
VSI OpenVMS

RTL Library (LIB$) Manual

Document Number: DO-RTLLIB-01A

Publication Date: August 2021

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS Integrity Version 8.4-2
VSI OpenVMS Alpha Version 8.4-2L1

VMS Software, Inc. (VSI)
Burlington, Massachusetts, USA

RTL Library (LIB$) Manual

Copyright © 2021 VMS Software, Inc. (VSI), Burlington, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

ii

RTL Library (LIB$) Manual

Preface .. ix
1. Intended Audience ... ix
2. Document Structure ... ix
3. Related Documents .. ix
4. VSI Encourages Your Comments ... x
5. OpenVMS Documentation ... x
6. Typographical Conventions ... x

Chapter 1. Overview of the LIB$ Facility .. 1
1.1. Run-Time Library LIB$ Routines ... 1

1.1.1. 64-Bit Addressing Support (Alpha and I64 Only) .. 1
1.1.2. The LIB$ Routines .. 2

1.2. Translated Version of LIB$ Facility (Alpha and I64 Only) .. 9
1.3. Run-Time Library CVT$ Facility .. 10

Chapter 2. LIB$ Reference ... 11
LIB$ADAWI .. 11
LIB$ADDX .. 13
LIB$ADD_TIMES .. 15
LIB$ANALYZE_SDESC ... 17
LIB$ANALYZE_SDESC_64 ... 18
LIB$ASN_WTH_MBX ... 20
LIB$AST_IN_PROG .. 23
LIB$ATTACH ... 24
LIB$BBCCI .. 25
LIB$BBSSI ... 27
LIB$BUILD_NODESPEC ... 28
LIB$CALLG .. 31
LIB$CALLG_64 ... 32
LIB$CHAR ... 33
LIB$COMPARE_NODENAME ... 34
LIB$COMPRESS_NODENAME ... 36
LIB$CONVERT_DATE_STRING ... 38
LIB$CRC ... 42
LIB$CRC_TABLE .. 43
LIB$CREATE_DIR ... 46
LIB$CREATE_USER_VM_ZONE .. 49
LIB$CREATE_USER_VM_ZONE_64 ... 53
LIB$CREATE_VM_ZONE .. 56
LIB$CREATE_VM_ZONE_64 .. 62
LIB$CRF_INS_KEY ... 67
LIB$CRF_INS_REF ... 69
LIB$CRF_OUTPUT ... 71
LIB$CURRENCY ... 75
LIB$CVTF_FROM_INTERNAL_TIME .. 77
LIB$CVTS_FROM_INTERNAL_TIME .. 78
LIB$CVTF_TO_INTERNAL_TIME .. 80
LIB$CVTS_TO_INTERNAL_TIME .. 82
LIB$CVT_DX_DX ... 83
LIB$CVT_FROM_INTERNAL_TIME .. 89
LIB$CVT_TO_INTERNAL_TIME .. 91
LIB$CVT_VECTIM ... 93
LIB$CVT_xTB ... 94

iii

RTL Library (LIB$) Manual

LIB$CVT_xTB_64 .. 96
LIB$DATE_TIME ... 97
LIB$DAY ... 98
LIB$DAY_OF_WEEK .. 100
LIB$DECODE_FAULT ... 102
LIB$DEC_OVER .. 121
LIB$DELETE_FILE ... 123
LIB$DELETE_LOGICAL ... 132
LIB$DELETE_SYMBOL .. 134
LIB$DELETE_VM_ZONE .. 136
LIB$DELETE_VM_ZONE_64 .. 137
LIB$DIGIT_SEP ... 138
LIB$DISABLE_CTRL .. 140
LIB$DO_COMMAND .. 142
LIB$EDIV .. 144
LIB$EMODD ... 146
LIB$EMODF .. 148
LIB$EMODG ... 150
LIB$EMODH ... 152
LIB$EMODF .. 154
LIB$EMODT .. 156
LIB$EMUL .. 159
LIB$ENABLE_CTRL ... 161
LIB$ESTABLISH ... 163
LIB$EXPAND_NODENAME .. 165
LIB$EXTV ... 167
LIB$EXTZV ... 169
LIB$FFx ... 171
LIB$FID_TO_NAME .. 173
LIB$FILE_SCAN .. 176
LIB$FILE_SCAN_END .. 178
LIB$FIND_FILE ... 179
LIB$FIND_FILE_END ... 183
LIB$FIND_IMAGE_SYMBOL ... 184
LIB$FIND_VM_ZONE ... 188
LIB$FIND_VM_ZONE_64 ... 190
LIB$FIT_NODENAME ... 192
LIB$FIXUP_FLT .. 195
LIB$FLT_UNDER .. 197
LIB$FORMAT_DATE_TIME .. 198
LIB$FORMAT_SOGW_PROT .. 201
LIB$FREE_DATE_TIME_CONTEXT ... 204
LIB$FREE_EF .. 205
LIB$FREE_LUN ... 206
LIB$FREE_TIMER ... 206
LIB$FREE_VM .. 207
LIB$FREE_VM_64 ... 210
LIB$FREE_VM_PAGE ... 212
LIB$FREE_VM_PAGE_64 .. 213
LIB$GETDVI ... 215
LIB$GETJPI ... 220
LIB$GETQUI ... 224

iv

RTL Library (LIB$) Manual

LIB$GETSYI .. 228
LIB$GET_ACCNAM .. 232
LIB$GET_ACCNAM_BY_CONTEXT .. 233
LIB$GET_COMMAND .. 235
LIB$GET_COMMON ... 237
LIB$GET_CURR_INVO_CONTEXT .. 239
LIB$GET_DATE_FORMAT .. 239
LIB$GET_EF .. 241
LIB$GET_FOREIGN .. 243
LIB$GET_FULLNAME_OFFSET ... 246
LIB$GET_HOSTNAME .. 248
LIB$GET_INPUT ... 250
LIB$GET_INVO_CONTEXT .. 252
LIB$GET_INVO_HANDLE .. 253
LIB$GET_LOGICAL .. 254
LIB$GET_LUN .. 258
LIB$GET_MAXIMUM_DATE_LENGTH ... 259
LIB$GET_PREV_INVO_CONTEXT ... 261
LIB$GET_PREV_INVO_HANDLE ... 262
LIB$GET_SYMBOL ... 263
LIB$GET_UIB_INFO ... 266
LIB$GET_USERS_LANGUAGE .. 268
LIB$GET_VM .. 269
LIB$GET_VM_64 .. 271
LIB$GET_VM_PAGE ... 273
LIB$GET_VM_PAGE_64 ... 275
LIB$I64_CREATE_INVO_CONTEXT .. 276
LIB$I64_FREE_INVO_CONTEXT ... 277
LIB$I64_GET_CURR_INVO_CONTEXT ... 278
LIB$I64_GET_CURR_INVO_HANDLE ... 279
LIB$I64_GET_FR ... 280
LIB$I64_GET_GR .. 281
LIB$I64_GET_INVO_CONTEXT ... 283
LIB$I64_GET_INVO_HANDLE ... 284
LIB$I64_GET_PREV_INVO_CONTEXT .. 285
LIB$I64_GET_UNWIND_HANDLER_FV .. 286
LIB$I64_GET_UNWIND_LSDA ... 287
LIB$I64_GET_UNWIND_OSSD ... 288
LIB$I64_INIT_INVO_CONTEXT ... 289
LIB$I64_IS_AST_DISPATCH_FRAME ... 291
LIB$I64_IS_EXC_DISPATCH_FRAME .. 292
LIB$I64_PREV_INVO_END .. 293
LIB$I64_PUT_INVO_REGISTERS ... 294
LIB$I64_SET_FR ... 296
LIB$I64_SET_GR ... 298
LIB$I64_SET_PC ... 299
LIB$ICHAR ... 300
LIB$INDEX ... 302
LIB$INIT_DATE_TIME_CONTEXT ... 303
LIB$INIT_TIMER .. 307
LIB$INSERT_TREE ... 308
LIB$INSERT_TREE_64 .. 318

v

RTL Library (LIB$) Manual

LIB$INSQHI .. 327
LIB$INSQHIQ .. 329
LIB$INSQTI ... 332
LIB$INSQTIQ .. 334
LIB$INSV .. 336
LIB$INT_OVER ... 338
LIB$LEN .. 339
LIB$LOCC ... 340
LIB$LOCK_IMAGE ... 342
LIB$LOOKUP_KEY ... 343
LIB$LOOKUP_TREE ... 347
LIB$LOOKUP_TREE_64 .. 349
LIB$LP_LINES .. 351
LIB$MATCHC .. 353
LIB$MATCH_COND .. 354
LIB$MOVC3 .. 357
LIB$MOVC5 .. 358
LIB$MOVTC .. 360
LIB$MOVTUC ... 371
LIB$MULT_DELTA_TIME ... 373
LIB$MULTF_DELTA_TIME ... 374
LIB$MULTS_DELTA_TIME ... 375
LIB$PARSE_ACCESS_CODE .. 377
LIB$PARSE_SOGW_PROT .. 379
LIB$PAUSE .. 381
LIB$POLYD ... 382
LIB$POLYF .. 383
LIB$POLYG ... 386
LIB$POLYH ... 388
LIB$POLYS .. 390
LIB$POLYT ... 392
LIB$PUT_COMMON ... 394
LIB$PUT_INVO_REGISTERS .. 395
LIB$PUT_OUTPUT .. 397
LIB$RADIX_POINT ... 399
LIB$REMQHI .. 400
LIB$REMQHIQ .. 403
LIB$REMQTI ... 405
LIB$REMQTIQ .. 407
LIB$RENAME_FILE .. 409
LIB$RESERVE_EF ... 419
LIB$RESET_VM_ZONE .. 421
LIB$RESET_VM_ZONE_64 ... 422
LIB$REVERT ... 423
LIB$RUN_PROGRAM ... 424
LIB$SCANC ... 425
LIB$SCOPY_DXDX ... 427
LIB$SCOPY_R_DX .. 429
LIB$SCOPY_R_DX_64 .. 431
LIB$SET_LOGICAL .. 432
LIB$SET_SYMBOL ... 436
LIB$SFREE1_DD ... 438

vi

RTL Library (LIB$) Manual

LIB$SFREEN_DD .. 439
LIB$SGET1_DD ... 440
LIB$SGET1_DD_64 ... 442
LIB$SHOW_TIMER ... 443
LIB$SHOW_VM .. 447
LIB$SHOW_VM_64 ... 450
LIB$SHOW_VM_ZONE ... 452
LIB$SHOW_VM_ZONE_64 ... 458
LIB$SIGNAL ... 465
LIB$SIG_TO_RET .. 470
LIB$SIG_TO_STOP .. 472
LIB$SIM_TRAP ... 474
LIB$SKPC .. 475
LIB$SPANC ... 476
LIB$SPAWN ... 480
LIB$STAT_TIMER ... 487
LIB$STAT_VM ... 491
LIB$STAT_VM_64 ... 493
LIB$STOP .. 495
LIB$SUBX ... 497
LIB$SUB_TIMES ... 499
LIB$SYS_ASCTIM .. 501
LIB$SYS_FAO ... 503
LIB$SYS_FAOL ... 504
LIB$SYS_FAOL_64 .. 506
LIB$SYS_GETMSG ... 508
LIB$TPARSE/LIB$TABLE_PARSE .. 510
LIB$TRAVERSE_TREE ... 571
LIB$TRAVERSE_TREE_64 .. 573
LIB$TRA_ASC_EBC .. 575
LIB$TRA_EBC_ASC .. 578
LIB$TRIM_FILESPEC ... 580
LIB$TRIM_FULLNAME .. 584
LIB$UNLOCK_IMAGE .. 587
LIB$VERIFY_VM_ZONE .. 588
LIB$VERIFY_VM_ZONE_64 ... 589
LIB$WAIT .. 590

Chapter 3. CVT$ Reference Section .. 593
CVT$CONVERT_FLOAT ... 593
CVT$FTOF ... 598

Chapter 4. CVT$ Reference Section .. 605
CVT$CONVERT_FLOAT ... 605
CVT$FTOF ... 610

vii

RTL Library (LIB$) Manual

viii

Preface
This manual documents the library routines contained in the LIB$ and CVT$ facilities of the
OpenVMS Run-Time Library.

1. Intended Audience
This manual is intended for system and application programmers who write programs that call LIB$
and CVT$ Run-Time Library routines.

2. Document Structure
This manual is organized into three parts as follows:

• The overview chapter provides a brief overview of the LIB$ and CVT$ Run-Time Library facility
and lists the LIB$ routines and their functions. It also provides guidelines and information on
using the LIB$ facility with VAX and Alpha platforms.

• The LIB$ reference section describes each library routine contained in the LIB$ Run-Time
Library facility. This information is presented using the documentation format described in VSI
OpenVMS Programming Concepts Manual. Routine descriptions appear alphabetically by routine
name.

• The CVT$ reference section describes the routines contained in the CVT$ Run-Time Library
facility. This information is presented using the documentation format described in VSI OpenVMS
Programming Concepts Manual.

3. Related Documents
The Run-Time Library (RTL) routines are documented in a series of reference manuals.

General descriptions of OpenVMS RTL routines appear in the following manual:

• VSI OpenVMS Programming Concepts Manual—A description of OpenVMS features and
functionality available through calls to the LIB$ Run-Time Library

Specific descriptions of the other RTL facilities and their corresponding routines appear in the
following manuals:

• Portable Mathematics Library

• OpenVMS VAX RTL Mathematics (MTH$) Manual

• OpenVMS RTL DECtalk (DTK$) Manual

• OpenVMS RTL General Purpose (OTS$) Manual

• OpenVMS RTL Parallel Processing (PPL$) Manual

• OpenVMS RTL Screen Management (SMG$) Manual

• OpenVMS RTL String Manipulation (STR$) Manual

ix

Preface

Application programmers using any language can refer to the Guide to Creating OpenVMS Modular
Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling Run-Time Library
routines in their language reference manuals. Additional information may also be found in the
language user's guide provided with your OpenVMS language software.

For a complete list and description of the manuals in the OpenVMS documentation set, see the
OpenVMS Version 7.3 New Features and Documentation Overview.

4. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who
have OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation
webpage at https://vmssoftware.com/resources/documentation/.

6. Typographical Conventions
The following conventions are also used in this manual:

Convention Meaning
Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled

Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the key

labeled PF1 and then press and release another key or a pointing device button.
Return In examples, a key name enclosed in a box indicates that you press a key on the

keyboard. (In text, a key name is not enclosed in a box.)
... A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

x

Preface

Convention Meaning
[|] In command format descriptions, vertical bars separate choices within brackets

or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

xi

Preface

xii

Chapter 1. Overview of the LIB$
Facility
This chapter provides a brief overview of the LIB$ and CVT$ Run-Time Library facilities and lists
the LIB$ and CVT$ routines and their functions. It also provides guidelines and information on using
the LIB$ facility with VAX, Alpha, and VSI OpenVMS Industry Standard 64 for Integrity Servers
(I64) platforms.

1.1. Run-Time Library LIB$ Routines
This manual discusses the Run-Time Library (RTL) LIB$ routines that perform general purpose
(library) functions. One of the functions of the LIB$ facility is to provide a callable interface to
components of OpenVMS operating systems that are difficult to use in a high-level language. LIB$
routines allow access to the following:

• System services

• The command language interpreter (CLI)

• Some VAX machine instructions or the equivalent Alpha or I64 instructions

In addition, LIB$ routines allow you to perform the following operations:

• Allocate resources that your process needs, such as virtual memory and event flags

• Convert data types for I/O

• Enable detection of hardware exceptions (VAX only)

• Establish condition handlers (VAX only)

• Generate and display timing statistics while your program is running

• Get and put strings in the process common storage area

• Obtain records from devices

• Obtain the system date and time in various formats

• Process cross-reference data

• Process VSI DECnet-Plus for OpenVMS full names

• Search for specified files

• Set up and use binary trees

• Signal exceptions

1.1.1. 64-Bit Addressing Support (Alpha and I64 Only)
On Alpha and I64 systems, the Run-Time Library (LIB$) routines provide 64-bit virtual addressing
capabilities as follows:

• Most routines now accept 64-bit addresses for arguments passed by reference. Footnotes in the
Reference Section of this manual indicate those routines that do not.

1

Chapter 1. Overview of the LIB$ Facility

• Most routines also accept either 32-bit or 64-bit descriptors for arguments passed by descriptor.
Footnotes in the Reference Section of this manual indicate those routines that do not.

• In some cases, a new routine was added to support a 64-bit addressing or data capability. These
routines carry the same name as the original routine but with a _64 suffix. In general, both
versions of the routine support 64-bit addressing, but the routine with the _64 suffix also supports
additional 64-bit capability. The 32-bit capabilities of the original routine are unchanged.

• Specialized routines create and manipulate storage zones in the 64-bit virtual address space.
The names of these routines are the same as their 32-bit counterparts but with a _64 suffix.
One example is LIB$CREATE_VM_ZONE and LIB$CREATE_VM_ZONE_64. LIB
$CREATE_VM_ZONE creates a storage zone in the 32-bit virtual address space, and LIB
$CREATE_VM_ZONE_64 creates a storage zone in the 64-bit virtual address space. The function
of the original routine is unchanged.

See the VSI OpenVMS Programming Concepts Manual for more information about 64-bit virtual
addressing capabilities.

1.1.2. The LIB$ Routines
Table 1.1 lists all of the LIB$ routines and their functions.

Table 1.1. LIB$ Routines

Routine Name Function
LIB$ADAWI Add adjacent word with interlock.
LIB$ADDX Add two multiple-precision binary numbers.
LIB$ADD_TIMES Add two quadwords times.
LIB$ANALYZE_SDESC Analyze a string descriptor.
LIB$ANALYZE_SDESC_64 Analyze a string descriptor.1

LIB$ASN_WTH_MBX Assign a channel to a mailbox.
LIB$AST_IN_PROG Check for active AST.
LIB$ATTACH Attach a terminal to a process.
LIB$BBCCI Test and clear a bit with interlock.
LIB$BBSSI Test and set a bit with interlock.
LIB$BUILD_NODESPEC Build a node-name specification.
LIB$CALLG Call a procedure with a general argument list.
LIB$CALLG_64 Call a procedure with a general argument list. 1

LIB$CHAR Transform a byte to the first character of a string.
LIB$COMPARE_NODENAME Compare two node names.
LIB$COMPRESS_NODENAME Compress a node name to its short form

equivalent.
LIB$CONVERT_DATE_STRING Convert a date string to a quadword.
LIB$CRC Calculate a cyclic redundancy check (CRC).
LIB$CRC_TABLE Construct a cyclic redundancy check (CRC) table.
LIB$CREATE_DIR Create a directory.
LIB$CREATE_USER_VM_ZONE Create a user-defined storage zone.

2

Chapter 1. Overview of the LIB$ Facility

Routine Name Function
LIB$CREATE_USER_VM_ZONE_64 Create a user-defined storage zone. 1

LIB$CREATE_VM_ZONE Create a new storage zone.
LIB$CREATE_VM_ZONE_64 Create a new storage zone. 1

LIB$CRF_INS_KEY Insert a key in the cross-reference table.
LIB$CRF_INS_REF Insert a reference to a key in the cross-reference

table.
LIB$CRF_OUTPUT Output some cross-reference table information.
LIB$CURRENCY Get the system currency symbol.
LIB$CVTF_FROM_INTERNAL_TIME Convert internal time to external time (F-floating

value).
LIB$CVTS_FROM_INTERNAL_TIME Convert internal time to external time (IEEE S-

floating value).
LIB$CVTF_TO_INTERNAL_TIME Convert external time to internal time (F-floating

value).
LIB$CVTS_TO_INTERNAL_TIME Convert external time to internal time (IEEE S-

floating value).
LIB$CVT_DX_DX Convert the specified data type.
LIB$CVT_FROM_INTERNAL_TIME Convert internal time to external time.
LIB$CVT_TO_INTERNAL_TIME Convert external time to internal time.
LIB$CVT_VECTIM Convert 7-word vector to internal time.
LIB$CVT_ xTB Convert numeric text to binary.
LIB$CVT_ xTB_64 Convert numeric text to binary. 1

LIB$DATE_TIME Return the date and time as a string.
LIB$DAY Return the day number as a longword integer.
LIB$DAY_OF_WEEK Return the numeric day of the week.
LIB$DECODE_FAULT Decode instruction stream during a fault.2

LIB$DEC_OVER Enable or disable decimal overflow detection. 2

LIB$DELETE_FILE Delete one or more files.
LIB$DELETE_LOGICAL Delete a logical name.
LIB$DELETE_SYMBOL Delete a CLI symbol.
LIB$DELETE_VM_ZONE Delete a virtual memory zone.
LIB$DELETE_VM_ZONE_64 Delete a virtual memory zone. 1

LIB$DIGIT_SEP Get the digit separator symbol.
LIB$DISABLE_CTRL Disable CLI interception of control characters.
LIB$DO_COMMAND Execute the specified command.
LIB$EDIV Perform an extended-precision divide.
LIB$EMODD Perform extended multiply and integerize for D-

floating values.
LIB$EMODF Perform extended multiply and integerize for F-

floating values.

3

Chapter 1. Overview of the LIB$ Facility

Routine Name Function
LIB$EMODG Perform extended multiply and integerize for G-

floating values.
LIB$EMODH Perform extended multiply and integerize for H-

floating values. 2

LIB$EMODS Perform extended multiply and integerize for
IEEE S-floating values.

LIB$EMODT Perform extended multiply and integerize for
IEEE T-floating values.

LIB$EMUL Perform an extended-precision multiply.
LIB$ENABLE_CTRL Enable CLI interception of control characters.
LIB$ESTABLISH Establish a condition handler. 2 3

LIB$EXPAND_NODENAME Expand a node name to its full name equivalent.
LIB$EXTV Extract a field and sign-extend.
LIB$EXTZV Extract a zero-extended field.
LIB$FF x Find the first clear or set bit.
LIB$FID_TO_NAME Convert a device and file ID to a file

specification.
LIB$FILE_SCAN Perform a file scan.
LIB$FILE_SCAN_END End a file scan.
LIB$FIND_FILE Find a file.
LIB$FIND_FILE_END End of find file.
LIB$FIND_IMAGE_SYMBOL Merge activate an image symbol.
LIB$FIND_VM_ZONE Find the next valid zone.
LIB$FIND_VM_ZONE_64 Find the next valid zone. 1

LIB$FIT_NODENAME Fit a node name into an output field.
LIB$FIXUP_FLT Fix floating reserved operand. 2

LIB$FLT_UNDER Detect a floating-point underflow. 2

LIB$FORMAT_DATE_TIME Format a date and/or time.
LIB$FORMAT_SOGW_PROT Format protection mask. 4

LIB$FREE_DATE_TIME_CONTEXT Free the context used to format a date.
LIB$FREE_EF Free an event flag.
LIB$FREE_LUN Free a logical unit number.
LIB$FREE_TIMER Free timer storage.
LIB$FREE_VM Free virtual memory from the program region.
LIB$FREE_VM_64 Free virtual memory from the program region. 1

LIB$FREE_VM_PAGE Free a virtual memory page.
LIB$FREE_VM_PAGE_64 Free a virtual memory page. 1

LIB$GETDVI Get device/volume information.
LIB$GETJPI Get job/process information.

4

Chapter 1. Overview of the LIB$ Facility

Routine Name Function
LIB$GETQUI Get queue information.
LIB$GETSYI Get systemwide information.
LIB$GET_ACCNAM Get access name table for a security object

identified by name. 4

LIB$GET_ACCNAM_BY_CONTEXT Get access name table for a security
object identified by $GET_SECURITY or
$SET_SECURITY context. 4

LIB$GET_COMMAND Get line from SYS$COMMAND.
LIB$GET_COMMON Get string from common area.
LIB$GET_CURR_INVO_CONTEXT Get current invocation context. 1

LIB$GET_DATE_FORMAT Return the user's date input format.
LIB$GET_EF Get an event flag.
LIB$GET_FOREIGN Get foreign command line.
LIB$GET_FULLNAME_OFFSET Get the offset to the starting position of the most

significant part of a full name.
LIB$GET_HOSTNAME Get host node name.
LIB$GET_INPUT Get line from SYS$INPUT.
LIB$GET_INVO_CONTEXT Get invocation context. 1

LIB$GET_INVO_HANDLE Get invocation handle. 1

LIB$GET_LUN Get logical unit number.
LIB$GET_MAXIMUM_DATE_LENGTH Get the maximum possible date/time string

length.
LIB$GET_PREV_INVO_CONTEXT Get previous invocation context. 1

LIB$GET_PREV_INVO_HANDLE Get previous invocation handle. 1

LIB$GET_SYMBOL Get the value of a CLI symbol.
LIB$GET_USERS_LANGUAGE Return the user's language choice.
LIB$GET_VM Allocate virtual memory.
LIB$GET_VM_64 Allocate virtual memory. 1

LIB$GET_VM_PAGE Get a virtual memory page.
LIB$GET_VM_PAGE_64 Get a virtual memory page. 1

LIB$ICHAR Convert the first character of a string to an
integer.

LIB$I64_CREATE_INVO_CONTEXT Allocate and initialize an invocation context
block. 5

LIB$I64_GET_CURR_INVO_CONTEXT Get current invocation context. 5

LIB$I64_FREE_INVO_CONTEXT Deallocate an invocation context block. 5

LIB$I64_GET_CURR_INVO_HANDLE Get current invocation handle. 5

LIB$I64_GET_FR Get floating-point register value. 5

LIB$I64_GET_GR Get general register value. 5

LIB$I64_GET_INVO_HANDLE Get invocation handle. 5

5

Chapter 1. Overview of the LIB$ Facility

Routine Name Function
LIB$I64_GET_INVO_CONTEXT Get invocation context. 5

LIB$I64_GET_PREV_INVO_CONTEXT Get previous invocation context. 5

LIB$I64_GET_PREV_INVO_END Free memory used to process unwind descriptors.
5

LIB$I64_GET_PREV_INVO_HANDLE Get previous invocation handle. 5

LIB$I64_GET_UNWIND_HANDLER_FV Given a pc_value, find the function value
(address of the procedure descriptor) for the
condition handler, if present, and write it to
handler_fv. 5

LIB$I64_GET_UNWIND_LSDA Find Address of Unwind Information Block
Language-Specific Data. 5

LIB$I64_GET_UNWIND_OSSD Find address of the unwind information block
operating system-specific data area. 5

LIB$I64_INIT_INVO_CONTEXT Initialize an invocation context block that has
already been allocated. 5

LIB$I64_IS_AST_DISPATCH_FRAME Determine whether a given PC value represents
an AST dispatch frame. 5

LIB$I64_IS_EXC_DISPATCH_FRAME Determine whether a given PC value represents
an exception dispatch frame. 5

LIB$I64_PUT_INVO_REGISTERS Update register contetnts using a given invocation
context. 5

LIB$I64_PREV_INVO_END Free memory used tp process unwind descriptors.
5

LIB$I64_SET_FR Write context of invocation context block. 5

LIB$I64_SET_GR Write invocation block general register value. 5

LIB$I64_SET_PC Write pc_copy value of invocation context block.
5

LIB$INDEX Index to relative position of substring.
LIB$INIT_DATE_TIME_CONTEXT Initialize the context used in formatting date/time

strings.
LIB$INIT_TIMER Initialize times and counts.
LIB$INSERT_TREE Insert entry in a balanced binary tree.
LIB$INSERT_TREE_64 Insert entry in a balanced binary tree. 1

LIB$INSQHI Insert entry at the head of a queue.
LIB$INSQHIQ Insert entry at the head of a queue. 1

LIB$INSQTI Insert entry at the tail of a queue.
LIB$INSQTIQ Insert entry at the tail of a queue. 1

LIB$INSV Insert a variable bit field.
LIB$INT_OVER Detect integer overflow. 2

LIB$LEN Return the length of a string as a longword.
LIB$LOCC Locate a character.

6

Chapter 1. Overview of the LIB$ Facility

Routine Name Function
LIB$LOCK Lock a specified image in the process's working

set.
LIB$LOOKUP_KEY Look up keyword in table.
LIB$LOOKUP_TREE Look up an entry in a balanced binary tree.
LIB$LOOKUP_TREE_64 Look up an entry in a balanced binary tree. 1

LIB$LP_LINES Specify the number of lines on each printer page.
LIB$MATCHC Match characters, return relative position.
LIB$MATCH_COND Match condition values.
LIB$MOVC3 Move characters.
LIB$MOVC5 Move characters with fill.
LIB$MOVTC Move translated characters.
LIB$MOVTUC Move translated until character.
LIB$MULTF_DELTA_TIME Multiply delta time by F-floating scalar.
LIB$MULTS_DELTA_TIME Multiply delta time by IEEE S-floating scalar.
LIB$MULT_DELTA_TIME Multiply delta time by scalar.
LIB$PARSE_ACCESS_CODE Parse access-encoded name string. 4

LIB$PARSE_SOGW_PROT Parse protection string. 4

LIB$PAUSE Pause program execution.
LIB$POLYD Evaluate polynomials for D-floating values.
LIB$POLYF Evaluate polynomials for F-floating values.
LIB$POLYG Evaluate polynomials for G-floating values.
LIB$POLYH Evaluate polynomials for H-floating values. 2

LIB$POLYS Evaluate polynomials for IEEE S-floating values.
LIB$POLYT Evaluate polynomials for IEEE T-floating values.
LIB$PUT_COMMON Put string into common area.
LIB$PUT_INVO_REGISTERS Put invocation registers. 1

LIB$PUT_OUTPUT Put line to SYS$OUTPUT.
LIB$RADIX_POINT Radix point symbol.
LIB$REMQHI Remove entry from head of queue.
LIB$REMQHIQ Remove entry from head of queue. 1

LIB$REMQTI Remove entry from tail of queue.
LIB$REMQTIQ Remove entry from tail of queue. 1

LIB$RENAME_FILE Rename one or more files.
LIB$RESERVE_EF Reserve an event flag.
LIB$RESET_VM_ZONE Reset virtual memory zone.
LIB$RESET_VM_ZONE_64 Reset virtual memory zone. 1

LIB$REVERT Revert to the handler of the procedure activator. 2
3

7

Chapter 1. Overview of the LIB$ Facility

Routine Name Function
LIB$RUN_PROGRAM Run new program.
LIB$SCANC Scan for characters and return relative position.
LIB$SCOPY_DXDX Copy source string by descriptor to destination.
LIB$SCOPY_R_DX Copy source string by reference to destination.
LIB$SCOPY_R_DX_64 Copy source string by reference to destination. 1

LIB$SET_LOGICAL Set logical name.
LIB$SET_SYMBOL Set the value of a CLI symbol.
LIB$SFREE1_DD Free one or more dynamic strings.
LIB$SFREEN_DD Free n dynamic strings.
LIB$SGET1_DD Get one dynamic string.
LIB$SGET1_DD_64 Get one dynamic string. 1

LIB$SHOW_TIMER Show accumulated times and counts.
LIB$SHOW_VM Show virtual memory statistics.
LIB$SHOW_VM_64 Show virtual memory statistics. 1

LIB$SHOW_VM_ZONE Display information about a virtual memory zone.
LIB$SHOW_VM_ZONE_64 Display information about a virtual memory zone.

1

LIB$SIGNAL Signal exception condition.
LIB$SIG_TO_RET Convert a signaled message to a return status.
LIB$SIG_TO_STOP Convert a signaled condition to a signaled stop.
LIB$SIM_TRAP Simulate floating trap. 2

LIB$SKPC Skip equal characters.
LIB$SPANC Skip selected characters.
LIB$SPAWN Spawn a subprocess.
LIB$STAT_TIMER Return accumulated time and count statistics.
LIB$STAT_VM Return virtual memory statistics.
LIB$STAT_VM_64 Return virtual memory statistics. 1

LIB$STOP Stop execution and signal the condition.
LIB$SUBX Perform multiple-precision binary subtraction.
LIB$SUB_TIMES Subtract two quadword times.
LIB$SYS_ASCTIM Invoke $ASCTIM to convert binary time to

ASCII.
LIB$SYS_FAO Invoke $FAO system service to format output.
LIB$SYS_FAOL Invoke $FAOL system service to format output.
LIB$SYS_FAOL_64 Invoke $FAOL system service to format output. 1

LIB$SYS_GETMSG Invoke $GETMSG system service to get message
text.

LIB$TABLE_PARSE Implement a table-driven, finite-state parser.
LIB$TPARSE Implement a table-driven, finite-state parser. 2

8

Chapter 1. Overview of the LIB$ Facility

Routine Name Function
LIB$TRAVERSE_TREE Traverse a balanced binary tree.
LIB$TRAVERSE_TREE_64 Traverse a balanced binary tree. 1

LIB$TRA_ASC_EBC Translate ASCII to EBCDIC.
LIB$TRA_EBC_ASC Translate EBCDIC to ASCII.
LIB$TRIM_FILESPEC Fit a long file specification into a fixed field.
LIB$TRIM_FULLNAME Trim a full name to fit into a desired output field.
LIB$UNLOCK Unlock a specified image in the process's working

set.
LIB$VERIFY_VM_ZONE Verify a virtual memory zone.
LIB$VERIFY_VM_ZONE_64 Verify a virtual memory zone. 1

LIB$WAIT Wait a specified period of time.
1Alpha and I64 specific.
2Available only on OpenVMS VAX systems and for translated VAX applications running on OpenVMS Alpha or I64 systems.
3This routine or an equivalent mechanism is supplied by compilers on OpenVMS Alpha and I64 systems.
4VAX specific.
5I64 specific.

1.2. Translated Version of LIB$ Facility (Alpha
and I64 Only)
The RTL LIB$ facility exists in two forms on OpenVMS Alpha and I64 systems: native and
translated. The translated LIB$ library contains routines specific to VAX systems only, and are
executed in the Translated Image Environment (TIE). These routines are not available to native
OpenVMS Alpha and I64 programs. See Migrating an Application from OpenVMS VAX to OpenVMS
Alpha for additional information on using translated images and the TIE.

Table 1.2 lists the translated LIB$ routines.

Table 1.2. Translated LIB$ Routines (Alpha Only)

Routine Name Restriction
LIB$DECODE_FAULT Decodes VAX instructions.
LIB$DEC_OVER Applies to VAX PSL only.
LIB$ESTABLISH Supported by compilers on OpenVMS Alpha

systems.
LIB$FIXUP_FLT Applies to VAX PSL only.
LIB$FLT_UNDER Applies to VAX PSL only.
LIB$INT_OVER Applies to VAX PSL only.
LIB$REVERT Supported by compilers on OpenVMS Alpha

systems.
LIB$SIM_TRAP Applies to VAX code.
LIB$TPARSE Requires action routine interface changes.

Replaced by LIB$TABLE_PARSE.

9

Chapter 1. Overview of the LIB$ Facility

LIB$ routines that are called using JSB linkages may function differently on OpenVMS VAX and
OpenVMS Alpha systems. See OpenVMS Programming Interfaces: Calling a System Routine for
more information on using JSB linkages.

1.3. Run-Time Library CVT$ Facility
This manual describes the Run-Time Library CVT$ facility and its routines: CVT
$CONVERT_FLOAT and CVT$FTOF. The CVT$ facility lets you convert data stored in one
OpenVMS data type into data of another data type. Table 1.3 lists the routines in the CVT$ facility.

Table 1.3. CVT$ Routines

Routine Name Function
CVT$CONVERT_FLOAT Converts data in one of several floating-point data

types to another floating-point data type.
CVT$FTOF Enhanced version of CVT$CONVERT_FLOAT

that provides better performance and more output
options than CVT$CONVERT_FLOAT, and
also enhances portability between supported
platforms.

10

Chapter 2. LIB$ Reference
This chapter provides a detailed discussion of the routines provided by the OpenVMS RTL (CVT$)
facility.

LIB$ADAWI
LIB$ADAWI — The Add Aligned Word with Interlock routine allows the user to perform an
interlocked add operation using an aligned word.

Format
LIB$ADAWI add ,sum ,sign

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
add

OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

The addend operand to be added to the value of sum. The add argument is the address of a signed
word that contains the addend operand.

sum

OpenVMS usage: word_signed
type: word integer (signed)
access: modify
mechanism: by reference

The word to which add is added. The sum argument is the address of a signed word integer
containing this value. The add operand is added to the sum operand, and the value of the sum
argument is replaced by the result of this addition. The sum argument must be word-aligned; in other
words, its address must be a multiple of 2.

sign

11

Chapter 2. LIB$ Reference

OpenVMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Sign of the sum argument. The sign argument is the address of a signed word integer that is assigned
the value –1, 0, or 1, depending on whether the new value of sum is negative, 0, or positive.

Description
LIB$ADAWI allows the user to perform an interlocked add operation using an aligned word, and
makes the VAX ADAWI instruction available as a callable routine. This routine also enables the user
to implement synchronization primitives for multiprocessing. On Alpha systems, OpenVMS Alpha
instructions perform the equivalent operation.

The add operation is interlocked against similar operations on other processors in a multiprocessor
environment. This provides an atomic addition operation. The destination must be aligned on a word
boundary; that is, bit 0 of the address of the sum operand must be 0.

If the addend and the sum operand overlap, the result of the addition, the value of the sign argument,
and the associated condition codes are unpredictable.

The value of the sign argument is useful when LIB$ADAWI is used to implement locking in a
multiprocessing program. For example, a process that is waiting to seize a lock or a resource calls LIB
$ADAWI to add 1 to the sum. When the call returns, the waiting process checks the value of sign.

One possible algorithm would interpret the value of sign as follows:

Value of sign Argument Status of Lock or Resource
–1 Open lock or free resources
0 Closed lock or no free resources, with no

processes waiting
+1 Closed lock or no free resources, with processes

waiting

In this algorithm, if the value of the sign argument is –1, that indicates that the process successfully
seized the lock or resource, and other free resources are available. A value of 0 indicates that the
process successfully seized the lock or the last available resource. A value of 1 indicates that the
process was unable to seize the lock.

It is not sufficient for a waiting process to test the value of sum. The result is unpredictable because
other processes can alter the value of sum after the original process executes the ADAWI instruction
but before it tests the value of sum. However, a process can safely test the value of sign because its
value is determined by the ADAWI instruction and is unaffected by other processes' activities.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INTOVF Integer overflow error.

12

Chapter 2. LIB$ Reference

LIB$ADDX
LIB$ADDX — The Add Two Multiple-Precision Binary Numbers routine adds two signed two's
complement integers of arbitrary length.

Format
LIB$ADDX addend-array ,augend-array ,resultant-array [,array-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
addend-array

OpenVMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

First multiple-precision, signed two’s complement integer that LIB$ADDX adds to the second two’s
complement integer. The addend-array argument is the address of the array containing the two’s
complement number to be added.

augend-array

OpenVMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Second multiple-precision, signed two’s complement integer that LIB$ADDX adds to the first two’s
complement integer. The augend-array argument is the address of the array containing the two’s
complement number.

resultant-array

OpenVMS usage: vector_longword_signed
type: unspecified
access: write only
mechanism: by reference, array reference

13

Chapter 2. LIB$ Reference

Multiple-precision, signed two’s complement integer result of the addition. The resultant-array
argument is the address of the array into which LIB$ADDX writes the result of the addition.

array-length

OpenVMS usage: longword_signed
type: longword_integer (signed)
access: read only
mechanism: by reference

Length in longwords of the arrays to be operated on; each array is of length array-length. The array-
length argument is the address of a signed longword integer containing the length. The array-length
argument must not be negative. This is an optional argument. If omitted, the default is 2.

Description
LIB$ADDX adds two signed two's complement integers of arbitrary length. The integers are located
in arrays of longwords. The higher addresses of these longwords contain the higher precision parts of
the values. The highest- addressed longword contains the sign and 31 bits of precision. The remaining
longwords contain 32 bits of precision in each. The number of longwords in each array is specified
in the optional argument array-length. The default array length is 2, which corresponds to the
OpenVMS quadword data type.

Any two or all three of the first three arguments can be the same.

Condition Value Returned
SS$_NORMAL Routine successfully completed.
SS$_INTOVF Integer overflow. The result is correct, except that the sign bit is

lost.

Example
C+
C This Fortran example program shows the use
C of LIB$ADDX.
C-

 INTEGER
 A(2),B(2),C(2),RETURN
 DATA A/’00000001’x,’7FFF407F’x/
 DATA B/’FFFFFFFF’x,’8000BF80’x/

C+
C The highest addressed longword of "A" is A(2).
C So, "A" represents the integer value (’7FFF407F’x) * 16**7 + 1.
C That is, A(2) is 576447592255193089.
C "B" is the twos complement representation of "-A".
C-

 RETURN
 = LIB$ADDX(A,B,C)
 TYPE *,’Let A = 576447592255193089.’

14

Chapter 2. LIB$ Reference

 TYPE *,’Then A + B is 0.’
 TYPE 1,C(2),C(1)
 1 FORMAT(’ "A" - "A" is ’,1H’,I1,I1,3H’x.)
 TYPE *,’Note that C is C(2) concatenated with C(1).’

C+
C Let "A" have the value 72057594037927937 = ’1000000000000001’x.
C Let "B" have the value 4294967295 = ’00000000FFFFFFFF’x.
C

 A(1) = ’00000001’x
 A(2) = ’10000000’x
 B(1) = ’FFFFFFFF’x
 B(2) = ’00000000’x
C+
C Then "A" + "B" is 72057598332895232.
C-

lib
 RETURN = LIB$ADDX(A,B,C)
 TYPE *,’ ’
 TYPE *,’LET A = 72057594037927937 and B = 4294967295’
 TYPE *,’Then A + B is ’,C
 TYPE 2,C(2),C(1)
2 FORMAT(’ 72057598332895232 is represented as ’,1H’,Z8.8,Z8.8,3H’x.)
 TYPE *,’Recall that 72057598332895232 is C(2) concatenated
 1 with C(1).’
 END

This Fortran example demonstrates how to call LIB$ADDX. The output generated by this program is
as follows:

Let A = 576447592255193089.
Then A + B is 0.
"A" - "A" is '00'x.
Note that C is C(2) concatenated with C(1).
LET A = 72057594037927937 and B = 4294967295
Then A + B is 0 268435457
72057598332895232 is represented as '10000001 0'x.
Recall that 72057598332895232 is C(2) concatenated with C(1).

LIB$ADD_TIMES
LIB$ADD_TIMES — The Add Two Quadword Times routine adds two internal format times.

Format
LIB$ADD_TIMES time1 ,time2 ,resultant-time

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

15

Chapter 2. LIB$ Reference

mechanism: by value

Arguments
time1

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

First time that LIB$ADD_TIMES adds to the second time. The time1 argument is the address of an
unsigned quadword containing the first time to be added. The time1 argument may be either a delta
time or an absolute time; however, at least one of the arguments, time1 or time2, must be a delta time.

time2

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Second time that LIB$ADD_TIMES adds to the first time. The time2 argument is the address of an
unsigned quadword containing the second time to be added. The time2 argument may be either a delta
time or an absolute time; however, at least one of the arguments, time1 or time2, must be a delta time.

resultant-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The result of adding time1 and time2. The resultant-time argument is the address of an unsigned
quadword containing the result. If both time1 and time2 are delta times, then resultant-time is a delta
time. Otherwise, resultant-time is an absolute time.

Description
LIB$ADD_TIMES adds two OpenVMS internal times. It can add two delta times or a delta time and
an absolute time. LIB$ADD_TIMES cannot add two absolute times.

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_ONEDELTIM At least one delta time is required.
LIB$_WRONUMARG Incorrect number of arguments.

16

Chapter 2. LIB$ Reference

LIB$ANALYZE_SDESC
LIB$ANALYZE_SDESC — The Analyze String Descriptors routine extracts the length and the
address at which the data starts for a variety of 32-bit string descriptor classes.

Format
LIB$ANALYZE_SDESC input-descriptor ,data-length ,data-address

Corresponding JSB Entry Point
LIB$ANALYZE_SDESC_R2

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
input-descriptor

OpenVMS usage: descriptor
type: quadword (unsigned)
access: read only
mechanism: by reference

Input descriptor from which LIB$ANALYZE_SDESC extracts the length of the data and the address
at which the data starts. The input-descriptor argument is the address of a descriptor pointing to the
input data.

data-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the data; LIB$ANALYZE_SDESC extracts this length value from the input
descriptor. The data-length argument is the address of an unsigned word integer into which LIB
$ANALYZE_SDESC writes the length.

data-address

OpenVMS usage: address

17

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIB$ANALYZE_SDESC extracts this address from the input
descriptor. The data-address argument is the address of an unsigned longword into which LIB
$ANALYZE_SDESC writes the starting address of the data.

Description
LIB$ANALYZE_SDESC extracts the length and the address at which the data starts for a variety of
32-bit string descriptor classes. Following is a description of the classes of string descriptors.

Class Description Restrictions/Notes
A Array DSC$L_ARSIZE must be less

than 65,536 bytes.
D Decimal string Treated as class S.
NCA Noncontiguous array Same as class A.
S Scalar, string None.
SD Decimal scalar Treated as class S.
VS Varying string Length returned is CURLEN.
Z Unspecified Treated as class S.

See STR$ANALYZE_SDESC for a similar routine that signals an error rather than returning a status.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVSTRDES Invalid string descriptor. An array descriptor has an ARSIZE

greater than 65,535 bytes, or the class is unsupported.

LIB$ANALYZE_SDESC_64
LIB$ANALYZE_SDESC_64 — The Analyze String Descriptor routine extracts the length and the
address at which the data starts for a variety of 32-bit and 64-bit string descriptor classes.

Format
LIB$ANALYZE_SDESC_64 input-descriptor ,data-length ,data-address [,descriptor-type]

Corresponding JSB Entry Point
LIB$ANALYZE_SDESC_R2 Refer to the LIB$ANALYZE_SDESC routine

for information about the JSB entry point, LIB
$ANALYZE_SDESC_R2. This JSB entry point
returns 64-bit results on Alpha and I64 systems.

18

Chapter 2. LIB$ Reference

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
input-descriptor

OpenVMS usage: descriptor
type: longword (unsigned) or quadword (unsigned)
access: read only
mechanism: by reference

Input descriptor from which LIB$ANALYZE_SDESC_64 extracts the length of the data and the
address at which the data starts. The input-descriptor argument is the address of a descriptor pointing
to the input data. The input descriptor can be a longword (unsigned) or a quadword (unsigned).

data-length

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Length of the data; LIB$ANALYZE_SDESC_64 extracts this length value from the input descriptor.
The data-length argument is the address of an unsigned quadword integer into which LIB
$ANALYZE_SDESC_64 writes the length.

data-address

OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Starting address of the data; LIB$ANALYZE_SDESC_64 extracts this address from the input
descriptor. The data-address argument is the address of an unsigned quadword into which LIB
$ANALYZE_SDESC_64 writes the starting address of the data.

descriptor-type

OpenVMS usage: longword_unsigned
type: longword (unsigned)

19

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Flag value indicating the type of input descriptor. The descriptor-type argument contains the address
of an unsigned longword integer to which LIB$ANALYZE_SDESC_64 writes a 0 for a 32-bit input
descriptor or a 1 for a 64-bit descriptor.

This argument is optional.

Description
LIB$ANALYZE_SDESC_64 extracts the length and the address at which the data starts for a variety
of 32-bit and 64-bit string descriptor classes. Following is a description of the classes of string
descriptors:

Class Description Restrictions/Notes
A Array For 32-bit descriptors, DSC

$L_ARSIZE must be less than
216, or 65,536, bytes. For 64-
bit descriptors, DSC64$Q_
ARSIZE must be less than 264

bytes.
D Decimal string Treated as class S.
NCA Noncontiguous array Same as class A.
S Scalar, string None.
SD Decimal scalar Treated as class S.
VS Varying string Length returned is CURLEN.
Z Unspecified Treated as class S.

See STR$ANALYZE_SDESC_64 for a similar routine that signals an error rather than returning a
status.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVSTRDES Invalid string descriptor. An array descriptor has an ARSIZE

greater than 65,535 bytes, or the class is unsupported.

LIB$ASN_WTH_MBX
LIB$ASN_WTH_MBX — The Assign Channel with Mailbox routine assigns a channel to a specified
device and associates a mailbox with the device. It returns both the device channel and the mailbox
channel.

Format
LIB$ASN_WTH_MBX device-name [,maximum-message-size] [,buffer-quota] ,device-
channel,mailbox-channel

20

Chapter 2. LIB$ Reference

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
device-name

OpenVMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Device name that LIB$ASN_WTH_MBX passes to the $ASSIGN service. The device-name
argument is the address of a descriptor pointing to the device name.

maximum_message_size

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Maximum message size that can be sent to the mailbox; LIB$ASN_WTH_MBX passes this argument
to the $CREMBX service. The maximum-message-size argument is the address of a signed longword
integer containing this maximum message size.

buffer-quota

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of system dynamic memory bytes that can be used to buffer messages sent to the mailbox;
LIB$ASN_WTH_MBX passes this argument to the $CREMBX service. The buffer-quota argument
is the address of a signed longword integer containing this buffer quota.

device-channel

OpenVMS usage: word_unsigned
type: word integer (unsigned)

21

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Device channel that LIB$ASN_WTH_MBX receives from the $ASSIGN service. The device-
channel argument is the address of an unsigned word integer into which $ASSIGN writes the device
channel.

mailbox-channel

OpenVMS usage: channel
type: word integer (unsigned)
access: write only
mechanism: by reference

Mailbox channel that LIB$ASN_WTH_MBX receives from the $CREMBX service. The mailbox-
channel argument is the address of an unsigned word integer into which $CREMBX writes the
mailbox channel.

Description
A mailbox is a virtual device used for communication between processes. A channel is the
communication path that a process uses to perform I/O operations to a particular device. LIB
$ASN_WTH_MBX assigns a channel to a device and associates a mailbox with the device. It returns
both the device channel and the mailbox channel to the mailbox.

Normally, a process calls the $CREMBX system service to create a mailbox and assign a channel
and logical name to it. Any process running in the same job and using the same logical name uses the
same mailbox.

LIB$ASN_WTH_MBX associates the physical mailbox name with the channel assigned to the
device. To create a temporary mailbox for itself and other processes cooperating with it, your program
calls LIB$ASN_WTH_MBX. The Run-Time Library routine assigns the channel and creates the
temporary mailbox by using the system services $GETDVIW, $ASSIGN, and $CREMBX. Instead of
a logical name, the mailbox is identified by a physical device name of the form MBcu. The physical
device name MBcu is made up of the following elements:

MB Indicates that the device is a mailbox
c Is the controller
u Is the unit number

The routine returns the channel for this device name to the calling program, which then must pass
the mailbox channel to the other programs with which it cooperates. In this way, the cooperating
processes access the mailbox by its physical name, instead of by a logical name.

The calling program passes the routine a device name, which specifies the device to which the
channel is to be assigned. For this argument (called device-name), you may use a logical name. If you
do so, the routine attempts one level of logical name translation.

The privilege restrictions and process quotas required for using this routine are those required by the
$GETDVIW, $CREMBX, and $ASSIGN system services.

22

Chapter 2. LIB$ Reference

Note

This routine calls LIB$GET_EF. Please read the note in the Description section of that routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

Any condition value returned by the called system services $ASSIGN, $CREMBX, $GETDVI, or the
RTL routines LIB$GET_EF and LIB$FREE_EF.

LIB$AST_IN_PROG
LIB$AST_IN_PROG — The AST in Progress routine indicates whether an AST is currently in
progress.

Format
LIB$AST_IN_PROG

Returns

OpenVMS usage: boolean
type: boolean
access: write only
mechanism: by value

Truth value that indicates whether an AST is currently in progress (value = 1) or not (value = 0).

Arguments
None.

Description
An asynchronous system trap (AST) is an OpenVMS mechanism for providing a software interrupt
when an external event occurs, such as the user pressing Ctrl/C. When an external event occurs, the
OpenVMS operating system interrupts the execution of the current process and calls a routine that
you supply. While that routine is active, the AST is said to be in progress, and the process is said to be
executing at AST level. When your AST routine returns control to the original process, the AST is no
longer active, and execution continues where it left off.

LIB$AST_IN_PROG indicates to the calling program whether an AST is currently in progress. Your
program can call LIB$AST_IN_PROG to determine whether it is executing at AST level and then
take appropriate action. This routine is useful if you are writing AST-reentrant code, which takes
different actions depending on whether an AST is in progress. For example, the routine might have
two separate statically allocated storage areas, one for AST level and one for non-AST level.

23

Chapter 2. LIB$ Reference

LIB$AST_IN_PROG calls the RTL routines LIB$FREE_EF and LIB$GET_EF, and the $GETJPI
system service. If LIB$AST_IN_PROG or any of these routines encounters an error, LIB
$AST_IN_PROG calls LIB$STOP.

Condition Values Returned
None.

Example
PROGRAM AST_IN_PROGRESS(INPUT, OUTPUT);
FUNCTION LIB$AST_IN_PROG : INTEGER; EXTERN;
VAR
 ASTVALUE : INTEGER;
BEGIN
 ASTVALUE := LIB$AST_IN_PROG;
 CASE ASTVALUE OF
 0 : WRITELN(’AN AST IS NOT IN PROGRESS’);
 1 : WRITELN(’AN AST IS IN PROGRESS’);
 END { of the case statement }
END.

This Pascal program determines whether or not an AST is in progress.

LIB$ATTACH
LIB$ATTACH — The Attach Terminal to Process routine requests the calling process's command
language interpreter (CLI) to detach the terminal of the calling process and to reattach it to a different
process.

Format
LIB$ATTACH process-id

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
process-id

OpenVMS usage: process_id
type: longword integer (unsigned)
access: read only
mechanism: by reference

24

Chapter 2. LIB$ Reference

Identification of the process to which LIB$ATTACH requests the calling process to attach its terminal.
The process-id argument is the address of an unsigned longword integer containing the process
identification. The specified process must be currently detached (by means of a SPAWN or ATTACH
command or by a call to LIB$SPAWN or LIB$ATTACH) and must be part of the caller’s job.

Description
LIB$ATTACH requests the calling process's command language interpreter (CLI) to detach the
terminal of the calling process and reattach it to a different process. The calling process then
hibernates. LIB$ATTACH provides the same function as the DCL command ATTACH. For more
information on ATTACH, see the VSI OpenVMS DCL Dictionary.

LIB$ATTACH is supported for use with the DCL CLI. If used with the Monitor Control Routine
(MCR) CLI, the error status LIB$_NOCLI is returned. If an image is run directly as a subprocess
or detached process, no CLI is present to perform this function. In such cases, the error status LIB
$_NOCLI is returned.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_NONEXPR Nonexistent process. The process specified by process-id does not

exist.
LIB$_ATTREQREF Attach request refused. The specified process could not be attached

to. Either it was not detached or it did not belong to the caller’s
job.

LIB$_NOCLI No CLI present to perform function. The calling process did not
have a CLI to perform the function, or the CLI did not support the
request type. Note that an image run as a subprocess or detached
process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status, which was
not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL CLI, please report
the problem to your VSI support representative.

LIB$BBCCI
LIB$BBCCI — The Test and Clear Bit with Interlock routine tests and clears a selected bit under
memory interlock. LIB$BBCCI makes the VAX BBCCI instruction available as a callable routine.

Format
LIB$BBCCI position ,bit-zero-address

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

25

Chapter 2. LIB$ Reference

State of the bit before it was cleared by LIB$BBCCI: 1 if the bit was previously set, and 0 if the bit
was previously clear.

Arguments
position

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Bit position, relative to bit-zero-address, of the bit that LIB$BBCCI tests and clears. The position
argument is the address of a signed longword integer containing the bit position. A position of zero
denotes the low-order bit of the byte base. The bit position is equal to the offset of the bit chosen from
the base position. This offset may span the entire range of a signed longword integer; negative offsets
access bits in lower addressed bytes.

bit-zero-address

OpenVMS usage: unspecified
type: address
access: read only
mechanism: by value

Address of the byte containing bit 0 of the field that LIB$BBCCI references. The bit-zero-address
argument is the location of the base position. The bit that LIB$BBCCI tests and clears is position bits
offset from the low bit of bit-zero-address.

Description
The single bit specified by position and bit-zero-address is tested, the previous state of the
bit remembered, and the bit cleared. The reading of the state of the bit and its clearing are interlocked
against similar operations by other processors or devices in the system. The remembered previous
state of the bit is then returned as the function value of LIB$BBCCI.

Condition Values Returned
None.

Example
C+
C This Fortran program demonstrates the use of
C LIB$BBCCI.
C-
 INTEGER*4 STATES(4) ! 128 shared state bits
 COMMON /STATES/ STATES ! Could be shared memory
 LOGICAL*4 LIB$BBCCI
 IF (LIB$BBCCI (42, STATES)) THEN
 TYPE *,’State bit 42 was set’

26

Chapter 2. LIB$ Reference

 ELSE
 TYPE *,’State bit 42 was clear’
 END IF
 END

This Fortran example tests and clears bit 42 of array STATES, which is in a COMMON area (possibly
shared between two processors).

The output generated by this program is as follows:

$ RUN STATE
State bit 42 was clear.

LIB$BBSSI
LIB$BBSSI — The Test and Set Bit with Interlock routine tests and sets a selected bit under memory
interlock. LIB$BBSSI makes the VAX BBSSI instruction available as a callable routine.

Format
LIB$BBSSI position ,bit-zero-address

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The state of the bit before it was set by LIB$BBSSI: 1 if it was previously set, and 0 if it was
previously clear.

Arguments
position

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position, relative to bit-zero-address, of the bit that LIB$BBSSI tests and sets. The position
argument is the address of a signed longword integer containing the bit position. A position of zero
denotes the low-order bit of the byte base. The bit position is equal to the offset of the bit chosen from
the base position. This offset may span the entire range of a signed longword integer; negative offsets
access bits in lower addressed bytes.

bit-zero-address

OpenVMS usage: unspecified
type: address

27

Chapter 2. LIB$ Reference

access: read only
mechanism: by value

Address of the byte containing bit 0 of the field that LIB$BBSSI references. The bit-zero-address
argument is the location of the base position. The bit that LIB$BBSSI tests and sets is position bits
offset from the low bit of bit-zero-address.

Description
The single bit specified by position and bit-zero-address arguments is tested, the previous
state of the bit remembered, and the bit set. The reading of the state of the bit and its setting are
interlocked against similar operations by other processors or devices in the system. The remembered
previous state of the bit is then returned as the function value of LIB$BBSSI.

Condition Values Returned
None.

Example
C+
C This Fortran example program demonstrates
C the use of LIB$BBSSI.
C-

 INTEGER*4 STATES(4) ! 128 shared state bits
 COMMON /STATES/ STATES ! Could be shared memory
 LOGICAL*4 LIB$BBSSI
 IF (LIB$BBSSI (104, STATES)) THEN
 TYPE *,’State bit 104 was set’
 ELSE
 TYPE *,’State bit 104 was clear’
 END IF
 END

This Fortran example tests and sets bit 104 of array STATES, which is in a COMMON storage area
(possibly shared between two processors).

The output generated by this program is as follows:

$ RUN STATEB
State bit 104 was clear.

LIB$BUILD_NODESPEC
LIB$BUILD_NODESPEC — The Build a Node-Name Specification routine builds a node-name
specification from the primary node name. The output node-name specification can be used for other
node-name parsing operations.

Format
LIB$BUILD_NODESPEC primary-nodename, nodespec [,acs] [,secondary-nodename]
[,nodespec-length]

28

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
primary-nodename

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Primary node name. The primary-nodename argument contains the address of a descriptor pointing
to this node-name string. The primary node name should not contain unnecessary quotation marks
(that is, quotation marks (" ") that are not part of a simple name within the node name).

The error LIB$_INVARG is returned if primary-nodename points to a null string. The error LIB
$_INVSTRDES is returned if primary-nodename is an invalid descriptor.

nodespec

OpenVMS usage:
type:
access:
mechanism:

Node-name specification. The nodespec argument contains the address of a descriptor pointing to
this output node-name specification string. LIB$BUILD_ NODESPEC writes the output node-name
specification into the buffer pointed to by the nodespec descriptor.

The error LIB$_INVSTRDES is returned if nodespec is an invalid descriptor.

The length field of the nodespec descriptor is not updated unless nodespec is a dynamic descriptor
with a length less than the resultant node-name specification. Refer to the OpenVMS RTL String
Manipulation (STR$) Manual for dynamic string descriptor usage.

The nodespec argument contains an unusable result when LIB$BUILD_NODESPEC returns in error.

acs

OpenVMS usage: char_string
type: character string
access: read only
mechanism: dy descriptor

29

Chapter 2. LIB$ Reference

Access control string. The acs argument contains the address of a descriptor pointing to this access
control string. The access control string must be a quoted string.

The error LIB$_INVSTRDES is returned if acs is an invalid descriptor.

secondary-nodename

OpenVMS usage: char_string
type: character string
access: read only
mechanism: dy descriptor

Secondary node name. The secondary-nodename argument contains the address of a descriptor
pointing to this secondary node-name string.

The error LIB$_INVSTRDES is returned if secondary-nodename is an invalid descriptor.

nodespec-length

OpenVMS usage: unsigned_word
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output node-name specification. The nodespec-length argument is the address of an
unsigned word that contains this length in bytes.

The nodespec-length argument contains an unusable result when LIB$BUILD_ NODESPEC returns
in error.

Description
This routine builds the parsable form of a node name as the output node-name specification from the
network usable form. Refer to LIB$GET_HOSTNAME for the definitions of both the parsable form
and the network usable form.

The network usable form is specified by the argument primary-nodename. If primary-
nodename contains special characters, it is enclosed in quotation marks (" ") to build the node-name
specification. The quotation marks prevent the special characters from being recognized as terminator
characters and enables correct parsing of the node-name syntax.

If you enclose primary-nodename in quotation marks, any quotation marks that are part of any
simple names within primary-nodename are doubled (that is, each quotation mark (") is turned
into two quotation marks (")). LIB$BUILD_NODESPEC checks if the fully quoted primary node
name exceeds 1024 characters. The error condition LIB$_NODTOOLNG is returned if this is the
case.

To form the output node-name specification, the fully quoted primary node name is concatenated with
the access control string (if supplied) and the double colons and is followed by the secondary node
name (if supplied).

This routine does not validate any of the input arguments to ensure they can form a syntactically valid
node name when they are concatenated.

30

Chapter 2. LIB$ Reference

If the routine overflows the output buffer pointed to by nodespec, the output node-name
specification is truncated, and the alternate successful status LIB$_STRTRU is returned.

The nodespec-length argument, if supplied, is always set to the length of the node-name
specification that is written into the output buffer pointed to by nodespec.

Condition Value Returns
SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The primary-nodename argument points to a

null string.
LIB$_INVSTRDES Invalid string descriptor.
LIB$_NODTOOLNG The primary node name after quoting exceeds 1024 characters.
LIB$_STRTRU Routine successfully completed. Characters are truncated in the

output buffer pointed to by the nodespec argument.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_DXDX.

LIB$CALLG
LIB$CALLG — The Call Routine with General Argument List routine calls a routine with an
argument list specified as an array of longwords, the first of which is a count of the remaining
longwords. LIB$CALLG is a callable version of the VAX CALLG instruction.

Format
LIB$CALLG argument-list ,user-procedure

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Return value, if any, of the called routine, unchanged by LIB$CALLG.

Arguments
argument-list

OpenVMS usage: arg_list
type: unspecified
access: read only
mechanism: by reference, array reference

31

Chapter 2. LIB$ Reference

Argument list to be passed to user-procedure. The argument-list argument is the address of an array of
longwords that is the argument list. The first longword contains the count of the remaining longwords,
to a maximum of 255.

user-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

Routine that LIB$CALLG calls with the specified argument list.

Description
LIB$CALLG is used to call routines that accept variable-length argument lists when the number of
arguments to be passed is not known until execution time. LIB$CALLG is also used to call such
routines from strongly typed languages, which require routines to be declared as having a fixed
number of arguments.

Condition Values Returned
None.

LIB$CALLG_64
LIB$CALLG_64 — The Call Routine with General Argument List routine calls a routine with
an argument list specified as an array of quadwords, the first of which is a count of the remaining
quadwords.

Format
LIB$CALLG_64 argument-list ,user-procedure

Returns
OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by value

Return value, if any, of the called routine, unchanged by LIB$CALLG_64.

Arguments
argument-list

OpenVMS usage: arg_list

32

Chapter 2. LIB$ Reference

type: unspecified
access: read only
mechanism: by reference, array reference

Argument list to be passed to user-procedure. The argument-list argument is the address of an array
of quadwords that is the argument list. The first quadword contains the count of the remaining
quadwords, to a maximum of 255.

user-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

Routine that LIB$CALLG_64 calls with the specified argument list.

Description
LIB$CALLG_64 is useful for calling routines that accept variable-length argument lists when the
number of arguments to be passed is not known until execution time. LIB$CALLG_64 can also be
used to call such routines from strongly typed languages, which require routines to be declared as
having a fixed number of arguments.

Condition Values Returned
None.

LIB$CHAR
LIB$CHAR — The Transform Byte to First Character of String routine transforms a single 8-bit
ASCII character to an ASCII string consisting of a single character followed by trailing spaces, if
needed, to fill out the string. The range of the input byte is 0 through 255.

Format
LIB$CHAR one-character-string ,ascii-code

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
one-character-string

33

Chapter 2. LIB$ Reference

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

ASCII character string consisting of a single character followed by trailing spaces, if needed, that LIB
$CHAR creates when it transforms the ASCII character code. The one-character-string argument is
the address of a descriptor pointing to the character string that LIB$CHAR writes.

ascii-code

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Single 8-bit ASCII character code that LIB$CHAR transforms to an ASCII string. The ascii-code
argument is the address of an unsigned byte containing the ASCII character code.

Description
LIB$CHAR is the inverse of LIB$ICHAR. (See the description of LIB$ICHAR.) LIB$CHAR is not
a binary-to-ASCII conversion routine. LIB$CHAR merely interprets ascii-code as an ASCII character
code and converts it to a string.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$_STRTRU Routine successfully completed, but the string was truncated. The
destination string could not contain all of the characters.

LIB$COMPARE_NODENAME
LIB$COMPARE_NODENAME — The Compare Two Node Names routine compares two node
names to see if they resolve to the same full name. No support for arguments passed by 64-bit address
reference or for use of 64-bit descriptors, if applicable, is planned for this routine.

Format
LIB$COMPARE_NODENAME nodename1 ,nodename2 ,comparison-result

34

Chapter 2. LIB$ Reference

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
nodename1

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

First node name to be compared. The nodename1 argument contains the address of a descriptor
pointing to this node-name string.

The error LIB$_INVARG is returned if nodename1 contains an invalid node name, points to a null
string, or contains more than 1024 characters. The error LIB$_INVSTRDES is returned if nodename1
is an invalid descriptor.

nodename2

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Second node name to be compared. The nodename2 argument contains the address of a descriptor
pointing to this node-name string.

The error LIB$_INVARG is returned if nodename2 contains an invalid node name, points to a null
string, or contains more than 1024 characters. The error LIB$_INVSTRDES is returned if nodename2
is an invalid descriptor.

comparison-result

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Result of the comparison. The comparison-result argument is the address of an unsigned longword
that contains the comparison result. If the two node names are equal, 0 is returned. If they are not
equal, 1 is returned.

35

Chapter 2. LIB$ Reference

Comparison-result contains an unusable result when LIB$COMPARE_ NODENAME returns in
error.

Description
This routine compares two node names and checks to see if they resolve to the same full name. The
two node names are first expanded using LIB$EXPAND_NODENAME. Any errors that result from
expanding the input node names are propagated and returned as condition values. A string comparison
is performed on the expanded node names to check if they resolve to the same full name. The result of
the comparison is returned in comparison-result as follows:

comparison-result Value Meaning
0 Node names are equal.
1 Node names are not equal.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument:

• nodename1 or nodename2 is an invalid node name.

• nodename1 or nodename2 points to a null string.

• The length of the node name is more than 1024 characters.

• The expanded DECnet-Plus for OpenVMS node name is
invalid in a DECnet for OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB$SCOPY_R_DX or by the $IPC DECnet service.

LIB$COMPRESS_NODENAME
LIB$COMPRESS_NODENAME — The Compress a Node Name to Its Short Form Equivalence
routine compresses a node name to an unambiguous short form usable within the naming environment
where the compression is performed. No support for arguments passed by 64-bit address reference or
for use of 64-bit descriptors, if applicable, is planned for this routine.

Format
LIB$COMPRESS_NODENAME nodename ,compressed-nodename [,resultant-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

36

Chapter 2. LIB$ Reference

mechanism: by value

Arguments
nodename

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Node name to be compressed. The nodename argument contains the address of a descriptor pointing
to this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node name, points to a null
string, or contains more than 1024 characters. The error LIB$_INVSTRDES is returned if the
nodename descriptor is invalid.

compressed-nodename

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Compressed node name. The compressed-nodename argument contains the address of a descriptor
pointing to the compressed node-name string. LIB$COMPRESS_NODENAME writes the
compressed node name into the buffer pointed to by compressed-nodename.

The error LIB$_INVSTRDES is returned if compressed-nodename is an invalid descriptor.

The length field of the compressed-nodename descriptor is not updated unless compressed-
nodename is a dynamic descriptor with a length less than the resulting compressed node name. Refer
to the OpenVMS RTL String Manipulation (STR$) Manual for dynamic string descriptor usage.

The compressed-nodename argument contains an unusable result when LIB
$COMPRESS_NODENAME returns in error.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the compressed node name. The resultant-length argument is the address of an unsigned
word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$COMPRESS_NODENAME
returns in error.

37

Chapter 2. LIB$ Reference

Description
This routine compresses a given node name to a short form that is usable within the local naming
environment in which the compression is performed. The local naming environment is defined by
the underlying network directory services. Be careful when using the compressed node name for
making network connections. Using the compressed node name outside the intended local naming
environment may result in an ambiguous reference. Use the full name whenever you need to eliminate
ambiguity.

The nodename argument is validated against the supported form of node names. The error LIB
$_INVARG is returned if the input node name is invalid.

When calling LIB$COMPRESS_NODENAME in a DECnet-Plus for OpenVMS environment, the
underlying network layer verifies the existence of the input node name. If the input node name does
not resolve to an existing node name in the naming environment, an error condition is returned by the
underlying network layer and propagated back to the caller of LIB$COMPRESS_NODENAME.

If the returned compressed node name overflows the buffer pointed to by compressed-
nodename, the compressed node name is truncated, and the alternate successful status LIB
$_STRTRU is returned.

The actual length of the compressed node name written to the output buffer compressed-
nodename is returned in resultant-length if this argument is supplied.

In a DECnet environment, compressing a DECnet-Plus node name results in the error condition LIB
$_INVARG.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are truncated in the

output buffer pointed to by compressed-nodename.
LIB$_INVARG Invalid argument:

• nodename is invalid.

• nodename points to a null string.

• The length of the node name is more than 1024 characters.

• The compressed DECnet-Plus for OpenVMS node name is
invalid in a DECnet for OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB$SCOPY_R_DX or by the $IPC DECnet service.

LIB$CONVERT_DATE_STRING
LIB$CONVERT_DATE_STRING — The Convert Date String to Quadword routine converts an
absolute date string into an OpenVMS internal format date-time quadword. That is, given an input

38

Chapter 2. LIB$ Reference

date/time string of a specified format, LIB$CONVERT_DATE_STRING converts this string to an
OpenVMS internal format time.

Format
LIB$CONVERT_DATE_STRING date-string ,date-time [,user-context] [,flags] [,defaults]
[,defaulted-fields]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
date-string

OpenVMS usage: time_name
type: character-coded text string
access: read only
mechanism: by descriptor

Date string that specifies the absolute time to be converted to an internal system time. The date-string
argument is the address of a descriptor pointing to this date string. This string must have a format
corresponding to the currently defined input format, or it must be one of the relative day strings
YESTERDAY, TODAY, or TOMORROW, or their equivalents in the currently selected language.

date-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

Receives the converted time. The date-time argument is the address of an unsigned quadword that
contains this OpenVMS internal format converted time.

user-context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that receives the translation context from a call to LIB
$INIT_DATE_TIME_CONTEXT and then retains the translation context over multiple calls to LIB
$CONVERT_DATE_STRING. The user-context argument is the address of an unsigned longword

39

Chapter 2. LIB$ Reference

that contains this context. The user program should not write directly to this variable once it is
initialized.

The user-context parameter is optional. However, if a context cell is not passed, the routine LIB
$CONVERT_DATE_STRING may abort if two threads of execution attempt to manipulate the
context area concurrently. Therefore, when calling this routine in situations where reentrancy might
occur, such as from AST level, VSI recommends that users specify a different context cell for each
calling thread.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Specifies which date or time fields of the date-string argument might be omitted so that default
values are applied. The flags argument is the address of a longword bit mask that contains these flags.
A set bit indicates that the field may be omitted. The bit definitions for the mask correspond to the
fields in a $NUMTIM ‘‘timbuf’’ structure as follows:

Field Bit Number Mask
Year 0 #1
Month 1 #2
Day of month 2 #4
Hours 3 #8
Minutes 4 16
Seconds 5 32
Fractional seconds 6 64

Bits 7 through 31 must be zero and are reserved for use by VSI. If this parameter is omitted, a default
value of 120 (78H) is used, indicating that the time fields may be defaulted but the date fields may
not.

defaults

OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Supplies the defaults to be used for omitted fields. The defaults argument is the address of an array
of unsigned words containing these default values. This array corresponds to a 7-word $NUMTIM
‘‘timbuf’’ structure. If the defaults argument is omitted, the following defaults are applied:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

defaulted-field

40

Chapter 2. LIB$ Reference

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Indicates which date or time fields have been defaulted. The defaulted-fields argument is the address
of a longword bit mask that specifies these fields. The bit definitions are identical to those of the flags
bit mask. A set bit indicates that the field was defaulted. Bits 7 through 31, which are reserved for use
by VSI, are zeroed.

Description
LIB$CONVERT_DATE_STRING converts an absolute date string into an OpenVMS internal format
date-time quadword. The input date string can either correspond to the format specified, or it can be
the language equivalent of one of the relative date strings YESTERDAY, TODAY, or TOMORROW.
The language to be used and the format in which to interpret the information are programmable using
either of the following methods:

• The language and format are programmable at compile time through the use of the routine LIB
$INIT_DATE_TIME_CONTEXT.

• The language and format can be determined at run time through the translation of the logical
names SYS$LANGUAGE and LIB$DT_INPUT_FORMAT.

In general, if an application is reading text from internal storage, the language and input format should
be specified at compile time. If this is the case, use the routine LIB$INIT_DATE_TIME_CONTEXT
to specify the language and input format of your choice.

If an application is accepting text from a user, the logical name method of specifying language and
format should be used. In this method, the user assigns equivalence names to the logical names SYS
$LANGUAGE and LIB$DT_INPUT_FORMAT, thereby selecting the language and input format of
the date and time at run time.

The calling program can choose to apply defaults for omitted fields in the date string. To do this, the
flags argument is used to indicate which fields are to be defaulted, and the defaults argument
is used to supply the default values. If the defaults argument is not supplied, the following default
values are applied:

• For the date group, the default is the current date.

• For the time group, the default is 00:00:00.00.

Optionally, you can use the defaulted-fields argument to receive information on which input
fields were omitted and thus accepted default values.

Note

Because the default is the current date for the date group, if you specify a value of 00 with the !Y2
format, the year is interpreted as 1900. After January 1, 2000, the value 00 will be interpreted as 2000.

See the VSI OpenVMS Programming Concepts Manual for a description of system date and time
operations as well as a detailed description of the format mnemonics used in these routines.

41

Chapter 2. LIB$ Reference

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_AMBDATTIM Ambiguous date or time.
LIB$_DEFFORUSE Default format used; unable to determine desired format.
LIB$_ENGLUSED English used by default; unable to translate SYS$LANGUAGE.
LIB$_ILLFORMAT Illegal format string; too many or not enough fields.
LIB$_INCDATTIM Incomplete date or time; missing fields with no defaults.
LIB$_INVARG Invalid argument; a required argument was not specified.
LIB$_INVSTRDES Invalid input string descriptor.
LIB$_IVTIME Invalid date or time.
LIB$_REENTRANCY Reentrancy detected.
LIB$_UNRFORCOD Unrecognized format code.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routines LIBGET_VM, LIBFREE_VM, LIB$FREE1_DD,
and LIB$SCOPY_R_DX, and system services $NUMTIM and $GETTIM.

LIB$CRC
LIB$CRC — The Calculate a Cyclic Redundancy Check routine calculates the cyclic redundancy
check (CRC) for a data stream.

Format
LIB$CRC crc-table ,initial-crc ,stream

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The computed cyclic redundancy check.

Arguments
crc-table

OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

42

Chapter 2. LIB$ Reference

The 16-longword cyclic redundancy check table created by a call to LIB$CRC_ TABLE. The crc-
table argument is the address of a signed longword integer containing this table. Because this table
is created by LIB$CRC_TABLE and then used as input in LIB$CRC, your program must call LIB
$CRC_TABLE before it calls LIB$CRC.

initial-crc

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Initial cyclic redundancy check. The initial-crc argument is the address of a signed longword integer
containing the initial cyclic redundancy check.

stream

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Data stream for which LIB$CRC is calculating the CRC. The stream argument is the address of a
descriptor pointing to the data stream.

Description
Before your program can call LIB$CRC, it must call LIB$CRC_TABLE. LIB$CRC_TABLE takes a
polynomial as its input and builds the table that LIB$CRC uses to calculate the CRC.

LIB$CRC allows your high-level language program to use the CRC instruction, which calculates the
cyclic redundancy check. This instruction checks the integrity of a data stream by comparing its state
at the sending point and the receiving point. Each character in the data stream is used to generate a
value based on a polynomial. The values for each character are then added together. This operation
is performed at both ends of the data transmission, and the two result values compared. If the results
disagree, then an error occurred during the transmission.

Condition Values Returned
None.

Example
For an example on how to use LIB$CRC, refer to the BASIC example at the end of the description of
LIB$CRC_TABLE

LIB$CRC_TABLE
LIB$CRC_TABLE — The Construct a Cyclic Redundancy Check Table routine constructs a 16-
longword table that uses a cyclic redundancy check polynomial specification as a bit mask.

43

Chapter 2. LIB$ Reference

Format
LIB$CRC_TABLE polynomial-coefficient ,crc-table

Returns
None.

Arguments
polynomial-coefficient

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

A bit mask indicating which polynomial coefficients are to be generated by LIB$CRC_TABLE. The
polynomial-coefficient argument is the address of an unsigned longword integer containing this bit
mask.

crc-table

OpenVMS usage: vector_longword_signed
type: longword (integer)
access: write only
mechanism: by reference, array reference

The 16-longword table that LIB$CRC_TABLE produces. The crc-table argument is the address of a
signed longword integer containing the table.

Description
The table created by LIB$CRC_TABLE can be passed to the LIB$CRC routine for generating the
cyclic redundancy check value for a stream of characters.

Condition Values Returned
None.

Example
1 %TITLE "Demonstrate LIB$CRC and LIB$CRC_TABLE"
 %SBTTL "Declarations"
 %IDENT "1-001"

 !--
 OPTION TYPE = EXPLICIT
 DECLARE LONG CRC_TABLE(15), ! CRC table array &
 LONG CRC_VAL_1, ! CRC for first stream &
 LONG CRC_VAL_2, ! CRC for second stream &

44

Chapter 2. LIB$ Reference

 STRING DATA_1, ! First data stream &
 STRING DATA_2 ! Second data stream
 EXTERNAL LONG FUNCTION LIB$CRC ! Rtn to calculate CRC
 EXTERNAL SUB LIB$CRC_TABLE ! Rtn to set up table for CRC

 OPEN "SYS$INPUT:" FOR INPUT AS FILE 1%
 !+
 ! Initialize the CRC table. Use the CRC-16 polynomial (refer to the
 ! "VAX Architecture Reference Manual"). This is the polynomial used by
 ! DDCMP and Bisync.
 !-

 CALL LIB$CRC_TABLE(O’120001’L, CRC_TABLE() BY REF)
 !+
 ! Get data from user.
 !-

 LINPUT #1%, ’Enter string: ’;DATA_1
 !+
 ! Calc the CRC for the user’s input. This CRC polynomial needs
 ! an initial CRC of 0 (refer to the "VAX Architecture Reference
 ! Manual").
 ! LIB$CRC returns a longword, but only the low-order word is valid
 ! for this polynomial.
 !-

 CRC_VAL_1 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA_1)
 CRC_VAL_1 = CRC_VAL_1 AND 32767%

 !+
 ! Get more data from user.
 !-

 LINPUT #1%, ’Enter a second string: ’;DATA_2
 CRC_VAL_2 = LIB$CRC(CRC_TABLE() BY REF, 0%, DATA_2)
 CRC_VAL_2 = CRC_VAL_2 AND 32767%

 !+
 ! Tell the user the results of the CRC comparison.
 !-

 IF CRC_VAL_1 = CRC_VAL_2
 THEN
 PRINT "The two CRCs";CRC_VAL_1;" and ";CRC_VAL_2;" were the same"
 ELSE
 PRINT "The two CRCs";CRC_VAL_1;" and ";CRC_VAL_2;" were different"
 END IF

 IF DATA_1 = DATA_2
 THEN
 PRINT "The two strings were the same"
 ELSE
 PRINT "The two strings were different"
 END IF
 END

This BASIC example program shows the use of LIB$CRC and LIB$CRC_TABLE. One example of
the output generated by this program is as follows:

45

Chapter 2. LIB$ Reference

$ RUN CRC
Enter string: DOVE
Enter a second string: HOSE
The two CRCs 29915 and 29915 were the same
The two strings were different

LIB$CREATE_DIR
LIB$CREATE_DIR — The Create a Directory routine creates a directory or subdirectory.

Format
LIB$CREATE_DIR device-directory-spec [,owner-UIC] [,protection-enable] [,protection-value]
[,maximum-versions] [,relative-volume-number] [,initial-allocation]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
device-directory-spec

OpenVMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Directory specification of the directory or subdirectory that LIB$CREATE_DIR will create. The
device-directory-spec argument is the address of a descriptor pointing to this directory specification.

The format of the device-directory-spec string conforms to standard OpenVMS Record Management
Services (RMS) format. This specification must contain a directory or subdirectory specification.
It may contain a disk specification. SMD$:[THIS.IS.IT] is an example of a standard RMS file
specification, where SMD$ is the disk specification and [THIS.IS.IT] is the subdirectory specification.

This specification cannot contain a node name, file name, file type, file version, or wildcard
characters. The maximum size of this string is 255 characters on VAX, and 4095 characters on Alpha.

owner-UIC

OpenVMS usage: uic
type: longword (unsigned)
access: read only
mechanism: by reference

46

Chapter 2. LIB$ Reference

User identification code (UIC) identifying the owner of the created directory or subdirectory. The
owner-UIC argument is the address of an unsigned longword that contains the UIC. If owner-UIC is
zero, the owner UIC is that of the parent directory. The specified value for owner-UIC is interpreted
as a 32-bit octal number, with two 16-bit fields:

• bits 00–15 — Member number

• bits 16–31 — Group number

This is an optional argument. The default is the UIC of the current process except when the directory
is in UIC format. For a directory in UIC format, for example [123,321], the UIC of the created
directory is used.

protection-enable

OpenVMS usage: mask_word
type: word (unsigned)
access: read only
mechanism: by reference

Mask specifying the bits of protection-value to be set. The protection-enable argument is the
address of an unsigned word containing this protection mask.

The figure below shows the structure of a protection mask. Access is allowed for bits set to 0.

Figure 2.1. Structure of a Protection Mask

Bits set in the protection-enable mask cause corresponding bits of protection-value to be set. Bits
not set in the protection-enable mask cause corresponding bits of protection-value to take the value
of the corresponding bit in the parent directory’s file protection. Bits in the parent directory’s file
protection that indicate delete access do not cause corresponding bits of protection-value to be set,
however.

Following is an example of how the protection-value protection mask is defined:

Mask Name Hexadecimal Number Value
Protection enable %XDBFF S:None, O:None, G:E, W:W
Parent directory %X13FF S:RWED, O:RWED, G:RW,

W:R
Protection value %X37FF S:RWE, O:RWE, G:RWE,

W:RW

The protection-enable argument is optional. It should be used only when you want to change
protection values from the parent directory’s default file protection. The default for protection-enable

47

Chapter 2. LIB$ Reference

is a mask of all zero bits, which results in the propagation of the parent directory’s file protection. If
the protection-enable mask contains zeros, protection-value is ignored.

protection-value

OpenVMS usage: file_protection
type: word (unsigned)
access: read only
mechanism: by reference

System/Owner/Group/World protection value of the directory you are creating. The protection-value
argument is the address of an unsigned word that contains this protection mask.

The bits of protection-value are set or cleared in the method described in the definition of protection-
enable above.

The protection-value argument is optional. The default is a word of all zero bits, which specifies full
access for all access categories. Typically, protection-value is not omitted unless protection-enable is
also omitted. If protection-enable is omitted, protection-value is ignored.

maximum-versions

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum number of versions allowed for files created in the newly created directories. The
maximum-versions argument is the address of an unsigned word containing the value of the
maximum number of versions.

The maximum-versions argument is optional. The default is the parent directory’s default version
limit. If maximum-versions is zero, the maximum number of versions is not limited.

relative-volume-number

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Relative volume number within a volume set on which the directory or subdirectory is created. The
relative-volume-number argument is the address of an unsigned word containing the relative volume
number. The relative-volume-number argument is optional. The default is arbitrary placement within
the volume set.

initial-allocation

OpenVMS usage: longword_unsigned
type: longword (unsigned)

48

Chapter 2. LIB$ Reference

access: read only
mechanism: by reference

Initial number of blocks to be allocated to the directory. This argument is useful for creating large
directories, for example MAIL.DIR;1. It can improve performance by avoiding the need for later
dynamic expansion of the directory.

The initial-allocation argument applies only to Files–11 Level 2 volumes; it is ignored for other
volumes.

This argument is the address of an unsigned longword that contains the initial number of blocks to be
allocated to the directory.

The initial-allocation argument is optional. The default allocation is 1 block.

Description
LIB$CREATE_DIR creates a directory. You can specify:

• The owner and protection of the directory.

• The maximum number of different versions of a file that can exist in the directory.

• The relative volume number of the volume set member in which the directory is to be created.

• The number of blocks to be allocated initially to the directory.

Note

This routine calls LIB$GET_EF. Please read the note in the Description section of that routine.

Condition Values Returned
SS$_CREATED Routine successfully completed; one or more directories created.
SS$_NORMAL Routine successfully completed; all specified directories already

exist.
LIB$_INVARG Invalid argument to Run-Time Library. Either the required

argument was omitted, or device-directory-spec is longer than
4095 characters.

LIB$_INVFILSPE Invalid file specification. Either the file specification did not
contain an explicit directory and device name, or it contained a
node name, file name, file type, file version, or wildcard. This
error is also produced if the device specified was not a disk.

Any condition values returned by system services $ASSIGN, $DASSGN, $PARSE, and $QIO, and
RTL routines LIB$ANALYZE_SDESC, LIB$ANALYZE_SDESC_ 64, and LIB$GET_EF.

LIB$CREATE_USER_VM_ZONE
LIB$CREATE_USER_VM_ZONE — The Create User-Defined Storage Zone routine creates a new
user-defined storage zone in the 32-bit virtual address space.

49

Chapter 2. LIB$ Reference

Format
LIB$CREATE_USER_VM_ZONE zone-id [,user-argument] [,user-allocation-procedure] [,user-
deallocation-procedure] [,user-reset-procedure] [,user-delete-procedure] [,zone-name]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
zone-id

OpenVMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that receives the identifier of the
newly created zone.

user-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of an unsigned longword containing the
user argument. LIB$CREATE_USER_VM_ZONE copies the value of user-argument and supplies
the value to all user procedures invoked.

user-allocation-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User allocation routine.

user-deallocation-procedure

OpenVMS usage: procedure
type: procedure value

50

Chapter 2. LIB$ Reference

access: function call (before return)
mechanism: by value

User deallocation routine.

user-reset-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked each time LIB$RESET_VM_ZONE is called for the zone.

user-delete-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked when LIB$DELETE_VM_ZONE is called for the zone.

zone-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name argument is the address
of a descriptor pointing to the zone name. If zone-name is not specified, the zone will not have an
associated name.

Description
LIB$CREATE_USER_VM_ZONE creates a user-defined zone in the 32-bit virtual address space. If
an error status is returned, the zone is not created.

Each time that one of the heap management routines (LIBGET_VM, LIBFREE_VM, LIB
$RESET_VM_ZONE, or LIB$DELETE_VM_ZONE) is called to perform an operation on a user-
defined zone, the corresponding user routine that you supplied is used.

You may omit any of the optional user routines. However, if you omit a routine and later call the
corresponding heap management routine, the error status LIB$_INVOPEZON will be returned.

Call Format for User Routines
The user routines are called with arguments similar to those passed to LIB$GET_VM, LIB
$FREE_VM, LIB$RESET_VM_ZONE, or LIB$DELETE_VM_ZONE. In each case, the user-

51

Chapter 2. LIB$ Reference

argument argument from LIB$CREATE_USER_VM_ZONE is passed to the user routine rather
than a zone-id argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to allocate or free. The num-bytes argument is the address of a longword
integer containing the number of bytes. The value of num-bytes must be greater than zero.

base-adr

OpenVMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The base-adr argument is the
address of an unsigned longword containing this base address. (This argument is write-only for a get
routine and read-only for a free routine.)

user-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE copies user-argument as it is supplied to all user
routines invoked.

The status value returned by your routine is returned as the status value for the corresponding call to
LIB$GET_VM or LIB$FREE_VM.

The zone-id value that is returned can be used in calls to LIB$SHOW_VM_ZONE and LIB
$VERIFY_VM_ZONE.

The call format for a user reset or delete routine is as follows:

user-rtn user-argument

user-argument

OpenVMS usage: user_arg

52

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE copies user-argument as it is supplied to all user
routines invoked.

The status value returned by your routine is returned as the status value for the corresponding call to
LIB$RESET_VM_ZONE or LIB$DELETE_VM_ZONE.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

LIB$CREATE_USER_VM_ZONE_64
LIB$CREATE_USER_VM_ZONE_64 — The Create User-Defined Storage Zone routine creates a
new user-defined storage zone in the 64-bit virtual address space.

Format
LIB$CREATE_USER_VM_ZONE_64 zone-id [,user-argument] [,user-allocation-procedure]
[,user-deallocation-procedure] [,user-reset-procedure] [,user-delete-procedure] [,zone-name]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a quadword that receives the identifier of the
newly created zone.

user-argument

53

Chapter 2. LIB$ Reference

OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. The user-argument argument is the address of an unsigned quadword containing
the user argument. LIB$CREATE_USER_VM_ZONE_64 copies the value of user-argument and
supplies the value to all user procedures invoked.

user-allocation-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User allocation routine.

user-deallocation-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User deallocation routine.

user-reset-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked each time LIB$RESET_VM_ZONE_64 is called for the zone.

user-delete-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User routine invoked when LIB$DELETE_VM_ZONE_64 is called for the zone.

zone-name

OpenVMS usage: char_string

54

Chapter 2. LIB$ Reference

type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name argument is the address
of a descriptor pointing to the zone name. If zone-name is not specified, the zone will not have an
associated name.

Description
LIB$CREATE_USER_VM_ZONE_64 creates a user-defined zone in the 64-bit virtual address space.
If an error status is returned, the zone is not created.

Each time that one of the heap management routines (LIBGET_VM_64, LIBFREE_VM_64, LIB
$RESET_VM_ZONE_64, or LIB$DELETE_VM_ZONE_ 64) is called to perform an operation on a
user-defined zone, the corresponding user routine that you supplied is used.

You may omit any of the optional user routines. However, if you omit a routine and later call the
corresponding heap management routine, the error status LIB$_INVOPEZON will be returned.

Call Format for User Routines
The user routines are called with arguments similar to those passed to LIB$GET_ VM_64, LIB
$FREE_VM_64, LIB$RESET_VM_ZONE_64, or LIB$DELETE_VM_ ZONE_64. In each case, the
user-argument argument from LIB$CREATE_ USER_VM_ZONE_64 is passed to the user routine
rather than a zone-id argument.

The call format for a user get or free routine is as follows:

user-rtn num-bytes ,base-adr ,user-argument

num-bytes

OpenVMS usage: quadword_signed
type: quadword (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to allocate or free. The num-bytes argument is the address of a
quadword integer containing the number of bytes. The value of num-bytes must be greater than zero.

base-adr

OpenVMS usage: address
type: quadword (unsigned)
access: modify
mechanism: by reference

Virtual address of the first contiguous block of bytes allocated or freed. The base-adr argument is the
address of an unsigned quadword containing this base address. (This argument is write-only for a get
routine and read-only for a free routine.)

55

Chapter 2. LIB$ Reference

user-argument

OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE_64 copies user-argument as it is supplied to all
user routines invoked.

The status value returned by your routine is returned as the status value for the corresponding call to
LIB$GET_VM_64 or LIB$FREE_VM_64.

The zone-id value that is returned can be used in calls to LIB$SHOW_VM_ZONE_64 and LIB
$VERIFY_VM_ZONE_64.

The call format for a user reset or delete routine is as follows:

user-rtn user-argument

user-argument

OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

User argument. LIB$CREATE_USER_VM_ZONE_64 copies user-argument as it is supplied to all
user routines invoked.

The status value returned by your routine is returned as the status value for the corresponding call to
LIB$RESET_VM_ZONE_64 or LIB$DELETE_VM_ZONE_64.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

LIB$CREATE_VM_ZONE
LIB$CREATE_VM_ZONE — The Create a New Zone routine creates a new storage zone in the 32-
bit virtual address space, according to specified arguments. No support for arguments passed by 64-bit
address reference or for use of 64-bit descriptors, if applicable, is planned for this routine.

Format
LIB$CREATE_VM_ZONE zone-id [,algorithm] [,algorithm-argument] [,flags] [,extend-size]
[,initial-size] [,block-size] [,alignment] [,page-limit] [,smallest-block-size] [,zone-name] [,get-
page] [,free-page]

56

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
zone-id

OpenVMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of a longword that is set to the zone identifier of
the newly created zone.

algorithm

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Algorithm. The algorithm argument is the address of a longword integer that contains a value
representing one of the LIB$VM algorithms. Use one of the predefined symbols to specify this value.

Symbol Value Algorithm
LIB$K_VM_FIRST_FIT 1 First fit
LIB$K_VM_QUICK_FIT 2 Quick fit, lookaside list
LIB$K_VM_FREQ_SIZES 3 Frequent sizes, lookaside list
LIB$K_VM_FIXED 4 Fixed-size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

algorithm-argument

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of a longword integer that
contains a value specific to the particular allocation algorithm as shown in the following table.

57

Chapter 2. LIB$ Reference

Algorithm Value
First fit Not used, may be omitted.
Quick fit The number of lookaside lists used. The number of lists must be

between 1 and 128.
Frequent sizes The number of lookaside lists used. The number of lists must be

between 1 and 16.
Fixed size blocks The fixed request size (in bytes) for each get or free request. The

request size must be greater than 0.

The algorithm-argument argument must be specified if you are using the quick-fit, frequent-sizes
or fixed-size-blocks algorithms. However, this argument is optional, but ignored, if you are using the
first-fit algorithm.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a longword integer that contains flag bits that control
various options, as follows:

Bit Value Description
0 LIB

$M_VM_BOUNDARY_TAGS
Boundary tags for faster freeing.
Adds a minimum of 8 bytes to
each block.

1 LIB$M_VM_GET_FILL0 LIB$GET_VM; fill with bytes
of 0.

2 LIB$M_VM_GET_FILL1 LIB$GET_VM; fill with bytes
of FF (hexadecimal).

3 LIB$M_VM_FREE_FILL0 LIB$FREE_VM; fill with bytes
of 0.

4 LIB$M_VM_FREE_FILL1 LIB$FREE_VM; fill with bytes
of FF (hexadecimal).

5 LIB$M_VM_EXTEND_AREA Adds extents to existing areas if
possible.

6 LIB$M_VM_NO_EXTEND Prevents zone from being
extended beyond its initial size.
If you specify this flag, you must
also specify an initial-size. The
extend-size argument is not
used.

7 LIB$M_VM_TAIL_LARGE Adds areas larger than extend-
size areas to the end of the area
list. Allocations that are larger
than extend-size can result in
new areas. These areas are added

58

Chapter 2. LIB$ Reference

Bit Value Description
to the end of the area list. (This
provides better memory reuse
when allocating small and very
large blocks from the same
zone.)

Bits 8 through 31 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and no boundary tags) is
used.

extend-size

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Zone extend size. The extend-size argument is the address of a longword integer that contains the
number of (512-byte) pages on VAX systems or pagelets on Alpha and I64 systems to be added to the
zone each time it is extended.

The value of extend-size must be greater than or equal to 1.

This is an optional argument. If extend-size is not specified, a default of 16 pages on VAX systems or
pagelets on Alpha and I64 systems is used.

Note

The extend-size argument does not limit the number of blocks that can be allocated from the zone.
The actual extension size is the greater of extend-size and the number of pages on VAX systems or
pagelets on Alpha and I64 systems needed to satisfy the LIB$GET_VM call that caused the extension.

initial-size

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a longword integer that contains
the number of (512-byte) pages on VAX systems or pagelets on Alpha and I64 systems to be allocated
for the zone as the zone is created.

This is an optional argument. If you specify a value for initial-size, the value must be greater than or
equal to 0; otherwise, LIB$_INVARG is returned. If initial-size is not specified or is specified as 0, no
pages on VAX systems or pagelets on Alpha and I64 systems are allocated when the zone is created.
The first call to LIB$GET_VM for the zone allocates extend-size pages on VAX systems or pagelets
on Alpha and I64 systems.

59

Chapter 2. LIB$ Reference

block-size

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Block size of the zone. The block-size argument is the address of a longword integer specifying the
allocation quantum (in bytes) for the zone. All blocks allocated are rounded up to a multiple of block-
size.

The value of block-size must be a power of 2 between 8 and 512. This is an optional argument. If
block-size is not specified, a default of 8 is used.

alignment

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Block alignment. The alignment argument is the address of a longword integer that specifies the
required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 4 and 512. This is an optional argument. If
alignment is not specified, a default of 8 (quadword alignment) is used.

page-limit

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Maximum page limit. The page-limit argument is the address of a longword integer that specifies the
maximum number of (512-byte) pages on VAX systems or pagelets on Alpha and I64 systems that can
be allocated for the zone. The value of page-limit must be greater than or equal to 0. Note that part of
the zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as 0, the only limit is the
total process virtual address space limit imposed by OpenVMS. If page-limit is specified, then initial-
size must also be specified.

smallest-block-size

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only

60

Chapter 2. LIB$ Reference

mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a longword integer that
specifies the smallest block size (in bytes) that has a lookaside list for the quick fit algorithm.

If smallest-block-size is not specified, the default of block-size is used. That is, lookaside lists are
provided for the first n multiples of block-size.

zone-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name argument is the address
of a descriptor pointing to the zone name. If zone-name is not specified, the zone will not have an
associated name.

get-page

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine that allocates memory. The number and type of the arguments to this routine must match
those of the LIB$GET_VM_PAGE routine. If get-page is not specified or is specified as 0, the LIB
$GET_VM_PAGE routine is used to allocate memory.

free-page

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine that deallocates memory. The number and type of the arguments to this routine must match
those of the LIB$FREE_VM_PAGE routine. If free-page is not specified or if free-page is specified
as 0, the LIB$FREE_VM_PAGE routine is used to deallocate memory.

Description
LIB$CREATE_VM_ZONE creates a new storage zone. The zone identifier value that is
returned can be used in calls to LIBGET_VM, LIBFREE_VM, LIB$RESET_VM_ZONE,
LIB$DELETE_VM_ZONE, LIB$SHOW_VM_ZONE, LIB$VERIFY_VM_ZONE, and LIB
$CREATE_USER_VM_ZONE.

The following restrictions apply when you are creating a zone:

61

Chapter 2. LIB$ Reference

• If you want the zone to be accessible from another process or processes, you must map
the global section into the same virtual addresses in all processes. You can use PPL
$CREATE_SHARED_MEM to map to a global section after you have first called PPL
$INITIALIZE.

• The zone cannot expand; in other words, additional areas cannot be added to the zone.

• The restrictions for LIB$RESET_VM_ZONE also apply to shared zones. That is, it is the caller’s
responsibility to ensure that the caller has exclusive access to the zone while the reset operation is
being performed.

If an error status is returned, the zone is not created.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid argument.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

LIB$CREATE_VM_ZONE_64
LIB$CREATE_VM_ZONE_64 — The Create a New Zone routine creates a new storage zone in the
64-bit virtual address space, according to specified arguments.

Format
LIB$CREATE_VM_ZONE_64 zone-id [,algorithm] [,algorithm-argument] [,flags] [,extend-size]
[,initial-size] [,block-size] [,alignment] [,page-limit] [,smallest-block-size] [,zone-name] [,get-
page] [,free-page]

Returned

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference

62

Chapter 2. LIB$ Reference

Zone identifier. The zone-id argument is the address of a quadword that is set to the zone identifier of
the newly created zone.

algorithm

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Algorithm. The algorithm argument is the address of a quadword integer that represents the code for
one of the LIB$VM algorithms. Use one of the following predefined symbols to specify this value:

Symbol Value Algorithm
LIB$K_VM_FIRST_FIT First fit
LIB$K_VM_QUICK_FIT Quick fit, lookaside list
LIB$K_VM_FREQ_SIZES Frequent sizes, lookaside list
LIB$K_VM_FIXED Fixed-size blocks

If algorithm is not specified, a default of 1 (first fit) is used.

algorithm-argument

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Algorithm argument. The algorithm-argument argument is the address of a quadword integer that
contains a value specific to the particular allocation algorithm.

Algorithm Value
First fit Not used, may be omitted.
Quick fit The number of lookaside lists used. The number of lists must be

between 1 and 128.
Frequent sizes The number of lookaside lists used. The number of lists must be

between 1 and 16.
Fixed size blocks The fixed request size (in bytes) for each get or free request. The

request size must be greater than 0.

The algorithm-argument argument must be specified if you are using the quick-fit, frequent-sizes
or fixed-size-blocks algorithms. However, this argument is optional, but ignored, if you are using the
first-fit algorithm.

flags

OpenVMS usage: mask_quadword

63

Chapter 2. LIB$ Reference

type: quadword (unsigned)
access: read only
mechanism: by reference

Flags. The flags argument is the address of a quadword integer that contains flag bits that control
various options, as follows:

Bit Value Descrption
0 LIB

$M_VM_BOUNDARY_TAGS
Boundary tags for faster freeing.
Adds a minimum of 16 bytes to
each block.

1 LIB$M_VM_GET_FILL0 LIB$GET_VM_64; fill with
bytes of 0.

2 LIB$M_VM_GET_FILL1 LIB$GET_VM_64; fill with
bytes of FF (hexadecimal).

3 LIB$M_VM_FREE_FILL0 LIB$FREE_VM_64; fill with
bytes of 0.

4 LIB$M_VM_FREE_FILL1 LIB$FREE_VM_64; fill with
bytes of FF (hexadecimal).

5 LIB$M_VM_EXTEND_AREA Adds extents to existing areas if
possible.

6 LIB$M_VM_NO_EXTEND Prevents zone from being
extended beyond its initial size.
If you specify this flag, you
must also specify an initial-size.
Extend-size is not used.

7 LIB$M_VM_TAIL_LARGE Adds areas larger than extend-
size areas to the end of the area
list. Allocations that are larger
than extend-size can result in
new areas. These areas are added
to the end of the area list. (This
provides better memory re-
use when allocating small and
very large blocks from the same
zone.)

Bits 8 through 63 are reserved and must be 0.

This is an optional argument. If flags is omitted, the default of 0 (no fill and no boundary tags) is
used.

extend-size

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

64

Chapter 2. LIB$ Reference

Zone extend size. The extend-size argument is the address of a quadword integer that contains the
number of Alpha and I64 pagelets to be added to the zone each time it is extended.

The value of extend-size must be greater than or equal to 1.

This is an optional argument. If extend-size is not specified, a default of 16 Alpha or I64 pagelets is
used.

Note

The extend-size argument does not limit the number of blocks that can be allocated from the zone.
The actual extension size is the greater of extend-size and the number of Alpha or I64 pagelets
needed to satisfy the LIB$GET_VM_64 call that caused the extension.

initial-size

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Initial size for the zone. The initial-size argument is the address of a quadword integer that contains
the number of Alpha or I64 pagelets to be allocated for the zone as the zone is created.

This is an optional argument. If you specify a value for initial-size, the value must be greater than or
equal to 0; otherwise, LIB$_INVARG is returned. If initial-size is not specified or is specified as 0, no
Alpha pagelets or I64 are allocated when the zone is created. The first call to LIB$GET_VM_64 for
the zone allocates extend-size pagelets on Alpha or I64 systems.

block-size

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Block size of the zone. The block-size argument is the address of a quadword integer specifying the
allocation quantum (in bytes) for the zone. All blocks allocated are rounded up to a multiple of block-
size.

The value of block-size must be a power of 2 between 16 and 512. This is an optional argument. If
block-size is not specified, a default of 16 is used.

alignment

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

65

Chapter 2. LIB$ Reference

Block alignment. The alignment argument is the address of a quadword integer that specifies the
required address alignment (in bytes) for each block allocated.

The value of alignment must be a power of 2 between 8 and 512. This is an optional argument. If
alignment is not specified, a default of 16 (octaword alignment) is used.

page-limit

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Maximum page limit. The page-limit argument is the address of a quadword integer that specifies the
maximum number of Alpha or I64 pagelets that can be allocated for the zone. The value of page-limit
must be greater than or equal to 0. Note that part of the zone is used for header information.

This is an optional argument. If page-limit is not specified or is specified as 0, the only limit is the
total process virtual address space limit imposed by OpenVMS. If page-limit is specified, then initial-
size must also be specified.

smallest-block-size

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Smallest block size. The smallest-block-size argument is the address of a quadword integer that
specifies the smallest block size (in bytes) that has a lookaside list for the quick fit algorithm.

If smallest-block-size is not specified, the default of block-size is used. That is, lookaside lists are
provided for the first n multiples of block-size.

zone-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name to be associated with the zone being created. The optional zone-name argument is the address
of a descriptor pointing to the zone name. If zone-name is not specified, the zone will not have an
associated name.

get-page

OpenVMS usage: procedure
type: procedure value
access: read only

66

Chapter 2. LIB$ Reference

mechanism: by value

Routine that allocates memory. The number and type of the arguments to this routine must match
those of the LIB$GET_VM_PAGE_64 routine. If get-page is not specified or is specified as 0, the
LIB$GET_VM_PAGE_64 routine is used to allocate memory.

free-page

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine that deallocates memory. The number and type of the arguments to this routine must match
those of the LIB$FREE_VM_PAGE_64 routine. If free-page is not specified or if free-page is
specified as 0, the LIB$FREE_VM_PAGE_64 routine is used to deallocate memory.

Description
LIB$CREATE_VM_ZONE_64 creates a new storage zone. The zone identifier value that is returned
can be used in calls to LIBGET_VM_64, LIBFREE_VM_ 64, LIB$RESET_VM_ZONE_64, LIB
$DELETE_VM_ZONE_64, LIB$SHOW_VM_ ZONE_64, LIB$VERIFY_VM_ZONE_64, and LIB
$CREATE_USER_VM_ZONE_ 64.

The following restrictions apply when you are creating a zone:

• If you want the zone to be accessible from another process or processes, you must map the global
section into the same virtual addresses in all processes.

• The zone cannot expand; in other words, additional areas cannot be added to the zone.

• The restrictions for LIB$RESET_VM_ZONE_64 also apply to shared zones. That is, it is the
caller’s responsibility to ensure that the caller has exclusive access to the zone while the reset
operation is being performed.

If an error status is returned, the zone is not created.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid argument.
LIB$_INVSTRDES Invalid string descriptor for zone-name.

LIB$CRF_INS_KEY
LIB$CRF_INS_KEY — The Insert Key in Cross-Reference Table routine inserts information about
a key into a cross-reference table. No support for arguments passed by 64-bit address reference or for
use of 64-bit descriptors, if applicable, is planned for this routine.

67

Chapter 2. LIB$ Reference

Format
LIB$CRF_INS_KEY control-table ,key-string ,symbol-value ,flags

Returns
None.

Arguments
control-table

OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Cross-reference table into which LIB$CRF_INS_KEY inserts information about the key. The control-
table argument is the address of a signed longword integer pointing to the cross-reference table.
You must name this table each time you call a cross-reference routine because you can accumulate
information for more than one cross-reference table at a time.

key-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

A counted ASCII string that contains a symbol name or an unsigned binary longword. The key-string
argument is the address of a descriptor pointing to the key.

symbol-value

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Symbol value, the address of which LIB$CRF_INS_KEY inserts in the cross-reference table. The
symbol-value argument is the address of a signed longword integer containing this value. Both the key
and value addresses must be permanent addresses in the user’s symbol table.

flags

OpenVMS usage:
type:

68

Chapter 2. LIB$ Reference

access:
mechanism:

Value used in selecting the contents of the KEY2 and VAL2 fields; flags is stored with the entry.
The flags argument is the address of an unsigned longword containing the flags. When preparing the
output line, LIB$CRF_OUTPUT uses flags and the 16-bit mask in the field descriptor table to extract
the data. The high-order bit of the word is reserved for LIB$CRF_INS_KEY.

Description
LIB$CRF_INS_KEY stores information to be printed in the KEY1, KEY2, VAL1, and VAL2 fields.
When you call this routine, an entry for the key is made in the cross-reference table if the key is not
present in the table. If the key is present, only the value address and value flag fields are updated.

Using LIB$CRF_INS_KEY involves the following steps:

1. Define a table of control information using the $CRFCTLTABLE macro.

2. Define each field of the output line using the $CRFFIELD macro.

3. Using the $CRFFIELDEND macro, specify the end of each set of macros that define a field in the
output line.

4. Provide data by calling LIB$CRF_INS_KEY to insert an entry for the specify key in the specified
symbol table. This data is used to build tables in virtual memory.

5. Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize and format the data.
Supply a routine that LIB$CRF_OUTPUT calls to print each line in the output file. Because you
supply this routine, you can control the number of lines per page and the header lines.

Condition Values Returned
None.

LIB$CRF_INS_REF
LIB$CRF_INS_REF — The Insert Reference to a Key in the Cross-Reference Table routine inserts a
reference to a key in a cross-reference symbol table.

Format
LIB$CRF_INS_REF control-table ,longword-integer-key ,reference-string ,longword-integer-
reference ,ref-definition-indicator

Returns
None.

Arguments
control-table

69

Chapter 2. LIB$ Reference

OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with this cross-reference. The control-table argument is the address of an
array containing the control table.

longword-integer-key

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Key referred to by LIB$CRF_INS_REF. The longword-integer-key argument is the address of a
signed longword integer containing the key. The key is a counted ASCII string that contains a symbol
name or an unsigned binary longword. It must be a permanent address in the user’s symbol table.

reference-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Counted ASCII string with a maximum of 31 characters, not including the byte count. The reference-
string argument is the address of a descriptor pointing to the counted ASCII string.

longword-integer-reference

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The 16-bit value used in selecting the contents of the REF1 field. The longword-integer-reference
argument is the address of a signed longword integer containing this value. When preparing the output
line, LIB$CRF_OUTPUT uses longword-integer-reference and the bit mask in the field descriptor
table to extract the data. The high-order bit of the word is reserved for LIB$CRF_INS_ REF.

ref-definition-indicator

OpenVMS usage:
type:
access:
mechanism:

70

Chapter 2. LIB$ Reference

Reference/definition indicator that LIB$CRF_INS_REF uses to distinguish between a reference to a
symbol and the definition of the symbol. The ref-definition-indicator argument is the address of a
signed longword integer containing this indicator. The only difference between processing a symbol
reference and a symbol definition is where LIB$CRF_INS_REF stores the information.

The reference/definition indicator can have either of the following values:

Symbolic Name Description
CRF$K_REF Reference to a symbol
CRF$K_DEF Definition of a symbol

Description
LIB$CRF_INS_REF inserts a reference to a key in the cross-reference symbol table. If you attempt
to insert reference information for a key that was not specified in a call to LIB$CRF_INS_KEY,
LIB$CRF_INS_REF uses the address of the key to locate the symbol name and set the KEY1 field.
Once set, either as a result of LIB$CRF_INS_KEY or LIB$CRF_INS_REF, the KEY1 field is never
changed. A KEY1 field set by LIB$CRF_INS_REF has a space-filled VAL1 field associated with it
unless it is overridden by a subsequent call to LIB$CRF_INS_KEY.

Using LIB$CRF_INS_REF involves the following steps:

1. Define a table of control information using the $CRFCTLTABLE macro.

2. Define each field of the output line using the $CRFFIELD macro.

3. Using the $CRFFIELDEND macro, specify the end of each set of macros that define a field in the
output line.

4. Provide data by calling LIB$CRF_INS_REF to insert a reference to a key in the specified symbol
table. This data is used to build tables in virtual memory.

5. Call LIB$CRF_OUTPUT, the cross-reference output routine, to summarize and format the data.
Supply a routine that LIB$CRF_OUTPUT calls to print each line in the output file. Because you
supply this routine, you can control the number of lines per page and the header lines.

Condition Values Returned
None.

LIB$CRF_OUTPUT
LIB$CRF_OUTPUT — The Output Cross-Reference Table Information routine extracts the
information from the cross-reference tables and formats the output pages. No support for arguments
passed by 64-bit address reference or for use of 64-bit descriptors, if applicable, is planned for this
routine.

Format
LIB$CRF_OUTPUT control-table ,output-line-width ,page1 ,page2 ,mode-indicator ,delete-
save-indicator

71

Chapter 2. LIB$ Reference

Returns
None.

Arguments
control-table

OpenVMS usage: vector_longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference, array reference

Control table associated with the cross-reference. The control-table argument is the address of an
array containing the control table. The table contains the address of the user-supplied routine that
prints the lines formatted by LIB$CRF_ OUTPUT.

output-line-width

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Width of the output line. The output-line-width argument is the address of a signed longword integer
containing the width.

page1

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of lines on the first page of the output. The page1 argument is the address of a signed
longword integer containing this number. This allows the user to reserve space to print header
information on the first page of the cross-reference.

page2

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of lines per page for the other pages. The page2 argument is the address of a signed
longword integer containing this number.

mode-indicator

72

Chapter 2. LIB$ Reference

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Output mode indicator. The mode-indicator argument is the address of a signed longword integer
containing the mode indicator.

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

This indicator allows the user to select which of three output modes is desired.

Output Mode Description
CRF$K_VALUES Only the value and key fields are to be printed.

LIB$CRF_OUTPUT creates multiple columns
across the page. Each column consists of the
KEY1, KEY2, VAL1, and VAL2 fields. A
minimum of one space between each column is
guaranteed.

CRF$K_VALS_REFS Requests a cross-reference summary that has
no column space saved for a defining reference.
If the user inserted a reference with the CRF
$K_DEF indicator, the entry is ignored.

CRF$K_DEFS_REFS Requests a cross-reference summary with the first
REF1 and REF2 fields used only for definition
references. If no definition reference is provided,
the fields are filled with spaces.

delete-save-indicator

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Delete/save indicator, which LIB$CRF_OUTPUT uses to determine whether the table's built-in
accumulating symbol information is to be saved or deleted once the cross-reference is produced. The
delete-save-indicator argument is the address of a signed longword integer containing the delete/save
indicator.

The indicator can be either of the following:

CRF$K_SAVE To preserve the tables for subsequent processing
CRF$K_DELETE To delete the tables

73

Chapter 2. LIB$ Reference

Description
LIB$CRF_OUTPUT can format output lines for three types of cross-reference listings:

• A summary of symbol names and their values, as shown in Figure 2.2.

• A summary of symbol names, their values, and the names of modules that refer to each symbol, as
shown in Figure 2.3.

• A summary of symbol names, their values, the names of the defining modules, and the names of
those modules that refer to each symbol, as shown in Figure 2.4.

Figure 2.2. Summary of Symbol Names and Values

Figure 2.3. Summary of Symbol Names, Values, and Names of Referring Modules

Figure 2.4. Summary Indicating Defining Modules

Regardless of the format of the output, LIB$CRF_OUTPUT considers the output line as consisting of
six different field types:

74

Chapter 2. LIB$ Reference

KEY1 Is the first field in the line. It contains a symbol
name.

KEY2 Is the second field in the line. It contains a set of
flags (for example, -R) that provide information
about the symbol.

VAL1 Is the third field in the line. It contains the value
of the symbol.

VAL2 Is the fourth field in the line. It contains a set of
flags describing VAL1.

REF1 and REF2 fields Within each REF1 and REF2 pair, REF1 provides
a set of flags, and REF2 provides the name of a
module that references the symbol.

Any of these fields can be omitted from the output.

For example:

Symbol Value Symbol Value
------ ----- ------ -----
BAS$INSTR 000020B0-RU BAS$SCRATCH 00002308-RU

KEY1 VAL1 VAL2 KEY1 VAL1 VAL2

Symbol Value Defined By Referenced By ...
------ ----- ---------- -----------------
LIB$FREE_VM 0001E185-R LIB$VM ALLGBL

KEY1 VAL1 VAL2 REF2 REF2
 (CRF$K_DEF) (CRF$K_REF)

Condition Values Returned
None.

LIB$CURRENCY
LIB$CURRENCY — The Get System Currency Symbol routine returns the system's currency
symbol.

Format
LIB$CURRENCY currency-string [,resultant-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

75

Chapter 2. LIB$ Reference

Arguments
currency-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Currency symbol. The currency-string argument is the address of a descriptor pointing to the
currency symbol.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters that LIB$CURRENCY has written into the currency-string argument, not
counting padding in the case of a fixed-length string. The resultant-length argument is the address
of an unsigned word containing the length of the currency symbol. If the input string is truncated to
the size specified in the currency-string argument, resultant-length is set to this size. Therefore,
resultant-length can always be used by the calling program to access a valid substring of currency-
string.

Description
LIB$CURRENCY attempts to translate the logical name SYS$CURRENCY as a process, group,
or system logical name, in that order. If the translation fails, the routine returns the United States
currency symbol ($). If the translation succeeds, the text produced is returned. Thus, a system
manager can define SYS$CURRENCY as a systemwide logical name to provide a default for all
users, and an individual user with a special need can define SYS$CURRENCY as a process logical
name to override the system default.

For example, if you want to use the British pound sign (£) as the currency symbol within your process
but you want to leave the dollar sign as the system's default, define SYS$CURRENCY to be the
pound sign in your process logical name table. After this, any call to LIB$CURRENCY within your
process returns the pound sign (£), while any call outside your process returns the dollar sign ($).

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

76

Chapter 2. LIB$ Reference

LIB$_STRTRU Successfully completed, but the currency string was truncated.

Example
10 !+

 ! This BASIC program uses LIB$CURRENCY to
 ! return the default system currency symbol.
 !-

 OUTLEN = 1
 CALL LIB$CURRENCY (CURR$, OUTLEN)
 PRINT CURR$
99 END

This BASIC program uses LIB$CURRENCY to display the system currency symbol default. The
output generated by the program is a dollar sign ($).

LIB$CVTF_FROM_INTERNAL_TIME
LIB$CVTF_FROM_INTERNAL_TIME — The Convert Internal Time to External Time (F-Floating-
Point Value) routine converts a delta internal OpenVMS system time into an external F-floating time.

Format
LIB$CVTF_FROM_INTERNAL_TIME operation ,resultant-time ,input-time

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
operation

OpenVMS usage:
type:
access:
mechanism:

The conversion to be performed. The operation argument is the address of an unsigned longword
specifying the operation. Valid values for operation are the following:

Operation Interpretation
LIB$K_DELTA_WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days

77

Chapter 2. LIB$ Reference

Operation Interpretation
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

resultant-time

OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time argument is the address of an
F-floating-point value containing the result.

input-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of an unsigned quadword
containing the time.

Description
LIB$CVTF_FROM_INTERNAL_TIME converts a delta internal OpenVMS system time
into an external F-floating-point time. The operation argument specifies the conversion. LIB
$CVTF_FROM_INTERNAL_TIME converts the value of input-time into one of the external formats
listed in the operation argument description. LIB$CVTF_FROM_INTERNAL_TIME then places the
result into resultant-time.

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB$CVTS_FROM_INTERNAL_TIME
LIB$CVTS_FROM_INTERNAL_TIME — The Convert Internal Time to External Time (IEEE S-
Floating-Point Value) routine converts a delta internal OpenVMS system time into an external IEEE
S-floating time.

78

Chapter 2. LIB$ Reference

Format
LIB$CVTS_FROM_INTERNAL_TIME operation ,resultant-time ,input-time

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
operation

OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an unsigned longword
specifying the operation. Valid values for operation are the following:

Operation Interpretation
LIB$K_DELTA_WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional

resultant-time

OpenVMS usage: floating_point
type: IEEE S_floating
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time argument is the address of an
IEEE S-floating-point value containing the result.

input-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only

79

Chapter 2. LIB$ Reference

mechanism: by reference

Delta time to be converted. The input-time argument is the address of an unsigned quadword
containing the time.

Description
LIB$CVTS_FROM_INTERNAL_TIME converts a delta internal OpenVMS system time into
an external IEEE S-floating-point time. The operation argument specifies the conversion. LIB
$CVTS_FROM_INTERNAL_TIME converts the value of input-time into one of the external formats
listed in the operation argument description. LIB$CVTS_FROM_INTERNAL_TIME then places the
result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB$CVTF_TO_INTERNAL_TIME
LIB$CVTF_TO_INTERNAL_TIME — The Convert External Time to Internal Time (F-Floating-
Point Value) routine converts an external time interval into an OpenVMS internal format F-floating
delta time.

Format
LIB$CVTF_TO_INTERNAL_TIME operation ,input-time ,resultant-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
operation

OpenVMS usage: function_code
type: longword (unsigned)
access: read only

80

Chapter 2. LIB$ Reference

mechanism: by reference

The conversion to be performed. The operation argument is the address of an unsigned longword
specifying the operation. Valid values for operation are the following:

Operation Interpretation
LIB$K_DELTA_WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

input-time

OpenVMS usage: varying_arg
type: F_floating
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of this input time. The value you
supply for input-time must be greater than 0.

resultant-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The resultant-time
argument is the address of an unsigned quadword containing the result.

Description
LIB$CVTF_TO_INTERNAL_TIME converts an external time interval, such as 3.5 weeks, into an
OpenVMS internal format F-floating delta time. The operation argument specifies the conversion.
LIB$CVTF_TO_INTERNAL_TIME converts the value of input-time into one of the internal format
delta times listed in the operation argument description. LIB$CVTF_TO_INTERNAL_TIME then
places the result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

81

Chapter 2. LIB$ Reference

LIB$CVTS_TO_INTERNAL_TIME
LIB$CVTS_TO_INTERNAL_TIME — The Convert External Time to Internal Time (IEEE S-
Floating-Point Value) routine converts an external time interval into an OpenVMS internal format
IEEE S-floating delta time.

Format
LIB$CVTS_TO_INTERNAL_TIME operation ,input-time ,resultant-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
operation

OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an unsigned longword
specifying the operation. Valid values for operation are the following:

Operation Interpretation
LIB$K_DELTA_WEEKS_F Fractional weeks
LIB$K_DELTA_DAYS_F Fractional days
LIB$K_DELTA_HOURS_F Fractional hours
LIB$K_DELTA_MINUTES_F Fractional minutes
LIB$K_DELTA_SECONDS_F Fractional seconds

input-time

OpenVMS usage: varying_arg
type: IEEE S_floating
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of this input time. The value you
supply for input-time must be greater than 0.

82

Chapter 2. LIB$ Reference

resultant-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The resultant-time
argument is the address of an unsigned quadword containing the result.

Description
LIB$CVTS_TO_INTERNAL_TIME converts an external time interval, such as 3.5 weeks, into
an OpenVMS internal format IEEE S-floating delta time. The operation argument specifies
the conversion. LIB$CVTS_TO_INTERNAL_TIME converts the value of input-time into
one of the internal format delta times listed in the operation argument description. LIB
$CVTS_TO_INTERNAL_TIME then places the result into resultant-time.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB$CVT_DX_DX
LIB$CVT_DX_DX — The General Data Type Conversion routine converts OpenVMS standard
atomic or string data described by a source descriptor to OpenVMS standard atomic or string data
described by a destination descriptor. This conversion is supported over a subset of the OpenVMS
standard data types.

Format
LIB$CVT_DX_DX source-item ,destination-item [,word-integer-dest-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
source-item

83

Chapter 2. LIB$ Reference

OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by descriptor

Source item to be converted by LIB$CVT_DX_DX. The source-item argument is the address of
a descriptor pointing to the source item to be converted. The type of the item to be converted is
contained in the descriptor.

The combination of source descriptor class and data type is restricted as described in Table lib–1 and
Table lib–2.

destination-item

OpenVMS usage: unspecified
type: unspecified
access: write only
mechanism: by descriptor

Destination of the conversion. The destination-item argument is the address of a descriptor pointing
to the destination item. The destination descriptor specifies the data type to which the source item is
converted.

The combination of destination descriptor class and data type is restricted as described in Table lib–1
and Table lib–2.

word-integer-dest-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length in bytes of the destination item (when that item is a string) that has been converted by LIB
$CVT_DX_DX, not including any space filling. The word-integer-dest-length argument contains the
address of an unsigned word containing this length.

If the destination string is truncated, the returned length reflects the truncation. This word can be used
by the calling program to determine if truncation has occurred or to extract the exact length of the
string when the string contains space filling.

Description
LIB$CVT_DX_DX is a universal conversion utility routine. Table 2.1 shows the complete matrix of
data type and descriptor class combinations (as specified in the fields of the descriptor) supported by
LIB$CVT_DX_DX.

Conversion is defined over three sets of data types: atomic, string, and numeric byte data strings.
Although some of the functions of this routine may be found in other Run-Time Library routines, LIB
$CVT_DX_DX packages the conversion functions with a general interface. Because of this general

84

Chapter 2. LIB$ Reference

interface, the calling program does not have to specify what conversion should be done for which data
type.

Refer to LIB$CVT_ xTB if you want to convert the ASCII text string representation of a decimal,
hexadecimal, or octal number into a binary representation.

The description of this routine has been divided into the following parts:

• the section called “Guidelines for Using LIB$CVT_DX_DX”

• the section called “Use of Numeric Byte Data Strings (NBDS)”

For more information about numeric byte data strings, see the section called the section called “Use
of Numeric Byte Data Strings (NBDS)”. Although the set of data types in NBDS is actually a subset
of the atomic and string data types, the three sets are mutually exclusive in this routine. For more
information on the OpenVMS atomic and string data types and the argument descriptor classes
supported by this routine, see the VSI OpenVMS Calling Standard manual.

Table 2.1. OpenVMS Descriptor Class and Data Type Combinations Accepted by LIB
$CVT_DX_DX

Descriptor Class
DSC
$K_DTYPE_
yyy

A D NCA S SD VS

B Non-NBDS Non-NBDS
BU NBDS NBDS Non-NBDS
D Non-NBDS Non-NBDS
F Non-NBDS Non-NBDS
FS Non-NBDS Non-NBDS
FT Non-NBDS Non-NBDS
G Non-NBDS Non-NBDS
H Non-NBDS Non-NBDS
L Non-NBDS Non-NBDS
LU Non-NBDS
NL Non-NBDS Non-NBDS
NLO Non-NBDS Non-NBDS
NR Non-NBDS Non-NBDS
NRO Non-NBDS Non-NBDS
NU Non-NBDS Non-NBDS
NZ Non-NBDS Non-NBDS
P Non-NBDS Non-NBDS
Invalid combinations are blank. Any source data can be converted into any other destination
data as long as they are both represented by one of the valid combinations.

Note: LIB$CVT_DX_DX treats an array, described by a CLASS_A or CLASS_NCA
descriptor, as a character string. NBDS must have the format defined in Table 2.2.

85

Chapter 2. LIB$ Reference

Descriptor Class
DSC
$K_DTYPE_
yyy

A D NCA S SD VS

Q Non-NBDS Non-NBDS
T NBDS NBDS NBDS NBDS NBDS
VT NBDS
W Non-NBDS Non-NBDS
WU Non-NBDS
Invalid combinations are blank. Any source data can be converted into any other destination
data as long as they are both represented by one of the valid combinations.

Note: LIB$CVT_DX_DX treats an array, described by a CLASS_A or CLASS_NCA
descriptor, as a character string. NBDS must have the format defined in Table 2.2.

Guidelines for Using LIB$CVT_DX_DX
The data type and descriptor class of the source and destination arguments determine how LIB
$CVT_DX_DX performs the conversion, according to the following rules:

• Scale is applied when indicated in the descriptor (descriptor CLASS_SD only), and scaling is
defined for the data type.

• No language-specific semantics are applied, such as BASIC scale for DSC$K_DTYPE_D.

• Some conversions must use intermediate values to arrive at the destination requested. Although
some loss of speed is inevitable, intermediate values will not cause a loss of precision.

• Results are always rounded instead of truncated, except for the case described below. Note that
loss of precision or range may be inherent in the destination data type or in the NBDS destination
size. No errors are reported if there is a loss of precision or range as a result of destination data
type.

• When the destination is an NBDS and has fixed-string semantics, then if the source does not fill
the destination, the destination is padded with blanks.

• When the source and destination are both NBDS and no scaling is requested, then a straight copy
is done without translation or conversion, and truncation is possible. If scaling is requested, then a
conversion takes place as defined in Table 2.2.

• When the source is an NBDS and the destination is non-NBDS, if there is an invalid character in
the source or the value is outside the range that can be represented by the destination, then LIB
$_INVNBDS is returned.

• Attempts to convert a negative value to an unsigned data type cause the LIB$_INVCVT error to
be returned.

• If the destination is an NBDS of descriptor CLASS_D, then a new string of appropriate size is
allocated for it, if necessary.

• Invalid conversions resulting in an error produce an unpredictable result.

86

Chapter 2. LIB$ Reference

Use of Numeric Byte Data Strings (NBDS)
For simplicity, and to define a generic numeric string that LIB$CVT_DX_DX understands to be a
numeric string, the set Numeric Byte Data String (NBDS) is defined to be the set of NBDS descriptors
shown in Table 2.1.

The combination of data type and descriptor class determines whether an argument is an NBDS.
For example, LIB$CVT_DX_DX treats the combination DSCK_DTYPE_B/DSCK_CLASS_S
(unsigned byte scalar) as an atomic data type. However, the routine considers DSC$K_DTYPE_BU/
DSC$K_CLASS_NCA (noncontiguous array of unsigned bytes) to be an NBDS.

A destination NBDS is always left-justified.

If a destination NBDS requires more than 50 digits for its format (including the sign, if any), then it is
expressed in exponential format.

For a conversion of NBDS to NBDS, this format is used if scaling is requested. Otherwise, a straight
copy is done. The format of a source NBDS is the same as the format defined for the input argument
inp in OTS$_CVT_T_z, with bits 0, 2, and 4 set in the flags argument. That is, blanks are
ignored, underflow causes an error, and tabs are ignored.

Table 2.2 defines the format of a destination NBDS.

Table 2.2. LIB$CVT_DX_DX Destination NBDS Formats

Source Data Type Destination NBDS Format
Byte integer (signed) sdigits
Byte (unsigned) digits
Word integer (signed) sdigits
Word (unsigned) digits
Longword integer (signed) sdigits
Longword (unsigned) digits
Quadword integer (signed) sdigits
D_floating s0.min(16,w-7)E±nn
F_floating s0.min(7,w-7)E±nn
G_floating s0.min(15,w-8)E±nnn
H_floating s0.min(33,w-9)E±nnnn
FS_floating (IEEE) s0.min(7,w-7)E±nn
FT_floating (IEEE) s0.min(15,w-8)E±nnn
Key to Destination NBDS Formats

• digits: Digits 0 through 9, and a decimal point only if source descriptor specifies the value of
the SCALE field as less than 0.

• w: Width of destination in bytes.

• s: Sign. For positive numbers, the sign is implied.

• min: Minimum of two values.

87

Chapter 2. LIB$ Reference

Source Data Type Destination NBDS Format
NBDS s0.min(33,w-9)E±nnnn
Decimal string sdigits (as defined by VAX architecture)
Key to Destination NBDS Formats

• digits: Digits 0 through 9, and a decimal point only if source descriptor specifies the value of
the SCALE field as less than 0.

• w: Width of destination in bytes.

• s: Sign. For positive numbers, the sign is implied.

• min: Minimum of two values.

The A and NCA array descriptor classes are supported with the following restrictions:

An array is written with the semantics of a fixed string.
DIMCT = 1 Only one-dimensional arrays are recognized.
LENGTH = 1 The length of each array element must be a byte.
ARSIZE ≤ 65,535 The total size of the array must be less than

65,535 bytes. If ARSIZE = 0, the array has a
length of zero.

S1 = 1 The stride of an array passed by a noncontiguous
array descriptor must be 1. That is, even if the
class of the array's descriptor is noncontiguous
array (NCA), the array itself must be contiguous.

For more information about the semantics of writing output strings, see the VSI OpenVMS RTL String
Manipulation (STR$) Manual.

If the calling program passes a descriptor to LIB$CVT_DX_DX that does not comply with Table 2.1,
one of the following error messages is returned:

LIB$_INVDTYDSC
LIB$_INVCLADSC
LIB$_INVCLADTY
LIB$_INVNBDS

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_DECOVF Packed decimal overflow error. Severe error.
LIB$_FLTOVF Floating overflow error. Severe error.
LIB$_FLTUND Floating underflow error. Severe error.
LIB$_INTOVF Integer overflow error. Severe error.
LIB$_INVCLADSC Invalid class in descriptor. This class of descriptor is not supported.

Severe error.
LIB$_INVCLADTY Invalid class and data type in descriptor. This class and data type

combination is not supported. Severe error.

88

Chapter 2. LIB$ Reference

LIB$_INVCVT If the source value is negative and the destination data type is
unsigned, this error is returned.

LIB$_INVDTYDSC Invalid data type in descriptor. This data type is not supported.
Severe error.

LIB$_INVNBDS Invalid NBDS. There is an invalid character in the input, or
the value is outside the range that can be represented by the
destination, or the NMDS descriptor is invalid. This error is also
signaled when the array size of an NBDS is larger than 65,535
bytes or the array is multidimensional.

LIB$_OUTSTRTRU Output string truncated. This is returned only when NBDS is both
source and destination and no scaling is requested. The result is
truncated.

LIB$_ROPRAND Reserved operand error. Severe error.

LIB$CVT_FROM_INTERNAL_TIME
LIB$CVT_FROM_INTERNAL_TIME — The Convert Internal Time to External Time routine
converts an internal OpenVMS system time (either absolute or delta) into an external time.

Format
LIB$CVT_FROM_INTERNAL_TIME operation ,resultant-time [,input-time]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
operation

OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an unsigned longword
containing the operation. The following table shows valid values for operation:

Operation Type Return Range
LIB$K_MONTH_OF_YEAR Absolute 1 to 12
LIB$K_DAY_OF_YEAR Absolute 1 to 366
LIB$K_HOUR_OF_YEAR Absolute 1 to 8784

89

Chapter 2. LIB$ Reference

Operation Type Return Range
LIB$K_MINUTE_OF_YEAR Absolute 1 to 527,040
LIB$K_SECOND_OF_YEAR Absolute 1 to 31,622,400
LIB$K_DAY_OF_MONTH Absolute 1 to 31
LIB$K_HOUR_OF_MONTH Absolute 1 to 744
LIB$K_MINUTE_OF_MONTH Absolute 1 to 44,640
LIB
$K_SECOND_OF_MONTH

Absolute 1 to 2,678,400

LIB$K_DAY_OF_WEEK Absolute 1 1 to 7
LIB$K_HOUR_OF_WEEK Absolute 2 1 to 168
LIB$K_MINUTE_OF_WEEK Absolute 3 1 to 10,080
LIB$K_SECOND_OF_WEEK Absolute 4 1 to 604,800
LIB$K_HOUR_OF_DAY Absolute 0 to 23
LIB$K_MINUTE_OF_DAY Absolute 0 to 1439
LIB$K_SECOND_OF_DAY Absolute 0 to 86,399
LIB$K_MINUTE_OF_HOUR Absolute 0 to 59
LIB$K_SECOND_OF_HOUR Absolute 0 to 3599
LIB
$K_SECOND_OF_MINUTE

Absolute 0 to 59

LIB$K_JULIAN_DATE Absolute 5 Julian date
LIB$K_DELTA_WEEKS Delta 6

LIB$K_DELTA_DAYS Delta 7

LIB$K_DELTA_HOURS Delta 8

LIB$K_DELTA_MINUTES Delta 9

LIB$K_DELTA_SECONDS Delta 10

1Day 1 is Monday.
2Hours since midnight on previous Monday.
3Minutes since midnight on previous Monday.
4Seconds since midnight on previous Monday.
5Number of days since system zero time (17–Nov–1858).
6Whole weeks.
7Whole days.
8Whole hours.
9Whole minutes.
10Whole seconds.

resultant-time

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The external time that results from the conversion. The resultant-time argument is the address of an
unsigned longword containing the result.

90

Chapter 2. LIB$ Reference

input-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Optional absolute or delta time to be converted. The input-time argument is the address of an
unsigned quadword containing the time. If you do not supply a value for input-time, the current
system time is used.

Description
LIB$CVT_FROM_INTERNAL_TIME converts an internal OpenVMS system time (either
absolute or delta) into an external time. The operation argument specifies the conversion. LIB
$CVT_FROM_INTERNAL_TIME converts the value of input-time (or the current system time
if input-time is not supplied) into one of the external formats listed in the operation argument
description. LIB$CVT_FROM_INTERNAL_TIME then places the result into resultant-time.

See the VSI OpenVMS Programming Concepts Manual for a description of system date and time
operations as well as a detailed description of the format mnemonics used in these routines.

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_ABSTIMREQ Absolute time required but delta time supplied.
LIB$_DELTIMREQ Delta time required but absolute time supplied.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB$CVT_TO_INTERNAL_TIME
LIB$CVT_TO_INTERNAL_TIME — The Convert External Time to Internal Time routine converts
an external time interval into an OpenVMS internal format delta time.

Format
LIB$CVT_TO_INTERNAL_TIME operation ,input-time ,resultant-time

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

91

Chapter 2. LIB$ Reference

Arguments
operation

OpenVMS usage: function_code
type: longword (unsigned)
access: read only
mechanism: by reference

The conversion to be performed. The operation argument is the address of an unsigned longword
specifying the operation. Valid values for operation are the following:

Operation Description
LIB$K_DELTA_WEEKS Whole weeks in delta time
LIB$K_DELTA_DAYS Whole days in delta time
LIB$K_DELTA_HOURS Whole hours in delta time
LIB$K_DELTA_MINUTES Whole minutes in delta time
LIB$K_DELTA_SECONDS Whole seconds in delta time

input-time

OpenVMS usage: varying_arg
type: longword (signed)
access: read only
mechanism: by reference

Delta time to be converted. The input-time argument is the address of this input time. The value you
supply for input-time must be greater than 0.

resultant-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta time that results from the conversion. The resultant-time
argument is the address of an unsigned quadword containing the result.

Description
LIB$CVT_TO_INTERNAL_TIME converts an external time interval, such as three weeks, into
an OpenVMS internal format delta time. The operation argument specifies the conversion. LIB
$_CVT_TO_INTERNAL_TIME converts the value of input-time into one of the internal format
delta times listed in the operation argument description. LIB$_CVT_TO_INTERNAL_TIME then
places the result into resultant-time.

See the VSI OpenVMS Programming Concepts Manual for a description of system date and time
operations as well as a detailed description of the format mnemonics used in these routines.

92

Chapter 2. LIB$ Reference

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_INVOPER Invalid operation.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB$CVT_VECTIM
LIB$CVT_VECTIM — The Convert 7-Word Vector to Internal Time routine converts a 7-word
vector into an OpenVMS internal format delta or absolute time.

Format
LIB$CVT_VECTIM input-time ,resultant-time

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
input-time

OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Time to be converted. The input-time argument is the address of a 7-word structure containing this
time. This vector directly corresponds to a $NUMTIM timbuf structure. The following diagram
depicts the fields in this structure:

The input-time argument can represent an absolute or a delta time. In order for input-time to
represent a delta time, the year since 0 and month of year fields must equal zero. If those fields do
not equal zero, an absolute time is returned.

93

Chapter 2. LIB$ Reference

resultant-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The OpenVMS internal format delta or absolute time that results from the conversion. The resultant-
time argument is the address of an unsigned quadword containing the result.

Description
LIB$CVT_VECTIM converts a 7-word vector (in the format output by the $NUMTIM system
service) into an OpenVMS internal format delta or absolute time. LIB$CVT_VECTIM then places the
result into resultant-time.

See the VSI OpenVMS System Services Reference Manual: GETUTC-Z for more information about
$NUMTIM.

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB$CVT_xTB
LIB$CVT_xTB — The Convert Numeric Text to Binary routines return a binary representation of the
ASCII text string representation of a decimal, hexadecimal, or octal number.

Format
LIB$CVT_DTB byte-count ,numeric-string ,result

LIB$CVT_HTB byte-count ,numeric-string ,result

LIB$CVT_OTB byte-count ,numeric-string ,result

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
byte-count

94

Chapter 2. LIB$ Reference

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a signed longword integer
containing the byte count of the input string.

numeric-string

OpenVMS usage:
type:
access:
mechanism:

ASCII text string representation of a decimal, hexadecimal, or octal number that LIB$CVT_xTB
converts to binary representation. The numeric-string argument is the address of a character string
containing this input string to be converted.

The syntax of a valid ASCII text input string is as follows:

LIB$CVT_xTB allows only an optional plus (+) or minus (–) sign followed by a string of decimal,
hexadecimal, or octal characters appropriate to the routine being called.

result

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Binary representation of the input string. The result argument is the address of a signed longword
integer containing the converted string.

Description
LIB$CVT_DTB converts the ASCII text string representation of a decimal number into binary
representation. LIB$CVT_HTB converts the ASCII text string representation of a hexadecimal
number into binary representation. LIB$CVT_OTB converts the ASCII text string representation of
an octal number into binary representation.

Note

LIBCVT_DTB, LIBCVT_HTB, and LIB$CVT_OTB are intended to be called primarily from
BLISS and MACRO programs. Therefore, the routines expect input scalar arguments to be passed by
value and strings by reference.

95

Chapter 2. LIB$ Reference

Condition Values Returned
1 Routine successfully completed.
0 Nonradix character in the input string or a sign in any position

other than the first character. An overflow from 32 bits (unsigned)
causes an error.

LIB$CVT_xTB_64
LIB$CVT_xTB_64 — The Convert Numeric Text to Binary routines return a binary representation of
the ASCII text string representation of a decimal, hexadecimal, or octal number.

Format
LIB$CVT_DTB_64 byte-count ,numeric-string ,result

LIB$CVT_HTB_64 byte-count ,numeric-string ,result

LIB$CVT_OTB_64 byte-count ,numeric-string ,result

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
byte-count

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Byte count of the input ASCII text string. The byte-count argument is a signed longword integer
containing the byte count of the input string.

numeric-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

ASCII text string representation of a decimal, hexadecimal, or octal number that LIB$CVT_xTB_64
converts to binary representation. The numeric-string argument is the address of a character string
containing this input string to be converted.

96

Chapter 2. LIB$ Reference

The syntax of a valid ASCII text input string is as follows:

LIB$CVT_xTB_64 allows only an optional plus (+) or minus (–) sign followed by a string of decimal,
hexadecimal, or octal characters appropriate to the routine being called.

result

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: write only
mechanism: by reference

Binary representation of the input string. The result argument is the address of a signed quadword
integer containing the converted string.

Description
LIB$CVT_DTB_64 converts the ASCII text string representation of a decimal number into binary
representation. LIB$CVT_HTB_64 converts the ASCII text string representation of a hexadecimal
number into binary representation. LIB$CVT_OTB_64 converts the ASCII text string representation
of an octal number into binary representation.

Note

LIBCVT_DTB_64, LIBCVT_HTB_64, and LIB$CVT_OTB_64 are intended to be called primarily
from BLISS and MACRO programs. Therefore, the routines expect input scalar arguments to be
passed by value and strings by reference.

Condition Values Returned
1 Routine successfully completed.
0 Nonradix character in the input string or a sign in any position

other than the first character. An overflow from 64 bits (unsigned)
causes an error.

LIB$DATE_TIME
LIB$DATE_TIME — The Date and Time Returned as a String routine returns the OpenVMS system
date and time in the semantics of a user-provided string.

Format
LIB$DATE_TIME date-time-string

Returns
OpenVMS usage: cond_value

97

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Argument
date-time-string

OpenVMS usage: time_name
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$DATE_TIME writes the system date and time. The date-time-
string argument is the address of a descriptor pointing to the destination string. This string is 23
characters long; its format is as follows:

dd-mmm-yyyy hh:mm:ss.hh

See the VSI OpenVMS Programming Concepts Manual for a description of system date and time
operations as well as a detailed description of the format mnemonics used in these routines

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Success, but destination string was truncated.
LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image

quota for virtual memory.
LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in

its CLASS field.

Example
10 !+
 ! This BASIC program demonstrates the use of LIB$DATE_TIME.
 !-
 CALL LIB$DATE_TIME(DSTSTR$)
 PRINT DSTSTR$
99 END

This BASIC program uses LIB$DATE_TIME to display the current system date and time. The output
generated by one run of this program follows:

26-JUL-2000 13:41:22.67

LIB$DAY
LIB$DAY — The Day Number Returned as a Longword Integer routine returns the number of days
since the system zero date of November 17, 1858, or the number of days from November 17, 1858, to
a user-supplied date.

98

Chapter 2. LIB$ Reference

Format
LIB$DAY number-of-days [,user-time] [,day-time]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
number-of-days

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Number of days since the system zero date. The number-of-days argument is the address of a signed
longword integer containing the day number.

user-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

User-supplied time, in 100-nanosecond units. The user-time argument is the address of a signed
quadword integer containing the user time. A positive value indicates an absolute time, while a
negative value indicates a delta time. This is an optional argument. If user-time is omitted, the default
is the current system time. This quadword time value is obtained by calling the $BINTIM system
service.

If time is passed as zero by value, the numeric value for the current day is returned. If time is passed
as a zero by reference, the number returned represents the day of November 17, 1858, rather than the
current day.

day-time

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

99

Chapter 2. LIB$ Reference

Number of 10-millisecond units since midnight of the user-time argument. The day-time argument is
the address of a signed longword integer into which LIB$DAY writes this number of units.

Description
LIB$DAY returns the number of days since the system zero date of November 17, 1858. Optionally,
the caller can supply a time in system time format to be used instead of the current system time. In
this case, LIB$DAY returns the number of days from November 17, 1858, to the user-supplied date.

The number of 10-millisecond units since midnight is an optional return argument.

Note

If the caller supplies a quadword time, it is not verified. If it is negative (bit 63 on), the number-of-
days value returned is negative.

The Run-Time Library provides the date/time utility routines for languages that do not have built-
in time and date functions and for particular applications that require the time or date in a different
format from the one that the language supplies. In general, it is simpler to call the Run-Time Library
routines for the system date and time than to call a system service.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_INTOVF The optional argument user-time is present and represents a date

and time well beyond the year 9999.

Example
PROGRAM DAY(INPUT, OUTPUT);
{+}
{ This is a VAX Pascal example program showing
{ the use of LIB$DAY.
{-}
VAR
 DAYNUMBER : INTEGER;
routine LIB$DAY(VAR DAYNUM : INTEGER);
 EXTERN;
BEGIN
 LIB$DAY(DAYNUMBER);
 WRITELN(’The day number is ’, DAYNUMBER);
END.

This Pascal program retrieves and prints the day number. A sample of the output generated by this
program is as follows.

The day number is 46738

LIB$DAY_OF_WEEK
LIB$DAY_OF_WEEK — The Show Numeric Day of Week routine returns the numeric day of the
week for an input time value. If 0 is the input time value, the current day of the week is returned. The
days are numbered 1 through 7, with Monday as day 1 and Sunday as day 7.

100

Chapter 2. LIB$ Reference

Format
LIB$DAY_OF_WEEK [user-time,] day-number

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
user-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Time to be translated to a day of the week, or zero. The optional user-time argument is the address
of an unsigned quadword containing the value of time. Time must be supplied as an absolute system
time. To obtain this time value in proper quadword format, call the $BINTIM system service.

If time is passed as zero by value, the numeric value for the current day is returned. If time is passed
as a zero by reference, the number returned represents the day of November 17, 1858. If the user-time
argument is omitted, it is equivalent to passing a zero by value.

day-number

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Numeric day of week. The day-number argument is the address of a longword into which LIB
$DAY_OF_WEEK writes the integer value representing the day of the week.

Condition Values Returned
SS$_NORMAL Routine successfully completed.

Example
PROGRAM DAYOFWEEK(INPUT, OUTPUT);
{+}
{ This is an example showing
{ the use of LIB$DAY_OF_WEEK.
{-}

101

Chapter 2. LIB$ Reference

VAR
 OUTDAT : INTEGER;
routine LIB$DAY_OF_WEEK(TIM : INTEGER; %REF OUTDA : INTEGER); EXTERN;
BEGIN
 LIB$DAY_OF_WEEK(%IMMED 0, OUTDAT);
 WRITELN(OUTDAT);
END.

This Pascal program shows the use of LIB$DAY_OF_WEEK. This example was tested on a Monday,
and the output generated was 1.

LIB$DECODE_FAULT
LIB$DECODE_FAULT — The Decode Instruction Stream During Fault routine is a tool for building
condition handlers that process instruction fault exceptions. It is called from a condition handler. No
support for arguments passed by 64-bit address reference or for use of 64-bit descriptors, if applicable,
is planned for this routine. This routine is not available to native OpenVMS Alpha and I64 programs
but is available to translated VAX images.

Format
LIB$DECODE_FAULT signal-arguments ,mechanism-arguments ,user-procedure
[,unspecified-user-argument] [,instruction-definitions]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
signal-arguments

OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal arguments array that was passed from the OpenVMS operating system to your condition
handler. The signal-arguments argument is the address of the signal arguments array.

mechanism-arguments

OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

102

Chapter 2. LIB$ Reference

Mechanism arguments array that was passed from OpenVMS to your condition handler. The
mechanism-arguments argument is the address of the mechanism arguments array.

user-procedure

OpenVMS usage: procedure
type: procedure value
access: call after stack unwind
mechanism: by descriptor, procedure descriptor

User-supplied action routine that LIB$DECODE_FAULT calls to handle the exception. The user-
procedure argument is the address of a descriptor pointing to your user action routine. The user-
procedure argument may be of type ‘‘procedure value’’ when called by languages with up-level
addressing. If user-procedure is not of type ‘‘bound routine value,’’ it is assumed to be the address of
an entry mask.

For further information on the user action routine, see the section called Call Format for a User Action
Routine in the Description section.

unspecified-user-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Additional information passed from your handler without interpretation to your user action routine.
The unspecified-user-argument argument contains the value of this additional information. The
unspecified-user-argument argument is optional; if it is omitted, zero is used as the default.

instruction-definitions

OpenVMS usage: vector_byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Array of bytes specifying instruction opcodes and operand definitions that are to replace or
supplement the standard instruction definitions. The instruction-definitions argument is
the address of this array.

If instruction-definitions is omitted, only the standard instruction definitions are used. If
supplied, instruction-definitions is searched first, followed by the standard definitions.

Each instruction definition consists of a series of bytes, the first one or two of which is the instruction
opcode. If the instruction is a 2-byte opcode, the escape byte, which must be hex FD, FE, or FF, is
placed in the first of the two bytes. Following the opcode may be from 0 to 16 operand definition
bytes. These bytes indicate the operand's access type and data type.

The end of each instruction definition is denoted by a byte containing the value LIB
$K_DCFOPR_END (zero). The list of instruction definitions is terminated by two bytes, each of

103

Chapter 2. LIB$ Reference

which contains the value –1 (hexadecimal FF). For further information, see the section called the
section called “Instruction Operand Definition Codes” in the Description section.

Description
The Description section of the LIB$DECODE_FAULT routine is divided into the following parts:

• the section called “Guidelines for Using LIB$DECODE_FAULT”

• the section called “Exceptions Recognized by LIB$DECODE_FAULT”

• the section called “Instruction Operand Definition Codes”

• the section called “Call Format for a User Action Routine”

• the section called “Call Format for a Signal Routine”

Guidelines for Using LIB$DECODE_FAULT
LIB$DECODE_FAULT is a tool for building condition handlers that process instruction fault
exceptions. Called from a condition handler, LIB$DECODE_FAULT performs the following actions:

1. Unwinds intermediate stack frames back to that of the exception

2. Decodes the instruction stream to determine the operation and its operands

3. Calls a user-supplied action routine and passes it a consistent and easy-to-access description of the
instruction's context

Your user action routine performs whatever tasks are necessary to handle the fault and returns to
LIB$DECODE_FAULT. LIB$DECODE_FAULT then restores the context as modified by your user
action routine and continues execution.

Your condition handler must first decide whether or not it wants to handle the exception. The signal
arguments list contains the exception code and the address of the program context (PC) that is
usually sufficient for this determination. Once LIB$DECODE_FAULT is called, if the exception
is a fault LIB$DECODE_FAULT can analyze, control does not return to the condition handler.
Therefore, your handler must not depend on regaining control by a routine return once it has called
LIB$DECODE_FAULT. With your user action routine, LIB$DECODE_FAULT makes the original
fault disappear.

Note

Your user action routine is capable of generating a new exception, including one that looks identical
to the original exception. Your user action routine may also resignal, but if the decision to resignal is
made inside the user action routine, all post-signal stack frames are lost.

Once your condition handler has decided that it wants to handle the exception, it calls LIB
$DECODE_FAULT, passing as arguments the addresses of the signal and mechanism argument lists
and a descriptor for your user action routine entry point. LIB$DECODE_FAULT then performs the
following actions:

1. Determines if the exception is a fault it understands. If not, it returns SS$_RESIGNAL.

104

Chapter 2. LIB$ Reference

2. Determines the context in which the exception occurred, including register and processor status
longword (PSL) contents, and saves it.

3. Unwinds all stack frames back to that frame in which the exception occurred.

4. Evaluates each operand's addressing mode, computing the resulting location for the operand.
Immediate mode operands are expanded into their full form. If an invalid addressing mode is
found, an SS$_RADRMOD exception is generated.

5. Unless the original exception was SS$_ACCVIO, tests each operand for accessibility. If
necessary, an access violation is signaled as if the instruction had tried to execute normally. See
the paragraph following this list for more information.

6. Unless the original exception was SS$_ROPRAND, tests each floating-point operand that is to
be read for a reserved floating operand. If necessary, a reserved operand fault is signaled. See the
paragraph following this list for more information.

7. Determines the address of the next sequential instruction.

8. Calls your user action routine with arguments as described below.

9. Upon return from your user action routine, reflects changes to the registers and PSL and continues
execution at the instruction address specified by your user action routine. Optionally, your user
action routine may resignal the original exception.

Some instructions can generate more than one fault if evaluation of one operand causes a fault that
occurs before a later operand (which would also cause a fault). An example of this is the possibility
that a floating-point divide instruction might report a divide-by-zero fault upon seeing a zero divisor
before noticing that the dividend was a reserved operand or was inaccessible.

In these cases, operand-specific faults are signaled immediately by LIB$DECODE_FAULT in the
expectation that another condition handler (or the same one) can repair the situation. This may reorder
the sequence of exceptions as seen by a program. If the operand exception is corrected, the original
exception reoccurs, and the proper action is taken.

If at all possible, try to determine if a resignal is necessary inside the condition handler that calls
LIB$DECODE_FAULT, rather than inside your user action routine. The reason for this is that LIB
$DECODE_FAULT removes all post-signal stack frames before calling your user action routine.

Your user action routine may fetch and store the operands, registers, and PSL as necessary for
handling the exception. You should follow the VAX architecture rule of reading all input operands in
left-to-right order, then writing all output operands in left-to-right order, to avoid inconsistent results
with overlapping operands. This is especially necessary with register operands.

PSL may be modified in a manner consistent with the VAX architecture. If the T-bit in the PSL was
set at the beginning of the instruction, LIB$DECODE_FAULT sets the TP bit. To initiate tracing,
you must set only the T bit. To disable tracing, you must clear both the T and TP bits. See the VAX
Architecture Reference Manual for more information.

If the first-part-done (FPD) bit in the PSL was set when the instruction faulted, LIB
$DECODE_FAULT only advances the PC over the instruction; it does not reevaluate the operands,
and it sets operand-count to zero. It is assumed that if FPD is set, the operands are in known
locations (typically the registers).

For the CASEB, CASEW, and CASEL instructions, only the selector, base, and limit
operands are represented in operand-count and read-operand-locations. The element of

105

Chapter 2. LIB$ Reference

registers that corresponds to the PC, described in the following text as R15, points to the first of the
word-length displacements. Your user action routine must modify R15 to reflect the location of the
next instruction to execute.

The standard instruction definitions used by LIB$DECODE_FAULT specify the XFC instruction
(which causes an SS$_OPCCUS fault) as having zero operands. You may redefine XFC if needed
using the instruction-definitions argument to LIB$DECODE_FAULT.

If you do not want instruction execution to resume with the next sequential instruction, you must
modify R15 appropriately. Your user action routine then returns to LIB$DECODE_FAULT, which
restores the registers and PSL, and resumes instruction execution. See also the LIB$_RESTART
condition value in the section called the section called “Condition Values Returned from the User
Action Routine”.

Note

Vector context is not saved or restored.

Exceptions Recognized by LIB$DECODE_FAULT
LIB$DECODE_FAULT recognizes the following VAX faults:

• SS$_ACCVIO, access violation.

• SS$_BREAK, breakpoint fault.

• SS$_FLTDIV_F, floating divide by zero.

• SS$_FLTOVF_F, floating overflow.

• SS$_FLTUND_F, floating underflow.

• SS$_OPCCUS, opcode reserved to customers.

• SS$_OPCDEC, opcode reserved to VSI.

• SS$_ROPRAND, reserved operand.

• SS$_TBIT, T-bit pending trap. This is actually a fault caused by the TP bit being set at the
beginning of instruction execution. It allows you to interpret all instructions by setting the PSL T-
bit and allowing each instruction to trace-fault.

All other exceptions, including SS$_COMPAT and SS$_RADRMOD, cause LIB$DECODE_FAULT
to return immediately with the return status SS$_RESIGNAL.

SS$_COMPAT is generated by compatibility-mode instructions. LIB$DECODE_FAULT does not
handle compatibility-mode instructions.

SS$_RADRMOD is generated by a reserved addressing-mode fault. LIB$DECODE_FAULT assumes
that all instructions follow VAX addressing-mode specifications.

Instruction Operand Definition Codes
Each instruction operand has an access type (read, write, …) and a data type (byte, word, …)
associated with it. The operand definition codes used in both the instruction-definitions
argument passed to LIB$DECODE_FAULT and in the operand-types argument passed to the

106

Chapter 2. LIB$ Reference

user action routine encode the access and data types in a byte. The fields and values for operand
access and data types are described using the symbols in Table 2.3. These symbols are defined in
definition libraries supplied by VSI as macro or module name $LIBDCFDEF.

Table 2.3. Symbols for Fields and Values for Operand Access and Data Types Using LIB
$DECODE_FAULT

Symbol Description
LIB$V_DCFACC The field of the operand description code that describes the

operand access type (bits 0–2).
LIB$S_DCFACC The size of the access type field (3 bits).

The mask for the access type field. This is a 3-bit field that can
contain any binary value from 000 through 111. The integer value
of these bit settings defines the operand access type code for
the LIB$M_DCFACC field. Currently, six codes are defined.
These codes have symbolic names and are explained below. It is
important to remember that LIB$M_DCFACC is not a bit mask.
The values 0 through 6 do not refer to bits 0 through 6. They
represent the binary values 001 through 110 as contained in the 3-
bit field.

The operand access type codes defined for the LIB$M_DCFACC
field are:
LIB$K_DCFACC_R = 1 Operand is read-only.
LIB$K_DCFACC_M = 2 Operand is to be modified.
LIB$K_DCFACC_W = 3 Operand is write-only.
LIB$K_DCFACC_A = 4 Operand is an address (must not

be a register).
LIB$K_DCFACC_V = 5 Operand is the base of a bit field

(same as address except that it
may be a register).

LIB$M_DCFACC

LIB$K_DCFACC_B = 6 Operand is a branch address.
LIB$V_DCFTYP The field of the operand descriptor code that describes the operand

data type (bits 3–7).
LIB$S_DCFTYP The size of the operand data type field (5 bits).

The mask for the operand data type field. This is a 5-bit field (bits
3–7) that can contain any binary value from 00000 through 11111.
The integer value of these bit settings defines the operand access
type code for the LIB$M_DCFACC field. Currently, nine codes
are defined. These codes have symbolic names and are explained
below. It is important to remember that LIB$M_DCFTYP is not
a bit mask. The values 0 through 9 do not refer to bits 0 through
9. They represent the binary values 00001 through 01001 as
contained in the 5-bit field. The operand access type codes defined
for the LIB$V_DCFTYP field are:
LIB$K_DCFTYP_B = 1 Operand is a byte.
LIB$K_DCFTYP_W = 2 Operand is a word.

LIB$M_DCFTYP

LIB$K_DCFTYP_L = 3 Operand is a longword.

107

Chapter 2. LIB$ Reference

Symbol Description
LIB$K_DCFTYP_Q = 4 Operand is a quadword.
LIB$K_DCFTYP_O = 5 Operand is a octaword.
LIB$K_DCFTYP_F = 6 Operand is F_floating.
LIB$K_DCFTYP_D = 7 Operand is D_floating.
LIB$K_DCFTYP_G = 8 Operand is G_floating.
LIB$K_DCFTYP_H = 9 Operand is H_floating.

Symbols of the form LIB$K_DCFOPR_xy, where x is the access type and y is the data type, are also
defined. These combine the notions of access and data type. For example, LIB$K_DCFOPR_MF has
the following value:

50 (2+(6*8))

It denotes modify access of an F_floating item. For the branch access type, only the types BB, BW,
and BL are defined; otherwise, all combinations are available.

Call Format for a User Action Routine
LIB$DECODE_FAULT calls the user action routine when it finds an exception to be handled. Your
user action routine handles the exception in any manner that you specify and then returns to LIB
$DECODE_FAULT.

action-routine opcode ,instr-PC ,PSL ,registers ,operand-count

#############,operand-types ,read-operand-locations

#############,write-operand-locations,signal-arguments

#############,signal-procedure ,context

#############,unspecified-user-argument ,original-registers

opcode

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Opcode of the instruction that caused the fault. The opcode argument is the address of a longword
that contains this opcode. LIB$DECODE_FAULT supplies this opcode when it calls the user action
routine.

For 2-byte opcodes, the escape code (for example, hex FD) is in the low-order byte. You must use
this argument to examine the opcode instead of reading the bytes pointed to by instr-PC. This is
because if a debugger breakpoint has been set on the instruction, only opcode contains the original
instruction.

instr-PC

OpenVMS usage: longword_unsigned

108

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: read only
mechanism: by reference

Value of the PC for the instruction that caused the fault. The instr-PC argument is the address of a
longword that contains the PC value.

Note the difference between this value and the contents of the registers array element that
corresponds to the PC. R15 of the registers array element contains the address of the byte after
the instruction that caused the fault.

PSL

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

Processor status longword (PSL) at the time of the fault. The PSL argument is the address of a
longword that contains this PSL. Your user action routine may modify this PSL within the restrictions
of the VAX architecture.

registers

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify
mechanism: by reference

Contents of registers R0 through R15 (PC) at the time of the fault but after operand addressing-mode
processing. This includes any autoincrements or autodecrements. The registers argument is the
address of this 16-longword array. Each longword of the registers array contains the contents of one
register.

Your user action routine may modify these values. If it does, the new values will be reflected when
instruction execution continues.

To modify vector registers, execute a vector instruction. Executing a vector instruction in the handler
modifies the state of the vector processor. The state of the vector processor is not restored when the
handler returns. This has the effect of altering the state when the execution continues.

R15 denotes the sixteenth longword in the registers array, which corresponds to the PC. R15
contains the address of the next byte after the current instruction. Unless this value is modified by
your user action routine, instruction execution will resume at that address. An exception is for the
CASEB, CASEW, and CASEL instructions; R15 contains the address of the first displacement word.
For these instructions, your user action routine must modify R15 to point to the next instruction to
execute.

Upon instruction completion, registers R0-R15 are restored from this array. However, if signal-
procedure is used to cause a fault or if instruction restart is specified by returning LIB
$_RESTART, original-registers is used instead.

109

Chapter 2. LIB$ Reference

operand-count

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Number of operands in the instruction currently being decoded. The operand-count is the address
of a longword that contains this number.

operand-types

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Array of longwords, one element for each operand, that contains the type codes for the associated
operand. The operand-types argument is the address of this array.

The operand type codes are further defined in the section called the section called “Instruction
Operand Definition Codes”.

read-operand-locations

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the addresses of the operands to be
read. The read-operand-locations argument is the address of this array.

The address given in the array may not be the actual address of the operand if the operand is not a
memory location. If the operand is a register, the address indicates a copy of the register values at
the time of operand evaluation. If the operand access type is ADDRESS or FIELD and the operand
is not a register, the address is the address of the item. If the operand access type is FIELD and the
operand is a register, the address refers to the appropriate element in the registers array. If the
operand access type is BRANCH, the address is the destination PC of the branch. For WRITE access
operands, the address value is zero.

write-operand-locations

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Array of longwords, one element for each operand, that contains the addresses of operands that are to
be written. The write-operand-locations argument is the address of this array. If the operand
access type is not MODIFY, WRITE, ADDRESS, or FIELD, the pointer value is zero.

110

Chapter 2. LIB$ Reference

signal-arguments

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Signal arguments list of the original exception, as passed from OpenVMS to your condition handler
and then to LIB$DECODE_FAULT. The signal-arguments argument is the address of an array
of longwords that contains these signal arguments.

signal-procedure

OpenVMS usage: procedure
type: procedure value
access: call without stack unwinding
mechanism: by reference

Entry mask of a routine that your user action routine must call if it wants to report an exception for the
instruction that faulted. The signal-procedure argument is the address of this entry mask.

For further information, see the section called the section called “Call Format for a Signal Routine”.

context

OpenVMS usage: context
type: unspecified
access: read only
mechanism: by value

Context in which the exception occurs, including the register and PSL contents, to be used when
calling the signal-procedure. The context argument contains the value of this context.

unspecified-user-argument

OpenVMS usage:
type:
access:
mechanism:

Optional argument passed to LIB$DECODE_FAULT. If the argument was not specified, the value
zero is substituted. The unspecified-user-argument argument contains the value of this
optional argument.

original-registers

OpenVMS usage: vector_longword_unsigned
type: longword (unsigned)
access: modify

111

Chapter 2. LIB$ Reference

mechanism: by reference, array reference

Array containing the values of registers R0 through R15 (PC) at the time of the fault, before operand
processing. The original-registers argument is the address of this 16-longword array.

If the action routine specifies that the instruction should restart or that a fault should be generated,
the registers are restored from original-registers. See also the description of registers
above.

Condition Values Returned from the User Action
Routine
The user action routine can return the following condition values to LIB$DECODE_FAULT:

Condition Value Description
SS$_CONTINUE If the user action routine returns a value of

SS$_CONTINUE, instruction execution will
continue as specified by the current contents of
the registers element for the PC.

SS$_RESIGNAL If the user action routine returns SS
$_RESIGNAL, the original exception is
resignaled, with the only changes reflected being
those specified by registers elements for
R0 and R1 (which are stored in the mechanism
arguments vector), PC, and PSL. All other
registers are restored from original registers.

LIB$_RESTART If the user action routine returns LIB
$_RESTART, the current instruction is restarted
with registers restored from original-
registers and a PSL from PSL. This feature
is useful for writing trace handlers.

Call Format for a Signal Routine
Your action routine calls the signal routine using this format:

signal-procedure fault-flag ,context ,signal-arguments

fault-flag

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Longword flag whose low-order bit determines whether the exception is to be signaled as a fault or as
a trap. The fault-flag argument contains the address of this longword.

If the low-order bit of fault-flag is set to 1, the exception is signaled as a fault. If the low-
order bit of fault-flag is set to 0, the exception is signaled as a trap; the current contents of the

112

Chapter 2. LIB$ Reference

registers array are used. In either case, the current contents of PSL are used to set the exception
PSL.

context

OpenVMS usage: context
type: unspecified
access: read only
mechanism: by reference

Context in which the new exception is to occur, as passed to your user action routine by LIB
$DECODE_FAULT. The context argument is the address of this context value.

signal-arguments

OpenVMS usage: arg_list
type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Signal arguments to be used. The signal-arguments argument is the address of an array of
longwords that contains these signal arguments.

The first longword contains the number of following longwords; the remainder of the list contains
signal names and arguments. Unlike the signal argument list passed to a condition handler, no PC or
PSL is present.

Before the exception is signaled, the stack frames are unwound back to the original exception. You
should be careful when causing a new signal that a loop of faults is not inadvertently generated. For
example, the condition handler that called LIB$DECODE_FAULT will usually be called for the
second signal. If the handler does not analyze the second signal as such, it may cycle through the
identical path as for the first signal.

To resignal the current exception, have the user action routine return a value of SS$_RESIGNAL
instead of calling the signal routine (unless you want previously called condition handlers to be called
again).

Condition Values Returned
SS$_RESIGNAL Resignal condition to next handler. The exception described by

signal-arguments was not an instruction fault handled by LIB
$DECODE_ FAULT. If LIB$DECODE_FAULT can process the
fault, it does not return to its caller.

Condition Value Signaled
LIB$_INVARG Invalid argument to Run-Time Library. The instruction definition

contained more than 16 operands or an operand definition
contained an invalid data type or access code. This message is
signaled after the stack frames have been unwound so that it

113

Chapter 2. LIB$ Reference

appears to have been signaled from a routine that was called by the
instruction that faulted.

Example
The following Fortran example implements a simple recovery scheme for floating underflow and
overflow faults, replacing the result of the instruction with the correctly signed, smallest possible
value for underflows or largest possible value for overflows.

C+
C Example condition handler and user-action routine using
C LIB$DECODE_FAULT. This example demonstrates the use of
C most of the features of LIB$DECODE_FAULT. Its purpose
C is to handle floating underflow and overflow faults,
C replacing the result of the instruction with the correctly
C signed smallest possible value for underflows, or greatest
C possible value for overflows.
C
C For simplicity, faults involving the POLYx instructions are
C not handled.
C
C***
C FIXUP_RESULT is the condition handler enabled by the program
C desiring the fixup of overflows and underflows.
C***
C-

 INTEGER*
 4 FUNCTION FIXUP_RESULT(SIGARGS, MECHARGS)
 IMPLICIT NONE
 INCLUDE ’($SSDEF)’ ! SS$_ symbols
 INCLUDE ’($LIBDCFDEF)’ ! LIB$DECODE_FAULT symbols
 INTEGER*4 SIGARGS(1:*) ! Signal arguments list
 INTEGER*4 MECHARGS(1:*) ! Mechanism arguments list

C+
C This is a sample redefinition of MULH3 instruction.
C-

 BYTE OPTABLE(8) /’FD’X,’65’X, ! MULH3 opcode
 1 LIB$K_DCFOPR_RH, ! Read H_floating
 2 LIB$K_DCFOPR_RH, ! Read H_floating
 3 LIB$K_DCFOPR_WH, ! Write H_floating
 4 LIB$K_DCFOPR_END, ! End of operands
 5 ’FF’X,’FF’X/ ! End of instructions
 INTEGER*4 LIB$DECODE_FAULT ! External function
 EXTERNAL FIXUP_ACTION ! Action routine to do the fixup

C+
C Determine if the exception is one we want to handle.
C-

 IF ((SIGARGS(2) .EQ. SS$_FLTOVF_F) .OR.
 1 (SIGARGS(2) .EQ. SS$_FLTUND_F)) THEN

C+
C We think we can handle the fault. Call

114

Chapter 2. LIB$ Reference

C LIB$DECODE_FAULT and pass it the signal arguments and
C the address of our action routine and opcode table.
C-

 FIXUP_RESULT = LIB$DECODE_FAULT (SIGARGS,
 1 MECHARGS, %DESCR(FIXUP_ACTION),, OPTABLE)
 RETURN
 END IF
C+
C We can only get here if we couldn’t handle the fault.
C Resignal the exception.
C-

 FIXUP_RESULT = SS$_RESIGNAL
 RETURN
 END

C+
C User action routine to handle the fault.
C-

 INTEGER*4 FUNCTION FIXUP_ACTION (OPCODE,INSTR_PC,PSL,
 1 REGISTERS,OP_COUNT,
 2 OP_TYPES,READ_OPS,
 3 WRITE_OPS,SIGARGS,
 4 SIGNAL_ROUT,CONTEXT,
 5 USER_ARG,ORIG_REGS)

 IMPLICIT NONE
 INCLUDE ’($SSDEF)’ ! SS$_ definitions
 INCLUDE ’($PSLDEF)’ ! PSL$ definitions
 INCLUDE ’($LIBDCFDEF)’ ! LIB$DECODE_FAULT
 ! definitions
 INTEGER*4 OPCODE ! Instruction opcode
 INTEGER*4 INSTR_PC ! PC of this instruction
 INTEGER*4 PSL ! Processor status
 ! longword
 INTEGER*4 REGISTERS(0:15) ! R0-R15 contents
 INTEGER*4 OP_COUNT ! Number of operands
 INTEGER*4 OP_TYPES(1:*) ! Types of operands
 INTEGER*4 READ_OPS(1:*) ! Addresses of read operands
 INTEGER*4 WRITE_OPS(1:*) ! Addresses of write operands
 INTEGER*4 SIGARGS(1:*) ! Signal argument list
 INTEGER*4 SIGNAL_ROUT ! Signal routine address
 INTEGER*4 CONTEXT ! Signal routine context
 INTEGER*4 USER_ARG ! User argument value
 INTEGER*4 ORIG_REGS(0:15) ! Original registers

C+
C Declare and initialize table of class codes for each of the
C "real" opcodes. We’ll index into this by the first byte of
C one-byte opcodes, the second byte of two-byte opcodes. The
C class codes will be used in a computed GOTO (CASE). The
C codes are:

C 0 - Unsupported
C 1 - ADD
C 2 - SUB

115

Chapter 2. LIB$ Reference

C 3 - MUL,DIV
C 4 - ACB
C 5 - CVT
C 6 - EMOD
C
C The class mainly determines how we compute the sign of the
C result, except for ACB.
C-

 BYTE INST_CLASS_TABLE(0:255)
 DATA INST_CLASS_TABLE /
 1 48*0, ! 00-2F
 2 0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,0, ! 30-3F
 3 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4, ! 40-4F
 4 0,0,0,0,6,0,0,0,0,0,0,0,0,0,0,0, ! 50-5F
 5 1,1,2,2,3,3,3,3,0,0,0,0,0,0,0,4, ! 60-6F
 6 0,0,0,0,6,0,5,0,0,0,0,0,0,0,0,0, ! 70-7F
 7 112*0, ! 80-EF
 8 0,0,0,0,0,0,5,5,0,0,0,0,0,0,0,0/ ! F0-FF

C+
C Table of operand sizes in 8-bit bytes, indexed by the
C datatype code contained in the OP_TYPES array. Only floating
C types matter.
C-

 BYTE OP_SIZES(9) /0,0,0,0,0,4,8,8,16/
 INTEGER*4 LIB$EXTV ! External function
 INTEGER*4 RESULT_NEGATIVE ! -1 if result negative,
 ! 0 if positive
 INTEGER*4 SIGN1,SIGN2,SIGN3 ! Signs of operands
 INTEGER*4 INST_BYTE ! Current opcode byte
 INTEGER*4 INST_CLASS ! Class of instruction
 ! from table
 INTEGER*4 OP_DTYPE ! Datatype of operand
 INTEGER*4 OP_SIZE ! Size of operand in
 ! 8-bit bytes
 INTEGER*4 RESULT_OP ! Position of result
 ! in WRITE_OPS array
 LOGICAL*4 OVERFLOW ! TRUE if SS$_FLTOVF_F
 LOGICAL*4 SMALLER ! Function which
 ! compares operands
 PARAMETER ESCD = ’0FD’X ! First byte of G,H instructions
 INTEGER*2 SMALL_F(2) ! Smallest F_floating
 DATA SMALL_F /’0080’X,0/
 INTEGER*2 SMALL_D(4) ! Smallest D_floating
 DATA SMALL_D /’0080’X,0,0,0/
 INTEGER*2 SMALL_G(4) ! Smallest G_floating
 DATA SMALL_G /’0010’X,0,0,0/
 INTEGER*2 SMALL_H(8) ! Smallest H_floating
 DATA SMALL_H /’0001’X,0,0,0,0,0,0,0/
 INTEGER*2 BIGGEST(8) ! Biggest value (all datatypes)
 DATA BIGGEST /’7FFF’X,7*’FFFF’X/
 INTEGER*4 SIGNAL_ARRAY(2) ! Array for signalling new
 ! exception

C+
C

116

Chapter 2. LIB$ Reference

C NOTE: Because the operands arrays contain the locations of
C the operands, rather than the operands themselves,
C we must call a routine using the %VAL function to
C "fool" the called routine into considering the
C contents of an operands array element as the address
C of an item. This would not be necessary in a
C language that understood the concept of pointer
C variables, such as PASCAL.
C
C
C If FPD is set in the PSL, signal SS$_ROPRAND (reserved operand). In
C reality this shouldn’t happen since none of the instructions we
C handle can set FPD, but do it as an example.
C-

 IF (BTEST(PSL,PSL$V_FPD)) THEN
 SIGNAL_ARRAY(1) = 1 ! Count of signal arguments
 SIGNAL_ARRAY(2) = SS$_ROPRAND ! Error status value
 CALL SIGNAL_ROUT (
 1 1, ! Fault flag - signal as fault
 2 SIGNAL_ARRAY, ! Signal arguments array
 3 CONTEXT) ! Context as passed to us
 ! Call will never return
 END IF

C+
C Set OVERFLOW according to the exception type. We assume that
C the only alternatives are SS$_FLTOVF_F and SS$_FLTUND_F.
C-

 OVERFLOW = (SIGARGS(2) .EQ. SS$_FLTOVF_F)

C+
C Determine the datatype of the instruction by that of its
C second operand, since that is always the type of the
C destination.
C-

 OP_DTYPE = IBITS(OP_TYPES(2),LIBV_DCFTYP,LIBS_DCFTYP)

C+
C Get the size of the datatype in words.
C-

 OP_SIZE = OP_SIZES (OP_DTYPE)

C+
C Determine the class of instruction and dispatch to the
C appropriate routine.
C-

 INST_BYTE = IBITS(OPCODE,0,8) ! Get first byte
 IF (INST_BYTE .EQ. ESCD) INST_BYTE = IBITS(OPCODE,8,8)
 INST_CLASS = INST_CLASS_TABLE(INST_BYTE)
 GO TO (1000,2000,3000,4000,5000,6000),INST_CLASS

C+
C If we get here, the instruction’s entry in the

117

Chapter 2. LIB$ Reference

C INST_CLASS_TABLE is zero. This might happen if the instruction was
C a POLYx, or was some other unsupported instruction. Resignal the
C original exception.
C-

 FIXUP_ACTION = SS$_RESIGNAL ! Resignal condition to next
 handler
 RETURN ! Return to LIB$DECODE_FAULT

C+
C 1000 - ADDF2, ADDF3, ADDD2, ADDD3, ADDG2, ADDG3, ADDH2, ADDH3
C
C Result’s sign is the same as that of the first operand,
C unless this is an underflow, in which case the magnitudes of
C the values may change the sign.
C-

1000 RESULT_NEGATIVE = LIB$EXTV (15,1,%VAL(READ_OPS(1)))
 IF (.NOT. OVERFLOW) THEN
 IF (SMALLER(OP_SIZE,%VAL(READ_OPS(1)),
 1 %VAL(READ_OPS(2))))
 2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE
 END IF
 GO TO 9000

C+
C 2000 - SUBF2, SUBF3, SUBD2, SUBD3, SUBG2, SUBG3, SUBH2, SUBH3
C
C Result’s sign is the opposite of that of the first operand,
C unless this is an underflow, in which case the magnitudes of
C the values may change the sign.
C-

2000 RESULT_NEGATIVE = .NOT. LIB$EXTV (15,1,%VAL(READ_OPS(1)))
 IF (.NOT. OVERFLOW) THEN
 IF (SMALLER(OP_SIZE,%VAL(READ_OPS(1)),
 1 %VAL(READ_OPS(2))))
 2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE
 END IF
 GO TO 9000

C+
C 3000 - MULF2, MULF3, MULD2, MULD3, MULG2, MULG3, MULH2, MULH3,
C DIVF2, DIVF3, DIVD2, DIVD3, DIVG2, DIVG3, DIVH2, DIVH3,
C
C If the signs of the first two operands are the same, then the
C result’s sign is positive, if they are not it is negative.
C-

3000 SIGN1 = LIB$EXTV (15,1,%VAL(READ_OPS(1)))
 SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(2)))
 RESULT_NEGATIVE = SIGN1 .XOR. SIGN2

 GOTO 9000

C+
C 4000 - ACBF, ACBD, ACBG, ACBH
C

118

Chapter 2. LIB$ Reference

C The result’s sign is the same as that of the second operand
C (addend), unless this is underflow, in which case the
C magnitudes of the addend and index may change the sign.
C We must also determine if the branch is to be taken.
C-

4000 SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(2)))
 RESULT_NEGATIVE = SIGN2
 IF (.NOT. OVERFLOW) THEN
 -IF (SMALLER(OP_SIZE,%VAL(READ_OPS(2)),
 1 %VAL(READ_OPS(3))))
 2 RESULT_NEGATIVE = .NOT. RESULT_NEGATIVE
 END IF

C+
C If this is overflow, then the branch is not taken, since the
C result is always going to be greater or equal in magnitude
C to the limit, and will be the correct sign. If underflow,
C the branch is ALMOST always taken. The only case where the
C branch might not be taken is when the result is exactly
C equal to the limit. For this example, we are going to ignore
C this exceptional case.
C-

 IF (.NOT. OVERFLOW)
 1 REGISTERS(15) = READ_OPS(4) ! Branch destination
 GO TO 9000

C+
C 5000 - CVTDF, CVTGF, CVTHF, CVTHD, CVTHG
C
C Result’s sign is the same as that of the first operand.
C-

 5000 RESULT_NEGATIVE = LIB$EXTV (15,1,%VAL(READ_OPS(1)))
 GO TO 9000
C+
C-

6000 - EMODF, EMODD, EMODG, EMODH
C
C If the signs of the first and third operands are the same, then the
C result’s sign is positive, else it is negative.
C-

6000 SIGN1 = LIB$EXTV (15,1,%VAL(READ_OPS(1)))
 SIGN2 = LIB$EXTV (15,1,%VAL(READ_OPS(3)))
 RESULT_NEGATIVE = SIGN1 .XOR. SIGN2
 GOTO 9000

C+
C All code paths merge here to store the result value. We also
C set the PSL appropriately. First, determine which operand is
C the result.
C-

9000 RESULT_OP = OP_COUNT
 IF (INST_CLASS .EQ. 4)

119

Chapter 2. LIB$ Reference

 1 RESULT_OP = RESULT_OP - 1 ! ACBx

C+
C Select result based on datatype and exception type.
C-

 IF (OVERFLOW) THEN
 CALL LIB$MOVC3 (OP_SIZE,BIGGEST,%VAL(WRITE_OPS(RESULT_OP)))
 ELSE
 GO TO (9100,9200,9300,9400), OP_DTYPE-(LIB$K_DCFTYP_F-1)

C+
C Should never get here. Resignal original exception.
C-
 FIXUP_ACTION = SS$_RESIGNAL
 RETURN

C+
C 9100 - F_floating result
C-

9100 CALL LIB$MOVC3 (OP_SIZE,SMALL_F,%VAL(WRITE_OPS(RESULT_OP)))
 GOTO 9500

C+
C 9200 - D_floating result
C-

9200 CALL LIB$MOVC3 (OP_SIZE,SMALL_D,%VAL(WRITE_OPS(RESULT_OP)))
 GOTO 9500
C+
C 9300 - G_floating result
C-

9300 CALL LIB$MOVC3 (OP_SIZE,SMALL_G,%VAL(WRITE_OPS(RESULT_OP)))
 GOTO 9500
C+
C 9400 - H_floating result
C-

9400 CALL LIB$MOVC3 (OP_SIZE,SMALL_H,%VAL(WRITE_OPS(RESULT_OP)))
 GOTO 9500

9500 END IF

C+
C Modify the PSL to reflect the stored result. If the result was
C negative, set the N bit. Clear the V (overflow) and Z (zero) bits.
C If the instruction was an ACBx, leave the C (carry) bit unchanged,
C otherwise clear it.
C-

 IF (RESULT_NEGATIVE) THEN
 PSL = IBSET (PSL,PSL$V_N) ! Set N bit
 ELSE
 PSL = IBCLR (PSL,PSL$V_N) ! Clear N bit
 END IF
 PSL = IBCLR (PSL,PSL$V_V) ! Clear V bit

120

Chapter 2. LIB$ Reference

 PSL = IBCLR (PSL,PSL$V_Z) ! Clear Z bit
 IF (INST_CLASS .NE. 4)
 1 PSL = IBCLR (PSL,PSL$V_C) ! Clear C bit if not ACBx

C+
C Set the sign of result.
C-

 IF (RESULT_NEGATIVE)
 1 CALL LIB$INSV (1,15,1,%VAL(WRITE_OPS(RESULT_OP)))

C+
C Fixup is complete. Return to LIB$DECODE_FAULT.
C-

 FIXUP_ACTION = SS$_CONTINUE
 RETURN
 END

C+
C Function which compares two floating values. It returns .TRUE. if
C the first argument is smaller in magnitude than the second.
C-
 LOGICAL*4 FUNCTION SMALLER(NBYTES,VAL1,VAL2)
 INTEGER*4 NBYTES ! Number of bytes in values
 INTEGER*2 VAL1(*),VAL2(*) ! Floating values to compare
 INTEGER*4 WORDA,WORDB
 SMALLER = .TRUE. ! Initially return true

C+
C Zero extend to a longword for unsigned compares.
C Compare first word without sign bit.
C-

 WORDA = IBCLR(ZEXT(VAL1(1)),15)
 WORDB = IBCLR(ZEXT(VAL2(1)),15)
 IF (WORDA .LT. WORDB) RETURN

 DO I=2,NBYTES/2
 WORDA = ZEXT(VAL1(I))
 WORDB = ZEXT(VAL2(I))
 IF (WORDA .LT. WORDB) RETURN
 END DO

 SMALLER = .FALSE. ! VAL1 not smaller than VAL2
 RETURN
 END

LIB$DEC_OVER
LIB$DEC_OVER — The Enable or Disable Decimal Overflow Detection routine enables or disables
decimal overflow detection for the calling routine activation. The previous decimal overflow setting is
returned. No support for arguments passed by 64-bit address reference or for use of 64-bit descriptors,
if applicable, is planned for this routine. This routine is available on OpenVMS Alpha and I64
systems in translated form and is applicable to translated VAX images only.

121

Chapter 2. LIB$ Reference

Format
LIB$DEC_OVER new-setting2

Returns

OpenVMS usage: longword_unsigned
type: longword integer (unsigned)
access: write only
mechanism: by value

The old decimal overflow enable setting (the previous contents of SF$W_ PSW[PSW$V_DV] in the
caller’s frame).

Argument
new-setting

OpenVMS usage:
type:
access:
mechanism:

New decimal overflow enable setting. The new-setting argument is the address of an unsigned
longword that contains the new decimal overflow enable setting. Bit 0 set to 1 means enable; bit 0 set
to 0 means disable.

Description
The caller’s stack frame is modified by this routine.

A call to LIB$DEC_OVER affects only the current routine activation and does not affect any of its
callers or any routines that it may call. However, the setting does remain in effect for any routines that
are subsequently entered through a JSB entry point.

Example
DECOVF: ROUTINE OPTIONS (MAIN);
DECLARE LIB$DEC_OVER ENTRY (FIXED BINARY (7)) /* Address of byte for
 /* enable/disable
 /* setting */
 RETURNS (FIXED BINARY (31)); /* Old setting */

DECLARE DISABLE FIXED BINARY (7) INITIAL (0) STATIC READONLY;
DECLARE RESULT FIXED BINARY (31);
DECLARE (A,B) FIXED DECIMAL (4,2);

ON FIXEDOVERFLOW PUT SKIP LIST (’Overflow’);

122

Chapter 2. LIB$ Reference

RESULT = LIB$DEC_OVER (DISABLE); /* Disable recognition of decimal
 /* overflow in this block */

A = 99.99;
B = A + 2;
PUT SKIP LIST (’In MAIN’);
 BEGIN;
 B = A + 2;
 PUT LIST (’In BEGIN block’);
 CALL Q;
 Q: ROUTINE;
 B = A + 2;
 PUT LIST (’In Q’);
 END Q;
 END /* Begin */;
END DECOVF;

This PL/I program shows how to use LIB$DEC_OVER to enable or disable the detection of decimal
overflow. Note that in PL/I, disabling decimal overflow using this routine causes the condition to be
disabled only in the current block; descendent blocks will enable the condition unless this routine is
called in each block.

LIB$DELETE_FILE
LIB$DELETE_FILE — The Delete One or More Files routine deletes one or more files. The
specification of the files to be deleted may include wildcards. LIB$DELETE_FILE is similar in
function to the DCL command DELETE.

Format
LIB$DELETE_FILE filespec [,default-filespec] [,related-filespec] [,user-success-procedure]
[,user-error-procedure] [,user-confirm-procedure] [,user-specified-argument] [,resultant-name]
[,file-scan-context] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

123

Chapter 2. LIB$ Reference

String containing the OpenVMS Record Management Services (RMS) file specification of the files
to be deleted. The filespec argument is the address of a descriptor pointing to the file specification.
If the specification includes wildcards, each file that matches the specification is deleted. If running
on Alpha or I64 and flag LIB$M_FIL_LONG_NAMES is set, the string must not contain more
characters than specified by NAML$C_MAXRSS, otherwise the string must not contain more than
255 characters. Any string class is supported.

default-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification of the files to be deleted. The default-filespec argument is the address of a
descriptor pointing to the default file specification. This is an optional argument; if the argument is
omitted, the default is the null string. Any string class is supported.

See the VSI OpenVMS Record Management Services Reference Manual for information about default
file specifications.

related-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Related file specification of the files to be deleted. The related-filespec argument is the
address of a descriptor pointing to the related file specification. Any string class is supported. This is
an optional argument; if the argument is omitted, the default is the null string.

Input file parsing is used. See the VSI OpenVMS Record Management Services Reference Manual for
information on related file specifications and input file parsing.

The related file specification is useful when you are processing lists of file specifications. Unspecified
portions of the file specification are inherited from the last file processed.

user-success-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$DELETE_FILE calls after it successfully deletes a file.

The success routine can be used to display a log of the files that were deleted. For more information
on the success routine, see Call Format for a Success Routine in the Description section.

124

Chapter 2. LIB$ Reference

user-error-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$DELETE_FILE calls when it detects an error.

The error routine returns a success/fail value that LIB$DELETE_FILE uses to determine if more files
should be processed. For more information on the error routine, see Call Format for an Error Routine
in the Description section.

user-confirm-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied confirm routine that LIB$DELETE_FILE calls before each file is deleted. The value
returned by the confirm routine determines whether or not the file will be deleted. The confirm routine
can be used to select specific files for deletion based on criteria such as expiration date, size, and so
on. For more information about the confirm routine, see Call Format for a Confirm Routine in the
Description section.

user-specified-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

User-supplied argument that LIB$DELETE_FILE passes to the error, success, and confirm routines
each time they are called. Whatever mechanism is used to pass user-specified-argument to LIB
$DELETE_FILE is also used to pass it to the routines. This is an optional argument; if the argument is
omitted, zero is passed by value.

resultant-name

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB$DELETE_FILE writes the RMS resultant file specification of the last file
processed. The resultant-name argument is the address of a descriptor pointing to the resultant name.

125

Chapter 2. LIB$ Reference

If present, resultant-name is used to store the file specification passed to the user-supplied routines,
instead of a default class S, type T string. Therefore, this argument should be specified when the user-
supplied routines are used and those routines require a descriptor type other than class S, type T. Any
string class is supported.

If you specify one or more of the user-supplied action routines, the descriptor used to pass resultant-
name must be:

• Of the same class as the descriptor required by the filespec argument of any action routines. For
example, VAX Ada requires a class SB descriptor for string arguments to Ada routines but will
use a class A descriptor by default when calling external routines. Refer to your language manual
to determine the proper descriptor class to use.

• (Alpha and I64 only) Of the same form as the descriptor required by the filespec argument of all
action routines. For example, if the filespec argument of an action routine uses a 64-bit descriptor,
then the resultant-name argument must also use a 64-bit descriptor.

file-scan-context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context for deleting a list of file specifications. The file-scan-context argument is the address of a
longword containing the context value.

You must initialize the file scan context to zero before the first of a series of calls to LIB
$DELETE_FILE. LIB$FILE_SCAN uses this context to retain the file context for multiple input
files. You must specify this context only when you are dealing with multiple input files, as the DCL
command DELETE does. You may deallocate the context allocated by LIB$FILE_SCAN by calling
LIB$FILE_SCAN_ END after all calls to LIB$DELETE_FILE have been completed.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

User flags. The flags argument is the address of an unsigned longword containing the user flags.

The flag bits and their corresponding symbols are described in the following table:

Bit Symbol Description
0 Reserved to VSI.
1 Reserved to VSI.
2 LIB$M_FIL_LONG_NAMES (Alpha or I64 only) If set, LIB

$DELETE_FILE can process

126

Chapter 2. LIB$ Reference

Bit Symbol Description
file names with a maximum
length of NAML$C_MAXRSS.
If clear, LIB$DELETE_FILE
can process file specifications
with a maximum length of 255
(default).

Description
This Description section is divided into the following parts:

• the section called “Call Format for a Success Routine”

• the section called “Call Format for an Error Routine”

• the section called “Call Format for a Confirm Routine”

Call Format for a Success Routine
The success routine is called only if the user-success-procedure argument was specified in
the LIB$DELETE_FILE argument list.

The calling format of a success routine is as follows:

user-success-procedure filespec [,user-specified-argument]

filespec

OpenVMS usage:
type:
access:
mechanism:

RMS resultant file specification of the file being deleted. The filespec argument is the address of
a descriptor pointing to the file specification. If the resultant-name argument was specified, it is
used to pass the string to the success routine. Otherwise, a class S, type T string is passed. Any string
class is supported.

On Alpha and I64 systems, the descriptor specified by each of the action routines for the filespec
argument and the descriptor specified by the LIB$DELETE_FILE resultant-name argument,
if any, must be of the same form. They must all be 32-bit descriptors or all 64-bit descriptors. If you
do not specify a resultant-name argument, then the filespec argument must use a 32-bit
descriptor.

user-specified-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only

127

Chapter 2. LIB$ Reference

mechanism: unspecified

Value of user-specified-argument passed by LIB$DELETE_FILE to the success routine.
The same passing mechanism that was used to pass user-specified-argument to LIB
$DELETE_FILE is used by LIB$DELETE_FILE to pass user-specified-argument to the
success routine. This is an optional argument.

Call Format for an Error Routine
The error routine is called only if the user-error-procedure argument was specified in the LIB
$DELETE_FILE argument list.

The calling format of an error routine is as follows:

user-error-procedure filespec ,rms-sts ,rms-stv ,error-source [,user-
specified-argument]

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String containing the RMS resultant file specification of the file being deleted. If resultant-name
was specified, it is used to pass the string to the error routine. Otherwise, a class S, type T string is
passed. Any string class is supported.

On Alpha and I64 systems, the descriptor specified by each of the action routines for the filespec
argument and the descriptor specified by the LIB$DELETE_FILE resultant-name argument,
if any, must be of the same form. They must all be 32-bit descriptors or all 64-bit descriptors. If
you specify no resultant-name argument, then the filespec argument must use a 32-bit
descriptor.

rms-sts

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Primary condition code (FAB$L_STS) that describes the error that occurred. The rms-sts argument
is the address of an unsigned longword that contains the primary condition code.

rms-stv

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

128

Chapter 2. LIB$ Reference

Secondary condition code (FAB$L_STV) that describes the error that occurred. The rms-stv
argument is the address of an unsigned longword that contains the secondary condition code.

error-source

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Integer code that indicates the point at which the error was found. The error-source argument is
the address of a longword integer containing the code of the error source.

Possible values for the error code are as follows:

0 Error searching for file specification
1 Error deleting file

user-specified-argument

OpenVMS usage:
type:
access:
mechanism:

Value passed to LIB$DELETE_FILE that is then passed to user-error-procedure using the same
passing mechanism that was used to pass it to LIB$DELETE_FILE. This is an optional argument.

If the error routine returns a success status (bit 0 set), then LIB$DELETE_FILE continues processing
files. If a failure status (bit 0 clear) is returned, then processing ceases immediately, and LIB
$DELETE_FILE returns with the error status.

If the user-error-procedure argument is not specified, LIB$DELETE_FILE returns to its
caller the most severe error status encountered while deleting the files. If the error routine is called for
an error, the success status LIB$_ERRROUCAL is returned.

The error routine is not called for errors related to string copying.

Call Format for a Confirm Routine
The confirm routine is called only if the user-confirm-procedure argument was specified in
the call to LIB$DELETE_FILE.

The calling format of the confirm routine is as follows:

user-confirm-procedure filespec ,fab [,user-specified-argument]

filespec

OpenVMS usage: char_string

129

Chapter 2. LIB$ Reference

type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file to be deleted. The filespec argument is the address of a
descriptor pointing to the file specification.

If resultant-name was specified, it is used to pass the string to the confirm routine. Otherwise, a
class S, type T string is passed. Any string class is supported.

On Alpha and I64 systems, the descriptor specified by each of the action routines for the filespec
argument and the descriptor specified by the LIB$DELETE_FILE resultant-name argument,
if any, must be of the same form. They must all be 32-bit descriptors or all 64-bit descriptors. If you
do not specify a resultant-name argument, then the filespec argument must use a 32-bit
descriptor.

fab

OpenVMS usage: fab
type: unspecified
access: read only
mechanism: by reference

RMS file access block (FAB) that describes the file being deleted. Your program may perform an
RMS $OPEN on the FAB to obtain file attributes to determine whether the file should be deleted, but
it must close the file with $CLOSE before returning to LIB$DELETE_FILE.

On Alpha and I64 systems, if the LIB$M_FIL_LONG_NAMES FLAGS is set, the FAB references a
NAML block rather than a NAM block. The NAML block supports the use of long file names with
a maximum length of NAML$C_MAXRSS. See the VSI OpenVMS Record Management Services
Reference Manual for information on NAML blocks.

user-specified-argument

OpenVMS usage: user_arg
type: unspecified
access: read only
mechanism: unspecified

The value of the user-specified-argument argument that LIB$DELETE_FILE passes to the
confirm routine using the same passing mechanism that was used to pass it to LIB$DELETE_FILE.
This is an optional argument.

If confirm routine returns a success status (bit 0 set), the file is then deleted; otherwise, the file is not
deleted.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

130

Chapter 2. LIB$ Reference

LIB$_ERRROUCAL Success, but an error routine was called. A file error was
encountered, but the error routine was called to handle the
condition.

LIB$INVARG Invalid argument. The flags argument has one or more
undefined bits set.

LIB$_INVFILSPE Invalid file specification. Filespec or default-filespec is
longer than 4095 characters.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a string argument was
not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect number of arguments
was passed to LIB$DELETE_FILE.

Any condition value returned by LIB$SCOPY_ xxx except those condition values specifying
truncation errors.

Any condition value returned by RMS. If user-error-procedure is not specified, this is the
most severe of the RMS errors encountered while deleting the files.

Example
PROGRAM DELETE_EXAMPLE(INPUT, OUTPUT);

{+}
{ Declare external function LIB$DELETE_FILE. Throughout this
{ example, the user-arg argument is not used.
{-}

FUNCTION LIB$DELETE_FILE(
 FILESPEC: VARYING [A] OF CHAR;
 DEFAULT_FILESPEC: VARYING [B] OF CHAR;
 REL_FILESPEC : VARYING [D] OF CHAR;
 %IMMED [UNBOUND] ROUTINE SUCCESS_ROUTINE
 (FILESPEC : VARYING [A] OF CHAR) := %IMMED 0;
 %IMMED [UNBOUND] FUNCTION ERROR_ROUTINE
 (FILESPEC : VARYING [A] OF CHAR; RMS_STS, RMS_STV : INTEGER)
 : BOOLEAN := %IMMED 0;
 %IMMED [UNBOUND] FUNCTION CONFIRM_ROUTINE
 (FILESPEC: VARYING [A] OF CHAR): BOOLEAN := %IMMED 0;
 VAR USER_ARG : [UNSAFE] INTEGER := %IMMED 0;
 VAR RESULT_NAME : VARYING [C] OF CHAR := %IMMED 0
) : INTEGER; EXTERN;

{+}
{ Declare a routine which will display the names of the files
{ as they are deleted.
{-}

ROUTINE LOG_ROUTINE(FILESPEC : VARYING [A] OF CHAR);
 BEGIN
 WRITELN(’File ’, FILESPEC, ’ successfully deleted’);
 END;

{+}
{ Declare a routine which will notify the user that an error

131

Chapter 2. LIB$ Reference

{ occurred.
{-}

FUNCTION ERR_ROUTINE(FILESPEC: VARYING [A] OF CHAR;
 RMS_STS, RMS_STV: INTEGER): BOOLEAN;
 BEGIN
 WRITELN(’Delete of ’, FILESPEC, ’ failed ’, HEX(RMS_STS));
 ERR_ROUTINE := TRUE;
 END;

{+}
{ Declare a routine which checks to see if the file should be
{ deleted. If the filename contains the string ’XYZ’, then it is
{ deleted.
{-}

FUNCTION CONFIRM_ROUTINE(FILESPEC: VARYING [A] OF CHAR): BOOLEAN;
 BEGIN
 IF INDEX(FILESPEC, ’XYZ’) <> 0
 THEN
 CONFIRM_ROUTINE := TRUE
 ELSE
 CONFIRM_ROUTINE := FALSE;
 END;

{+}
{ The main program begins here.
{-}

VAR
 FILES_TO_DELETE, RESULTANT_NAME : VARYING [255] OF CHAR;
 RET_STATUS : INTEGER;
BEGIN
 WRITE (’Files to delete: ’);
 READLN(FILES_TO_DELETE);
 RET_STATUS := LIB$DELETE_FILE(
 FILES_TO_DELETE, ’*;’, ’’, LOG_ROUTINE, ERR_ROUTINE,
 CONFIRM_ROUTINE,,RESULTANT_NAME);
 IF NOT ODD(RET_STATUS)
 THEN
 WRITELN(’Delete failed. The error was ’, HEX(RET_STATUS));
END.

This Pascal program prompts the user for file specifications of files to be deleted. Of those, it deletes
only files that contain the string XYZ somewhere in their resultant file specification. The names of
deleted files are displayed.

LIB$DELETE_LOGICAL
LIB$DELETE_LOGICAL — The Delete Logical Name routine requests the calling process'
command language interpreter (CLI) to delete a supervisor-mode process logical name. LIB
$DELETE_LOGICAL provides the same function as the DCL command DEASSIGN.

Format
LIB$DELETE_LOGICAL logical-name [,table-name]

132

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: lognword (unsigned)
access: write only
mechanism: by value

Arguments
logical-name

OpenVMS usage: logical_name
type: character string
access: read only
mechanism: by descriptor

Logical name to be deleted. The logical-name argument is the address of a descriptor pointing to
this logical name string. The maximum length of a logical name is 255 characters.

table-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the table from which the logical name is to be deleted. The table-name argument is the
address of a descriptor pointing to this name string. This is an optional argument. If the argument is
omitted, the LNM$PROCESS table is used.

Description
LIB$DELETE_LOGICAL requests the calling process's command language interpreter (CLI) to
delete a supervisor-mode process logical name. If the optional table-name argument is defined,
the logical name is deleted from that table. Otherwise, the logical name is deleted from the LNM
$PROCESS table.

Unlike the system service $DELLOG and $DELLNM, LIB$DELETE_LOGICAL does not require
the caller to be executing in supervisor mode to delete a supervisor-mode logical name.

This routine is supported for use with the DCL and MCR command language interpreters.

This routine does not support the DCL DEFINE and DEASSIGN commands' special side effect of
opening and closing a process-permanent file if the logical name “SYS$OUTPUT” is specified.

If an image is run directly as a subprocess or as a detached process, there is no CLI present to perform
this function. In that case, the error status LIB$_NOCLI is returned.

See the VSI OpenVMS DCL Dictionary for a description of the DCL command DEASSIGN.

133

Chapter 2. LIB$ Reference

Condition Values Returned
SS$_ACCVIO Access violation. The logical name could not be read.
SS$_IVLOGNAM Invalid logical name. The logical name contained illegal characters

or more than 255 characters.
SS$_IVLOGTAB Invalid logical name table
SS$_NOLOGNAM No logical name match. The logical name was not defined as a

supervisor-mode process logical name.
SS$_NOPRIV No privilege for attempted operation.
SS$_NORMAL Routine successfully completed.
SS$_TOOMANYLNAM Logical name translation exceeded allowed depth.
LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in

its CLASS field.
LIB$_NOCLI No CLI present to perform function. The calling process did not

have a CLI to perform the function, or the CLI did not support the
request type. Note that an image run as a subprocess or detached
process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status that was
not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL command language
interpreter, please report the problem to your VSI support
representative.

LIB$DELETE_SYMBOL
LIB$DELETE_SYMBOL — The Delete CLI Symbol routine requests the calling process's command
language interpreter (CLI) to delete an existing CLI symbol.

Format
LIB$DELETE_SYMBOL symbol [,table-type-indicator]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
symbol

OpenVMS usage: char_string
type: character string

134

Chapter 2. LIB$ Reference

access: read only
mechanism: by descriptor

Name of the symbol to be deleted by LIB$DELETE_SYMBOL. The symbol argument is the
address of a descriptor pointing to this symbol string. The symbol name is converted to uppercase, and
trailing blanks are removed before use.

Symbol must begin with a letter, a digit, a dollar sign ($), a hyphen (-), or an underscore (_). The
maximum length of symbol is 255 characters.

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Indicator of the table that contains the symbol to be deleted. The table-type-indicator
argument is the address of a signed longword integer that is this table indicator.

If table-type-indicator is omitted, the local symbol table is used. The following are possible
values for the table-type-indicator argument:

Symbolic Name Value Table Used
LIB$K_CLI_LOCAL_SYM 1 Local symbol table
LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

Description
LIB$DELETE_SYMBOL is supported for use with the DCL CLI. The error status LIB$_NOCLI is
returned if LIB$DELETE_SYMBOL is used with the MCR CLI or called from an image run directly
as a subprocess or as a detached process.

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined in symbol libraries
supplied by VSI (macro or module name $LIBCLIDEF) and as global symbols.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to VSI.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVARG Invalid argument. The value of table-type-indicator was
invalid.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

135

Chapter 2. LIB$ Reference

LIB$_INVSYMNAM Invalid symbol name. The symbol name contained more than 255
characters or did not begin with a letter, a digit, a dollar sign, a
hyphen, or an underscore.

LIB$_NOCLI No CLI present to perform the function. The calling process
did not have a CLI to perform the function, or the CLI did not
support the request type. Note that an image run as a subprocess or
detached process does not have a CLI.

LIB$_NOSUCHSYM No such symbol. The symbol was not defined.
LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status that was

not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL command language
interpreter, please report the problem to your VSI support
representative.

LIB$DELETE_VM_ZONE
LIB$DELETE_VM_ZONE — The Delete Virtual Memory Zone routine deletes a zone from the 32-
bit virtual address space and returns all pages on VAX systems or pagelets on Alpha and I64 systems
owned by the zone to the processwide 32-bit page pool. No support for arguments passed by 64-bit
address reference or for use of 64-bit descriptors, if applicable, is planned for this routine.

Format
LIB$DELETE_VM_ZONE zone-id

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
zone-id

OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a longword that contains the identifier of a zone
created by a previous call to LIB$CREATE_VM_ZONE or LIB$CREATE_USER_VM_ZONE.

Description
LIB$DELETE_VM_ZONE deletes a zone and returns all pages on VAX systems or pagelets on Alpha
and I64 systems owned by the zone to the processwide pool managed by LIB$GET_VM_PAGE.

136

Chapter 2. LIB$ Reference

The pages or pagelets are then available for reallocation by later calls to LIB$GET_VM or LIB
$GET_VM_PAGE.

It takes less time to free memory in a single operation by calling LIB$DELETE_VM_ZONE than to
individually account for and free every block of memory that was allocated by calling LIB$GET_VM.

You must ensure that your program is no longer using any of the memory in the zone before you call
LIB$DELETE_VM_ZONE. Your program must not do any further operations on the zone after you
call LIB$DELETE_VM_ZONE.

If you specified deallocation filling when you created the zone, LIB$DELETE_VM_ZONE will fill
all of the allocated blocks that are freed.

If the zone you are deleting was created using the LIB$CREATE_USER_VM_ZONE routine, then
you must have an appropriate action routine for the delete operation. That is, in your call to LIB
$CREATE_USER_VM_ZONE, you must have specified a user-delete-procedure.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR An invalid zone-id argument or a corrupted zone.

LIB$DELETE_VM_ZONE_64
LIB$DELETE_VM_ZONE_64 — The Delete Virtual Memory Zone routine deletes a zone from the
64-bit virtual address space and returns all Alpha and I64 system pagelets owned by the zone to the
processwide 64-bit page pool.

Format
LIB$DELETE_VM_ZONE_64 zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: read only

137

Chapter 2. LIB$ Reference

mechanism: by reference

Zone identifier. The zone-id is the address of a quadword that contains the identifier
of a zone created by a previous call to LIB$CREATE_VM_ZONE_64 or LIB
$CREATE_USER_VM_ZONE_64.

Description
LIB$DELETE_VM_ZONE_64 deletes a zone and returns all pagelets on Alpha and I64 systems
owned by the zone to the processwide pool managed by LIB$GET_VM_PAGE_64. The pagelets are
then available for reallocation by later calls to LIB$GET_VM_64 or LIB$GET_VM_PAGE_64.

It takes less time to free memory in a single operation by calling LIB$DELETE_ VM_ZONE_64
than to individually account for and free every block of memory that was allocated by calling LIB
$GET_VM_64.

You must ensure that your program is no longer using any of the memory in the zone before you call
LIB$DELETE_VM_ZONE_64. Your program must not do any further operations on the zone after
you call LIB$DELETE_VM_ZONE_64.

If you specified deallocation filling when you created the zone, LIB$DELETE_ VM_ZONE_64 will
fill all of the allocated blocks that are freed.

If the zone you are deleting was created using the LIB$CREATE_USER_VM_ ZONE_64 routine,
then you must have an appropriate action routine for the delete operation. That is, in your call to LIB
$CREATE_USER_VM_ZONE_64, you must have specified a user-delete-procedure.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR An invalid zone-id argument or a corrupted zone.

LIB$DIGIT_SEP
LIB$DIGIT_SEP — The Get Digit Separator Symbol routine returns the system's digit separator
symbol.

Format
LIB$DIGIT_SEP digit-separator-string [,resultant-length]

Returned

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

138

Chapter 2. LIB$ Reference

Arguments
digit-separator-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Digit separator symbol returned by LIB$DIGIT_SEP. The digit-separator-string argument
is the address of a descriptor pointing to the digit separator.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into digit-separator-string, not counting padding in the
case of a fixed-length string. The resultant-length argument is the address of an unsigned
word containing the length of the digit separator symbol. If the input string is truncated to the size
specified in the digit-separator-string descriptor, resultant-length is set to this
size. Therefore, resultant-length can always be used by the calling program to access a valid
substring of digit-separator-string.

Description
LIB$DIGIT_SEP returns the symbol that is used to separate groups of three digits in the integer part
of a number, for readability. A common digit separator is a comma (,) as in 3,006,854.

LIB$DIGIT_SEP attempts to translate the logical name SYS$DIGIT_SEP as a process, group, or
system logical name. If the translation fails, LIB$DIGIT_SEP returns a comma (,), the United States
digit separator. If the translation succeeds, the text produced is returned. Thus, a system manager
can define SYS$DIGIT_SEP as a systemwide logical name to provide a default for all users, and an
individual user with a special need can define SYS$DIGIT_SEP as a process logical name to override
the default symbol. For example, you may want to use the European digit separator, the period (.).

BASIC implicitly uses LIB$DIGIT_SEP.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to VSI.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

139

Chapter 2. LIB$ Reference

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$_STRTRU Successfully completed, but the digit separator string was
truncated.

Example
PROGRAM DIGIT_SEP(INPUT, OUTPUT);

{+}
{ This program uses LIB$DIGIT_SEP to return current
{ value of SYS$DIGIT_SEP.
{-}

routine LIB$DIGIT_SEP(%DESCR DIGIT_SEPSTR : VARYING [A]
 OF CHAR; %REF OUT_LEN : INTEGER); EXTERN;

VAR
 SEPARATOR : VARYING [256] OF CHAR;
 LENGTH : INTEGER;

BEGIN
 LIB$DIGIT_SEP(SEPARATOR, LENGTH);
 WRITELN(’104’,SEPARATOR,’567’,SEPARATOR,’934’);
END.

This Pascal example demonstrates how to use LIB$DIGIT_SEP. The output generated by this
program is as follows:

104,567,934

LIB$DISABLE_CTRL
LIB$DISABLE_CTRL — The Disable CLI Interception of Control Characters routine requests the
calling process's command language interpreter (CLI) to not intercept the selected control characters
when they are entered during an interactive terminal session. LIB$DISABLE_CTRL provides the
same function as the DCL command SET NOCONTROL.

Format
LIB$DISABLE_CTRL disable-mask [,old-mask]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
disable-mask

140

Chapter 2. LIB$ Reference

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask indicating which control characters are not to be intercepted. The disable-mask
argument is the address of an unsigned longword containing this bit mask.

Each of the 32 bits corresponds to one of the 32 possible control characters. If a bit is set, the
corresponding control character is no longer intercepted by the CLI. Currently, only bits 20 and 25,
corresponding to Ctrl/T and Ctrl/Y, are recognized.

The following mask is defined in symbol libraries supplied by VSI to specify the value of disable-
mask:

Symbol Hex Value Function
LIB$M_CLI_CTRLT %X ’00100000 ’ Disables Ctrl/T
LIB$M_CLI_CTRLY %X ’02000000 ’ Disables Ctrl/Y

If a set bit does not correspond to a character that the CLI can intercept, LIB$DISABLE_CTRL
returns an error.

old-mask

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

Previous bit mask. The old-mask argument is the address of an unsigned longword into which LIB
$DISABLE_CTRL writes the old bit mask. The old bit mask is of the same form as disable-mask
and indicates those control characters that were previously enabled. It may therefore be given to LIB
$ENABLE_CTRL to reinstate the previous condition.

Description
The DCL and MCR CLIs can intercept the Ctrl/Y control character. The DCL CLI can intercept
the Ctrl/T character. See the VSI OpenVMS DCL Dictionary for information on how the DCL CLI
processes control characters.

LIB$DISABLE_CTRL is supported for use with the DCL and MCR CLIs. If an image is run directly
as a subprocess or as a detached process, there is no CLI present to perform this function. In those
cases, LIB$DISABLE_CTRL returns the error status LIB$_NOCLI.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

141

Chapter 2. LIB$ Reference

LIB$_INVARG Invalid argument. A bit in disable-mask was set that did not
correspond to a control character supported by the CLI.

LIB$_NOCLI No CLI present. Either the calling process did not have a CLI to
perform the function, or the CLI did not support the request type.
Note that an image run as a subprocess or detached process does
not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status that was
not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL or MCR CLIs, please
report the problem to your VSI support representative.

LIB$DO_COMMAND
LIB$DO_COMMAND — The Execute Command routine stops program execution and directs
the command language interpreter (CLI) to execute a command that you supply as the argument.
If successful, LIB$DO_COMMAND does not return control to the calling program. Instead, LIB
$DO_COMMAND begins execution of the specified command. If you want control to return to the
caller, use LIB$SPAWN instead.

Format
LIB$DO_COMMAND command-string

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
command-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Text of the command that LIB$DO_COMMAND executes. The command-string argument is the
address of a descriptor pointing to the command text. The maximum length of the command is 255
characters.

Description
LIB$DO_COMMAND terminates your current image and then executes the contents of command-
string as a command. The command is parsed using normal DCL rules.

142

Chapter 2. LIB$ Reference

LIB$DO_COMMAND is especially useful when you want to execute a CLI command after your
program has finished executing. For example, you could use the routine to execute a SUBMIT or
PRINT command to handle a file that your program has created.

Because of the following restrictions on LIB$DO_COMMAND, you should be careful when you
incorporate it in your program:

• During the call to LIB$DO_COMMAND, the current image exits and control cannot return to it.

• The text of the command is passed to the current command language interpreter. Because you can
define your own CLI in addition to DCL and MCR, you must make sure that the command will be
handled by the intended CLI.

• If LIB$DO_COMMAND is called from an image run directly as a subprocess or detached
process, it will not execute correctly, because no CLI is associated with a subprocess.

LIB$DO_COMMAND is supported for use with the DCL and MCR CLIs. If an image is run directly
as a subprocess or as a detached process, there is no CLI present to perform this function. In those
cases, the error status LIB$_NOCLI is returned. Note that the command can execute an indirect file
using the at sign (@) feature of DCL.

Condition Values Returned

LIB$_INVARG Invalid argument. command-string was more than 255
characters.

LIB$_NOCLI No CLI present. The calling process did not have a CLI to perform
the function, or the CLI did not support the request type. Note that
an image run as a subprocess or detached process does not have a
CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status that was
not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL or MCR CLIs, please
report the problem to your VSI support representative.

Example
PROGRAM DO_COMMAND(INPUT, OUTPUT);

{+}
{ This example uses LIB$DO_COMMAND to execute
{ any DCL command that is entered by the user
{ at the prompt.
{-}

PROCEDURE LIB$DO_COMMAND(CMDTXT : VARYING [A] OF CHAR);
 EXTERN;

VAR
 COMMAND : VARYING [256] OF CHAR;

BEGIN
 WRITELN(’ENTER THE COMMAND YOU WANT TO EXECUTE: ’);
 READLN(COMMAND);

143

Chapter 2. LIB$ Reference

 LIB$DO_COMMAND(COMMAND);
END.

This Pascal program shows how to call LIB$DO_COMMAND. An example of the output of this
program is as follows:

$ RUN DO_COMMAND
ENTER THE COMMAND YOU WANT TO EXECUTE: SHOW TIME
 30-MAY-2000 14:07:28

LIB$EDIV
LIB$EDIV — The Extended-Precision Divide routine performs extended-precision division.
LIB$EDIV makes the VAX EDIV instruction available as a callable routine. On Alpha systems,
OpenVMS Alpha instructions perform the equivalent operation.

Format
LIB$EDIV longword-integer-divisor ,quadword-integer-dividend ,longword-integer-
quotient ,remainder

Returned

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
longword-integer-divisor

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Divisor. The longword-integer-divisor argument is the address of a signed longword integer
containing the divisor.

quadword-integer-dividend

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

144

Chapter 2. LIB$ Reference

Dividend. The quadword-integer-dividend argument is the address of a signed quadword
integer containing the dividend.

longword-integer-quotient

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Quotient. The longword-integer-quotient argument is the address of a signed longword
integer containing the quotient.

remainder

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Remainder. The remainder argument is the address of a signed longword integer containing the
remainder.

Condition Value Returned

SS$_NORMAL Normal successful operation.
SS$_INTDIV Integer divide by zero. The quotient is replaced by bits 31:0 of the

dividend, and the remainder is replaced by zero.
SS$_INTOVF Integer overflow. The quotient is replaced by bits 31:0 of the

dividend, and the remainder is replaced by zero.

Example
C+
C This Fortran program demonstrates how to use LIB$EDIV.
C-

 INTEGER DIVISOR,DIVIDEND(2),QUOTIENT,REMAINDER

C+
C Find the quotient and remainder of 4600387192 divided by 4096.
C Because 4600387192 is too large to store as a longword, use LIB$EDIV.
C-

 DIVISOR= 4096

C+
C The dividend must be represented as a quadword. To do this use a vector
C of length 2. The first element is the low-order longword, and the second
C element is the high-order longword.

145

Chapter 2. LIB$ Reference

C Now, 4600387192 = ’00000000112345678’x. So,
C-

DIVIDEND(1) = ’12345678’X
DIVIDEND(2) = ’00000001’X

C+
C Compute the quotient and remainder of 4600387192 divided by 4096.
C-

 RETURN = LIB$EDIV(DIVISOR,DIVIDEND,QUOTIENT,REMAINDER)
 TYPE *,’The longword integer quotient of 4600387192/4096 is:’
 TYPE *,’ ’,QUOTIENT
 TYPE *,’The longword integer remainder of 4600387192/4096 is:’
 TYPE *,’ ’, REMAINDER
 END

This Fortran example demonstrates how to call LIB$EDIV. The output generated by this program is as
follows:

 The longword integer quotient of 4600387192/4096 is:
 1123141
 The longword integer remainder of 4600387192/4096 is:
 1656

LIB$EMODD
LIB$EMODD — The Extended Multiply and Integerize routine (D-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of D-floating arguments. On Alpha
and I64 systems, D-floating-point values are not supported in full precision in native OpenVMS
Alpha and I64 programs. They are precise to 56 bits on VAX systems, 53 or 56 bits in translated VAX
images, and 53 bits in native OpenVMS Alpha and I64 programs.

Format
LIB$EMODD floating-point-multiplier ,multiplier-extension ,floating-point-
multiplicand ,integer-portion ,fractional-portion

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
floating-point-multiplier

OpenVMS usage: floating_point
type: D_floating

146

Chapter 2. LIB$ Reference

access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a D-floating number.

multiplier-extension

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument is an unsigned byte.

floating-point-multiplicand

OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a D-floating number.

integer-portion

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address of a signed longword
integer containing the integer portion of the result.

fractional-portion

OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a D-floating number.

Description
The floating-point multiplier extension operand (second operand) is concatenated with the floating-
point multiplier (first operand) to gain x additional low-order fraction bits. The multiplicand is

147

Chapter 2. LIB$ Reference

multiplied by the extended multiplier. After multiplication, the integer portion is extracted, and a y-bit
floating-point number is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a fraction field of y bits.
With respect to the result as the sum of an integer and fraction of the same sign, the integer operand is
replaced by the integer part of the result and the fraction operand is replaced by the rounded fractional
part of the result.

The values of x and y are as follows:

Routine x Bits y
LIB$EMODD 8 7:0 64

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction operands are replaced

by zero (0).
SS$_INTOVF Integer overflow. The integer operand is replaced by the low-

order bits of the true result. Floating overflow is indicated by SS
$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction operands are
unaffected.

LIB$EMODF
LIB$EMODF — The Extended Multiply and Integerize routine (F-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of F-floating arguments.

Format
LIB$EMODF floating-point-multiplier ,multiplier-extension ,floating-point-
multiplicand ,integer-portion ,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
floating-point-multiplier

OpenVMS usage: floating_point

148

Chapter 2. LIB$ Reference

type: F_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an F-floating number
containing the number.

multiplier-extension

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument is the address of an
unsigned byte containing these multiplier extension bits.

floating-point-multiplicand

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an F-floating number.

integer-portion

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address of a signed longword
integer containing the integer portion of the result.

fractional-portion

OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the address of an F-floating
number containing the fractional portion of the result.

149

Chapter 2. LIB$ Reference

Description
LIB$EMODF allows higher-level language users to perform accurate range reduction of F-floating
arguments.

The floating-point multiplier-extension operand (second operand) is concatenated with
the floating-point-multiplier (first operand) to gain x additional low-order fraction bits.
The multiplicand is multiplied by the extended multiplier. After multiplication, the integer portion
is extracted and a y-bit floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a fraction field of y bits.
With respect to the result as the sum of an integer and fraction of the same sign, the integer operand is
replaced by the integer part of the result and the fraction operand is replaced by the rounded fractional
part of the result.

The values of x and y are as follows:

Routine x Bits y
LIB$EMODF 8 7:0 32

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction operands are replaced

by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced by the low-

order bits of the true result. Floating overflow is indicated by SS
$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction operands are
unaffected.

LIB$EMODG
LIB$EMODG — The Extended Multiply and Integerize routine (G-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of G-floating arguments.

Format
LIB$EMODG floating-point-multiplier ,multiplier-extension ,floating-point-
multiplicand ,integer-portion ,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only

150

Chapter 2. LIB$ Reference

mechanism: by reference

Arguments
floating-point-multiplier

OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is a G-floating number.

multiplier-extension

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument is an
unsigned word.

floating-point-multiplicand

OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is a G-floating number.

integer-portion

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address of a signed
longword integer containing the integer portion of the result.

fractional-portion

OpenVMS usage: floating_point
type: G_floating

151

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is a G-floating number.

Description
The floating-point multiplier extension operand (second operand) is concatenated with the floating-
point multiplier (first operand) to gain x additional low-order fraction bits. The multiplicand is
multiplied by the extended multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a fraction field of y bits.
With respect to the result as the sum of an integer and fraction of the same sign, the integer operand is
replaced by the integer part of the result and the fraction operand is replaced by the rounded fractional
part of the result.

The values of x and y are as follows:

Routine x Bits y
LIB$EMODG 11 15:5 64

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction operands are replaced

by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced by the low-

order bits of the true result. Floating overflow is indicated by SS
$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction operands are
unaffected.

LIB$EMODH
LIB$EMODH — On OpenVMS VAX systems, the Extended Multiply and Integerize routine
(HFloating- Point Values) allows higher-level language users to perform accurate range reduction
of H-floating arguments. This routine is not available to native OpenVMS Alpha programs but is
available to translated VAX images.

Format
LIB$EMODH floating-point-multiplier ,multiplier-extension ,floating-point-
multiplicand ,integer-portion ,fractional-portion

Returned
OpenVMS usage: cond_value

152

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Arguments
floating-point-multiplier

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is an H-floating number.

multiplier-extension

OpenVMS usage: word_unsigned
type: word (signed)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument is an
unsigned word.

floating-point-multiplicand

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an H-floating number.

integer portion

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address of a signed
longword integer containing the integer portion of the result.

fractional-portion

OpenVMS usage: floating_point

153

Chapter 2. LIB$ Reference

type: H_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is an H-floating number.

Description
The floating-point multiplier extension operand (second operand) is concatenated with the floating-
point multiplier (first operand) to gain x additional low-order fraction bits. The multiplicand is
multiplied by the extended multiplier. After multiplication, the integer portion is extracted and a y-bit
floating-point number is formed from the fractional part of the product by truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a fraction field of y bits.
With respect to the result as the sum of an integer and fraction of the same sign, the integer operand is
replaced by the integer part of the result and the fraction operand is replaced by the rounded fractional
part of the result.

The values of x and y are as follows:

Routine x Bits y
LIB$EMODH 15 15:1 128

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction operands are replaced

by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced by the low-

order bits of the true result. Floating overflow is indicated by SS
$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction operands are
unaffected.

LIB$EMODF
LIB$EMODF — The Extended Multiply and Integerize routine (F-Floating-Point Values) allows
higher-level language users to perform accurate range reduction of F-floating arguments.

Format
LIB$EMODF floating-point-multiplier ,multiplier-extension ,floating-point-
multiplicand ,integer-portion ,fractional-portion

Returns

OpenVMS usage: cond_value

154

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Arguments
floating-point-multiplier

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an F-floating
number containing the number.

multiplier-extension

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument is the address
of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an F-floating number.

integer-portion

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address of a signed
longword integer containing the integer portion of the result.

155

Chapter 2. LIB$ Reference

fractional-portion

OpenVMS usage: floating_point
type: F_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the address of an F-
floating number containing the fractional portion of the result.

Description
LIB$EMODF allows higher-level language users to perform accurate range reduction of F-floating
arguments.

The floating-point multiplier-extension operand (second operand) is concatenated with
the floating-point-multiplier (first operand) to gain x additional low-order fraction bits.
The multiplicand is multiplied by the extended multiplier. After multiplication, the integer portion
is extracted and a y-bit floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a fraction field of y bits.
With respect to the result as the sum of an integer and fraction of the same sign, the integer operand is
replaced by the integer part of the result and the fraction operand is replaced by the rounded fractional
part of the result.

The values of x and y are as follows:

Routine x Bits y
LIB$EMODF 8 7:0 32

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction operands are replaced

by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced by the low-

order bits of the true result. Floating overflow is indicated by SS
$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction operands are
unaffected.

LIB$EMODT
LIB$EMODT — The Extended Multiply and Integerize routine (IEEE T-Floating-Point Values)
allows higher-level language users to perform accurate range reduction of IEEE T-floating arguments.

156

Chapter 2. LIB$ Reference

Format
LIB$EMODT floating-point-multiplier ,multiplier-extension ,floating-point-
multiplicand ,integer-portion ,fractional-portion

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
floating-point-multiplier

OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by reference

The multiplier. The floating-point-multiplier argument is the address of an IEEE T-
floating number containing the number.

multiplier-extension

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The left-justified multiplier-extension bits. The multiplier-extension argument is the address
of an unsigned byte containing these multiplier extension bits.

floating-point-multiplicand

OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by reference

The multiplicand. The floating-point-multiplicand argument is an IEEE T-floating number.

integer-portion

157

Chapter 2. LIB$ Reference

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

The integer portion of the result. The integer-portion argument is the address of a signed
longword integer containing the integer portion of the result.

fractional-portion

OpenVMS usage: floating_point
type: IEEE T_floating
access: write only
mechanism: by reference

The fractional portion of the result. The fractional-portion argument is the address of an
IEEE T-floating number containing the fractional portion of the result.

Description
LIB$EMODT allows higher-level language users to perform accurate range reduction of IEEE T-
floating arguments.

The floating-point multiplier-extension operand (second operand) is concatenated with
the floating-point-multiplier (first operand) to gain x additional low-order fraction bits.
The multiplicand is multiplied by the extended multiplier. After multiplication, the integer portion
is extracted and a y-bit floating-point number is formed from the fractional part of the product by
truncating extra bits.

The multiplication yields a result equivalent to the exact product truncated to a fraction field of y bits.
With respect to the result as the sum of an integer and fraction of the same sign, the integer operand is
replaced by the integer part of the result and the fraction operand is replaced by the rounded fractional
part of the result.

Routine x Bites y
LIB$EMODT 11 11:0 64

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_FLTUND Floating underflow. The integer and fraction operands are replaced

by zero.
SS$_INTOVF Integer overflow. The integer operand is replaced by the low-

order bits of the true result. Floating overflow is indicated by SS
$_INTOVF also.

SS$_ROPRAND Reserved operand. The integer and fraction operands are
unaffected.

158

Chapter 2. LIB$ Reference

LIB$EMUL
LIB$EMUL — The Extended-Precision Multiply routine performs extended-precision multiplication.
LIB$EMUL makes the VAX EMUL instruction available as a callable routine. On Alpha systems,
OpenVMS Alpha instructions perform the equivalent operation.

Format
LIB$EMUL longword-integer-multiplier ,longword-integer-multiplicand ,addend ,product

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by reference

Arguments
longword-integer-multiplier

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Multiplier used by LIB$EMUL in the extended-precision multiplication. The longword-
integer-multiplier argument is the address of a signed longword integer containing the
multiplier.

longword-integer-multiplicand

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Multiplicand used by LIB$EMUL in the extended-precision multiplication. The longword-
integer-multiplicand argument is the address of a signed longword integer containing the
multiplicand.

addend

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only

159

Chapter 2. LIB$ Reference

mechanism: by reference

Addend used by LIB$EMUL in the extended-precision multiplication. The addend argument is the
address of a signed longword integer containing the addend.

product

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: write only
mechanism: by reference

Product of the extended-precision multiplication. The product argument is the address of a signed
quadword integer into which LIB$EMUL writes the product.

Description
The multiplicand argument is multiplied by the multiplier argument giving a double-length result. The
addend argument is sign-extended to double-length and added to the result. LIB$EMUL then writes
the result into the product argument.

Condition Values Returned
SS$_NORMAL Routine successfully completed.

Example
 INTEGER MULT1,MULT2,ADDEND,PRODUCT(2)

C+
C Find the extended precision multiplication of 268435456 times 4096.
C That is, find the extended precision product of 2**28 times 2**12.
C Since 268435456 times 4096 is 2**40, a quadword value is needed for
C the calculation: use LIB$EMUL.
C-

 MULT1= 4096
 MULT2 = 268435456
 APPEND = 0

C+
C Compute 268435456*4096.
C Note that product will be stored as a quadword. This value will be stored
C in the 2 dimensional vector PRODUCT. The first element of PRODUCT will
C contain the low order bits, while the second element will contain the
 high
C order bits.
C-

 RETURN= LIB$EMUL(MULT1,MULT2,APPEND,PRODUCT)
 TYPE *,’PRODUCT(2) =’,PRODUCT(2),’ and PRODUCT(1) = ’,PRODUCT(1)
 TYPE *,’ ’
 TYPE *,’Note that 256 and 0 represent the hexadecimal value’

160

Chapter 2. LIB$ Reference

 type *,14H’10000000000’x,’, which in turn, represents 2**40.’
 END

This Fortran program demonstrates how to use LIB$EMUL. The output generated by this program is
as follows:

 PRODUCT(2) = 256 and PRODUCT(1) = 0

Note that 256 and 0 represent the hexadecimal value ’10000000000 ’x, which in turn represents 2 40.

LIB$ENABLE_CTRL
LIB$ENABLE_CTRL — The Enable CLI Interception of Control Characters routine requests the
calling process's command language interpreter (CLI) to resume interception of the selected control
characters when they are typed during an interactive terminal session. LIB$ENABLE_CTRL provides
the same function as the DCL command SET CONTROL.

Format
LIB$ENABLE_CTRL enable-mask [,old-mask]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
enable-mask

OpenVMS usage: enable_mask
type: longword (unsigned)
access: write only
mechanism: by reference

Bit mask indicating for which control characters LIB$ENABLE_CTRL is to enable interception. The
enable-mask argument is the address of an unsigned longword containing this bit mask. Each of
the 32 bits corresponds to one of the 32 possible control characters. If a bit is set, the corresponding
control character is intercepted by the CLI. Currently, only bits 20 and 25, corresponding to Ctrl/T and
Ctrl/Y, are recognized.

The following mask is defined in symbol libraries supplied by VSI to specify the value of enable-
mask:

Symbol Hex Value Function
LIB$M_CLI_CTRLT %X ’00100000 ’ Enables Ctrl/T

161

Chapter 2. LIB$ Reference

Symbol Hex Value Function
LIB$M_CLI_CTRLY %X ’02000000 ’ Enables Ctrl/Y

If a set bit does not correspond to a character that the CLI can intercept, an error is returned.

old-mask

OpenVMS usage: mask_longword
type: longword (unsigned)
access: write only
mechanism: by reference

The following mask is defined in symbol libraries supplied by VSI to specify the value of enable-
mask:

Symbol Hex Value Function
LIB$M_CLI_CTRLT %X ’00100000 ’ Enables Ctrl/T
LIB$M_CLI_CTRLY %X ’02000000 ’ Enables Ctrl/Y

If a set bit does not correspond to a character that the CLI can intercept, an error is returned. Previous
bit mask. The old-mask argument is the address of an unsigned longword containing the old bit
mask. The old bit mask is of the same form as enable-mask.

Description
LIB$ENABLE_CTRL provides the functions of the DCL command SET CONTROL. Normally,
Ctrl/Y interrupts the current command, command procedure, or image. After a call to LIB
$DISABLE_CTRL, Ctrl/Y is treated like Ctrl/U followed by a carriage return. LIB$ENABLE_CTRL
restores the normal operation of Ctrl/Y or Ctrl/T.

Both the DCL and MCR CLIs can intercept control characters. See the VSI OpenVMS DCL
Dictionary for information on how the CLI processes control characters.

LIB$ENABLE_CTRL is supported for use with the DCL or MCR CLIs.

If an image is run directly as a subprocess or as a detached process, there is no CLI present to perform
this function. In those cases, the error status LIB$_NOCLI is returned.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. A bit in enable-mask was set which did not

correspond to a control character supported by the CLI.
LIB$_NOCLI No CLI present. The calling process did not have a CLI to perform

the function, or the CLI did not support the request type. Note that
an image run as a subprocess or detached process does not have a
CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status which was
not recognized. This error may be caused by use of a nonstandard

162

Chapter 2. LIB$ Reference

CLI. If this error occurs while using the DCL or MCR CLIs, please
report the problem to your VSI support representative.

LIB$ESTABLISH
LIB$ESTABLISH — The Establish a Condition Handler routine moves the address of a condition
handling routine (which can be a user-written or a library routine) to longword 0 of the stack frame
of the caller of LIB$ESTABLISH. This routine is not available to native OpenVMS Alpha and I64
programs but is recognized and handled appropriately by most high-level language compilers. No
support for arguments passed by 64-bit address reference or for use of 64-bit descriptors, if applicable,
is planned for this routine.

Format
LIB$ESTABLISH new-handler

Returns

OpenVMS usage: routine
type: procedure value
access: write only
mechanism: by reference

Previous contents of SF$A_HANDLER (longword 0) of the caller’s stack frame; zero if no handler
existed.

Argument
new-handler

OpenVMS usage: procedure
type: procedure value
access: read only
mechanism: by value

Routine to be set up as the condition handler. The new-handler argument is the address of the
procedure value to this routine.

Description
LIB$ESTABLISH moves the address of a condition-handling routine to longword 0 of the stack frame
of the caller of LIB$ESTABLISH. This condition-handling routine then becomes the caller's condition
handler. LIB$ESTABLISH returns the previous contents of longword 0. This can either be the address
of the caller's previous condition handler or zero if no handler existed.

The new condition handler remains in effect for your routine until you call LIB$REVERT or until
control returns to the caller of the routine that called LIB$ESTABLISH. Once this happens, you must

163

Chapter 2. LIB$ Reference

call LIB$ESTABLISH again if the same (or a new) condition handler is to be associated with the
routine that called LIB$ESTABLISH.

LIB$ESTABLISH modifies the caller's stack frame.

LIB$ESTABLISH is provided primarily for use with languages without built-in error handling
facilities. Do not use LIB$ESTABLISH with languages that provide error handling, such as BASIC,
COBOL, Pascal, and PL/I. The language-support library for these languages depends on predefined
language-specific handlers, and use of LIB$ESTABLISH with these languages may adversely affect
the behavior of your program. See the language documentation for more information about how each
language handles errors.

In VAX MACRO, use the following instruction instead of calling LIB$ESTABLISH:

MOVAB HANDLER, (FP) ; set handler address
 ; in current stack frame

Condition Values Returned
None.

Example
C+
C This Fortran program demonstrates the
C use of LIB$ESTABLISH.
C
C This is the main program.
C-

 EXTERNAL
 LOG_HANDL
 CHARACTER TIMBUF
 OPEN (UNIT=99, FILE = ’ERRLOG’, STATUS = ’NEW’)
 CALL LIB$ESTABLISH (LOG_HANDL)
 CALL SYS$BINTIM (TIMBUF, TIMADR)

C+
C The rest of the main program would go here.
C-

 END

 INTEGER*4 FUNCTION LOG_HANDL (SIGARGS, MECHARGS)
 INTEGER*4 SIGARGS (*), MECHARGS (5)

C+
C This is the handler to journal any signaled error messages.
C-

 INCLUDE’($SSDEF)’
 EXTERNAL PUT_LINE
 LOG_HANDL = SS$_RESIGNAL
 CALL SYS$PUTMSG (SIGARGS, PUT_LINE,)
 RETURN
 END

164

Chapter 2. LIB$ Reference

C+
C This is the action subroutine.
C-

 LOGICAL*4 FUNCTION PUT_LINE (LINE)
 CHARACTER*(*)LINE
 PUT_LINE = .FALSE.
100 WRITE (99,200)LINE
200 FORMAT (A)
 RETURN
 END

In this Fortran example, the function log_handl is the condition handler for the program, and thus
receives control when an error occurs.

LIB$EXPAND_NODENAME
LIB$EXPAND_NODENAME — The Expand a Node Name to Its Full Name Equivalent routine
expands a node name to its full name equivalent. No support for arguments passed by 64-bit address
reference or for use of 64-bit descriptors, if applicable, is planned for this routine.

Format
LIB$EXPAND_NODENAME nodename, fullname [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by reference

Arguments
nodename

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Node name to be expanded. The nodename argument contains the address of a descriptor pointing to
this node-name string.

The error LIB$_INVARG is returned if nodename contains an invalid node name, points to a null
string, or contains more than 1024 characters. The error LIB$_INVSTRDES is returned if nodename
is an invalid descriptor.

fullname

165

Chapter 2. LIB$ Reference

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Expanded node name. The fullname argument contains the address of a descriptor pointing to the
expanded node-name string. LIB$EXPAND_NODENAME writes the expanded node-name string
into the buffer pointed to by the fullname descriptor.

The error LIB$_INVSTRDES is returned if fullname is an invalid descriptor.

The length field of the fullname descriptor is not updated unless fullname is a dynamic
descriptor with a length less than the resulting expanded full name. Refer to the VSI OpenVMS RTL
String Manipulation (STR$) Manual for dynamic string descriptor usage.

The fullname argument contains an unusable result when LIB$EXPAND_NODENAME returns in
error.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the expanded node name. The resultant-length argument is the address of an
unsigned word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB
$EXPAND_NODENAME returns in error.

Description
This routine expands the input node name to its full name equivalent. Input is validated against the
supported form of node names. The error LIB$_INVARG is returned if the input node name is invalid.

If the returned full name overflows the buffer pointed to by fullname, the returned full name
is truncated, and the alternate successful status LIB$_STRTRU is returned. The resultant-
length argument is set to the value of the length field of the fullname descriptor if this argument
is supplied.

If the length of the returned full name is less than or equal to the output buffer, the expanded full name
is returned in fullname. Resultant-length is set to the actual length of the expanded full
name if this argument is supplied.

In a DECnet environment, expanding a DECnet-Plus node name results in the error condition LIB
$_INVARG.

LIB$EXPAND_NODENAME uses the underlying network directory services to look up the full
name. In a DECnet-Plus for OpenVMS environment, LIB$EXPAND_NODENAME verifies the
existence of the expanded full name in the naming environment. If the expanded full name does not

166

Chapter 2. LIB$ Reference

exist in the naming environment, an error condition is returned from the underlying network services
and is propagated back to the caller of LIB$EXPAND_NODENAME.

It is recommended that applications use full names instead of the short form of full names whenever
possible. Because the short form of a full name is intended to be used only in a specific naming
environment, make sure the short form of a full name is expanded in the right naming environment to
avoid ambiguity. See LIB$COMPRESS_NODENAME for more information about where and when
to use the short form of a full name.

Any error resulting from calling the underlying network services is propagated and returned as
condition values in this routine.

LIB$EXPAND_NODENAME supports any string class for the nodename and fullname string
arguments.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are truncated in the

output buffer pointed to by the fullname descriptor.
LIB$_INVARG Invalid argument:

• nodename is invalid.

• nodename points to a null string.

• The length of the node name is more than 1024 characters.

• The expanded DECnet Phase V node name is invalid in a
DECnet for OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by RTL routine LIB$SCOPY_R_DX or DECnet service $IPC.

LIB$EXTV
LIB$EXTV — The Extract a Field and Sign-Extend routine returns a sign-extended longword field
that has been extracted from the specified variable bit field. LIB$EXTV makes the VAX EXTV
instruction available as a callable routine. On Alpha systems, OpenVMS Alpha instructions perform
the equivalent operation.

Format
LIB$EXTV position ,size ,base-address

Returns
OpenVMS usage: longword_signed
type: longword integer (signed)

167

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Field extracted by LIB$EXTV, sign-extended to a longword.

Arguments
position

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Position (relative to the base address) of the first bit in the field that LIB$EXTV extracts. The
position argument is the address of a signed longword integer containing the position.

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIB$EXTV extracts. The size argument is the address of an unsigned byte
containing the size. The maximum size is 32 bits.

base-address

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIB$EXTV extracts from the specified variable bit field. The base-
address argument is an unsigned longword containing the base address.

Description
The variable-length bit field is an OpenVMS data type used to store small integers packed together in
a larger data structure. It is often used to store single flag bits.

Three scalar attributes define a variable bit field:

• The base address is the address of a byte in memory that serves as a reference point for locating
the bit field.

• The bit position is a signed longword containing the displacement of the least significant bit of the
field with respect to bit 0 of the base address.

168

Chapter 2. LIB$ Reference

• The size is a byte integer indicating the size of the bit field in bits (in the range 0 ≤ size ≤ 32). That
is, a bit field can be no more than one longword in length.

A variable-length bit field has the following format. The area containing asterisks indicates the field.

Bit fields are zero-origin, which means that the routine regards the first bit in the field as being the
zero position.

Condition Value Returned

SS$_ROPRAND A reserved operand fault occurs if a size greater than 32 is
specified.

Example
SIGN_EXTEND: ROUTINE OPTIONS (MAIN);

DECLARE LIB$EXTV ENTRY
 (FIXED BINARY (31), /* Address of longword containing
 /* beginning bit position */
 FIXED BINARY (7), /* Address of byte containing size
 /* of field */
 FIXED BINARY (31)) /* Address of field */
 RETURNS (FIXED BINARY (31)); /* Return value */

DECLARE (VALUE, SMALL_INT) FIXED BINARY (31);

ON ENDFILE (SYSIN) STOP;

DO WHILE (’1’B); /* Loop continuously, until end of file */
 PUT SKIP(2);
 GET LIST (VALUE) OPTIONS (PROMPT (’Value: ’));
 SMALL_INT = LIB$EXTV (0, 4, VALUE); /* Extract and sign-extend
 /* first 4 bits */
 PUT SKIP LIST (VALUE, SMALL_INT);
 END;

END SIGN_EXTEND;

This PL/I program extracts a field and returns it sign-extended into a longword.

LIB$EXTZV
LIB$EXTZV — The Extract a Zero-Extended Field routine returns a longword zero-extended field
that has been extracted from the specified variable bit field. LIB$EXTZV makes the VAX EXTZV

169

Chapter 2. LIB$ Reference

instruction available as a callable routine. On Alpha systems, OpenVMS Alpha instructions perform
the equivalent operation.

Format
LIB$EXTZV position ,size ,base-address

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

Field extracted by LIB$EXTZV, zero-extended to a longword.

Arguments
position

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Position (relative to the base address) of the first bit in the field LIB$EXTZV extracts. The
position argument is the address of a signed longword integer containing the position.

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field LIB$EXTZV extracts. The size argument is the address of an unsigned byte
containing the size. The maximum size is 32 bits.

base-address

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

Base address of the bit field LIB$EXTZV extracts. The base-address argument is an unsigned
longword containing the base address.

170

Chapter 2. LIB$ Reference

Description
The variable-length bit field is an OpenVMS data type used to store small integers packed together in
a larger data structure. It is often used to store single flag bits.

Three scalar attributes define a variable bit field:

• The base address is the address of the byte in memory that serves as a reference point for locating
the bit field.

• The bit position is a signed longword containing the displacement of the least significant bit of the
field with respect to bit 0 of the base address.

• The size is a byte integer indicating the size of the bit field in bits (in the range 0 ≤ size ≤ 32). That
is, a bit field can be no more than one longword in length.

A variable-length bit field has the following format. The area containing asterisks indicates the field.

Bit fields are zero-origin fields, which means that the routine regards the first bit in the field as being
the zero position.

Condition Values Returned

SS$_ROPRAND A reserved operand fault occurs if a size greater than 32 is
specified.

LIB$FFx
LIB$FFx — The Find First Clear or Set Bit routines search the field specified by the start position,
size, and base for the first clear or set bit. LIB$FFC and LIB$FFS make the VAX FFC and VAX FFS
instructions available as callable routines.

Format
LIB$FFC position ,size ,base ,find-position

LIB$FFS position ,size ,base ,find-position

Returns

OpenVMS usage: cond_value

171

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Arguments
position

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Starting position, relative to the base address, of the bit field to be searched by LIB$FF x. The
position argument is the address of a signed longword integer containing the starting position.

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Number of bits to be searched by LIB$FFx. The size argument is the address of an unsigned byte
containing the size of the bit field to be searched. The maximum size is 32 bits.

base

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

The base argument is the address of the bit field that LIB$FF x searches.

find-position

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Bit position of the first bit in the specified state (clear or set), relative to the base address. The find-
position argument is the address of a signed longword integer into which LIB$FFC writes the
position of the first clear bit and into which LIB$FFS writes the position of the first set bit.

172

Chapter 2. LIB$ Reference

Description
LIB$FFC searches the field specified by the start position, size, and base for the first clear bit. LIB
$FFS searches the field for the first set bit.

If a bit in the specified state is found, LIB$FF x writes the position (relative to the base) of that bit into
find-position and returns a success status. If no bits are in the specified state or if size is zero,
LIB$FF x returns LIB$_NOTFOU and sets find-position to the starting position plus the size.

LIB$FF x regards the first bit in the field as being the zero position.

Condition Values Returned

SS$_NORMAL Routine successfully completed. A bit in the specified state was
found.

LIB$_NOTFOU A bit in the specified state was not found.

Condition Value Signaled

SS$_ROPRAND Reserved operand fault. A size greater than 32 was specified.

LIB$FID_TO_NAME
LIB$FID_TO_NAME — The Convert Device and File ID to File Specification routine converts a
disk device name and file identifier to a file specification.

Format
LIB$FID_TO_NAME device-name ,file-id ,filespec [,filespec-length] [,directory-id] [,acp-status]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by reference

Arguments
device-name

OpenVMS usage: char_string
type: character string
access: read only

173

Chapter 2. LIB$ Reference

mechanism: by descriptor

Device name to be converted. The device-name argument is the address of a descriptor pointing
to the device name. It must reference a disk device, and must contain 64 characters or less. LIB
$FID_TO_NAME obtains device-name from the NAM$T_DVI field of an OpenVMS RMS name
block.

file-id

OpenVMS usage: vector_word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference, array reference

Specifies the file identifier. The file-id argument is the address of an array of three words
containing the file identification. LIB$FID_TO_NAME obtains file-id from the NAM$W_FID
field of an OpenVMS RMS name block. The $FIDDEF macro defines the structure of file-id.

filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Receives the file specification. The filespec argument is the address of a descriptor pointing to the file
specification string. As of OpenVMS Version 7.2, the maximum file specification string that can be
returned is 4095 bytes on Alpha and I64 systems, and 510 bytes on VAX systems. On versions prior
to Version 7.2, the maximum is 510 bytes on both platforms. Refer to the Description section for more
information about the file specification returned.

filespec-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Receives the number of characters written into filespec, excluding padding in the case of a fixed-
length string. The optional filespec-length argument is the address of an unsigned word
containing the number of characters.

If the output string is truncated to the number of characters specified in filespec, then
filespec-length is set to that truncated size. Therefore, you can always use filespec-
length to access a valid substring of filespec.

directory-id

OpenVMS usage: vector_word_unsigned

174

Chapter 2. LIB$ Reference

type: word (unsigned)
access: read only
mechanism: by reference, array reference

Specifies a directory file identifier. The directory-id argument is the address of an array of
three words containing the directory file identifier. LIB$FID_TO_ NAME obtains this array from the
NAM$W_DID field of an OpenVMS RMS name block. The $FIDDEF macro defines the structure of
directory-id.

This parameter is relevant only for a structure level-1 disk on OpenVMS VAX systems. This
parameter is ignored on OpenVMS Alpha and I64 systems because level-1 disks are not supported on
OpenVMS Alpha and I64 systems.

acp-status

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

The status resulting from traversing the backward links. The optional acp-status argument is the
address of an unsigned longword containing the status.

Description
LIB$FID_TO_NAME converts a disk device name and file identifier to a file specification by
requesting the ACP file specification attribute.

On OpenVMS Alpha and I64 systems, if the file specification is longer than can be accommodated by
the filespec buffer, a directory in the path may be replaced by a DID abbreviation (see the Guide
to OpenVMS File Applications). If the file specification, even after DID abbreviation, is longer than
can be accommodated by the buffer, the file specification is truncated, and LIB$STRTRU is returned
as an alternate success status.

On OpenVMS VAX systems, if you use the LIB$FID_TO_NAME routine on a structure level 1 disk,
specify the directory-id argument to ensure proper operation of the routine.

LIB$FID_TO_NAME uses the directory backpointer stored in the file header. With files in SYS
$COMMON, the directory structure is duplicated because of some SET FILE/ENTERs of directory
names. If directory names have been renamed or the tree structure modified (which the OpenVMS
operating system does with the [SYCOMMON] tree), the file specification returned by this routine
may not be useful.

LIB$FID_TO_NAME stores the output arguments (filespec, filespec-length, and acp-
status) only if the routine successfully finishes.

Note

This routine calls LIB$GET_EF. Please read the note in the Description section of that routine.

175

Chapter 2. LIB$ Reference

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$STRTRU Output string truncated (qualified success).
LIB$_INVARG Required argument omitted, or device-name is longer than 64

characters.
LIB$_INVFILSPE The device-name argument does not reference a disk.

Any condition value returned by RTL routine LIB$ANALYZE_SDESC, or the $ASSIGN, $QIO, or
$DASSGN system services.

LIB$FILE_SCAN
LIB$FILE_SCAN — The File Scan routine searches an area, such as a directory, for all files
matching the file specification given and transfers program execution to the specified userwritten
routine. Wildcards are acceptable. An action routine is called for each file and/or error found. LIB
$FILE_SCAN allows the search sequence to continue even if an error occurs while processing a
particular file.

Format
LIB$FILE_SCAN fab ,user-success-procedure ,user-error-procedure [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
fab

OpenVMS usage: fab
type: unspecified
access: read only
mechanism: by reference

File Access Block (FAB) referencing a valid NAM block or NAML block. The fab argument is the
address of the FAB that contains the address and length of the file specification being searched for by
LIB$FILE_SCAN. On Alpha and I64 systems, NAML blocks support the use of file specifications
with a maximum length of NAML$C_MAXRSS. See the OpenVMS Record Management Services
Reference Manual for information on NAML blocks.

user-success-procedure

176

Chapter 2. LIB$ Reference

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$FILE_SCAN calls when a file is found. The success routine is
invoked with the FAB address that was passed to LIB$FILE_SCAN. The user context may be pased
to this routine using the FAB$L_CTX field in the FAB.

user-error-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$FILE_SCAN calls when it encounters an error. The error routine
is called with the FAB argument that was passed to LIB$FILE_SCAN.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Default file context used in processing file specifications for multiple input files. The context
argument is the address of a longword, which must be initialized to zero by your program before the
first call to LIB$FILE_SCAN. After the first call, LIB$FILE_SCAN maintains this longword. You
must not change the value of context in subsequent calls to LIB$FILE_SCAN.

Name blocks and file specification strings are allocated by LIB$FILE_SCAN, and context is used
to retain their addresses so they may be deallocated later. If the context argument is not passed,
unspecified portions of the file specification will be inherited from the previous file specification
processed, rather than from multiple input file specifications.

Description
LIB$FILE_SCAN is called with the address of a File Access Block (FAB) and calls an action routine
for each file found and/or error returned. LIB$FILE_SCAN allows the search sequence to continue
even if an error occurs while processing a particular file.

If this routine is called once for each file specification argument in a command line, portions of the
file specifications which are not specified by the user are inherited from the last files processed.

On Alpha and I64 systems, support for a file specification greater than 255 characters is provided by
the use of NAML blocks rather than NAM blocks. See the OpenVMS Record Management Services
Reference Manual for information on NAML blocks.

177

Chapter 2. LIB$ Reference

You must call LIB$FILE_SCAN_END before initiating a new sequence of calls to LIB$FILE_SCAN.

Condition Values Returned
Any condition value returned by the RMS Parse service.

LIB$FILE_SCAN_END
LIB$FILE_SCAN_END — The End-of-File Scan routine is called after each sequence of calls to
LIB$FILE_SCAN. LIB$FILE_SCAN_END deallocates any saved OpenVMS RMS context and/
or deallocates the virtual memory that had been allocated for holding the related file specification
information.

Format
LIB$FILE_SCAN_END [fab] [,context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
fab

OpenVMS usage: fab
type: unspecified
access: modify
mechanism: by reference

File access block (FAB) used with LIB$FILE_SCAN. The optional fab argument is the address of
the FAB that contains the address and length of the file specification.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Temporary default context used in LIB$FILE_SCAN. The optional context argument is the address
of a longword containing this temporary default context.

178

Chapter 2. LIB$ Reference

Description
Your program should call LIB$FILE_SCAN_END after each sequence of calls to LIB$FILE_SCAN.
The function that LIB$FILE_SCAN_END performs depends upon the arguments you specify. If you
specify fab, LIB$FILE_SCAN_END parses the null string to deallocate any saved RMS context. If
you specify context, LIB$FILE_SCAN_END deallocates any virtual memory that was allocated
for holding the related file specification information. If you specify both fab and context, LIB
$FILE_SCAN_END performs both functions. However, if you do not specify either argument, LIB
$FILE_SCAN_END does nothing.

If LIB$FILE_SCAN is directed to process the specifications for multiple input files, LIB
$FILE_SCAN_END is used to deallocate those saved file specifications. If LIB$FILE_SCAN_END
is called by your program after each sequence of calls to LIB$FILE_SCAN, it will prevent the
defaults from the previous call from affecting context value in the next call to LIB$FILE_SCAN. LIB
$FILE_SCAN_END does this by replacing the context value passed to it with a temporary context
value that your program passes to LIB$FILE_SCAN the next time it is called.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
RMS$_FAB The fab argument is not the address of a valid FAB.

LIB$FIND_FILE
LIB$FIND_FILE — The Find File routine is called with a file specification for which it searches. LIB
$FIND_FILE returns one file specification for each call. The file specification may contain wildcards.

Format
LIB$FIND_FILE filespec ,resultant-filespec ,context [,default-filespec] [,related-filespec]
[,status-value] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
filespec

OpenVMS usage: char_string
type: character string
access: read only

179

Chapter 2. LIB$ Reference

mechanism: by descriptor

File specification, which may contain wildcards, that LIB$FIND_FILE uses to search for the desired
file. The filespec argument is the address of a descriptor pointing to the file specification. If
running on Alpha or I64 and flag LIB$M_FIL_LONG_NAMES is set, the maximum length of a
file specification is specified by NAML$C_MAXRSS, otherwise the maximum length of a file
specification is 255 bytes.

The file specification used may also contain a search list logical name. If present, the search list
logical name elements can be used as accumulative to related file specifications, so that portions of
file specifications not specified by the user are inherited from previous file specifications.

resultant-filespec

OpenVMS usage: char_string
type: character string
access: modify
mechanism: by descriptor

Resultant file specification that LIB$FIND_FILE returns when it finds a file that matches the
specification in the filespec argument. The resultant-filespec argument is the address of
a descriptor pointing to the resultant file specification.

context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

A longword integer variable into which the routine stores a context value for use by future calls to
LIB$FIND_FILE or LIB$FIND_FILE_END. The context argument is an unsigned longword
integer containing the address of the context. This variable must be set to zero before the first
call to LIB$FIND_FILE. You can use the same context argument from one LIB$FIND_FILE
call to another provided you have not called LIB$FIND_FILE_END for that context first. LIB
$FIND_FILE uses this argument to retain the context when processing multiple input files. Portions
of file specifications that the user does not specify may be inherited from the last files processed
because the file contexts are retained in this argument. You must not change the value of context in
subsequent calls to LIB$FIND_FILE.

default-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification. The default-filespec argument is the address of a descriptor
pointing to the default file specification. See the VSI OpenVMS Record Management Services
Reference Manual for information about default file specifications.

180

Chapter 2. LIB$ Reference

related-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Related file specification containing the context of the last file processed. The related-filespec
argument is the address of a descriptor pointing to the related file specification.

The related file specification is useful when you are processing lists of file specifications. Unspecified
portions of the file specification are inherited from the last file processed. For more information on
related file specifications, see the VSI OpenVMS Record Management Services Reference Manual.

status-value

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

RMS secondary status value from a failing RMS operation. The status-value argument is an
unsigned longword containing the address of a longword-length buffer to receive the RMS secondary
status value (usually returned in the file access block field, FAB$L_STV).

flags

OpenVMS usage:
type: longword (unsigned)
access: read only
mechanism: by reference

User flags. The flags argument is the address of an unsigned longword containing the user flags.

The flag bits and their corresponding symbols are described in the following table:

Bit Symbol Description
0 LIB$M_FIL_NOWILD If set, LIB$FIND_FILE returns

an error if a wildcard character is
input.

1 LIB$M_FIL_MULTIPLE If set, this performs temporary
defaulting for multiple input
files and the related-
filespec argument is
ignored. See description of
context in LIB$FILE_SCAN.
Each time LIB$FIND_FILE

181

Chapter 2. LIB$ Reference

Bit Symbol Description
is called with a different file
specification, the specification
from the previous call is
automatically used as a related
file specification. This allows
parsing of the elements of
a search-list logical name
such as DISK2:[SMITH]
FIL1.TYP,FIL*2.TYP, and
so on. Use of this feature is
required to get the desired
defaulting with search
list logical name. LIB
$FIND_FILE_END must be
called between each command
line in interactive use or the
defaults from the previous
command line affect the current
file specification.

2 LIB$M_FIL_LONG_NAMES (Alpha and I64 only) If set, LIB
$FIND_FILE can process file
specifications with a maximum
length of NAML$C_MAXRSS.
If clear, LIB$FIND_FILE
can process file specifications
with a maximum length of 255
(default).

Description
LIB$FIND_FILE returns one file specification per call unless it fails to find the target file
specification. In this case, the routine returns the condition value RMS$_NMF (no more files). Each
successful call to LIB$FIND_FILE results in a new resultant-filespec.

When you call LIB$FIND_FILE repeatedly using the same context, filespec is saved only
if you set the MULTIPLE bit. If you specify a different filespec on your next call and set the
MULTIPLE bit, the file specification from the previous call defaults as the related file specification.

For each LIB$FIND_FILE call, RMS first applies the defaults from default-filespec and then
uses the defaults from related-filespec, if relevant. Default file specifications are used only
if components are missing from the filespec argument and the needed components are found in
default-filespec. The related-filespec argument is used when you process lists of file
specifications. Unspecified portions of the file specification are inherited from the last file processed.
This provides an extra level of file specification defaults. For additional information on related file
specifications and input file parsing, see the VSI OpenVMS Guide to OpenVMS File Applications.

The filespec argument can contain wildcard characters. LIB$FIND_FILE can be called repeatedly
using the same context argument until the error RMS$_NMF (no more files) is returned.

LIB$FIND_FILE searches for a certain wildcard file specification and returns all file specifications
that satisfy that wildcard file specification.

182

Chapter 2. LIB$ Reference

If you make multiple calls to LIB$FIND_FILE, be aware of the following behavior:

• If the NOWILD bit is not set and the file specification does not contain any wildcard characters,
LIB$FIND_FILE returns the appropriate file name on the first call and the condition value RMS
$_NMF on the next call.

• If the NOWILD bit is set and you use the same nonwildcard file specification, LIB$FIND_FILE
returns the file name on the first call as well as each subsequent call.

On Alpha and I64 systems, support for file specifications longer than 255 characters is provided only
when the LIB$M_FIL_LONG_NAMES flag is set in the flags argument. When this flag is set,
a NAML block (rather than a NAM block) is part of the context, and file specifications can have
a maximum length of NAML$C_MAXRSS. See the VSI OpenVMS Record Management Services
Reference Manual for information on NAML blocks.

You must call LIB$FIND_FILE_END before initiating a new sequence of calls to LIB$FIND_FILE
to properly deallocate all of the internal data structures that were allocated in the calls to LIB
$FIND_FILE. After you call LIB$FIND_FILE_END, the context value is no longer valid and cannot
be used on any subsequent LIB$FIND_FILE calls.

If the error RMS$_CHN is returned, RMS has no more channels to assign. There are two possible
reasons for this:

• You did not call LIB$FIND_FILE_END before initiating a new call with a context variable to LIB
$FIND_FILE. (This is the most common reason.)

• The system parameter CHANNELCNT is too low.

Condition Values Returned

RMS$_NORMAL Routine successfully completed.
LIB$_NOWILD A wildcard character was present in the file specification parsed,

and the wildcard flag bit was set to no wildcard. (This is actually
the SHR$_NOWILD error message after application of the LIB$
facility code.)

RMS$_CHN No more channels.
RMS$_NMF No more files.

Any condition value returned by RMS Parse and Search services, LIBGET_VM, LIBGET_VM_64,
LIB$FREE_VM, LIB$FREE_VM_64, LIB$SCOPY_R_DX, or LIB$SCOPY_R_DX_64.

LIB$FIND_FILE_END
LIB$FIND_FILE_END — The End of Find File routine is called once after each sequence of calls
to LIB$FIND_FILE. LIB$FIND_FILE_END deallocates any saved OpenVMS RMS context and
deallocates the virtual memory used to hold the allocated context block.

Format
LIB$FIND_FILE_END context

183

Chapter 2. LIB$ Reference

Returned

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
context

OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

Zero or the address of a FAB/NAM buffer from a previous call to LIB$FIND_FILE. The context
argument is the address of a longword that contains this context.

Description
LIB$FIND_FILE_END should be called by your program after each sequence of calls to LIB
$FIND_FILE. This will prevent the default values from the previous call from affecting the next file
specification.

LIB$FIND_FILE_END deallocates the context used in the last call to LIB$FIND_FILE so that the
context retained will not be used in subsequent calls to LIB$FIND_FILE. If LIB$FIND_FILE was
directed to process file specifications for multiple input files, the saved file specifications are also
deallocated.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
RMS$_FAB File access block argument is not the address of a valid FAB.

LIB$FIND_IMAGE_SYMBOL
LIB$FIND_IMAGE_SYMBOL — The Find Universal Symbol in Shareable Image File routine reads
universal symbols from the shareable image file. This routine then dynamically activates a shareable
image into the P0 address space of a process.

Format
LIB$FIND_IMAGE_SYMBOL filename ,symbol ,symbol-value [,image-name] [,flags]

184

Chapter 2. LIB$ Reference

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
filename

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the file for which LIB$FIND_IMAGE_SYMBOL is searching. The filename argument
is the address of a descriptor pointing to this file name string. This argument may contain only the file
name. File type cannot be indicated. If any file specification punctuation characters (:, [, <, ;, .) are
present, the error SS$_IVLOGNAM is returned.

You can specify a file specification for the image name with the optional image-name argument. If
you do not specify image-name, a default file specification of SYS$SHARE:.EXE is applied to the
file name. If the file is not in SYS$SHARE:.EXE, a logical name must be used to direct this routine
to locate the correct file. Only logical names defined in the system logical name table with the /EXEC
attribute will be considered while the image activator is processing a request from an image that was
installed with privileges. If the calling image was installed with privileges, the image being activated
and any shareable images or message sections it references must be installed as a known image with
the INSTALL utility. Running an image to which you have only Execute (not Read) access results in
the same restrictions on logical names and shareable images as does running a privileged image.

On VAX systems, the filename descriptor must be class D, S, or Z.

symbol

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Symbol for which LIB$FIND_IMAGE_SYMBOL is searching in the filename file. The symbol
argument is the address of a descriptor pointing to the symbol name string. The symbol name string
can be input in uppercase, lowercase, or mixed case letters.

symbol-value

OpenVMS usage: longword_signed

185

Chapter 2. LIB$ Reference

type: longword (signed)
access: write only
mechanism: by reference

Symbol value that LIB$FIND_IMAGE_SYMBOL has located. The symbol-value argument is the
address of a signed longword integer into which LIB$FIND_ IMAGE_SYMBOL returns the symbol
value. If the symbol is relocatable, the starting virtual address of the shareable image in memory is
added to the symbol value.

image-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Default file specification applied to the image name. The optional image-name argument is a string
used as the RMS default file specification when parsing filename as the primary filename. If
image-name is not supplied, then a default file specification of SYS$SHARE:.EXE is applied to the
image name.

On VAX systems, the image-name descriptor must be class D, S, or Z.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Control flags. The flags argument is the address of a longword integer that contains the control
flags.

Bit Value Description
0 Reserved to VSI
1 Reserved to VSI
2 Reserved to VSI
3 Reserved to VSI
4 LIB$M_FIS_MIXEDCASE Causes LIB$FIND_IMAGE_

SYMBOL to look for the
symbol without converting it to
uppercase.

This is an optional argument. If omitted, the default is 0. If omitted, or if LIB$M_FIS_MIXEDCASE
(bit 4) is 0, LIB$FIND_IMAGE_SYMBOL converts the specified symbol to uppercase before it is
used.

186

Chapter 2. LIB$ Reference

Description
The shareable image that LIB$FIND_IMAGE_SYMBOL activates must have been already linked
and must be position independent. You must have read access to the shareable image file to use this
routine.

LIB$FIND_IMAGE_SYMBOL writes the symbol value that it has located into the symbol-value
argument.

After the first call to LIB$FIND_IMAGE_SYMBOL for a particular image, successive calls for
that image are processed quickly. The image is activated only once and an in-memory database is
maintained. There is no way to deallocate this database, nor is there any supported method to remove
an activated image from the address space. All images are activated into P0 space.

LIB$FIND_IMAGE_SYMBOL locates the universal symbol in its database qualified by the file
name exactly as given in the filename argument. Therefore, a reference to a lexically different but
equivalent file name causes a new copy of the same shareable image to be loaded and searched. To
avoid this situation, always specify the desired file name in the same form.

To work properly with translated VAX images on Alpha and I64 systems, LIB
$FIND_IMAGE_SYMBOL may modify the name of the file being searched and may retry the
search if the first search failed. If called from a translated image, LIB$FIND_IMAGE_SYMBOL
appends ‘‘_TV’’ to the file name before searching. This locates the translated version of the image
being searched. If the search fails to find the file or the file does not define the symbol, LIB$FIND_
IMAGE_SYMBOL trys again with the unmodified original file name. This locates the native
Alpha or I64 version of the image. If the second search also fails, an error is returned. If LIB
$FIND_IMAGE_SYMBOL is called from a native Alpha or I64 program, the order of the searches
is reversed. The first search is done with the unmodified original file name. If that fails, the second
search is done with ‘‘_TV’’ appended to the file name. If the second search fails, an error is returned.

LIB$FIND_IMAGE_SYMBOL disables AST recognition while it is executing. AST recognition is
reenabled before returning to the caller only if AST recognition was previously enabled.

LIB$FIND_IMAGE_SYMBOL signals all errors and returns the status in R0.

LIB$FIND_IMAGE_SYMBOL may signal a warning (LIB$_EOMWARN) to indicate that the image
being activated contains modules that had compilation warnings. A condition handler used with LIB
$FIND_IMAGE_SYMBOL should probably handle this as a special case.

To allow LIB$FIND_IMAGE_SYMBOL to continue executing after signaling LIB$_EOMWARN,
the condition handler should exit with SS$CONTINUE. For this reason, you may choose not to use
LIB$SIG_TO_RET as a condition handler for LIB$FIND_IMAGE_SYMBOL.

Condition Values Returned
LIB$_BADCCC Illegal compilation code.
LIB$_EOMERROR Compilation errors.
LIB$_EOMFATAL Fatal compilation errors.
LIB$_EOMWARN Compilation warnings.
LIB$_GSDTYP Illegal universal symbol directory record type.
LIB$_ILLFMLCNT Maximum argument count exceeds maximum for routine.

187

Chapter 2. LIB$ Reference

LIB$_ILLMODNAM Illegal module name length.
LIB$_ILLPSCLEN Illegal program section length.
LIB$_ILLRECLEN Illegal record length in module.
LIB$_ILLRECLN2 Illegal record length.
LIB$_ILLRECTYP Illegal record type in module.
LIB$_ILLRECTY2 Illegal record type.
LIB$_ILLSYMLEN Illegal symbol length.
LIB$_NOEOM No end of module record contained in the module.
LIB$_RECTOOSML Record too small; data overflows object record in module.
LIB$_SEQUENCE Illegal record sequence in module.
LIB$_SEQUENCE2 Illegal record sequence.
LIB$_STRVL Illegal object language structure level in module.
Note that all of the above error
messages indicate a format error
in the shareable image.

LIB$_INSVIRMEM Insufficient virtual memory.
SS$_IVLOGNAM The filename argument contained more than just a file name; a

device or directory specification was found in the string.

LIB$FIND_VM_ZONE
LIB$FIND_VM_ZONE — The Return the Next Valid Zone Identifier routine returns the zone
identifier of the next valid zone in the heap management 32-bit database. No support for arguments
passed by 64-bit address reference or for use of 64-bit descriptors, if applicable, is planned for this
routine.

Format
LIB$FIND_VM_ZONE context ,zone-id

Returned

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
context

OpenVMS usage: context
type: longword (unsigned)

188

Chapter 2. LIB$ Reference

access: modify
mechanism: by reference

Context specifier. The context argument is the address of an unsigned longword used to keep the
scan context for finding the next valid zone. The context argument must be 0 to initialize the scan
and to start with the first returnable zone identifier.

zone-id

OpenVMS usage: identifier
type: longword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned longword that receives the
zone identifier for the next zone.

Description
At each call, LIB$FIND_VM_ZONE scans the heap management 32-bit zone database and returns the
zone-id of the next valid zone. (The first and second calls to LIB$FIND_VM_ZONE return the
zone-id of the 32-bit default zone and the 32-bit string zone, respectively.) This capability allows
a program to deal with each 32-bit VM zone created during the invocation, including those created
outside of the program.

Note

LIB$FIND_VM_ZONE finds only 32-bit zones. You must use LIB$FIND_VM_ZONE and LIB
$FIND_VM_ZONE_64 to loop through all VM zones.

The context argument controls the state of the scan. It determines what zone to return (the first,
the next, and so forth). On the initial call, specified by context=0, LIB$VERIFY_VM_ZONE is
called to verify the heap management zone database. If the database is corrupt, further calls to this
routine will produce no additional useful output.

When no more zones can be found, the routine returns the condition value LIB$_NOTFOU.

If a zone has been corrupted in some major way (for example, if the validity code has been changed),
then this routine may not be able to locate it in the zone database.

Note that ASTs may be disabled while LIB$FIND_VM_ZONE is executing code that depends on the
stability of the heap management zone database. In general it is the caller's responsibility to ensure
that the calling program has exclusive access to the zone database while scanning for multiple zones
with this routine. Results are unpredictable if another thread of control modifies the zone database or
the associated areas during the scanning.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

189

Chapter 2. LIB$ Reference

LIB$_BADZONE Invalid zone.
LIB$_NOTFOU Zone identifier not found (alternate success status).
LIB$_WRONUMARG Wrong number of arguments.

Example
IMPLICIT NONE
INTEGER*4 status,context,zone_id
INTEGER*4 lib$find_vm_zone,lib$show_vm_zone

context = 0
status = lib$find_vm_zone (context, zone_id)
DO WHILE (status)
 print *
 status = lib$show_vm_zone (zone_id, 0)
 status = lib$find_vm_zone (context, zone_id)
END DO
END

Sample output for this Fortran program is shown below:

 Zone Id = 00020020, Zone name = "DEFAULT_ZONE"
 Zone Id = 000200B0, Zone name = "STRING_ZONE"

LIB$FIND_VM_ZONE_64
LIB$FIND_VM_ZONE_64 — The Return the Next Valid Zone Identifier routine returns the zone
identifier of the next valid zone in the heap management 64-bit database.

Format
LIB$FIND_VM_ZONE_64 context ,zone-id

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
context

OpenVMS usage: context
type: quadword (unsigned)
access: modify
mechanism: by reference

190

Chapter 2. LIB$ Reference

Context specifier. The context argument is the address of an unsigned quadword used to keep the
scan context for finding the next valid zone. The context argument must be 0 to initialize the scan
and to start with the first returnable zone identifier.

zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: write only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned quadword that receives the
zone identifier for the next zone.

Description
At each call, LIB$FIND_VM_ZONE_64 scans the heap management 64-bit zone database and
returns the zone-id of the next valid zone. (The first and second calls to LIB$FIND_VM_ZONE_64
return the zone-id of the 64-bit default zone and the 64-bit string zone, respectively.) This
capability allows a program to deal with each VM 64-bit zone created during the invocation, including
those created outside of the program.

Note

LIB$FIND_VM_ZONE_64 finds only 64-bit zones. You must use LIB$FIND_VM_ZONE and LIB
$FIND_VM_ZONE_64 to loop through all VM zones.

The context argument controls the state of the scan. It determines what zone to return (the first, the
next, and so forth). On the initial call, specified by context=0, LIB$VERIFY_VM_ZONE_64 is called
to verify the heap management zone database. If the database is corrupt, further calls to this routine
will produce no additional useful output.

When no more zones can be found, the routine returns the condition value LIB$_ NOTFOU.

If a zone has been corrupted in some major way (for example, if the validity code has been changed),
then this routine may not be able to locate it in the zone database.

Note that ASTs may be disabled while LIB$FIND_VM_ZONE_64 is executing code that depends on
the stability of the heap management zone database. In general it is the caller’s responsibility to ensure
that the calling program has exclusive access to the zone database while scanning for multiple zones
with this routine. Results are unpredictable if another thread of control modifies the zone database or
the associated areas during the scanning.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone.
LIB$_NOTFOU Zone identifier not found (alternate success status).
LIB$_WRONUMARG Wrong number of arguments.

191

Chapter 2. LIB$ Reference

Example
IMPLICIT NONE
INTEGER*4 status
INTEGER*8 context,zone_id
INTEGER*4 lib$find_vm_zone_64,lib$show_vm_zone_64

context = 0
status = lib$find_vm_zone_64 (context, zone_id)
DO WHILE (status)
 print *
 status = lib$show_vm_zone_64 (zone_id, 0)
 status = lib$find_vm_zone_64 (context, zone_id)
END DO
END

Sample output for this Fortran program is as follows:

 Zone Id = 0000000000020040, Zone name = "DEFAULT_ZONE"
 Zone Id = 0000000000020140, Zone name = "STRING_ZONE"

LIB$FIT_NODENAME
LIB$FIT_NODENAME — The Fit a Node Name Into an Output Field routine fits a node name into
an output field. It attempts to compress the node name to fit the output field. If this fails, it trims
the node name. No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Format
LIB$FIT_NODENAME nodename, output-buffer [,output-width][,resultant-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
nodename

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Node name to be fitted into the desired output field. The nodename argument contains the address of
a descriptor pointing to this node-name string.

192

Chapter 2. LIB$ Reference

The error LIB$_INVARG is returned if nodename contains an invalid node name, points to a null
string, or contains more than 1024 characters. The error LIB$_INVSTRDES is returned if nodename
is an invalid descriptor.

output-buffer

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

The output buffer. The output-buffer argument contains the address of a descriptor pointing to
the output buffer. LIB$FIT_NODENAME writes the final output node name into the buffer pointed to
by output-buffer.

The error LIB$_INVSTRDES is returned if output-buffer is an invalid descriptor.

The length field of the output-buffer descriptor is not updated unless output-buffer is a
dynamic descriptor with a length less than the resulting fitted node name. Refer to the VSI OpenVMS
RTL String Manipulation (STR$) Manual for dynamic string descriptor usage.

The output-buffer argument contains an unusable result when LIB$FIT_NODENAME returns
in error. Field width desired for the fit operation. The output-width argument is the address of an
unsigned word that contains this field width in bytes.

output-width

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Field width desired for the fit operation. The output-width argument is the address of an
unsigned word that contains this field width in bytes.

If output-width is omitted, the current length of output-buffer is used. If output-
buffer is not a fixed-length string, specify output-width to ensure that the desired width is
used.

If the lengths of both output-buffer and output-width are specified, the length in output-
width is used. In this case, if the current length of output-buffer is smaller than the length of
output-width, the output node name is truncated at the end, and the alternate successful status
LIB$_STRTRU is returned. Length of the output node name. The resultant-length argument is
the address of an unsigned word that contains this length in bytes.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)

193

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

The resultant-length argument contains an unusable result when LIB$FIT_NODENAME
returns in error.

Description
This routine fits the input node name into the desired output field for display purposes. It first attempts
to get the usable short form of the input node name by calling LIB$COMPRESS_NODENAME. If
that fails, the input node name is expanded by LIB$EXPAND_NODENAME and then trimmed by
LIB$TRIM_FULLNAME to fit the desired output width.

The input is validated against the supported form of input node names. The error LIB$_INVARG is
returned if the input node name is invalid.

Node-name compression is always attempted even if the length of the input node name is less than or
equal to the desired output width. This is to ensure that the short form of a full name is always chosen
for display purposes.

When the compressed node name is too long to fit the desired output width, the input node name is
expanded using LIB$EXPAND_NODENAME and trimmed using LIB$TRIM_FULLNAME. In this
case, the alternate success status LIB$_STRTRU is returned.

When LIB$FIT_NODENAME encounters errors from the underlying network services, it tries to
return the string-truncated compressed node name. If it is the compression operation that fails, LIB
$FIT_NODENAME returns the string-truncated input node name. The alternate successful status LIB
$_STRTRU is returned.

Note that the returned node name can be either a compressed usable short form of the input node
name or an unusable trimmed or truncated node name. The caller should always assume an unusable
node name is returned when it finds the alternate success return status LIB$_STRTRU. On the other
hand, the SS$_NORMAL return status means that a usable form of a node name is returned.

LIB$FIT_NODENAME adds padding spaces to the end of the output buffer if the output node name
is shorter than the size of the output buffer. The argument resultant-length, if supplied, is set to the
length of the output node name, excluding any padding spaces.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are truncated in the

output buffer pointed to by output-buffer.
LIB$_INVARG Invalid argument:

• nodename is invalid.

• nodename points to a null string.

• The length of the node name is more than 1024 characters.
LIB$_INVSTRDES Invalid string descriptor.

194

Chapter 2. LIB$ Reference

LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_R_DX.

LIB$FIXUP_FLT
LIB$FIXUP_FLT — The Fix Floating Reserved Operand routine finds the reserved operand of any
F-floating, D-floating, G-floating, or H-floating instruction (with some exceptions) after a reserved
operand fault has been signaled. No support for arguments passed by 64-bit address reference or for
use of 64-bit descriptors, if applicable, is planned for this routine. LIB$FIXUP_FLT changes the
reserved operand from –0.0 to the value of the new-operand argument, if present; or to +0.0 if
new-operand is absent. This routine is available on OpenVMS Alpha and I64 systems in translated
form and is applicable to translated VAX images only.

Format
LIB$FIXUP_FLT signal-arguments ,mechanism-arguments [,new-operand]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
signal-arguments

OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument is the address of an array of unsigned
longwords containing the signal argument vector.

mechanism-arguments

OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument is the address of an array of
unsigned longwords containing the mechanism argument vector.

195

Chapter 2. LIB$ Reference

new-operand

OpenVMS usage: floating-point
type: F_floating
access: read only
mechanism: by reference

An F-floating value to replace the reserved operand. The new-operand argument is the address of
an F-floating number containing the new operand. This is an optional argument. If omitted, the default
value is +0.0.

Description
LIB$FIXUP_FLT finds the reserved operand of any F-floating, D-floating, G-floating, or H-floating
instruction (with some exceptions) after a reserved operand fault has been signaled. LIB$FIXUP_FLT
changes the reserved operand from –0.0 to the value of the new-operand argument, if present; or
to +0.0 if new-operand is absent. LIB$FIXUP_FLT cannot handle the following cases and will
return a status of SS$_RESIGNAL if any of them occur:

• The currently active signaled condition is not SS$_ROPRAND.

• The reserved operand's data type is not F-floating, D-floating, G-floating, or H-floating.

• The reserved operand is an element in the coefficient table for one of the VAX POLY x
instructions.

If the status value returned from LIB$FIXUP_FLT is seen by the condition handling facility (as
would be the case if LIB$FIXUP_FLT was the handler), any success value is equivalent to SS
$_CONTINUE, which causes the instruction to be restarted. Any failure value is equivalent to SS
$_RESIGNAL, which causes the condition to be resignaled to the next handler. This resignal status is
because the condition handler (LIB$FIXUP_FLT) was unable to handle the condition correctly.

LIB$FIXUP_FLT can be enabled directly as a condition handler. The signal-arguments and
mechanism-arguments arguments are passed to the condition handler by OpenVMS exception
dispatching.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The reserved operand was found
and has been fixed.

SS$_ACCVIO Access violation. An argument to LIB$FIXUP_FLT or an operand
of the faulting instruction could not be read or written.

SS$_RESIGNAL The signaled condition was not SS$_ROPRAND, or the reserved
operand was not a floating-point value or was an element in a
POLYx table.

SS$_ROPRAND Reserved operand fault. The optional argument new-operand
was supplied but was itself an F-floating reserved operand.

LIB$_BADSTA Bad stack. The stack frame linkage has been corrupted since the
time of the reserved operand exception.

196

Chapter 2. LIB$ Reference

LIB$FLT_UNDER
LIB$FLT_UNDER — The Floating-Point Underflow Detection routine enables or disables floating-
point underflow detection for the calling routine activation. The previous setting is returned as a
function value. No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine. This routine is available on OpenVMS Alpha and
I64 systems in translated form and is applicable to translated VAX images only.

Format
LIB$FLT_UNDER new-setting

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Argument
new-setting

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New floating-point underflow enable setting. The new-setting argument is the address of an
unsigned byte containing the new setting. Bit 0 set to 1 means enable; bit 0 set to 0 means disable.

Description
LIB$FLT_UNDER affects only the current routine activation and does not affect any of its callers
or any routines that it may call. However, the setting does remain in effect for any routines entered
through a JSB entry point.

The caller's stack frame will be modified by this routine.

Condition Values Returned
None.

Example
C+
C This Fortran example program shows

197

Chapter 2. LIB$ Reference

C the use of LIB$FLT_UNDER.
C-

 INTEGER*4 NEW_SETTING
 REAL*4 X , Y , Z

 NEW_SETTING = 0
 X = 1E-20
 Y = 1E20

 CALL LIB$FLT_UNDER(NEW_SETTING)

 TYPE *,’First Case: This should not have an underflow exception’

 Z = X / Y

 TYPE *, ’If this lines prints then the underflow exception
 1 was disabled.’
 TYPE *

 NEW_SETTING = 1
 X = 1E-20
 Y = 1E20

 CALL LIB$FLT_UNDER(NEW_SETTING)

 TYPE * , ’Second Case: This should have an underflow exception
 1 and then stop.’

 Z = X / Y

 TYPE * , ’If this line prints, then the underflow exception
 1 was disabled.’

END

In this Fortran example, floating-point underflow detection is disabled the first time X is divided
by Y. The second time, underflow detection is enabled, and the program stops because of the error
generated.

LIB$FORMAT_DATE_TIME
LIB$FORMAT_DATE_TIME — The Format Date and/or Time routine allows the user to select at
run time a specific output language and format for a date or time, or both.

Format
LIB$FORMAT_DATE_TIME date-string [,date] [,user-context] [,date-length] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

198

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Arguments
date-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the requested date or time, or both, that has been formatted for output according to the
currently selected format and language. The date-string argument is the address of a descriptor
pointing to this string.

date

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

The date or time, or both, to be formatted for output. The date argument is the address of an
unsigned quadword that contains the absolute date or time, or both to be formatted. If you omit this
argument, or if you supply a zero passed by value, then the current system time is used. Note that the
date argument must represent an absolute time, not a delta time.

user-context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to this routine. The user-
context argument is the address of an unsigned longword that contains this context. The initial
value of the context variable must be zero. Thereafter, the user program must not write to the cell.

The user-context parameter is optional. However, if a context cell is not passed, the routine LIB
$FORMAT_DATE_TIME may abort if two threads of execution attempt to manipulate the context
area concurrently. Therefore, when calling this routine in situations where reentrancy might occur,
such as from AST level, VSI recommends that users specify a different context cell for each calling
thread.

date-length

199

Chapter 2. LIB$ Reference

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Number of bytes of text written to the date-string argument. The date-length argument is
the address of a signed longword that receives this string length. Note that date-length specifies
the number of bytes of text, not the number of characters, written to date-string.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are output. The flags
argument is the address of an unsigned bit mask containing the specified values. Valid values are LIB
$M_DATE_FIELDS and LIB$M_TIME_FIELDS.

Default values are determined as follows:

• If the flags argument is omitted, LIB$FORMAT_DATE_TIME determines which fields to
format according to the current definition of LIB$DT_FORMAT.

• If the flags argument is specified, LIB$FORMAT_DATE_TIME uses the flags value
to determine which fields to format. That is, the flags argument can be used to override
the definition of LIB$DT_FORMAT when specifying which fields should be formatted for
output. If the field specified by flags was not assigned a format through the definition of LIB
$DT_FORMAT, the standard OpenVMS format is used.

Description
The LIB$FORMAT_DATE_TIME routine formats an OpenVMS internal format date-time quadword
into a textual string of some predefined format. The language to be used and the format in which to
output the information are programmable using either of the following methods.

• The language and format are programmable at compile time through the use of the routine LIB
$INIT_DATE_TIME_CONTEXT.

• The language and format are determined at run time through the translation of the logical names
SYS$LANGUAGE and LIB$DT_FORMAT.

In general, if an application is formatting text for internal storage or transmission, the language
and format should be specified at compile time. If this is the case, use the routine LIB
$INIT_DATE_TIME_CONTEXT to specify the language and format of your choice.

If an application is formatting text for presentation to a user, the logical name method of specifying
language and format should be used. In this method, the user assigns equivalence names to the logical

200

Chapter 2. LIB$ Reference

names SYS$LANGUAGE and LIB$DT_FORMAT, thereby selecting the language and format of the
date and time at run time.

If the logical name method is used, the translations of the logical names SYS$LANGUAGE and LIB
$DT_FORMAT specify one or more executive mode logicals, which in turn must be translated to
determine the actual format string. These additional logicals supply such things as the names of the
days of the week and the months in the selected language (determined by SYS$LANGUAGE). All
of these logicals are predefined, so that a non-privileged user can select any one of these languages
and formats. A user can create his or her own languages and formats; however, the CMEXEC,
SYSNAME, and SYSPRV privileges are required.

With the exception of SYS$LANGUAGE and LIB$DT_FORMAT, all logical names used by this
routine must be defined from the executive mode.

See the VSI OpenVMS Programming Concepts Manual for a description of system date and time
operations as well as a detailed description of the format mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ABSTIMREQ Absolute time required.
LIB$_DEFFORUSE Default format used; unable to determine the desired format.
LIB$_ENGLUSED English used; unable to determine or use the specified language.
LIB$_REENTRANCY Reentrant invocation with same context variable.
LIB$_STRTRU Output string truncated.
LIB$_UNRFORCOD Unrecognized format code.

Any condition values returned by the $NUMTIM system service, or RTL routines LIB$GET_VM,
LIBGET_VM_64, LIBANALYZE_SDESC, or LIB$ANALYZE_SDESC_64.

LIB$FORMAT_SOGW_PROT
LIB$FORMAT_SOGW_PROT — The Format Protection Mask routine translates a protection mask
into a formatted string.

Format
LIB$FORMAT_SOGW_PROT protection-mask, [access-names], [ownership-names],
[ownership-separator], [list-separator], protection-string, [protection-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

201

Chapter 2. LIB$ Reference

Arguments
protection

OpenVMS usage: protection-mask
type: word (unsigned)
access: read only
mechanism: by reference

The address of a word that holds a 16-bit protection mask to be translated.

access-names

OpenVMS usage: access_names
type: array [0..31] of quadword string descriptor
access: read only
mechanism: by reference

The address of the access name table for the associated object class. For example, it is the value
returned in accnam by LIB$GET_ACCNAM. This parameter defaults to the access name table for
the FILE object class.

ownership-names

OpenVMS usage: char_string
type: array [0..3] of quadword string descriptor
access: read only
mechanism: by reference

The address of a vector of 4 quadword descriptors that points to the ownership name. The default
value is the full ownership category names (System, Owner, Group, World).

ownership-separator

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a descriptor that points to the ownership separator string. The separator string is
inserted after the ownership name to introduce a nonempty set of access names. By default, the value
is “: ” (the colon and space characters).

list-separator

OpenVMS usage: char_string

202

Chapter 2. LIB$ Reference

type: character-coded text string
access: read only
mechanism: by descriptor

The address of a descriptor that points to the list separator string. The list separator string is inserted
between ownership-access type pairs. By default, the value is “, ” (the comma and space characters).

protection-string

OpenVMS usage: char_string
type: character-coded text string
access: write only
mechanism: by descriptor

The address of a character-string descriptor that receives the output of the routine call. The
protection-string argument points to the formatted protection string at the end of a call. The
protection string has the following components repeated for each of: System, Owner, Group, World.

ownership-name[ownership-separator][access-types][list-separator]

An example of a formatted protection string is

System: RWED, Owner: RWED, Group: RW, World: R

protection-length

OpenVMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

The address of a word that receives the length of the string returned in the protection-string
argument.

Description
LIB$FORMAT_SOGW_PROT translates a 16-bit protection mask into a formatted string. This
routine works for any protected object class by specifying the correct access name table. The address
of the access name table can be obtained from the LIB$GET_ACCNAM routine.

Several formatting options are available. The caller can specify ownership names, ownership
separators, or list separators.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Required parameter missing.

203

Chapter 2. LIB$ Reference

LIB$_WRONGNUMARG Wrong number of arguments.
STR$_TRU String truncation warning.

LIB$FREE_DATE_TIME_CONTEXT
LIB$FREE_DATE_TIME_CONTEXT — The Free the Context Area Used When Formatting Dates
and Times for Input or Output routine frees the virtual memory associated with the context area used
by the date/time input and output formatting routines.

Format
LIB$FREE_DATE_TIME_CONTEXT [user-context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
user-context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to the date/time input and
output formatting routines. The user-context argument is the address of an unsigned
longword that contains this context. If the user-context argument was not specified
in the call to LIB$FORMAT_DATE_TIME, LIB$CONVERT_DATE_STRING, or LIB
$GET_MAXIMUM_DATE_LENGTH, then no argument should be supplied when calling this
routine.

Description
The LIB$FREE_DATE_TIME_CONTEXT routine frees the virtual memory associated with the
context area used by the date/time input and output formatting routines. A call to this routine is
optional, since the same functions are performed at image exit.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

204

Chapter 2. LIB$ Reference

Any condition value returned by LIB$FREE_VM. If one of these condition values is returned, it
indicates either an internal coding error or that memory was corrupted by the user's program.

LIB$FREE_EF
LIB$FREE_EF — The Free Event Flag routine frees a local event flag previously allocated by LIB
$GET_EF or by LIB$RESERVE_EF. LIB$FREE_EF is the complement of LIB$GET_EF.

Format
LIB$FREE_EF event-flag-number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
event-flag-number

OpenVMS usage: ef_number
type: longword integer (unsigned)
access: read only
mechanism: by reference

Event flag number to be deallocated by LIB$FREE_EF. The event-flag-number argument is the
address of a signed longword integer that contains the event flag number, which is the value allocated
to the user by LIB$GET_EF or LIB$RESERVE_EF.

Description
When a local event flag allocated by calling LIB$GET_EF or LIB$RESERVE_EF is no longer
needed, LIB$FREE_EF should be called to free the event flag for use by other routines.

See the VSI OpenVMS Programming Concepts Manual for more information.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_EF_ALRFRE Event flag already free.
LIB$_EF_RESSYS Event flag reserved to system. This error occurs if the event flag

number is outside the ranges of 1 to 23 and 32 to 63.

205

Chapter 2. LIB$ Reference

LIB$FREE_LUN
LIB$FREE_LUN — The Free Logical Unit Number routine releases a logical unit number allocated
by LIB$GET_LUN to the pool of available numbers. LIB$FREE_LUN is the complement of LIB
$GET_LUN.

Format
LIB$FREE_LUN logical-unit-number

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
logical-unit-number

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Logical unit number to be deallocated. The logical-unit-number argument is the address of a
signed longword integer that contains this logical unit number, which is the value previously returned
by LIB$GET_LUN.

Description
When a logical unit number allocated by calling LIB$GET_LUN is no longer needed, it should be
released for use by other routines.

This routine is useful only in BASIC or Fortran programs.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_LUNALRFRE Logical unit number is already free.
LIB$_LUNRESSYS Logical unit number reserved to system. This occurs if the

specified logical unit number is outside the range of 100 through
299.

LIB$FREE_TIMER
LIB$FREE_TIMER — The Free Timer Storage routine frees the storage allocated by LIB
$INIT_TIMER.

206

Chapter 2. LIB$ Reference

Format
LIB$FREE_TIMER handle-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
handle-address

OpenVMS usage: address
type: longword (unsigned)
access: modify
mechanism: by reference

Pointer to a block of storage containing the value returned by a previous call to LIB$INIT_TIMER;
this is the storage that LIB$FREE_TIMER deallocates. The handle-address argument is the
address of an unsigned longword containing that value.

Description
LIB$FREE_TIMER frees a block of storage previously allocated by LIB$INIT_TIMER. LIB
$FREE_TIMER assumes that handle-address was returned by a previous call to LIB
$INIT_TIMER. If the block referred to by handle-address was not allocated by LIB
$INIT_TIMER, LIB$FREE_TIMER returns an error. If the routine completes successfully, LIB
$FREE_TIMER sets handle-address to zero.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Bad block address; LIB$FREE_TIMER could not deallocate the

block to which handle-address points.
LIB$_INVARG Invalid argument; handle-address was not supplied or did not

point to a timer block.

LIB$FREE_VM
LIB$FREE_VM — The Free Virtual Memory from Program Region routine deallocates an entire
block of contiguous bytes that was allocated by a previous call to LIB$GET_VM. The arguments
passed are the same as for LIB$GET_VM. No support for arguments passed by 64-bit address
reference or for use of 64-bit descriptors, if applicable, is planned for this routine.

207

Chapter 2. LIB$ Reference

Format
LIB$FREE_VM number-of-bytes ,base-address [,zone-id]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
number-of-bytes

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to be deallocated by LIB$FREE_VM. The number-of-bytes
argument is the address of a signed longword integer that contains this number. The value of
number-of-bytes must be greater than zero.

Byte counts are rounded in the same manner as in LIB$GET_VM.

Note

You may omit the number-of-bytes argument if you are using boundary tags (LIB
$M_VM_BOUNDARY_TAGS).

base-address

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Address of the first byte to be deallocated by LIB$FREE_VM. The base-address argument
contains the address of an unsigned longword that is this address. The value of base-address
must be the address of a block of memory that was allocated by a previous call to LIB$GET_VM.

zone-id

OpenVMS usage: identifier
type: longword (unsigned)

208

Chapter 2. LIB$ Reference

access: read only
mechanism: by reference

The address of a longword that contains a zone identifier created by a previous call to LIB
$CREATE_VM_ZONE or LIB$CREATE_USER_VM_ZONE.

You must specify the same zone-id value as when you called LIB$GET_VM to allocate the block.
An error status will be returned if you specify an incorrect zone-id. The zone-id argument is
optional. If zone-id is omitted or if the longword contains the value 0, the 32-bit default zone is
used.

Description
LIB$FREE_VM returns the block of memory to a free list associated with the zone, so the block is
available on a subsequent call to LIB$GET_VM for the zone.

The base-address argument must contain the address of the first byte of memory that was
allocated by a previous call to LIB$GET_VM. LIB$FREE_VM rounds up the value of number-of-
bytes to a multiple of the block size for the zone.

Note

You cannot free part of a block that was allocated by a call to LIB$GET_VM. The whole block must
be freed by a single call to LIB$FREE_VM.

Neither can you combine contiguous blocks of memory that were allocated by several calls to LIB
$GET_VM into one larger block that is freed by a single call to LIB$FREE_VM.

If you specified deallocation filling when you created the zone, LIB$FREE_VM will fill each byte
freed. Note that part of a free block is used to store control information, so some bytes will not contain
the fill value.

LIB$FREE_VM is fully reentrant, so it can be called by routines executing at AST-level or in an Ada
multitasking environment.

If the zone you are freeing was created using the LIB$CREATE_USER_VM_ZONE routine, then
you must have an appropriate action routine for the free operation. That is, in your call to LIB
$CREATE_USER_VM_ZONE, you must have specified a user deallocation procedure.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR The base-address argument contained a bad block address.

Either an address was outside of the area allocated by LIB
$GET_VM, the contents of base-address were not properly
aligned, part of the space being deallocated was previously
deallocated, or a zone was found to be corrupt.

LIB$_BADBLOSIZ The number-of-bytes argument is less than or equal to 0,
or the number-of-bytes argument is incorrect for a zone
containing fixed size blocks.

209

Chapter 2. LIB$ Reference

LIB$_BADTAGVAL For a zone that uses boundary tags, the tag field was corrupted.

LIB$FREE_VM_64
LIB$FREE_VM_64 — The Free Virtual Memory from Program Region routine deallocates an entire
block of contiguous bytes that was allocated by a previous call to LIB$GET_VM_ 64. The arguments
passed are the same as for LIB$GET_VM_64.

Format
LIB$FREE_VM_64 number-of-bytes ,base-address [,zone-id]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
number-of-bytes

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes to be deallocated by LIB$FREE_VM_64. The number-of-bytes
argument is the address of a signed quadword integer that contains this number. The value of
number-of-bytes must be greater than zero.

Byte counts are rounded in the same manner as in LIB$GET_VM_64.

Note

You may omit the number-of-bytes argument if you are using boundary tags (LIB
$M_VM_BOUNDARY_TAGS).

base-address

OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

210

Chapter 2. LIB$ Reference

Address of the first byte to be deallocated by LIB$FREE_VM_64. The base-address argument
contains the address of an unsigned quadword that is this address. The value of base-address
must be the address of a block of memory that was allocated by a previous call to LIB$GET_VM_64.

zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

The address of a quadword that contains a zone identifier created by a previous call to LIB
$CREATE_VM_ZONE_64 or LIB$CREATE_USER_VM_ZONE_64.

You must specify the same zone-id value as when you called LIB$GET_VM_64 to allocate the
block. An error status will be returned if you specify an incorrect zone-id. The zone-id argument
is optional. If zone-id is omitted or if the quadword contains the value 0, the 64-bit default zone is
used.

Description
LIB$FREE_VM_64 returns the block of memory to a free list associated with the zone, so the block is
available on a subsequent call to LIB$GET_VM_64 for the zone.

The base-address argument must contain the address of the first byte of memory that was
allocated by a previous call to LIB$GET_VM_64. LIB$FREE_VM_64 rounds up the value of
number-of-bytes to a multiple of the block size for the zone.

Note

You cannot free part of a block that was allocated by a call to LIB$GET_ VM_64. The whole block
must be freed by a single call to LIB$FREE_ VM_64.

Neither can you combine contiguous blocks of memory that were allocated by several calls to LIB
$GET_VM_64 into one larger block that is freed by a single call to LIB$FREE_VM_64.

If you specified deallocation filling when you created the zone, LIB$FREE_VM_64 will fill each byte
freed. Note that part of a free block is used to store control information, so some bytes will not contain
the fill value.

LIB$FREE_VM_64 is fully reentrant, so it can be called by routines executing at AST-level or in an
Ada multitasking environment.

If the zone you are freeing was created using the LIB$CREATE_USER_VM_ ZONE_64 routine,
then you must have an appropriate action routine for the free operation. That is, in your call to LIB
$CREATE_USER_VM_ZONE_64, you must have specified a user deallocation procedure.

Condition Values Returned

SS$_NORMAL Routine successfully completed.

211

Chapter 2. LIB$ Reference

LIB$_BADBLOADR The base-address argument contained a bad block address.
Either an address was outside of the area allocated by LIB
$GET_VM_64, the contents of base-address were not
properly aligned, part of the space being deallocated was
previously deallocated, or a zone was found to be corrupt.

LIB$_BADBLOSIZ The number-of-bytes argument is less than or equal to 0,
or the number-of-bytes argument is incorrect for a zone
containing fixed size blocks.

LIB$_BADTAGVAL For a zone that uses boundary tags, the tag field was corrupted.

LIB$FREE_VM_PAGE
LIB$FREE_VM_PAGE — The Free Virtual Memory Page routine deallocates a block of contiguous
pages on VAX systems or pagelets on Alpha and I64 systems that were allocated by previous calls to
LIB$GET_VM_PAGE. No support for arguments passed by 64-bit address reference or for use of 64-
bit descriptors, if applicable, is planned for this routine.

Format
LIB$FREE_VM_PAGE number-of-pages ,base-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
number-of-pages

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of pages on VAX systems or pagelets on Alpha and I64 systems. The number-of-pages
argument is the address of a longword integer that specifies the number of contiguous pages on VAX
systems or pagelets on Alpha and I64 systems to be deallocated. The value of number-of-pages
must be greater than zero.

base-address

OpenVMS usage: address

212

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: read only
mechanism: by reference

Block address. The base-address argument is the address of a longword that contains the address
of the first byte of the first VAX page or Alpha or I64 pagelet to be deallocated.

Description
LIB$FREE_VM_PAGE deallocates a block of contiguous 512-byte pages starting at base-
address. Each of the pages or pagelets specified by number-of-pages and base-
address must have been allocated by previous calls to LIB$GET_ VM_PAGE. The pages or
pagelets are returned to the processwide pool and are available to satisfy subsequent calls to LIB
$GET_VM_PAGE.

You can free a smaller group of pages or pagelets than you allocated. That is, if you allocated a group
of contiguous pages or pagelets by a single call to LIB$GET_VM_PAGE, you can deallocate them
in several calls to LIB$FREE_ VM_PAGE. You can also combine contiguous groups of pages or
pagelets that were allocated in several calls to LIB$GET_VM_PAGE into one large group that is freed
by a single call to LIB$FREE_VM_PAGE.

LIB$FREE_VM_PAGE is fully reentrant, so it may be called by routines executing at AST level or in
an Ada multitasking environment.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Pages on VAX systems or pagelets on Alpha and I64 systems

not allocated by LIB$GET_VM_ PAGE, the value of base-
address is not a page boundary, or the pages were previously
freed.

LIB$_BADBLOSIZ The number-of-pages argument is less than or equal to zero.

LIB$FREE_VM_PAGE_64
LIB$FREE_VM_PAGE_64 — The Free Virtual Memory Page routine deallocates a block of
contiguous Alpha or I64 pagelets that was allocated by previous calls to LIB$GET_VM_PAGE_64.

Format
LIB$FREE_VM_PAGE_64 number-of-pages ,base-address

Returns

OpenVMS usage: cond_value
type: quadword (unsigned)
access: write only

213

Chapter 2. LIB$ Reference

mechanism: by value

Arguments
number-of-pages

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Number of Alpha or I64 pagelets. The address of a quadword integer that specifies the number of
contiguous Alpha or I64 pagelets to be deallocated. The value of number-of-pages must be
greater than zero.

base-address

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Block address. The base-address argument is the address of a quadword that contains the address
of the first byte of the first Alpha or I64 pagelet to be deallocated.

Description
LIB$FREE_VM_PAGE_64 deallocates a block of contiguous Alpha or I64 pagelets starting at
base-address. Each of the pagelets specified by number-of-pages and base-address
must have been allocated by previous calls to LIB$GET_VM_ PAGE_64. The pagelets are returned to
the processwide pool and are available to satisfy subsequent calls to LIB$GET_VM_PAGE_64.

You can free a smaller group of pagelets than you allocated. That is, if you allocated a group of
contiguous pagelets by a single call to LIB$GET_VM_PAGE_ 64, you can deallocate them in several
calls to LIB$FREE_VM_PAGE_64. You can also combine contiguous groups of pagelets that were
allocated in several calls to LIB$GET_VM_PAGE_64 into one large group that is freed by a single
call to LIB$FREE_VM_PAGE_64.

LIB$FREE_VM_PAGE_64 is fully reentrant, so it may be called by routines executing at AST level
or in an Ada multitasking environment.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Alpha pagelets not allocated by LIB$GET_VM_ PAGE_64,

the value of base-address is not a pagelet boundary, or the
pagelets were previously freed.

214

Chapter 2. LIB$ Reference

LIB$_BADBLOSIZ The number-of-pages argument is less than or equal to zero.

LIB$GETDVI
LIB$GETDVI — The Get Device/Volume Information routine provides a simplified interface
to the $GETDVI system service. It returns information about the primary and secondary device
characteristics of an I/O device. The calling process need not have a channel assigned to the device
about which it wants information.

Format
LIB$GETDVI item-code [,channel] [,device-name] [,longword-integer-value] [,resultant-string]
[,resultant-length] [,pathname]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Code specifying the item of information you are requesting. The item-code argument is the
address of a signed longword containing the item code. All valid $GETDVI item codes whose names
begin with DVI$_ are accepted.

See the Description section for more information on item codes.

channel

OpenVMS usage: channel
type: word (unsigned)
access: read only
mechanism: by reference

OpenVMS I/O channel assigned to the device for which LIB$GETDVI returns information. The
channel argument is the address of an unsigned word containing the channel specification. If
channel is not specified, device-name is used instead. You must specify either channel or
device-name, but not both. If neither is specified, the error status SS$_IVDEVNAM is returned.

215

Chapter 2. LIB$ Reference

device-name

OpenVMS usage: device_name
type: character string
access: read only
mechanism: by descriptor

Name of the device for which LIB$GETDVI returns information. The device-name argument is
the address of a descriptor pointing to the device name string. If this string contains a colon, the colon
and the characters that follow it are ignored.

The device-name may be either a physical device name or a logical name. If the first character in
the string is an underscore character (_), the name is considered a physical device name. Otherwise,
the name is considered a logical name, and logical name translation is performed until either a
physical device name is found or the system default number of translations has been performed.

If device-name is not specified, channel is used instead. You must specify either channel or
device-name, but not both. If neither is specified, the error status SS$_IVDEVNAM is returned.
The device name must not be longer than 255 characters.

longword-integer-value

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Numeric value of the information requested. The longword-integer-value argument is the
address of a signed longword containing the numeric value. If an item is listed as only returning a
string value, this argument is ignored.

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information requested. The resultant-string argument is the
address of a descriptor pointing to this information. If resultant-string is not specified and if
the value returned has only a string representation, the error status LIB$_INVARG is returned.

Refer to Table 2.4 for a description of the string representation used for each item.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)

216

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETDVI. The
resultant-length argument is the address of an unsigned word containing this length.

pathname

OpenVMS usage: path_name
type: character text string
access: read only
mechanism: by descriptor

(I64 and Alpha only) The name of the path about which $GETDVI is to return information. The
pathname argument is the address of a character string descriptor pointing to this name string. The
path name may be used with either the channel or device-name arguments.

Check the definitions of the item codes to see if the pathname argument is used. In general, item
codes that return information that may vary by path will make use of the pathname argument.
The paths for a multipath device can be seen with the SHOW DEVICE /FULL command, the SYS
$DEVICE_PATH_SCAN system service, or the F$MULTIPATH DCL lexical function.

If the pathname argument is used, it will be validated against the existing paths for the device
specified. If the path does not exist, the error SS$_NOSUCHPATH will be returned, even if the item
codes(s) used do not make use of the pathname argument.

Description
LIB$GETDVI returns two categories of information:

• Primary device characteristics

• Secondary device characteristics

LIB$GETDVI does not allow you to get more than one item of information in a single call.

LIB$GETDVI provides the following features in addition to those provided by the $GETDVI system
service.

• Instead of a list of item descriptors, which may be difficult to construct in high-level languages,
the single item desired is specified as an integer code which is passed by reference. Results are
written to separate arguments.

• For items which return numeric values, LIB$GETDVI can optionally provide a formatted string
interpretation of the value. For example, if the device owner UIC is requested, LIB$GETDVI can
return the UIC formatted as [identifier].

• For string arguments, LIB$GETDVI understands all string classes supported by the Run-Time
Library.

• Calls to LIB$GETDVI are synchronous; LIB$GETDVI calls LIB$GET_EF to allocate a local
event flag number for synchronization.

217

Chapter 2. LIB$ Reference

See the description of the $GETDVI system service in the VSI OpenVMS System Services Reference
Manual: A-GETUAI for more detailed information.

Item Codes
All item codes that can be used with the $GETDVI system service may be used as the item-code
argument to LIB$GETDVI. These codes have symbolic names beginning with DVI$_.

The use of a DVI$_ code by itself will return the primary device characteristic associated with that
code. To obtain the secondary device characteristics, add 1 to the code. See the description of the
$GETDVI system service for a list of the defined item codes. The symbolic names for these items are
defined in VSI supplied symbol libraries in module $DVIDEF (where appropriate).

Value Formats
By using the longword-integer-value and resultant-string arguments to LIB
$GETDVI, the information requested can be returned in two different fashions.

• For each item described as a “string” in the table of Item Codes for the $GETDVI service, the
value is returned in resultant-string.

• For all other items—those that have numeric values—the numeric representation is returned in
longword-integer-value (if specified), and a formatted string interpretation of the value is
returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives the number of
characters used. Table 2.4 lists the formats used for the string interpretations.

Table 2.4. Formats Used for LIB$GETDVI Strings

Item or Format Description
DVI$_ACPPID The string value is returned as an 8-digit hexadecimal number.
DVI$_PID The string value is returned as an 8-digit hexadecimal number.

The ACP type string is one of the following:
NONE No ACP
F11V1 Files-11 Level 1
F11V2 Files-11 Level 2
F11V3 Files-11 presentation of ISO

9660
F11V4 Files-11 presentation of High

Sierra
F11V5 Files-11 structure level 5

(ODS-5)
F11V6 Files-11 structure level 5

(ODS-6)
F64 Files 64 support for Spiralog
HBS Not currently defined

DVI$_ACPTYPE

HBVS ACP for Host Based Volume
Shadowing

218

Chapter 2. LIB$ Reference

Item or Format Description
MTA Magnetic Tape
NET Networks
REM Remote I/O
UCX ACP for TCP/IP Services for

OpenVMS
DVI$_OWNUIC The standard UIC format [group,member] is used. If the format of

a UIC includes identifiers from the access rights database in place
of the octal group and member numbers, the UIC string returned
will have these identifiers, if available.

DVI$_VPROT The volume protection string is in the following form:

SYSTEM=RWLP,OWNER=RWLP,GROUP=RWLP,WORLD=RWLP

If a category has no access, the equal sign is omitted. The string
will not contain any embedded spaces.

Boolean The value string returned is TRUE if the low bit of the value is set,
or FALSE if the low bit is clear.

All others The value string is returned in the form of an unsigned decimal
integer.

Note

This routine calls LIB$GET_EF. Please read the note in the Description section of that routine.

Condition Values Returned

SS$_NORMAL Normal successful completion.
LIB$_STRTRU String truncated. This is an alternate success return status. The

resultant-string argument could not contain all the
characters of the returned item.

SS$_BADPARAM Unrecognized item code. The item-code argument was not
recognized as valid by $GETDVI.

SS$_IVDEVNAM The device name string contains invalid characters, or neither the
channel nor device-name arguments were specified.

LIB$_INSEF Insufficient event flags. A local event flag number could not be
allocated by a call to LIB$GET_EF.

LIB$_INVARG Invalid arguments. The $GETDVI Item Code describes the item
as a string, and no resultant-string argument was
specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor of the resultant-
string argument is not a valid descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect number of arguments
was passed to LIB$GETDVI.

Any condition values returned by LIB$SCOPY_ xxx, or the $GETDVI system service.

219

Chapter 2. LIB$ Reference

LIB$GETJPI
LIB$GETJPI — The Get Job/Process Information routine provides a simplified interface to the
$GETJPI system service. It provides accounting, status, and identification information about a
specified process. LIB$GETJPI obtains only one item of information in a single call.

Format
LIB$GETJPI item-code [,process-id] [,process-name] [,resultant-value] [,resultant-string]
[,resultant-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item identifier code specifying the item of information you are requesting. The item-code
argument is the address of a signed longword containing the item code. You may request only one
item in each call to LIB$GETJPI.

LIB$GETJPI accepts all $GETJPI item codes. These names begin with JPI$_ and are defined in
symbol libraries in module $JPIDEF supplied by VSI.

process-id

OpenVMS usage: process_id
type: longword (unsigned)
access: modify
mechanism: by reference

Process identifier of the process for which you are requesting information. The process-id
argument is the address of an unsigned longword containing the process identifier. If you do not
specify process-id, process-name is used.

The process-id is updated to contain the process identifier actually used, which may be different
from what you originally requested if you specified process-name or used wildcard process
searching.

220

Chapter 2. LIB$ Reference

process-name

OpenVMS usage: process_name
type: character string
access: read only
mechanism: by descriptor

A 1- to 15-character string specifying the name of the process for which you are requesting
information. The process-name argument is the address of a descriptor pointing to the process
name string. The name must correspond exactly to the name of the process for which you are
requesting information; LIB$GETJPI does not allow trailing blanks or abbreviations.

If you do not specify process-name, process-id is used. If you specify neither process-
name nor process-id, the caller's process is used. Also, if you do not specify process-name
and you specify zero for process-id, the caller's process is used. In this way, you can fetch the
item you want and the caller's PID in a single call to LIB$GETJPI.

resultant-value

OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value of the information you request. The resultant-value argument is the address
of a longword or quadword into which LIB$GETJPI writes the numeric value of this information.
Refer to Table 2.5 for information on which items return longword values and which return quadword
values. If the item you request returns only a string value, this argument is ignored.

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information you request. The resultant-string argument
is the address of the descriptor for a character string into which LIB$GETJPI writes the string
representation. Table 2.5 describes the string representation used for each item.

If you do not include resultant-string, but the item you request has only a string
representation, the error status LIB$_INVARG is returned.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)

221

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETJPI. The
resultant-length argument is the address of an unsigned word integer into which LIB$GETJPI
writes the number of characters.

Description
LIB$GETJPI provides the following features in addition to those provided by the $GETJPI system
service:

• Instead of a list of item descriptors, which may be difficult to construct in high-level languages,
the single item desired is specified as an integer code which is passed by reference. Results are
written to separate arguments.

• For items which return numeric values, LIB$GETJPI can optionally provide a formatted string
interpretation of the value. For example, if the process UIC is requested, LIB$GETJPI can return
the UIC formatted as [g,m].

• For string arguments, all string classes supported by the Run-Time Library are understood.

• Calls to LIB$GETJPI are synchronous. LIB$GETJPI calls LIB$GET_EF to allocate a local event
flag number for synchronization.

See the description of the $GETJPI system service in the VSI OpenVMS System Services Reference
Manual: A-GETUAI for more information.

By using the resultant-value and resultant-string arguments to LIB$GETJPI, you can
request that the information be returned in two ways. For each item described as a “string” in the table
of Item Codes for the $GETJPI service, the value is returned in resultant-string. For all other
items—those which have numeric values—the numeric representation is returned in resultant-
value (if specified), and a formatted string interpretation of the value is returned in resultant-
string.

Each formatted item is written left-justified; resultant-length, if specified, gives the number of
characters used.

Table 2.5 lists the formats used for the string interpretations.

Table 2.5. Item Code Formats for LIB$GETJPI

Item or Format Description
JPI$_AUTHPRIV The string representation of these quadword privilege masks is a

list of each privilege that is enabled. The privilege names are in
uppercase, and are separated by commas.

JPI$_CURPRIV Same as for JPI$AUTHPRIV.
JPI$_IMAGPRIV Same as for JPI$AUTHPRIV.
JPI$_PROCPRIV Same as for JPI$AUTHPRIV.
JPI$_LOGINTIM The string representation of the quadword time is a standard

absolute date-time string.

222

Chapter 2. LIB$ Reference

Item or Format Description
JPI$_PID The process identification string is an 8-digit hexadecimal number.

The process state string is one of the following:
CEF Common event flag wait
COM Computable
COMO Computable, outswapped
CUR Current process
COLPG Collided page wait
FPG Free page wait
HIB Hibernate wait
HIBO Hibernate wait, outswapped
LEF Local event flag wait
LEFO Local event flag wait,

outswapped
MWAIT Mutex and miscellaneous

resource wait
PFW Page fault wait
SUSP Suspended

JPI$_STATE

SUSPO Suspended, outswapped
JPI$_UIC The standard UIC format [group,member] is used. If the format of

a UIC includes identifiers from the access rights database in place
of the octal group and member numbers, the UIC string returned
will have these identifiers, if available.

JPI$_MODE The current mode string is one of the following: BATCH,
INTERACTIVE or NETWORK.

All others The string value is returned as an unsigned decimal integer.

Note

This routine calls LIB$GET_EF. Please read the note in the Description section of that routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU String truncated. This is an alternate success return status. The

resultant-string argument could not contain all the
characters of the returned item.

SS$_BADPARAM Unrecognized item code. The item-code argument was not
recognized as valid by $GETJPI.

LIB$_INSEF Insufficient event flags. A local event flag number could not be
allocated by a call to LIB$GET_EF.

LIB$_INVARG Invalid arguments. The $GETJPI Item Code describes the item as a
“string”, and no resultant-string argument was specified.

223

Chapter 2. LIB$ Reference

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a string argument was
not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect number of arguments
was passed to LIB$GETJPI.

Any condition value returned by LIB$SCOPY_ xxx, or the $GETJPI system service.

LIB$GETQUI
LIB$GETQUI — The Get Queue Information routine provides a simplified interface to the $GETQUI
system service. It provides queue, job, file, characteristic, and form information about a specified
process. LIB$GETQUI obtains only one item of information in a single call.

Format
LIB$GETQUI function-code [,item-code] [,search-number] [,search-name] [,search-flags]
[,resultant-value] [,resultant-string] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
function-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Function code specifying the function that LIB$GETQUI is to perform. The function-code
argument is the address of a signed longword containing the function code.

LIB$GETQUI accepts all $GETQUI function codes. These names begin with QUI$_ and are defined
in symbol libraries in module $QUIDEF supplied by VSI.

item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only

224

Chapter 2. LIB$ Reference

mechanism: by reference

Item identifier code specifying the item of information you are requesting. The item-code
argument is the address of a signed longword containing the item code. You may request only one
item in each call to LIB$GETQUI.

LIB$GETQUI accepts all $GETQUI item codes. These names begin with QUI$_ and are defined in
symbol libraries in module $QUIDEF supplied by VSI.

search-number

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Numeric value used to process your request. The search-number argument is the address of
a signed longword integer containing the number needed to process your request. The search-
number argument corresponds directly to QUI$_SEARCH_NUMBER as described by the
$GETQUI system service.

search-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character string used to process your request. The search-name argument is the address of a string
descriptor that provides the name needed to process your request. The search-name argument
corresponds directly to QUI$_SEARCH_NAME as described by the $GETQUI system service.

search-flags

OpenVMS usage: longword_unsigned
type: longword integer (unsigned)
access: read only
mechanism: by reference

Optional bit mask indicating request to be performed. The search-flags argument is the address
of an unsigned longword integer containing the bit mask. The search-flags argument directly
corresponds to $QUI_SEARCH_FLAGS as described by the $GETQUI system service.

resultant-value

OpenVMS usage: varying_arg
type: unspecified

225

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Numeric value of the information you requested. The resultant-value argument is the address
of a longword, quadword or octaword into which LIB$GETQUI writes the numeric value of this
information. Refer to Table 2.6 for information on which items return values other than longwords.

If the item you requested returns only a string value, this argument is ignored.

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String representation of the information you requested. The resultant-string argument
is the address of the descriptor for a character string into which LIB$GETQUI writes the string
representation. Table 2.6 describes the string representation used for each item.

If you do not include resultant-string, but the item you request has only a string
representation, the error status LIB$_INVARG is returned.

resultant-length

OpenVMS usage: word_signed
type: word integer (signed)
access: write only
mechanism: by reference

Number of significant characters written to resultant-string by LIB$GETQUI. The
resultant-length argument is the address of a signed word integer into which LIB$GETQUI
writes the number of characters.

Description
LIB$GETQUI provides a simplified interface to the $GETQUI system service. It provides queue, job,
file, characteristic, and form information about a specified process. This routine obtains only one item
of information in a single call.

LIB$GETQUI provides the following features in addition to those provided by the $GETQUI system
service.

• Instead of a list of item descriptors that may be difficult to construct in high-level languages, the
single item desired is specified as an integer code which is passed by reference. Results are written
to separate arguments.

• For items that return numeric values, LIB$GETQUI optionally can provide a formatted string
interpretation of the value. For example, if you request the characteristics of a queue, LIB
$GETQUI can return the list of characteristics as “23,42,76,98,125”.

226

Chapter 2. LIB$ Reference

• For string arguments, all string classes supported by the Run-Time Library are understood.

• Calls to LIB$GETQUI are synchronous. LIB$GETQUI calls $GETQUIW to force the
synchronization.

LIB$GETQUI retains context. This means that previous calls to LIB$GETQUI affect current calls to
LIB$GETQUI.

See the description of the $GETQUI system service in the VSI OpenVMS System Services Reference
Manual: A-GETUAI for more information.

By using the resultant-value and resultant-string arguments to LIB$GETQUI, you can
request that the information be returned in two ways. For items that have numeric values, the numeric
representation is returned in resultant-value (if specified), and a formatted string interpretation
of the value is returned in resultant-string. For each item described as a “string” in the table
of Item Codes for the $GETQUI service, the value is returned in resultant-string.

Each formatted item is written left-justified; resultant-length, if specified, gives the number of
characters used.

The $GETQUI system service requires some item codes. LIB$GETQUI provides those item codes for
you by corresponding your input to LIB$GETQUI directly to the required input codes.

The following table describes all of the required and optional input needed to perform your task with
LIB$GETQUI:

Function Input Description
QUI$_CANCEL Accepts no input.
QUI$_DISPLAY_CHARACTERISTIC A characteristic name or number, or both.

Optionally, a search flags number.
QUI$_DISPLAY_ENTRY Optionally, an entry number, user name, and

search flags number. The default user name is that
of the calling process.

QUI$_DISPLAY_FILE Optionally, a search flags number.
QUI$_DISPLAY_FORM A form name or number, or both. Optionally, a

search flags number.
QUI$_DISPLAY_JOB Optionally, a search flags number.
QUI$_DISPLAY_QUEUE A queue name. Optionally, a search flags number.
QUI$_TRANSLATE_QUEUE A queue name.

Table 2.6 lists the formats used for the string interpretations.

Table 2.6. Item Code Formats for LIB$GETQUI

Item or Format Description
QUI$_AFTER_TIME Returns a quadword resultant-value as

well as a resultant-string.
QUI$_CHARACTERISTICS Returns an octaword resultant-value as

well as a comma-separated list that lists all the

227

Chapter 2. LIB$ Reference

Item or Format Description
characteristic numbers, output as a resultant-
string.

QUI$_SUBMISSION_TIME Returns a quadword resultant-value as
well as a resultant-string.

QUI$_UIC Returns a formatted resultant-string as
well as a longword.

Note

This routine calls LIB$GET_EF. Please read the note in the Description section of that routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU String truncated. This is an alternate success return status. The

resultant-string argument could not contain all the
characters of the returned item.

SS$_BADPARAM Unrecognized item code. The item-code argument was not
recognized as valid by $GETQUI.

LIB$_INSEF Insufficient event flags. A local event flag number could not be
allocated by a call to LIB$GET_EF.

LIB$_INVARG Invalid arguments. The $GETQUI Item Code describes the item as
a “string”, and no resultant-string argument was specified.

LIB$_INVSTRDES Invalid string descriptor. The descriptor for a string argument was
not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect number of arguments
was passed to LIB$GETQUI.

Any condition value returned by LIB$SCOPY_ xxx, or the $GETQUI system service.

LIB$GETSYI
LIB$GETSYI — The Get Systemwide Information routine provides a simplified interface to the
$GETSYI system service. The $GETSYI system service obtains status and identification information
about the system. LIB$GETSYI returns only one item of information in a single call.

Format
LIB$GETSYI item-code [,resultant-value] [,resultant-string] [,resultant-length] [,cluster-
system-id] [,node-name]

Returns

OpenVMS usage: cond_value

228

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Arguments
item-code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Item code specifying the desired item of information. The item-code argument is the address of a
signed longword containing this item code. All valid $GETSYI item codes are accepted.

resultant-value

OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

Numeric value returned by LIB$GETSYI. The resultant-value argument is the address of a
longword or quadword containing this value. If an item is listed as returning only a string value, this
argument is ignored.

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Information returned by LIB$GETSYI. The resultant-string argument is the address of a
descriptor pointing to the character string that will receive this information.

See the Description section for more information about value formats. If resultant-string is
not specified and if the returned value has only a string representation, the error status LIB$_INVARG
is returned.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)

229

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Number of significant characters written to resultant-string, not including blank padding or
truncated characters. The resultant-length argument is the address of an unsigned word into
which LIB$GETSYI returns this number.

cluster-system-id

OpenVMS usage: identifier
type: longword (unsigned)
access: modify
mechanism: by reference

Cluster system identification (CSID) of the node for which information is to be returned. The
cluster-system-id argument is the address of this CSID. If cluster-system-id is
specified and is nonzero, node-name is not used. If cluster-system-id is specified as zero,
LIB$GETSYI uses node-name and writes into the cluster-system-id argument the CSID
corresponding to the node identified by node-name.

The cluster-system-id of an OpenVMS node is assigned by the cluster-connection software
and may be obtained by the DCL command SHOW CLUSTER. The value of the cluster-
system-id for an OpenVMS node is not permanent; a new value is assigned to an OpenVMS node
whenever it joins or rejoins the OpenVMS Cluster.

If cluster-system-id is specified as –1, LIB$GETSYI assumes a wildcard operation and
returns the requested information for each OpenVMS node in the cluster, one node per call.

If cluster-system-id is not specified, node-name is used.

node-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the node for which information is to be returned. The node-name argument is the address
of a descriptor pointing to the node name string. If cluster-system-id is not specified or is
specified as zero, node-name is used. If neither node-name nor cluster-system-id is
specified, the caller's node is used. See the cluster-system-id argument for more information.

The node name string must contain from 1 to 15 characters and must correspond exactly to the
OpenVMS node name; no trailing blanks nor abbreviations are permitted.

Description
LIB$GETSYI provides the following features in addition to those provided by the $GETSYI system
service:

230

Chapter 2. LIB$ Reference

• Instead of a list of item descriptors, which may be difficult to construct in high-level languages,
the single item desired is specified as an integer code which is passed by reference. Results are
written to separate arguments.

• For items which return numeric values, LIB$GETSYI can optionally provide a formatted string
interpretation of the value.

• For string arguments, all string classes supported by the Run-Time Library are understood.

• Calls to LIB$GETSYI are synchronous. LIB$GETSYI calls LIB$GET_EF to allocate a local
event flag number for synchronization.

All item codes that can be used with the $GETSYI system service may be used as the item-code
argument to LIB$GETSYI. See the description of the $GETSYI system service for a list of the
defined item codes. Note that the symbolic names for these items are defined in symbol libraries in
module $SYIDEF (where appropriate) supplied by VSI.

Value Formats
By using the resultant-value and resultant-string arguments to LIB$GETSYI, you can
request that the information be returned in two ways. For each item described as a “string” in the table
of Item Codes for the $GETSYI service, the value is returned in resultant-string. For all other
items—those which have numeric values—the numeric representation is returned in resultant-
value (if specified), and an unsigned decimal integer representation is stored in resultant-
string.

Each formatted item is written left-justified; resultant-length, if specified, gives the number of
characters used.

See the VSI OpenVMS System Services Reference Manual: A-GETUAI for a description of the
$GETSYI system service.

Note

This routine calls LIB$GET_EF. Please read the note in the Description section of that routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_BADPARAM Unrecognized item code. The item-code argument was not

recognized as valid by $GETSYI.
LIB$_INSEF Insufficient event flags. A local event flag number could not be

allocated by a call to LIB$GET_EF.
LIB$_INVARG Invalid arguments. The $GETSYI Item Code describes the item as

a “string”, and no resultant-string argument was specified.
LIB$_INVSTRDES Invalid string descriptor. The descriptor of the resultant-

string argument is not a valid descriptor.
LIB$_STRTRU String truncated. This is an alternate success return status. The

resultant-string argument could not contain all the
characters of the returned item.

231

Chapter 2. LIB$ Reference

LIB$_WRONUMARG Wrong number of arguments. An incorrect number of arguments
was passed to LIB$GETSYI.

Any condition values returned by LIB$SCOPY_xxx, or the $GETSYI system service.

LIB$GET_ACCNAM
LIB$GET_ACCNAM — The Get Access Name Table for Protected Object Class (by Name) routine
is a simplified interface to the $GET_SECURITY system service, and returns a pointer to the access
name table for a protected object class that is specified by name.

Format
LIB$GET_ACCNAM [clsnam] , [objnam] ,accnam

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
clsnam

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a character-string descriptor pointing to the name of a protected object class. This
argument is optional and defaults to FILE.

objnam

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a character-string descriptor pointing to the name of a protected object. This argument
is optional. If it is omitted, the access name table returned is that used for objects of the class specified
by the clsnam argument.

accnam

232

Chapter 2. LIB$ Reference

OpenVMS usage: access_names
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword into which this routine writes the address of the access name table.

Description
LIB$GET_ACCNAM returns the address of the access name table for the specified protected
object. The format of the table is a vector of 32 quadword string descriptors. Each table entry
points to the name of an access type. The index into the vector is the bit position in an access-
desired mask. Undefined access types have zero-length names. The table can be used as input to
the LIB$PARSE_SOGW_PROT, LIB$FORMAT_SOGW_PROT, LIB$PARSE_ACCESS_CODE,
$PARSE_ACL, and $FORMAT_ACL routines.

The semantics of this routine are as follows:

1. If the clsnam parameter is omitted, clsnam defaults to “FILE.”

2. If clsnam is not the name of an object class, then the routine returns an error status (SS
$_NOCLASS), and the value of accnam is undefined.

3. If the objnam parameter is omitted, then accnam points to the table corresponding to clsnam,
and the routine returns a success status (SS$_NORMAL). The table returned is the table of access
names for a new object of class clsnam.

4. Otherwise, if clsnam and objnam do in fact name a protected object, then accnam points to
the table corresponding to the protected object class, and the routine returns a success status (SS
$_NORMAL).

5. Otherwise, if clsnam and objnam do not name a protected object, then the routine returns an error
status (the exact status value depends on the security class), and the value of accnam is undefined.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_NOCLASS No matching object class was found.
LIB$_INVARGLIB
$_WRONUMARG

The accnam argument was omitted.

 Wrong number of arguments.

In addition, any completion status may be returned from $GET_SECURITY.

LIB$GET_ACCNAM_BY_CONTEXT
LIB$GET_ACCNAM_BY_CONTEXT — The Get Access Name Table for Protected Object Class
(by Context) routine is a simplified interface to the $GET_SECURITY system service, and returns
a pointer to the access name table for a protected object class that is specified by a context longword
returned from $GET_SECURITY or $SET_SECURITY.

233

Chapter 2. LIB$ Reference

Format
LIB$GET_ACCNAM_BY_CONTEXT contxt ,accnam

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
contxt

OpenVMS usage: context
type: longword (unsigned)
access: read only
mechanism: by reference

The address of a nonzero longword context value returned by $GET_SECURITY or
$SET_SECURITY.

accnam

OpenVMS usage: access_names
type: longword (unsigned)
access: write only
mechanism: by reference

The address of a longword into which this routine writes the address of the access name table.

Description
LIB$GET_ACCNAM_BY_CONTEXT returns the address of the access name table for the specified
protected object class. The format of the table is a vector of 32 quadword string descriptors. Each
table entry points to the name of an access type. The index into the vector is the bit position in an
access-desired mask. Undefined access types have zero-length names. The table can be used as input
to the LIB$PARSE_SOGW_PROT, LIB$FORMAT_SOGW_PROT, LIB$PARSE_ACCESS_CODE,
$PARSE_ACL, and $FORMAT_ACL routines.

The semantics of this routine are as follows:

• If the contxt argument is valid, then the accnam argument points to the table corresponding to
the protected object class, and the routine returns a success status (SS$_NORMAL).

• If the contxt argument is not valid, then the routine returns an error status, and the value of
accnam is undefined.

234

Chapter 2. LIB$ Reference

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_WRONUMARG Wrong number of arguments.

In addition, error status may be returned from $GET_SECURITY.

LIB$GET_COMMAND
LIB$GET_COMMAND — The Get Line from SYS$COMMAND routine gets one record of ASCII
text from the current controlling input device, specified by the logical name SYS$COMMAND.

Format
LIB$GET_COMMAND resultant-string [,prompt-string] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String that LIB$GET_COMMAND gets from SYS$COMMAND. The resultant-string
argument is the address of a descriptor pointing to this string.

prompt-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt message that LIB$GET_COMMAND displays on the controlling terminal. The prompt-
string argument is the address of a descriptor pointing to the prompt. Any string can be a valid

235

Chapter 2. LIB$ Reference

prompt. By convention however, a prompt string consists of text followed by a colon (:), a space, and
no carriage-return/line-feed combination. The maximum size of the prompt message is 255 characters.
If the controlling input device is not a terminal, this argument is ignored.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_COMMAND, not counting
padding in the case of a fixed string. The resultant-length argument is the address of
an unsigned word containing this length. If the input string is truncated to the size specified in
the resultant-string descriptor, resultant-length is set to this size. Therefore,
resultant-length can always be used by the calling program to access a valid substring of
resultant-string.

Description
LIB$GET_COMMAND uses the OpenVMS RMS $GET service (see the VSI OpenVMS Record
Management Services Reference Manual) to get one record of ASCII text from the current controlling
input device, specified by SYS$COMMAND.

When you log in, the OpenVMS operating system creates three files as default I/O control streams for
your process.

• SYS$INPUT, your default input device

• SYS$OUTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between your interactive input and
output or your batch commands and the OpenVMS software. Initially, all three files are equated with
the terminal. However, with the DCL command ASSIGN, you can change these assignments to obtain
information from a file or put information into a file. SYS$INPUT and SYS$COMMAND are usually
identical, but the input and command streams can be different. For example, during the execution of
an indirect command file from an interactive terminal, SYS$COMMAND refers to the terminal and
SYS$INPUT refers to the command file.

LIB$GET_COMMAND opens file SYS$COMMAND on the first call. The RMS internal stream
identifier (ISI) is stored in the routine's static storage for subsequent calls. Hence, this routine is not
AST reentrant.

If prompt-string is provided and if the SYS$COMMAND device is a terminal, LIB
$GET_COMMAND displays the prompt message. If the device is not a terminal, the prompt-
string is ignored.

LIB$GET_COMMAND is used when a program needs input from some source other than the current
input stream. Usually, it is used to input from the terminal rather than from an indirect command file.
For example, a program may ask a question which cannot be answered by an indirect command file

236

Chapter 2. LIB$ Reference

entry. In this case the program would call LIB$GET_COMMAND to get one record of ASCII text
from SYS$COMMAND, the terminal.

Condition Values Returned

SS$_NORMAL Routine successfully completed. RMS completion status.
LIB$_FATERRLIB An internal consistency check on Run-Time Library data structures

has failed. This may indicate a programming error in the Run-Time
Library, or that your program may have overwritten those data
structures.

LIB$_INPSTRTRU The input string has been truncated to the size specified in the
resultant-string descriptor (fixed-length strings only). The
resultant-length argument is also set to this size. This is an
error (as opposed to LIB$_STRTRU which is a success) because
the truncation is not under program control.

LIB$_INSVIRMEM Insufficient virtual memory to allocate the dynamic string.
LIB$_INVARG Invalid arguments. The descriptor class field is not a recognized

code or is zero.

Any valid RMS status code.

Any code returned by LIBGET_VM, LIBGET_VM_64, LIB$SCOPY_R_DX, or LIB
$SCOPY_R_DX_64.

LIB$GET_COMMON
LIB$GET_COMMON — The Get String from Common routine copies a string in the common area
to the destination string. (The common area is an area of storage that remains defined across multiple
image activations in a process.) The string length is taken from the first longword of the common
area.

Format
LIB$GET_COMMON resultant-string [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
resultant-string

OpenVMS usage: char_string

237

Chapter 2. LIB$ Reference

type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$GET_COMMON writes the string copied from the common area.
The resultant-string argument is the address of a descriptor pointing to the destination string.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters written into resultant-string by LIB$GET_COMMON, not counting
padding in the case of a fixed-length string. The resultant-length argument is the address of
an unsigned word integer containing the number of characters copied. If the input string is truncated
to the size specified in the resultant-string descriptor, resultant-length is set to this
size. Therefore, resultant-length can always be used by the calling program to access a valid
substring of resultant-string.

Description
LIB$PUT_COMMON allows a program to copy a string into the process's common storage area. This
area remains defined during multiple image activations. LIB$GET_COMMON allows a program to
copy a string from the common area into a destination string. The programs reading and writing the
data in the common area must agree upon its amount and format.

The maximum number of characters that can be copied is 252. The actual number of characters copied
is returned by the optional argument, resultant-length (if given).

You can use LIB$PUT_COMMON and LIB$GET_COMMON to pass information between images
run successively, such as chained images run by LIB$RUN_PROGRAM. Since the common area
is unique to each process, do not use LIB$GET_COMMON and LIB$PUT_COMMON to share
information across processes.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to VSI.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$_STRTRU Successfully completed. The string was longer than the buffer and
was truncated.

238

Chapter 2. LIB$ Reference

LIB$GET_CURR_INVO_CONTEXT
LIB$GET_CURR_INVO_CONTEXT — The Get Current Invocation Context routine gets the current
invocation context of any active procedure. A thread can obtain the invocation context of a current
procedure using the following function format:

Format
LIB$GET_CURR_INVO_CONTEXT invo_context

Returns
None.

Arguments
invo_context

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Address of an invocation context block into which the procedure context of the caller will be written.

Description
LIB$GET_CURR_INVO_CONTEXT gets the current invocation context of any active procedure.

See the VSI OpenVMS Calling Standard manual for additional information.

Condition Values Returned
None.

LIB$GET_DATE_FORMAT
LIB$GET_DATE_FORMAT — The Get the User's Date Input Format routine returns information
about the user's choice of a date/time input format.

Format
LIB$GET_DATE_FORMAT format-string [,user-context]

Returns

OpenVMS usage: cond_value

239

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Arguments
format-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the translation of LIB$DT_INPUT_FORMAT. The format-string argument is the
address of a descriptor pointing to this format string.

user-context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this routine. The user-
context argument is the address of an unsigned longword that contains this context. The initial
value of the context variable must be zero. Thereafter, the user program must not write to the cell.

The user-context argument is optional. However, if a context cell is not passed, LIB
$GET_DATE_FORMAT may abort if two threads of execution attempt to manipulate the context area
concurrently. Therefore, when calling this routine in situations where reentrancy might occur, such as
from AST level, VSI recommends that users specify a different context cell for each calling thread.

Description
Depending on which method was used to specify the input formats, LIB$GET_DATE_FORMAT
either translates the logicals LIB$DT_INPUT_FORMAT and LIB$FORMAT_MNEMONICS,
or uses the preinitialized context components LIB$K_FORMAT_MNEMONICS and LIB
$K_INPUT_FORMAT to return the user's specified date/time input format in a “legible” form. This
format string can then be used as a guideline for entering date/time strings.

The string returned by LIB$GET_DATE_FORMAT parallels the currently defined input format string,
consisting of the format punctuation (with most whitespace compressed) and “legible” mnemonics
representing the various format fields. The English (default) versions of these mnemonics are as
follows:

Format Field Legible Mnemonic (Default)
Year YYYY 1

240

Chapter 2. LIB$ Reference

Format Field Legible Mnemonic (Default)
Numeric month MM
Alphabetic month MONTH
Numeric day DD
Hours (12- or 24-hour) HH
Minutes MM
Seconds SS
Fractional seconds CC 1

Meridiem indicator AM/PM
1This variable-length field mnemonic has a numeric suffix representing the number of digits allowed or required in the field. For instance,
YYYY4 indicates a four-digit year field.

For example, consider the following input format string:

$ DEFINE LIB$DT_INPUT_FORMAT -
_$ "!MAAU !D0, !Y2 !H02:!M0:!S0.!C4 !MIU"

If LIB$GET_DATE_FORMAT were called for this format string, the format string returned would be
as follows:

MONTH DD, YYYY2 HH:MM:SS.CC4 AM/PM

See the VSI OpenVMS Programming Concepts Manual for a description of system date and time
operations as well as a detailed description of the format mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_DEFFORUSE Default format used; unable to determine desired format.
LIB$_ENGLUSED English used; unable to determine or use desired language.
LIB$_ILLFORMAT Illegal format string.
LIB$_INVARG Invalid argument; a required argument was not specified.
LIB$_INVSTRDES Invalid input string descriptor.
LIB$_REENTRANCY Reentrancy detected.
LIB$_STRTRU String truncated.
LIB$_UNRFORCOD Unrecognized format code.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIBGET_VM, LIBSCOPY_R_DX, and LIB$SFREE1_DD.

LIB$GET_EF
LIB$GET_EF — The Get Event Flag routine allocates one local event flag from a processwide pool
and returns the number of the allocated flag to the caller. If no flags are available, LIB$GET_EF
returns an error as its function value.

241

Chapter 2. LIB$ Reference

Format
LIB$GET_EF event-flag-number

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
event-flag-number

OpenVMS usage: ef_number
type: longword (unsigned)
access: write only
mechanism: by reference

Number of the local event flag that LIB$GET_EF allocated, or –1 if no local event flag was available.
The event-flag-number argument is the address of a signed longword integer into which LIB
$GET_EF writes the number of the local event flag that it allocates.

Description
LIB$GET_EF and LIB$FREE_EF cause local event flags to be allocated and deallocated at run time,
so that your routine remains independent of other routines executing in the same process.

LIB$GET_EF provides your program with an arbitrary event flag number. You can obtain a specific
event flag number by calling LIB$RESERVE_EF.

Note

Beware of running multiple images linked with /NOSYSSHR in the same process and having more
than one image make calls to LIB$GET_EF. Each image contains its own copy of the event flag bit
array that is designed to be process-wide and synchronize ownership of event flags. Multiple calls to
LIB$GET_EF could cause the same event flag to be allocated more than once.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSEF Insufficient event flags. There were no more event flags available

for allocation.

See the VSI OpenVMS Programming Concepts Manual for more information.

242

Chapter 2. LIB$ Reference

LIB$GET_FOREIGN
LIB$GET_FOREIGN — The Get Foreign Command Line routine requests the calling image's
command language interpreter (CLI) to return the contents of the “foreign command” line that
activated the current image.

Format
LIB$GET_FOREIGN resultant-string [,prompt-string] [,resultant-length] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String that LIB$GET_FOREIGN uses to receive the foreign command line. The resultant-
string argument is the address of a descriptor pointing to this string. If the foreign command
text returned was obtained by a prompt to SYS$INPUT (see the description of flags), the text is
translated to uppercase so as to be more consistent with text returned from the CLI.

prompt-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Optional user-supplied prompt for text that LIB$GET_FOREIGN uses if no command-line text is
available. The prompt-string argument is the address of a descriptor pointing to the user prompt.
If omitted, no prompting is performed. It is recommended that prompt-string be specified. If
prompt-string is omitted and if no command-line text is available, a zero-length string will be
returned.

resultant-length

OpenVMS usage: word_unsigned

243

Chapter 2. LIB$ Reference

type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_FOREIGN, not counting padding
in the case of a fixed-length resultant-string. The resultant-length argument is the
address of an unsigned word into which LIB$GET_FOREIGN writes the number of bytes.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: modify
mechanism: by reference

Value that LIB$GET_FOREIGN uses to control whether or not prompting is to be performed. The
flags argument is the address of an unsigned longword integer containing this value. If the low
bit of flags is zero, or if flags is omitted, prompting is done only if the CLI does not return a
command line. If the low bit is 1, prompting is done unconditionally. If specified, flags is set to 1
before returning to the caller.

The primary use of flags is to allow a utility program to be invoked once with subcommand text on
the command line, and then to repeatedly prompt for further subcommands from SYS$INPUT. This is
accomplished by calling LIB$GET_FOREIGN repeatedly, specifying in the call a prompt-string
string and a flags variable that is initialized to zero at the beginning of the program. The first call
gets the subcommand text from the command line, after which flags will be set to 1, causing further
subcommands to be requested through prompts to SYS$INPUT.

Description
LIB$GET_FOREIGN returns the contents of the command line that you use to activate an image.
It can be used to give your program access to the qualifiers of a foreign command or to prompt for
further command line text.

A foreign command is a command that you can define and then use as if it were a DCL or MCR
command in order to run a program. When you use the foreign command at command level, the CLI
parses the foreign command only and activates the image. It ignores any options or qualifiers that you
have defined for the foreign command. Once the CLI has activated the image, the program can call
LIB$GET_FOREIGN to obtain and parse the remainder of the command line (after the command
itself) for whatever options it may contain. See the VSI OpenVMS User's Manual for information on
how to define a foreign command.

If no command line is available, LIB$GET_FOREIGN can optionally call LIB$GET_INPUT to
prompt the user for command text. If desired, LIB$GET_FOREIGN can be called repetitively,
returning the command line on the first call, but prompting for further text on subsequent calls.

LIB$GET_FOREIGN can also be used for images invoked by the RUN command, for which further
text must be obtained by prompting. Such an image can also be invoked by the DCL command MCR
or by the MCR CLI. The text following the image name will be returned to the executing image.

The action of LIB$GET_FOREIGN depends on the environment in which the image is activated.

244

Chapter 2. LIB$ Reference

• If you use a foreign command to invoke the image, you can call LIB$GET_FOREIGN to obtain
the command qualifiers following the foreign command. You can also use LIB$GET_FOREIGN
to prompt repeatedly for more qualifiers after the command. This technique is shown in the
example.

• If the image is in the SYS$SYSTEM: directory, the image can be invoked by the DCL command
MCR or by the MCR CLI. In this case, LIB$GET_FOREIGN returns the command line text
following the image name.

• If the image is invoked by a DCL command RUN, LIB$GET_FOREIGN can be used to prompt
for additional text.

• If the image is not invoked by a foreign command or MCR, or if there is no information remaining
on the command line, and the user-supplied prompt is present, LIB$GET_INPUT is called to
prompt for a command line. If the prompt is not present, LIB$GET_FOREIGN returns a zero
length string.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB A fatal internal error was detected.
LIB$_INPSTRTRU The input string was truncated. The resultant-string

argument could not contain all of the characters. The
resultant-length argument reflects the truncated length.

LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

A condition value returned by OpenVMS RMS. SYS$INPUT was prompted for command text and
RMS returned an error. The most typical error will be RMS$_EOF, end-of-file.

Example
EXAMPLE: ROUTINE OPTIONS (MAIN);

%INCLUDE $STSDEF; /* Status-testing definitions */

DECLARE COMMAND_LINE CHARACTER(80) VARYING,
 PROMPT_FLAG FIXED BINARY(31) INIT(0),
 LIB$GET_FOREIGN ENTRY (CHARACTER(*) VARYING,
 CHARACTER(*) VARYING,
 FIXED BINARY(15),
 FIXED BINARY(31))
 OPTIONS(VARIABLE) RETURNS (FIXED BINARY(31)),
 RMS$_EOF GLOBALREF FIXED BINARY(31) VALUE;

/* Repeat forever calling LIB$GET_FOREIGN to obtain
 subcommand text and print the text. Exit when an
 end-of-file is found. */

DO WHILE (’1’B); /* Do while TRUE */
 STS$VALUE = LIB$GET_FOREIGN
 (COMMAND_LINE,’Input: ’,,
 PROMPT_FLAG);

245

Chapter 2. LIB$ Reference

 IF STS$SUCCESS THEN
 PUT LIST (’ Command was ’,COMMAND_LINE);
 ELSE DO;
 IF STS$VALUE ^= RMS$_EOF THEN
 PUT LIST (’Error encountered’);
 RETURN;
 END;
 PUT SKIP; /* Skip to next line */
 END; /* End of DO WHILE loop */
END;

This PL/I example shows the use of the optional flags argument to permit repeated calls to LIB
$GET_FOREIGN. The command line text is retrieved on the first pass only; after the first pass, the
program prompts from SYS$INPUT.

LIB$GET_FULLNAME_OFFSET
LIB$GET_FULLNAME_OFFSET — The Get the Offset to the Starting Position of the Most
Significant Part of a Full Name routine returns the offset to the starting position of the most significant
part of a full name. No support for arguments passed by 64-bit address reference or for use of 64-
bit descriptors, if applicable, is planned for this routine. The most significant part of a full name is
determined by the underlying network services.

Format
LIB$GET_FULLNAME_OFFSET fullname, offset

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
fullname

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Full name. The fullname argument contains the address of the descriptor pointing to this full name
string.

The error LIB$_INVARG is returned if fullname contains an invalid full name, points to a null
string, or contains more than 1024 characters. The error LIB$_INVSTRDES is returned if fullname
is an invalid descriptor.

246

Chapter 2. LIB$ Reference

offset

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The offset in bytes of the starting position of the most significant part of fullname. The offset
argument is the address of an unsigned word that contains this offset.

The offset argument contains an unusable result when LIB$GET_FULLNAME_OFFSET returns
in error.

Description
This routine returns the byte offset of the starting position of the most significant part of the input
full name. The returned offset can be used to position the display of a full name in a fixed-size output
region, for example, scroll regions in DECwindows applications. The most significant part of a full
name is determined by the underlying network services.

You must validate fullname by expanding it with LIB$EXPAND_NO DENAME before calling LIB
$GET_FULLNAME_OFFSET. LIB$GET_FULLNAME_OFFSET returns the error LIB$_INVARG
if fullname is invalid.

In a DECnet for OpenVMS environment, processing a DECnet-Plus for OpenVMS full name using
LIB$GET_FULLNAME_OFFSET results in the error condition LIB$_INVARG.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument:

• fullname is invalid.

• fullname points to a null string.

• The length of the full name is more than 1024 characters.

• Processing a DECnet-Plus for OpenVMS node name in a
DECnet for OpenVMS environment is invalid.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by the $IPC DECnet service.

Examples
The following table gives some examples of the results of LIB$GET_FULLNAME_OFFSET:

247

Chapter 2. LIB$ Reference

Full Name Offset
NODE 0
DEC:.FOO.NODE 9

LIB$GET_HOSTNAME
LIB$GET_HOSTNAME — The Get Host Node Name routine returns the host node name of the local
system. No support for arguments passed by 64-bit address reference or for use of 64-bit descriptors,
if applicable, is planned for this routine.

Format
LIB$GET_HOSTNAME hostname [,resultant-length] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
hostname

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

The host node name. The hostname argument contains the address of a descriptor pointing to the
host node name. LIB$GET_HOSTNAME writes the host node-name string into the buffer pointed to
by the hostname descriptor.

The error LIB$_INVSTRDES is returned if hostname is an invalid descriptor.

The length field of the hostname descriptor is not updated unless hostname is a dynamic
descriptor with a length less than the host node name to be returned. Refer to the VSI OpenVMS RTL
String Manipulation (STR$) Manual for dynamic string descriptor usage.

The hostname argument contains an unusable result when LIB$GET_HOSTNAME returns in error.

resultant-length

OpenVMS usage: word_unsigned

248

Chapter 2. LIB$ Reference

type: word (unsigned)
access: write only
mechanism: by reference

Length of the host node name. The resultant-length argument is the address of an unsigned
word that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$GET_HOSTNAME
returns in error.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

The value LIB$GET_HOSTNAME uses to control the form of the host node name that it returns in
the output descriptor hostname. If flags is equal to 0, or if flags is omitted, the host node name
returned is in the network usable form. If flags is equal to 1, the host node name returned is in the
parsable form.

Unused bits in flags must be 0. Nonzero unused bits result in the error condition LIB$_INVARG.

Description
This routine returns the host node name. The routine searches for the first host node name using the
following order:

1. Get host node name from $GETSYI system service.

2. Translate the executive mode logical SYS$NODE_FULLNAME once.

3. Translate the executive mode logical SYS$NODE once.

The error LIB$_NOHOSNAM is returned if no host node name is found.

LIB$GET_HOSTNAME can return the host node name in the following two forms:

• Network usable form — The form that can be passed directly to the network. This form does not
contain unnecessary double quotation marks (double quotation marks ["] that are not part of the
node name) and also does not contain trailing double colons, for example:

DEC:.FOO."simple name with spaces"

• Parsable form — The form that can be passed directly to the part of the system that does node-
name syntax parsing, for example, $FILESCAN and DCL command parsing. This form contains
trailing double colons and is fully quoted if there are special characters. Individual double
quotation marks (") that are part of a simple name are doubled (" "), for example:

"DEC:.FOO.""simple name with spaces"""::

249

Chapter 2. LIB$ Reference

You must use double quotation marks for a node name with special characters to facilitate correct
parsing.

If the returned node name overflows the buffer pointed to by hostname, the host node name is
truncated at the end, and the alternate success status LIB$_STRTRU is returned.

The resultant-length argument, if supplied, is set to the length of the node-name string copied to the
output buffer pointed to by hostname.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters are truncated in the

output buffer pointed to by hostname.
LIB$_INVARG Invalid input argument. Unused bits in flags are not set to 0.
LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.
LIB$_NOHOSNAM No host node name found.

Any condition value returned by LIB$SCOPY_R_DX, or the $FILESCAN system service.

LIB$GET_INPUT
LIB$GET_INPUT — The Get Line from SYS$INPUT routine gets one record of ASCII text from the
current controlling input device, specified by SYS$INPUT.

Format
LIB$GET_INPUT resultant-string [,prompt-string] [,resultant-length]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
resultant-string

OpenVMS usage: char_string
type: character string
access: write only

250

Chapter 2. LIB$ Reference

mechanism: by descriptor

String that LIB$GET_INPUT gets from the input device. The resultant-string argument is the
address of a descriptor pointing to the character string into which LIB$GET_INPUT writes the text
received from the current input device.

prompt-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt message that is displayed on the controlling terminal. The prompt-string argument is
the address of a descriptor containing the prompt. Any string can be a valid prompt. By convention
however, a prompt consists of text followed by a colon (:), a space, and no carriage-return/line-feed
combination. The maximum size of the prompt message is 255 characters. If the controlling input
device is not a terminal, this argument is ignored.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into resultant-string by LIB$GET_INPUT, not counting padding
in the case of a fixed string. The resultant-length argument is the address of an unsigned
word containing this number. If the input string is truncated to the size specified in the resultant-
string descriptor, resultant-length is set to this size. Therefore, resultant-length can
always be used by the calling program to access a valid substring of resultant-string.

Description
LIB$GET_INPUT uses the OpenVMS RMS $GET service to get one record of ASCII text from the
current controlling input device, specified by SYS$INPUT. (For more information about the RMS
$GET service, see the VSI OpenVMS Record Management Services Reference Manual.)

When you log in, the OpenVMS operating system creates three files as default I/O control streams for
your process.

• SYS$INPUT, your default input device

• SYS$OUTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between your interactive input and
output or your batch commands and the OpenVMS software. Initially, all three names are equated
with the terminal. However, with the DCL command ASSIGN, you can change these assignments

251

Chapter 2. LIB$ Reference

to obtain information from a file or put information into a file. SYS$INPUT and SYS$COMMAND
are usually identical, but the input and command streams can be different. For example, during the
execution of an indirect command file from an interactive terminal, SYS$COMMAND refers to the
terminal and SYS$INPUT refers to the command file.

LIB$GET_INPUT opens file SYS$INPUT on the first call. The RMS internal stream identifier (ISI)
is stored in the routine's static storage for subsequent calls.

If prompt-string is provided and the SYS$INPUT device is a terminal, LIB$GET_INPUT
displays the prompt message. If the device is not a terminal, the prompt-string argument is
ignored.

If you want to get input from some source other than the current input stream, use LIB
$GET_COMMAND.

Condition Values Returned
SS$_NORMAL Routine successfully completed. RMS completion status.
LIB$_FATERRLIB An internal consistency check on Run-Time Library data structures

has failed. This may indicate a programming error in the Run-Time
Library, or that your program may have overwritten those data
structures.

LIB$_INPSTRTRU The input string has been truncated to the size specified in the
resultant-string descriptor (fixed-length strings only). The
resultant-length argument is also set to this size. This is an
error (as opposed to LIB$_STRTRU, which is a success) because
the truncation is not under program control.

LIB$_INSVIRMEM Insufficient virtual memory to allocate the dynamic string.
LIB$_INVARG Invalid arguments. The descriptor class field is not a recognized

code or is zero.

Any RMS condition value returned by $GET.

Any condition value returned by LIBGET_VM, LIBGET_VM_64, LIB$SCOPY_R_DX, or LIB
$SCOPY_R_DX_64.

LIB$GET_INVO_CONTEXT
LIB$GET_INVO_CONTEXT — The Get Invocation Context routine gets the invocation context of
any active procedure.

Format
LIB$GET_INVO_CONTEXT invo_handle, invo_context

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)

252

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Arguments
invo_handle

OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by value

Handle for the desired invocation. Returned by LIB$GET_INVO_HANDLE.

invo_context

OpenVMS usage: invo_context_blk
type: structure
access: write only
mechanism: by reference

Address of an invocation context block into which the procedure context of the frame specified by
invo_handle will be written.

Description
LIB$GET_INVO_CONTEXT gets the invocation context of any active procedure.

Note

If invo_handle does not represent any procedure context in the active call chain, the new contents
of the invocation context block are unpredictable.

See the VSI OpenVMS Calling Standard manual for additional information.

Condition Values Returned

0 Indicates failure.
0 Indicates success.

LIB$GET_INVO_HANDLE
LIB$GET_INVO_HANDLE — The Get Invocation Handle routine gets an invocation handle of any
active procedure. A thread can obtain an invocation handle corresponding to any invocation context
block by using the following function format.

253

Chapter 2. LIB$ Reference

Format
LIB$GET_INVO_HANDLE invo_context

Returns

OpenVMS usage: invo_handle
type: longword (unsigned)
access: write only
mechanism: by value

Invocation handle of the invocation context that was passed. If the returned value is LIB
$K_INVO_HANDLE_NULL, the invocation context that was passed was invalid.

Argument
invo_context

OpenVMS usage: invo_handle
type: structure
access: read only
mechanism: by reference

Address of an invocation context block. Here, only the frame pointer and stack pointer fields of an
invocation context block must be defined.

Description
LIB$GET_INVO_HANDLE gets an invocation handle of any active procedure.

See the VSI OpenVMS Calling Standard manual for additional information.

Condition Values Returned
None.

LIB$GET_LOGICAL
LIB$GET_LOGICAL — The Get Logical Name routine calls the system service routine $TRNLNM
to return information about a logical name.

Format
LIB$GET_LOGICAL logical-name [,resultant-string] [,resultant-length] [,table-name] [,max-
index] [,index] [,acmode] [,flags]

254

Chapter 2. LIB$ Reference

Returns

OpenVMS usage: cond_value
type: longword
access: write only
mechanism: by value

Arguments
logical-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Logical name for which LIB$GET_LOGICAL searches. The logical-name argument is the
address of a descriptor pointing to the logical name string.

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Logical name equivalent returned. The resultant-string argument is the address of a descriptor
pointing to a character string into which LIB$GET_ LOGICAL writes the equivalence name of the
logical.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the equivalence name string returned by LIB$GET_LOGICAL. The resultant-
length argument is the address of an unsigned word integer into which LIB$GET_LOGICAL
writes the length.

table-name

OpenVMS usage: char_string

255

Chapter 2. LIB$ Reference

type: character string
access: read only
mechanism: by descriptor

Name of the table in which to search for the logical name. The table-name argument contains
the address of a descriptor pointing to a character string which contains the table name. If no table is
specified, LNM$FILE_DEV is used.

max-index

OpenVMS usage: longword_signed
type: longword (signed)
access: write only
mechanism: by reference

Largest equivalence name index. Each equivalence name for the logical name has an index associated
with it. The max-index argument is the address of a signed longword integer into which LIB
$GET_LOGICAL write the value. If no equivalence names (and, therefore, no index values) exist,
LIB$GET_LOGICAL returns a value of -1.

index

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Equivalence name index value. LIB$GET_LOGICAL will return the equivalence name string that
has the specified index value. The index argument is the address of an unsigned longword integer
specifying the index value.

acmode

OpenVMS usage: access_mode
type: byte (unsigned)
access: read only
mechanism: by reference

Access mode to be used in the translation. The acmode argument is the address of a byte specifying
the access mode. The $PSLDEF macro defines symbolic names for the four access modes.

When you specify the acmode argument, all names at access modes which are less privileged than
the specified access mode are ignored.

If you do not specify acmode, the translation is performed without regard to access mode; however,
the translation process proceeds from the outermost to the innermost access modes. Thus, if two

256

Chapter 2. LIB$ Reference

logical names with the same name, but at different access modes, exist in the same table, the name
with the outermost access mode is translated.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flags controlling the search for the logical name. The flags argument is the address of a longword
integer that contains the control flags. The $LNMDEF macro defines these flags. Currently only bit 0
of this argument is used.

Bit Value Description
0 LNM$M_CASE_BLIND If set, LIB$GET_LOGICAL

does not distinguish between
uppercase and lowercase
letters in the logical name to be
translated.

This is an optional argument. If omitted the default is 0.

Description
LIB$GET_LOGICAL provides a simplified interface to the $TRNLNM system service. It provides
most of the features found in $TRNLNM with some additional benefits. For string arguments, all
string classes supported by the Run-Time Library are understood. The list of item descriptors, which
may be difficult to construct in high-level languages, is handled internally by LIB$GET_LOGICAL.

See the description of the $TRNLNM system service in the VSI OpenVMS System Services Reference
Manual for more information.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_ACCVIO Access violation. Cannot access the location specified.
SS$_BADPARAM Bad parameter value.
SS$_IVLOGNAM Invalid logical name. The logical name or its value contained more

than 255 characters.
SS$_IVLOGTAB Invalid logical name table.
SS$_NOLOGNAM The logical name was not found in the specified table.
SS$_NOPRIV No privileges for attempted operation.
SS$_TOOMANYNAM Logical name translation exceeded allowed depth.
LIB$_INVARG Required argument is missing.
LIB$_INSVIRMEM Insufficient virtual memory.

257

Chapter 2. LIB$ Reference

LIB$_INVSTRDES Invalid string descriptor.
LIB$_STRTRU Success, but source string truncated.
LIB$_WRONUMARG Wrong number of arguments.

LIB$GET_LUN
LIB$GET_LUN — The Get Logical Unit Number routine allocates one logical unit number from
a processwide pool. If a unit is available, its number is returned to the caller. Otherwise, an error is
returned as the function value.

Format
LIB$GET_LUN logical-unit-number

Return

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
logical-unit-number

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Allocated logical unit number or –1 if none was available. The logical-unit-number argument
is the address of a longword into which LIB$GET_LUN returns the value of the allocated logical unit.
LIB$GET_LUN can allocate logical unit numbers 100 through 119 on VAX, and 100 through 299 on
Alpha and I64.

Description
LIB$GET_LUN allocates one logical unit number from a processwide pool. If a unit is available, its
number is returned to the caller. Otherwise, an error is returned as the function value.

On VAX systems, LIB$GET_LUN reserves logical unit numbers starting at 119 and continues in
descending order through 100.

On Alpha and I64 systems, LIB$GET_LUN reserves logical unit numbers 100 through 299. To
maintain compatibility with VAX systems, LIB$GET_LUN reserves logical unit numbers starting

258

Chapter 2. LIB$ Reference

at 119 and continues in descending order through 100. When these are exhausted, LIB$GET_LUN
reserves logical unit numbers starting at 299 and continues in descending order through 120.

LIB$GET_LUN assumes that the logical unit numbers in the range 0 through 99 may be in use
by your program, but it cannot determine which logical unit numbers are actually in use by your
program.

Call LIB$GET_LUN only from Fortran or BASIC programs. Those languages and LIB$GET_LUN
share the concept of unit numbers and a similar number space.

Note

Beware of running multiple images linked with /NOSYSSHR in the same process and having more
than one image make calls to LIB$GET_LUN. Each image contains its own copy of the event flag bit
array that is designed to be process-wide and synchronize ownership of event flags. Multiple calls to
LIB$GET_EF could cause the same event flag to be allocated more than once.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSLUN Insufficient logical unit numbers. No logical unit numbers were

available.

LIB$GET_MAXIMUM_DATE_LENGTH
LIB$GET_MAXIMUM_DATE_LENGTH — Given an output format and language, the Retrieve
the Maximum Length of a Date/Time String routine determines the maximum possible length for the
date-string string returned by LIB$FORMAT_DATE_TIME.

Format
LIB$GET_MAXIMUM_DATE_LENGTH date-length [,user-context] [,flags]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
date-length

OpenVMS usage: longword_signed

259

Chapter 2. LIB$ Reference

type: longword (signed)
access: write only
mechanism: by reference

Receives the maximum possible length of the date-string argument returned to LIB
$FORMAT_DATE_TIME. The date-length argument is the address of a signed longword that
receives this maximum length. The length written to date-length reflects the greatest possible
length of an output date/time string for the currently selected output format and natural language.

For example, if the selected output date/time format includes the alphabetic, unabbreviated month
name (assuming English as the natural language), the longest month name (September) would have to
be taken into consideration when determining the maximum possible length of date-string.

user-context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the translation context over multiple calls to this routine. The user-
context argument is the address of an unsigned longword that contains this context. The initial
value of the context variable must be zero. Thereafter, the user program must not write to the cell.

The user-context parameter is optional. However, if a context cell is not passed, the routine LIB
$GET_MAXIMUM_DATE_LENGTH may abort if two threads of execution attempt to manipulate
the context area concurrently. Therefore, when calling this routine in situations where reentrancy
might occur, such as from AST level, VSI recommends that users specify a different context cell for
each calling thread.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Bit mask that allows the user to specify whether the date, time, or both are to be included in the
calculation of the maximum date length. The flags argument is the address of an unsigned
bit mask containing the specified values. Valid values are LIB$M_DATE_FIELDS and LIB
$M_TIME_FIELDS. The values specified for flags must correspond to the flags argument
passed to LIB$FORMAT_DATE_ TIME.

Description
The LIB$GET_MAXIMUM_DATE_LENGTH routine determines the maximum possible length
for a formatted date/time string as returned by LIB$FORMAT_DATE_ TIME. The maximum length
returned takes into account the currently specified output format and natural language; date-

260

Chapter 2. LIB$ Reference

length represents the maximum possible length of the string written to the date-string
argument of LIB$FORMAT_DATE_ TIME.

Consider the following example, in which the output format is defined as follows.

DEFINE LIB$DT_FORMAT LIB$DATE_FORMAT_012, LIB$TIME_FORMAT_012

This date/time format would appear as follows:

!MAU !DD, !Y4 !HH2:!M0 !MIU

Given this format, the maximum possible length for this date/time string is calculated using the
longest possible date string followed by a space and the longest possible time string. One example that
meets these requirements is as follows (assuming English as the selected language):

SEPTEMBER 21, 2000 11:24 PM

The maximum possible length of this date-string would then be 28.

See the VSI OpenVMS Programming Concepts Manual for a description of system date and time
operations as well as a detailed description of the format mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ABSTIMREQ Absolute time required.
LIB$_DEFFORUSE Default format used; unable to determine desired format.
LIB$_ENGLUSED English used by default; unable to translate SYS$LANGUAGE.
LIB$_REENTRANCY Reentrant invocation with same context variable.
LIB$_STRTRU Output string truncated.
LIB$_UNRFORCOD Unrecognized format code.

Any condition value returned by LIB$GET_VM.

LIB$GET_PREV_INVO_CONTEXT
LIB$GET_PREV_INVO_CONTEXT — The Get Previous Invocation Context routine gets the
previous invocation context of any active procedure. A thread can obtain the invocation context of the
procedure context preceding any other procedure context using the following function format.

Format
LIB$GET_PREV_INVO_CONTEXT invo_context

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)

261

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Argument
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: modify
mechanism: by reference

Address of an invocation context block. The given context block is updated to represent the context of
the previous (calling) frame.

For the purposes of this function, the minimum fields of an invocation block that must be defined
are those IREG and FREG fields corresponding to registers used by a context whether the registers
are preserved or not. Note that the invocation context blocks written by the routines specified in
these sections define all possible fields in a context block. Such context blocks satisfy this minimum
requirement.

Description
LIB$GET_PREV_INVO_CONTEXT gets the previous invocation context of any active procedure.

See the VSI OpenVMS Calling Standard manual for more information.

Condition Values Returned

0 The initial context represents the bottom of the call chain.
1 Indicates success.

LIB$GET_PREV_INVO_HANDLE
LIB$GET_PREV_INVO_HANDLE — The Get Previous Invocation Handle routine gets the previous
invocation handle of any active procedure. A thread can obtain an invocation handle of the procedure
context preceding that of a specified procedure context by using the following function format.

Format
LIB$GET_PREV_INVO_HANDLE invo_handle

Returns

OpenVMS usage: invo_handle
type: longword (unsigned)

262

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Argument
invo_handle

OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by value

An invocation handle that represents a target invocation context.

Description
LIB$GET_PREV_INVO_HANDLE gets the previous invocation handle of any active procedure.

See the VSI OpenVMS Calling Standard manual for more information.

Condition Values Returned
None.

LIB$GET_SYMBOL
LIB$GET_SYMBOL — The Get Value of CLI Symbol routine requests the calling process's
command language interpreter (CLI) to return the value of a CLI symbol as a string. LIB
$GET_SYMBOL then returns the string to the caller. Optionally, LIB$GET_SYMBOL can return the
length of the returned value and the table in which the symbol was found.

Format
LIB$GET_SYMBOL symbol ,resultant-string [,resultant-length] [,table-type-indicator]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
symbol

263

Chapter 2. LIB$ Reference

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol for which LIB$GET_SYMBOL searches. The symbol argument is the address
of a descriptor pointing to the name of the symbol. LIB$GET_SYMBOL converts the symbol name
to uppercase and removes trailing blanks before the search. The symbol argument must begin with a
letter, a digit, a dollar sign ($), a hyphen (-), or an underscore (_). The maximum length of symbol is
255 characters.

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Value of the returned symbol. The resultant-string argument is the address of a descriptor
pointing to a character string into which LIB$GET_SYMBOL writes the value of the symbol.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the symbol value returned by LIB$GET_SYMBOL. The resultant-length argument
is the address of an unsigned word integer into which LIB$GET_SYMBOL writes the length.

table-type-indicator

OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by reference

Indicator of which table contained the symbol. The table-type-indicator argument is the
address of a signed longword integer into which LIB$GET_SYMBOL writes the table indicator.

Possible values of the table indicator are listed below.

Symbolic Name Value Table
LIB$K_CLI_LOCAL_SYM 1 Local symbol table

264

Chapter 2. LIB$ Reference

Symbolic Name Value Table
LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined in symbol libraries
supplied by VSI (macro or module name $LIBCLIDEF) and as global symbols.

Description
LIB$GET_SYMBOL first searches the local symbol table for the symbol name, then searches the
global symbol table. Numeric values are converted to an ASCII representation of a signed decimal
number before being returned.

LIB$GET_SYMBOL is supported for use with the DCL command language interpreter. If used with
the MCR CLI, the error status LIB$_NOCLI will be returned.

If an image is run directly as a subprocess or as a detached process, there is no CLI present to get the
symbol. In that case, LIB$GET_SYMBOL returns the error status LIB$_NOCLI.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed; string truncated. The destination

string could not contain all the characters in the symbol value.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSCLIMEM Insufficient CLI memory. The CLI could not obtain enough virtual
memory to perform the function. This may be caused by having
too many symbols defined. Deleting some symbol definitions may
relieve the situation.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$_INVSYMNAM Invalid symbol name. The symbol name contained more than 255
characters or did not begin with a letter or dollar sign ($).

LIB$_NOCLI No CLI present. The calling process did not have a CLI to perform
the function or the CLI did not support the request type. Note that
an image run as a subprocess or detached process does not have a
CLI.

LIB$_NOSUCHSYM No such symbol. The symbol was not defined in either the local or
global symbol table.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status which was
not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL command language
interpreter, please report the problem to your VSI support
representative.

265

Chapter 2. LIB$ Reference

LIB$GET_UIB_INFO
LIB$GET_UIB_INFO — Returns information from the unwind information block (UIB).

Format
LIB$GET_UIB_INFO uib_va [,gp_value] [,uw_desc_va] [,uw_desc_len] [,handler_fv] [,ossd_va]
[,lsda_va]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
uib_va

OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword that contains the virtual address of an unwind information block (UIB).

gp_value

OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a quadword that contains the GP value that must be added to the UIB condition handler
value. Must be specified if handler_fv is specified.

uw_desc_va

OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the virtual address of the unwind descriptor area. If none is present,
then zero is returned. This is an optional argument.

266

Chapter 2. LIB$ Reference

un_desc_len

OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the length (in bytes) of the unwind descriptor area. If none are present,
then zero is returned. This is an optional argument.

handler_fv

OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the function value of the condition handler. If none is present, then
zero is returned. This is an optional argument.

ossd_va

OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the address of the operating system-specific data area. If none is
present, then zero is returned. This is an optional argument.

lsda_va

OpenVMS usage: address
type: quadword (unsigned)
access: write
mechanism: by reference

Address of a quadword to store the address of the language-specific data area (LSDA). If none is
present, then zero is returned. This is an optional argument.

Description
Takes in the address of an uwind information block (UIB) and the GP value for a routine and returns
the addresses of the start of the unwind descriptors (if any), the handler function descriptor (if any),
and the operating system-specific data area (if any). The size in bytes of the unwind descriptors is also
returned.

267

Chapter 2. LIB$ Reference

Related Services
SYSSET_UNWIND_TABLE, SYSCLEAR_UNWIND_TABLE, SYS$GET_
UNWIND_ENTRY_INFO,

Condition Values Returned

SS$_NORMAL Routine completed successfully.
LIB$_INVARG Bad UIB virtual address.

LIB$GET_USERS_LANGUAGE
LIB$GET_USERS_LANGUAGE — The Return the User's Language routine determines the user's
choice of a natural language. The choice is determined by translating the logical SYS$LANGUAGE.

Format
LIB$GET_USERS_LANGUAGE language

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
language

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Receives the translation of SYS$LANGUAGE. The language argument is the address of a
descriptor pointing to this language name.

Description
The LIB$GET_USERS_LANGUAGE routine translates the logical SYS$LANGUAGE and returns
the user's choice of a natural language. If the logical SYS$LANGUAGE does not translate for some
reason, then the language defaults to English and the status LIB$_ENGLUSED is returned.

If a failure or truncation occurs while copying the language name to the language string argument,
that error status overrides the LIB$_ENGLUSED or SS$_NORMAL status.

268

Chapter 2. LIB$ Reference

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ENGLUSED English used by default; unable to translate SYS$LANGUAGE.

Any condition value returned by LIB$SCOPY_R_DX.

LIB$GET_VM
LIB$GET_VM — The Allocate Virtual Memory routine allocates a specified number of contiguous
bytes in the program region and returns the 32-bit virtual address of the first byte allocated. No
support for arguments passed by 64-bit address reference or for use of 64-bit descriptors, if applicable,
is planned for this routine.

Format
LIB$GET_VM number-of-bytes, base-address [,zone-id]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
number-of-bytes

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes that LIB$GET_VM allocates. The number-of-bytes argument
is the address of a longword integer containing the number of bytes. LIB$GET_VM allocates
enough memory to satisfy the request. Your program should not reference an address before the
first byte address allocated (base-address) or beyond the last byte allocated (base-address
+ number-of-bytes – 1) since that space may be assigned to another routine. The value of
number-of-bytes must be greater than zero.

base-address

OpenVMS usage: address

269

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by reference

First virtual address of the contiguous block of bytes allocated by LIB$GET_VM. The base-
address argument is the address of an unsigned longword containing this base address.

zone-id

OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

The zone-id argument is the address of a longword that contains a zone identifier created by a
previous call to LIB$CREATE_VM_ZONE or LIB$CREATE_USER_VM_ZONE. This argument
is optional. If zone-id is omitted or if the longword contains the value 0, the 32-bit default zone is
used.

Description
LIB$GET_VM satisfies an allocation request by reusing free memory in the zone, or by obtaining
additional memory from the processwide 32-bit page pool managed by LIB$GET_VM_PAGE.

LIB$GET_VM rounds up the value of number-of-bytes to a multiple of the block-size
specified for the zone. The first byte allocated is aligned on the boundary specified by the alignment
value for the zone.

If you specified allocation filling when you created the zone, LIB$GET_VM will fill each
byte allocated. Otherwise, LIB$GET_VM does not initialize the memory and its contents are
unpredictable.

All memory allocated by LIB$GET_VM has user mode read/write access, even if the call to LIB
$GET_VM was made from a more privileged access mode.

The space allocated by successive calls to LIB$GET_VM may be noncontiguous because another
routine can call LIB$GET_VM between your calls. If AST interrupts occur, LIB$GET_VM may
allocate space to another routine between execution of any two statements in your program. Even if
successive calls to LIB$GET_VM return two contiguous blocks, you must not combine them into one
large block that is freed by a single call to LIB$FREE_VM.

LIB$GET_VM is fully reentrant, so it may be called by routines executing at AST level or in an Ada
multitasking environment.

Your program must retain the address of the allocated area. This allows you to access or deallocate the
space later.

If the zone you are getting was created using the LIB$CREATE_USER_VM_ZONE routine, then
you must have an appropriate action routine for the get operation. That is, in your call to LIB
$CREATE_USER_VM_ZONE, you must have specified a user-get-routine.

270

Chapter 2. LIB$ Reference

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Invalid zone-id or a corrupt zone.
LIB$_BADBLOSIZ Bad block size. The value of number-of-bytes was

less than or equal to 0. For the fixed-size blocks algorithm,
LIB$_BADBLOSIZ can also be generated if the value
of algorithm-argument specified in the call to LIB
$CREATE_VM_ZONE is less than number-of-bytes.

LIB$_INSVIRMEM Insufficient virtual memory. The request required more dynamic
memory than was available from the operating system. No partial
allocation is made in this case.

LIB$_PAGLIMEXC Allocation exceeds the page-limit, set when the zone was
create.

LIB$GET_VM_64
LIB$GET_VM_64 — The Allocate Virtual Memory routine allocates a specified number of
contiguous bytes in the program region and returns the 64-bit virtual address of the first byte
allocated.

Format
LIB$GET_VM_64 number-of-bytes, base-address [,zone-id]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
number-of-bytes

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Number of contiguous bytes that LIB$GET_VM_64 allocates. The number-of-bytes argument
is the address of a longword integer containing the number of bytes. LIB$GET_VM allocates
enough memory to satisfy the request. Your program should not reference an address before the

271

Chapter 2. LIB$ Reference

first byte address allocated (base-address) or beyond the last byte allocated (base-address
+ number-of-bytes – 1) since that space may be assigned to another routine. The value of
number-of-bytes must be greater than zero.

base-address

OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

First virtual address of the contiguous block of bytes allocated by LIB$GET_VM_64. The base-
address argument is the address of an unsigned longword containing this base address.

zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

The zone-id argument is the address of a longword that contains a zone identifier created by a
previous call to LIB$CREATE_VM_ZONE_64 or LIB$CREATE_USER_VM_ZONE_64. This
argument is optional. If zone-id is omitted or if the longword contains the value 0, the 32-bit
default zone is used.

Description
LIB$GET_VM_64 satisfies an allocation request by reusing free memory in the zone, or by obtaining
additional memory from the processwide 32-bit page pool managed by LIB$GET_VM_PAGE_64.

LIB$GET_VM_64 rounds up the value of number-of-bytes to a multiple of the block-size
specified for the zone. The first byte allocated is aligned on the boundary specified by the alignment
value for the zone.

If you specified allocation filling when you created the zone, LIB$GET_VM_64 will fill each
byte allocated. Otherwise, LIB$GET_VM_64 does not initialize the memory and its contents are
unpredictable.

All memory allocated by LIB$GET_VM_64 has user mode read/write access, even if the call to LIB
$GET_VM was made from a more privileged access mode.

The space allocated by successive calls to LIB$GET_VM_64 may be noncontiguous because another
routine can call LIB$GET_VM_64 between your calls. If AST interrupts occur, LIB$GET_VM_64
may allocate space to another routine between execution of any two statements in your program. Even
if successive calls to LIB$GET_VM_64 return two contiguous blocks, you must not combine them
into one large block that is freed by a single call to LIB$FREE_VM_64.

LIB$GET_VM_64 is fully reentrant, so it may be called by routines executing at AST level or in an
Ada multitasking environment.

272

Chapter 2. LIB$ Reference

Your program must retain the address of the allocated area. This allows you to access or deallocate the
space later.

If the zone you are getting was created using the LIB$CREATE_USER_VM_ZONE_64 routine,
then you must have an appropriate action routine for the get operation. That is, in your call to LIB
$CREATE_USER_VM_ZONE_64, you must have specified a user-get-routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR Invalid zone-id or a corrupt zone.
LIB$_BADBLOSIZ Bad block size. The value of number-of-bytes was

less than or equal to 0. For the fixed-size blocks algorithm,
LIB$_BADBLOSIZ can also be generated if the value
of algorithm-argument specified in the call to LIB
$CREATE_VM_ZONE_64 is less than number-of-bytes.

LIB$_INSVIRMEM Insufficient virtual memory. The request required more dynamic
memory than was available from the operating system. No partial
allocation is made in this case.

LIB$_PAGLIMEXC Allocation exceeds the page-limit, set when the zone was
create.

LIB$GET_VM_PAGE
LIB$GET_VM_PAGE — The Get Virtual Memory Page routine allocates a specified number of
contiguous pages on VAX systems or pagelets on Alpha and I64 systems of memory in the program
region and returns the virtual address of the first allocated page on VAX or pagelet on Alpha or
I64. No support for arguments passed by 64-bit address reference or for use of 64-bit descriptors, if
applicable, is planned for this routine.

Format
LIB$GET_VM_PAGE number-of-pages ,base-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
number-of-pages

OpenVMS usage: longword_signed

273

Chapter 2. LIB$ Reference

type: longword integer (signed)
access: read only
mechanism: by reference

Number of pages on VAX systems or pagelets on Alpha and I64 systems. The number-of-pages
argument is the address of a longword integer that specifies the number of contiguous pages on VAX
systems or pagelets on Alpha and I64 systems to be allocated. The value of number-of-pages
must be greater than 0.

base-address

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Block address. The base-address argument is the address of a longword that is set to the address
of the first byte of the newly allocated block of pages on VAX systems or pagelets on Alpha and I64
systems.

Description
LIB$GET_VM_PAGE allocates blocks of contiguous (512 byte) pages on VAX systems and pagelets
on Alpha and I64 systems in the program region. LIB$GET_VM_PAGE manages a processwide pool
of free pages. If there are not enough contiguous free pages or pagelets to satisfy an allocation request,
additional pages are created by calling the system service $EXPREG. All memory allocated by LIB
$GET_VM_PAGE is pagelet aligned; that is, the low-order nine bits of the base address are zero.

All memory allocated by LIB$GET_VM_PAGE has user-mode read/write access, even if the call to
LIB$GET_VM_PAGE is made from a more privileged access mode.

The contents of memory allocated by LIB$GET_VM_PAGE are unpredictable. Your program must
assign values to all locations that it uses.

LIB$GET_VM_PAGE is designed for request sizes ranging from one page or pagelet to a few
hundred pages or pagelets. For very large request sizes (over 1000 pages or pagelets in a single
request), you should call the system service $EXPREG.

LIB$GET_VM_PAGE is fully reentrant, so it can be called by routines executing at AST level or in
an Ada multitasking environment.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOSIZ The value of the number-of-pages argument is less than or

equal to 0.
LIB$_INSVIRMEM Insufficient virtual memory. The request required more dynamic

memory than was available from the operating system. No partial
allocation is made in this case.

274

Chapter 2. LIB$ Reference

LIB$GET_VM_PAGE_64
LIB$GET_VM_PAGE_64 — The Get Virtual Memory Page routine allocates a specified number of
contiguous Alpha or I64 pagelets of memory in the program region and returns the virtual address of
the first allocated pagelet.

Format
LIB$GET_VM_PAGE_64 number-of-pages ,base-address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
number-of-pages

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Number of Alpha or I64 pagelets. The number-of-pages argument is the address of a quadword
integer that specifies the number of contiguous Alpha or I64 pagelets to be allocated. The value of
number-of-pages must be greater than 0.

base-address

OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Block address. The base-address argument is the address of a quadword that is set to the address
of the first byte of the newly allocated block of Alpha or I64 pagelets.

Description
LIB$GET_VM_PAGE_64 allocates blocks of contiguous Alpha or I64 pagelets in the program
region. LIB$GET_VM_PAGE_64 manages a processwide pool of free pagelets. If there are not
enough contiguous free pagelets to satisfy an allocation request, additional pagelets are created by

275

Chapter 2. LIB$ Reference

calling the system service $EXPREG_64. All memory allocated by LIB$GET_VM_PAGE_64 is
aligned to physical page size.

All memory allocated by LIB$GET_VM_PAGE_64 has user-mode read/write access, even if the call
to LIB$GET_VM_PAGE_64 is made from a more privileged access mode.

The contents of memory allocated by LIB$GET_VM_PAGE_64 are unpredictable. Your program
must assign values to all locations that it uses.

LIB$GET_VM_PAGE_64 is fully reentrant, so it can be called by routines executing at AST level or
in an Ada multitasking environment.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOSIZ The value of the argument number-of-pages is less than or

equal to 0.
LIB$_INSVIRMEM Insufficient virtual memory. The request required more dynamic

memory than was available from the operating system. No partial
allocation is made in this case.

LIB$I64_CREATE_INVO_CONTEXT
LIB$I64_CREATE_INVO_CONTEXT — The Create Invocation Context routine allocates an
invocation context block from heap storage and initializes it.

Format
LIB$I64_CREATE_INVO_CONTEXT [malloc] [,free] [,ident]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
malloc

OpenVMS usage: function_value
type: procedure
access: read
mechanism: by value

276

Chapter 2. LIB$ Reference

A procedure reference for a user callback routine that allocates memory. This is an optional argument.
The default is to use an implementation of the C RTL routine malloc. If specified, this routine is
used to allocate the invocation context block field LIBICB$PH_UO_MALLOC for use during the
stack walk.

free

OpenVMS usage: function_value
type: procedure
access: read
mechanism: by value

A procedure reference for a user callback routine that deallocates memory. This value is placed in
the invocation context block field LIBICB$PH_UO_FREE. This is an optional argument; however,
it must be specified if malloc is specified. The default is to use an implementation of the C RTL
routine free.

free

OpenVMS usage: user_value
type: quadword
access: read
mechanism: by value

Specifies a user ident value to be placed in the invocation context block LIBICB$IH_UO_IDENT
field. In turn, this value is passed to the malloc and free routines. This is an optional argument; the
default value is zero.

Description
LIB$I64_CREATE_INVO_CONTEXT simplifies creating and properly initializing an invocation
context block. The routine allocates an invocation context block from heap storage and initializes it.
Users of this routine should call LIB$I64_ FREE_INVO_CONTEXT when the invocation context
block is no longer required.

This routine sets the cache unwind flag LIBICB$V_UO_FLAG_CACHE_UNWIND in the
invocation context block to speed up the stack walk. Do not use this routine in conjunction with LIB
$I64_INIT_INVO_CONTEXT, as the same initialization is performed by both routines.

Condition Values Returned

0 Indicates failure.
any non-zero value Represents the address of the allocated invocation context block.

LIB$I64_FREE_INVO_CONTEXT
LIB$I64_FREE_INVO_CONTEXT — The Free Invocation Context Block routine deallocates an
invocation context block that was previously allocated.

277

Chapter 2. LIB$ Reference

Format
LIB$I64_FREE_INVO_CONTEXT invo_context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of an invocation context block.

Description
LIB$I64_FREE_INVO_CONTEXT deallocates an invocation context block that was
previously allocated using LIB$I64_CREATE_INVO_CONTEXT. This routine calls LIB
$I64_PREV_INVO_END as a convenience.

Condition Values Returned
None.

LIB$I64_GET_CURR_INVO_CONTEXT
LIB$I64_GET_CURR_INVO_CONTEXT — The Get Current Invocation Context routine gets the
invocation context of a current procedure.

Format
LIB$I64_GET_CURR_INVO_CONTEXT invo_context

Returns

OpenVMS usage: cond_value

278

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Argument
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of an invocation context block into which the procedure context of the caller will be written.

Description
LIB$I64_GET_CURR_INVO_CONTEXT gets the invocation context of a current procedure. The
invocation context block must be properly initialized as described in the VSI OpenVMS Calling
Standard manual before calling this routine.

Condition Values Returned

0 Facilitates use in the implementation of the C language
unwind setjmp or longjmp function. Check the LIBICB
$L_ALERT_CODE field of the invocation context block for
further status indication.

LIB$I64_GET_CURR_INVO_HANDLE
LIB$I64_GET_CURR_INVO_HANDLE — The Get Current Invocation Handle routine gets the
invocation handle for the current procedure.

Format
LIB$I64_GET_CURR_INVO_HANDLE invo_handle

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

279

Chapter 2. LIB$ Reference

Arguments
invo_handle

OpenVMS usage: invo_handle
type: quadword
access: write only
mechanism: by reference

Address of a quadword into which the invocation handle of the caller will be written.

Description
LIB$I64_GET_CURR_INVO_HANDLE gets the invocation handle for the current procedure.

Condition Values Returned

0 The initial context represents the bottom of the call stack.
1 Indicates success.
3 The current operation completed without error, but a stack

corruption was detected at the next level down.

LIB$I64_GET_FR
LIB$I64_GET_FR

Format
LIB$I64_GET_FR invo_context, index, fr_copy

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_context

OpenVMS usage: invo_context_blk
type: structure

280

Chapter 2. LIB$ Reference

access: read
mechanism: by reference

Address of a valid invocation context block.

index

OpenVMS usage: index
type: longword
access: read
mechanism: by value

Floating point register index.

fr_copy

OpenVMS usage: floating-point value
type: octaword
access: write
mechanism: by value

Address of an octaword to receive the contents of the specified floating-point register.

Description
Given an invocation context block and floating-point register index such that 0 <= index < 128,
LIB$I64_GET_FR copies the register value to fr_copy. For example, an index value of 4 fetches
the value, which represents the contents of F4 for the context.

LIB$I64_GET_FR returns failure status if the index represents a scratch register whose contents have
not been realized.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

LIB$I64_GET_GR
LIB$I64_GET_GR — The Get Invocation Context Block Value routine fetches the invocation context
block IREG[4] value.

Format
LIB$I64_GET_GR invo_context, index, gr_copy

281

Chapter 2. LIB$ Reference

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: read
mechanism: by reference

Address of a valid invocation context block.

index

OpenVMS usage: index
type: longword
access: read
mechanism: by value

Index into the IREG array of the invocation context block.

gr_copy

OpenVMS usage: floating-point value
type: octaword
access: write
mechanism: by value

Address of an octaword to receive the value from the invocation context block.

Description
Given an invocation context block and general register index such that 0 <= index < 128, LIB
$I64_GET_GR copies the register value to gr_copy, for example, index 4 fetches the invocation
context block IREG[4] value, which represents the contents of R4 for the context.

If the register represented by index has its corresponding NaT bit set, the read succeeds and the
return status is set to 3. If the register represented by index lies beyond the allocated general

282

Chapter 2. LIB$ Reference

registers, the read fails and gr_copy is unchanged. That is, the highest allowed index is 32 +
ICB.CFM.SOF - 1.

LIB$I64_GET_GR fails if the index represents a scratch register whose contents have not been
realized.

Condition Values Returned

0 Indicates failure.
1 Indicates success, and that the NaT bit was clear.
3 Indicates success, and that the NaT bit was set.

LIB$I64_GET_INVO_CONTEXT
LIB$I64_GET_INVO_CONTEXT — The Get Invocation Context routine gets the invocation context
of any active procedure.

Format
LIB$I64_GET_INVO_CONTEXT invo_handle, invo_context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_handle

OpenVMS usage: invo_handle
type: quadword
access: modify only
mechanism: by reference

Address of an invocation context block into which the procedure context of the frame specified by
invo_handle will be written.

invo_context

OpenVMS usage: invo_context_blk
type: structure

283

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Address of an invocation context block into which the procedure context of the frame specified by
invo_handle will be written.

Description
LIB$I64_GET_INVO_CONTEXT gets the invocation context of any active procedure.

Note

The invocation context block must be properly initialized as described in the VSI OpenVMS Calling
Standard manual before calling this routine.

Condition Values Returned

0 Facilitates use in the implementation of the C language
unwind setjmp or longjmp function. Check the LIBICB
$L_ALERT_CODE field of the invocation context block for
further status indication.

LIB$I64_GET_INVO_HANDLE
LIB$I64_GET_INVO_HANDLE — The Get Invocation Handle routine obtains the invocation handle
corresponding to any invocation context block.

Format
LIB$I64_GET_INVO_HANDLE invo_context, invo_handle

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: read only

284

Chapter 2. LIB$ Reference

mechanism: by reference

Address of a valid invocation context block.

invo_handle

OpenVMS usage: invo_handle
type: quadword (unsigned)
access: write only
mechanism: by reference

Address of the location into which the invocation context handle is to be written. If the call fails, the
value of the invocation context handle is LIB$K_INVO_HANDLE_NULL.

Description
LIB$GET_INVO_HANDLE gets the invocation context of any active procedure.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

LIB$I64_GET_PREV_INVO_CONTEXT
LIB$I64_GET_PREV_INVO_CONTEXT — The Get Current Invocation Context routine obtains the
invocation context of the procedure context preceding any other procedure context.

Format
LIB$I64_GET_PREV_INVO_CONTEXT invo_context

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
invo_context

OpenVMS usage: invo_context_blk

285

Chapter 2. LIB$ Reference

type: structure
access: modify only
mechanism: by reference

Address of a valid invocation context block. The given invocation context block is updated to
represent the context of the previous (calling) frame.

The LIBICB$V_BOTTOM_OF_STACK flag of the invocation context block is set if the target frame
represents the end of the invocation call chain or if stack corruption is detected.

Description
The LIB$I64_GET_PREV_INVO_CONTEXT routine obtains the invocation context of the
procedure context preceding any other procedure context.

Condition Values Returned

0 The initial context represents the bottom of the call stack.
1 Indicates success.
3 The current operation completed without error, but a stack

corruption was detected at the next level down.

LIB$I64_GET_UNWIND_HANDLER_FV
LIB$I64_GET_UNWIND_HANDLER_FV

Format
LIB$I64_GET_UNWIND_HANDLER_FV pc_value, handler_fv

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
pc_value

OpenVMS usage: PC value
type: quadword

286

Chapter 2. LIB$ Reference

access: read
mechanism: by reference

Address of a location that contains the PC value.

pc_value is used to find the unwind information block and the unwind information block condition
handler pointer.

handler_fv

OpenVMS usage: address
type: quadword
access: write
mechanism: by reference

A quadword to receive the function value of the procedure descriptor for the condition handler, if
there is one.

Description
Given a pc_value, LIB$I64_GET_UNWIND_HANDLER_FV finds the function value (address of
the procedure descriptor) for the condition handler, if present, and writes it to handler_fv. If not
present, then it writes 0 to handler_fv.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

LIB$I64_GET_UNWIND_LSDA
LIB$I64_GET_UNWIND_LSDA — The Find Address of Unwind Information Block Language-
Specific Data routine finds the address of the unwind information block language-specific data area.

Format
LIB$I64_GET_UNWIND_LSDA pc_value, unwind_lsda_p

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

287

Chapter 2. LIB$ Reference

Arguments
pc_value

OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a quadword to receive the address of the language-specific data area, if there is one.

unwind_lsda_p

OpenVMS usage: address
type: quadword
access: write
mechanism: by reference

Address of a location that contains the PC value. pc_value is used to find the unwind information
block and the unwind information block language-specific data area address.

Description
Given a pc_value, LIB$I64_GET_UNWIND_LSDA finds the address of the unwind information
block language-specific data area (LSDA), and writes it to unwind_lsda_p. If not present, it then
writes 0 to unwind_lsda_p.

Condition Values Returned

0 Indicates failure
1 Indicates success.

LIB$I64_GET_UNWIND_OSSD
LIB$I64_GET_UNWIND_OSSD — The Find Address of the Unwind Information Block Operating
System-Specific Data Area routine finds the address of the unwind information block operating
system-specific data area.

Format
LIB$I64_GET_UNWIND_OSSD pc_value, unwind_ossd_p

Returns

OpenVMS usage: cond_value

288

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Arguments
pc_value

OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a location that contains the PC value. pc_value is used to find the unwind information
block and the unwind information block operating system-specific data area address.

unwind_ossd_p

OpenVMS usage: address
type: quadword
access: write
mechanism: by reference

Address of a quadword to receive the address of the operating system-specific data area.

Description
Given a pc_value, LIB$I64_GET_UNWIND_OSSD finds the address of the unwind information
block operating system-specific data area, if present, and writes it to unwind_ossd_p. If not
present, then it writes 0 to unwind_ossd_p.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

LIB$I64_INIT_INVO_CONTEXT
LIB$I64_INIT_INVO_CONTEXT — The Initialize Invocation Context routine initializes an
invocation context block that has already been allocated by the user.

Format
LIB$I64_INIT_INVO_CONTEXT invo_context, invo_version [,cache_unwind_flag]

289

Chapter 2. LIB$ Reference

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of an invocation context block.

invo_version

OpenVMS usage: version_number
type: byte
access: read only
mechanism: by value

The value LIBICB$K_INVO_CONTEXT_VERSION. This is used to verify the operating
environment.

cache_unwind_flag

OpenVMS usage: flag
type: longword
access: read only
mechanism: by value

A flag indicating if the cache unwind flag, LIBICB$V_UO_FLAG_CACHE_ UNWIND, should be
set in the invocation context block. A value of zero clears the flag; a value of one sets the flag. This is
an optional argument. The default is zero.

Description
LIB$I64_INIT_INVO_CONTEXT initializes an invocation context block that the user has already
allocated (on the stack, or from heap, or other storage). Use this routine as an alternative to LIB
$I64_CREATE_INVO_CONTEXT, which both allocates and initializes an invocation context block.

290

Chapter 2. LIB$ Reference

Condition Values Returned

0 Indicates a version number mismatch.
1 Indicates success.

LIB$I64_IS_AST_DISPATCH_FRAME
LIB$I64_IS_AST_DISPATCH_FRAME — The Determine AST Exception Frame Dispatch routine
determines whether a given PC value represents an AST dispatch frame.

Format
LIB$I64_IS_AST_DISPATCH_FRAME pc_value

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
pc_value

OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a quadword that contains the PC value.

The pc_value is used to find the operating system-specific data area in the unwind information for
this routine.

Description
LIB$I64_IS_AST_DISPATCH_FRAME determines whether a given PC value represents an AST
dispatch frame.

Condition Values Returned

0 The operating system-specific data area is present and the
EXCEPTION_FRAME flag is clear. Returns 0 if the operating
system-specific data area is not present.

291

Chapter 2. LIB$ Reference

1 The operating system-specific data area is present and the
EXCEPTION_FRAME flag is set.

LIB$I64_IS_EXC_DISPATCH_FRAME
LIB$I64_IS_EXC_DISPATCH_FRAME — The Determine Exception Frame Dispatch routine
determines whether a given PC value represents an exception dispatch frame.

Format
LIB$I64_IS_EXC_DISPATCH_FRAME pc_value

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
pc_value

OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a quadword that contains the PC value.

The pc_value is used to find the operating system-specific data area in the unwind information for
this routine.

Description
LIB$I64_IS_EXC_DISPATCH_FRAME determines whether a given PC value represents an
exception dispatch frame.

Condition Values Returned

0 The operating system-specific data area is present and the
EXCEPTION_FRAME flag is clear. Returns 0 if the operating
system-specific data area is not present.

1 The operating system-specific data area is present and the
EXCEPTION_FRAME flag is set.

292

Chapter 2. LIB$ Reference

LIB$I64_PREV_INVO_END
LIB$I64_PREV_INVO_END — The End Call Tracing Operations routine should be called at the
conclusion of call tracing operations to free the memory used to process unwind descriptors.

Format
LIB$I64_PREV_INVO_END (invo_context)

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: modify only
mechanism: by reference

Address of a valid invocation context block previously used for call tracing.

Description
LIB$I64_PREV_INVO_END should be called at the conclusion of call tracing operations
to free the memory used to process unwind descriptors. The call tracing routines are LIB
$I64_GET_INVO_CONTEXT, LIB$I64_GET_PREV_INVO_CONTEXT, and LIB
$I64_GET_CURR_INVO_CONTEXT.

To provide efficient call tracing, some unwind information is tracked in heap storage from one call to
the next. This heap storage should be freed before you release or reuse the invocation context block.

Calling this routine is necessary if the LIBICB$V_UO_FLAG_CACHE_UNWIND flag is set in
the LIBICB$Q_UO_FLAGS field of the invocation context block. If this flag is not set, unwind
information is released and re-created at each call, and calling this routine is not required.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

293

Chapter 2. LIB$ Reference

LIB$I64_PUT_INVO_REGISTERS
LIB$I64_PUT_INVO_REGISTERS — The Put Invocation Registers routine updates the fields of a
given procedure invocation context. Note that if user override routines are specified in the invocation
context block, then they are used to find and modify the invocation context.

Format
LIB$I64_PUT_INVO_REGISTERS invo_handle, invo_context, [,gr_mask] [,fr_mask]
[,br_mask] [,pr_mask] [,misc_mask]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_handle

OpenVMS usage: invo_handle
type: quadword (unsigned)
access: read only
mechanism: by reference

Handle for the invocation to be updated.

invo_context

OpenVMS usage: invo_context_blk
type: structure
access: read only
mechanism: by reference

Address of a valid invocation context block that contains new register contents.

Each register that is set in the xx_mask argument (along with its NaT bit, if any) is updated using the
value found in the corresponding IREG[n], FREG[n], BRANCH[n], or PRED[n] field. GP, TP, and AI
can also be updated in this way.

No other fields of the invocation context block are used.

gr_mask

OpenVMS usage: mask_octaword

294

Chapter 2. LIB$ Reference

type: 128-bit vector
access: read only
mechanism: by reference

Address of a 128-bit bit vector, where each bit corresponds to a register field in the invo_context
argument. Bits 0 through 127 correspond to IREG[0] through IREG[127].

Bit 0 corresponds to R0, which cannot be written, and is ignored.

Bit 1 corresponds to the global data pointer (GP).

Bit 13 corresponds to the thread pointer (TP).

Bit 25 corresponds to the argument information register (AI).

If bit 12, which corresponds to SP, is set, then no changes are made.

fr_mask

OpenVMS usage: mask_octaword
type: 128-bit vector
access: read only
mechanism: by reference

Address of a 128-bit bit vector, where each bit corresponds to a register field in the passed
invo_context.

To update floating-point registers F32-F127, provide a pointer to an array of 96 octawords in LIBICB
$PH_F32_F127.

Bits 0 through 127 correspond to FREG[0] through FREG[127].

Bit 0 corresponds to F0, which cannot be written, and is ignored.

Bit 1 corresponds to F1, which cannot be written, and is ignored.

br_mask

OpenVMS usage: mask_byte
type: 8-bit vector
access: read only
mechanism: by reference

Address of a 8-bit bit vector, where each bit corresponds to a register field in the passed invo_context.
Bits 0 through 7 correspond to BRANCH[0] through BRANCH[7].

pr_mask

OpenVMS usage: mask_quadword
type: 64-bit vector

295

Chapter 2. LIB$ Reference

access: read only
mechanism: by reference

Address of a 64-bit bit vector, where each bit corresponds to a register field in the passed
invo_context. Bits 0 through 63 correspond to PRED[0] through PRED[63].

misc_mask

OpenVMS usage: mask_quadword
type: 64-bit vector
access: read only
mechanism: by reference

Address of a 64-bit bit vector, where each bit corresponds to a register field in the passed
invo_context as follows:

Bit 0=PC.

Bit 1=FPSR.

Bits 2–63 are reserved.

Description
LIB$I64_PUT_INVO_REGISTERS updates the fields of a given procedure invocation context.

Caution

Great care must be taken to ensure that a valid stack frame and execution environment result;
otherwise, execution may become unpredictable.

Condition Values Returned

0 In the following circumstances:

• When the invocation handle does not represent an active
invocation context.

• When bit 12 of the gr_mask argument is set

• When a scratch register has not been saved, or a register’s save
location or status cannot be determined (valid bit clear).

1 Indicates success.

LIB$I64_SET_FR
LIB$I64_SET_FR — The Set Floating-Point Register routine writes the invocation context block
floating-point registry entry corresponding to a floating-point register value.

296

Chapter 2. LIB$ Reference

Format
LIB$I64_SET_FR invo_context, index, fr_copy

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: modify
mechanism: by reference

Address of a valid invocation context block.

index

OpenVMS usage: index
type: longword
access: read
mechanism: by value

Index into the FREG array of the invocation context block.

fr_copy

OpenVMS usage: floating-point value
type: octaword
access: write
mechanism: by value

Address of an octaword that contains the floating-point value to be written to the invocation context
block.

Description
Given an invocation context block, a floating-point register index, and a floating-point register
value in fr_copy, writes the corresponding invocation context block FREG entry, and calls LIB

297

Chapter 2. LIB$ Reference

$I64_PUT_INVO_REGISTERS to write the actual context. The invocation context block remains
unchanged if the routine fails.

LIB$I64_SET_FR fails if LIB$I64_PUT_INVO_REGISTERS fails.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

LIB$I64_SET_GR
LIB$I64_SET_GR — The Copy Invocation Block General Register routine writes the invocation
context block general register.

Format
LIB$I64_SET_GR invo_context, index, fr_copy

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_context

OpenVMS usage: invo_context_blk
type: structure
access: modify
mechanism: by reference

Address of a valid invocation context block.

index

OpenVMS usage: index
type: longword
access: read
mechanism: by value

298

Chapter 2. LIB$ Reference

Index into the IREG array of the invocation context block.

gr_copy

OpenVMS usage: integer value
type: quadword
access: write
mechanism: by value

Address of a quadword that contains the value to be written to the invocation context block.

Description
Given an invocation context block, a general register index such that 1 <= index < 128, and a
quadword value gr_copy, LIB$I64_SET_GR writes the corresponding invocation context block
general register, clears the corresponding NaT bit and uses LIB$I64_PUT_INVO_REGISTERS to
write to the actual context. The invocation context block remains unchanged if the routine fails.

LIB$I64_SET_GR fails if LIB$I64_PUT_INVO_REGISTERS fails.

Condition Values Returned

0 Indicates failure
1 Indicates success

LIB$I64_SET_PC
LIB$I64_SET_PC — The Write Context Block and Quadword PC Value routine writes invocation
context block PC.

Format
LIB$I64_SET_PC invo_context, pc_copy

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
invo_context

299

Chapter 2. LIB$ Reference

OpenVMS usage: invo_context_blk
type: structure
access: modify
mechanism: by reference

Address of a valid invocation context block.

pc_copy

OpenVMS usage: PC value
type: quadword
access: read
mechanism: by reference

Address of a quadword that contains the PC value to be written to the invocation context block.

Description
Given an invocation context block and a quadword PC value in pc_copy, LIB$I64_SET_PC
writes the pc_copy value to the invocation context block PC and then uses LIB
$I64_PUT_INVO_REGISTERS to write to the actual context. The invocation context block remains
unchanged if the routine fails.

LIB$I64_SET_PC fails if LIB$I64_PUT_INVO_REGISTERS fails.

Condition Values Returned

0 Indicates failure.
1 Indicates success.

LIB$ICHAR
LIB$ICHAR — The Convert First Character of String to Integer routine converts the first character of
a source string to an 8-bit ASCII integer extended to a longword.

Format
LIB$ICHAR source-string

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only

300

Chapter 2. LIB$ Reference

mechanism: by value

First character of the source string. This character is returned by LIB$ICHAR as an 8-bit ASCII value
extended to a longword. If the source string has zero length, LIB$ICHAR returns a zero.

Argument
source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string whose first character is converted to an integer by LIB$ICHAR. The source-
string argument is the address of a descriptor pointing to this source string.

Description
Although Fortran users can call LIB$ICHAR, it is more efficient to use the Fortran intrinsic function
ICHAR, which generates equivalent code in line.

Condition Values Returned
None.

Example
PROGRAM ICHAR(INPUT, OUTPUT);

{+}
{ This program demonstrates how to call LIB$ICHAR
{ to convert the first character of string to an
{ integer value.
{-}

FUNCTION LIB$ICHAR(SRCSTR : VARYING [A] OF CHAR) : INTEGER;
 EXTERN;
{+}
{ Declare the variables to be used.
{-}

VAR
 CHARSTR : VARYING [256] OF CHAR;
 RET_STATUS : INTEGER;

{+}
{ Begin the main program. Read the character string,
{ call LIBN$ICHAR, and print the result.
{-}

301

Chapter 2. LIB$ Reference

BEGIN
 WRITELN(’Enter string: ’);
 READLN(CHARSTR);
 RET_STATUS := LIB$ICHAR(CHARSTR);
 WRITELN(RET_STATUS);
END.

The output generated by this Pascal program is as follows:

$ RUN ICHAR
Enter string:
Pencil sharpener
 80
$ RUN ICHAR
Enter string:
pencil sharpener
 112

Notice that this routine changes any uppercase characters to lowercase.

LIB$INDEX
LIB$INDEX — The Index to Relative Position of Substring routine returns an index, which is the
relative position of the first occurrence of a substring in the source string.

Format
LIB$INDEX source-string ,sub-string

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position of the first character of the substring if found, or zero if not found.

On Alpha and I64 systems, if the relative position of the substring can exceed 232 - 1, assign the return
value to a quadword to ensure that you retrieve the correct relative position.

Arguments
source-string

OpenVMS usage: char_string
type: character string
access: read only

302

Chapter 2. LIB$ Reference

mechanism: by descriptor

Source string to be searched by LIB$INDEX. The source-string argument is the address of a
descriptor pointing to this source string.

sub-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Substring to be found. The sub-string argument is the address of a descriptor pointing to this
substring.

Description
The relative character positions returned by LIB$INDEX are numbered 1, 2, ..., n. Zero means that the
substring was not found.

If the substring has a zero length, LIB$INDEX returns the value 1, indicating success, no matter how
long the source string is. If the source string has a zero length and the substring has a nonzero length,
zero is returned, indicating that the substring was not found.

Fortran users may use the built-in INDEX function rather than calling LIB$INDEX directly.

Condition Values Returned
None.

LIB$INIT_DATE_TIME_CONTEXT
LIB$INIT_DATE_TIME_CONTEXT — The Initialize the Context Area Used in Formatting Dates
and Times for Input or Output routine allows the user to initialize the context area used by LIB
$FORMAT_DATE_TIME or LIB$CONVERT_DATE_STRING with specific strings, instead of
through logical name translation.

Format
LIB$INIT_DATE_TIME_CONTEXT user-context ,component ,init-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

303

Chapter 2. LIB$ Reference

mechanism: by value

Arguments
user-context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

User context that retains the translation context over multiple calls to this routine. The user-
context argument is the address of an unsigned longword that contains this context. The initial
value of the context variable must be zero. Thereafter, the user program must not write to the cell.

component

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The component of the context that is being initialized. The component argument is the address of a
signed longword that indicates this component. Only one component can be initialized per call to LIB
$INIT_DATE_TIME; these component codes are shown in the following list.

• LIB$K_MONTH_NAME

• LIB$K_MONTH_NAME_ABB

• LIB$K_FORMAT_MNEMONICS

• LIB$K_WEEKDAY_NAME

• LIB$K_WEEKDAY_NAME_ABB

• LIB$K_RELATIVE_DAY_NAME

• LIB$K_MERIDIEM_INDICATOR

• LIB$K_OUTPUT_FORMAT

• LIB$K_INPUT_FORMAT

• LIB$K_LANGUAGE

init-string

OpenVMS usage: char_string

304

Chapter 2. LIB$ Reference

type: character string
access: read only
mechanism: by descriptor

The characters that are to be used in formatting dates and times for input or output. The init-
string argument is the address of a descriptor pointing to this string.

Description
The LIB$INIT_DATE_TIME_CONTEXT routine allows the user to initialize the context area used
by either LIB$CONVERT_DATE_STRING or LIB$FORMAT_ DATE_TIME with specific strings
instead of through logical name translations. This routine is therefore useful when the application is
formatting either input or output strings that are used only by other computer applications and are not
intended for presentation to users.

When the text will be parsed by another program, you must specify all of the context (including
spellings). For applications where the context specifies a user’s preferred format style, spellings can
be looked up from the logical name tables.

Therefore, when the text will be parsed by another program, the minimum effort required to initialize
the necessary format strings would be a call to LIB$INIT_ DATE_TIME_CONTEXT specifying the
input or output format strings to be used. If the specified format requires spelled items, such as month
names or day names, then additional calls to LIB$INIT_DATE_TIME_CONTEXT are required to
provide the spellings of these items. Applications where the context specifies a user’s preferred format
style can specify only the language name, and allow the strings to be looked up from logical name
tables.

The format of the strings used by this routine is as follows:

[delim][string-1][delim] [string-2][delim] . . . [delim][string-n][delim]

In this format, [delim] is any character that is not in any of the strings, and [string-x] is the spelling of
that instance of the component.

For example, a string passed to this routine to specify the English spellings of the month names might
be as follows:

|JAN|FEB|MAR|APR|MAY|JUN

|JUL|AUG|SEP|OCT|NOV|DEC|

Note that the string starts and ends with a delimiter. Thus, there is one more delimiter than there are
string elements. Each type of component has a natural number of elements associated. The string must
contain exactly that number of elements.

Month names (full or
abbreviated)

12

Format mnemonics 9
Day names (full or abbreviated) 7
Relative day names 3

305

Chapter 2. LIB$ Reference

Meridiem indicators 2
Output format strings 2
Input format string 1
Language 1

In order to specify the input format mnemonics using LIB$INIT_DATE_ TIME_CONTEXT, the user
must initialize the component LIB$K_FORMAT_ MNEMONICS with the appropriate values. The
following table lists in order the 9 fields that must be initialized, along with their default (English)
values.

Order Format Field Legible Mnemonic
1 Year YYYY
2 Numeric month MM
3 Numeric day DD
4 Hours (12- or 24-hour) HH
5 Minutes MM
6 Seconds SS
7 Fractional seconds CC
8 Meridiem indicator AM/PM
9 Alphabetic month MONTH

For example, the following would be a valid definition of LIB$K_FORMAT_ MNEMONICS using
Austrian as the natural language:

|JJJJ|MM|TT|SS|MM|SS|HH| |MONAT|

To specify an output format using LIB$INIT_DATE_TIME_CONTEXT, the user must initialize the
variable LIB$K_OUTPUT_FORMAT. There are two elements associated with this output format
string. One describes the date format fields, the other the time format fields. The order in which they
appear in the string determines the order in which they are output. A single space is inserted into the
output stream between the two elements, if the call to LIB$FORMAT_DATE_ TIME specifies that
both be output. In the following example, the two elements associated with the output format string
are delimited by vertical bars.

| !DB-!MAAU-!Y4 | !H04:!M0:!S0.!C2 |

This output format string represents the format used by the $ASCTIM system service for outputting
times. Note that the middle delimiter is replaced by a space in the resultant output.

See the VSI OpenVMS Programming Concepts Manual for a description of system date and time
operations as well as a detailed description of the format mnemonics used in these routines.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_ILLCOMPONENT Illegal value for the component.

306

Chapter 2. LIB$ Reference

LIB$_ILLINISTR Illegally formed init-string.
LIB$_NUMELEMENTS Incorrect number of elements for the component.
LIB$_UNRFORCOD Unrecognized format code.

Any condition value returned by LIB$GET_VM or LIB$ANALYZE_SDESC.

LIB$INIT_TIMER
LIB$INIT_TIMER — The Initialize Times and Counts routine stores the current values of specified
times and counts for use by LIB$SHOW_TIMER or LIB$STAT_TIMER.

Format
LIB$INIT_TIMER [context]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context variable that retains the values of the times and counts. The context argument contains the
address of an unsigned longword that is this context. When you call LIB$INIT_TIMER, you must use
the optional context argument only if you want to maintain several sets of statistics simultaneously.

• If context is omitted, the control block is allocated in static storage. This method is not AST
reentrant.

• If context is zero, a control block is allocated in dynamic heap storage. The times and counts
will be stored in that block and the address of the block returned in context. This method is
fully reentrant and modular.

• If context is nonzero, it is considered to be the address of a control block previously allocated
by a call to LIB$INIT_TIMER. If so, the control block is reused, and fresh times and counts are
stored in it.

307

Chapter 2. LIB$ Reference

When LIB$INIT_TIMER returns, the block of storage referred to by context will contain the times
and counts.

Description
LIB$INIT_TIMER stores the current values of specified times and counts in one of three places,
depending on the value of the optional context argument.

You need to call LIB$FREE_TIMER only if you have specified context in LIB$INIT_TIMER and
you want to deallocate all heap storage resources.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM The context argument is zero, and there is insufficient virtual

memory to allocate a storage block.
LIB$_INVARG Invalid argument; context is nonzero and the block to which it

refers was not initialized on a previous call to LIB$INIT_TIMER.

LIB$INSERT_TREE
LIB$INSERT_TREE — The Insert Entry in a Balanced Binary Tree routine inserts a node in a
balanced binary tree. No support for arguments passed by 64-bit address reference or for use of 64-bit
descriptors, if applicable, is planned for this routine.

Format
LIB$INSERT_TREE treehead ,symbol ,flags ,user-compare-routine ,user-allocation-
procedure ,new-node [,user-data]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
treehead

OpenVMS usage: address
type: address
access: modify

308

Chapter 2. LIB$ Reference

mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of a longword that is this tree
head. The initial value of treehead is 0.

symbol

OpenVMS usage: user_arg
type: longword (unsigned)
access: unspecified
mechanism: unspecified

Key to be inserted.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Control flags. The flags argument is the address of the control flags. Currently only bit 0 is used.

Bit Action if Set Action if Clear
0 Duplicate entries are inserted. The address of the existing

duplicate entry is returned to the
new-node argument.

user-compare-routine

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$INSERT_TREE calls to compare a symbol with a node. The
user-compare-routine argument is required; LIB$INSERT_TREE calls the compare routine
for every node except the first node in the tree. The value returned by the compare routine indicates
the relationship between the symbol key and the node.

For more information on the compare routine, see the section called “Call Format for a Compare
Routine” in the Description section.

user-allocation-procedure

OpenVMS usage: procedure

309

Chapter 2. LIB$ Reference

type: procedure value
access: function call (before return)
mechanism: by value

User-supplied allocate routine that LIB$INSERT_TREE calls to allocate virtual memory for a node.
The user-allocation-procedure argument is required; LIB$INSERT_TREE always calls the
allocate routine.

For more information on the allocate routine, see the section called “Call Format for an Allocate
Routine” in the Description section.

new-node

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Location where the new key is inserted. The new-node argument is the address of an unsigned
longword that is the address of the new node.

user-data

OpenVMS usage: user_arg
type: unspecified
access: unspecified
mechanism: by value

User data that LIB$INSERT_TREE passes to the compare and allocate routines. The user-data
argument is optional.

Description
This Description section contains three parts:

• the section called “Guidelines for Using LIB$INSERT_TREE”

• the section called “Call Format for a Compare Routine”

• the section called “Call Format for an Allocate Routine”

Guidelines for Using LIB$INSERT_TREE
LIB$INSERT_TREE inserts a node in a balanced binary tree. You supply two routines: compare and
allocate. The compare routine compares the symbol key to the node, and the allocate routine allocates
virtual memory for the node to be inserted. LIB$INSERT_TREE first calls the compare routine to find
the location at which the new node is inserted. Then LIB$INSERT_TREE calls the allocate routine
to allocate memory for the new node. Most programmers insert data in the new node by initializing it
within the allocate routine as soon as memory has been allocated.

310

Chapter 2. LIB$ Reference

You may pass the data to be inserted into the tree using either the symbol argument alone or both
the symbol and user-data arguments. The symbol argument is required. It may contain all of
the data, just the name of the node, or the address of the data. If you decide to use symbol to pass
just the name of the node, you must use the user-data argument to pass the rest of the data to be
inserted in the new node.

Call Format for a Compare Routine
The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$INSERT_TREE passes both the symbol and comparison-node arguments to the compare
routine, using the same passing mechanism that was used to pass them to LIB$INSERT_TREE. The
user-data argument is passed in the same way, but its use is optional.

The user-compare-routine argument in the call to LIB$INSERT_TREE specifies the compare
routine. This argument is required. LIB$INSERT_TREE calls the compare routine for every node
except the first node in the tree.

The value returned by the compare routine is the result of comparing the symbol key with the current
node. The following table interprets the possible values returned by the compare routine:

Return Value Meaning
Negative The symbol argument is less than the current

node.
Zero The symbol argument is equal to the current

node.
Positive The symbol argument is greater than the current

node.

This is an example of a user-supplied compare routine, written in C.

struct Full_node
{ void* left_link;
 void* right_link;
 short reserved;
 char Text[80];
};

static long Compare_node(char* Key_string,
 struct Full_node* Node,
 void* Dummy)

/*
** This function compares the string described by Key_string with
** the string contained in the data node Node, and returns 0
** if the strings are equal, -1 if Key_string is < Node, and
** 1 if Key_string > Node.
*/
{ int result;

 result = strcmp(Key_string, Node->Text);

311

Chapter 2. LIB$ Reference

 if (result < 0)
 return -1;
 else if (result == 0)
 return 0;
 else
 return 1;
}

Call Format for an Allocate Routine
LIB$INSERT_TREE calls the allocate routine to allocate virtual memory for a node. The allocate
routine then stores the value of user-data in the field of the allocated node.

The format of the call is as follows:

user-allocation-procedure symbol ,new-node [,user-data]

LIB$INSERT_TREE passes the symbol, new-node, and user-data arguments to your allocate
routine, using the same passing mechanisms that were used to pass them to LIB$INSERT_TREE. Use
of user data is optional.

A node header appears at the beginning of each node. The following figure shows the structure of a
node header.

Therefore, any node you declare that LIB$INSERT_TREE manipulates must contain 10 bytes of
reserved data at the beginning for the node header.

How a node is structured depends on how you allocate your user data. You can allocate data in one of
two ways:

1. Your data immediately follows the node header. In this case, your allocation routine must allocate
a block equal in size to the sum of your data plus 10 bytes for the node header, as shown in the
following figure.

2. The node contains the 10 bytes of header information and a longword pointer to the user data, as
shown in the following figure.

312

Chapter 2. LIB$ Reference

The user-allocation-procedure argument in the call to LIB$INSERT_TREE specifies the
allocate routine. This argument is required. LIB$INSERT_TREE always calls the allocate routine.

Following is an example of a user-supplied allocate routine written in C.

struct Full_node
{
 void* left_link;
 void* right_link;
 short reserved;
 char Text[80];
};

static long Alloc_node(char* Key_string,
 struct Full_node** Ret_addr, void* Dummy)

{
 /*
 ** Allocate virtual memory for a new node. Key_string
 ** is the string to be entered into the newly
 ** allocated node. RET_ADDR will contain the address
 ** of the allocated memory.
 */
 long Status_code;
 long Alloc_size = sizeof(struct Full_node);

 extern long lib$get_vm();

 /*
 ** Allocate node: size of header, plus the length of our data.
 */
 Status_code = lib$get_vm (&Alloc_size, Ret_addr);
 if (!(Status_code & 1))
 lib$stop(Status_code);

 /*
 ** Store the data in the newly allocated virtual memory.
 */ strcpy((*Ret_addr)->Text, Key_string); return
 (Status_code); }

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory. The user-supplied allocation routine

returned an error.

313

Chapter 2. LIB$ Reference

LIB$_KEYALRINS Routine successfully completed, but a key was found in the tree.
No new key was inserted.

Any other failure status reported by the user allocation procedure.

Example
The following C program shows the use of LIB$INSERT_TREE, LIB$LOOKUP_TREE, and LIB
$TRAVERSE_TREE.

/*
** This program asks the user to enter a series of strings,
** one per line. The user can then query the program to find
** strings that were previously entered. At the end, the entire
** tree is displayed, along with sequence numbers that
** indicate the order in which each element was entered.
**
** This program serves as an example of the use of LIB$INSERT_TREE,
** LIB$LOOKUP_TREE and LIB$TRAVERSE_TREE.
*/

#include <stdio.h>
#include <string.h>
#include <libdef.h>

char Text_line[80];

struct Tree_element /* Define the structure of our */
{ /* record. This record could */
 long Seq_num; /* contain many useful data items. */
 char Text[80];
};

struct Full_node
{
void* left_link;
void* right_link;
short reserved;
struct Tree_element my_node;
};

struct Tree_element Rec; /* Declare an instance of the record */

extern long lib$insert_tree(); /* Function to insert node */
extern long lib$traverse_tree(); /* Function to walk tree */
extern long lib$lookup_tree(); /* Function to find a node */
extern void lib$stop(); /* Routine to signal fatal error */
static long Compare_node_2(); /* Compare entry (2 arg) */
static long Compare_node_3(); /* Compare entry (3 arg) */
static long Alloc_node(); /* Allocation entry */
static long Print_node(); /* Print entry for walk */
static void Display_Node();

main ()
{
 struct Full_node* Tree_head; /* Head for the tree */
 struct Full_node* New_node; /* New node after insert */

314

Chapter 2. LIB$ Reference

 long Status_code; /* Return status code */
 long Counter; /* Sequence number */
 long flags = 1;

 /*
 ** Initialize the tree to null
 */
 Tree_head = NULL;

 printf("Enter one word per line, ^Z to begin searching the tree\n");

 /*
 ** Loop, reading lines of text until the end of the file.
 */
 Counter = 0;
 printf("> ");
 while (gets(Text_line))
 {
 Counter++;
 Rec.Seq_num = Counter;
 strcpy(Rec.Text, Text_line);
 Status_code = lib$insert_tree (/* Insert the entry into the tree
 */
 &Tree_head, &Rec, &flags,
 Compare_node_3, Alloc_node, &New_node);
 if (!(Status_code & 1))
 lib$stop(Status_code);
 printf("> ");
 }
 /*
 ** End of file encountered. Begin searching the tree.
 */
 printf("\nYou will now be prompted for words to find. ");
 printf("Enter one per line.\n");
 Rec.Seq_num = -1;
 printf("Word to find? ");
 while (gets(Text_line))
 {
 strcpy(Rec.Text, Text_line);
 Status_code = lib$lookup_tree (&Tree_head, &Rec,
 Compare_node_2, &New_node);
 if (Status_code == LIB$_KEYNOTFOU)
 printf("The word you entered does not appear in the tree.\n");
 else
 Display_Node(New_node);
 printf("Word to find? ");
 }
 /*
 ** The user has finished searching the tree for specific items. It
 ** is now time to traverse the entire tree.
 */
 printf("\n");
 printf("The following is a dump of the tree. Notice that the words\n");
 printf("are in alphabetical order\n");
 Status_code = lib$traverse_tree(&Tree_head, Print_node, 0);
 return(Status_code);
}
static long Print_node(struct Full_node* Node, void* Dummy)

315

Chapter 2. LIB$ Reference

{

 /*
 ** Print the string contained in the current node.
 */
 printf("%d\t%s\n", Node->my_node.Seq_num, Node->my_node.Text);
 return(LIB$_NORMAL);
}

static long Alloc_node(struct Tree_element* Rec,
 struct Full_node** Ret_addr, void* Dummy)
{

 /*
 ** Allocate virtual memory for a new node. Rec is the
 ** data record to be entered into the newly
 ** allocated node. RET_ADDR will contain the address
 ** of the allocated memory.
 */
 long Status_code;
 long Alloc_size = sizeof(struct Full_node);

 extern long lib$get_vm();

 /*
 ** Allocate node: size of header, plus the length of our data.
 */
 Status_code = lib$get_vm (&Alloc_size, Ret_addr);
 if (!(Status_code & 1))
 lib$stop(Status_code);

 /*
 ** Store the data in the newly allocated virtual memory.
 */
 (*Ret_addr)->my_node.Seq_num = Rec->Seq_num;
 strcpy((*Ret_addr)->my_node.Text, Rec->Text);
 return (Status_code);
}
static long Compare_node_3(struct Tree_element* Rec, struct Full_node*
 Node,
 void* Dummy)

{
 /*
 ** Call the 2 argument version of the compare routine
 */
 return(Compare_node_2 (Rec, Node));
}

static long Compare_node_2(struct Tree_element* Rec, struct Full_node*
 Node)
{
 /*
 ** This function compares the string described by Key_string with
 ** the string contained in the data node Node, and returns 0
 ** if the strings are equal, -1 if Key_string is < Node, and
 ** 1 if Key_string > Node.
 */

316

Chapter 2. LIB$ Reference

 int result;
 /*
 ** Return the result of the comparison.
 */
 result = strcmp(Rec->Text, Node->my_node.Text);
 if (result < 0)
 return -1;
 else if (result == 0)
 return 0;
 else
 return 1;

}
static void Display_Node(struct Full_node* Node)
{
 /*
 ** This routine prints the data into the node of the tree
 ** once LIB$LOOKUP_TREE has been called to find the node.
 */
 printf("The sequence number for \"%s\" is %d\n",
 Node->my_node.Text, Node->my_node.Seq_num);
}

The output generated by this program is as follows:

$ run tree
Enter one word per line, ^Z to begin searching the tree
> apple
> orange
> peach
> pear
> grapefruit
> lemon
> Ctrl/Z

You will now be prompted for words to find. Enter one per line.

Word to find? lime
The word you entered does not appear in the tree

Word to find? orange
The sequence number for "orange" is 2

Word to find? Ctrl/Z

The following is a dump of the tree. Notice that the words
are in alphabetical order
 1 apple
 5 grapefruit
 6 lemon
 2 orange
 3 peach
 4 pear
$

317

Chapter 2. LIB$ Reference

LIB$INSERT_TREE_64
LIB$INSERT_TREE_64 — The Insert Entry in a Balanced Binary Tree routine inserts a node in a
balanced binary tree.

Format
LIB$INSERT_TREE_64 treehead ,symbol ,flags ,user-compare-routine ,user-allocation-
procedure ,new-node [,user-data]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
treehead

OpenVMS usage: address
type: address
access: modify
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of a quadword that is this tree
head. The initial value of treehead is 0.

symbol

OpenVMS usage: user_arg
type: quadword (unsigned)
access: unspecified
mechanism: unspecified

Key to be inserted.

flags

OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Control flags. The flags argument is the address of the control flags. Currently only bit 0 is used.

Bit Description
0 If clear, the address of the existing duplicate entry is returned to

the new-node argument. If set, duplicate entries are inserted.

318

Chapter 2. LIB$ Reference

user-compare-routine

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$INSERT_TREE_64 calls to compare a symbol with a node.
The user-compare-routine argument is required; LIB$INSERT_TREE_64 calls the compare
routine for every node except the first node in the tree. The value returned by the compare routine
indicates the relationship between the symbol key and the node.

For more information on the compare routine, see Call Format for a Compare Routine in the
Description section.

user-allocation-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied allocate routine that LIB$INSERT_TREE_64 calls to allocate virtual memory for
a node. The user-allocation-procedure argument is required; LIB$INSERT_TREE_64
always calls the allocate routine.

For more information on the allocate routine, see Call Format for an Allocate Routine in the
Description section.

new-node

OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Location where the new key is inserted. The new-node argument is the address of an unsigned
quadword that is the address of the new node.

user-data

OpenVMS usage: user_arg
type: unspecified
access: unspecified
mechanism: by value

User data that LIB$INSERT_TREE_64 passes to the compare and allocate routines. The user-
data argument is optional.

Description
This Description section contains three parts:

319

Chapter 2. LIB$ Reference

• Guidelines for Using LIB$INSERT_TREE_64

• Call Format for a Compare Routine

• Call Format for an Allocate Routine

Guidelines for Using LIB$INSERT_TREE_64
LIB$INSERT_TREE_64 inserts a node in a balanced binary tree. You supply two routines: compare
and allocate. The compare routine compares the symbol key to the node, and the allocate routine
allocates virtual memory for the node to be inserted. LIB$INSERT_TREE_64 first calls the compare
routine to find the location at which the new node is inserted. Then LIB$INSERT_TREE_64 calls the
allocate routine to allocate memory for the new node. Most programmers insert data in the new node
by initializing it within the allocate routine as soon as memory has been allocated.

You may pass the data to be inserted into the tree using either the symbol argument alone or both
the symbol and user-data arguments. The symbol argument is required. It may contain all of
the data, just the name of the node, or the address of the data. If you decide to use symbol to pass
just the name of the node, you must use the user-data argument to pass the rest of the data to be
inserted in the new node.

Call Format for a Compare Routine
The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$INSERT_TREE_64 passes both the symbol and comparison-node arguments to
the compare routine, using the same passing mechanism that was used to pass them to LIB
$INSERT_TREE_64. The user-data argument is passed in the same way, but its use is optional.

The user-compare-routine argument in the call to LIB$INSERT_TREE_64 specifies the
compare routine. This argument is required. LIB$INSERT_TREE_ 64 calls the compare routine for
every node except the first node in the tree.

The value returned by the compare routine is the result of comparing the symbol key with the current
node. Following are the possible values returned by the compare routine:

Return Value Meaning
Negative The symbol argument is less than the current node.
Zero The symbol argument is equal to the current node.
Positive The symbol argument is greater than the current node.

This is an example of a user-supplied compare routine, written in C.

struct Full_node
{
 void* left_link;
 void* right_link;
 short reserved;
 char Text[80];
};

static long Compare_node(char* Key_string,
 struct Full_node* Node,
 void* Dummy)

320

Chapter 2. LIB$ Reference

/*
** This function compares the string described by Key_string with
** the string contained in the data node Node, and returns 0
** if the strings are equal, -1 if Key_string is < Node, and
** 1 if Key_string > Node.
*/
{

 int result;

 result = strcmp(Key_string, Node->Text);
 if (result < 0)
 return -1;
 else if (result == 0)
 return 0;
 else
 return 1;
}

Call Format for an Allocate Routine
LIB$INSERT_TREE_64 calls the allocate routine to allocate virtual memory for a node. The allocate
routine then stores the value of user-data in the field of the allocated node.

The format of the call is as follows:

user-allocation-procedure symbol ,new-node [,user-data]

LIB$INSERT_TREE_64 passes the symbol, new-node, and user-data arguments to
your allocate routine, using the same passing mechanisms that were used to pass them to LIB
$INSERT_TREE_64. Use of user data is optional.

A node header appears at the beginning of each node. The following figure shows the structure of a
node header.

Therefore, any node you declare that LIB$INSERT_TREE_64 manipulates must contain 18 bytes of
reserved data at the beginning for the node header.

How a node is structured depends on how you allocate your user data. You can allocate data in one of
two ways:

1. Your data immediately follows the node header. In this case, your allocation routine must allocate
a block equal in size to the sum of your data plus 18 bytes for the node header, as shown in the
following figure.

321

Chapter 2. LIB$ Reference

2. The node contains the 18 bytes of header information and a quadword pointer to the user data as
shown in the following figure.

The user-allocation-procedure argument in the call to LIB$INSERT_TREE_64 specifies
the allocate routine. This argument is required. LIB$INSERT_TREE_64 always calls the allocate
routine.

This is an example of a user-supplied allocate routine written in C.

struct Full_node
{
 void* left_link;
 void* right_link;
 short reserved;
 char Text[80];
};

static long Alloc_node(char* Key_string,
 struct Full_node** Ret_addr, void* Dummy)

{
 /*
 ** Allocate virtual memory for a new node. Key_string
 ** is the string to be entered into the newly
 ** allocated node. RET_ADDR will contain the address
 ** of the allocated memory.
 */
 long Status_code;
 __int64 Alloc_size = sizeof(struct Full_node);
 extern long LIB$GET_VM_64();
 /*
 ** Allocate node: size of header, plus the length of our data.
 */
 Status_code = LIB$GET_VM_64 (&Alloc_size, Ret_addr);
 if (!(Status_code & 1))
 lib$stop(Status_code);
 /*
 ** Store the data in the newly allocated virtual memory.
 */
 strcpy((*Ret_addr)->Text, Key_string);
 return (Status_code);
}

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_INSVIRMEM Insufficient virtual memory. The user-supplied allocation

procedure returned an error.

322

Chapter 2. LIB$ Reference

LIB$_KEYALRINS Routine successfully completed, but a key was found in the tree.
No new key was inserted.

Any other failure status reported by the user allocation procedure.

Example
The following C program shows the use of LIB$INSERT_TREE_64, LIB$LOOKUP_TREE_64, and
LIB$TRAVERSE_TREE_64.

/*
** This program asks the user to enter a series of strings,
** one per line. The user can then query the program to find
** strings that were previously entered. At the end, the entire
** tree is displayed, along with sequence numbers that
** indicate the order in which each element was entered.
**
** This program serves as an example of the use of LIB$INSERT_TREE_64,
** LIB$LOOKUP_TREE_64 and LIB$TRAVERSE_TREE_64.
*/

#pragma pointer_size long

#include <stdio.h>
#include <string.h>
#include <libdef.h>

char Text_line[80];

struct Tree_element /* Define the structure of our */
{ /* record. This record could */
 long Seq_num; /* contain many useful data items. */
char Text[80];
};

struct Full_node
{
 void* left_link;
 void* right_link;
 short reserved;
 struct Tree_element my_node;
};

struct Tree_element Rec; /* Declare an instance of the record */

extern long lib$insert_tree_64(); /* Function to insert node */
extern long lib$traverse_tree_64(); /* Function to walk tree */
extern long lib$lookup_tree_64(); /* Function to find a node */
extern void lib$stop(); /* Routine to signal fatal error */
static long Compare_node_2(); /* Compare entry (2 arg) */
static long Compare_node_3(); /* Compare entry (3 arg) */
static long Alloc_node(); /* Allocation entry */
static long Print_node(); /* Print entry for walk */
static void Display_Node();

main ()
{

323

Chapter 2. LIB$ Reference

 struct Full_node* Tree_head; /* Head for the tree */
 struct Full_node* New_node; /* New node after insert */
 long Status_code; /* Return status code */
 long Counter; /* Sequence number */
 long flags = 1;

 /*
** Initialize the tree to null
*/
Tree_head = NULL;

printf("Enter one word per line, ^Z to begin searching the tree\n");

/*
** Loop, reading lines of text until the end of the file.
*/
Counter = 0;
printf("> ");
while (gets(Text_line))
 {
 Counter++;
 Rec.Seq_num = Counter;
 strcpy(Rec.Text, Text_line);
 Status_code = lib$insert_tree_64 (/* Insert the entry into the tree */
 &Tree_head, &Rec, &flags,
 Compare_node_3, Alloc_node, &New_node);
 if (!(Status_code & 1))
 lib$stop(Status_code);
 printf("> ");
 }
 /*
 ** End of file encountered. Begin searching the tree.
 */
 printf("\nYou will now be prompted for words to find. ");
 printf("Enter one per line.\n");

 Rec.Seq_num = -1;

 printf("Word to find? ");
 while (gets(Text_line))
 {
 strcpy(Rec.Text, Text_line);
 Status_code = lib$lookup_tree_64 (&Tree_head, &Rec,
 Compare_node_2, &New_node);
 if (Status_code == LIB$_KEYNOTFOU)
 printf("The word you entered does not appear in the tree.\n");
 else
 Display_Node(New_node);
 printf("Word to find? ");
 }
/*
** The user has finished searching the tree for specific items. It
** is now time to traverse the entire tree.
*/
printf("\n");
printf("The following is a dump of the tree. Notice that the words\n");
printf("are in alphabetical order\n");
 Status_code = lib$traverse_tree_64(&Tree_head, Print_node, 0);

324

Chapter 2. LIB$ Reference

 return(Status_code);
}

static long Print_node(struct Full_node* Node, void* Dummy)
{
 /*
 ** Print the string contained in the current node.
 */
 printf("%d\t%s\n", Node->my_node.Seq_num, Node->my_node.Text);
 return(LIB$_NORMAL);
}

static long Alloc_node(struct Tree_element* Rec,
 struct Full_node** Ret_addr, void* Dummy)
{
 /*
 ** Allocate virtual memory for a new node. Rec is the
 ** data record to be entered into the newly
 ** allocated node. RET_ADDR will contain the address
 ** of the allocated memory.
 */
 long Status_code;
 __int64 Alloc_size = sizeof(struct Full_node);
 extern long lib$get_vm_64();
 /*
 ** Allocate node: size of header, plus the length of our data.
 */
 Status_code = lib$get_vm_64 (&Alloc_size, Ret_addr);
 if (!(Status_code & 1))
 lib$stop(Status_code);
 /*
 ** Store the data in the newly allocated virtual memory.
 */
 (*Ret_addr)->my_node.Seq_num = Rec->Seq_num;
 strcpy((*Ret_addr)->my_node.Text, Rec->Text);
 return (Status_code);
}

static long Compare_node_3(struct Tree_element* Rec, struct Full_node*
 Node,
 void* Dummy)

{
 /*
 ** Call the 2 argument version of the compare routine
 */
 return(Compare_node_2 (Rec, Node));
}

static long Compare_node_2(struct Tree_element* Rec, struct Full_node*
 Node)
{
 /*
 ** This function compares the string described by Key_string with
 ** the string contained in the data node Node, and returns 0
 ** if the strings are equal, -1 if Key_string is < Node, and
 ** 1 if Key_string > Node.
 */

325

Chapter 2. LIB$ Reference

 int result;
 /*
 ** Return the result of the comparison.
 */
 result = strcmp(Rec->Text, Node->my_node.Text);
 if (result < 0)
 return -1;
 else if (result == 0)
 return 0;
 else
 return 1;
}

static void Display_Node(struct Full_node* Node)
{
 /*
 ** This routine prints the data into the node of the tree
 ** once LIB$LOOKUP_TREE has been called to find the node.
 */
 printf("The sequence number for \"%s\" is %d\n",
 Node->my_node.Text, Node->my_node.Seq_num);
}

The output generated by this program is as follows:

 $ run tree
 Enter one word per line, ^Z to begin searching the tree
 > apple
 > orange
 > peach
 > pear
 > grapefruit
 > lemon
 > Ctrl/Z

 You will now be prompted for words to find. Enter one per line.

 Word to find? lime
 The word you entered does not appear in the tree

 Word to find? orange
 The sequence number for "orange" is 2

 Word to find? Ctrl/Z

 The following is a dump of the tree. Notice that the words
 are in alphabetical order
 1 apple
 5 grapefruit
 6 lemon
 2 orange
 3 peach
 4 pear
 $

326

Chapter 2. LIB$ Reference

LIB$INSQHI
LIB$INSQHI — The Insert Entry at Head of Queue routine inserts a queue entry at the head of the
specified self-relative longword interlocked queue. No support for arguments passed by 64-bit address
reference or for use of 64-bit descriptors, if applicable, is planned for this routine. LIB$INSQHI
makes the INSQHI instruction available as a callable routine.

Format
LIB$INSQHI entry ,header [,retry-count]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
entry

OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted by LIB$INSQHI. The entry argument contains the address of this signed
quadword-aligned array that must be at least 8 bytes long. Bytes following the first 8 bytes can be
used for any purpose by the calling program.

For Alpha and I64 systems, the entry argument must contain a 32-bit sign-extended address. An
illegal operand exception occurs for any other form of address.

header

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which entry is to be inserted. The header argument
contains the address of this signed aligned quadword integer. The header argument must be
initialized to zero before first use of the queue; zero means an empty queue.

For Alpha systems, the header argument must contain a 32-bit sign-extended address. An illegal
operand exception occurs for any other form of address.

retry-count

327

Chapter 2. LIB$ Reference

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary-interlock failure of the queue
instruction in a processor-shared memory application. The retry-count argument is the address of an
unsigned longword that contains the retry count value. A value of 1 causes no retries. The default
value is 10.

Description
The queue into which LIB$INSQHI inserts an entry can be in process-private, processor-private, or
processor-shareable memory to implement per-process, per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue entry by its address.

A self-relative queue is a queue in which the links between entries are the displacements of the current
entry’s predecessor and successor. If these links are longwords, the queue is referred to as a self-
relative longword queue.

You can use the LIB$INSQHI, LIB$INSQTI, LIB$REMQHI, and LIB$REMQTI routines to manage
your self-relative longword queue on a VAX or an Alpha or I64 system. These routines implement the
INSQHI, INSQTI, REMQHI, and REMQTI instructions that allow you to insert and remove an entry
at the head or tail of a self-relative longword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines, the queue pointers are
changed as an atomic operation. This ensures that no other process can interrupt the operation to insert
or remove a queue entry of its own.

When you use these routines, cooperating processes can communicate without further synchronization
and without danger of being interrupted, either on a single processor or in a multiprocessor
environment. The queue access routines are also useful in an AST environment; they allow you to add
or remove an entry from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue entry, you must ensure
that the operation cannot be interrupted.

Alignment
Use of the self-relative longword queue routines requires that the queue header and each of the queue
entries be quadword aligned. You can use the Run- Time Library routine LIB$GET_VM on a VAX,
Alpha, or I64 system to allocate quadword-aligned virtual memory for a queue.

Condition Values Returned
SS$_NORMAL Routine successfully completed. The entry was added to the front

of the queue, and the resulting queue contains more than one entry.

328

Chapter 2. LIB$ Reference

SS$_ROPRAND Reserved operand fault. Either the entry or the header is at an
address that is not quadword aligned, or the header address equals
the entry address.

LIB$_ONEENTQUE Routine successfully completed. The entry was added to the front
of the queue, and the resulting queue contains one entry.

LIB$_SECINTFAI A secondary interlock failure occurred; the insertion was attempted
the number of times specified by retry-count. This is a severe
error. The queue is not modified. This condition can occur only
when the queue is in memory being shared between two or more
processors.

Examples
1. INTEGER*4 FUNCTION INSERT_Q (QENTRY)

COMMON/QUEUES/QHEADER
INTEGER*4 QENTRY(10), QHEADER(2)
INSERT_Q = LIB$INSQHI (QENTRY, QHEADER)
RETURN
END

This is a Fortran application using processor-shared memory.

2. COM (QUEUES) QENTRY%(9), QHEADER%(1)
 EXTERNAL INTEGER FUNCTION LIB$INSQHI
 IF LIB$INSQHI (QENTRY%() BY REF, QHEADER%() BY REF) AND 1%
 THEN GOTO 1000
 .
 .
 .
1000 REM INSERTED OK

In BASIC and Fortran, queues can be quadword aligned in a named COMMON block by using a
linker option file to specify PSECT alignment. For instance, to create a COMMON block called
QUEUES, use the LINK command with the FILE/OPTIONS qualifier, where FILE.OPT is a
linker option file containing the following line:

PSECT = QUEUES, QUAD

LIB$INSQHIQ
LIB$INSQHIQ — The Insert Entry at Head of Queue routine inserts a queue entry at the head of the
specified self-relative quadword interlocked queue. LIB$INSQHIQ makes the INSQHIQ instruction
available as a callable routine.

Format
LIB$INSQHIQ entry ,header [,retry-count]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)

329

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Arguments
entry

OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted by LIB$INSQHIQ. The entry argument contains the address of this signed
octaword-aligned array that must be at least 16 bytes long. Bytes following the first 16 bytes can be
used for any purpose by the calling program.

header

OpenVMS usage: octaword_signed
type: octaword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which entry is to be inserted. The header argument contains
the address of this signed aligned octaword integer. The header argument must be initialized to zero
before first use of the queue; zero means an empty queue.

retry-count

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary-interlock failure of the queue
instruction in a processor-shared memory application. The retry-count argument is the address of
an unsigned longword that contains the retry count value. A value of 1 causes no retries. The default
value is 10.

Description
The queue into which LIB$INSQHIQ inserts an entry can be in process-private, processor-private, or
processor-shareable memory to implement per-process, per-processor, or cross-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue entry by its address.

330

Chapter 2. LIB$ Reference

A self-relative queue is a queue in which the links between entries are the displacements of the current
entry’s predecessor and successor. If these links are quadwords, the queue is referred to as a self-
relative quadword queue.

You can use the LIB$INSQHIQ, LIB$INSQTIQ, LIB$REMQHIQ, and LIB$REMQTIQ routines to
manage your self-relative quadword queue on an Alpha or I64 system. These routines implement the
INSQHIQ, INSQTIQ, REMQHIQ, and REMQTIQ instructions that allow you to insert and remove an
entry at the head or tail of a self-relative quadword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines, the queue pointers are
changed as an atomic operation. This ensures that no other process can interrupt the operation to insert
or remove a queue entry of its own.

When you use these routines, cooperating processes can communicate without further synchronization
and without danger of being interrupted, either on a single processor or in a multiprocessor
environment. The queue access routines are also useful in an AST environment; they allow you to add
or remove an entry from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue entry, you must ensure
that the operation cannot be interrupted.

Alignment
Use of the self-relative quadword queue routines requires that the queue header and each of the queue
entries be octaword aligned. You can use the Run-Time Library routine LIB$GET_VM_64 to allocate
octaword aligned virtual memory for a queue.

Condition Values Returned
SS$_NORMAL Routine successfully completed. The entry was added to the front

of the queue, and the resulting queue contains more than one entry.
SS$_ROPRAND Reserved operand fault. Either the entry or the header is at an

address that is not octaword aligned, or the header address equals
the entry address.

LIB$_ONEENTQUE Routine successfully completed. The entry was added to the front
of the queue, and the resulting queue contains one entry.

LIB$_SECINTFAI A secondary interlock failure occurred; the insertion was attempted
the number of times specified by retry-count. This is a severe
error. The queue is not modified. This condition can occur only
when the queue is in memory being shared between two or more
processors.

Example
The following Fortran application uses processor-shared memory:

INTEGER*4 FUNCTION INSERT_Q (QENTRY)
COMMON/QUEUES/QHEADER
INTEGER*8 QENTRY(10), QHEADER(2)

331

Chapter 2. LIB$ Reference

INSERT_Q = LIB$INSQHIQ (QENTRY, QHEADER)
RETURN
END

In Fortran, queues can be octaword aligned in a named COMMON block by using a linker option
file to specify PSECT alignment. For instance, to create a COMMON block called QUEUES, use the
LINK command with the FILE/OPTIONS qualifier, where FILE.OPT is a linker option file containing
the following line:

 PSECT = QUEUES, OCTA

LIB$INSQTI
LIB$INSQTI — The Insert Entry at Tail of Queue routine inserts a queue entry at the tail of the
specified self-relative longword interlocked queue. No support for arguments passed by 64-bit address
reference or for use of 64-bit descriptors, if applicable, is planned for this routine. LIB$INSQTI
makes the INSQTI instruction available as a callable routine.

Format
LIB$INSQTI entry ,header [,retry-count]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
entry

OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

Entry to be inserted at the tail of the queue by LIB$INSQTI. The entry argument contains the
address of this signed quadword-aligned array that must be at least 8 bytes long. Bytes following the
first 8 bytes can be used for any purpose by the calling program.

For Alpha and I64 systems, the entry argument must contain a 32-bit sign-extended address. An
illegal operand exception occurs for any other form of address.

header

OpenVMS usage: quadword_signed
type: quadword integer (signed)

332

Chapter 2. LIB$ Reference

access: modify
mechanism: by reference

Queue header specifying the queue into which the queue entry is to be inserted. The header
argument contains the address of this signed aligned quadword integer. The header argument must
be initialized to zero before first use of the queue; zero means an empty queue.

For Alpha and I64 systems, the header argument must contain a 32-bit sign-extended address. An
illegal operand exception occurs for any other form of address.

retry-count

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary-interlock failure of the queue
instruction in a processor-shared memory application. The retry-count argument is the address of
a longword which contains the retry count value. The default value is 10.

Description
The queue into which LIB$INSQTI inserts an entry can be in process-private, processor-private, or
processor-shareable memory to implement per-process, per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue entry by its address.

A self-relative queue is a queue in which the links between entries are the displacements of the current
entry’s predecessor and successor. If these links are longwords, the queue is referred to as a self-
relative longword queue.

You can use the LIB$INSQHI, LIB$INSQTI, LIB$REMQHI, and LIB$REMQTI routines to manage
your self-relative longword queue on a VAX, Alpha, or I64 system. These routines implement the
INSQHI, INSQTI, REMQHI, and REMQTI instructions that allow you to insert and remove an entry
at the head or tail of a self-relative longword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines, the queue pointers are
changed as an atomic operation. This ensures that no other process can interrupt the operation to insert
or remove a queue entry of its own.

When you use these routines, cooperating processes can communicate without further synchronization
and without danger of being interrupted, either on a single processor or in a multiprocessor
environment. The queue access routines are also useful in an AST environment; they allow you to add
or remove an entry from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue entry, you must ensure
that the operation cannot be interrupted.

333

Chapter 2. LIB$ Reference

Alignment
Use of the self-relative longword queue routines requires that the queue header and each of the queue
entries be quadword aligned. You can use the Run- Time Library routine LIB$GET_VM on a VAX,
Alpha, or I64 system to allocate quadword-aligned virtual memory for a queue.

Condition Values Returned
SS$_NORMAL Routine successfully completed. The entry was added to the tail of

the queue: the resulting queue contains more than one entry.
SS$_ROPRAND Reserved operand fault. Either the entry or the header is at an

address that is not quadword aligned, or the header address equals
the entry address.

LIB$_ONEENTQUE Routine successfully completed. The entry was added to the tail of
the queue: the resulting queue contains one entry.

LIB$_SECINTFAI A secondary interlock failure occurred; the insertion was attempted
the number of times specified by retry-count. This is a severe
error. The queue is not modified. This condition can occur only
when the queue is in memory being shared between two or more
processors.

LIB$INSQTIQ
LIB$INSQTIQ — The Insert Entry at Tail of Queue routine inserts a queue entry at the tail of the
specified self-relative quadword interlocked queue. LIB$INSQTIQ makes the INSQTIQ instruction
available as a callable routine.

Format
LIB$INSQTIQ entry ,header [,retry-count]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
entry

OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference, array reference

334

Chapter 2. LIB$ Reference

Entry to be inserted at the tail of the queue by LIB$INSQTIQ. The entry argument contains the
address of this signed octaword-aligned array that must be at least 16 bytes long. Bytes following the
first 16 bytes can be used for any purpose by the calling program.

header

OpenVMS usage: octaword_signed
type: octaword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue into which the queue entry is to be inserted. The header
argument contains the address of this signed aligned octaword integer. The header argument must
be initialized to zero before first use of the queue; zero means an empty queue.

retry-count

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the insertion is to be retried in case of secondary-interlock failure of the queue
instruction in a processor-shared memory application. The retry-count argument is the address of
a longword that contains the retry count value. The default value is 10.

Description
The queue into which LIB$INSQTIQ inserts an entry can be in process-private, processor-private, or
processor-shareable memory to implement per-process, per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue entry by its address.

A self-relative queue is a queue in which the links between entries are the displacements of the current
entry’s predecessor and successor. If these links are quadwords, the queue is referred to as a self-
relative quadword queue.

You can use the LIB$INSQHIQ, LIB$INSQTIQ, LIB$REMQHIQ, and LIB$REMQTIQ routines to
manage your self-relative quadword queue on an Alpha or I64 system. These routines implement the
INSQHIQ, INSQTIQ, REMQHIQ, and REMQTIQ instructions that allow you to insert and remove an
entry at the head or tail of a self-relative quadword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines, the queue pointers are
changed as an atomic operation. This ensures that no other process can interrupt the operation to insert
or remove a queue entry of its own.

When you use these routines, cooperating processes can communicate without further synchronization
and without danger of being interrupted, either on a single processor or in a multiprocessor

335

Chapter 2. LIB$ Reference

environment. The queue access routines are also useful in an AST environment; they allow you to add
or remove an entry from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue entry, you must ensure
that the operation cannot be interrupted.

Alignment
Use of the self-relative quadword queue routines requires that the queue header and each of the queue
entries be octaword aligned. You can use the Run-Time Library routine LIB$GET_VM_64 to allocate
octaword aligned virtual memory for a queue.

Condition Values Returned
SS$_NORMAL Routine successfully completed. The entry was added to the tail of

the queue: the resulting queue contains more than one entry.
SS$_ROPRAND Reserved operand fault. Either the entry or the header is at an

address that is not octaword aligned, or the header address equals
the entry address.

LIB$_ONEENTQUE Routine successfully completed. The entry was added to the tail of
the queue: the resulting queue contains one entry.

LIB$_SECINTFAI A secondary interlock failure occurred; the insertion was attempted
the number of times specified by retry-count. This is a severe error.
The queue is not modified. This condition can occur only when the
queue is in memory being shared between two or more processors.

LIB$INSV
LIB$INSV — The Insert a Variable Bit Field routine replaces the variable bit field specified by the
base, position, and size arguments with bits 0 through (size – 1) of the source field. If the size of
the bit field is zero, nothing is inserted. LIB$INSV makes the VAX INSV instruction available as a
callable routine. On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

Format
LIB$INSV longword-integer-source ,position ,size ,base-address

Returns
None.

Arguments
longword-integer-source

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

336

Chapter 2. LIB$ Reference

Source field to be inserted by LIB$INSV. The longword-integer-source argument is the
address of a signed longword integer that contains this source field.

position

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Bit position relative to the base address where insertion of longword-integer-source is to
begin. The position argument is the address of a longword integer that contains this relative bit
position.

size

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

Size of the bit field to be inserted by LIB$INSV. The size argument is the address of an unsigned
byte that contains the size of this bit field. The maximum size is 32 bits.

base-address

OpenVMS usage: address
type: address
access: read only
mechanism: by value

Field into which LIB$INSV writes the source field. The base-address argument is an unsigned
longword containing the base address of this aligned bit string.

Condition Values Returned
SS$_ROPRAND A reserved operand fault is signaled if a size greater than 32 is

specified.

Examples
1. INTEGER*4 COND_VALUE

CALL LIB$INSV (4, 0, 3, COND_VALUE)

This example shows how to set bits 0 through 2 of longword COND_VALUE to the value 4 in
Fortran.

2. DECLARE INTEGER COND_VALUE
CALL LIB$INSV (4%, 0%, 3%, COND_VALUE)

This example uses BASIC to set bits 0 through 2 of longword COND_VALUE to the value 4.

337

Chapter 2. LIB$ Reference

LIB$INT_OVER
LIB$INT_OVER — The Integer Overflow Detection routine enables or disables integer overflow
detection for the calling routine activation. The previous integer overflow enable setting is returned.
No support for arguments passed by 64-bit address reference or for use of 64-bit descriptors, if
applicable, is planned for this routine. This routine is available on OpenVMS Alpha and I64 systems
in translated form and is applicable to translated VAX images only.

Format
LIB$INT_OVER new-setting

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Old integer overflow enable setting (the previous contents of SF$W_PSW[PSW$V_ IV] in the
caller’s frame).

Arguments
new-setting

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

New integer overflow enable setting. The new-setting argument is the address of an unsigned
longword that contains the new integer overflow enable setting. Bit 0 set to 1 means enable, bit 0 set
to 0 means disable.

Description
The caller's stack frame will be modified by this routine.

LIB$INT_OVER affects only the current routine activation and does not affect any of its callers
or any routines that it may call. However, the setting remains in effect for any routines which are
subsequently entered through a JSB entry point.

Condition Values Returned
None.

Example
INTOVF: ROUTINE OPTIONS (MAIN);

338

Chapter 2. LIB$ Reference

DECLARE LIB$INT_OVER ENTRY (FIXED BINARY (7)) /* Address of byte for
 /* enable/disable
 /* setting */
 RETURNS (FIXED BINARY (31)); /* Old setting */

DECLARE DISABLE FIXED BINARY (7) INITIAL (0) STATIC READONLY;

DECLARE (A,B) FIXED BINARY (7);

ON FIXEDOVERFLOW PUT SKIP LIST (’Overflow’);

A = 127;
B = A + 2;
PUT LIST (’In MAIN’);

 BEGIN;
 DECLARE RESULT FIXED BINARY (31);
/* Disable recognition of integer overflow in this block */
 RESULT = LIB$INT_OVER (DISABLE);

 B = A + 2;
 PUT SKIP LIST (’In BEGIN block’);

 CALL Q;
 Q: routine;
 B = A + 2;
 PUT LIST (’In Q’);
 END Q;
 END /* Begin */;
END INTOVF;

This PL/I routine shows how to use LIB$INT_OVER to enable or disable the detection of integer
overflow. Note that in PL/I, integer overflow is always enabled unless explicitly overridden by a call
to this routine. However, disabling integer overflow is only effective for the block which calls this
routine; descendent blocks are unaffected. The output generated by this PL/I program is as follows:

 In MAIN
 In BEGIN block
 Overflow In Q

LIB$LEN
LIB$LEN — The Length of String Returned as Longword Value routine returns the length of a string.

Format
LIB$LEN source-string

Returns
OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only

339

Chapter 2. LIB$ Reference

mechanism: by value

Argument
source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string whose length is returned by LIB$LEN. The source-string argument contains the
address of a descriptor pointing to this source string.

Description
The BASIC and Fortran intrinsic function LEN generates equivalent in-line code at run time.
Therefore, it is more efficient for BASIC and Fortran users to use the intrinsic function LEN than to
call LIB$LEN.

If you need both the length of the string and the address of its first byte, you should use LIB
$ANALYZE_SDESC or LIB$ANALYZE_SDESC_64.

Condition Values Returned
None.

LIB$LOCC
LIB$LOCC — The Locate a Character routine locates a character in a string by comparing successive
bytes in the string with the character specified. The search continues until the character is found or the
string has no more characters. LIB$LOCC makes the VAX LOCC instruction available as a callable
routine.

Format
LIB$LOCC character-string ,source-string

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position from the start of source-string to the first equal character or zero if no
match is found.

340

Chapter 2. LIB$ Reference

Arguments
character-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String whose initial character is used by LIB$LOCC in the search. The character-string
argument contains the address of a descriptor pointing to this string. Only the first character of
character-string is used, and its length is not checked.

source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String to be searched by LIB$LOCC. The source-string argument is the address of a descriptor
pointing to this character string.

Description
LIB$LOCC returns the position of the first equal character relative to the start of the source string as
an index. An index is the relative position of the first occurrence of a substring in the source string.
If no character matches or if the string has a length of zero, then a zero is returned, indicating that the
character was not found.

Condition Values Returned
None.

Examples
1. IDENTIFICATION DIVISION.

PROGRAM-ID. LIBLOC.

ENVIRONMENT DIVISION.

DATA DIVISION.

WORKING-STORAGE SECTION.

01 SEARCH-STRING PIC X(26)
 VALUE "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
01 SEARCH-CHAR PIC X.
01 IND-POS PIC 9(9) USAGE IS COMP.
01 DISP-IND PIC 9(9).

ROUTINE DIVISION.

341

Chapter 2. LIB$ Reference

001-MAIN.
 MOVE SPACE TO SEARCH-CHAR.
 DISPLAY " ".
 DISPLAY "ENTER SEARCH CHARACTER: " WITH NO ADVANCING.
 ACCEPT SEARCH-CHAR.
 CALL "LIB$LOCC"
 USING BY DESCRIPTOR SEARCH-CHAR, SEARCH-STRING
 GIVING IND-POS.
 IF IND-POS = ZERO
 DISPLAY
 "CHAR ENTERED (" SEARCH-CHAR ") NOT A VALID SEARCH CHAR"
 STOP RUN.
 MOVE IND-POS TO DISP-IND.
 DISPLAY
 "SEARCH CHAR (" SEARCH-CHAR ") WAS FOUND IN POSITION "
 DISP-IND.
 GO TO 001-MAIN.

This COBOL program accepts a character as input and returns as output the character's position in
a search string. The output generated by this COBOL program is as follows:

$ RUN LIBLOC
ENTER SEARCH CHARACTER: X
SEARCH CHAR (X) WAS FOUND IN POSITION 000000024

ENTER SEARCH CHARACTER: Y
SEARCH CHAR (Y) WAS FOUND IN POSITION 000000025

ENTER SEARCH CHARACTER: B
SEARCH CHAR (B) WAS FOUND IN POSITION 000000002

ENTER SEARCH CHARACTER: b
CHAR ENTERED (b) NOT A VALID SEARCH CHAR
$

Notice that uppercase and lowercase letters are not considered equal.

2.
10 !+
 ! This is an BASIC program demonstrating the
 ! use of LIB$LOCC.
 !-

 EXTERNAL INTEGER FUNCTION LIB$LOCC
 I% = 0
 CHARSTR$ = ’DAY’
 SRCSTR$ = ’ONE DAY AT A TIME’
 I% = LIB$LOCC(CHARSTR$, SRCSTR$)
 PRINT I%
90 END

This BASIC example also shows the use of LIB$LOCC. The output generated by this BASIC
program is “5”.

LIB$LOCK_IMAGE
LIB$LOCK_IMAGE — Locks the specified image in the process’s working set.

342

Chapter 2. LIB$ Reference

Format
LIB$LOCK_IMAGE address

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
address

OpenVMS usage: address
type: quadword
access: read only
mechanism: by value

Address of a byte within the image to be locked in the working set. If the address argument is 0, the
current image (which contains the call to LIB$LOCK_IMAGE) is locked in the working set.

Description
LIB$LOCK_IMAGE locks the specified image in the process’s working set.

This routine is typically used by a privileged user before the program, executing in kernel mode,
raises IPL above IPL 2. Above IPL 2, paging is not allowed by the system. The program must access
only pages valid in the process’s working set.

Condition Values Returned
SS$_WASSET The specified image is locked in the working set and had

previously been locked in the working set.
SS$_WASCLR The specified image is locked in the working set and had

previously not been locked in the working set.

Other status codes returned by sys$lkwset_64.

LIB$LOOKUP_KEY
LIB$LOOKUP_KEY — The Look Up Keyword in Table routine scans a table of keywords to find
one that matches the keyword or keyword abbreviation specified by search-string.

Format
LIB$LOOKUP_KEY search-string ,key-table-array [,key-value] [,keyword-string] [,resultant-
length]

343

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
search-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String for which LIB$LOOKUP_KEY will search in the keyword table. The search-string argument is
the address of a descriptor pointing to this string.

key-table-array

OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference, array reference

Keyword table. The key-table-array argument contains the address of an array that is this
keyword table.

key-value

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by reference

Associated value of the keyword found by LIB$LOOKUP_KEY. The key-value argument
contains the address of an unsigned longword into which LIB$LOOKUP_KEY writes the associated
value of the matched keyword.

keyword-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

344

Chapter 2. LIB$ Reference

Full keyword string matched. The keyword-string argument contains the address of a character-
string descriptor. LIB$LOOKUP_KEY writes the complete text of the matched keyword into the
character string.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters copied into the character-string pointed to by keyword-string, not
counting padding in the case of a fixed-length string. The resultant-length argument is the
address of an unsigned word integer that contains the number of characters in the matched keyword
that were copied into the character-string.

Description
LIB$LOOKUP_KEY is intended to help programmers to write utilities that have command qualifiers
with values.

LIB$LOOKUP_KEY locates a matching keyword or keyword abbreviation by comparing the first n
characters of each keyword in the keyword table with the supplied string, where n is the length of the
supplied string.

When a keyword match is found, the following information is optionally returned to the caller:

• The longword value associated with the matched keyword

• The full keyword string (any descriptor type)

An exact match is found if the length of the keyword found is equal to the length of the supplied
string.

If an exact keyword match is found, no further processing is performed, and a normal return status
is returned to the caller. Otherwise, after a match has been found, the rest of the keyword table is
scanned. If an additional match is found, a “not enough characters” return status is returned to the
caller. If the keyword table contains a keyword that is an abbreviation of another keyword in the table,
an exact match can occur for short abbreviations.

Figure 2.5 shows the structure of the keyword table, which the calling program creates for this
routine.

Figure 2.5. Keyword Table

345

Chapter 2. LIB$ Reference

Vector-count is the number of longwords that follow, and counted-ASCII-string starts
with a byte that is the unsigned count of the number of ASCII characters that follow.

Because of the format of the keyword table, this routine cannot be called easily from high-level
languages. The examples that follow show how to use a macro, $LIB_KEY_TABLE, to construct a
keyword table from MACRO or BLISS. A separate example shows how a table could be constructed
in Fortran.

Use of the $LIB_KEY_TABLE macro results in data that is not position-independent code (PIC). If
your application requires PIC data, you must fill in the address of the keyword strings at execution
time. See the Fortran example (example 3) for a demonstration of this technique.

Condition Values Returned

SS$_NORMAL Routine successfully completed. A unique keyword match was
found.

LIB$_AMBKEY Multiple keyword match found. Not enough characters were
specified to allow a unique match.

LIB$_INSVIRMEM Insufficient virtual memory to return keyword string. This is only
possible if keyword-string is a dynamic string.

LIB$_INVARG Invalid arguments, not enough arguments, and/or bad keyword
table.

LIB$_STRTRU String truncated.
LIB$_UNRKEY The keyword you specified does not appear in the keyword table

you specified.

Examples
1. KEYTABLE:

 $LIB_KEY_TABLE < -
 <ADD, 1>, -
 <DELETE, 2>, -
 <EXIT, 3>>

This VAX MACRO fragment defines a keyword table named KEYTABLE containing the three
keywords ADD, DELETE, and EXIT with associated keyword values of 1, 2, and 3, respectively.

The $LIB_KEY_TABLE macro is supplied in the default macro library SYS
$LIBRARY:STARLET.MLB. Because this library is automatically searched by the assembler, you
do not have to specify it in the DCL command MACRO.

2. LIBRARY 'SYS$LIBRARY:STARLET.L32';

OWN
 KEYTABLE: $LIB_KEY_TABLE (
 (ADD, 1),
 (DELETE, 2),
 (EXIT, 3));

This BLISS code fragment specifies that SYS$LIBRARY:STARLET.L32 is to be searched to
resolve references. It defines a keyword table named KEYTABLE containing the three keywords
ADD, DELETE, and EXIT with associated keyword values of 1, 2, and 3, respectively.

346

Chapter 2. LIB$ Reference

The $LIB_KEY_TABLE macro is supplied in the BLISS library SYS$LIBRARY:STARLET.L32
and in the BLISS require file SYS$LIBRARY:STARLET.REQ. BLISS does not automatically
search either of these files, so you must explicitly cause them to be searched by including the
appropriate LIBRARY or REQUIRE statement in your module. You should use the precompiled
library because it is more efficient for the compiler.

3. PARAMETER (
1 MAXKEYSIZE = 6, ! Maximum keyword size
2 NKEYS = 3) ! Number of keywords
 BYTE KEYWORDS (MAXKEYSIZE+1, NKEYS)
 INTEGER*4 KEYTABLE (0:NKEYS*2)
 DATA KEYWORDS /
1 3,'A','D','D',' ',' ',' ', ! Counted ASCII 'ADD'
2 6,'D','E','L','E','T','E', ! Counted ASCII 'DELETE'
3 4,'E','X','I','T',' ',' '/ ! Counted ASCII 'EXIT'
 KEYTABLE(0) = NKEYS*2 ! Number of longwords to
 follow
 KEYTABLE(1) = %LOC(KEYWORDS(1,1)) ! Address of keyword string
 KEYTABLE(2) = 1 ! Keyword value for 'ADD'
 KEYTABLE(3) = %LOC(KEYWORDS(1,2)) ! Address of keyword string
 KEYTABLE(4) = 2 ! Keyword value for 'DELETE'
 KEYTABLE(5) = %LOC(KEYWORDS(1,3)) ! Address of keyword string
 KEYTABLE(6) = 3 ! Keyword value for 'EXIT'

This Fortran code fragment constructs a keyword table named KEYTABLE containing the three
keywords ADD, DELETE, and EXIT with associated keyword values of 1, 2, and 3, respectively.
This construction method results in position-independent coded data, although the generated code
for the typical Fortran module contains other non-PIC values.

LIB$LOOKUP_TREE
LIB$LOOKUP_TREE — The Look Up an Entry in a Balanced Binary Tree routine looks up an entry
in a balanced binary tree. No support for arguments passed by 64-bit address reference or for use of
64-bit descriptors, if applicable, is planned for this routine.

Format
LIB$LOOKUP_TREE treehead ,symbol ,user-compare-routine ,new-node

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
treehead

OpenVMS usage: address

347

Chapter 2. LIB$ Reference

type: address
access: read only
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of an unsigned longword that is
this tree head.

symbol

OpenVMS usage: user_arg
type: longword (unsigned)
access: unspecified
mechanism: unspecified

Key to be looked up in the binary tree.

user-compare-routine

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$LOOKUP_TREE calls to compare a symbol with a node.
The value returned by the compare routine indicates the relationship between the symbol key and the
current node.

For more information on the compare routine, see Call Format for a Compare Routine in the
Description section.

new-node

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Location where the new symbol was found. The new-node argument is the address of an unsigned
longword that is the new node location.

Description
Call Format for a Compare Routine
The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$LOOKUP_TREE passes both the symbol and comparison-node arguments to the compare
routine, using the same passing mechanism that was used to pass them to LIB$LOOKUP_TREE. The
user-data argument is passed in the same way, but its use is optional.

348

Chapter 2. LIB$ Reference

The user-compare-routine argument in the call to LIB$LOOKUP_TREE specifies the
compare routine. This argument is required. LIB$LOOKUP_TREE calls the compare routine for
every node except the first node in the tree.

The value returned by the compare routine is the result of comparing the symbol key with the current
node. The table below lists the possible values returned by the compare routine:

Return Value Meaning
Negative The symbol argument is less than the current

node.
Zero The symbol argument is equal to the current

node.
Positive The symbol argument is greater than the current

node.

For an example of a user-supplied compare routine written in C, see the description of LIB
$INSERT_TREE.

Condition Values Returned
LIB$_NORMAL Routine successfully completed. The key was found.
LIB$_KEYNOTFOU Error. The key was not found.

Example
The C example provided in the description of LIB$INSERT_TREE also demonstrates how to use LIB
$LOOKUP_TREE. Refer to that example for assistance in using this routine.

LIB$LOOKUP_TREE_64
LIB$LOOKUP_TREE_64 — The Look Up an Entry in a Balanced Binary Tree routine looks up an
entry in a balanced binary tree.

Format
LIB$LOOKUP_TREE_64 treehead ,symbol ,user-compare-routine ,new-node

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
treehead

OpenVMS usage: address

349

Chapter 2. LIB$ Reference

type: address
access: read only
mechanism: by reference

Tree head for the binary tree. The treehead argument is the address of an unsigned quadword that
is this tree head.

symbol

OpenVMS usage: user_arg
type: quadword (unsigned)
access: unspecified
mechanism: unspecified

Key to be looked up in the binary tree.

user-compare-routine

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied compare routine that LIB$LOOKUP_TREE_64 calls to compare a symbol with a node.
The value returned by the compare routine indicates the relationship between the symbol key and the
current node.

For more information on the compare routine, see Call Format for a Compare Routine in the
Description section.

new-node

OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Location where the new symbol was found. The new-node argument is the address of an unsigned
quadword that is the new node location.

Description
Call Format for a Compare Routine
The call format of a compare routine is as follows:

user-compare-routine symbol ,comparison-node [,user-data]

LIB$LOOKUP_TREE_64 passes both the symbol and comparison-node arguments to
the compare routine, using the same passing mechanism that was used to pass them to LIB
$LOOKUP_TREE_64. The user-data argument is passed in the same way, but its use is optional.

350

Chapter 2. LIB$ Reference

The user-compare-routine argument in the call to LIB$LOOKUP_TREE_64 specifies the
compare routine. This argument is required. LIB$LOOKUP_TREE_ 64 calls the compare routine for
every node except the first node in the tree.

The value returned by the compare routine is the result of comparing the symbol key with the current
node. The following table lists the possible values returned by the compare routine:

Return Value Meaning
Negative The symbol argument is less than the current node.
Zero The symbol argument is equal to the current node.
Positive The symbol argument is greater than the current node.

For an example of a user-supplied compare routine written in C, see the description of LIB
$INSERT_TREE_64.

Condition Values Returned
LIB$_NORMAL Routine successfully completed. The key was found.
LIB$_KEYNOTFOU Error. The key was not found.

Example
The C example provided in the description of LIB$INSERT_TREE_64 also demonstrates how to use
LIB$LOOKUP_TREE_64. Refer to that example for assistance in using this routine.

LIB$LP_LINES
LIB$LP_LINES — The Lines on Each Printer Page routine computes the default number of lines on a
printer page. This routine can be used by native-mode OpenVMS utilities that produce listing files and
paginate files.

Format
LIB$LP_LINES

Returns
OpenVMS usage: longword_signed
type: longword integer (signed)
access: write only
mechanism: by value

The default number of lines on a physical printer page. If the logical name translation or conversion to
binary fails, a default value of 66 is returned.

Arguments
None.

351

Chapter 2. LIB$ Reference

Description
LIB$LP_LINES computes the default number of lines on a printer page. This routine can be used by
native-mode OpenVMS utilities that produce listing files and paginate files. The algorithm used by
LIB$LP_LINES is:

1. Translate the logical name SYS$LP_LINES.

2. Convert the ASCII value obtained to a binary integer.

3. Verify that the resulting value is in the range [30:255].

4. If any of the prior steps fail, return the default paper size of 66 lines.

You can use LIB$LP_LINES to monitor the current default length of the line printer page. You
can also supply your own default length for the current process. United States standard paper stock
permits 66 lines on each physical page.

If you are writing programs for a utility that formats a listing file to be printed on a line printer, you
can use LIB$LP_LINES to make your utility independent of the default page length. Your program
can use LIB$LP_LINES to obtain the current length of the page. It can then calculate the number of
lines of text on each page by subtracting the lines used for margins and headings.

The following is one suggested format:

• Three lines for the top margin

• Three lines for the bottom margin

• Three lines for listing heading information, consisting of:

• A language-processor identification line

• A source-program identification line

• One blank line

Condition Values Returned
None.

Examples
1. lplines = LIB$LP_LINES()

 PRINT 10, lplines
10 Format (’ Line printer page = ’,I5,’ lines.’)
 end

This Fortran program displays the current default length of the line printer page.

2. 100 EXTERNAL INTEGER FUNCTION LIB$LP_LINES
200 DECLARE INTEGER LPLINES
300 LPLINES = LIB$LP_LINES
400 PRINT "Line printer page = "; LPLINES
32767 END

352

Chapter 2. LIB$ Reference

This BASIC program displays the current default length of the line printer page.

3. PROGRAM LINES(OUTPUT);

FUNCTION LIB$LP_LINES : INTEGER;
 EXTERN;

BEGIN
 WRITELN(’Line printer page = ’,LIB$LP_LINES,’ lines.’);
END.

This Pascal program displays the current default length of the line printer page.

LIB$MATCHC
LIB$MATCHC — The Match Characters, Return Relative Position routine searches a source string
for a specified substring and returns an index, which is the relative position of the first occurrence
of a substring in the source string. The relative character positions returned by LIB$MATCHC are
numbered 1, 2, …, n. Thus, zero means that the substring was not found.

Format
LIB$MATCHC sub-string ,source-string

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position of the first character of the substring if found, or zero if not found.

Arguments
sub-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Substring to be found. The sub-string argument is the address of a descriptor pointing to this
substring.

source-string

OpenVMS usage: char_string
type: character string

353

Chapter 2. LIB$ Reference

access: read only
mechanism: by descriptor

Source string to be searched by LIB$MATCHC. The source-string argument is the address of a
descriptor pointing to this source string.

Description
LIB$MATCHC searches a source string for a specified substring and returns an index, which is the
relative position of the first occurrence of a substring in the source string.

The relative character positions returned by LIB$MATCHC are numbered 1, 2, …, n. Thus, zero
means that the substring was not found.

If the substring has a zero length, LIB$MATCHC returns the value 1, indicating success, no matter
how long the source string is. If the source string has a zero length and the substring has a nonzero
length, zero is returned, indicating that the substring was not found.

Condition Values Returned
None.

LIB$MATCH_COND
LIB$MATCH_COND — The Match Condition Values routine checks to see if a given condition value
matches a list of condition values that you supply.

Format
LIB$MATCH_COND match-condition-value ,compare-condition-value ,...

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

A zero, if the input condition value did not match any condition value in the list, or i-1, for a match
between the first argument and the ith argument.

Arguments
match-condition-value

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

354

Chapter 2. LIB$ Reference

Condition value to be matched. The match-condition-value argument is the address of an
unsigned longword that contains this condition value.

compare-condition-value

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

The condition values to be compared to match-condition-value. The compare-
condition-value arguments are the addresses of the unsigned longwords that contain these
condition values.

Description
LIB$MATCH_COND checks for a match between the condition value addressed by match-
condition-value and the condition values addressed by the subsequent arguments. Each
argument is the address of a longword containing a condition value.

LIB$MATCH_COND is provided for programmers who want to match a list of one or more condition
values. It is designed to be used in multipath branch statements available in most higher-level
languages.

LIB$MATCH_COND compares the portion (STS$V_COND_ID) of the condition value referenced
by the first argument to the same portion of the condition value referenced by the second through Nth
arguments. If the facility-specific bit (STS$V_FAC_SP = bit 15) is clear in match-condition-
value (meaning that the condition value is systemwide rather than facility specific), the facility code
field (STS$V_FAC_NO = bits 27:17) is ignored and only the STS$V_MSG_ID fields (bits 15:3) are
compared.

The routine returns a 0 if a match is not found, a 1 if the condition value matches the first condition
value in the list (the second argument), a 2 if it matches the second condition value (the third
argument), and so on. LIB$MATCH_COND checks for null argument entries in the argument list.

When LIB$MATCH_COND is called with only two arguments, the possible values for the value
returned are true (1) or false (0).

Each condition handler must examine the signal argument vector to determine which condition is
being signaled. If the condition is not one that the handler knows about, the handler should resignal. A
handler should not assume that only one kind of condition can occur in the routine which established
it or in any routines it calls. However, because a condition value may be modified by an intervening
handler, each handler should only compare that part of the condition value that distinguishes it from
another.

Condition Values Returned
None.

Example
C+
C This Fortran program demonstrates the use of

355

Chapter 2. LIB$ Reference

C LIB$MATCH_COND.
C
C Declare handler routine as external.
C-
 EXTERNAL HANDLER
C+
C Declare the handler that will be used.
C-
 TYPE *, ’Establishing handler...’
 CALL LIB$ESTABLISH (HANDLER)
 OPEN (UNIT = 1, NAME = ’MATCH.DAT’, STATUS = ’OLD’)
C+
C Revert to normal error processing.
C-
 CALL LIB$REVERT
 CLOSE (UNIT = 1)
 CALL EXIT
 END
C+
C This is the handler routine.
C-
 INTEGER*4 FUNCTION HANDLER (SIGARGS, MECHARGS)
 INTEGER*4 SIGARGS(*), STATUS
 INCLUDE ’($SSDEF)’
 INCLUDE ’($FORDEF)’
 INCLUDE ’($CHFDEF)’
 RECORD /CHFDEF2/ MECHARGS
 HANDLER = SS$_CONTINUE
C+
C This handler will type out an error message. In this case the
C message is regarding a file open status.
C-
 TYPE *, ’Entering handler...’
 STATUS = LIB$MATCH_COND (SIGARGS (2) , FOR$_FILNOTFOU,
 1 FOR$_NO_SUCDEV, FOR$_FILNAMSPE, FOR$_OPEFAI)
 GOTO (100, 200, 300, 400) STATUS
 HANDLER = SS$_RESIGNAL
 GOTO 1000
100 TYPE *, ’ERROR -- File not found’
 GOTO 1000
200 TYPE *, ’ERROR -- No such device’
 GOTO 1000
300 TYPE *, ’ERROR -- File name specification’
 GOTO 1000
400 TYPE *, ’ERROR -- Open failure’
 GOTO 1000
C+
C On OpenVMS Alpha systems use MECHARGS.CHF$IS_MCH_DEPTH
C On OpenVMS VAX systems use MECHARGS.CHF$L_MCH_DEPTH
C-
1000 CALL SYS$UNWIND (MECHARGS.CHF$IS_MCH_DEPTH ,) ! For OpenVMS Alpha
C 1000 CALL SYS$UNWIND (MECHARGS.CHF$L_MCH_DEPTH ,) ! For OpenVMS VAX
 TYPE *, ’Returning from handler...’
 RETURN
 END

This Fortran program uses a computed GOTO to alter the program execution sequence on a condition
value.

356

Chapter 2. LIB$ Reference

If the file called MATCH.DAT does not exist, the following output is returned:

 Establishing handler...
 Entering handler...
 ERROR – File not found
 Returning from handler...

If the file MATCH.DAT does exist, the output returned is as follows:

 Establishing handler...

LIB$MOVC3
LIB$MOVC3 — The Move Characters routine makes the VAX MOVC3 instruction available as a
callable routine. On Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.
The source item is moved to the destination item. Overlap of the source and destination items does not
affect the result.

Format
LIB$MOVC3 word-integer-length ,source ,destination

Returns
None.

Arguments
word-integer-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes to be moved from source to destination by LIB$MOVC3. The word-
integer-length argument is the address of an unsigned word that contains this number of bytes.
The maximum transfer is 65,535 bytes.

source

OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference

Item to be moved. The source argument is the address of this item.

destination

OpenVMS usage: unspecified

357

Chapter 2. LIB$ Reference

type: unspecified
access: write only
mechanism: by reference

Item into which source will be moved. The destination argument is the address of this item.

Description
LIB$MOVC3 is useful for moving large blocks of data, such as arrays, when such an operation would
otherwise have to be performed by a programmed loop.

For more information, see the VAX Architecture Reference Manual or the Alpha Architecture
Reference Manual. See also OTS$MOVE3.

Condition Values Returned
None.

LIB$MOVC5
LIB$MOVC5 — The Move Characters with Fill routine makes the VAX MOVC5 instruction
available as a callable routine. On Alpha systems, OpenVMS Alpha instructions perform the
equivalent operation. The source item is moved to the destination item. Overlap of the source and
destination items does not affect the result.

Format
LIB$MOVC5 word-integer-source-length ,source [,fill] ,word-integer-destination-
length ,destination

Returns
None.

Arguments
word-integer-source-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes in the source item. The word-integer-source-length argument is the
address of an unsigned word that contains this number of bytes. The maximum length of source is
65,535 bytes.

source

358

Chapter 2. LIB$ Reference

OpenVMS usage: unspecified
type: unspecified
access: read only
mechanism: by reference

Item to be moved by LIB$MOVC5. The source argument is the address of this item. If word-
integer-source-length is zero, indicating that destination is to be entirely filled by the
fill character, then source is ignored by LIB$MOVC5.

fill

OpenVMS usage: byte_signed
type: byte integer (signed)
access: read only
mechanism: by reference

Character used to pad source to the length of destination. The fill argument is the address
of a signed byte integer that contains this fill character. If word-integer-destination-
length is less than or equal to word-integer-source-length, fill is unused and may be
omitted.

word-integer-destination-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of destination in bytes. The word-integer-destination-length argument is
the address of an unsigned word that contains this number of bytes. The maximum value of word-
integer-destination-length is 65,535 bytes.

destination

OpenVMS usage: unspecified
type: unspecified
access: write only
mechanism: by reference

Item into which source will be moved. The destination argument is the address of this item.

Description
If the destination item is shorter than the source item, the highest-addressed bytes of the source are not
moved.

For more information, see the VAX Architecture Reference Manual. See also OTS$MOVE5.

359

Chapter 2. LIB$ Reference

Condition Values Returned
None.

LIB$MOVTC
LIB$MOVTC — The Move Translated Characters routine moves the source string, character by
character, to the destination string after translating each character using the specified translation table.
LIB$MOVTC makes the VAX MOVTC instruction available as a callable routine. On Alpha systems,
OpenVMS Alpha instructions perform the equivalent operation.

Format
LIB$MOVTC source-string ,fill-character ,translation-table ,destination-string

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be translated and moved by LIB$MOVTC. The source-string argument is the
address of a descriptor pointing to this source string.

fill-character

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Fill character used to pad source-string to the length of destination-string. The fill-
character argument is the address of a descriptor pointing to a string. The first character of this
string is used as the fill character. The length of this string is not checked and fill-character is
not translated.

translation-table

360

Chapter 2. LIB$ Reference

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Translation table used by LIB$MOVTC. The translation-table argument is the address of
a descriptor pointing to the translation table string. The translation table string is assumed to be 256
characters long.

You can use any one of the translation tables included in the Description section that follows, supplied
by VSI, or you can create your own. Translation tables supplied by VSI have names in the format LIB
$AB_ xxx_ yyy, which represent the addresses of the 256-byte translation tables and can be accessed
as external (string) variables. If a particular language cannot generate descriptors for external strings,
then you must create them manually. The example following the Description section shows the
creation of a string descriptor for a translation table using VAX BASIC. Destination string into which
LIB$MOVTC writes the translated source-string. The destination-string argument is
the address of a descriptor pointing to this destination string.

destination-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$MOVTC writes the translated source-string. The
destination-string argument is the address of a descriptor pointing to this destination string.

Description
Each character in the source string is used as an index into the translation table. The byte found is then
placed into the destination string. The fill character is used if the destination string is longer than the
source string. If the source string is longer than the destination string, the source string is truncated.
Overlap of the source and destination strings does not affect execution.

The translation tables used by LIB$MOVTC and LIB$MOVTUC follow. Each table is preceded by
explanatory text.

ASCII to EBCDIC Translation Table
• The numbers on the left represent the low-order bits of the ASCII characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the ASCII characters in hexadecimal
notation.

• The numbers in the body of the table represent the equivalent EBCDIC characters in hexadecimal
notation.

Figure 2.6 is the ASCII to EBCDIC translation table.

361

Chapter 2. LIB$ Reference

Figure 2.6. LIB$AB_ASC_EBC

ASCII to EBCDIC Reversible Translation Table
• The numbers on the left represent the low-order bits of the ASCII characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the ASCII characters in hexadecimal
notation.

• The numbers in the body of the table represents the equivalent EBCDIC characters in hexadecimal
notation.

Figure 2.7 is the ASCII to EBCDIC reversible translation table.

Figure 2.7. LIB$AB_ASC_EBC_REV

EBCDIC to ASCII Translation Table
• The numbers on the left represent the low-order bits of the EBCDIC characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the EBCDIC characters in
hexadecimal notation.

• The numbers in the body of the table represent the equivalent ASCII characters in hexadecimal
notation.

Figure 2.8 is the EBCDIC to ASCII translation table.

362

Chapter 2. LIB$ Reference

Figure 2.8. LIB$AB_EBC_ASC

EBCDIC to ASCII Reversible Translation Table
• The numbers on the left represent the low-order bits of the EBCDIC characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the EBCDIC characters in
hexadecimal notation.

• The numbers in the body of the table represent the equivalent ASCII characters in hexadecimal
notation.

Figure 2.9 is the EBCDIC to ASCII reversible translation table.

Figure 2.9. LIB$AB_EBC_ASC_REV

Packed Decimal to Trailing Overpunch Numeric Value
Translation Table
• The numbers on the left represent the low-order bits of the packed decimal values in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the packed decimal values in
hexadecimal notation.

• The numbers in the body of the table represent the equivalent trailing overpunch numeric values in
hexadecimal notation.

363

Chapter 2. LIB$ Reference

Figure 2.10 is the packed decimal to trailing overpunch numeric value translation table.

Figure 2.10. LIB$AB_CVTPT_O

Packed Decimal to Unsigned Trailing Numeric Value
Translation Table
• The numbers on the left represent the low-order bits of the packed decimal values in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the packed decimal values in
hexadecimal notation.

• The numbers in the body of the table represent the equivalent unsigned trailing numeric values in
hexadecimal notation.

Figure 2.11 is the packed decimal to unsigned trailing numeric value translation table.

Figure 2.11. LIB$AB_CVTPT_U

Trailing Overpunch Numeric to Packed Decimal Value
Translation Table
• The numbers on the left represent the low-order bits of the trailing overpunch numeric values in

hexadecimal notation.

364

Chapter 2. LIB$ Reference

• The numbers across the top represent the high-order bits of the trailing overpunch numeric values
in hexadecimal notation.

• The numbers in the body of the table represent the equivalent packed decimal values in
hexadecimal notation.

Figure 2.12 is the trailing overpunch numeric to packed decimal value translation table.

Figure 2.12. LIB$AB_CVTTP_O

Unsigned Numeric to Packed Decimal Value
Translation Table
• The numbers on the left represent the low-order bits of the unsigned numeric values in

hexadecimal notation.

• The numbers across the top represent the high-order bits of the unsigned numeric values in
hexadecimal notation.

• The numbers in the body of the table represent the equivalent packed decimal values in
hexadecimal notation.

Figure 2.13 is the unsigned numeric to packed decimal value translation table.

Figure 2.13. LIB$AB_CVTTP_U

365

Chapter 2. LIB$ Reference

Trailing Overpunch Numeric to Unsigned Numeric
Value Translation Table
• The numbers on the left represent the low-order bits of the trailing overpunch numeric values in

hexadecimal notation.

• The numbers across the top represent the high-order bits of the trailing overpunch numeric values
in hexadecimal notation.

• The numbers in the body of the table represent the equivalent unsigned numeric values in
hexadecimal notation.

Figure 2.14 is the trailing overpunch numeric to unsigned numeric value translation table.

Figure 2.14. LIB$AB_CVT_O_U

Unsigned Numeric to Trailing Overpunch Translation
Table
Figure 2.15 is indexed by 0 through 9 for the positive overpunches and 10 through 19 for the negative
overpunches.

The unsigned binary representation of the least significant digit is moved into R2. Then, if you require
a positive result, the following code results:

MOVC3 LIB$AB_CVT_U_O[R2], #1,R0

If you require a negative result, the following code is generated:

MOVC3 LIB$AV_CVT_U_O + 10[R2], #1,R0

The result is the overpunch representation for the last byte of the negative number.

Figure 2.15 is the unsigned numeric to trailing overpunch translation table.

Figure 2.15. LIB$AB_CVT_U_O

366

Chapter 2. LIB$ Reference

Packed Decimal to Zone Numeric Translation Table
• The numbers on the left represent the low-order bits of the packed decimal values in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the packed decimal values in
hexadecimal notation.

• The numbers in the body of the table represent the equivalent zoned numeric values in
hexadecimal notation.

Figure 2.16 is the packed decimal to zone numeric translation table.

Figure 2.16. LIB$AB_CVTPT_Z

ASCII Uppercase Translation Table
• The numbers on the left represent the low-order bits of the ASCII characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the ASCII characters in hexadecimal
notation.

• The numbers in the body of the table represent the equivalent uppercase ASCII characters in
hexadecimal notation.

Figure 2.17 is the ASCII uppercase translation table.

Figure 2.17. LIB$AB_UPCASE

367

Chapter 2. LIB$ Reference

Zone to Packed Decimal Translation Table
• The numbers on the left represent the low-order bits of the zoned numeric values in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the zoned numeric values in
hexadecimal notation.

• The numbers in the body of the table represent the equivalent packed decimal values in
hexadecimal notation.

Figure 2.18 is the zone to packed decimal translation table.

Figure 2.18. LIB$AB_CVTTP_Z

ASCII Uppercase Translation Table
• The numbers on the left represent the low-order bits of the ASCII characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the ASCII characters in hexadecimal
notation.

• The numbers in the body of the table represent the equivalent uppercase ASCII characters in
hexadecimal notation.

Figure 2.19 is the ASCII uppercase translation table.

368

Chapter 2. LIB$ Reference

Figure 2.19. LIB$AB_UPCASE

ASCII Lowercase Translation Table
• The numbers on the left represent the low-order bits of the ASCII characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the ASCII characters in hexadecimal
notation.

• The numbers in the body of the table represent the equivalent lowercase ASCII characters in
hexadecimal notation.

Figure 2.20 is the ASCII lowercase translation table.

Figure 2.20. LIB$AB_LOWERCASE

369

Chapter 2. LIB$ Reference

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed; string truncated. The destination

string could not contain all the characters.
LIB$_FATERRLIB Fatal internal error.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

Example

1 !+
 !This BASIC program shows the method
 !of creating a descriptor for the appropriate
 !translation table in order to call LIB$MOVTC.
 !-

 OPTION TYPE = EXPLICIT

 !+
 !Declare the translation table as an
 !EXTERNAL LONG variable.
 !-

 EXTERNAL LONG LIB$AB_ASC_EBC
 EXTERNAL LONG FUNCTION LIB$MOVTC
 EXTERNAL SUB LIB$STOP
 EXTERNAL LONG CONSTANT DSCK_CLASS_S, DSCK_DTYPE_T

 !+
 !Define a record which models the required
 !translation table descriptor.
 !-

 RECORD STR_TYPE
 WORD DSC$W_LENGTH
 BYTE DSC$B_DTYPE
 BYTE DSC$B_CLASS
 LONG DSC$A_POINTER
 END RECORD STR_TYPE

 DECLARE LONG I, RET_STS
 DECLARE STR_TYPE STR_VAR

 MAP (FOO) STRING DST = 3%
 MAP (FOO) BYTE DST_ARRAY(2)

 !+
 !Fill the translation table descriptor record.
 !Note that the length of the translation table string
 !is set to 256, and the pointer receives the address of
 !the HP translation table LIB$AB_ASC_EBC.
 !-

370

Chapter 2. LIB$ Reference

 STR_VAR::DSC$W_LENGTH = 256
 STR_VAR::DSC$B_DTYPE = DSC$K_DTYPE_T
 STR_VAR::DSC$B_CLASS = DSC$K_CLASS_S
 STR_VAR::DSC$A_POINTER = LOC(LIB$AB_ASC_EBC)

 RET_STS = LIB$MOVTC("ABC", " ", STR_VAR BY REF, DST)
 IF (RET_STS AND 1%) = 0%
 THEN
 CALL LIB$STOP(RET_STS BY VALUE)
 END IF

 !+
 !Add 256 to the translated value in order to return
 !an unsigned value.
 !-

 PRINT (256 + DST_ARRAY(I)) FOR I = 0% TO 2%

 END

The output generated by this BASIC program is as follows:

 193
 194
 195

LIB$MOVTUC
LIB$MOVTUC — The Move Translated Until Character routine moves the source string, character
by character, to the destination string after translating each character using the specified translation
table until the stop character is encountered. LIB$MOVTUC makes the VAX MOVTUC instruction
available as a callable routine. On Alpha systems, OpenVMS Alpha instructions perform the
equivalent operation.

Format
LIB$MOVTUC source-string ,stop-character ,translation-table ,destination-string [,fill-
character]

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the character that is translated to the stop character. Zero is
returned if the stop character is not found. This value is set to –1 if destination-string cannot
be allocated.

Arguments
source-string

371

Chapter 2. LIB$ Reference

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be translated and moved by LIB$MOVTUC. The source-string argument is the
address of a descriptor pointing to this source string.

stop-character

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Stop character that causes LIB$MOVTUC to stop translating the source string. The stop-
character argument is the address of a descriptor pointing to a string. The first character of this
string is used as the stop character. The length of this string is not checked. During the translation,
LIB$MOVTUC accesses each character in the source string and uses it as an index into the translation
table. If this translated character is the specified stop character, translation stops, and stop-
character is not translated.

translation-table

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Translation table used by LIB$MOVTUC. The translation-table argument is the address of
a descriptor pointing to the translation table string. The translation table string is assumed to be 256
characters long.

You can use any of the translation tables included in the Description section of LIB$MOVTC, or you
can create your own. When using a translation table supplied by VSI, the names LIB$AB_ xxx_ yyy
represent the addresses of the 256-byte translation tables, and can be accessed as external (string)
variables. If a particular language cannot generate descriptors for external strings, then they must be
created manually. The example for the routine LIB$MOVTC shows the creation of a string descriptor
for a translation table using VAX BASIC.

destination-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$MOVTUC writes the translated source-string. The
destination-string argument is the address of a descriptor pointing to this destination string.

372

Chapter 2. LIB$ Reference

fill-character

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Character used to pad source-string to the length of destination-string. The fill-
character argument is the address of a descriptor pointing to a string. The first character of this
string is used as the fill character. The length of this string is not checked and fill-character is
not translated.

If the fill character is included, the remainder of the destination string (after the stop character) is
filled with the specified fill character. If it is not included, the remainder of the destination string
remains unchanged.

Description
During the translation, LIB$MOVTUC accesses each character in the source string and uses it as an
index into the translation table. If the table entry contains the specified stop character, the routine is
terminated and the relative position of the source character is returned.

If the source string is longer than the destination string, then the source string is truncated. If the
optional fill character is present, any remaining positions in the destination string are filled with the
fill character. If the source or destination string is exhausted (before the stop character is found), a
zero index is returned.

The results are unpredictable if the source and destination strings overlap and have different starting
addresses.

See the description of LIB$MOVTC for the translation tables used by LIB$MOVTC and LIB
$MOVTUC. Each translation table is preceded by explanatory text.

Condition Values Returned
None.

LIB$MULT_DELTA_TIME
LIB$MULT_DELTA_TIME — The Multiply Delta Time by Scalar routine multiplies a delta time by
a longword integer scalar.

Format
LIB$MULT_DELTA_TIME multiplier ,delta-time

Returns
OpenVMS usage: cond_value
type: longword (unsigned)

373

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Arguments
multiplier

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

The value by which LIB$MULT_DELTA_TIME multiplies the delta time. The multiplier
argument is the address of a signed longword containing the integer scalar. If multiplier is
negative, the absolute value of multiplier is used.

delta-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: modify
mechanism: by reference

The delta time to be multiplied. The delta-time argument is the address of an unsigned quadword
containing the number to be multiplied. The initial delta-time argument must be greater than
0. After LIB$MULT_DELTA_TIME performs the multiplication, the result is returned to delta-
time. (The original delta-time value is overwritten.)

Description
LIB$MULT_DELTA_TIME multiplies a delta time by a longword integer scalar. The result of the
multiplication is returned to the delta-time argument.

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB$MULTF_DELTA_TIME
LIB$MULTF_DELTA_TIME — The Multiply Delta Time by an F-Floating Scalar routine multiplies
a delta time by an F-floating scalar.

Format
LIB$MULTF_DELTA_TIME multiplier ,delta-time

374

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
multiplier

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The value by which LIB$MULTF_DELTA_TIME multiplies the delta time. The multiplier
argument is the address of an F-floating value containing the scalar. If multiplier is negative, the
absolute value of multiplier is used.

delta-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: modify
mechanism: by reference

The delta time to be multiplied. The delta-time argument is the address of an unsigned quadword
containing the number to be multiplied. The initial delta-time argument must be greater than 0.
After LIB$MULTF_DELTA_TIME performs the multiplication, the result is returned to delta-
time. (The original delta-time value is overwritten.)

Description
LIB$MULTF_DELTA_TIME multiplies a delta time by an F-floating scalar. The result of the
multiplication is returned to the delta-time argument.

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

LIB$MULTS_DELTA_TIME
LIB$MULTS_DELTA_TIME — The Multiply Delta Time by an IEEE S-Floating Scalar routine
multiplies a delta time by an IEEE S-floating scalar.

375

Chapter 2. LIB$ Reference

Format
LIB$MULTS_DELTA_TIME multiplier ,delta-time

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
multiplier

OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by reference

The value by which LIB$MULTS_DELTA_TIME multiplies the delta time. The multiplier
argument is the address of an IEEE S-floating value containing the scalar. If multiplier is
negative, the absolute value of multiplier is used.

delta-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: modify
mechanism: by reference

The delta time to be multiplied. The delta-time argument is the address of an unsigned quadword
containing the number to be multiplied. The initial delta-time argument must be greater than 0.
After LIB$MULTS_DELTA_TIME performs the multiplication, the result is returned to delta-time.
(The original delta-time value is overwritten.)

Description
LIB$MULTS_DELTA_TIME multiplies a delta time by an IEEE S-floating scalar. The result of the
multiplication is returned to the delta-time argument.

Condition Values Returned

LIB$_NORMAL Routine successfully completed.
LIB$_IVTIME Invalid time.
LIB$_WRONUMARG Incorrect number of arguments.

376

Chapter 2. LIB$ Reference

LIB$PARSE_ACCESS_CODE
LIB$PARSE_ACCESS_CODE — The Parse Access Encoded Name String routine parses and
translates a string of access names into a mask for a particular ownership category.

Format
LIB$PARSE_ACCESS_CODE access-string, [access-names,] ownership-category, access-mask,
[end-position]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
access-string

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a character-string descriptor pointing to a string of access names. Each access name is
abbreviated to one letter. An example of a valid access string is RWE. Access names are specific to
each of the different object classes. See the VSI OpenVMS Guide to System Security for a complete list
of all valid access names.

access-names

OpenVMS usage: access_names
type: array [0..31] of quadword string descriptor
access: read only
mechanism: by reference

The address of the access name table for the associated object class. For example, it is the value
returned by the LIB$GET_ACCNAM routine in the accnam longword. This parameter is optional
and defaults to the access name table for the FILE object class.

ownership-category

OpenVMS usage: mask_word
type: word (unsigned)
access: read only
mechanism: by reference

377

Chapter 2. LIB$ Reference

The address of a word that indicates the ownership category the access names refer to:

Ownership Category Mask Value
System 0000000000001111
Owner 0000000011110000
Group 0000111100000000
World 1111000000000000

access-mask

OpenVMS usage: mask_word
type: word (unsigned)
access: write only
mechanism: by reference

The address of a word into which this routine writes the access mask. In this mask, a set bit means
the access was requested for the specified ownership. Note that this is the opposite of the standard
protection format where a set bit means no access.

end-position

OpenVMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

The number of characters from access-string processed by LIB$PARSE_ACCESS_CODE. In the
case of an error in parsing the access string, the offset to the offending location is returned.

Description
LIB$PARSE_ACCESS_CODE parses a string of access names and translates the string into a mask
for the requested ownership category. The string is a concatenated list of 1-letter abbreviations of
access names.

This routine works for any protected object class by specifying the correct access name table. The
address of the access name table can be obtained from the LIB$GET_ACCNAM routine.

This routine is useful for building a protection mask where the ownership names have already been
parsed. Use LIB$PARSE_SOGW_PROT for parsing a string containing both ownership and access
names.

The mask returned has bits set for the access requested for the specified ownership category. This is
opposite the standard protection format where a set bit in the protection mask means no access.

The number of characters processed is optionally returned. This is useful for error processing. The end
position will be the offset to the character that made the access category name string invalid.

Condition Values Returned
SS$_NORMAL Routine successfully completed.

378

Chapter 2. LIB$ Reference

LIB$_IVARG Required parameter missing or a character in access-string did not
represent a valid access type.

LIB$_WRONGNUMARG Wrong number of arguments.

LIB$PARSE_SOGW_PROT
LIB$PARSE_SOGW_PROT — The Parse Protection String routine parses and translates a protection
string into a protection mask.

Format
LIB$PARSE_SOGW_PROT protection-string, [access-names], protection-mask, ownership-
mask, [end-position]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
protection-string

OpenVMS usage: char_string
type: character-coded text string
access: read only
mechanism: by descriptor

The address of a character-string descriptor pointing to the protection string. The string components
are:

• Ownership name — System,Owner,Group,World. Ownership names can be specified in full or
truncated to any number of characters. Matching is case blind, and spacing is ignored.

• Access name — Access names are always abbreviated to one letter. For example, access names
for files are R (for read), W (for write), E (for execute), and D (for delete). Any combination can
be passed. For example, RWE is a valid combination. A null access name specification means no
access.

• Separators — Access names are separated from ownership names by either a colon (:) or an equal
sign (=). The comma (,) is the list separator. A null access name specification means no access.

An example of a valid protection string is:

SYSTEM=RWED,OWNER:RWED,GROUP,WORLD:R

access-names

379

Chapter 2. LIB$ Reference

OpenVMS usage: access_names
type: array [0..31] of quadword string descriptor
access: read only
mechanism: by reference

The address of the access name table for the associated object class. For example, it is the value
returned by the LIB$GET_ACCNAM routine in the accnam longword. This parameter is optional
and defaults to the access name table for the FILE object class.

protection-mask

OpenVMS usage: protection
type: word (unsigned)
access: write only
mechanism: by reference

The address of a word into which this routine writes a 16-bit protection mask translation of the
protection string. Each bit set in the mask indicates no access for the access type it represents.

ownership-mask

OpenVMS usage: mask_word
type: word (unsigned)
access: write only
mechanism: by reference

The address of a word that indicates which ownership names were present in the protection string.

Ownership Category Mask Value
System 0000000000001111
Owner 0000000011110000
Group 0000111100000000
World 1111000000000000

end-position

OpenVMS usage: word_signed
type: word (signed)
access: write only
mechanism: by reference

The number of characters from protection-string processed by LIB$PARSE_SOGW_PROT. In the
case of an error in parsing the protection string, the offset to the offending location is returned.

Description
LIB$PARSE_SOGW_PROT parses a protection string and translates the string into a 16-bit
protection mask. LIB$PARSE_SOGW_PROT works for any protected object class by specifying the
correct access name table.

380

Chapter 2. LIB$ Reference

The address of the access name table can be obtained from the LIB$GET_ACCNAM routine. Note
that file access names are valid for any protected object class.

The number of characters processed is optionally returned. This is useful in error processing. The end
position will be the offset to the character that made the protection string invalid. Note that the entire
protection string must be valid, or an error is returned.

Several scenarios can cause the protection string to be invalid. The format of the protection string
may be invalid, or the access category abbreviations may not be valid with respect to the access name
tables.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_IVARG Required parameter missing or invalid protection string.
LIB$_WRONGNUMARG Wrong number of arguments.

LIB$PAUSE
LIB$PAUSE — The Pause Program Execution routine suspends program execution and returns
control to the calling command level.

Format
LIB$PAUSE

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
None.

Description
LIB$PAUSE suspends program execution and returns control to the calling command level. The
suspended image may be continued with the CONTINUE command, or it may be terminated with the
EXIT or STOP command. In the latter case, the image will not return to this routine.

Note that this routine functions only for interactive jobs. If this routine is invoked in batch mode, it
has no effect.

Condition Values Returned
SS$_NORMAL Routine successfully completed.

381

Chapter 2. LIB$ Reference

LIB$_NOCLI No CLI present. The calling process does not have a CLI or the
CLI does not support the request. Note that DCL supports this
function in INTERACTIVE mode only.

LIB$POLYD
LIB$POLYD — The Evaluate Polynomials routine (D-floating values) allows higher-level language
users to evaluate D-floating value polynomials. D-floating values are not supported in full precision in
native OpenVMS Alpha and I64 programs. They are precise to 56 bits on VAX systems, 53 or 56 bits
in translated VAX images, and 53 bits in native OpenVMS Alpha and I64 programs.

Format
LIB$POLYD polynomial-argument ,degree ,coefficient ,floating-point-result

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
polynomial-argument

OpenVMS usage: floating_point
type: D_floating
access: read only
mechanism: by reference

The address of a D-floating number that is the argument for the polynomial.

degree

OpenVMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

The address of a signed word integer that is the highest-numbered nonzero coefficient to participate in
the evaluation.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient

OpenVMS usage: floating_point
type: D_floating

382

Chapter 2. LIB$ Reference

access: read only
mechanism: by reference, array reference

The address of an array of D-floating coefficients. The coefficient of the highestorder term of the
polynomial is the lowest-addressed element in the array.

floating-point-result

OpenVMS usage: floating_point
type: D_floating
access: write only
mechanism: by reference

The address of a floating-point number that is the result of the calculation. LIB$POLYD writes the
address of floating-point-result into a D-floating number.

Intermediate multiplications are carried out using extended floating-point fractions (63 bits for
POLYD).

Description
LIB$POLYD provides higher-level language users with the capability of evaluating polynomials.

The evaluation is carried out by Horner's Method. The result is computed as follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result D is the degree of the polynomial and X is the argument.

See the VAX Architecture Reference Manual for the detailed description of POLY.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Example
The Fortran and Pascal examples provided in the description of LIB$POLYF also demonstrate how to
use LIB$POLYD. Please refer to those examples for assistance in using this routine.

LIB$POLYF
LIB$POLYF — The Evaluate Polynomials routine (F-floating values) allows higher-level language
users to evaluate F-floating polynomials.

Format
LIB$POLYF polynomial-argument ,degree ,coefficient ,floating-point-result

383

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
polynomial-argument

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is the address of a floating-
point number that contains this argument. The polynomial-argument argument is an F-floating
number.

degree

OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The degree argument is the
address of a signed word integer that contains this highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference, array reference

The address of an array of floating-point coefficients. The coefficient of the highest-order term of the
polynomial is the lowest addressed element in the array. The coefficient argument is an array of
F-floating numbers.

floating-point-result

OpenVMS usage: floating_point
type: F_floating

384

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of a floating-
point number that contains this result. LIB$POLYF writes the address of floating-point-
result into an F-floating number.

Intermediate multiplications are carried out using extended floating-point fractions (31 bits for
POLYF).

Description
LIB$POLYF provides higher-level language users with the capability of evaluating polynomials.

The evaluation is carried out by Horner's Method. The result is computed as follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result D is the degree of the polynomial and X is the argument.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Examples
1. C+

C This Fortran example demonstrates how to use
C LIB$POLYF.
C-

 REAL*4 X,COEFF(5),RESULT
 INTEGER*2 DEG

C+
C Compute X^4 + 2*X^3 -X^2 + X - 3 using POLYF.
C Let X = 2.
C The coefficients needed are as follows:
C-

 DATA COEFF/1.0,2.0,-1.0,1.0,-3.0/
 X = 2.0
 DEG = 4 ! DEG has word length.

C+
C Calculate (2)^4 + 2*(2^3) -2^2 + 2 - 3.
C The result should be 27.
C-

 RETURN = LIB$POLYF(X,DEG,COEFF,RESULT)
 TYPE *,’(2)^4 + 2*(2^3) -2^2 + 2 - 3 = ’,RESULT
 END

385

Chapter 2. LIB$ Reference

This Fortran example demonstrates how to call LIB$POLYF. The output generated by this
program is as follows:

 (2)^4 + 2*(2^3) -2^2 + 2 - 3 = 27.00000

2. PROGRAM POLYF(INPUT,OUTPUT);

{+}
{ This Pascal program demonstrates how to use
{ LIB$POLYF to evaluate a polynomial.
{-}

 TYPE
 WORD = [WORD] 0..65535;
 VAR
 COEFF : ARRAY [0..2] OF REAL := (1.0,2.0,2.0);
 RESULT : REAL;
 RETURNED_STATUS : INTEGER;

 [EXTERNAL] FUNCTION LIB$POLYF(
 ARG : REAL;
 DEGREE : WORD;
 COEFF : [REFERENCE] ARRAY [L..U:INTEGER] OF REAL;
 VAR RESULT : REAL
) : INTEGER; EXTERNAL;

 [EXTERNAL] FUNCTION LIB$STOP(
 CONDITION_STATUS : [IMMEDIATE,UNSAFE] UNSIGNED;
 FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Call LIB$POLYF to evaluate 2(X**2) + 2*X + 1.
{-}

RETURNED_STATUS := LIB$POLYF(1.0,2,COEFF,RESULT);
IF NOT ODD(RETURNED_STATUS)
THEN
 LIB$STOP(RETURNED_STATUS);

WRITELN(’F(1.0) = ’,RESULT:5:2);

END.

This example program demonstrates how to call LIB$POLYF from Pascal. The output generated
by this Pascal program is as follows:

$ RUN POLYF
F(1.0) = 5.00

LIB$POLYG
LIB$POLYG — The Evaluate Polynomials routine (G-floating values) allows higher-level language
users to evaluate G-floating value polynomials.

386

Chapter 2. LIB$ Reference

Format
LIB$POLYG polynomial-argument ,degree ,coefficient ,floating-point-result

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
polynomial-argument

OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is the address of a floating-
point number that contains this argument. The polynomial-argument argument is a G-floating
number.

degree

OpenVMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The degree argument is the
address of a signed word integer that contains this highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient

OpenVMS usage: floating_point
type: G_floating
access: read only
mechanism: by reference, array reference

Floating-point coefficients. The coefficient argument is the address of an array of floating-
point coefficients. The coefficient of the highest-order term of the polynomial is the lowest addressed
element in the array. The coefficient argument is an array of G-floating numbers.

floating-point-result

387

Chapter 2. LIB$ Reference

OpenVMS usage: floating_point
type: G_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of a floating-
point number that contains this result. LIB$POLYG writes the address of floating-point-
result into a G-floating number.

Intermediate multiplications are carried out using extended floating-point fractions (63 bits for
POLYG).

Description
LIB$POLYG provides higher-level language users with the capability of evaluating polynomials.

The evaluation is carried out by Horner's Method. The result is computed as follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result D is the degree of the polynomial and X is the argument.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Example
The Fortran and Pascal examples provided in the description of LIB$POLYF also demonstrate how to
use LIB$POLYG. Please refer to those examples for assistance in using this routine.

LIB$POLYH
LIB$POLYH — On OpenVMS VAX systems, the Evaluate Polynomials routine (H-floating values)
allows higher-level language users to evaluate H-floating value polynomials. This routine is not
available to native OpenVMS Alpha and I64 programs but is available to translated VAX images.

Format
LIB$POLYH polynomial-argument ,degree ,coefficient ,floating-point-result

Returned
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

388

Chapter 2. LIB$ Reference

mechanism: by value

Arguments
polynomial-argument

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is the address of a floating-
point number that contains this argument. The polynomial-argument argument is an H-floating
number.

degree

OpenVMS usage: word_signed
type: word integer (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The degree argument is the
address of a signed word integer that contains this highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient

OpenVMS usage: floating_point
type: H_floating
access: read only
mechanism: by reference, array reference

Floating-point coefficients. The coefficient argument is the address of an array of floating-
point coefficients. The coefficient of the highest-order term of the polynomial is the lowest addressed
element in the array. The coefficient argument is an array of H-floating numbers.

floating-point-result

OpenVMS usage: floating_point
type: H_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of a floating-
point number that contains this result. LIB$POLYH writes the address of floating-point-
result into an H-floating number.

389

Chapter 2. LIB$ Reference

Intermediate multiplications are carried out using extended floating-point fractions (127 bits for
POLYH).

Description
LIB$POLYH provides higher-level language users with the capability of evaluating polynomials.

The evaluation is carried out by Horner's Method. The result is computed as follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result D is the degree of the polynomial and X is the argument.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Example
The Fortran and Pascal examples provided in the description of LIB$POLYF also demonstrate how to
use LIB$POLYH. Please refer to those examples for assistance in using this routine.

LIB$POLYS
LIB$POLYS — The Evaluate Polynomials routine (IEEE S-floating values) allows higher-level
language users to evaluate IEEE S-floating polynomials.

Format
LIB$POLYS polynomial-argument ,degree ,coefficient ,floating-point-result

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
polynomial-argument

OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by reference

390

Chapter 2. LIB$ Reference

Argument for the polynomial. The polynomial-argument argument is the address of a floating-
point number that contains this argument. The polynomial-argument argument is an IEEE S-
floating number.

degree

OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The degree argument is the
address of a signed word integer that contains this highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient

OpenVMS usage: floating_point
type: IEEE S_floating
access: read only
mechanism: by reference, array reference

The address of an array of floating-point coefficients. The coefficient of the highest-order term of the
polynomial is the lowest addressed element in the array. The coefficient argument is an array of
IEEE S-floating numbers.

floating-point-result

OpenVMS usage: floating_point
type: IEEE S_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of a floating-
point number that contains this result. LIB$POLYS writes the address of floating-point-
result into an IEEE S-floating number.

Intermediate multiplications are carried out using extended floating-point fractions (31 bits for
POLYS).

Description
LIB$POLYS provides higher-level language users with the capability of evaluating polynomials.

The evaluation is carried out by Horner’s Method. The result is computed as follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result, D is the degree of the polynomial and X is the argument.

391

Chapter 2. LIB$ Reference

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

Example
 /*
 ** This C example demonstrates how to use LIB$POLYS.
 */

 #if !(__IEEE_FLOAT)
 #error "Compile module with /FLOAT=IEEE_FLOAT"
 #endif

 #include <stdio.h>
 #include <lib$routines.h>

 main ()
 {
 float x = 2.0;
 float result = 0;
 float coeff[5] = {1.0, 2.0, -1.0, 1.0, -3.0};
 short deg = 4;
 int status;

 status = lib$polys(&x, °, &coeff, &result);
 if ((status & 1) != 1) lib$stop(status);

 printf ("(2)^4 + 2*(2^3) -2^2 + 2 - 3 = %f (27.000000)\n",
 result);
 }

This C example demonstrates how to call LIB$POLYS. The output generated by this program is as
follows:

 (2)^4 + 2*(2^3) -2^2 + 2 - 3 = 27.000000 (27.000000)

LIB$POLYT
LIB$POLYT — The Evaluate Polynomials routine (IEEE T-floating values) allows higher-level
language users to evaluate IEEE T-floating polynomials.

Format
LIB$POLYT polynomial-argument ,degree ,coefficient ,floating-point-result

Returns
OpenVMS usage: cond_value
type: longword (unsigned)

392

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Arguments
polynomial-argument

OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by reference

Argument for the polynomial. The polynomial-argument argument is the address of a floating-
point number that contains this argument. The polynomial-argument argument is an IEEE T-
floating number.

degree

OpenVMS usage: word_signed
type: word (signed)
access: read only
mechanism: by reference

Highest-numbered nonzero coefficient to participate in the evaluation. The degree argument is the
address of a signed word integer that contains this highest-numbered coefficient.

If the degree is 0, the result equals C[0]. The range of the degree is 0 to 31.

coefficient

OpenVMS usage: floating_point
type: IEEE T_floating
access: read only
mechanism: by reference,

The address of an array of floating-point coefficients. The coefficient of the highest-order term of the
polynomial is the lowest addressed element in the array. The coefficient argument is an array of
IEEE T-floating numbers.

floating-point-result

OpenVMS usage: floating_point
type: IEEE T_floating
access: write only
mechanism: by reference

Result of the calculation. The floating-point-result argument is the address of a floating-
point number that contains this result. LIB$POLYT writes the address of floating-point-
result into an IEEE T-floating number.

393

Chapter 2. LIB$ Reference

Intermediate multiplications are carried out using extended floating-point fractions (31 bits for
POLYT).

Description
LIB$POLYT provides higher-level language users with the capability of evaluating polynomials.

The evaluation is carried out by Horner’s Method. The result is computed as follows:

result = C[0]+X*(C[1]+X*(C[2]+...X*(C[D])...))

In the above result, D is the degree of the polynomial and X is the argument.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_FLTOVF Floating overflow.
SS$_ROPRAND Reserved operand.

LIB$PUT_COMMON
LIB$PUT_COMMON — The Put String to Common routine copies the contents of a string into the
common area. The common area is an area of storage that remains defined across multiple image
activations in a process. Optionally, LIB$PUT_COMMON returns the actual number of characters
copied. The maximum number of characters that can be copied is 252.

Format
LIB$PUT_COMMON source-string [,resultant-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be copied to the common area by LIB$PUT_COMMON. The source-string
argument is the address of a descriptor pointing to this source string.

394

Chapter 2. LIB$ Reference

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of characters copied by LIB$PUT_COMMON to the common area. The resultant-
length argument is the address of an unsigned word integer that contains this number of characters.
LIB$PUT_COMMON writes this number into the resultant-length argument.

Description
LIB$PUT_COMMON and LIB$GET_COMMON allow programs to copy strings to and from the
common area. The programs reading and writing the data in the common area must agree upon its
amount and format. The maximum length of the destination string is defined as follows:

[min(256, the length of the data in the common storage area) - 4]

Thus, the maximum length is 252.

In BASIC and Fortran, you can use these routines to allow a USEROPEN routine to pass information
back to the routine that called it. A USEROPEN routine cannot write arguments. However, it can call
LIB$PUT_COMMON to put information into the common area. The calling program can then use
LIB$GET_COMMON to retrieve it.

You can also use these routines to pass information between images run successively, such as chained
images run by LIB$RUN_PROGRAM. Since the common area is unique to each process, do not use
LIB$GET_COMMON and LIB$PUT_COMMON to share information across processes.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$_STRTRU Successfully completed, but the source string was truncated.

LIB$PUT_INVO_REGISTERS
LIB$PUT_INVO_REGISTERS — The Put Invocation Registers routine modifies specified values in
a procedure’s invocation context. A procedure’s invocation context consists of the values stored in the
integer and floating-point registers as well as the program counter and the processor status registers.
LIB$PUT_INVO_REGISTERS updates internal register save areas with the new values. These values
are written to the active register set by the time control returns to the procedure asociated with the
specified invocation handle.

395

Chapter 2. LIB$ Reference

Format
LIB$PUT_INVO_REGISTERS invo_handle, invo_context, invo_mask

Returns
OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

Status value. A value of 1 indicates success. When the initial context represents the bottom of the call
chain, a value of 0 is returned.

Arguments
invo_handle

OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism: by value

Handle for the invocation to be updated.

invo_handle

OpenVMS usage: invo_handle
type: longword (unsigned)
access: read only
mechanism:

Handle for the invocation to be updated.

invo_context

OpenVMS usage: invo_context_blk
type: structure
access: read only
mechanism: by reference

Address of an invocation context block that contains the values to be written to the registers.

Each register that is set in the invo_mask parameter is updated using the value found in the
corresponding IREG or FREG field of the invocation context block. The program counter and
processor status of the given invocation can also be updated in this way. No other fields of the
invocation context block are used.

invo_mask

396

Chapter 2. LIB$ Reference

OpenVMS usage: mask_quadword
type: quadword (unsigned)
access: read only
mechanism: by reference

Address of a 64-bit vector, where each bit corresponds to a register field in the passed
invo_context. Bits 0 through 29 correspond to IREG[0] through IREG[29], bit 30 corresponds
to STACK_POINTER and cannot be changed, bit 31 corresponds to PROGRAM_COUNTER,
bits 32 through 62 correspond to FREG[0] through FREG[30], and bit 63 corresponds to
PROCESSOR_STATUS.

Description
LIB$PUT_INVO_REGISTERS updates a given procedure invocation context’s fields with new
register contents.

Note

Only the conventional saved registers (R2 through R15) can be modified reliably in this way. Any
modification to scratch registers may be overwritten by code in intervening procedure invocations.
Any attempt to modify the control register R29 may result in unpredictable program behavior. The
control register R30 cannot be modified. A value of 0 will be returned if bit 30 is set.

Therefore, an action such as reading the context of a given procedure invocation and then updating
that context in its entirety may not produce the desired results, whether or not you have made any
modifications. When using this routine, the caller should plan carefully and should explicitly modify
only those register values that need to be modified.

See the VSI OpenVMS Calling Standard manual for additional information.

Condition Values Returned
None.

LIB$PUT_OUTPUT
LIB$PUT_OUTPUT — The Put Line to SYS$OUTPUT routine writes a record to the current
controlling output device, specified by SYS$OUTPUT using the OpenVMS RMS $PUT service.

Format
LIB$PUT_OUTPUT message-string

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

397

Chapter 2. LIB$ Reference

mechanism: by value

Argument
message-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Message string written to the current controlling output device by LIB$PUT_OUTPUT. The
message-string argument is the address of a descriptor pointing to this message string. RMS
handles all formatting, so the message does not need to include such ASCII formatting instructions as
carriage return (CR).

Description
When you log in, OpenVMS operating systems create three files as default I/O control streams for
your process:

• SYS$INPUT, your default input device

• SYS$OUTPUT, your default output device

• SYS$COMMAND, the device that supplies the commands to your process

These files remain open until you log out. They are the interface between your interactive input
and output or batch commands and the OpenVMS software. Initially, all three are equated with the
terminal. However, with the DCL command ASSIGN, you can change these assignments to obtain
information from a file or put information into a file. SYS$INPUT and SYS$COMMAND are usually
identical, but the input and command streams can be different. For example, during the execution of
an indirect command file from an interactive terminal, SYS$COMMAND refers to the terminal and
SYS$INPUT refers to the command file.

On the first call to LIB$PUT_OUTPUT, if the output file is not a process-permanent file, LIB
$PUT_OUTPUT opens the output file and positions it at the end-of-file mark. If no output file exits
on the first call, LIB$PUT_OUTPUT creates a file. The RMS internal stream identifier (ISI) is stored
in the routine's static storage for subsequent calls.

LIB$PUT_OUTPUT uses RMS to format records on output, and RMS records have implied carriage
control. That is, a record normally corresponds to a line of text. Therefore, if you want explicit
carriage control, instead of implied carriage control, you must supply it yourself within the source
string.

LIB$PUT_OUTPUT is the most convenient way for a MACRO or BLISS program to write
information to SYS$OUTPUT.

If you have several shareable images that call LIB$PUT_OUTPUT, and if each shareable image
includes its own copy of LIB$PUT_OUTPUT, your program could produce multiple output streams
and multiple versions of your output file. A single application should reference one copy of LIB
$PUT_OUTPUT.

398

Chapter 2. LIB$ Reference

Condition Values Returned
SS$_NORMAL Routine successfully completed.

Any condition values returned by RMS.

Example

10 !+
 ! This BASIC program demonstrates how to use
 ! LIB$PUT_OUTPUT to output a simple message.
 !-

 MSGSTR$ = ’This is a sample message’
 CALL LIB$PUT_OUTPUT(MSGSTR$)

 !+
 ! In this example, the default value of
 ! SYS$OUTPUT is used. Therefore, the
 ! output is ’put’ to the terminal screen.
 !-

90 END

This BASIC program shows the use of LIB$PUT_OUTPUT. The output generated by this BASIC
example is as follows:

 This is a sample message

LIB$RADIX_POINT
LIB$RADIX_POINT — The Radix Point Symbol routine returns the system's radix point symbol.
This symbol is used inside a digit string to separate the integer part from the fraction part. This routine
works by attempting to translate the logical name SYS$RADIX_POINT as a process, group, or
system logical name.

Format
LIB$RADIX_POINT radix-point-string [,resultant-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
radix-point-string

399

Chapter 2. LIB$ Reference

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Radix point string. The radix-point-string argument is the address of a descriptor pointing to
this radix point string.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

The number of characters written into radix-point-string, not counting padding in the case of
a fixed-length string. The resultant-length argument is the address of an unsigned word that
contains this number.

If the radix-point-string argument is the address of a fixed-length string descriptor, there
may not be enough characters in the fixed-length string to contain the whole radix point string, and
the radix point string is truncated. If the radix point string is truncated to the size specified in a fixed-
length string descriptor, resultant-length is set to this size. Therefore, resultant-length
can always be used by the calling program to access a valid substring of radix-point-string.

Description
If unable to translate the logical name SYS$RADIX_POINT, LIB$RADIX_POINT returns the United
States radix point symbol (.). If the translation succeeds, the text produced is returned. Thus, a system
manager can define SYS$RADIX_POINT as a systemwide logical name to provide a default for all
users, and an individual user with a special need can define SYS$RADIX_POINT as a process logical
name to override the default.

LIB$RADIX_POINT is used implicitly by BASIC.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Successfully completed, but the radix point string was truncated.
LIB$_FATERRLIB Fatal internal error.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

LIB$REMQHI
LIB$REMQHI — The Remove Entry from Head of Queue routine removes an entry from the head
of the specified self-relative longword interlocked queue. No support for arguments passed by 64-

400

Chapter 2. LIB$ Reference

bit address reference or for use of 64-bit descriptors, if applicable, is planned for this routine. LIB
$REMQHI makes the REMQHI instruction available as a callable routine.

Format
LIB$REMQHI header ,remque-address [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
header

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which entry will be removed. The header argument
contains the address of this signed aligned quadword integer. The header argument must be
initialized to zero before first use of the queue; zero means an empty queue.

On Alpha and I64 systems, the header argument must contain a 32-bit address. A 64-bit address
results in an illegal operand exception.

remque-address

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address of an unsigned
longword that contains this address. If the queue was empty, remque-address is set to the address
of the header.

On Alpha and I64 systems, the remque-address argument must contain a 32-bit address. A 64-bit
address results in an illegal operand exception.

retry-count

OpenVMS usage: longword_unsigned

401

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the operation is to be retried in case of secondary-interlock failure of the queue
instruction in a processor-shared memory application. The retry-count argument is the address of
a longword that contains the retry count value. A value of 1 causes no retries. The default value is 10.

Description
The queue from which LIB$REMQHI removes an entry can be in process-private, processor-private,
or processor-shareable memory to implement per-process, per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue entry by its address.

A self-relative queue is a queue in which the links between entries are the displacements of the current
entry's predecessor and successor. If these links are longwords, the queue is referred to as a self-
relative longword queue.

You can use the LIB$INSQHI, LIB$INSQTI, LIB$REMQHI, and LIB$REMQTI routines to manage
your self-relative longword queue on a VAX, Alpha, or I64 system. These routines implement the
INSQHI, INSQTI, REMQHI, and REMQTI instructions that allow you to insert and remove an entry
at the head or tail of a self-relative longword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines, the queue pointers are
changed as an atomic operation. This ensures that no other process can interrupt the operation to insert
or remove a queue entry of its own.

When you use these routines, cooperating processes can communicate without further synchronization
and without danger of being interrupted, either on a single processor or in a multiprocessor
environment. The queue access routines are also useful in an AST environment; they allow you to add
or remove an entry from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue entry, you must ensure
that the operation cannot be interrupted.

Alignment
Use of the self-relative longword queue routines requires that the queue header and each of the queue
entries be quadword aligned. You can use the Run-Time Library routine LIB$GET_VM on a VAX,
Alpha, or I64 system to allocate quadword-aligned virtual memory for a queue.

Condition Values Returned
SS$_NORMAL Routine successfully completed. The entry was removed from the

head of the queue, and the resulting queue contains one or more
entries.

402

Chapter 2. LIB$ Reference

SS$_ROPRAND Reserved operand fault. Either the entry or the header is at an
address that is not quadword aligned, or the header address equals
the entry address.

LIB$_ONEENTQUE Routine successfully completed. The entry was removed from the
head of the queue, and the resulting queue is empty.

LIB$_QUEWASEMP The queue was empty. The queue is not modified.
LIB$_SECINTFAI A secondary interlock failure occurred; the insertion was attempted

the number of times specified by retry-count. This is a severe
error. The queue is not modified. This condition can occur only
when the queue is in memory being shared between two or more
processors.

LIB$REMQHIQ
LIB$REMQHIQ — The Remove Entry from Head of Queue routine removes an entry from the head
of the specified self-relative quadword interlocked queue. LIB$REMQHIQ makes the REMQHIQ
instruction available as a callable routine.

Format
LIB$REMQHIQ header ,remque-address [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
header

OpenVMS usage: octaword_signed
type: octaword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which entry will be removed. The header argument
contains the address of this signed aligned octaword integer. The header argument must be
initialized to zero before first use of the queue; zero means an empty queue.

remque-address

OpenVMS usage: address
type: quadword (unsigned)

403

Chapter 2. LIB$ Reference

access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address of an unsigned
quadword that contains this address. If the queue was empty, remque-address is set to the address
of the header.

retry-count

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the operation is to be retried in case of secondary-interlock failure of the queue
instruction in a processor-shared memory application. The retry-count argument is the address of
a longword that contains the retry count value. A value of 1 causes no retries. The default value is 10.

Description
The queue from which LIB$REMQHIQ removes an entry can be in process-private, processor-
private, or processor-shareable memory to implement per-process, per-processor, or across-processor
queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue entry by its address.

A self-relative queue is a queue in which the links between entries are the displacements of the current
entry’s predecessor and successor. If these links are quadwords, the queue is referred to as a self-
relative quadword queue.

You can use the LIB$INSQHIQ, LIB$INSQTIQ, LIB$REMQHIQ, and LIB$REMQTIQ routines to
manage your self-relative quadword queue on an Alpha or I64 system. These routines implement the
INSQHIQ, INSQTIQ, REMQHIQ, and REMQTIQ instructions that allow you to insert and remove an
entry at the head or tail of a self-relative quadword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines, the queue pointers are
changed as an atomic operation. This ensures that no other process can interrupt the operation to insert
or remove a queue entry of its own.

When you use these routines, cooperating processes can communicate without further synchronization
and without danger of being interrupted, either on a single processor or in a multiprocessor
environment. The queue access routines are also useful in an AST environment; they allow you to add
or remove an entry from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue entry, you must ensure
that the operation cannot be interrupted.

404

Chapter 2. LIB$ Reference

Alignment
Use of the self-relative quadword queue routines requires that the queue header and each of the queue
entries be octaword aligned. You can use the Run-Time Library routine LIB$GET_VM_64 to allocate
octaword-aligned virtual memory for a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was removed from the
head of the queue, and the resulting queue contains one or more
entries.

SS$_ROPRAND Reserved operand fault. Either the entry or the header is at an
address that is not octaword aligned, or the header address equals
the entry address.

LIB$_ONEENTQUE Routine successfully completed. The entry was removed from the
head of the queue, and the resulting queue is empty.

LIB$_QUEWASEMP The queue was empty. The queue is not modified.
LIB$_SECINTFAI A secondary interlock failure occurred; the insertion was attempted

the number of times specified by retry-count. This is a severe error.
The queue is not modified. This condition can occur only when the
queue is in memory being shared between two or more processors.

LIB$REMQTI
LIB$REMQTI — The Remove Entry from Tail of Queue routine removes an entry from the tail of the
specified self-relative longword interlocked queue. No support for arguments passed by 64-bit address
reference or for use of 64-bit descriptors, if applicable, is planned for this routine. LIB$REMQTI
makes the REMQTI instruction available as a callable routine.

Format
LIB$REMQTI header ,remque-address [,retry-count]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
header

OpenVMS usage: quadword_signed
type: quadword integer (signed)

405

Chapter 2. LIB$ Reference

access: modify
mechanism: by reference

Queue header specifying the queue from which the entry is to be deleted. The header argument
contains the address of this signed aligned quadword integer. The header argument must be
initialized to zero before first use of the queue; zero means an empty queue.

On Alpha and I64 systems, the header argument must contain a 32-bit sign-extended address. An
illegal operand exception occurs for any other form of address.

remque-address

OpenVMS usage: address
type: longword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address of a longword that
contains this address. If the queue was empty, remque-address is set to the address of the header.

On Alpha and I64 systems, the remque-address argument must contain a 32-bit sign-extended
address. An illegal operand exception occurs for any other form of address.

retry-count

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the operation is to be retried in case of secondary-interlock failure of the queue
instruction in a processor-shared memory application. The retry-count argument is the address of
a longword that is this retry count value. A value of 1 causes no retries. The default value is 10.

Description
The queue from which LIB$REMQTI removes an in process-private, processor-private, or processor-
shareable memory to implement per-process, per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue entry by its address.

A self-relative queue is a queue in which the links between entries are the displacements of the current
entry's predecessor and successor. If these links are longwords, the queue is referred to as a self-
relative longword queue.

You can use the LIB$INSQHI, LIB$INSQTI, LIB$REMQHI, and LIB$REMQTI routines to manage
your self-relative longword queue on a VAX, Alpha, or I64 system. These routines implement the
INSQHI, INSQTI, REMQHI, and REMQTI instructions that allow you to insert and remove an entry
at the head or tail of a self-relative longword queue.

406

Chapter 2. LIB$ Reference

Synchronization
When you insert or remove a queue entry using the self-relative queue routines, the queue pointers are
changed as an atomic operation. This ensures that no other process can interrupt the operation to insert
or remove a queue entry of its own.

When you use these routines, cooperating processes can communicate without further synchronization
and without danger of being interrupted, either on a single processor or in a multiprocessor
environment. The queue access routines are also useful in an AST environment; they allow you to add
or remove an entry from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue entry, you must ensure
that the operation cannot be interrupted.

Alignment
Use of the self-relative longword queue routines requires that the queue header and each of the queue
entries be quadword aligned. You can use the Run-Time Library routine LIB$GET_VM on a VAX,
Alpha, or I64 system to allocate quadword-aligned virtual memory for a queue.

Condition Values Returned
SS$_NORMAL Routine successfully completed. The entry was removed from the

queue tail, and the resulting queue contains one or more entries.
SS$_ROPRAND Reserved operand fault. Either the entry or the header is at an

address that is not quadword aligned, or the header address equals
the entry address.

LIB$_ONEENTQUE Routine successfully completed. The entry was removed from the
queue tail, and the resulting queue is empty.

LIB$_QUEWASEMP Queue was empty. The queue is not modified.
LIB$_SECINTFAI A secondary interlock failure occurred; the insertion was attempted

the number of times specified by retry-count. This is a severe
error. The queue is not modified. This condition can occur only
when the queue is in memory being shared between two or more
processors.

LIB$REMQTIQ
LIB$REMQTIQ — The Remove Entry from Tail of Queue routine removes an entry from the tail
of the specified self-relative quadword interlocked queue. LIB$REMQTIQ makes the REMQTIQ
instruction available as a callable routine.

Format
LIB$REMQTIQ header ,remque-address [,retry-count]

Returns
OpenVMS usage: cond_value

407

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: write only
mechanism: by value

Arguments
header

OpenVMS usage: octaword_signed
type: octaword integer (signed)
access: modify
mechanism: by reference

Queue header specifying the queue from which the entry is to be deleted. The header argument
contains the address of this signed aligned octaword integer. The header argument must be
initialized to zero before first use of the queue; zero means an empty queue.

remque-address

OpenVMS usage: address
type: quadword (unsigned)
access: write only
mechanism: by reference

Address of the removed entry. The remque-address argument is the address of a quadword that
contains this address. If the queue was empty, remque-address is set to the address of the header.

retry-count

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

The number of times the operation is to be retried in case of secondary-interlock failure of the queue
instruction in a processor-shared memory application. The retry-count argument is the address of
a longword that is this retry count value. A value of 1 causes no retries. The default value is 10.

Description
The queue from which LIB$REMQTIQ removes an entry can be in process-private, processor-private,
or processor-shareable memory to implement per-process, per-processor, or across-processor queues.

Self-Relative Queues
A queue is a doubly linked list. A Run-Time Library routine specifies a queue entry by its address.

408

Chapter 2. LIB$ Reference

A self-relative queue is a queue in which the links between entries are the displacements of the current
entry’s predecessor and successor. If these links are quadwords, the queue is referred to as a self-
relative quadword queue.

You can use the LIB$INSQHIQ, LIB$INSQTIQ, LIB$REMQHIQ, and LIB$REMQTIQ routines to
manage your self-relative quadword queue on an Alpha or I64 system. These routines implement the
INSQHIQ, INSQTIQ, REMQHIQ, and REMQTIQ instructions that allow you to insert and remove an
entry at the head or tail of a self-relative quadword queue.

Synchronization
When you insert or remove a queue entry using the self-relative queue routines, the queue pointers are
changed as an atomic operation. This ensures that no other process can interrupt the operation to insert
or remove a queue entry of its own.

When you use these routines, cooperating processes can communicate without further synchronization
and without danger of being interrupted, either on a single processor or in a multiprocessor
environment. The queue access routines are also useful in an AST environment; they allow you to add
or remove an entry from a queue without being interrupted by an AST.

If you do not use the self-relative queue routines to insert or remove a queue entry, you must ensure
that the operation cannot be interrupted.

Alignment
Use of the self-relative quadword queue routines requires that the queue header and each of the queue
entries be octaword aligned. You can use the Run-Time Library routine LIB$GET_VM_64 to allocate
octaword-aligned virtual memory for a queue.

Condition Values Returned

SS$_NORMAL Routine successfully completed. The entry was removed from the
queue tail, and the resulting queue contains one or more entries.

SS$_ROPRAND Reserved operand fault. Either the entry or the header is at an
address that is not octaword aligned, or the header address equals
the entry address.

LIB$_ONEENTQUE Routine successfully completed. The entry was removed from the
queue tail, and the resulting queue is empty.

LIB$_QUEWASEMP Queue was empty. The queue is not modified.
LIB$_SECINTFAI A secondary interlock failure occurred; the insertion was attempted

the number of times specified by retry-count. This is a severe error.
The queue is not modified. This condition can occur only when the
queue is in memory being shared between two or more processors.

LIB$RENAME_FILE
LIB$RENAME_FILE — The Rename One or More Files routine changes the names of one or more
files. The specification of the files to be renamed can include wildcards. LIB$RENAME_FILE is
similar in function to the DCL command RENAME.

409

Chapter 2. LIB$ Reference

Format
LIB$RENAME_FILE old-filespec ,new-filespec [,default-filespec] [,related-filespec] [,flags]
[,user-success-procedure] [,user-error-procedure] [,user-confirm-procedure] [,user-specified-
argument] [,old-resultant-name] [,new-resultant-name] [,file-scan-context]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
old-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification of the files to be renamed. The old-filespec argument is the address of a
descriptor pointing to the old file specification. The specification may include wildcards, in which
case each file that matches the specification will be renamed. If running on Alpha or I64 and flag LIB
$M_FIL_LONG_NAMES is set, the string must not contain more characters than specified by NAML
$C_ MAXRSS, otherwise the string must not contain more than 255 characters. Any string class is
supported.

new-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification for the new file names. The new-filespec argument is the address of a
descriptor pointing to the new file specification.

This specification need not be complete; fields omitted or specified by using the wildcard character
(*) will be filled in from the existing file’s name using the same rules as for the DCL command
RENAME. If running on Alpha or I64 and flag LIB$M_FIL_LONG_NAMES is set, the string must
not contain more characters than specified by NAML$C_MAXRSS, otherwise the string must not
contain more than 255 characters. Any string class is supported.

default-filespec

OpenVMS usage: char_string
type: character string
access: read only

410

Chapter 2. LIB$ Reference

mechanism: by descriptor

Default file specification of the files to be renamed. The default-filespec argument is the
address of a descriptor pointing to the default file specification.

This is an optional argument; if omitted, the default is the null string. See the OpenVMS Record
Management Services Reference Manual for information on default file specifications. If running
on Alpha or I64 and flag LIB$M_FIL_ LONG_NAMES is set, the string must not contain more
characters than specified by NAML$C_MAXRSS, otherwise the string must not contain more than
255 characters. Any string class is supported.

related-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Related file specification of the files to be renamed. The related-filespec argument is the
address of a descriptor pointing to the related file specification. This is an optional argument; if
omitted, the default is the null string. Any string class is supported.

Input file parsing is used. (See the OpenVMS Record Management Services Reference Manual for
information on related file specifications and input file parsing.)

The related file specification is useful when you are processing lists of file specifications. Unspecified
portions of the file specification are inherited from the last file processed. Any string class is
supported. This is an optional argument.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by descriptor

Longword of flag bits designating optional behavior. The flags argument is the address of an
unsigned longword containing the flag bits. This is an optional argument; if omitted, the default is that
all flags are clear.

The bit number and its meaning are as follows:

Bit Symbol Description
0 LIB$M_FIL_CUR_VER If new-filespec does not

specify a version number, this
flag controls whether a new
version number for the output
file is to be assigned. If this bit is
set, the current version number
of the file is used.

If this bit is clear, the file is
given a version number 1 higher

411

Chapter 2. LIB$ Reference

Bit Symbol Description
than any previously existing file
of the same file name and file
type. This is the default action.

If a file already exists with the
same file name, type and version
number, the error RMS$_FEX
is given. This flag is equivalent
to the /NONEW_VERSION
qualifier of the DCL command
RENAME.)

1 LIB$M_FIL_INH_SECUR Controls whether the renamed
file takes on security attributes
of the new location or keeps its
existing security attributes. If
this bit is clear, the attributes of
the renamed file are inherited
from the next lower version of
the new file name, if any, the
new parent directory, or both.

If this bit is clear, the file’s
security attributes are not
changed; this is the default
action.

For more information on file
security, see the VSI OpenVMS
Guide to System Security.
This flag is equivalent to
the /INHERIT_SECURITY
qualifier of the DCL command
RENAME.

2 LIB$M_FIL_LONG_NAMES (Alpha and I64 only) Controls
whether to accept file
specifications greater than 255
characters in length. If this bit is
set, LIB$RENAME_FILE can
process files specifications with
a maximum length of NAML
$C_ MAXRSS characters.

If this bit is clear, LIB
$RENAME_FILE can process
files names with a maximum
length of 255 characters.

user-success-procedure

OpenVMS usage: procedure
type: procedure value

412

Chapter 2. LIB$ Reference

access: function call (before return)
mechanism: by value

User-supplied success routine that LIB$RENAME_FILE calls after each successful rename.

For further information on the success routine, see Call Format for a Success Routine in the
Description section.

user-error-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied error routine that LIB$RENAME_FILE calls when it detects an error. The value
returned by the error routine determines whether LIB$RENAME_FILE processes more files. For
further information on the error routine, see Call Format for an Error Routine in the Description
section.

user-confirm-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied confirm routine that LIB$RENAME_FILE calls before it renames a file. The value
returned by the confirm routine determines whether or not LIB$RENAME_FILE renames the file.

The confirm routine can be used to select specific files for renaming based on criteria such as
expiration date, size, and so on.

For further information on the confirm routine, see Call Format for a Confirm Routine in the
Description section.

user-specified-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Value that LIB$RENAME_FILE passes to the success, error, and confirm routines each time
they are called. Whatever mechanism is used to pass user-specified-argument to LIB
$RENAME_FILE is also used to pass it to the user-supplied routines. This is an optional argument; if
omitted, zero is passed by value.

old-resultant-name

OpenVMS usage: char_string

413

Chapter 2. LIB$ Reference

type: character string
access: write only
mechanism: by descriptor

String into which LIB$RENAME_FILE copies the old resultant file specification of the last file
processed. This is an optional argument. If present, it is used to store the file specification passed to
the user-supplied routines instead of a default class S, type T string. Any string class is supported.

If you are specifying one or more of the action routine arguments, be sure that the descriptor class
used to pass resultant-name is the same as the descriptor class required by the action routine.
For example, VAX Ada requires a class SB descriptor for string arguments to Ada routines, but will
use a class A descriptor by default when calling external routines. Refer to your language manual to
determine the proper descriptor class to use.

new-resultant-name

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

String into which LIB$RENAME_FILE writes the new OpenVMS RMS resultant file specification of
the last file processed. The new-resultant-name argument is the address of a descriptor pointing
to the new name. This is an optional argument. If present, it is used to store the file specification
passed to the user-supplied routines instead of a class S, type T string. Any string class is supported.

If you are specifying one or more of the action routine arguments, be sure that the descriptor class
used to pass resultant-name is the same as the descriptor class required by the action routine.
For example, VAX Ada requires a class SB descriptor for string arguments to Ada routines, but will
use a class A descriptor by default when calling external routines. Refer to your language manual to
determine the proper descriptor class to use.

file-scan-context

OpenVMS usage: context
type: longword (unsigned)
access: modify
mechanism: by reference

Context for renaming a list of file specifications. The file-scan-context is the address of a
longword that contains this context. You must initialize this longword to zero before the first of a
series of calls to LIB$RENAME_FILE. LIB$RENAME_FILE uses the file scan context to retain the
file context for multiple input files.

LIB$FILE_SCAN uses this context to retain multiple input file related file context. This is an optional
argument; it need only be specified if you are using multiple input files, as the DCL command
RENAME does. You may deallocate the context allocated by LIB$FILE_SCAN while processing the
LIB$RENAME_ FILE requests by calling LIB$FILE_SCAN_END after all calls to LIB$RENAME_
FILE have been completed. See the description of LIB$FILE_SCAN for a more detailed description
of this argument.

414

Chapter 2. LIB$ Reference

Description
This description is divided into three parts:

• Call Format for a Success Routine

• Call Format for an Error Routine

• Call Format for a Confirm Routine

Call Format for a Success Routine
The success routine is optional; it is called only if the user-success-procedure argument is specified in
the call to LIB$RENAME_FILE.

The calling format of a success routine is as follows:

user-success-procedure old-filespec ,new-filespec [,user-specified-
argument]

old-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file before it was renamed. If old-resultant-name was
specified, it is used to pass the string to the success routine. Otherwise, a class S, type T string is
passed. Any string class is supported.

new-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the newly renamed file. If new-resultant-name was
specified, it is used to pass the string to the success routine. Otherwise, a class S, type T string is
passed. Any string class is supported.

user-specified-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: unspecified

Value of user-specified-argument passed by LIB$RENAME_FILE to the success routine
using the same passing mechanism that was used to pass it to LIB$RENAME_FILE.

415

Chapter 2. LIB$ Reference

Call Format for an Error Routine
The error routine returns a success/fail value that LIB$RENAME_FILE uses to determine whether
or not more files will be processed if an error is encountered. The error routine is called only if the
user-error-procedure argument was specified in the call to LIB$RENAME_FILE. If the
user-error-procedure argument was not specified, the default is to continue processing.

The calling format of the error routine is as follows:

user-error-procedure old-filespec ,new-filespec ,rms-sts ,rms-stv ,error-
source ,user-specified-argument

old-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file being renamed when the error occurred. If old-
resultant-name was specified, it is used to pass the string to the error routine. Otherwise, a class
S, type T string is passed. Any string class is supported.

new-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the new file name being used when the error occurred. If new-
resultant-name was specified, it is used to pass the string to the error routine. Otherwise, a class
S, type T string is passed. Any string class is supported.

rms-sts

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by reference

Primary condition code (FAB$L_STS) which describes the error that occurred. The rms-sts
argument is the address of an unsigned longword that contains this primary condition code.

rms-stv

OpenVMS usage: cond_value
type: longword (unsigned)

416

Chapter 2. LIB$ Reference

access: read only
mechanism: by reference

Secondary condition code (FAB$L_STV) which describes the error that occurred. The rms-stv
argument is the address of an unsigned longword that contains this secondary condition code.

error-source

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Integer code indicating where the error was found. The error-source argument is the address of a
longword containing the error source.

The values of error-source and their meanings are as follows:

0 Error searching for old-filespec
1 Error parsing new-filespec
2 Error renaming file

user-specified-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: unspecified

Value of user-specified-argument that LIB$RENAME_FILE passes to the error routine
using the same passing mechanism that was used to pass it to LIB$RENAME_FILE.

If the error routine returns a success status (bit 0 set), then LIB$RENAME_FILE will continue
processing files. If the error routine returns a failure status (bit 0 clear), processing ceases immediately
and LIB$RENAME_FILE returns with an error status.

If the user-error-procedure argument is not specified, LIB$RENAME_FILE will return to its
caller the most severe error status encountered while renaming the files. If the error routine is called
for an error, the success status LIB$_ ERRROUCAL is returned.

The error routine is not called for errors related to string copying.

Call Format for a Confirm Routine
The calling format of a confirm routine is as follows:

user-confirm-procedure old-filespec ,new-filespec ,old-fab [,user-
specified-argument]

old-filespec

417

Chapter 2. LIB$ Reference

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification of the file about to be renamed. If old-resultant-name was
specified, it is used to pass the string to the confirm routine. Otherwise, a class S, type T string is
passed. Any string class is supported.

new-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

RMS resultant file specification which the file will be given. If new-resultant-name was
specified, it is used to pass the string to the confirm routine. Otherwise, a class S, type T string is
passed. Any string class is supported.

old-fab

OpenVMS usage: fab
type: unspecified
access: read only
mechanism: by reference

Address of the RMS FAB that describes the file being renamed. Your program may perform an RMS
$OPEN on the FAB to obtain file attributes it needs to determine whether the file should be renamed,
but must close the file with $CLOSE before returning to LIB$RENAME_FILE.

(Alpha and I64 only) If the LIB$M_FIL_LONG_NAMES FLAGS is set, the FAB references a
NAML block rather than a NAM block. The NAML block supports the use of long file specifications
with a maximum length of NAML$C_MAXRSS. See the OpenVMS Record Management Services
Reference Manual for information on NAML blocks.

user-specified-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: unspecified

Value of user-specified-argument passed by LIB$RENAME_FILE to the confirm routine
using the same passing mechanism that was used to pass it to LIB$RENAME_FILE. This is an
optional argument.

If the confirm routine returns a success value (bit 0 set), the file is renamed; otherwise, the file is not
renamed.

418

Chapter 2. LIB$ Reference

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_ERRROUCAL Success—error routine called. A file error was encountered but the

error routine was called to handle the condition.
LIB$_INVARG Invalid argument. The flags argument has one or more

undefined bits set.
LIB$_INVFILSPE Invalid file specification. On VAX, old-filespec, new-

filespec, or default-filespec contains more than
255 characters. On Alpha and I64, old-filespec, new-
filespec, or default-filespec contains more than
NAML$C_MAXRSS characters.

LIB$_INVSTRDES Invalid string descriptor. One of the string argument descriptors
was not a valid string descriptor.

LIB$_WRONUMARG Wrong number of arguments. An incorrect number of arguments
was passed to LIB$RENAME_FILE.

Any condition value returned by LIB$SCOPY_xxx; truncation errors are ignored.

Any condition value returned by RMS. If the user-error-procedure argument was not
specified, this is the most severe of the RMS errors which occurred while renaming the files.

LIB$RESERVE_EF
LIB$RESERVE_EF — The Reserve Event Flag routine allocates a local event flag number specified
by event-flag-number.

Format
LIB$RESERVE_EF event-flag-number

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
event-flag-number

OpenVMS usage: ef_number
type: longword (unsigned)
access: read only
mechanism: by reference

419

Chapter 2. LIB$ Reference

Event flag number to be allocated by LIB$RESERVE_EF. The event-flag-number argument
contains the address of a signed longword integer that is this event flag number.

Description
LIB$RESERVE_EF allocates a specific local event flag. It differs from LIB$GET_EF, which
allocates an arbitrary local event flag, which is the recommended procedure. Reserving a specific
local event flag is not recommended because another routine may attempt to use the same flag, and
the flag will no longer function as expected.

The following table lists the availability of local event flags.

Number Availability
0 Never used by this routine and always available
1 through 23 Initially reserved; available after being freed by

LIB$FREE_EF
24 through 31 Reserved to OpenVMS
32 through 63 Initially free

Note

Beware of running multiple images linked with /NOSYSSHR in the same process and having more
than one image make calls to LIB$RESERVE_EF. Each image contains its own copy of the event flag
bit array that is designed to be process-wide and synchronize ownership of event flags. Multiple calls
to LIB$GET_EF could cause the same event flag to be allocated more than once.

See the VSI OpenVMS Programming Concepts Manual for more information.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_EF_ALRRES Event flag already reserved.
LIB$_EF_RESSYS Event flag reserved to system. This occurs if the event flag number

is outside the ranges of 1 through 23 and 32 through 63.

Example
PROGRAM RESERVE_EF(INPUT, OUTPUT);

routine LIB$RESERVE_EF(%REF EVENT_FLAG_NUM : INTEGER); EXTERN;
routine LIB$FREE_EF(%REF EVENT_FLAG_NUM : INTEGER); EXTERN;

VAR
 FLAG_NUM : INTEGER;

BEGIN
 FLAG_NUM := 37;
 LIB$RESERVE_EF(FLAG_NUM);
 WRITELN(FLAG_NUM);
 LIB$FREE_EF(FLAG_NUM);
END.

420

Chapter 2. LIB$ Reference

This Pascal program generates the following output:

 37

LIB$RESET_VM_ZONE
LIB$RESET_VM_ZONE — The Reset Virtual Memory Zone routine frees all blocks of memory that
were previously allocated from a zone in the 32-bit virtual address space. No support for arguments
passed by 64-bit address reference or for use of 64-bit descriptors, if applicable, is planned for this
routine.

Format
LIB$RESET_VM_ZONE zone-id

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
zone-id

OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a longword that contains the identifier of a zone
created by a previous call to LIB$CREATE_VM_ZONE or LIB$CREATE_USER_VM_ZONE.

Description
LIB$RESET_VM_ZONE frees all the blocks of memory that were previously allocated from the
zone. The memory becomes available to satisfy further allocation requests for the zone; the memory
is not returned to the processwide 32-bit page pool managed by LIB$GET_VM_PAGE. Your program
can continue to use the zone after you call LIB$RESET_VM_ZONE.

Resetting a zone is a much more efficient way to reuse storage than individually freeing each
allocated object in the zone.

It is the caller's responsibility to ensure that he or she has “exclusive” access to the zone while the
reset operation is being performed. Results are unpredictable if another thread of control attempts to
perform any operation on the zone while LIB$RESET_VM_ZONE is in progress.

If you specified deallocation filling when you created the zone, LIB$RESET_VM_ZONE will fill all
of the allocated blocks that are freed.

421

Chapter 2. LIB$ Reference

If the zone you are resetting was created using the LIB$CREATE_USER_VM_ZONE routine, then
you must have an appropriate action routine for the reset operation. That is, in your call to LIB
$CREATE_USER_VM_ZONE, you must have specified a user-reset-procedure.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR An invalid zone-id argument.

LIB$RESET_VM_ZONE_64
LIB$RESET_VM_ZONE_64 — The Reset Virtual Memory Zone routine frees all blocks of memory
that were previously allocated from a zone in the 64-bit virtual address space.

Format
LIB$RESET_VM_ZONE_64 zone-id

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id is the address of a quadword that contains the identifier
of a zone created by a previous call to LIB$CREATE_VM_ZONE_64 or LIB
$CREATE_USER_VM_ZONE_64.

Description
LIB$RESET_VM_ZONE_64 frees all the blocks of memory that were previously allocated from the
zone. The memory becomes available to satisfy further allocation requests for the zone; the memory
is not returned to the processwide 64-bit page pool managed by LIB$GET_VM_PAGE_64. Your
program can continue to use the zone after you call LIB$RESET_VM_ZONE_64.

Resetting a zone is a much more efficient way to reuse storage than individually freeing each
allocated object in the zone.

422

Chapter 2. LIB$ Reference

It is the caller’s responsibility to ensure that he or she has ‘‘exclusive’’ access to the zone while the
reset operation is being performed. Results are unpredictable if another thread of control attempts to
perform any operation on the zone while LIB$RESET_VM_ZONE_64 is in progress.

If you specified deallocation filling when you created the zone, LIB$RESET_VM_ ZONE_64 will fill
all of the allocated blocks that are freed.

If the zone you are resetting was created using the LIB$CREATE_USER_VM_ ZONE_64 routine,
then you must have an appropriate action routine for the reset operation. That is, in your call to LIB
$CREATE_USER_VM_ZONE_64, you must have specified a user-reset-procedure.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADBLOADR An invalid zone-id argument.

LIB$REVERT
LIB$REVERT — The Revert to the Handler of the Routine Activator routine deletes the condition
handler established by LIB$ESTABLISH by clearing the address pointing to the condition handler
from the activated routine's stack frame. No support for arguments passed by 64-bit address reference
or for use of 64-bit descriptors, if applicable, is planned for this routine. This routine is not available
to native OpenVMS Alpha and I64 programs but is recognized and handled appropriately by most
high-level language compilers.

Format
LIB$REVERT

Returns

OpenVMS usage: address
type: address
access: write only
mechanism: by value

Previous contents of SF$A_HANDLER (longword 0) of the caller’s stack frame. This is the address
of the condition handler previously in effect. If no condition handler was in effect, zero is returned.

Arguments
None.

Description
LIB$REVERT returns the address that it clears from the calling routine's stack frame. LIB$REVERT
is used only if your routine is to establish and then cancel a condition handler for a portion of its
execution.

423

Chapter 2. LIB$ Reference

LIB$REVERT is provided primarily for use with languages without built-in error-handling
facilities, such as Fortran. Do not use LIB$REVERT from BASIC, COBOL, Pascal, or PL/I. See the
documentation for the language you are using for information about how that language handles errors.

In VAX MACRO, you merely use the following instruction rather than calling LIB$REVERT:

CLRL (FP) ; set handler address to 0
 ; in current stack frame

Condition Values Returned
None.

LIB$RUN_PROGRAM
LIB$RUN_PROGRAM — The Run New Program routine causes the current program to stop running
and begins execution of another program.

Format
LIB$RUN_PROGRAM program-name

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Argument
program-name

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File name of the program to be run in place of the current program. The program-name argument
contains the address of a descriptor pointing to this file name string.

The maximum length of the file name is 255 characters. The default file type is .EXE.

Description
LIB$RUN_PROGRAM stops execution of the current program and begins execution of another
program.

• If successful, control does not return to the calling program. Instead, the $EXIT system service
is called, the new program image replaces the old image in the user process, and the command
language interpreter (CLI) gives control to the new image.

424

Chapter 2. LIB$ Reference

• If unsuccessful, control returns to the command interpreter.

This routine is supported for use with the DCL and MCR CLIs. If an image is run directly as a
subprocess or as a detached process, there is no CLI present to perform this function. In those cases,
the error status LIB$_NOCLI is returned.

LIB$RUN_PROGRAM causes the current image to exit at the point of the call and directs the CLI,
if one is present, to start running another program. If LIB$RUN_PROGRAM executes successfully,
control passes to the second program; if not, control passes to the CLI. The calling program cannot
regain control. This technique is called chaining.

This routine is provided primarily for compatibility with PDP-11 systems, where chaining is used to
extend the address space of a system.

This routine may also be useful in an OpenVMS environment where address space is severely limited
and large images are not possible. For example, you might use chaining to perform system generation
on a small virtual address space, for a large page file.

With LIB$RUN_PROGRAM, the calling program can pass arguments to the next program in the
chain only by using the common storage area. One way to do this is for the calling program to call
LIB$PUT_COMMON to pass the information into the common storage area. Then the called program
calls LIB$GET_COMMON to retrieve the data.

In general, this practice is not recommended. There is no convenient way to specify the order and
type of arguments passed into the common storage area; so programs that pass arguments in this way
must know about the format of the data before it is passed. When you use common storage, it is very
difficult to keep your program modular and AST-reentrant; a method of arbitration must be designated
to define which program can modify common storage and when.

Further, LIB$RUN_PROGRAM cannot be used if no command language interpreter is present, as in
the case of image subprocesses and detached subprocesses.

If you want control to return to the caller, use LIB$SPAWN instead.

Condition Values Returned

LIB$_INVARG Invalid argument.
LIB$_NOCLI No CLI present to perform function. The calling process did not

have a CLI to perform the function or the CLI did not support the
request type. Note that an image run as a subprocess or detached
process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status which was
not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL or MCR CLIs, please
report the problem to your VSI support representative.

LIB$SCANC
LIB$SCANC — The Scan for Characters and Return Relative Position routine is used to find a
specified set of characters in the source string. LIB$SCANC makes the VAX SCANC instruction
available as a callable routine.

425

Chapter 2. LIB$ Reference

Format
LIB$SCANC source-string ,table-array ,byte-integer-mask

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Relative position in the source string of the character that terminated the operation, or zero if the
terminator character is not found. If the source string has a zero length, then a zero is returned.

Arguments
source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string used by LIB$SCANC to index into a table. The source-string argument contains
the address of a descriptor pointing to this source string.

table-array

OpenVMS usage: vector_mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Table that LIB$SCANC indexes into and performs a logical AND operation with the byte-
integer-mask byte. The table-array argument contains the address of an unsigned byte array
that is this table.

byte-integer-mask

OpenVMS usage: mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference

Mask on which a logical AND operation is performed with bytes in table-array. The byte-
integer-mask argument contains the address of an unsigned byte that is this mask.

426

Chapter 2. LIB$ Reference

Description
LIB$SCANC uses successive bytes of the string specified by source-string to index into a table.
The byte selected from the table is the byte on which a logical AND operation is performed with the
mask byte. The operation is terminated when the result of the AND operation is equal to 1.

Condition Values Returned
None.

LIB$SCOPY_DXDX
LIB$SCOPY_DXDX — The Copy Source String Passed by Descriptor to Destination routine copies
a source string passed by descriptor to a destination string.

Format
LIB$SCOPY_DXDX source-string ,destination-string

Corresponding JSB Entry Point
LIB$SCOPY_DXDX6

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string to be copied to the destination string by LIB$SCOPY_DXDX. The source-string
argument contains the address of a descriptor pointing to this source string. The descriptor class can
be unspecified, fixed-length, decimal string, array, noncontiguous array, varying, or dynamic.

destination-string

OpenVMS usage: char_string

427

Chapter 2. LIB$ Reference

type: character string
access: write only
mechanism: by descriptor

Destination string to which the source string is copied. The destination-string argument
contains the address of a descriptor pointing to this destination string.

The following actions occur depending on the class of the destination string's descriptor:

Descriptor Class Action
S, Z, SD, A, NCA Copy the source string. If needed, space-fill or

truncate on the right.
D If the area specified by the destination descriptor

is large enough to contain the source string, copy
the source string and set the new length in the
destination descriptor. If the area specified is not
large enough, return the previous space allocation
(if any) and then dynamically allocate the amount
of space needed. Copy the source string and set
the new length and address in the destination
descriptor.

VS Copy source string to destination string up to
the limit of the descriptor MAXSTRLEN field
with no padding. Readjust the current length
(CURLEN) field to the actual number of bytes
copied.

Description
LIB$SCOPY_DXDX returns all condition values as a status; truncation is a qualified success
condition value (bit 0 set to 1).

In addition, an equivalent JSB entry point is available, with R0 containing the first argument and R1
containing the second.

Condition Values Returned
SS$_NORMAL Routine successfully completed. All characters in the input string

were copied to the destination string.
LIB$_STRTRU Routine successfully completed. String truncated. The destination

string could not contain all of the characters copied from the
source string.

LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This
usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

428

Chapter 2. LIB$ Reference

LIB$SCOPY_R_DX
LIB$SCOPY_R_DX — The Copy Source String Passed by Reference to Destination String routine
copies a source string passed by reference to a destination string, passed by descriptor.

Format
LIB$SCOPY_R_DX word-integer-source-length ,source-string ,destination-string

Corresponding JSB Entry Point
LIB$SCOPY_R_DX6

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
word-integer-source-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Length of the source string in bytes. The word-integer-source-length argument is the
address of an unsigned word that contains the length of the source string.

source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

Source string to be copied to the destination string by LIB$SCOPY_R_DX. The source-string
argument is the address of this source string.

destination-string

OpenVMS usage: char_string
type: character string
access: write only

429

Chapter 2. LIB$ Reference

mechanism: by descriptor

Destination string to which the source string is copied. The destination-string argument
contains the address of a descriptor pointing to this destination string.

Description
LIB$SCOPY_R_DX copies a source string, passed by reference, to a destination string, passed
by descriptor. It returns the status as a condition value. Truncation is a qualified success; LIB
$SCOPY_R_DX sets bit 0 of the condition value to 1.

The actions taken by LIB$SCOPY_R_DX depend on the descriptor class of the destination string.
The following table describes these actions for each descriptor class:

Descriptor Class Action
S, Z, SD, A, NCA Copy the source string. If needed, space fill or

truncate on the right.
D If the area specified by the destination descriptor

is large enough to contain the source string, copy
the source string and set the new length in the
destination descriptor.
If the area specified is not large enough, return
the previous space allocation, if any, and then
dynamically allocate the amount of space needed.
Copy the source string and set the new length and
address in the destination descriptor.

VS Copy source string to destination string up to the
limit of the descriptor's MAXSTRLEN field with
no padding. Readjust the string's current length
(CURLEN) field to the actual number of bytes
copied.

An equivalent JSB entry is available, with R0 being the first argument, R1 the second, and R2 the
third. The length argument is passed in bits 15:0 of R0.

Condition Values Returned
SS$_NORMAL Routine successfully completed. All characters in the input string

were copied to the destination string.
LIB$_STRTRU Routine successfully completed. String truncated. The destination

string could not contain all of the characters copied from the
source string.

LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This
usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

430

Chapter 2. LIB$ Reference

LIB$SCOPY_R_DX_64
LIB$SCOPY_R_DX_64 — The Copy Source String Passed by Reference to Destination String
routine copies a source string passed by reference to a destination string, passed by descriptor.

Format
LIB$SCOPY_R_DX_64 quad-integer-source-length ,source-string ,destination-string

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
quad-integer-source-length

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

Length of the source string in bytes. The quad-integer-source-length argument is the
address of an unsigned quadword that contains the length of the source string.

source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by reference

Source string to be copied to the destination string by LIB$SCOPY_R_DX_64. The source-
string argument is the address of this source string.

destination-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string to which the source string is copied. The destination-string argument
contains the address of a descriptor pointing to this destination string.

431

Chapter 2. LIB$ Reference

Description
LIB$SCOPY_R_DX_64 copies a source string, passed by reference, to a destination string, passed
by descriptor. It returns the status as a condition value. Truncation is a qualified success; LIB
$SCOPY_R_DX_64 sets bit 0 of the condition value to 1.

The actions taken by LIB$SCOPY_R_DX_64 depend on the descriptor class of the destination string.
The following table describes these actions for each descriptor class:

Descriptor Class Action
S, Z, SD, A, NCA Copy the source string. If needed, space fill or truncate on the

right.
D If the area specified by the destination descriptor is large enough

to contain the source string, copy the source string and set the new
length in the destination descriptor.

If the area specified is not large enough, return the previous space
allocation, if any, and then dynamically allocate the amount of
space needed. Copy the source string and set the new length and
address in the destination descriptor.

VS Copy source string to destination string up to the limit of the
descriptor’s MAXSTRLEN field with no padding. Readjust the
string’s current length (CURLEN) field to the actual number of
bytes copied.

Condition Values Returned
SS$_NORMAL Routine successfully completed. All characters in the input string

were copied to the destination string.
LIB$_STRTRU Routine successfully completed. String truncated. The destination

string could not contain all of the characters copied from the
source string.

LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This
usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$SET_LOGICAL
LIB$SET_LOGICAL — The Set Logical Name routine requests the calling process's command
language interpreter (CLI) to define or redefine a supervisor-mode process logical name. It provides
the same function as the DCL command DEFINE.

Format
LIB$SET_LOGICAL logical-name [,value-string] [,table] [,attributes] [,item-list]

432

Chapter 2. LIB$ Reference

Either the item-list or value-string argument must be specified. If both item-list and
value-string are specified, the value-string argument is ignored.

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
logical-name

OpenVMS usage: logical_name
type: character string
access: read only
mechanism: by descriptor

Logical name to be defined or redefined. The logical-name argument contains the address
of a descriptor pointing to this logical name string. The maximum length of a logical name is 255
characters. Note that logical names are case sensitive.

value-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Value to be given to the logical name. The value-string argument contains the address of
a descriptor pointing to this value string. The maximum length of a logical name value is 255
characters.

If omitted, an item list must be present to specify the values of the logical name.

table

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the table in which to create the logical name. The table argument contains the address of a
descriptor pointing to the logical name table. If no table is specified, LNM$PROCESS is used as the
default.

433

Chapter 2. LIB$ Reference

attributes

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Logical name or translation attributes. The attributes argument is the address of a longword bit
mask that contains the logical name or translation attributes.

LNM$M_CONFINE and LNM$M_NO_ALIAS are currently available logical name attributes. See
the description of the $CRELNM system service in the VSI OpenVMS System Services Reference
Manual: A–GETUAI for definitions of LNM$M_CONFINE and LNM$M_NO_ALIAS. If omitted, no
special logical name attribute is established.

If no item-list is specified, the translation attributes LNM$M_CONCEALED and LNM
$M_TERMINAL may be specified. See the description of the ASSIGN command in the VSI
OpenVMS DCL Dictionary for definitions of these attributes. If an item-list is specified, it will contain
the translation attributes for each equivalence string in the attribute.

item-list

OpenVMS usage: item_list_3
type: unspecified
access: read only
mechanism: by reference, array reference

Item list describing the equivalence names for this logical name. The item-list argument contains
the address of an array that contains this item list. If item-list is not specified, the logical name
will have only one value, as specified in the value-string argument. Item codes for use with this
item list are included in libraries supplied by VSI in module $LNMDEF.

Either value-string or item-list must be specified. If neither is specified, the LIB
$_INVARG error is produced. If both value-string and item-list are specified, the value-
string argument is ignored.

If item-list is specified, only logical name attributes are permitted. Translation attributes appear
in the item list.

The item-list argument is needed only when you want to create multiple equivalence strings for a
single logical name.

Description
If the optional table argument is defined, the logical name will be placed in the table specified by
the table argument; otherwise, the logical name is placed in the LNM$PROCESS table.

Unlike the system services $CRELOG and $CRELNM, LIB$SET_LOGICAL does not require the
caller to be executing in supervisor mode to define a supervisor-mode logical name. Supervisor-mode
logical names are not deleted when an image exits. A program can obtain the current value of any
logical name by calling the system service $TRNLNM. For more information on logical names, see
the VSI OpenVMS System Services Reference Manual.

434

Chapter 2. LIB$ Reference

This routine is supported for use with the DCL and MCR CLIs. If an image is run directly as a
subprocess or as a detached process, there is no CLI present to perform this function. In that case, the
error status LIB$_NOCLI is returned.

This routine does not support the DCL DEFINE and DEASSIGN commands' special side-effect of
opening and closing a process-permanent file if the logical name SYS$OUTPUT is specified.

See the VSI OpenVMS DCL Dictionary for a description of the DEFINE command.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_ACCVIO Access violation. The logical name or its value could not be read.
SS$_BADPARAM Bad argument.
SS$_BUFFEROVF Routine successfully completed; however, a buffer overflow

occurred.
SS$_INSFMEM Insufficient dynamic memory.
SS$_IVLOGNAM Invalid logical name. The logical name or its value contained more

than 255 characters.
SS$_IVLOGTAB Invalid logical name table.
SS$_NOPRIV No privileges for attempted operation.
SS$_SUPERSEDE Routine successfully completed; the previous definition of the

logical name was replaced.
SS$_TOOMANYLNAM Logical name translation exceeded allowed depth.
LIB$_INVARG Neither the value-string nor the item-list argument was

specified.)
LIB$_INVSTRDES Invalid string descriptor.
LIB$_NOCLI No CLI present to perform function. The calling process did not

have a CLI to perform the function or the CLI did not support the
request type. Note that an image run as a subprocess or detached
process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status which was
not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL command language
interpreter, please report the problem to your VSI support
representative.

Example
!+
! Initialize value for logical name MY_LOG
!-
SYMBOL$ = ’MY_LOG’
SETVAL$ = ’OFF’
CALL LIB$SET_LOGICAL (SYMBOL$, SETVAL$)
END

The BASIC program above sets the logical MY_LOG to OFF. This value can be displayed after the
program is run with SHOW LOGICAL as follows:

435

Chapter 2. LIB$ Reference

$ SHOW LOGICAL MY_LOG
"MY_LOG" = "OFF" (LNM$PROCESS_TABLE)

LIB$SET_SYMBOL
LIB$SET_SYMBOL — The Set Value of CLI Symbol routine requests the calling process's command
language interpreter (CLI) to define or redefine a CLI symbol.

Format
LIB$SET_SYMBOL symbol ,value-string [,table-type-indicator]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
symbol

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Name of the symbol to be defined or modified by LIB$SET_SYMBOL. The symbol argument is
the address of a descriptor pointing to this symbol string. If you redefine a previously defined CLI
symbol, the symbol value is modified to the new value that you provide.

value-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Value to be given to the symbol. The value-string argument is the address of a descriptor
pointing to this value string.

Trailing blanks are not removed from the value string before use. The maximum length of value-
string is 1024 characters. Integer values are not allowed; LIB$SET_SYMBOL is intended to set
string CLI symbols, not integer CLI symbols.

table-type-indicator

OpenVMS usage: longword_signed

436

Chapter 2. LIB$ Reference

type: longword integer (signed)
access: read only
mechanism: by reference

Indicator of the table that will contain the defined symbol. The table-type-indicator
argument is the address of a signed longword integer that is this table indicator.

If omitted, the local symbol table is used. The following are possible values for table-type-
indicator:

Symbolic Name Value Table Used
LIB$K_CLI_LOCAL_SYM 1 Local symbol table
LIB$K_CLI_GLOBAL_SYM 2 Global symbol table

Description
LIB$SET_SYMBOL requests the calling process's CLI to define or redefine a CLI symbol.

CLI symbols created using LIB$SET_SYMBOL may be inaccessible by other CLI commands. To
avoid this situation, make sure that your symbol names are alphanumeric and that the first character is
alphabetic. LIB$SET_SYMBOL is intended to set string CLI symbols, not integer CLI symbols.

LIB$K_CLI_LOCAL_SYM and LIB$K_CLI_GLOBAL_SYM are defined as global symbols and in
symbol libraries supplied by VSI (macro or module name $LIBCLIDEF).

This routine is supported for use with the DCL CLI. If used with the MCR CLI, the error status LIB
$_NOCLI will be returned. If an image is run directly as a subprocess or as a detached process, there
is no CLI present to perform this function. In this case, the error status LIB$_NOCLI is returned.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_AMBSYMDEF Ambiguous symbol definition. The symbol name you want to

define is ambiguous when compared with existing symbol names.
This condition might arise if abbreviated symbols have been
defined previously. See the VSI OpenVMS DCL Dictionary for
more information on abbreviated symbols.

LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This
usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSCLIMEM Insufficient CLI memory. The CLI could not get enough virtual
memory to assign another symbol. This condition may be caused
by having too many symbols defined; deleting some symbol
definitions may make enough room for the new symbol.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVARG Invalid argument. The value of table-type-indicator was
invalid or the length of value-string was greater than 1024
characters.

437

Chapter 2. LIB$ Reference

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$_INVSYMNAM Invalid symbol name. The length of symbol was greater than 255
characters or symbol did not begin with a letter.

LIB$_NOCLI No CLI present to perform function. The calling process did not
have a CLI to perform the function or the CLI did not support the
request type. Note that an image run as a subprocess or detached
process does not have a CLI.

LIB$_UNECLIERR Unexpected CLI error. The CLI returned an error status which was
not recognized. This error may be caused by use of a nonstandard
CLI. If this error occurs while using the DCL command language
interpreter, please report the problem to your VSI support
representative.

Example
!+
! Initialize value and symbol name
!-
SYMBOL$ = ’MY_SYM’
SETVAL$ = ’ON’
CALL LIB$SET_SYMBOL (SYMBOL$, SETVAL$)
END

The BASIC program above sets the symbol MY_SYM to ON. This value can be displayed after the
program is run with SHOW SYMBOL as follows:

 $ SHOW SYMBOL MY_SYM
 "MY_SYM" = "ON" (LNM$PROCESS_TABLE)

LIB$SFREE1_DD
LIB$SFREE1_DD — The Free One Dynamic String routine returns the dynamically allocated storage
for a dynamic string.

Format
LIB$SFREE1_DD descriptor-address

Corresponding JSB Entry Point
LIB$SFREE1_DD6

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

438

Chapter 2. LIB$ Reference

Argument
descriptor-address

OpenVMS usage: descriptor
type: quadword (unsigned)
access: modify
mechanism: by reference

Dynamic descriptor specifying the area to be deallocated. The descriptor-address argument is
the address of an unsigned quadword that is this descriptor. The descriptor is assumed to be dynamic
and its class field is not checked.

Description
Before a routine deallocates a dynamic descriptor, it must use LIB$SFREE1_DD or LIB
$SFREEN_DD to deallocate the string storage space specified by the dynamic descriptor. Otherwise,
string storage is not deallocated and your program can run out of memory.

This routine deallocates the described string space and flags the descriptor as describing no string at
all. The descriptor's POINTER and LENGTH fields contain zero (0).

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error.

LIB$SFREEN_DD
LIB$SFREEN_DD — The Free One or More Dynamic Strings routine returns one or more dynamic
strings to free storage.

Format
LIB$SFREEN_DD number-of-descriptors ,first-descriptor-array

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
number-of-descriptors

OpenVMS usage: longword_unsigned

439

Chapter 2. LIB$ Reference

type: longword (unsigned)
access: read only
mechanism: by reference

Number of adjacent descriptors freed by LIB$SFREEN_DD. The number-of-descriptors
argument contains the address of an unsigned longword that is this number. The deallocated area is
returned to free storage.

first-descriptor-array

OpenVMS usage: descriptor_array
type: quadword (unsigned)
access: modify
mechanism: by reference, array reference

First descriptor of an array of descriptors. The first-descriptor-array argument contains the
address of this first descriptor. The descriptors are assumed to be dynamic, and their class fields are
not checked.

The descriptor array must contain all 32-bit descriptors or all 64-bit descriptors. They cannot be
mixed.

Description
Before a routine that allocates space returns to its caller, it must use LIB$SFREE1_DD or LIB
$SFREEN_DD to deallocate the string storage space specified by any descriptors located in the stack.
Otherwise, space is not deallocated and your program could run out of virtual memory.

LIB$SFREEN_DD deallocates the described string space and flags each descriptor as describing no
string at all by setting the descriptor's POINTER and LENGTH fields to 0 (zero).

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error.

LIB$SGET1_DD
LIB$SGET1_DD — The Get One Dynamic String routine allocates dynamic virtual memory to the
string descriptor you specify.

Format
LIB$SGET1_DD word-integer-length ,descriptor-part

Corresponding JSB Entry Point
LIB$SGET1_DD_R6

440

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
word-integer-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Number of bytes of dynamic virtual memory to be allocated by LIB$SGET1_DD. The word-
integer-length argument is the address of an unsigned word that contains this number. The
amount of storage allocated may be rounded up automatically.

descriptor-part

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Descriptor of the dynamic string to which LIB$SGET1_DD allocates the dynamic virtual memory.
The descriptor-part argument contains the address of this descriptor.

The descriptor-part argument must contain the address of a dynamic string descriptor; LIB
$SGET1_DD returns an unpredictable result if any other type of descriptor is specified by this
argument.

The descriptor CLASS field is not checked but is set to dynamic (2). The LENGTH field is set to
word-integer-length, and the POINTER field points to the string area allocated.

Description
LIB$SGET1_DD is similar to LIB$SCOPY_DXDX except that no source string is copied. You can
write anything you want in the allocated area.

If descriptor-part already has dynamic memory allocated to it, but the amount allocated is less
than word-integer-length, that space is deallocated before LIB$SGET1_DD allocates new
space.

Condition Values Returned
SS$_NORMAL Routine successfully completed.

441

Chapter 2. LIB$ Reference

LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This
usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$SGET1_DD_64
LIB$SGET1_DD_64 — The Get One Dynamic String routine allocates dynamic virtual memory to
the string descriptor you specify.

Format
LIB$SGET1_DD_64 quad-integer-length ,descriptor-part

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
quad-integer-length

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: read only
mechanism: by reference

Number of bytes of dynamic virtual memory to be allocated by LIB$SGET1_DD_ 64. The quad-
integer-length argument is the address of an unsigned quadword that contains this number. The
amount of storage allocated can be rounded up automatically.

descriptor-part

OpenVMS usage: quadword_unsigned
type: quadword (unsigned)
access: write only
mechanism: by reference

Descriptor of the dynamic string to which LIB$SGET1_DD_64 allocates the dynamic virtual
memory. The descriptor-part argument contains the address of this descriptor.

The descriptor-part argument must contain the address of a dynamic string descriptor; LIB
$SGET1_DD_64 returns an unpredictable result if any other type of descriptor is specified by this
argument.

442

Chapter 2. LIB$ Reference

The descriptor CLASS field is not checked but is set to dynamic (2). The LENGTH field is set to
quad-integer-length, and the POINTER field points to the string area allocated.

Description
LIB$SGET1_DD_64 is similar to LIB$SCOPY_DXDX except that no source string is copied. You
can write anything you want in the allocated area.

If descriptor-part already has dynamic memory allocated to it, but the amount allocated is less
than quad-integer-length, that space is deallocated before LIB$SGET1_DD_64 allocates new
space.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$SHOW_TIMER
LIB$SHOW_TIMER — The Show Accumulated Times and Counts routine returns times and counts
accumulated since the last call to LIB$INIT_TIMER and displays them on SYS$OUTPUT. (LIB
$INIT_TIMER must be called prior to invoking this routine.) A user-supplied action routine may
change this default behavior.

Format
LIB$SHOW_TIMER [handle-address] [,code] [,user-action-procedure] [,user-argument-value]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
handle-address

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

443

Chapter 2. LIB$ Reference

Block of storage containing the value returned by a previous call to LIB$INIT_TIMER. The
handle-address argument is the address of an unsigned longword integer containing that value.

• If specified, the pointer must be the same value returned by a previous call to LIB$INIT_TIMER.

• If omitted, LIB$SHOW_TIMER will use a block of memory allocated by LIB$INIT_TIMER.

• If handle-address is omitted and LIB$INIT_TIMER has not been called previously, the
error LIB$_INVARG is returned. LIB$INIT_TIMER must be called prior to a call to LIB
$SHOW_TIMER. Note that the handle-address argument is the same as the context
argument used in the LIB$INIT_TIMER call.

LIB$SHOW_TIMER assumes that LIB$INIT_TIMER has been previously called, and that the results
of that call are stored either in a block pointed to by handle-address, or in the memory allocated
by LIB$INIT_TIMER.

code

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Integer specifying the statistic you want; if it is omitted or zero, all five statistics are returned on one
line. The code argument is the address of a signed longword integer containing the statistic code.

The following values are allowed for the code argument:

Value Description
1 Elapsed time
2 CPU time
3 Buffered I/O
4 Direct I/O
5 Page faults

user-action-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$SHOW_TIMER. The default action of LIB
$SHOW_TIMER is to write the results to SYS$OUTPUT. An action routine is useful if you want to
write the results to a file or, in general, anywhere other than SYS$OUTPUT.

The action routine returns either a success or failure condition value; this status is returned to the
calling program as the value of LIB$SHOW_TIMER.

user-argument-value

444

Chapter 2. LIB$ Reference

OpenVMS usage: user-arg
type: longword (unsigned) (on VAX systems)

quadword (unsigned) (on Alpha and I64 systems)
access: read only
mechanism: by value

A value to be passed to the action routine without interpretation. If omitted, LIB$SHOW_TIMER
passes a zero by value to the user routine.

Description
LIB$SHOW_TIMER returns the times and counts accumulated since the last call to LIB
$INIT_TIMER. By default, when neither code nor user-action-procedure is specified in the
call, LIB$SHOW_TIMER writes to SYS$OUTPUT a line giving the following information:

Shown on Line Description
ELAPSED = dddd hh:mm:ss.cc Elapsed real time
CPU = hhhh:mm:ss.cc Elapsed CPU time
BUFIO = nnnn Count of buffered I/O operations
DIRIO = nnnn Count of direct I/O operations
PAGEFAULTS = nnnn Count of page faults

Any one or all five statistics can be written to SYS$OUTPUT or passed to your user-supplied action
routine for other processing.

Call Format for an Action Routine
Action routine is a user-supplied routine called by LIB$SHOW_TIMER. The action routine is
used when you want to write results to anywhere other than SYS$OUTPUT. The action routine
is called only when you specify the user-action-procedure argument in the call to LIB
$SHOW_TIMER.

LIB$SHOW_TIMER calls the action routine using this format:

user-action-procedure out-str [,user-argument-value]

out-str

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Fixed-length string containing the statistics requested. The string is formatted exactly as it would be if
written to SYS$OUTPUT. The leading character is blank.

user-argument-value

OpenVMS usage: user-arg

445

Chapter 2. LIB$ Reference

type: longword (unsigned) (on VAX systems)

quadword (unsigned) (on Alpha and I64 systems)
access: read only
mechanism: by value

A value passed to LIB$SHOW_TIMER. The user argument is passed without interpretation to the
action routine.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. Either code or handle-address was

invalid.

Any condition values returned by LIB$PUT_OUTPUT or your action routine.

Example
PROGRAM SHOW_TIMER(INPUT,OUTPUT);

{+}
{ This Pascal example demonstrates how to use LIB$SHOW_TIMER.
{-}

 VAR
 RETURNED_STATUS : INTEGER;

 [EXTERNAL] FUNCTION LIB$INIT_TIMER(
 HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;
 [EXTERNAL] FUNCTION LIB$SHOW_TIMER(
 HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0;
 CODE : INTEGER;
 [IMMEDIATE,UNBOUND]
 ROUTINE ACTION_RTN(OUT_STR : [CLASS_S] PACKED ARRAY
 [L..U:INTEGER] OF CHAR;
 USER_ARG : INTEGER) := %IMMED 0;
 USER_ARG : INTEGER := %IMMED 0
) : INTEGER; EXTERNAL;
 [EXTERNAL] FUNCTION LIB$STOP(
 CONDITION_STATUS : [IMMEDIATE,UNSAFE] UNSIGNED;
 FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

 ROUTINE USER_ACTION_RTN(
 OUT_STR : [CLASS_S] PACKED ARRAY [L..U:INTEGER] OF CHAR;
 USER_ARG : INTEGER);

 BEGIN
 WRITELN(’User argument is ’,USER_ARG:1);
 WRITELN(OUT_STR);
 END;
BEGIN

446

Chapter 2. LIB$ Reference

{+}
{ Call LIB$INIT_TIMER to initialize RTL internal counters.
{-}

RETURNED_STATUS := LIB$INIT_TIMER;
IF NOT ODD(RETURNED_STATUS)
THEN
 LIB$STOP(RETURNED_STATUS);

{+}
{ Print a line of text to waste time.
{-}

WRITELN(’Spend time to acquire elapsed real time and page faults’);

{+}
{ Call LIB$SHOW_TIMER to display counters.
{-}

RETURNED_STATUS := LIB$SHOW_TIMER(,0,USER_ACTION_RTN,5);
END.

This Pascal program demonstrates how to call LIB$SHOW_TIMER. The output generated by this
Pascal example is as follows:

 $ RUN SHOW_TIMER
 Spend time to acquire elapsed real time and page faults
 User argument is 5
 ELAPSED: 0 00:00:00.44 CPU: 0:00:00.04
 BUFIO: 1 DIRIO: 0 FAULTS: 18

LIB$SHOW_VM
LIB$SHOW_VM — The Show Virtual Memory Statistics routine returns the statistics accumulated
from calls to LIBGET_VM/LIBFREE_VM and LIBGET_VM_PAGE/LIBFREE_VM_PAGE.
No support for arguments passed by 64-bit address reference or for use of 64-bit descriptors, if
applicable, is planned for this routine.

Format
LIB$SHOW_VM [code] [,user-action-procedure] [,user-specified-argument]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
code

447

Chapter 2. LIB$ Reference

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Code specifying any one of the statistics to be written to SYS$OUTPUT or passed to an action routine
for processing. The code argument is the address of a signed longword integer containing the statistic
code. This is an optional argument. If the statistic code is omitted or is zero, statistics for values 1, 2,
and 3 are returned on one line.

The following values are allowed for the code argument:

Value Statistic
0 Statistics for values 1, 2, and 3 are returned.
1 Number of successful calls to LIB$GET_VM.
2 Number of successful calls to LIB$FREE_VM.
3 Number of bytes allocated by LIB$GET_VM but

not yet deallocated by LIB$FREE_VM.
4 Statistics for values 5, 6, and 7 are returned.
5 Number of calls to LIB$GET_VM_PAGE.
6 Number of calls to LIB$FREE_VM_PAGE.
7 Number of VAX pages or Alpha pagelets

allocated by LIB$GET_VM_PAGE but not yet
deallocated by LIB$FREE_VM_PAGE.

user-action-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$SHOW_VM. By default, LIB$SHOW_VM returns
statistics to SYS$OUTPUT. An action routine is useful when you want to return statistics to a file
or, in general, to any place other than SYS$OUTPUT. The routine returns either a success or failure
condition value, which will be returned as the value of LIB$SHOW_VM.

For more information on the action routine, see the section called “Call Format for an Action
Routine” in the Description section.

user-specified-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

448

Chapter 2. LIB$ Reference

A 32-bit value to be passed directly to the action routine without interpretation. That is, the contents
of the argument list entry user-specified-argument are copied to the argument list entry for
user-action-procedure.

Description
LIB$SHOW_VM returns the statistics accumulated from calls to LIBGET_VM/LIBFREE_VM and
LIBGET_VM_PAGE/LIBFREE_VM_PAGE. By default, with neither code nor user-action-
procedure specified in the call, LIB$SHOW_VM writes a line giving the following information to
SYS$OUTPUT:

mmm calls to LIB$GET_VM, nnn calls to LIB$FREE_VM, ppp bytes still
 allocated

Optionally, any one of six statistics can be output to SYS$OUTPUT and/or the line of information can
be passed to a user-specified “action routine” for processing different from the default.

Call Format for an Action Routine
The action routine is a user-supplied routine that LIB$SHOW_VM calls if you specify the user-
action-procedure argument in the call to LIB$SHOW_VM.

The call format for an action routine is:

user-action-procedure resultant-string ,user-specified-argument

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Statistics supplied by LIB$SHOW_VM. The resultant-string argument is the address of
a descriptor pointing to an address into which LIB$SHOW_VM writes the statistics. The string is
formatted exactly as it would be if written to SYS$OUTPUT. The first character is a blank; carriage-
return/line-feed combinations are not included.

user-specified-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

The 32-bit value passed to LIB$SHOW_VM is passed to the action routine without interpretation. If
the user-specified-argument argument is omitted in the call to LIB$SHOW_VM, a zero is
passed by value to the user routine.

Condition Values Returned
SS$_NORMAL Routine successfully completed.

449

Chapter 2. LIB$ Reference

LIB$_INVARG Invalid arguments. This can be caused by an invalid value for
code.

Any condition values returned by LIB$PUT_OUTPUT or your action routine.

LIB$SHOW_VM_64
LIB$SHOW_VM_64 — The Show Virtual Memory Statistics routine returns the statistics
accumulated from calls to LIBGET_VM_64/LIBFREE_VM_64 and LIB$GET_VM_PAGE_ 64/
LIB$FREE_VM_PAGE_64.

Format
LIB$SHOW_VM_64 [code] [,user-action-procedure] [,user-specified-argument]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
code

OpenVMS usage: quadword_signed
type: quadword integer (signed)
access: read only
mechanism: by reference

Code specifying any one of the statistics to be written to SYS$OUTPUT or passed to an action
routine for processing. The code argument is the address of a signed quadword integer containing
the statistic code. This is an optional argument. If the statistic code is omitted or is zero, statistics for
values 1, 2, and 3 are returned on one line.

The following values are allowed for the code argument:

Value Static
0 Statistics for values 1, 2, and 3 are returned.
1 Number of successful calls to LIB$GET_VM_64.
2 Number of successful calls to LIB$FREE_VM_64.
3 Number of bytes allocated by LIB$GET_VM_64 but not yet

deallocated by LIB$FREE_VM_64.
4 Statistics for values 5, 6, and 7 are returned.
5 Number of calls to LIB$GET_VM_PAGE_64.
6 Number of calls to LIB$FREE_VM_PAGE_64.

450

Chapter 2. LIB$ Reference

Value Static
7 Number of Alpha or I64 pagelets allocated by LIB

$GET_VM_PAGE_64 but not yet deallocated by LIB
$FREE_VM_PAGE_64.

user-action-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$SHOW_VM_64. By default, LIB$SHOW_VM_64
returns statistics to SYS$OUTPUT. An action routine is useful when you want to return statistics to
a file or, in general, to any place other than SYS$OUTPUT. The routine returns either a success or
failure condition value, which will be returned as the value of LIB$SHOW_VM_64.

For more information on the action routine, see Call Format for an Action Routine in the Description
section.

user-specified-argument

OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

A 64-bit value to be passed directly to the action routine without interpretation. That is, the contents
of the argument list entry user-specified-argument are copied to the argument list entry for
user-action-procedure.

Description
LIB$SHOW_VM_64 returns the statistics accumulated from calls to LIB$GET_ VM_64/LIB
$FREE_VM_64 and LIB$GET_VM_PAGE_64/LIB$FREE_VM_PAGE_ 64. By default, with neither
code nor user-action-procedure specified in the call, LIB$SHOW_VM_64 writes a line
giving the following information to SYS$OUTPUT:

mmm calls to LIB$GET_VM_64, nnn calls to LIB$FREE_VM_64, ppp bytes still allocated

Optionally, any one of six statistics can be output to SYS$OUTPUT and/or the line of information can
be passed to a user-specified ‘‘action routine’’ for processing different from the default.

Call Format for an Action Routine
The action routine is a user-supplied routine that LIB$SHOW_VM_64 calls if you specify the user-
action-procedure argument in the call to LIB$SHOW_VM_64.

The call format for an action routine is:

user-action-procedure resultant-string ,user-specified-argument

451

Chapter 2. LIB$ Reference

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Statistics supplied by LIB$SHOW_VM_64. The resultant-string argument is the address of a
descriptor pointing to an address into which LIB$SHOW_ VM_64 writes the statistics. The string is
formatted exactly as it would be if written to SYS$OUTPUT. The first character is a blank; carriage-
return/line-feed combinations are not included.

user-specified-argument

OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

The 64-bit value passed to LIB$SHOW_VM_64 is passed to the action routine without interpretation.
If the user-specified-argument argument is omitted in the call to LIB$SHOW_VM_64, a
zero is passed by value to the user routine.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid arguments. This can be caused by an invalid value for

code.

Any condition values returned by LIB$PUT_OUTPUT or your action routine.

LIB$SHOW_VM_ZONE
LIB$SHOW_VM_ZONE — The Return Information About a Zone routine returns formatted
information about a zone in the 32-bit virtual address space, detailing such information as the zone's
name, characteristics, and areas, and then passes the information to the specified or default action
routine. No support for arguments passed by 64-bit address reference or for use of 64-bit descriptors,
if applicable, is planned for this routine.

Format
LIB$SHOW_VM_ZONE zone-id [,detail-level] [,user-action-procedure] [,user-arg]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only

452

Chapter 2. LIB$ Reference

mechanism: by value

Arguments
zone-id

OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned longword containing this
identifier. Use zero to indicate the 32-bit default zone.

detail-level

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

An identifier code specifying the level of detail required by the user. The detail-level argument
is the address of a signed longword containing this code. The default is minimal information. The
following are valid values for detail-level:

0 zone-id and name
1 zone-id, name, algorithm, flags, and size

information
2 zone-id, name, algorithm, flags, size

information, cache information, and area
summary

3 zone-id, name, algorithm, flags, size
information, cache information, area summary,
and queue validation

user-action-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

Optional user-supplied action routine called by LIB$SHOW_VM_ZONE. By default, LIB
$SHOW_VM_ZONE prints statistics to SYS$OUTPUT by means of LIB$PUT_OUTPUT. An action
routine is useful when you want to return statistics to a file or, in general, to any location other than
SYS$OUTPUT. If user-action-procedure fails, LIB$SHOW_VM_ZONE terminates and
returns a failure code. Success codes are ignored.

For more information on the action routine, see the Description section.

453

Chapter 2. LIB$ Reference

user-arg

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

Optional 32-bit value to be passed directly to the action routine without interpretation. That is, the
contents of the argument list entry user-arg are copied to the argument list entry for user-
action-procedure.

Description
LIB$SHOW_VM_ZONE returns formatted information about the specified zone and passes it to
the action routine. The detail-level argument determines the degree of detail of the zone
information returned, and this information is formatted into a readable display and passed to either a
user action routine or to LIB$PUT_OUTPUT.

The action routine is a user-supplied routine that LIB$SHOW_VM_ZONE calls if you specify
the action-routine argument in the call to LIB$SHOW_VM_ZONE. If you do not specify
action-routine, the information is passed to LIB$PUT_OUTPUT for output to SYS$OUTPUT.
The call format for an action routine is as follows:

action-routine string, user-arg

Arguments
string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Information supplied by LIB$SHOW_VM_ZONE. The string argument is the address of
a descriptor pointing to an address into which LIB$SHOW_VM_ZONE writes the requested
information. The string is formatted exactly as it would be if written to SYS$OUTPUT.

user-arg

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

The 32-bit value passed to LIB$SHOW_VM_ZONE is passed to the action routine without
interpretation. If the user-arg argument is omitted in the call to LIB$SHOW_VM_ZONE, a zero is
passed by value to the user routine.

If no zone-id is specified (0 is passed), the 32-bit default zone is used.

454

Chapter 2. LIB$ Reference

You must ensure that you have exclusive access to the zone while information is being displayed.
Results are unpredictable and may be inconsistent if another thread of control modifies the zone while
this routine is displaying data or scanning control blocks.

While scanning the queues and free lists, this routine may detect errors.

If the lookaside list summary discovers a block improperly linked into the list so that the list appears
disjointed, the count of the number of blocks of that particular size will be displayed as asterisks.

Table 2.7 lists error and warning messages that can be displayed during the lookaside list and area free
list scans. The format is:

**** ERROR – error description ****
**** WARNING – warning description ****

Table 2.7. LIB$SHOW_VM_ZONE Error and Warning Messages

Error Message Description
Invalid block size The size of the block is either not large enough

to contain the necessary queue links or is
unreasonably large. The size field has been
corrupted. Therefore, the size of the block is
reduced so the block to be dumped fits within the
area.

Block not owned by zone The current block is not within a section of the
virtual address space controlled by this zone. It is
possibly attempting to free a block not originally
allocated from this zone.

Block extends past the end of area; truncated The end of the block is not in the area from which
the block has been allocated. The size field may
have been corrupted. Therefore, the size of the
block is reduced so the block to be dumped fits
within the area.

Block extends into “unallocated” block, truncated The end of the block extends past the allocated
section of the area. The size field may have been
corrupted. Therefore, the size of the block is
reduced so the block to be dumped fits within the
area.

Current block not completely accessible The current block extends into a nonexistent part
of the virtual address space. The size field may
have been corrupted. Therefore, the size of the
block is reduced so the block to be dumped fits
within the area.

Back link does not return to previous block The back link in a doubly linked list does not
point to the previous block.

Forward link does not point to valid address The forward link of current block points to a
location that is not in the virtual address space.

Free-fill mismatch One of the locations filled when the block was
freed has been modified.

Boundary tag mismatch One of the boundary tags of the block is not valid.
Warning Description

455

Chapter 2. LIB$ Reference

Forward link of current block may not be valid The back link of the block pointed to by the
forward link of the current block does not point to
the current block.

Block at nnnnnnnn is not accessible The block at location nnnnnnnn could not be
accessed and cannot be dumped.

Block truncated to nnnnnnnn bytes to prevent
ACCVIO

The block to be dumped extends into the
inaccessible part of the address space. The size
of the block is reduced so that the block to be
dumped fits within the accessible addresses.

When a block forward link is suspected of pointing to an invalid next block, the information from the
next block is replaced by asterisks. The following is a sample error display:

 **** ERROR – forward link does not point to valid address ****
 **** ERROR – forward-link does not point to valid address ****
 Link Analysis for Current Block:
 Previous Current Next
 -------- -------- --------
 Block adr : 0014B270 0014C200 6B6E754A

 Forw link (abs): 0014C200 6B6E754A ********

 Block size = 32
 Block contents:

 00000000 00000000 6B6E754A 00000020 ...Junk........ 00000 0014C200
 0014B270 00000008 00000000 00000000p 00010 0014C210

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone. Routine was called with a zone-id that does not

represent a valid VM zone.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid argument.
LIB$_INVOPEZON Invalid operation for zone; invalid use of unspecified user zone

action routine.
LIB$_NOTFOU Could not find another VM zone (alternate success status).
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by the user-formatted output action routine or LIB$PUT_OUTPUT.

Examples
1. #include <lib$routines.h>

main()
{
 long zone_id = 0;
 long detail_level = 1;

456

Chapter 2. LIB$ Reference

 LIB$SHOW_VM_ZONE(&zone_id, &detail_level);
}

An example of the output generated by this C program using detail-level 1 is as follows:

Zone Id = 7FB96160, Zone name = "DEFAULT_ZONE"
 Algorithm = LIB$K_VM_FIRST_FIT

 Flags = 00000020
 LIB$M_VM_EXTEND_AREA

 Initial size = 124 pages Current size = 0 pages in 0
 areas
 Extend size = 128 pages Page limit = None

 Requests are rounded up to a multiple of 8 bytes,
 naturally aligned on 8 byte boundaries

 0 bytes have been freed and not yet reallocated

 72 bytes are used for zone and area control blocks, or 100.0%
 overhead

2. #include <descrip.h>
#include <libvmdef.h>
#include <lib$routines.h>
#include <stdlib.h>

main()
{
 long zone_id;
 long algorithm = LIB$K_VM_QUICK_FIT;
 long algorithm_arg = 16;
 long flags = LIB$M_VM_FREE_FILL0 | LIB$M_VM_EXTEND_AREA;
 long detail_level = 3;
 $DESCRIPTOR(zone_name, "Mix of lookaside list and area blocks");
 int i;
#define NUM_BLOCKS 250
 char *blocks[NUM_BLOCKS];
 long sizes[NUM_BLOCKS];

 LIB$CREATE_VM_ZONE(&zone_id, &algorithm, &algorithm_arg, &flags,
 0, 0, 0, 0, 0, 0, /* Omitted arguments */
 &zone_name, 0, 0);

 for (i = 0; i < NUM_BLOCKS; i++)
 {
 sizes[i] = rand() % 300 + 9;
 LIB$GET_VM(&sizes[i], &blocks[i], &zone_id);
 }

 for (i = 0; i < NUM_BLOCKS; i++)
 LIB$FREE_VM(&sizes[i], &blocks[i], &zone_id);

 LIB$SHOW_VM_ZONE(&zone_id, &detail_level);
}

An example of the output generated by this C program using detail-level 3 is as follows:

457

Chapter 2. LIB$ Reference

Zone Id = 00045000, Zone name = "Mix of lookaside list and area blocks"

 Algorithm = LIB$K_VM_QUICK_FIT with 16 Lookaside Lists ranging from
 a minimum blocksize of 8, to a maximum blocksize of 128

 Flags = 00000028
 LIB$M_VM_FREE_FILL0
 LIB$M_VM_EXTEND_AREA
 Initial size = 16 pages Current size = 96 pages in 1 area
 Extend size = 16 pages Page limit = None

 Requests are rounded up to a multiple of 8 bytes,
 naturally aligned on 8 byte boundaries

 41512 bytes have been freed and not yet reallocated

 312 bytes are used for zone and area control blocks, or 0.6%
 overhead

 Quick Fit Lookaside List Summary:

 List Block Number of
 number size blocks
 ------ ---------- ----------
 2 16 7
 3 24 4
 4 32 4
 5 40 6
 6 48 5
 7 56 6
 8 64 6
 9 72 5
 10 80 6
 11 88 3
 12 96 8
 13 104 9
 14 112 9
 15 120 5
 16 128 10

 Area Summary:

 First Last Pages Bytes not yet
 address address assigned allocated
 -------- -------- ---------- -------------
 00045800 000517FF 96 7640

 Scanning Lookaside Lists in Zone Control Block
 Scanning Free List for Area at 00045800
 Number of blocks = 62, Min blocksize = 136, Max blocksize = 3160

LIB$SHOW_VM_ZONE_64
LIB$SHOW_VM_ZONE_64 — The Return Information About a Zone routine returns formatted
information about a zone in the 64-bit virtual address space, detailing such information as the zone’s

458

Chapter 2. LIB$ Reference

name, characteristics, and areas, and then passes the information to the specified or default action
routine.

Format
LIB$SHOW_VM_ZONE_64 zone-id [,detail-level] [,user-action-procedure] [,user-arg]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier. The zone-id argument is the address of an unsigned quadword containing this
identifier. Use zero to indicate the 64-bit default zone.

detail-level

OpenVMS usage: quadword_signed
type: quadword (signed)
access: read only
mechanism: by reference

An identifier code specifying the level of detail required by the user. The detail-level argument
is the address of a signed quadword containing this code. The default is minimal information. The
following are valid values for detail-level:

0 zone-id and name
1 zone-id, name, algorithm, flags, and size information
2 zone-id, name, algorithm, flags, size information, cache

information, and area summary
3 zone-id, name, algorithm, flags, size information, cache

information, area summary, and queue validation

user-action-procedure

OpenVMS usage: procedure

459

Chapter 2. LIB$ Reference

type: procedure value
access: function call (before return)
mechanism: by value

Optional user-supplied action routine called by LIB$SHOW_VM_ZONE_64. By default, LIB
$SHOW_VM_ZONE_64 prints statistics to SYS$OUTPUT by means of LIB$PUT_OUTPUT. An
action routine is useful when you want to return statistics to a file or, in general, to any location other
than SYS$OUTPUT. If user-action-procedure fails, LIB$SHOW_VM_ZONE_64 terminates
and returns a failure code. Success codes are ignored.

For more information on the action routine, see the Description section.

user-arg

OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

Optional 64-bit value to be passed directly to the action routine without interpretation. That is, the
contents of the argument list entry user-arg are copied to the argument list entry for user-
action-procedure.

Description
LIB$SHOW_VM_ZONE_64 returns formatted information about the specified zone and passes it
to the action routine. The detail-level argument determines the degree of detail of the zone
information returned, and this information is formatted into a readable display and passed to either a
user action routine or to LIB$PUT_OUTPUT.

The action routine is a user-supplied routine that LIB$SHOW_VM_ZONE_64 calls if you specify
the action-routine argument in the call to LIB$SHOW_VM_ ZONE_64. If you do not specify
action-routine, the information is passed to LIB$PUT_OUTPUT for output to SYS$OUTPUT.
The call format for an action routine is as follows:

action-routine string, user-arg

Arguments
string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Information supplied by LIB$SHOW_VM_ZONE_64. The string argument is the address of
a descriptor pointing to an address into which LIB$SHOW_VM_ ZONE_64 writes the requested
information. The string is formatted exactly as it would be if written to SYS$OUTPUT.

460

Chapter 2. LIB$ Reference

user-arg

OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by value

The 64-bit value passed to LIB$SHOW_VM_ZONE_64 is passed to the action routine without
interpretation. If the user-arg argument is omitted in the call to LIB$SHOW_VM_ZONE_64, a
zero is passed by value to the user routine.

If no zone-id is specified (0 is passed), the 64-bit default zone is used.

You must ensure that you have exclusive access to the zone while information is being displayed.
Results are unpredictable and may be inconsistent if another thread of control modifies the zone while
this routine is displaying data or scanning control blocks.

While scanning the queues and free lists, this routine may detect errors.

If the lookaside list summary discovers a block improperly linked into the list so that the list appears
disjointed, the count of the number of blocks of that particular size will be displayed as asterisks.

Table 2.8 lists error and warning messages that may be displayed during the lookaside list and area
free list scans. The format is as follows:

**** ERROR -- error description ****
**** WARNING -- warning description ****

Table 2.8. LIB$SHOW_VM_ZONE_64 Error and Warning Messages

Error Message Description
Invalid block size The size of the block is either not large enough

to contain the necessary queue links or is
unreasonably large. The size field has been
corrupted. Therefore, the size of the block is
reduced so the block to be dumped fits within the
area.

Block not owned by zone The current block is not within a section of the
virtual address space controlled by this zone. It
may be attempting to free a block not originally
allocated from this zone.

Block extends past the end of area; truncated The end of the block is not in the area from which
the block has been allocated. The size field may
have been corrupted. Therefore, the size of the
block is reduced so the block to be dumped fits
within the area.

Block extends into ‘‘unallocated’’ block,
truncated

The end of the block extends past the allocated
section of the area. The size field may have been
corrupted. Therefore, the size of the block is
reduced so the block to be dumped fits within the
area.

461

Chapter 2. LIB$ Reference

Error Message Description
Current block not completely accessible The current block extends into a nonexistent part

of the virtual address space. The size field may
have been corrupted. Therefore, the size of the
block is reduced so the block to be dumped fits
within the area.

Back link does not return to previous block The back link in a doubly linked list does not
point to the previous block.

Forward link does not point to valid address The forward link of current block points to a
location that is not in the virtual address space.

Free-fill mismatch One of the locations filled when the block was
freed has been modified.

Boundary tag mismatch One of the boundary tags of the block is not valid.

Warning Description
Forward link of current block may not be valid The back link of the block pointed to by the

forward link of the current block does not point to
the current block.

Block at nnnnnnnn is not accessible The block at location nnnnnnnn could not be
accessed and cannot be dumped.

Block truncated to nnnnnnnn bytes to prevent
ACCVIO

The block to be dumped extends into the
inaccessible part of the address space. The size
of the block is reduced so that the block to be
dumped fits within the accessible addresses.

When a block forward link is suspected of pointing to an invalid next block, the information from the
next block is replaced by asterisks. The following is a sample error display:

**** ERROR -- forward-link does not point to valid address ****
Link Analysis for Current Block:
 Previous Current Next
 -------- -------- --------
 Block adr : 00000001C0000050 00000001C0002040 4B4E556A6B6E754A

 Forw link (abs): 00000001C0002040 4B4E556A6B6E754A ****************

Block size = 64

Block contents:

4B4E556A 6B6E754A 00000000 00000040 @...JunkjUNK 00000 00000001C0002040
00000000 00000000 00000000 00000000 00010 00000001C0002050

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone. Routine was called with a zone-id that does not

represent a valid VM zone.
LIB$_INVARG Invalid argument.

462

Chapter 2. LIB$ Reference

LIB$_INVOPEZON Invalid operation for zone; invalid use of unspecified user zone
action routine.

LIB$_NOTFOU Could not find another VM zone (alternate success status).
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by the user-formatted output action routine or LIB$PUT_OUTPUT.

Examples
1. #include <lib$routines.h>

main()
{
 __int64 zone_id = 0;
 __int64 detail_level = 1;

 LIB$SHOW_VM_ZONE_64(&zone_id, &detail_level);
}

An example of the output generated by this C program using detail-level 1 is as follows:

Zone Id = 0000000000020040, Zone name = "DEFAULT_ZONE"
 Algorithm = LIB$K_VM_FIRST_FIT

 Flags = 00000020
 LIB$M_VM_EXTEND_AREA

 Initial size = 124 pages Current size = 0 pages in 0 areas
 Extend size = 128 pages Page limit = None

 Requests are rounded up to a multiple of 16 bytes,
 naturally aligned on 16 byte boundaries

 0 bytes have been freed and not yet reallocated

 128 bytes are used for zone and area control blocks, or 100.0%
 overhead

2. #include <descrip.h>
#include <libvmdef.h>
#include <lib$routines.h>
#include <stdlib.h>

#pragma pointer_size(long)

main()
{
 __int64 zone_id;
 __int64 algorithm = LIB$K_VM_QUICK_FIT;
 __int64 algorithm_arg = 16;
 __int64 flags = LIB$M_VM_FREE_FILL0 | LIB$M_VM_EXTEND_AREA;
 __int64 detail_level = 3;
 $DESCRIPTOR(zone_name, "Lookaside list and area blocks");
 int i;
#define NUM_BLOCKS 250

463

Chapter 2. LIB$ Reference

 char *blocks[NUM_BLOCKS];
 __int64 sizes[NUM_BLOCKS];
 LIB$CREATE_VM_ZONE_64(&zone_id, &algorithm, &algorithm_arg, &flags,
 0, 0, 0, 0, 0, 0, /* Omitted arguments */
 &zone_name, 0, 0);
 for (i = 0; i < NUM_BLOCKS; i++)
 {
 sizes[i] = rand() % 400 + 17;
 LIB$GET_VM_64(&sizes[i], &blocks[i], &zone_id);
 }
 for (i = 0; i < NUM_BLOCKS; i++)
 LIB$FREE_VM_64(&sizes[i], &blocks[i], &zone_id);
 LIB$SHOW_VM_ZONE_64(&zone_id, &detail_level);
}

An example of the output generated by this C program using detail-level 3 is as follows:

Zone Id = 00000001C0002000, Zone name = "Lookaside list and area blocks"
 Algorithm = LIB$K_VM_QUICK_FIT with 16 Lookaside Lists ranging from
 a minimum blocksize of 16, to a maximum blocksize of
 256

 Flags = 00000028
 LIB$M_VM_FREE_FILL0
 LIB$M_VM_EXTEND_AREA

 Initial size = 16 pages Current size = 112 pages in 1 area
 Extend size = 16 pages Page limit = None

 Requests are rounded up to a multiple of 16 bytes,
 naturally aligned on 16 byte boundaries

 56992 bytes have been freed and not yet reallocated

 576 bytes are used for zone and area control blocks, or 0.9%
 overhead

 Quick Fit Lookaside List Summary:

 List Block Number of
 number size blocks
 ------ ---------- ----------
 2 32 6
 3 48 7
 4 64 7
 5 80 14
 6 96 6
 7 112 12
 8 128 14
 9 144 14
 10 160 7
 11 176 14
 12 192 8
 13 208 9
 14 224 8
 15 240 12
 16 256 10

464

Chapter 2. LIB$ Reference

 Area Summary:

 First Last Pages Bytes not yet
 address address assigned allocated
 -------- -------- ---------- -------------
 00000001C0004000 00000001C0011FFF 112 352

Scanning Lookaside Lists in Zone Control Block
Scanning Free List for Area at 00000001C0004000
 Number of blocks = 63, Min blocksize = 272, Max blocksize = 1360

LIB$SIGNAL
LIB$SIGNAL — The Signal Exception Condition routine generates a signal that indicates that an
exception condition has occurred in your program. If a condition handler does not take corrective
action and the condition is severe, then your program will exit.

Format
LIB$SIGNAL condition-value [,condition-argument...] [,condition-value-n [,condition-
argument-n...]...]

Returns
None.

Arguments
condition-value

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS 32-bit condition value. The condition-value argument is an unsigned longword that
contains this condition value.

The VSI OpenVMS Programming Concepts Manual explains the format of an OpenVMS condition
value.

condition-argument

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

As many arguments as are required to process the exception specified by condition-value. Note
that these arguments are also used as FAO (formatted ASCII output) arguments to format a message.

465

Chapter 2. LIB$ Reference

The VSI OpenVMS Programming Concepts Manual explains the message format.

condition-value-n

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS 32-bit condition value. The optional condition-value-n argument is an unsigned
longword that contains this condition value. The calling routine can specify additional conditions to
be processed by specifying condition-value-2 through condition-value-n, with each
condition value followed by any arguments required to process the condition specified. However, the
total number of arguments in the call to LIB$SIGNAL must not exceed 253.

The VSI OpenVMS Programming Concepts Manual explains the format of an OpenVMS condition
value.

condition-argument-n

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

As many arguments as are required to create the message reporting the exception specified by
condition-value-n.

The VSI OpenVMS Programming Concepts Manual explains the message format.

Description
A routine calls LIB$SIGNAL to indicate an exception condition or output a message rather than
return a status code to its caller.

LIB$SIGNAL creates a signal argument vector that contains all the arguments passed to it, with the
PC and PSL (VAX) or PS (Alpha or I64) appended to it. LIB$SIGNAL also creates a mechanism
argument vector that contains the state of the process at the time of the exception. LIB$SIGNAL then
searches for a condition handler to process the exception condition.

LIB$SIGNAL first examines the primary and secondary exception vectors, then scans the stack,
beginning with the most recent frame, searching for declared condition handlers. LIB$SIGNAL calls,
in succession, each condition handler it finds, until a condition handler

• Returns a continue code

• Calls system service $UNWIND

• Calls LIB$STOP

466

Chapter 2. LIB$ Reference

LIB$SIGNAL uses each frame's saved frame pointer (FP) to chain back through the stack frames. The
VSI OpenVMS Programming Concepts Manual provides additional information on this process.

The condition handler can do one of the following:

• Successfully process the condition and return a continue code (that is, any success completion
code with bit 0 set to 1). In this case, LIB$SIGNAL returns to its caller, which should be prepared
to continue execution.

• Fail to process the condition. The handler then returns a resignal code (that is, any completion
code with bit 0 set to 0) and LIB$SIGNAL scans the stack for the next specified handler.

• Dismiss the signal and system service $UNWIND to cause the Condition Handling Facility (CHF)
to perform some call stack cleanup and resume program execution (at a level specified by the
condition handler) up on the call stack.

LIB$SIGNAL can, as necessary, scan up to 65,536 previous stack frames and then finally examine the
last-chance exception vector. If called, the last-chance exception handler formats a message based on
the condition codes and arguments contained within the signal argument vector.

Condition Values Returned
None.

Examples
1. C+

C This Fortran example program demonstrates the use of
C LIB$SIGNAL.
C
C This program defines SS$... signals and then calls LIB$SIGNAL
C passing the access violation code as the argument.
C-

 INCLUDE ’($SSDEF)’
 CALL LIB$SIGNAL (%VAL(SS$_ACCVIO))
 END

In Fortran, this code fragment signals the standard system message ACCESS VIOLATION.

The output generated by this Fortran program on an OpenVMS Alpha system is as follows:

%SYSTEM-F-ACCVIO, access violation, reason mask=10, virtual
 address=03C00020,_
 PC=00000000, PS=08000000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC
 abs PC
D2$MAIN D2$MAIN 683 00000010
 00000410

2. ;+
; This VAX MACRO example program demonstrates the use of LIB$SIGNAL
; by forcing an access violation to be signaled.
;-

467

Chapter 2. LIB$ Reference

 .EXTRN SS$_ACCVIO ; Declare external symbol
 .ENTRY START,0
 PUSHL #SS$_ACCVIO ; Condition value symbol
 ; for access violation
 CALLS #1, G^LIB$SIGNAL ; Signal the condition
 RET
.END START
 .EXTRN SS$_ACCVIO ; Declare external symbol
 PUSHL #SS$_ACCVIO ; Condition value symbol
 ; for access violation
 CALLS #1, LIB$SIGNAL ; Signal the condition

This example shows the equivalent VAX MACRO code. The output generated by this program on
a OpenVMS VAX system is as follows:

%SYSTEM-F-ACCVIO, access violation, reason mask=0F, virtual
 address=03C00000,_
 PC=00000000, PSL=00000000
%TRACE-F-TRACEBACK, symbolic stack dump follows
module name routine name line rel PC
 abs PC
.MAIN. START 0000000F
 0000020F

3. #include <ssdef.h>
#include <lib$routines.h>

main()
{
 /*
 ** lib$signal will append the PC/PS to argument list,
 ** so pass only first two FAO arguments to lib$signal
 */

 lib$signal(SS$_ACCVIO, 4, -559038737); /* Shouldn’t return */
 return (SS$_NORMAL); /* Exit if it does */
}

This example shows the equivalent C code. The output generated by this program on an
OpenVMS Alpha system is as follows:

%SYSTEM-F-ACCVIO, access violation, reason mask=04, virtual
 address=DEADBEEF,
 PC=00020034, PS=0000001B
%TRACE-F-TRACEBACK, symbolic stack dump follows
 Image Name Module Name Routine Name Line Number rel PC
 abs PC
 LIB$SIGNAL 0 00010034
 00020034
 LIB$SIGNAL 0 000100A0
 000200A0
 0 82F01158
 82F01158
 0 7FF190D0
 7FF190D0

4. #include <stdio>

468

Chapter 2. LIB$ Reference

#include <ssdef>
#include <tlib$routines>

/* Condition handler:
 */
/*
 */
/* This condition handler will print out the signal array, based on
 */
/* the argument count in the first element of the array. The error
 */
/* is resignalled and should be picked up by the last chance condition
 */
/* handler which will format and print error messages and terminate the
 */
/* program.
 */
/*
 */
int handler (int* sig, int*mech)
{
 int i;
 printf ("*** Caught signal:\n\n");
 for (i = 0; i <= sig[0]; i++)
 {
 printf (" %08X\n", sig[i]);
 }
 printf ("\n");
 return SS$_RESIGNAL;
}

/* Main program:
 */
/*
 */
/* Signal errors:
 */
/*
 */
/* SS$_BADPARAM has no arguments
 */
/* SS$_ACCVIO has 4 arguments, the last two (PC and PS) are
 */
/* automatically provided by LIB$SIGNAL.
 */
/*
 */
main ()
{
 lib$establish (handler);
 lib$signal (SS$_BADPARAM, SS$_ACCVIO, 2, 0xFACE);
}

This C example demonstrates the use of a condition handler to capture the signal generated by LIB
$SIGNAL. The output is as follows:

$ CC SIGNAL.C
$ LINK SIGNAL

469

Chapter 2. LIB$ Reference

$ RUN SIGNAL
*** Caught signal:
 00000006
 00000014
 0000000C
 00000002
 0000FACE
 000201A0
 0000001B

%SYSTEM-F-BADPARAM, bad parameter value
-SYSTEM-F-ACCVIO, access violation, reason mask=02,
virtual address=000000000000FACE, PC=00000000000201A0, PS=0000001B
%TRACE-F-TRACEBACK, symbolic stack dump follows
 image module routine line rel PC abs PC
 SIGNAL SIGNAL main 5961 00000000000001A0
 00000000000201A0
 SIGNAL SIGNAL __main 0 0000000000000050
 0000000000020050
 0 FFFFFFFF82204914
 FFFFFFFF82204914

LIB$SIG_TO_RET
LIB$SIG_TO_RET — The Signal Converted to a Return Status routine converts any signaled
condition value to a value returned as a function. The signaled condition is returned to the caller of
the user routine that established the handler that is calling LIB$SIG_TO_RET. This routine may be
established as or called from a condition handler.

Format
LIB$SIG_TO_RET signal-arguments ,mechanism-arguments

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
signal-arguments

OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the address of an array that is
this signal argument vector stack.

470

Chapter 2. LIB$ Reference

See the VSI OpenVMS Programming Concepts Manual for a description of the signal argument
vector.

mechanism-arguments

OpenVMS usage: structure
type: unspecified
access: read only
mechanism: by reference

Mechanism arguments vector. The mechanism-arguments argument contains the address of a
structure that is this mechanism argument vector stack.

See the VSI OpenVMS Programming Concepts Manual for a description of the mechanism argument
vector.

Description
LIB$SIG_TO_RET is called with the argument list that was passed to a condition handler by the
OpenVMS Condition Handling Facility. The signaled condition is converted to a value returned to
the routine that called the routine that established the handler. That action is performed by unwinding
the stack to the caller of the establisher of the condition handler. The condition code is returned as
the value in R0. See the VSI OpenVMS Programming Concepts Manual for more information on
condition handling.

LIB$SIG_TO_RET causes the stack to be unwound to the caller of the routine that established the
handler which was called by the signal.

Condition Values Returned

SS$_NORMAL Routine successfully completed; SS$_UNWIND completed.
Otherwise, the error code from SS$_UNWIND is returned.

Example
C+
C This Fortran example demonstrates how to use LIB$SIG_TO_RET.
C
C This function subroutine inverts each entry in an array. That is,
C a(i,j) becomes 1/a(i,j). The subroutine has been declared as an integer
C function so that the status of the inversion may be returned. The status
C should be success, unless one of the a(i,j) entries is zero. If one of
C the a(i,j) = 0, then 1/a(i,j) is division by zero. This division by zero
C does not cause a division by zero error, rather, the routine will return
C signal a failure.
C-

 INTEGER*4 FUNCTION FLIP(A,N)
 DIMENSION A(N,N)
 EXTERNAL LIB$SIG_TO_RET
 CALL LIB$ESTABLISH (LIB$SIG_TO_RET)

471

Chapter 2. LIB$ Reference

 FLIP = .TRUE.

C+
C Flip each entry.
C-

 DO 1 I = 1, N
 DO 1 J = 1, N
1 A(I,J) = 1.0/A(I,J)
 RETURN
 END

C+
C This is the main code.
C-

 INTEGER STATUS, FLIP
 REAL ARRAY_1(2,2),ARRAY_2(3,3)
 DATA ARRAY_1/1,2,3,4/,ARRAY_2/1,2,3,5,0,5,6,7,2/
 CHARACTER*32 TEXT(2),STRING
 DATA TEXT(1)/’ This array could be flipped. ’/,
 1 TEXT(2)/’ This array could not be flipped.’/

 STRING = TEXT(1)
 STATUS = FLIP(ARRAY_1,2)
 IF (.NOT. STATUS) STRING = TEXT(2)
 TYPE ’(a)’, STRING

 STRING = TEXT(1)
 STATUS = FLIP(ARRAY_2,3)
 IF (.NOT. STATUS) STRING = TEXT(2)
 TYPE ’(a)’, STRING

 END

This Fortran example program inverts each entry in an array. The output generated by this program is
as follows:

 This array could be flipped.
 This array could not be flipped.

LIB$SIG_TO_STOP
LIB$SIG_TO_STOP — The Convert a Signaled Condition to a Signaled Stop routine converts a
signaled condition to a signaled condition that cannot be continued.

Format
LIB$SIG_TO_STOP signal-arguments ,mechanism-arguments

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

472

Chapter 2. LIB$ Reference

access: write only
mechanism: by value

Arguments
signal-arguments

OpenVMS usage: vector_longword_unsigned
type: unspecified
access: modify
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the address of an array that is
this signal argument vector stack.

See the VSI OpenVMS Programming Concepts Manual for a description of the signal argument
vector.

mechanism-arguments

OpenVMS usage: structure
type: unspecified
access: read only
mechanism: by reference

Mechanism argument vector. The mechanism-arguments argument contains the address of a
structure that is this mechanism argument vector stack.

See the VSI OpenVMS Programming Concepts Manual for a description of the mechanism argument
vector.

Description
LIB$SIG_TO_STOP causes a signal to appear as though it had been signaled by a call to LIB$STOP.
When a signal is generated by LIB$STOP, the severity code is forced to SEVERE and control cannot
return to the routine that signaled the condition. LIB$SIG_TO_STOP may be enabled as a condition
handler for a routine or it may be called from a condition handler.

If the condition value in signal-arguments is SS$_UNWIND, then LIB$SIG_TO_STOP returns
the error condition LIB$_INVARG.

Condition Values Returned

SS$_NORMAL Routine successfully completed; SS$_UNWIND completed.
Otherwise, the error code from SS$_UNWIND is returned.

LIB$_INVARG Invalid argument. The condition code in signal-arguments is
SS$_UNWIND.

473

Chapter 2. LIB$ Reference

LIB$SIM_TRAP
LIB$SIM_TRAP — The Simulate Floating Trap routine converts floating faults to floating traps. It
can be enabled as a condition handler or can be called by one. This routine is not available to native
OpenVMS Alpha or I64 programs but is available to translated VAX images.

Format
LIB$SIM_TRAP signal-arguments ,mechanism-arguments

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
signal-arguments

OpenVMS usage: vector_longword_unsigned
type: unspecified
access: modify
mechanism: by reference, array reference

Signal argument vector. The signal-arguments argument contains the address of an array that
is this signal argument vector stack. See the VSI OpenVMS Programming Concepts Manual for a
description of the signal argument vector.

mechanism-arguments

OpenVMS usage: vector_longword_unsigned
type: unspecified
access: read only
mechanism: by reference, array reference

Mechanism argument vector. The mechanism-arguments argument contains the address of an
array that is this mechanism argument vector stack.

See the VSI OpenVMS Programming Concepts Manual for a description of the mechanism argument
vector.

Description
LIB$SIM_TRAP converts floating faults to floating traps. It can be enabled as a condition handler or
can be called by one.

474

Chapter 2. LIB$ Reference

LIB$SIM_TRAP intercepts floating overflow, underflow, and divide-by-zero faults. It simulates the
instruction causing the condition up to the point where a fault should be signaled, then signals the
corresponding floating trap.

Since LIB$SIM_TRAP nullifies the condition handling for the original fault condition, the final
condition signaled by the routine will be from the context of the instruction itself, rather than from
the condition handler. The signaling path is identical to that of a hardware-generated trap. The
signal argument vector is placed so the last entry in the vector will be the user's stack pointer at the
completion of the instruction (for a trap), or at the beginning of the instruction (for a fault).

See the VAX Architecture Reference Manual for more information on faults and traps.

Condition Values Returned
SS$_RESIGNAL Resignal condition to next handler. The exception was one that

LIB$SIM_TRAP could not handle.

LIB$SKPC
LIB$SKPC — The Skip Equal Characters routine compares each character of a given string with
a given character and returns the relative position of the first nonequal character as an index. LIB
$SKPC makes the VAX SKPC instruction available as a callable routine. On Alpha systems,
OpenVMS Alpha instructions perform the equivalent operation.

Format
LIB$SKPC character-string ,source-string

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the first unequal character. LIB$SKPC returns a zero
if the source string was of zero length or if every character in source-string was equal to
character-string.

Arguments
character-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String whose initial character is to be used by LIB$SKPC in the comparison. The character-
string argument contains the address of a descriptor pointing to this string. Only the first character
of character-string is used, and the length of character-string is not checked.

475

Chapter 2. LIB$ Reference

source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String to be searched by LIB$SKPC. The source-string argument contains the address of a
descriptor pointing to this string.

Description
LIB$SKPC compares the initial character of character-string with successive characters of
source-string until it finds an inequality or reaches the end of the source-string. It returns
the relative position of this unequal character as an index, which is the relative position of the first
occurrence of a substring in the source string.

Condition Values Returned
None.

Example
C+
C This Fortran example program shows the use of LIB$SKPC.
C LIB$SKPC compares each character of a given string with a given
 character.
C It returns the relative position of the first nonequal character as an
 index.
C-
 I = LIB$SKPC (’ ’, ’ ABC’)
 TYPE 1, I
 1 FORMAT(’ The blank character matches the’,I2,’nd character in’)
 TYPE *,’the string " ABC"’
 J = LIB$SKPC (’A’, ’AAA’)
 TYPE 2, J
 2 FORMAT(’ The character "A" matches the’,I2,’th character in’)
 TYPE *,’the string " AAA"’
 END

This Fortran example generates the following output:

 The blank character matches the 2nd character in
 the string " ABC"
 The character "A" matches the 0th character in
 the string " AAA"

LIB$SPANC
LIB$SPANC — The Skip Selected Characters routine is used to skip a specified set of characters in
the source string. LIB$SPANC makes the VAX SPANC instruction available as a callable routine. On
Alpha systems, OpenVMS Alpha instructions perform the equivalent operation.

476

Chapter 2. LIB$ Reference

Format
LIB$SPANC source-string ,table-array ,byte-integer-mask

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

The relative position in the source string of the character that terminated the operation is returned if
such a character is found. Otherwise, zero is returned. If the source string has a zero length, then a
zero is returned.

Arguments
source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string used by LIB$SPANC to index into table-array. The source-string argument
contains the address of a descriptor pointing to this source string.

table-array

OpenVMS usage: vector_mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference, array reference

Table that LIB$SPANC indexes into and performs an AND operation with the byte-integer-
mask byte. The table-array argument contains the address of an unsigned byte array that is this
table.

byte-integer-mask

OpenVMS usage: mask_byte
type: byte (unsigned)
access: read only
mechanism: by reference

Mask that an AND operation is performed with bytes in table-array. The byte-integer-
mask argument contains the address of an unsigned byte that is this mask.

477

Chapter 2. LIB$ Reference

Description
LIB$SPANC uses successive bytes of the string specified by source-string to index into a table.
An AND operation is performed on the byte selected from the table and the mask byte.

The operation is terminated when the result of the AND operation is zero.

Condition Values Returned
None.

Example
!+
! This Fortran program demonstrates how to use
! LIB$SCANC and STR$UPCASE.
!
! Declare the Run-Time Library routines to be used.
!-

 INTEGER*4 STR$UPCASE ! Translate to upper case
 INTEGER*4 LIB$SCANC ! Look for characters
 INTEGER*4 LIB$SPANC ! Skip over characters

!+
! Declare the alphabet from which "words" are constructed.
!-

 CHARACTER*(38) ALPHABET
 DATA ALPHABET /’ABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789$_’/

!+
! Local variable declarations
!-

 INTEGER*4 WORD_COUNT /0/ ! Count of words found
 INTEGER*4 WORD_LENGTH /0/ ! Length of a word
 INTEGER*4 TOTAL_LENGTH /0/ ! Sum of word lengths
 INTEGER*4 START_POS /0/ ! Position of start of word
 INTEGER*4 END_POS /0/ ! Position of end of word
 REAL*4 AVERAGE_LENGTH /0.0/ ! Average length of words
 CHARACTER*80 LINE ! Line to examine for words
 BYTE MATCH_TABLE(0:255) /256*0/ ! Match table for scanning

!+
! The routines LIB$SCANC and LIB$SPANC require a table with an entry
! for each possible character. Create a match table from ALPHABET
! with an entry of 1 if the character is in ALPHABET, 0 otherwise.
! MATCH_TABLE has already been initialized to zeros.
!-

 DO I = 1, LEN(ALPHABET)
 MATCH_TABLE(ICHAR(ALPHABET(I:I))) = 1
 END DO

!+

478

Chapter 2. LIB$ Reference

! Loop forever finding words in LINE. When LINE is exhausted,
! indicated by a START_POS of zero, read another one. Upon
! end-of-file, leave the loop and print the statistics.
!-

 OPEN(UNIT = 1, FILE = ’TEST.DAT’, TYPE = ’OLD’)
 DO WHILE (.TRUE.)
 DO WHILE (START_POS .EQ. 0) ! Get a new line
 READ (1,’(A)’,END=900) LINE ! If EOF, skip to 900
 CALL STR$UPCASE (LINE,LINE) ! Convert to upper
 ! case for matching
 START_POS = LIB$SCANC (LINE,MATCH_TABLE,1) ! Find beginning
 END DO ! of first word

!+
! START_POS now points to the beginning of a word. Call LIB$SPANC to
! find the first character that is not part of the word. Set
! START_POS to beginning of next word. If LIB$SPANC does not
! find a non-word character, it returns zero.
!-

 END_POS =
 1 START_POS + LIB$SPANC (LINE(START_POS:), MATCH_TABLE,1) - 1
 IF (END_POS .LT. START_POS) THEN ! Word goes to end of line
 WORD_LENGTH = (LEN(LINE) + 1) - START_POS
 START_POS = 0 ! Indicate line exhausted
 ELSE
 WORD_LENGTH = END_POS - START_POS
 START_POS =
 1 END_POS + LIB$SCANC (LINE(END_POS:),MATCH_TABLE,1) - 1
 IF (START_POS .LT. END_POS) START_POS = 0 ! No more words on line
 END IF

!+
! Update count and length statistics.
!-

 WORD_COUNT = WORD_COUNT + 1
 TOTAL_LENGTH = TOTAL_LENGTH + WORD_LENGTH
 END DO
900 CONTINUE

!+
! Compute average word length and display statistics.
!-

 IF (WORD_COUNT .NE. 0)
 1 AVERAGE_LENGTH = FLOAT(TOTAL_LENGTH) / FLOAT(WORD_COUNT)
 TYPE 901,WORD_COUNT,AVERAGE_LENGTH
901 FORMAT (1X,I10,’ words found, average length was ’,
 1 F4.1,’ letters.’)

 CLOSE (1)

 END

This Fortran program reads text from the default input unit and looks for words. A word is defined
as a string containing only the characters A through Z (uppercase or lowercase), 0 through 9, and the

479

Chapter 2. LIB$ Reference

dollar sign ($) and underscore (_) symbols. The program reports the total number of words found and
their average length.

The program uses three Run-Time Library routines: STR$UPCASE, LIB$SCANC, and LIB$SPANC.

1. The string is converted to uppercase using STR$UPCASE so that the search for words will ignore
the case of letters.

2. LIB$SCANC searches through the string for one of a set of characters, the set being specified as
nonzero elements in a 256-byte table.

3. Similarly, LIB$SPANC uses the VAX SPANC instruction to search through a string for a character
whose table entry is not zero. On Alpha systems, OpenVMS Alpha instructions perform the
equivalent operation.

The value returned by each routine is the index into the string where the first matching (or
nonmatching) character was found, or zero if no match was found.

The output generated by this Fortran program is as follows:

 12 words found, average length was 4.2 letters.

LIB$SPAWN
LIB$SPAWN — The Spawn Subprocess routine requests the command language interpreter (CLI) of
the calling process to spawn a subprocess for executing CLI commands. LIB$SPAWN provides the
same function as the DCL command SPAWN.

Format
LIB$SPAWN [command-string] [,input-file] [,output-file] [,flags] [,process-name] [,process-
id] [,completion-status-address] [,byte-integer-event-flag-num] [,AST-address] [,varying-AST-
argument] [,prompt-string] [,cli] [,table]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
command-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

CLI command to be executed by the spawned subprocess. The command-string argument is
the address of a descriptor pointing to this CLI command string. If command-string is omitted,
commands are taken from the file specified by input-file.

480

Chapter 2. LIB$ Reference

input-file

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Equivalence name to be associated with the logical name SYS$INPUT in the logical name table
for the subprocess. The input-file argument is the address of a descriptor pointing to this
equivalence string. If input-file is omitted, the default is the caller's SYS$INPUT.

output-file

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Equivalence name to be associated with the logical names SYS$OUTPUT and SYS$ERROR in the
logical name table for the subprocess. The output-file argument is the address of a descriptor
pointing to this equivalence string. If output-file is omitted, the default is the caller's SYS
$OUTPUT.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Flag bits that designate optional behavior. The flags argument is the address of an unsigned
longword that contains these flag bits. By default, all flags are clear.

These flags are defined as follows:

Bit Symbol Meaning
0 NOWAIT If this bit is set, the calling

process continues executing in
parallel with the subprocess.
If this bit is clear, the calling
process hibernates until the
subprocess completes.

1 NOCLISYM If this bit is set, the spawned
subprocess does not inherit
CLI symbols from its caller. If
this bit is clear, the subprocess
inherits all currently defined
CLI symbols. You may want
to specify NOCLISYM to help
prevent commands redefined
by symbol assignments

481

Chapter 2. LIB$ Reference

Bit Symbol Meaning
from affecting the spawned
commands.

2 NOLOGNAM If this bit is set, the spawned
subprocess does not inherit
process logical names from
its caller. If this bit is clear,
the subprocess inherits all
currently defined process
logical names. You may want to
specify NOLOGNAM to help
prevent commands redefined
by logical name assignments
from affecting the spawned
commands.

3 NOKEYPAD If this bit is set, the keypad
symbols and state are not passed
to the subprocess. If this bit is
not set, the keypad settings are
passed to the subprocess.

4 NOTIFY If this bit is set, a message is
broadcast to SYS$OUTPUT
when the subprocess completes
or aborts. If this bit is not set,
no message is broadcast. This
bit should not be set unless the
NOWAIT bit is also set.

5 NOCONTROL If this bit is set, no carriage-
return/line-feed is prefixed to
any prompt string. If this bit is
not set, a carriage-return/line-
feed is prefixed to any prompt
string specified.

6 TRUSTED If this bit is set, it indicates a
SPAWN command on behalf of
the application. If this bit is not
set, it indicates that the SPAWN
command originates from user.
SPAWN commands originating
from users are disallowed in
captive accounts (DCL).

7 AUTHPRIV If this bit is set, the subprocess
inherits the caller's authorized
privileges. If this bit is clear, the
spawned processes' authorized
mask is set equal to the caller's
current (active) privilege mask.

8 SUBSYSTEM If this bit is set, a spawned
process inherits protected
subsystem IDs for the duration

482

Chapter 2. LIB$ Reference

Bit Symbol Meaning
of LOGINOUT.EXE (used to
map the CLI). The IDs will
be removed in the process of
transferring control to the CLI
(as a user mode $RUNDWN is
performed). If this bit is clear,
LOGINOUT does not execute
under the subsystem IDs.

Bits 9 through 31 are reserved for future expansion and must be zero. Symbolic flag names
are defined in libraries supplied by VSI in module $CLIDEF. They are CLI$M_NOWAIT,
CLI$M_NOCLISYM, CLI$M_NOLOGNAM, CLI$M_NOKEYPAD, CLI$M_NOTIFY, CLI
$M_NOCONTROL, CLI$M_TRUSTED, CLI$M_AUTHPRIV, and CLI$M_SUBSYSTEM.

process-name

OpenVMS usage: process_name
type: character string
access: read only
mechanism: by descriptor

Name defined for the subprocess. The process-name argument is the address of a descriptor
pointing to this name string. If process-name is omitted, a unique process name will be
generated. If you supply a name and it is not unique, LIB$SPAWN will return the condition value SS
$_DUPLNAM.

The DCL_CTLFLAGS is a bitmask used to alter default behavior for certain commands on a
systemwide basis. Currently, only the low bit of the bitmask is defined. The low bit controls the
default process-name assignment for a subprocess created using the LIB$SPAWN routine.

Prior to OpenVMS Version 7.3-1, if no process name was supplied, the system constructed a name by
appending _n to the username, where n was the next available non-duplicate integer for any process
currently in the system. For example, the first spawned process from user SYSTEM would be called
SYSTEM_1, the second, SYSTEM_2, and so on. The next available number was chosen, as soon as a
gap was found.

Beginning in OpenVMS Version 7.3-1, the default constructed process name for subprocesses has
changed. Instead of incrementally searching for the next unique number, a random number is chosen
to append to the username. Therefore, the first processes that are spawned from user SYSTEM might
be SYSTEM_154, SYSTEM_42, SYSTEM_87, and so on. This procedure results in a very high
probability of finding a unique number on the first try since it is unlikely the same number is already
in use.

However, some applications might rely on the previous method of assigning subprocess names. The
DCL_CTLFLAGS parameter is available to allow you to configure the system as necessary.

Bit 0 of DCL_CTLFLAGS selects the behavior for assigning default subprocess names, as explained
in the following:

• If clear, the new behavior is used. If the process name is not specified, it will be the username with
a random number suffix. This is the default setting.

483

Chapter 2. LIB$ Reference

• If set, the previous behavior is used. If the process name is not specified, it will be the username
with the next available number suffix.

process-id

OpenVMS usage: process_id
type: longword (unsigned)
access: write only
mechanism: by reference

Process identification of the spawned subprocess. The process-id argument is the address of an
unsigned longword that contains this process identification value.

This process identification value is meaningful only if the NOWAIT flags bit is set.

completion-status-address

OpenVMS usage: address
type: address
access: read only
mechanism: by value

The final completion status of the subprocess. The completion-status-address argument
contains the address of the status. The system writes the value of the final completion status of
the subprocess into completion-status-address when the subprocess completes. If the
subprocess returns a status code of 0, the system writes SS$_NORMAL into this address.

If the NOWAIT flags bit is set, the completion-status-address is updated asynchronously
when the subprocess completes. Use the byte-integer-event-flag-num or AST-address
arguments to determine when the subprocess has completed. Your program must ensure that the
address is still valid when the value is written.

byte-integer-event-flag-num

OpenVMS usage: byte_unsigned
type: byte (unsigned)
access: read only
mechanism: by reference

The number of a local event flag to be set when the spawned subprocess completes. The byte-
integer-event-flag-num argument is the address of an unsigned byte that contains this event
flag number. If byte-integer-event-flag-num is omitted, no event flag is set.

Specifying byte-integer-event-flag-num is meaningful only if the NOWAIT flags bit is
set.

AST-address

OpenVMS usage: procedure
type: procedure value

484

Chapter 2. LIB$ Reference

access: call without stack unwinding
mechanism: by value

Routine to be called by means of an AST when the subprocess completes.

Specifying AST-address is meaningful only if the NOWAIT flags bit is set.

varying-AST-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

A value to be passed to the AST routine. Typically, the varying-AST-argument argument is the
address of a block of storage the AST routine will use.

Specifying varying-AST-argument is meaningful only if the NOWAIT flags bit is set and if
AST-address has been specified.

prompt-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Prompt string to use in the subprocess. The prompt-string argument is the address of a descriptor
pointing to this prompt string. If prompt-string is omitted, the subprocess uses the same prompt
string that the parent process uses.

cli

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification for the command language interpreter (CLI) to be run in the subprocess. The cli
argument is the address of this file specification string's descriptor. The CLI specified must reside in
SYS$SYSTEM with a file type of .EXE, and it must be installed. No directory or file type may be
specified. The cli argument must be specified in uppercase characters.

If cli is omitted, the subprocess uses the same CLI as the parent process. If cli is specified, no
context is copied to the subprocess.

table

OpenVMS usage: char_string

485

Chapter 2. LIB$ Reference

type: character string
access: read only
mechanism: by descriptor

File specification for the command tables to be used by the spawned process. The table argument
is the address of this file specification string's descriptor. The table specified must reside in SYS
$SHARE with a file type of .EXE, and it must be installed.

If table is omitted, the subprocess uses the same table as the parent process.

Description
The subprocess created by LIB$SPAWN inherits the following attributes from the caller's
environment:

• Process logical names

• Global and local CLI symbols

• Default device and directory

• Process privileges

• Process nondeductible quotas

• Current command verification setting

The subprocess does not inherit process-permanent files nor routine or image context.

Though the subprocess inherits the caller's process privileges as its own process privileges, the set of
authorized privileges in the subprocess is inherited from the caller's current privileges. If the calling
image is installed with elevated privileges, these privileges are not available to the the subprocess
until a SET PROCESS/PRIVILEGE command or equivalent $SETPRV call is performed in the
subprocess to enable these privileges.

If the calling image is installed with elevated privileges, it should disable those privileges around the
call to LIB$SPAWN unless the environment of the subprocess is strictly controlled. Otherwise, there
is a possibility of a security breach due to elevated privileges accidentally being made available to the
user.

If neither command-string nor input-file is present, command input is taken from the
parent terminal. If both command-string and input-file are present, the subprocess first
executes command-string and then reads from input-file. If only command-string is
specified, the command is executed, and the subprocess is terminated. If input-file is specified,
the subprocess is terminated by either a LOGOUT command or an end-of-file.

The subprocess does not inherit process-permanent files nor routine or image context. No
LOGIN.COM file is executed.

Unless the NOWAIT flags bit is set, the caller's process is put into hibernation until the subprocess
finishes. Because the caller's process hibernates in supervisor mode, any user-mode ASTs queued for
delivery to the caller are not delivered until the caller reawakes. Control can also be restored to the
caller by means of an ATTACH command or by a suitable call to LIB$ATTACH from the subprocess.

486

Chapter 2. LIB$ Reference

This routine is supported for use only with the DCL command language interpreter. If used when the
current CLI is MCR, the error status LIB$_NOCLI is returned.

If an image is run directly as a subprocess or as a detached process, there is no CLI present to perform
this function. In such cases, the error status LIB$_NOCLI is returned.

Programs depending on embedded DCL commands may not function properly when run under other
command language interpreters that may be supported by future versions of OpenVMS operating
systems.

See the VSI OpenVMS DCL Dictionary for a complete description of the SPAWN command.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_ACCVIO Access violation. One of the string arguments to LIB$SPAWN

could not be read, or completion-status-address could
not be written.

SS$_DUPLNAM Duplicate process name. If the argument process-name was
specified, it duplicated an existing process name. If process-
name was omitted, LIB$SPAWN was unable to create a unique
name for the subprocess.

fac$_xxx Other error trying to create subprocess.
LIB$_INVARG Invalid argument. The optional argument flags was specified,

and a bit other than bits 0 through 8 was set.
LIB$_INVSTRDES Invalid string descriptor. One of the string arguments had an

invalid descriptor.
LIB$_NOCLI No CLI present to perform function. The calling process did not

have a CLI to perform the function, or the CLI did not support the
request type. Note that an image run as a subprocess or detached
process does not have a CLI.

If an error is encountered during subprocess creation, the status value for that error is returned by LIB
$SPAWN.

Example
ISTAT=LIB$SPAWN(,,,CLI$M_NOKEYPAD,,,,,,,'> ')
IF (.NOT. ISTAT) CALL LIB$STOP(%VAL(ISTAT))

This Fortran fragment shows a call to LIB$SPAWN from within a Fortran program. A subprocess is
spawned taking input from SYS$INPUT and giving output to SYS$OUTPUT. The keypad state is not
passed to the subprocess. A prompt string of “> ” is specified for the subprocess.

LIB$STAT_TIMER
LIB$STAT_TIMER — The Statistics, Return Accumulated Times and Counts routine returns to its
caller one of five available statistics accumulated since the last call to LIB$INIT_TIMER. Unlike LIB
$SHOW_TIMER, which formats the values for output, LIB$STAT_TIMER returns the value as an
unsigned longword or quadword.

487

Chapter 2. LIB$ Reference

Format
LIB$STAT_TIMER code ,value-argument [,handle-address]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
code

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

The address of a signed longword integer that contains a code to specify the statistic to be returned.
The code specification must be an integer from 1 to 5.

The following values are allowed for code:

Value Statistic Returned
1 Elapsed real time (quadword, in system time

format)
2 Elapsed CPU time (longword, in 10 millisecond

increments)
3 Count of buffered I/O operations (longword)
4 Count of direct I/O operations (longword)
5 Count of page faults (longword)

value-argument

OpenVMS usage: user_arg
type: unspecified
access: write only
mechanism: by reference

The statistic returned by LIB$STAT_TIMER. The value-argument argument contains the address
of a longword or quadword that is this statistic. All statistics are longword integers except elapsed real
time, which is a quadword.

See the VSI OpenVMS System Services Reference Manual for more details on the system time format.

488

Chapter 2. LIB$ Reference

handle-address

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: by reference

Pointer to a block of storage. The optional handle-address argument contains the address of an
unsigned longword that is this pointer.

If handle-address is specified, LIB$STAT_TIMER assumes that LIB$INIT_TIMER has been
called with the same value of handle-address. Handle-address is an optional argument. If it
is not specified, LIB$STAT_TIMER uses internal storage.

Description
Only one of the five statistics is returned by each call to LIB$STAT_TIMER. The elapsed time is
returned in the system quadword format. Therefore the receiving area should be eight bytes long. All
other returned values are longwords.

LIB$SHOW_TIMER and LIB$STAT_TIMER are relatively simple tools for testing the performance
of a new application. Note that LIB$INIT_TIMER must be called prior to any calls to LIB
$SHOW_TIMER or LIB$STAT_TIMER.

To obtain more detailed information, use LIB$GETJPI (Get Job/Process Information) or the system
service $GETTIM.

The following summary shows the differences between LIB$SHOW_TIMER and LIB
$STAT_TIMER:

Code Statistic Format for LIB
$SHOW_TIMER

Format for LIB
$STAT_TIMER

1 Elapsed real time hhhh: mm: ss. cc Quadword in system
time format

2 Elapsed CPU time hhhh: mm: ss. cc Longword in 10-
millisecond increments

3 Count of buffered I/O
operations

nnnn Longword

4 Count of direct I/O
operations

nnnn Longword

5 Count of page faults nnnn Longword

When you call LIB$INIT_TIMER, you must use the optional handle-address argument only
if you want to keep several sets of statistics simultaneously. This argument points to a block in heap
storage where the statistics are to be stored.

You need to call LIB$FREE_TIMER only if you have specified handle-address in LIB
$INIT_TIMER and you want to deallocate all heap storage resources. In most cases, the implicit
deallocation at program exit time will be sufficient.

489

Chapter 2. LIB$ Reference

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. Either code or handle-address is invalid.

Example
PROGRAM STAT_TIMER(INPUT,OUTPUT);

{+}
{ This Pascal example program demonstrates the use of
{ LIB$STAT_TIMER.
{-}

 TYPE
 BYTE = [BYTE] 0..255;
 WORD = [WORD] 0..65535;
 QUADWORD_SYSTEM_TIME = [QUAD] RECORD
 FIRST_LONGWORD : UNSIGNED;
 SECOND_LONGWORD : UNSIGNED;
 END;

 VAR
 ELAPSED_REAL_TIME : QUADWORD_SYSTEM_TIME;
 ELAPSED_STRING : VARYING [32] OF CHAR;
 PAGE_FAULT_COUNT : UNSIGNED;
 RETURNED_STATUS : UNSIGNED;

 [EXTERNAL] FUNCTION LIB$INIT_TIMER(
 HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

 [EXTERNAL] FUNCTION LIB$STAT_TIMER(
 CODE : INTEGER;
 VALUE : [UNSAFE,REFERENCE] PACKED ARRAY [L..U:INTEGER]
 OF BYTE;
 HANDLE_ADR : [REFERENCE] UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

 [EXTERNAL] FUNCTION LIB$STOP(
 CONDITION_STATUS : [IMMEDIATE,UNSAFE] UNSIGNED;
 FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

 [EXTERNAL] FUNCTION LIB$SYS_ASCTIM(
 OUT_LEN : [REFERENCE] WORD := %IMMED 0;
 VAR DST_STR : PACKED ARRAY [L..U:INTEGER] OF CHAR;
 USER_TIME : QUADWORD_SYSTEM_TIME := %IMMED 0;
 CNV_FLG : UNSIGNED := %IMMED 0
) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Call LIB$INIT_TIMER to initialize RTL internal counters.
{-}

490

Chapter 2. LIB$ Reference

RETURNED_STATUS := LIB$INIT_TIMER;
IF NOT ODD(RETURNED_STATUS)
THEN
 LIB$STOP(RETURNED_STATUS);

{+}
{ Print a line of text to waste time.
{-}

WRITELN(’Spend time to acquire elapsed real time and page faults’);

{+}
{ Call LIB$STAT_TIMER to retrieve statistics values.
{-}

RETURNED_STATUS := LIB$STAT_TIMER(1,ELAPSED_REAL_TIME);
IF NOT ODD(RETURNED_STATUS)
THEN
 LIB$STOP(RETURNED_STATUS);

RETURNED_STATUS := LIB$STAT_TIMER(5,PAGE_FAULT_COUNT);
IF NOT ODD(RETURNED_STATUS)
THEN
 LIB$STOP(RETURNED_STATUS);

{+}
{ Print the statistics retrieved from LIB$STAT_TIMER.
{-}

WRITELN(’Page fault count is ’,PAGE_FAULT_COUNT:1);

RETURNED_STATUS := LIB$SYS_ASCTIM(
 ELAPSED_STRING.LENGTH,
 ELAPSED_STRING.BODY,
 ELAPSED_REAL_TIME,
 1);
IF NOT ODD(RETURNED_STATUS)
THEN
 LIB$STOP(RETURNED_STATUS);

WRITELN(’Elapsed real time is ’,ELAPSED_STRING);

END.

This Pascal program demonstrates the use of LIB$STAT_TIMER. The output generated by this
program is as follows:

 Spend time to acquire elapsed real time and page faults
 Page fault count is 22
 Elapsed real time is 00:00:00.61

LIB$STAT_VM
LIB$STAT_VM — The Return Virtual Memory Statistics routine returns to its caller one of six
statistics available from calls to LIBGET_VM/LIBFREE_VM and LIB$GET_VM_PAGE/LIB
$FREE_VM_PAGE. No support for arguments passed by 64-bit address reference or for use of 64-

491

Chapter 2. LIB$ Reference

bit descriptors, if applicable, is planned for this routine. Unlike LIB$SHOW_VM, which formats the
values for output and displays them on SYS$OUTPUT, LIB$STAT_VM returns the statistic in the
value-argument argument. Only one of the statistics is returned by each call to LIB$STAT_VM.

Format
LIB$STAT_VM code ,value-argument

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
code

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Code specifying which statistic is to be returned. The code argument contains the address of a signed
longword integer that is this code.

Code Statistic
1 Number of successful calls to LIB$GET_VM
2 Number of successful calls to LIB$FREE_VM
3 Number of bytes allocated by LIB$GET_VM but

not yet deallocated by LIB$FREE_VM
5 Number of calls to LIB$GET_VM_PAGE
6 Number of calls to LIB$FREE_VM_PAGE
7 Number of VAX pages or Alpha pagelets

allocated by LIB$GET_VM_PAGE but not yet
deallocated by LIB$FREE_VM_PAGE

Note that it is invalid to omit code or to give a code of 0 or 4.

value-argument

OpenVMS usage: user_arg
type: longword (unsigned)
access: write only

492

Chapter 2. LIB$ Reference

mechanism: by reference

Value of the statistic returned by LIB$STAT_VM. The value-argument argument contains the
address of an unsigned longword integer that is this value.

Description
LIB$STAT_VM returns to its caller one of six available statistics. Unlike LIB$SHOW_VM,
which formats the values for output, LIB$STAT_VM returns the value to a location specified as an
argument.

Only one of the six statistics can be returned by one call to LIB$STAT_VM. The argument code
must be one of six values described for LIB$SHOW_VM. A code value of 0 or 4 is invalid.

Unlike LIB$SHOW_VM, which produces ASCII values for output, LIB$STAT_VM returns the value
in binary form to a location specified as an argument.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The value of code was not one of the values

allowed by LIB$STAT_VM.

LIB$STAT_VM_64
LIB$STAT_VM_64 — The Return Virtual Memory Statistics routine returns to its caller one of
six statistics available from calls to LIB$GET_VM_64 and LIB$FREE_VM_64, as well as LIB
$GET_VM_PAGE_64 and LIB$FREE_VM_PAGE_64. Unlike LIB$SHOW_VM_64, which formats
the values for output and displays them on SYS$OUTPUT, LIB$STAT_VM_64 returns the statistic in
the value-argument argument. Only one of the statistics is returned by each call to LIB$STAT_VM_
64.

Format
LIB$STAT_VM_64 code ,value-argument

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
code

OpenVMS usage: quadword_signed

493

Chapter 2. LIB$ Reference

type: quadword integer (signed)
access: read only
mechanism: by reference

Code specifying which statistic is to be returned. The code argument contains the address of a signed
quadword integer that is this code.

Code Statistic
1 Number of successful calls to LIB$GET_VM_64
2 Number of successful calls to LIB$FREE_VM_64
3 Number of bytes allocated by LIB$GET_VM_64 but not yet

deallocated by LIB$FREE_VM_64
5 Number of calls to LIB$GET_VM_PAGE_64
6 Number of calls to LIB$FREE_VM_PAGE_64
7 Number of Alpha or I64 pagelets allocated by LIB

$GET_VM_PAGE_64 but not yet deallocated by LIB
$FREE_VM_PAGE_64

Note that it is invalid to omit code or to give a code of 0 or 4.

value-argument

OpenVMS usage: user_arg
type: quadword (unsigned)
access: write only
mechanism: by reference

Value of the statistic returned by LIB$STAT_VM_64. The value-argument argument contains the
address of an unsigned quadword integer that is this value.

Description
LIB$STAT_VM_64 returns to its caller one of six available statistics. Unlike LIB$SHOW_VM_64,
which formats the values for output, LIB$STAT_VM_64 returns the value to a location specified as an
argument.

Only one of the six statistics can be returned by one call to LIB$STAT_VM_64. The code argument
must be one of six values described for LIB$SHOW_VM_64. A code value of 0 or 4 is invalid.

Unlike LIB$SHOW_VM_64, which produces ASCII values for output, LIB$STAT_ VM_64 returns
the value in binary form to a location specified as an argument.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The value of code was not one of the values

allowed by LIB$STAT_VM_64.

494

Chapter 2. LIB$ Reference

LIB$STOP
LIB$STOP — The Stop Execution and Signal the Condition routine generates a signal that indicates
that an exception condition has occurred in your program. Exception conditions signaled by LIB
$STOP cannot be continued from the point of the signal.

Format
LIB$STOP condition-value [,number-of-arguments] [,FAO-argument...]

Returns
LIB$STOP generates a signal and stops execution of the calling program. No condition values are
returned.

Arguments
condition-value

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

OpenVMS 32-bit condition value. The condition-value argument is an unsigned longword that
contains this condition value.

The VSI OpenVMS Programming Concepts Manual explains the format of a condition value.

number-of-arguments

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by value

Number of FAO arguments associated with condition-value. The optional number-of-
arguments argument is a signed longword integer that contains this number. If omitted or specified
as zero, no FAO arguments follow.

FAO-argument

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by value

Optional FAO (formatted ASCII output) argument that is associated with the specified condition
value.

495

Chapter 2. LIB$ Reference

The VSI OpenVMS Programming Concepts Manual explains the message format.

Description
LIB$STOP is called whenever your program must indicate an exception condition because it is
impossible to continue execution or return a status code to the calling program.

LIB$STOP scans the stack frame by frame, starting with the most recent frame, calling each
established handler (see the VSI OpenVMS Programming Concepts Manual). LIB$STOP guarantees
that control will not return to the caller.

The LIB$STOP argument list, the Program Counter (PC) and Processor Status Longword (PSL on
OpenVMS VAX systems, PS on OpenVMS Alpha and I64 systems) of the caller are appended to
build the signal argument vector.

The severity of condition-value is forced to SEVERE before each call to a handler.

If any handler attempts to continue by returning a success completion code, the error message
ATTEMPT TO CONTINUE FROM STOP is printed and your program exits.

If the handler called by LIB$STOP in turn calls system service $UNWIND, control will not return
to LIB$STOP’s caller, thus changing the program flow. A handler can also modify the saved copy of
R0/R1 in the mechanism vector, changing registers R0 and R1 after the stack has been unwound. If
a handler does neither of these things, then all registers including R0/R1 and the hardware condition
codes are preserved. On Alpha systems, OpenVMS Alpha instructions perform the equivalent
operation.

The only way a handler can prevent the image from exiting after a call to LIB$STOP is to unwind the
stack using the $UNWIND system service.

Condition Values Returned
None.

Examples

10 EXTERNAL LONG FUNCTION LIB$RESERVE_EF
 DECLARE LONG RET_STATUS

 RET_STATUS = LIB$RESERVE_EF(2%)
 IF (RET_STATUS AND 1%) = 0% THEN
 CALL LIB$STOP(RET_STATUS BY VALUE)
END IF

PRINT "Event flag 2 reserved successfully"

END

This BASIC example program uses LIB$STOP to stop executing if an error is signaled. This BASIC
program tries to reserve an event flag that is not accessible to user programs, thus ensuring that an
error will be signaled.

The output generated by this BASIC program is as follows:

 %LIB-F-EF_ALRRES, event flag already reserved

496

Chapter 2. LIB$ Reference

 %TRACE-F-TRACEBACK, symbolic stack dump follows
 module name routine name line rel PC
 abs PC
 2822XBLST$MAIN 2822XBLST$MAIN 6 00000044
 00000644

LIB$SUBX
LIB$SUBX — The Multiple-Precision Binary Subtraction routine performs subtraction on signed
two's complement integers of arbitrary length.

Format
LIB$SUBX minuend-array ,subtrahend-array ,difference-array [,array-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
minuend-array

OpenVMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Minuend; a multiple-precision, signed two's complement integer. The minuend-array argument is
the address of an array of signed longword integers that contains the minuend.

subtrahend-array

OpenVMS usage: vector_longword_signed
type: unspecified
access: read only
mechanism: by reference, array reference

Subtrahend; a multiple-precision, signed two's complement integer. The subtrahend-array
argument is the address of an array of signed longword integers that contains the subtrahend.

difference-array

OpenVMS usage: vector_longword_signed
type: unspecified
access: write only

497

Chapter 2. LIB$ Reference

mechanism: by reference, array reference

Difference; a multiple-precision, signed two's complement integer result. The difference-array
argument is the address of an array of signed longword integers that contains the difference.

array-length

OpenVMS usage: longword_signed
type: longword integer (signed)
access: read only
mechanism: by reference

Length in longwords of the arrays to be operated on by LIB$SUBX. The array-length argument
contains the address of a signed longword integer that is this length. The array-length argument
must not be negative. The default length is 2 units.

Description
LIB$SUBX performs subtraction on signed two's complement integers of arbitrary length. The
integers are located in arrays of longwords. The higher addresses contain the higher-precision parts of
the values. The highest-addressed longword contains the sign and 31 bits of precision. The remaining
longwords contain 32 bits of precision in each. The number of longwords to be operated on is given
by the optional argument, array-length. The default length is 2, which corresponds to the
OpenVMS quadword data type.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_INTOVF Integer overflow. The result is correct, except that the sign bit is

lost.
LIB$_INVARG Invalid argument. Length is negative. The output array is

unchanged.

Example
C+
C This Fortran example program demonstrates the use of LIB$SUBX.
C-

 INTEGER A(2),B(2),C(2),RETURN
C+
C Let "A" have the value 72057594037927937 = ’1000000000000001’x.
C Let "B" have the value 4294967295 = ’00000000FFFFFFFF’x.
C-

 A(1) = ’00000001’x
 A(2) = ’10000000’x
 B(1) = ’FFFFFFFF’x
 B(2) = ’00000000’x

C+
C Then "A" - "B" is 72057589742960642.

498

Chapter 2. LIB$ Reference

C-

 RETURN = LIB$SUBX(A,B,C)
 TYPE *,’ ’
 TYPE *,’Let A = 72057594037927937 and B = 4294967295.’
 TYPE *,’Then C = A - B = 72057589742960642.’
 TYPE 2,C(2),C(1)
2 FORMAT(’ 72057589742960642 is represented as ’,1H’,Z8,Z8,3H’x.)
 TYPE *, 51HThat is, C(2) = ’0FFFFFFF’x and C(1) = ’00000002’x.
 END

This Fortran example demonstrates how to call LIB$SUBX. The output generated by this program is
as follows:

 Let A = 72057594037927937 and B = 4294967295.
 Then C = A - B = 72057589742960642.
 72057589742960642 is represented as ' FFFFFFF 2'x.
 That is, C(2) = '0FFFFFFF'x and C(1) = '00000002'x.

LIB$SUB_TIMES
LIB$SUB_TIMES — The Subtract Two Quadword Times routine subtracts two OpenVMS internal-
time-format times.

Format
LIB$SUB_TIMES time1 ,time2 ,resultant-time

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
time1

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

First time, from which LIB$SUB_TIMES subtracts the second time. The time1 argument is the
address of an unsigned quadword containing this time. The time1 argument must represent a later
or equal time or a longer or equal time interval than time2. The time1 argument may be either
absolute time or delta time as long as time2 is of the same type. If time1 and time2 are of
different types, time1 must be the absolute time.

time2

499

Chapter 2. LIB$ Reference

OpenVMS usage: date_time
type: quadword (unsigned)
access: read only
mechanism: by reference

Second time, which LIB$SUB_TIMES subtracts from the first time. The time2 argument is the
address of an unsigned quadword containing this time. The time2 argument must represent an
earlier or equal time or a shorter or equal time interval than time1. The time2 argument may be
either absolute time or delta time as long as time1 is of the same type. If time2 and time1 are of
different types, time2 must be the delta time.

resultant-time

OpenVMS usage: date_time
type: quadword (unsigned)
access: write only
mechanism: by reference

The result of subtracting time2 from time1. The resultant-time argument is the address
of an unsigned quadword containing the result. If both time1 and time2 are delta times,
then resultant-time is a delta time. If both time1 and time2 are absolute times, then
resultant-time is a delta time. If time1 is an absolute time and time2 is a delta time, then
resultant-time is an absolute time.

Description
LIB$SUB_TIMES subtracts two OpenVMS internal times. The second time, specified by time2, is
subtracted from time1. The following table shows the only combinations of times you can subtract:

Time1 Time2 Subtraction Resultant-Time
delta delta time1 - time2 delta
absolute absolute time1 - time2 delta
absolute delta time1 - time2 absolute

Delta time values cannot be a zero and always reflect time in the future. Binary format number will
always be negative. Therefore, if time1 and time2 are equal, resultant-time cannot be 0.
Instead, resultant-time is represented by .1 of one microsecond (the smallest interval of time
recognized by the OpenVMS operating system). This interval is shown as “0 00:00:00.00” when
formatted by the standard techniques.

Condition Values Returned
LIB$_NORMAL Routine successfully completed.
LIB$_INVARGORD Invalid ordering of arguments.
LIB$_IVTIME Invalid time.
LIB$_NEGTIM Negative time computed.
LIB$_WRONUMARG Incorrect number of arguments.

500

Chapter 2. LIB$ Reference

LIB$SYS_ASCTIM
LIB$SYS_ASCTIM — The Invoke $ASCTIM to Convert Binary Time to ASCII String routine calls
the system service $ASCTIM to convert a binary date and time value, returning the ASCII string
using the semantics of the caller’s string.

Format
LIB$SYS_ASCTIM [resultant-length] ,time-string [,user-time] [,flags]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Number of bytes written into time-string, not counting padding in the case of a fixed-length
string. The resultant-length argument contains the address of an unsigned word integer that is
this number.

If the input string is truncated to the size specified in the time-string descriptor, resultant-length
is set to this size. Therefore, resultant-length can always be used by the calling program to access a
valid substring of time-string.

time-string

OpenVMS usage: time_name
type: character string
access: write only
mechanism: by descriptor

Destination string into which LIB$SYS_ASCTIM writes the ASCII time string. The time-string
argument contains the address of a descriptor pointing to the destination string.

user-time

OpenVMS usage: date_time
type: quadword (unsigned)

501

Chapter 2. LIB$ Reference

access: read only
mechanism: by reference

Value that LIB$SYS_ASCTIM converts to ASCII string form. The user-time argument contains
the address of a signed quadword integer that is this value.

If 0 or no address is specified, the current system date and time are returned. A positive value
represents an absolute time. A negative value represents a delta time. Delta times must be less than
10,000 days.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Conversion indicator specifying which date and time fields LIB$SYS_ASCTIM should return. The
flags argument is the address of an unsigned bit mask that contains this conversion indicator.

A value of 1 causes only the hour, minute, second, and hundredths of a second to be returned,
depending on the length of the buffer. A value of 0 (the default) causes the full date and time to be
returned, depending on the length of the buffer.

The results of specifying some possible combinations for the values of the flags and time-string
arguments are shown below:

Time Value Time-String Length Flags Value Information Returned
Absolute 23 0 Date and time
Absolute 12 0 Date
Absolute 11 1 Time
Delta 16 0 Days and time
Delta 11 1 Time

The flags argument is passed to LIB$SYS_ASCTIM by reference and is changed to value for use
by $ASCTIM.

Description
See the VSI OpenVMS System Services Reference Manual: A–GETUAI for a complete description of
$ASCTIM.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_IVTIME The specified delta time is greater than or equal to 10,000 days.
LIB$_FATERRLIB Fatal internal error. An internal consistency check has failed. This

usually indicates an internal error in the Run-Time Library and
should be reported to your VSI support representative.

502

Chapter 2. LIB$ Reference

LIB$_INSVIRMEM Insufficient virtual memory. Your program has exceeded the image
quota for virtual memory.

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$_STRTRU Routine successfully completed, but the source string was
truncated on copy.

LIB$SYS_FAO
LIB$SYS_FAO — The Invoke $FAO System Service to Format Output routine calls the $FAO
system service, returning a string in the semantics you provide. If called with other than a fixed-length
string for output, the length of the resultant string is limited to 256 bytes and truncation occurs.

Format
LIB$SYS_FAO character-string, [resultant-length] ,resultant-string [,directive-argument ,...]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
character-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

ASCII control string, consisting of the fixed text of the output string and FAO directives. The
character-string argument contains the address of a descriptor pointing to this control string.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string. The resultant-length argument contains the address of an
unsigned word integer that is this length.

resultant-string

503

Chapter 2. LIB$ Reference

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Fully formatted output string returned by LIB$SYS_FAO. The resultant-string argument
contains the address of a descriptor pointing to this output string.

directive-argument

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: unspecified

Directive argument contained in longwords. Depending on the directive, a directive-argument
argument can be a value to be converted, the address of the string to be inserted, or a length or
argument count. The passing mechanism for each of these arguments should be the one expected by
the $FAO system service.

Description
See the VSI OpenVMS System Services Reference Manual: A-GETUAI for a complete description of
$FAO.

Condition Values Returned

SS$_NORMAL Routine successfully completed.
SS$_BADPARAM An invalid directive was specified in the FAO control string.
SS$_BUFFEROVF Successfully completed, but the formatted output string

overflowed the output buffer and was truncated.
LIB$_STRTRU Success, but the source string was truncated on copy.
LIB$_INSVIRMEM Insufficient virtual memory to allocate dynamic string.
LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in

its CLASS field.

LIB$SYS_FAOL
LIB$SYS_FAOL — The Invoke $FAOL System Service to Format Output routine calls the $FAOL
system service, returning the string in the semantics you provide. If called with other than a fixed-
length string for output, the length of the resultant string is limited to 256 bytes and truncation occurs.

Format
LIB$SYS_FAOL character-string [,resultant-length] ,resultant-string ,directive-argument-
address

504

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
character-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

ASCII control string, consisting of the fixed text of the output string and FAO directives. The
character-string argument contains the address of a descriptor pointing to this control string.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string. The resultant-length argument contains the address of an
unsigned word integer that is this length.

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Fully formatted output string returned by LIB$SYS_FAOL. The resultant-string argument
contains the address of a descriptor pointing to this output string.

directive-argument-address

OpenVMS usage: address
type: longword (unsigned)
access: read only
mechanism: unspecified

Directive arguments. The directive-argument-address arguments are contained in an array
of unsigned longword directive arguments. Depending on the directive, a directive-argument-

505

Chapter 2. LIB$ Reference

address argument can be a value to be converted, the address of the string to be inserted, or a length
or argument count. The passing mechanism for each of these arguments should be the one expected by
the $FAOL system service.

Description
See the VSI OpenVMS System Services Reference Manual: A-GETUAI for a complete description of
$FAOL.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_BADPARAM An invalid directive was specified in the FAO control string.
SS$_BUFFEROVF Successfully completed, but the formatted output string

overflowed the output buffer and was truncated.
LIB$_INSVIRMEM Insufficient virtual memory to allocate dynamic string.
LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in

its CLASS field.
LIB$_STRTRU Success, but the source string was truncated on copy.

LIB$SYS_FAOL_64
LIB$SYS_FAOL_64 — The Invoke $FAOL_64 System Service to Format Output routine calls the
$FAOL_64 system service, returning the string in the semantics you provide. If called with other than
a fixed-length string for output, the length of the resultant string is limited to 256 bytes and truncation
occurs.

Format
LIB$SYS_FAOL_64 character-string [,resultant-length] ,resultant-string ,directive-argument-
address

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
character-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

506

Chapter 2. LIB$ Reference

ASCII control string, consisting of the fixed text of the output string and FAO directives. The
character-string argument contains the address of a descriptor pointing to this control string.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the output string. The resultant-length argument contains the address of an
unsigned word integer that is this length.

resultant-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Fully formatted output string returned by LIB$SYS_FAOL_64. The resultant-string
argument contains the address of a descriptor pointing to this output string.

directive-argument-address

OpenVMS usage: address
type: quadword (unsigned)
access: read only
mechanism: unspecified

Directive arguments. The directive-argument-address arguments are contained in an array
of unsigned quadword directive arguments. Depending on the directive, a directive-argument-
address argument can be a value to be converted, the address of the string to be inserted, or a length
or argument count. The passing mechanism for each of these arguments should be the one expected by
the $FAOL_64 system service.

Description
See the VSI OpenVMS System Services Reference Manual: A–GETUAI for a complete description of
$FAOL_64.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_BADPARAM An invalid directive was specified in the FAO control string.
SS$_BUFFEROVF Successfully completed, but the formatted output string

overflowed the output buffer and was truncated.
LIB$_INSVIRMEM Insufficient virtual memory to allocate dynamic string.

507

Chapter 2. LIB$ Reference

LIB$_INVSTRDES Invalid string descriptor. A string descriptor has an invalid value in
its CLASS field.

LIB$_STRTRU Success, but the source string was truncated on copy.

LIB$SYS_GETMSG
LIB$SYS_GETMSG — The Invoke $GETMSG System Service to Get Message Text routine calls
the system service $GETMSG and returns a message string into destination-string using the
semantics of the caller's string.

Format
LIB$SYS_GETMSG message-id [,message-length] ,destination-string [,flags] [,unsigned-
resultant-array]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
message-id

OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Message identification to be retrieved by LIB$SYS_GETMSG. The message-id argument
contains the address of an unsigned longword integer that is this message identification.

message-length

OpenVMS usage: word_unsigned
type: word integer (unsigned)
access: write only
mechanism: by reference

Number of characters written into destination-string, not counting padding in the case of
a fixed-length string. The message-length argument contains the address of an unsigned word
integer that is this number.

If the input string is truncated to the size specified in the destination-string descriptor,
message-length is set to this size. Therefore, message-length can always be used by the
calling program to access a valid substring of destination-string.

508

Chapter 2. LIB$ Reference

destination-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string. The destination-string argument contains the address of a descriptor
pointing to this destination string. LIB$SYS_GETMSG writes the message that has been returned by
$GETMSG into destination-string.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Four flag bits for message content. The flags argument is the address of an unsigned longword that
contains these flag bits. The default value is a longword with bits 0 through 3 set to 1. The flags
argument is passed to LIB$SYS_GETMSG by reference and changed to value for use by $GETMSG.

The following table lists the bit numbers, their values, and corresponding descriptions:

Bit Value Description
0 1 Include text of message.

0 Do not include text of message.
1 1 Include message identifier.

0 Do not include message
identifier.

2 1 Include severity indicator.
0 Do not include severity

indicator.
3 1 Include facility name.

0 Do not include facility name.

unsigned-resultant-array

OpenVMS usage: unspecified
type: unspecified
access: write only
mechanism: by reference, array reference

A 4-byte array to receive message-specific information. The unsigned-resultant-array
argument contains the address of this array.

The contents of this 4-byte array are as follows:

509

Chapter 2. LIB$ Reference

Byte Contents
0 Reserved
1 Count of FAO arguments
2 User value
3 Reserved

Description
LIB$SYS_GETMSG calls the $GETMSG system service and returns a message string using the
semantics of the caller's string. Note that, in order to retrieve a message string for a LIB$ facility
message, you must include the file $LIBDEF in your program.

See the VSI OpenVMS System Services Reference Manual: A-GETUAI for a more complete
description of $GETMSG.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
SS$_BUFFEROVF Successfully completed, but the resultant string overflowed the

buffer provided and was truncated.
SS$_MSGNOTFND Successfully completed, but the message code does not have an

associated message on file.
LIB$_STRTRU Successfully completed, but the source string was truncated on

copy.
LIB$_FATERRLIB Fatal internal error.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVSTRDES Invalid string descriptor.

LIB$TPARSE/LIB$TABLE_PARSE
LIB$TPARSE/LIB$TABLE_PARSE — The Table-Driven Finite-State Parser routine is a general-
purpose, table-driven parser implemented as a finite-state automaton, with extensions that make
it suitable for a wide range of applications. No support for arguments passed by 64-bit address
reference or the use of 64-bit descriptors is planned for LIB$TPARSE. On Alpha and I64 systems,
LIB$TABLE_ PARSE supports arguments passed by 64-bit address reference and the use of 64-
bit descriptors. It parses a string and returns a message indicating whether or not the input string is
valid. LIB$T[ABLE_]PARSE is called with the address of an argument block, the address of a state
table, and the address of a keyword table. The input string is specified as part of the argument block.
The LIB$ facility supports the following two versions of the Table-Driven Finite- State Parser: 1)
LIB$TPARSE - Available on VAX systems. LIB$TPARSE is available on Alpha and I64 systems in
translated form. In this form, it is applicable to translated VAX images only. 2) LIB$TABLE_PARSE
Available on VAX, Alpha, and I64 systems. LIB$TPARSE and LIB$TABLE_PARSE differ mainly
in the way they pass arguments to action routines. The term LIB$T[ABLE_]PARSE is used here to
describe concepts that apply to both LIB$TPARSE and LIB$TABLE_PARSE.

Format
LIB$TPARSE/LIB$TABLE_PARSE argument-block ,state-table ,key-table

510

Chapter 2. LIB$ Reference

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
argument-block

OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference

LIB$T[ABLE_]PARSE argument block. The argument-block argument contains the address of
this argument block.

The LIB$T[ABLE_]PARSE argument block contains information about the state of the parse
operation. It is a means of communication between LIB$T[ABLE_]PARSE and the user’s program. It
is passed as an argument to all action routines.

You must declare and initialize the argument block. Section 1.4 describes the argument block in detail.
Section 2.2 illustrates the coding for an argument block declaration and discusses its initialization.

LIB$T[ABLE_]PARSE supports the following argument blocks:

• A 32-bit argument block that accommodates longword addresses, values, and input tokens on
VAX, Alpha, and I64 systems.

On Alpha and I64 systems, this argument block also accommodates a numeric token whose binary
representation is less than or equal to 2**64.

• A 64-bit argument block that accommodates quadword addresses, values, and input tokens on
Alpha and I64 systems.

state-table

OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference

Starting state in the state table. The state-table argument is the address of this starting state.
Usually, the name appearing as the first argument of the $INIT_STATE macro is used.

You must define the state table for your parser. LIB$T[ABLE_]PARSE provides macros in the
MACRO and BLISS languages for this purpose. Section 1.3 describes these macros.

key-table

511

Chapter 2. LIB$ Reference

OpenVMS usage: unspecified
type: unspecified
access: modify
mechanism: by reference

Keyword table. The key-table argument is the address of this keyword table. This name must be
the same as that which appears as the second argument of the $INIT_STATE macro.

You must only assign a name to the keyword table. The LIB$T[ABLE_]PARSE macros allocate and
define the table. See Section 4 for more information about the keyword table.

Description
The following sections explain in detail how LIB$T[ABLE_]PARSE works and how to call it from
both the MACRO assembly language and high-level languages:

1. How LIB$T[ABLE_]PARSE Works — Describes the data structures used by LIB
$T[ABLE_]PARSE and how LIB$T[ABLE_]PARSE operates on them.

2. Coding and Using a Simple State Table — Explains how to construct and use a simple state table.

3. Using Advanced LIB$T[ABLE_]PARSE Features — Explains how to use subexpressions,
abbreviations, action routines, and other advanced features.

4. Data Representation — Includes information for the low-level-language programmer, such as the
binary representation of state table data.

How LIB$T[ABLE_]PARSE Works
LIB$T[ABLE_]PARSE analyzes an input string according to a set of states and transitions presented
in a state table you define. It determines whether the input string is valid according to the rules you
define for the input language.

There are three parts to any parsing operation:

• The set of symbol types, or alphabet, from which you can choose the vocabulary of your
language.

You specify a symbol type for each transition you define. The symbol type specifies what
constitutes a matching substring from the input string.

LIB$T[ABLE_]PARSE recognizes the ASCII character set and provides symbolic names for the
most common combinations of ASCII characters, such as alphabetic and alphanumeric strings,
OpenVMS symbols, and numbers. See Section 1.2 for a list of the symbol types that comprise the
LIB$T[ABLE_]PARSE alphabet.

• The rules that govern how the alphabet is used—in other words, the language’s grammar.

You specify the rules for a language in a state table. A LIB$T[ABLE_]PARSE state table lists the
possible states for your language. Each state consists of a list of the transitions to other states and
the operations to be performed when a transition is executed (see Section 1.3).

• The string to be parsed.

512

Chapter 2. LIB$ Reference

The argument block specifies the input string. It also contains additional information about the
state of the parse—how much of the string has not been interpreted, what the current token is, and
so forth (see Section 1.4).

Overview

Before discussing the alphabet, the state table, and the argument block in detail, this section provides
an overview of how these three parts work together.

Evaluating the Input String

LIB$T[ABLE_]PARSE evaluates the input string from left to right as it transitions from state to state.
For a particular transition in a particular state, it evaluates the beginning of the unprocessed part of
the input string against the symbol type you specify for the transition to determine whether there is a
match.

LIB$T[ABLE_]PARSE compares each character of the remaining input string, from left to right,
against the transition’s symbol type until it encounters a character in the input string that does not
match. It takes the substring that matches the symbol type and stores a pointer to it in the argument
block as the current token. In this way, any character in the input string that does not belong to the
symbol type’s constituent character set effectively becomes a separator.

If LIB$T[ABLE_]PARSE finds a match, it executes the transition.

If the input string does not match, LIB$T[ABLE_]PARSE attempts to match the next transition. It
performs the comparison using the transitions in the order in which you define them for the state.

Executing a Transition

When LIB$T[ABLE_]PARSE finds a match with a transition, it performs the following steps:

1. Stores a pointer to the current token in the argument block. If the token matches one of the
numeric symbol types, it also stores the token’s binary representation in the argument block.

2. Calls the action routine, if any, specified by the transition and passes it the argument block and any
additional user-specified arguments.

You can use an action routine to reject a transition. In this case, LIB$T[ABLE_]PARSE performs
none of the following steps. See Section 3.1 for more information.

3. Performs one of the following operations:

• Stores the mask, if any, specified by the transition in the location specified by the transition.

• Stores the value of token in the program location specified by the transition.

4. Transfers control to the specified state, if any, or to the next state in the state table.

Exiting LIB$T[ABLE_]PARSE

LIB$T[ABLE_]PARSE continues to match and execute transitions from state to state until one of the
following occurs:

• For a valid match, it executes a user-specified transition to TPA$_EXIT at main level. It returns
the value SS$_NORMAL.

513

Chapter 2. LIB$ Reference

• A transition requests that LIB$T[ABLE_]PARSE consider the string invalid by specifying
a transition to TPA$_FAIL at main level (rather than at the level of a subexpression). LIB
$T[ABLE_]PARSE returns with the value LIB$_ SYNTAXERR.

You can also request a transition to TPA$_FAIL from an action routine. The action routine can
provide an alternate failure status.

• An error occurs at the main level. The error can be:

• A syntax error. All transitions in the current state fail to match the remaining input string. LIB
$T[ABLE_]PARSE returns LIB$_ SYNTAXERR or an alternate failure status returned by an
action routine.

• A state table format error. One of your state table entries is invalid. LIB$T[ABLE_]PARSE
returns LIB$_INVTYPE.

Note

LIB$T[ABLE_]PARSE generates no signals and establishes no condition handler; action routines can
signal through LIB$T[ABLE_]PARSE back to the calling program.

When LIB$T[ABLE_]PARSE cannot successfully parse the entire string, it defines the current token,
as follows, and stores it in the argument block before returning:

• If LIB$T[ABLE_]PARSE fails to match a transition in the current state, it attempts to define the
current token as the beginning of the remaining input string. You can incorporate this token in an
error message or use it to determine the logical flow of your program.

LIB$T[ABLE_]PARSE attempts to match the characters from the beginning of the remaining
input string, one at a time, against the TPA$_SYMBOL alphabet symbol type until it encounters a
character that does not match. The TPA$_SYMBOL symbol type consists of all the characters of
the standard OpenVMS symbol constituent set.

• If LIB$T[ABLE_]PARSE successfully matches one or more consecutive characters from
the input string against TPA$_SYMBOL, then the substring that matched TPA$_SYMBOL
becomes the current token.

• If the first character of the remaining input string does not match TPA$_ SYMBOL, the first
character becomes the current token.

• If LIB$T[ABLE_]PARSE matches the symbol type for a transition that specifies TPA$_FAIL as
the next state, it leaves the token that matched the transition as the current token.

Alphabet of LIB$T[ABLE_]PARSE

The LIB$T[ABLE_]PARSE alphabet consists of a set of symbol types defined in the table below.
This alphabet includes strings made up of elements of the ASCII character set. It provides all the
basic building blocks needed for constructing a grammar using the ASCII character set. The alphabet
also includes symbol types that represent the more complex constructions found in programming and
command language grammar.

Use the symbols types that comprise the LIB$T[ABLE_]PARSE alphabet to define a vocabulary and
grammar for your language. For each transition you define, you specify one of the alphabet symbol
types. LIB$T[ABLE_]PARSE compares the characters at the beginning of the remaining input string

514

Chapter 2. LIB$ Reference

with this symbol type of each of the possible transitions. If LIB$T[ABLE_]PARSE finds a match, it
enters the state specified by that transition.

Table 2.9. The Alphabet of LIB$T[ABLE_]PARSE

Symbol Type Characters Matched
’x’ The particular ASCII character. In a state table,

it is expressed by enclosing the character in
single quotation marks. The character can be
any member of the 8-bit ASCII code set. LIB
$T[ABLE_]PARSE does not consider uppercase
and lowercase alphabetic characters and codes
with different values in bit 7 to be equivalent.

TPA$_ANY Any single character.
TPA$_ALPHA Any alphabetic character, which includes the

DEC multinational character set.
TPA$_DIGIT Any numeric character, that is, 0 through 9.
TPA$_STRING Any string of one or more alphanumeric

characters, that is, uppercase or lowercase A
through Z, and the numeric characters 0 through
9. The string can be any length. It is bounded on
the right by the first nonalphanumeric character
or by the end of the string.

TPA$_SYMBOL Any string of one or more through characters of
the standard OpenVMS symbol constituent set,
that is, uppercase and lowercase A through Z,
the numeric characters 0 through 9 and all DEC
multinational characters, in addition to the dollar
sign ($) and the underscore (_). The string is
bounded on the right by some character not in the
symbol constituent set (usually a blank) or by the
end of the string.

’keyword’ The string of characters enclosed in single
quotation marks. A keyword can consist of one
or more characters of the OpenVMS symbol
constituent set, that is, uppercase and lowercase
A through Z, the numeric characters 0 through
9, the dollar sign ($), and the underscore
(_). Uppercase and lowercase alphabetics are
treated as different characters. A state table can
contain up to 220 keywords. The keyword is
bounded on the right by a character not in the
symbol constituent set or by the end of the string.
Keywords that are one character in length are
expressed in the form ’x*’ to distinguish them
from the single-character symbol (’x’). They
must be differentiated because they are not the
same in operation. For example, in the input
string AB+C, the single character ’A’ would
match the first character of this string, whereas

515

Chapter 2. LIB$ Reference

Symbol Type Characters Matched
the keyword ’A*’ would not, because B in the
string is in the symbol constituent set.

TPA$_BLANK Any string of one or more blanks and/or tabs.
TPA$_OCTAL Any octal number (that is, any string of one or

more numeric characters 0 through 7) whose
magnitude is less than 232 for a 32-bit argument
block or less than 264 for a 64-bit argument block.

TPA$_DECIMAL Any decimal number (that is, any string of one
or more numeric characters 0 through 9) whose
magnitude is less than 232 for a 32-bit argument
block or less than 264 for a 64-bit argument block.

TPA$_HEX Any hexadecimal number (that is, any string of
one or more numeric characters 0 through 9, A
through F) whose magnitude is less than 232 for a
32-bit argument block or less than 264 for a 64-bit
argument block.

TPA$_OCTAL_64 Alpha and I64 specific. Any octal number (that
is, any string of one or more numeric characters 0
through 7) whose magnitude is less than 264.

TPA$_DECIMAL_64 Alpha and I64 specific. Any decimal number (that
is, any string of one or more numeric characters 0
through 9) whose magnitude is less than 264.

TPA$_HEX_64 Alpha and I64 specific. Any hexadecimal number
(that is, any string of one or more numeric
characters 0 through 9, A through F) whose
magnitude is less than 264.

TPA$_FILESPEC Any string that constitutes a valid OpenVMS
file specification. The string is bounded on the
right by the first character that either is not a
file specification constituent character or would
cause the string to violate the syntax rules of a file
specification.

TPA$_NODE Matches a full node specification including the
double colon (::).

TPA$_NODE_ACS Matches a primary node specification including
the access control string, if any, but not the
double colon (::).

TPA$_NODE_ PRIMARY Matches a primary node specification excluding
both the access control string, if any, and the
double colon (::).

TPA$_UIC Any string that constitutes a valid OpenVMS
numerical UIC specification, bounded by square
brackets or angle brackets. The binary value of
the UIC, converted in octal radix, is placed in
the argument block. The wildcard character (*)
is permitted in the group and/or member fields;

516

Chapter 2. LIB$ Reference

Symbol Type Characters Matched
its presence results in that field being set to its
largest possible value in the binary representation.

TPA$_IDENT Any string that constitutes a valid OpenVMS
identifier. Identifiers may be given as numerical
UICs according to the rules for TPA$_UIC, or
as alphabetic identifier names that appear in
the system’s rights database. The binary value
of the identifier, converted in either octal or
hexadecimal radix or by lookup in the system
rights database, is placed in the argument block.
Identifiers can be entered in any of the following
forms:

[n,m] <n,m>
[name1,name2] <name1,name2>
[name] <name>
name
%Xhex-value

You can use a wildcard (*) in place of any
occurrence of number or name in an identifier
form.

TPA$_LAMBDA The empty string (always matches). As it
executes the transition, LIB$T[ABLE_]PARSE
does not remove any characters from the input
string. LAMBDA transitions are useful in getting
action routines called under otherwise awkward
circumstances, providing unconditional GOTOs
to link portions of a state table together, and
providing default actions in certain cases.

TPA$_EOS The end of the input string.
state label The label of a state that functions as a

subexpression. A subexpression is analogous to a
subroutine within the state table.

The subexpression facility permits complex
syntactic constructs that appear in many places
in grammar to appear only once in the state table.
It also permits a degree of nondeterministic or
pushdown parsing with a parser that is otherwise
deterministic and finitestate. See Section 3.5 for
detailed information about subexpressions and
examples of their use.

Note

By default, LIB$T[ABLE_]PARSE treats blanks (defined to be either spaces or tabs), as though
they belong to no symbol type constituent set. Effectively, this makes the blank a separator. LIB
$T[ABLE_]PARSE begins its next comparison with the first nonblank character following the blanks.
To have LIB$T[ABLE_]PARSE evaluate a blank as it would any other character in the input string,

517

Chapter 2. LIB$ Reference

set the TPA$V_BLANKS flag in the argument block. Section 3.2 provides an example of the use of
this flag.

State Tables

This section describes state table generation and the macros used to construct state tables. Section 2
explains how to use these macros.

The state table must be set up using either MACRO or BLISS. Everything else, including any action
routines, can be coded in the language of your choice. Simply compile the state table separately, then
link it with your program.

The body of the state table consists of one or more states, each of which defines one or more
transitions to the same or other states. The order of the states and the order of the transitions for each
state are important:

• If a transition does not specify a target state, LIB$T[ABLE_]PARSE transitions to the next state
after the current state in the state table.

• For a given state, LIB$T[ABLE_]PARSE evaluates the input string against the transitions in the
order in which they are defined and executes the first transition it matches.

• If a state defines more than one transition with symbol types that match overlapping sets
of tokens, the order of transition definitions within the state is significant. For example, the
characters 123 followed by a comma (,) could match TPA$_DECIMAL, TPA$_OCTAL, TPA
$_STRING, or one of several other symbol types.

• It is best to order transitions in order of increasing generality of their symbol types. For
example, the TPA$_SYMBOL symbol type matches all keyword strings. In general, LIB
$T[ABLE_]PARSE never executes a keyword transition that follows a TPA$_SYMBOL
transition. The symbol types, in order of increasing generality, are as follows:

’keyword’

’x’

TPA$_EOS

TPA$_ALPHA

TPA$_DIGIT

TPA$_BLANK

TPA$_OCTAL

TPA$_OCTAL_64 (Alpha and I64 only)

TPA$_DECIMAL

TPA$_DECIMAL_64 (Alpha and I64 only)

TPA$_HEX

TPA$_HEX_64 (Alpha and I64 only)

518

Chapter 2. LIB$ Reference

TPA$_STRING

TPA$_SYMBOL

TPA$_UIC

TPA$_IDENT

TPA$_NODE_PRIMARY

TPA$_NODE_ACS

TPA$_NODE

TPA$_FILESPEC

TPA$_ANY

TPA$_LAMBDA

Note

The list of symbol types does not include subexpression calls, because the generality of these calls
depends on the symbol types recognized within the subexpression. If you use action routines to reject
certain transitions, you can change the order in which that symbol type is placed in this order. In any
case, LIB$T[ABLE_]PARSE executes the first transition listed in a state that you permit to match the
leftmost portion of the remaining input string.

MACRO State Table Generation Macro Calls

The OpenVMS system MACRO library contains a set of assembler macros that allow convenient and
readable coding of a LIB$T[ABLE_]PARSE state table. These macros generate symbol definitions
and tables. They do not produce any executable code or routine calls.

There are four MACRO state table generation macros:

• $INIT_STATE—Initializes the LIB$T[ABLE_]PARSE macros and declares the beginning of a
state table (see Section 1.3.1.1)

• $STATE—Defines a state (see Section 1.3.1.2)

• $TRAN—Defines a state transition (see Section 1.3.1.3)

• $END_STATE—Ends the state table (see Section 1.3.1.4)

A state table begins with a call to $INIT_STATE and ends with a call to $END_ STATE. Within the
state table, define each state by a call to $STATE immediately followed by as many calls to $TRAN as
you need to define the transitions from that state.

$INIT_STATE—Initializes the LIB$T[ABLE_]PARSE
Macros
The $INIT_STATE macro declares the beginning of a state table. It initializes the internals of the table
generator macros and declares the locations of the state table and the keyword table:

519

Chapter 2. LIB$ Reference

• The state table is the structure containing the definitions of the states and the transitions between
them. LIB$T[ABLE_]PARSE builds the state table as it processes the $STATE and $TRAN
macros you use to define the table.

• The keyword table contains the text of the keywords used in the state table. LIB
$T[ABLE_]PARSE builds the keyword table as it processes the calls to $TRAN for each state.

Section 4 provides specific information on the allocation and binary representations of the state table
and the keyword table. This information may be useful in debugging your program.

$INIT_STATE state-table ,key-table

state-table

The name assigned to the state table. LIB$T[ABLE_]PARSE equates this label to the start of the first
state in the state table.

key-table

The name assigned to the keyword table. LIB$T[ABLE_]PARSE equates this label to the start of the
keyword table.

You must supply both the address of the state table and the address of the keyword table in the call to
LIB$T[ABLE_]PARSE to perform a parse. The $INIT_STATE macro can appear more than once in a
program. Each occurrence defines a separate state table. No part of any state table can refer to part of
any other state table.

$STATE—Defines a State
The $STATE macro declares the beginning of a state.

$STATE [label]

label

An optional label for the state. LIB$T[ABLE_]PARSE equates the label, if present, to the starting
address of the state.

$TRAN—Defines a State Transition
The $TRAN macro defines a transition from the state in which it is defined to some other (or to the
same) state. The arguments of the macro define, among other things, the symbol type that causes
the transition to be executed, the state to which to transfer, and the action routine to call, if any. The
transition defined by a $TRAN macro belongs to the state defined by the last preceding $STATE
macro.

$TRAN type [,label] [,action] [,mask] [,msk-adr] [,argument]

type

The symbol type, taken from the LIB$T[ABLE_]PARSE alphabet, that is recognized by this
transition. The transition is taken if the characters from the beginning of the remaining input string
match the specified symbol type.

If the transition calls a subexpression to determine a match, the symbol type syntax includes the state
label of the subexpression to be called. It is indicated with the MACRO expression !label. See Section
3.5 for information about subexpressions.

520

Chapter 2. LIB$ Reference

label

The optional target state of this transition. If present, it must be the label assigned to some state in
the state table. If no label argument is present, LIB$T[ABLE_]PARSE transfers control to the state
immediately following the current state in the state table.

LIB$T[ABLE_]PARSE defines two expressions you can also specify as the target state in the label
argument:

• TPA$_EXIT — The parsing operation in progress terminates with a success status.

• TPA$_FAIL — The parsing operation stops with a failure status, as if a syntax error had occurred.

action

The optional address of a user-supplied action routine. If this argument is present, LIB
$T[ABLE_]PARSE calls the named action routine before it executes the transition. Section 3.1
describes the calling sequence of action routines and the information available to them.

Because the action routine address is self-relative, it cannot be in a shared image separate from the
state table.

mask

An optional 32-bit mask value used with the msk-adr argument.

When LIB$T[ABLE_]PARSE executes the transition, it performs an inclusive OR operation using the
mask value and the contents of msk-adr and stores the result in msk-adr.

You can associate one or more bits in mask with a particular transition and set those bits. When LIB
$T[ABLE_]PARSE returns, you can check the bits in msk-adr to determine which transitions were
executed. You can also use an action routine to check the bit and ensure that a transition is executed
only once.

If the mask argument is present, the msk-adr argument must also be present.

msk-adr

The msk-adr argument provides two mutually exclusive capabilities depending on whether the
mask argument is present:

• If mask is present, msk-adr is the address of a longword associated with the preceding mask
argument. LIB$T[ABLE_]PARSE performs the inclusive OR operation on the contents of this
address and the mask argument and stores the result in msk-adr.

Initialize the contents of msk-adr to zero before calling LIB$T[ABLE_]PARSE.

• If mask is not present, you can use msk-adr to specify the address of a location where LIB
$T[ABLE_]PARSE stores information about the matching token. No OR operation is performed.
This capability lets a program extract the most commonly needed information from the input
string without using action routines.

The kind of information that LIB$T[ABLE_]PARSE stores in the location you specify as the
msk-adr argument depends on the symbol type specified for the type argument and on the
argument block, as follows:

• If the symbol type is TPA$_DECIMAL, TPA$_OCTAL, or TPA$_HEX, LIB
$T[ABLE_]PARSE stores the binary representation of the matching number as an unsigned

521

Chapter 2. LIB$ Reference

longword for a 32-bit argument block and as an unsigned quadword for a 64-bit argument
block.

• If the symbol type is TPA$_DECIMAL_64, TPA$_OCTAL_64, or TPA$_ HEX_64, LIB
$T[ABLE_]PARSE stores the binary representation of the matching number as an unsigned
quadword for both 32-bit and 64-bit argument blocks.

• If the symbol type is ’x’, TPA$_ANY, TPA$_ALPHA, or TPA$_DIGIT, LIB
$T[ABLE_]PARSE stores the 8-bit matching character as an unsigned byte.

• If the symbol is of any other type, you must specify msk-adr as the address of a 32-bit or 64-
bit string descriptor, as appropriate, that you allocate in your program. LIB$T[ABLE_]PARSE
assumes a 32-bit or 64-bit descriptor if the argument block with which you called it is 32-bit or
64-bit, respectively.

For a 32-bit descriptor, LIB$T[ABLE_]PARSE stores the length of the token in the first 32
bits (longword) of the descriptor. It stores a pointer to the token in the second longword. This
pointer is the address of the token in the input string.

For a 64-bit descriptor, LIB$T[ABLE_]PARSE stores the length of the token in the second
quadword of the descriptor and stores the address of the token in the input string in the third
quadword. On entry, LIB$T[ABLE_]PARSE writes the fields of the first quadword as follows:

DSC64$B_CLASS = DSC64$K_CLASS_S

DSC64$B_DTYPE = DSC64$K_DTYPE_T

DSC64$L_MBMO = –1

DSC64$W_MBO = +1

Using msk-adr makes your parsing program nonmodular. The resulting program, which contains
this state table, includes code that is not position independent.

Because the address specified by msk-adr is self-relative, it cannot be in a shared image separate
from the state table.

argument

An optional 32-bit value that LIB$T[ABLE_]PARSE passes to the action routine without
interpretation. This argument can be an identifier number, an address, or any other information your
action routine needs. It allows a single action routine to serve many transitions for which similar, but
slightly varying, actions must be performed.

Because LIB$T[ABLE_]PARSE does not know the form or meaning of argument the value is stored
in its absolute form. If you use argument to pass an address, you must store the address in its absolute
form rather than as a self-relative pointer. In this case the resulting program, which contains this state
table, is nonmodular. That is, it includes code that is not position independent.

$END_STATE—Ends the State Table
The $END_STATE macro declares the end of the state table. It is mandatory, in order to permit the
orderly cleanup of the LIB$T[ABLE_]PARSE macro system. The $END_STATE macro has no
arguments. You code it as follows:

522

Chapter 2. LIB$ Reference

$END_STATE

BLISS State Table Generation Macro Calls

The SYS$LIBRARY:TPAMAC.L32 and SYS$LIBRARY:TPAMAC.L64 files each contain a set of
BLISS macros that allow convenient and readable coding of LIB$T[ABLE_]PARSE state tables in
BLISS.

Use one of the following BLISS state table generation macros:

• $INIT_STATE—Initializes the macros (see Section 1.3.2.1)

• $STATE—Defines a state and its transitions (see Section 1.3.2.2)

To make the macros available to the program, include the following declaration in the module
containing the state tables:

LIBRARY ’SYS$LIBRARY:TPAMAC’;

The BLISS compiler you use, BLISS-32 or BLISS-64, chooses the corresponding SYS
$LIBRARY:TPAMAC file.

The BLISS table generation macros contain no BEGIN or END statements. This allows $STATE
macros to refer to each other. They generate all storage with OWN declarations. This means that the
macros modify PSECT declarations for OWN and GLOBAL storage. Thus if other data declarations
follow the state table declarations, they may not have the correct attributes. You cannot simply
surround the state table with BEGIN/END, because this constitutes an expression. No declarations of
any kind, including ROUTINE declarations, can follow an expression.

Use one of the following techniques to include LIB$T[ABLE_]PARSE a state table in a BLISS
module:

• Follow the state table with explicit redeclarations of the OWN and GLOBAL PSECTs. Example 3
illustrates this technique.

• Place the state table in a separate module. The high-level language examples in the next section
use this technique.

• Place the state table between BEGIN and END statements after the declarations within a routine
body.

• Place the state table between BEGIN and END statements at the end of a module.

In all cases you must define all action routines, masks, addresses, and arguments with suitable
declarations (which can be FORWARD or EXTERNAL). The LIB$T[ABLE_]PARSE macros handle
the necessary FORWARD declarations for forward references to labels within the state table.

$INIT_STATE—Initializes the LIB$T[ABLE_]PARSE
Macros
The $INIT_STATE macro initializes the LIB$T[ABLE_]PARSE macro system in the same manner it
does for MACRO.

523

Chapter 2. LIB$ Reference

$INIT_STATE (state-table, key-table);

state-table

The name assigned to the state table. LIB$T[ABLE_]PARSE equates this label to the start of the first
state in the state table.

key-table

The name assigned to the keyword table. LIB$T[ABLE_]PARSE equates this label to the start of the
keyword table.

Both names are declared as global vectors of length zero. As with the MACRO state table generation
macros, you can invoke $INIT_STATE more than once to declare several state tables within a single
module.

$STATE—Declares a State and Its Transitions
In BLISS, you use the $STATE macro to declare a state in its entirety, including its transitions.

$STATE ([label],
 (transition),
 (transition),
 (transition)
 .
 .
 .
);

label

Optional address of the start of the state. The compiler declares label as a local vector of length
zero. Note that the comma following the optional label is mandatory.

transtion

Each transition appears within parentheses in the same form as the transition argument list for the
MACRO $TRAN macro.

type [,label] [,action] [,mask] [,msk-adr] [,argument]

The arguments of each transition are expressed in exactly the same format as in the MACRO macros,
with the exception of the subexpression symbol type. In BLISS, this symbol type has the form (label).

Note that the transitions are not specified as keyword macros. Therefore, you must use commas to
indicate arguments you have skipped.

LIB$T[ABLE_]PARSE Argument Block

LIB$T[ABLE_]PARSE finds the input string through the argument block. This argument block is the
impure database upon which LIB$T[ABLE_]PARSE operates. That is, it is a set of variable data that
can be written as well as read. It contains information about the string to be parsed, option flags for
LIB$T[ABLE_]PARSE, and data about the current token. If LIB$T[ABLE_]PARSE calls an action

524

Chapter 2. LIB$ Reference

routine, it passes the argument block to the action routine. This permits the action routine efficient
reference to relevant data.

Choosing an Argument Block

LIB$T[ABLE_]PARSE provides an argument block for 32-bit operations on VAX, Alpha, and I64
systems. It also provides an argument block for 64-bit operations on Alpha and I64 systems.

32-Bit Argument Block
The 32-bit LIB$T[ABLE_]PARSE argument block accommodates longword addresses and values as
well as input tokens whose binary representations require no more than 32 bits.

On Alpha and I64 systems, the LIB$T[ABLE_]PARSE 32-bit argument block can also accommodate
a numeric input token whose binary representation requires up to 64 bits.

LIB$T[ABLE_]PARSE defines the first 9 longwords of the 32-bit argument block as shown in
Figure lib–20. You must pass an argument block of at least this length as the first argument to LIB
$T[ABLE_]PARSE. You can add fields to the end of the argument block as a means of passing user-
defined data to action routines.

The TPA$K_LENGTH0 symbol represents the number of bytes (36) in the basic 32-bit argument
block. You can use this symbol to determine the start of any user-defined fields you add to the
argument block.

Table below describes the argument block fields.

Figure 2.21. LIB$T[ABLE_]PARSE 32-Bit Argument Block

64-Bit Argument Block (Alpha Only)
The 64-bit LIB$T[ABLE_]PARSE argument block accommodates quadword addresses and values as
well as input tokens whose binary representations require no more than 64 bits.

LIB$T[ABLE_]PARSE defines the first 10 words of the 64-bit argument block as shown in Figure
lib–21. You can add fields to the end of the argument block as a means of passing data to action
routines.

525

Chapter 2. LIB$ Reference

The TPA64$K_LENGTH0 symbol represents the number of bytes (80) in the basic 64-bit argument
block. You can use this symbol to determine the start of any user-defined fields you add to the
argument block.

Table below describes the argument block fields.

Figure 2.22. LIB$T[ABLE_]PARSE 64-Bit Argument Block (Alpha and I64 Only)

Symbolic Names for Argument Block Fields

The fields in each type of argument block have symbolic names. Figure 20 and Figure 21 show
some of these symbolic names. This section tells you how to access these names in some of the most
commonly used languages:

• MACRO assembly language — MACRO language programs can define both the 32-bit and 64-bit
argument block names by invoking the macro $TPADEF (automatically loaded from the system
macro library). The field names define the byte offset of the field from the start of the argument
block. This includes the bit fields ($V_names). In addition, bit mask values ($M_names) are
available for the bit fields.

• BLISS — The field names are also available to BLISS programs from the system macro SYS
$LIBRARY:STARLET.L32 and SYS$LIBRARY:STARLET.L64 libraries. Each name (except for
the $M_ names) is defined as a fixed-reference macro that operates on a byte-based block. The
$M_names are defined as literals.

• C — The same field names are available to C programs from the tpadef.h file. For the 32-bit and
64-bit argument blocks, the names are defined as elements of the tpadef and tpa64def structures,
respectively.

See Section 2.2 for an example of an argument block declaration.

32-Bit and 64-Bit Argument Block Fields

Table below describes the fields of the 32-bit and 64-bit argument blocks.

Note that most fields have two symbols and one description. The symbol that begins with the prefix
TPA$ is used with a 32-bit argument block, while the symbol that begins with the prefix TPA64$
is used with a 64-bit argument block. To prevent cumbersome explanations, Table lib–10 uses only
the main part of a field name, without the prefix used in the actual code, when referring to a field for
both the 32-bit and 64-bit argument blocks. For example, the options field is referred to as OPTIONS
rather than specifying both TPA$L_OPTIONS and TPA64$L_OPTIONS. The complete field name is
used only when referring to a field for one particular form of argument block.

526

Chapter 2. LIB$ Reference

Table 2.10. LIB$T[ABLE_]PARSE Argument Block Fields

Symbol Description
TPA$L_COUNT

TPA64$L_COUNT

A longword containing the value of TPA
$K_COUNT0 for 32-bit argument blocks
or TPA64$K_COUNT0 for 64-bit argument
blocks. TPA$K_COUNT0 is defined to be 8.
TPA64$K_COUNT0 is defined to be –1. If the
value contained in this longword is greater than
or equal to 8, LIB$T[ABLE_]PARSE treats the
argument block as a 32-bit argument block. If
the value is –1, LIB$T[ABLE_]PARSE treats
the argument block as a 64-bit argument block.
For LIB$TPARSE (VAX only), a longword
containing the number of longwords that make
up the rest of the argument block. This longword
functions as the argument count when the
argument block becomes the argument list to an
action routine. This field must contain a value
that is greater than or equal to the value of TPA
$K_COUNT0, whose numeric value is 8.

TPA$L_OPTIONS

TPA64$L_OPTIONS

Contains various flag bits and other options. The
defined flags are as follows:

• TPA$V_BLANKS, TPA64$V_BLANKS —
Setting this bit causes LIB$T[ABLE_]PARSE
to process blanks and tabs explicitly, rather
than treating them as separators. See Section
3.2 for information about processing blanks.

• TPA$V_ABBRFM, TPA64$V_ABBRFM
— Setting this bit allows keywords to be
abbreviated to any length. If an abbreviated
keyword string is ambiguous, the first eligible
transition listed in the state matches it.

• TPA$V_ABBREV, TPA64$V_ABBREV
— Setting this bit allows keywords to
be abbreviated to the shortest length that
is unambiguous in that state. See the
Abbreviating Keywords section.

• TPA$V_AMBIG, TPA64$V_AMBIG — LIB
$T[ABLE_]PARSE sets this bit when it has
detected an ambiguous keyword string in the
current state.

The OPTIONS field also contains the following
option:

TPA64$Q_STRINGDESC For a 64-bit argument block, the three quadwords
starting with TPA64$Q_STRINGDESC form an
embedded 64-bit descriptor for the input string.

527

Chapter 2. LIB$ Reference

Symbol Description
On entry, LIB$T[ABLE_]PARSE writes the fields
of TPA64$Q_STRINGDESC as follows:

DSC64$B_CLASS = DSC64$K_CLASS_S

DSC64$B_DTYPE = DSC64$K_DTYPE_T

DSC64$L_MBMO = –1

DSC64$W_MBO = +1
TPA$L_STRINGCNT

TPA64$Q_STRINGCNT

Contains the number of characters remaining in
the input string.

For a 32-bit argument block, TPA
$L_STRINGCNT and TPA$L_STRINGPTR
form an embedded 32-bit descriptor for the input
string.

For both 32-bit and 64-bit argument blocks:

• You must initialize the STRINGCNT and
STRINGPTR fields to describe the input
string. Use LIB$ANALYZE_SDESC or
LIB$ANALYZE_ SDESC_64 to read the
string length and address from the string’s
descriptor and write them in STRINGCNT
and STRINGPTR, respectively.

• Before LIB$T[ABLE_]PARSE calls an
action routine, it modifies STRINGCNT and
STRINGPTR to describe the remainder of the
input string.

• When LIB$T[ABLE_]PARSE returns,
STRINGCNT and STRINGPTR describe
the portion of the input string that LIB
$T[ABLE_]PARSE did not process. This
occurs whether LIB$T[ABLE_]PARSE
returns success or failure.

TPA$L_STRINGPTR

TPA64$Q_STRINGPTR

Contains the address of the remainder of the
string being parsed.

TPA64$Q_TOKENDESC For a 64-bit argument block, the three quadwords
starting with TPA64$Q_TOKENDESC form
an embedded 64-bit descriptor for the current
token.2 On entry, LIB$T[ABLE_]PARSE writes
the fields of TPA64$Q_TOKENDESC as follows:

DSC64$B_CLASS = DSC64$K_CLASS_S

DSC64$B_DTYPE = DSC64$K_DTYPE_T

528

Chapter 2. LIB$ Reference

Symbol Description
DSC64$L_MBMO = –1

DSC64$W_MBO = +1
TPA$L_TOKENCNT

TPA64$Q_TOKENCNT

Contains the number of characters in the current
token.

For a 32-bit argument block, TPA
$L_TOKENCNT and TPA$L_TOKENPTR form
an embedded 32-bit descriptor for the input token.

For both 32-bit and 64-bit argument blocks, LIB
$T[ABLE_]PARSE updates TOKENCNT and
TOKENPTR, to reflect the current token.

TPA$L_TOKENPTR

TPA64$Q_TOKENPTR

Contains the address of the current token.

TPA$B_CHAR

TPA64$B_CHAR

Contains the character matched by one of the
single character symbol types: ’x’, TPA$_ANY,
TPA$_ ALPHA, or TPA$_DIGIT.

TPA$L_NUMBER

TPA64$Q_NUMBER

Contains the binary representation of a numeric
token that matches TPA$_OCTAL, TPA
$_DECIMAL, TPA$_HEX, TPA$_UIC, or
TPA$_IDENT. For a 64- bit argument block,
it can also contain the binary representation
of a numeric token that matches TPA
$_DECIMAL_64, TPA$_OCTAL_64, or TPA$_
HEX_64.

(Alpha and I64 specific) TPA$Q_NUMBER For a 32-bit argument block on an Alpha system,
contains the binary representation of a numeric
token that matches TPA$_DECIMAL_64,
TPA$_OCTAL_64, or TPA$_HEX_64. LIB
$T[ABLE_]PARSE coverts the numeric token in
the appropriate radix before storing it in the TPA
$Q_NUMBER field.

In the 32-bit argument block, TPA$Q_NUMBER
overlays TPA$L_NUMBER and the longword in
which TPA$B_CHAR resides.

TPA$L_PARAM

TPA64$Q_PARAM

Contains the optional 32-bit argument supplied
by the state transition in its argument
argument. For a 64-bit argument block, LIB
$T[ABLE_]PARSE sign-extends the argument
value before storing it in TPA64$Q_PARAM.

Coding and Using a Simple State Table

LIB$T[ABLE_]PARSE can parse programming languages, command languages, or any other
grammar for which a deterministic parser is the best choice.

To code a program to use LIB$T[ABLE_]PARSE, perform the following steps:

529

Chapter 2. LIB$ Reference

• Set up state tables to implement the language’s grammar (See Section 2.1)

• Define the argument block and other common variables (See Section 2.2)

• Include the call to LIB$T[ABLE_]PARSE in the main program (See Section 2.3)

This section provides examples that demonstrate the use of LIB$T[ABLE_]PARSE to perform these
three steps. The examples parse the command language of a simple report management utility. This
hypothetical utility allows a user to perform the following activities:

• Obtain a list of available reports (SHOW command).

• Read reports on the terminal (READ command).

• Print reports (PRINT command).

• Store new reports (FILE command).

The examples use the BASIC programming language for everything except the state and keyword
tables, which are coded in BLISS.

This simple state table program does not use any action routines or other arguments. See Section 3 for
information about how to use these features of LIB$T[ABLE_]PARSE.

Setting Up a State Table

A state table associates the parser’s alphabet with a set of possible transitions.

It is often helpful to create a graphical representation of a state table before attempting to code it. The
following section illustrates two possible approaches.

Diagramming the Transitions
One way to set up these tables is to start from a transition diagram of the language you want to
parse. (If you do not know how to construct a transition diagram, you might find it helpful to read an
introductory text about compiler design and construction before you start.) Each circle represents a
state in the state table. Each arrow, labeled with an input option, represents a transition out of one state
to another state or within the same state.

Figure below shows a transition diagram for the hypothetical utility described in this section.

Figure 2.23. Transition Diagram for a Hypothetical Utility

Another technique for developing a state table starts with a tabular diagram in which the first column
is the starting state, the second column identifies the input token, or keyword, and the third gives the
resultant state.

Figure below is a tabular diagram of the utility that appears in figure above.

530

Chapter 2. LIB$ Reference

Figure 2.24. Tabular Diagram of a Hypothetical Utility

In this case, each unique entry in the Starting State or Resulting State column represents a state in
the state table. Each entry in the Input column represents a possible transition out of the state in the
Starting State column to a state in the Resulting State column.

Coding a State Table
For both MACRO and BLISS, you begin the state table with an $INIT_STATE macro. If you use
MACRO to define your state table, then:

• Use the $STATE macro to define each state.

• Follow each $STATE macro with one instance of the $TRAN macro for each transition from this
state to another state or within the same state.

If you use BLISS to define the state table, then:

• Use the $STATE macro to define each state and its associated transitions.

Note

The order in which you define the states is important. If you do not specify a target state for a
transition, LIB$T[ABLE_]PARSE transfers control to the next state in the state table.

The following MACRO and BLISS examples code the state table for the hypothetical utility
diagrammed in the two figures above. Note that neither of these state tables includes the error state,
because LIB$T[ABLE_]PARSE automatically generates an error if the input token does not match a
transition in the current state. To provide a transition to your own error state, code the last transition in
the state with the TPA$_LAMBDA symbol type and specify a transition to your error state. The TPA
$_LAMBDA symbol type matches any input token.

The state table, coded using MACRO, for this simple language looks like this:

 .TITLE simplelang
 .ident ’v1’

;+
; Define the LIB$TABLE_PARSE control symbols
;-

 $TPADEF

 $INIT_STATE SIMPLE_LANGUAGE_TABLE, SIMPLE_KEYWORD_TABLE

 $STATE START

531

Chapter 2. LIB$ Reference

 $TRAN ’PRINT’, STATE1
 $TRAN ’READ’, STATE1
 $TRAN ’FILE’, STATE1
 $TRAN ’SHOW’, STATE1
 $STATE STATE1
 $TRAN TPA$_STRING, STATE1
 $TRAN TPA$_EOS, TPA$_EXIT
 $END_STATE
 .END

Using the BLISS macros yields the following state table definition:

MODULE simple_statetable =

BEGIN

 !+
 ! These libraries contain the macros and other definitions
 ! needed to generate the state tables.
 !-

LIBRARY ’SYS$LIBRARY:STARLET’;
LIBRARY ’SYS$LIBRARY:TPAMAC’;
 !+
 ! UFD_STATE is the name you are giving the state table.
 ! UFD_KEY names the keyword table.
 ! Be sure to use the same name in the call to LIB$T[ABLE_]PARSE.
 !-

$INIT_STATE (UFD_STATE, UFD_KEY);
 !+
 ! Read the command name (to the first blank in the command).
 ! Each string is a keyword; you are limited to 220 keywords
 ! per state table.
 !-

$STATE (START, !Be careful of your punctuation here.
 (’CREATE’,STATE1), ! Each transition is surrounded by
 (’FILE’,STATE1), ! parentheses; each entry except the
 (’PRINT’,STATE1), ! last is followed by a comma.
 (’READ’,STATE1)
);

$STATE (STATE1,
 (TPA$_STRING, STATE1), ! If there is more than one report name
 (TPA$_EOS, TPA$_EXIT) ! specified, go back and process it.
); ! exit when done.

END

ELUDOM ! End of module CREATE_TABLE

Assemble or compile this module as you would any other program module.

Defining the Argument Block

After you have set up the state tables, you need to declare the LIB$T[ABLE_]PARSE argument block
in such a way that both your program and LIB$T[ABLE_]PARSE can use it. This means the data

532

Chapter 2. LIB$ Reference

must be defined in an area common to the calling program and the program module containing the
state table definitions.

In most programming languages you will use a combination of EXTERNAL statements and common
data definitions to create and access a separate data PSECT. If you do not know what mechanisms the
language you are using provides, consult the documentation for that language.

The following example shows the LIB$T[ABLE_]PARSE argument block defined for use in a BASIC
program.

!LIB$T[ABLE_]PARSE requires that TPA$K_COUNT0 be eight.

DECLARE INTEGER CONSTANT TPA$K_COUNT0 = 8, &
 BTPA$L_COUNT = 0, &
 BTPA$L_OPTIONS=1, &
 BTPA$L_STRINGCNT=2, &
 BTPA$L_STRINGPTR=3, &
 BTPA$L_TOKENCNT=4, &
 BTPA$L_TOKENPTR=5, &
 BTPA$B_CHAR=6, &
 BTPA$L_NUMBER=7, &
 BTPA$L_PARAM=8

!+
! The LIB$T[ABLE_]PARSE argument block.
!-

MAP (TPARSE_BLOCK) LONG TPARSE_ARRAY (TPA$K_COUNT0)

!+
! Redefining the map allows you to use the standard
! LIB$T[ABLE_]PARSE symbolic names. TPA$L_STRINGCNT,
! for example, references the same storage location
! as TPARSE_ARRAY(2) and TPARSE_ARRAY(BTPA$L_STRINGCNT).
!-
MAP (TPARSE_BLOCK) LONG &
 TPA$L_COUNT , &
 TPA$L_OPTIONS, &
 TPA$L_STRINGCNT, &
 TPA$L_STRINGPTR, &
 TPA$L_TOKENCNT, &
 TPA$L_TOKENPTR, &
 TPA$B_CHAR, &
 TPA$L_NUMBER, &
 TPA$L_PARAM

Before your program can call LIB$T[ABLE_]PARSE, it must place the necessary information in the
argument block.

The example utility does not need to set any flags because it uses the LIB$T[ABLE_]PARSE defaults
for options such as blanks processing and abbreviations. However, it must put the address and length
of the string to be parsed into the TPA$L_STRINGCNT and TPA$L_STRINGPTR fields.

The address and the length of the string to be parsed are available in the descriptor of the input
string (called COMMAND_LINE in the following program). However, BASIC, like most high-level
languages, does not allow you to look at the descriptors of your strings. Instead, you can use LIB
$ANALYZE_SDESC or LIB$ANALYZE_SDESC_64 to read the length and address from the string
descriptor and place them in the argument block.

533

Chapter 2. LIB$ Reference

Coding the Call to LIB$T[ABLE_]PARSE

The following example demonstrates calling LIB$T[ABLE_PARSE from a high-level language
(BLISS). This program uses the BLISS state table described in previous section.

5 %TITLE "BLISS Program to Call LIB$T[ABLE_]PARSE

 OPTION TYPE=EXPLICIT

 !+
 ! COMMAND_LINE is the string to receive the input
 ! command from the terminal.
 ! ERROR_MSG_TEXT is the system error message
 ! returned from LIB$SYS_GETMSG
 ! (used in the error handling routine)
 !-
 DECLARE STRING COMMAND_LINE, ERROR_MSG_TEXT

 !+
 ! RET_STATUS receives the status from the system calls.
 ! SAVE_STATUS is used when an error occurs
 ! and the error handling routine calls
 ! LIB$SYS_GETMSG to obtain the error text.
 !-
 DECLARE LONG RET_STATUS, SAVE_STATUS

 !+
 ! UFD_STATE is the address of the state table.
 ! UFD_KEY is the address of the key table.
 ! Both addresses are set up by the macros in module
 ! SIMPLE_STATETABLE32.
 !-

 EXTERNAL LONG UFD_STATE, UFD_KEY

 !+
 ! To allow us to compare returned statuses more easily.
 !-

 EXTERNAL INTEGER CONSTANT SS$_NORMAL, &
 LIB$_SYNTAXERR, &
 LIB$_INVTYPE

 !+
 ! This program calls the following Run-Time Library
 ! routines:
 !
 ! LIB$T[ABLE_]PARSE to parse the input string
 !
 ! LIB$ANALYZE_SDESC to get the length and starting
 ! address of the command string and place them
 ! in the LIB$T[ABLE_]PARSE argument block.
 !
 ! LIB$SYS_GETMSG to find the facility, severity, and text
 ! of any system errors that occur
 ! during program execution.
 !-

534

Chapter 2. LIB$ Reference

EXTERNAL LONG FUNCTION LIB$TABLE_PARSE, &
 LIB$ANALYZE_SDESC, &
 LIB$SYS_GETMSG

 !+
20 ! This file defines the argument block that is passed
 ! to LIB$T[ABLE_]PARSE. It also defines subscripts that
 ! make it easier to access the array.
 !
 ! Keeping the argument block definitions in a separate
 ! file makes them easier to modify and lets other
 ! programs use the same definitions.
 !-

 %INCLUDE "SIMPLE_TPARSE_BLOCK"

50 ON ERROR GOTO ERROR_HANDLER

60 !+
 ! LIB$T[ABLE_]PARSE requires that TPA$L_COUNT, the
 ! first field in the argument block, have a value
 ! of TPA$K_COUNT0, whose value is 8.
 !-

 TPA$L_COUNT = TPA$K_COUNT0

75 !+
 ! Prompt at the terminal for the user’s action.
 ! A real utility should provide a friendlier,
 ! clearer interface.
 !-

 GET_INPUT: PRINT "Your options are: " , " READ report "
 PRINT , " FILE report "
 PRINT , " PRINT report "
 PRINT , " CREATE report "
 PRINT
 INPUT "What would you like to do"; COMMAND_LINE
 !+
 ! Get the length and starting address of the command line
 ! and place them in the LIB$T[ABLE_]PARSE argument block. Note
 ! that LIB$ANALYZE_SDESC stores the length as a word.
 !-

 RET_STATUS = LIB$ANALYZE_SDESC (COMMAND_LINE BY DESC, &
 TPARSE_ARRAY (BTPA$L_STRINGCNT) BY REF, &
 TPARSE_ARRAY (BTPA$L_STRINGPTR) BY REF)

 IF RET_STATUS <> SS$_NORMAL THEN
 GOTO ERROR_HANDLER
END IF

100 !+
 ! Call LIB$T[ABLE_]PARSE to process the input string.
 !
 ! Note that LIB$T[ABLE_]PARSE expects to receive its arguments
 ! by reference, while BASIC’s default for arrays and

535

Chapter 2. LIB$ Reference

 ! strings is by descriptor. Therefore the BY REF
 ! clauses are required. Without them, LIB$T[ABLE_]PARSE
 ! cannot find the input string
 ! and the parse will always fail.
 !-

 RET_STATUS = LIB$TABLE_PARSE (TPARSE_ARRAY () BY REF, &
 UFD_STATE BY REF, &
 UFD_KEY BY REF)

 !+
 ! This simple program provides no information except that
 ! a valid command was entered. The next section discusses
 ! techniques for gathering more information.
 !-

 IF RET_STATUS = SS$_NORMAL

 !+
 ! For now, exit on success.
 !-

 THEN PRINT "Parse successful"
 GOTO 9999
 !+
 ! If the parse failed, give the user a chance to try again.
 !-

 ELSE IF RET_STATUS = LIB$_SYNTAXERR THEN
 PRINT "You did not enter a valid command."
 PRINT "Please try again."
 GOTO GET_INPUT

!+
 ! If a more serious error occurred, inform the user
 ! and exit.
!-

 ELSE
 Goto ERROR_HANDLER
 END IF
 END IF

500 ERROR_HANDLER: SAVE_STATUS = RET_STATUS

 RET_STATUS = LIB$SYS_GETMSG (SAVE_STATUS,,ERROR_MSG_TEXT)
 PRINT "Something went wrong."
 PRINT ERL, ERROR_MSG_TEXT
 RESUME 9999

9999 END

Compile this program as you would any other BASIC program.

When both the state tables and the main program have been compiled, link them together to form a
single executable image, as follows:

$ LINK SIMPLANG,SIMPLANG_STATETABLE

536

Chapter 2. LIB$ Reference

Using Advanced LIB$T[ABLE_]PARSE Features
The LIB$T[ABLE_]PARSE call in the previous program tells you that the command the user entered
was valid, but nothing else—not even which command was entered. A program usually needs more
information than this.

The following sections describe some of the more complicated ways to process input strings or to
gather extra information for your program, including:

• Action routines

• Blanks in the input string

• Special characters in the input string

• Abbreviated keywords

• Subexpressions

• Modular use of LIB$T[ABLE_]PARSE

Using Action Routines

After LIB$T[ABLE_]PARSE finds a match between a transition and the leading portion of the input
string, it determines if the transition that made the match specified an action routine. If it did, LIB
$T[ABLE_]PARSE stores the value of the transition’s argument longword, if any, in the argument
block PARAM field and calls the action routine.

• If the action routine returns success, LIB$T[ABLE_]PARSE processes the mask or msk-adr
arguments, if any, and continues to execute the transition as it would if there was no action
routine.

• If the action routine returns failure, LIB$T[ABLE_]PARSE does not execute the transition and
continues attempting to match successive transitions.

Passing Data to an Action Routine
An action routine has only one argument, the argument block. You can pass additional data to the
action routine using:

• The transition’s optional argument argument

• Fields you add to the end of the argument block

LIB$TABLE_PARSE and LIB$TPARSE use different linkages for passing the argument block to the
action routine:

• LIB$TABLE_PARSE uses the standard calling mechanism and passes the argument block, by
reference, as the only argument to the action routine.

Therefore, for OpenVMS systems, action routines are written as:

ROUTINE TEST(TPARSE_ARGUMENT_BLOCK : REF BLOCK[, BYTE]) =
BEGIN

TPARSE_ARGUMENT_BLOCK[TPA$V_ABBREV] = 1

END;

537

Chapter 2. LIB$ Reference

• On VAX systems, LIB$TPARSE uses a nonstandard linkage that establishes the address of the
argument block as the routine’s actual argument pointer. Therefore an action routine can reference
fields in the argument block by their symbolic offsets relative to the AP (argument pointer)
register.

For example:

ROUTINE TEST =
BEGIN

BUILTIN
 AP;

BIND
 TPARSE_ARGUMENT_BLOCK = AP : REF BLOCK[, BYTE];

TPARSE_ARGUMENT_BLOCK[TPA$V_ABBREV] = 1

END;

Action Routine Return Values
The action routine returns a value to LIB$T[ABLE_]PARSE in R0 that controls execution of
the current state transition. If the action routine returns success (low bit set in R0) then LIB
$T[ABLE_]PARSE proceeds with the execution of the state transition. If the action routine returns
failure (low bit clear in R0), LIB$T[ABLE_]PARSE rejects the transition that was being processed
and acts as if the symbol type of that transition had not matched. It proceeds to evaluate other
transitions in that state for eligibility.

Note

Prior to calling an action routine, LIB$T[ABLE_]PARSE sets the low bit of R0 to make it easier for
the action routine to return success.

If an action routine returns a nonzero failure status to LIB$T[ABLE_]PARSE and no subsequent
transitions in that state match, LIB$T[ABLE_]PARSE will return the status of the action routine,
rather than the status LIB$_SYNTAXERR. In longword-valued functions in high-level languages, this
value is returned in R0.

Using an Action Routine to Reject a Transition
An action routine can intentionally return a failure status to force LIB$T[ABLE_]PARSE to reject a
transition. This allows you to implement symbol types specific to particular applications. To recognize
a specialized symbol type, code a state transition using a LIB$T[ABLE_]PARSE symbol type that
describes a superset of the desired set of possible tokens. The associated action routine then performs
the additional discrimination necessary and returns success or failure to LIB$T[ABLE_]PARSE,
which then accordingly executes or fails to execute the transition.

A pure finite-state machine, for instance, has difficulty recognizing strings that are shorter than some
maximum length or accepting numeric values confined to some particular range.

Blanks in the Input String

The default mode of operation in LIB$T[ABLE_]PARSE is to treat blanks as separators. That is, they
can appear between any two tokens in the string being parsed without being called for by transitions

538

Chapter 2. LIB$ Reference

in the state table. Because blanks are significant in some situations, LIB$T[ABLE_]PARSE processes
blanks if you have set the bit TPA$V_BLANKS in the options longword of the argument block. The
following input string shows the difference in operation:

ABC DEF

LIB$T[ABLE_]PARSE recognizes the string by the following sequences of state transitions,
depending on the state of the blanks control flag. The following examples illustrate processing with
and without TPA$V_BLANKS set:

• TPA$V_BLANKS set:

$STATE
$TRAN TPA$_STRING

$STATE
$TRAN TPA$_BLANK

$STATE
$TRAN TPA$_STRING

• TPA$V_BLANKS clear:

$STATE
$TRAN TPA$_STRING

$STATE
$TRAN TPA$_STRING

Your action routines can set or clear TPA$V_BLANKS as LIB$T[ABLE_]PARSE enters or leaves
sections of the state table in which blanks are significant. LIB$T[ABLE_]PARSE always checks
the blanks control flag as it enters a state. If the flag is clear, it removes any space or tab characters
present at the front of the input string before it proceeds to evaluate transitions. Note that when
the TPA$V_BLANKS flag is clear, the TPA$_BLANK symbol type will never match. If TPA
$V_BLANKS is set, you must explicitly process blanks.

Special Characters in the Input String

Not all members of the ASCII character set can be entered directly in the state table definitions.
Examples include the single quotation mark and all control characters.

In MACRO state tables, such characters can be specified as the symbol type with any assembler
expression that is equivalent to the ASCII code of the desired character, not including the single
quotes. For example, you could code a transition to match a backspace character as follows:

BACKSPACE = 8
 .
 .
 .
$TRAN BACKSPACE, ...

MACRO places extra restrictions on the use of a comma in arguments to macros; often they must be
surrounded by one or more angle brackets. Using a symbolic name for the comma will avoid such
difficulties.

To build a transition matching such a single character in a BLISS state table, you can use the %CHAR
lexical function as follows:

539

Chapter 2. LIB$ Reference

LITERAL BACKSPACE = 8;
 .
 .
 .
$STATE (label,
 (%CHAR (BACKSPACE), ...)
);

Abbreviating Keywords

The default mode of LIB$T[ABLE_]PARSE is exact match. All keywords in the input string must
exactly match their spelling, length and case in the state table. However, many languages (command
languages in particular) allow you to abbreviate keywords. For this reason, LIB$T[ABLE_]PARSE
has three abbreviation facilities to permit the recognition of abbreviated keywords when the state table
lists only the full spellings. All three are controlled by flags and options defined in the argument block
OPTIONS field. Table lib–11 describes these flags.

Table 2.11. Keyword Abbreviation Flags

Flag Description
TPA$B_MCOUNT

TPA64$B_MCOUNT

By setting a value in the MCOUNT argument
block field, the calling program or action routine
specifies a minimum number of characters from
the abbreviated keyword that must be present for
a match to occur. For example, setting the byte to
the value 4 would allow the keyword DEASSIGN
to appear in an input string as DEAS, DEASS,
DEASSI, DEASSIG, or DEASSIGN.

LIB$T[ABLE_]PARSE checks all the characters
of the keyword string. Incorrect spellings beyond
the minimum abbreviation are not permitted.

TPA$V_ABBRFM

TPA64$V_ABBRFM

If you set the ABBRFM flag in the argument
block OPTIONS field, LIB$T[ABLE_]PARSE
recognizes any leftmost substring of a keyword as
a match for that keyword. LIB$T[ABLE_]PARSE
does not check for ambiguity; it matches the first
keyword listed in the state table of which the
input token is a subset.

For proper recognition of ambiguous keywords,
the keywords in each state must be arranged
in alphabetical order by the ASCII collating
sequence as follows:

Dollar sign ($)

Numerics

Uppercase alphabetics

Underscore (_)

Lowercase alphabetics

540

Chapter 2. LIB$ Reference

Flag Description
TPA$V_ABBREV

TPA64$V_ABBREV

If you set the ABBREV flag in the argument
block OPTIONS field, LIB$T[ABLE_]PARSE
recognizes any abbreviation of a keyword as long
as it is unambiguous among the keywords in that
state.

If LIB$T[ABLE_]PARSE finds that the front of
the input string contains an ambiguous keyword
string, it sets the AMBIG flag in the OPTIONS
field and refuses to recognize any keyword
transitions in that state. (It still accepts other
symbol types.) The AMBIG flag can be checked
by an action routine that is called when coming
out of that state, or by the calling program if LIB
$T[ABLE_]PARSE returns with a syntax error
status. LIB$T[ABLE_]PARSE clears the flag
when it enters the next state.

If both the ABBRFM and ABBREV flags are set, ABBRFM takes precedence.

Note

Using a keyword abbreviation option can permit short abbreviations or ambiguity, which restricts
the extensibility of a language. Adding a new keyword can make a formerly valid abbreviation
ambiguous.

Using Subexpressions

LIB$T[ABLE_]PARSE subexpressions are analogous to subroutines within the state table. You can
use subexpressions as you would use subroutines in any program:

• To avoid replication of complex expressions.

• For a limited form of pushdown parsing, in which the state table contains recursively nested
subexpressions.

• For nondeterministic parsing, that is, parsing in which you need some number of states of
look-ahead. To do this, place each path of look-ahead in a separate subexpression and call the
subexpressions in the transitions of the state that needs the look-ahead. When a look-ahead path
fails, the subexpression failure mechanism causes LIB$T[ABLE_]PARSE to back out and try
another path.

A subexpression call is indicated with the MACRO expression !label or the BLISS expression
(label) as the transition type argument. Transfer of control to a subexpression causes LIB
$T[ABLE_]PARSE to call itself recursively, using the same argument block and keyword table as the
original call, and using the specified state label as a starting state.

The following statement is an example of a $TRAN macro that calls a subexpression:

$TRAN !Q_STRING,,,,Q_DESCRIPTOR

In this example, Q_STRING is the label of another state, a subexpression, in the same state table.

When LIB$T[ABLE_]PARSE evaluates a transition that transfers control to a subexpression, it
evaluates the subexpression’s transitions and processes the remaining input string.

541

Chapter 2. LIB$ Reference

• If the subexpression succeeds, it returns success to LIB$T[ABLE_]PARSE by executing a
transition to TPA$_EXIT. LIB$T[ABLE_]PARSE thus considers the calling transition to have
made a match. It calls that transition’s action routine, if any, and executes the transition.

• If the subexpression fails, LIB$T[ABLE_]PARSE considers the calling transition to have no
match. It backs up the input string, leaving it as it was at the start of the subexpression, and
continues processing by evaluating the remaining transitions in the calling state.

Using Action Routines and Storing Data in a
Subexpression
Be careful when designing subexpressions whose transitions provide action routines or use the
mask and msk-adr arguments. As LIB$T[ABLE_]PARSE processes the state transitions of a
subexpression, it calls the specified action routines and stores the mask and msk-adr. If the
subexpression fails, LIB$T[ABLE_]PARSE backs up the input string and resumes processing in the
calling state. However, any effect that an action routine has had on the caller’s database cannot be
undone.

If subexpressions are used only as state table subroutines, there is usually no harm done, because
when a subexpression fails in this mode, the parse generally fails. This is not true of pushdown or
nondeterministic parsing. In applications where you expect subexpressions to fail, design action
routines to store results in temporary storage. You can then make these results permanent at the main
level, where the flow of control is deterministic.

An Example: Parsing a Quoted String
The following example is an excerpt of a state table that parses a string quoted by an arbitrary
character. The table interprets the first character that appears as a quote character. Many text editors
and some programming languages contain this sort of construction.

LIB$T[ABLE_]PARSE processes a transition that invokes a subexpression as it would any other
transition:

• If the subexpression returns success by executing a transition to TPA$_ EXIT, LIB
$T[ABLE_]PARSE considers the calling transition to have a match. It updates Q_DESCRIPTOR
to describe the substring parsed by the subexpression and executes the transition to the next state
in the state table.

• If the subexpression returns failure by executing a transition to TPA$_FAIL, LIB
$T[ABLE_]PARSE considers the calling transition to have no match. It restores the input string
as it was when the subexpression was called and continues by evaluating the next transition in the
state.

;+
; Main level state table. The first transition accepts and
; stores the quoting character.
;-
 $STATE STRING
 $TRAN TPA$_ANY,,,,Q_CHAR
;+
; Call the subexpression to accept the quoted string and store
; the string descriptor. Note that the descriptor spans all
; the characters accepted by the subexpression.
;-
 $STATE

542

Chapter 2. LIB$ Reference

 $TRAN !Q_STRING,,,,Q_DESCRIPTOR
 $TRAN TPA$_LAMBDA,TPA$_FAIL
;+
; Accept the trailing quote character, left behind by the
; subexpression
;-
 $STATE
 $TRAN TPA$_ANY,NEXT
;+
; Subexpression to scan the quoted string. The second transition
; matches until it is rejected by the action routine. The subexpression
; should never encounter the end of string before the final quoting
; character.
;-
 $STATE Q_STRING
 $TRAN TPA$_EOS,TPA$_FAIL
 $TRAN TPA$_ANY,Q_STRING,TEST_Q
 $TRAN TPA$_LAMBDA,TPA$_EXIT
;+
; The following MACRO subroutine compares the current character
; with the quoting character and returns failure if it matches.
;-

TEST_Q: .WORD 0 ; null entry mask
 CMPB TPA$B_CHAR(AP),Q_CHAR ; check the character
 BNEQ 10$; note R0 is already 1
 CLRL R0 ; match - reject transition
10$: RET

An Example: Parsing a Complex Grammar

The following example is an excerpt from a state table that shows how to use subexpressions to parse
a complex grammar. The state table accepts a number followed by a keyword qualifier. Depending on
the keyword, the table interprets the number as decimal, octal, or hexadecimal. The state table accepts
strings such as the following:

10/OCTAL

32768/DECIMAL

77AF/HEX

This sort of grammar is difficult to parse with a deterministic finite-state machine. Using a
subexpression look-ahead of two states permits a simpler expression of the state tables.

;+
; Main state table entry. Accept a number of some type and store
; its value at the location NUMBER.
;-
 $STATE
 $TRAN !OCT_NUM,NEXT,,,NUMBER
 $TRAN !DEC_NUM,NEXT,,,NUMBER
 $TRAN !HEX_NUM,NEXT,,,NUMBER
;+
; Subexpressions to accept an octal number followed by the OCTAL
; qualifier.
;-
 $STATE OCT_NUM

543

Chapter 2. LIB$ Reference

 $TRAN TPA$_OCTAL
 $STATE
 $TRAN ’/’
 $STATE
 $TRAN ’OCTAL’,TPA$_EXIT
;+
; Subexpression to accept a decimal number followed by the DECIMAL
; qualifier.
;-
 $STATE DEC_NUM
 $TRAN TPA$_DECIMAL
 $STATE
 $TRAN ’/’
 $STATE
 $TRAN ’DECIMAL’,TPA$_EXIT
;+
; Subexpression to accept a hex number followed by the HEX
; qualifier.
;-
 $STATE HEX_NUM
 $TRAN TPA$_HEX
 $STATE
 $TRAN ’/’
 $STATE
 $TRAN ’HEX’,TPA$_EXIT

Note that the transitions that follow a match with a numeric token do not disturb the NUMBER
field in the argument block. This allows the main level subexpression call to retrieve it when the
subexpression returns.

LIB$T[ABLE_]PARSE and Modularity

To use LIB$T[ABLE_]PARSE in a modular and shareable fashion:

• Avoid using OWN storage. Instead, allocate the argument block on the stack or the heap.

• Do not use the msk-adr argument.

• Do not use the argument argument as an address. If additional context is needed, allocate it at
the end of the argument block.

• Use action routines to control flags such as TPA$V_BLANKS. The MACRO example at the
end of the LIB$TPARSE/LIB$TABLE_PARSE section shows such an action routine, though the
program itself is not modular.

Data Representation
This section describes the binary representation and allocation of a LIB$T[ABLE_]PARSE state table
and a keyword table. While this information is not required to use LIB$T[ABLE_]PARSE, it may be
useful in debugging your program.

State Table Representation

Each state consists of its transitions concatenated in memory. LIB$T[ABLE_]PARSE equates
the state label to the address of the first byte of the first transition. A marker in the last transition
identifies the end of the state. The LIB$T[ABLE_]PARSE table macros build the state table in the
PSECT_LIB$STATE$.

544

Chapter 2. LIB$ Reference

Each transition in a state consists of 2 to 23 bytes containing the arguments of the transition. The state
table generation macros do not allocate storage for arguments not specified in the transition macro.
This allows simple transitions to be represented efficiently. For example, the following transition,
which simply accepts the character "?" and falls through to the next state, is represented in two bytes:

$TRAN ’?’

In this section, pointers described as self-relative are signed displacements from the address following
the end of the pointer (this is identical to branch displacements in the OpenVMS VAX instruction set).

Table below describes the elements of a state transition in the order in which they appear, if present,
in the transition. If a transition does not include a specific option, no bytes are assigned to the option
within the transition.

Table 2.12. Binary Representation of a LIB$T[ABLE_]PARSE State Transition

Transition Element No. of Bytes Description
The first byte of a transition always contains the
binary coding of the symbol type accepted by this
transition. Flag bit 0 in the flags byte controls the
interpretation of the type byte. If the flag is clear,
the type byte represents a single character (the
’x’ construct). If the flag bit is set, the type byte
is one of the other type codes (keyword, number,
and so on). The following table lists the symbol
types accepted by LIB$T[ABLE_]PARSE:
Symbol Type Binary Encoding
’x’ ASCII code of the

character (8 bits)
’keyword’ The keyword index (0

to 219)
TPA$_DECIMAL_64
(Alpha and I64 only)

228

TPA$_OCTAL_64
(Alpha and I64 only)

229

TPA$_HEX_64 (Alpha
and I64 only)

230

TPA$_NODE_ACS 231
TPA
$_NODE_PRIMARY

232

TPA$_NODE 233
TPA$_FILESPEC 234
TPA$_UIC 235
TPA$_IDENT 236
TPA$_ANY 237
TPA$_ALPHA 238
TPA$_DIGIT 239

Symbol type 1

TPA$_STRING 240

545

Chapter 2. LIB$ Reference

Transition Element No. of Bytes Description
TPA$_SYMBOL 241
TPA$_BLANK 242
TPA$_DECIMAL 243
TPA$_OCTAL 244
TPA$_HEX 245
TPA$_LAMBDA 246
TPA$_EOS 247
TPA$_SUBEXPR 248 (subexpression

call) (Other codes are
reserved for expansion)

Use of the TPA$_FILESPEC, TPA$_NODE, TPA
$_NODE_ PRIMARY, or TPA$_NODE_ACS
symbol type results in calls to the $FILESCAN
system service. Use of the symbol type TPA
$_IDENT results in calls to the $ASCTOID
system service. If your application of LIB
$T[ABLE_]PARSE runs in an environment
other than OpenVMS user mode, you must
carefully evaluate whether use of these services is
consistent with your environment.
This byte contains the following bits, which
specify the options of the transition. It is always
present.
Bit Description
0 Set if the type byte is

not a single character.
1 Set if the second flags

byte is present.
2 Set if this is the last

transition in the state.
3 Set if a subexpression

pointer is present.
4 Set if an explicit target

state is present.
5 Set if the mask

longword is present.
6 Set if the msk-adr

longword is present.

First flags byte 1

7 Set if an action routine
address is present.

This byte is present if any of its flag bits is set.
It contains an additional flag describing the
transition. It is used as follows:

Second flags byte 1

Bit Description

546

Chapter 2. LIB$ Reference

Transition Element No. of Bytes Description
0 Set if the action routine

argument is present.
Subexpression pointer 2 This word is present in transitions that are

subexpression calls. It is a 16-bit signed self-
relative pointer to the starting state of the
subexpression.

Argument longword 4 This longword field contains the 32-bit action
routine argument, when specified.

Action routine address 4 This longword contains a self-relative pointer to
the action routine, when specified.

Bit mask 4 This longword contains the mask argument,
when specified.

Mask address 4 This longword, when specified, contains a self-
relative pointer through which the mask, or data
that depends on the symbol type, is to be stored.
Because the pointer is self-relative, when it points
to an absolute location, the state table is not PIC
(position-independent code).

Transition target 2 This word, when specified, contains the address
of the target state of the transition. The address is
stored as a 16-bit signed self-relative pointer. The
final state TPA$_EXIT is coded as a word whose
value is –1; the failure state TPA$_FAIL is coded
as a word whose value is –2.

Keyword Table Representation

The keyword table is a vector of 16-bit signed pointers that address locations in the keyword string
area, relative to the start of the keyword vector. It is the structure to which the $INIT_STATE macro
equates its second argument.

The LIB$T[ABLE_]PARSE macros assign an index number to each keyword. The index number
is stored in the symbol type byte in the transition; it locates the associated keyword vector entry.
The keyword strings are stored in the order encountered in the state table. Each keyword string is
terminated by a byte containing the value –1. Between the keywords of adjacent states is an additional
–1 byte to stop the ambiguous keyword scan.

To ensure that the keyword vector is adjacent to the keyword string area, the keyword vector is
located in PSECT_LIB$KEY0$ and the keyword strings and stored in PSECT_LIB$KEY1$.

Your program should not use any of the three PSECTs used by LIB$T[ABLE_]PARSE (_LIB$STATE
$, _LIB$KEY0$, and _LIB$KEY1$). The PSECTs _LIB$KEY0$ and _LIB$KEY1$ refer to each
other using 16-bit displacements, so user PSECTs inserted between them can cause truncation errors
from the linker.

Condition Values Returned
SS$_NORMAL Routine successfully completed. LIB$T[ABLE_]PARSE has

executed a transition to TPA$_EXIT at main level, not within a
subexpression.

547

Chapter 2. LIB$ Reference

LIB$_SYNTAXERR Parse completed with syntax error. LIB$T[ABLE_]PARSE has
encountered a state at main level in which none of the transitions
match the input string, or in which a transition to TPA$_FAIL was
executed.

LIB$_INVTYPE State table error. LIB$T[ABLE_]PARSE has encountered an
invalid entry in the state table.

Other If an action routine returns a failure status other than zero, and the
parse consequently fails, LIB$T[ABLE_]PARSE returns the status
returned by the action routine.

Examples
Example 1a

The following DEC C program accepts and parses the command line of a CREATE/DIRECTORY
command using LIB$TABLE_PARSE. It uses the state table defined in Example 1b.

/*
** This DEC C program accepts and parses the command line of a CREATE/
** DIRECTORY command. This program uses the LIB$GET_FOREIGN call to
** acquire the command line from the CLI and parse it with
** LIB$TABLE_PARSE, leaving the necessary information in its global
** data base. The command line is of the following format:
**
** CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLD]
** /OWNER_UIC=[2437,25]
** /ENTRIES=100
** /PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)
**
** The three qualifiers are optional. Alternatively, the command
** may take the form:
**
** CREATE/DIR DEVICE:[202,31]
**
** using any of the optional qualifiers.
**
** The source for this program can be found in:
**
** SYS$EXAMPLES:LIB$TABLE_PARSE_DEMO.COM
**
*/

/*
** Specify the required header files
*/

include <tpadef.h>
include <descrip.h>
include <starlet.h>
include <lib$routines.h>

/*
** Specify macro definitions
*/

define max_name_count 8

548

Chapter 2. LIB$ Reference

define max_token_size 9
define uic_string_size 6
define command_buffer_size 256

/*
** Specify persistent data that's local to this module
*/

static
 union
 uic_union {
 __int32 bits;
 struct {
 char first;
 char second;
 } bytes;
 struct {
 __int16 first;
 __int16 second;
 } words;
 }
 file_owner; /* Actual file owner UIC */

static
 int
 name_count; /* Number of directory names */

static
 char
 uic_string[uic_string_size + 1]; /* Buffer for string */

static
 struct
 dsc$descriptor_s
 name_vector[max_name_count]; /* Vector of descriptors */

/*
** Specify persistent data that's global to this module.
** This data is referenced externally by the state table definitions.
*/

union
 uic_union
 uic_group, /* Tempt for UIC group */
 uic_member; /* Tempt for UIC member */

int
 parser_flags, /* Keyword flags */
 entry_count, /* Space to preallocate */
 file_protect; /* Directory file protection */

struct
 dsc$descriptor_s
 device_string = /* Device string descriptor */
 { 0, DSCK_DTYPE_T, DSCK_CLASS_S, (char *) 0 };

549

Chapter 2. LIB$ Reference

/*
** Specify the user action routines.
**
** Please note that if it were LIB$TPARSE being called, the user action
** routines would have to be coded as follows:
**
** int user_action_routine(__int32 psuedo_ap)
** {
** struct tpadef
** *tparse_block = (tpadef *) (&psuedo_ap - 1);
** printf("Parameter value: %d\n",
** tparse_block->tpa$l_param
**);
** }
*/

/*
** Shut off explicit blank processing after passing the command name.
*/

int blanks_off(struct tpadef *tparse_block) {
 tparse_block->tpa$v_blanks = 0;
 return(1);
 }

/*
** Check the UIC for legal value range.
*/

int check_uic(struct tpadef *tparse_block) {
 if ((uic_group.words.second != 0) ||
 (uic_member.words.second != 0)
)
 return(0);

 file_owner.words.first = uic_member.words.first;
 file_owner.words.second = uic_group.words.first;

 return(1);
 }

/*
** Store a directory name component.
*/

int store_name(struct tpadef *tparse_block) {
 if ((name_count >= max_name_count) ||
 (tparse_block->tpa$l_tokencnt > max_token_size)
)
 return(0);

name_vector[name_count].dsc$w_length = tparse_block->tpa$l_tokencnt;
name_vector[name_count].dsc$b_dtype = DSC$K_DTYPE_T;
name_vector[name_count].dsc$b_class = DSC$K_CLASS_S;
name_vector[name_count++].dsc$a_pointer = tparse_block->tpa$l_tokenptr;

 return(1);

550

Chapter 2. LIB$ Reference

 }

/*
** Convert a UIC into its equivalent directory file name.
*/

int make_uic(struct tpadef *tparse_block) {

 $DESCRIPTOR(control_string, "!OB!OB");
 $DESCRIPTOR(dirname, uic_string);

 if ((uic_group.bytes.second != '\0') ||
 (uic_member.bytes.second != '\0')
)
 return(0);

 sys$fao(&control_string,
 &dirname.dsc$w_length,
 &dirname,
 uic_group.bytes.first,
 uic_member.bytes.first
);

 return(1);
 }

/*
** The main program section starts here.
*/

main() {

/*
** This program creates a directory. It gets the command
** line from the CLI and parses it with LIB$TABLE_PARSE.
*/

extern
 char
 ufd_state,
 ufd_key;

char
 command_buffer[command_buffer_size + 1];

int
 status;

$DESCRIPTOR(prompt, "Command> ");
$DESCRIPTOR(command_descriptor, command_buffer);

struct
 tpadef
 tparse_block = { TPA$K_COUNT0, /* Longword count */
 TPA$M_ABBREV /* Allow abbreviation */
 |
 TPA$M_BLANKS /* Process spaces explicitly */

551

Chapter 2. LIB$ Reference

 };

status = lib$get_foreign(&command_descriptor,
 &prompt,
 &command_descriptor.dsc$w_length
);

if ((status & 1) == 0)
 return(status);

/*
** Copy the input string descriptor into the control block
** and then call LIB$TABLE_PARSE. Note that impure storage is assumed
** to be zero.
*/

tparse_block.tpa$l_stringcnt = command_descriptor.dsc$w_length;
tparse_block.tpa$l_stringptr = command_descriptor.dsc$a_pointer;

return(status = lib$table_parse(&tparse_block, &ufd_state, &ufd_key));

}

Example 1b

The following MACRO assembly language program module defines the state tables for the preceding
sample program.

.TITLE CREATE_DIR_TABLES - Create Directory File (tables)
 .IDENT "X-1"

;+
;
; This module defines the state tables for the preceding
; sample program, which accepts and parses the command line of the
; CREATE/DIRECTORY command. The command line has the following format:
;
; CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLD]
; /OWNER_UIC=[2437,25]
; /ENTRIES=100
; /PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)
;
; The three qualifiers are optional. Alternatively, the command
; may take the form
;
; CREATE/DIR DEVICE:[202,31]
;
; using any of the optional qualifiers.
;
;-

;+
;
; Global data, control blocks, etc.
;
;-
 .PSECT IMPURE,WRT,NOEXE

552

Chapter 2. LIB$ Reference

;+
; Define control block offsets
;-

 $CLIDEF
 $TPADEF

 .EXTRN BLANKS_OFF, - ; No explicit blank processing
 CHECK_UIC, - ; Validate and assemble UIC
 STORE_NAME, - ; Store next directory name
 MAKE_UIC ; Make UIC into directory name

;+
; Define parser flag bits for flags longword
;-

UIC_FLAG = 1 ; /UIC seen
ENTRIES_FLAG = 2 ; /ENTRIES seen
PROT_FLAG = 4 ; /PROTECTION seen

 .SBTTL Parser State Table

;+
; Assign values for protection flags to be used when parsing protection
; string.
;-

SYSTEM_READ_FLAG = ^X0001
SYSTEM_WRITE_FLAG = ^X0002
SYSTEM_EXECUTE_FLAG = ^X0004
SYSTEM_DELETE_FLAG = ^X0008
OWNER_READ_FLAG = ^X0010
OWNER_WRITE_FLAG = ^X0020
OWNER_EXECUTE_FLAG = ^X0040
OWNER_DELETE_FLAG = ^X0080
GROUP_READ_FLAG = ^X0100
GROUP_WRITE_FLAG = ^X0200
GROUP_EXECUTE_FLAG = ^X0400
GROUP_DELETE_FLAG = ^X0800
WORLD_READ_FLAG = ^X1000
WORLD_WRITE_FLAG = ^X2000
WORLD_EXECUTE_FLAG = ^X4000
WORLD_DELETE_FLAG = ^X8000

$INIT_STATE UFD_STATE,UFD_KEY

;+
; Read over the command name (to the first blank in the command).
;-

 $STATE START
 $TRAN TPA$_BLANK,,BLANKS_OFF
 $TRAN TPA$_ANY,START

;+
; Read device name string and trailing colon.

553

Chapter 2. LIB$ Reference

;-

 $STATE
 $TRAN TPA$_SYMBOL,,,,DEVICE_STRING

 $STATE
 $TRAN ':'
;+
; Read directory string, which is either a UIC string or a general
; directory string.
;-

 $STATE
 $TRAN !UIC,,MAKE_UIC
 $TRAN !NAME

;+
; Scan for options until end of line is reached
;-

 $STATE OPTIONS
 $TRAN '/'
 $TRAN TPA$_EOS,TPA$_EXIT

 $STATE
 $TRAN 'OWNER_UIC',PARSE_UIC,,UIC_FLAG,PARSER_FLAGS
 $TRAN 'ENTRIES',PARSE_ENTRIES,,ENTRIES_FLAG,PARSER_FLAGS
 $TRAN 'PROTECTION',PARSE_PROT,,PROT_FLAG,PARSER_FLAGS

;+
; Get file owner UIC.
;-

 $STATE PARSE_UIC
 $TRAN ':'
 $TRAN '='

 $STATE
 $TRAN !UIC,OPTIONS

;+
; Get number of directory entries.
;-

 $STATE PARSE_ENTRIES
 $TRAN ':'
 $TRAN '='

 $STATE
 $TRAN TPA$_DECIMAL,OPTIONS,,,ENTRY_COUNT

;+
; Get directory file protection. Note that the bit masks generate the
; protection in complement form. It will be uncomplemented by the main
; program.
;-

554

Chapter 2. LIB$ Reference

 $STATE PARSE_PROT
 $TRAN ':'
 $TRAN '='

 $STATE
 $TRAN '('

 $STATE NEXT_PRO
 $TRAN 'SYSTEM', SYPR
 $TRAN 'OWNER', OWPR
 $TRAN 'GROUP', GRPR
 $TRAN 'WORLD', WOPR

 $STATE SYPR
 $TRAN ':'
 $TRAN '='

 $STATE SYPRO
 $TRAN 'R',SYPRO,,SYSTEM_READ_FLAG,FILE_PROTECT
 $TRAN 'W',SYPRO,,SYSTEM_WRITE_FLAG,FILE_PROTECT
 $TRAN 'E',SYPRO,,SYSTEM_EXECUTE_FLAG,FILE_PROTECT
 $TRAN 'D',SYPRO,,SYSTEM_DELETE_FLAG,FILE_PROTECT
 $TRAN TPA$_LAMBDA,ENDPRO

 $STATE OWPR
 $TRAN ':'
 $TRAN '='

 $STATE OWPRO
 $TRAN 'R',OWPRO,,OWNER_READ_FLAG,FILE_PROTECT
 $TRAN 'W',OWPRO,,OWNER_WRITE_FLAG,FILE_PROTECT
 $TRAN 'E',OWPRO,,OWNER_EXECUTE_FLAG,FILE_PROTECT
 $TRAN 'D',OWPRO,,OWNER_DELETE_FLAG,FILE_PROTECT
 $TRAN TPA$_LAMBDA,ENDPRO

 $STATE GRPR
 $TRAN ':'
 $TRAN '='

 $STATE GRPRO
 $TRAN 'R',GRPRO,,GROUP_READ_FLAG,FILE_PROTECT
 $TRAN 'W',GRPRO,,GROUP_WRITE_FLAG,FILE_PROTECT
 $TRAN 'E',GRPRO,,GROUP_EXECUTE_FLAG,FILE_PROTECT
 $TRAN 'D',GRPRO,,GROUP_DELETE_FLAG,FILE_PROTECT
 $TRAN TPA$_LAMBDA,ENDPRO

 $STATE WOPR
 $TRAN ':'
 $TRAN '='

 $STATE WOPRO
 $TRAN 'R',WOPRO,,WORLD_READ_FLAG,FILE_PROTECT
 $TRAN 'W',WOPRO,,WORLD_WRITE_FLAG,FILE_PROTECT
 $TRAN 'E',WOPRO,,WORLD_EXECUTE_FLAG,FILE_PROTECT
 $TRAN 'D',WOPRO,,WORLD_DELETE_FLAG,FILE_PROTECT
 $TRAN TPA$_LAMBDA,ENDPRO

555

Chapter 2. LIB$ Reference

 $STATE ENDPRO
 $TRAN <','>,NEXT_PRO
 $TRAN ')',OPTIONS

;+
; Subexpression to parse a UIC string.
;-

 $STATE UIC
 $TRAN '['

 $STATE
 $TRAN TPA$_OCTAL,,,,UIC_GROUP

 $STATE
 $TRAN <','> ; The comma character must be
 ; surrounded by angle brackets
 ; because MACRO restricts the use
 ; of commas in arguments to macros.

 $STATE
 $TRAN TPA$_OCTAL,,,,UIC_MEMBER

 $STATE
 $TRAN ']',TPA$_EXIT,CHECK_UIC

;+
; Subexpression to parse a general directory string
;-

 $STATE NAME
 $TRAN '['

 $STATE NAMEO
 $TRAN TPA$_STRING,,STORE_NAME

 $STATE
 $TRAN '.',NAMEO
 $TRAN ']',TPA$_EXIT
 $END_STATE

 .END

Example 2

The following OpenVMS BLISS program accepts and parses the command line of a CREATE/
DIRECTORY command using LIB$TPARSE.

MODULE CREATE_DIR (! Create directory file
 IDENT = 'X0000',
 MAIN = CREATE_DIR) =
BEGIN

 !+
 ! This OpenVMS BLISS program accepts and parses the command line
 ! of a CREATE/DIRECTORY command. This program uses the
 ! LIB$GET_FOREIGN call to acquire the command line from

556

Chapter 2. LIB$ Reference

 ! the CLI and parse it with LIB$TPARSE, leaving the necessary
 ! information in its global data base. The command line is of
 ! the following format:
 !
 ! CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLD]
 ! /UIC=[2437,25]
 ! /ENTRIES=100
 ! /PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)
 !
 ! The three qualifiers are optional. Alternatively, the command
 ! may take the form
 !
 ! CREATE/DIR DEVICE:[202,31]
 !
 ! using any of the optional qualifiers.
 !-

 !+
 ! Global data, control blocks, etc.
 !-

LIBRARY 'SYS$LIBRARY:STARLET';
LIBRARY 'SYS$LIBRARY:TPAMAC.L32';

 !+
 ! Macro to make the LIB$TPARSE control block addressable as a block
 ! through the argument pointer.
 !-

MACRO
 TPARSE_ARGS =
 BUILTIN AP;
 MAP AP : REF BLOCK [,BYTE];
 %;
 !+
 ! Declare routines in this module.
 !-

FORWARD ROUTINE
 CREATE_DIR, ! Mail program
 BLANKS_OFF, ! No explicit blank processing
 CHECK_UIC, ! Validate and assemble UIC
 STORE_NAME, ! Store next directory name
 MAKE_UIC; ! Make UIC into directory name

 !+
 ! Define parser flag bits for flags longword.
 !-

LITERAL
 UIC_FLAG = 0, ! /UIC seen
 ENTRIES_FLAG = 1, ! /ENTRIES seen
 PROT_FLAG = 2; ! /PROTECTION seen
OWN
 !+
 ! This is the LIB$GET_FOREIGN descriptor block to get the command line.
 !-

557

Chapter 2. LIB$ Reference

 COMMAND_DESC : BLOCK [DSC$K_S_BLN, BYTE],
 COMMAND_BUFF : VECTOR [256, BYTE],

 !+
 ! This is the LIB$TPARSE argument block.
 !-

 TPARSE_BLOCK : BLOCK [TPA$K_LENGTH0, BYTE]
 INITIAL (TPA$K_COUNT0, ! Longword count
 TPA$M_ABBREV ! Allow abbreviation
 OR TPA$M_BLANKS), ! Process spaces explicitly

 !+
 ! Parser global data:
 !-

 PARSER_FLAGS : BITVECTOR [32], ! Keyword flags
 DEVICE_STRING : VECTOR [2], ! Device string descriptor
 ENTRY_COUNT, ! Space to preallocate
 FILE_PROTECT, ! Directory file protection
 UIC_GROUP, ! Temp for UIC group
 UIC_MEMBER, ! Temp for UIC member
 FILE_OWNER, ! Actual file owner UIC
 NAME_COUNT, ! Number of directory names
 UIC_STRING : VECTOR [6, BYTE], ! Buffer for string

 NAME_VECTOR : BLOCKVECTOR [0, 2], ! Vector of descriptors

 DIRNAME1 : VECTOR [2], ! Name descriptor 1
 DIRNAME2 : VECTOR [2], ! Name descriptor 2
 DIRNAME3 : VECTOR [2], ! Name descriptor 3
 DIRNAME4 : VECTOR [2], ! Name descriptor 4
 DIRNAME5 : VECTOR [2], ! Name descriptor 5
 DIRNAME6 : VECTOR [2], ! Name descriptor 6
 DIRNAME7 : VECTOR [2], ! Name descriptor 7
 DIRNAME8 : VECTOR [2]; ! Name descriptor 8

 !+
 ! Structure macro to reference the descriptor fields in the vector of
 ! descriptors.
 !-

MACRO
 STRING_COUNT = 0, 0, 32, 0%, ! Count field
 STRING_ADDR = 1, 0, 32, 0%; ! Address field

 !+
 ! LIB$TPARSE state table to parse the command line
 !-

$INIT_STATE (UFD_STATE, UFD_KEY);

 !+
 ! Read over the command name (to the first blank in the command).
 !-

$STATE (START,
 (TPA$_BLANK, , BLANKS_OFF),

558

Chapter 2. LIB$ Reference

 (TPA$_ANY, START)
);
 !+
 ! Read device name string and trailing colon.
 !-

$STATE (,
 (TPA$_SYMBOL,,,, DEVICE_STRING)
);

$STATE (,
 (':')
);

 !+
 ! Read directory string, which is either a UIC string or a general
 ! directory string.
 !-

$STATE (,
 ((UIC),, MAKE_UIC),
 ((NAME))
);

 !+
 ! Scan for options until end of line is reached.
 !-

$STATE (OPTIONS,
 ('/'),
 (TPA$_EOS, TPA$_EXIT)
);

$STATE (,
 ('UIC', PARSE_UIC,, 1^UIC_FLAG, PARSER_FLAGS),
 ('ENTRIES', PARSE_ENTRIES,, 1^ENTRIES_FLAG, PARSER_FLAGS),
 ('PROTECTION', PARSE_PROT,, 1^PROT_FLAG, PARSER_FLAGS)
);

 !+
 ! Get file owner UIC.
 !-

$STATE (PARSE_UIC,
 (':'),
 ('=')
);

$STATE (,
 ((UIC), OPTIONS)
);
 !+
 ! Get number of directory entries.
 !-

$STATE (PARSE_ENTRIES,
 (':'),

559

Chapter 2. LIB$ Reference

 ('=')

);

$STATE (,
 (TPA$_DECIMAL, OPTIONS,,, ENTRY_COUNT)
);

 !+
 ! Get directory file protection. Note that the bit masks generate the
 ! protection in complement form. It will be uncomplemented by the main
 ! program.
 !-

$STATE (PARSE_PROT,
 (':'),
 ('=')
);

$STATE (,
 ('(')
);

$STATE (NEXT_PRO,
 ('SYSTEM', SYPR),
 ('OWNER', OWPR),
 ('GROUP', GRPR),
 ('WORLD', WOPR)
);

$STATE (SYPR,
 (':'),
 ('=')
);

$STATE (SYPR0,
 ('R', SYPR0,, %X'0001', FILE_PROTECT),
 ('W', SYPR0,, %X'0002', FILE_PROTECT),
 ('E', SYPR0,, %X'0004', FILE_PROTECT),
 ('D', SYPR0,, %X'0008', FILE_PROTECT),
 (TPA$_LAMBDA, ENDPRO)
);

$STATE (OWPR,
 (':'),
 ('=')
);

$STATE (OWPR0,
 ('R', OWPR0,, %X'0010', FILE_PROTECT),
 ('W', OWPR0,, %X'0020', FILE_PROTECT),
 ('E', OWPR0,, %X'0040', FILE_PROTECT),
 ('D', OWPR0,, %X'0080', FILE_PROTECT),
 (TPA$_LAMBDA, ENDPRO)
);

$STATE (GRPR,

560

Chapter 2. LIB$ Reference

 (':'),
 ('=')
);

$STATE (GRPR0,
 ('R', GRPR0,, %X'0100', FILE_PROTECT),
 ('W', GRPR0,, %X'0200', FILE_PROTECT),
 ('E', GRPR0,, %X'0400', FILE_PROTECT),
 ('D', GRPR0,, %X'0800', FILE_PROTECT),
 (TPA$_LAMBDA, ENDPRO)
);

$STATE (WOPR,
 (':'),
 ('=')
);

$STATE (WOPR0,
 ('R', WOPR0,, %X'1000', FILE_PROTECT),
 ('W', WOPR0,, %X'2000', FILE_PROTECT),
 ('E', WOPR0,, %X'4000', FILE_PROTECT),
 ('D', WOPR0,, %X'8000', FILE_PROTECT),
 (TPA$_LAMBDA, ENDPRO)
);

$STATE (ENDPRO,
 (', ', NEXT_PRO),
 (')', OPTIONS)
);

 !+
 ! Subexpression to parse a UIC string.
 !-

$STATE (UIC,

 ('[')
);

$STATE (,
 (TPA$_OCTAL,,,, UIC_GROUP)
);

$STATE (,
 (', ')
);

$STATE (,
 (TPA$_OCTAL,,,, UIC_MEMBER)
);

$STATE (,
 (']', TPA$_EXIT, CHECK_UIC)
);

 !+
 ! Subexpression to parse a general directory string
 !-

561

Chapter 2. LIB$ Reference

$STATE (NAME,
 ('[')
);

$STATE (NAME0,
 (TPA$_STRING,, STORE_NAME)
);

$STATE (,
 ('.', NAME0),
 (']', TPA$_EXIT)
);
PSECT OWN = OWN;
PSECT GLOBAL = $GLOBAL$;

GLOBAL ROUTINE CREATE_DIR (START_ADDR, CLI_CALLBACK) =

BEGIN

 !+
 ! This program creates a directory. It gets the command

 ! line from the CLI and parses it with LIB$TPARSE.
 !-

LOCAL
 STATUS, ! Status from LIB$TPARSE
 OUT_LEN : WORD; ! length of returned command line
EXTERNAL
 SS$_NORMAL;

EXTERNAL ROUTINE
 LIB$GET_FOREIGN : ADDRESSING_MODE (GENERAL),
 LIB$TPARSE : ADDRESSING_MODE (GENERAL);

 COMMAND_DESC [DSC$W_LENGTH] = 256;
 COMMAND_DESC [DSC$B_DTYPE] = DSC$K_DTYPE_T;
 COMMAND_DESC [DSC$B_CLASS] = DSC$K_CLASS_S;
 COMMAND_DESC [DSC$A_POINTER] = COMMAND_BUFF;

 STATUS = LIB$GET_FOREIGN (COMMAND_DESC,
 %ASCID'COMMAND: ',
 OUT_LEN
);
 IF NOT .STATUS
 THEN
 SIGNAL (STATUS);

 !+
 ! Copy the input string descriptor into the LIB$TPARSE control block
 ! and call LIB$TPARSE. Note that impure storage is assumed to be zero.
 !-

562

Chapter 2. LIB$ Reference

TPARSE_BLOCK[TPA$L_STRINGCNT] = .OUT_LEN;
TPARSE_BLOCK[TPA$L_STRINGPTR] = .COMMAND_DESC[DSC$A_POINTER];

STATUS = LIB$TPARSE (TPARSE_BLOCK, UFD_STATE, UFD_KEY);
IF NOT .STATUS
THEN
 RETURN 0;
RETURN SS$_NORMAL
END; ! End of routine CREATE_DIR

 !+

 ! Parser action routines
 !-

 !+
 ! Shut off explicit blank processing after passing the command name.
 !-

ROUTINE BLANKS_OFF =
 BEGIN
 TPARSE_ARGS;

 AP[TPA$V_BLANKS] = 0;
 1
 END;

 !+
 ! Check the UIC for legal value range.
 !-

ROUTINE CHECK_UIC =
 BEGIN
 TPARSE_ARGS;

 IF .UIC_GROUP<16,16> NEQ 0
 OR .UIC_MEMBER<16,16> NEQ 0
 THEN RETURN 0;

 FILE_OWNER<0,16> = .UIC_MEMBER;
 FILE_OWNER<16,16> = .UIC_GROUP;
 1
 END;

 !+
 ! Store a directory name component.
 !-

ROUTINE STORE_NAME =
 BEGIN
 TPARSE_ARGS;

 IF .NAME_COUNT GEQU 8
 OR .AP[TPA$L_TOKENCNT] GTRU 9
 THEN RETURN 0;
 NAME_COUNT = .NAME_COUNT + 1;
 NAME_VECTOR [.NAME_COUNT, STRING_COUNT] = .AP[TPA$L_TOKENCNT];

563

Chapter 2. LIB$ Reference

 NAME_VECTOR [.NAME_COUNT, STRING_ADDR] = .AP[TPA$L_TOKENPTR];
 1
 END;

 !+
 ! Convert a UIC into its equivalent directory file name.
 !-

ROUTINE MAKE_UIC =
 BEGIN
 TPARSE_ARGS;

 IF .UIC_GROUP<8,8> NEQ 0
 OR .UIC_MEMBER<8,8> NEQ 0
 THEN RETURN 0;
 DIRNAME1[0] = 0;
 DIRNAME1[1] = UIC_STRING;
 $FAOL (CTRSTR = UPLIT (6, UPLIT BYTE ('!OB!OB')),
 OUTBUF = DIRNAME1,
 PRMLST = UIC_GROUP
);
 1
 END;
END
ELUDOM ! End of module CREATE_DIR

Example 3

The following MACRO assembly language program accepts and parses the command line of a
CREATE/DIRECTORY command using LIB$TPARSE. It also defines the state table for the parser.

 .TITLE CREATE_DIR - Create Directory File
 .IDENT "X0000"
;+
;
; This is a sample OpenVMS MACRO program that accepts and parses the
; command line of the CREATE/DIRECTORY command. This program contains
; the OpenVMS call to acquire the command line from the command
 interpreter
; and parse it with LIB$TPARSE, leaving the necessary information in
; its global data base. The command line has the following format:
;
; CREATE/DIR DEVICE:[MARANTZ.ACCOUNT.OLD]
; /OWNER_UIC=[2437,25]
; /ENTRIES=100
; /PROTECTION=(SYSTEM:R,OWNER:RWED,GROUP:R,WORLD:R)
;

; The three qualifiers are optional. Alternatively, the command
; may take the form
;
; CREATE/DIR DEVICE:[202,31]
;
; using any of the optional qualifiers.
;
;-

564

Chapter 2. LIB$ Reference

;+
;
; Global data, control blocks, etc.
;
;-
 .PSECT IMPURE,WRT,NOEXE
;+
; Define control block offsets
;-
 $CLIDEF
 $TPADEF
;+
; Define parser flag bits for flags longword
;-

UIC_FLAG = 1 ; /UIC seen
ENTRIES_FLAG = 2 ; /ENTRIES seen
PROT_FLAG = 4 ; /PROTECTION seen

;+
; LIB$GET_FOREIGN string descriptors to get the line to be parsed
;-

STRING_LEN = 256
STRING_DESC:
 .WORD STRING_LEN
 .BYTE DSC$K_DTYPE_T
 .BYTE DSC$K_CLASS_S
 .ADDRESS STRING_AREA
STRING_AREA:
 .BLKB STRING_LEN
PROMPT_DESC:
 .WORD PROMPT_LEN
 .BYTE DSC$K_DTYPE_T
 .BYTE DSC$K_CLASS_S
 .ADDRESS PROMPT

PROMPT:
 .ASCII /qualifiers: /
PROMPT_LEN = .-PROMPT

;+
; TPARSE argument block
;-

TPARSE_BLOCK:
 .LONG TPA$K_COUNT0 ; Longword count
 .LONG TPA$M_ABBREV!- ; Allow abbreviation
 TPA$M_BLANKS ; Process spaces explicitly
 .BLKB TPA$K_LENGTH0-8 ; Remainder set at run time
;+
; Parser global data
;-

RET_LEN: .BLKW 1 ; LENGTH OF RETURNED COMMAND LINE
PARSER_FLAGS: .BLKL 1 ; Keyword flags
DEVICE_STRING: .BLKL 2 ; Device string descriptor

565

Chapter 2. LIB$ Reference

ENTRY_COUNT: .BLKL 1 ; Space to preallocate
FILE_PROTECT: .BLKL 1 ; Directory file protection
UIC_GROUP: .BLKL 1 ; Temp for UIC group
UIC_MEMBER: .BLKL 1 ; Temp for UIC member
UIC_STRING: .BLKB 6 ; String to receive converted UIC
FILE_OWNER: .BLKL 1 ; Actual file owner UIC
NAME_COUNT: .BLKL 1 ; Number of directory names
DIRNAME1: .BLKL 2 ; Name descriptor 1
DIRNAME2: .BLKL 2 ; Name descriptor 2
DIRNAME3: .BLKL 2 ; Name descriptor 3
DIRNAME4: .BLKL 2 ; Name descriptor 4
DIRNAME5: .BLKL 2 ; Name descriptor 5
DIRNAME6: .BLKL 2 ; Name descriptor 6
DIRNAME7: .BLKL 2 ; Name descriptor 7
DIRNAME8: .BLKL 2 ; Name descriptor 8

 .SBTTL Main Program
;+
; This program gets the CREATE/DIRECTORY command line from
; the command interpreter and parses it.
;-
 .PSECT CODE,EXE,NOWRT
CREATE_DIR::
 .WORD ^M<R2,R3,R4,R5> ; Save registers

;+
; Call the command interpreter to obtain the command line.
;-
 PUSHAW RET_LEN
 PUSHAQ PROMPT_DESC
 PUSHAQ STRING_DESC
 CALLS #3,G^LIB$GET_FOREIGN ; Call to get command line
 BLBC R0, SYNTAX_ERR

;+
; Copy the input string descriptor into the TPARSE control block
; and call LIB$TPARSE. Note that impure storage is assumed to be zero.
;-
 MOVZWL RET_LEN, TPARSE_BLOCK+TPA$L_STRINGCNT
 MOVAL STRING_AREA, TPARSE_BLOCK+TPA$L_STRINGPTR
 PUSHAL UFD_KEY
 PUSHAL UFD_STATE
 PUSHAL TPARSE_BLOCK
 CALLS #3,G^LIB$TPARSE
 BLBC R0,SYNTAX_ERR

;+
; Parsing is complete.
;
; You can include here code to process the string just parsed, to call
; another program to process the command, or to return control to
; a calling program, if any.
;-

SYNTAX_ERR:

;+
; Code to handle parsing errors.

566

Chapter 2. LIB$ Reference

;-

 RET

 .SBTTL Parser State Table

;+
; Assign values for protection flags to be used when parsing protection
; string.
;-

SYSTEM_READ_FLAG = ^X0001
SYSTEM_WRITE_FLAG = ^X0002
SYSTEM_EXECUTE_FLAG = ^X0004
SYSTEM_DELETE_FLAG = ^X0008
OWNER_READ_FLAG = ^X0010
OWNER_WRITE_FLAG = ^X0020
OWNER_EXECUTE_FLAG = ^X0040
OWNER_DELETE_FLAG = ^X0080
GROUP_READ_FLAG = ^X0100
GROUP_WRITE_FLAG = ^X0200
GROUP_EXECUTE_FLAG = ^X0400
GROUP_DELETE_FLAG = ^X0800
WORLD_READ_FLAG = ^X1000
WORLD_WRITE_FLAG = ^X2000
WORLD_EXECUTE_FLAG = ^X4000
WORLD_DELETE_FLAG = ^X8000

$INIT_STATE UFD_STATE,UFD_KEY

;+
; Read over the command name (to the first blank in the command).
;-
 $STATE START
 $TRAN TPA$_BLANK,,BLANKS_OFF
 $TRAN TPA$_ANY,START
;+
; Read device name string and trailing colon.
;-
 $STATE
 $TRAN TPA$_SYMBOL,,,,DEVICE_STRING

 $STATE
 $TRAN ':'
;+
; Read directory string, which is either a UIC string or a general
; directory string.
;-
 $STATE
 $TRAN !UIC,,MAKE_UIC
 $TRAN !NAME

;+
; Scan for options until end of line is reached
;-

 $STATE OPTIONS

567

Chapter 2. LIB$ Reference

 $TRAN '/'
 $TRAN TPA$_EOS,TPA$_EXIT

 $STATE
 $TRAN 'OWNER_UIC',PARSE_UIC,,UIC_FLAG,PARSER_FLAGS
 $TRAN 'ENTRIES',PARSE_ENTRIES,,ENTRIES_FLAG,PARSER_FLAGS
 $TRAN 'PROTECTION',PARSE_PROT,,PROT_FLAG,PARSER_FLAGS

;+
; Get file owner UIC.
;-
 $STATE PARSE_UIC
 $TRAN ':'
 $TRAN '='

 $STATE
 $TRAN !UIC,OPTIONS

;+
; Get number of directory entries.
;-

 $STATE PARSE_ENTRIES
 $TRAN ':'
 $TRAN '='

 $STATE
 $TRAN TPA$_DECIMAL,OPTIONS,,,ENTRY_COUNT

;+
; Get directory file protection. Note that the bit masks generate the
; protection in complement form. It will be uncomplemented by the main
; program.
;-

 $STATE PARSE_PROT
 $TRAN ':'
 $TRAN '='

 $STATE
 $TRAN '('

 $STATE NEXT_PRO
 $TRAN 'SYSTEM', SYPR

 $TRAN 'OWNER', OWPR
 $TRAN 'GROUP', GRPR
 $TRAN 'WORLD', WOPR

 $STATE SYPR
 $TRAN ':'
 $TRAN '='

 $STATE SYPRO
 $TRAN 'R',SYPRO,,SYSTEM_READ_FLAG,FILE_PROTECT
 $TRAN 'W',SYPRO,,SYSTEM_WRITE_FLAG,FILE_PROTECT
 $TRAN 'E',SYPRO,,SYSTEM_EXECUTE_FLAG,FILE_PROTECT
 $TRAN 'D',SYPRO,,SYSTEM_DELETE_FLAG,FILE_PROTECT

568

Chapter 2. LIB$ Reference

 $TRAN TPA$_LAMBDA,ENDPRO

 $STATE OWPR
 $TRAN ':'
 $TRAN '='

 $STATE OWPRO
 $TRAN 'R',OWPRO,,OWNER_READ_FLAG,FILE_PROTECT
 $TRAN 'W',OWPRO,,OWNER_WRITE_FLAG,FILE_PROTECT
 $TRAN 'E',OWPRO,,OWNER_EXECUTE_FLAG,FILE_PROTECT
 $TRAN 'D',OWPRO,,OWNER_DELETE_FLAG,FILE_PROTECT
 $TRAN TPA$_LAMBDA,ENDPRO

 $STATE GRPR
 $TRAN ':'
 $TRAN '='

 $STATE GRPRO
 $TRAN 'R',GRPRO,,GROUP_READ_FLAG,FILE_PROTECT
 $TRAN 'W',GRPRO,,GROUP_WRITE_FLAG,FILE_PROTECT
 $TRAN 'E',GRPRO,,GROUP_EXECUTE_FLAG,FILE_PROTECT
 $TRAN 'D',GRPRO,,GROUP_DELETE_FLAG,FILE_PROTECT
 $TRAN TPA$_LAMBDA,ENDPRO

 $STATE WOPR
 $TRAN ':'
 $TRAN '='

 $STATE WOPRO
 $TRAN 'R',WOPRO,,WORLD_READ_FLAG,FILE_PROTECT
 $TRAN 'W',WOPRO,,WORLD_WRITE_FLAG,FILE_PROTECT
 $TRAN 'E',WOPRO,,WORLD_EXECUTE_FLAG,FILE_PROTECT

 $TRAN 'D',WOPRO,,WORLD_DELETE_FLAG,FILE_PROTECT
 $TRAN TPA$_LAMBDA,ENDPRO

 $STATE ENDPRO
 $TRAN <','>,NEXT_PRO
 $TRAN ')',OPTIONS

;+
; Subexpression to parse a UIC string.
;-

 $STATE UIC
 $TRAN '['

 $STATE
 $TRAN TPA$_OCTAL,,,,UIC_GROUP

 $STATE
 $TRAN <','> ; The comma character must be
 ; surrounded by angle brackets
 ; because MACRO restricts the use
 ; of commas in arguments to macros.

 $STATE
 $TRAN TPA$_OCTAL,,,,UIC_MEMBER

569

Chapter 2. LIB$ Reference

 $STATE
 $TRAN ']',TPA$_EXIT,CHECK_UIC

;+
; Subexpression to parse a general directory string
;-
 $STATE NAME
 $TRAN '['

 $STATE NAMEO
 $TRAN TPA$_STRING,,STORE_NAME

 $STATE
 $TRAN '.',NAMEO
 $TRAN ']',TPA$_EXIT
 $END_STATE

 .SBTTL Parser Action Routines
 .PSECT CODE,EXE,NOWRT

;+
; Shut off explicit blank processing after passing the command name.
;-

BLANKS_OFF:
 .WORD 0 ; No registers saved (or used)
 BBCC #TPAV_BLANKS,TPAL_OPTIONS(AP),10$
10$: RET

;+
; Check the UIC for legal value range.
;-

CHECK_UIC:
 .WORD 0 ; No registers saved (or used)
 TSTW UIC_GROUP+2 ; UIC components are 16 bits
 BNEQ 10$
 TSTW UIC_MEMBER+2
 BNEQ 10$
 MOVW UIC_GROUP,FILE_OWNER+2 ; Store actual UIC
 MOVW UIC_MEMBER,FILE_OWNER ; after checking
 RET
10$: CLRL R0 ; Value out of range - fail
 RET ; the transition

;+
; Store a directory name component.
;-

STORE_NAME:
 .WORD 0 ; No registers saved (or used)
 MOVL NAME_COUNT,R1 ; Get count of names so far
 CMPL R1,#8 ; Maximum of 8 permitted
 BGEQU 10$
 INCL NAME_COUNT ; Count this name
 MOVAQ DIRNAME1[R1],R1 ; Address of next descriptor

570

Chapter 2. LIB$ Reference

 MOVQ TPA$L_TOKENCNT(AP),(R1) ; Store the descriptor
 CMPL (R1),#9 ; Check the length of the name
 BGTRU 10$; Maximum is 9
 RET
10$: CLRL R0 ; Error in directory name
 RET

;+

; Convert a UIC into its equivalent directory file name.
;-

MAKE_UIC:
 .WORD 0 ; No registers saved (or used)
 TSTB UIC_GROUP+1 ; Check UIC for byte values,
 BNEQ 10$; because UIC type directories
 TSTB UIC_MEMBER+1 ; are restricted to this form
 BNEQ 10$
 MOVL #6,DIRNAME1 ; Directory name is 6 bytes
 MOVAL UIC_STRING,DIRNAME1+4 ; Point to string buffer
 $FAOL CTRSTR=FAO_STRING,- ; Convert UIC to octal string
 OUTBUF=DIRNAME1,-
 PRMLST=UIC_GROUP
 RET
10$: CLRL R0 ; Range error - fail it
 RET
FAO_STRING: .LONG STRING_END-STRING_START
STRING_START: .ASCII '!OB!OB'
STRING_END:

 .END CREATE_DIR

LIB$TRAVERSE_TREE
LIB$TRAVERSE_TREE — The Traverse a Balanced Binary Tree routine calls an action routine for
each node in a binary tree. No support for arguments passed by 64-bit address reference or for use of
64-bit descriptors, if applicable, is planned for this routine.

Format
LIB$TRAVERSE_TREE treehead ,user-action-procedure [,user-data-address]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
treehead

571

Chapter 2. LIB$ Reference

OpenVMS usage: address
type: address
access: read only
mechanism: by reference

Tree head of the binary tree. The treehead argument is the address of an unsigned longword that is the
tree head in the binary tree traversal.

user-action-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$TRAVERSE_TREE for each node in the tree. The user-
action-procedure argument must return a success status for LIB$TRAVERSE_TREE to continue
traversal.

user-data-address

OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by reference

User data that LIB$TRAVERSE_TREE passes to your action routine. The user-data-address
argument contains the address of this user data. This is an optional argument; the default value is 0.

Description
LIB$TRAVERSE_TREE calls a user-supplied action routine for each node to traverse a balanced
binary tree.

Call Format for an Action Routine
The format of the call is as follows:

user-action-procedure node ,user-data-address

LIB$TRAVERSE_TREE passes the node and user-data-address arguments to your action
routine by reference.

This action routine is defined by you to fit your own purposes. A common use of an action routine
here is to print the contents of each node during the tree traversal.

The following is one example of a user-supplied action routine.

struct Full_node
{
 void* left_link;

572

Chapter 2. LIB$ Reference

 void* right_link;
 short reserved;
 char Text[80];
};

static long Print_Node(struct Full_node* Node, void* dummy)
{
/*
** Print the string contained in the current node
*/
 printf("%s\n", Node->Text);
 return LIB$_NORMAL;
}

Condition Values Returned
LIB$_NORMAL Routine successfully completed.

Any condition value returned by your action routine.

Example
The C example provided in the description of LIB$INSERT_TREE also demonstrates the use of LIB
$TRAVERSE_TREE. Refer to that example for assistance in using this routine.

LIB$TRAVERSE_TREE_64
LIB$TRAVERSE_TREE_64 — The Traverse a Balanced Binary Tree routine calls an action routine
for each node in a binary tree.

Format
LIB$TRAVERSE_TREE_64 treehead ,user-action-procedure [,user-data-address]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
treehead

OpenVMS usage: address
type: address
access: read only
mechanism: by reference

573

Chapter 2. LIB$ Reference

Tree head of the binary tree. The treehead argument is the address of an unsigned quadword that is
the tree head in the binary tree traversal.

user-action-procedure

OpenVMS usage: procedure
type: procedure value
access: function call (before return)
mechanism: by value

User-supplied action routine called by LIB$TRAVERSE_TREE_64 for each node in the tree. The
user-action-procedure argument must return a success status for LIB$TRAVERSE_TREE_64 to
continue traversal.

user-data-address

OpenVMS usage: user_arg
type: quadword (unsigned)
access: read only
mechanism: by reference

User data that LIB$TRAVERSE_TREE_64 passes to your action routine. The user-data-address
argument contains the address of this user data. This is an optional argument; the default value is 0.

Description
LIB$TRAVERSE_TREE_64 calls a user-supplied action routine for each node to traverse a balanced
binary tree.

Call Format for an Action Routine

The format of the call is as follows:

user-action-procedure node ,user-data-address

LIB$TRAVERSE_TREE_64 passes the node and user-data-address arguments to your action
routine by reference.

This action routine is defined by you to fit your own purposes. A common use of an action routine
here is to print the contents of each node during the tree traversal.

The following is one example of a user-supplied action routine.

struct Full_node
{
 void* left_link;
 void* right_link;
 short reserved;
 char Text[80];
};

static long Print_Node(struct Full_node* Node, void* dummy)
{

574

Chapter 2. LIB$ Reference

/*
** Print the string contained in the current node
*/
 printf("%s\n", Node->Text);
 return LIB$_NORMAL;
}

Condition Values Returned
LIB$_NORMAL Routine successfully completed.

Any condition value returned by your action routine.

Example
The C example provided in the description of LIB$INSERT_TREE_64 also demonstrates the use of
LIB$TRAVERSE_TREE_64. Refer to that example for assistance in using this routine.

LIB$TRA_ASC_EBC
LIB$TRA_ASC_EBC — The Translate ASCII to EBCDIC routine translates an ASCII string to an
EBCDIC string.

Format
LIB$TRA_ASC_EBC source-string ,byte-integer-dest-string

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Source string (ASCII) to be translated by LIB$TRA_ASC_EBC. The source-string argument
contains the address of a descriptor pointing to this source string.

byte-integer-dest-string

OpenVMS usage: char_string

575

Chapter 2. LIB$ Reference

type: character string
access: write only
mechanism: by descriptor

Destination string (EBCDIC). The byte-integer-dest-string argument contains the address of a
descriptor pointing to this destination string.

Description
LIB$TRA_ASC_EBC translates an ASCII string to an EBCDIC string. If the destination string is a
fixed-length string, its length must match the length of the input string. The length of both the source
and destination strings is limited to 65,535 characters. No filling is done.

A similar operation can be accomplished by specifying the ASCII to EBCDIC translation table, LIB
$AB_ASC_EBC, in a routine using LIB$MOVTC, but no testing for untranslatable characters is done
under those circumstances.

The LIB$TRA_ASC_EBC routine uses the ASCII to EBCDIC translation table.

ASCII to EBCDIC Translation Table
• The numbers on the left represent the low-order bits of the ASCII characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the ASCII characters in hexadecimal
notation.

• The numbers in the body of the table represent the equivalent EBCDIC characters in hexadecimal
notation.

Figure 2.25 is the ASCII to EBCDIC translation table.

Figure 2.25. LIB$AB_ASC_EBC

All ASCII graphics are translated to their equivalent EBCDIC graphics except for the graphics noted
in Table 2.13.

Table 2.13. ASCII Graphics Not Translated to EBCDIC Equivalent by LIB
$TRA_ASC_EBC

ASCII Graphic EBCDIC Graphic
[(left square bracket) ¢ (cents sign)

576

Chapter 2. LIB$ Reference

ASCII Graphic EBCDIC Graphic
! (exclamation point) | (short vertical bar)
^ (circumflex) ¬ (logical not)
] (right square bracket) ! (exclamation point)

Condition Values Returned

SS$_NORMAL Routine successfully completed.
LIB$_INVARG If the destination string is a fixed-length string and its length is not

the same as the source string length, or if the length of the input
string is greater than 65,535 characters, no translation is attempted.

LIB$_INVCHA One or more occurrences of an untranslatable character have been
detected during the translation.

Example
This COBOL program uses LIB$TRA_ASC_EBC to translate an ASCII string to EBCDIC. If
successful, it then uses LIB$MOVTC to translate the EBCDIC string back to ASCII.

IDENTIFICATION DIVISION.
PROGRAM-ID. TRANS.

ENVIRONMENT DIVISION.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 INPUT-STRING PIC X(4).
01 EBCDIC-STRING PIC X(4).
01 OUT-STRING PIC X(4).
01 FILL-CHAR PIC X VALUE "@".
01 SS-STATUS PIC S9(9) COMP.
 88 SS-NORMAL VALUE 01.

01 EBCDIC-TABLE.
 05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
 05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
 05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
 05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
 05 FILLER PIC X(16) VALUE " @@@@@@@@@@.<(+|".
 05 FILLER PIC X(16) VALUE "&@@@@@@@@@!$*);@".
 05 FILLER PIC X(16) VALUE "-/@@@@@@@@@,%_<?".
 05 FILLER PIC X(16) VALUE "@@@@@@@@@@:#@'=""".
 05 FILLER PIC X(16) VALUE "@abcdefghi@@@@@@".
 05 FILLER PIC X(16) VALUE "@jklmnopqr@@@@@@".
 05 FILLER PIC X(16) VALUE "@@stuvwxyz@@@@@@".
 05 FILLER PIC X(16) VALUE "@@@@@@@@@@@@@@@@".
 05 FILLER PIC X(16) VALUE "@ABCDEFGHI@@@@@@".
 05 FILLER PIC X(16) VALUE "!JKLMNOPQR@@@@@@".
 05 FILLER PIC X(16) VALUE "@@STUVWXYZ@@@@@@".
 05 FILLER PIC X(16) VALUE "0123456789@@@@@@".

ROUTINE DIVISION.

577

Chapter 2. LIB$ Reference

001-MAIN.
 DISPLAY " ".
 DISPLAY "ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: "
 WITH NO ADVANCING.
 ACCEPT INPUT-STRING
 AT END STOP RUN.
 IF INPUT-STRING = "EXIT" OR "exit" OR " "
 STOP RUN.

 CALL "LIB$TRA_ASC_EBC"
 USING BY DESCRIPTOR INPUT-STRING, EBCDIC-STRING
 GIVING SS-STATUS.
 IF SS-NORMAL
 CALL "LIB$MOVTC"
 USING BY DESCRIPTOR EBCDIC-STRING,
 FILL-CHAR,
 EBCDIC-TABLE,
 OUT-STRING,
 GIVING SS-STATUS
 IF SS-NORMAL
 DISPLAY "ASCII ENTERED WAS: " INPUT-STRING
 DISPLAY "EBCDIC TRANSLATED IS: " OUT-STRING
 ELSE
 DISPLAY "*** LIB$MOVTC TRANSLATION UNSUCCESSFUL ***"
 ELSE
 DISPLAY "*** LIB$TRA_ASC_EBC TRANSLATION UNSUCCESSFUL ***".
 GO TO 001-MAIN.

To exit from this program, you must press Ctrl/Z. The output generated by this COBOL program is as
follows:

$ RUN TRANS

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: abdc
ASCII ENTERED WAS: abdc
EBCDIC TRANSLATED IS: abdc

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: ~=b&
ASCII ENTERED WAS: ~=b&
EBCDIC TRANSLATED IS: @=b&

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: 8^%$
ASCII ENTERED WAS: 8^%$
EBCDIC TRANSLATED IS: 8@%$

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC:
/x\}
ASCII ENTERED WAS: /x\}
EBCDIC TRANSLATED IS: /x@!

ENTER 4 CHARACTERS TO BE TRANSLATED ASCII TO EBCDIC: [Ctrl/Z

LIB$TRA_EBC_ASC
LIB$TRA_EBC_ASC — The Translate EBCDIC to ASCII routine translates an EBCDIC string to an
ASCII string.

578

Chapter 2. LIB$ Reference

Format
LIB$TRA_EBC_ASC byte-integer-source-string ,destination-string

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: read only
mechanism: by value

Arguments
byte-integer-source-string

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

String (EBCDIC) to be translated by LIB$TRA_EBC_ASC. The byte-integer-source-string
argument contains the address of a descriptor pointing to this source string.

destination-string

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Destination string (ASCII). The destination-string argument contains the address of the descriptor of
this destination string.

The LIB$TRA_EBC_ASC routine uses the EBCDIC to ASCII translation table, LIB$AB_EBC_ASC.

Description
LIB$TRA_EBC_ASC translates an EBCDIC string to an ASCII string. If the destination string is a
fixed-length string, its length must match the length of the input string. The length of both the source
and destination strings is limited to 65,535 characters. No filling is done.

A similar operation can be accomplished by specifying the EBCDIC to ASCII translation table, LIB
$AB_EBC_ASC, in a routine using LIB$MOVTC, but no testing for untranslatable characters is done
under these circumstances.

The LIB$TRA_EBC_ASC routine uses the EBCDIC to ASCII translation shown in Figure 2.26.

579

Chapter 2. LIB$ Reference

Figure 2.26. LIB$AB_EBC_ASC

EBCDIC to ASCII Translation Table
• The numbers on the left represent the low-order bits of the EBCDIC characters in hexadecimal

notation.

• The numbers across the top represent the high-order bits of the EBCDIC characters in
hexadecimal notation.

• The numbers in the body of the table represent the equivalent ASCII characters in hexadecimal
notation.

All EBCDIC graphics are translated to their equivalent ASCII graphic except for the graphics noted in
Table 2.14.

Table 2.14. EBCDIC Graphics Not Translated to ASCII Equivalent by LIB
$TRA_EBC_ASC

EBCDIC Graphic ASCII Graphic
¢ (cents sign) [(left square bracket)
| (short vertical bar) ! (exclamation point)
¬ (logical not) ^ (circumflex)
! (exclamation point)] (right square bracket)

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVARG If the destination string is a fixed-length string and its

length is not the same as the source string length, or
if the length of the input string is greater than 65,535
characters, no translation is attempted.

LIB$_INVCHA One or more occurrences of an untranslatable character
have been detected during the translation.

LIB$TRIM_FILESPEC
LIB$TRIM_FILESPEC — The Fit Long File Specification into Fixed Field routine takes a file
specification, such as an OpenVMS RMS resultant name string, and shortens it (if necessary) so that it
fits into a field of fixed width.

580

Chapter 2. LIB$ Reference

Format
LIB$TRIM_FILESPEC old-filespec ,new-filespec [,word-integer-width] [,resultant-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
old-filespec

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

File specification to be trimmed. The old-filespec argument contains the address of a descriptor
pointing to this file specification string.

The file specification should be an RMS resultant name string.

new-filespec

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Trimmed file specification. The new-filespec argument contains the address of a descriptor pointing
to this trimmed file specification string. LIB$TRIM_FILESPEC writes the trimmed file specification
into new-filespec.

word-integer-width

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Maximum field width desired. The word-integer-width argument is the address of an unsigned word
that contains this maximum field width.

If omitted, the current length of new-filespec is used. If new-filespec is not a fixed-length string, you
should specify word-integer-width to ensure that the desired width is used.

581

Chapter 2. LIB$ Reference

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the trimmed file specification, not including any blank padding or truncated characters. The
resultant-length argument is the address of an unsigned word that contains this length. This is an
optional argument.

Description
This routine trims file specifications in a consistent, predictable manner to fit in a fixed-length field
using the same algorithm that VSI software uses.

LIB$TRIM_FILESPEC allows compilers and other utilities which need to display file specifications
in fixed-length fields, such as listing headers, to display file specifications in a consistent fashion.

If necessary to make the file specification fit into the specified field width, LIB$TRIM_FILESPEC
removes portions of the file specification in this order:

1. Node (including access control)

2. Device

3. Directory

4. Version

5. Type

If, after removing all these fields, the file name is still longer than the field width, the file name is
truncated and the alternate success status LIB$_STRTRU is returned.

LIB$TRIM_FILESPEC supports any string class for the old-filespec and new-filespec
string arguments.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Success, but the output string was truncated. Significant characters

of the trimmed file specification were truncated.
LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition values returned by LIB$SCOPY_R_DX, or the $FILESCAN system service.

Example
PROGRAM TRIM_FILESPEC(INPUT,OUTPUT);

582

Chapter 2. LIB$ Reference

{+}
{ This PASCAL example program demonstrates the
{ use of LIB$TRIM_FILESPEC.
{-}

 TYPE
 WORD = [WORD] 0..65535;

 VAR
 INPUT_FILESPEC : VARYING [255] OF CHAR;
 OUTPUT_FILESPEC : VARYING [32] OF CHAR;
 RETURNED_STATUS : INTEGER;

 [EXTERNAL] FUNCTION LIB$TRIM_FILESPEC(
 IN_FILE : VARYING [LEN1] OF CHAR;
 VAR OUT_FILE : VARYING [LEN2] OF CHAR;
 WIDTH : WORD := %IMMED 0;
 OUT_LEN : [REFERENCE] WORD := %IMMED 0
) : INTEGER; EXTERNAL;

 [EXTERNAL] FUNCTION LIB$STOP(
 CONDITION_STATUS : [IMMEDIATE,UNSAFE] UNSIGNED;
 FAO_ARGS : [IMMEDIATE,UNSAFE,LIST] UNSIGNED
) : INTEGER; EXTERNAL;

BEGIN

{+}
{ Start with a large INPUT_FILESPEC.
{-}

INPUT_FILESPEC := 'DISK$NAME:[DIRECTORY1.DIRECTORY2]FILENAME.EXTENSION;1';

{+}
{ Use LIB$TRIM_FILESPEC to shorten it to fit a smaller variable.
{-}

RETURNED_STATUS := LIB$TRIM_FILESPEC(
 INPUT_FILESPEC,
 OUTPUT_FILESPEC,
 SIZE(OUTPUT_FILESPEC.BODY));
IF NOT ODD(RETURNED_STATUS)
THEN
 LIB$STOP(RETURNED_STATUS);

{+}
{ Print out the original file name along with the
{ shortened file name.
{-}

WRITELN('Original file specification ',INPUT_FILESPEC);
WRITELN('Shortened file specification ',OUTPUT_FILESPEC);

END.

This Pascal example program demonstrates the use of LIB$TRIM_FILESPEC. The output generated
by this program is as follows:

583

Chapter 2. LIB$ Reference

Original file specification DISK$NAME:
[DIRECTORY1.DIRECTORY2]FILENAME.EXTENSION;1
Shortened file specification FILENAME.EXTENSION;1

LIB$TRIM_FULLNAME
LIB$TRIM_FULLNAME — The Trim a Full Name to Fit into a Desired Output Field routine trims a
full name to fit into a desired output field. The trimming preserves the most significant part of the full
name. No support for arguments passed by 64-bit address reference or for use of 64-bit descriptors, if
applicable, is planned for this routine.

Format
LIB$TRIM_FULLNAME fullname, trimmed-nodename [,output-width] [,resultant-length]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
fullname

OpenVMS usage: char_string
type: character string
access: read only
mechanism: by descriptor

Full name to be trimmed. The fullname argument contains the address of a descriptor pointing to this
full name string.

The error LIB$_INVARG is returned if fullname contains an invalid full name, points to a null string,
or contains more than 1024 characters. The error LIB$_INVSTRDES is returned iffullname is an
invalid descriptor.

trimmed-nodename

OpenVMS usage: char_string
type: character string
access: write only
mechanism: by descriptor

Trimmed node name. The trimmed-nodename argument contains the address of a descriptor pointing
to the trimmed node-name string. LIB$TRIM_FULLNAME writes the trimmed node name into the
buffer pointed to by trimmed-nodename.

The error LIB$_INVSTRDES is returned if trimmed-nodename is an invalid descriptor.

584

Chapter 2. LIB$ Reference

The length field of the trimmed-nodename descriptor is not updated unless trimmed-nodename is
a dynamic descriptor with a length less than the resultant trimmed node name. Refer to the OpenVMS
RTL String Manipulation (STR$) Manual for dynamic string descriptor usage.

The trimmed-nodename argument contains an unusable result when LIB$TRIM_FULLNAME
returns in error.

output-width

OpenVMS usage: word_unsigned
type: word (unsigned)
access: read only
mechanism: by reference

Field width desired for the trimmed node name. The output-width argument is the address of an
unsigned word that contains this field width in bytes.

If output-width is omitted, the current length of trimmed-nodename is used. If trimmed-nodename
is not a fixed-length string, specify output-width to ensure that the desired width is used.

If the lengths of both trimmed-nodename and output-width are specified, the length in output-
width is used. In this case, if the current length of trimmed-nodename is smaller than the length
of output-width, the output trimmed node name is truncated at the end, and the alternate successful
status LIB$_STRTRU is returned.

resultant-length

OpenVMS usage: word_unsigned
type: word (unsigned)
access: write only
mechanism: by reference

Length of the trimmed node name. The resultant-length argument is the address of an unsigned word
that contains this length in bytes.

The resultant-length argument contains an unusable result when LIB$TRIM_FULLNAME returns in
error.

Description
This routine trims a full name to the length that fits the desired output field. It allows applications
to trim long full names for displaying in a fixed-length field, such as listing headers, in a consistent
manner.

Full names are validated. Valid full names are defined as full names expanded from using
LIB$EXPAND_NODENAME. A node name must be expanded to a full name using LIB
$EXPAND_NODENAME before calling LIB$TRIM_FULLNAME. The error LIB$_INVARG is
returned if the input full name is invalid.

If the length of fullname is less than or equal to the desired output width, no trimming is
performed, and fullname is returned in trimmed-nodename. Trailing blanks are padded if
necessary.

585

Chapter 2. LIB$ Reference

Trimming is performed when the length of fullname is larger than the desired output width. The
alternate successful status LIB$_STRTRU is returned.

The trimmed node name contains the significant part of the full name. This allows the most important
information of a full name to be retained for display purposes. The significant part of a full name is
determined by the underlying network services.

In a DECnet environment, trimming a DECnet-Plus full name results in the error condition LIB
$_INVARG.

If a usable short form of a node name is desired for display purposes, call LIB
$COMPRESS_NODENAME first. If LIB$COMPRESS_NODENAME returns LIB$_STRTRU, LIB
$TRIM_FULLNAME can then be used to return the trimmed node name.

LIB$TRIM_FULLNAME adds padding spaces to the end of the output buffer if the trimmed node
name is shorter than the size of the output buffer. The argument resultant-length, if supplied, is set to
the length of the trimmed node name, excluding any padding spaces.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_STRTRU Routine successfully completed. Characters

are truncated in the output buffer pointed to by
trimmed-nodename.

LIB$_INVARG Invalid argument:

• fullname is invalid.

• fullname points to a null string.

• The length of the input full name is more than
1024 characters.

• The trimmed DECnet-Plus for OpenVMS
node name is invalid in a DECnet for
OpenVMS environment.

LIB$_INVSTRDES Invalid string descriptor.
LIB$_WRONUMARG Wrong number of arguments.

Any condition value returned by LIB$SCOPY_R_DX, or the $IPC DECnet service.

Examples
The following table gives some examples of the results of using LIB$TRIM_FULLNAME:

Full Name Size of Output Field Trimmed Node Name
NODE 3 NOD
NODE 8 NODE
DEC:.FOO.NODE 5 .NODE
DEC:.FOO.NODE 8 FOO.NODE

586

Chapter 2. LIB$ Reference

Full Name Size of Output Field Trimmed Node Name
DEC:.FOO.NODE 20 DEC:.FOO.NODE

LIB$UNLOCK_IMAGE
LIB$UNLOCK_IMAGE — Unlocks the specified image in the process’s working set.

Format
LIB$UNLOCK_IMAGE address

Returns

OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
address

OpenVMS usage: address
type: quadword
access: read only
mechanism: by value

Address of a byte within the image to be unlocked in the working set. If the address argument is 0, the
current image (which contains the call to LIB$UNLOCK_IMAGE) is unlocked in the working set.

Description
LIB$UNLOCK_IMAGE unlocks the specified image in the process’s working set.

This routine is typically used by a privileged user after the program, executing in kernel mode, lowers
IPL to 0 or 2. Above IPL 2, paging is not allowed by the system. The program must access only pages
valid in the process’s working set. LIB$LOCK_IMAGE is used to lock the image in the working set.

Condition Values Returned

SS$_WASSET The specified image is unlocked in the working set and had
previously been locked in the working set.

SS$_WASCLR The specified image is unlocked in the working set and had
previously not been locked in the working set.

Other status codes returned by sys$lkwset_64.

587

Chapter 2. LIB$ Reference

LIB$VERIFY_VM_ZONE
LIB$VERIFY_VM_ZONE — The Verify a Zone routine performs verification of a 32-bit zone.

Format
LIB$VERIFY_VM_ZONE zone-id

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
zone-id

OpenVMS usage: identifier
type: longword (unsigned)
access: read only
mechanism: by reference

Zone identifier of the zone to be verified. The zone-id argument is the address of an unsigned
longword that contains this zone identifier. A value of 0 indicates the 32-bit default zone.

Description
LIB$VERIFY_VM_ZONE verifies a zone. LIB$VERIFY_VM_ZONE performs verification of the
zone header and scans all of the queues and lists maintained in the zone header; this includes the
lookaside lists and the free lists. If the zone was created with LIB$M_VM_FREE_FILL0 or LIB
$M_VM_FREE_FILL1, LIB$VERIFY_VM_ZONE also checks the contents of the free blocks.

As soon as an error is encountered, processing stops. If LIB$_BADZONE is returned, use the routine
LIB$SHOW_VM_ZONE to dump the zone information.

You must have exclusive access to the zone while the verification is proceeding. Results are
unpredictable if another thread of control modifies the zone while this routine is analyzing control
data or scanning control blocks.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone.
LIB$_INSVIRMEM Insufficient virtual memory.
LIB$_INVARG Invalid or null argument.

588

Chapter 2. LIB$ Reference

LIB$_WRONUMARG Wrong number of arguments.

LIB$VERIFY_VM_ZONE_64
LIB$VERIFY_VM_ZONE_64 — The Verify a Zone routine performs verification of a 64-bit zone.

Format
LIB$VERIFY_VM_ZONE_64 zone-id

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
zone-id

OpenVMS usage: identifier
type: quadword (unsigned)
access: read only
mechanism: by reference

Zone identifier of the zone to be verified. The zone-id argument is the address of an unsigned
quadword that contains this zone identifier. A value of 0 indicates the 64-bit default zone.

Description
LIB$VERIFY_VM_ZONE_64 verifies a zone. LIB$VERIFY_VM_ZONE_64 performs verification
of the zone header and scans all of the queues and lists maintained in the zone header; this includes
the lookaside lists and the free lists. If the zone was created with the LIB$M_VM_FREE_FILL0 or
LIB$M_VM_FREE_FILL1 algorithm, LIB$VERIFY_VM_ZONE_64 also checks the contents of the
free blocks.

As soon as an error is encountered, processing stops. If LIB$_BADZONE is returned, use the routine
LIB$SHOW_VM_ZONE_64 to dump the zone information.

You must have exclusive access to the zone while the verification is proceeding. Results are
unpredictable if another thread of control modifies the zone while this routine is analyzing control
data or scanning control blocks.

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_BADZONE Invalid zone.

589

Chapter 2. LIB$ Reference

LIB$_INVARG Invalid or null argument.
LIB$_WRONUMARG Wrong number of arguments.

LIB$WAIT
LIB$WAIT — The Wait a Specified Period of Time routine places the current process into hibernation
for the number of seconds specified in its argument.

Format
LIB$WAIT seconds [,flags] [,float-type]

Returns
OpenVMS usage: cond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
seconds

OpenVMS usage: floating_point
type: F_floating
access: read only
mechanism: by reference

The number of seconds to wait. The seconds argument contains the address of an F-floating number
that is this number.

The value is rounded to the nearest hundredth-second before use. Seconds must be between 0.0 and
100,000.0.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Control flags. The flags argument is the address of a longword integer that contains the control flags.
The following flag is defined:

Bit Value Description
0 LIB$K_NOWAKE LIB$WAIT will not wake in the

case of an interrupt.

590

Chapter 2. LIB$ Reference

This is an optional argument. If omitted, the default is 0, and LIB$WAIT will wake in the case of an
interrupt.

float-type

OpenVMS usage: longword-unsigned
type: longword (unsigned)
access: read only
mechanism: by reference

Float type. The float-type argument is the address of a longword integer that determines the floating-
point type of the seconds argument. Use one of the following symbols:

Symbol Value Floating-Point Type
LIB$K_VAX_F 0 F_floating
LIB$K_VAX_D 1 D_floating
LIB$K_VAX_G 2 G_floating
LIB$K_VAX_H 3 H_floating
LIB$K_IEEE_S 4 IEEE_S_floating
LIB$K_IEEE_T 5 IEEE_T_floating

This is an optional argument. If omitted, the default is F_floating. F_floating is the required float-type
when LIB$WAIT is called from a module written in a language that prototypes functions.

Description
LIB$WAIT rounds the value specified by seconds to the nearest hundredth-second, uses the
$SCHDWK system service to schedule a wakeup for that interval, and then issues the $HIBER system
service to hibernate until the wakeup occurs.

Because of other system activity, the length of time that the process actually waits may be somewhat
longer than what was specified by seconds.

The process hibernates in the caller's access mode; therefore, asynchronous system traps (ASTs) may
be delivered while the process is hibernating. However, if the process hibernates at AST level, further
ASTs can not be delivered.

When the LIB$K_NOWAIT control flag is used, LIB$WAIT makes use of the $SETIMR system
service to schedule the wakeup, and then issues a $SYNCH system service call to check for
the completion status. In this case, LIB$WAIT will not be interrupted by $WAKE. Use LIB
$K_NOWAKE when it is necessary for the wait to be completed without interruption.

Note

The NOWAKE option makes use of the $SETIMR and $SYNCH system services. Because use
of these services requires that an AST be delivered, you should not use LIB$WAIT with the LIB
$K_NOWAKE control flag at AST level.

See the OpenVMS System Services Reference Manual for more information.

591

Chapter 2. LIB$ Reference

Condition Values Returned
SS$_NORMAL Routine successfully completed.
LIB$_INVARG Invalid argument. The value of seconds was less

than 0 or greater than 100,000.0
LIB$_WRONUMARG Wrong number of arguments. An incorrect

number of arguments was passed to LIB$WAIT.

Any condition values returned by the $SCHDWK or SETIMR system services, or by the RTL routine
LIB$CVT_FTOF.

Example
IDENTIFICATION DIVISION.
PROGRAM-ID. T3.
DATA DIVISION.
WORKING-STORAGE SECTION.
01 WAIT-TIME COMP-1.
01 FLOAT-TYPE PIC 9(5) COMP VALUE 0.
PROCEDURE DIVISION.
p0. MOVE 10 TO WAIT-TIME.
 CALL "LIB$WAIT"
 USING BY REFERENCE WAIT_TIME, OMITTED,
 BY REFERENCE FLOAT-TYPE.
 STOP RUN.

This COBOL program demonstrates the use of LIB$WAIT on both OpenVMS VAX and OpenVMS
Alpha systems. When run, the process performs a 10 second wait.

592

Chapter 3. CVT$ Reference Section
This chapter provides a detailed discussion of the routines provided by the OpenVMS RTL (CVT$)
facility.

CVT$CONVERT_FLOAT
CVT$CONVERT_FLOAT — The Convert Floating-Point Data Type routine provides a simplified
options-interface for converting a floating-point data type to another supported floating-point data
type.

Format
CVT$CONVERT_FLOAT input_value, input_type_code, output_value, output_type_code,
options

Returns
OpenVMS usage: ond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
input_value

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

The address of a data area containing a floating-point number that is to be converted. The
input_value argument may contain floating-point data in F_Floating, D_Floating, G_Floating,
H_Floating, IEEE_S_Floating, IEEE_T_Floating, IEEE_X_Floating, IBM_Long_Floating,
IBM_Short_Floating, or CRAY_Floating format. The value of the input_type_code argument
determines the format and size of the input_value argument.

input_type_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data being passed in the
input_value argument. Valid type codes are:

593

Chapter 3. CVT$ Reference Section

input_type_code Format Size in Bytes
CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT$K_IBM_LONG IBM_Long_Floating 8
CVT$K_IBM_SHORT IBM_Short_Floating 4
CVT$K_CRAY CRAY_Floating 8

Declarations for the input_type_code argument are in the $CVTDEF module found in the system
symbol libraries.

output_value

OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

The address of a data area that receives the converted floating-point number. The output_value
argument can contain floating-point data in F_Floating, D_Floating, G_Floating, H_Floating,
IEEE_S_Floating, IEEE_T_Floating, IEEE_X_Floating, IBM_Long_Floating, IBM_Short_Floating,
or CRAY_Floating format. The value of the output_type_code argument determines the size and
format of the data placed into the output_value argument.

output_type_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data that the input_value
argument will be converted into and returned in the output_value argument. Valid type codes are:

output_type_code Format Size in Bytes
CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8

594

Chapter 3. CVT$ Reference Section

CVT$K_IEEE_X IEEE_X_Floating 16
CVT$K_IBM_LONG IBM_Long_Floating 8
CVT$K_IBM_SHORT IBM_Short_Floating 4
CVT$K_CRAY CRAY_Floating 8

Declarations for the output_type_code argument are in the $CVTDEF module found in the system
symbol libraries.

options

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Conversion option specifier. The options argument is the address of a longword bit mask in which
each option bit set causes the corresponding option to be used during the conversion.

The following options can be specified using the options argument:

Option Description
CVT$M_ROUND_TO_NEAREST The default rounding option for conversions to

IEEE data types. This IEEE Std. 754 rounding
mode results in the representable output value
nearest to the infinitely precise result. If the two
nearest representable values are equally near, the
one whose least significant bit is 0 is the result.

CVT$M_VAX_ROUNDING The default rounding option for conversions to
non-IEEE data types. Performs "traditional" style
rounding. This mode results in the representable
output value nearest to the infinitely precise
result. If the two nearest representable values
are equally near, the output value is the closest
to either positive infinity or negative infinity,
depending on the sign of the input value.

CVT$M_TRUNCATE Round the output value toward zero (truncate).
CVT$M_ROUND_TO_POS Round the output value toward positive infinity.
CVT$M_ROUND_TO_NEG Round the output value toward negative infinity.
CVT$M_BIG_ENDIAN Interprets IEEE data types as Big Endian.
CVT$M_ERR_UNDERFLOW Report underflow conditions as errors.

Declarations for the options argument are in the $CVTDEF module found in the system symbol
libraries.

Description
CVT$CONVERT_FLOAT is a general-purpose, floating-point conversion routine that converts any
input_type_code floating-point data type into any output_type_code floating-point data type. The
conversion is subject to the options specified in the options argument.

595

Chapter 3. CVT$ Reference Section

Note

OpenVMS compilers do not support arithmetic operations for all of the above floating-point data
types. Additional floating-point data types are supported by this routine for data conversion purposes
only.

Condition Values Returned
CVT$_NORMAL Normal successful completion.
CVT$_INPCONERR Input conversion error.
CVT$_INVINPTYP Invalid input type code.
CVT$_INVOPT Invalid option argument.
CVT$_INVOUTTYP Invalid output type code.
CVT$_INVVAL Input value was an invalid number or NaN.
CVT$_NEGINF Input value was negative infinity.
CVT$_OUTCONERR Output conversion error.
CVT$_OVERFLOW Overflow detected during conversion.
CVT$_POSINF Input value was positive infinity.
CVT$_UNDERFLOW Underflow detected during conversion.

Return status values are in the $CVTMSG module found in the system symbol libraries.

Example
/*
** ===
**
** Example of CVT$CONVERT_FLOAT
**
** ---
**
** This example program reads IEEE T floating-point numbers from an
** input file, converts them to VAX D floating-point numbers and
** writes the result to an output file.
**
** The input and output file names can be specified as the first and
** second arguments on the command line as follows:
**
** $ EXAMPLE IEEE_T_INPUT_FILE.DAT VAX_D_OUTPUT_FILE.DAT
**
** If the input or output files are not included on the command
** line then the program prompts the user for them.
**
** ===
*/
#include <stdio.h>

unsigned long CVT$CONVERT_FLOAT(void *input_value,
 unsigned long input_type,
 void *output_value,
 unsigned long output_type,

596

Chapter 3. CVT$ Reference Section

 unsigned long options);

globalvalue CVT$K_VAX_D;
globalvalue CVT$K_IEEE_T;
globalvalue CVT$M_ROUND_TO_NEAREST;
globalvalue CVT$_NORMAL;

main(int argc, char *argv[])

{

 double D_Float_number;
 unsigned long IEEE_Double_number[2];
 unsigned long options;
 char in_filename[80];
 char out_filename[80];
 FILE *in_file, *out_file;
 unsigned long ret_status;

/*
** Find out where we are going to get the data from.
** First look at the first argument of the command line.
** If nothing is there, then attempt to use IEEE_T_IN.DAT.
** ===
*/
if (argc == 1)
{
 printf("Enter input data file: [IEEE_T_IN.DAT]: ");
 if (gets(in_filename) == NULL)
 exit(1);

 if (strlen(in_filename) == 0)
 strcpy(in_filename, "IEEE_T_IN.DAT");
}
else
 strcpy(in_filename, argv[1]);

/*
** Find out where we are going to put the output data.
** First look at the second argument of the command line.
** If nothing is there, then put it in VAX_D_OUT.DAT
** ===
*/
if (argc <= 2)
{
 printf("Enter output data file: [VAX_D_OUT.DAT]: ");
 if (gets(out_filename) == NULL)
 exit(1);

 if (strlen(out_filename) == 0)
 strcpy(out_filename, "VAX_D_OUT.DAT");
}
else
 strcpy(out_filename, argv[2]);

/*
** Open the input and output files.
** ---

597

Chapter 3. CVT$ Reference Section

*/
if ((in_file = fopen(in_filename, "r")) == NULL)
{
 fprintf(stderr, "%s couldn't open file %s\n", argv[0], in_filename);
 exit(1);
}

out_file = fopen(out_filename, "wb");

options = CVT$M_ROUND_TO_NEAREST;
ret_status = CVT$_NORMAL;

/*
** Read in each number from the file, convert it, and write it to
** the output file.
** ===
*/
while ((fread (&IEEE_Double_number[0],
 sizeof(IEEE_Double_number),
 1,
 in_file) == 1) &&
 (ret_status == CVT$_NORMAL))
{
 ret_status = CVT$CONVERT_FLOAT(&IEEE_Double_number[0], CVT$K_IEEE_T,
 &D_Float_number, CVT$K_VAX_D,
 options);

 if (ret_status == CVT$NORMAL)
 {
 fwrite(&D_Float_number, sizeof(D_Float_number), 1, out_file);
 printf("Converted data: %lf.\n", D_Float_number);
 }
}
fclose(in_file);
fclose(out_file);

if (ret_status == CVT$_NORMAL)
 exit(1);
else
 exit(ret_status);
}

CVT$FTOF
CVT$FTOF — The Convert Floating-Point Data Type routine converts floating-point data types to
other supported floating-point data types and allows additional control over the converted results.
CVT$FTOF functionality is also available on other platforms supported by VSI.

Format
status = CVT$FTOF input_value, input_type_code, output_value, output_type_code, options

Returns
OpenVMS usage: mask_longword

598

Chapter 3. CVT$ Reference Section

type: longword (unsigned)
access: write only
mechanism: by value

The status return value is an unsigned longword bit mask containing the condition codes raised by
the function. CVT$FTOF returns CVT$K_NORMAL; otherwise, it sets one or more recoverable and
unrecoverable conditions. Use the following condition names to determine which conditions are set:

Condition Name Condition (always reported by default)
CVT$K_NORMAL Normal successful completion.
CVT$M_INVALID_INPUT_TYPE Invalid input type code.
CVT$M_INVALID_OUTPUT_TYPE Invalid output type code.
CVT$M_INVALID_OPTION Invalid option argument.

Condition Name Condition (reported only if the CVT
$M_REPORT_ALL option is selected)

CVT$M_RESULT_INFINITE Conversion produced an infinite result. For IEEE
data type conversions.

CVT$M_RESULT_DENORMALIZED Conversion produced a denormalized result. For
IEEE data type conversions.

CVT$M_RESULT_OVERFLOW_RANGE Conversion yielded an exponent greater than
60000 (8). For CRAY data type conversions.

CVT$M_RESULT_UNDERFLOW_RANGE Conversion yielded an exponent less than 20000
(8). For CRAY data type conversions.

CVT$M_RESULT_UNNORMALIZED Conversion produced an unnormalized result. For
IBM data type conversions.

CVT$M_RESULT_INVALID Conversion result is either ROP (reserved
operand), NaN (not a number), or closest
equivalent. CRAY and IBM data types return 0.
For all data type conversions.

CVT$M_RESULT_OVERFLOW Conversion resulted in overflow. For all data type
conversions.

CVT$M_RESULT_UNDERFLOW Conversion resulted in underflow. For all data
type conversions.

CVT$M_RESULT_INEXACT Conversion resulted in a loss of precision. For all
data type conversions.

Return status values are in the $CVTDEF module in the system symbol libraries.

Arguments
input_value

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

599

Chapter 3. CVT$ Reference Section

The address of a data area containing a floating-point number to be converted. The number can be
floating-point data in one of the following formats:

F_Floating Big_Endian_IEEE_S_Floating
D_Floating Big_Endian_IEEE_T_Floating
G_Floating Big_Endian_IEEE_X_Floating
H_Floating IBM_Long_Floating
IEEE_S_Floating IBM_Short_Floating
IEEE_T_Floating CRAY_Floating_Single
IEEE_X_Floating

The value of the input_type_code argument determines the format and size of the input_value
argument.

input_type_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data being passed in the
input_value argument. Valid type codes are:

Input_type_code Format Size in Bytes
CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT
$K_BIG_ENDIAN_IEEE_S

Big_Endian_IEEE_S_Floating 4

CVT
$K_BIG_ENDIAN_IEEE_T

Big_Endian_IEEE_T_Floating 8

CVT
$K_BIG_ENDIAN_IEEE_X

Big_Endian_IEEE_X_Floating 16

CVT$K_IBM_LONG IBM_Long_Floating 8
CVT$K_IBM_SHORT IBM_Short_Floating 4
CVT$K_CRAY_SINGLE CRAY_Floating 8

Declarations for the input_type_code argument are in the $CVTDEF module found in the system
symbol libraries.

output_value

600

Chapter 3. CVT$ Reference Section

OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

The address of a data area that receives the converted floating-point number. The
number can be floating-point data in F_Floating, D_Floating, G_Floating, H_Floating,
IEEE_S_Floating, IEEE_T_Floating, IEEE_X_Floating, Big_Endian_IEEE_S_Floating,
Big_Endian_IEEE_T_Floating, Big_Endian_IEEE_X_Floating, IBM_Long_Floating,
IBM_Short_Floating, or CRAY_Floating_Single format. The value of the output_type_code
argument determines the size and format of the converted floating-point number.

output_type_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data that the input_value
argument will be converted into and returned in the output_value argument. Valid type codes are:

Output_type_code Format Size in Bytes
CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT
$K_BIG_ENDIAN_IEEE_S

Big_Endian_IEEE_S_Floating 4

CVT
$K_BIG_ENDIAN_IEEE_T

Big_Endian_IEEE_T_Floating 8

CVT
$K_BIG_ENDIAN_IEEE_X

Big_Endian_IEEE_X_Floating 16

CVT$K_IBM_LONG IBM_Long_Floating 8
CVT$K_IBM_SHORT IBM_Short_Floating 4
CVT$K_CRAY_SINGLE CRAY_Floating 8

Declarations for the output_type_code argument are in the $CVTDEF module found in the system
symbol libraries.

options

OpenVMS usage: mask_longword

601

Chapter 3. CVT$ Reference Section

type: longword (unsigned)
access: read only
mechanism: by value

Conversion option specifier. The options argument is the address of a longword bit mask in which
each option bit set causes the corresponding option to be used during the conversion. Provide a zero
(0) value to the options argument to select default behavior or choose one or more options (status
condition option, rounding options, "FORCE" options, CRAY and IBM options) from the following
tables. Specify only the options that apply to your conversion. A conflicting or incompatible options
argument is reported as an error (CVT$M_INVALID_OPTION).

Applicable Conversion Option Description
Status Condition Option

All CVT$M_REPORT_ALL Report all applicable status
conditions as the default. The
reporting of recoverable status
conditions is disabled by default
when this option is not used.

Rounding Options
All CVT

$M_ROUND_TO_NEAREST
The default rounding option for
conversions to IEEE data types.
This IEEE Std. 754 rounding
mode results in the representable
output value nearest to the
infinitely precise result. If the
two nearest representable values
are equally near, the one whose
least significant bit is 0 is the
result.

All CVT
$M_BIASED_ROUNDING

The default rounding option for
conversions to non-IEEE data
types. Performs "traditional"
style rounding. This mode
results in the representable
output value nearest to the
infinitely precise result. If the
two nearest representable values
are equally near, the output
value is the closest to either
positive infinity or negative
infinity depending on the sign of
the input value.

All CVT$M_ROUND_TO_ZERO Round the output value toward
zero (truncate).

All CVT$M_ROUND_TO_POS Round the output value toward
positive infinity.

All CVT$M_ROUND_TO_NEG Round the output value toward
negative infinity.

"FORCE" Options

602

Chapter 3. CVT$ Reference Section

All CVT
$M_FORCE_ALL_SPECIAL_VALUES

Apply all applicable "FORCE"
options for the current
conversion.

IEEE CVT
$M_FORCE_DENORM_TO_ZERO
This option is valid only for
conversions to IEEE output
values.

Force a denormalized IEEE
output value to zero.

IEEE CVT
$M_FORCE_INF_TO_MAX_FLOAT
This option is valid only for
conversions to IEEE output
values.

Force a positive IEEE infinite
output value to +max_float and
force a negative IEEE infinite
output value to --max_float.

IEEE or VAX CVT
$M_FORCE_INVALID_TO_ZERO
This option is valid only for
conversions to IEEE or VAX
output values.

Force an invalid IEEE NaN (not
a number) output value or a
VAX ROP (reserved operand)
output value to zero.

CRAY Format Conversion Options
CRAY CVT

$M_ALLOW_OVRFLW_RANGE_VALUES
Allow an input/output exponent
value > 60000 (8).

CRAY CVT
$M_ALLOW_UDRFLW_RANGE_VALUES

Allow an input/output exponent
value < 20000 (8).

IBM Format Conversion Option
IBM CVT

$M_ALLOW_UNNORMALIZED_VALUES
Allow unnormalized input
arguments. Allow an
unnormalized output value
for a small value that would
normalize to zero.

The maximum representable floating-point values (max_float) for the IEEE_S_Floating,
IEEE_T_Floating, IEEE_X_Floating, Big_Endian_IEEE_S_Floating, Big_Endian_IEEE_T_Floating,
and Big_Endian_IEEE_X_Floating formats are:

Data Type Value for: max_float
S Decimal: 3.402823e38
T Decimal: 1.797693134862316e308
X Decimal:

1.189731495357231765085759326628007016196477e4932

Declarations for the options argument are in the $CVTDEF module found in the system symbol
libraries.

Description
CVT$FTOF functionality is available on all VSI platforms and is the floating-point conversion routine
of choice for portability. When compared with the standard CVT$CONVERT_FLOAT routine, CVT
$FTOF includes additional functionality and increased performance.

603

Chapter 3. CVT$ Reference Section

CVT$FTOF is a general-purpose floating-point conversion routine that converts any
input_type_code floating-point data type into any output_type_code floating-point data type. The
conversion is subject to the options specified in the options argument.

Note

OpenVMS compilers do not support arithmetic operations for all of the floating-point data types
described here. Additional floating-point data types are supported by this routine for data conversion
purposes only.

604

Chapter 4. CVT$ Reference Section
This chapter provides a detailed discussion of the routines provided by the OpenVMS RTL (CVT$)
facility.

CVT$CONVERT_FLOAT
CVT$CONVERT_FLOAT — The Convert Floating-Point Data Type routine provides a simplified
options-interface for converting a floating-point data type to another supported floating-point data
type.

Format
CVT$CONVERT_FLOAT input_value, input_type_code, output_value, output_type_code,
options

Returns
OpenVMS usage: ond_value
type: longword (unsigned)
access: write only
mechanism: by value

Arguments
input_value

OpenVMS usage: varying_arg
type: unspecified
access: read only
mechanism: by reference

The address of a data area containing a floating-point number that is to be converted. The
input_value argument may contain floating-point data in F_Floating, D_Floating, G_Floating,
H_Floating, IEEE_S_Floating, IEEE_T_Floating, IEEE_X_Floating, IBM_Long_Floating,
IBM_Short_Floating, or CRAY_Floating format. The value of the input_type_code argument
determines the format and size of the input_value argument.

input_type_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data being passed in the
input_value argument. Valid type codes are:

605

Chapter 4. CVT$ Reference Section

input_type_code Format Size in Bytes
CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT
$K_IBM_LONG

IBM_Long_Floating 8

CVT
$K_IBM_SHORT

IBM_Short_Floating 4

CVT$K_CRAY CRAY_Floating 8

Declarations for the input_type_code argument are in the $CVTDEF module found in the system
symbol libraries.

output_value

OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

The address of a data area that receives the converted floating-point number. The output_value
argument can contain floating-point data in F_Floating, D_Floating, G_Floating, H_Floating,
IEEE_S_Floating, IEEE_T_Floating, IEEE_X_Floating, IBM_Long_Floating, IBM_Short_Floating,
or CRAY_Floating format. The value of the output_type_code argument determines the size and
format of the data placed into the output_value argument.

output_type_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data that the input_value
argument will be converted into and returned in the output_value argument. Valid type codes are:

output_type_code Format Size in Bytes
CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4

606

Chapter 4. CVT$ Reference Section

CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT
$K_IBM_LONG

IBM_Long_Floating 8

CVT
$K_IBM_SHORT

IBM_Short_Floating 4

CVT$K_CRAY CRAY_Floating 8

Declarations for the output_type_code argument are in the $CVTDEF module found in the system
symbol libraries.

options

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Conversion option specifier. The options argument is the address of a longword bit mask in which
each option bit set causes the corresponding option to be used during the conversion.

The following options can be specified using the options argument:

Option Description
CVT
$M_ROUND_TO_NEAREST

The default rounding option for conversions to IEEE data types.
This IEEE Std. 754 rounding mode results in the representable
output value nearest to the infinitely precise result. If the two
nearest representable values are equally near, the one whose least
significant bit is 0 is the result.

CVT$M_VAX_ROUNDING The default rounding option for conversions to non-IEEE data
types. Performs "traditional" style rounding. This mode results
in the representable output value nearest to the infinitely precise
result. If the two nearest representable values are equally near, the
output value is the closest to either positive infinity or negative
infinity, depending on the sign of the input value.

CVT$M_TRUNCATE Round the output value toward zero (truncate).
CVT$M_ROUND_TO_POS Round the output value toward positive infinity.
CVT$M_ROUND_TO_NEG Round the output value toward negative infinity.
CVT$M_BIG_ENDIAN Interprets IEEE data types as Big Endian.
CVT$M_ERR_UNDERFLOW Report underflow conditions as errors.

Declarations for the options argument are in the $CVTDEF module found in the system symbol
libraries.

Description
CVT$CONVERT_FLOAT is a general-purpose, floating-point conversion routine that converts any
input_type_code floating-point data type into any output_type_code floating-point data type. The
conversion is subject to the options specified in the options argument.

607

Chapter 4. CVT$ Reference Section

Note

OpenVMS compilers do not support arithmetic operations for all of the above floating-point data
types. Additional floating-point data types are supported by this routine for data conversion purposes
only.

Condition Values Returned
CVT$_NORMAL Normal successful completion.
CVT$_INPCONERR Input conversion error.
CVT$_INVINPTYP Invalid input type code.
CVT$_INVOPT Invalid option argument.
CVT$_INVOUTTYP Invalid output type code.
CVT$_INVVAL Input value was an invalid number or NaN.
CVT$_NEGINF Input value was negative infinity.
CVT$_OUTCONERR Output conversion error.
CVT$_OVERFLOW Overflow detected during conversion.
CVT$_POSINF Input value was positive infinity.
CVT$_UNDERFLOW Underflow detected during conversion.

Return status values are in the $CVTMSG module found in the system symbol libraries.

Example
/*
** ===
**
** Example of CVT$CONVERT_FLOAT
**
** ---
**
** This example program reads IEEE T floating-point numbers from an
** input file, converts them to VAX D floating-point numbers and
** writes the result to an output file.
**
** The input and output file names can be specified as the first and
** second arguments on the command line as follows:
**
** $ EXAMPLE IEEE_T_INPUT_FILE.DAT VAX_D_OUTPUT_FILE.DAT
**
** If the input or output files are not included on the command
** line then the program prompts the user for them.
**
** ===
*/
#include <stdio.h>

unsigned long CVT$CONVERT_FLOAT(void *input_value,
 unsigned long input_type,
 void *output_value,
 unsigned long output_type,

608

Chapter 4. CVT$ Reference Section

 unsigned long options);

globalvalue CVT$K_VAX_D;
globalvalue CVT$K_IEEE_T;
globalvalue CVT$M_ROUND_TO_NEAREST;
globalvalue CVT$_NORMAL;

main(int argc, char *argv[])

{

 double D_Float_number;
 unsigned long IEEE_Double_number[2];
 unsigned long options;
 char in_filename[80];
 char out_filename[80];
 FILE *in_file, *out_file;
 unsigned long ret_status;

/*
** Find out where we are going to get the data from.
** First look at the first argument of the command line.
** If nothing is there, then attempt to use IEEE_T_IN.DAT.
** ===
*/
if (argc == 1)
{
 printf("Enter input data file: [IEEE_T_IN.DAT]: ");
 if (gets(in_filename) == NULL)
 exit(1);

 if (strlen(in_filename) == 0)
 strcpy(in_filename, "IEEE_T_IN.DAT");
}
else
 strcpy(in_filename, argv[1]);

/*
** Find out where we are going to put the output data.
** First look at the second argument of the command line.
** If nothing is there, then put it in VAX_D_OUT.DAT
** ===
*/
if (argc <= 2)
{
 printf("Enter output data file: [VAX_D_OUT.DAT]: ");
 if (gets(out_filename) == NULL)
 exit(1);

 if (strlen(out_filename) == 0)
 strcpy(out_filename, "VAX_D_OUT.DAT");
}
else
 strcpy(out_filename, argv[2]);

/*
** Open the input and output files.
** ---

609

Chapter 4. CVT$ Reference Section

*/
if ((in_file = fopen(in_filename, "r")) == NULL)
{
 fprintf(stderr, "%s couldn't open file %s\n", argv[0], in_filename);
 exit(1);
}

out_file = fopen(out_filename, "wb");

options = CVT$M_ROUND_TO_NEAREST;
ret_status = CVT$_NORMAL;

/*
** Read in each number from the file, convert it, and write it to
** the output file.
** ===
*/
while ((fread (&IEEE_Double_number[0],
 sizeof(IEEE_Double_number),
 1,
 in_file) == 1) &&
 (ret_status == CVT$_NORMAL))
{
 ret_status = CVT$CONVERT_FLOAT(&IEEE_Double_number[0], CVT$K_IEEE_T,
 &D_Float_number, CVT$K_VAX_D,
 options);

 if (ret_status == CVT$NORMAL)
 {
 fwrite(&D_Float_number, sizeof(D_Float_number), 1, out_file);
 printf("Converted data: %lf.\n", D_Float_number);
 }
}
fclose(in_file);
fclose(out_file);

if (ret_status == CVT$_NORMAL)
 exit(1);
else
 exit(ret_status);
}

CVT$FTOF
CVT$FTOF — The Convert Floating-Point Data Type routine converts floating-point data types to
other supported floating-point data types and allows additional control over the converted results.
CVT$FTOF functionality is also available on other platforms supported by VSI.

Format
status = CVT$FTOF input_value, input_type_code, output_value, output_type_code, options

Returns
OpenVMS usage: mask_longword

610

Chapter 4. CVT$ Reference Section

type: longword (unsigned)
access: write only
mechanism: by value

The status return value is an unsigned longword bit mask containing the condition codes raised by
the function. CVT$FTOF returns CVT$K_NORMAL; otherwise, it sets one or more recoverable and
unrecoverable conditions. Use the following condition names to determine which conditions are set:

Condition Name Condition (always reported by default)
CVT$K_NORMAL Normal successful completion.
CVT
$M_INVALID_INPUT_TYPE

Invalid input type code.

CVT
$M_INVALID_OUTPUT_TYPE

Invalid output type code.

CVT$M_INVALID_OPTION Invalid option argument.

Condition Name Condition (reported only if the CVT$M_REPORT_ALL
option is selected)

CVT$M_RESULT_INFINITE Conversion produced an infinite result. For IEEE data type
conversions.

CVT
$M_RESULT_DENORMALIZED

Conversion produced a denormalized result. For IEEE data type
conversions.

CVT
$M_RESULT_OVERFLOW_RANGE

Conversion yielded an exponent greater than 60000 (8). For CRAY
data type conversions.

CVT
$M_RESULT_UNDERFLOW_RANGE

Conversion yielded an exponent less than 20000 (8). For CRAY
data type conversions.

CVT
$M_RESULT_UNNORMALIZED

Conversion produced an unnormalized result. For IBM data type
conversions.

CVT$M_RESULT_INVALID Conversion result is either ROP (reserved operand), NaN (not a
number), or closest equivalent. CRAY and IBM data types return
0. For all data type conversions.

CVT
$M_RESULT_OVERFLOW

Conversion resulted in overflow. For all data type conversions.

CVT
$M_RESULT_UNDERFLOW

Conversion resulted in underflow. For all data type conversions.

CVT$M_RESULT_INEXACT Conversion resulted in a loss of precision. For all data type
conversions.

Return status values are in the $CVTDEF module in the system symbol libraries.

Arguments
input_value

OpenVMS usage: varying_arg
type: unspecified
access: read only

611

Chapter 4. CVT$ Reference Section

mechanism: by reference

The address of a data area containing a floating-point number to be converted. The number can be
floating-point data in one of the following formats:

F_Floating Big_Endian_IEEE_S_Floating
D_Floating Big_Endian_IEEE_T_Floating
G_Floating Big_Endian_IEEE_X_Floating
H_Floating IBM_Long_Floating
IEEE_S_Floating IBM_Short_Floating
IEEE_T_Floating CRAY_Floating_Single
IEEE_X_Floating

The value of the input_type_code argument determines the format and size of the input_value
argument.

input_type_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data being passed in the
input_value argument. Valid type codes are:

Input_type_code Format Size in Bytes
CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT
$K_BIG_ENDIAN_IEEE_S

Big_Endian_IEEE_S_Floating 4

CVT
$K_BIG_ENDIAN_IEEE_T

Big_Endian_IEEE_T_Floating 8

CVT
$K_BIG_ENDIAN_IEEE_X

Big_Endian_IEEE_X_Floating 16

CVT
$K_IBM_LONG

IBM_Long_Floating 8

CVT
$K_IBM_SHORT

IBM_Short_Floating 4

CVT
$K_CRAY_SINGLE

CRAY_Floating 8

612

Chapter 4. CVT$ Reference Section

Declarations for the input_type_code argument are in the $CVTDEF module found in the system
symbol libraries.

output_value

OpenVMS usage: varying_arg
type: unspecified
access: write only
mechanism: by reference

The address of a data area that receives the converted floating-point number. The
number can be floating-point data in F_Floating, D_Floating, G_Floating, H_Floating,
IEEE_S_Floating, IEEE_T_Floating, IEEE_X_Floating, Big_Endian_IEEE_S_Floating,
Big_Endian_IEEE_T_Floating, Big_Endian_IEEE_X_Floating, IBM_Long_Floating,
IBM_Short_Floating, or CRAY_Floating_Single format. The value of the output_type_code
argument determines the size and format of the converted floating-point number.

output_type_code

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: read only
mechanism: by value

The value of a longword bit mask specifying the type of floating-point data that the input_value
argument will be converted into and returned in the output_value argument. Valid type codes are:

Output_type_code Format Size in Bytes
CVT$K_VAX_F F_Floating 4
CVT$K_VAX_D D_Floating 8
CVT$K_VAX_G G_Floating 8
CVT$K_VAX_H H_Floating 16
CVT$K_IEEE_S IEEE_S_Floating 4
CVT$K_IEEE_T IEEE_T_Floating 8
CVT$K_IEEE_X IEEE_X_Floating 16
CVT
$K_BIG_ENDIAN_IEEE_S

Big_Endian_IEEE_S_Floating 4

CVT
$K_BIG_ENDIAN_IEEE_T

Big_Endian_IEEE_T_Floating 8

CVT
$K_BIG_ENDIAN_IEEE_X

Big_Endian_IEEE_X_Floating 16

CVT
$K_IBM_LONG

IBM_Long_Floating 8

CVT
$K_IBM_SHORT

IBM_Short_Floating 4

CVT
$K_CRAY_SINGLE

CRAY_Floating 8

613

Chapter 4. CVT$ Reference Section

Declarations for the output_type_code argument are in the $CVTDEF module found in the system
symbol libraries.

options

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by value

Conversion option specifier. The options argument is the address of a longword bit mask in which
each option bit set causes the corresponding option to be used during the conversion. Provide a zero
(0) value to the options argument to select default behavior or choose one or more options (status
condition option, rounding options, "FORCE" options, CRAY and IBM options) from the following
tables. Specify only the options that apply to your conversion. A conflicting or incompatible options
argument is reported as an error (CVT$M_INVALID_OPTION).

Applicable
Conversion

Option Description

Status Condition Option
All CVT$M_REPORT_ALL Report all applicable status conditions as

the default. The reporting of recoverable
status conditions is disabled by default
when this option is not used.

Rounding Options
All CVT$M_ROUND_TO_NEAREST The default rounding option for

conversions to IEEE data types. This
IEEE Std. 754 rounding mode results in
the representable output value nearest
to the infinitely precise result. If the two
nearest representable values are equally
near, the one whose least significant bit is
0 is the result.

All CVT$M_BIASED_ROUNDING The default rounding option for
conversions to non-IEEE data types.
Performs "traditional" style rounding.
This mode results in the representable
output value nearest to the infinitely
precise result. If the two nearest
representable values are equally near,
the output value is the closest to either
positive infinity or negative infinity
depending on the sign of the input value.

All CVT$M_ROUND_TO_ZERO Round the output value toward zero
(truncate).

All CVT$M_ROUND_TO_POS Round the output value toward positive
infinity.

All CVT$M_ROUND_TO_NEG Round the output value toward negative
infinity.

614

Chapter 4. CVT$ Reference Section

Applicable
Conversion

Option Description

"FORCE" Options
All CVT

$M_FORCE_ALL_SPECIAL_VALUES
Apply all applicable "FORCE" options
for the current conversion.

IEEE CVT
$M_FORCE_DENORM_TO_ZERO
This option is valid only for conversions
to IEEE output values.

Force a denormalized IEEE output value
to zero.

IEEE CVT
$M_FORCE_INF_TO_MAX_FLOAT
This option is valid only for conversions
to IEEE output values.

Force a positive IEEE infinite output
value to +max_float and force a
negative IEEE infinite output value to --
max_float.

IEEE or VAX CVT$M_FORCE_INVALID_TO_ZERO
This option is valid only for conversions
to IEEE or VAX output values.

Force an invalid IEEE NaN (not a
number) output value or a VAX ROP
(reserved operand) output value to zero.

CRAY Format Conversion Options
CRAY CVT

$M_ALLOW_OVRFLW_RANGE_VALUES
Allow an input/output exponent value >
60000 (8).

CRAY CVT
$M_ALLOW_UDRFLW_RANGE_VALUES

Allow an input/output exponent value <
20000 (8).

IBM Format Conversion Option
IBM CVT

$M_ALLOW_UNNORMALIZED_VALUES
Allow unnormalized input arguments.
Allow an unnormalized output value for
a small value that would normalize to
zero.

The maximum representable floating-point values (max_float) for the IEEE_S_Floating,
IEEE_T_Floating, IEEE_X_Floating, Big_Endian_IEEE_S_Floating, Big_Endian_IEEE_T_Floating,
and Big_Endian_IEEE_X_Floating formats are:

Data Type Value for: max_float
S Decimal: 3.402823e38
T Decimal: 1.797693134862316e308
X Decimal: 1.189731495357231765085759326628007016196477e4932

Declarations for the options argument are in the $CVTDEF module found in the system symbol
libraries.

Description
CVT$FTOF functionality is available on all VSI platforms and is the floating-point conversion routine
of choice for portability. When compared with the standard CVT$CONVERT_FLOAT routine, CVT
$FTOF includes additional functionality and increased performance.

CVT$FTOF is a general-purpose floating-point conversion routine that converts any
input_type_code floating-point data type into any output_type_code floating-point data type. The
conversion is subject to the options specified in the options argument.

615

Chapter 4. CVT$ Reference Section

Note

OpenVMS compilers do not support arithmetic operations for all of the floating-point data types
described here. Additional floating-point data types are supported by this routine for data conversion
purposes only.

616

	RTL Library (LIB$) Manual
	Table of Contents
	Preface
	1. Intended Audience
	2. Document Structure
	3. Related Documents
	4. VSI Encourages Your Comments
	5. OpenVMS Documentation
	6. Typographical Conventions

	Chapter 1. Overview of the LIB$ Facility
	1.1. Run-Time Library LIB$ Routines
	1.1.1. 64-Bit Addressing Support (Alpha and I64 Only)
	1.1.2. The LIB$ Routines

	1.2. Translated Version of LIB$ Facility (Alpha and I64 Only)
	1.3. Run-Time Library CVT$ Facility

	Chapter 2. LIB$ Reference
	LIB$ADAWI
	LIB$ADDX
	LIB$ADD_TIMES
	LIB$ANALYZE_SDESC
	LIB$ANALYZE_SDESC_64
	LIB$ASN_WTH_MBX
	LIB$AST_IN_PROG
	LIB$ATTACH
	LIB$BBCCI
	LIB$BBSSI
	LIB$BUILD_NODESPEC
	LIB$CALLG
	LIB$CALLG_64
	LIB$CHAR
	LIB$COMPARE_NODENAME
	LIB$COMPRESS_NODENAME
	LIB$CONVERT_DATE_STRING
	LIB$CRC
	LIB$CRC_TABLE
	LIB$CREATE_DIR
	LIB$CREATE_USER_VM_ZONE
	LIB$CREATE_USER_VM_ZONE_64
	LIB$CREATE_VM_ZONE
	LIB$CREATE_VM_ZONE_64
	LIB$CRF_INS_KEY
	LIB$CRF_INS_REF
	LIB$CRF_OUTPUT
	LIB$CURRENCY
	LIB$CVTF_FROM_INTERNAL_TIME
	LIB$CVTS_FROM_INTERNAL_TIME
	LIB$CVTF_TO_INTERNAL_TIME
	LIB$CVTS_TO_INTERNAL_TIME
	LIB$CVT_DX_DX
	LIB$CVT_FROM_INTERNAL_TIME
	LIB$CVT_TO_INTERNAL_TIME
	LIB$CVT_VECTIM
	LIB$CVT_xTB
	LIB$CVT_xTB_64
	LIB$DATE_TIME
	LIB$DAY
	LIB$DAY_OF_WEEK
	LIB$DECODE_FAULT
	LIB$DEC_OVER
	LIB$DELETE_FILE
	LIB$DELETE_LOGICAL
	LIB$DELETE_SYMBOL
	LIB$DELETE_VM_ZONE
	LIB$DELETE_VM_ZONE_64
	LIB$DIGIT_SEP
	LIB$DISABLE_CTRL
	LIB$DO_COMMAND
	LIB$EDIV
	LIB$EMODD
	LIB$EMODF
	LIB$EMODG
	LIB$EMODH
	LIB$EMODF
	LIB$EMODT
	LIB$EMUL
	LIB$ENABLE_CTRL
	LIB$ESTABLISH
	LIB$EXPAND_NODENAME
	LIB$EXTV
	LIB$EXTZV
	LIB$FFx
	LIB$FID_TO_NAME
	LIB$FILE_SCAN
	LIB$FILE_SCAN_END
	LIB$FIND_FILE
	LIB$FIND_FILE_END
	LIB$FIND_IMAGE_SYMBOL
	LIB$FIND_VM_ZONE
	LIB$FIND_VM_ZONE_64
	LIB$FIT_NODENAME
	LIB$FIXUP_FLT
	LIB$FLT_UNDER
	LIB$FORMAT_DATE_TIME
	LIB$FORMAT_SOGW_PROT
	LIB$FREE_DATE_TIME_CONTEXT
	LIB$FREE_EF
	LIB$FREE_LUN
	LIB$FREE_TIMER
	LIB$FREE_VM
	LIB$FREE_VM_64
	LIB$FREE_VM_PAGE
	LIB$FREE_VM_PAGE_64
	LIB$GETDVI
	LIB$GETJPI
	LIB$GETQUI
	LIB$GETSYI
	LIB$GET_ACCNAM
	LIB$GET_ACCNAM_BY_CONTEXT
	LIB$GET_COMMAND
	LIB$GET_COMMON
	LIB$GET_CURR_INVO_CONTEXT
	LIB$GET_DATE_FORMAT
	LIB$GET_EF
	LIB$GET_FOREIGN
	LIB$GET_FULLNAME_OFFSET
	LIB$GET_HOSTNAME
	LIB$GET_INPUT
	LIB$GET_INVO_CONTEXT
	LIB$GET_INVO_HANDLE
	LIB$GET_LOGICAL
	LIB$GET_LUN
	LIB$GET_MAXIMUM_DATE_LENGTH
	LIB$GET_PREV_INVO_CONTEXT
	LIB$GET_PREV_INVO_HANDLE
	LIB$GET_SYMBOL
	LIB$GET_UIB_INFO
	LIB$GET_USERS_LANGUAGE
	LIB$GET_VM
	LIB$GET_VM_64
	LIB$GET_VM_PAGE
	LIB$GET_VM_PAGE_64
	LIB$I64_CREATE_INVO_CONTEXT
	LIB$I64_FREE_INVO_CONTEXT
	LIB$I64_GET_CURR_INVO_CONTEXT
	LIB$I64_GET_CURR_INVO_HANDLE
	LIB$I64_GET_FR
	LIB$I64_GET_GR
	LIB$I64_GET_INVO_CONTEXT
	LIB$I64_GET_INVO_HANDLE
	LIB$I64_GET_PREV_INVO_CONTEXT
	LIB$I64_GET_UNWIND_HANDLER_FV
	LIB$I64_GET_UNWIND_LSDA
	LIB$I64_GET_UNWIND_OSSD
	LIB$I64_INIT_INVO_CONTEXT
	LIB$I64_IS_AST_DISPATCH_FRAME
	LIB$I64_IS_EXC_DISPATCH_FRAME
	LIB$I64_PREV_INVO_END
	LIB$I64_PUT_INVO_REGISTERS
	LIB$I64_SET_FR
	LIB$I64_SET_GR
	LIB$I64_SET_PC
	LIB$ICHAR
	LIB$INDEX
	LIB$INIT_DATE_TIME_CONTEXT
	LIB$INIT_TIMER
	LIB$INSERT_TREE
	LIB$INSERT_TREE_64
	LIB$INSQHI
	LIB$INSQHIQ
	LIB$INSQTI
	LIB$INSQTIQ
	LIB$INSV
	LIB$INT_OVER
	LIB$LEN
	LIB$LOCC
	LIB$LOCK_IMAGE
	LIB$LOOKUP_KEY
	LIB$LOOKUP_TREE
	LIB$LOOKUP_TREE_64
	LIB$LP_LINES
	LIB$MATCHC
	LIB$MATCH_COND
	LIB$MOVC3
	LIB$MOVC5
	LIB$MOVTC
	LIB$MOVTUC
	LIB$MULT_DELTA_TIME
	LIB$MULTF_DELTA_TIME
	LIB$MULTS_DELTA_TIME
	LIB$PARSE_ACCESS_CODE
	LIB$PARSE_SOGW_PROT
	LIB$PAUSE
	LIB$POLYD
	LIB$POLYF
	LIB$POLYG
	LIB$POLYH
	LIB$POLYS
	LIB$POLYT
	LIB$PUT_COMMON
	LIB$PUT_INVO_REGISTERS
	LIB$PUT_OUTPUT
	LIB$RADIX_POINT
	LIB$REMQHI
	LIB$REMQHIQ
	LIB$REMQTI
	LIB$REMQTIQ
	LIB$RENAME_FILE
	LIB$RESERVE_EF
	LIB$RESET_VM_ZONE
	LIB$RESET_VM_ZONE_64
	LIB$REVERT
	LIB$RUN_PROGRAM
	LIB$SCANC
	LIB$SCOPY_DXDX
	LIB$SCOPY_R_DX
	LIB$SCOPY_R_DX_64
	LIB$SET_LOGICAL
	LIB$SET_SYMBOL
	LIB$SFREE1_DD
	LIB$SFREEN_DD
	LIB$SGET1_DD
	LIB$SGET1_DD_64
	LIB$SHOW_TIMER
	LIB$SHOW_VM
	LIB$SHOW_VM_64
	LIB$SHOW_VM_ZONE
	LIB$SHOW_VM_ZONE_64
	LIB$SIGNAL
	LIB$SIG_TO_RET
	LIB$SIG_TO_STOP
	LIB$SIM_TRAP
	LIB$SKPC
	LIB$SPANC
	LIB$SPAWN
	LIB$STAT_TIMER
	LIB$STAT_VM
	LIB$STAT_VM_64
	LIB$STOP
	LIB$SUBX
	LIB$SUB_TIMES
	LIB$SYS_ASCTIM
	LIB$SYS_FAO
	LIB$SYS_FAOL
	LIB$SYS_FAOL_64
	LIB$SYS_GETMSG
	LIB$TPARSE/LIB$TABLE_PARSE
	LIB$TRAVERSE_TREE
	LIB$TRAVERSE_TREE_64
	LIB$TRA_ASC_EBC
	LIB$TRA_EBC_ASC
	LIB$TRIM_FILESPEC
	LIB$TRIM_FULLNAME
	LIB$UNLOCK_IMAGE
	LIB$VERIFY_VM_ZONE
	LIB$VERIFY_VM_ZONE_64
	LIB$WAIT

	Chapter 3. CVT$ Reference Section
	CVT$CONVERT_FLOAT
	CVT$FTOF

	Chapter 4. CVT$ Reference Section
	CVT$CONVERT_FLOAT
	CVT$FTOF

