident

An example of this (the same in both XDR and C) follows:

listitem *next;

2.9.6. Structures

XDR declares a st r uct almost exactly like its C counterpart. The XDR syntax is the following:

struct-definition:
"struct" struct-ident "{"
decl aration-1i st

oy

declaration-1list:
declaration ";"

declaration ";" declaration-list

The following example shows an XDR structure for a two-dimensional coordinate, followed by the C
structure into which RPCGEN compiles it in the output header file:

struct coord {

29

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

int Xx;
int vy;
s

The following example shows the C structure that results from compiling the preceding XDR
structure:

struct coord {
int x;
int vy;

b

t ypedef struct coord coord;

Here, the output is identical to the input, except for the added t ypedef at the end of the output. This
enables the use of coor d instead of St ruct coor d in declarations.

2.9.7. Unions

XDR unions are discriminated unions and are different from C unions. They are more analogous to
Pascal variant records than to C unions. The syntax is shown here:

uni on-definition:
"uni on" union-ident "switch" ("sinple declaration") "{"
case-|ist

oy

case-|ist:

"case" val ue decl aration ";
"case" val ue declaration ";" case-|ist

"default" ":" declaration ";"

The following is an example of a type that might be returned as the result of a read data. If there is no
error, it returns a block of data; otherwise, it returns nothing:

union read result switch (int errno) {
case O:
opaque data[1024];
defaul t:
voi d;

b
RPCGEN compiles this coding into the following:

struct read result {
int errno;
uni on {
char data[1024];
} read_result _u;
s

typedef struct read_result read result;

Notice that the union component of the output structure has the same name as the structure type name,
except for the suffix, _u.

2.9.8. Programs

You declare RPC programs using the following syntax:

30

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

program definition:
"progrant programident "{"
version-1li st
"}" "=" value

version-1|ist:

version ";

version ";" version-list

ver si on:
"version" version-ident "{"
procedure-|i st
"}" o"=" value

procedure-|ist:

procedure ;"
procedure ";" procedure-|ist
pr ocedur e:
type-ident procedure-ident "("type-ident")" "=" val ue

The following example shows a program specification for a time protocol program:

/*
* time.x: CGet or set the tine. Time is represented as numnber
* of seconds since 0:00, January 1, 1970.
*/
program Tl MEPROG {
version Tl MEVERS ({
unsi gned int TIMEGET(void) = 1;
voi d TI MESET(unsi gned) = 2;
} =1
} = 44

This coding compiles into the following #def i ne statements in the output header file:

#def i ne Tl MEPROG 44
#defi ne TI MEVERS 1
#define TI MEGET 1
#defi ne TI MESET 2

2.9.9. Special Cases

The following are exceptions to the syntax rules described in the previous sections:
* Booleans

C has no built-in boolean type. However, the RPC library has a boolean type called bool _t that
is either TRUE or FALSE. RPCGEN compiles items declared as type bool in the XDR language
into bool _t in the output header file. For example, RPCGEN compiles bool marri ed into
bool t marri ed.

» Strings

C has no built-in string type, but instead uses the null-terminated char * convention. In
the XDR language, you declare strings by using the st r i ng keyword. RPCGEN compiles
each string into a char * in the output header file. The maximum size contained in the angle

31

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

brackets specifies the maximum number of characters allowed in the strings (excluding the NULL
character). For example, RPCGEN compiles st ri ng name <32>into char *nane. You
can omit a maximum size to indicate a string of arbitrary length. For example, RPCGEN compiles
string | ongnane<>into char *| ongnane.

e Opaque data

RPC and XDR use opaque data to describe untyped data, which consists simply of sequences of
arbitrary bytes. You declare opaque data as an array of either fixed or variable length. An opaque
declaration of a fixed-length array is opaque di skbl ock[512], whose C counterpart
ischar di skbl ock[512] . An opaque declaration of a variable-length array is opaque

fil edata <1024>, whose C counterpart could be the following:

struct {
uint filedata_len;
char *filedata val;
} filedata;

¢ Voids

In a voi d declaration, the variable is not named. The declaration is just a vVoi d. Declarations
of voi d occur only in union and program definitions (as the argument or result of a remote
procedure).

2.10. Command Reference

RPCGEN

RPCGEN — A code-generating tool for creating programming skeletons that implement the RPC
mechanism.

Note

RPCGEN runs the C preprocessor, CC/DECC/PREPROCESSOR, on all input files before actually
interpreted the files. Therefore, all the preprocessor directives are legal within an RPCGEN input file.
For each type of output file, RPCGEN defines a special preprocessor symbol for use by the RPCGEN
programmer:

RPC_HDR Defined when compiling into header files.
RPC_XDR Defined when compiling into XDR routines.
RPC_SVC Defined when compiling into server skeletons.
RPC_CLNT Defined when compiling into client skeletons.
RPC_TBL Defined when compiling into RPC dispatch table.

In addition, RPCGEN does a little preprocessing of its own. RPCGEN passes any line beginning with
a percent sign (%) directly into the output file, without interpreting the line.

Syntax

RPCGEN i nfi | e[[/ HEADER FI LE]
[/ CLI ENT_STUBS_FI LE | /DI SPATCH TABLE | /XDR FI LE]
[/ SERVER _STUBS_FI LE | / TRANSPORT [=(TCP, UDP)]]]

32

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

[[/ TABLE]

[/DEFINE = (name=[value][,....]) | /OQUTPUT = file]

[/DEFINE = (name=[value][,....]) | /ERRLOG | /INET_SERVICE | /QUTPUT
file |

/ TI MEQUT_SECONDS=seconds]]]

Parameters

infile

The input file to RPCGEN. The input file contains ONC RPC programming language. This language
is very similar to the C language. By default, RPCGEN uses the name of the input file to create the
four default output files as follows:

L]

L]

infile. H — the header file
infile. CLNT.C — the client skeleton
infile._ SVC.C — the server skeleton with support for both UDP and TCP transports

infile_ XDR.C — the XDR routines

If you specify the /DISPATCH_TABLE qualifier, RPCGEN uses the default name infile TBL.I for the
dispatch table.

Qualifiers

/JCLIENT STUBS FILE

Optional.

UNIX equivalent: -1

Default: Create a client skeleton file.
Creates the client skeleton file.

Mutually exclusive with the /DISPATCH_TABLE, /HEADER FILE, /SERVER STUBS FILE, /
TRANSPORT, and XDR_FILE qualifiers.

/DEFINE = (name[=value]/,....])

Optional.
UNIX equivalent: -D
Default: No definitions.

Defines one or more symbol names. Equivalent to one or more #def i ne directives. Names are
defined as they appear in the argument to the qualifier. For example, /DEFINE=TEST=1 creates
the line #def i ne TEST=1 in the output files. If you omit the value, RPCGEN defines the name
with the value 1.

/DISPATCH_TABLE

Optional.

33

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

UNIX equivalent: -t

Default: No dispatch file created.

Creates the server dispatch table file. An RPCGEN dispatch table contains:
» Pointers to the service routines corresponding to a procedure

* A pointer to the input and output arguments

* The size of these routines

A server can use the dispatch table to check authorization and then to execute the service routine;
a client may use it to deal with the details of storage management and XDR data conversion.

Mutually exclusive with the /CLIENT_STUBS_FILE, /HEADER FILE, /
SERVER _STUBS FILE, /TRANSPORT, and XDR_FILE qualifiers.

/ERRLOG
Optional.
UNIX equivalent: -L
Default: Logging to st derr .

Specifies that servers should log errors to the operator console instead of using f pri nt f with
st der r. You must install servers with OPER privilege in order to use this feature.

/HEADER FILE
Optional.
UNIX equivalent: -h
Default: Create a header file.

Creates the C data definitions header file. Use the /TABLE qualifier in conjunction with this
qualifier to generate a header file that supports dispatch tables.

Mutually exclusive with the /CLIENT_STUBS_FILE, /DISPATCH_TABLE, /
SERVER _STUBS_FILE, /TRANSPORT, and XDR_FILE qualifiers.

/INET_SERVICE
Optional.
UNIX equivalent: -1
Default: No INETd support.

Compiles support for INETd in the server side stubs. You can start servers yourself or you can
have INETd start them. Servers started by INETd log all error messages to the operator console.

If there are no pending client requests, the INETd servers exit after 120 seconds (default). You can
change this default with the /TIMEOUT _SECONDS qualifier.

34

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

When RPCGEN creates servers with INETd support, it defines two global variables:
_rpcpnstart andr pcf dt ype. The runtime value of _r pcpnst art is 1 or 0 depending on
whether INDE(started the server program. The value of r pcf dt ype should be SOCK_STREAM
or SOCK _DGRAMdepending on the type of the connection.

/OUTPUT = file
Optional.
UNIX equivalent: -o
Default: Direct output to one of the standard default files.

Use this qualifier to direct the output of the /CLIENT STUBS FILE, /DISPATCH TABLE, /
HEADER FILE, /SERVER _STUBS FILE, /TRANSPORT, and /XDR_FILE qualifiers.

/SERVER_STUBS FILE
Optional.
UNIX equivalent: -m
Default: Create a server skeleton file.

Creates a server skeleton file without the mai n routine. Use this qualifier to generate a server
skeleton when you wish to create your own nai n routine. This option is useful for programs that
have callback routines and for programs that have customized initialization requirements.

Mutually exclusive with the /CLIENT_STUBS_FILE, /DISPATCH_TABLE, /HEADER FILE, /
TRANSPORT, and XDR_FILE qualifiers.

/TABLE
Optional.
UNIX equivalent: -T
Default: No dispatch table code created.

Creates the code in the header file to support an RPCGEN dispatch table. You can use this
qualifier only when you are generating all files (the default) or when you are using the /
HEADER FILE qualifier to generate the header file. This /TABLE qualifier includes a definition
of the dispatch table structure in the header file; it does not modify the server routine to use the
table.

/TRANSPORT [= (TCP, UDP)]
Optional.
UNIX equivalent: -s
Default: Create a server skeleton that supports both protocols.

Creates a server skeleton that includes a mai n routine that uses the given transport. The
supported transports are UDP and TCP. To compile a server that supports multiple transports,
specify both.

35

Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler

/TIMEOUT SECONDS= seconds

Optional.
UNIX equivalent: -K
Default: 120 seconds.

If INETd starts the server, this option specifies the time (in seconds) after which the server should
exit if there is no further activity. By default, if there are no pending client requests, INETd
servers exit after 120 seconds. This option is useful for customization. If seconds is 0, the server
exits after serving a request. If seconds is -1, the server never exits after being started by INETd.

/XDR_FILE

Optional.
UNIX equivalent: -c
Default: Create an XDR file.

You can customize some of your XDR routines by leaving those data types undefined. For every
data type that is undefined, RPCGEN assumes that there exists a routine with the name xdr _
prepended to the name of the undefined type.

Mutually exclusive with the /CLIENT STUBS_FILE, /DISPATCH_TABLE, /HEADER FILE, /
TRANSPORT, and /SERVER_STUBS_FILE qualifiers.

Examples

1.

RPCCGEN / ERRLOG / TABLE PROTO. X

This example generates all of the five possible files using the default file names: PROTO.H,
PROTO_CLNT.C, PROTO _SVC.C, PROTO_XDR.C, and PROTO_TBL.I. The PROTO_SVC.C
code supports the use of the dispatch table found in PROTO_TBL.I. The server error messages are
logged to the operator console instead of being sent to the standard error.

RPCGEN /| NET_SERVI CE / TI MEOQUT_SECONDS=20 PROTO. X

This example generates four output files using the default file names: PROTO.H,
PROTO_CLNT.C, PROTO_SVC.C, and PROTO_XDR.C. INETd starts the server and the server
exits after 20 seconds of inactivity.

RPCGEN / HEADER_FI LE / TABLE PROTO. X

This example sends the header file (with support for dispatch tables) to the default output file
PROTO.H.

RPCCGEN / TRANSPCORT=TCP PROTO. X

This example sends the server skeleton file for the transport TCP to the default output file
PROTO_SVC.C.

RPCGEN / HEADER_FI LE / TABLE / OQUTPUT=PROTO_TABLE. H PROTQO. X

This example sends the header file (with support for dispatch tables) to the output file
PROTO_TABLE.H.

36

Chapter 3. RPC Application
Programming Interface

For most applications, you do not need the information in this chapter; you can simply use the
automatic features of the RPCGEN protocol compiler (described in Chapter 2). This chapter requires
an understanding of network theory; it is for programmers who must write customized network
applications using remote procedure calls, and who need to know about the RPC mechanisms hidden
by RPCGEN.

3.1. RPC Layers

The ONC RPC interface consists of three layers: highest, middle, and lowest. For ONC RPC
programming, only the middle and lowest layers are of interest. For a complete specification of the
routines in the remote procedure call library, see Chapter 5 through Chapter 8.

The middle layer routines are adequate for most applications. This layer is “RPC proper ” because you
do not need to write additional programming code for network sockets, the operating system, or any
other low-level implementation mechanisms. At this level, you simply make remote procedure calls to
routines on other systems. For example, you can make simple ONC RPC calls by using the following
RPC routines:

* registerrpc, which obtains a unique systemwide procedure-identification number
« cal | r pc, which executes a remote procedure call
* svc_run, which calls a remote procedure in response to an RPC request

The middle layer is not suitable for complex programming tasks because it sacrifices flexibility for
simplicity. Although it is adequate for many tasks, the middle layer does not provide the following:

» Timeout specifications

* Choice of transport

* Operating system process control

* Processing flexibility after occurrence of error
* Multiple kinds of call authentication

The lowest layer is suitable for programming tasks that require greater efficiency or flexibility. The
lowest layer routines include client creation routines such as:

» cl nt_creat e, which creates a client handle
+ clnt_call,which calls the server
* svcudp_cr eat e, which creates a UDP server handle

* svc_regi st er, which registers the server

3.2. Middle Layer of RPC

The middle layer is the simplest RPC program interface; from this layer you make explicit RPC calls
and use the functions cal | r pc and r egi st err pc.

37

Chapter 3. RPC Application Programming Interface

3.2.1. Using calirpc

The simplest way to make remote procedure calls is through the RPC library routine cal | r pc. The
programming code in Example 3.1, which obtains the number of remote users, shows the usage of
callrpc.

The cal | r pc routine has eight parameters. In Example 3.1, the first parameter, ar gv[1] , is the
name of the remote server system as specified in the command line which invoked the r nuser s
program. The next three, RUSERSPROG, RUSERSVERS, and RUSERSPROC_NUM are the program,
version, and procedure numbers that together identify the procedure to be called (these are defined in
rusers. h). The fifth and sixth parameters are an XDR filter (xdr _voi d) and an argument (0) to
be encoded and passed to the remote procedure. You provide an XDR filter procedure to encode or
decode system-dependent data to or from the XDR format.

The final two parameters are an XDR filter, xdr _u_| ong, for decoding the results returned by the
remote procedure and a pointer, &1USer s, to the storage location of the procedure results. Multiple
arguments and results are handled by embedding them in structures.

If cal | r pc completes successfully, it returns zero; otherwise it returns a non-zero value. The return
codes are found in <r pc/ cl nt. h>. The cal | r pc routine needs the type of the RPC argument,
as well as a pointer to the argument itself (and similarly for the result). For RUSERSPROC_NUM

the return value is an unsigned long. This is why cal | r pc has xdr _u_| ong as its first return
parameter, which means that the result is of type unsi gned | ong, and &huser s as its second
return parameter, which is a pointer to the location that stores the long result. RUSERSPROC_NUM
takes no argument, so the argument parameter of cal | r pc is xdr _voi d. In such cases, the
argument must be NULL.

If cal | r pc gets no answer after trying several times to deliver a message, it returns with an error
code. Methods for adjusting the number of retries or for using a different protocol require you to use
the lowest layer of the RPC library, which is discussed in Section 3.3.

The remote server procedure corresponding to the cal | r pc usage example might look like the one
in Example 3.2.

This procedure takes one argument — a pointer to the input of the remote procedure call (ignored in the
example) — and returns a pointer to the result. In the current version of C, character pointers are the
generic pointers, so the input argument and the return value can be cast to char *.

Example 3.1. Using callrpc

/*

* rnusers.c - programto return the nunber of users on a renote host
*/

#i ncl ude

<stdi 0. h>

#i ncl ude

<rpc/rpc. h>

#i ncl ude "rusers. h"

mai n(argc, argv)
int argc;
char **argv;

unsi gned | ong nusers;
int stat;

38

Chapter 3. RPC Application Programming Interface

if (argc !'= 2) {
fprintf(stderr, "usage: rnusers hostnanme\n");
exit(1l);
}
if (stat = callrpc(argv[1],
RUSERSPROG, RUSERSVERS, RUSERSPROC NUM

xdr_void, 0, xdr_u_long, &nusers) != 0) {
clnt_perrno(stat);
exit(1l);
}
printf ("%l users on %\n", nusers, argv[1l]);
exit(0);

}

Example 3.2. Remote Server Procedure

unsi gned | ong *
nuser (i ndat a)
char *indat a;

{
static unsigned | ong nusers;
/*
* Add code here to conpute the nunmber of users
* and place result in variable nusers.
* For this exanple, nusers is set to 5.
*/
nusers = 5;
return(&users);
}

3.2.2. Using registerrpc and svc_run

Normally, a server registers all the RPC calls it plans to handle, and then goes into an infinite loop
while waiting to service requests. Using RPCGEN for this also generates a server dispatch function.
You can write a server yourself by using r egi st er r pc. Example 3.3 is a program showing how
you would use r egi st er r pc in the main body of a server program that registers a single procedure;
the remote procedure returns a single unsi gned | ong result.

The r egi st er r pc routine establishes the correspondence between a procedure and a given RPC
procedure number. The first three parameters (defined in r user s. h), RUSERPROG RUSERSVERS,
and RUSERSPROC_NUM are the program, version, and procedure numbers of the remote procedure
to be registered; nuser is the name of the local procedure that implements the remote procedure; and
xdr _voi d and xdr _u_| ong are the XDR filters for the remote procedure's arguments and results,
respectively. (Multiple arguments or multiple results are passed as structures.)

The underlying transport mechanism for r egi st er r pc is UDP.

Note

The UDP transport mechanism can handle only arguments and results that are less than 8K bytes in
length.

After registering the local procedure, the main procedure of the server program calls the RPC
dispatcher using the Svc_r un routine. The SvC_r un routine calls the remote procedures in

39

Chapter 3. RPC Application Programming Interface

response to RPC requests and decodes remote procedure arguments and encodes results. To do this, it
uses the XDR filters specified when the remote procedure was registered with r egi st err pc.

The remote server procedure, nuser , was already shown in Example 3.2 and is duplicated in this
example. This procedure takes one argument — a pointer to the input of the remote procedure call
(ignored in the example) — and returns a pointer to the result. In the current version of C, character
pointers are the generic pointers, so the input argument and the return value can be castto char *.

Example 3.3. Using registerrpc in the Main Body of a Server Program

/*
* nusers_server.c - server to return the nunber of users on a host
*/

#i ncl ude

<stdi 0. h>

#i ncl ude

<rpc/rpc. h> /* required */

#i nclude "rusers. h" /* for prog, vers definitions */

unsi gned | ong *nuser();

mai n()

{

int exit();

regi st err pc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM
nuser, xdr_void, xdr_u_long);

svc_run(); /* Never returns */
fprintf(stderr, "Error: svc_run returned!\n");
exit(1l);

unsi gned | ong *
nuser (i ndat a)
char *indat a;

{
static unsigned | ong nusers;
/*
* Add code here to conpute the nunmber of users
* and place result in variable nusers.
* For this exanple, nusers is set to 5.
*/
nusers = 5;
return(&users);
}

3.2.3. Using XDR Routines to Pass Arbitrary Data
Types

RPC can handle arbitrary data structures — regardless of system conventions for byte order and
structure layout — by converting them to their external data representation (XDR) before sending
them over the network. The process of converting from a particular system representation to XDR
format is called serializing, and the reverse process is called deserializing. The type field parameters

40

Chapter 3. RPC Application Programming Interface

ofcal | rpc and r egi st er r pc can be a built-in procedure like xdr _u_1 ong (in the previous
example), or one that you supply. XDR has the built-in routines shown in Table 3.1.

You cannot use the Xdr _st ri ng routine with either cal | r pc or r egi st err pc, each of which
passes only two parameters to an XDR routine. Instead, use xdr _wr apst r i ng, which takes only
two parameters and calls xdr _stri ng.

Table 3.1. XDR Routines

Built-In XDR Integer Routines

xdr_short xdr u_short
xdr_int xdr_u_int
xdr_long xdr_u long
xdr_hyper xdr u_hyper
Built-In XDR Floating-Point Routines
xdr_float xdr_double

Built-In XDR Character Routines

xdr char xdr u_char

Built-In XDR Enumeration Routines

xdr_bool xdr u_enum
Built-In XDR Array Routines

xdr_array xdr_bytes
xdr_vector xdr_string
xdr_wrapstring xdr_opaque

Built-In XDR Pointer Routines

xdr_reference

xdr_pointer

3.2.4. User-Defined XDR Routines

Suppose that you want to send the following structure:

struct sinple {
int a;
short

} sinple;

b;

To send it, you would use the following cal | r pc call:

cal I rpc(host name, PROGNUM VERSNUM PROCNUM
xdr_sinple, &sinple ...);

With this call to cal | r pc, you could define the routine Xdr _si npl e as in the following example:

#i ncl ude
<rpc/rpc. h>

xdr _si npl e(xdr sp,
XDR *xdr sp;
struct sinple *sinplep;

si mpl ep)

41

Chapter 3. RPC Application Programming Interface

{
if (!xdr_int(xdrsp, &sinplep->a))
return (0);
if (!xdr_short(xdrsp, &sinplep->b))
return (0);
return (1);
}

An XDR routine returns nonzero (evaluates to TRUE in C) if it completes successfully; otherwise, it
returns zero. For a complete description of XDR, see RF'C 1014: XDR: External Data Representation
Standard and Chapter 4 of this manual.

Note

It is best to use RPCGEN to generate XDR routines. Use the /XDR_FILE option of RPCGEN to
generate only the XDR.C file.

As another example, if you want to send a variable array of integers, you might package them as a
structure like this:

struct varintarr {
i nt *data;
int arrlnth;
} arr;

Then, you would make an RPC call such as this:

cal I rpc(host name, PROGNUM VERSNUM PROCNUM
xdr_varintarr, &arr,

You could then define xdr _vari nt arr as shown:

xdr _varintarr(xdrsp, arrp)
XDR *xdr sp;
struct varintarr *arrp;

return (xdr_array(xdrsp, &arrp->data, &arrp->arrlnth,
MAXLEN, sizeof(int), xdr_int));
}

The xdr _ar r ay routine takes as parameters the XDR handle, a pointer to the array, a pointer to
the size of the array, the maximum allowable array size, the size of each array element, and an XDR
routine for handling each array element.

If you know the size of the array in advance, you can use Xdr _vect or, which serializes fixed-
length arrays, as shown in the following example:

int intarr[SlZE];
xdr _intarr(xdrsp, intarr)
XDR *xdr sp;

int intarr[];

return (xdr_vector(xdrsp, intarr, SIZE, sizeof(int),
xdr_int));

42

Chapter 3. RPC Application Programming Interface

}
3.2.5. XDR Serializing Defaults

XDR always converts quantities to 4-byte multiples when serializing. If the examples in Section 3.2.4
had used characters instead of integers, each character would occupy 32 bits. This is why XDR

has the built-in routine xdr _byt es, which is like xdr _ar r ay except that it packs characters.

The xdr _byt es routine has four parameters, similar to the first four of xdr _ar r ay. For
null-terminated strings, XDR provides the built-in routine xdr _st r i ng, which is the same as

xdr _byt es but without the length parameter.

When serializing, XDR gets the string length from St r | en, and on deserializing it creates a null-
terminated string. The following example calls the user-defined routine xdr _si npl e, as well as the
built-in functions Xdr _stri ng and xdr _r ef er ence (the latter locates pointers):

struct final example {

char *string;

struct sinple *sinplep;
} final exanpl e;

xdr _fi nal exanpl e(xdrsp, finalp)
XDR *xdr sp;
struct final exanple *final p;

{
if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
return (0);
if (!xdr_reference(xdrsp, &finalp->sinplep,
si zeof (struct sinple), xdr_sinple);
return (0);
return (1);
}

Note that xdr _si npl e could be called here instead of xdr _r ef er ence.

3.3. Lowest Layer of RPC

Examples in previous sections show how RPC handles many details automatically through defaults.
The following sections describe how to change the defaults by using the lowest-layer RPC routines.

The lowest layer of RPC allows you to do the following:

* Use TCP as the underlying transport instead of UDP. Using TCP allows you to exceed the 8K-byte
data limitation imposed by UDP.

» Allocate and free memory explicitly while serializing or deserializing with XDR routines.

» Use authentication on either the client or server side, through credential verification.

3.3.1. The Server Side and the Lowest RPC Layer

The server for the nuser s program in Example 3.4 does the same work as the previous
nusers_server. ¢ program that used r egi st err pc (see Example 3.3). However, it uses the
lowest layer of RPC.

43

Chapter 3. RPC Application Programming Interface

Example 3.4. Server Program Using Lowest Layer of RPC

#i ncl ude

<stdi 0. h>

#i ncl ude
<rpc/rpc. h>

#i ncl ude

<r pc/ pmap_cl nt. h>
#i ncl ude "rusers. h"

mai n()

{
SVCXPRT *transp;
unsi gned | ong nuser ();
int exit();

transp = svcudp_cr eat e(RPC_ANYSCOCK) ;

(1
if (transp == NULL){
fprintf(stderr, "can't create an RPC server\n");
exit(1l);
}
pmap_unset (RUSERSPROG, RUSERSVERS)
(2
if (!svc_register(transp, RUSERSPROG RUSERSVERS
(3
nuser, | PPROTO UDP)) {
fprintf(stderr, "can't register RUSER service\n");
exit(1);
}
svc_run(); /* Never returns */
(4
fprintf(stderr, "should never reach this point\n");
}

unsi gned | ong

nuser (rqstp, transp)

(5
struct svc_req *rqstp;
SVCXPRT *transp;

unsi gned | ong nusers;

switch (rgstp->rq_proc) {
case NULLPROC:
if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can't reply to RPC call\n");
return;
case RUSERSPROC NUM
/*
* Code here to conpute the nunber of users
* and assign it to the variable nusers
* For this exanple, nusers is set to 5.
*/
nusers = 5;
if (!svc_sendreply(transp, xdr_u_long, &nusers))
fprintf(stderr, "can't reply to RPC call\n");
return;

44

Chapter 3. RPC Application Programming Interface

}

defaul t:
svcerr_noproc(transp);
return;

}

In this example, the following events occur:

(1]

The server calls svcudp_cr eat e to get a transport handle for receiving and replying to

RPC messages. If the argument to svcudp_cr eat e is RPC_ANYSQOCK, the RPC library
creates a socket on which to receive and reply to RPC calls. Otherwise, svcudp_cr eat e
expects its argument to be a valid socket number. If you specify your own socket, it can be
bound or unbound. If it is bound to a port by the user, the port numbers of svcudp_cr eat e
and ¢l nt udp_cr eat e (the low-level client routine) must match. The r egi st err pc
routine uses svcudp_cr eat e to get a UDP handle. If you need a more reliable protocol, call
svct cp_cr eat e instead.

The next step is to call pmap_unset so if the nuser server crashed earlier, any previous
trace of it is erased before restarting. More precisely, pnmap_unset erases the entry for
RUSERSPROG from the Portmapper tables.

Use acallto svc_regi st er to associate the program number RUSERSPROG and the version
RUSERSVERS with the procedure nuser . Unlike r egi st er r pc, there are no XDR routines
in the registration process, and registration is at the program level rather than the procedure
level.

A service can register its port number with the local Portmapper service by specifying a nonzero
protocol number in the final argument of SVC_r egi st er . A client determines the server's port
number by consulting the Portmapper on its server system. Specifying a zero port number in

cl ntudp_createorcl nttcp_creat e does this automatically.

Finally, use a call to the SvVC_r un routine to put the program into a wait state until RPC
requests arrive.

The server routine nuser must call and dispatch the appropriate XDR routines based on the
procedure number. The nuser routine explicitly handles two cases that are taken care of
automatically by r egi st err pc:

* The procedure NULLPROC (currently zero) returns with no results. This can be used as a
simple test for detecting whether a remote program is running.

* There is a check for invalid procedure numbers; if the program detects one, it calls
svcerr _nopr oc to handle the error.

The nuser service routine serializes the results and returns them to the RPC client using
svc_sendr epl y. Its first parameter is the server handle, the second is the XDR routine, and
the third is a pointer to the data to be returned. It is not necessary to have nuser s declared as
static here because the program calls svc_sendr epl y within that function itself.

To show how a server handles an RPC program that receives data, you could add to the previous
example, a procedure called RUSERSPROC_BQOOL, which has an argument nuser s and which
returns TRUE or FALSE depending on whether the number of users logged on is equal to nuser s.
For example:

case RUSERSPROC BOOL: ({
i nt bool;
unsi gned nuser query;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {

45

Chapter 3. RPC Application Programming Interface

svcerr_decode(transp);

return;
}
/*
* Code to set nusers = nunber of users
*/
i f (nuserquery == nusers)
bool = TRUE
el se

bool = FALSE
if (!svc_sendreply(transp, xdr_bool, &bool))
fprintf(stderr, "can't reply to RPC call\n");
return;

}

Here, the svc_get ar gs routine takes as arguments a server handle, the XDR routine, and a pointer
to where the input is to be placed.

3.3.2. The Client Side and the Lowest RPC Layer

When you use cal | r pc, you cannot control either the RPC delivery mechanism or the socket that
transports the data. The lowest layer of RPC enables you to modify these parameters, as shown in
Example 3.5, which calls the nuser service.

Example 3.5. Using Lowest RPC Layer to Control Data Transport and Delivery

#i ncl ude

<stdi o. h>

#i ncl ude
<rpc/rpc. h>

#i ncl ude
<sys/tine. h>

#i ncl ude

<net db. h>

#i ncl ude "rusers. h"

mai n(argc, argv)
int argc;
char **argv;

struct hostent *hp

struct tineval pertry tineout, total tinmeout;
struct sockaddr _in server_addr

i nt sock = RPC_ANYSOCK;

regi ster CLIENT *client;

enumclnt_stat clnt_stat;

unsi gned | ong nusers;

int exit();

if (argc !'= 2) {
fprintf(stderr, "usage: nusers hostnane\n");
exit(-1);

}

if ((hp = gethostbynane(argv[1])) == NULL) {
fprintf(stderr, "can't get addr for %\n",argv[1]);

46

Chapter 3. RPC Application Programming Interface

exit(-1);
}

pertry_ timeout.tv_sec = 3;

pertry_timeout.tv_usec = 0;

bcopy(hp->h_addr, (caddr_t)&server_addr. sin_addr,
hp->h_l engt h);

server_addr.sin_famly = AF_I NET;

server_addr.sin_port = O;

if ((client = clntudp_create(&server_addr, RUSERSPROG,

RUSERSVERS, pertry_tinmeout, &sock)) == NULL) {
clnt_pcreateerror("clntudp_create");
exit(-1);

}

total tineout.tv_sec = 20;
total tineout.tv_usec = 0;
clnt_stat = clnt_call (client, RUSERSPROC NUM xdr_void,

0, xdr_u_long, &nusers, total tineout);

if (clnt_stat != RPC SUCCESS) {
clnt_perror(client, "rpc");
exit(-1);

}

printf("%l users on %\n", nusers, argv[1]);
clnt_destroy(client);

exit(0);

This example calls the cl nt udp_cr eat e routine to get a client handle for the UDP
transport. To get a TCP client handle, you would use cl ntt cp_cr eat e. The parameters
to cl nt udp_cr eat e are the server address, the program number, the version number, a
timeout value, and a pointer to a socket. If the client does not hear from the server within the
time specified in pertry_ti meout , the request may be sent again to the server. When the
si n_port is 0, RPC queries the remote Portmapper to find out the address of the remote
service.

The lowest-level version of cal | r pc is cl nt _cal | , which takes a client handle rather
than a host name. The parameters to cl nt _cal | are a client handle, the procedure number,
the XDR routine for serializing the argument, a pointer to the argument, the XDR routine for
deserializing the results, a pointer to where the results will be placed, and the time in seconds
to wait for a reply. The number of times that cl nt _cal | attempts to contact the server is

equal to the t ot al _t i meout value divided by the pertry_ti neout value specified in the

cl ntudp_creat e call.

The cl nt _dest r oy call always deallocates the space associated with the CLI ENT handle. It

closes the socket associated with the CLI ENT handle only if the RPC library opened it. If the

socket was opened by the user, it remains open. This makes it possible, in cases where there are

multiple client handles using the same socket, to destroy one handle without closing the socket
that other handles are using.

47

Chapter 3. RPC Application Programming Interface

To make a stream connection, replace the call to ¢l nt udp_cr eat e with a call to
clnttcp_create:

clnttcp_create(&server_addr, prognum versnum &sock,
i nbuf si ze, out bufsize);

Here, there is no timeout argument; instead, the “receive ” and “send ™ buffer sizes must be specified.
When the program makes a call to cl ntt cp_cr eat e, RPC creates a TCP client handle and
establishes a TCP connection. All RPC calls using the client handle use the same TCP connection.
The server side of an RPC call using TCP has svcudp_cr eat e replaced by svct cp_creat e:

transp = svctcp_creat e(RPC_ANYSOCK, 0, 0);

The last two arguments to SVCt Cp_cr eat e are “send ” and “receive ” sizes, respectively. If, as in
the preceding example, O is specified for either of these, the system chooses default values.

The simplest routine that creates a CLI ENT handle is cl nt _cr eat e:

cl nt=cl nt_create(server_host, prognum versnumtransport);

The parameters here are the name of the host on which the service resides, the program and version
number, and the transport to be used. The transport can be either udp for UDP ort cp for TCP. You
can change the default timeouts by using ¢l nt _cont r ol . For more information, refer to Section
2.7.

3.3.3. Memory Allocation with XDR

To enable memory allocation, the second parameter of xdr _byt es is a pointer to a pointer to an
array of bytes, rather than the pointer to the array itself. If the pointer has the value NULL, then

xdr _byt es allocates space for the array and returns a pointer to it, putting the size of the array in
the third argument. For example, the following XDR routine xdr _char ar r 1, handles a fixed array
of bytes with length S| ZE:

xdr _chararr1(xdrsp, chararr)
XDR *xdr sp;
char *chararr;

{

char *p;

int |len;

p = chararr;

Il en = S| ZE;

return (xdr_bytes(xdrsp, &p, & en, SIZE));
}

Here, if space has already been allocated in char ar r , it can be called from a server like this:
char array[Sl ZE] ;
svc_getargs(transp, xdr_chararrl, array);

If you want XDR to do the allocation, you must rewrite this routine in this way:

xdr _chararr2(xdrsp, chararrp)

XDR *xdr sp;
char **chararrp;

48

Chapter 3. RPC Application Programming Interface

{

int len;

len = SIZE;

return (xdr_bytes(xdrsp, charrarrp, & en, SlZE));
}

The RPC call might look like this:
char *arrayptr;

arrayptr = NULL;

svc_getargs(transp, xdr_chararr2, &arrayptr);
/*

* Use the result here

*/

svc_freeargs(transp, xdr_chararr2, &arrayptr);

After using the character array, you can free it with Svc_f r eear gs; this will not free any
memory if the variable indicating it has the value NULL. For example, in the earlier routine

xdr _fi nal exanpl e in Section 3.2.5, if f i nal p- >st ri ng was NULL, it would not be freed.
The same is true for f i nal p- >si npl ep.

To summarize, each XDR routine is responsible for serializing, deserializing, and freeing memory as
follows:

* When called from cal | r pc, the XDR routine uses its serializing part.

* When called from svc_get ar gs, the XDR routine uses its deserializing part.

* When called from svc_f r eear gs, the XDR routine uses its memory deallocator part.
When building simple examples as shown in this section, you can ignore the three modes. See

Chapter 4 for examples of more sophisticated XDR routines that determine mode and any required
modification.

3.4. Raw RPC

Raw RPC refers to the use of pseudo-RPC interface routines that do not use any real transport at
all. These routines, cl nt r aw_cr eat e and svcr aw_cr eat e, help in debugging and testing the
noncommunications aspects of an application before running it over a real network. Example 3.6
shows their use.

In this example:

All the RPC calls occur within the same thread of control.

* SVC_runisnot called.

» Itis necessary that the server handle be created before the client handle.
* svcraw_creat e takes no parameters.

* The last parameter to SVC_r egi st er is 0, which means that it will not register with
Portmapper.

49

Chapter 3. RPC Application Programming Interface

* The server dispatch routine is the same as it is for normal RPC servers.

Example 3.6. Debugging and Testing the Noncommunication Parts of an Application

/*

* A sinple programto increnent the nunber by 1
*/

#i ncl ude

<stdi 0. h>

#i ncl ude

<rpc/rpc. h>

#i ncl ude

<rpc/ raw. h> /* required for raw */

struct tineval TIMEQUT = {0, 0};
static void server();

mai n()
int argc;
char **argv;

CLI ENT *cl nt;
SVCXPRT *svc

int num= 0, ans;
int exit();

if (argc == 2)
num = atoi (argv[1]);
svc = svcraw create();

if (svc == NULL) {
fprintf(stderr,"Could not create server handle\n");
exit(1);

}

svc_regi ster(svc, 200000, 1, server, 0);
clnt = clntraw create(200000, 1);

if (clnt == NULL) {
clnt_pcreateerror("raw');
exit(1);

}

if (clnt_call(clnt, 1, xdr_int, &um xdr_int, &ans,
TI MEQUT) ! = RPC_SUCCESS) {
clnt_perror(clnt, "raw');
exit(1);
}

printf("Cient: nunber returned %\ n", ans);
exit(0) ;
}

static void
server(rqstp, transp)

struct svc_req *rqgstp; /* the request */
SVCXPRT *transp; /* the handle created by svcraw create */

50

Chapter 3. RPC Application Programming Interface

int num
int exit();

switch(rgstp->rqg_proc) {

case O:
if (svc_sendreply(transp, xdr_void, 0) == FALSE) {
fprintf(stderr, "error in null proc\n");
exit(1l);
}
return;
case 1:
br eak;
defaul t:
svcerr_noproc(transp);
return;
}

if (!svc_getargs(transp, xdr_int, &um) {
svcerr_decode(transp);

return;

}

numt+;

if (svc_sendreply(transp, xdr_int, &wum == FALSE) {
fprintf(stderr, "error in sending answer\n");
exit(1l);

}

return;

3.5. Miscellaneous RPC Features

The following sections describe other useful features for RPC programming.

3.5.1. Using Select on the Server Side

Suppose a process simultaneously responds to RPC requests and performs another activity. If the
other activity periodically updates a data structure, the process can set an alarm signal before calling
svc_run. However, if the other activity must wait on a file descriptor, the SvC_r un call does not
work. The code for svc_r un is as follows:

svc_run()

fd _set readfds;
int dtbsz = getdtabl esize();

for (;;) {
readfds = svc_fdset;
switch (select(dtbsz, & eadfds, NULL, NULL, NULL)) {

case -1:
if (errno ! = EBADF)

51

Chapter 3. RPC Application Programming Interface

conti nue;
perror("select");
return;
case O:
conti nue;
defaul t:

svc_getreqgset (& eadf ds);

}
}

You can bypass SVC_r un and call svc_get r eqset if you know the file descriptors of the sockets
associated with the programs on which you are waiting. In this way, you can have your own sel ect
that waits on the RPC socket, and you can have your own descriptors. Note that svc_f ds is a bit
mask of all the file descriptors that RPC uses for services. It can change whenever the program calls
any RPC library routine, because descriptors are constantly being opened and closed, for example, for
TCP connections.

Note

If you are handling signals in your application, do not make any system call that accidentally sets
er r no. If this happens, reset er r no to its previous value before returning from your signal handler.

3.5.2. Broadcast RPC

The Portmapper required by broadcast RPC is a daemon that converts RPC program numbers into
TCP/IP protocol port numbers. The main differences between broadcast RPC and normal RPC are the
following:

* Normal RPC expects one answer, whereas broadcast RPC expects many answers (one or more
from each responding server).

* Broadcast RPC supports only packet-oriented (connectionless) transport protocols such as UDP/
IP.

* Broadcast RPC filters out all unsuccessful responses; if a version mismatch exists between the
broadcaster and a remote service, the user of broadcast RPC never knows.

» All broadcast messages are sent to the Portmapper port; thus, only services that register
themselves with their Portmapper are accessible with broadcast RPC.

» Broadcast requests are limited in size to 1400 bytes. Replies can be up to 8800 bytes (the current
maximum UDP packet size).

In the following example, the procedure eachr esul t is called each time the program obtains a
response. It returns a boolean that indicates whether the user wants more responses. If the argument
eachresul t is NULL, cl nt _br oadcast returns without waiting for any replies:

#i ncl ude
<rpc/ pmap_cl nt. h>

enumclnt_stat clnt_stat;

52

Chapter 3. RPC Application Programming Interface

u_l ong pr ognum /* program nunber */

u_l ong ver snum /* version nunber */

u_l ong pr ocnum /* procedure number */

xdrproc_t inproc; /* xdr routine for args */

caddr _t in; /* pointer to args */

xdr proc_t out proc; /* xdr routine for results */
caddr _t out ; /* pointer to results */

bool _t (*eachresult)();/* call with each result gotten */

clnt_stat = clnt_broadcast (prognum versnum procnum
i nproc, in, outproc, out, eachresult)

In the following example, if done is TRUE, broadcasting stops and cl nt _br oadcast returns
successfully. Otherwise, the routine waits for another response. The request is rebroadcast after a few
seconds of waiting. If no responses come back in a default total timeout period, the routine returns

with RPC_TI MEDQOUT:

bool t done;
caddr _t resultsp;
struct sockaddr _in *raddr; /* Addr of responding server */

done = eachresult(resultsp, raddr)

For more information, see Section 2.8.1.

3.5.3. Batching

In normal RPC, a client sends a call message and waits for the server to reply by indicating that the
call succeeded. This implies that the client must wait idle while the server processes a call. This is
inefficient if the client does not want or need an acknowledgment for every message sent.

Through a process called batching, a program can place RPC messages in a “pipeline ” of calls to a
desired server. In order to use batching, the following conditions must be true:

¢ No RPC call in the pipeline should require a response from the server. The server does not send a
response message until the client program flushes the pipeline.

* The pipeline of calls is transported on a reliable byte-stream transport, such as TCP/IP.

Because the server does not respond to every call, the client can generate new calls in parallel with

the server executing previous calls. Also, the TCP/IP implementation holds several call messages in

a buffer and sends them to the server in one W i t e system call. This overlapped execution greatly
decreases the interprocess communication overhead of the client and server processes, and the total
elapsed time of a series of calls. Because the batched calls are buffered, the client must eventually do
a nonbatched call to flush the pipeline. When the program flushes the connection, RPC sends a normal
request to the server. The server processes this request and sends back a reply.

In the following example of server batching, assume that a string-rendering service (in the example, a
simple print to St dout) has two similar calls — one provides a string and returns void results, and the
other provides a string and does nothing else. The service (using the TCP/IP transport) may look like
Example 3.7.

53

Chapter 3. RPC Application Programming Interface

Example 3.7. Server Batching

#i ncl ude

<stdi o. h>

#i ncl ude
<rpc/rpc. h>

#i ncl ude "render. h"

voi d renderdi spatch();

mai n()

{
SVCXPRT *transp;
int exit();

transp = svctcp_creat e(RPC_ANYSCOCK, O,
if (transp == NULL){

0);

fprintf(stderr, "can't create an RPC server\n");

exit(1);
}

prmap_unset (RENDERPROG, RENDERVERS)

if (!svc_register(transp, RENDERPROG RENDERVERS

render di spatch, | PPROTO TCP)) {

fprintf(stderr, "can't regi ster RENDER service\n");

exit(1);
}

svc_run(); /* Never returns */

fprintf(stderr, "should never reach this point\n");

}

voi d
renderdi spatch(rqgstp, transp)

struct svc_req *rqstp;
SVCXPRT *transp;

char *s = NULL;

switch (rgstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0))

fprintf(stderr, "can't reply
return;
case RENDERSTRI NG

to RPC call\n");

if (!svc_getargs(transp, xdr_wapstring, &s)) {
fprintf(stderr, "can't decode argunments\n");

/*

* Tell client he erred
*/
svcerr_decode(transp);
return;

}
/*
* Code here to render the string
*/

S

54

Chapter 3. RPC Application Programming Interface

printf("Render: 9%\n"), s;
if (!svc_sendreply(transp, xdr_void, NULL))
fprintf(stderr, "can't reply to RPC call\n");
br eak;
case RENDERSTRI NG_BATCHED:
if (!svc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, "can't decode argunments\n");

/*
* W are silent in the face of protocol errors
*/
br eak;
}
/*
* Code here to render string s, but send no reply!
*/
printf("Render: 9%\n"), s;
br eak;
defaul t:
svcerr_noproc(transp);
return;
}
/*
* Now free string allocated while decodi ng argunents
*/

svc_freeargs(transp, xdr_wrapstring, &s);

}

In Example 3.7, the service could have one procedure that takes the string and a boolean to indicate
whether the procedure will respond. For a client to use batching effectively, the client must perform
RPC calls on a TCP-based transport, and the actual calls must have the following attributes:

* The XDR routine of the result must be zero (NULL).
* The timeout of the RPC call must be zero. (Do not rely on ¢l nt _cont r ol to assist in batching.)

If a UDP transport is used instead, the client call becomes a message to the server and the RPC
mechanism becomes simply a message-passing system, with no batching possible. In Example 3.8,
a client uses batching to supply several strings; batching is flushed when the client gets a null string
(EOF).

In this example, the server sends no message, making the clients unable to receive notice of any
failures that may occur. Therefore, the clients must handle any errors.

Using a UNIX-to-UNIX RPC connection, an example similar to this one was completed to render all
of the lines (approximately 2000) in the UNIX file / et ¢/ t er nrtap. The rendering service simply
discarded the entire file. The example was run in four configurations, in different amounts of time:

* System to itself, regular RPC — 50 seconds
* System to itself, batched RPC — 16 seconds
* System to another, regular RPC — 52 seconds
» System to another, batched RPC — 10 seconds

In the test environment, running only f scanf on/ et ¢/t er ncap required 6 seconds. These
timings show the advantage of protocols that enable overlapped execution, although they are difficult
to design.

55

Chapter 3. RPC Application Programming Interface

Example 3.8. Client Batching

#i ncl ude

<stdi o. h>

#i ncl ude
<rpc/rpc. h>

#i ncl ude "render. h"

mai n(argc, argv)
int argc;
char **argv;

struct tineval total tinmeout;
regi ster CLIENT *client;
enumclnt_stat clnt_stat;
char buf[1000], *s = buf;

int exit(), atoi();

char *host, *fnane;

FILE *f;

i nt renderop

host = argv[1];
renderop = atoi(argv[2]);
fname = argv[3];

f = fopen(fname, "r");

if (f == NULL){
printf("Unable to open file\n");
exit(0);

}

if ((client = clnt_create(argv|[1],

RENDERPROG, RENDERVERS, "tcp")) == NULL) {

perror("clnttcp_create");
exit(-1);

}

switch (renderop) {
case RENDERSTRI NG
total _timeout.tv_sec = 5;
total timeout.tv_usec = O;
while (fscanf(f,"%", s) != EOF) {
clnt_stat = clnt_call(client, RENDERSTRI NG,
xdr_wrapstring, &s, xdr_void, NULL, total tineout);

if (clnt_stat != RPC SUCCESS) {
clnt_perror(client, "batching rpc");
exit(-1);
}
}
br eak;
case RENDERSTRI NG_BATCHED:
total _timeout.tv_sec = 0; /* set tinmeout to zero */

total timeout.tv_usec = O;
while (fscanf(f,"%", s) != EOF) {
clnt_stat = clnt_call (client, RENDERSTRI NG BATCHED
xdr_wrapstring, &s, NULL, NULL, total tineout);

if (clnt_stat != RPC SUCCESS) {
clnt_perror(client, "batching rpc");
exit(-1);

56

Chapter 3. RPC Application Programming Interface

}

/* Now flush the pipeline */

total tineout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC, xdr_void, NULL,
xdr_void, NULL, total _tineout);

if (clnt_stat !'= RPC SUCCESS) {
clnt_perror(client, "batching rpc");
exit(-1);
}
br eak;
defaul t:
return;

}

cl nt_destroy(client);
fcl ose(f);
exit(0);

3.6. Authentication of RPC Calls

In the examples presented so far, the client never identified itself to the server, nor did the server
require it from the client. Every RPC call is authenticated by the RPC package on the server, and
similarly, the RPC client package generates and sends authentication parameters. Just as different
transports (TCP/IP or UDP/IP) can be used when creating RPC clients and servers, different forms
of authentication can be associated with RPC clients. The default authentication type is none. The
authentication subsystem of the RPC package, with its ability to create and send authentication
parameters, can support commercially available authentication software.

This manual describes only one type of authentication — authentication through the operating system.

The following sections describe client and server authentication through the operating system.

3.6.1. The Client Side

Assume that a client creates the following new RPC client handle:
clnt = clntudp_create(address, prognum versnum wait, sockp)
The client handle includes a field describing the associated authentication handle:
clnt->cl _auth = authnone _create();

The RPC client can choose to use authentication that is native to the operating system by setting
cl nt - >cl _aut h after creating the RPC client handle:

clnt->cl _auth = authuni x_create_default();

This causes each RPC call associated with ¢l nt to carry with it the following authentication
credentials structure:

57

Chapter 3. RPC Application Programming Interface

/*
* credentials native to the operating system
*/
struct aut huni x_parns {
u_long aup_tinme; /* credentials creation tine */
char *aup_machnane; /* host name where client is */
i nt aup_ui d; /* client's OpenVMs uid */
i nt aup_gi d; /* client's current group id */
u_int aup_| en; /* element |ength of aup_gids */
/* (set to 0 on OpenVMb) */
i nt *aup_gi ds; /* array of groups user is in */
/* (set to NULL on OpenVMb) */
b

In this example, the fields are set by aut huni x_cr eat e_def aul t by invoking the appropriate
system calls. Because the program created this new style of authentication, the program is responsible
for destroying it (to save memory) with the following:

aut h_destroy(cl nt->cl _auth);

3.6.2. The Server Side

It is difficult for service implementors to handle authentication because the RPC package passes to the
service dispatch routine a request that has an arbitrary authentication style associated with it. Consider
the fields of a request handle passed to a service dispatch routine:

/*

* An RPC Service request

*/

struct svc_req {
u_long rq_prog; /* service program nunber */
u_long rqg_vers; /* service protocol vers num */
u_long rqg_proc; /* desired procedure nunmber */
struct opaque_auth rg_cred; /* raw credentials fromwre */
caddr _t rq_clntcred; /* credentials (read only) */

b

The r q_cr ed is mostly opaque except for one field, the style of authentication credentials:

/*

* Authentication info. Mstly opaque to the programrer.

*/

struct opaque_auth {
enum t oa_fl avor; /* style of credentials */
caddr _t oa_base; /* address of nore auth stuff */
u_int oa_l engt h; /* not to exceed MAX AUTH BYTES */

1

The RPC package guarantees the following to the service dispatch routine:

» Ther g_cr ed field of the request is well formed; that is, the service implementor can use the
rq_cred. oa_fl avor field of the request to determine the authentication style used by the
client. The service implementor can also inspect other fields of r g_cr ed if the style is not
supported by the RPC package.

* Therg_cl nt cred field of the request is either NULL or points to a well formed structure that
corresponds to a supported style of authentication credentials.

58

Chapter 3. RPC Application Programming Interface

The r g_cl nt cr ed field also could be cast to a pointer to an aut huni x_par s structure. If
rg_cl nt cr ed is NULL, the service implementor can inspect the other (opaque) fields of r g_cr ed
to determine whether the service knows about a new type of authentication that is unknown to the
RPC package.

Example 3.9 extends the previous remote user's service (see Example 3.3) so it computes results for
all users except UID 16.

Example 3.9. Authentication on Server Side

nuser (rqstp, transp)
struct svc_req *rqstp;
SVCXPRT *transp;

struct aut huni x_parns *uni x_cred;
int uid;
unsi gned | ong nusers;

/*
* we don't care about authentication for null proc
*/
if (rgstp->rq_proc == NULLPROC) {
if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can't reply to RPC call\n");
return;
}
/*
* now get the uid
*/
switch (rgstp->rq_cred.oa_flavor) {
case AUTH_UNI X:
uni x_cred = (struct authunix_parns *)rqstp->rqg_clntcred;
uid = uni x_cred->aup_ui d;
br eak;

case AUTH_NULL:

defaul t: /* return weak authentication error */
svcerr_weakaut h(transp);
return;

}

switch (rgstp->rq_proc) {
case RUSERSPROC _NUM
/*
* make sure client is allowed to call this proc
*/
if (uid == 16) {
svcerr_systenmerr(transp);
return;

}

/*

* Code here to conpute the nunber of users

* and assign it to the variable nusers

*/

if (!svc_sendreply(transp, xdr_u_l|long, &nusers))

fprintf(stderr, "can't reply to RPC call\n");
return;

59

Chapter 3. RPC Application Programming Interface

defaul t:
svcerr_noproc(transp);
return;

}

As in this example, it is not customary to check the authentication parameters associated with
NULL PRQOC (procedure 0). Also, if the authentication parameter type is not suitable for your service,
have your program call svcer r _weakaut h.

The service protocol itself returns status for access denied; in Example 3.9, the protocol does not do
this. Instead, it makes a call to the service primitive, svcer r_syst emer r . RPC deals only with
authentication and not with the access control of an individual service. The services themselves must
implement their own access control policies and must reflect these policies as return statuses in their
protocols.

3.7. Using the Internet Service Daemon
(INETd)

You can start an RPC server from INETd. The only difference from the usual code is that it is best to
have the service creation routine called in the following form because INETd passes a socket as file
descriptor O:

transp = svcudp_create(0); /* For UDP */
transp = svctcp create(0,0,0); /* For listener TCP sockets */
transp = svcfd create(0,0,0); /* For connected TCP sockets */

Also, call svc_r egi st er as follows, with the last parameter flag set to 0, because the program is
already registered with the Portmapper by INETd:

svc_register(transp, PROGNUM VERSNUM service, 0);

If you want to exit from the server process and return control to INETd, you must do so explicitly,
because SVC_I un never returns.

To show all the RPC service entries in the services database, use the following command:

TCPI P> SHOW SERVI CES/ RPC/ PERVANENT

RPC Prot ocol Versions
Service Pr ogr am Nunber Lowest / Hi ghest
MEL 101010 1 10
TORME 20202 1 2

TCPI P>

To show detailed information about a single RPC service entry in the services database, use the
following command:

TCPI P> SHOW SERVI CES/ FULL/ PERVMANENT MEL

60

Chapter 3. RPC Application Programming Interface

Servi ce: MEL

Port: 1111 Protocol : UDP Address: 0.0.0.0
I nactivity: 5 User _nane: GEORGE Process: MEL
Limt: 1

File: NLAO:

Fl ags: Li sten

Socket Opts: Rcheck Scheck

Recei ve: 0 Send: 0
Log Opts: None

File: not defi ned
RPC Opt s

Pr ogr am nunber: 101010 Lowest: 1 Hi ghest: 10
Security

Rej ect nsg: not defined

Accept host: 0.0.0.0

Accept netw. 0.0.0.0
TCPI P>

3.8. Additional Examples

The following sections present additional examples for server and client sides, TCP, and callback
procedures.

3.8.1. Program Versions on the Server Side

By convention, the first version of program PROGis designated as PROGVERS_CRI Gand

the most recent version is PROGVERS. Suppose there is a new version of the user program

that returns an unsi gned short result rather than a | ong result. If you name this version
RUSERSVERS_SHORT, then a server that wants to support both versions would register both. It is not
necessary to create another server handle for the new version, as shown in this segment of code:

if (!svc_register(transp, RUSERSPROG RUSERSVERS ORI G
nuser, | PPROTO TCP)) {
fprintf(stderr, "can't register RUSER service\n");
exit(1);
}
if (!svc_register(transp, RUSERSPROG RUSERSVERS_ SHORT,
nuser, | PPROTO TCP)) {
fprintf(stderr, "can't register new service\n");
exit(1);
}

You can handle both versions with the same C procedure, as in Example 3.10.

Example 3.10. C Procedure That Returns Two Different Data Types

nuser (rqstp, transp)
struct svc_req *rqstp;

61

Chapter 3. RPC Application Programming Interface

SVCXPRT *transp;

unsi gned | ong nusers;
unsi gned short nusers2;

switch (rqgstp->rqg_proc) {
case NULLPROCC:
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "can't reply to RPC call\n");
return;

}

return;
case RUSERSPROC_NUM
/*
* Code here to conpute the nunber of users
* and assign it to the variable, nusers
*/
nusers2 = nusers;
switch (rqgstp->rqg_vers) {
case RUSERSVERS ORI G
if (!svc_sendreply(transp, xdr_u_long, &nusers)) {
fprintf(stderr,"can't reply to RPC call\n");

}

br eak;
case RUSERSVERS_SHORT:
if (!svc_sendreply(transp, xdr_u_short, &nusers2)) {
fprintf(stderr,"can't reply to RPC call\n");

}

br eak;

}

defaul t:
svcerr_noproc(transp);
return;

}
3.8.2. Program Versions on the Client Side

The network can have different versions of an RPC server. For example, one server might run
RUSERSVERS_CRI G and another might run RUSERSVERS_ SHORT.

If the version of the server running does not match the version number in the client creation routines,
then cl nt _cal | fails with an RPC_PROGVERSM SMATCH error. You can determine the version
numbers supported by the server and then create a client handle with an appropriate version number.
To do this, use cl nt _creat e_ver s (refer to Chapter 5 for more information) or the routine shown
in Example 3.11.

® The program begins by creating the client handle with the cl nt _cr eat e routine.

® Next, the cl nt _cal | routine attempts to call the remote program. Because of the previous
cl nt _cr eat e call, the program version requested is RUSERVERS SHORT. If the
cl nt _cal | routine is successful, the version was correct.

® Ifthecl nt _cal | attempt failed, then the program checks the failure reason. If it is
RPC_PROGVERSM SMATCH, the program goes on to find the versions supported.

O In this step, the program parses the error status and retrieves the highest and lowest versions
supported by the server. The program then checks whether the version RUSERSVERS _SHORT is
in the supported range.

62

Chapter 3. RPC Application Programming Interface

0 Ifthe RUSERSVERS SHORT version is supported, the program destroys the old client
handle using the cl nt _dest r oy routine. It then creates a new handle using the
RUSERSVERS_SHORT version.

O Finally, the program uses the new client handle to make a call to the server using the
RUSERSVERS_SHORT version.

Example 3.11. Determining Server-Supported Versions and Creating Associated Client
Handles

/*

* A sanple client to sense server versions
*/

#i ncl ude

<rpc/rpc. h>

#i ncl ude

<stdi 0. h>

#i ncl ude "rusers. h"

mai n(argc, ar gv)
int argc;
char **argv;

struct rpc_err rpcerr;
struct tineval to;

CLI ENT *cl nt;

enum cl nt _stat status;
int maxvers, mnvers;
int exit();

u_short nums;

u_int numl;

char *host;

host = argv[1];

clnt = clnt_create(host, RUSERSPROG RUSERSVERS SHORT, "udp");

if (clnt == NULL) {
clnt_pcreateerror("clnt");
exit(-1);

}

to.tv_sec = 10; /* set the tine outs */
to.tv_usec = 0O;
status = clnt_call (clnt, RUSERSPROC NUM

xdr_void, NULL, xdr_u_short, &ums, to);

if (status == RPC_SUCCESS) {
/* We found the | atest version nunber */
clnt_destroy(clnt);
printf("num= %\ n", nums);
exit(0);
}

if (status != RPC_PROGVERSM SMATCH) {

63

Chapter 3. RPC Application Programming Interface

/* Sonme other error */
clnt_perror(clnt, "rusers");
exit(-1);

}

clnt_geterr(clnt, & pcerr);

maxver s
m nvers

rpcerr.re_vers. high; /*highest version supported */
rpcerr.re_vers.low, /*|lowest version supported */

i f (RUSERSVERS_ORI G
< mnvers ||
RUSERS ORI G > maxvers) {
/* doesn't neet m ni mum standards */
clnt_perror(clnt, "version msmtch");
exit(-1);
}

/* This version not supported */
clnt_destroy(clnt); /* destroy the earlier handle */

clnt = clnt_create(host, RUSERSPROG,
RUSERSVERS ORI G "udp"); /* try different version */

if (clnt == NULL) {
clnt_pcreateerror("clnt");
exit(-1);

}

status = clnt_call (clnt, RUSERSPROCNUM
xdr_void, NULL, xdr_u_long, ¨, to);

if (status == RPC_SUCCESS) {
/* We found the |atest version nunber */
printf("num= %\n", numl);
} else {
clnt_perror(clnt, "rusers");
exit(-1);

}
3.8.3. Using the TCP Transport

Examples 3.12, 3.13, and 3.14 work like the remote file copy command RCP. The initiator of the RPC
call, snd, takes its standard input and sends it to the server r cv, which prints it on standard output.
The RPC call uses TCP. The example also shows how an XDR procedure behaves differently on
serialization than on deserialization.

Example 3.12. RPC Example That Uses TCP Protocol — XDR Routine

/*

* The XDR routine:

* on decode, read fromwre, wite onto fp
* on encode, read fromfp, wite onto wire
*/

64

Chapter 3. RPC Application Programming Interface

#i ncl ude
<stdi o. h>
#i ncl ude
<rpc/rpc. h>

xdr_rcp(xdrs, fp)
XDR *xdrs;
FILE *fp

unsi gned | ong si ze;
char buf[BUFSI Z], *p;

if (xdrs->x_op == XDR FREE)/* nothing to free */
return 1,
while (1) {
i f (xdrs->x_op == XDR _ENCODE) {
if ((size = fread(buf, sizeof(char), BUFSIZ,
fp)) == 0 && ferror(fp)) {
fprintf(stderr, "can't fread\n");
return (1);

}

}
p = buf;
if (!'xdr_bytes(xdrs, &p, &size, BUFSIZ))
return (0);
if (size == 0)
return (1);
i f (xdrs->x_op == XDR DECODE) {
if (fwite(buf, sizeof(char), size,
fp) !'= size) {
fprintf(stderr, "can't fwite\n");
return (1);

}

Example 3.13. RPC Example That Uses TCP Protocol — Client

/*
* snd.c - the sender routines
*/

#i ncl ude

<stdi 0. h>

#i ncl ude

<net db. h>

#i ncl ude

<rpc/rpc. h>

#i ncl ude

<sys/socket . h>

#i nclude "rcp. h" /* for prog, vers definitions */

mai n(argc, argv)
int argc;
char **argv;

int xdr_rcp();
int err;

Chapter 3. RPC Application Programming Interface

< 2)

}

i nt

int exit();
int callrpctcp();

if (argc

{
fprintf(stderr, "usage: % servernane\n", argv[O0]);
exit(-1);

}

if ((err = callrpctcp(argv[1l], RCPPROG RCPPROC

RCPVERS, xdr_rcp, stdin, xdr_void, 0) > 0)) {

clnt_perrno(err);
fprintf(stderr, "can't make RPC call\n");
exit(1l);

}

exit(0);

cal I rpctcp(host, prognum procnum versnum
i nproc, in, outproc, out)

}

char *host, *in, *out;
xdrproc_t inproc, outproc;

struct sockaddr _in server_addr
i nt socket = RPC_ANYSOCK;
enumclnt_stat clnt_stat;
struct hostent *hp

regi ster CLIENT *client;
struct timeval total _tineout;
voi d bcopy();

if ((hp = gethostbyname(host)) == NULL) {
fprintf(stderr, "can't get addr for '%'\n", host);
return (-1);
}
bcopy(hp->h_addr, (caddr_t)&server_addr. sin_addr
hp->h_l engt h);
server_addr.sin_famly = AF_I NET

server_addr.sin_port = O;
if ((client = clnttcp_create(&server_addr, prognum
versnum &socket, BUFSIZ, BUFSIZ)) == NULL) {

clnt_pcreateerror("rpctcp_create");
return (-1);

}

total tineout.tv_sec = 20;

total tineout.tv_usec = 0;

clnt_stat = clnt_call(client, procnum

i nproc, in, outproc, out, total _tinmeout);
cl nt_destroy(client);
return ((int)clnt_stat);

Example 3.14. RPC Example That Uses TCP Protocol — Server

/*

* rcv.c - the receiving routines

*/

#i ncl ude

66

Chapter 3. RPC Application Programming Interface

<stdi 0. h>

#i ncl ude

<rpc/rpc. h>

#i ncl ude

<rpc/ pmap_cl nt. h>

#i nclude "rcp. h" /* for prog, vers definitions */

mai n()

{
regi ster SVCXPRT *transp;
int rcp_service(), exit();

if ((transp = svctcp_creat e(RPC_ANYSQOCK,
BUFSI Z, BUFSI Z)) == NULL) {
fprintf(stderr,"svctcp_create: error\n");
exit(1l);
}
prmap_unset (RCPPROG, RCPVERS)
if (!svc_register(transp, RCPPROG
RCPVERS, rcp_service, |PPROTO TCP)) {
fprintf(stderr, "svc_register: error\n");
exit(1l);
}
svc_run(); [/* never returns */
fprintf(stderr, "svc_run should never return\n");

}

i nt

rcp_service(rqgstp, transp)
regi ster struct svc_req *rqgstp;
regi ster SVCXPRT *transp;

int xdr_rcp();

switch (rqgstp->rqg_proc) {
case NULLPROC
if (svc_sendreply(transp, xdr_void, 0) == 0)
fprintf(stderr, "err: rcp_service");
return;
case RCPPROC
if (!svc_getargs(transp, xdr_rcp, stdout)) {
svcerr_decode(transp);
return;
}
if (!svc_sendreply(transp, xdr_void, 0))
fprintf(stderr, "can't reply\n");
return;
defaul t:
svcerr_noproc(transp);
return;

}
3.8.4. Callback Procedures

It is sometimes useful to have a server become a client and to make an RPC call back to the process
that is its client. An example of this is remote debugging, where the client is a window-system

Chapter 3. RPC Application Programming Interface

program and the server is a debugger running on the remote system. Mostly, the user clicks a mouse
button at the debugging window (converting this to a debugger command), and then makes an

RPC call to the server (where the debugger is actually running), telling it to execute that command.
However, when the debugger reaches a breakpoint, the roles are reversed, and the debugger wants to
make an RPC call to the window program so it can tell the user that a breakpoint has been reached.

Callbacks are also useful when the client cannot block (that is, wait) to hear back from the server
(possibly because of excessive processing in serving the request). In such cases, the server could
acknowledge the request and use a callback to reply.

To do an RPC callback, you need a program number on which to make the RPC call. The program
number is generated dynamically, so it must be in the transient range 0x40000000 to OcS5fftftft. The
sample routine get t r ansi ent returns a valid program number in the transient range and registers
it with the Portmapper. It only communicates with the Portmapper running on the same system as the
gettransi ent routine itself.

The call to pmap_set is a test-and-set operation because it indivisibly tests whether a program
number has been registered; if not, it is reserved. The following example shows the sample
gettransi ent routine:

#i ncl ude
<stdi o. h>
#i ncl ude
<rpc/rpc. h>

gettransient(proto, vers, portnum
i nt proto;
u_l ong vers;
u_short portnum

{
static u_long prognum = 0x40000000;
while (!pmap_set (prognumt+, vers, proto, portnunj)
conti nue;
return (prognum- 1);
}

Note that the call to nt ohs for por t numis unnecessary because it was already passed in host byte
order (as pmap_set expects).

The following list describes how the client/server programs in Example 3.15 and Example 3.16 use
the get t r ansi ent routine:

* The client makes an RPC call to the server, passing it a transient program number.
» The client waits to receive a call back from the server at that program number.

* The server registers the program (EXAMPLEPRQOG), so it can receive the RPC call informing it of
the callback program number.

* At some random time (on receiving an SIGALRM signal in this example), it sends a callback RPC
call, using the program number it received earlier.

In Example 3.15 and Example 3.16, both the client and the server are on the same system; otherwise,
host name handling would be different.

68

Chapter 3. RPC Application Programming Interface

Example 3.15. Client Usage of the gettransient Routine

/*

* client

*/

#i ncl ude

<stdi 0. h>

#i ncl ude
<rpc/rpc. h>

#i ncl ude "exanpl e. h"

i nt call back();

mai n()
{ .
int tnp_prog;
char host nane[256] ;
SVCXPRT *xprt;
int stat;
int callback(), gettransient();
int exit();

get host nane(host nane, si zeof (hostnane));

if ((xprt = svcudp_create(RPC ANYSOCK)) == NULL) {
fprintf(stderr, "rpc_server: svcudp_create\n");
exit(1);

}

if ((tnmp_prog = gettransient (| PPROTO UDP, 1,
xprt->xp_port)) == 0) {
fprintf(stderr,"Cient: failed to get transient
exit(1);

}

fprintf(stderr, "Client: got program nunmber %8x\n",

/* protocol is 0 - gettransient does registering */

(void)svc_register(xprt, tnp_prog, 1, callback, 0);
stat = cal lrpc(hostname, EXAMPLEPROG, EXAMPLEVERS
EXAMPLEPROC CALLBACK, xdr _i nt, & np_pr og, xdr _voi d, 0);
if (stat != RPC_SUCCESS) {
cl nt _perrno(stat);
exit(1);
}
svc_run();
fprintf(stderr, "Error: svc_run shouldn't return\n");
)
I nt
cal | back(rgstp, transp)
regi ster struct svc_req *rqstp;
regi ster SVCXPRT *transp;

int exit();
switch (rgstp->rq_proc) {
case O:

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "err: exanpleprog\n");

nunber\n");

tmp_prog);

69

Chapter 3. RPC Application Programming Interface

return (1);
}
return (0);
case 1:

fprintf(stderr, "Client: got callback\n");
if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "Client: error replyingto exanpl eprog\n");

return (1);
}
exit(0);
}
return (0);

}

Example 3.16. Server Usage of the gettransient Routine

/*

* server

*/

#i ncl ude

<stdi 0. h>

#i ncl ude
<rpc/rpc. h>

#i ncl ude
<sys/signal . h>

#i ncl ude "exanpl e. h"

char host nane[256] ;
voi d docal | back(int);
int pnum= -1, /* program nunber for callback routine */

mai n()

{
char *get newprog():

get host nane(host nane, si zeof (hostnane));
regi st err pc(EXAMPLEPROG, EXAMPLEVERS

EXAMPLEPROC CALLBACK, getnewprog, xdr_int, xdr_void);
si gnal (SI GALRM docal | back);

al arn(10) ;
svc_run();
fprintf(stderr, "Server: error, svc_run shouldn't return\n");
}
char *
get newpr og(pnunp)
i nt *pnunp;
{
pnum = *(int *)pnunp;
return NULL;
}
voi d
docal | back(int signun)
{
int ans;
if (pnum= -1) {

70

Chapter 3. RPC Application Programming Interface

fprintf(stderr, "Server:

program nunber not received yet");

si gnal (SI GALRM docal | back) ;

al arn(10) ;
return;

}

ans = callrpc(hostnane, pnum

xdr_void, 0);

if (ans != RPC_SUCCESS) ({
fprintf(stderr, "Server:
exit(1l);

}

if (ans == RPC_SUCCESS)
exit(0);

1, 1, xdr_void, O,

%\ n", cl nt _sperrno(ans));

71

Chapter 3. RPC Application Programming Interface

72

Chapter 4. External Data
Representation

This chapter describes the external data representation (XDR) standard, a set of routines that enable
C programmers to describe arbitrary data structures in a system-independent way. For a formal
specification of the XDR standard, see RFC 1014: XDR: External Data Representation Standard.

XDR is the backbone of ONC RPC, because data for remote procedure calls is transmitted using the
XDR standard. ONC RPC uses the XDR routines to transmit data that is read or written from several
types of systems. For a complete specification of the XDR routines, see Chapter 8.

This chapter also contains a short tutorial overview of the XDR routines, a guide to accessing
currently available XDR streams, and information on defining new streams and data types.

XDR was designed to work across different languages, operating systems, and computer architectures.
Most users (particularly RPC users) only need the information on number filters (Section 4.2.1),
floating-point filters (Section 4.2.2) and enumeration filters (Section 4.2.3). Programmers who want to
implement RPC and XDR on new systems should read the rest of the chapter.

Note

You can use RPCGEN to write XDR routines regardless of whether RPC calls are being made.

C programs that need XDR routines must include the file <r pc/ r pc. h>, which contains all
necessary interfaces to the XDR system. The object library contains all the XDR routines, so you can
link as you usually would when using a library. If you wish to use a shareable version of the library,
reference the library SYS$§SHARE:TCPIPSRPCXDR_SHR in your LINK options file.

4.1. Usefulness of XDR

Consider the following two programs, Wr i t er . ¢ and r eader . c:

#i ncl ude
<stdi o. h>

mai n() /* witer.c */

{

long i;

for (i =0; i
< 8; i++) {
if (fwite((char *)& , sizeof(i), 1, stdout) !'= 1) {
fprintf(stderr, "failed!'\n");
exit(1);
}
}
exit(0);
}

#i ncl ude
<stdi o. h>

73

Chapter 4. External Data Representation

mai n() /* reader.c */
{

long i, j;

for (j =0; j
< 8; j++) {

if (fread((char *)& , sizeof (i), 1, stdin) I= 1) {
fprintf(stderr, "failed!'\n");
exit(1l);

}

printf("%d ", i);

}
printf("\n");
exit(0);

}

The two programs appear to be portable because:
* They pass | i nt checking.

* They work the same when executed on two different hardware architectures, Sun Microsystem's
SPARC architecture and VSI's OpenVMS Alpha or 164 architecture.

Piping the output of the wr i t er . ¢ program to the r eader . ¢ program gives identical results on an
Alpha computer and on a Sun computer, as shown:

sun% writer

| reader
01234567
sun%

$ witer

| reader
01234567
$

With local area networks and Berkeley UNIX 4.2 BSD came the concept of network pipes, in which
a process produces data on one system, and a second process on another system uses this data. You
can construct a network pipe with wr i t er. ¢ and r eader . c. Here, the first process (on a Sun
computer) produces data used by a second process (on an VSI Alpha computer):

sun% witer

| rsh al pha reader

0 16777216 33554432 50331648 67108864 83886080 100663296
117440512

sun%

You get identical results by executing Wr i t er . ¢ on the VSI Alpha computer and r eader . ¢ on
the Sun computer. These results occur because the byte ordering of long integers differs between the
Alpha computer and the Sun computer, although the word size is the same. Note that 16777216 is
equal to 224. When 4 bytes are reversed, the 1 is in the 24th bit.

Whenever data is shared by two or more system types, there is a need for portable data. You can

make programs data-portable by replacing the r ead and wr i t e calls with calls to an XDR library
routine Xdr _| ong, which is a filter that recognizes the standard representation of a long integer in its
external form. Here are the revised versions of wi t er. ¢ andr eader . c:

74

Chapter 4. External Data Representation

[* Revi sed Version of witer.c */
#i ncl ude
<stdi 0. h>
#i ncl ude
<rpc/rpc. h> /[* xdr is a sub-library of rpc */
mai n() /* witer.c */
{
XDR xdrs;
long i;
xdrstdio_create(&xdrs, stdout, XDR_ENCODE)
for (i =0; i
< 8; i++) {

if (!'xdr_long(&drs, &)) {
fprintf(stderr, "failed!'\n");

exit(1l);
}

}

exit(0);
}
/* Revi sed Version of reader.c */
#i ncl ude
<stdi o. h>
#i ncl ude

<rpc/rpc. h> /* XDR is a sub-library of RPC */

mai n() /* reader.c */
{
XDR xdrs;
long i, j;
xdrstdio_create(&xdrs, stdin, XDR DECODE);
for (j =0; j
< 8; j++) {
if (!'xdr_long(&drs, &)) {
fprintf(stderr, "failed!'\n");
exit(1l);
}
printf("%d ", i);
}
printf("\n");
exit(0);
}

The new programs were executed on an Alpha computer, a Sun computer, and from a Sun computer to
an Alpha computer; the results are as follows:

sun% writer

| reader
01234567
sun%

$ witer
| reader
01234567

75

Chapter 4. External Data Representation

$

sun% witer

| rsh al pha reader
01234567
sun%

Note
Arbitrary data structures create portability problems, particularly with alignment and pointers:
» Alignment on word boundaries may cause the size of a structure to vary on different systems.

* A pointer has no meaning outside the system where it is defined.

4.1.1. A Canonical Standard

The XDR approach to standardizing data representations is canonical, because XDR defines a single
byte order (big-endian), a single floating-point representation (IEEE), and so on. A program running
on any system can use XDR to create portable data by translating its local representation to the
XDR standard. Similarly, any such program can read portable data by translating the XDR standard
representation to the local equivalent.

The single standard treats separately those programs that create or send portable data and those that
use or receive the data. A new system or language has no effect on existing portable data creators
and users. Any new system simply uses the canonical standards of XDR; the local representations
of other system are irrelevant. To existing programs on other systems, the local representations of
the new system are also irrelevant. There are strong precedents for the canonical approach of XDR.
For example, TCP/IP, UDP/IP, XNS, Ethernet, and all protocols below layer 5 of the ISO model, are
canonical protocols. The advantage of any canonical approach is simplicity; in the case of XDR, a
single set of conversion routines is written once.

The canonical approach does have one disadvantage of little practical importance. Suppose two
little-endian systems transfer integers according to the XDR standard. The sending system converts
the integers from little-endian byte order to XDR (big-endian) byte order, and the receiving system
does the reverse. Because both systems observe the same byte order, the conversions were really
unnecessary. Fortunately, the time spent converting to and from a canonical representation is
insignificant, especially in networking applications. Most of the time required to prepare a data
structure for transfer is not spent in conversion but in traversing the elements of the data structure.

4.1.2. The XDR Library

The XDR library enables you to write and read arbitrary C constructs consistently. This makes it
useful even when the data is not shared among systems on a network. The XDR library can do this
because it has filter routines for strings (null-terminated arrays of bytes), structures, unions, and
arrays. Using more primitive routines, you can write your own specific XDR routines to describe
arbitrary data structures, including elements of arrays, arms of unions, or objects pointed at from other
structures. The structures themselves may contain arrays of arbitrary elements, or pointers to other
structures.

The previous Wi t er . ¢ and r eader . ¢ routines manipulate data by using standard I/O routines, so
xdr st di o_cr eat e was used. The parameters to XDR stream creation routines vary according to
their function. For example, Xxdr st di o_cr eat e takes the following parameters:

76

Chapter 4. External Data Representation

* A pointer to an XDR structure that it initializes
e A pointer to a FI LE that the input or output acts upon

* The operation — either XDR_ENCQODE for serializing in wr i t er . ¢ or XDR_DECCODE for
deserializing in r eader . ¢

It is not necessary for RPC users to create XDR streams; the RPC system itself can create these
streams and pass them to the users. There is a family of XDR stream creation routines in which each
member treats the stream of bits differently.

The xdr _| ong primitive is characteristic of most XDR library primitives and all client XDR
routines for two reasons:

* The routine returns FALSE (0) if it fails and TRUE (1) if it succeeds.

» For each data type xxx, there is an associated XDR routine of the following form:

xdr

xxx(xdrs, xp)
XDR *xdrs;

XXX *Xp;

{

}

In this case, XXX is | ong, and the corresponding XDR routine is a primitive, Xdr _| ong. The client
could also define an arbitrary structure XX X; in this case, the client would also supply the routine

xdr _xxx, describing each field by calling XDR routines of the appropriate type. In all cases, the first
parameter, Xdr S, is treated as an opaque handle and passed to the primitive routines.

XDR routines are direction independent; that is, the same routines are called to serialize or deserialize
data. This feature is important for portable data. Calling the same routine for either operation
practically guarantees that serialized data can also be deserialized. Thus, one routine is used by both
the producer and the consumer of networked data.

You implement direction independence by passing a pointer to an object rather than the object itself
(only with deserialization is the object modified). If needed, the user can obtain the direction of the
XDR operation. See Section 4.3 for details.

For a more complicated example, assume that a person's gross assets and liabilities are to be
exchanged among processes, and each is a separate data type:

struct gnunbers {
| ong g_assets;
long g liabilities;

b
The corresponding XDR routine describing this structure would be as follows:
bool t /* TRUE is success, FALSE is failure */
xdr _gnunber s(xdrs, gp)
XDR *xdrs;

struct gnumnbers *gp;

if (xdr_long(xdrs, &gp->g_assets) &&
xdr _long(xdrs, &gp->g_liabilities))

77

Chapter 4. External Data Representation

return(TRUE) ;
ret ur n(FALSE) ;

}

In the preceding example, the parameter Xdr S is never inspected or modified; it is only passed to
subcomponent routines. The program must inspect the return value of each XDR routine call and stop
immediately and return FALSE upon subroutine failure.

The preceding example also shows that the type bool _t is declared as an integer whose only value
is TRUE (1) or FALSE (0). The following definitions apply:

#def i ne bool _t
#def i ne TRUE
#def i ne FALSE

i nt
1
0

With these conventions, you can rewrite Xdr _gnunber s as follows:

bool t
xdr _gnunber s(xdrs, gp)
XDR *xdrs;
struct gnunbers *gp;
{
return(xdr_| ong(xdrs, &gp->g_assets) &&
xdr _long(xdrs, &gp->g liabilities));
}

Either coding style can be used.

4.2. XDR Library Primitives

The following sections describe the XDR primitives — basic and constructed data types — and XDR
utilities. The include file <r pc/ xdr . h> (automatically included by <r pc/ r pc. h>), defines the
interface to these primitives and utilities.

4.2.1. Number and Single-Character Filters

The XDR library provides primitives that translate between numbers and single characters and their
corresponding external representations. Primitives include the set of numbers in:

[signed, unsigned] * [char, short, int, |ong, hyper]
Specifically, the ten primitives are:
bool t xdr_char(xdrs, cp)
XDR *xdrs;
char *cp;
bool t xdr_u_char(xdrs, ucp)

XDR *xdr s;
unsi gned char *ucp;

bool t xdr_short(xdrs, sip)
XDR *xdrs;
short *sip;

bool t xdr_u_short(xdrs, sup)

78

Chapter 4. External Data Representation

XDR *xdrs;
u_short *sup;

bool _t xdr_int(xdrs, ip)
XDR *xdrs;
int *ip;

bool _t xdr_u_int(xdrs, up)
XDR *xdrs;
unsi gned *up;

bool _t xdr_l ong(xdrs, lip)
XDR *xdrs;
long *lip;

bool _t xdr_u_Il ong(xdrs, |up)
XDR *xdrs;
u_long *I up;

bool _t xdr_hyper (xdrs, hp)
XDR *xdrs;
 ongl ong_t *hp;

bool _t xdr_u_hyper (xdrs, uhp)
XDR *xdrs;
u_l ongl ong_t *uhp;

The first parameter, Xdr S, is a pointer to an XDR stream handle. The second parameter is a pointer to
the number that provides data to the stream or receives data from it. All routines return TRUE if they
complete successfully and FALSE if they do not.

For more information on number filters, see Chapter 8.

4.2.2. Floating-Point Filters

The XDR library also provides primitive routines for floating-point types in C:

bool _t xdr_float(xdrs, fp)
XDR *xdrs;
float *fp;

bool _t xdr_doubl e(xdrs, dp)
XDR *xdrs;
doubl e *dp;

The first parameter, Xdr S, is a pointer to an XDR stream handle. The second parameter is a pointer
to the floating-point number that provides data to the stream or receives data from it. Both routines
return TRUE if they complete successfully and FALSE if they do not.

Note

Because the numbers are represented in IEEE floating-point format over the network, routines may
fail when decoding a valid IEEE representation into a system-specific representation, or vice versa.

To control the local representation of floating point numbers, you can choose the floating-point type
when you compile your RPC program or you can use different XDR routines to explicitly control the

79

Chapter 4. External Data Representation

local representation. For more information about floating-point filters, see the xdr _doubl e and
xdr _f | oat routines in Chapter 8.

4.2.3. Enumeration Filters

The XDR library provides a primitive for generic enumerations; it assumes that a C enumhas the
same representation inside the system as a C i nt eger . The bool _t (boolean) type is an important
instance of the enumtype. The external representation of a bool _t type is always TRUE (1) or
FALSE (0), as shown here:

#defi ne bool t int
#define FALSE O
#def i ne TRUE 1
#define enumt int

bool t xdr_enum(xdrs, ep)
XDR *xdrs;
enumt *ep;

bool t xdr_bool (xdrs, bp)
XDR *xdrs;
bool t *bp;

The second parameters ep and bp are pointers to the enumerations or booleans that provide data to or
receive data from the stream xdr s.

For more information about enumeration filters, see Chapter 8.

4.2.4. Possibility of No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when no data is passed or
required. The following routine does this:

bool _t xdr_void(); /* always returns TRUE */

4.2.5. Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and perform more
complicated functions than the primitives previously discussed. The following sections include
primitives for strings, arrays, unions, and pointers to structures.

Constructed data type primitives may use memory management. In many cases, memory is allocated
when deserializing data with XDR_DECODE. XDR enables memory deallocation through the
XDR_FREE operation. The three XDR directional operations are XDR_ENCCDE, XDR_DECODE, and
XDR_FREE.

For more information about constructed data filters, see Chapter 8.

4.2.5.1. Strings

In C, a string is defined as a sequence of bytes terminated by a NULL byte, which is not considered
when calculating string length. When a string is passed or manipulated, there must be a pointer to
it. Therefore, the XDR library defines a string to be a char *, not a sequence of characters. The
external and internal representations of a string are different. Externally, strings are represented

80

Chapter 4. External Data Representation

as sequences of ASCII characters; internally, with character pointers. The xdr _st r i ng routine
converts between the two, as follows:

bool t xdr_string(xdrs, sp, nmaxlength)
XDR *xdrs;
char **sp;
u_int maxl ength;

The first parameter, Xdr s, is the XDR stream handle; the second, Sp, is a pointer to a string (type
char **). The third parameter, max| engt h, specifies the maximum number of bytes allowed during
encoding or decoding; its value is usually specified by a protocol. For example, a protocol may
specify that a file name cannot be longer than 255 characters. Keep max| engt h small because
overflow conditions may occur if xdr _st ri ng has to call mal | oc for space. The routine returns
FALSE if the number of characters exceeds max| engt h; otherwise, it returns TRUE.

The behavior of xdr _st ri ng is similar to that of other routines in this section. For the direction
XDR_ENCQODE, the parameter Sp points to a string of a certain length; if the string does not exceed
max| engt h, the bytes are serialized.

For the direction XDR_DECODE, the effect of deserializing a string is subtle. First, the length of the
incoming string is determined; it must not exceed max| engt h. Next, sp is dereferenced; if the value
is NULL, then a string of the appropriate length is allocated and * Sp is set to this string. If the original
value of * sp is not NULL, then XDR assumes that a target area (which can hold strings no longer
than max| engt h) has been allocated. In either case, the string is decoded into the target area, and the
routine appends a NULL character to it.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If the string is not NULL, it is
freed and * sp is set to NULL. In this operation, xdr _st r i ng ignores the max| engt h parameter.

4.2.5.2. Variable-Length Byte Arrays

Often, variable-length arrays of bytes are preferable to strings. Byte arrays differ from strings in the
following three ways:

1. The length of the array (the byte count) is located explicitly in an unsigned integer.
2. The byte sequence is not terminated by a NULL character.
3. The external and internal byte representation is the same.
The primitive Xdr _byt es converts between the internal and external representations of byte arrays:
bool t xdr_bytes(xdrs, bpp, |p, maxlength)
XDR *xdrs;
char **bpp;
u_int *lp;

u_i nt maxl| engt h;

The usage of the first, second, and fourth parameters are identical to the same parameters of
xdr _string (Section 4.2.5.1). The length of the byte area is obtained by dereferencing | p when
serializing; * | p is set to the byte length when deserializing.

4.2.5.3. Variable-Length Arrays of Arbitrary Data Elements

The XDR library provides a primitive for handling arrays of arbitrary elements. The xdr _byt es
routine treats a subset of generic arrays, in which the size of array elements is known to be 1, and the

81

Chapter 4. External Data Representation

external description of each element is built in. The generic array primitive, Xxdr _ar r ay, requires
parameters identical to those of xdr _byt es in addition to two more: the size of array elements and
an XDR routine to handle each of the elements.

This routine encodes or decodes each array element:

bool _t

xdr_array(xdrs, ap, |p, maxlength, el enentsiz, xdr_el enent)
XDR *xdrs;
char **ap;
u_int *Ip;

u_int maxl engt h;
u_int elenentsiz;
bool _t (*xdr_elenment)();

The parameter ap is a pointer to the pointer to the array. If * ap is NULL when the array is being
deserialized, XDR allocates an array of the appropriate size and sets * ap to that array. The element
count of the array is obtained from * | p when the array is serialized; * | p is set to the array length
when the array is deserialized. The parameter max| engt h is the maximum allowable number of
array elements; el ermrent si z is the byte size of each array element. (You can also use the C function
si zeof to obtain this value.) The xdr _el enent routine is called to serialize, deserialize, or free
each element of the array.

Examples 4.1, 4.2, and 4.3 show the recursiveness of the XDR library routines already discussed.
A user on a networked system can be identified in three ways:

» The system name, such as kr ypt on (use the get host nane socket routine)

* The user's UID (use the get eui d run-time routine)

e On UNIX systems, the group numbers to which the user belongs (not implemented on OpenVMS
systems)

Example 4.1 shows how a structure with this information and its associated XDR routine could be
coded:

Example 4.1. Structure and Associated XDR Routine

struct netuser {

char *Nnu_syst emmane;
i nt nu_ui d;
u_int nu_gl en;
i nt *nu_gi ds;
1
#defi ne NLEN 255 /* system nanes
< 256 chars */
#def i ne NGRPS 20 /* user can't be in > 20 groups */
bool _t
xdr _netuser (xdrs, nup)
XDR *xdrs;
struct netuser *nup;
{

return(xdr_string(xdrs, &nup->nu_systemane, NLEN) &&
xdr_int(xdrs, &nup->nu_uid) &&

82

Chapter 4. External Data Representation

xdr _array(xdrs, &nup->nu_gids, &nup->nu_gl en,
NGRPS, sizeof (int), xdr_int));
}

A party of network users could be implemented as an array of net user structure. Example 4.2
shows the declaration and its associated XDR routines.

Example 4.2. Declaration and Associated XDR Routines

struct party {
u_int p_len;
struct netuser *p_nusers;

b
#defi ne PLEN 500 /* max nunber of users in a party */
bool _t
xdr_party(xdrs, pp)
XDR *xdrs;
struct party *pp;
{
return(xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,
si zeof (struct netuser), xdr_netuser));
}

The parameters to mai n (ar gc and ar gv) can be combined into a structure, and an array of these
structures can make up a history of commands. Example 4.3 shows how the declarations and XDR
routines might look.

Example 4.3. Declarations and XDR Routines

struct cnmd {
u_int c_argc;
char **c_argv;

b
#defi ne ALEN 1000 /* args cannot be > 1000 chars */
#def i ne NARGC 100 /* commands cannot have > 100 args */

struct history {
u_int h_len;
struct cmd *h_cnds;

b
#define NCMDS 75 /* history is no nore than 75 conmands */
bool _t
xdr_wrapstring(xdrs, sp)
XDR *xdrs;
char **sp;
{
return(xdr_string(xdrs, sp, ALEN));
}
bool _t
xdr _cmd(xdrs, cp)
XDR *xdrs;
struct cnd *cp;
{

return(xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,

Chapter 4. External Data Representation

sizeof (char *), xdr_wapstring));

}
bool _t
xdr _hi story(xdrs, hp)
XDR *xdrs;
struct history *hp;
{
return(xdr_array(xdrs, &hp->h_cnds, &hp->h_len, NCVDS,
sizeof (struct cnd), xdr_crd));
}

In Example 4.3, the routine xdr _wr apst r i ng is needed to package the xdr _st r i ng routine,
because the implementation of xdr _ar r ay passes only two parameters to the array element
description routine; xdr _wr apst r i ng supplies the third parameter to xdr _st ri ng.

4.2.5.4. Fixed-Length Arrays of Arbitrary Data Elements

The XDR library provides a primitive, xdr _vect or, for fixed-length arrays:

#defi ne NLEN 255 /* system nanmes nust be
< 256 chars */
#def i ne NGRPS 20 /* user belongs to exactly 20 groups */

struct netuser {
char *nu_syst emmane;
int nu_uid;
i nt nu_gi ds[NGRPS] ;

1
bool _t
xdr _netuser (xdrs, nup)
XDR *xdrs;
struct netuser *nup;
{ . .
int i;
if (!xdr_string(xdrs, &nup->nu_systemmane, NLEN))
return(FALSE);
if (!xdr_int(xdrs, &nup->nu_uid))
return(FALSE);
if (!xdr_vector(xdrs, nup->nu_gids, NGRPS, sizeof(int),
xdr_int)) {
return(FALSE);
}
return(TRUE);
}

4.2.5.5. Opaque Data

Some protocols pass handles from a server to a client. The client later passes back the handles,
without first inspecting them; that is, handles are opaque. The xdr _opaque primitive describes
fixed-size, opaque bytes:

bool t xdr_opaque(xdrs, p, len)
XDR *xdrs;
char *p;
u_int len;

84

Chapter 4. External Data Representation

The first parameter Xxdr s is the XDR stream handle. The second parameter p is the location of the
bytes and the third parameter | en is the number of bytes in the opaque object. By definition, the data
within the opaque object is not system-portable.

4.2.5.6. Discriminated Unions

The XDR library supports discriminated unions. A discriminated union is a C uni on and an enum t
value that selects an arm of the uni on:

struct xdr_discrim {
enumt val ue;
bool _t (*proc)();

1

bool _t xdr_union(xdrs, dscnp, unp, arns, defaultarm
XDR *xdrs;
enumt *dscnp;
char *unp;

struct xdr_discrim*arns;
bool t (*defaultarm)(); /* may equal NULL */

In this example, the routine translates the discriminant of the union at * dscnp. The discriminant is
always an enum _t . Next, the union at * unp is translated. The parameter ar ns is a pointer to an
array of xdr _di scr i mstructures. Each structure contains an ordered pair of [val ue, proc] .

If the union's discriminant is equal to the associated value, then pr oc is called to translate the
union. The end of the Xxdr _di scr i mstructure array is denoted by a routine of value NULL. If the
discriminant is not in the ar ms array, then the def aul t ar mprocedure is called if it is non-null;
otherwise, the routine returns FALSE.

Example 4.4 shows how to serialize or deserialize a discriminated union. In the example, suppose that
the type of a union is an integer, character pointer (a string), or a gnunber s structure (described in
Section 4.1.2). Also, assume the union and its current type are declared in a structure, as follows:

enum utype { | NTEGER=1, STRI NG=2, GNUMBERS=3 };

struct u_tag {
enum ut ype utype; /* the union's discrimnant */
uni on {
int ival;
char *pval;
struct gnunbers gn;
} uval;

}s

Example 4.4 shows the constructs and XDR procedure that serialize or deserialize the discriminated
union:

Example 4.4. Constructs and XDR Procedure

struct xdr_discrimu_tag_arns[4] = {
{ INTEGER, xdr_int },
{ GNUMBERS, xdr_gnunbers }
{ STRING xdr_wrapstring },
{ __dontcare__, NULL }
/* always termnate arns with a NULL xdr_proc */

85

Chapter 4. External Data Representation

bool _t
xdr _u_tag(xdrs, utp)
XDR *xdrs;
struct u_tag *utp;
{
return(xdr_uni on(xdrs, &utp->utype, &utp->uval,
u_tag_arms, NULL));
}

The routine xdr _gnunber s was discussed in Section 4.1.2 and xdr _wr apstri ng was
presented in Example 4.3. The default arm parameter to Xdr _uni on (the last parameter) is NULL
in Example 4.4. Therefore, the value of the union's discriminant can only be a value listed in the
u_t ag_ar ns array. Example 4.4 also shows that the elements of the arm's array do not need to be
sorted.

The values of the discriminant may be sparse, though in Example 4.4 they are not. It is always good
practice to explicitly assign integer values to each element of the discriminant's type. This will
document the external representation of the discriminant and guarantee that different C compilers
provide identical discriminant values.

4.2.5.7. Pointers

In C it is useful to put within a structure any pointers to another structure. The xdr _r ef er ence
primitive makes it easy to serialize, deserialize, and free these referenced structures. A structure of
structure pointers is shown here:

bool _t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char **pp;
u_int ssize;
bool _t (*proc)();

Parameter Xdr s is the XDR stream handle, pp is a pointer to the pointer to the structure, SSi ze is
the size in bytes of the structure (use the C function Si zeof to obtain this value), and pr oc is the
XDR routine that describes the structure. When decoding data, storage is allocated if * pp is NULL.

There is no need for a primitive xdr _St r uct to describe a structure within a structure, because
pointers are always sufficient.

Note

The xdr _r ef er ence and xdr _ar r ay primitives are not interchangeable external representations
of data.

The following example describes a structure (and its corresponding XDR routine) that contains an
item of data and a pointer to a gnunber s structure that has more information about that item of data.

Suppose there is a structure containing a person's name and a pointer to a gnunber s structure
containing the person's gross assets and liabilities. This structure has the following construct:

struct pgn {
char *nane;
struct gnunbers *gnp;

}s

86

Chapter 4. External Data Representation

This structure has the following corresponding XDR routine:

bool _t
xdr _pgn(xdrs, pp)
XDR *xdrs;
struct pgn *pp;
{
i f (xdr_string(xdrs, &pp->nane, NLEN) &&
xdr _reference(xdrs, &pp->gnp,
si zeof (struct gnunbers), xdr_gnunbers))
return(TRUE);
return(FALSE) ;
}

In many applications, C programmers attach double meaning to the values of a pointer. Typically
the value NULL means data is not necessary, but some application-specific interpretation applies.
In essence, the C programmer is encoding a discriminated union efficiently by overloading the
interpretation of the value of a pointer.

For example, in the previous structure, a NULL pointer value for gnp could indicate that the person's
assets and liabilities are unknown; that is, the pointer value encodes two things: whether the data is
known and, if it is known, where it is located in memory. Linked lists are an extreme example of the
use of application-specific pointer interpretation.

During serialization, the primitive Xxdr _r ef er ence cannot attach any special meaning to
a pointer with the value NULL. That is, passing a pointer to a pointer whose value is NULL to
xdr _r ef er ence when serializing data will most likely cause a memory fault and a core dump.

The xdr _poi nt er correctly handles NULL pointers. For more information about its use, see
Section 4.5.

4.2.6. Non-filter Primitives

The non-filter primitives that follow are for manipulating XDR streams:

u_int xdr_getpos(xdrs)
XDR *xdrs;

bool t xdr_set pos(xdrs, pos)
XDR *xdrs;
u_int pos;

xdr _destroy(xdrs)
XDR *xdrs;

The routine Xxdr _get pos returns an unsigned integer that describes the current position in the data
stream.

Note

In some XDR streams, the returned value of Xxdr _get pos is meaningless; the routine returns a -1 in
this case (though -1 should be a legitimate value).

The routine Xdr _set pos sets a stream position to pos. However, in some XDR streams, setting a
position is impossible; in such cases, Xdr _set pos returns FALSE.

87

Chapter 4. External Data Representation

This routine also fails if the requested position is explicitly out of bounds. The definition of bounds
varies according to the stream.

The xdr _dest r oy primitive destroys the XDR stream. Usage of the stream after calling this routine
is undefined.

4.3. XDR Operation Directions

Though not recommended, you may want to optimize XDR routines by using the direction of the
operation: XDR_ENCODE, XDR_DECODE, or XDR_FREE. For example, the value Xdr s- >X_op
contains the direction of the XDR operation. An example in Section 4.5 shows the usefulness of the
xdr s->x_op field.

4.4. XDR Stream Access

An XDR stream is obtained by calling the appropriate creation routine, which takes arguments for the
specific properties of the stream. Streams currently exist for serialization or deserialization of data to
or from standard I/O FILE streams, TCP/IP connections and files, and memory.

4.4.1. Standard I/O Streams

XDR streams can be interfaced to standard I/O using the xdr st di o_cr eat e routine as follows:

#i ncl ude

<stdi 0. h>

#i ncl ude

<rpc/rpc. h> /* XDR streans part of RPC */

voi d

xdrstdio_create(xdrs, fp, x_op)
XDR *xdrs;
FI LE *fp;
enum xdr _op x_op;

The routine Xdr st di 0_cr eat e initializes an XDR stream pointed to by Xxdr s. The XDR stream
interfaces to the standard I/O library. Parameter f p is an open file, and X _op is an XDR direction.

4.4.2. Memory Streams

A memory stream enables the streaming of data into or out of a specified area of memory:

#i ncl ude
<rpc/rpc. h>

voi d
xdrmem create(xdrs, addr, len, x_op)
XDR *xdrs;
char *addr;
uint Ien;
enum xdr _op x_op;

The routine Xdr mem _cr eat e initializes an XDR stream in local memory that is pointed to by
parameter addr ; parameter | en is the length in bytes of the memory. The parameters Xdr s and
X_0p are identical to the corresponding parameters of xdr st di o_cr eat e. Currently, the UDP/IP

88

Chapter 4. External Data Representation

implementation of ONC RPC uses Xdr mem cr eat e. Complete call or result messages are built-in

memory before calling the sendt 0 system routine.

4.4.3. Record (TCP/IP) Streams

A record stream is an XDR stream built on top of a record-marking standard that is, in turn, built on
top of a file or a Berkeley UNIX 4.2 BSD connection interface, as shown:

#i ncl ude
<rpc/rpc. h> /* xdr streams part of rpc */

xdrrec_create(xdrs, sendsize, recvsize, iohandle, readproc, witeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandl e;
int (*readproc)(), (*witeproc)();

The routine Xdr r ec_cr eat e provides an XDR stream interface that allows for a bidirectional,
arbitrarily long sequence of records. The contents of the records are meant to be data in XDR form.
The stream's primary use is for interfacing RPC to TCP connections. However, it can be used to
stream data into or out of ordinary files.

The parameter Xdr s is similar to the corresponding parameter described in Section 4.4.1. The
stream does its own data buffering, similar to that of standard I/O. The parameters sendsi ze and
r ecvsi ze determine the size in bytes of the output and input buffers, respectively; if their values
are zero, defaults are used. When a buffer needs to be filled or flushed, the routine r eadpr oc or
Wr it eproc is called, respectively.

If xxx is r eadpr oc or W i t epr oc, then it has the following form:

/* returns the actual nunber of bytes transferred;
* -1 is an error
*/

i nt

xxx(iohandl e, buf, Ien)
char *iohandl e;
char *buf;
i nt nbytes;

The usage of these routines is similar to the system calls r ead and wr i t e. However, the first
parameter to each routine is the opaque parameter i ohandl e. The other two parameters (buf and
nbyt es) and the results (byte count) are identical to the system routines.

The XDR stream enables you to delimit records in the byte stream. This is discussed in Section 4.5.
The following primitives are specific to record streams:

bool t
xdrrec_endofrecord(xdrs, flushnow)
XDR *xdrs;

bool t flushnow,

bool _t
xdrrec_ski precord(xdrs)
XDR *xdrs;

89

Chapter 4. External Data Representation

bool _t
xdrrec_eof (xdrs)
XDR *xdrs;

The routine xdr r ec_endof r ecor d causes the current outgoing data to be marked as a record.
If the parameter f | ushnowis TRUE, then the stream's wr i t epr oc will be called; otherwise,
wr i t epr oc will be called when the output buffer has been filled.

The routine Xdr r ec_ski pr ecor d causes an input stream's position to be moved past the current
record boundary and onto the beginning of the next record in the stream. If there is no more data in
the stream's input buffer, then the routine xdr r ec_eof returns TRUE. This does not mean that there
is no more data in the underlying file descriptor.

4.4.4. XDR Stream Implementation

This section provides the abstract data types needed to implement new instances of XDR streams. The
following structure defines the interface to an XDR stream:

enum xdr_op { XDR_ENCODE=0, XDR DECODE=1, XDR FREE=2 }:

typedef struct {

enum xdr _op Xx_op; /* operation; fast added param */
struct xdr_ops {
bool (*x_getlong)(); /* get long fromstream*/

/* put long to stream */
; /* get bytes fromstream */

t
bool t (*x_putlong)();
_t)
_t); /* put bytes to stream*/
)
)

)
)
bool (*x_get bytes) (
bool (*x_put bytes) (
u_int (*x_get post n) (
bool _t (*x_setpostn)(

; /* return stream of fset */
; /* reposition offset */

caddr _t (*x_inline)(); /* ptr to buffered data */

va D (*x_destroy)(); [/* free private area */
} *x_ops;
caddr _t x_public; /* users' data */
caddr _t x_private; [* pointer to private data */
caddr _t x_base; /* private for position info */
i nt X_handy; /* extra private word */

} XDR

The x_op field is the current operation being performed on the stream. This field is important

to the XDR primitives, but is not expected to affect the implementation of a stream. The fields
X_privat e, x_base, and x_handy pertain to a particular stream implementation. The field
X_publ i ¢ is for the XDR client and must not be used by the XDR stream implementations or the
XDR primitives. The macros X_get post n, x_set post n, and X_dest r oy access operations.
The operation X_i nl i ne takes two parameters: an XDR *, and an unsigned integer, which is a byte
count. The routine returns a pointer to a piece of the stream's internal buffer. The program can then
use the buffer segment for any purpose. To the stream, the bytes in the buffer segment have been
consumed or put. The routine may return NULL if it cannot return a buffer segment of the requested
size. (The X_i nl i ne routine is for maximizing efficient use of processor cycles. The resulting buffer
is not data portable, so using this feature is not recommended.)

The operations X_get byt es and x_put byt es get and put sequences of bytes from or to the
underlying stream; they return TRUE if successful, and FALSE otherwise. The routines have identical
parameters (replace XXX with either Xx_get or Xx_put):

bool t
xxxbytes(xdrs, buf, bytecount)

90

Chapter 4. External Data Representation

XDR *xdrs;
char *buf;
u_int bytecount;

The x_get | ong and x_put | ong routines receive and put long numbers to and from the data
stream. These routines must translate the numbers between the system representation and the
(standard) external representation. The operating system primitives ht onl and nt ohl help to do
this. The higher-level XDR implementation assumes that signed and unsigned long integers contain
the same number of bits, and that nonnegative integers have the same bit representations as unsigned
integers. The routines return TRUE if they succeed and FALSE if they do not. They have identical
parameters (replace XXX with either x_get or x_put):

bool t

xxxl ong(xdrs, |p)
XDR *xdrs;
l ong *Ip;

Implementors of new XDR streams must make an XDR structure (with new operation routines)
available to clients, using some kind of creation routine.

4.5. Advanced Topics

This section describes advanced techniques for passing data structures, such as linked lists (of
arbitrary length). The examples in this section are written using both the XDR C library routines and
the XDR data description language.

The last example in Section 4.1.2 presents a C data structure and its associated XDR routines for an
individual's gross assets and liabilities. The example is duplicated here:

struct gnunbers {
| ong g_assets;
long g liabilities;

b
bool _t
xdr _gnunber s(xdrs, gp)
XDR *xdrs;
struct gnumbers *gp;
{
if (xdr_long(xdrs, &(gp->g_assets)))
return(xdr_l ong(xdrs, & gp->g_ liabilities)));
return(FALSE) ;
}

If you want to implement a linked list of such information, you could construct the following data
structure:

struct gnumbers_node {
struct gnunbers gn_nunbers;
struct gnunbers_node *gn_next;

I
typedef struct gnunbers_node *gnumnbers_li st;

You can think of the head of the linked list as the data object; that is, the head is not merely a
convenient shorthand for a structure. Similarly the gn_next field indicates whether the object has

91

Chapter 4. External Data Representation

terminated. Unfortunately, if the object continues, the gn_next field is also the address of where it
continues. The link addresses carry no useful information when the object is serialized.

The XDR data description of this linked list is described by the recursive declaration of
gnunbers_list:

struct gnumnbers {
int g_assets;
int gliabilities;

}s

struct gnunbers_node {
gnhunber s gn_nunbers;
gnhunber s_node *gn_next;

b

Here, the boolean indicates whether there is more data following it. If the boolean is FALSE, then

it is the last data field of the structure; if TRUE, then it is followed by a gnunber s structure and
(recursively) by agnunber s_1 i st . Note that the C declaration has no boolean explicitly declared
in it (though the gn_next field implicitly carries the information), while the XDR data description
has no pointer explicitly declared in it. From the XDR description in the previous paragraph, you

can determine how to write the XDR routines for a gnunber s_1 i st . That is, the xdr _poi nt er
primitive would implement the XDR union. Unfortunately, because of recursion, using XDR on a list
with the following routines causes the C stack to grow linearly with respect to the number of nodes in
the list:

bool _t
xdr _gnunbers_node(xdrs, gn)
XDR *xdrs;
ghunbers_node *gn;
{
return(xdr_gnunbers(xdrs, &gn->gn_nunbers) &&
xdr _gnunbers_list(xdrs, &gp->gn_nhext));
}
bool _t
xdr _gnunbers_list(xdrs, gnp)
XDR *xdrs;
gnhunbers_list *gnp;
{
return(xdr_pointer(xdrs, gnp,
si zeof (struct gnunbers_node),
xdr _gnunbers_node));
}
The following routine combines these two mutually recursive routines into a single, nonrecursive one:
bool _t
xdr _gnunbers_list(xdrs, gnp)
XDR *xdrs;

gnunbers_list *gnp;

bool t nore_dat a;
gnunbers_|ist *nextp;

for (;;) {
nore _data = (*gnp != NULL);
i f (!xdr_bool (xdrs, &ore data)) {
return(FALSE) ;

92

Chapter 4. External Data Representation

}
if (! nore_data) {
br eak;

}
if (xdrs->x_op == XDR FREE) {
nextp = & *gnp)->gn_next;
}
if (!xdr_reference(xdrs, gnp,
si zeof (struct gnunbers_node), xdr_gnunbers)) {

ret ur n(FALSE) ;

}
gnp = (xdrs->x_op == XDR FREE) ?
nextp : & *gnp)->gn_next;
}
*gnp = NULL;
return(TRUE);
}

The first task is to find out if there is more data, so the boolean information can be serialized. Notice
that this is unnecessary in the XDR_DECQODE case, because the value of mor e_dat a is not known
until it is deserialized in the next statement, which uses XDR on the nor e_dat a field of the XDR
union. If there is no more data, this last pointer is set to NULL to indicate the list end, and a TRUE is
returned to indicate completion. Setting the pointer to NULL is only important in the XDR_DECODE
case, since it is already NULL in the XDR_ENCODE and XDR_FREE cases.

Next, if the direction is XDR_FREE, the value of next p is set to indicate the location of the next
pointer in the list. This is for dereferencing gnp to find the location of the next item in the list; after
the next statement, the storage pointed to by gnp is deallocated and is no longer valid. This cannot be
done for all directions because, in the XDR_DECODE direction, the value of gnp is not set until the
next statement.

Next, XDR operates on the data in the node through the primitive xdr _r ef er ence, which is like
xdr _poi nt er (which was used before). However, xdr _r ef er ence does not send over the
boolean indicating whether there is more data; it is used instead of Xdr _poi nt er because XDR has
already been used on this information. Notice that the XDR routine passed is not the same type as an
element in the list. The routine passed is Xxdr _gnunber s, for using XDR on gnunber s; however,
each element in the list is of type gnunber s_node. The xdr _gnunber s_node is not passed
because it is recursive; instead, use Xdr _gnumnber s, which uses XDR on all of the nonrecursive
parts. Note that this works only if the gn_nunber s field is the first item in each element, so the
addresses are identical when passed to xdr _r ef er ence.

Finally, gnp is updated to point to the next item in the list. If the direction is XDR_FREE, it is set to
the previously saved value; otherwise, gnp is dereferenced to get the proper value. Although more
difficult to understand than the recursive version, the nonrecursive routine is much less likely to
overflow the C stack. It also runs more efficiently because a lot of procedure call overhead has been
removed. However, most lists are small (in the hundreds of items or less), and the recursive version
should be sufficient for them.

93

Chapter 4. External Data Representation

94

Chapter 5. ONC RPC Client Routines

This chapter describes the client routines that allow C programs to make procedure calls to server
programs across the network.

Table 5.1 describes the task that each client routine performs.

Table 5.1. ONC RPC Client Routines

Routine Task Category

aut h_dest roy Destroys authentication information associated
with an authentication handle (macro).

aut hnone_create Creates and returns a null authentication handle
for the client process.

aut huni x_create Creates and returns a UNIX-style authentication
handle for the client process.

aut huni x_create_defaul t Creates and returns a UNIX-style authentication
handle containing default authentication
information for the client process.

callrpc Calls the remote procedure identified by the
routine's arguments.

cl nt _br oadcast Broadcasts a remote procedure call to all locally
connected networks using the broadcast address.

clnt_call Calls a remote procedure (macro).

clnt_control Changes or retrieves information about an RPC
client process (macro).

clnt_create Creates an RPC client handle for a remote server
procedure.

clnt_create_vers Creates an RPC client handle for a remote server

procedure having the highest supported version
number within a specified range.

cl nt_destroy Destroys a client handle (macro).

clnt_freeres Frees the memory that RPC allocated when it
decoded a remote procedure's results (macro).

clnt_geterr Returns an error code indicating why an RPC call
failed (macro).

clnt_pcreateerror Prints an error message indicating why RPC
could not create a client handle.

cl nt_perrno Prints an error message indicating why a
cal |l rpc orcl nt _broadcast routine failed.

clnt_perror Prints an error message indicating why a
cl nt _cal | routine failed.

cl nt_spcreateerror Returns a message string indicating why RPC
could not create a client handle.

cl nt_sperrno Returns a message string indicating why a
cal |l rpc orcl nt _broadcast routine failed.

95

Chapter 5. ONC RPC Client Routines

Routine Task Category

clnt_sperror Returns a message string indicating why a
cl nt _cal | routine failed.

clntraw create Creates an RPC client handle for a server
procedure included in the same program as the
client.

clnttcp_create Creates an RPC client handle for a remote server
procedure using the TCP transport.

cl ntudp_bufcreate Creates an RPC client handle for a remote server
procedure using a buffered UDP transport.

cl ntudp_create Creates an RPC client handle for a remote server
procedure using the UDP transport.

get _nyaddr ess Returns the local host's Internet address.

get _nyaddr _dest Returns the local host's Internet address as seen

by the remote host.

auth_destroy

auth _destroy — A macro that frees the memory associated with the authentication handle created by
the aut hnone_cr eat e and aut huni x_cr eat e routines.

Syntax

#i ncl ude <rpc/rpc. h>

voi d aut h_destroy(AUTH *aut h_handl e)

Arguments

auth_handle

An RPC authentication handle created by the aut hnone_cr eat e, aut huni x_cr eat e, or
aut huni x_cr eat e_def aul t routine.

Description
Frees the memory associated with the AUTH data structure created by the aut hnone_cr eat e,

aut huni x_cr eat e, or aut huni x_cr eat e_def aul t routine. Be careful not to reference the
data structure after calling this routine.

authnone_create

authnone_create — Creates an authentication handle for passing null credentials and verifiers to
remote systems.

Syntax

#i ncl ude <rpc/rpc. h>

96

Chapter 5. ONC RPC Client Routines

AUTH *aut hnone_create ()

Description

Creates and returns an authentication handle that passes null authentication information with
each remote procedure call. Use this routine if the server process does not require authentication
information. RPC uses this routine as the default authentication routine unless you create another
authentication handle using either the aut huni x_cr eat e or aut huni x_cr eat e_def aul t
routine.

Return Values

AUTH * Authentication handle containing the pertinent
information.
NULL Indicates allocation of AUTH handle failed.

authunix_create

authunix_create — Creates and returns an RPC authentication handle that contains UNIX-style
authentication information.

Syntax
#i ncl ude <rpc/rpc. h>

AUTH *aut huni x_creat e(char *host, int uid, int gid, int len, int
*aup_gids);

Arguments
host

Pointer to the name of the host on which the information was created. This is usually the name of the
system running the client process.

uid

The user's user identification.
gid

The user's current group.

len

The number of elements in aup_gi ds array.

Note

This parameter is ignored by the product's RPC implementation.

97

Chapter 5. ONC RPC Client Routines

aup_gids

A pointer to an array of groups to which the user belongs.

Note

This parameter is ignored by the product's RPC implementation.

Description

Implements UNIX-style authentication parameters. The client uses no encryption for its credentials
and only sends null verifiers. The server sends back null verifiers or, optionally, a verifier that
suggests a new shorthand for the credentials.

Return Values

AUTH * Authentication handle containing the pertinent
information.
NULL Indicates allocation of AUTH handle failed.

authunix_create_default

authunix_create default — Returns a default authentication handle.

Syntax
#i ncl ude <rpc/rpc. h>
AUTH *aut huni x_create_defaul t()

Arguments

None.

Description

Calls the aut huni x_cr eat e routine with the local host name, effective process ID and group ID,
and the process default groups.

Return Values

AUTH * Authentication handle containing the pertinent
information.

NULL Indicates allocation of AUTH handle failed.

Examples

aut h_destroy(client->cl _auth)

client->cl _auth = authuni x_create_default();

98

Chapter 5. ONC RPC Client Routines

This example overrides the default aut hnone_cr eat e action. The client handle, cl i ent
is returned by the cl nt _create,cl nt_create_vers,clnttcp_create,or
cl nt udp_cr eat e routine.

callrpc

callrpc — Executes a remote procedure call.

Syntax
#i ncl ude <rpc/rpc. h>

int callrpc(char *host, u_long prognum u_Ilong versnum u_|l ong prochum
xdrproc_t inproc, char *in, xdrproc_t outproc, char *out);

Arguments

host

A pointer to the name of the host on which the remote procedure resides.
prognum

The program number associated with the remote procedure.
versnum

The version number associated with the remote procedure.
procnum

The procedure number associated with the remote procedure.
inproc

The XDR routine used to encode the remote procedure's arguments.
in

A pointer to the remote procedure's arguments.

outproc

The XDR routine used to decode the remote procedure's results.
out

A pointer to the remote procedure's results.

Description

Calls the remote procedure associated with pr ognum ver snum and pr ochumon the host host .
This routine performs the same functions as a set of calls to the cl nt _create,cl nt _cal |, and
cl nt _dest r oy routines. This routine returns RPC_SUCCESS if it succeeds, or the value of enum
cl nt _st at cast to an integer if it fails. The routine cl nt _per r no is handy for translating a
failure status into a message.

99

Chapter 5. ONC RPC Client Routines

Note

Calling remote procedures with this routine uses UDP/IP as a transport; see ¢l nt udp_cr eat e for
restrictions. You do not have control of timeouts or authentication using this routine. If you want to
use the TCP transport, use the ¢l nt _cr eat e orcl ntt cp_cr eat e routine.

Returned Values

RPC_SUCCESS Indicates success.

clnt_stat Returns a value of type enum cl nt _st at
cast to type i nt containing the status of the
cal | r pc operation.

cint_broadcast

clnt_broadcast — Executes a remote procedure call that is sent to all locally connected networks using
the broadcast address.

Syntax

#i ncl ude <rpc/rpc. h>

enum cl nt _stat clnt_broadcast (u_l ong prognum u_long versnum u_long
procnum

xdrproc_t inproc, char * in, xdrproc_t outproc, char * out, resultproc_t
eachresul t);

Arguments

prognum

The program number associated with the remote procedure.
versnum

The version number associated with the remote procedure.
procnum

The procedure number associated with the remote procedure.
inproc

The XDR routine used to encode the remote procedure's arguments.
in

A pointer to the remote procedure's arguments.

outproc

The XDR routine used to decode the remote procedure's results.

out

100

Chapter 5. ONC RPC Client Routines

A pointer to the remote procedure's results.

eachresult

Called each time the routine receives a response. Specify the routine as follows:
i nt eachresult(char *resultsp, struct sockaddr_in *addr)

r esul t sp is the same as the parameter passed to cl nt _br oadcast (), except that the remote
procedure's output is decoded there. addr is a pointer to a sockaddr _i n structure containing the
address of the host that sent the results.

Ifeachresul t is NULL, the cl nt _br oadcast routine returns without waiting for any replies.

Description

Performs the same function as the cal | r pc routine, except that the call message is sent to all locally
connected networks using the broadcast address. Each time it receives a response, this routine calls
the eachr esul t routine. If eachr esul t returns zero, cl nt _br oadcast waits for more
replies; otherwise it assumes success and returns RPC_SUCCESS.

Note

This routine uses the UDP protocol. Broadcast sockets are limited in size to the maximum transfer
unit of the data link. For Ethernet, this value is 1400 bytes. For FDDI, this value is 4500 bytes.

Returned Values

RPC_SUCCESS Indicates success.

clnt_stat Returns the buffer of type enum cl nt _st at
containing the status of the cl nt _br oadcast
operation.

cint_call

clnt_call — A macro that calls a remote procedure.

Syntax
#i ncl ude <rpc/rpc. h>

enumclnt_stat clnt_call (CLIENT *handl e, u_|ong procnum xdrproc_t inproc,
char *in, xdrproc_t outproc, char *out, struct tineval tineout);

Arguments

handle
A pointer to a client handle created by any of the client-handle creation routines.
procnum

The procedure number associated with the remote procedure.

101

Chapter 5. ONC RPC Client Routines

inproc

The XDR routine used to encode the remote procedure's arguments.
in

A pointer to the remote procedure's arguments.

outproc

The XDR routine used to decode the remote procedure's results.
out

A pointer to the remote procedure's results.

timeout

A structure describing the time allowed for results to return to the client. If you have previously used
the cl nt _cont r ol macro with the CLSET _TI MEQUT code, this value is ignored.

Description

Use the ¢l nt _cal | macro after using one of the client-handle creation routines. After you are
finished with the handle, return it using the ¢l nt _dest r oy macro. Use the cl nt _perr or to print
any errors that occurred.

Returned Values

RPC_SUCCESS Indicates success.

clnt_stat Returns the buffer of type enum cl nt _st at
containing the status of the cl nt _cal |
operation.

cint_control

clnt_control — A macro that changes or retrieves information about an RPC client process.

Syntax
#i ncl ude <rpc/rpc. h>

bool t clnt _control (CLI ENT *handl e, u_int code, char *info);

Arguments

handle

A pointer to a client handle created by any of the client-handle creation routines.
code

A code designating the type of information to be set or retrieved.

102

Chapter 5. ONC RPC Client Routines

info

A pointer to a buffer containing the information for a SET operation or the results of a GET operation.

Description

For UDP and TCP transports specify any of the following for code:

CLSET _TIMEOUT struct timeval Set total timeout

CLGET_TIMEOUT struct timeval Get total timeout

CLGET_SERVER_ADDR struct sockaddr_in Get server address

CLGET _FD int Get associated socket

CL_FD _CLOSE void Close socket on
clnt _destroy

CL_FD NCLOSE void Leave socket open on
cl nt _destroy

If you set the timeout using ¢l nt _cont r ol , ONC RPC ignores the timeout parameter in all future
cl nt _cal | calls. The default total timeout is 25 seconds.

For the UDP transport two additional options are available:

CLSET _RETRY_TIMEOUT struct timeval Set retry timeout

CLGET_RETRY_TIMEOUT |struct timeval Get retry timeout

The timeout value in these two calls is the time that UDP waits for a response before retransmitting
the message to the server. The default time is 5 seconds. The retry timeout controls when UDP
retransmits the request; the total timeout controls the total time that the client should wait for a
response. For example, with the default settings, UDP will retry the transmission four times at 5-
second intervals.

Returned Values

TRUE Success
FALSE Failure

cint_create

clnt_create — Creates a client handle and returns its address.

Syntax
#i ncl ude <rpc/rpc. h>

CLIENT *clnt_create(char *host, u_long prognum u_long versnum char
*pr ot ocol);

Arguments

host

103

Chapter 5. ONC RPC Client Routines

A pointer to the name of the remote host.

prognum

The program number associated with the remote procedure.
versnum

The version number associated with the remote procedure.
protocol

A pointer to a string containing the name of the protocol for transmitting and receiving RPC
messages. Specify either t cp or udp.

Description

The cl nt _cr eat e routine creates an RPC client handle for pr ognum An RPC client handle is a
structure containing information about the RPC client. The client can use the UDP or TCP transport
protocol.

This routine uses the Portmapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP transport, and 4000 bytes
for the TCP transport. The retry time for the UDP transport is five seconds.

Use the cl nt _cr eat e routine instead of the cal | r pc or cl nt _br oadcast routines if you
want to use one of the following:

* The TCP transport
* A non-null authentication
¢ More than one active client at the same time

You can also use the ¢l nt t cp_cr eat e routine to use the TCP protocol, or the
cl nt udp_cr eat e routine to use the UDP protocol.

The cl nt _cr eat e routine uses the global variable r pc_createerr.rpc_createerr isa
structure that contains the most recent service creation error. Use r pc__cr eat eer r if you want the
client program to handle the error. The value of r pc_cr eat eerr is set by any RPC client creation
routine that does not succeed.

Note

If the requested program is available on the host but the program does not support the requested
version number, this routine still succeeds. A subsequent call to the cl nt _cal | routine will
discover the version mismatch. Use the cl nt _cr eat e_ver s routine if you want to avoid this
condition.

Returned Values

CLIENT * Client handle containing the server information.

NULL Error occurred while creating the client
handle. Use the cl nt _pcr eat eerror or

104

Chapter 5. ONC RPC Client Routines

cl nt _spcreat eerror routine to obtain
diagnostic information.

cint_create_vers

clnt_create_vers — Creates a client handle and returns its address. Seeks to use a server supporting
the highest version number within a specified range.

Syntax
#i ncl ude <rpc/rpc. h>

CLI ENT *cl nt_create_vers(char *host, u_long prognum u_long *versnum
u_long mn_vers, u_long max_vers, char *protocol);

Arguments

host

A pointer to the name of the remote host.

prognum

The program number associated with the remote procedure.
versnum

The version number associated with the remote procedure. This value is returned by the routine. The
value is the highest version number supported by the remote server that is in the range of version
numbers specified by m n_ver s and max_ver s. The argument may remain undefined; see
additional information in the Description section.

min_vers

The minimum acceptable version number for the remote procedure.
max_vers

The maximum acceptable version number for the remote procedure.
protocol

A pointer to a string containing the name of the protocol for transmitting and receiving RPC
messages. Specify either t cp or udp.

Description

The cl nt _cr eat e_ver s routine creates an RPC client handle for pr ognum An RPC client
handle is a structure containing information about the RPC client. The client can use the UDP or TCP
transport protocol.

This routine uses the Portmapper. You cannot control the local port.

The default sizes of the send and receive buffers are 8800 bytes for the UDP transport, and 4000 bytes
for the TCP transport. The retry time for the UDP transport is 5 seconds.

105

Chapter 5. ONC RPC Client Routines

The cl nt _cr eat e_ver s routine differs from the standard ¢l nt _cr eat e routine in that it
seeks out the highest version number supported by the server. If the server does not support any
version numbers within the requested range, the routine returns NULL and the ver snumvariable is
undefined.

The cl nt _cr eat e_ver s routine uses the global variable r pc_creat eerr.rpc_createerr
is a structure that contains the most recent service creation error. Use r pc_cr eat eer r if you want
the client program to handle the error. The value of r pc_cr eat eerr is set by any RPC client
creation routine that does not succeed.

Returned Values

CLIENT * Clien-thandle containing the server information.

NULL Error occurred while creating the client handle.
Usually the error indicates that the server does not
support any version numbers within the requested
range. Use the cl nt _pcr eat eerror or

cl nt _spcreat eerror routine to obtain
diagnostic information.

cint_destroy

clnt_destroy — A macro that frees the memory associated with an RPC client handle.

Syntax
#i ncl ude <rpc/rpc. h>

voi d cl nt_destroy(CLI ENT *handl e);

Arguments

handle

A pointer to a client handle created by any of the client-handle creation routines.

Description

The cl nt _dest r oy routine destroys the client's RPC handle by deallocating all memory related to
the handle. The client is undefined after the ¢l nt _dest r oy call.

If the cl nt _cr eat e routine had previously opened the socket associated with the client handle or
the program had used the cl nt _cont r ol routine to set CL_FD CLOSE, this routine closes the
socket. If the cl nt _cr eat e routine had not previously opened the socket associated with the client
handle or the program had used the cl nt _cont r ol routine to set CL_FD NCLOSE, this routine
leaves the socket open.

Returned Values

None.

106

Chapter 5. ONC RPC Client Routines

cint_freeres

cint_freeres — A macro that frees the memory that was allocated when the remote procedure's results

were decoded.

Syntax
#i ncl ude <rpc/rpc. h>

bool _t clnt_freeres(CLI ENT *handl e, xdrproc_t outproc, char *out);

Arguments

handle

A pointer to a client handle created by any of the client-handle creation routines.
outproc

The XDR routine used to decode the remote procedure's results.

out

A pointer to the remote procedure's results.

Description

The cl nt _fr eer es routine calls the xdr _f r ee routine to deallocate the memory where the
remote procedure's results are stored.

Returned Values

TRUE Success.

FALSE Error occurred while freeing the memory.

cint_geterr

clnt_geterr — A macro that returns error information indicating why an RPC call failed.

Syntax
#i ncl ude <rpc/rpc. h>

void clnt_geterr(CLIENT *handl e, struct rpc_err *errp);

Arguments

handle

A pointer to a client handle created by any of the client-handle creation routines.

107

Chapter 5. ONC RPC Client Routines

errp

A pointer to an I pC_er r structure containing information that indicates why an RPC call failed. This
information is the same information as cl nt _st at contains, plus one of the following: the C error
number, the range of server versions supported, or authentication errors.

Description

This macro copies the error information from the client handle to the structure referenced by er r p.
The macro is mainly for diagnostic use.

Return Values

None.

cint_pcreateerror

clnt_pcreateerror — Prints a message explaining why ONC RPC could not create a client handle.

Syntax

#i ncl ude <rpc/rpc. h>

void clnt_pcreateerror(char *sp);

Arguments

sp

A pointer to a string to be used as the beginning of the error message.
Description

The cl nt _pcr eat eer r or routine prints a message to SYSSOUTPUT. The message consists
of the sp parameter followed by an RPC-generated error message. Use this routine when the
clnt_create,clnttcp_create,orcl ntudp_cr eat e routine fails.

Returned Values

None.

cint_perrno

clnt_perrno — Prints a message indicating why the cal | r pc or cl nt _br oadcast routine failed.

Syntax

#i ncl ude <rpc/rpc. h>

108

Chapter 5. ONC RPC Client Routines

void clnt_perrno(enumcl nt_stat stat)

Arguments

stat

A buffer containing status information.

Description

Prints a message to standard error corresponding to the condition indicated by the St at argument.

The data type declaration for cl nt _st at inr pc/rpc. h lists the standard errors.

Returned Values

None.

cint_perror

clnt_perror — Prints a message explaining why an ONC RPC routine failed.

Syntax
#i ncl ude <rpc/rpc. h>

void clnt_perror(CLIENT *handl e, char *sp);

Arguments

handle

A pointer to the client handle used in the call that failed.
sp
A pointer to a string to be used as the beginning of the error message.

Description

Prints a message to standard error indicating why an ONC RPC call failed. The message is prepended
with string Sp and a colon.

Returned Values

None.

cint_spcreateerror

clnt_spcreateerror — Returns a message indicating why RPC could not create a client handle.

109

Chapter 5. ONC RPC Client Routines

Syntax
#i ncl ude <rpc/rpc. h>

char *clnt_spcreateerror(char *sp);

Arguments

sp

A pointer to a string to be used as the beginning of the error message.

Description

The cl nt _spcr eat eerr or routine returns the address of a message string. The message consists
of the sSp parameter followed by an error message generated by calling the ¢l nt _sper r no routine.
Use the cl nt _spcr eat eer r or routine when the cl nt _create,cl nttcp_create,or

cl nt udp_cr eat e routine fails.

Use this routine if:

* You want to save the string.

* Youdonotwanttousef printf toprint the message.

* The message format is different from the one that cl nt _per r no supports.

The address that cl nt _spcr eat eer r or returns is the address of its own internal string buffer. The
cl nt _spcr eat eer r or routine overwrites this buffer with each call. Therefore, you must copy the
string to your own buffer if you wish to save the string.

Returned Values

char * A pointer to the message string terminated with a
NULL character.

NULL The routine was not able to allocate its internal
buffer.

cint_sperrno

clnt_sperrno — Returns a message indicating why the cal | r pc or ¢l nt _br oadcast routine
failed to create a client handle.

Syntax
#i ncl ude <rpc/rpc. h>

char *clnt_sperrno(enumclnt_stat stat);

Arguments

stat

110

Chapter 5. ONC RPC Client Routines

A buffer containing status information.

Description

The cl nt _sper r no routine returns a pointer to a string.

Use this routine instead if:

* The server does not have a st der r file; many servers do not.

* You want to save the string.

* You do not want to use f pri nt f to print the message.

* The message format is different from the one that cl nt _per r no supports.

The address that cl nt _sper r no returns is a pointer to the error message string for the error.
Therefore, you do not have to copy the string to your own buffer in order to save the string.

Returned Values

char * A pointer to the message string terminated with a
NULL character.

cint_sperror

clnt_sperror — Returns a message indicating why an ONC RPC routine failed.

Syntax

#i ncl ude <rpc/rpc. h>

char *clnt_sperror (CLI ENT *handl e, char *sp);
Arguments

handle

A pointer to the client handle used in the call that failed.

sp

A pointer to a string to be used as the beginning of the error message.

Description

The cl nt _sperr or routine returns a pointer to a message string. The message consists of the sp
parameter followed by an error message generated by calling the ¢l nt _sper r no routine. Use this
routine when the ¢l nt _cal | routine fails.

Use this routine if:

111

Chapter 5. ONC RPC Client Routines

* You want to save the string.

* You do not want to use f pri nt f to print the message.

* The message format is different from the one that cl nt _per r no supports.

The address that cl nt _sperr or returns is a pointer to its own internal string buffer. The

cl nt _sperror routine overwrites this buffer with each call. Therefore, you must copy the string to
your own buffer if you wish to save the string.

Returned Values

char * A pointer to the message string terminated with a
NULL character.

NULL The routine was not able to allocate its internal
buffer.

cintraw_create

clntraw_create — Creates a client handle for memory-based ONC RPC for simple testing and timing.

Syntax
#i ncl ude <rpc/rpc. h>

CLIENT *clntraw create(u_l ong prognum u_Ilong versnum;

Arguments

prognum

The program number associated with the remote program.
versnum

The version number associated with the remote program.

Description

Creates an in-program ONC RPC client for the remote program pr ognum version ver snum The
transport used to pass messages to the service is actually a buffer within the process's address space,
so the corresponding server should live in the same address space; see Svcr aw_cr eat e. This
allows simulation of and acquisition of ONC RPC overheads, such as round-trip times, without any
kernel interference.

Returned Values

CLIENT * A pointer to a client handle.

NULL Indicates failure.

112

Chapter 5. ONC RPC Client Routines

cinttcp_create

clnttcp_create — Creates an ONC RPC client handle for a TCP/IP connection.

Syntax
#i ncl ude <rpc/rpc. h>

CLIENT *clnttcp_create(struct sockaddr_in *addr, u_long prognum
u_long versnum int *sockp, u_int sendsize, u_int recvsize);

Arguments

addr

A pointer to a buffer containing the Internet address where the remote program is located.
prognum

The program number associated with the remote procedure.

versnum

The version number associated with the remote procedure.

sockp

A pointer to the socket number to be used for the remote procedure call. If sockp is RPC_ANYSOCK,
then this routine opens a new socket and sets sockp.

sendsize
The size of the send buffer. If you specify zero, the routine chooses a suitable default.
recvsize

The size of the receive buffer. If you specify zero, the routine chooses a suitable default.

Description

Creates an ONC RPC client handle for the remote program pr ognum version Ver snumat address
addr . The client uses TCP/IP as a transport. The routine is similar to the cl nt _cr eat e routine,
except cl ntt cp_cr eat e allows you to specify a socket and the send and receive buffer sizes.

If you specify the port number as zero by using addr - >si n_por t , the Portmapper provides the
number of the port on which the remote program is listening.

The cl ntt cp_cr eat e routine uses the global variable r pc_createerr.rpc_createerr isa
structure that contains the most recent service creation error. Use r pc_cr eat eerr if you want the
client program to handle the error. The value of r pc_cr eat eerr is set by any RPC client creation
routine that does not succeed. The r pc_cr eat eer r variable is defined in the CLNT.H file.

The socket referenced by sockp is copied into a private area for RPC to use. It is the client's
responsibility to close the socket referenced by sockp.

113

Chapter 5. ONC RPC Client Routines

The authentication scheme for the client, cl i ent - >cl _aut h, gets set to null authentication. The
calling program can set this to something different if necessary.

Note

If the requested program is available on the host but the program does not support the requested
version number, this routine still succeeds. A subsequent call to the cl nt _cal | routine will
discover the version mismatch. Use the cl nt _cr eat e_ver s routine if you want to avoid this
condition.

Returned Values

CLIENT * A pointer to the client handle.

NULL Indicates failure.

cintudp_bufcreate

clntudp bufcreate — Creates an ONC RPC client handle for a buffered /0O UDP connection.

Syntax
#i ncl ude <rpc/rpc. h>
CLI ENT *cl ntudp_bufcreate(struct sockaddr_in *addr, u_long prognum

u_long versnum struct tinmeval wait, register int *sockp, u_int sendsize,
u_int recvsize);

Arguments

addr

A pointer to a buffer containing the Internet address where the remote program is located.
prognum

The program number associated with the remote procedure.

versnum

The version number associated with the remote procedure.

wait

The amount of time used between call retransmission if no response is received. Retransmission
occurs until the ONC RPC calls time out.

sockp

A pointer to the socket number to be used for the remote procedure call. If sockp is RPC_ANYSCOCK,
then this routine opens a new socket and sets sockp.

sendsize

114

Chapter 5. ONC RPC Client Routines

The size of the send buffer. If you specify zero, the routine chooses a suitable default.
recvsize

The size of the receive buffer. If you specify zero, the routine chooses a suitable default.

Description

Creates an ONC RPC client handle for the remote program pr ognum version Ver snumat address
addr . The client uses UDP as the transport. The routine is similar to the ¢l nt _cr eat e routine,
except cl nt udp_buf cr eat e allows you to specify a socket, the UDP retransmission time, and the
send and receive buffer sizes.

If you specify the port number as zero by using addr - >si n_por t , the Portmapper provides the
number of the port on which the remote program is listening.

The cl nt udp_buf cr eat e routine uses the global variable r pc_cr eat eerr.
rpc_creat eerr is a structure that contains the most recent service creation error.
Use r pc_cr eat eerr if you want the client program to handle the error. The value of
rpc_creat eerr isset by any RPC client creation routine that does not succeed. The
rpc_creat eerr variable is defined in the CLNT.H file.

The socket referenced by sockp is copied into a private area for RPC to use. It is the client's
responsibility to close the socket referenced by sockp.

The authentication scheme for the client, cl i ent - >cl _aut h, gets set to null authentication. The
calling program can set this to something different if necessary.

Note

Ifaddr - >si n_port is 0 and the requested program is available on the host but the program

does not support the requested version number, this routine still succeeds. A subsequent call to the
cl nt _cal I routine will discover the version mismatch. Use the cl nt _cr eat e_ver s routine if
you want to avoid this condition.

Returned Values

CLIENT * A pointer to the client handle.
NULL Indicates failure.

cintudp_create

clntudp create — Creates an ONC RPC client handle for a nonbuffered /O UDP connection.

Syntax
#i ncl ude <rpc/rpc. h>
CLI ENT *cl ntudp_create(struct sockaddr_in *addr, u_long prognum u_long

ver snum
struct tinmeval wait, register int *sockp);

115

Chapter 5. ONC RPC Client Routines

Arguments

addr

A pointer to a buffer containing the Internet address where the remote program is located.
prognum

The program number associated with the remote procedure.

versnum

The version number associated with the remote procedure.

wait

The amount of time used between call retransmission if no response is received. Retransmission
occurs until the ONC RPC calls time out.

sockp

A pointer to the socket number to be used for the remote procedure call. If sockp is RPC_ANYSOCK,
then this routine opens a new socket and sets sockp.

Description

Creates an ONC RPC client handle for the remote program pr ognum version Ver snumat address
addr . The client uses UDP as the transport. The routine is similar to the cl nt _cr eat e routine,
except ¢l nt udp_cr eat e allows you to specify a socket and the UDP retransmission time.

If you specify the port number as zero by using addr - >si n_por t , the Portmapper provides the
number of the port on which the remote program is listening.

The cl nt udp_cr eat e routine uses the global variable r pc_createerr.rpc_createerr isa
structure that contains the most recent service creation error. Use r pc_cr eat eer r if you want the
client program to handle the error. The value of r pc_cr eat eer r is set by any RPC client creation
routine that does not succeed. The r pc_cr eat eer r variable is defined in the CLNT.H file.

The socket referenced by sockp is copied into a private area for RPC to use. It is the client's
responsibility to close the socket referenced by sockp.

The authentication scheme for the client, cl i ent - >cl _aut h, gets set to null authentication. The
calling program can set this to something different if necessary.

Notes

Since UDP/IP messages can only hold up to 8 KB of encoded data, this transport cannot be used for
procedures that take large arguments or return huge results.

If addr - >si n_port is 0 and the requested program is available on the host but the program

does not support the requested version number, this routine still succeeds. A subsequent call to the
cl nt _cal | routine will discover the version mismatch. Use the cl nt _cr eat e_ver s routine if
you want to avoid this condition.

116

Chapter 5. ONC RPC Client Routines

Returned Values

CLIENT * A pointer to the client handle.
NULL Indicates failure.
get_myaddress

get myaddress — Returns the local host's Internet address.

Syntax

#i ncl ude <rpc/rpc. h>

voi d get myaddress(struct sockaddr _in *addr);
Arguments

addr

A pointer to a sockaddr _i n structure that the routine will load with the Internet address of the host
where the local procedure resides.

Description

Puts the local host's Internet address into addr without doing any name translation. The port number
is always set to ht ons (PMAPPORT) .

Returned Values

None.

get_myaddr_dest

get myaddr dest — Returns the local host's Internet address according to a destination address.

Syntax

#i ncl ude <rpc/rpc. h>

voi d get myaddr_dest (struct sockaddr_in *addr, struct sockaddr_in *dest);

Arguments

addr

A pointer to a sockaddr _i n structure that the routine will load with the local Internet address that
would provide a connection to the remote address specified in dest .

dest

117

Chapter 5. ONC RPC Client Routines

A pointer to a sockaddr _i n structure containing an Internet address of a remote host.

Description

Since the local host may have multiple network addresses (each on its own interface), this routine is
used to select the local address that would provide a connection to the remote address specified in
dest.

This is an alternative to get host bynarme, which invokes yellow pages. It takes a destination (where
we are trying to get to) and finds an exact network match to go to.

Returned Values

None.

118

Chapter 6. ONC RPC Portmapper
Routines

This chapter describes the routines that allow C programs to access the Portmapper network service.

Table 6.1 describes the task that each routine performs.

Table 6.1. ONC RPC Portmapper Routines

Routine Task Category

pmap_get maps Returns a list of port mappings for the specified
remote host.

pmap_get maps_vns Returns a list of port mappings (including
OpenVMS process 1Ds) for the specified remote
host.

pmap_get port Returns the port number on which the specified

service is waiting.

pmap_rnt cal | Requests the Portmapper on the specified remote
host to call the specified procedure on that host.

pmap_set Registers a remote server procedure with the
host's Portmapper.

pmap_unset Unregisters a remote server procedure with the
host's Portmapper.

pmap_getmaps

pmap_getmaps — Returns a copy of the current port mappings on a remote host.

Syntax

#i ncl ude <rpc/pmap_cl nt. h>

struct pmaplist *prmap_get maps(struct sockaddr _in *addr);

Arguments

addr

A pointer to a sockaddr _i n structure containing the Internet address of the host whose Portmapper
you want to call.

Description

A client interface to the Portmapper, which returns a list of the current ONC RPC program-to-port
mappings on the host located at the Internet address addr . The SHOW PORTMAPPER management
command uses this routine.

119

Chapter 6. ONC RPC Portmapper Routines

Returned Values

struct pmaplist * A pointer to the returned list of server-to-port
mappings on host addr .
NULL Indicates failure.

pmap_getmaps_vms

pmap_getmaps vms — Returns a copy of the current port mappings on a remote host running TCP/IP
Services software.

Syntax

#i ncl ude <rpc/pmap_clnt. h>

struct pmaplist_vns *pmap_get maps_vns(struct sockaddr _in *addr);
Arguments

addr

A pointer to a sockaddr _i n structure containing the Internet address of the host whose Portmapper
you wish to call.

Description

This routine is similar to the pmap_get maps routine. However, pmap_get maps_vns also returns
the process identifiers (PIDs) that are required for mapping requests to TCP/IP Services hosts.

Returned Values

struct pmaplist * A pointer to the returned list of server-to-port
mappings on host addr .
NULL Indicates failure.

pmap_getport

pmap_getport — Returns the port number on which the specified service is waiting.

Syntax
#i ncl ude <rpc/pmap_clnt. h>

u_short prmap_getport(struct sockaddr_in *addr, u_l ong prognum u_long
versnum u_long protocol);

Arguments

addr

120

Chapter 6. ONC RPC Portmapper Routines

A pointer to a sockaddr _i n structure containing the Internet address of the host where the remote
Portmapper resides.

prognum
The program number associated with the remote procedure.
versnum

The version number associated with the remote procedure.
protocol

The transport protocol that the remote procedure uses. Specify either | PPROTO_UDP or
| PPROTO_TCP.

Description

A client interface to the Portmapper. This routine returns the port number on which waits a server that
supports program number pr ognum version Ver snum and speaks the transport protocol associated
with pr ot ocol (| PPROTO_UDP or | PPROTO_TCP).

Notes

If the requested version is not available, but at least the requested program is registered, the routine
returns a port number.

The prmmap_get por t routine returns the port number in host byte order not network byte order. For
certain routines you may need to convert this value to network byte order using the ht ons routine.
For example, the sockaddr _i n structure requires that the port number be in network byte order.

Returned Values

X The port number of the service on the remote
system.
0 No mapping exists or RPC could not contact the

remote Portmapper service. In the latter case, the
global variable r pc_creat eerr. cf _error
contains the ONC RPC status.

pmap_rmtcall

pmap_rmtcall — The client interface to the Portmapper service for a remote call and broadcast
service. This routine allows a program to do a lookup and call in one step.

Syntax
#i ncl ude <rpc/pmap_clnt. h>

enumclnt_stat pmap_rmtcall (struct sockaddr_in *addr, u_long prognum
u_long versnum u_long

procnum xdrproc_t inproc, char * in xdrproc_t outproc, char * out, struct
ti meval tinmeout,

121

Chapter 6. ONC RPC Portmapper Routines

u_long *port);
Arguments

addr

A pointer to a sockaddr _i n structure containing the Internet address of the host where the remote
Portmapper resides.

prognum
The program number associated with the remote procedure.

versnum

The version number associated with the remote procedure.

procnum

The procedure number associated with the remote procedure.

inproc

The XDR routine used to encode the remote procedure's arguments.

in

A pointer to the remote procedure's arguments.

outproc

The XDR routine used to decode the remote procedure's results.

out

A pointer to the remote procedure's results.

timeout

Atinmeval structure describing the time allowed for the results to return to the client.
port

A pointer to a location for the returned port number. Modified to the remote program's port number if
the pmap_rnt cal | routine succeeds.

Description

A client interface to the Portmapper, which instructs the Portmapper on the host at the Internet address
*addr to make a call on your behalf to a procedure on that host. Use this procedure for a pi ng
operation and nothing else. You can use the cl nt _per r no routine to print any error message.

Note

If the requested procedure is not registered with the remote Portmapper, the remote Portmapper does
not reply to the request. The call to pmap_r nt cal | will eventually time out. The pmap_r nt cal |
does not perform authentication.

122

Chapter 6. ONC RPC Portmapper Routines

Returned Values

enum clnt_stat Returns the buffer containing the status of the
operation.

pmap_set

pmap_set — Called by the server procedure to have the Portmapper create a mapping of the
procedure's program and version number.

Syntax
#i ncl ude <rpc/pmap_cl nt. h>

bool _t pmap_set (u_l ong prognum u_Il ong versnum u_Il ong protocol, u_short
port);

Arguments

prognum

The program number associated with the server procedure.
versnum

The version number associated with the server procedure.
protocol

The transport protocol that the server procedure uses. Specify either | PPROTO_UDP or
| PPROTO_TCP.

port

The port number associated with the server program.

Description

A server interface to the Portmapper, which establishes a mapping between the triple
[prognum ver snum pr ot ocol] and port on the server's Portmapper service. The
SVC_regi st er routine calls this routine to register the server with the local Portmapper.

Returned Values

TRUE Indicates success.

FALSE Indicates failure.

pmap_unset

pmap_unset — Called by the server procedure to have the Portmapper delete a mapping of the
procedure's program and version number.

123

Chapter 6. ONC RPC Portmapper Routines

Syntax
#i ncl ude <rpc/pmap_clnt. h>

bool _t pmap_unset (u_l ong prognum u_l ong versnunj;

Arguments

prognum

The program number associated with the server procedure.
versnum

The version number associated with the server procedure.

Description

A server interface to the Portmapper, which destroys all mapping between the triple [pr oghum
versnum *] and ports on the local host's Portmapper.

124

Chapter 7. ONC RPC Server Routines

This chapter describes the server routines that allow C programs to receive procedure calls from client
programs over the network.

Table 7.1 describes the task that each routine performs.

Table 7.1. ONC RPC Server Routines

Routine Task Category

regi sterrpc Creates a server handle and registers the server
program with the Portmapper.

seterr_reply Fills in the error field in an RPC reply message
with the specified error information.

svc_destroy Destroys a server handle (macro).

svc_freeargs Frees the memory allocated when RPC decoded
the server procedure's arguments (macro).

svc_getargs Decodes the server procedure's arguments
(macro).

svc_getcall er Returns the address of the client that called the
server procedure (macro).

svc_getreqgset Reads data for each server connection.

svc_register Registers the server program with the
Portmapper.

svc_run Waits for incoming RPC requests and dispatches
to the appropriate service routine.

svc_sendreply Sends the results of an RPC request to the client.

svc_unregi ster Unregisters the server program with the
Portmapper.

svcerr_auth Sends an error message to the client indicating

that the authentication information was not
correctly formatted.

svcerr_decode Sends an error message to the client indicating
that the server could not decode the arguments.

svcerr_noproc Sends an error message to the client indicating
that the server does not implement the desired
procedure.

svcerr_noprog Sends an error message to the client indicating

that the requested program is not available.

svcerr_progvers Sends an error message to the client indicating
that the requested version is not available.

svcerr_systenmerr Sends an error message to the client indicating
that a system error occurred.

svcerr_weakaut h Sends an error message to the client indicating
that the authentication information was correctly
formatted but was insufficient.

125

Chapter 7. ONC RPC Server Routines

Routine

Task Category

svcraw _create

Creates a server handle for a client that shares the
same program space.

svcfd_create

Creates a server handle for a specified TCP
socket.

svctcp_create

Creates a server handle using the TCP protocol.

svcudp_bufcreate

Creates a server handle using buffered UDP
transport.

svcudp_create

Creates a server handle using the UDP transport.

Xprt_register

Adds the UDP or TCP socket associated with the
specified server handle to the list of registered
sockets.

Xprt_unregister

Removes the UDP or TCP socket associated
with the specified server handle from the list of
sockets.

_authenticate

Authenticates an RPC request message.

registerrpc

registerrpc — Obtains a unique systemwide procedure identification number.

Syntax
#i ncl ude <rpc/rpc. h>
i nt

*(*prognane) (),

xdrproc_t inproc, xdrproc_t outproc);

Arguments

prognum

regi sterrpc(u_l ong prognum u_long versnum u_long procnum

char

The program number associated with the service procedure

versnum

The version number associated with the service procedure

procnum

The procedure number associated with the service procedure

progname

The address of the service procedure being registered with the ONC RPC service package

inproc

The XDR routine used to decode the service procedure's arguments

126

Chapter 7. ONC RPC Server Routines

outproc

The XDR routine used to encode the service procedure's results

Description

The r egi st er r pc routine performs the following tasks for a server:
* Creates a UDP server handle. See the svcudp_cr eat e routine for restrictions.
* Callsthe svc_regi st er routine to register the program with the Portmapper.

e Adds prognum ver snum and pr ocnumto an internal list of registered procedures. When the
server receives a request, it uses this list to determine which routine to call.

A server should call r egi st er r pc for every procedure it implements, except for the NULL
procedure. If a request arrives for program pr ognum version ver snum and procedure pr ocnum
pr ognane is called with a pointer to its parameters.

Returned Values

0 Indicates success.

1 Indicates failure.

seterr_reply

seterr_reply — Fills in the error text in a reply message.

Syntax
#i ncl ude <rpc/rpc. h>

void seterr_reply(struct rpc_nsg *nsg, struct rpc_err *error);

Arguments

msg

A pointer to a reply message buffer
error

A pointer to an I pC_er r structure containing the error associated with the reply message.

Description

Given a reply message, set err _r epl y fills in the error field.

Returned Values

None.

127

Chapter 7. ONC RPC Server Routines

svc_destroy

svc_destroy — A macro that frees the memory associated with an RPC server handle.

Syntax
#i ncl ude <rpc/rpc. h>

voi d svc_destroy(SVCXPRT *xprt);

Arguments
xprt

A pointer to an RPC server handle created by any of the server-handle creation routines

Description

The svc_dest r oy routine returns all the private data structures associated with a server handle. If
the server-handle creation routine received the value RPC_ANYSQOCK as the socket, svc_dest r oy
closes the socket. Otherwise, your program must close the socket.

Returned Values

None.

svc_freeargs

svc_freeargs — A macro that frees the memory allocated when the procedure's arguments were
decoded.

Syntax

#i ncl ude <rpc/rpc. h>

bool t svc_freeargs(SVCXPRT *xprt, xdrproc_t inproc, char *in);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
inproc

The XDR routine used to decode the service procedure's arguments

in

A pointer to the service procedure's decoded arguments

128

Chapter 7. ONC RPC Server Routines

Description

The svc_dest r oy routine returns the memory that the SvC_get ar gs routine allocated to hold
the service procedure's decoded arguments. This routine calls the xdr _f r ee routine.

Returned Values

TRUE Success; memory successfully deallocated.

FALSE Failure; memory not deallocated.

svc_getargs

svc_getargs — A macro that decodes the service procedure's arguments.

Syntax
#i ncl ude <rpc/rpc. h>

bool t svc_getargs(SVCXPRT *xprt, xdrproc_t inproc, char *in);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
inproc

The XDR routine used to decode the service procedure's arguments

in

A pointer to the service procedure's decoded arguments

Description

This routine calls the specified XDR routine to decode the arguments passed to the service procedure.

Returned Values

TRUE Successfully decoded.
FALSE Decoding unsuccessful.

svc_getcaller

svc_getcaller — A macro that returns the address of the client that called the service procedure.

Syntax

#i ncl ude <rpc/rpc. h>

129

Chapter 7. ONC RPC Server Routines

struct sockaddr _in *svc_getcall er (SVCXPRT *xprt);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
Description

This routine returns a sockaddr _i n structure containing the Internet address of the RPC client
routine that called the service procedure.

Returned Values

struct sockaddr_in A pointer to the socket descriptor.

svc_getreqgset

svc_getregset — Returns data for each server connection.

Syntax
#i ncl ude <rpc/rpc. h>

void svc_getreqgset (fd_set *rdfds);

Arguments
rdfds

A pointer to the read file descriptor bit mask modified by the sel ect routine.

Description

The svc_get r egset routine is for servers that implement custom asynchronous event processing
or that do not use the Svc_r un routine. You can only use Svc_f dset when the server does not use
svc_run.

You are unlikely to call this routine directly, because the SvVC_r un routine calls it. However, there are
times when you cannot call svc_r un. For example, suppose a program services RPC requests and
reads or writes to another socket at the same time. The program cannot call Svc_r un. It must call
sel ect andsvc_get reqgset.

The server calls svc_get r eqset when a call to the sel ect system call determines that the server
has received one or more RPC requests. The svc_get r eqset routine reads in data for each server
connection, then calls the server program to handle the data.

The svc_get r egset routine does not return a value. It finishes executing after all sockets
associated with the variable r df ds have been serviced.

130

Chapter 7. ONC RPC Server Routines

You can use the global variable svc_f dset withsvc_get reqset. The svc_f dset variable is
the RPC server's read file descriptor bit mask.

Touse svc_fdset:
1. Copy the global variable svc_f dset into a temporary variable.

2. Pass the temporary variable to the sel ect routine. The Sel ect routine overwrites the variable
and returns it.

3. Pass the temporary variable to the Svc_get r egset routine.

Example
#defi ne MAXSOCK 10
i nt readfds[MAXSOCK+1], /* sockets to select front/
I
for(i =0, j =0; i
<
< MAXSOCK; i ++)
if((svc_fdset[i].socknane != 0) && (svc _fdset[i].socknanme != -1))
readfds[j ++] = svc_fdset[i].socknang;
readfds[j] = O; /* list of sockets ends with a zero */
switch(select(0, readfds, 0, 0, 0))
{
case -1: /* an error happened */
case O: /[* time out */
br eak;
defaul t: /* 1 or nore sockets ready for reading */
errno = O;
svc_getreqgset (readfds);
if(errno == ENETDOM || errno == ENOTCONN)
sys$exit(SS$_TH RDPARTY) ;
}

Returned Values

None.

svc_register
svc_register — Registers the server program with the Portmapper service.
Syntax

#i ncl ude <rpc/rpc. h>

bool t svc_register(SVCXPRT *xprt, u_long proghum u_long versnum
void (*dispatch)(), u_long protocol);

Arguments

xprt

131

Chapter 7. ONC RPC Server Routines

A pointer to an RPC server handle created by any of the server-handle creation routines
prognum

The program number associated with the server procedure

versnum

The version number associated with the server procedure

dispatch

The address of the service dispatch procedure that the server procedure calls. The procedure
di spat ch has the following form:

voi d di spat ch(request, xprt)

struct svc_req *request;

SVCXPRT *xprt;

The svc_runand svc_get r eqgset call the di spat ch routine.

protocol

The protocol that the server procedure uses. Values for this parameter are zero, IPPROTO_UDP, or
IPPROTO_TCP. If pr ot ocol is zero, the service is not registered with the Portmapper service.

Description
Associates pr ognumand ver snumwith the service dispatch procedure di spat ch. If pr ot ocol

is nonzero, then a mapping of the triple [pr ognum ver snum prot ocol] toxprt -
>Xp_port is also established with the local Portmapper service.

Returned Values

TRUE Indicates success.

FALSE Indicates failure.

svc_run

sve_run — Waits for incoming RPC requests and calls the Ssvc_get r eqset routine to dispatch to
the appropriate RPC server program.

Syntax
#i ncl ude <rpc/rpc. h>

void svc_run();

Arguments

None.

132

Chapter 7. ONC RPC Server Routines

Description

The svc_r un routine calls the sel ect routine to wait for RPC requests. When a request arrives,
svc_run calls the svc_get r eqset routine. Then Svc_r un calls the sel ect routine again.

The svc_r un routine never returns.

You may use the global variable svc_f dset with the Svc_r un routine. See the svc_get r eqset

routine for more information about svc_f dset .

Returned Values

Never returns.

svc_sendreply

svc_sendreply — Sends the results of a remote procedure call to an RPC client.

Syntax
#i ncl ude <rpc/rpc. h>

bool _t svc_sendrepl y(SVCXPRT *xprt, xdrproc_t outproc, char *out);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
outproc

The XDR routine used to encode the server procedure's results

out

A pointer to the server procedure's results

Description

Called by an ONC RPC service's dispatch routine to send the results of a remote procedure call.

Returned Values

TRUE Indicates success.

FALSE Indicates failure.

svc_unregister

svc_unregister — Calls the Portmapper to unregister the specified program and version for all
protocols. The program and version are removed from the list of active servers.

133

Chapter 7. ONC RPC Server Routines

Syntax
#i ncl ude <rpc/rpc. h>

void svc_unregister(u_long prognum u_long versnum;

Arguments

prognum

The program number associated with the server procedure
versnum

The version number associated with the server procedure

Description

Removes all mapping of the double [pr ognum ver snum to dispatch routines, and of the triple
[prognum versnum *] to port number.

Returned Values

None.

svcerr_auth

svcerr_auth — Sends an authentication error to the client.

Syntax
#i ncl ude <rpc/rpc. h>

voi d svcerr_aut h(SVCXPRT *xprt, enum auth_stat why);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
why

The reason for the authentication error

Description

Called by a service dispatch routine that refuses to perform a remote procedure call because of an
authentication error.

Returned Values

None.

134

Chapter 7. ONC RPC Server Routines

svcerr_decode

svcerr_decode — Sends an error code to the client indicating that the server procedure cannot decode

the client's arguments.

Syntax

#i ncl ude <rpc/rpc. h>

voi d svcerr_decode(SVCXPRT *xprt);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
Description

Called by a service dispatch routine that cannot successfully decode its parameters. See also the
svc_get ar gs routine.

Returned Values

None.

svcerr_noproc

svcerr_noproc — Sends an error code to the client indicating that the server program does not
implement the requested procedure.

Syntax
#i ncl ude <rpc/rpc. h>

voi d svcerr_noproc(SVCXPRT *xprt);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
Description

Called by a service dispatch routine that does not implement the procedure number that the client
requested.

Returned Values

None.

135

Chapter 7. ONC RPC Server Routines

svcerr_noprog

sveerr_noprog — Sends an error code to the client indicating that the server program is not registered
with the Portmapper.

Syntax

#i ncl ude <rpc/rpc. h>

voi d svcerr_noprog(SVCXPRT *xprt);

Arguments
xprt

A pointer to an RPC server handle created by any of the server-handle creation routines

Description

Called when the desired program is not registered with the ONC RPC package. Generally, the
Portmapper informs the client when a server is not registered. Therefore, service implementors
usually do not use this routine.

Returned Values

None.

svcerr_progvers

svcerr_progvers — Sends an error code to the client indicating that the requested program is
registered with the Portmapper but the requested version of the program is not registered.

Syntax
#i ncl ude <rpc/rpc. h>

voi d svcerr_progvers(SVCXPRT *xprt, u_long |l ow vers, u_long high vers);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
low_vers

The lowest version of the requested program that the server supports

high_vers

The highest version of the requested program that the server supports

136

Chapter 7. ONC RPC Server Routines

Description
Called when the desired version of a program is not registered with the ONC RPC package. Generally,

the Portmapper informs the client when a requested program version is not registered. Therefore,
service implementors usually do not use this routine.

Returned Values

None.

svcerr_systemerr

sveerr_systemerr — Sends an error code to the client indicating that an error occurred that is not
handled by the protocol being used.

Syntax

#i ncl ude <rpc/rpc. h>

voi d svcerr_systenerr (SVCXPRT *xprt);

Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines
Description

Called by a service dispatch routine when it detects a system error not covered by any particular
protocol. For example, if a service can no longer allocate storage, it may call this routine.

Returned Values

None.

svcerr_weakauth

sveerr_weakauth — Sends an error code to the client indicating that an authentication error occurred.
The authentication information was correct but was insufficient.

Syntax

#i ncl ude <rpc/rpc. h>

voi d svcerr_weakaut h(SVCXPRT *xprt);

Arguments

xprt

137

Chapter 7. ONC RPC Server Routines

A pointer to an RPC server handle created by any of the server-handle creation routines

Description

Called by a service dispatch routine that refuses to perform a remote procedure call because of
insufficient (but correct) authentication parameters. The routine calls svcerr _auth (xprt,
AUTH_TOOWEAK) .

Returned Values

None.

svcraw_create

svcraw_create — Creates a server handle for memory-based ONC RPC for simple testing and timing.

Syntax
#i ncl ude <rpc/rpc. h>

SVCXPRT *svcraw create();

Arguments

None.

Description

Creates a in-program ONC RPC service transport, to which it returns a pointer. The transport is

really a buffer within the process's address space, so the corresponding client should live in the same
address space; see the cl nt r aw_cr eat e routine. The svcraw _creat e andcl ntraw _create
routines allow simulation and acquisition of ONC RPC overheads (such as round-trip times), without
any kernel interference.

Returned Values

SVCXPRT * A pointer to an RPC server handle for the in-
memory transport.
NULL Indicates failure.

svcfd_create

svcfd create — Creates an RPC server handle using the specified open file descriptor.

Syntax

#i ncl ude <rpc/rpc. h>

138

Chapter 7. ONC RPC Server Routines

SVCXPRT *svcfd_create(int fd, u_int sendsize, u_int recvsize);
Arguments
fd

The number of an open file descriptor

sendsize

The size of the send buffer. If you specify zero, the routine chooses a suitable default
recvysize

The size of the receive buffer. If you specify zero, the routine chooses a suitable default

Description

Creates an RPC server handle using the specified TCP socket, to which it returns a pointer. The server
should call the svcf d_cr eat e routine after it accepts an incoming TCP connection.

Returned Values

SVCXPRT * A pointer to the server handle.
NULL Indicates failure.

svctcp create

svetep_create — Creates an ONC RPC server handle for a TCP/IP connection.

Syntax
#i ncl ude <rpc/rpc. h>

SVCXPRT *svctcp_create(int sock, u_int sendsize, u_int recvsize);

Arguments

sock

The socket with which the connection is associated. If sock is RPC_ANYSOCK, then this routine opens
a new socket and sets sock. If the socket is not bound to a local TCP port, then this routine binds it to
an arbitrary port.

sendsize
The size of the send buffer. If you specify zero, the routine chooses a suitable default.
recvsize

The size of the receive buffer. If you specify zero, the routine chooses a suitable default.

139

Chapter 7. ONC RPC Server Routines

Description

Creates an RPC server handle using the TCP/IP transport, to which it returns a pointer. Upon
completion, Xprt - >Xp_sock is the transport's socket descriptor, and Xpr t - >Xp_port is the
transport's port number. The service is automatically registered as a transporter (thereby including its
socket in svc_f ds such that its socket descriptor is included in all RPC sel ect system calls).

Returned Values

SVCXPRT * A pointer to the server handle.
NULL Indicates failure.

svcudp_bufcreate

sveudp_bufcreate — Creates an ONC RPC server handle for a buffered I/O UDP connection.

Syntax

#i ncl ude <rpc/rpc. h>

SVCXPRT *svcudp_bufcreate(int sock, u_int sendsize, u_int recvsize);

Arguments
sock

The socket with which the connection is associated. If sock is RPC_ANYSOCK, then this routine opens
a new socket and sets sock.

sendsize
The size of the send buffer. If you specify zero, the routine chooses a suitable default.
recvsize

The size of the receive buffer. If you specify zero, the routine chooses a suitable default.

Description

Creates an RPC server handle using the UDP transport, to which it returns a pointer. Upon
completion, Xprt - >Xp_sock is the transport's socket descriptor, and Xpr t - >Xp_port is the
transport's port number. The service is automatically registered as a transporter (thereby including its
socket in svc_f ds such that its socket descriptor is included in all RPC sel ect system calls).

Returned Values

SVCXPRT * A pointer to the server handle.
NULL Indicates failure.

140

Chapter 7. ONC RPC Server Routines

svcudp_create

svcudp create — Creates an ONC RPC server handle for a nonbuffered I/O UDP connection.

Syntax

#i ncl ude <rpc/rpc. h>

SVCXPRT *svcudp_create(int sock);

Arguments

sock

The socket with which the connection is associated. If sock is RPC_ANYSOCK, then this routine opens
a new socket and sets sock.

Description

Creates an RPC server handle using the UDP transport, to which it returns a pointer. Upon
completion, Xprt - >Xp_sock is the transport's socket descriptor, and Xpr t - >Xp_port is the
transport's port number. The service is automatically registered as a transporter (thereby including its
socket in svc_f ds such that its socket descriptor is included in all RPC sel ect system calls).

Note

Since UDP/IP-based ONC RPC messages can only hold up to 8 KB of encoded data, this transport
cannot be used for procedures that take large arguments or return huge results.

Returned Values

SVCXPRT * A pointer to the server handle.
NULL Indicates failure.

xprt_register
xprt_register — Adds a socket associated with an RPC server handle to the list of registered sockets.

Syntax

#i ncl ude <rpc/rpc. h>

void xprt_register(SVCXPRT *xprt);
Arguments

xprt

A pointer to an RPC server handle created by any of the server-handle creation routines

141

Chapter 7. ONC RPC Server Routines

Description
Activation of a transport handle involves setting the most appropriate bit for the socket associated

with xprt in the svc_f ds mask. When svc_r un() is invoked, activity on the transport handle is
eligible to be processed by the server.

The svc_r egi st er routine calls this routine; therefore, you are unlikely to use this routine directly.

Returned Values

None.

xprt_unregister

xprt_unregister — Removes a socket associated with an RPC server handle from the list of registered
sockets.

Syntax

#i ncl ude <rpc/rpc. h>

voi d xprt_unregi ster(SVCXPRT *xprt);

Arguments
xprt

A pointer to an RPC server handle created by any of the server-handle creation routines

Description

Removes the socket associated with the indicated handle from the list of registered sockets maintained
in the svc_f dset variable. Activity on the socket associated with xprt will no longer be checked by
the SvC_r un routine.

The svc_unr egi st er routine calls this routine; therefore, you are unlikely to use this routine
directly.

Returned Values

None.

_authenticate

_authenticate — Authenticates the request message.

Syntax

#i ncl ude <rpc/rpc. h>

142

Chapter 7. ONC RPC Server Routines

enum aut h_stat _authenticate(struct svc_req *rqst, struct rpc_nsg *nsg);

Arguments
rqst

A pointer to an SVC_r eq structure with the requested program number, procedure number, version
number, and credentials passed by the client.

msg

A pointer to an r pc_nsg structure with members that make up the RPC message.

Description

Returns AUTH_OK if the message is authenticated successfully. If it returns AUTH_CK| the routine
also does the following:

* Setsrqgst->rq_xprt->verf tothe appropriate response verifier.
* Setsrqst->rq_client_cred tothe “cooked ” form of the credentials.

The expression r qst - >r q_xprt - >ver f must be preallocated and its length must be set
appropriately.

The program still owns and is responsible for n8g- >u. cnb. cred and nsg- >u. cnb. verf. The
authentication system retains ownership of r qst - >r q_cl i ent _cr ed, the “cooked ” credentials.

Return Values

enum auth_stat The return status code for the authentication
checks:
AUTH_OK=0—Authentication checks
successful.
AUTH_BADCRED=1—Invalid credentials(seal
broken)

AUTH_REJECTEDCRED=2—Client should
begin new session

AUTH_BADVERF=3—Invalid verifier (seal
broken)

AUTH_REJECTEDVERF=4—Verifier expired
or was replayed

AUTH _TOOWEAK=5—Rejected for security
reasons

AUTH_INVALIDRESP=6—Invalid response
verifier

AUTH_FAILED=7—Some unknown reason

143

Chapter 7. ONC RPC Server Routines

144

Chapter 8. XDR Routine Reference

This chapter describes the routines that specify external data representation. They allow C
programmers to describe arbitrary data structures in a system-independent fashion. These routines

transmit data for remote procedure calls.

Table 8.1 indicates the type of task that each routine performs.

Table 8.1. XDR Data Conversion Routines

Routine

Encodes and Decodes...

xdr _accepted reply

Accepted RPC messages

xdr _array

Variable-length arrays

xdr _aut huni x_par ns

UNIX-style authentication information

xdr _bool

Boolean values

xdr _bytes

Single bytes

xdr _cal | hdr

Static part of RPC request message headers

xdr _cal | nmsg

RPC request messages

xdr _char

Single characters

xdr _doubl e

Double-precision floating-point numbers

xdr _enum Enumerations

xdr _fl oat Single-precision floating-point numbers
xdr _hyper Quad words (hyperintegers)

xdr _int 4-byte integers

xdr _| ong Longwords

xdr _opaque

Fixed-length opaque data structures

xdr _opaque_auth

Opaque opaque_aut h structures containing
authentication information

xdr _pnap

Portmapper parameters

xdr _pmap_vms

Portmapper parameters (including OpenVMS
process IDs)

xdr _pnmapl i st

Portmapper lists

xdr _pmapl i st_vns

Portmapper lists (including OpenVMS process
IDs)

xdr _pointer

Data structure pointers

xdr _reference

Data structure pointers

xdr_rejected_reply

Rejected RPC reply messages

xdr _repl ynsg

RPC reply messages

xdr _short

2-byte integers

xdr _string

Null-terminated strings

xdr _u_char

Unsigned characters

xdr _u_hyper

Unsigned quadwords (hyperintegers)

145

Chapter 8. XDR Routine Reference

Routine

Encodes and Decodes...

xdr_u_int

Unsigned 4-byte integers

xdr_u_l ong

Unsigned long integers

xdr _u_short

Unsigned 2-byte integers

xdr _uni on

Unions

xdr _vect or

Fixed-length arrays

xdr_voi d

(A dummy routine)

xdr_wrapstring

Null-terminated strings

This chapter also describes the XDR routines that manage XDR streams. They allow C programmers
to handle XDR streams in a system-independent fashion.

Table 8.2 indicates the type of task that each routine performs.

Table 8.2. XDR Stream Handling Routines

Routine

Task

xdr _free

Deallocates an XDR data structure.

xdrmem create

Creates an XDR stream handle describing a
memory buffer.

xdrrec _create

Creates an XDR stream handle describing a
record-oriented TCP-based connection.

xdrrec_endofrecord

Generates an end-of-record indication for an
XDR record.

xdrrec_eof

Positions the data pointer to the end of the current
XDR record and indicates whether any more
records follow the current record.

xdrrec_ski precord

Positions the data pointer at the end of the current
XDR record.

xdrstdi o _create

Creates an XDR stream handle describing a
st di o stream.

xdr _accepted_reply

Accepts RPC messages.

xdr_accepted_reply

xdr_accepted reply — Serializes and deserializes a message-accepted indication in an RPC reply

message.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_accepted_repl y(XDR *xdrs,

Arguments

xdrs

struct accepted_reply *arp);

146

Chapter 8. XDR Routine Reference

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

arp

A pointer to a buffer to which the message-accepted indication is written.

Description

Used for encoding reply messages. This routine encodes the status of the RPC call and, in the case
of success, the call results as well. This routine is useful for users who want to generate messages
without using the ONC RPC package. It returns the message-accepted variant of a reply message
union in the ar p argument.

The xdr _r epl ynsg routine calls this routine.

Return Values

TRUE Indicates success.

FALSE Indicates failure to encode the message.

xdr_array

xdr_array — Serializes and deserializes the elements of a variable-length array.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool t xdr_array(XDR *xdrs, char **arrp, u_int *sizep, u_int nmaxsize, u_int
el size, xdrproc_t elproc);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
arrp

A pointer to the pointer to the array.

sizep

A pointer to the number of elements in the array. This element count cannot exceed the maxsi ze
parameter.

maxsize

The maximum size of the Si zep parameter. This value is the maximum number of elements that the
array can hold.

elsize

The size, in bytes, of each of the array's elements.

147

Chapter 8. XDR Routine Reference

elproc

The XDR routine to call that handles each element of the array.

Description

A filter primitive that translates between variable-length arrays and their corresponding external
representations.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_authunix_parms

xdr_authunix_parms — Serializes and deserializes credentials in an authentication parameter
structure.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_aut huni x_parns (XDR *xdrs, struct authuni x_parns *authp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
authp

A pointer to an aut huni x_par ns structure.

Description

Used for externally describing standard UNIX credentials. On a TCP/IP Services host, this routine
encodes the host name, the user ID, and the group ID. It sets the group ID list to NULL. This routine

is useful for users who want to generate these credentials without using the ONC RPC authentication
package.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_bool

xdr_bool — Serializes and deserializes boolean data.

148

Chapter 8. XDR Routine Reference

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_bool (XDR *xdrs, bool _t *bp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
bp

A pointer to the boolean data.

Description

A filter primitive that translates between booleans (integers) and their external representations. When
encoding data, this filter produces values of either 1 or 0.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

xdr_bytes

xdr_bytes — Serializes and deserializes a counted byte array.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_bytes (XDR *xdrs, char **bpp, u_int *sizep, u_int maxsize);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
bpp

A pointer to a pointer to the byte array.

sizep

A pointer to the length of the byte array.

maxsize

The maximum size of the length of the byte array.

149

Chapter 8. XDR Routine Reference

Description
A filter primitive that translates between a variable-length byte array and its external representation.

The length of the array is located at Si zep; the array cannot be longer than maxsi ze. If * bpp is
NULL, xdr _byt es allocates maxsi ze bytes

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_callhdr

xdr_callhdr — Serializes and deserializes the static part of a call message header.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool t xdr_cal |l hdr(XDR *xdrs, struct rpc_nsg *chdrp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
chdrp

A pointer to the call header data.

Description

Describes call header messages. This routine is useful for users who want to generate messages
without using the ONC RPC package. The xdr _cal | hdr routine encodes the following fields:
transaction 1D, direction, RPC version, server program number, and server version.

Return Values

TRUE Indicate success.

FALSE Indicates failure.

xdr_callmsg

xdr_callmsg — Serializes and deserializes an ONC RPC call message.

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

150

Chapter 8. XDR Routine Reference

bool _t xdr_cal | neg(XDR *xdrs, struct rpc_nsg *cnsgp);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
cmsgp

A pointer to an r pc_nsg structure that describes the RPC call message.

Description

This routine is useful for users who want to generate messages without using the ONC RPC package.
The xdr _cal | nsg routine encodes the following fields: transaction ID, direction, RPC version,
server program number, server version number, server procedure number, and client authentication.

The pmmap_rnt cal | and svc_sendr epl y routines call xdr _cal | nsg.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_char

xdr_char — Serializes and deserializes character data.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_char (XDR *xdrs, char *cp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
cp

A pointer to a character.

Description

A filter primitive that translates between internal representations of characters and their XDR
representations.

151

Chapter 8. XDR Routine Reference

Return Values

TRUE

Indicates success.

FALSE

Indicates failure.

xdr_double

xdr_double — Serializes and deserializes VAX and IEEE double-precision floating-point numbers.

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

bool t xdr_doubl e(XDR *xdrs, double *dp);
Arguments
xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

dp

A pointer to the double-precision floating-point number.

Description

A filter primitive that translates between double-precision numbers and their external representations.

This routine is implemented by four XDR routines:

xdr _doubl e D

Converts VAX D-format floating-point numbers.

xdr _double G

Converts VAX G-format floating-point numbers.

xdr _double T

Converts IEEE T-format floating-point numbers.

xdr _doubl e X

Converts IEEE X-format floating-point numbers.

You can reference these routines explicitly or you can use compiler settings to control which routine is
used when you reference the xdr _doubl e routine.

Return Values

TRUE

Indicates success.

FALSE

Indicates failure.

xdr_enum

xdr_enum — Serializes and deserializes enumerations.

152

Chapter 8. XDR Routine Reference

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool t xdr_enum(XDR *xdrs, enumt *ep);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
ep

A pointer to the enumeration data.

Description

A filter primitive that translates between enumerations (actually integers) and their external
representations.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_float

xdr_float — Serializes and deserializes VAX and IEEE single-precision floating-point numbers.

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_fl oat (XDR *xdrs, float *fp);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

fp

A pointer to a single-precision floating-point number.

Description

A filter primitive that translates between single-precision floating-point numbers and their external
representations.

This routine is implemented by two XDR routines:

153

Chapter 8. XDR Routine Reference

xdr_fl oat _F Converts VAX F-format floating-point numbers.

xdr _float_S Converts IEEE T-format floating-point numbers.

You can reference these routines explicitly or you can use compiler settings to control which routine is

used when you reference the xdr _f | oat routine.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_free

xdr_free — Deallocates the memory associated with the indicated data structure.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_free(xdrproc_t proc, char *objp);

Arguments

proc
The XDR routine for the data structure being freed.
objp

A pointer to the data structure to be freed.

Description

Releases memory allocated for the data structure to which obj p points. The pointer passed to this
routine is not freed, but what it points to is freed (recursively). Use this routine to free decoded data

that is no longer needed. Never use this routine for encoded data.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_hyper

xdr_hyper — Serializes and deserializes VAX quadwords (known in XDR as hyperintegers).

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

154

Chapter 8. XDR Routine Reference

bool _t xdr_hyper (XDR *xdrs, quad *hp);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
hp

A pointer to the hyperinteger data.

Description

A filter primitive that translates between hyperintegers and their external representations.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_int
xdr_int — Serializes and deserializes integers.

Syntax

#i ncl ude <tcpi p$rpcxdr. h>
bool t xdr _int(XDR *xdrs, int *ip);
Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
ip

A pointer to the integer data.

Description

A filter primitive that translates between integers and their external representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

155

Chapter 8. XDR Routine Reference

xdr_long

xdr_long — Serializes and deserializes long integers.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_l ong(XDR *xdrs, |ong *Ip);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
Ip

A pointer to a long integer.

Description

A filter primitive that translates between long integers and their external representations.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_opaque

xdr_opaque — Serializes and deserializes opaque structures.

Syntax
#i ncl ude <t cpi p$rpcexdr. h>

bool t xdr_opaque(XDR *xdrs, char *op, u_int cnt);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
op

A pointer to the opaque data.

cnt

The size of op in bytes.

156

Chapter 8. XDR Routine Reference

Description

A filter primitive that translates between fixed-size opaque data and its external representation. This
routine treats the data as a fixed length of bytes and does not attempt to convert the bytes.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

xdr_opaque_auth
xdr_opaque auth — Serializes and deserializes ONC RPC authentication information message.
Syntax

#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_opaque_aut h(XDR *xdrs, struct opaque_auth *authp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
authp

A pointer to an opaque_aut h structure describing authentication information. The pointer
should reference data created by the aut hnone_cr eat e, aut huni x_creat e, or
aut huni x_cr eat e_def aul t routine.

Description

Translates ONC RPC authentication information messages. This routine is useful for users who want
to generate messages without using the ONC RPC package.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

xdr_pmap

xdr_pmap — Serializes and deserializes Portmapper parameters.

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

157

Chapter 8. XDR Routine Reference

bool _t xdr_pmap(XDR *xdrs, struct pmap *regs);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
regs

A pointer to the prmap structure. This structure contains the program number, version number,
protocol number, and port number.

Description

Describes parameters to various Portmapper procedures, externally. This routine is useful for users
who want to generate these parameters without using the Portmapper interface.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_pmap_vms

xdr_pmap_vms — Serializes and deserializes OpenVMS specific Portmapper parameters.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_pmap_vms(XDR *xdrs, struct pnap_vns *regs);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
regs

A pointer to the pmap_vns structure. This structure contains the program number, version number,
protocol number, port number and the OpenVMS specific process identification.

Description

This routine is similar to xdr _prmap() , except it also includes the process identification in the
pmap_vns structure.

Return Values

TRUE Indicates success.

158

Chapter 8. XDR Routine Reference

‘FALSE Indicates failure.

xdr_pmaplist

xdr_pmaplist — Serializes and deserializes a list of Portmapper port mappings.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_pmapli st (XDR *xdrs, struct pmaplist **rpp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

rpp

A pointer to a pointer to a pmapl i St structure containing a list of Portmapper programs and their
respective information. If the routine is used to decode a Portmapper listing, it sets r pp to the address
of a newly allocated linked list of pmapl i st structures.

Description

Describes a list of port mappings, externally. This routine is useful for users who want to generate
these parameters without using the Portmapper interface.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

xdr_pmaplist_vms

xdr_pmaplist vms — Serializes and deserializes a list of Portmapper port mappings for OpenVMS
systems.

Syntax
#i ncl ude <t cpi p$rpcxdr. h>

bool t xdr_pmaplist_vns (XDR *xdrs, struct pnmaplist_vns **rpp);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

159

Chapter 8. XDR Routine Reference

rpp

A pointer to a pointer to a pmapl i St _vns structure containing a list of Portmapper programs and
their respective information, including OpenVMS-specific information.

Description

This routine is similar to the Xdr _prmapl i st routine, except that it also includes the process
identification in the pmapl i st _vns structure.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_pointer

xdr_pointer — Serializes and deserializes indirect pointers and the data being pointed to.

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_poi nter (XDR *xdrs, char **objpp, u_int objsize, xdrproc_t
obj proc);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
objpp

A pointer to a pointer to the data being converted.

objsize

The size of the data structure in bytes.

objproc

The XDR procedure that filters the structure between its local form and its external representation.

Description

An XDR routine for translating data structures that contain pointers to other structures, such as a
linked list. The xdr _poi nt er routine is similar to the xdr _r ef er ence routine. The differences
are that the xdr _poi nt er routine handles pointers with the value NULL and that it translates the
pointer values to a boolean. If the boolean is TRUE, the data follows the boolean.

160

Chapter 8. XDR Routine Reference

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_reference

xdr reference — Serializes and deserializes indirect pointers and the data being pointed to.

Syntax
#i ncl ude <t cpi p$rpcxdr. h>

bool t xdr_reference(XDR *xdrs, char **objpp, u_int objsize, xdrproc_t
obj proc);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

objpp

A pointer to a pointer to the structure containing the data being converted. If obj pp is zero, the
xdr _r ef er ence routine allocates the necessary storage when decoding. This argument must be
nonzero during encoding.

objsize
The size of the structure in bytes.
objproc

The XDR procedure that filters the structure between its local form and its external representation.

Description

A primitive that provides pointer chasing within structures.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_rejected_reply

xdr_rejected reply — Serializes and deserializes the remainder of an RPC reply message after the
header indicates that the reply is rejected.

161

Chapter 8. XDR Routine Reference

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_rejected reply(XDR *xdrs, struct rejected_reply *rrp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
rrp

A pointer to the r €] ect ed_r epl y structure describing the rejected reply message.

Description

Describes ONC RPC reply messages. This routine is useful for users who want to generate messages
without using the ONC RPC package.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_replymsg

xdr replymsg — Serializes and deserializes the RPC reply header and then calls the appropriate
routine to interpret the rest of the message.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_replymsg(XDR *xdrs, struct rpc_nsg *rmsgp);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
rmsgp

A pointer to the r pc_nsg structure describing the reply message.

Description

Describes ONC RPC reply messages. This routine is useful for users who want to generate messages
without using the ONC RPC package. This routine interprets the message header and then calls either

162

Chapter 8. XDR Routine Reference

the xdr _accept ed_repl y or the xdr _rej ect ed_r epl y routine to interpret the body of the
RPC message.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_short

xdr_short — Serializes and deserializes short integers.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_short (XDR *xdrs, short *sp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
sp

A pointer to a short integer.

Description

A filter primitive that translates between short integers and their external representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.
xdr_string

xdr_string — Serializes and deserializes strings (arrays of bytes terminated by a NULL character).

Syntax
#i ncl ude <tcpi p$rpcxdr. h>
bool t xdr_string(XDR *xdrs, char **spp, u_int naxsize);

Arguments

xdrs

163

Chapter 8. XDR Routine Reference

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
spp

A pointer to a pointer to a character string.

maxsize

The maximum size of the string.

Description

A filter primitive that translates between strings and their corresponding external representations.
Strings cannot be longer than the value specified with the maxsi ze parameter.

While decoding, if * spp is NULL, this routine allocates the necessary storage to hold the NULL-
terminated string and sets * Spp to point to the allocated storage.

This routine is the same as the xdr _wr apst r i ng routine, except that this routine allows you to
specify maxsi ze.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_u_char

xdr u_char — Serializes and deserializes unsigned characters.

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

bool t xdr_u_char(XDR *xdrs, char *ucp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
ucp

A pointer to a character.

Description

A filter primitive that translates between internal representation of unsigned characters and their XDR
representations.

164

Chapter 8. XDR Routine Reference

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_u_hyper

xdr u_hyper — Serializes and deserializes unsigned VAX quadwords (known in XDR as
hyperintegers).

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_u_hyper (XDR *xdrs, unsigned quad *uhp);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
uhp

A pointer to the unsigned hyperinteger.

Description

A filter primitive that translates between unsigned hyperintegers and their external representations.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_u_int

xdr_u_int — Serializes and deserializes unsigned integers.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_u_int(XDR *xdrs, unsigned *uip);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

165

Chapter 8. XDR Routine Reference

uip
A pointer to the unsigned integer.

Description

A filter primitive that translates between unsigned integers and their external representations.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_u_long
xdr_u_long — Serializes and deserializes unsigned long integers.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_u_l ong(XDR *xdrs, unsigned |ong *ul p);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
ulp

A pointer to the unsigned long integer.

Description

A filter primitive that translates between unsigned long integers and their external representations.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdr_u_short

xdr_u_short — Serializes and deserializes unsigned short integers.

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

166

Chapter 8. XDR Routine Reference

bool _t xdr_u_short (XDR *xdrs, unsigned short *usp);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
usp

A pointer to the unsigned short integer.

Description

A filter primitive that translates between unsigned short integers and their external representations.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

xdr_union

xdr_union — Serializes and deserializes discriminant unions.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_uni on(XDR *xdrs, enum *dscnp, char *unp, struct xdr_discrim
*choi ces, xdrproc_t default);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
dscmp

A pointer to the union's discriminant.

unp

A pointer to the union's data.

choices

A pointer to an array of xdr _di scri mstructures. Each structure contains an ordered pair of
[val ue, proc] . The final structure in the array is denoted by a pointer with the value NULL.

default

167

Chapter 8. XDR Routine Reference

The address of the default XDR routine to call if the dscnp argument is not found in the choi ces
array.

Description

A filter primitive that translates between a discriminated union and its corresponding external
representation. The xdr _uni on routine first translates the discriminant of the union located at
dscnp. This discriminant is always of type enum t .

Next, the routine translates the union data located at unp. To translate the union data the

xdr _uni on routine first searches the structure pointed to by the choi ces argument for the union
discriminant passed in the dscnp argument. If a match is found, the xdr _uni on routine calls pr oc
to translate the union data.

The end of the xdr _di scr i mstructure array must contain an entry with the value NULL for pr oc.
If the xdr _uni on routine reaches this entry before finding a match, the routine calls the def aul t
procedure (if it is not NULL).

Return Values

TRUE Indicates success.
FALSE Indicates failure.
xdr_vector

xdr_vector — Serializes and deserializes the elements of a fixed-length array (known as a vector).

Syntax
#i ncl ude <t cpi p$rpcxdr. h>

bool _t xdr_vector (XDR *xdrs, char **vecpp, u_int elnum u_int elsize,
xdrproc_t el proc);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
vecpp

A pointer to a pointer to the array.

elnum

The number of elements in the array.

elsize

The size, in bytes, of each element.

elproc

168

Chapter 8. XDR Routine Reference

The XDR routine to handle each element.

Description

A routine that calls el pr oc to prepare the elements of an array for XDR messages.

Return Values

TRUE Indicates success.
FALSE Indicates failure.

xdr_void

xdr_void — When there is no data to convert, this routine is passed to ONC RPC routines that require
an XDR procedure parameter.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_void();

Description

This routine is used as a placeholder for a program that passes no data in a remote procedure call.
Most client and server routines expect an XDR routine to be called, even when there is no data to
pass.

Return Values

This routine always returns TRUE.

xdr_wrapstring

xdr_wrapstring — Serializes and deserializes NULL-terminated strings.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdr_wrapstring(XDR *xdrs, char **spp);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

spp

169

Chapter 8. XDR Routine Reference

A pointer to a pointer to a string.

Description

A primitive that calls xdr _stri ng(xdrs, sp, MAXUNSI GNED) , where MAXUNSI GNED is

the maximum value of an unsigned integer. This routine is useful because the ONC RPC client and
server routines pass the XDR stream handle and a single pointer as parameters to any referenced XDR
routines. The Xdr _st r i ng routine, one of the most frequently used ONC RPC primitives, requires
three parameters.

While decoding, if * sp is NULL, the necessary storage is allocated to hold the NULL-terminated
string and * Sp is set to point to it.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdrmem_create

xdrmem_create — Initializes an XDR stream descriptor for a memory buffer.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

voi d xdrnem creat e(XDR *xdrs, char *addr, u_int size, enum xdr_op op);

Arguments

xdrs

A pointer to the XDR stream handle being created. The routine xdr mem _cr eat e fills in xdr s with
encoding and decoding information.

addr

A pointer to the memory buffer.
size

The length of the memory buffer.
op

An XDR operation, one of: XDR_ENCODE, XDR_DECODE, and XDR_FREE.

Description

The stream handle xdr s is initialized with the operation op, the buffer addr and si ze, and the
operations context for an xdr memstream.

170

Chapter 8. XDR Routine Reference

Return Values

None.

xdrrec_create

xdrrec _create — Initializes a record-oriented XDR stream descriptor.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>
voi d xdrrec_create(XDR *xdrs, u_int sendsize, u_int recvsize, char

*tcp_handl e,
int (*readit)(), int (*witeit)());

Arguments

xdrs

A pointer to the XDR stream handle being created. The routine xdr r ec_cr eat e fills in xdr s with
encoding and decoding information.

sendsize

The send buffer size.
recvsize

The receive buffer size.
tcp_handle

A pointer to an opaque handle that is passed as the first parameter to the procedures (*readit)() and
(*writeit)().

(* readit)()

Read procedure that takes the opaque handle t cp_handl e. The routine must use the following
format:

int readit(char *tcp_handle, char *buffer, u_long |en)

where tcp_handle is the client or server handle, buffer is the buffer to fill, and len is the number of
bytes to read. The r eadi t routine should return either the number of bytes read or the value - 1 if an
erTor OCCurs.

(* writeit)()

Write procedure that takes the opaque handle t cp_handl e. The routine must use the following
format:

int witeit(char *tcp_handle, char *buffer, u_long |en)

171

Chapter 8. XDR Routine Reference

where tcp _handle is the client or server handle, buffer is the buffer to write, and len is the number of
bytes to write. The r eadi t routine should return either the number of bytes written or the value - 1
if an error occurs.

Description

The stream descriptor for Xdr S initializes the maximum allowable size for a request r ecvsi ze
and reply sendsi ze, the addresses of the routine to perform the read (r eadi t) and write
(writeit),and the TCP handle used for network 1/O.

Return Values

None.

xdrrec_endofrecord

xdrrec_endofrecord — Generates an end-of-record for an XDR record.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdrrec_endofrecord (XDR *xdrs, bool t sendnow);

Arguments

xdrs
A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.
sendnow

Indicates whether the record should be sent. If sendnow is TRUE, xdr r ec_endof r ecor d sends
the record by calling the wr i t ei t routine specified in the call to xdr r ec_cr eat e. If sendnow is
FALSE, xdr r ec_endof r ecor d marks the end of the record and calls wr i t ei t when the buffer
is full.

Description

This routine lets an application support batch calls and pipelined procedure calls.

Return Values

TRUE Indicates success.
FALSE Indicates failure.
xdrrec_eof

xdrrec_eof — Moves the buffer pointer to the end of the current record and returns an indication if
any more data exists in the buffer.

172

Chapter 8. XDR Routine Reference

Syntax

#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdrrec_eof (XDR *xdrs);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

Description

Returns TRUE if there is no more input in the buffer after consuming the rest of the current record.

Return Values

TRUE Indicates success.

FALSE Indicates failure.

xdrrec_skiprecord

xdrrec_skiprecord — Guarantees proper record alignment during deserialization from an incoming
stream.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

bool _t xdrrec_skiprecord (XDR *xdrs);

Arguments

xdrs

A pointer to an XDR stream handle created by one of the XDR stream-handle creation routines.

Description

This routine ensures that the stream is properly aligned in preparation for a subsequent read. It is
recommended that, when a record stream is being used, this routine be called prior to any operations
that would read from the stream.

This routine is similar to the Xxdr r ec_eof routine, except that this routine does not verify whether
there is more data in the buffer.

Return Values

TRUE Indicates success.

173

Chapter 8. XDR Routine Reference

‘FALSE Indicates failure.

xdrstdio_create

xdrstdio_create — Initializes an St di 0 XDR stream.

Syntax
#i ncl ude <tcpi p$rpcxdr. h>

void xdrstdio _create (XDR *xdrs, FILE *file, enum xdr_op op);

Arguments

xdrs

A pointer to the XDR stream handle being created. The routine xdr st di o_cr eat e fills in xdr s
with encoding and decoding information.

file

A pointer to the Fl LE structure that is to be associated with the stream.

op
An XDR operation, one of: XDR_ENCCDE, XDR_DECCODE, and XDR_FREE.

Description

Initializes a St di 0 stream for the specified file.

Return Values

None.

174

	VSI TCP/IP Services for OpenVMS ONC RPC Programming
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. VSI Encourages Your Comments
	6. Conventions

	Chapter 1. Introduction to Remote Procedure Calls
	1.1. Overview
	1.2. The RPC Model
	1.3. RPC Procedure Versions
	1.4. Using Portmapper to Determine the Destination Port Number of RPC Packets
	1.4.1. Portmapper Notes for TCP/IP Services
	1.4.2. Displaying Registered RPC Servers

	1.5. RPC Independence from Transport Protocol
	1.6. External Data Representation (XDR)
	1.7. Assigning Program Numbers

	Chapter 2. Writing RPC Applications with the RPCGEN Protocol Compiler
	2.1. The RPCGEN Protocol Compiler
	2.2. Simple Example: Using RPCGEN to Generate Client and Server RPC Code
	2.2.1. RPC Protocol Specification File Describing Remote Procedure
	2.2.2. Implementing the Procedure Declared in the Protocol Specification
	2.2.3. The Client Program That Calls the Remote Procedure
	2.2.4. Running RPCGEN
	2.2.5. Compiling the Client and Server Programs
	2.2.6. Copying the Server to a Remote System and Running It

	2.3. Advanced Example: Using RPCGEN to Generate XDR Routines
	2.3.1. The RPC Protocol Specification
	2.3.2. Implementing the Procedure Declared in the Protocol Specification
	2.3.3. The Client Program that Calls the Remote Procedure
	2.3.4. Running RPCGEN
	2.3.5. Compiling the File of XDR Routines
	2.3.6. Compiling the Client and Server Programs
	2.3.7. Copying the Server to a Remote System and Running It

	2.4. Debugging Applications
	2.5. The C Preprocessor
	2.6. RPCGEN Programming
	2.6.1. Network Types
	2.6.2. User-Provided Define Statements
	2.6.3. INETd Support
	2.6.4. Dispatch Tables

	2.7. Client Programming
	2.7.1. Timeout Changes
	2.7.2. Client Authentication

	2.8. Server Programming
	2.8.1. Handling Broadcasts
	2.8.2. Passing Data to Server Procedures

	2.9. RPC and XDR Languages
	2.9.1. Definitions
	2.9.2. Enumerations
	2.9.3. Typedefs
	2.9.4. Constants
	2.9.5. Declarations
	2.9.6. Structures
	2.9.7. Unions
	2.9.8. Programs
	2.9.9. Special Cases

	2.10. Command Reference
	RPCGEN

	Chapter 3. RPC Application Programming Interface
	3.1. RPC Layers
	3.2. Middle Layer of RPC
	3.2.1. Using callrpc
	3.2.2. Using registerrpc and svc_run
	3.2.3. Using XDR Routines to Pass Arbitrary Data Types
	3.2.4. User-Defined XDR Routines
	3.2.5. XDR Serializing Defaults

	3.3. Lowest Layer of RPC
	3.3.1. The Server Side and the Lowest RPC Layer
	3.3.2. The Client Side and the Lowest RPC Layer
	3.3.3. Memory Allocation with XDR

	3.4. Raw RPC
	3.5. Miscellaneous RPC Features
	3.5.1. Using Select on the Server Side
	3.5.2. Broadcast RPC
	3.5.3. Batching

	3.6. Authentication of RPC Calls
	3.6.1. The Client Side
	3.6.2. The Server Side

	3.7. Using the Internet Service Daemon (INETd)
	3.8. Additional Examples
	3.8.1. Program Versions on the Server Side
	3.8.2. Program Versions on the Client Side
	3.8.3. Using the TCP Transport
	3.8.4. Callback Procedures

	Chapter 4. External Data Representation
	4.1. Usefulness of XDR
	4.1.1. A Canonical Standard
	4.1.2. The XDR Library

	4.2. XDR Library Primitives
	4.2.1. Number and Single-Character Filters
	4.2.2. Floating-Point Filters
	4.2.3. Enumeration Filters
	4.2.4. Possibility of No Data
	4.2.5. Constructed Data Type Filters
	4.2.5.1. Strings
	4.2.5.2. Variable-Length Byte Arrays
	4.2.5.3. Variable-Length Arrays of Arbitrary Data Elements
	4.2.5.4. Fixed-Length Arrays of Arbitrary Data Elements
	4.2.5.5. Opaque Data
	4.2.5.6. Discriminated Unions
	4.2.5.7. Pointers

	4.2.6. Non-filter Primitives

	4.3. XDR Operation Directions
	4.4. XDR Stream Access
	4.4.1. Standard I/O Streams
	4.4.2. Memory Streams
	4.4.3. Record (TCP/IP) Streams
	4.4.4. XDR Stream Implementation

	4.5. Advanced Topics

	Chapter 5. ONC RPC Client Routines
	auth_destroy
	authnone_create
	authunix_create
	authunix_create_default
	callrpc
	clnt_broadcast
	clnt_call
	clnt_control
	clnt_create
	clnt_create_vers
	clnt_destroy
	clnt_freeres
	clnt_geterr
	clnt_pcreateerror
	clnt_perrno
	clnt_perror
	clnt_spcreateerror
	clnt_sperrno
	clnt_sperror
	clntraw_create
	clnttcp_create
	clntudp_bufcreate
	clntudp_create
	get_myaddress
	get_myaddr_dest

	Chapter 6. ONC RPC Portmapper Routines
	pmap_getmaps
	pmap_getmaps_vms
	pmap_getport
	pmap_rmtcall
	pmap_set
	pmap_unset

	Chapter 7. ONC RPC Server Routines
	registerrpc
	seterr_reply
	svc_destroy
	svc_freeargs
	svc_getargs
	svc_getcaller
	svc_getreqset
	svc_register
	svc_run
	svc_sendreply
	svc_unregister
	svcerr_auth
	svcerr_decode
	svcerr_noproc
	svcerr_noprog
	svcerr_progvers
	svcerr_systemerr
	svcerr_weakauth
	svcraw_create
	svcfd_create
	svctcp_create
	svcudp_bufcreate
	svcudp_create
	xprt_register
	xprt_unregister
	_authenticate

	Chapter 8. XDR Routine Reference
	xdr_accepted_reply
	xdr_array
	xdr_authunix_parms
	xdr_bool
	xdr_bytes
	xdr_callhdr
	xdr_callmsg
	xdr_char
	xdr_double
	xdr_enum
	xdr_float
	xdr_free
	xdr_hyper
	xdr_int
	xdr_long
	xdr_opaque
	xdr_opaque_auth
	xdr_pmap
	xdr_pmap_vms
	xdr_pmaplist
	xdr_pmaplist_vms
	xdr_pointer
	xdr_reference
	xdr_rejected_reply
	xdr_replymsg
	xdr_short
	xdr_string
	xdr_u_char
	xdr_u_hyper
	xdr_u_int
	xdr_u_long
	xdr_u_short
	xdr_union
	xdr_vector
	xdr_void
	xdr_wrapstring
	xdrmem_create
	xdrrec_create
	xdrrec_endofrecord
	xdrrec_eof
	xdrrec_skiprecord
	xdrstdio_create

