uma Software

VSI OpenVMS

VSI OpenVMS RTL Screen
Management (SMG$) Manual

Document Number: DO-RTLSMG-01A

Publication Date: June 2019

This manual documents the screen management routines contained in the SMG$
facility of the OpenVMS Run-Time Library.

Revision Update Information: This is a new manual.

Operating System and Version: HPE OpenVMS Alpha Version 7.3
HPE OpenVMS VAX Version 7.3

VMS Software, Inc. (VSI)
Bolton, Massachusetts, USA

VSI OpenVMS RTL Screen Management (SMG$) Manual:

nma Software

Copyright © 2019 VMS Software, Inc. (VSl), Bolton, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSl required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VS| shall not beliable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VS| OpenVMS documentation set is available on DVD.

ii

VS| OpenVMS RTL Screen Management (SMG$) Manual

PrEface couceneennecnsiennennnnnsnennnensnnssnessnssssssssnssssesssnssssssssssssssssasssssssssssssssssassssssssassssssssassssssssns ix
Lo ADOUL VST ettt e e et e e e e e e ix
2. Intended AUGIETICE ...coeeiiiiiiiiiiiiiee et e et e e e e e ix
3. DOCUMENT STIUCTUIE ...t s ix
4. Related DOCUMEIES ..ooeeiiiiiiiiiiiiiee ittt e e e et e e e e e e e ix
5. VSI Encourages YOur COMMENTScceeeririririiiiiiiiiiiiiieieieiiieieeeeeeeeeeereeeteeeeeeeeeeeeeeeeeeeeeeeeeees X
6. How to Order Additional Documentationccueeeeeiieeiiiniiiiiiieeeeeeniiiieieeeee e X
7. Typographical CONVENTIONSc.ceiiiiuuiiiiiiiieeiiiiiiiiitee ettt e e ettt e e e e e s eeeeees X

Chapter 1. Overview of the Screen Management Facility (SMGS$) 1
L1 PaSteDOAIAS .oeeeiiiiiiiiiiiee et e et e e e e e 3
1.2, VIrtual DISPIays ...ccceeeeieeeieieeiieeeeeee e 4
0 TRV 150 oo 5

1.3.1. Virtual Keyboardscooiiiiiiiiiiiii 6

Chapter 2. Screen Management QOutput OPerationsceeeeenseensecssseesnessanssncsssesanes 7

2.1. CompPOSItION OPETALIONS ..ceviueeiiiiieteeeeiiiiiititteee e e ettt e e e e e e e sttt e eeeeesaeibbbeeeeeeeesanaes 7
2.1.1. Paste OPETationcceeuuuiiiiiiieeiiiiiiiiiieeee e ettt e e ettt e e e e st eeeeeeee e 7
2.1.2. UNPAste OPEIATIONeeeeeieriiiiiiiiiiieeeee e ittt ee e e e ettt e e e e e e ettt eeeeee s 8
2.1.3. RePaste OPEIAtIONcceeetiiiiuiiiiiiiieeeiiiiiiiet et e e e e ettt e e e e s st eeeeeeanaaieeaee 8
2.1.4. MOVE OPCIATION ...vvviiieieeeiiiiiiiiitet e e e e ettt e e e ettt e e e e e st et e e e e e e neiieeeee 9
2.1.5. Delete and Pop OPerationsc..eeourueeiiiiieeeeriniiiiiiteeeeeeereiiiieeeeeee e e 10
2.1.6. Occlusion Check OPErationcccoirruiieiieieeeeiiiiiiiieeeeee e riieeeee e e e e e 10

2.2. Output Through Virtual Displayscooeceiiiiiiiiiiiiiii e 11
2.2.1. CUISOT POSTHON .eeiiiiiiiiiieiiee e ee e e e e 12
2.2.2. Deletion OPETatiOnscceeiirrerietieteeetmiiiiiiieeeeeeesaaniiieeteeeeeesssnibibereeeeeeseanans 13
2.2.3. Erasure OPETatiOnSoiveuuiiiiiieeeeiiniiiiiiteeeeeeesaiiiiteeeeeeeseniibereeeeeeseanaeieeeee 13
2.2.4. INSEItion OPEIAtIONSvvvverieeeiiiiiiiiiiieeeeeeeaiiiie ettt eeeeeraiit et eeeeesaibbeeeeeeeeeeanans 13
2.2.5. WITtING OPETALIONSeveereeiiiiiiiiiiiiieeeee ettt e e e e e ettt et e e e e e e sabbbbaeeeeeeeeaaaaes 13

2.2.5.1. Character-Oriented OULPULeeeeiiiiiiiiiiiiiiiieiee e 13
2.2.5.2. Line-Oriented OULPULevviiiiiiiiiiiiiiiiiieeeee et e e 14
2.2.6. Changing the Rendition of a Virtual Displaycccccceeiiiniiiiiiiiiiiiien, 14
2.2.7. Drawing and Removing Drawn Lines and Charactersccccceevvnniiniieeeeeenn. 16
2.2.8. Displaying EXternal TEXtccoeiiiiiiiiiiiiiiiiiiiiiiiiiieieeeieeeeeeeeeeeeeeeeee e 16
2.2.9. Reading from a Virtual DiSplayeeuuueuumuimieiiiiiiiiiiiiiiieiiieieieeeneeeeeneenennennnn 17
B LV 15 o T PP 17
2.2.10.1. Creating @ VIEWPOTTeuviiiiiieeiiiiiiiiiiieee e et ettt e e e e ettt ee e e e 17
2.2.10.2. Deleting @ VIEWPOTLuuueeieeeeeeeeeee e 17
2.2.10.3. Pasting and Unpasting @ VIEWPOItceevviiieiiiiiiiiiiiiiiiiieeeeniiieeeeeen 17
2.2.10.4. Scrolling and Moving @ VIEWPOITccceteeiimniiiiiiieeeeeriiiiiiiiieeeeeeeaans 18
2.2.10.5. Changing Viewport Characteristicscceeeeerimruiiiiieeeeeeniniiiiieeeeenn. 18
2211 MEIIUS e 18
2.2.11.1. Creating @ MEMNUuuiiiiieeiiiiiiiiiiiet e e ettt e et e e e e 18
2.2.11.2. Deleting @ MENUcceviiiiiiiiiiiiiiiiiiiiiiiieieieieeeie e e e e e e e e ee e e e e e e eeeeeees 19
2.2.11.3. Selecting from @ MENUccceeiiiiiiiiiiiiiiiieiiiiiieee e 19
2.2.12. Saving a Virtual DiSplayccoomriimiiiiiiiiiiiiiie e 19
2.2.13. Changing Terminal CharacteristiCscceeeeriimrimiriiiiiieeiiiiiiiiieeeeeee e e 20
2.2.14. Hardcopy and File Output Operationsceeoureureiieeeeeeeninniiiiiieeeeeeenninenee 20
2.2.14.1. SNAPSNOLS cooeieiiiiiiicee et 20
2.2.14.2. Printing a Pasteboarduuuuuuuueiuuiuiiiiiiiiiiiiiiiiiiiinieieieeeinneneneaaaee. 20
2.2.14.3. Pasteboard Output by Means of a User-Supplied Routine 20

2.3. Operational ContrOlSocuueiiiiiiiiiiiiiiiee et e e e e e e e e 21

2.3.1. Minimal Updateccooiiiiiiiiiiiiiieiiiiie et 21

iii

VS| OpenVMS RTL Screen Management (SMG$) Manual

2.3.2. BUITEIING ..o
2.3.3. TADS ittt
2.4. Batching Output OpPErationseeereeeerreiiiiiiiiieeeeereeriiioraeeeeeeeerrsneneeens
2.4.1. Display Update Batchingcccoeeeiiiiiiiiiiiiiiiieecceciiie e,
2.4.2. Pasteboard Update Batchingccccoeeeiiiiiiiiiiiiniiiiiiiicciee e,

Chapter 3. Screen Management Input Operations

3.1. Obtaining Data from Virtual Keyboardscccccooeeeiiiiiiiiiiiiiiiiinneeeeeeeeeieee,
3.2. Obtaining Data from a Mouse or Tabletcccccveeeeeeiiiiiiiiiiiiiiee e,
3.3. Setting and Retrieving Virtual Keyboard Characteristicscccceeeeeeereennnne.
3.4. Line Composition Using Keypad Keyscccovviiiiiiiiiiiiiiiinieiiiiiiiiciie e,
3D SHALES ettt
3.6. TErMINALOTS ..oeiiiiiiiiiiiiiiiii e
3.6.1. Single-Character Terminatorsccceeeeeeevviiiiiiieeeerreeriiiienneeeeeeeereeeenns
3.6.2. Character Sequence Terminatorscccceeeeeievviviiiineeeeereeeiiiiiineeeeeaeennns
3.6.3. Termination by @ Conditionc...ceeevviiiiiiiiieeeeiiiiiiiiciie e e e
3.6.4. Key Name and Terminator Code Translationcccceeeeeeeeirninnnnnnnn.
3.6.5. Symbolic Definitions of Terminator Valuescccceeeeeiviiiiiiiiineeennnns
3.7. Line Recall and the Recall Bufferccccccciiiiiiiii
3.8. Interaction of Input and OUtPULoevviiiiieiiiiiiiiiiiee e

Chapter 4. Advanced Screen Management Featuresccecvevsercscercscnnncsenns

4.1. Asynchronous EVENLSueiiiiiiiiiiiiiiiiiiie e e e e e e eeeeaeees
4.1.1. Broadcast MESSAZESuvuvuriieeerrririiiiiieeeeeeeeterrieisaaeeeeressrsrnnaaaaasseesses
4.1.2. Unsolicited INPULevieieiiiiiiiiiiiee e e e e
4.1.3. Out-0f-Band ASTSuuuuimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieebeiebeiebeeebeeebeeeeebeeeeeees

4.2, SUDPIOCESSES vvvuuneeeeeiieiriiiiiaaeeeerretutteiaaaeeeseerrseseaaaeaeesesrssnnnaaeesssessssssnnneeees
4.2.1. Creating @ SUDPIOCESSuuereeeeererririiniaeeeeeeeererrinsaeeeeerersssennnaaaesaeeenes
4.2.2. Deleting @ SUDPIOCESSuvveieeeerieiiiiiiiieeeeereeriiiiisaeeeeeeersrreenaaaeaaeeenes
4.2.3. Executing Commands in a SUDPIOCESScevvveiieeeeerrerririiiineeeeeeennnns

4.3. MOVING the CUISOT ..vvvvueieeeiiiiiiiiiiiii e e e e ee ettt e e e e e e e ee e eeeeeeeeearaeaeeeeaaeeens

4.4, Exit Handler ...,

Chapter 5. Support for Third-Party Terminals

5.1. TERMTABLE Interface ROULINESccooiiiiiiii e
5.2, Capability FIeldScccoiiiiiiiiiiiieee e e e e aaa s
5.2.1. Boolean Capability Fieldsccccooiiiiiiiiiiiiiiiiiiiiie e
5.2.2. Numeric Capability Fieldsccccoooiiiiiiiiiiiiiiiiicceie e,
5.2.3. String Capability Fieldsoveeiiiiiiiiiiiiiiiiiie e,
5.2.4. Argument SUDSEITULIONvvuieiieeiiiiiiiiiiiiee e e
5.2.5. Arithmetic OPErationsccceeeeeieiviriiiieeeeeriiiiiieieeeeeereeersiiraeeeeeaeeeenes
5.3. Creating an OpenVMS Terminal Capabilities Filecccccveeeeeieiiiininnnnnnn.
R R B o ;1111 0) 1P
5.5. Creating TERMTABLE.EXEccoiiiiiiiiiiiiieee e
5.6. Capability Fields Used by Screen Managementc..ceeeeevvvvivveineeeeneennnnnen.
5.7. Input Support for Foreign Terminalsccccoeeeeiiiiiiiiiiiiieeiiiiiiiiieiee e
5.8. Support for SET and SHOW TERMINAL Commandscccceeeevvrvvvvveennnnnnn.

Chapter 6. Using Screen Management Routines to Develop New Programs
6.1. Calling Screen Management ROULINEScoovvviiiieeeiiiiiiiiiiiinee e,

6.2. Calling Routines That Do Not Use the Screen Management Facility

Chapter 7. Examples of Calling SMGS$ Routines

Chapter 8. Screen Management (SMGS$) Routinescoueeeevuencnenencuensncsennnne

VS| OpenVMS RTL Screen Management (SMG$) Manual

SMGSADD KEY DEF ..o eeeeeees e eee e e e e s eee s s ees s e s s eeee e, 81
SMGSBEGIN DISPLAY UPDATEooveiveeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeeeseesees s sseeseeeeeeeeeen. 84
SMGSBEGIN PASTEBOARD UPDATEccoouveveeeeeeeeeeeeeeeeeee e es e eeeeenen. 85
SMGSCANCEL INPUT .o eeeee e eee e es s s e eseesees e ssees s eeseessaenes 86
SMG$CHANGE PBD CHARACTERISTICS ... eeeeeseee e eeseeseeeeess e 87
SMGSCHANGE RENDITIONcooueoieeieeeeeeeeeeeeeeeeeeseeeeeeeeeseeseeseeseeeseesees s sseeseeseseeesee. 90
SMGSCHANGE VIEWPORToooveveeeeeeeeeeeeeeeeeeeeeeseeseeseeseeesees e sseeseeseeseeesesseeseeeeenes 93
SMGSCHANGE VIRTUAL DISPLAYoveieieeeeeeeeeeeeeseeeeeseeeeeesseeseeseeseeeseseeseseessens 98
SMGSCHECK. FOR_OCCLUSIONvuieeeeeeeeeeeeeeeeeeeeeee e eeeeesees s sseesees s sseeeees oo 101
SMGSCONTROL MODEovoeeeeeeeeeeeeeee e eeeeeeee s e e seee s eee e s e s eeeeseeseeees 105
SMGSCOPY VIRTUAL DISPLAYvvoveeeeeeeeeeeeeeseeeeeseeseeseeeeeeeseeseeseesseeseeseeeeeese. 108
SMGSCREATE, KEY TABLEvoiveeeeeeeeeeeeee oo eeeeeeseee e e eseesees s eneeeen 113
SMGSCREATE, MENU ... e es e ese s eee e s s eee s ese e eeene 114
SMGSCREATE PASTEBOARD ... s seeeeeeeeesees s eseesees e eseeseee e 117
SMGSCREATE,_SUBPROCESScvuveveeeeeeeeeeeeeeeeeseeseeeseeseeeeesseeseeseeseeeseeseeeeeseessesees oo 121
SMGSCREATE, VIEWPORToooeoeeeeeeeeeeeeeeeeeeeeeeeeeseee s ees s eseeseeseeesesseeseeseeeeeesenen. 125
SMGSCREATE VIRTUAL DISPLAYvoveoeieeeeeeeeeeeeeeeeseeseeeeeeeseeseseesseeseeseeeeeseenen. 129
SMG$CREATE VIRTUAL KEYBOARDcooeiviveeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeeeseeseseeeeenen 134
SMGSCURSOR. COLUMNoooeoeeoeeeeeeeeeeeee e eeeeeeee s e s sees e s ese s s eeesseesees e eeesene. 137
SMGSCURSOR. ROW ... e e s e se s e esees e eseesees o 138
SMGSDEFINE KEY ...oeoeoeeeeeeeeeeeeeeeeeeeeeeeeee e eeee s s sseesees e eseeseeseesseeseeseeseeesseese 139
SMGSDELETE, CHARS ... eeee e eees e e s e sseesees s eseeseeseesesssseeseeees 141
SMGSDELETE _KEY DEFoooeoeieeeeeeeeeeeeeeeeeeee e ee e seesees s eseeseeeeeeeessess s eseeeeeenes 145
SMGSDELETE, LINEvuoeieeeeeeeeeee oo e eeeeeeeeeeeeeeeeeeeee e s esees e eee e eseeeeesesseeseeseseeseeenes 146
SMGSDELETE, MENU ...t eeeeeee e seeses e esees et e s s s eeeeessees s eeeeene 150
SMGSDELETE PASTEBOARDvvoeoeeeeeeeeeeeeeeeeeeee e eesee s esees e eeeseeseeseeeeesees 151
SMGSDELETE,_SUBPROCESScveveieeeeeeeeeeeeeeeeeseeeeeseeeeeseeseees s eeseeeseeseeeesseesesee oo 152
SMGSDELETE, VIEWPORToooviveiveeeeeeeeeeeeeeeeeeeeseeeseesees s esees s eeeseeseeseeseeeeeseenen. 153
SMGSDELETE_ VIRTUAL DISPLAYoooooeoeeeeeeeeeeseseeeseeseeeeeeeeseseseesseeseeseeeeeeseenen. 154
SMGS$DELETE_VIRTUAL KEYBOARDccoooeivoveieeeeeeeeeeeeeeeeeseeeeeeseeeeseeeseeseseeeeeees 155
SMGSDEL TERM TABLEovuoeieeeeeeeeeeeeeeeeeeeeeeees e eesesees et ese s s ees e ssees e eeeeeene. 156
SMGS$DISABLE BROADCAST TRAPPINGoveeeeeeeeeeeeeeeeeeeeeeeeeeesee e eeseesees e 157
SMGSDISABLE _UNSOLICITED INPUTovoveoeeieeeeeeeeeeeeeeeeeeeeseee s seeeseeseeseeesesseen oo 167
SMGSDRAW CHAR ..o e e see s e eeeesees e e e sess e eseseeenes 168
SMGSDRAW LINE ..ot eeeeee e sees e eeeeseeeeeeeeeeeeseesee e s eseeseeseeseeseeseeseeseesens 172
SMGSDRAW RECTANGLE ...t eeeeeeeeeee e e eseee s seeesees e ese s eeeeeses 177
SMGSENABLE UNSOLICITED INPUTvvvveeeeeeeeeeeeeeeeeeeeeee oo eeeeseesees s eseeeeseon 181
SMGSEND DISPLAY UPDATEovoveieeeeeeeeeeeeeeeeeeeeseeseeeeeeeeeseeseseseesseeseeseeeeesene. 183
SMGSEND PASTEBOARD UPDATEoovuoeeeeeeeeseeeeeeseeeeeeeeeeeeeeesseeseseesseeseeseeeeeene 184
SMGSERASE, CHARS ... et eee e s esee e see s eeseeese s eeseseee e 185
SMGSERASE COLUMNooveeeeeeeeeeeeeeeeeeeeseeeeee e eee e seeeeeee s seeesees e ese s eseeseeseens 189
SMGSERASE DISPLAYovoveeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeesees s eeeseeseeseseeeseeseeseseesseeseeees 191
SMGSERASE LINEooovoeeeeeeeeeeeeeeeeeeee e eees e eee e e s eseee e eseesees e sesseseeeseeseeeseseese 195
SMGSERASE PASTEBOARDcvoiveeeeeeeeeeeeeeeeeseeeeeeeeeeeeeeesee e eeseeseese s s eeseesens 199
SMGSEXECUTE COMMANDcooveoeeeeeeeeeeeeeeeeeeeeseeseesees s eeseeeseesees e ssesseeseeeeenes 201
SMGSFIND CURSOR. DISPLAYoveoeeeeeeeeeeeseeeeeeeeeeseeseeseesseeseeseeeeessesseeseseesseneenes 203
SMGSFLUSH. BUFFERoooovooeeeeeeeeeeeeeeeeeeeseeeseeseseeesees s eeeeeeseeseeseessesees e eeeseesesee. 204
SMGSFLUSH DISPLAY UPDATEoveoeeeeeeeeeeeeeeeeseeeeeeseeeeeeeeeseeeseseeeseeseeseeeeseenen. 205
SMGSGET BROADCAST MESSAGEveoeeieeeeeeeeeeeeeeseeseee e eeeseeeeeeeesesseseseeseeenes 206
SMG$GET CHAR_ AT PHYSICAL CURSORvivieeeeeeeeeeeeeeeeeeeeeeseesseseseeseeneenes 208
SMGSGET DISPLAY ATTR ...ooeovoieeeeeeeeeeeeeee oo eeeee e ee e eeeee e eeeeseeesees e s 210
SMGSGET KEYBOARD ATTRIBUTESvveveoeeeeeeeeeeeeeeeeeeeeeeeseeeeseeeseeseeseeseessessesean 213

VS| OpenVMS RTL Screen Management (SMG$) Manual

SMGSGET KEY DEFoeoieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeseesees s eee s eseesees e seesees s eesesea. 215
SMGSGET NUMERIC DATAcoeoeoeeeeeeeeeeeee e eeeeeeeeee e eeee e ees e s s esees s eees s 218
SMGSGET PASTEBOARD ATTRIBUTESvuveieeieeeeereeeeeeeeeseseeseeeesseseeseeeeeseenen. 219
SMGSGET PASTING INFOoovooeeeeeeeeeeeeeeeeeeeeeeeeesee s esees e eee e ees s eeesees e eeeeeene 221
SMGSGET TERM DATA ...ceoeoeeeeeeeeeeeeeeeeeee e s eee e sees e e see e esseesees e eeerene. 223
SMGSGET VIEWPORT CHARovoueoieeeeeeeeeeeeeeeeeeeeeeeee e seee e eeeeseeseeseeesesseeseeeeeeen 225
SMGSHOME, CURSORovoovereeeeeeeeeeeeeeseeeeeeeeseeseeseeesees s eeeeeeseee s eessesees e eeese s 229
SMGSINIT TERM TABLEovuoeeoeeeeeeeeeeeeee e eee e seeesees s eee e essesees oo 230
SMGSINIT TERM TABLE BY TYPEovioieoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeseseeseeeseeses 232
SMGSINSERT CHARS ... eeeeeeeeees e eeseeeeeee s seeesees e seeesees s sseeses s esseseee e 233
SMGSINSERT LINEooveoeeeeeeeeeeeeeeeeeeeeeeeseee e eseeseeseeeeeseeseeeeeseeeseeseeeeeseeseeseeseeseens 239
SMGSINVALIDATE DISPLAYeeeieoieeeeeeeeeeeeeeeeeeeseseeeeeseeseeeeesseeseeseeseesseeseeseeeeeene. 244
SMGSKEYCODE TO NAMEoioieeeeeeeeeeeeee e eeee e eseee e esees e eseesees e eeeseee e 245
SMGSLABEL BORDERovuuieieieeeeeeeeeeeeeeeeeeee s eseee e s seeeseeseeseeeeeese s s esesseeseeees 246
SMGSLIST KEY DEFSooeieeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeesee s s sseeseeseseeeseeseesees s sseeseeees 252
SMGSLIST PASTEBOARD ORDERcooooivieeeeeeeeeeeseeeeeeeeeeeeeeeseseseeseeeseeseseeeseenen. 255
SMGSLIST PASTING ORDERovuiveioeeeeeeeeeeeeeeeeeesseeseeseeeeesseeseeseeeesesesseeseeseessesseenes 257
SMGSLOAD KEY DEFSoieeeoeeeeeeeeeeeeeeeeeeeeeeeeeeeeseessees s sseesees s sseesees s eeeseseese. 259
SMGSLOAD VIRTUAL DISPLAYvoiveeveeeeeeeeeeeeeeeeeeeeeeeseeseeeeeseeeseeseeeeessesseseseeseens 260
SMGSMOVE, TEXT ..o eeeeee e e eeeesees e e s s ees e s eseeseeeeeesessees e eeseeeseenes 261
SMGSMOVE_ VIRTUAL DISPLAYovooeoeeeeeeeeeeeeeeseeeseseeeeeseeeseeseesesseeseeseeeesseeseeseo. 264
SMGSNAME _TO KEYCODEooeeeeeeeeeeeeeeeeeeeeseeeeeseee s eseesseseee e esessees e eeeseee e 267
SMGSPASTE VIRTUAL DISPLAYoivoiveieeeeeeeeeeeseeeeseeeeeeseeeeseeeseeseeseseeeseeseeeeeene 268
SMGSPOP VIRTUAL DISPLAYcveveieeeeeeeeeeeeeeeeseesseeseeeeeseeeseesesessesseeseeseeeeesesen. 270
SMGSPRINT PASTEBOARDoovoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e ee e esee s ees e eseesee e e s 271
SMGSPUT CHARS ... ee e eeeeeeee et e s s ees e e eseeseeeeesesse e eseeseeeseenes 272
SMGSPUT CHARS HIGHWIDEc..vvoieeeeeeeeeeeeeeeeeeeeeee oo seeeseeseee e esees s eeseeseeneeees 277
SMGSPUT CHARS MULTI ... es e eeeesees s 280
SMGSPUT CHARS WIDEoooeooeoeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeseee e eseesees e sesseeseeseeeeesene. 283
SMGSPUT HELP TEXT ..ooeoveeveeeeeeeeeeeeeeeee e eeeeeeseee e eeeeeeseesee e esees s se s s eeseseesens 286
SMGSPUT LINEoooivoeeeeeeeeeeeeee e eeee e eeeeseeeeee s eseee s eee e s eeees e esees e eesseeseesioe 289
SMGSPUT LINE HIGHWIDEvvivoieoeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeeseeeseeseeseeseeeseeseseeseeenes 296
SMGSPUT LINE MULTI ... e ee e esees e e eeeeenee 299
SMGSPUT LINE WIDEcooeeeeeeeeeeeeeeeeeeeeeeeeeeeee s e eees s s e eseesees e esess s esesseeseeees 303
SMGSPUT PASTEBOARD ..o seee e seeseee e eee s ees s esees e eeeseene. 308
SMGSPUT STATUS LINE ...oeoeoeeieeeeeeeeeeeeeeeeeeeeeee e eeeeeee e eeeeeeeseee s s e esees s eesssseeseoe 310
SMGSREAD COMPOSED LINEoooieieeeeeeeeseeeeeeeeeeeeeseeseeeeeseeeseeseeseesseeseeseesessesseeneeees 311
SMGSREAD FROM DISPLAYovuiveiveieeeeeeeeeeseeeeeeeeeeee s eeeesseeseseeseeeseeseeseesssseeseoe 316
SMGSREAD KEYSTROKEvooeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeses e eeeseesees e eseeseeseeseesseeseeees 321
SMGSREAD LOCATORcvvoeoeeeeeeeeeeee e eeeeeeeeeseee e e e seee e sseesees s eeesees s eeeeeeen 329
SMGSREAD STRING ... e eeeee e eee e seee e e e s e eeeesees e sseeseeseon 332
SMGSREAD VERIFYooovoieeeeeoeeeeeeeeeeeeeeeeeeeee e eeseeeseee e e e esees e s e sseesees s sse e 344
SMGSREMOVE LINEovuvoooeeeeeeeeeeeeseeeeeeesseee s seeeseeeeeeeeseeesees s eesseeseeeeeeeeseesees oo 351
SMGSREPAINT LINEovoeoeeeeeeeeeeeeeeeeeeeseee e eseeseeseeeeeseeseeseeeseeseeseee e s sseeseeeeeeeessen. 353
SMGSREPAINT SCREENooooeoeeeeeeeeeeeeeeeeeeeeeeeeeseeeeeseeseeseeeeeeseeseeeeeesessesseeeeeseeeseenes 354
SMGSREPASTE VIRTUAL DISPLAYoouiveiveieeeeeeeeeeeeeeeeeseeeeeeeeseseeseeeseeseeseessesseesooe 357
SMGSREPLACE INPUT LINEoovuieieieeeeeeeeeeeeeeeeeeeee e eeeesees e eseeeseesees s eseesees oo 362
SMGSRESTORE PHYSICAL SCREENoouueeeeeeeeeeeeeeeeeeeeeeseeeeeeseeeeeeeeesesseeseeeessesnens 365
SMGSRETURN. CURSOR. POScveveeeeeeeeeeeeeeeeeseeeeeeseeseeeeseeeseeseeseeseeesesesesresseee oo 366
SMGSRETURN INPUT LINEovoeeiveieeeeeeeeeeeeeseeseesseseeeeeeeeeseeseeseeesesseeseeseeeeeseenen. 368
SMGSRING BELL ...t ee e eeeseee e s e s s s esees s eee e sseesees s sseeseeees 371
SMGSSAVE PHYSICAL SCREENoooiuiiuieeeeeeeeeeoeeeeeeeeeeeeseeeseeseeseeseeeseeseesessesseseeas 372

vi

VS| OpenVMS RTL Screen Management (SMG$) Manual

SMGSSAVE VIRTUAL DISPLAYoivoiveieeeeeeeeeeeeeseeeeeeeeeeeseseseesseeseeseeseeseeseeeeeeeeseens 374
SMG$SCROLL DISPLAY AREAoeeeveeeeeeeeeeeeeeeeeeeeeeeeeeeeees e eeeeseee e eesee s eeseseens 375
SMGSSCROLL VIEWPORTooeoieeeeeeeeeeeeeeeeeeeeeseeeeeeeeeseeseeeeeeeeesees e sse s s eeseeseeseeees 377
SMGSSELECT FROM MENUoovuiioeieeeeeeeeeeeeeeeseeeeeeeeseeseeeeeeeseeseseee s eseeseeeeessesee. 382
SMGSSET BROADCAST TRAPPINGovevereeeeeeeeeeeeeeeeeeeeseeeeeeeeeseseeeeeeeeessseee . 397
SMGSSET CURSOR _ ABS ... eeeeeees e eee e esees e sseeseeseeseessesesseseeseenes 399
SMGSSET CURSOR MODEovoieoieeeeeeeeeeeeeeeeeeeeseeeeeeee s eeeeseeesees s sseeseeseseeseeeen 400
SMGSSET CURSOR RELovooeieeeeeeeeeeeeeeeeeeeee e eeeeseee s esees s eeeeesees s eseereee e 401
SMGSSET DEFAULT STATEoeoeeeeeeeeeeeeeeeeeeeeeee e eeeeeeseesees e eseeseee e seeseeseseeseeeeeenes 403
SMGS$SET DISPLAY SCROLL REGIONooiveiieeeeeereeeeeeeeeeeeeseeeeeseessessesseeseeeeenes 404
SMGSSET KEYPAD MODEovooeieeeeeeeeeeeeeeeeeeeseeee e eee e ee e esees s eeeee 406
SMGSSET OUT OF BAND ASTS .oeoeieeeeeeeeeeeeeeeeeeesseeseeseeeeeeseeseeseesesseeseeseeeeeseenen. 407
SMGSSET PHYSICAL CURSORoooveoreeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseeeseeseseeeeeeeeeseseeeeseens 410
SMGS$SET TERM CHARACTERISTICSvoveeeeeeieeeeeeeeeeeeeeeseeeeeeeeeeeeeeee e eseesseeseee oo 412
SMGSSNAPSHOT ...t eee e e s e e e s s e e e esee s s eee e seeseeseeeesseeseeees 415
SMGSSNAPSHOT TO PRINTERovuoieieeeeeeeeeeeeeeeeeeeeeeeeeeeeseees e eeeeeesees e eeeeeseeseeeean 417
SMGSUNPASTE VIRTUAL DISPLAYoovoeeieeeeeeeeeeeeeeeeeeeeeseeeeeseeseeeeeeseeseeseseesseeseoe 418

vii

VS| OpenVMS RTL Screen Management (SMG$) Manual

viii

Preface

uma Software

This manual provides users of the OpenVMS operating system with detailed usage and reference
information on screen management routines supplied in the SMGS$ facility of the OpenVMS Run-
Time Library (RTL).

1. About VSI

VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

This manual is intended for system and application programmers who write programs that call SMG$

Run-Time Library routines.

3. Document Structure

This manual is organized as follows:

* Chapter 1 lists the SMGS$ routines and provides a brief overview of the major SMG$ components.

* Chapter 2 discusses output operations provided by the Screen Management Facility.
* Chapter 3 describes screen management routines used to enter input from a virtual keyboard.
* Chapter 4 discusses the Screen Management Facility's advanced features.

* Chapter 5 discusses a method of supporting foreign terminals.

* Chapter 6 discusses some recommended methods for using the Screen Management Facility for

developing new programs.

* Chapter 7 contains examples demonstrating how to call some SMGS$ routines from major
OpenVMS languages.

* Chapter 8 provides detailed reference information on each routine in the SMGS$ facility of the

Run-Time Library. This information uses the documentation format described in V.SI OpenVMS

Programming Concepts Manual. Routine descriptions appear in alphabetical order by routine
name.

4. Related Documents

The Run-Time Library routines are documented in a series of reference manuals. A description
of how you access the Run-Time Library routines and of OpenVMS features and functionality

Preface

available through calls to the SMG$ Run-Time Library appears in the VSI OpenVMS Programming
Concepts Manual. Descriptions of other RTL facilities and their corresponding routines and usages
are discussed in the following books:

o VSI OpenVMS RTL Library (LIBS) Manual
* VSI OpenVMS RTL General Purpose (OTS$) Manual
* VSI OpenVMS RTL String Manipulation (STR$) Manual

The Guide to the POSIX Threads Library contains guidelines and reference information for POSIX
Threads, the Multithreading Run-Time Library.

The VSI OpenVMS Command Definition, Librarian, and Message Utilities Manual provides
information useful for writing applications that use line composition with keypad keys.

The VSI OpenVMS 1/O User's Reference Manual contains information about using mailboxes.

Application programmers using any programming language can refer to the Guide to Creating
OpenVMS Modular Procedures for writing modular and reentrant code.

High-level language programmers will find additional information on calling Run-Time Library
routines in their language reference manual. You can also find additional information in the language
user's guide provided with your OpenVMS language software.

For additional information about OpenVMS products and services, access the VSI website at the
following location: https://www.vmssoftware.com/

5. VSI Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending email
to the following Internet address: <doci nf o@nssof t war e. conp.

6. How to Order Additional Documentation

For information about how to order additional documentation, email the VSI OpenVMS information
account: <i nf o@nssof t war e. cont. We will be posting links to documentation on our
corporate website soon.

7. Typographical Conventions

The following conventions are used in this manual:

Convention Meaning

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down the key
labeled Ctrl while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the
key labeled PF1 and then press and release another key (X) or a pointing
device button.

A horizontal ellipsis in examples indicates one of the following
possibilities:

https://www.vmssoftware.com/

Preface

Convention

Meaning

* Additional optional arguments in a statement have been omitted.
* The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to
the topic being discussed.

O

In command format descriptions, parentheses indicate that you must
enclose choices in parentheses if you specify more than one.

[]

In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement.

In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within
braces, at least one choice is required. Do not type the vertical bars on the
command line.

i}

In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type

Bold type represents the name of an argument, an attribute, or a reason.
Bold type also represents the introduction of a new term.

italic type

Italic type indicates important information, complete titles of manuals,

or variables. Variables include information that varies in system output
(Internal error number), in command lines (/PRODUCER=name), and in
command parameters in text (where dd represents the predefined code for
the device type).

UPPERCASE TYPE

Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Exanpl e

This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
commands and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

A hyphen at the end of a command format description, command line,
or code line indicates that the command or statement continues on the
following line.

numbers

All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly
indicated.

Xi

Preface

xii

Chapter 1. Overview of the Screen
Management Facility (SMG$)

This manual discusses the Run-Time Library routines that perform terminal-independent functions.
The most important aspect of the Screen Management Facility is that user programs are entirely
separate from the physical devices that actually perform input and output. Instead of writing directly
to a physical screen, the user program writes to a virtual display. Similarly, instead of entering
input directly from a physical keyboard, user programs enter input from a virtual keyboard.
(Virtual displays and virtual keyboards are logical entities whose usage is described more fully in
the following sections.) This separation of virtual operations from physical operations is what allows

input/output to be terminal independent.

The SMGS routines listed below help you design, compose, and keep track of complex images on a
video screen. These routines are meant for the types of operations you would normally perform on

a VT100-class terminal; they also provide software emulation of screen management functions on
terminals that do not have these functions implemented in their hardware. While you can use these
routines with video terminals, you can also use them with hardcopy devices and files. The following
lists contain all the screen management routines grouped according to their functions.

Table 1.1 lists routines that support third-party terminals; Chapter 5 discusses these routines.

Table 1.2 lists the SMGS$ input routines; Chapter 3 discusses these routines.

Table 1.3 lists the SMGS$ output routines; Chapter 2 discusses these routines.

Table 1.1. Routines That Support Third-Party Terminals

SMGSDEL TERM TABLE

SMGSGET NUMERIC DATA

SMGS$GET TERM_DATA

SMGSINIT TERM TABLE

SMGSINIT TERM TABLE BY TYPE

Table 1.2. Input Routines

SMGSADD KEY DEF

SMGS$CANCEL INPUT

SMGS$CREATE KEY TABLE

SMGS$CREATE VIRTUAL KEYBOARD

SMGS$DEFINE KEY

SMGS$DELETE_KEY DEF

SMGS$DELETE VIRTUAL KEYBOARD

SMGS$GET KEY DEF

SMGS$GET KEYBOARD ATTRIBUTES

SMGSKEYCODE TO NAME

SMGSLIST KEY DEFS

SMGSLOAD KEY_ DEFS

SMGSNAME TO KEYCODE

SMGS$READ COMPOSED LINE

SMG$READ KEYSTROKE

SMGSREAD LOCATOR

SMGS$READ STRING

SMGS$READ VERIFY

SMGS$REPLACE INPUT LINE

SMGSRETURN_INPUT LINE

SMGS$SET DEFAULT STATE

SMGS$SET KEYPAD MODE

Table 1.3. Output Routines

SMGS$BEGIN DISPLAY UPDATE

SMGS$BEGIN_PASTEBOARD UPDATE

SMG$CHANGE PBD CHARACTERISTICS

SMG$CHANGE RENDITION

Chapter 1. Overview of the Screen Management Facility (SMG$)

SMG$CHANGE VIEWPORT

SMG$CHANGE VIRTUAL DISPLAY

SMG$CHECK _FOR_OCCLUSION

SMG$CONTROL _MODE

SMG$COPY_VIRTUAL DISPLAY

SMGS$CREATE MENU

SMGS$CREATE PASTEBOARD

SMGS$CREATE SUBPROCESS

SMGS$CREATE VIEWPORT

SMGS$CREATE VIRTUAL DISPLAY

SMG$CURSOR_COLUMN

SMGS$SCURSOR_ROW

SMGS$DELETE_CHARS

SMGS$DELETE LINE

SMGS$DELETE_MENU

SMGS$DELETE PASTEBOARD

SMGS$DELETE SUBPROCESS

SMGS$DELETE VIEWPORT

SMGSDELETE VIRTUAL DISPLAY

SMGS$DISABLE BROADCAST TRAPPING

SMGS$DISABLE UNSOLICITED INPUT

SMGSDRAW CHAR

SMG$DRAW_LINE

SMG$DRAW_ RECTANGLE

SMGSENABLE UNSOLICITED INPUT

SMGS$END DISPLAY UPDATE

SMGSEND PASTEBOARD UPDATE

SMGSERASE CHARS

SMGSERASE COLUMN

SMGS$ERASE DISPLAY

SMGSERASE LINE

SMGS$ERASE PASTEBOARD

SMGSEXECUTE_COMMAND

SMGSFIND _CURSOR_DISPLAY

SMGS$FLUSH_BUFFER

SMGSFLUSH_DISPLAY UPDATE

SMGS$GET BROADCAST MESSAGE

SMGSGET CHAR AT PHYSICAL CURSOR

SMGS$GET DISPLAY ATTR

SMGS$GET PASTEBOARD ATTRIBUTES

SMGS$GET PASTING_ INFO

SMGS$GET VIEWPORT CHAR

SMGSHOME_CURSOR

SMGSINSERT CHARS

SMGSINSERT LINE

SMGSINVALIDATE DISPLAY

SMGSLABEL BORDER

SMGSLIST PASTEBOARD ORDER

SMGSLIST PASTING ORDER

SMGSLOAD_VIRTUAL DISPLAY

SMGSMOVE_TEXT

SMGSMOVE VIRTUAL DISPLAY

SMGS$PASTE VIRTUAL DISPLAY

SMGS$POP_VIRTUAL DISPLAY

SMGS$PRINT PASTEBOARD

SMGS$PUT CHARS

SMG$PUT CHARS HIGHWIDE

SMG$PUT CHARS MULTI

SMGSPUT CHARS WIDE

SMGS$PUT HELP TEXT

SMGS$PUT LINE

SMG$PUT _LINE HIGHWIDE

SMGS$PUT_LINE_MULTI

SMGS$PUT_LINE_WIDE

SMG$PUT PASTEBOARD

SMGS$PUT STATUS LINE

SMGSREAD FROM DISPLAY

SMGSREMOVE_LINE

SMGS$REPAINT LINE

SMGS$REPAINT SCREEN

SMGS$REPASTE VIRTUAL DISPLAY

SMGS$RESTORE PHYSICAL SCREEN

SMGSRETURN_CURSOR_POS

SMGS$RING BELL

SMGS$SAVE PHYSICAL SCREEN

SMGS$SAVE VIRTUAL DISPLAY

SMG$SCROLL DISPLAY AREA

SMG$SCROLL_VIEWPORT

Chapter 1. Overview of the Screen Management Facility (SMG$)

SMGS$SELECT FROM MENU SMGSSET BROADCAST TRAPPING
SMGS$SET CURSOR_ABS SMGSSET CURSOR_MODE

SMGS$SET CURSOR_REL SMGS$SET DISPLAY SCROLL REGION
SMGS$SET OUT OF BAND ASTS SMGS$SET PHYSICAL CURSOR
SMGS$SET TERM_CHARACTERISTICS SMGS$SNAPSHOT

SMG$SNAPSHOT TO PRINTER SMGSUNPASTE VIRTUAL DISPLAY

The Screen Management Facility provides two important services:
* Terminal independence

The screen management routines provide terminal independence by allowing you to perform
commonly needed screen functions regardless of terminal type. All operations, including input
and output, are performed by calling a routine that converts the caller's terminal-independent
request (for example, to scroll a part of the screen) into the sequence of codes needed to perform
that action. If the terminal being used does not support the requested operation in hardware, in
most cases the screen management routines accomplish the action by emulating it in software.
Similarly, the screen management routines provide a terminal-independent means for performing
input from a keyboard without concern for the type of keyboard.

Note

The Screen Management Facility assumes that it has complete control of the terminal. Applications
should not mix calls to SMGS$ with calls to other screen products such as GKS or FMS.

» Ease of composition

The screen management routines help you compose complex images on a screen. For example,
you may want to solicit user input from one part of the screen, display results on a second part
of the screen, and maintain a status display in a third part of the screen. Normally, each routine
that reads from or writes to one of these regions must be aware that other regions exist and know
where on the screen they are positioned, in order to properly bias its row and column references
to locate the display on the desired part of the screen. Using the screen management routines, a
routine can independently write to its dedicated region of the screen regardless of the position of
the region. References to row and column pertain only to the region of the screen the routine is
addressing.

The following sections discuss the fundamental elements of screen management. These elements are
the pasteboard, the virtual display, the viewport, and the virtual keyboard.

1.1. Pasteboards

A pasteboard is a logical structure for performing output operations to a terminal screen. You can
think of a pasteboard as a two-dimensional area on which you place and manipulate screen displays.
A pasteboard is always associated with a physical device or an OpenVMS RMS file, but a pasteboard
may be larger or smaller than the physical screen. Each output device has only one pasteboard.

Create a pasteboard by calling the SMGSCREATE PASTEBOARD routine. Specify the physical
device to be associated with the pasteboard as an argument. SMGSCREATE PASTEBOARD returns
a unique pasteboard identifier (pasteboard-id), which is used in subsequent routine calls where a
pasteboard identifier is needed. For example, use the pasteboard-id to specify the physical terminal

Chapter 1. Overview of the Screen Management Facility (SMG$)

screen on which to paste a virtual display. SMGSCREATE PASTEBOARD also returns the numbers
of rows and columns available on the associated device as output arguments. You can use this
information to create a virtual display the size of the physical screen. (Virtual displays are discussed in
the next section.)

Think of a pasteboard as a logical coordinate system in which the relative orientation of one or more

virtual displays is specified. (The pasteboard itself has no physical boundaries, but the physical screen
does.) Figure 1.1 depicts the pasteboard coordinate system.

Figure 1.1. Pasteboard Coordinate System

1 Increasing Column Number
-
1| [o]
Increasing
Row
Number
L J
ZK-1910-GE

The origin (cellular position 1,1) corresponds to the upper left-hand corner of the physical screen. The
numbering of rows and columns starts from this origin. For example, on a VT200 series terminal, with
24 rows and 80 columns, the first 24 rows and first 80 columns of the pasteboard coordinate system
map to the physical screen. Note that you can place a virtual display anywhere in this coordinate
system, not only in the quadrant that corresponds to the physical screen. Thus a virtual display, when
pasted (that is, positioned on the pasteboard), may be invisible or only partly visible on the physical
screen.

Pasteboards are deleted, or disassociated, from a particular device by the
SMGSDELETE PASTEBOARD routine. When a pasteboard is deleted, all virtual displays pasted to
it are unpasted.

Once a pasteboard has been created, you can learn about its attributes (particularly its dimensions)

by calling SMGSGET PASTEBOARD_ ATTRIBUTES. You can change the characteristics of a
pasteboard by calling SMGSCHANGE PBD_ CHARACTERISTICS if the associated physical device
allows the change. For example, if the device is a VT100, you can change the width of the pasteboard
from 80 columns to 132 columns.

When the pasteboard is created, the Screen Management Facility clears the screen by

default; however, you can request that the screen be left as it is. In addition, you can call
SMGSERASE PASTEBOARD to erase the screen. You can also call SMGSPRINT PASTEBOARD
to print the contents of the pasteboard on a line printer.

1.2. Virtual Displays

A virtual display is a rectangular part of the terminal screen to which a program writes data using
routine calls. Virtual displays are the main focus of the Screen Management Facility. When you
create images to be placed on the screen, think in terms of virtual displays rather than in terms of the
physical screen. This logical separation of the virtual display from the physical screen allows a main

Chapter 1. Overview of the Screen Management Facility (SMG$)

program to reposition virtual displays, so that a subroutine that writes to the virtual display need not
be involved with positioning the display on the physical screen.

When you associate a virtual display with a pasteboard, it is pasted. When you remove the display
from the pasteboard, it is unpasted. A virtual display is not displayed unless it is pasted to a
pasteboard. (See Section 2.1.1 for more information on pasting virtual displays.)

The number of virtual displays that a program can create and maintain is limited only by the virtual
address space available. A single virtual display can be pasted to more than one pasteboard at a time;
thus, a program maintains only the virtual display. Any change to a virtual display is automatically
reflected in each pasteboard to which the display is pasted (and its associated terminal screen).

Create a virtual display by calling the SMGSCREATE VIRTUAL DISPLAY routine. The call must
specify the number of rows and columns that make up the virtual display. The program can also
request certain display and video attributes to be applied to the display.

SMGS$CREATE VIRTUAL DISPLAY returns a unique virtual display identifier (display-id). This
display-ididentifies the virtual display in subsequent routine calls that modify the display.

A program or subroutine can determine which attributes and dimensions are associated with a virtual
display by calling the SMGSGET DISPLAY ATTR routine. If you have multiple virtual displays
pasted to a pasteboard, you can use SMGSLIST PASTING ORDER to determine the order in which
the virtual displays are pasted.

If you do not specify video attributes, SMG applies default video characteristics to output. Renditions
are video characteristics that you can turn on or off; they include bolding, blinking, reverse video, and
underlined text. Display attributes are the characteristics that specify whether or not the display:

» Is bordered (the border may be labeled).
* Echoes carriage control characters (like form feed, vertical tab, and so on).

* Shows the user a diamond-shaped icon when text extends past the rightmost position in the
display.

You can change the video and display attributes you specify when you create a virtual display.

The SMGSCHANGE RENDITION routine lets you change video attributes while the
SMGS$CHANGE VIRTUAL DISPLAY routine lets you change both video and display attributes.
For example, you can redimension a virtual display with the latter routine. When you redimension
a virtual display, the data in it is copied to the redimensioned display; that is, as much of the current
contents (starting with row 1, column 1) as will fit in the newly dimensioned display are preserved.

You can delete a virtual display by calling the SMGSDELETE VIRTUAL DISPLAY routine. See
Section 2.1.5 for more information on the delete operation.

1.3. Viewports

Since a virtual display can be very large, it is not always possible to show the entire display on
the screen at one time. You must repaste a large virtual display to view a different portion of it. A
viewport associated with the virtual display makes this job easier.

Viewporting refers to the process of moving a rectangular viewing area around on a virtual display
to view different pieces of the virtual display. The viewport is associated with the virtual display so
that any output operation that you perform on the virtual display is reflected on the viewport. You can

Chapter 1. Overview of the Screen Management Facility (SMG$)

create, delete, paste, unpaste, scroll, and move a viewport. See Section 2.2.10 for more information on
viewports.

1.3.1. Virtual Keyboards

A virtual keyboard is a logical structure for input operations, just as a pasteboard is a logical structure
for output operations. The advantage of using virtual keyboards is device independence. When using
the screen management input routines, you need not worry about the terminal type. For example, your
program need not know which line terminators a particular terminal uses; the screen management
routines map the different terminator character sequences into a uniform set of function codes. (See
Section 3.6 for more information about terminator codes.)

A virtual keyboard is usually associated with a physical keyboard on a terminal, but it may also be
any file accessible through OpenVMS RMS. There is a many-to-one correspondence between virtual
keyboards and an input device or file.

Establish a source for input (a virtual keyboard) by calling the
SMGSCREATE VIRTUAL KEYBOARD routine. Delete virtual keyboards by calling the
SMGSDELETE VIRTUAL KEYBOARD routine. Once you have created a virtual keyboard, you
can obtain data from it with the SMGSREAD COMPOSED_ LINE, SMGSREAD KEYSTROKE,
SMGSREAD STRING, or SMGSREAD VERIFY routine. SMGSREAD COMPOSED LINE

reads a line composed of ordinary keystrokes and predefined strings associated with keypad and
control keys; it provides an easy way to code an interface for command-oriented utilities by providing
single-key command capabilities. Use the SMGSREAD KEYSTROKE routine to read one keystroke
entered at the keyboard. SMG$SREAD_ STRING reads a string composed of characters and a
terminator; this routine is general purpose and flexible, providing access to many features of the
OpenVMS terminal driver. Use the SMGSREAD VERIFY routine to read formatted input. You can
abort all types of read operations by calling the SMGSCANCEL INPUT routine.

Chapter 2. Screen Management
Output Operations

This chapter discusses the output operations provided by the Screen Management Facility. These
output operations are described in terms of composition operations (operations that, in effect, create
an image on a terminal screen) and output operations through virtual displays.

2.1. Composition Operations

Composition operations are the routines you use to manipulate virtual displays on a pasteboard and

thus to create an image on a terminal screen. These operations include pasting, unpasting, repasting,
moving and popping virtual displays, checking virtual displays for occlusion, and listing the pasting
order.

2.1.1. Paste Operation

Virtual displays are visible on a physical device only while they are pasted to a pasteboard. Paste a
display to a pasteboard by calling SMG$PASTE VIRTUAL DISPLAY and specifying the pasteboard
coordinates as the origin of the virtual display. (The origin is the top left-hand corner.) The pasteboard
itself has no boundaries, but of course the physical screen does. Thus you can paste a display to a
pasteboard in such a way that some or all of the display does not appear on the terminal screen.

Pasting virtual displays to a pasteboard is a logical operation that maps the contents of a virtual
display to a location on the screen by specifying the row and column of the pasteboard that coincide
with row 1 and column 1 of the virtual display. For example, pasting a 6-row virtual display "A"

to pasteboard rows 1 through 6 and pasting a second 6-row virtual display "B" to pasteboard rows

7 through 12 places virtual display "B" immediately below virtual display "A" on the screen. See
Figure 2.1.

Figure 2.1. Paste Operation

Pasteboard Pasteboard
Before Pasting After Pasting

aaaaaaaaaaaaaaaaa |)
aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa _ . .
aanaaaaaaaaaaaaaa| ¢ Virtual Display "A

ddddddddadddddaaa
ddddddddaddddadaaa
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb . S—
bbbbbbbbbbbbbbbb| (- Vitual Display "B
bbbbbbbbbbbbbbbb
bbbbbbbbbbbbbbbb |/

(Unused)

VAN

ZK-1911-GE

Chapter 2. Screen Management Output Operations

2.1.2. Unpaste Operation

You can make a virtual display disappear from the physical screen using the
SMGSUNPASTE VIRTUAL DISPLAY routine. To continue the example in Section 2.1.1, if virtual

display "B" is unpasted, the results appear as in Figure 2.2.

Figure 2.2. Unpaste Operation

Pasteboard Pasteboard
Before Unpasting After Unpasting
aaaaaaaaaaaaaaaaa| aaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaa . aaaaaaaaaaaaaaaaa .
aaaaaaaaaaaaaaaaa| |, Virtual aaaaaaaaaaaaaaaaa Virual
aaaaaaaaaaaaaaaaa Display aaaaaaaaaaaaaaaaa Display
aaaaaaaaaaaaaaaaa "A" aaaaaaaaaaaaaaaaa "A"
aaaaaaaaaaaaaaaaa | aaaaaaaaaaaaaaaaa
bbbbbbbbbbbbbbbb | ™
bbbbbbbbbbbbbbbb .
bbbbbbbbbbbbbbbb| | Virtual
bbbbbbbbbbbbbbbb | (~ Display
bbbbbbbbbbbbbbbb B
bbbbbbbbbbbbbbbb |+
(Unused)
ZK-1912-GE

Unpasting a virtual display does not destroy the virtual display or its contents; it simply removes the
display from the pasteboard.

Displays can overlap partially or completely, depending on their size, where they are pasted, and the
order in which they are pasted. This overlap is called occlusion. Unpasting the top display causes the
underlying displays to be visible.

2.1.3. Repaste Operation

You can move a virtual display to a new location on the pasteboard by calling

SMGSREPASTE VIRTUAL DISPLAY, which prevents the screen from being left blank during the
unpaste and repaste operations. Figure 2.3 shows the effect of repasting the second display farther to
the right. Notice that display 2 has been pulled out of its former pasting order and is now uppermost—
hiding part of display 3, which was uppermost before the repasting operation.

Chapter 2. Screen Management Output Operations

Figure 2.3. Repaste Operation

Before Repasting Display 2 After Repasting Display 2

(N [

\\

aaaaaaaaaaaaaaaa aaaaaaaaaaaaaa
daaddaaadaaaddad aaaaaaaaaaaaaa
dad34a3a Display 2 aaaaaaaaaaaaaa Display 2
aaaaaa| bbbbbbbbbbbbbbb Aaaaaaaaaaas isplay 2 ———
aaaaaa| bbbbbbbbbbbbbbb aaaaaaaaaaaas PPPbbbbbbbbbbbb
bbbbbb— DiSPlay 3———— bbbbbbbbbbbbbbb
bbbbbb| CECcccccececcee bbbbbbbbbbbbbbb
bbbbbb| CECCCCCCCCCCCCC | bbbbbbbbbbbbbbb
CCCCCCCCCCCCCCe cct
CCCCCCCCCCCCCCC [0 i o 0 O L
ccccececccceceee |/

ZK-1918-GE

2.1.4. Move Operation

You can also move a virtual display around the pasteboard while preserving its pasting order by
calling the SMGSMOVE_VIRTUAL DISPLAY routine. Figure 2.4 shows the effect of moving the
second display to the right. Note the difference between the unpaste and move operations: the pasting
order does not change with a move. Thus, display 2 remains partially occluded by display 3.

Figure 2.4. Move Operation

Before Moving Display 2 After Moving Display 2
/L Display 1 \ /L Display 1 \\
/| aaaaaaaaaaaaaaaa / aaaaaaaaaaaaaaaa
Aaaaaaaaaaaaaaaa aaaaaaanaaaaaaaa
Aaaaaa Display 2 aaaaaaaaa Display 2
aaaaaa| bbbbbbbbbbbbbbb 3aaaaaaaa | bbbbbbbbbbbbbbb
433333 | bbbbbbbbbbbbbbb aaaaaaaaa | pbbbbbbbbbbbbbb
bbbbbb—DBplayB— bbb—DmplayB
bbbbbb| ECCCCCCCcceceeee bbb | CCCCCCCCCCCCCCE
ccccocccoeoooeoe cCCccoCcooecoceoeee
bbbbbb ccccocccoeoooeoe bbb cCCccoCcooecoceoeee
cccccccoccoccoccce CCCCCCcococoocee
\ ccccocccoeoooeoe \ ccc::::cccc::cccy

ZK-1913-GE

The routine SMGSMOVE_TEXT allows you to move text from one virtual display to another virtual
display. Given two points in opposite corners of the rectangle, SMGSMOVE_TEXT determines the
desired width and height. This routine moves the attributes of the first virtual display, thus moving the
rectangle of text and erasing it from the first virtual display.

Chapter 2. Screen Management Output Operations

2.1.5. Delete and Pop Operations

The unpaste, repaste, and move operations shown thus far do not destroy the virtual displays affected.
You can remove and delete a virtual display by calling the SMGSDELETE VIRTUAL DISPLAY
routine. You can also remove a number of virtual displays from a pasteboard and delete them in a
single operation by calling SMGSPOP_VIRTUAL DISPLAY. This routine unpastes and deletes the
specified virtual display and all other virtual displays that were pasted after the one specified.

The pop operation is useful in a modular environment. For example, you can call a subroutine

and pass only the pasteboard-id upon which it is to produce output. The subroutine then creates
additional virtual displays and pastes them to the indicated pasteboard. When the subroutine returns
control to its caller, it returns the display-idof the first virtual display it has pasted. The calling
program can then undo the effects of the subroutine by calling SMG$POP_VIRTUAL DISPLAY,
passing the identifier of the virtual display returned by the subroutine. This technique minimizes the
amount of information to be passed between the calling program and its subroutine. Figure 2.5 shows
the effects of popping display 2.

Figure 2.5. Pop Operation

Before Popping Display 2 After Popping Display 2

N (e

Adaaaaaaaaaaaaaa aaaaaaaaaaaaaaaa
daaaaaaaaaaaaaaq aaaaaaaa3aaaaaaaa
aaaaaa Display 2 aaaaaaaaaaaaaaaa
aaaaaa| bbbbbbbbbbbbbbb A333333333333333
aaaaaa| bbbbbbbbbbbbbbb aaaaaaaaaaaaaaaa
bbbbbb(— PPy 3——
CCCCCCCCCCCCCCC
bbbbbb CCCCCCCCCCCCCCE
bbbbbb CCCCCCCCCCCCCCE
CCCCCCCCCCCCCCE
\\Hhh CCCCCCCCCCCCCCC \\&Hh dxf//

ZK-1914-GE

2.1.6. Occlusion Check Operation

You may want to know if a display is occluded, as pasted on a given pasteboard. You can find this
out by calling the SMGSCHECK _FOR_OCCLUSION routine. For example, in the configuration in
Figure 2.6, displays 1 and 2 would be reported as being occluded, while displays 3 and 4 would be
reported as not occluded. You cannot use this test to determine which display is pasted uppermost on
the pasteboard; it determines only whether or not the display, as pasted, is occluded.

10

Chapter 2. Screen Management Output Operations

Figure 2.6. Occlusion Check

/ Display 1 \
aaaaaaaaaaaaaaaa

aaaaaaaaaaaaaaaa

aaaaaa ____ Digplay 2

oo | bbbbbbbbbbbbbbb
bbbbbbbbbbbbbbb
bbbbbb__ Display3
bbbbbb| ccecccecceccccee
bbbbbb| ccececececceccecee

CCCCCCCCcCcCCCCcCC

Display 4 CCCCCCCCCCOeeet
000090994
@ ccccccccccccccc/
[
ZK-1915-GE

If you have multiple virtual displays pasted to a pasteboard, you can use

SMGSLIST PASTING ORDER to determine the order in which virtual displays are pasted.

This routine returns the identifier of the first, or bottommost, virtual display pasted. Call
SMGSLIST PASTING ORDER in a loop until the identifiers of all the succeeding pasted virtual
displays are returned.

The routine SMGSLIST PASTEBOARD ORDER gives you the inverse of the information returned
by SMGSLIST PASTING ORDER. SMGSLIST PASTEBOARD ORDER returns the identifier of
the first, or bottommost, pasteboard to which the specified virtual display is pasted.

2.2. Output Through Virtual Displays

This section describes the screen management routines used to perform output through virtual
displays.

Writing to a virtual display is similar to writing directly to the terminal. However, writing to a virtual
display is done entirely by calling screen management routines. The Screen Management Facility
allows you to erase the screen, set the cursor position, and scroll output text. Text is arranged in the
virtual display's buffer, so you do not need to paste before it can receive output. When you write

to the physical screen, you are limited by the physical boundaries of the screen. Similarly, screen
management output operations are confined to the boundaries of the virtual display: you cannot write
text beyond the last column of a virtual display.

You cannot see changes to a virtual display on the screen unless the virtual display is pasted to the part
of the pasteboard that is visible on the screen. If the virtual display is not pasted, or if it is pasted in a
position that is not visible, such changes are reflected only in the internal database that represents the
virtual display.

Chapter 2. Screen Management Output Operations

2.2.1. Cursor Position

When a virtual display is first created, the virtual cursor is positioned at row 1, column 1 of the
virtual display. Various output operations to the virtual display move the virtual cursor, just as output
operations do on a physical terminal.

Do not confuse the position of the virtual cursor in a virtual display with the position of the physical
cursor on the screen. Many virtual displays can be pasted to a pasteboard and are therefore visible at
the same time on the physical screen. Although each virtual display has an associated virtual cursor
position, only one of the virtual cursor positions for all these displays corresponds to the physical
cursor—usually the cursor position of the virtual display most recently modified.

You can determine the current position of the virtual cursor within a virtual display by calling the
SMGSRETURN_CURSOR_POS routine. This routine returns the current virtual cursor row and
column.

For programming convenience, you can also obtain this information through two separate routines,
SMGS$CURSOR _ROW and SMG$SCURSOR COLUMN, which operate as functions. These two
routines make it easy to code constructions like this:

| F SMG3CURSOR ROW (Display-id) > Max-row

THEN
BEG N

END

To obtain this information with SMGSRETURN_CURSOR_POS, you would write the following:
CALL SMGBRETURN CURSOR PGS (Display-id, Cursor-row, Cursor-colum)
I F Cursor-row > Max-row

THEN
BEG N

END

SMGSRETURN_CURSOR_POS requires you to define two local variables, cursor-row and cursor-
column, which you might not need except to perform this test. However, this routine yields both the
row and column in a single routine call.

The following routines set the virtual cursor position in a virtual display:
+ SMGSSET CURSOR_ABS sets the virtual cursor to the specified position in the virtual display.

*+ SMGSSET CURSOR_REL sets the virtual cursor position to the specified offset from the current
display cursor position.

* SMGS$HOME CURSOR sets the virtual cursor to the virtual display's home position (row 1,
column 1).

12

Chapter 2. Screen Management Output Operations

2.2.2. Deletion Operations

The following routines delete parts of a virtual display:

+ SMGSDELETE CHARS deletes one or more characters on a single line. Character positions
removed by this routine are replaced with the characters to the right of the deleted characters on
the same line. Character positions opened at the end of the line are filled with blanks.

 SMGSDELETE LINE deletes one or more entire lines. Lines removed by this routine are filled
by the lines immediately below the deleted lines. New lines introduced into the bottom of the
virtual display are blank.

2.2.3. Erasure Operations

During an erase operation, the erased portion of the virtual display is filled with blanks. No other parts
of the virtual display are rearranged.

The following routines erase parts of a virtual display:
*» SMGSERASE CHARS erases a specified number of characters within a given line.

* SMGSERASE COLUMN erases the specified portion of the virtual display from the given
position to the end of the column.

*+ SMGSERASE LINE erases characters in a line from the specified starting position to the end of
the line.

* SMGSERASE DISPLAY erases all or part of a virtual display.

2.2.4. Insertion Operations

The following routines insert text into a virtual display:

* SMGSINSERT CHARS deposits the specified string of characters in the indicated starting
position. Existing characters in these positions are shifted to the right to make room for each
character as it is inserted. Characters shifted beyond the rightmost column are discarded.

* SMGSINSERT LINE inserts the specified line of text in the position indicated and scrolls existing
lines in the virtual display up or down to make room for the inserted lines. Lines scrolled above
the top line or below the bottom line of the virtual display are discarded.

2.2.5. Writing Operations

The Screen Management Facility provides two types of routines for writing text to a virtual display:
character-oriented output and line-oriented output. The following sections describe these routines.

2.2.5.1. Character-Oriented Output

Use the character-oriented output routines when you are using a virtual display as a direct-access
device. In this mode of operation, the program explicitly sets the cursor in the virtual display and
deposits text there. Since the next output operation usually has no spatial relationship to the previous
one, you need to control the cursor position and display scrolling.

Chapter 2. Screen Management Output Operations

The following are character-oriented output routines:
* SMGSPUT CHARS writes normal characters to a virtual display.
*+ SMGS$PUT CHARS WIDE writes double-width characters to a virtual display.

*+ SMGS$PUT CHARS HIGHWIDE writes double-width, double-height characters to a virtual
display.

* SMGSPUT_CHARS_ MULTI writes characters with multiple renditions to the virtual display.

You cannot mix different types of characters on a single line in a virtual display.

2.2.5.2. Line-Oriented Output

In contrast to the character-oriented output routines, the line-oriented routines treat a terminal as a
sequential device. In this mode of operation, the program typically writes one line of information after
another. Conceptually, this action corresponds to copying a stream of information (for example, a file)
to a virtual display. Each routine call leaves the cursor at column 1 of the next row after the operation
is complete.

The following are line-oriented output routines:
* SMGSPUT LINE writes lines of text to a virtual display.
* SMGSPUT LINE WIDE writes lines of double-width text to a virtual display.

* SMGS$PUT _LINE HIGHWIDE writes lines of double-width, double-height text to a virtual
display.

* SMGSPUT LINE MULTI writes lines with multiple renditions to the virtual display.

2.2.6. Changing the Rendition of a Virtual Display

When you create a virtual display with the SMGSCREATE_VIRTUAL_DISPLAY routine, you
specify a default rendition for all text that appears in the virtual display. You can change the rendition
for an existing virtual display by calling either the SMGSCHANGE VIRTUAL DISPLAY or
SMG$SCHANGE RENDITION routines.

The SMGSCHANGE VIRTUAL DISPLAY routine lets you change display attributes as well as
video attributes for the entire display; you can use the SMGSCHANGE RENDITION routine to
change the video rendition of text already in the virtual display. For example, a program may maintain
on the screen a list of values that change cyclically. When a number first changes, it can be displayed
in reverse video to highlight it as a change on that cycle. On the next cycle, the same number must

be displayed, but the reverse video should be removed, since the value of the number did not change.
SMG$SCHANGE RENDITION provides an easy way to perform such changes.

Another use for the SMGSCHANGE RENDITION routine is in implementing menus. Menu choices
can be painted on the screen and the current choice highlighted by some video attribute, such as
blinking characters or reverse video. As the user moves a cursor to change the selection, you can
change the rendition of a menu item so that the current selection is always highlighted. Such changes
in rendition can be made independently of the text contained in the menu choices.

To specify the default rendition for a virtual display, you use bit masks to set bits in the display
attributes argument. You can set the following bits:

14

Chapter 2. Screen Management Output Operations

SMG$M_BLINK Specifies blinking characters.
SMG$M_BOLD Specifies characters in higher-than-normal intensity.
SMG$M_REVERSE Specifies characters in reverse video; that is, the opposite of the

current rendition of the virtual display.

SMG$M_UNDERLINE Specifies underlined characters.

SMGS$M_INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMGS$M_USERI1 through Specifies a user-defined rendition.
SMGS$M_USERS

In order to use one of the user-defined renditions SMG$M_USER1 through SMG$M_USERS, you
must provide an appropriate definition in the file TERMTABLE.TXT, using STRING_2 capabilities.
The TERMTABLE definitions and STRING 2 capabilities are discussed in Chapter 5.

Any or all of the characteristics listed previously can be specified in the rendition of a virtual display.
To specify more than one video attribute, you use the logical OR of these characteristics. For example,
to specify underlined characters in reverse video as the default for a virtual display, you assign the
logical OR of the appropriate bit masks to the display-attributes argument:

Display_attributes = (SMG3M REVERSE OR SMG$M UNDERLI NE)

You then pass this display-attributes argument in the call to the
SMGSCREATE VIRTUAL DISPLAY routine.

Screen management output routines let you override the default rendition so that you need not change
the default each time you want to write text in some other rendition. Two arguments provide the
means to override the default rendition: rendition-set and rendition-complement. The scheme for
setting video attributes in these arguments is the same as that for setting the video attributes when you
are creating a virtual display.

The default video attributes, the rendition-set argument, and the rendition-complement argument
together specify the output rendition according to the following scheme:

1. The logical or bitwise OR operation is performed on the mask containing the default video
attributes and the rendition-set argument.

2. The logical or bitwise EXCLUSIVE OR operation is performed on the result of the previous OR
operation and the rendition-complement argument.

The results of this scheme are shown in the following table:

Set Complement |Action

0 0 Attribute set to default

1 0 Attribute on

0 1 Attribute set to complement of default setting
1 1 Attribute off

Note that the effect of this scheme depends on the default attribute setting, not the current rendition of
the virtual display. Thus, if you have used screen management output routines that explicitly specify a
rendition, the current rendition may not match the default rendition for that virtual display.

Chapter 2. Screen Management Output Operations

2.2.7. Drawing and Removing Drawn Lines and
Characters

The following routines provide a simple way to construct horizontal and vertical lines:

*+ SMGS$DRAW_LINE constructs either horizontal or vertical lines, given the end points of those
lines.

+ SMGSDRAW RECTANGLE draws a rectangle given the position of the upper left-hand corner
and the lower right-hand corner.

* SMGSDRAW_CHAR draws one line-drawing character.

If you want to erase a line drawn with SMG$DRAW _LINE or SMG$DRAW RECTANGLE, use
SMGSREMOVE_LINE. This routine removes the line but preserves the line-drawing characters at
any line intersections.

Like all screen management routines, these are device independent. If the resulting line is to be
drawn on a VT100 terminal, the VT100 line-drawing character set is used. If the same line is drawn
on a VT52 terminal (which does not have this hardware capability), the lines are automatically
approximated by the use of the plus sign (+), the vertical bar (|), and the dash (--). Your program does
not have to supply different character codes for different types of terminals.

In addition, these routines automatically provide an appropriate character at the intersection of two
lines. For example, if a program writes a horizontal line directly to the screen and then writes a
vertical line that intersects the horizontal line, you would normally see what appears in Figure 2.7.

Figure 2.7. Lines Drawn Without SMGSDRAW_LINE

ZK-1916-GE

If these same lines are drawn using SMGSDRAW _LINE, the screen shows what appears in
Figure 2.8.

Figure 2.8. Lines Drawn Without SMGSDRAW_LINE

|
|
|
ZK-1917-GE

2.2.8. Displaying External Text

The following routines provide a way to output external text to the virtual display or terminal:

16

Chapter 2. Screen Management Output Operations

* SMGS$PUT HELP_TEXT outputs the help text for the specified topic in the virtual display
provided.

+ SMGSPUT STATUS LINE outputs a line of text to the terminal's hardware status line. Some
terminals have a hardware status line at the bottom (25th line) of the screen. If this line has been
set as host writable, you can use this routine to output a line of text in reverse video to the status
line.

2.2.9. Reading from a Virtual Display

The SMGSREAD FROM DISPLAY routine makes it easy to obtain text from a virtual display.

This routine might be used in applications that present menu items on the screen by way of a virtual
display. The application might allow the user to move the cursor among the menu items and then
select one (by pressing the Return key, for example). At this point, the program can read characters
from the display at the current cursor position and determine which menu item was selected. Note that
this routine also provides a way to read characters written with the SMG$M_INVISIBLE attribute.

2.2.10. Viewports

Since a virtual display can be very large, it is not always possible to show the entire display on the
screen at one time. The user must repaste a large virtual display in order to view a different portion of
it. A viewport associated with the virtual display makes this job easier.

Viewporting refers to the process of moving a rectangular viewing area around on a virtual display in
order to view different pieces of the virtual display. The viewport is associated with the virtual display
so that any output operation performed on the virtual display is reflected on the viewport.

2.2.10.1. Creating a Viewport

The SMGSCREATE VIEWPORT routine creates a viewport associated with a particular virtual
display. The virtual display must be created before the viewport can be created, and you can only
create one viewport for each virtual display. In order to make the viewport visible, you have to paste
the virtual display by calling the SMGSPASTE VIRTUAL DISPLAY routine; only the portion of the
virtual display that falls inside the viewport is visible.

2.2.10.2. Deleting a Viewport

The SMGSDELETE VIEWPORT routine deletes a viewport. When you invoke this routine, the
viewport is automatically unpasted from any pasteboards to which it is pasted. It is important to note,
however, that the virtual display associated with the viewport has not been deleted. You can make the
virtual display visible by calling SMGSPASTE VIRTUAL DISPLAY.

2.2.10.3. Pasting and Unpasting a Viewport

The SMGSPASTE VIRTUAL DISPLAY routine pastes either a viewport or a virtual display

to a pasteboard. Once you have associated a viewport with a virtual display, any call to
SMGSPASTE VIRTUAL DISPLAY uses the viewport instead of the virtual display. That is, once
a viewport for a virtual display is created, the only part of that virtual display that you can view is
the rectangular region contained in the viewport. To unpaste a viewport without deleting it, you can
invoke SMGSUNPASTE VIRTUAL DISPLAY.

If you create a viewport when the associated virtual display is already pasted, the viewport is not
visible. A call to SMGSPASTE VIRTUAL DISPLAY unpastes the virtual display and pastes the
viewport in its place.

Chapter 2. Screen Management Output Operations

2.2.10.4. Scrolling and Moving a Viewport

A viewport associated with a virtual display may be situated entirely or partially on the pasteboard,
or totally off the pasteboard. However, a viewport cannot extend beyond its associated virtual display.
If you try to extend a viewport beyond the boundaries of its virtual display, the Screen Management
Facility automatically truncates the viewport to fit into the virtual display.

To scroll a viewport, scroll the virtual display associated with the viewport by calling

SMGS$SCROLL VIEWPORT. In actuality, the coordinates of the viewport are changing as it moves
over the virtual display to simulate scrolling; however, the location of the viewport on the screen does
not change. With the SMGSSCROLL_ VIEWPORT routine, you can specify the direction (up, down,
left, or right) that you want to scroll.

You can move a viewport by calling SMGSCHANGE_ VIEWPORT. This routine lets you specify
a new starting location and size for the viewport. By changing the starting location and size of the
viewport, you can, in effect, move the window around the virtual display.

2.2.10.5. Changing Viewport Characteristics

The SMGSGET VIEWPORT CHAR routine lets you retrieve the current characteristics

of a viewport. The characteristics of a viewport consist of the starting and ending row

and column positions for the viewport. You can use this routine in conjunction with the
SMGS$SCHANGE_ VIEWPORT routine, which lets you change the starting and ending positions of an
existing viewport.

To change any characteristic of a viewport other than its starting or ending position, use the
SMGS$CHANGE VIRTUAL DISPLAY routine. Any change you make to a virtual display is
reflected in its associated viewport.

For example, if a virtual display has a border, so does the associated viewport. If the

virtual display does not have a border, then neither does the viewport. If you want to add

or delete a border to a viewport, add or delete the border to the virtual display using the
SMG$CHANGE VIRTUAL DISPLAY routine. This change is automatically reflected on the
viewport.

2.2.11. Menus

The Screen Management Facility provides the capability to create and make selections from a menu.
The menu can be a block menu, a vertical menu, or a horizontal menu. A block menu is a two-
dimensional array of items and is the main type of menu provided. A vertical menu displays the menu
choices in a single column, while a horizontal menu displays the choices in a single row. Any menu
items that do not fit within the bounds of the viewport are not displayed until they are scrolled into
view.

2.2.11.1. Creating a Menu

The SMG$CREATE MENU routine creates a menu in the scrolling region of a specified

virtual display. (By default, the scrolling region is the entire virtual display. You can use

SMGS$SET DISPLAY SCROLL REGION to change the scrolling region.) Specify a format for the
menu (block, vertical, or horizontal) when you create it.

A block menu is the default format for a menu. The items in the menu are passed to the routine in
the form of a static array of character strings. The menu choices are single spaced by default, but you
can request double spacing. Four spaces separate each menu item horizontally. In addition, you can

18

Chapter 2. Screen Management Output Operations

request that the menu choices be displayed in fixed format columns, where the width of the column is
equal to the size of the fixed-length strings being passed.

It is important to note that each virtual display can only contain one menu. Also, after calling
SMGS$CREATE MENU, you must not output any characters to the display that disturb the area
containing the menu; otherwise, the results are unpredictable. The menu is output in the scrolling
region of the virtual display.

2.2.11.2. Deleting a Menu

The SMGSDELETE MENU routine deletes a menu by discontinuing access to the menu choices in
the specified virtual display. Additionally, you can request that SMGSDELETE MENU remove all
menu choices from the display when the menu is deleted.

2.2.11.3. Selecting from a Menu

Once you have created a menu, you can select items from that menu using the

SMGS$SELECT FROM_MENU routine. When you move around the menu items, the currently
selected item is highlighted in reverse video by default. You can specify a default selection that is
highlighted and becomes the current item when you call SMGSSELECT FROM_ MENU. If you do
not specify a default selection item, the previously selected item remains highlighted.

SMGS$SELECT FROM_MENU provides three modes of operation; you can switch between these
modes using the flags parameter. Each mode is described in the following sections.

2.2.11.3.1. Default Mode

The default mode of operation for the SMGSSELECT FROM_MENU routine is invoked by omitting
the flagsparameter. In this mode, you can move around the menu items using the arrow key and, after
selecting an item, you can continue making additional selections. The default mode also lets you
"reselect" items that were already selected.

2.2.11.3.2. RETURN_IMMED Mode

Specifying the SMGSM_RETURN_IMMED value for the flags parameter of the

SMGSSELECT FROM_MENU routine allows you to move around the menu choices with the arrow
keys; however, pressing any other key returns control to the user. Ctrl/Z selects the current item and
returns SMGS$_EOF. Any other key entered selects the current item.

Use SMGSM_RETURN IMMED mode if you want key definitions other than those provided by the
default mode.

2.2.11.3.3. REMOVE_ITEM Mode

If you specify the SMGSM_REMOVE_ITEM value for the flags parameter of
SMGS$SELECT FROM_MENU, you cannot "reselect" an item in the menu, although the item
remains in the menu. It appears in the default rendition for the virtual display containing the menu.

If you specify a default selection item while in this mode, and that item has already been selected,
the first "selectable" item in the menu is highlighted. If none of the items is selectable, an error is
returned.

2.2.12. Saving a Virtual Display

The SMGSSAVE VIRTUAL DISPLAY routine saves the contents of a virtual display in a file.
The text, renditions, and all the attributes needed to reconstruct the virtual display are saved, but

Chapter 2. Screen Management Output Operations

menu, viewport, and subprocess contexts are not saved. You cannot print the resulting file. To restore
the virtual display, you can use SMGSLOAD_VIRTUAL DISPLAY, which creates a new virtual
display and loads it with the saved contents of the display. The new virtual display is not pasted to any
pasteboard.

2.2.13. Changing Terminal Characteristics

The SMGSSET TERM_CHARACTERISTICS routine changes or retrieves the terminal
characteristics for a given pasteboard. With this routine, you can control multiple terminal
characteristics in a single routine call.

2.2.14. Hardcopy and File Output Operations

The Screen Management Facility provides a way for you to send output to a hardcopy device or to a
file, instead of to a terminal screen. Although you cannot constantly update the display as you do with
a video screen, you can capture the image of the current pasteboard at any point and send that image
to either a hardcopy device or file.

Note

Terminals accessed using non-terminal devices such as network and mailbox devices are treated as
files.

2.2.14.1. Snapshots

If the output device for a screen management routine is a file or a hardcopy terminal, the output for
screen updating is inappropriate for the image. The SMGSSNAPSHOT routine sends the current
screen image (that is, the visible portion of the pasteboard) to the file or hardcopy terminal. To
determine if you should use SMG$SNAPSHOT, check the type-of-terminal parameter returned by
SMGSCREATE PASTEBOARD.

The SMGSSNAPSHOT TO_PRINTER routine prints the current pasteboard contents to a printer
attached to the terminal's printer port.

Pasteboard batching does not affect the SMGSSNAPSHOT or SMGSSNAPSHOT TO_PRINTER
routine. If you enable pasteboard batching with the SMGSBEGIN_ PASTEBOARD UPDATE
routine, a buffer is created that saves all output to a pasteboard until you disable batching

with a call to SMGSEND PASTEBOARD UPDATE. When you call SMG$SNAPSHOT or
SMGS$SNAPSHOT TO PRINTER, you get a snapshot of that current pasteboard buffer—not what is
possibly a stale screen image.

2.2.14.2. Printing a Pasteboard

The SMGSPRINT_ PASTEBOARD routine prints a pasteboard on a line printer. The routine
creates a file and fills it with the contents of a specified pasteboard. Once the file is filled,
SMGS$PRINT PASTEBOARD submits the file to the specified print queue.

2.2.14.3. Pasteboard Output by Means of a User-Supplied Routine

The SMG$PUT PASTEBOARD routine lets you access the contents of a pasteboard. You specify an
action routine that is called once for each line of the pasteboard. Using this action routine, you can
perform whatever action is necessary for each row of the pasteboard returned.

20

Chapter 2. Screen Management Output Operations

2.3. Operational Controls

This section describes the screen management routines that control special modes of operation:
minimal update, buffering, and whether or not tabs are used in updating. These modes let you
optimize the manner in which information is actually written to the screen. To invoke these modes,
use the SMGSCONTROL MODE routine.

Normally, you need not be concerned with these modes; the Screen Management Facility optimizes
output so that characters appear to be displayed on the screen immediately. For some applications,
however, you may want to take advantage of these mode settings. The following sections describe
these modes of operation.

2.3.1. Minimal Update

By default, the Screen Management Facility attempts to minimize the number of characters written
to the screen by rewriting only the parts of the screen that have changed. However, the Screen
Management Facility also supports nonminimal updating, in which all lines affected by a change are
redrawn, beginning at the first changed character and continuing to the end of the line.

2.3.2. Buffering

By default, output operations cause an immediate change on the screen by sending many small,
partially filled buffers to the terminal instead of updating the screen when the buffer is full.
Minimizing the number of these I/O transactions by enabling buffering mode results in faster program
execution.

In buffering mode, the Screen Management Facility writes the terminal buffer to the screen only
when the buffer is full. Thus, several output operations may be performed before the results
appear on the screen. Because this delay is not acceptable for many applications, a special routine,
SMGSFLUSH_ BUFFER, is provided for use with buffering. SMGSFLUSH BUFFER forces the
buffer to be written to the terminal whether or not it is full. This routine is useful for an application
that can usually accept delayed output but occasionally requires an immediate screen update.
Applications that usually need immediate changes on the screen should not enable buffering.

2.3.3. Tabs

Tabs are used for minimal updating. When you are using tabs, you must ensure that the tab stops
are set to the default locations. Do not use tabs if you want to be sure that the application will run
regardless of the tab settings the user has set on the terminal.

Any tabs that you output to the screen are converted to eight spaces by SMG$ before being output to
the screen. The only exception to this is when using SMGSCREATE_VIRTUAL_ DISPLAY with the
display-attributesargument set to SMGSM_DISPLAY CONTROLS. In this case, the tab character is
printed rather than interpreted as eight spaces.

2.4. Batching Output Operations

If you want to construct a complex virtual display that requires several scrolling, cursor positioning,
and output operations but do not want the interim steps to be visible, you can batch the output
operations. Batching a series of operations to a virtual display lets the application hide the interim
steps.

21

Chapter 2. Screen Management Output Operations

You may also want to construct a complex pasteboard image but have it appear on the screen only
after the entire picture is complete. Unpasting and repasting leaves the screen blank during the
construction process, so in this case you can batch a series of composition operations and let the
screen show only the final effect.

The Screen Management Facility provides a mechanism for batching a series of operations at both the
virtual display level and the pasteboard level. These are described in the following sections.

2.4.1. Display Update Batching

The SMG$BEGIN DISPLAY UPDATE routine causes output operations to a pasted display to be
reflected only in the display's buffers. When all operations to the display are finished, the application
can call the SMGSEND_DISPLAY UPDATE routine, which causes the display's buffer to be written
to the pasteboard.

The SMG$BEGIN DISPLAY UPDATE and SMGSEND DISPLAY UPDATE routines increment
and decrement a counter. When this counter's value is zero, output to the virtual display is
immediately sent to the pasteboard. When the counter's value is nonzero, output operations are
batched; the display batching level is equal to the counter's value. Notice that the counter mechanism
allows a subroutine to request and turn off batching without disturbing the batching level of the
calling program.

You can call SMGSFLUSH_DISPLAY UPDATE in place of a call to

SMGSEND DISPLAY UPDATE that is immediately followed by a call to

SMGS$SBEGIN DISPLAY UPDATE, when the batch count is zero, with much better performance
than the two calls.

2.4.2. Pasteboard Update Batching

You accomplish pasteboard batching by calling the SMG$BEGIN_ _PASTEBOARD UPDATE
routine, performing several composition operations, and finally calling the

SMGSEND PASTEBOARD UPDATE routine. The SMG$BEGIN_ PASTEBOARD UPDATE
routine causes output operations to be reflected only in the pasteboard buffer, not on the physical
screen. The SMGSEND PASTEBOARD UPDATE routine causes the pasteboard buffer to be written
to the physical screen.

The SMG$BEGIN PASTEBOARD UPDATE and SMGSEND PASTEBOARD UPDATE routines
increment and decrement a counter. When this counter's value is zero, output to the pasteboard is
immediately sent to the physical screen. When the counter's value is nonzero, output operations are
batched; the pasteboard batching level is equal to the value of the counter. Notice that the counter
mechanism allows a subroutine to request and turn off batching without disturbing the batching level
of the calling program.

22

Chapter 3. Screen Management Input
Operations

This chapter describes the screen management routines used to perform input from a virtual keyboard.
Remember that while a virtual keyboard is usually associated with a terminal, it may also be
associated with any OpenVMS RMS file to which you have access. If the RMS file is on another node
in a network, you may need a valid account for that node.

The Screen Management Facility provides a flexible set of routines for performing input from

a terminal or a file. The input routines can be used with the output routines, or they can be

used by themselves. You establish an input source, called a virtual keyboard, by calling the
SMGSCREATE VIRTUAL KEYBOARD routine. You delete a virtual keyboard by calling the
SMGSDELETE VIRTUAL KEYBOARD routine.

A virtual keyboard is a logical structure for input operations, just as a pasteboard is a logical structure
for output operations. The advantage of using virtual keyboards is device independence. When using
the screen management input routines, you need not worry about the type of terminal being used. For
example, your program need not know which line terminators a particular terminal uses; the screen
management routines map the different terminator character sequences into a uniform set of function
codes. (See Section 3.6 for more information about terminator codes.) Virtual keyboards are also
important for processing function/keypad keys.

3.1. Obtaining Data from Virtual Keyboards

Data may be obtained from a virtual keyboard in the following ways:

* SMGSREAD_ STRING reads a string composed of characters and a terminator. This flexible
routine provides access to many features of the OpenVMS terminal driver.

+ SMGSREAD COMPOSED_LINE reads a line composed of ordinary keystrokes and predefined
strings associated with keypad and function keys; it provides an easy way to code an interface for
command-oriented utilities by providing single-key command capabilities.

+ SMGSREAD KEYSTROKE reads one keystroke entered at the keyboard. It reads function/
keypad keys as well as alphanumeric keys.

* SMGSREAD_ VERIFY reads a string and verifies that string against a user-supplied picture string.

All read operations can be aborted by calling the SMGSCANCEL INPUT routine.

3.2. Obtaining Data from a Mouse or Tablet

You can read information from a workstation terminal's locator device, such as a mouse or a tablet,
by calling SMGSREAD LOCATOR. (This routine does not read locator information from the VT300
series terminals.) This routine tells you at which row and column the locator is pointing and which
button was pressed.

23

Chapter 3. Screen Management Input Operations

3.3. Setting and Retrieving Virtual Keyboard
Characteristics

In the same way that you can retrieve information about and set pasteboard characteristics, the Screen
Management Facility also provides routines that let you retrieve and set the characteristics of a virtual
keyboard.

The SMGSGET KEYBOARD ATTRIBUTES routine retrieves requested information about a virtual
keyboard. It deposits this information in a user-supplied area called the keyboard information table
(KIT). The information returned includes the following:

» The current device characteristics

» The device class

* The size of the recall buffer

* The physical device type

* The first character in the type-ahead buffer

* The terminal width

* The number of characters in the type-ahead buffer

You can use SMGSSET KEYPAD MODE to set the terminal's numeric keypad to either numeric
or applications mode. In applications mode, numeric keypad keys are considered function keys
and may be used as terminators. In numeric mode, these keys are equivalent to the corresponding
keys on the main keyboard. Note that the terminal must support applications mode, or the call to
SMGS$SET KEYPAD MODE will fail.

3.4. Line Composition Using Keypad Keys

In addition to the functions provided by SMGSREAD STRING, line composition with keypad keys
provides a powerful and flexible tool for applications that have line-oriented commands (for example,
utilities that use the Command Definition Utility). (See the VSI OpenVMS Command Definition,
Librarian, and Message Utilities Manual for more information.)

With line composition, you can define certain keys (discussed below) to be equivalent to a string of
characters. When you enter a line and press one of these keys, the equivalence string for that key is
inserted into the returned command string. For example, if the application defines the key PF2 to have
the equivalence string "HELP", then when you press the PF2 key, that command is returned to the
application. You can also specify that the equivalence string be echoed; in this case, the string "HELP"
is echoed. The recognition of keypad keys and the insertion of the equivalence string are handled
automatically by SMGSREAD COMPOSED LINE; the application treats the returned line just as if
you had typed the entire line.

Key definitions are placed in a key definition table, which is created by a call to
SMGS$CREATE _KEY TABLE. Key definitions can be added to and deleted from the table by calls
to SMGSADD KEY DEF and SMGSDELETE KEY DEF. Key definitions can also be added

by calls to SMGSDEFINE KEY and SMGSLOAD_KEY DEFS; these routines accept a DCL
command DEFINE/KEY (or a file of these commands). See the description of these routines for
more information; see the VST OpenVMS DCL Dictionary for an explanation of the DEFINE/KEY
command.

24

Chapter 3. Screen Management Input Operations

All keyboard keys can be defined by calling SMGSADD KEY DEF and can be used with
SMGSREAD COMPOSED_LINE. Other definable keys include the function and keypad keys listed
in Table 3.1, the control key sequences (Ctrl/A through Ctrl/Z), and line editing keys if line editing is
disabled.

A key definition has several attributes. The TERMINATE attribute specifies whether the input line is
terminated when this key is pressed; the NOTERMINATE attribute specifies that more characters and
keystrokes may be entered. TERMINATE is the default.

The ECHO attribute specifies whether the equivalence string is echoed when the key is pressed.
ECHO is the default.

The PROTECT attribute specifies whether this key definition can be changed or deleted once it is
defined. NOPROTECT is the default.

The remaining attributes are LOCK STATE, IF_STATE, and STATE. They are described in the
following section.

3.5. States

A given key may have many definitions, depending on the value of the current state; the state is used
to determine the meaning of the key. For example, if PF1 is defined as setting the state to "GOLD"
and if PF2 with IF_ STATE="GOLD" is defined as "HELP *", pressing PF1 and then PF2 would result
in "HELP *" being returned as the command line. Note that in this case the PF1 definition would have
no equivalence string and would specify the NOTERMINATE attribute.

A state name is any string comprising up to 31 alphanumeric characters, and can include the dollar
sign ($) and underscore (). When a line is being composed from normal keystrokes and equivalence
strings, SMGSREAD COMPOSED_LINE maintains a string called the current state name. Before
the first key is pressed, the current state is "DEFAULT". If you press a key whose definition has
specified a value for the STATE attribute, the current state is changed to the specified state. Unless
you specify the LOCK STATE attribute, the state name reverts to "DEFAULT" after the next defined
key is pressed.

3.6. Terminators

A terminator ends a transfer of data from the virtual keyboard. A terminator may be a single character
such as a carriage return or Ctrl/Z, a character sequence (escape sequence) generated by pressing a
function key on a keyboard, or a condition such as timeout or buffer full.

The terminator is not part of the data read from the virtual keyboard; it is returned to the caller in a
separate argument as an integer (unsigned word) value.

3.6.1. Single-Character Terminators

For single-character terminators, the value is the terminator's 8-bit character code. Single-character
terminator codes are in the range 0 through 255.

For calls to SMGSREAD STRING and SMGSREAD VERIFY, the default single character
terminators are all the characters in the range 0 through 31 except backspace (8), horizontal tab (9),
line feed (10), vertical tab (11), and form feed (12). Note that these characters make up the default
terminator set for the OpenVMS terminal driver. However, any 8-bit character code is potentially a
terminator.

25

Chapter 3. Screen Management Input Operations

The set of terminator characters may be changed by calls to SMGSREAD STRING or
SMGS$READ_ VERIFY. For calls to SMGSREAD COMPOSED_LINE, the only default single
terminator characters are the carriage return (13) and Ctrl/Z (26). Changes to the terminator set
for SMGSREAD COMPOSED _ LINE are made by key definitions; see the description of line
composition in Section 3.4 for more information.

Behavior of input operations may vary in response to a Ctrl/Z. Under certain conditions, a Ctrl/Z in
the input stream terminates the current read operation as well as the next read operation. You may
need to issue an additional read to satisfy the Ctrl/Z.

3.6.2. Character Sequence Terminators

Character sequence terminators are returned in a device-independent fashion. The codes are in the
form SMGSK_TRM keyname (for example, SMG$K_TRM_ DELETE). A unique code is assigned

to each possible function key on VT220 (and VT200-compatible) terminals. Key codes on other
terminals are returned using the code of the equivalent VT220 key. Therefore, the application program
need not know which type of terminal is being used; the screen management routines transparently
map the different terminator character sequences into a uniform set of function codes.

Table 3.1 lists the terminator name or condition for each terminator that is not a single character. The
table also lists the code and the key legend for each terminator on the different types of terminals
supported by the screen management input routines.

Table 3.1. Terminator Values

Key Name Value VT200 and |VT100 VT52
VT300 Series
Keypad Keys
DELETE SMG$K_TRM_DELETE & DELETE DEL
PF1 SMG$K_TRM_PF1 PF1 PF1 Blue
PF2 SMG$K_TRM_PF2 PF2 PF2 Red
PF3 SMG$K_TRM_PF3 PF3 PF3 Black
PF4 SMG$K_TRM_PF4 PF4 PF4
KPO SMG$K_TRM_KPO' 0 0 0
KP1 SMGS$K_TRM_KP1! 1 1 1
KP2 SMGS$K_TRM_KPp2! 2 2 2
KP3 SMGS$K_TRM_KP3! 3 3 3
KP4 SMG$K_TRM_KP4! 4 4 4
KP5 SMGS$K_TRM_KP5' 5 5 5
KP6 SMGS$K_TRM_KP6' 6 6 6
KP7 SMGS$K_TRM_KP7' 7 7 7
KP8 SMG$K_TRM_KP8' 8 8 8
KP9 SMGS$K_TRM_KP9' 9 9 9
ENTER SMGS$K_TRM_ENTER? ENTER ENTER ENTER
MINUS SMGS$K_TRM_MINUS' — —
COMMA SMG$K_TRM COMMA! , ,
PERIOD SMGS$K_TRM_PERIOD'

26

Chapter 3. Screen Management Input Operations

Key Name Value VT200 and |VT100 VT52
VT300 Series

Cursor Positioning Keys

UP SMGS$K _TRM_UP Up arrow Up arrow Up arrow

DOWN SMG$K_TRM_DOWN Down arrow |Down arrow |Down arrow

LEFT SMG$K TRM LEFT Left arrow Left arrow Left arrow

RIGHT SMGS$K_TRM RIGHT Right arrow |Right arrow [Right arrow

Function Keys

F6 SMGS$K TRM_F6 F6

F7 SMGS$K TRM F7 F7

F8 SMGS$K_TRM F8 F8

F9 SMGS$K_TRM_F9 F9

F10 SMGS$K _TRM_F10 F10

F11 SMGS$K TRM F11 F11

F12 SMGS$K_TRM F12 F12

F13 SMGS$K_TRM F13 F13

F14 SMGS$K TRM F14 F14

HELP SMGS$K_TRM_HELP? HELP

DO SMGS$K_TRM_DO’ DO

F17 SMG$K_TRM F17 F17

F18 SMG$K _TRM F18 F18

F19 SMGS$K TRM F19 F19

F20 SMGS$K_TRM_F20 F20

Editing Keys

FIND SMG$K_TRM FIND Find

INSERT HERE |SMGSK TRM INSERT HERE |Insert Here

REMOVE SMG$K_TRM_REMOVE Remove

SELECT SMGS$K _TRM_SELECT Select

PREV_SCREEN

SMG$K_TRM PREV_SCREEN

Prev Screen

NEXT SCREEN

SMGSK_TRM NEXT SCREEN

Next Screen

Conditions
CANCELED SMGS$K _TRM_CANCELLED
TIMEOUT SMGS$K _TRM TIMEOUT

BUFFER FULL

SMGSK_TRM BUFFER FULL

UNKNOWN

SMG$K_TRM_UNKNOWN*

'These are the keys on the numeric keypad, not the main keyboard. These values are used only if the terminal keypad is in applications

mode; if the keypad is in numeric mode, the keys are equivalent to the keys with the same legends on the main keyboard. See the description

of SMG$SET_KEYPAD_MODE for more information.
2If the keypad is in numeric mode, ENTER is equivalent to a carriage return. See the description of SMG$SET KEYPAD MODE for more

information.

SHELP and DO are in the F15 and F16 positions on the VT220 keyboard.
“Ifan unrecognized terminator is received, the value is SMG$SK_TRM_UNKNOWN.

Chapter 3. Screen Management Input Operations

3.6.3. Termination by a Condition

Input operations terminated by a condition are indicated by the terminator codes
SMGS$K TRM CANCELLED, SMG$K _TRM_ TIMEOUT, SMG$K TRM_ BUFFER FULL, and
SMGS$K_TRM_UNKNOWN. If the input is from an OpenVMS RMS file, each input operation reads
one record from the file; the terminator code is always the code for a Return. (The only exception is
SMGS$READ KEYSTROKE, in which the terminator is the next character in the record.)

3.6.4. Key Name and Terminator Code Translation

The SMGSNAME _TO_KEYCODE routine translates the name of a key on the keyboard to its
corresponding terminator code, while SMGSKEYCODE _TO NAME translates the terminator code to
the corresponding name of the key on the keyboard.

3.6.5. Symbolic Definitions of Terminator Values

Symbolic definitions of the terminator values are provided in symbol libraries named $SMGDEF.
For example, in a MACRO program you would issue a call to SSMGDEF to extract these definitions.
The symbol names are of the form SMG$K TRM_keyname, where keyname is the key name given
in Table 3.1. For terminator codes 1 through 26, which correspond to the control sequences Ctrl/A
through Ctrl/Z, the key names are CTRLA for Ctrl/A, CTRLB for Ctrl/B, and so on. The following
synonyms are also defined:

Symbol Synonym

SMG$K _TRM BS SMG$K_TRM CTRLH
SMGS$K_TRM_HT SMGS$K_TRM_ CTRLI
SMGS$K_TRM_LF SMGS$K_TRM CTRLJ
SMGS$K_TRM_CR SMG$K_TRM_CTRLM
SMGS$K TRM E1 SMG$K _TRM FIND
SMGS$K_TRM_E2 SMGS$K_TRM INSERT HERE
SMGS$SK_TRM_E3 SMGS$K_TRM_REMOVE
SMGS$K_TRM_E4 SMGS$K TRM_SELECT
SMGS$K TRM_ES5 SMGS$K TRM PREV_SCREEN
SMGS$K_TRM_E6 SMGS$K_TRM_NEXTSCREEN
SMGS$K_TRM F15 HELP

SMGS$K _TRM F16 DO

3.7. Line Recall and the Recall Buffer

The Screen Management Facility allows you to access and change the contents of the application
recall buffer. By default, the recall buffer stores the previous 20 commands or data lines entered by the
user to the application.

The SMGSRETURN_INPUT LINE routine lets you request a particular line from the recall buffer.
You can either specify the appropriate line number for the line to be recalled, or you can specify a
match string. If you use a match string, SMGSRETURN_INPUT _LINE searches for and returns
the line that matches the specified string. This routine aids in the implementation of a DCL-style
RECALL command.

28

Chapter 3. Screen Management Input Operations

The SMGSREPLACE INPUT_LINE routine lets you replace the specified line or lines in the recall
buffer with the specified string. The remaining lines of the recall buffer are deleted. This routine aids
in processing line continuations.

3.8. Interaction of Input and Output

SMGSREAD COMPOSED_LINE, SMGSREAD KEYSTROKE, SMGSREAD STRING, and
SMGSREAD VERIFY accept an optional display-id argument. If a display-id is supplied, it
designates the virtual display in which the input operation should occur. By specifying display-id, you
enable the Screen Management Facility to remain aware of the changes caused by character echoing.
If you omit display-id, the Screen Management Facility assumes that screen management output is
not being used.

Note that if the display-id argument is specified for any one of the above-mentioned input routines,
then the length of the prompt string plus the input is limited to the number of columns in the
display or, where specified, to the maximum number of characters to be read. (In the case of
SMGSREAD KEYSTROKE, this restriction applies only to the length of the prompt string.)

29

Chapter 3. Screen Management Input Operations

30

Chapter 4. Advanced Screen
Management Features

The Screen Management Facility provides several advanced features to:
» Trap asynchronous events

* Create and execute commands in a subprocess

* Move the physical cursor

* Clean up at exit

The following sections describe these features.

Note

The Screen Management Facility assumes that it has complete control of the terminal. Applications
should not mix calls to SMGS$ with calls to other screen products such as GKS or FMS.

SMGS is not reentrant. Therefore, unpredictable results can occur when multiple processes call SMG$
routines to perform operations on the same terminal. If your application contains multiple processes,
one process should call the SMGS$ routines. Other processes should send messages to the calling
process when screen modifications are necessary. The calling process can then call the appropriate
SMGS routines.

4.1. Asynchronous Events

The following types of asynchronous events can disrupt the screen image:
* Broadcast messages

* Unsolicited input

* QOut-of-band asynchronous system traps (ASTs)

The following sections explain how to control these actions.

Note

The Screen Management Facility is not AST reentrant. Therefore, the caller of the SMGS$ routines
described in this chapter is responsible for any synchronization needed.

4.1.1. Broadcast Messages

Normally, broadcast messages (for example, MAIL notifications or operator messages) can
appear on the terminal screen at any time, destroying or distorting the screen image. The
SMGS$SET BROADCAST TRAPPING routine lets you trap messages broadcast to the specified
terminal (pasteboard) and in addition, lets you specify an AST routine to be called whenever a
broadcast message is trapped. The AST routine you supply can access the broadcast message by
calling the SMGSGET _BROADCAST MESSAGE routine.

31

Chapter 4. Advanced Screen Management Features

Whether or not you specify an AST routine in the call to SMG$SET BROADCAST TRAPPING,
you can check for the receipt of a broadcast message at any time by calling
SMGS$SGET BROADCAST MESSAGE.

4.1.2. Unsolicited Input

The SMGSENABLE UNSOLICITED INPUT routine detects the presence of unsolicited input.
Note that this routine does not read any input characters; it merely calls an AST routine to notify
the application that it should issue a read operation with SMGSREAD COMPOSED LINE,
SMGS$READ KEYSTROKE, SMGSREAD STRING, or SMGSREAD VERIFY. It is up to you to
read the unsolicited input.

4.1.3. Out-of-Band ASTs

The SMGSSET OUT OF BAND_ASTS routine provides a way to trap out-of-band characters such
as Ctrl/Y, Ctrl/C, and Ctrl/O. This routine lets you specify which characters are to be treated as out-of-
band characters and also lets you specify an AST routine to be called when one of these characters is
typed.

4.2. Subprocesses

The Screen Management Facility lets you use a subprocess to execute DCL commands from an
application. Only one subprocess is allowed per virtual display.

4.2.1. Creating a Subprocess

The SMGSCREATE SUBPROCESS routine creates a subprocess. This routine creates a DCL
subprocess and associates it with a virtual display you specify. The subprocess is initialized with

the DCL commands SET NOVERIFY and SET NOON. The creating process requires an available
BYTLM value of at least 5000 and an available PRCLM value of at least 1. The Screen Management
Facility checks to make sure that you have sufficient resources before creating the subprocess.

4.2.2. Deleting a Subprocess

When you are done executing subprocess commands, you can delete the subprocess with the
SMGSDELETE _SUBPROCESS routine. If you exit without first calling this routine, the Screen
Management Facility includes an exit handler that deletes the subprocess for you. It is important to
note, however, that under some circumstances these facility-supplied exit handlers are not executed.
In that case, you must delete the subprocess with the following commands using your system-assigned
process identifier (PID) code for xxxx:

$ SHOW PROCESS/ SUB
$ STOP/ | DENT=xXXX

4.2.3. Executing Commands in a Subprocess

The SMGSEXECUTE COMMAND routine executes a specified command in the created subprocess.
If commands are being buffered, SMGSEXECUTE COMMAND returns control after the specified
command is buffered. The AST routine that you specify is invoked with the command status when the
command completes execution. If commands are not being buffered, SMGSEXECUTE _COMMAND
waits until the command has completed execution before returning the status of the command.

32

Chapter 4. Advanced Screen Management Features

When you specify the command string to be executed, you must specify a dollar sign ($) as the
first character of any DCL command. The Screen Management Facility assumes that any command
string that does not begin with a dollar sign is input data for the previous command. The commands
and their outputs are displayed on the specified virtual display as they are executed. Note that the
commands SPAWN, GOTO, and LOGOUT are illegal to use as command strings and generate
unpredictable results.

It is also important to note that since 1/O is performed by means of mailboxes and not through the
terminal driver, single-character commands such as Ctrl/C, Ctrl/Y, Ctrl/Z, and so on have no effect.
Use SMG$SM_SEND _EOF as the flags parameter in order to pass a Ctrl/Z to the subprocess.

4.3. Moving the Cursor

The Screen Management Facility lets you move the cursor to a specified location on the physical
screen. It does so through the SMGSSET PHYSICAL CURSOR routine. However, if you attempt to
move the cursor to a pasteboard position outside the screen boundaries, an error is returned.

4.4. Exit Handler

The Screen Management Facility supplies an exit handler, which is invoked before image termination.
This handler deletes all pasteboards and virtual keyboards associated with the current image and
resets the terminal characteristics. The Screen Management Facility's exit handler may or may not

be invoked before any user-supplied exit handlers. Therefore, you should not delete pasteboards or
virtual displays from inside a user-supplied exit handler because they may already have been deleted
by the Screen Management Facility exit handler and their identifiers deassigned.

33

Chapter 4. Advanced Screen Management Features

34

Chapter 5. Support for Third-Party
Terminals

This chapter describes SMGS$ support for foreign terminals. A foreign terminal is any terminal for
which the device type is not one of the terminals recognized by OpenVMS, or any terminal on which
the ANSI_CRT characteristic is not set.

This support is used by the Screen Management Facility, but it can also be used by application
programs that perform their own I/O to foreign terminals. Thus, if you use the Screen Management
Facility, you need to concern yourself only with the definition of foreign terminal capabilities, and
not with the details of calling the foreign terminal routines directly. Further, you need to define only
a few terminal capabilities ("set absolute cursor position," "erase to end of display,” and "erase to end
of line") in order for the Screen Management Facility to effectively control the terminal screen. The
routines used by the Screen Management Facility are presented here to allow you to do your own I/O
to foreign terminals.

The support begins with a source file named TERMTABLE.TXT, which contains a

list of terminal names and their associated capabilities. This file is processed by the
SYSSSYSTEM:SMGBLDTRM.EXE program to create an image file called TERMTABLE.EXE. The
following sections describe the creation and processing of the TERMTABLE database.

Note that the TERMTABLE support is used by the Screen Management Facility for all terminals. The
definitions for non-foreign terminals are included in a file named SYS$SYSTEM:SMGTERMS.TXT,
which is provided as part of the Screen Management Facility. The examples in this chapter show

you how to use the foreign terminal package to define non-foreign terminals, because most users are
familiar with them.

Note

You should not create your own definitions for non-foreign terminals, nor should you modify the
definitions in SYS$SSYSTEM:SMGTERMS.TXT.

5.1. TERMTABLE Interface Routines

TERMTABLE.EXE is a database containing information about any number of different types of
terminals. You extract information from this database with these steps:

1. Provide the terminal name to the database.

2. Retrieve the information about that terminal type (this step might be repeated any number of
times).

3. End access to the database.

When using screen management routines to perform I/O to foreign terminals, you need only create the
proper TERMTABLE entries for the foreign terminals you use. The steps listed above are necessary
only when your program performs /O directly to foreign terminals.

The first step can be performed in either of two ways. You can either pass a string that

contains a terminal name (for example, "VT100") to the SMGSINIT TERM TABLE

routine, or you can pass a value returned by the OpenVMS system service SGETDVI to the
SMGSINIT TERM_TABLE BY_ TYPE routine. The returned value may be a symbolic terminal type

35

Chapter 5. Support for Third-Party Terminals

(for example, TT$ VT100 or TT$ VT52) or a value assigned by the SMG$ foreign terminal routines
to designate a particular foreign terminal.

The second step requires that you call the SMGSGET TERM_DATA routine. This routine extracts a
command string (for example, an escape sequence) from TERMTABLE and stores it in a buffer you
provide. It is then your responsibility to write the command string to the terminal. It may be necessary
to call SMGSGET TERM_ DATA many times; each time you receive the command sequence you

can perform a different operation. You should also call SMGSGET TERM DATA each time you
want to use a capability string that requires a substitution or arithmetic operation for an argument.
However, you may want to save the static capability strings in your program's local storage. These
static capability strings can be retrieved once and used any number of times.

The third step is optional; it merely frees the virtual memory used to access the information in the
database.

The DCL commands SET and SHOW TERMINAL recognize any name defined in TERMTABLE,
as well as the current set of valid OpenVMS terminal names. If you use the SET TERMINAL/
DEVICE=name command to specify a terminal that is unknown to the OpenVMS operating system,
the TERMTABLE database is searched for the named terminal.

Two routines are provided to obtain the address of a specific terminal

definition. SMGSINIT TERM TABLE accepts a terminal name as input;

SMGSINIT TERM_TABLE BY_ TYPE accepts a device type as input. Each maps to a specific
terminal entry in the TERMTABLE.EXE section. These routines return this identifier to the caller for
use in future calls.

SMGSGET _TERM _DATA accepts the identifier of the compiled TERMTABLE database and a
request code. The request code is used as an index into the data to retrieve the appropriate escape
sequence. Some sequences are static; they do not contain any variable information and are simply
copied into the caller's buffer. Variable sequences, which include a ! or % directive, cause additional
processing to take place. An example of a variable sequence is the VT300-series set cursor command:
the required binary row and column numbers must be converted to ASCII for the set cursor sequence.
SMGSGET_TERM_DATA uses the optional input arguments to do the conversion before copying the
sequence to the caller's buffer.

If you do not provide any optional input arguments to SMGSGET TERM DATA, it uses a default
of 1 for each argument that the capability requires. Nevertheless, you cannot supply some of

the optional arguments and accept the default for others—you must supply all or none of them.
SMGSGET NUMERIC DATA provides a simplified interface for users who wish to obtain numeric
or Boolean data only.

When all terminal I/O has been completed, SMGSDEL TERM_TABLE can be called to release the
virtual memory used. This routine is useful only if you do not need TERMTABLE for the duration of
your program; releasing virtual memory may make it available for reuse by your program.

A skeleton TERMTABLE.TXT is supplied in SYS$SSYSTEM:. SMGTERMS.TXT, which defines
non-foreign terminals, is also provided. The skeleton TERMTABLE.TXT uses the REQUIRE
directive to include the separate source file SMGTERMS.TXT. Thus, only third-party terminals are
actually defined in the TERMTABLE.TXT source file.

5.2. Capability Fields

If you have a foreign (third-party) terminal, the Screen Management Facility does not know what your
terminal can and cannot do—in other words, what the terminal's capabilities are. Capability fields let
you tell the Screen Management Facility what capabilities are supported for your foreign terminal.

36

Chapter 5. Support for Third-Party Terminals

These fields let SMGS$ use your terminal capabilities rather than emulate common terminal functions,
which in turn improves SMG$'s performance.

Three types of capability fields are allowed in a TERMTABLE entry:
* Boolean

* Numeric

* String

The following sections describe these capability fields in detail.

Functions that are common to most terminals have been chosen as possible fields; not all functions
of all terminal types are represented. (Specifically, there is no support for block mode, graphics, or
typesetting composition functions.) Screen-oriented applications should be planned around typical
terminal functions, and should not depend on features that exist on only one or a few models.

For applications that must support an unusual terminal, some generic capability names are

reserved for user definition. Names of the form PRIVATE BOO_n, PRIVATE NUM n, and
PRIVATE STR n, where 7 is a number from 1 to 10, may be included as user-defined terminal
definitions and returned by the TERMTABLE interface routines. Since meanings are assigned by the
user, private capabilities vary between applications. Sites running several applications must guard
against multiple definitions for a single private capability. (For example, you should include separate
terminal entries for a terminal that requires PRIVATE _STR 1 to mean two different things, depending
on the application program being run.) In general, you should not have to use private capabilities.

The following characters are used as delimiters in capability fields:

Delimiter Meaning

! Begins a comment

= Separates a capability field name from its value

, Separates capability fields

Delimits strings

5.2.1. Boolean Capability Fields

Boolean capabilities are either present or not present for a given terminal.

The format for a Boolean capability field is as follows:

BOOLEAN {Bool ean-capability = binary-digit} [,...]
Following are the meanings of the elements:

* Boolean-capability—One of the capability fields listed in Table 5.1
* Binary-digit—Either 1 or 0

Table 5.1. Boolean Capabilities

Capability Field Used by Meaning if Set
SMG
ADVANCED_ VIDEO N The terminal has advanced video attributes and is
capable of 132-column mode operation.

37

Chapter 5. Support for Third-Party Terminals

Capability Field Used by Meaning if Set
SMG

ANSI COLOR N Terminal conforms to ANSI color programming
standards.

ANSI _CRT N Terminal conforms to ANSI CRT programming
standards.

AUTO_MARGIN N Terminal has automatic margins.

BACKSPACE Y Terminal can backspace with Ctrl/H.

BLOCK_MODE N Terminal can perform block mode transmission,
local editing, and field protection.

CURSOR_REPORT_ ANSI N Terminal uses the ANSI sequence to report the
current cursor location.

DEC _CRT N Terminal conforms to VT100 family standards.

DEC CRT 2 N Terminal conforms to VT200 family standards.

DEC _CRT 3 N Terminal conforms to VT300 family standards.

DEC _CRT 4 N Terminal conforms to VT400 family standards.

DEC _CRT 5 N Terminal conforms to VT500 family standards.

EDIT N Terminal can perform ANSI-defined advanced
editing functions.

EIGHT BIT N Terminal uses 8-bit ASCII character code.

FULLDUP N Terminal operation mode is full-duplex (half-
duplex if not set).

IGNORE NEWLINE N Terminal ignores a newline after a wrap.

INSERT MODE NULLS N Insert mode distinguishes nulls on display.

LOWERCASE N Terminal has both uppercase and lowercase
letters.

NO_ERASE N Standout (bolded) characters are not erased by
writing over them.

NO_SCROLL N Terminal is not capable of scrolling.

OVERSTRIKE N Terminal is capable of overstriking.

PHYSICAL FF N Terminal can accept form feeds (if not set,
terminal driver must translate form feeds to
multiple line feeds).

PHYSICAL TABS N Terminal has hardware tabs (note that these tabs
may need to be set with an initialization string).

PRINTER PORT N Terminal has a printer port available.

PRIVATE BOO 1to 10 N These fields denote user-defined capabilities 1
through 10.

REGIS N Terminal understands ReGIS graphics commands.

SCOPE N Terminal is a video terminal.

SET CURSOR_COL _ROW Y Terminal uses column/row addressing.

38

Chapter 5. Support for Third-Party Terminals

Capability Field Used by Meaning if Set
SMG
SIXEL GRAPHICS N Terminal can display graphics using the ReGIS-
defined SIXEL graphics protocol.
SOFT_CHARACTERS N Terminal can load a user-defined character set.
UNDERLINE N Terminal has underlining capability (but not
overstrike).

For example, the following TERMTABLE entry describes two characteristics of a VT300 series
terminal:

NAME = "VT300_series"
BOCOLEAN
ansi_crt =1, dec_crt =1

This entry specifies that the terminal conforms to ANSI CRT programming standards and to VT300
series standards.

5.2.2. Numeric Capability Fields

Numeric capabilities take a numeric argument; for example, the number of columns on the terminal
screen.

The format for a numeric capability field is as follows:

NUMERI C {nuneric-capability = value} [,...]

Following are the meanings of the elements:

* Numeric-capability—One of the capability fields listed in Table 5.2

* Value—The value for the specified numeric capability

Table 5.2. Numeric Capabilities

OpenVMS Name Used by Description
SMG
COLUMNS Y Specifies the number of columns in a line.
CR_FILL N Specifies the number of fill characters needed
after a carriage return.
LF FILL N Specifies the number of fill characters needed
after a line feed.
FRAME N Controls the number of data bits expected by

the terminal driver for every character that is
input or output (value must be between 5 and 8,

inclusive).
NUMBER FN KEYS N Specifies the number of function keys available.
PRIVATE NUM 1 to 10 N If set, these fields denote user-defined capabilities

1 through 10.

ROWS N Specifies the number of rows on the screen.

39

Chapter 5. Support for Third-Party Terminals

OpenVMS Name Used by Description
SMG
WIDE SCREEN_COLUMNS Y Specifies the number of columns available in
wide mode.

For example, the following TERMTABLE entry describes two characteristics of a VT300-series
terminal:

NAME = "VT300_series"
NUMERI C

rows = 24, columms = 80

5.2.3. String Capability Fields

String capability fields provide several features. They let you do the following:
* Supply alternate characters for line drawing

* Provide icons so that your program can display carriage control characters (for example, form
feeds) instead of executing them

* Supply the character sequences that cause a given operation (for example,
ERASE TO END OF LINE) to be performed on any type of terminal

» Specify the character strings returned by special keys (for example, function keys) on a given
terminal

* Specify strings having a maximum length of 255 characters (the maximum length of a string
depends on its complexity, but in no case can it be longer than 255)

Table 5.3 lists string capabilities.

Table 5.3. String Capabilities

OpenVMS Name Used by |Description

SMG
BEGIN ALTERNATE CHAR N Begins alternate character set.
BEGIN_AUTOPRINT MODE N Begins autoprint mode.
BEGIN_AUTOREPEAT MODE N Begins autorepeat mode.
BEGIN_AUTOWRAP_MODE N Begins autowrap mode.
BEGIN BLINK Y Begins blinking characters.
BEGIN _BOLD Y Begins bolded characters.
BEGIN_DELETE MODE N Begins delete mode.
BEGIN_INSERT MODE N Begins insert mode.
BEGIN LINE DRAWING CHAR |Y Begins using line-drawing character set.
BEGIN_NORMAL RENDITION |Y Begins using normal video attributes.
BEGIN_REVERSE Y Begins reverse video characters.
BEGIN_UNDERSCORE Y Begins underscored characters.
BOTTOM_T CHAR Y Displays line-drawing character bottom t.

40

Chapter 5. Support for Third-Party Terminals

OpenVMS Name Used by | Description
SMG

CLEAR TAB N Clears tab at current column.

CR_GRAPHIC Y Defines character to indicate a carriage return
when control characters are being represented
rather than executed.

CROSS_CHAR Y Defines character to represent the intersection of
perpendicular lines.

CURSOR_DOWN N Moves cursor 7 lines down (does not cause
scrolling).

CURSOR_LEFT N Moves cursor 7 positions to the left.

CURSOR NEXT LINE N Accepts an argument n and moves the cursor to
the first position in the nth following line.

CURSOR_POSITION_ REPORT N Reports the active position using two arguments.

CURSOR_PRECEDING LINE N Accepts an argument # and moves the cursor to
the first position in the nth preceding line.

CURSOR_RIGHT N Accepts an argument # and moves the cursor n
positions to the right.

CURSOR_UP N Accepts an argument n and moves cursor up »
lines (does not cause scrolling).

DARK SCREEN Y Makes screen background color dark (normal
video).

DELETE CHAR N Accepts an argument # and deletes » characters.

DELETE LINE N Accepts an argument z and deletes n lines.

DEVICE _ATTRIBUTES N Terminal's response to a "What are you?"
sequence.

DOUBLE HIGH BOTTOM Y Changes line to double height bottom half.

DOUBLE HIGH TOP Y Changes line to double height top half.

DOUBLE_WIDE Y Changes line to double width.

END ALTERNATE CHAR N Ends alternate character set.

END AUTOPRINT MODE N Ends autoprint mode.

END AUTOREPEAT MODE N Ends autorepeat mode.

END_AUTOWRAP _MODE N Ends autowrap mode.

END BLINK N Ends blinking characters.

END BOLD N Ends bolding mode.

END_DELETE _MODE N Ends delete mode.

END_INSERT MODE N Ends insert mode.

END LINE DRAWING CHAR Y Ends line-drawing characters.

END REVERSE N Ends reverse video characters.

END_UNDERSCORE N Ends underscore.

ERASE DISPLAY TO CURSOR |N Erases display to virtual cursor position.

ERASE LINE TO CURSOR N Erases line to virtual cursor position.

41

Chapter 5. Support for Third-Party Terminals

OpenVMS Name Used by | Description
SMG

ERASE TO END DISPLAY N Erases to end of display.

ERASE TO END_LINE Y Erases to end of line.

ERASE WHOLE DISPLAY Y Erases whole display.

ERASE WHOLE LINE N Erases whole line.

ERROR _ICON Y Defines character that indicates an error.

FF_GRAPHIC Y Uses this character to indicate a form feed when
control characters are displayed rather than
executed.

HOME Y Defines home cursor.

HORIZONTAL BAR Y Displays line-drawing character horizontal bar.

HT GRAPHIC Y Uses this character to indicate a horizontal tab
when control characters are displayed rather than
executed.

INDEX N Moves the cursor down one line without changing
the column position (contents of the screen scroll
up if necessary).

INIT _STRING Y Defines terminal initialization string.

INSERT CHAR N Accepts an argument # and inserts »# characters.

INSERT LINE N Accepts an argument z and inserts # lines.

INSERT PAD N Accepts an argument » and inserts n pad
characters after character inserted.

KEY 0 Y Returned by keypad 0 in applications mode.

KEY 1 Y Returned by keypad 1 in applications mode.

KEY 2 Y Returned by keypad 2 in applications mode.

KEY 3 Y Returned by keypad 3 in applications mode.

KEY 4 Y Returned by keypad 4 in applications mode.

KEY 5 Y Returned by keypad 5 in applications mode.

KEY 6 Y Returned by keypad 6 in applications mode.

KEY 7 Y Returned by keypad 7 in applications mode.

KEY 8 Y Returned by keypad 8 in applications mode.

KEY 9 Y Returned by keypad 9 in applications mode.

KEY BACKSPACE N Returned by backspace key.

KEY COMMA Y Returned by keypad comma key.

KEY _DOWN_ARROW Y Returned by down arrow key.

KEY El Y Returned by E1 (editing key 1).

KEY E2 Y Returned by E2 (editing key 2).

KEY E3 Y Returned by E3 (editing key 3).

KEY E4 Y Returned by E4 (editing key 4).

KEY ES5 Y Returned by ES5 (editing key 5).

42

Chapter 5. Support for Third-Party Terminals

OpenVMS Name Used by | Description
SMG

KEY E6 Y Returned by E6 (editing key 6).

KEY ENTER (k) Y Returned by keypad enter key.

KEY F1 Y Returned by F1 (function key 1).

KEY F20 Y Returned by F20 (function key 20).

KEY_LABEL Fl1 N Legend on F1 (function key 1).

KEY LABEL F20 N Legend on F20 (function key 20).

KEY LEFT ARROW Y Returned by left arrow key.

KEY MINUS Y Returned by keypad minus key.

KEY PERIOD Y Returned by keypad period key.

KEY PF1 Y Returned by PF1 key.

KEY_PF2 Y Returned by PF2 key.

KEY PF3 Y Returned by PF3 key.

KEY PF4 Y Returned by PF4 key.

KEY RIGHT ARROW Y Returned by right arrow key.

KEY UP_ARROW Y Returned by up arrow key.

LEFT T CHAR Y Displays line-drawing character left ¢.

LF_GRAPHIC Y Uses this character to indicate a line feed when
control characters are displayed rather than
executed.

LIGHT SCREEN Y Makes screen background color light (reverse
video).

LOWER_LEFT CORNER Y Displays line-drawing character lower left corner.

LOWER RIGHT CORNER Y Displays line-drawing character lower right
corner.

NAME Y Defines terminal name; must be the first field in
the entry.

NEWLINE CHAR N Defines new-line character.

NEXT LINE N Displays next line.

NO PRINTER N Defines no attached printer status.

PAD CHAR N Defines pad character (if other than null).

PRINT_SCREEN N Prints contents of screen.

PRINTER READY N Defines printer ready status.

PRINTER NOT READY N Defines printer not ready status.

43

Chapter 5. Support for Third-Party Terminals

OpenVMS Name Used by | Description
SMG

PRIVATE STR 1 N User-defined capability 1.

PRIVATE_STR 10 N User-defined capability 10.

REQUEST CURSOR POSITION |N Requests the active cursor position.

REQUEST PRINTER STATUS N Requests status of attached printer.

RESTORE CURSOR N Restores cursor to previously saved position.

REVERSE INDEX N Moves the cursor to the same column on the
preceding line (contents of the screen scroll down
if necessary).

RIGHT T CHAR Y Displays line-drawing character right t.

SAVE CURSOR N Saves cursor position.

SCROLL FORWARD N Accepts an argument # and scrolls forward n
lines.

SCROLL REVERSE Y Accepts an argument » and scrolls backward n
lines.

SEL_ERASE TO END DISPLAY |N Selectively erases from cursor to end of display
(does not change attributes).

SEL ERASE TO _END LINE N Selectively erases from cursor to end of line (does
not change attributes).

SEL ERASE WHOLE DISPLAY |N Selectively erases entire display (does not change
attributes).

SEL_ERASE WHOLE LINE N Selectively erases entire line (does not change
attributes).

SET APPLICATION KEYPAD Y Begins applications keypad mode.

SET CHAR NOT_SEL ERASE N Designates all subsequent characters as not
selectively erasable.

SET CHAR SEL ERASE N Designates all subsequent characters as
selectively erasable.

SET CURSOR_ABS Y Directs cursor addressing (accepts row and
column arguments).

SET CURSOR_OFF Y Sets cursor to invisible.

SET _CURSOR _ON Y Sets cursor to visible.

SET JUMP SCROLL Y Sets scrolling to jump scroll.

SET NUMERIC KEYPAD Y Ends keypad applications mode (resumes numeric
mode).

SET ORIGIN_ABSOLUTE N Allows cursor positioning outside current
scrolling region.

SET _ORIGIN_ RELATIVE N Prohibits cursor positioning outside current

scrolling region.

44

Chapter 5. Support for Third-Party Terminals

OpenVMS Name Used by | Description
SMG

SET _PRINTER _OUTPUT N Sends output to printer port rather than screen.

SET _SCREEN_OUTPUT N Sends output to terminal screen.

SET SCROLL_REGION Y Sets scrolling region (accepts as arguments top
margin and bottom margin).

SET SMOOTH_SCROLL Y Sets scrolling to smooth scroll.

SET TAB N Sets tab at current column.

SINGLE HIGH Y Changes this line to single height, single width.

TAB _CHAR N Defines tab character (other than Ctrl/I or tab with
padding); note that this field should be used only
for non-ASCII terminals.

TOP T CHAR Y Displays line-drawing character fop .

TRUNCATION _ICON Y Defines the character that indicates overflow
characters were truncated.

UNDERLINE_CHAR N Underlines a character.

UPPER_LEFT CORNER Y Displays line-drawing character upper left corner.

UPPER RIGHT CORNER Y Displays line-drawing character upper right
corner.

VERTICAL BAR Y Displays line-drawing character vertical bar.

VT _GRAPHIC Y Defines the character that indicates a vertical tab
when control characters are displayed rather than
executed.

WIDTH_NARROW Y Sets terminal width to narrow (usually 80
columns).

WIDTH WIDE Y Sets terminal width to wide (usually 132
columns).

Table 5.4 lists the STRING 2 capabilities. In order to construct one of the user-defined renditions
SMGS$M_USERI1 through SMG$M_USERS, you must provide an appropriate definition in the file

TERMTABLE.TXT using STRING 2 capabilities.

Table 5.4. String_2 Capabilities

OpenVMS Name Used by Description

SMG
BEGIN_STATUS LINE Y Begins output to hardware status line.
BEGIN_USERI Y Begins first user-defined attribute.
BEGIN_USER2 Y Begins second user-defined attribute.
BEGIN USER3 Y Begins third user-defined attribute.
BEGIN_USER4 Y Begins fourth user-defined attribute.
BEGIN_USERS Y Begins fifth user-defined attribute.
BEGIN_USER6 Y Begins sixth user-defined attribute.
BEGIN USER7 Y Begins seventh user-defined attribute.

45

Chapter 5. Support for Third-Party Terminals

OpenVMS Name Used by Description

SMG
BEGIN_USERS8 Y Begins eighth user-defined attribute.
END_STATUS_LINE Y Ends output to hardware status line.
END_USERI1 N Ends first user-defined attribute.
END USER2 N Ends second user-defined attribute.
END USER3 N Ends third user-defined attribute.
END_USER4 N Ends fourth user-defined attribute.
END_USERS N Ends fifth user-defined attribute.
END USER6 N Ends sixth user-defined attribute.
END USER7 N Ends seventh user-defined attribute.
END_USERS N Ends eighth user-defined attribute.
BLACK_ SCREEN Y Makes screen background color black.
BLUE SCREEN Y Makes screen background color blue.
CYAN_SCREEN Y Makes screen background color cyan (green-

blue).

GREEN_SCREEN Y Makes screen background color green.
MAGENTA_ SCREEN Y Makes screen background color magenta.
RED_SCREEN Y Makes screen background color red.
WHITE _SCREEN Y Makes screen background color white.
YELLOW_SCREEN Y Makes screen background color yellow.
USER1_SCREEN Y User-defined background color.
USER2 SCREEN Y User-defined background color.

Because string capability fields often include nonprinting characters, the following substitutions
are used to make it easy to insert these characters in a capability string. Use the special character to
represent the nonprinting character.

Special Character | Nonprinting Character Meaning

$ ESCAPE ASCII decimal value 27
A CONTROL Control

& CSI ASCII decimal value 155
@ SS3 ASCII decimal value 143

Thus to create a capability string that contains an escape character, you insert a dollar sign at that
position. To create a capability string that contains a control character, prefix the character with a
circumflex (*). For example:

NAME = "VT300_series”

STRI NG
begin_alternate_char = "~N',

46

Chapter 5. Support for Third-Party Terminals

end_alternate_char = ""O',
erase_whol e_di splay = "$[2J"

END

If you want to use a character in a capability string with its normal ASCII value, place an underscore
in front of it. (For example, " _$" results in a single dollar sign rather than an underscore followed
by an escape character). The following characters must be preceded by an underscore in order to be
treated as normal ASCII text:

Ampersand &
Apostrophe '
At sign @
Quotation marks "
Circumflex A
Dollar sign $
Exclamation point !
Left parenthesis (
Underscore

The Screen Management Facility automatically invokes the graphics mode needed to display the line-
drawing character set (for example, the bottom_t char, top t char, and so on). However, if you call
the foreign terminal routines directly, you are responsible for invoking the required graphics mode.

Padding (for example, with null characters) must sometimes be added to a terminal command to allow
the terminal sufficient time to execute the command. The amount of padding needed depends on the
terminal and the baud rate. The pad character capability field is included only for future expansion
and has no function in this release; padding is the responsibility of the user.

When the foreign terminal support routines are called directly, many of the string capability fields

use arguments whose values must be specified at run time. Further, some arguments also require that
arithmetic operations be performed when values are substituted for arguments. The following sections
describe argument substitution and arithmetic operations.

5.2.4. Argument Substitution

It is frequently necessary to substitute values in a terminal command string. For example, setting a
scrolling region or moving the cursor ten columns to the right requires the run-time substitution of a
value; these values cannot be stored in the TERMTABLE terminal definition. TERMTABLE provides
for string substitution by accepting UL, an $FAO style directive. The 'UL directive signifies that

a value is to be inserted at that point: the TERMTABLE interface routine is to accept an unsigned
longword and convert it to ASCII digits before substituting it in the capability field string (and thus in
the returned command string). For example:

NAME = "VT300_series”

47

Chapter 5. Support for Third-Party Terminals

STRI NG
set _cursor_abs = "$[!UL; ! ULH

END

The string defined for the SET _CURSOR_ABS function must have values substituted for the two !
UL directives; these values specify the row and column number at which to set the cursor. You specify
these run-time arguments as an optional longword vector argument to the SMGSGET TERM_DATA
routine. The first entry in the vector contains the number of arguments that follow. Thus, the first
entry is 2, the second entry is the desired row number, and the third entry is the desired column
number. The SMGSGET TERM_DATA routine converts the first optional data item (the second item
in the vector) to ASCII digits and substitutes an ASCII value for the first UL directive; it converts the
second optional data item and substitutes it for the second UL directive, and so on.

5.2.5. Arithmetic Operations

In addition to argument substitution, terminal command sequences may also require arithmetic
operations. To perform an argument substitution and arithmetic operation, the TERMTABLE entry
requires a different scheme than for argument conversion and substitution.

To perform both argument substitution and arithmetic operations, you use an opening parenthesis, a
percent sign (to indicate the point of substitution), an arithmetic operator, an operand, and a closing
parenthesis. For example:

NAME = " VT52"

STRI NG
set _cursor_abs = "$Y(%+31) (9R+31)"

END

This example shows the string that directly positions the cursor on a VT52, where a bias must be
added to the row and column numbers. Values to be substituted in the expression are passed with
the SMGSGET _TERM _DATA routine, in the same way as for argument substitution alone. The
percent sign is always followed by an integer that indicates the order in which arguments should be
substituted.

The following table summarizes the characters used in arithmetic operations:

Character |Meaning

(Beginning of arithmetic expression
Y% n Substitute nth user argument

+ Arithmetic addition operator

48

Chapter 5. Support for Third-Party Terminals

Character |Meaning

- Arithmetic subtraction operator

* Arithmetic multiplication operator
/ Arithmetic division operator
) End of arithmetic expression

Longword integers are sufficient to express screen coordinates. Expressions are evaluated from left to
right; there is no operator precedence.

Spaces between items are not significant; they may be used wherever desired to improve readability.
Capability strings are limited to 128 bytes in length.

5.3. Creating an OpenVMS Terminal
Capabilities File

The source code for the database is an ASCII file named TERMTABLE.TXT. This file contains an
entry for each type of terminal. Each entry lists a terminal's capabilities and other device-specific
information, such as initialization sequences and screen size; a TERMTABLE entry can span more
than one record in the file. A terminal definition can be added by editing the TERMTABLE.TXT file;
TERMTABLE.TXT must then be reprocessed by running SYS$SYSTEM:SMGBLDTRM.EXE.

TERMTABLE.TXT can be created with any text editor. A TERMTABLE entry consists of a terminal
name, followed by any number of capability fields and their values (see Section 5.2 for more
information about capability fields). Although TERMTABLE.TXT must be formatted for compilation,
capability names are descriptive and can be easily understood. Terminal names must be unique; for
example, if more than one definition is needed for a foreign terminal, then a second name must be
used.

When a TERMTABLE routine first searches for a terminal entry, it tries to find TERMTABLE.EXE
in the area logically named TERM$TABLOC. If the specified terminal entry is not found there,

the routine then searches for TERMTABLE.EXE in SYS$SSYSTEM. If you want to use a terminal
definition that differs from the system definition for that terminal, you can create a private copy of
TERMTABLE.TXT and TERMTABLE.EXE. You can then define a single terminal with a definition
that is different from the one in SYSSSYSTEM:TERMTABLE.EXE and still use the rest of the
standard system definitions.

The format of a TERMTABLE entry is as follows:
NAMVE = "term nal -nanme" capability-field [,...] END

The TERMTABLE.TXT file allows you to include REQUIRE directives. The REQUIRE directive
lets you include separate source files in the TERMTABLE.TXT file. Its format is as follows:

REQUI RE "fil espec”

In the above format, "filespec” is a valid OpenVMS file specification.

5.4. Examples

The following example contains sample terminal definitions for the TERMTABLE.TXT file; these
entries contain device-specific information for a VT300 terminal and a VT52 terminal.

49

Chapter 5. Support for Third-Party Terminals

! Private versions of term nal definitions

= 'nyvt 300
BOCOLEAN
ansi_crt =1, dec_crt =1
NUMERI C
rows = 24, colums = 80,

wi de_screen_colums = 132

STRI NG
begi n_alternate_char = "~N',
end_alternate_char = ""O',

erase_whol e_di splay = "$[2J",
init_string = "$_(B",
set _cursor_abs = "$[!UL; ! ULH"

END
= "MYVT52"
BOOLEAN
ansi_crt = 0, dec_crt =1
NUMERI C
rows = 24, col ums = 80,
wi de_screen_colums = 80
STRI NG
begi n_alternate_char = "$F"
end_alternate _char = "$G',
erase_whol e_di splay = "$Y(32)(32)%J", !position to 1,1; then erase
set_cursor_abs = "$Y(%+31) (%2+31)"
END

For the set cursor sequence listed for a VT300 series (MY VT300), the string returned depends on

the values provided in the argument vector supplied with the call to the SMGSGET TERM_DATA
routine. For example, to position the cursor to row 3 and column 12, you supply these longword
values as the second and third entries in the vector (the first entry is the number of values that follow).
The SMGSGET_TERM_DATA routine converts these longword values into their ASCII values and
inserts the converted values into the string returned at the point of the respective UL directives.

For the set cursor sequence listed for a VT52 (MY VT52), the string returned depends not on argument
substitution, but on an arithmetic operation (because the VT52 requires biasing). The arithmetic
operator is used to add 31 (decimal) to the row and column numbers supplied in entries 2 and 3 of the
argument vector for the SMGSGET_TERM_DATA routine.

The INIT STRING field in MYVT300 is included to point out that the parenthesis is normally treated
as a special character indicating an arithmetic expression. A parenthesis must be preceded by an
underscore in order to be interpreted as a normal text character. Thus the string "$ (B" yields ESC(B,
a command that designates the ASCII character set into GO.

The ERASE_ WHOLE DISPLAY sequence for MY VT52 shows that it may be necessary to combine
sequences in order to provide a certain function. The VT52 does not have a command that erases

the entire screen. However, you can erase the entire screen by homing the cursor and then using the
command that erases from the current position to the end of the screen.

50

Chapter 5. Support for Third-Party Terminals

The following BASIC example program uses the LIBSGETDVI routine to ascertain the type of
terminal associated with SYS$SOUTPUT. The program then uses the foreign terminal routines to place
the cursor at the twelfth screen line and to erase to the end of the screen. The program detects whether
these capabilities are available for the terminal and displays an error message if they are not.

10

to

% NCLUDE " $SMGTRVPTR'

Programto call the Terntable i

nterface routines

This program sets the cursor to row 12 columm 1,

and erase to the bottomof the screen. |If the cursor
positioning or erasing to the e
capabilities are not defined, a

nd of the screen
nmessage i s out put.

%-ROM %.1 BRARY " SYS$L| BRARY: BAS| C$STARLET"

OPTION TYPE = EXPLICIT, SIZE = | NTEGER LONG

EXTERNAL | NTEGER FUNCTI ON SYS$ASSI GN, SYS$DASSGN, SYS$Q OW

EXTERNAL | NTEGER FUNCTI ON LI B$GETDVI, LI B$GET_EF, LI B$FREE_EF
EXTERNAL | NTEGER
FUNCTI ON SM3$! NI T_TERM TABLE_BY_TYPE, SMG$GET_TERM DATA

EXTERNAL | NTEGER CONSTANT | G8_WRI TEVBLK, DVI $_DEVTYPE

COMMON (buf) STRING Data_buffer =
dat a

DECLARE | NTEGER Sys_st at us,

Chan,

Term type,
Term_t abl e_addr,
Arg vector (2),
Ret | en,

Event fl ag

I Assign a channel for LIB$GETDVI

20 | buffer to hold term nal

Ro Ro Ro Ro Ro Ro

and SYS$Q ow

Sys_status = SYS$ASSI GN (' SYS$QUTPUT' , Chan, , ,)

IF (Sys_status AND 1%9 = 0%

THEN
PRI NT "Error
GOTO Done
END | F

from SYS$ASSI GN :

I Get the termnal type.

", Sys_status

Sys_status = LIB$GETDVI (DVI$_DEVIYPE ! request item code
, Chan I channel assigned
SYS$QUTPUT &
, I omt device nane
, Term type) I place to return type
IF (Sys_status AND 1% = 0%
THEN
PRI NT "Error from LI BSGETDVI "; Sys_status
GOTO Done

END | F

51

Chapter 5. Support for Third-Party Terminals

I Get the definition for the type of term nal

Sys_status =
IF (Sys_status AND 1% = 0%
THEN
PRI NT "Error getting term nal
GOTO Done
END | F

I Get the sequence to position the cursor to 12,1

Arg_vector (0) = 2% !
Arg_vector (1) = 12% !
Arg_vector (2) = 1% !

definition :

SME$I NI T_TERM TABLE_BY_TYPE (Ter m t ype,

we are running on.

"; Sys_status

nunber of args to follow
row nunber
col um numnber

Term tabl e_addr)

Sys_status = SMSBGET_TERM DATA &
(Term_tabl e_addr I addr of termnal definition &
, SMEBK_SET_CURSOR_ABS ! request code &
, 20% I max buffer length &
, Ret _len I length of sequence returned &
, Dat a_buffer BY REF I buffer to hold sequence &
,Arg_vector (0)) I optional vector with
I' row and col um nunbers
IF (Sys_status AND 1% = 0%
THEN
PRI NT "Error getting cursor sequence : ";Sys_status
GOTO Done
END | F
IF Ret _len = 0%
THEN
PRI NT " Cursor sequence not avail abl e”
GOTO Done
END | F
I Get a unique event flag nunmber
Sys_status = LI B$GET_EF (Event _fl ag)
IF (Sys_status AND 1% = 0%
THEN
PRI NT "Unable to allocate an event flag"
GOTO Done
END | F
I Qutput the cursor sequence to the termnal.
Sys_status = SYS$Q OWN (Event _fl ag BY VALUE I event flag number &
, Chan BY VALUE I' channel nunber &
, 1 G6_WRI TEVBLK BY VALUE ! function code &
v I no iosb, &
I ast routine, &
I or argunment &
, Dat a_buffer BY REF I buffer to output &
, Ret | en BY VALUE I bytes returned &

52

Chapter 5. Support for Third-Party Terminals

v) I null argunents
IF (Sys_status AND 1% = 0%
THEN
PRI NT "Error from SYS$Q OW: "; Sys_status
GOTO Done
END I F

I Get the sequence to erase fromcurrent cursor to end of screen.

Sys_status = SMS3GET_TERM DATA

&
(Termtable_addr ! addr of term nal definition
&
, SMESK_ERASE_TO END DI SPLAY ! request code
&
, 20% I max buffer length
&
, Ret _len I bytes returned
&
, Dat a_buf fer BY REF) I buffer for
sequence
IF (Sys_status AND 1% = 0%
THEN
PRI NT "Error getting erase sequence : "; Sys_status
GOTO Done
END | F
IF Ret _len = 0%
THEN
PRI NT "Erase sequence not avail abl e"
GOTO Done
END | F
I Qutput the erase sequence to the termnal.
Sys_status = SYS$Q OW (Event _fl ag BY VALUE I event flag number
&
, Chan BY VALUE I' channel nunber
&
, 1 G6_WRI TEVBLK BY VALUE ! function code
value &
v I no iosb,
&
I ast routine,
&
I or argunment
&
, Dat a_buffer BY REF I buffer to output
&
, Ret | en BY VALUE I bytes in buffer
&
v) I null argunents

IF (Sys_status AND 1% = 0%
THEN
PRI NT "Error from SYS$Q OW: "; Sys_status

53

Chapter 5. Support for Third-Party Terminals

GOTO Done
END | F

I Deassign the channel .
Sys_status = SYS$DASSGN (Chan BY VALUE)

IF (Sys_status AND 1% = 0%

THEN
PRI NT "Error from SYS$DASSCN : "; Sys_status
GOTO Done

END | F

I Deal |l ocate event flag so other prograns can use it.
Sys_status = LI B$FREE_EF (Event _fl ag)

IF (Sys_status AND 1% = 0%

THEN
PRI NT "Unabl e to deal | ocate event flag"”
GOTO Done

END | F

32767 Done: END

5.5. Creating TERMTABLE.EXE

Accessing an ASCII file for each screen program is inefficient because the ASCII text must be
processed as binary information before it can be returned as a string ready for the terminal. To avoid
paying the price of this processing at the start of every image, TERMTABLE.TXT is "precompiled"
into the required binary format. A screen application then gets its terminal sequences from the
precompiled binary capabilities file.

Compile TERMTABLE.TXT by running the SYS$SYSTEM:SMGBLDTRM.EXE program. This
utility accepts TERMTABLE.TXT as an input file and creates TERMTABLE.EXE as an output file
on the device and directory pointed to by the logical TERM$TABLOC.

The compiled terminal capabilities are stored as a table in a file which is mapped as a permanent
global section. Thus, user programs map to the global section rather than having their own copies of
the capabilities data.

If a user compiles a private TERMTABLE.TXT from his or her own directory, the interface routines
access it by mapping it as a temporary section. TERMTABLE interface routines look for a definition
in the temporary section before looking in the system's permanent global section.

Note that system managers may want to coordinate terminal definitions so that nonstandard
definitions are confined to a user's private area.

Most users do not have the privilege to create a permanent global section. A short program,
SYSSSYSTEM:SMGMAPTRM.EXE, that maps the compiled TERMTABLE as a global section, is
part of the standard OpenVMS startup procedure. In order to map an updated TERMTABLE.EXE as
the global section, the existing global section must first be deleted. Deleting the global section while
the system is active may cause a user's program to fail; therefore the system must be rebooted in order
to make an updated TERMTABLE.EXE the default.

54

Chapter 5. Support for Third-Party Terminals

To reduce compiling time and the size of the resulting global section, the terminal definitions in
SYSS$SSYSTEM:TERMTABLE.TXT should be kept to a minimum. Only the types of terminals that
are actually attached to the computer system should be defined.

5.6. Capability Fields Used by Screen
Management

The tables in Section 5.2 show whether or not the Screen Management Facility can request a
particular capability string. Some functions, such as wide characters or line drawing, are requested
only if the user calls the screen management routines that output wide text or draw lines. If all you
want to do is write normal text to the screen, only the following set of fields needs to be defined.

Essential Capabilities

« NAME
. SET CURSOR_ABS

If SET _CURSOR _ABS is omitted, the Screen Management Facility treats the terminal as a hardcopy
device. (For more information on using the Screen Management Facility with a hardcopy device, refer
to the SMG$SSNAPSHOT routine.

Operation of the Screen Management Facility is more efficient if the following optional capabilities
are also provided:

- ERASE TO END DISPLAY
« ERASE TO END LINE
« SET SCROLLING REGION

If you do not include ERASE_TO_END_DISPLAY, ERASE TO END_LINE, or

SET _SCROLLING_REGION, the Screen Management Facility inserts blanks to perform these
functions. However, inserting blanks is a slower operation. Similarly, hardware scrolling also
improves output speed; if scrolling is not available, the Screen Management Facility must rewrite the
entire screen.

The Screen Management Facility uses the ASCII character set. If your terminal has a line-drawing
character set, you should define the line drawing characters (bottom_t_char, horizontal bar, and so
forth). If line-drawing characters are not defined, the Screen Management Facility uses normal ASCII
characters to draw borders.

The Screen Management Facility also relies on the terminal characteristics maintained by the terminal
driver. You can change these characteristics with the DCL command SET TERMINAL. For example,
if you type SET TERMINAL/NOTAB, then the Screen Management Facility does not send tabs to the
terminal.

5.7. Input Support for Foreign Terminals

A foreign terminal is any terminal for which the device type is not one of the standard terminals
recognized by the OpenVMS operating system, or any terminal on which the ANSI CRT
characteristic is not set.

55

Chapter 5. Support for Third-Party Terminals

When you use an ANSI terminal, typing a special key such as a function key or a keypad key sends an
escape sequence (as defined by the ANSI standard) to the OpenVMS terminal driver. The OpenVMS
terminal driver understands this ANSI standard and interprets the escape sequence according to this
standard. Thus, the OpenVMS terminal driver knows how long the escape sequence is and what
characters are allowed in which positions in that sequence.

The OpenVMS terminal driver does not echo any of the printing characters from the sequence
because those characters are interpreted with special meaning as part of the escape sequence. Normal
keys are echoed unless the TRM$M_TM NOECHO modifier is specified.

The OpenVMS terminal driver returns to the Screen Management Facility the sequence, the length of
the sequence, and the number of characters entered before the function key was pressed. The Screen
Management Facility determines which key was pressed by comparing the sequence and its length
against the list of key definitions for that particular terminal in TERMTABLE.EXE. This code is
returned to the user in the format SMG$K _TRM_ xxx, where xxx is used to specify the particular key.

When you press a special key such as a function key or a keypad key on a foreign terminal, a non-
ANSI sequence is sent to the OpenVMS terminal driver. If this sequence starts with a control
character, the OpenVMS terminal driver interprets this character as a terminator. (By default all
control characters are terminators unless you use a terminator mask to specify otherwise.) The
terminal driver then stops reading characters and returns to the Screen Management Facility the
character, a length of 1, and the number of characters entered before the function key was pressed.

The Screen Management Facility looks at the returned character. If it is a control character, the Screen
Management Facility looks in the type-ahead buffer for the next characters of the sequence. If there
are characters in the type-ahead buffer, the Screen Management Facility reads one character from the
type-ahead buffer, appends it to the control sequence it has already, and checks this new sequence
against the list of key definitions for this terminal in TERMTABLE.EXE to determine which key was
pressed. If the sequence is not matched, the next character is read from the type-ahead buffer. This
continues until a match is found or the type-ahead buffer is empty. Since the terminal driver does not
know about this sequence, any printable characters in the sequence are echoed by the terminal driver
unless the noecho modifier was specified by the user. Because the Screen Management Facility does
not know what characters make up this sequence, it disables line editing in order to allow the actual
characters that make up the sequence to be returned to the Screen Management Facility.

Terminals whose special keys send a sequence that does not start with a control character are not
supported by the Screen Management Facility for input. Changing the terminator mask to exclude the
control character that starts the function key sequence is not supported. In addition, the performance
of a foreign terminal doing input will not match that of a non-foreign terminal doing the same input
since SMG$ must parse the sequence in place of the OpenVMS terminal driver.

5.8. Support for SET and SHOW TERMINAL
Commands

The DCL command SET TERMINAL is the mechanism for setting your terminal to conform to a
TERMTABLE definition. SET TERMINAL causes the following three fields to be retrieved from the
TERMTABLE database and set for your terminal:

» Terminal type—A signed integer assigned by the system and associated with a particular device
type

* Width—The number of columns on the physical screen

56

Chapter 5. Support for Third-Party Terminals

* Page size—The number of rows on the screen

In addition, if the corresponding Boolean capability is set in the terminal definition, the following

flags are set:

* ADVANCED VIDEO

.+ ANSI COLOR

* ANSI CRT

« BLOCK MODE

« DEC_CRT

« EDIT

« EIGHT BIT
« FORM

« FULLDUP

» LOWERCASE

* REGIS

* SCOPE

« SIXEL GRAPHICS

* SOFT _CHARACTERS

« TAB

If any of these fields is missing from your definition, the previous setting for that characteristic is
retained; SET TERMINAL does not try to set that characteristic for your terminal. You should include
all of the above capabilities in your definitions to avoid unpredictable settings.

SET TERMINAL operates as it always has for known terminals such as the VT300 series, VT200
series, VT100, and VT52. When SET TERMINAL encounters an unknown device name, it searches
TERMTABLE for a definition with that name. Notice that your definitions must have names other
than the names that SET TERMINAL currently recognizes. The terminals currently recognized are
listed as follows:

LAI12 VTO05 VTI131

LA34 VT52 VT132

LA36 VTS5 VT200-SERIES
LA38 VT100 VT300-SERIES
LA100 VTI101 VT400-SERIES
LA120 VT102 VT500-SERIES
LQPO02 VT125 FT1 through FT8
Unknown

57

Chapter 5. Support for Third-Party Terminals

If SET TERMINAL finds the device name in its own internal tables, it does not search the
TERMTABLE database.

Since the SET TERMINAL command recognizes only the first 15 characters of a device name, you
may want to limit your terminal names to 15 characters.

The SET TERMINAL/DEVICE=name command causes the TERMTABLE database to be searched
for the named terminal, if that terminal is unknown to the OpenVMS operating system. SET
TERMINAL/DEVICE=name then sets various terminal characteristics, as shown in the following
table, based on the presence of these capabilities in the TERMTABLE database:

Capability Field Terminal Characteristic
LOWERCASE LOWERCASE
PHYSICAL TABS TABS

SCOPE SCOPE

EIGHT BIT EIGHTBIT

PHYSICAL FF FORM

FULLDUP FULLDUP

SIXEL GRAPHICS SIXEL

SOFT_CHARACTERS |SOFT

ANSI_CRT ANSI_CRT
ANSI_COLOR ANSI_COLOR
REGIS REGIS
BLOCK_MODE BLOCK
ADVANCED VIDEO |AVO

EDIT MODE EDIT
DEC_CRT DEC_CRT

The SET TERMINAL/DEVICE TYPE=format must be used with TERMTABLE terminals. SET
TERMINAL/name is an old format that works for a small set of device names and is maintained only
for compatibility with previous versions of the OpenVMS operating system.

58

Chapter 6. Using Screen Management
Routines to Develop New Programs

This chapter discusses some recommended methods for using the Screen Management Facility for
developing new programs.

Important

Screen management routines are not AST reentrant.

6.1. Calling Screen Management Routines

There are two ways in which an application can call screen management routines.
* Directly

Applications that call the Screen Management Facility directly already use pasteboards and virtual
displays.

* Indirectly

This kind of application does not use the Screen Management Facility directly, but may use it in
the course of invoking other routines.

Because many callable routines may use the Screen Management Facility to produce their output,
it is difficult to determine whether your application is in this category.

In either case, the calling routine is likely at some point to call a subsystem so that the subsystem can
write data to the screen.

At some later point, the terminal user will want to remove the subsystem-specific display. However,
if the subsystem created and used a virtual display to display the data, the display identifier is not
available to the calling program and therefore the calling program cannot remove it. Furthermore,
unless the calling program is a direct user of the Screen Management Facility, the screen's pasteboard
identifier is also not available to it.

The solution is to require that all callable routines that use the Screen Management Facility, directly or
indirectly, have an (optional) input argument for the pasteboard-id and an (optional) output argument
for the virtual display-id. Passing the pasteboard and display identifiers lets you avoid accumulating
subsystem-specific data on the screen that cannot be removed by the calling program.

These guidelines are developed as follows:
» If the pasteboard-id argument is provided by the calling program, then:
» The called program should not create a pasteboard of its own.

* The called program must deliver all of its output to the pasteboard supplied by the calling
program; that is, the called program may paste its displays only to the pasteboard specified by
pasteboard-id.

* The called program can delete any virtual displays it created by calling
SMGS$DELETE_VIRTUAL DISPLAY, but it must not delete the pasteboard.

59

Chapter 6. Using Screen Management Routines to Develop New Programs

Note that the called program should not simply call the
SMGS$UNPASTE_VIRTUAL_ DISPLAY routine with the expectation that this virtual display
can be reused in a later invocation. Since the called program and the calling program are
sharing a pasteboard, the calling program may use the SMG$POP_VIRTUAL DISPLAY
routine to delete all displays created by the called program.

* The called program must pass the pasteboard-id on to any routines it in turn calls. Thus all
output is directed to the specified pasteboard.

If the pasteboard-id argument is not provided by the calling program, then:

* The called program must create a pasteboard on its own. The called program may allocate any
physical device for the pasteboard, unless specifically directed to a particular device by some
other mechanism.

The called program must check the status of the SMGSCREATE PASTEBOARD call to
see whether it created a unique pasteboard identifier or whether it received the pasteboard
identifier of an already existing pasteboard. If the pasteboard already exists, the called
program must not delete the pasteboard.

» Ifthe called routine creates a pasteboard and in turn calls subroutines that may use
pasteboards, it should pass the pasteboard-id to the subroutines.

* The called program can clean up by using the SMGSUNPASTE VIRTUAL DISPLAY
routine, and the displays can be saved for reuse on a subsequent invocation if such a call seems
likely. However, the SMGSUNPASTE VIRTUAL DISPLAY routine should be used only if
the called program creates its own pasteboard, because in this case the calling program cannot
delete the virtual displays created by the called program.

If the virtual display-id argument is provided by the calling program, then the calling
program must clean up any virtual displays created by the called program. The called
program must return to the calling program the identifier of the first virtual display pasted.
The calling program can then remove this and all later-pasted virtual displays by calling the
SMGS$POP_ VIRTUAL DISPLAY routine.

If the virtual display-id argument is not provided by the calling program, the called program must
remove all the virtual displays it pastes to the pasteboard.

By adhering to the following guidelines, you can develop your application in a modular fashion:

Calling programs control the pasteboard on which information is pasted. Pasteboard identifiers
flow downward in a hierarchy, with each routine using the pasteboard-id provided by the caller
and passing it along to subroutines.

If a calling program supplies a virtual display-id argument to be filled in by the called program,
then the calling program assumes responsibility for cleaning up any displays created by the
called program. The called program passes back the display-id of the first virtual display
pasted so that the calling program can remove this and all later-pasted displays by calling the
SMG$POP_VIRTUAL DISPLAY routine.

Virtual displays are created (and pasted) in the routine where they are needed. If the calling
program does not supply a display-id argument, then displays are unpasted and/or deleted in the
routine that created them.

60

Chapter 6. Using Screen Management Routines to Develop New Programs

6.2. Calling Routines That Do Not Use the
Screen Management Facility

A different situation exists if you call a subroutine (or subsystem) that writes to the screen without
using the Screen Management Facility. When the Screen Management Facility is bypassed (that is,
when text is placed on the screen outside screen management's control), problems result when an
attempt is made to perform a screen update.

For this reason, the Screen Management Facility provides two routines for turning over the screen
(or a part of it) temporarily to a program that does not use screen management, and for restoring the
screen to its previous state after control is returned from the non-SMGS$ routine. These routines are
SMGSSAVE PHYSICAL SCREEN and SMGSRESTORE PHYSICAL SCREEN.

Before you call a routine that performs non-SMG$ /0 to the screen, you should call the
SMGS$SAVE PHYSICAL SCREEN routine, specifying what part of the screen is to be turned over
to the non-SMGS routine. SMG$SAVE PHYSICAL SCREEN erases the specified area, sets the
terminal's physical scrolling region to this area, and sets the physical cursor to row 1, column 1 of the
area. If the non-SMGS$ code does only sequential input and output (that is, if it does no direct cursor
addressing) its output will be confined to the specified area of the screen.

When control is returned from the non-SMGS$ routine, you simply call
SMGS$RESTORE PHYSICAL SCREEN, which restores the screen image as it was before the call to
SMGS$SAVE PHYSICAL SCREEN.

61

Chapter 6. Using Screen Management Routines to Develop New Programs

62

Chapter 7. Examples of Calling SMG$
Routines

This chapter contains examples demonstrating how to call the routine SMGSREAD KEYSTROKE
from the major programming languages. Note that not all of the languages represented in these
examples are available on OpenVMS Alpha systems. The following languages are supported on
Alpha systems:

Ada BASIC BLISS C
C++ COBOL Fortran MACRO-32"
MACRO-64 Pascal PL/I

'Note that MACRO-32 must be compiled with the AMACRO compiler.

Other SMGS$ routines such as SMGSCREATE VIRTUAL DISPLAY,

SMGSCREATE PASTEBOARD, SMG$CREATE VIRTUAL KEYBOARD,
SMGSPASTE VIRTUAL DISPLAY, and SMG$PUT _LINE are also used throughout these
examples.

Example 7.1 demonstrates the use of SMGSREAD KEYSTROKE from a VSI Ada program. This
program also uses SMGSCREATE VIRTUAL DISPLAY, SMGSCREATE PASTEBOARD,
SMGSCREATE VIRTUAL KEYBOARD, SMGS$PASTE VIRTUAL DISPLAY, and
SMGS$PUT_LINE.

Example 7.1. Using SMGS$ Routines in VSI Ada

with SYSTEM CONDI TI ON_HANDLI NG use SYSTEM
package SMGis -- declarations of SM3$ routines used

procedure CREATE VI RTUAL_ DI SPLAY (
STATUS: out CONDI TI ON_HANDLI NG COND_VALUE_TYPE;
ROWS, COLUWNS: | NTEGER;
DI SPLAY_|I D: out | NTEGER;
DI SPLAY_ATTRI BUTES, VI DEO ATTRI BUTES, CHAR SET: UNSI GNED_LONGWORD
: = UNSI GNED_LONGWORD NULL_PARAMVETER) ;
pragma | NTERFACE (SMG CREATE VI RTUAL_DI SPLAY) ;
pragma | MPORT_VALUED PROCEDURE
(CREATE_VI RTUAL_DI SPLAY, " SMG$CREATE_VI RTUAL_DI SPLAY");

procedur e CREATE PASTEBQARD (
STATUS: out CONDI TI ON_HANDLI NG COND_VALUE_TYPE;
PASTEBQARD | D: out | NTECER,
OUTPUT_DEVI CE: STRI NG : = STRI NG NULL_PARAMETER;
ROWS, COLUWNS: | NTEGER : = | NTEGER NULL_PARANMETER;
PRESERVE_SCREEN FLAG BOOLEAN : = BOOLEAN NULL_PARAMETER) ;
pragma | NTERFACE (SMG CREATE_PASTEBQARD) ;
pragma | MPORT_VALUED PROCEDURE
(CREATE_PASTEBQARD, " SMG$CREATE_PASTEBCARD") ;

procedure CREATE VI RTUAL_ KEYBOARD (
STATUS: out CONDI TI ON_HANDLI NG COND_VALUE_TYPE;
KEYBOARD | D: out | NTEGER;
FI LESPEC, DEFAULT_FI LESPEC, RESULTANT_FI LESPEC. STRI NG
: = STRI NG NULL_PARAMETER) ;
pragma | NTERFACE (SMG CREATE_VI RTUAL_KEYBOARD) ;

Chapter 7. Examples of Calling SMG$ Routines

end

pragma | MPORT_VALUED PROCEDURE
(CREATE_VI RTUAL_KEYBOARD, " SMS$CREATE_VI RTUAL_KEYBOARD") ;
procedure PASTE_VI RTUAL_DI SPLAY (
STATUS: out CONDI TI ON_HANDLI NG COND_VALUE_TYPE;
DI SPLAY_| D, PASTEBOARD_I D: | NTECGER
ROW COLUWN: | NTEGER);
pragma | NTERFACE (SMG PASTE VI RTUAL_DI SPLAY) ;
pragma | MPORT_VALUED PROCEDURE
(PASTE_VI RTUAL_DI SPLAY, " SMS$PASTE_VI RTUAL_DI SPLAY") ;

procedure READ KEYSTROKE (
STATUS: out CONDI TI ON_HANDLI NG COND_VALUE_TYPE;
KEYBOARD | D: | NTEGER;
TERM NATOR_CODE: out UNSI GNED_WORD;
PROWPT: STRI NG : = STRI NG NULL_PARAMETER;
TI MEQUT, DI SPLAY_ID: | NTEGER : = | NTEGER NULL_PARAMETER);
pragma | NTERFACE (SMG READ_KEYSTROKE) ;
pragma | MPORT_VALUED PROCEDURE
(READ_KEYSTRCKE, " SMSSREAD_KEYSTRCKE") ;

procedure PUT_LINE (
STATUS: out CONDI TI ON_HANDLI NG COND_VALUE_TYPE;
DI SPLAY_I D: | NTEGER;
TEXT: STRI NG
LI NE_ADVANCE: | NTEGER : = | NTEGER NULL_PARAMETER;
RENDI TI ON_SET, RENDI TI ON_COVPLEMENT: UNSI GNED_L ONGWORD
: = UNSI GNED_LONGWORD' NULL_PARAMETER;
WRAP_FLAG BOOLEAN : = BOOLEAN NULL_PARAMETER;
CHAR_SET: UNSI GNED_LONGWORD : = UNSI GNED_LONGWORD NULL_PARAMETER) ;
pragma | NTERFACE (SM5 PUT_LI NE);
pragma | MPORT_VALUED PROCEDURE
(PUT_LINE, "SMSSPUT_LINE");
SMG,

-- This routine denonstrates the use of the SM3 routines, in particular
-- SMGSREAD_KEYSTROKE.

with SM5 STARLET, CONDI TI ON_HANDLI NG, SYSTEM
procedure SM5G DEMO i s

begi

STATUS: CONDI TI ON_HANDLI NG COND_VALUE_TYPE;

PASTEBCARD 1, DI SPLAY_1, KEYBOARD 1: | NTEGER

TERM NATOR: SYSTEM UNSI GNED_WORD;

n

-- Create virtual display, pasteboard and virtual keyboard.

SMG. CREATE_VI RTUAL_DI SPLAY (STATUS, ROAS => 7, COLUWNS => 60,

Dl SPLAY_I D => DI SPLAY_1,

DI SPLAY_ATTRI BUTES => STARLET. SMG_M BORDER) ;
SMG, CREATE_PASTEBQARD (STATUS, PASTEBQARD | D => PASTEBOARD_1);
SMG, CREATE_VI RTUAL_KEYBOARD (STATUS, KEYBQOARD_ | D => KEYBOARD 1);

-- Paste the virtual display at row 3, colum 9.

SMG, PASTE_VI RTUAL_DI SPLAY (STATUS, DI SPLAY_I D => DI SPLAY_1,
PASTEBCOARD | D => PASTEBOARD_1, ROW=> 3, COLUW => 9);

-- Wite the instructions to the virtual display.
SMG. PUT_LI NE (STATUS, DI SPLAY_I D => DI SPLAY_1,

64

Chapter 7. Examples of Calling SMG$ Routines

TEXT => "Enter the character K after the >> prompt.");
SMG. PUT_LI NE (STATUS, DI SPLAY_I D => DI SPLAY_1,

TEXT => "This character will not be echoed as you type it.");
SMG. PUT_LI NE (STATUS, DI SPLAY_I D => DI SPLAY_1,

TEXT => "The term nal character equivalent of Kis displayed.");

SMG PUT_LI NE (STATUS, DI SPLAY_ID => DI SPLAY_1,
TEXT => " ");

-- Read the keystroke fromthe virtual keyboard.

SMG, READ_KEYSTROKE (STATUS, KEYBOARD | D => KEYBOARD_1,
DI SPLAY_I D => DI SPLAY_1,
TERM NATCR_CCDE => TERM NATOR, PROWPT => ">>");

-- Display the decimal value of the term nator code.

SMG PUT_LI NE (STATUS, DI SPLAY_ID => DI SPLAY_1,
TEXT => " ");
SMG PUT_LI NE (STATUS, DI SPLAY_ID => DI SPLAY_1,
TEXT => "TERM NAL CHARACTER IS " &
SYSTEM UNSI GNED_WORD' | MAGE(TERM NATCR)) ;

end SMG _DEMO,

Example 7.2 uses SMGSREAD KEYSTROKE to read a keystroke from the terminal.
This BASIC program also uses SMGSCREATE VIRTUAL KEYBOARD and
SMGSDELETE VIRTUAL KEYBOARD.

Example 7.2. Using SMG$ Routines in VSI BASIC

1

OPTI ON TYPE=EXPLIC T

+

This routine denonstrates the use of SMESREAD KEYSTRCOKE to read

I

!

I a keystroke fromthe termnal.

!

I Build this programusing the foll ow ng conrands.
|

$ BASI C READ KEY

$ CREATE SMGDEF. MAR
. TITLE SM3DEF - Define SM3 constants
.ldent /1-000/

[

!

I

[

!

! $SMEDEF GLOBAL
[

! . END

'$ MACRO SMCGDEF

I'$ LI NK READ_KEY, SMGEDEF
[
!

DECLARE LONG KB_I D, RET_STATUS, TERM CODE, |, TIMER
EXTERNAL SUB LI B$SI GNAL(LONG BY VALUE)

EXTERNAL SUB LI B$STOP(LONG BY VALUE)

EXTERNAL LONG CONSTANT SS$_TI MEQUT

EXTERNAL LONG CONSTANT SM3$K_TRM PF1

EXTERNAL LONG CONSTANT SM3$K_TRM PERI CD

EXTERNAL LONG CONSTANT SMG$K_TRM UP

65

Chapter 7. Examples of Calling SMG$ Routines

EXTERNAL LONG CONSTANT SME$K_TRM Rl GHT

EXTERNAL LONG CONSTANT SMG$K_TRM F6

EXTERNAL LONG CONSTANT SMG$K_TRM F20

EXTERNAL LONG CONSTANT SMG$K_TRM FI ND

EXTERNAL LONG CONSTANT SMG$K_TRM NEXT_SCREEN

EXTERNAL LONG CONSTANT SMG$K_TRM Tl MEOUT

EXTERNAL LONG FUNCTI ON SMG$CREATE_ VI RTUAL_KEYBOARD(LONG, STRI NG)

EXTERNAL LONG FUNCTI ON SMG$SDELETE_VI RTUAL_KEYBOARD(LONG)

EXTERNAL LONG FUNCTI ON SMGSREAD KEYSTROKE(LONG, LONG, STRING &
LONG, LONG)

|+
I Pronpt the user for the timer value. A value of 0 will cause

I the type-ahead buffer to be read.
I -

I NPUT "Enter timer value (O to read type-ahead buffer): ";TIMR

|+
I Establish a SMG connection to SYS$I NPUT. Signal any unexpected

I errors.
| -

RET_STATUS = SMGSCREATE_VI RTUAL_KEYBOARD(KB_I D, "SYS$I NPUT:")
| F (RET_STATUS AND 1% = 0% THEN

CALL LI B$SI GNAL(RET_STATUS)
END | F

I+

! Read a keystroke, tell the user what we found.
I -

RET_STATUS = SMGSREAD KEYSTROKE(KB I D, TERM CODE, , TIMER,)

| F (RET_STATUS <> SS$_TI MEOUT) AND ((RET_STATUS AND 1% = 0% THEN
CALL LIB$SI GNAL(RET_STATUS)

END | F

PRI NT "term code = "; TERM CODE
SELECT TERM_CCDE

CASE 0 TO 31
PRI NT "You typed a control character”

CASE 32 TO 127
PRI NT "You typed: "; CHR$(TERM CODE)

CASE SM33K_TRM PF1 TO SMS$K_TRM PERI OD
PRI NT "You typed one of the keypad keys"

CASE SM33K_TRM UP TO SM3$3K_TRM Rl GHT
PRI NT "You typed one of the cursor positioning keys"

CASE SM33K_TRM F6 TO SM3$3K_TRM F20
PRI NT "You typed one of the function keys”

CASE SM33K_TRM FI ND TO SME$K_TRM NEXT_SCREEN
PRI NT "You typed one of the editing keys"

66

Chapter 7. Examples of Calling SMG$ Routines

CASE SMS$K_TRM TI MEOUT
PRI NT "You did not type a key fast enough”

CASE ELSE
PRINT "I"mnot sure what key you typed"

END SELECT

I+

I A ose the connection to SYS$I NPUT, and signal any errors.
I -

RET_STATUS = SMS$DELETE_VI RTUAL_KEYBOARD(KB_I D)
| F (RET_STATUS AND 1% = 0% THEN

CALL LI B$SI GNAL(RET_STATUS)
END | F

END

The BLISS program in Example 7.3 demonstrates the use of SMGSREAD KEYSTROKE from a
lower-level language.

Example 7.3. Using SMGS$ Routines in VAX BLISS-32

MODULE READ_SI NGLE_CHAR (MAI N = PERFORM READ,
%1 TLE ' Read a Keystroke from SYS$I NPUT'
IDENT = '1-001') =

BEG N

I+

I Facility: Exanpl e prograns

!

I Abstract: Thi s exanpl e program uses the routi ne SMESREAD KEYSTROKE

! to get a single character input fromthe current SYS$I NPUT
! device and then indicates the nature of the input to the
user.

Environnent: User nbde, AST reentrant
Aut hor : John Doe Creation Date: 8-Apr-1985

Modi fi ed by:
1-001 - Original. JD 8-Apr-1985

I+

I General npde addressing nust be used for external references.
I -

USBTTL ' Decl ar ati ons'
SW TCHES ADDRESSI NG MODE (EXTERNAL=GENERAL, NONEXTERNAL=WORD RELATI VE);

I+

I Obtain SM3, SS$, etc. definitions.
I -

LI BRARY ' SYS$LI BRARY: STARLET" ;

67

Chapter 7. Examples of Calling SMG$ Routines

I+

I Use the TUTI O package for the purposes of this small exanple.
I -

REQUI RE ' SYS$LI BRARY: TUTI O ;

|+
I Decl are screen managenent routines used by this program as well as

I any other external routines.
| -

EXTERNAL ROUTI NE
SMGSCREATE_VI RTUAL_KEYBQOARD,
SMGSDELETE_VI RTUAL_KEYBQOARD,
SMGSREAD _KEYSTROKE
LI B$SI GNAL : NOVALUE;

I+

I Define a convenient way to check the return status froma routine.
I -

MACRO CHECK (X) =
| F NOT X
THEN

LI B$SI GNAL (X)
%

YSBTTL ' Routi ne PERFORM _READ
ROUTI NE PERFORM_READ:. NOVALUE =

+
Functi onal Description

This routine uses screen managenent |1/O to get a single character
input fromthe current SYS$I NPUT device, and then processes it by
what its character or term nation code is.
Cal l'i ng Sequence:
Not Cal | abl e
Formal Arguments:
Not Applicabl e
Implicit Inputs:
None
Implicit CQutputs:
None

Si de Effects:

Any error returned by screen nanagenment routines except for
SS$_TIMEQUT wi |l be signal ed

68

Chapter 7. Examples of Calling SMG$ Routines

BEG N

LI TERAL
ZERO = 0;

LOCAL
KBID : I N TIAL(0),
TERM CODE : | NI TI AL(0),
TIMER VALUE : INITIAL(O),
SMG_STATUS;

I+

I Obtain a read tineout val ue.
I -

TI MER_VALUE = 10;

|+
I Establish a screen nanaged connection to SYS$I NPUT.
I -

SMG_STATUS = SMGSCREATE VI RTUAL_KEYBQARD (KBI D, %ASCI D' SYS$I NPUT') ;
CHECK (. SMG_STATUS) ;

|+
I Read a keystroke and tell the user what was found.
I -

SMG_STATUS = SMGSREAD_KEYSTROKE (KBI D, TERM CODE, ZERO, TI MER VALUE);
| F (. SMG_STATUS NEQ SS$_TI MEQUT)
THEN

CHECK (. SMG_STATUS) ;

SELECTONE . TERM CODE OF
SET
[0 TO 31]:
TTY_PUT_QUO (' You typed a control character.');

[32 TO 127]:
TTY_PUT_QUO (' You typed a printable character."');

[SMGSK_TRM PF1 TO SMG$K_TRM PERI OD] :
TTY_PUT_QUO (' You typed one of the keypad keys.');

[SMGSK_TRM _UP TO SMG$K_TRM RI GHT] :
TTY_PUT_QUO (' You typed one of the cursor positioning keys.');

[SMGBSK_TRM F6 TO SMG$K_TRM F20] :
TTY_PUT_QUO (' You typed one of the function keys.');

[SMESK_TRM _FI ND TO SMS$K_TRM _NEXT_SCREEN] :
TTY_PUT_QUO (' You typed one of the editing keys."');

[SMGSK_TRM_TI MEQUT] :
TTY_PUT_QUO (' You did not type a key fast enough.');

69

Chapter 7. Examples of Calling SMG$ Routines

[OTHERW SE] :
TTY_PUT_QUO ('l am not sure what you typed.');

TES;

TTY_PUT_CRLF ();

|+

I Termi nate the screen managed connection to SYS$I NPUT.
I -

SMG_STATUS = SMGSDELETE VI RTUAL_KEYBOARD (KBI D) ;
CHECK (. SMG_STATUS) ;

END;

END
ELUDOM

Example 7.4 shows the techniques used to call SMGSREAD KEYSTROKE from VSI COBOL.

Example 7.4. Using SMG$ Routines in VSI COBOL

| DENTI FI CATI ON DI VI SI ON.
PROGRAM | D. KEYSTROKE.
*

* This routine creates a VIRTUAL DI SPLAY and wites it to the PASTEBOARD.

* Data is placed in the VIRTUAL DI SPLAY using the routine SMGSPUT_LI NE.

* SMSPREAD KEYSTROKE is called to read a keystroke fromthe VI RTUAL
KEYBOARD.

*

ENVI RONMENT DI VI SI ON.

DATA DI VI SI ON.

WORKI NG- STORAGE SECTI ON.

01 DI SPLAY1 PIC 9(9) COW.

01 PASTEL PIC 9(9) COW.

01 KEYBOARDL PIC 9(9) COW.

01 ROWS PIC S9(9) COW VALUE 7.

01 COLUWNS PIC S9(9) COW VALUE 60.

01 DI SPLAY_NAME PI C X(13) VALUE " DI SPLAY ONE ".

01 TERM CHAR PIC 9(4) COW.

01 T_TEXT PI C X(6).

01 TEXT_OUTPUT Pl C X(24) VALUE " TERM NAL CHARACTER IS: ".
01 PROVPT PIC X(2) VALUE ">>".

01 LINE_1 PIC X(12) VALUE "Hit any key.".
01 LINE 2 PI C X(34) VALUE "This character will not be echoed.".
01 LINE 3 PI C X(47) VALUE "The term nal character equivalent is

di spl ayed. ".

01 LINE 4 PIC X VALUE " ".

01 THREE PIC S9(9) CcOw VALUE 3.

01 NINE PIC S9(9) CcOw VALUE 9.

01 SEVEN PIC S9(9) CcOWw VALUE 7.

01 TVENTY_FI VE PIC S9(9) COw VALUE 25.
PROCEDURE DI VI SI ON.

PO.

* Create the virtual display with a border.

CALL " SMEBCREATE_VI RTUAL_DI SPLAY" USI NG
ROA5, COLUWNS, DI SPLAY1.

70

Chapter 7. Examples of Calling SMG$ Routines

* Create the pasteboard
CALL " SMGBCREATE_PASTEBOARD' USI NG PASTEL.
* Create a virtual keyboard
CALL " SMGBCREATE_VI RTUAL_KEYBOARD' USI NG KEYBOARD1.
* Paste the virtual display at row 3, colum 9.
CALL "SMGSLABEL_BORDER' USI NG DI SPLAY1, BY DESCRI PTOR DI SPLAY_NAME.

CALL " SMSBPASTE_VI RTUAL_DI SPLAY" US| NG
Dl SPLAY1, PASTEl, THREE, NI NE.
* Place data in the virtual display

CALL "SMS$PUT_LI NE' USI NG DI SPLAY1, BY DESCRI PTOR LI NE_1.
CALL "SMS$PUT_LI NE' USI NG DI SPLAY1, BY DESCRI PTOR LI NE_2.
CALL "SMS$PUT_LI NE' USI NG DI SPLAY1, BY DESCRI PTOR LI NE_3.
CALL "SMS$PUT_LI NE' USI NG DI SPLAY1, BY DESCRI PTOR LI NE_4.

* Read a keystroke fromthe virtual pasteboard.

CALL "SM33READ KEYSTROKE" USI NG KEYBOARDL, TERM CHAR,
BY DESCRI PTOR PROVWPT, OM TTED, BY REFERENCE
DI SPLAY1.

CALL "SMGBPUT_LI NE" USI NG DI SPLAY1, BY DESCRI PTOR LI NE_4.

* Convert the decinmal value of TERM CHAR to a decimal ASCII text string.
CALL "OTS$CVT_L_TI" USING TERM CHAR, BY DESCRI PTOR T_TEXT.

* Print out the decimal ASCI| text string.

CALL "SM3$PUT_LI NE' USI NG DI SPLAY1, BY DESCRI PTOR TEXT_OUTPUT.
CALL "SM3$3PUT_CHARS' USI NG DI SPLAY1, BY DESCRI PTOR T_TEXT,
BY REFERENCE SEVEN, TWENTY_FI VE.
STOP RUN.

The Fortran program shown in Example 7.5 uses SMGSREAD KEYSTROKE as

well as SMGSCREATE VIRTUAL DISPLAY, SMGSCREATE PASTEBOARD,
SMGSPASTE VIRTUAL DISPLAY, SMGSCREATE VIRTUAL KEYBOARD, and
SMGS$PUT _LINE.

Example 7.5. Using SMG$ Routines in VSI Fortran

C+
C This routine creates a virtual display and wites it to the PASTEBOARD.
C Data is placed in the virtual display using the routine SMESPUT_CHARS.
C Include the SM5 definitions. In particular, we want SMGSM BORDER.
C

I NCLUDE ' ($SMGDEF)

| NTEGER SMGSCREATE_VI RTUAL_DI SPLAY, SMGSCREATE_PASTEBOARD

| NTEGER SMGBPASTE_VI RTUAL_DI SPLAY,

1 SMESCREATE_VI RTUAL _KEYBOARD
| NTEGER SMGSREAD KEYSTROKE, SMGSPUT_LI NE
| NTEGER DI SPLAY1, PASTE1l, KEYBOARDL, ROAB, COLUWNS,

71

Chapter 7. Examples of Calling SMG$ Routines

1 TERM _CHAR
CHARACTER*3 TEXT
CHARACTER* 27 TEXT_OUTPUT

C+
C Create the virtual display with a border.
C
ROWNS = 7
COLUMNS = 60
| STATUS = SMG$CREATE_VI RTUAL_DI SPLAY
1 (ROAB, COLUMNS, DI SPLAY1, SMG$SM BORDER)
C+
C Create the pasteboard.
C
| STATUS = SMSSCREATE_PASTEBOARD (PASTEL)
C+
C Create a virtual keyboard.
C
| STATUS = SMSSCREATE_VI RTUAL_KEYBOARD (KEYBOARD1)
C+
C Paste the virtual display at row 3, colum 9.
C
| STATUS = SMSBPASTE_VI RTUAL_DI SPLAY (DI SPLAY1, PASTEl, 3, 9)
| STATUS = SMSSPUT_LI NE (DI SPLAY1,
1 "Enter the character K after the >> pronpt.")
| STATUS = SMSSPUT_LI NE (DI SPLAY1,
1 "This character will not be echoed as you type it.")
| STATUS = SMSBPUT_LI NE (DI SPLAY1,
1 'The term nal character equivalent of Kis displayed.")
| STATUS = SMS$PUT_LI NE (DI SPLAY1, ' ')
C+
C Read a keystroke fromthe virtual pasteboard.
C
| STATUS = SM33READ KEYSTRCKE (KEYBOARD1, TERM CHAR, '>>', |
1 DI SPLAY1)
| STATUS = SMS$PUT_LI NE (DI SPLAY1, ' ')
C+

C Convert the decimal value of TERM CHAR to a decimal ASCI| text string.
C
| STATUS = OTS$CVT_L_TI (TERM CHAR, TEXT)

TEXT_OUTPUT = ' TERM NAL CHARACTER IS: ' [/ TEXT
C+
C Print the decimal ASCI| text string.
C

| STATUS = SMSBPUT_LI NE (DI SPLAY1, TEXT_CUTPUT)

| STATUS = SMGSPUT_CHARS (DI SPLAY1, TEXT, 7, 25)

END

72

Chapter 7. Examples of Calling SMG$ Routines

The VAX MACRO program shown in Example 7.6 demonstrates the precise steps required to call

SMGS$READ KEYSTROKE from a low-level language.

Example 7.6. Using SMGS$ Routines in VAX MACRO
. TITLE SMs DEMO

+

; This program denonstrates the use of the SME$ routines,
; SMEBREAD_KEYSTROKE.

$DSCDEF ; Declare DSC$ synbol s
$SMEDEF ; Declare SM3$ synbol s
+
; Declare external routines.
. EXTRN SMGBCREATE_PASTEBOARD
. EXTRN SMGSCREATE_VI RTUAL_DI SPLAY
. EXTRN SMGSCREATE_VI RTUAL_KEYBQARD
. EXTRN SMG$PUT_LI NE
. EXTRN SMGSREAD_KEYSTROKE
+
; Declare data PSECT and obj ects.

. PSECT $DATA RD, WRT, NCEXE, NCSHR, PI C

LINEl: .ASCID "Enter the character K after the pronpt."

in particular

LINE2: .ASCID "This character will not be echoed as you type it."
LINE3: .ASCID "The term nal character equivalent of Kis displayed."

PROVPT: . ASCID ">>"
BLANK: .ASCID " "
FACSTR: . ASCID "TERM NAL CHARACTER I'S ! UL"

TEXT: .BLKB 80 ; Buffer for formatted text
TEXT _LEN = . - TEXT ; Length of TEXT
TEXT_DSC: ; Descriptor for TEXT string
.WORD TEXT_LEN ; DSC$W LENGTH
.BYTE DSC$K _DTYPE T ; DSC$B_DTYPE
.BYTE DSC$K CLASS S ; DSC$B_CLASS
. ADDRESS TEXT ; DSC3$A_PA NTER
TERM CHAR:
. BLKL ; Space for term nator character code
PASTEBQARD _1:
. BLKL ; Pasteboard ID
DI SPLAY_1:
. BLKL ; Display ID
KEYBOARD 1:
. BLKL ; Keyboard ID

D+

: Declare PSECT for code.

. PSECT $CCDE RD, NOART, EXE, SHR, PI C
+

; Begin main routine.

73

Chapter 7. Examples of Calling SMG$ Routines

. ENTRY
D+

; Create virtual

PUSHL
PUSHL
PUSHL
PUSHAB
PUSHABL
PUSHAB
PUSHAB
CALLS
ADDL2

SMG DEMO, "M<> ; Save no registers

di spl ay.

#SMEBM BORDER ; Put flag on stack

#60 ; Put columms on stack
#7 ; Put rows on stack

8(SP) ; Address of flag

ADI SPLAY_1 ; Address of display ID
12(SP) ; Address of columms
12(SP) ; Address of rows

#4, G'SMGSCREATE_VI RTUAL_DI SPLAY

#12, SP ; Pop off tenporaries

; Create pasteboard.

PUSHAB L"M"PASTEBOARD 1 ; Address of pasteboard
CALLS #1, G*SME3CREATE_PASTEBOARD

; Create virtual keyboard.
PUSHAB L"M"KEYBOARD 1 ; Address of keyboard
CALLS #1, G‘SMSBCREATE_VI RTUAL_KEYBOARD

; Paste the virtual display at row 3, colum 9.
PUSHL #9 ; Put colum on stack
PUSHL #3 ; Put row on stack
PUSHAB 4(SP) ; Address of colum
PUSHAB 4(SP) ; Address of row
PUSHABL "~PASTEBOARD 1 ; Address of pasteboard
PUSHABL ~DI SPLAY_1 ; Address of display
CALLS #4, CG'SM33PASTE_VI RTUAL_DI SPLAY
ADDL 2 #8, SP ; Pop off tenporaries

; Wite instructions.
PUSHAB L~LI NE1 ; "Enter the character..."
PUSHABL "Dl SPLAY_1 ; Display ID
CALLS #2, G'SMSBPUT_LI NE
PUSHABL "LI NE2 ; "This character will not..."
PUSHABL "Dl SPLAY_1 ; Display ID
CALLS #2, G'SMSBPUT_LI NE
PUSHABL "LI NE3 ; "The terminal character..."
PUSHABL "Dl SPLAY_1 ; Display ID
CALLS #2, G'SMSBPUT_LI NE
PUSHABL "“BLANK ; Blank line
PUSHABL "Dl SPLAY_1 ; Display ID
CALLS #2, G'SMSBPUT_LI NE

; Read a keystroke fromthe virtual keyboard.

PUSHAB
CLRL
PUSHAB
PUSHAB
PUSHAB
CALLS

L~ADI SPLAY_1 ; Display ID

-(SP) ; No timeout

LA PROVPT ; Pronpt string

LA TERM CHAR ; Longword for term nator code
LAKEYBOARD 1 ; Keyboard 1D

#5, G*SMGBSREAD_KEYSTROKE

; Format the term nator code using $FAQ.

$FAQ_S
string

CTRSTR=L"FACSTR, - ; FAO control

74

Chapter 7. Examples of Calling SMG$ Routines

OUTLEN=L"TEXT_DSC+DSC$W LENGTH, - ; Qutput string

| ength
OQUTBUF=L"TEXT_DSC, - ; Qutput buffer
P1=L"TERM CHAR ; Value to format

; Display the formatted text.

PUSHABL "BLANK ; Blank line
PUSHAB L~DI SPLAY_1 ; Display ID
CALLS #2, G'SMSBPUT_LI NE

PUSHAB LATEXT_DSC ; Text to display
PUSHAB L~DI SPLAY_1 ; Display ID

CALLS #2, G'SMSBPUT_LI NE

: Return with status fromlast call.
RET

. END SMG_DEMO ; Specify SM5 DEMO as main program

Example 7.7 uses SMGSREAD KEYSTROKE from VSI Pascal. It also demonstrates
the use of SMGSCREATE VIRTUAL DISPLAY, SMGSCREATE PASTEBOARD,
SMGSCREATE VIRTUAL KEYBOARD, SMGSPASTE VIRTUAL DISPLAY, and
SMGS$PUT_LINE.

Example 7.7. Using SMG$ Routines in VSI Pascal

{ This program denonstrates the use of the SM& routines, in particular }
{ SMESREAD KEYSTROKE. }

[| NHERI T(' SYS$SLI BRARY: STARLET')]
PROGRAM SMG_DEMD

TYPE
UNSI GNED_WORD = [WORD] 0. . 65535;

FUNCTI ON SMS$CREATE_VI RTUAL_DI SPLAY (
ROA5, COLUWNS: | NTEGER,
VAR DI SPLAY_| D: | NTECER;
DI SPLAY_ATTRI BUTES, VI DEO ATTRI BUTES, CHAR SET: UNSI GNED
:= % MVED 0): UNSI GNED; EXTERN,

FUNCTI ON SMS$CREATE_PASTEBOARD (
VAR PASTEBOARD | D: | NTECER;
OQUTPUT_DEVI CE: PACKED ARRAY [A..B: | NTEGER] OF CHAR = % MVED O;
ROA5, COLUWNS: | NTEGER : = % MVED O;
PRESERVE_SCREEN_FLAG BOOLEAN := 9% MVED 0): UNSI GNED; EXTERN,

FUNCTI ON SMS$CREATE_VI RTUAL_KEYBOARD (
VAR KEYBOARD | D: | NTEGER;
FI LESPEC. PACKED ARRAY [A..B: | NTEGER] OF CHAR : = % MVED O;
DEFAULT_FI LESPEC: PACKED ARRAY [C..D: | NTEGER] OF CHAR : = % MVED O;
RESULTANT_FI LESPEC. PACKED ARRAY [E..F:INTEGER] OF CHAR := % MVED O
): UNSI GNED; EXTERN;

FUNCTI ON SMS$PASTE_VI RTUAL_DI SPLAY (
DI SPLAY_I D, PASTEBOARD_ | D. | NTEGER;
ROW COLUWN: | NTEGER): UNSI GNED; EXTERN;

FUNCTI ON SMSSREAD_KEYSTRCOKE (

Chapter 7. Examples of Calling SMG$ Routines

KEYBOARD | D: | NTECER;

VAR TERM NATCR_CODE: UNSI GNED_WORD;

PROVPT: PACKED ARRAY [A..B:INTEGER] OF CHAR : = % MVED 0;

TI MEQUT, DI SPLAY_ID: INTEGER := % MVED 0): UNSI GNED;, EXTERN,

FUNCTI ON SMGSPUT_LI NE (
DI SPLAY_I D: | NTEGER;
TEXT: PACKED ARRAY [A..B:INTEGER] OF CHAR;
LI NE_ADVANCE: | NTEGER : = % MVED O;
RENDI TI ON_SET, RENDI TI ON_COVMPLEMENT: UNSI GNED : = % MVED O;
WRAP_FLAG BOOLEAN : = 9% MVED O;
CHAR_SET: UNSI GNED : = % MVED 0): UNSI GNED;, EXTERN,

var
PASTEBOARD 1, DI SPLAY_1, KEYBOARD_1: | NTEGER,
TERM NATOR: UNSI GNED_WORD;

BEG N
{ Create virtual display, pasteboard and virtual keyboard }

SMGSCREATE_VI RTUAL_DI SPLAY (ROAS : = 7, COLUMNS : = 60,

DI SPLAY_I D : = DI SPLAY_1,

DI SPLAY_ATTRI BUTES : = SM3$M BORDER) ;
SMGSCREATE_PASTEBOARD (PASTEBQARD | D : = PASTEBOARD 1);
SMGSCREATE_VI RTUAL_KEYBOARD (KEYBOARD_I D : = KEYBOARD 1);
{ Paste the virtual display at row 3, colum 9 }

SMGSPASTE_VI RTUAL_DI SPLAY (DI SPLAY_I D : = DI SPLAY_1,
PASTEBCOARD | D : = PASTEBOARD_1, ROW:= 3, COLUW : = 9);

{ Wite the instructions to the virtual display }

SMGSPUT_LI NE (DI SPLAY_I D : = DI SPLAY_1,

TEXT := "Enter the character K after the >> pronpt."');
SMGSPUT_LI NE (DI SPLAY_I D : = DI SPLAY_1,

TEXT := 'This character will not be echoed as you type it.");
SMGSPUT_LI NE (DI SPLAY_I D : = DI SPLAY_1,

TEXT := 'The term nal character equivalent of Kis displayed.');
SMGSPUT_LI NE (DI SPLAY_I D : = DI SPLAY_1,

TEXT : ="' ");

{ Read the keystroke fromthe virtual keyboard }
SMGSREAD KEYSTROKE (KEYBOARD_I D : = KEYBOARD 1,

DI SPLAY_I D : = DI SPLAY_1,

TERM NATOR_CODE : = TERM NATOR, PROWPT := '>>');

{ Display the decimal value of the term nator code }

SMGSPUT_LI NE (DI SPLAY_I D : = DI SPLAY_1,

TEXT : =" ");
SMESPUT_LI NE (DI SPLAY_I D : = DI SPLAY_1,
TEXT := 'TERM NAL CHARACTER IS ' + DEC(TERM NATCR, 5,1));

END.

76

Chapter 7. Examples of Calling SMG$ Routines

The program shown in Example 7.8 calls SMGSREAD KEYSTROKE from VAX PL/I.

Example 7.8. Using SMGS$ Routines in VAX PL/I

/*
* Exanmpl e of SMGBREAD KEYSTROKE.
*/
/*
* Declare the RTL entry points.
*/
decl are
SMESCREATE_VI RTUAL_KEYBOARD ext ernal entry(
fixed binary(31), /* new keyboard-id */
character(*), /* filespec */
character(*), /* default-filespec */
character(*) varying) /* resultant-filespec */
returns(fixed binary(31)) options(variable);
decl are
SMESDELETE_VI RTUAL_KEYBOARD ext ernal entry(
fixed binary(31)) /* keyboard-id */
returns(fixed binary(31));
decl are
SMGSREAD_KEYSTROKE ext ernal entry(
fixed binary(31), /* keyboard-id */
fixed binary(15), /* term nator-code */
character(*), /* pronpt-string */
fixed binary(31), /* timeout */
fixed binary(31)) /* display-id */
returns(fixed binary(31)) options(variable);
/*

* Get the value of the SMG constants from PLI STARLET.
*
/
% ncl ude $SMGEDEF;
decl are SM3$_ECF gl obal ref value fixed binary(31);

/*
* Msc. constants.
*/
% epl ace false by '0'b;
% epl ace true by '1'Db;
/
The following conpile-tine routine will signal an error at run-tine
if the status value that it is passed does not have success or
i nfornmational severity (that is, if the lowbit is not set).
/
%ignal if: procedure (status_val) returns(character);
%lecl are status_val character;
%Weturn("if posint(' || status_val || ',
"then signal vaxcondition(' |

* % kX X

1,1) =0 " ||
| status_val || ')");
%end;

mai n: proc options(nmain, ident('V4.2"));

77

Chapter 7. Examples of Calling SMG$ Routines

declare exit bit initial(false);
decl are status fixed binary(31);
decl are keyboard_id fixed binary(31);
declare termnator fixed binary(15);

/*
* Create the virtual keyboard necessary for the read.
*/
status = sng$create_virtual _keyboard(keyboard_id);
signal _if(status);

/*
* Read a single keystroke. |If that keystroke is an end-of-file,
* then exit. Oherw se, SELECT the appropriate action based on
* the key.
*/

do while(”exit);

status = sng$read_keystroke(keyboard_id, term nator
'Command: ', 20);

if status = SM3_EOF
then exit = true

el se do;
signal _if(status);

select (term nator);

when (SMGSK_TRM PF2,
SMGSK_TRM _HELP
rank(' H),
rank(' h'),
rank('?')) call display_hel p;

when(SME5K_TRM DO) cal |l do_conmmand;
when(rank(' E),

rank('e')) exit = true;
ot herw se call conmand_error
end;

end;
end;

/*

* \W're done, so delete the virtual keyboard.

*/

status = sng$del ete_virtual _keyboard(keyboard_id);
signal _if(status);

end nmai n;

di spl ay_hel p: procedure;

put skip edit(' This program uses single keystroke conmands
put skip edit(' The follow ng keys are valid:') (A);

put skip;

put skip edit(’ Key Function') (A);

) (A

78

Chapter 7. Examples of Calling SMG$ Routines

put skip edit(’ E/ e Exit') (A);
put skip edit(’ <DC> Your choice...") (A);
put skip edit(’ ?/H h/ <HELP> Hel p') (A);
put skip;

end di spl ay_hel p;
do_command: procedure;

put skip edit(' The DO key was pressed') (A);
put skip;

end do_conmand;
conmand_error: procedure;
put skip edit(' The key pressed was not valid -
put skip edit('(H for HELP).') (A);
put skip;

end comrand_error;

please try again.') (A);

79

Chapter 7. Examples of Calling SMG$ Routines

80

Chapter 8. Screen Management
(SMG$) Routines

This chapter contains detailed descriptions of all routines provided by the RTL Screen Management
(SMGS$) Facility.

SMG$ADD KEY_DEF

SMGS$ADD KEY DEF — The Add Key Definition routine adds a keypad key definition to a table of
key definitions.

Format

SME$ADD_KEY_DEF
key-table-id ,key-nane [,if-state] [,attributes] [, equival ence-string]
[,state-string]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

key-table-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifies the key table to which you are adding a key definition. The key-table-id argument is the
address of an unsigned longword that contains the key table identifier.

The key table identifier argument is returned by the SMGSCREATE _KEY TABLE routine.

key-name

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

81

Chapter 8. Screen Management (SMG$) Routines

Identifies the key whose value you are defining. The key-name argument is the address of a
descriptor pointing to this key name. The SMGSADD KEY DEF routine changes the string to
uppercase and removes trailing blanks.

Table 3.1 lists the valid key names.

if-state

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Qualifies the value returned when key-name is pressed. The if-state argument is the address of a
descriptor pointing to the state string.

If if-state is specified, this definition of key-name is used only if the current state matches the
specified if-state string. The if-state argument must be from 1 to 31 characters in length. If this

argument is omitted, if-state defaults to the value DEFAULT.

attributes

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Longword bit mask specifying additional attributes of this key definition. The attributes argument is
the address of an unsigned longword that contains this attribute mask. If omitted, the mask is zero.

Valid attributes are described in the following list:

SMG$M_KEY NOECHO If set, this bit specifies that equivalence-string is not to

be echoed when this key is pressed. If clear, equivalence-
string is echoed. If SMG$SM_KEY TERMINATE is not set,
SMGS$SM_KEY NOECHO is ignored.

SMG$M_KEY TERMINATE If set, this bit specifies that when this key is pressed (as qualified
by if-state) the input line is complete and more characters should
not be accepted. If clear, more characters may be accepted. In
other words, setting this bit causes equivalence-string to be
treated as a terminator.

SMGS$M_KEY LOCK If set, and if state-string is specified, the state name specified
bystate-string remains the current state until explicitly changed
by a subsequent keystroke whose definition includes a state-
string. If clear, the state name specified by state-string remains
in effect only for the next defined keystroke.

SMG$M_KEY PROTECTED If set, this bit specifies that this key definition cannot be modified
or deleted. If clear, the key definition can be modified or deleted.

82

Chapter 8. Screen Management (SMG$) Routines

The remaining bits are undefined and must be zero. It is possible to perform a logical OR operation on
these values to set more than one attribute at a time.

equivalence-string

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Character string to be substituted for the keystroke in the returned line. The equivalence-string
argument is the address of a descriptor pointing to this equivalence string.

The equivalence-string argument is displayed unless SMGSM_KEY NOECHO is set. If
equivalence-string is omitted, no equivalence string is defined for this key.

state-string

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Contains a new state name that becomes the current state when this key is pressed. The state-string
argument is the address of a descriptor pointing to the new state string.

If omitted, no new state is defined. If the current state is temporary (that is, if
SMGS$M_KEY LOCKSTATE was not specified for the most recently pressed defined key), the
current state-string becomes DEFAULT.

Description

SMGS$ADD KEY DEF inserts a key definition into a key definition table. The table must have
been created with a call to SMGSCREATE KEY TABLE. After SMGSADD KEY DEF executes,

the specified equivalence string is returned when the user types the specified key in response to the
SMGS$READ COMPOSED_LINE routine.

You can define all keys on the VT100, VT200-series, VT300-series, VT400-series, and VT500-series
keyboards and keypads.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$_PREDEFREP Successful completion. The previous key definition has been replaced.
SMG$ INVDEFATT Invalid key definition attributes.

SMG$ INVKEYNAM Invalid key-name.

SMGS$ INVKTB ID Invalid key-table-id.

SMGS$ _KEYDEFPRO Key definition is protected against change or deletion.

SMG$ WRONUMARG Wrong number of arguments.

83

Chapter 8. Screen Management (SMG$) Routines

SMGS$BEGIN_DISPLAY_UPDATE

SMGS$SBEGIN DISPLAY UPDATE — The Begin Batching of Display Updates routine saves, or
batches, all output to a virtual display until a matching call to SMGSEND DISPLAY UPDATE is
encountered.

Format

SM3$BEG N_DI SPLAY_UPDATE di spl ay-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display for which output is to be batched. The display-id argument is the address
of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

Description

SMGS$BEGIN DISPLAY UPDATE lets you make more than one change to a display and have the
changes appear only after all changes are complete. Thus, the user sees the display change from its
initial state to its final state, without seeing any of the intermediate states.

Batching terminates when SMGSEND_DISPLAY UPDATE has been called the same

number of times for a given display as has SMG$BEGIN DISPLAY UPDATE. The Screen
Management Facility keeps track of batching for a given display; thus, the calls to the
SMGS$BEGIN DISPLAY UPDATE and SMGSEND DISPLAY UPDATE need not occur in the
same module.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$ BATWAS ON Successful completion; batching has already been initiated.
SMGS$ INVDIS ID Invalid display-id.

84

Chapter 8. Screen Management (SMG$) Routines

SMG$ WRONUMARG Wrong number of arguments.

SMG$BEGIN_PASTEBOARD_UPDATE

SMGS$BEGIN PASTEBOARD UPDATE — The Begin Batching of Pasteboard
Updates routine saves, or batches, all output to a pasteboard until a matching call to
SMGSEND PASTEBOARD UPDATE is encountered.

Format

SME$BEGQ N_PASTEBOARD UPDATE past eboard-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard for which output is to be batched. The pasteboard-id argument is the address
of an unsigned longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

Description

SMGS$BEGIN PASTEBOARD UPDATE lets you make more than one change to a pasteboard
and have the changes appear only after all changes are complete. Thus, the user sees the pasteboard
change from its initial state to its final state, without seeing any of the intermediate states.

Batching terminates when SMGSEND PASTEBOARD UPDATE has been called the same
number of times for a given pasteboard as has SMGSBEGIN PASTEBOARD UPDATE. The
Screen Management Facility keeps track of batching for a given pasteboard; thus, the calls to the
SMGS$BEGIN PASTEBOARD UPDATE and SMGSEND PASTEBOARD UPDATE need not
occur in the same module.

Condition Values Returned

SS$ NORMAL Normal successful completion.

85

Chapter 8. Screen Management (SMG$) Routines

SMG$ BATWAS ON Successful completion; batching has already been initiated.
SMG$_INVPAS ID Invalid pasteboard-id.
SMG$ WRONUMARG Wrong number of arguments.

SMGS$SCANCEL_INPUT

SMGS$CANCEL INPUT — The Cancel Input Request routine immediately cancels any read-in-
progress that was issued by SMGSREAD COMPOSED_LINE, SMGSREAD KEYSTROKE,
SMGSREAD_STRING, or SMGSREAD_VERIFY.

Format

SMGBCANCEL_| NPUT keyboard-id

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

keyboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual keyboard for which the input is to be canceled. The keyboard-id argument is the
address of an unsigned longword that contains the keyboard identifier.

The keyboard identifier is returned by SMGSCREATE VIRTUAL KEYBOARD.

Description

SMGS$CANCEL_INPUT causes immediate termination of an SMGSREAD COMPOSED_LINE,
SMGS$READ KEYSTROKE, SMGSREAD STRING, or SMGSREAD VERIFY input operation
from a terminal. The condition code SS§ CANCEL or SS$ ABORT is returned to those routines
when you use SMG$CANCEL INPUT. Note that if the specified virtual keyboard is associated
with an OpenVMS RMS file, this procedure has no effect because it is not possible to cancel an
outstanding RMS input operation.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVKBD ID Invalid keyboard-id.

86

Chapter 8. Screen Management (SMG$) Routines

SMG$ WRONUMARG Wrong number of arguments.

SMG$CHANGE_PBD_CHARACTERISTICS

SMGSCHANGE PBD CHARACTERISTICS — The Change Pasteboard Characteristics routine lets
you change the characteristics associated with a pasteboard.

Format

SMGSCHANGE_PBD_CHARACTERI STI CS
past eboard-id [,desired-width] [,width] [,desired-height][, height]
[, desired- background-col or] [, background-col or]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard whose characteristics are to be changed. The pasteboard-id argument is the
address of an unsigned longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

desired-width

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

New width for the pasteboard. The desired-width argument is the address of a signed longword that
contains the desired width. If omitted, the width does not change.

width

OpenVMS usage: longword_signed
type: longword (signed)

87

Chapter 8. Screen Management (SMG$) Routines

access: write only

mechanism: by reference

Receives the physical width of the pasteboard. The width argument is the address of a signed
longword into which is written the actual width of the pasteboard.

If the terminal cannot be set exactly to desired-width, width may be larger than desired-width. If
the physical width of the terminal is smaller than desired-width, width may be smaller than desired-
width.

desired-height

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

New height for the pasteboard. The desired-height argument is the address of a signed longword that
contains the desired height of the pasteboard. If desired-height is omitted, the height does not change.

height

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Receives the physical height of the pasteboard. The height argument is the address of a signed
longword into which is written the actual height of the pasteboard.

If the terminal cannot be set exactly to desired-height, height may be larger than desired-height.
If the physical height of the terminal is smaller than desired-height, height may be smaller than
desired-height.

desired-background-color

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Symbolic name for the desired background color. The desired-background-color argument is the
address of an unsigned longword that contains the desired color.

The symbols listed below are defined in $SMGDEF. Valid values for desired-background-color are
as follows:

SMG$C _COLOR_WHITE Light background
SMG$C COLOR BLACK Dark background
SMG$C COLOR BLUE Blue background

88

Chapter 8. Screen Management (SMG$) Routines

SMGS$C_COLOR_CYAN

Cyan (green-blue) background

SMG$C_COLOR_GREEN

Green background

SMG$C COLOR _MAGENTA Magenta background
SMG$C _COLOR RED Red background
SMGS$C _COLOR_YELLOW Yellow background
SMG$C _COLOR _LIGHT White background
SMG$C _COLOR DARK Black background

SMG$C_COLOR_USERI

User-defined background 1

SMGS$SC_COLOR_USER2

User-defined background 2

SMG$C_COLOR_USER3

User-defined background 3

SMG$C_COLOR_USER4

User-defined background 4

SMGSC_COLOR_USERS5

User-defined background 5

SMGS$SC_COLOR_USER®6

User-defined background 6

SMG$C_COLOR_USER7

User-defined background 7

SMGSC COLOR_USERS

User-defined background 8

If you omit desired-background-color, or if the terminal hardware does not support the background
color specified, the background color is not changed.

background-color

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the background color chosen. The background-color argument is the address of an
unsigned longword into which is written the background color.

This routine may return any of the values listed in the desired-background-color argument
description or SMG$C_COLOR_UNKNOWN. If the desired-background-color argument is
omitted, the value of background-color does not change.

Description

SMGS$CHANGE PBD CHARACTERISTICS lets you change the width, height, and background
color associated with a pasteboard.

If necessary, this routine will notify the OpenVMS operating system of the change in pasteboard
characteristics by updating the terminal characteristics displayed when you enter the DCL command
SHOW TERMINAL.

Do not use SMGSCHANGE _PBD_CHARACTERISTICS on a batched pasteboard.
Condition Values Returned

SS$ NORMAL Normal successful completion.

89

Chapter 8. Screen Management (SMG$) Routines

SMG$ INVCOLARG Unknown background color specified.

SMG$ INVPAGARG Invalid height of 0 desired.

SMG$ INVWIDARG Invalid width of 0 desired.

SMG$ PBDIN USE Cannot change characteristics while batching is on.
SMG$ WRONUMARG Wrong number of arguments.

SS$_xxx Any error from $QIOW.

SMG$CHANGE_RENDITION

SMG$CHANGE RENDITION — The Change Default Rendition routine changes the video attributes
for all or part of a virtual display.

Format

SMGBSCHANGE_RENDI TI ON
di splay-id ,start-row ,start-col um , nunber-of -rows , nunber - of - col umms
[,rendition-set] [,rendition-conplenment]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display whose default rendition is to be changed. The display-id argument is the
address of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE _VIRTUAL DISPLAY.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

90

Chapter 8. Screen Management (SMG$) Routines

Starting row position to receive the new rendition. The start-row argument is the address of a signed
longword that contains the starting row number.

start-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Starting column position to receive the new rendition. The start-column argument is the address of a
signed longword that contains the starting column number.

number-of-rows

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Number of rows to receive the new rendition. The number-of-rows argument is the address of a
signed longword that contains the number of rows to be affected.

number-of-columns

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Number of columns to receive the new rendition. The number-of-columns argument is the address of
a signed longword that contains the number of columns to be affected.

rendition-set

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute specifier. The optional rendition-set argument is the address of a longword bit mask in
which each attribute set causes the corresponding attribute to be set in the display. The following
attributes can be specified using the rendition-set argument:

SMG$M_BLINK Displays blinking characters.

SMG$M_BOLD Displays characters in higher-than-normal intensity.

SMG$M_REVERSE Displays characters in reverse video; that is, using the opposite of the
default rendition of the virtual display.

91

Chapter 8. Screen Management (SMG$) Routines

SMG$M_UNDERLINE Displays underlined characters.

SMGS$M_INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMG$M_USERI through |Displays user-defined attributes.
SMG$M_USERS

The display-id argument must be specified when you use the rendition-set argument.
rendition-complement

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute complement specifier. The optional rendition-complement argument is the address of a
longword bit mask in which each attribute set causes the corresponding attribute to be complemented
in the display. All of the attributes that can be specified with the rendition-set argument can be
complemented with the rendition-complement argument. The display-id argument must be specified
when you use the rendition-complement argument.

The optional arguments rendition-set and rendition-complement let the user control the attributes of
the virtual display. The rendition-set argument sets certain virtual display attributes, whilerendition-
complement complements these attributes. If the same bit is specified in both the rendition-set

and rendition-complement parameters, rendition-set is evaluated first, followed by rendition-
complement. By using these two parameters together, the user can control each virtual display
attribute in a single procedure call. On a single-attribute basis, the user can cause the following
transformations:

Set Complement |Action

0 0 Attribute set to default

1 0 Attribute on

0 1 Attribute set to complement of default setting
1 1 Attribute off

Description

This procedure changes the default video rendition of a rectangular block of text already in the
specified virtual display. For example, you might use this procedure to redisplay a particular row in
reverse video.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ INVARG Invalid number of rows, invalid number of columns,
unrecognizedrendition-set code, or unrecognized rendition-
complement code.

SMG$ INVCOL Invalid start-column. The specified column is outside the virtual
display.

92

Chapter 8. Screen Management (SMG$) Routines

SMGS$_INVDIS ID Invalid display-id.
SMG$ INVROW Invalid start-row. The specified row is outside the virtual display.
SMG$ NO_CHADIS No change in virtual display.

SMG$ WRONUMARG Wrong number of arguments.

SMG$CHANGE_VIEWPORT

SMGS$SCHANGE VIEWPORT — The Change the Viewport Associated with a Virtual Display
routine changes the size of an existing viewport in a virtual display. The text currently in the viewport
is remapped to fit the new dimensions.

Format

SMG$CHANGE_VI EWPORT
di splay-id [,viewort-rowstart] [, viewport-colum-start]
[, viewport-nunber-rows] [, viewdort-nunber-col ums]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the virtual display containing the viewport to be changed. The display-id argument is the
address of an unsigned longword containing this identifier.

viewport-row-start

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Optional row number in the virtual display that will become row 1 in the changed viewport. The
viewport-row-start argument is the address of a signed longword containing the row number. If
omitted, the present viewport-row-start value is used.

93

Chapter 8. Screen Management (SMG$) Routines

viewport-column-start

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Optional column number in the virtual display that will become column 1 in the changed viewport.
The viewport-column-start argument is the address of a signed longword containing the column
number. If omitted, the present viewport-column-start value is used.

viewport-number-rows

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Optional number of rows in the changed viewport. The viewport-number-rows argument is the
address of a signed longword containing the number of rows. If omitted, the present viewport-
number-rows value is used.

viewport-number-columns

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Optional number of columns in the changed viewport. The viewport-number-columns argument is
the address of a signed longword containing the number of columns. If omitted, the present viewport-
number-columns value is used.

Description

SMGS$SCHANGE VIEWPORT lets you change the size of an existing viewport in a virtual display.
The text currently in this viewport is remapped to fit the new dimensions, starting at the position
specified by the viewport-row-start and viewport-column-start arguments. This position also
specifies the resulting virtual cursor location.

Condition Values Returned

SS$ NORMAL
SMGS$_INVARG

Normal successful completion.

Number of rows or columns is less than zero.

SMG$_INVCOL
SMGS$_INVDIS_ID
SMGS$_INVROW
SMGS$_NO_WINASSOC

Invalid column specified.
Invalid display-id.
Invalid row specified.

No viewport associated with the virtual display.

94

Chapter 8. Screen Management (SMG$) Routines

SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanpl e program denonstrates the use of
C SMGBSCHANGE VI EVWPORT.

C

I MPLICI T | NTEGER (A-2)
I NCLUDE ' ($SMGDEF)
C Create the virtual display. Gve it a border.

ROANG = 9
COLUWNS = 50

STATUS = SMGBCREATE_VI RTUAL_DI SPLAY
1 (RONB, COLUWNS, DI SPLAY1, SMGSM BORDER)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%val (STATUS))
C Create the pasteboard.

STATUS = SMGSCREATE_PASTEBOARD (PASTE1)
| F (. NOT. STATUS) CALL LIB$SI GNAL(%al (STATUS))

C Put data in the virtual display.

STATUS = SM3$PUT_CHARS (DI SPLAY1,

1 'Thisisrowlin avirtual display with 9 rows.',1,1)

| F (.not. STATUS) CALL LIB$SI GNAL(%al (STATUS))

STATUS = SME$PUT_CHARS (DI SPLAY1,

1 'Thisisrow?2 in avirtual display with 9 rows.', 2,1)

| F (.not. STATUS) CALL LIB$SI GNAL(%al (STATUS))

STATUS = SME$PUT_CHARS (DI SPLAY1,

1 'Thisis row3in avirtual display with 9 rows.', 3,1)

| F (.not. STATUS) CALL LIB$SI GNAL(%al (STATUS))

STATUS = SME$PUT_CHARS (DI SPLAY1,

1 'Thisisrowd4 in avirtual display with 9 rows.', 4,1)

| F (.not. STATUS) CALL LIB$SI GNAL(%al (STATUS))

STATUS = SME$PUT_CHARS (DI SPLAY1,

1 'Thisis row5in avirtual display with 9 rows.',5,1)

| F (.not. STATUS) CALL LIB$SI GNAL(%al (STATUS))

STATUS = SME$PUT_CHARS (DI SPLAY1,

1 'Thisis row6 in avirtual display with 9 rows.',6,1)

| F (.not. STATUS) CALL LIB$SI GNAL(%al (STATUS))

STATUS = SME$PUT_CHARS (DI SPLAY1,

1 'Thisisrow7 in avirtual display with 9 rows.',7,1)

| F (.not. STATUS) CALL LIB$SI GNAL(%al (STATUS))

95

Chapter 8. Screen Management (SMG$) Routines

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1'Thisis row8 in a virtual display with 9 rows.", 8,1)
IF (.not. STATUS) CALL LI B$SI GNAL(%val (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1'Thisis row9 in a virtual display with 9 rows.",9,1)
IF (.not. STATUS) CALL LI B$SI GNAL(%val (STATUS))

C Paste the virtual display.

STATUS = SMG$COPY_VI RTUAL_DI SPLAY(DI SPLAY1, DI SPLAY2)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSLABEL_BORDER (DI SPLAY1, 'Full Display',,, SM&M BOLD)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSLABEL_BORDER (DI SPLAY2, 'Viewport',,, SMGSM BOLD)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTEL, 2, 10)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY2, PASTE1, 13, 10)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))
CALL LIBS$WAIT (4.0)

STATUS = SMGSCREATE VI EWPORT (DI SPLAY2, 2, 1, 5, 21)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))
CALL LIBS$WAIT (4.0)

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY2, PASTE1, 13, 10)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))
CALL LIBS$WAIT (4.0)

STATUS = SMGSCHANGE VI EWPORT (DI SPLAY2, 4, 8, 3, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))
call lib$wait (4.0)

END

The output generated by this Fortran example is shown in the following figures. In Figure 8.1, the
program has copied the initial virtual display into a second virtual display, labeled "Viewport."

96

Chapter 8. Screen Management (SMG$) Routines

Figure 8.1. Output Generated After Virtual Displays Are Pasted

After the two identical virtual displays are pasted, the program creates a viewport on the second

Full Display
This is row 1 in a wvirtual display with 9 rows.
This is row 2 in a wvirtual display with 9 rows.
This is row 2 in a wirtual display with 9 rows.
This is row 4 in a wirtual display with 9 rows.
This is row 5 in a wvirtual display with 9 rows.
This is row & in a wvirtual display with 9 rows.
This is row 7 in a wirtual display with 9 rows.
This is row 8 in a wirtual display with 9 rows.
This is row 9 in a wvirtual display with 9 rows.
Viewport
This is row 1 in a wvirtual display with 9 rows.
This is row 2 in a wirtual display with 9 rows.
This is row 2 in a wirtual display with 9 rows.
This is row 4 in a wvirtual display with 9 rows.
This is row 5 in a wvirtual display with 9 rows.
This is row & in a wirtual display with 9 rows.
This is row 7 in a wirtual display with 9 rows.
This is row 8 in a wvirtual display with 9 rows.
This is row 9 in a wvirtual display with 9 rows.
ZK-6423M1-GE

(copy) virtual display. Once the second display is "repasted," only the portion located in the viewport
is visible. This is shown in Figure 8.2.

Figure 8.2. Output Generated After the Viewport Is Created

Full Display
This is row 1 in a virtual display with 9 rows.
This is row 2 in a virtual display with 9 rows.
This is row 3 in a virtual display with 5 rows.
This is row 4 in a virtual display with 5 rows.
This is row 5 in a wvirtual display with 9 rows.
This is row & in a virtual display with 9 rows.
This is row 7 in a virtual display with 5 rows.
This is row 8 in a virtual display with 5 rows.
This is row 9% in a virtual display with 9 rows.
Viewport
Thie is row 1 in a vi
Thie is row 2 in a vi
This is row 3 in a vi
This is row 4 in a vi
Thie is row & in a vi
Thie is row 6 in a vi
ZK-6423/2-GE

97

Chapter 8. Screen Management (SMG$) Routines

By calling SMGSCHANGE VIEWPORT, the portion of the virtual display that is visible through the
viewport is changed. This is shown in Figure 8.3.

Figure 8.3. Output Generated After Calling SMGSCHANGE_VIEWPORT

Full Display
This is row 1 in a wvirtual display with 9 rows.
This is row 2 in a wvirtual display with 9 rows.
This is row 2 in a wvirtual display with 9 rows.
This is row 4 in a wvirtual display with 9 rows.
This is row 5 in a wvirtual display with 9 rows.
This is row & in a wvirtual display with 9 rows.
This is row 7 in a wvirtual display with 9 rows.
This is row 8 in a wvirtual display with 9 rows.
This is row 9 in a wvirtual display with 9 rows.
Viewport
row 4 in a wvir
row 5 in a wvir
row 6 in a vir
ZK-6423/3-GE

SMG$CHANGE_VIRTUAL_DISPLAY

SMGS$CHANGE VIRTUAL DISPLAY — The Change Virtual Display routine lets you change the
dimensions, border, and video attributes of a virtual display.

Format

SMGSCHANGE_VI RTUAL_DI SPLAY
di splay-id [, nunber-of-rows] [, nunber-of-colums] [,display-attributes]
[,video-attributes] [, character-set]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

98

Chapter 8. Screen Management (SMG$) Routines

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display whose attributes are to be changed. The display-id argument is the
address of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

number-of-rows

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the new number of rows for the virtual display. The number-of-rows argument is the
address of a signed longword that contains the number of rows in the virtual display.

number-of-columns

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the new number of columns for the virtual display. The number-of-columns argument is the
address of a signed longword that contains the number of columns in the virtual display.

display-attributes

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the attributes of the virtual display. The display-attributes argument is the address of a
longword bit mask that contains the display attributes.

Valid values for display-attributes are as follows:

SMGS$M_BORDER Specifies a bordered display. If omitted, the display is not
bordered.

SMG$M_BLOCK BORDER Specifies a block bordered display. If omitted, the display is
not bordered.

99

Chapter 8. Screen Management (SMG$) Routines

SMGS$M_DISPLAY CONTROLS Specifies that control characters such as carriage return
and line feed are displayed as graphic characters, if your
terminal supports them.

SMGSM_TRUNC ICON Specifies that an icon (generally a diamond shape) is
displayed where truncation of a line exceeding the width of

the virtual display has occurred.

video-attributes

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the default rendition to be applied to all output in a virtual display, unless overridden by
a call to a specific output routine. The video-attributes argument is the address of an unsigned
longword that contains the video attributes mask.

For example, a call to SMGSPUT_CHARS with an explicit rendition specified would override the
default rendition.

The bits that can be set for this argument are as follows:

SMG$M_BLINK Displays blinking characters.
SMG$M_BOLD Displays characters in higher-than-normal intensity.
SMG$M_REVERSE Displays characters in reverse video; that is, to the opposite of the

current default rendition of the virtual display.
SMG$M_UNDERLINE Displays underlined characters.

SMGS$M_INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMGS$M_USERI through |Displays user-defined attributes.
SMG$M_USERS

You can specify any combination of attributes in a single call. All other bits are reserved to OpenVMS
and must be 0.

character-set

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the default character set for all text in this virtual display. The character-set argument
is the address of an unsigned longword that contains the character set specifier. Valid values are
SMGS$C_ASCII (the default), and SMG$SC _SPEC_GRAPHICS.

100

Chapter 8. Screen Management (SMG$) Routines

Description

SMGSCHANGE_VIRTUAL DISPLAY lets you change the size or default attributes of an existing
virtual display. If the size of the virtual display is changed, the Screen Management Facility attempts
to remap the text associated with the display to fit the new dimensions (starting at row 1 and column
1). If the new size of the virtual display is smaller than the old size, text may be truncated. If the new
size of the virtual display is larger than the old size, text may be padded on the right with spaces.

When a display is redimensioned, the virtual cursor for the display is moved to row 1 and column 1.
If a labeled border applies to the virtual display and does not fit the redimensioned display, the label is
deleted.

If a program calls both SMGSCREATE PASTEBOARD and
SMGS$CREATE VIRTUAL KEYBOARD, make sure SMGSCREATE PASTEBOARD is called
first. The program will not function correctly if SMGSCREATE VIRTUAL KEYBOARD is called
before SMGSCREATE PASTEBOARD.

Condition Values Returned

SS$ NORMAL Normal successful completion.

LIB$ INSVIRMEM Insufficient virtual memory to reallocate needed buffers.
SMG$ INVARG Invalid video or display attributes.

SMGS$ INVDIS ID Invalid display-id.

SMG$ WRONUMARG Wrong number of arguments.

SMG$CHECK_FOR_OCCLUSION

SMGS$CHECK FOR_OCCLUSION — The Check for Occlusion routine checks to see whether a
virtual display is covered (occluded) by another virtual display.

Format

SMEBCHECK _FOR_OCCLUSI ON di spl ay-i d , pasteboard-id , occl usion-state

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

101

Chapter 8. Screen Management (SMG$) Routines

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display to be checked. The display-id argument is the address of an unsigned
longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard to be checked. The pasteboard-id argument is the address of an unsigned
longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

occlusion-state

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Receives the value denoting whether the display is occluded. The occlusion-state argument is the
address of a signed longword into which the occlusion state is written. Occlusion-state is set to 1
if the display is occluded or set to O if the display is not occluded on the specified pasteboard. If the
procedure does not return SS§ NORMAL, the contents of occlusion-state are undefined.

Description

SMGSCHECK FOR_OCCLUSION determines whether a specified virtual display as pasted to the
specified pasteboard is occluded, or covered, by another virtual display.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$ INVDIS ID Invalid display-id.

SMGS$ INVPAS ID Invalid pasteboard-id.

SMGS$ NOTPASTED Specified virtual display is not pasted to the specified pasteboard.

SMG$ WRONUMARG Wrong number of arguments.

102

Chapter 8. Screen Management (SMG$) Routines

Example

C+

C This Fortran exanpl e program denonstrates the use of

C SMG$CHECK_FOR_OCCLUSI ON.

C

C This routine creates a virtual display and wites it to the

C pasteboard. Data is placed in the virtual display using SMEPUT_CHARS.
C-

| NTEGER SMG$CREATE VI RTUAL_DI SPLAY, SMG$CREATE_PASTEBOARD

| NTEGER SMG$PASTE VI RTUAL_DI SPLAY, SMGSPUT_CHARS

| NTEGER SMG$CHECK_FOR_OCCLUSI ON

| NTEGER DI SPLAY1, DI SPLAY2, PASTE1l, PASTE2, ROWS, COLUWNS, BORDER
| NTEGER OCCLUSI ON, STATUS

CHARACTER* 29 TEXT

C+
C Include the SMs definitions. In particular, we want SM33M BORDER
C-

| NCLUDE ' ($SMGDEF) '
C+

C Create two virtual displays using SMECREATE_VI RTUAL_DI SPLAY.
C G ve them borders.

C-
RONS = 6
COLUMNS = 50
STATUS = SMGSCREATE VI RTUAL_DI SPLAY
1 (ROAS, COLUWNS, DI SPLAY1, SMG$M BORDER)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
RONS = 5
COLUMNS = 30
STATUS = SMGSCREATE VI RTUAL_DI SPLAY
1 (ROAS, COLUWNS, DI SPLAY2, SMG$M BORDER)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Create the pasteboard usi ng SMESCREATE PASTEBOARD.
C-
STATUS = SMGSCREATE_PASTEBOARD (PASTE1)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Use SM33PUT_CHARS to put data into the virtual displays.
C-

STATUS = SMGESPUT _CHARS (DI SPLAY1,
1 ' This virtual display has 6 rows and 50 colums.', 2, 1)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

103

Chapter 8. Screen Management (SMG$) Routines

C+

STATUS = SMGSPUT_CHARS (DI SPLAY1,
' This is a bordered virtual display.', 3, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
" SMGEBPUT_CHARS puts data in this virtual display.', 4,
1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
' This text should be partially occluded.', 5, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
' So should part of this row', 6, 1)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMG$PUT_CHARS (DI SPLAY2, ' This is virtual', 3, 1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY2,
" display #2.', 4, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY2,
' This is just sone nore text.', 5, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C Use SMSBPASTE_VI RTUAL_DI SPLAY to paste the virtual display.

C-

C+

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1, 4, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY2, PASTE1, 8, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C Check the two virtual displays for occlusion by calling
C SMGHCHECK_FOR_OCCLUSI ON.

C-

TEXT = 'This display is not occluded.’

STATUS = SMGB$CHECK FOR OCCLUSI ON (DI SPLAY1, PASTEL, OCCLUSI ON)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

| F (OCCLUSI ON . EQ 0) THEN
STATUS = SMGSPUT_CHARS (DI SPLAY1, TEXT, 1, 1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))
ELSE
STATUS = SMGSPUT_CHARS (DI SPLAY1, 'Cccluded.', 1, 1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))
END | F

STATUS = SMGB$CHECK FOR OCCLUSI ON (DI SPLAY2, PASTEL, OCCLUSI ON)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

104

Chapter 8. Screen Management (SMG$) Routines

| F (OCCLUSI ON . EQ 0) THEN
STATUS = SMGSPUT_CHARS (DI SPLAY2, TEXT, 1, 1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

ELSE
STATUS = SMGSPUT_CHARS (DI SPLAY2, ' Cccluded.', 1, 1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END | F

END

The output generated by this Fortran program is shown in Figure 8.4.

Figure 8.4. Output Generated by Fortran Program Calling
SMGSCHECK_FOR_OCCLUSION

Occluded.

This wvirtual display has & rows and 50 columns.
This is a bordered wvirtual display.

s virtual display.
occluded.

This display is not occluded.

This is wvirtual
display #2.
This is just some more text.

ZK-4128-GE

SMG$CONTROL_MODE

SMGS$CONTROL MODE — The Control Mode routine controls the mode of the pasteboard. This
includes buffering, minimal updating, whether the screen is cleared when the pasteboard is deleted,
and whether tab characters are used for screen formatting.

Format

SMEPCONTROL_MODE past eboard-id [, new node] [, ol d-node] [, buffer-size]

Returns

OpenVMS usage: cond_value

105

Chapter 8. Screen Management (SMG$) Routines

type: longword
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

(unsigned)

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard to be ¢

hanged. The pasteboard-id argument is the address of an unsigned

longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

new-mode

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the new control settin

gs to be used. The optional new-mode argument is the address of an

unsigned longword that contains the mode settings. A bit set to 1 forces that mode to be employed; a
bit set to 0 inhibits that mode of operation.

Valid settings are as follows:

SMG$M_BUF_ENABLED

Enables buffering.

SMG$M_CLEAR SCREEN

Causes the Screen Management Facility to clear the screen when the
program exits if you have not previously deleted the pasteboard.

SMG$M_IGNORE

Allows you to delete the pasteboard even if batching is in effect.

SMGS$M_MINUPD

Enables minimal update (the default).

SMGS$M_NOTABS

Causes the Screen Management Facility not to use tab characters to
format the screen.

SMG$M_PROTECT

Protect pasteboard operations from AST interrupts (the default).

SMG$M_RELEASE_PBD

Allows you to change the pasteboard size (using the
SMGS$CHANGE PBD CHARACTERISTICS routine) and prevents
the Screen Management Facility from modifying anything on the
screen outside of the smaller pasteboard.

All other bits must be 0 and are reserved for future OpenVMS use.

106

Chapter 8. Screen Management (SMG$) Routines

old-mode

OpenVMS usage: mask_longword

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the control settings that were in effect before calling this procedure. The optional old-mode
argument is the address of an unsigned longword into which the former mode settings are written. A

bit set to 1 indicates that the specified mode was employed; a bit set to 0 indicates that the mode was

inhibited.

buffer-size

OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

Specifies the size of the buffer in bytes. The optional buffer-size argument is the address of an
unsigned word that contains the size of the buffer. The buffer-size argument is used when buffering
mode is enabled (SMGSM_BUF ENABLED). The default and minimum buffer size is 256 bytes.
The maximum value is 65535. The buffer-size value depends on user authorization file (UAF) values
and is maximized with the SYSGEN parameter MAXBUF.

Description

SMGS$CONTROL MODE lets you determine and change the mode of the Screen Management
Facility operation for a specified pasteboard. By specifying different combinations of the new-mode
and old-mode arguments, SMGSCONTROL MODE can be used in the following ways:

* Touse SMGSCONTROL MODE to determine the current mode settings, use the following
format:

SMGESCONTROL_MODE (pasteboard_id ,, ol d_node)

* Touse SMGSCONTROL MODE to set the bits without regard to their current setting, use the
following format:

SME$CONTROL_MODE (past eboard_id , new_node)

* Touse SMGSCONTROL MODE to save the current settings, set new modes, and later restore the
original settings, use the following format:

SMGSCONTROL_MODE (pasteboard_id , new node , ol d_node)

This retrieves the current bit settings and then sets the mode according to the new-mode
argument.

Later, to restore the mode to its former state, specify the following format:

SME$CONTROL_MODE (past eboard_id , ol d_node)

107

Chapter 8. Screen Management (SMG$) Routines

This sets the new mode according to the settings previously retrieved.

If both arguments are omitted, no information is returned.

The modes that can be determined and changed using SMGSCONTROL MODE are as follows:

Buffering

In this mode, the Screen Management Facility buffers all output for efficient use of

system QIOs. When the buffer fills, SMG$ writes the buffer to the terminal. By calling
SMGSFLUSH_BUFFER, the user can force to the screen any output that has been placed in the
pasteboard buffer but not yet written to the terminal.

Minimal Screen Update

By default, the Screen Management Facility tries to minimize the number of characters actually
sent to the terminal. It does this by keeping track of the current contents of the pasteboard and the
new contents of the pasteboard. SMGS$ then sends only those characters that have changed.

Nonminimal updating rewrites any line containing a change, starting with the first changed
character on that line.

Clear Screen

By default, the Screen Management Facility does not clear the screen when the program exits if
you have not already deleted the pasteboard. Use the clear screen mode to prevent this default
behavior.

No Tabs

If this bit is set, the Screen Management Facility does not rely on the terminal's tab settings.

If it is not set, the Screen Management Facility will use physical tabs for the minimal update
procedure. However, note that such use implicitly assumes that the tab stops are set to the default
locations (every eight characters). Specify "no tabs" if you want to be sure that the application will
run regardless of the tab settings the user has set on the terminal. By default, this bit is clear. A
terminal setting of SET TERM/NOTABS may also be used to override this default.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVARG Invalid argument. New-mode has a bit set that does not

correspond to SMG$M_BUF_ENABLED, SMG$M_MINUPD,
SMGS$M_CLEAR_SCREEN, or SMG$M_NOTABS, or buffer size is
less than 256.

SMGS$ INVPAS ID Invalid pasteboard-id.
SMG$ WRONUMARG Wrong number of arguments.

SMG$COPY_VIRTUAL_DISPLAY

SMGS$COPY_VIRTUAL DISPLAY — The Copy a Virtual Display routine creates a copy of an
existing virtual display and assigns to it a new virtual display identifier.

108

Chapter 8. Screen Management (SMG$) Routines

Format

SME$COPY_VI RTUAL_DI SPLAY current-display-id , newdisplay-id

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

current-display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Display identifier of the virtual display to be replicated. The current-display-id argument is the
address of the unsigned longword that contains the display identifier.

new-display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the display identifier of the newly created virtual display. The new-display-id argument is
the address of the unsigned longword that receives the new display identifier.

Description

MGSCOPY_ VIRTUAL DISPLAY creates a copy of an existing virtual display and assigns to
it a new virtual display number. This newly created virtual display will not be pasted anywhere;
use SMGSPASTE VIRTUAL DISPLAY and the new-display-id identifier to paste the newly
created virtual display. The existing display being replicated does not have to be pasted when
SMG$COPY_VIRTUAL DISPLAY is invoked.

Condition Values Returned

SS$ NORMAL Normal successful completion.

109

Chapter 8. Screen Management (SMG$) Routines

LIB$ INSVIRMEM Insufficient virtual memory to allocate needed buffer.

Example

C+

C This Fortran exanpl e program denonstrates the use of

C SMGEBCOPY_VI RTUAL_DI SPLAY.

C

C This routine creates a virtual display and wites it to the

C pasteboard. Data is placed in the virtual display using SMEPUT CHARS.
C

| MPLICI T | NTEGER (A-2)
CHARACTER* 29 TEXT

C+
C Include the SM5 definitions. In particular, we want SMG3M BORDER.
C

| NCLUDE ' ($SMGDEF) '
C+

C Create two virtual displays using SMESCREATE VI RTUAL DI SPLAY.
C G ve them borders.

C
RONE = 6
COLUMNS = 50
STATUS = SMGBCREATE_VI RTUAL_DI SPLAY
1 (ROANB, COLUWNS, DI SPLAY1, SMGSM BORDER)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
RONS = 5
COLUMNS = 30
STATUS = SMGBCREATE_VI RTUAL_DI SPLAY
1 (RONB, COLUWNS, DI SPLAY2, SMGSM BORDER)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Create the pasteboard usi ng SMECREATE PASTEBOARD.
C
STATUS = SMGSCREATE_PASTEBQARD (PASTE1)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Use SMGBPUT_CHARS to put data into the virtual displays.
C

STATUS = SMSSPUT_CHARS (DI SPLAY1,
1 ' This virtual display has 6 rows and 50 colums.', 2, 1)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGESPUT_CHARS (DI SPLAY1,
1 ' This is a bordered virtual display.', 3, 1)

110

Chapter 8. Screen Management (SMG$) Routines

| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
' SMGEBPUT_CHARS puts data in this virtual display.', 4,
1 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

[

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This text should be partially occluded.', 5, 1)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' So should part of this row', 6, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMG$PUT_CHARS (DI SPLAY2, ' This is virtual', 3, 1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY2,
1 " display #2.', 4, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY2,
1 " This is just sone nore text.', 5, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+
C Use SMSBPASTE_VI RTUAL_DI SPLAY to paste the virtual display.
C

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTEL, 4, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY2, PASTEL, 8, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+
C Copy the first virtual display, the one that is partially occluded.
C

STATUS = SMGSCOPY_VI RTUAL_DI SPLAY (DI SPLAY1, NEW DI SPLAY)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+

C Now paste this new virtual display so that it occludes the other
di spl ays.

C

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (NEW DI SPLAY, PASTEL, 4, 20)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END

The first virtual display created by this Fortran example is shown in Figure 8.5.

Chapter 8. Screen Management (SMG$) Routines

Figure 8.5. First Virtual Display Generated by SMGSCOPY_VIRTUAL_ DISPLAY

Thie wirtual display has 6 rows and 50 columns.
This is a bordered wirtual display.
SMG4PUT_CHARS puts data in this wvirtual display.
Thie text should be partially occcluded.

So sghould part of this row.

ZK-4808-GE

The second virtual display created by this Fortran example is shown in Figure 8.6.

Figure 8.6. Second Virtual Display Generated by SMGSCOPY_VIRTUAL_ DISPLAY

This wvirtual display has 6 rows and 50 columns.
This is a bordered wvirtual display.

g virtual display.
occluded.

This is wvirtual
display #2.
This is just some more text.

ZK-4809-GE

The output generated after the call to SMGSCOPY VIRTUAL DISPLAY is shown in Figure 8.7.

112

Chapter 8. Screen Management (SMG$) Routines

Figure 8.7. Output Generated After the Call to SMGSCOPY_VIRTUAL_ DISPLAY

Thi This wvirtual display has 6 rows and 50 columns.
Thi This is a bordered wvirtual display.

I SMGSPUT CHARS puts data in this wirtual display.
This text should be partially occluded.
So should part of this row.

Thi
display #2.
This is just some more text.

ZK-4810-GE

SMG$CREATE_KEY_TABLE

SMGS$CREATE KEY TABLE — The Create Key Table routine creates a table for key definitions.

Format

SMESCREATE_KEY_TABLE key-tabl e-id

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

key-table-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the identifier of the newly created key table. The key-table-id argument is the address of an
unsigned longword into which the key table identifier is written.

113

Chapter 8. Screen Management (SMG$) Routines

Description

SMGSCREATE KEY TABLE creates a key definition table. You can add key definitions to this table
with the SMGSADD KEY DEF, SMGSLOAD KEY DEFS, and SMGSDEFINE KEY routines.
You can list the key definitions in this table with the SMGSLIST KEY DEFS routine. The key
definitions in this table are used by the SMGSREAD COMPOSED LINE routine.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ WRONUMARG Wrong number of arguments.
LIB$S INSVIRMEM Insufficient virtual memory.

SMG$CREATE_MENU

SMGS$CREATE MENU — The Fill the Virtual Display with a Menu routine displays menu choices
in the virtual display indicated, starting at the specified row.

Format

SMGSCREATE_VENU
di splay-id ,choices [,nenu-type] [,flags] [,row] [,rendition-set]
[, rendition-conpl enent]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Display identifier of the virtual display in which the menu is created. The display-id argument is the
address of an unsigned longword containing this identifier.

choices

OpenVMS usage: static array of char_string
type: character string

114

Chapter 8. Screen Management (SMG$) Routines

access: read only

mechanism: by descriptor

Static array in which each element corresponds to an item to be displayed in the menu. The choices
argument is the address of a descriptor pointing to this static array of character strings. Note that blank
menu items are ignored.

menu-type

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Optional bit mask specifying the type of menu to be displayed. The menu-type argument is the
address of a longword bit mask that specifies this menu type. Valid values are as follows:

SMG$K BLOCK The menu items are displayed in matrix format (default).

SMGS$K_ VERTICAL Each menu item is displayed on its own line.

SMG$K HORIZONTAL The menu items are displayed all on one line.

flags

OpenVMS usage: mask_longword
type: longword (unsigned)
access: read only
mechanism: by reference

Optional bit mask specifying the attributes to be used for the menu. The flags argument is the address
of an unsigned longword that contains the flag. Valid values are as follows:

SMG$M_DOUBLE _SPACE

Double-spaced rows of menu items. The default is single spaced.

SMG$M_FIXED FORMAT

Each menu item is in a fixed-length field. The field is the size of the
largest menu item. The default is compress.

SMGS$SM_FULL_FIELD

The full field is highlighted when you move within the menu using
item keys. The default is that menu items only are highlighted. If you
specify this flag value, it also implies SMG$M_FIXED FORMAT.

SMG$M_WIDE_MENU

Wide characters are used in the menu items. The default is normal
sized characters.

SMGSM_WRAP_MENU

The up arrow and down arrow keys cause the menu to wrap when the
cursor is on the first or last rows of the menu.

row

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

115

Chapter 8. Screen Management (SMG$) Routines

Optional row number in the specified virtual display at which the first menu item is displayed. The
row argument is the address of a signed longword that contains this row number. If row is omitted,
the first row of the virtual display's scrolling region is used.

rendition-set

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute specifier. The optional rendition-set argument is the address of a longword bit mask in
which each attribute set causes the corresponding attribute to be used when writing out the menu
choices. The following attributes can be specified using the rendition-set argument:

SMG$M_BLINK Displays blinking characters.
SMGS$M_BOLD Displays characters in higher-than-normal intensity.
SMGS$M_REVERSE Displays characters in reverse video; that is, using the opposite of the

default rendition of the virtual display.

SMG$M_UNDERLINE Displays underlined characters.

SMGS$M_USERI1 through |Displays user-defined attributes.
SMGS$M_USERS

The display-id argument must be specified when you use the rendition-set argument.
rendition-complement

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute complement specifier. The optional rendition-complement argument is the address of a
longword bit mask in which each attribute set causes the corresponding attribute to be complemented
in the display. All of the attributes that can be specified with the rendition-set argument can be
complemented with the rendition-complement argument. The display-id argument must be specified
when you use the rendition-complement argument.

The optional arguments rendition-set and rendition-complement let the user control the attributes of
the virtual display. The rendition-set argument sets certain virtual display attributes, whilerendition-
complement complements these attributes. If the same bit is specified in both the rendition-set

and rendition-complement parameters, rendition-set is evaluated first, followed byrendition-
complement. By using these two parameters together, the user can control each virtual display
attribute in a single procedure call. On a single-attribute basis, the user can cause the following
transformations:

Set Complement |Action
0 0 Attribute set to default
0 Attribute on
0 1 Attribute set to complement of default setting

116

Chapter 8. Screen Management (SMG$) Routines

Set Complement | Action
1 1 Attribute off
Description

SMGS$CREATE MENU displays a list of menu choices in the virtual display's virtual scrolling
region, starting in a specified row. Menu items start in the second column of the virtual display.
Multiple menu items on the same row are separated by four spaces.

The choices are displayed with the specified rendition attributes in any one of the following formats:

Vertical Each menu item is on its own line.
Horizontal The menu items are all on one line.
Block The menu items appear in matrix format.

Any menu items that do not fit within the bounds of the virtual display are not displayed, but are
saved for later scrolling by SMGS$SELECT FROM_ MENU. The choices are single spaced by
default, but if requested this can be changed to double spaced. Four spaces separate each menu item
horizontally. If requested, the items can also be displayed in fixed format columns where the width of
the column is equal to the size of the largest string passed.

After a call to SMGSCREATE_MENU, the user must not output any characters to the display that
disturb the rows containing the newly created menu. If characters are output that do interfere with the
menu, unpredictable results will be generated. Use the SMGSSELECT _FROM_MENU routine to
select an item from this menu.

SMGS$CREATE_MENU supports one-dimensional Noncontiguous Array (NCA) and Varying String
Array (VSA) string arrays. NCA and VSA string arrays include all string arrays generated by VSI
Ada, VSI BASIC, VAX DIBOL, VSI Fortran, VSI Pascal, and VAX PL/I. (Note that if you are calling
SMGSCREATE MENU from VAX BASIC, you must still use a MAP statement to declare the array.)

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$ INVDIS ID The display identifier is invalid or contains a viewport.
SMGS$_xxxx Any condition value returned by SMGSPUT CHARS,

SMGS$BEGIN_DISPLAY UPDATE, and
SMGS$END DISPLAY UPDATE.

LIB$ xxxx Any condition value returned by LIBSCREATE VM _ZONE,
LIB$SGET VM, LIBSFREE VM.

SMG$CREATE_PASTEBOARD

SMGS$CREATE _PASTEBOARD — The Create a Pasteboard routine creates a pasteboard and returns
its assigned pasteboard identifier.

Format

SMGE$CREATE_PASTEBQARD
past eboard-id [, out put-device] [, nunber-of-pasteboard-rows]

117

Chapter 8. Screen Management (SMG$) Routines

[, number - of - past eboard-col uims] [,flags] [,type-of-term nal]
[, devi ce- nane]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the identifier of the newly created pasteboard. The pasteboard-id argument is the address of
an unsigned longword into which the new pasteboard identifier is written.

output-device

OpenVMS usage: device name

type: character string
access: read only
mechanism: by descriptor

Specifies the file specification or logical name to which the output associated with this pasteboard will
be written. The output-device argument is the address of a descriptor that points to the name of the
output device. If omitted, output is sent to SYSSOUTPUT.

number-of-pasteboard-rows

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Receives the number of rows on the device specified in the output-device argument. The number-of-
pasteboard-rows argument is the address of a signed longword into which is written the number of
rows on the specified device, which will be the number of rows in the pasteboard.

number-of-pasteboard-columns

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

118

Chapter 8. Screen Management (SMG$) Routines

Receives the number of columns on the device specified in the output-device argument. The
number-of-pasteboard-columns argument is the address of a signed longword into which the
number of columns on the specified device is written.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the attributes to be used in the pasteboard. The flags argument is the address of an unsigned
longword that contains the flag. The default action is to clear the screen when the pasteboard is
created.

Valid values are as follows:

SMG$M_KEEP CONTENTS The screen is not initially cleared. The Screen Management
Facility works best when it can manage the entire screen.
Therefore, using SMG$SM_KEEP CONTENTS is discouraged.

SMG$M_WORKSTATION Calls DECterm to create a DECterm window if the Screen
Management Facility is running on a workstation that is running
DECwindows. If it is not running on a workstation that is
running DECwindows, this flag is ignored.

type-of-terminal

OpenVMS usage: mask_longword

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the SMGS internal device type to which the output associated with this pasteboard will be
written. The type-of-terminal argument is the address of an unsigned longword into which is written
the terminal type.

The returned values are as follows:

SMG$K_UNKNOWN
SMGS$K_VTFOREIGN
SMG$K_HARDCOPY
SMG$K_VTTERMTABLE

If a value other than SMG$K VTTERMTABLE is returned, you must use SMG$SNAPSHOT to
output the contents of the pasteboard.

device-name

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

119

Chapter 8. Screen Management (SMG$) Routines

Receives the device name of the device on which the output associated with this pasteboard is written.
The device-name argument is the address of a descriptor into which is written the device name.

If you specify the SMGSM_WORKSTATION value to the flags argument, this argument returns the
DECwindows terminal device name created by the Screen Management Facility for this pasteboard.
(You can then specify the device name in a call to SMGSCREATE VIRTUAL KEYBOARD to allow
reading of input from the DECterm window.) Otherwise, the string specified by OUT DEVICE is
returned.

Description

SMGS$CREATE PASTEBOARD creates a new pasteboard, associates it with the device specified
by output-device, and returns its assigned pasteboard-id. Note that if you request a pasteboard on a
device that already has a pasteboard assigned, this routine returns the pasteboard-id of the existing
pasteboard and returns the SMG$ PASALREXI status code.

If a program calls both SMGSCREATE PASTEBOARD and
SMGSCREATE VIRTUAL KEYBOARD, make sure SMGSCREATE PASTEBOARD is called
first. The program will not function correctly if SMGSCREATE VIRTUAL KEYBOARD is called
before SMGSCREATE PASTEBOARD.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$ PASALREXI Successful completion. A pasteboard already exists for this device.
SMG$ WRONUMARG Wrong number of arguments.

LIBS INSVIRMEM Insufficient virtual memory to allocate needed buffer.

Any condition values returned by LIBSGET EF, LIB$SGET VM, $QIO, SGETDVI, $ASSIGN.

Example
C+ SMG&L. FOR

C This Fortran exanpl e program denonstrates the use of
C SMGBCREATE_PASTEBOARD.

C_
I MPLI CI T | NTEGER* 4 (A-2Z)
SME$M BOLD = 1
SM3$M REVERSE = 2
SMESM BLI NK = 4
SME$M_UNDERLI NE = 8

C+

C Establish the terminal screen as a pasteboard
C by calling SME3CREATE_PASTEBOARD.
C

STATUS = SMGSCREATE_PASTEBQARD (NEWPID,,,)
I F (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))
C+
C Establish a virtual display region by calling
C SMGBCREATE_VI RTUAL_DI SPLAY.
C

120

Chapter 8. Screen Management (SMG$) Routines

STATUS = SMGSCREATE_VI RTUAL_DI SPLAY (5, 80, DI SPLAY_ID,, ,)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+

C Paste the virtual display to the screen, starting at

C row 10, colum 15 using SMSSPASTE VI RTUAL_DI SPLAY.

C
STATUS = SMGBPASTE_VI RTUAL_DI SPLAY(DI SPLAY_| D, NEW PI D, 10, 15)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+

C Wite three lines to the screen using SMEBPUT_LI NE.

C

STATUS = SMSBPUT_LINE (DI SPLAY_ID, ' This line is underlined, 2,

1 SME$M_UNDERLI NE, 0, ,)

I F (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

STATUS = SM33PUT_LINE (DI SPLAY_ID,' This line is blinking', 2,

1 SME$M BLI NK, 0, ,)

I F (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

STATUS = SMSBPUT_LINE (DI SPLAY_ID,' This line is reverse video', 2,
1 SME$M_REVERSE, 0, ,)

I F (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

END

This Fortran program calls SMGS$ routines to format screen output.

SMG$CREATE_SUBPROCESS

SMGS$CREATE SUBPROCESS — The Create and Initialize a Subprocess routine creates a DCL
subprocess and associates it with a virtual display.

Format

SMGPCREATE_SUBPROCESS di splay-id [, AST-routine] [,AST-argunent] [,flags]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier
type: longword (unsigned)

access: read only

121

Chapter 8. Screen Management (SMG$) Routines

mechanism: by reference

Identifier of the virtual display with which the newly created subprocess is associated. The display-id
argument is the address of an unsigned longword containing this identifier.

AST-routine

OpenVMS usage: ast_procedure

type: procedure value
access: call without stack unwinding
mechanism: by value

Optional AST routine to be called when the currently executing command completes. The AST-
routine argument is the routine's procedure value.

The AST routine is called with five parameters. The first parameter is a pointer to a data structure
that contains the display-id, AST-argument, and the command-status values. The remaining four
parameters for the AST routine are RO, R1, PC, and PSL. The following figure illustrates the AST-
routine parameters and the data structure pointed to by the first parameter.

Data Structure

Address of Data Structure —_— Display-1D
RO AST-Argument
R1 Command-Status
PC
PSL
ZK-6508-GE

If the AST-routine argument is specified, the routine SMGSEXECUTE COMMAND buffers any
commands passed to it and executes them in order, calling the specified AST routine when each
command completes. If the AST-routine argument is not specified, SMGSEXECUTE _COMMAND
waits until the specified command completes before returning control to the user.

AST-argument

OpenVMS usage: user_arg

type: longword (unsigned)
access: read only
mechanism: by value

Optional argument you supply to the AST routine. The AST-argument parameter is an unsigned
longword that contains the value to be passed to the AST routine.

flags

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

122

Chapter 8. Screen Management (SMG$) Routines

Optional argument you supply to SMGSCREATE SUBPROCESS. SMGSCREATE SUBPROCESS
calls LIBSSPAWN to create the subprocess. The flags argument lets you control some of the

flags used in that call. Flags available to SMGSCREATE _SUBPROCESS correspond to flags in
LIB$SPAWN as follows:

SMGSCREATE _SUBPROCESS [LIBSSPAWN |Function
Flag Flag

SMG$M_TRUSTED TRUSTED |If this bit is set, it indicates a SPAWN command
on behalf of the application. If this bit is not set,
it indicates that the SPAWN command originates
from the user. SPAWN commands originating
from users are disallowed in captive accounts
(DCL).

SMG$M_AUTHPRIV AUTHPRIV |If this bit is set, the subprocess inherits the caller's
authorized privileges. If this bit is clear, the
spawned processes' authorized mask is set equal
to the caller's current (active) privilege mask.

SMGS$M_SUBSYSTEM SUBSYSTEM| If this bit is set, a spawned process inherits
protected subsystem IDs for the duration of
LOGINOUT.EXE (used to map the command
line interpreter). The IDs will be removed

in the process of transferring control to the
command language interpreter (CLI) (as a user
mode SRUNDWN is performed). If this bit is
clear, LOGINOUT does not execute under the
subsystem IDs.

The default is that none of these bits is set. See online Help or the VST OpenVMS RTL Library (LIB
$) Manual for a complete description of LIBSSPAWN, these flags, and the security consideration
surrounding their use.

Description

SMGSCREATE SUBPROCESS lets you create a DCL subprocess and associate this subprocess

with a virtual display. (The subprocess is initialized using the DCL commands SET NOVERIFY

and SET NOON.) From your main process you can then specify commands to be executed by the
subprocess using the SMGSEXECUTE_COMMAND routine. Communication between processes

is performed using mailboxes, thus allowing you to control the input commands and the output text.
When buffering commands, use the optional AST routine to notify your main process whenever a
command is completed. Broadcast trapping and unsolicited input do not have to be disabled to use this
routine. For more information on mailboxes, see the mailbox driver section of the VSI OpenVMS 1/0
User's Reference Manual.

Before creating the subprocess, the Screen Management Facility checks to ensure that you have
sufficient resources to create the necessary mailboxes and the subprocess. A remaining BYTLM value
of at least 5000 and a remaining PRCLM value of at least 1 are required.

The Screen Management Facility declares an exit handler that deletes the subprocess if the user
exits without first calling the routine SMG$SDELETE SUBPROCESS. Under some circumstances,
however, these facility-supplied exit handlers are not executed. In this case, you must delete the
subprocess with the DCL command SHOW PROCESS/SUB followed by the DCL command STOP.

123

Chapter 8. Screen Management (SMG$) Routines

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ INSQUOCRE Insufficient quota remaining to create subprocess.

SMGS$ INVDIS ID Invalid display-id.

SMGS$ SUBALREXI Subprocess already exists for this display-id (alternate success status).
SS$_xxxx Any status from SGETDVI, $GETJPI, SDCLEXH, or SCREMBX.
LIB$ xxxx Any status from LIB§SPAWN, LIB$GET EF, LIBSGET VM.
Example

Thi s VAX BASI C program denonstrates the use of

10
I
!
I SMESCREATE_SUBPROCESS.
!

OPTION TYPE = EXPLICI T
OPTI ON CONSTANT TYPE = | NTEGER

9 NCLUDE " LI BSROUTI NES" 9% ROM %_| BRARY " SYS$LI BRARY: BASI C$STARLET"

94 NCLUDE " SMESROUTI NES" %-ROM %1 BRARY " SYS$LI BRARY: BAS|I C$STARLET" ! *** new
i ne

9% NCLUDE " $SMGDEF" %-ROM %.| BRARY " SYS$LI BRARY: BASI C$STARLET"

9% NCLUDE " $SSDEF" 9% -ROM % .1 BRARY " SYS$LI BRARY: BASI C$STARLET"

COVMMON LONG NUM_COMVANDS

DECLARE SMG$R_SUBPROCESS_| NFO TABLE SMG | NFO Prxx
DECLARE LONG S, PASTEBOARD | D, DI SPLAY_I D, STATUS_DI SPLAY_I D

EXTERNAL | NTEGER COVPLETI ON_ROUTI NE Prxx

S = SMGSCREATE_PASTEBOARD (PASTEBOARD | D)
IF S <> SS$_NORMAL THEN CALL LIB$SI GNAL (S) END I F

S = SMGBCREATE_VI RTUAL_DI SPLAY (12, 75, DI SPLAY_| D, SMG$M BORDER)
IF S <> SS$_NORMAL THEN CALL LIB$SI GNAL (S) END I F

S = SMGSCREATE_VI RTUAL_DI SPLAY (5, 75, STATUS_DI SPLAY_| D, SMG$M BORDER)
IF S <> SS$_NORMAL THEN CALL LIB$SI GNAL (S) END I F

S = SMGSPASTE_VI RTUAL_DI SPLAY (DI SPLAY_| D, PASTEBOARD I D, 2, 2)
IF S <> SS$_NORMAL THEN CALL LIB$SIGNAL (S) END I F

S = SMGESPASTE_VI RTUAL_DI SPLAY (STATUS_DI SPLAY_I D, PASTEBOARD | D, 17, 2)
IF S <> SS$_NORMAL THEN CALL LIB$SIGNAL (S) END I F

S = SMEBCREATE_SUBPROCESS (DI SPLAY_| D, &
LOC(COMPLETI ON_ROUTI NE), &
STATUS_DI SPLAY_| D)
IF S <> SS$_NORMAL THEN CALL LIB$SI GNAL (S) END I F

NUM_COMVANDS = 1
S= SMGSEXECUTE_COMVAND(DI SPLAY_I D, " $SHOW DEFAULT")

124

Chapter 8. Screen Management (SMG$) Routines

IF S <> SS$_NORMAL THEN CALL LIB$SIGNAL (S) END I F

NUM_COMVANDS = NUM_COMVANDS + 1
S= SMGSEXECUTE_COMVAND(DI SPLAY_I D, " $SHOW TI ME")
IF S <> SS$_NORMAL THEN CALL LIB$SIGNAL (S) END I F

NUM_COMVANDS = NUM_COMVANDS + 1

S= SMGSEXECUTE_COMVAND(DI SPLAY_I D, " $SHOW QUOTA")
IF S <> SS$_NORMAL THEN CALL LIB$SIGNAL (S) END I F
SLEEP (5) UNTIL NUM COMVANDS <= 0

END

20 SUB COVPLETI ON_ROUTI NE(SM3$R_SUBPROCESS | NFO TABLE SMG | NFO, & !***
LONG RO, LONG R1, LONG PC, LONG PSL)

OPTION TYPE = EXPLICI T

OPTI ON CONSTANT TYPE = | NTECGER

% NCLUDE " $SMGEDEF" %-ROM %.| BRARY " SYS$LI BRARY: BASI C8STARLET"

% NCLUDE " $SSDEF" %-ROM 9%.1 BRARY " SYS$LI BRARY: BASI CSSTARLET"

COVMMON LONG NUM_COMVANDS
DECLARE LONG S

EXTERNAL LONG FUNCTI ON LI B$SI GNAL(LONG), &
SMESPUT_LI NE (LONG, STRI NG

NUM_COMVANDS = NUM_COMVANDS - 1

I F (SMG I NFO : SMGSL_STATUS AND 1) <> 0
THEN
S = SMEBPUT_LI NE(SMG_| NFO : SMESL_USR ARG, "command conpl et ed")
IF S <> SS$_NORVAL THEN CALL LIB$SIGNAL (S) END I F
ELSE
S = SMSBPUT_LI NE(SMG_| NFO: : SMESL_USR ARG, "conmmand fail ed")
IF S <> SS$_NORVAL THEN CALL LIB$SIGNAL (S) END I F
END | F

SUBEND

SMG$CREATE_VIEWPORT

SMGS$CREATE VIEWPORT — The Create a Virtual Viewport routine creates a viewport and
associates it with a virtual display. The location and size of the viewport are specified by the caller.

Format

SME$CREATE_VI EWPORT
di splay-id ,viewport-rowstart ,viewport-colum-start
, Vi ewpor t - nunber -rows , vi ewport - nunber - col ums

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

access: write only

125

Chapter 8. Screen Management (SMG$) Routines

mechanism: by value

Arguments
display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Display identifier of the virtual display associated with the newly created viewport. The display-id
argument is the address of an unsigned longword containing this identifier.

viewport-row-start

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Row number in the virtual display that will become row 1 in the viewport. The viewport-row-start
argument is the address of a signed longword containing the row number.

viewport-column-start

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Column number in the virtual display that will become column 1 in the viewport. The viewport-
column-start argument is the address of a signed longword containing the column number.

viewport-number-rows

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Number of rows in the viewport. The viewport-number-rows argument is the address of a signed
longword containing the number of rows in the newly created viewport.

viewport-number-columns

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

126

Chapter 8. Screen Management (SMG$) Routines

Number of columns in the viewport. The viewport-number-columns argument is the address of a
signed longword containing the number of columns in the newly created viewport.

Description

SMGS$CREATE_VIEWPORT creates a viewport and associates it with a particular virtual display.
The virtual display must be created before the viewport can be created, and you can only create
one viewport for each virtual display. In order to make the viewport visible, you have to paste

the virtual display by calling the SMGSPASTE VIRTUAL DISPLAY routine; only the portion
of the virtual display that falls inside the viewport is visible. You can delete a viewport with the
SMGS$DELETE_VIEWPORT routine.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ INVARG Number of rows or columns is less than zero.

SMG$ INVCOL Invalid column specified.

SMGS$ INVDIS ID Invalid display-id.

SMGS$ _INVROW Invalid row specified.

SMGS$ WINEXISTS Viewport already exists on the virtual display (alternate success
status).

SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanple creates two virtual displays, one

C being a copy of the other. The initial virtual display is
Cfilled and pasted to the pasteboard. The second virtual

C display is assigned a viewport and then pasted to the

C pasteboard. Therefore, only the section of the second
Cvirtual display that falls inside the viewport is visible.
C

| MPLICI T | NTEGER (A-2)

I NCLUDE ' ($SMGDEF)

C Create the Virtual Display. Gve it a border.

RONS = 9
COLUMNS = 32
STATUS = SMESCREATE VI RTUAL_DI SPLAY
1 (ROANB, COLUWNS, DI SPLAY1, SME$M BORDER)
I F (.NOT. STATUS) call 1ib$signal (%al (STATUS))

C Create the Pasteboard

STATUS = SMGSCREATE PASTEBOARD (PASTE1)
I F (.NOT. STATUS) call 1ib$signal (%al (STATUS))

C Put data in the Virtual D splay

STATUS = SME$PUT_CHARS (DI SPLAY1,

127

Chapter 8. Screen Management (SMG$) Routines

1 '"This is row nunber 1, you see.', 1, 1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 2, you see.', 2, 1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 3, you see.', 3, 1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 4, you see.', 4,1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 5, you see.', 5, 1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 6, you see.', 6, 1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 7, you see.', 7, 1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 8, you see.', 8, 1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 9, you see.', 9, 1)
IF (.not. STATUS) call |ib$signal (%al (STATUS))

C Paste the Virtual D splay

STATUS = SMGBPASTE_VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1l, 2, 2)

| F (.NOT. STATUS) call |ib$signal (%/AL(STATUS))

STATUS = SMGSLABEL_BORDER (DI SPLAY1, ' Ful |
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSCOPY_VI RTUAL_DI SPLAY (DI SPLAY1, Di
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSLABEL_BORDER (DI SPLAY2, ' Vi ewport'
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSCREATE VI EWPORT (DI SPLAY2, 3, 9,
| F (.NOT. STATUS) call |ib$signal (%/AL(STATUS))

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY2,
| F (.NOT. STATUS) call |ib$signal (%/AL(STATUS))

END

Di spl ay',,, SMcM BOLD)

SPLAY2)

., , SMGSM BOLD)

3, 12)

PASTE1l, 15, 20)

128

Chapter 8. Screen Management (SMG$) Routines

In this VSI Fortran example, the initial virtual display is copied to a second virtual display that has a
viewport associated with it. When the second virtual display is pasted, only the portion of the virtual
display that falls inside the viewport is visible. This is shown in Figure 8.8.

Figure 8.8. Output Generated by Creating a Viewport

Full Display

This is row number 1, you see.
Thie is row number 2, you sse.
Thie is row number 3, you sse.
This is row number 4, you see.
This is row number 5, you see.
Thie is row number &, you sse.
Thie is row number 7, you sse.
This is row number 8, you see.
This is row number %, you see.
Viewport

row number
row number
row number

ZK-6424-GE

SMG$CREATE_VIRTUAL_DISPLAY

SMGSCREATE VIRTUAL DISPLAY — The Create Virtual Display routine creates a virtual display
and returns its assigned display identifier.

Format

SMGSCREATE_VI RTUAL_DI SPLAY
nunber - of -rows , nunber - of - col utms , di splay-id [, display-attributes]
[,video-attributes] [, character-set]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

number-of-rows

129

Chapter 8. Screen Management (SMG$) Routines

OpenVMS usage: longword_signed
type: longword (signed)
access: read only
mechanism: by reference

Specifies the number

of rows in the newly created virtual display. The number-of-rows argument is

the address of a signed longword that contains the desired number of rows.

number-of-columns

OpenVMS usage:
type:
access:

mechanism:

Specifies the number
columnsargument is

display-id

OpenVMS usage:
type:
access:

mechanism:

longword_signed
longword (signed)
read only

by reference

of columns in the newly created virtual display. The number-of-
the address of a signed longword that contains the desired number of columns.

identifier
longword (unsigned)

write only

by reference

Receives the display-id of the newly created virtual display. The display-id argument is the address
of an unsigned longword into which is written the display identifier.

display-attributes

OpenVMS usage:
type:

acCCess:

mechanism:

Receives the current

mask longword
longword (unsigned)
read only

by reference

default display attributes. The optional display-attributes argument is the

address of an unsigned longword into which the current display attributes are written.

Valid values for disp

lay-attributes are as follows:

SMG$M_BORDER

Specifies a bordered display. If omitted, the display is not
bordered.

SMG$M_BLOCK_ BORDER

Specifies a block-bordered display. If omitted, the display is
not bordered.

SMG$M_DISPLAY CONTROLS

Specifies that control characters such as carriage return
and line feed are displayed as graphic characters, if your
terminal supports them.

130

Chapter 8. Screen Management (SMG$) Routines

SMG$M_PROTECT DISPLAY Instructs the Screen Management Facility to return an error
(SMGS$_DSPIN_USE) if an SMGS$ call is made from an
AST routine that interrupted an SMGS$ call on the same
display.

SMGSM_TRUNC ICON Specifies that an icon (generally a diamond shape) is
displayed where truncation of a line exceeding the width of
the virtual display has occurred.

video-attributes

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the default rendition to be applied to all output in this virtual display unless overridden
by a call to a specific output routine (for example, SMGSCHANGE RENDITION). The video-
attributesargument is the address of an unsigned longword that contains the video attributes mask.

Valid values for this argument are as follows:

SMGS$M_BLINK Displays blinking characters.
SMG$M_BOLD Displays characters in higher-than-normal intensity.
SMG$M_REVERSE Displays characters in reverse video, that is, using the opposite of the

default rendition of the virtual display.
SMG$M_UNDERLINE Displays underlined characters.

SMGS$M _INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMG$M_USERI through |Displays user-defined attributes.
SMG$M_USERS

character-set

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the default character set for all text in this virtual display. The character-set argument
is the address of an unsigned longword that contains the character set specifier. Valid values are
SMGS$C_ASCII (the default), and SMG$SC _SPEC_GRAPHICS.

Description

SMGSCREATE VIRTUAL DISPLAY creates a new virtual display and returns its display identifier.
Initially, the virtual display contains blanks, and the virtual cursor is positioned at row 1, column

1. The virtual scrolling region is the entire virtual display. To make the display visible, use the
SMGSPASTE VIRTUAL DISPLAY routine.

131

Chapter 8. Screen Management (SMG$) Routines

Condition Values Returned

SS$ NORMAL Normal successful completion.

LIB$S INSVIRMEM Insufficient virtual memory.

SMGS$ DSPIN USE An SMGS call was made from an AST routine that interrupted an
SMGS call on the same display.

SMG$ INVARG Invalid argument. The video-attributes or display-attributes

argument contains an unknown value.
SMG$ WRONUMARG Wrong number of arguments.

Example

C+
C This Fortran exanpl e program denonstrates the use of
C SMGHERASE_PASTEBQOARD.

C_
I MPLICI T | NTEGER*4 (A-2)
CHARACTER* 80 QUT_STR, TRI M STR
CHARACTER* 18 PROMPT /' Pl ease enter data '/
SMGEM BOLD = 1
SMGEM _REVERSE = 2
SMGEM BLINK = 4
SMGEM UNDERLI NE = 8
C+

C Establish the terminal screen as a pasteboard using
C SMGBCREATE_PASTEBOARD.
C

STATUS = SMGBCREATE_PASTEBOARD (NEWPID,,,)
I F (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))
C+
C Establish the term nal keyboard as the virtual keyboard
C by calling SME3CREATE_VI RTUAL_KEYBQARD.
C

STATUS = SMGSBCREATE_VI RTUAL_KEYBOARD(KEYBOARD I D, , ,)
I F (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+

C Establish a virtual display region by

C cal li ng SMESCREATE_VI RTUAL_DI SPLAY.

C

STATUS = SMGSBCREATE_VI RTUAL_DI SPLAY (5, 80, DI SPLAY_ID,, ,)
I F (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+

C Paste the virtual display to the screen, starting at

Crow 10, colum 15. To paste the virtual display, use

C SMGBPASTE_VI RTUAL_DI SPLAY.

C

STATUS = SMG$PASTE_VI RTUAL_DI SPLAY(DI SPLAY_| D, NEW PI D, 10, 15)
| F (. NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))
C+

132

Chapter 8. Screen Management (SMG$) Routines

C Prompt the user for input, and accept that input using
C SMGSREAD_STRI NG

C
STATUS = SMGSREAD_STRI NG(KEYBOARD | D, QUT_STR, PROWPT, , ,,,,,)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))
C+
C Cear the screen using SMGSERASE PASTEBOARD.
C
STATUS = SMGBSERASE _PASTEBOARD (NEW_PI D)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))
C+

C Trimany trailing blanks fromthe user input

C by calling STR$TRI M

C
STATUS = STR$TRI M TRI M_STR, QUT_STR, STR_LEN)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+

C Display the data input by the user using SMEPUT_CHARS
C and SME$PUT_LI NE.

C

STATUS = SMG$PUT_CHARS(DI SPLAY ID,"' You entered: ',,,,,,)
| F (.NOT. STATUS) CALL LIB$STOP(%/AL(STATUS))
STATUS = SMG$PUT LI NE(DI SPLAY_ | D, TRI M STR(1: STR LEN), ,
1 SME$M REVERSE, 0, ,)
| F (.NOT. STATUS) CALL LIB$STOP(%/AL(STATUS))
END

The output generated by this Fortran example is shown in Figure 8.9.

Figure 8.9. Output of Fortran Program Calling SMGSCREATE_VIRTUAL_DISPLAY

YTou entered: EyilRRENNEE,

ZK-4100-GE

133

Chapter 8. Screen Management (SMG$) Routines

SMG$CREATE_VIRTUAL_KEYBOARD

SMGS$CREATE VIRTUAL KEYBOARD — The Create a Virtual Keyboard routine creates a virtual
keyboard and returns its assigned keyboard identifier.

Format

SMESCREATE_VI RTUAL _KEYBOARD
keyboard-id [,input-device] [,default-filespec] [,resultant-fil espec]
[,recall-size]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

keyboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the keyboard identifier of the newly created virtual keyboard. The keyboard-id argument is
the address of an unsigned longword into which is written the keyboard identifier.

input-device

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

String containing the file specification or logical name of the file or terminal to be used for this virtual
keyboard. The input-device argument is the address of a descriptor pointing to the file specification.
If omitted, this defaults to SYS$INPUT.

default-filespec

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

134

Chapter 8. Screen Management (SMG$) Routines

String containing the default file specification. The default-filespec argument is the address of a
descriptor pointing to the default file specification. If omitted, the null string is used.

The default-filespec argument might be used to specify a default device and directory, leaving
theinput-device argument to supply the file name and type.

resultant-filespec

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String into which the procedure writes the fully expanded file specification of the file used. The
resultant-filespec argument is the address of a descriptor pointing to the string into which is written
the file specification that was used.

recall-size

OpenVMS usage: byte unsigned

type: byte (unsigned)
access: read only
mechanism: by reference

Number of input lines to be saved for later recall. The optional recall-size argument is the address of
an unsigned byte containing the specified number of lines. A value of 0 turns off input line recall. By
default, 20 lines are saved for later recall.

Description

SMGS$CREATE_VIRTUAL KEYBOARD creates the association between a file specification
(terminal name or OpenVMS RMS file) and a virtual keyboard. The keyboard identifier is then passed
to other SMG$ procedures in order to identify the input stream being acted upon.

If your program also calls the routine SMGSCREATE PASTEBOARD, be sure to call that routine
before you call SMGSCREATE VIRTUAL KEYBOARD.

If input-device does not refer to a terminal, the file is opened using RMS and all further access
to that file is performed through RMS. If input-device is a terminal, this procedure assigns a
channel to the terminal and sets the terminal's keyboard to application mode (if supported). These
attributes are restored to their previous values when the virtual keyboard is deleted. The virtual
keyboard is deleted automatically when the image exits and can also be deleted by a call to
SMGSDELETE VIRTUAL KEYBOARD.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$ _FILTOOLON File specification is too long (over 255 characters).
SMG$ WRONUMARG Wrong number of arguments.

LIB$ INSEF Insufficient number of event flags.

135

Chapter 8. Screen Management (SMG$) Routines

LIB$ INSVIRMEM Insufficient virtual memory.
LIB$ INVSTRDES Invalid string descriptor.

Any RMS condition values returned by SOPEN or SCONNECT.

Any condition values returned by SGETDVIW, $ASSIGN, or SDCLEXH.

Example

C+

C This Fortran exanpl e program denonstrates the use of
C SMGBCREATE_VI RTUAL_KEYBOARD, SMGSCREATE_KEY_TABLE,

C SMGBADD_KEY_DEF, and SMESREAD COVPOSED LI NE.

C
| NTEGER SMG$CREATE_VI RTUAL_KEYBOARD, SMGSCREATE_KEY_TABLE
| NTEGER SMGADD_KEY_DEF, SMGREAD_COWMPOSED LI NE
| NTEGER SM3$DELETE_KEY_DEF, KEYBOARD, KEYTABLE, STATUS

C+

C Include the SM5 definitions. In particular, we want SMEM KEY NOECHO
C and SMG$M KEY_TERM NATE.
C

| NCLUDE ' ($SMGDEF) '
C+

C Create a virtual keyboard (using SME$CREATE VI RTUAL_KEYBQARD)
C and create a key table (using SME3CREATE KEY TABLE).

C
STATUS = SMGSCREATE_VI RTUAL_KEYBOARD (KEYBQARD)
I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
STATUS = SMGSSCREATE_KEY_TABLE (KEYTABLE)
I F (. NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Pronpt the user with the follow ng instructions.
C
WRI TE (6,*) 'Wen you see the pronpt (->), strike the follow ng'
WRI TE (6,*) 'keys (on the KEYPAD):
WRI TE (6, %) ' PF1 '
WRI TE (6, %) ' 5"
WRI TE (6, %) ' PF3 '
WRI TE (6,*) ' '
WRI TE (6,*) 'Wen you have done this, the foll owi ng sentence'
WRI TE (6,*) '(and nothing nore) should appear follow ng the'
WRI TE (6,*) 'pronpt: '
WRI TE (6,*) '(PF3 should act as a carriage return.)’
WRI TE (6,*) ' '
WRITE (6,*) "NOWIS THE TIME FOR ALL TEXT TO APPEAR.'
C+

C Add key definitions by calling SMESADD KEY_DEF.

136

Chapter 8. Screen Management (SMG$) Routines

C
1
1
1
1
1

C+

C Call

C

STATUS = SMG$ADD KEY DEF (KEYTABLE, 'PF1', , ,
"NOW IS THE TIME FOR ')
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMG$ADD KEY DEF (KEYTABLE, 'KP5', , |,
' TEXT TO APPEAR ')
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMG$ADD KEY DEF (KEYTABLE, 'PF3', |,
SME$M KEY_NOECHO + SMG$M KEY_TERM NATE |,

' TH'S SHOULD NOT BE ECHOED. |F YOU CAN

SEE THI'S, AN ERROR EXI STS.')

| F (. NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

SMESREAD COVPCOSED LINE to read a line of input.

WRI TE(6, *) '

STATUS = SMGSREAD COWPOSED LI NE (KEYBOARD, KEYTABLE, R_TEXT,

1 - >I)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END

Output session:

$ RUN exanpl e

When you see the pronpt (->), strike the follow ng
keys (on the KEYPAD):

PF1
5
PF3

VWhen you have done this, the foll owi ng sentence
(and not hing nore) shoul d appear follow ng the

pronpt :

(PF3 should act as a carriage return.)

NOW IS THE TIME FOR ALL TEXT TO APPEAR.

->NOW IS THE TIME FOR ALL TEXT TO APPEAR.

$

SMG$CURSOR_COLUMN

SMGS$CURSOR COLUMN — The Return Cursor Column Position routine returns the virtual

cursor's current column position in a specified virtual display.

Format

SME$CURSOR_COLUMN di spl ay-i d

137

Chapter 8. Screen Management (SMG$) Routines

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only
mechanism: by value

SMGS$CURSOR _COLUMN returns the current virtual cursor column position.
Arguments
display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

The display for which the column position is returned. The display-id argument is the address of an
unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

Description
SMGSCURSOR_COLUMN returns a longword containing the value of the current virtual cursor

column position for the specified virtual display. If the display-id is omitted, this routine signals
SMG$ WRONUMARG. If the display-id is invalid, this routine signals SMG$_INVDIS ID.

Condition Values Returned

SMGS$ INVDIS ID Invalid display-id.
SMG$ WRONUMARG Wrong number of arguments.

SMG$CURSOR_ROW

SMGSCURSOR_ROW — The Return Cursor Row Position routine returns the virtual cursor's current
row position in a specified virtual display.

Format

SME3CURSOR_ROW di spl ay-id

Returns

OpenVMS usage: longword_unsigned
type: longword (unsigned)
access: write only

138

Chapter 8. Screen Management (SMG$) Routines

mechanism: by value

SMGS$CURSOR_ROW returns the current row position.
Arguments
display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

The display for which the row position is returned. The display-id argument is the address of an
unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

Description

SMGSCURSOR_ROW returns a longword containing the value of the current virtual cursor
row position for the specified virtual display. If the display-id is omitted, this routine signals
SMG$ WRONUMARG. If the display-id is invalid, this routine signals SMG$ INVDIS ID.

Condition Values Returned

SMGS$ INVDIS ID Invalid display-id.
SMG$ WRONUMARG Wrong number of arguments.

SMG$DEFINE_KEY

SMGSDEFINE _KEY — The Perform a DEFINE/KEY Command routine performs the
DEFINE/KEY command you provide.

Format

SMGBDEFI NE_KEY key-tabl e-id , conmand-string

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

key-table-id

139

Chapter 8. Screen Management (SMG$) Routines

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifies the key definition table for which the DEFINE/KEY command is to be performed. The key-
table-id argument is the address of an unsigned longword that contains the key table identifier.

The key table identifier is returned by SMGSCREATE KEY TABLE.

command-string

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

String containing the DEFINE/KEY command to be performed. The command-string argument is
the address of a descriptor pointing to the command to be performed.

The valid qualifiers for the DEFINE/KEY command are as follows:

* /TERMINATE

« /NOECHO
« /LOCK
« /IF_STATE

+ /SET STATE
The following two restrictions apply to the DEFINE/KEY qualifiers:
* Ifyou use the /[LOCK qualifier, you must also use the /SET_STATE qualifier.

* Ifyou use both the /SET STATE and /TERMINATE qualifiers, you may not use /LOCK.

Description

SMGSDEFINE KEY parses and performs a DEFINE/KEY command. It can be used by programs
that accept DEFINE/KEY commands but do not parse the commands themselves.

SMGSDEFINE KEY calls CLISDCL_PARSE to parse the command line and then makes the
appropriate call to SMGSADD KEY DEF. The original command is then restored with a call to
CLISDCL_PARSE. Use of this procedure requires that the image be run under the DCL command
language interpreter (CLI).

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ WRONUMARG Wrong number of arguments.

140

Chapter 8. Screen Management (SMG$) Routines

Any condition values returned by LIBSSCOPY DXDX.
Any condition values returned by CLIS$ routines.

Any condition values returned by SMG$ADD KEY DEF.

SMGS$DELETE_CHARS

SMGSDELETE_CHARS — The Delete Characters routine deletes characters in a virtual display.

Format

SMESDELETE_CHARS di spl ay-id , nunber-of-characters ,start-row, start-colum

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifies the virtual display from which characters are to be deleted. The display-id argument is the
address of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

number-of-characters

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the number of characters to be deleted. The number-of-characters argument is the address
of a signed longword that contains the number of characters to be deleted.

start-row

OpenVMS usage: longword_signed

141

Chapter 8. Screen Management (SMG$) Routines

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row position at which to start the deletion. The start-row argument is the address of a
signed longword that contains the row number at which to start the deletion.

start-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the column position at which to start the deletion. The start-column argument is the address
of a signed longword that contains the column position at which to start the deletion.

Description

SMGSDELETE CHARS deletes a specified number of characters, starting at a specified row and
column position. Remaining characters on the line are shifted to the left to occupy the vacated spaces.
Note that this routine deletes characters only on a single line.

If you specify more characters than are available for deletion, SMGSDELETE CHARS deletes all
characters from the specified column position to the end of the line.

This routine leaves the virtual cursor at the position of the first character deleted.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ INVARG Invalid argument. The number of characters specified extends outside
the virtual display.

SMG$ INVCOL Invalid column position. The specified column is outside the virtual
display.

SMGS$ INVDIS ID Invalid display-id.

SMGS$ INVROW Invalid row position. The specified row is outside the virtual display.

SMGS$ WILUSERMS Pasteboard is not a video terminal.

SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanpl e program denonstrates the use of
C SMGHDELETE_CHARS.

C

| NTEGER SMG$CREATE_VI RTUAL_DI SPLAY, SMG$SCREATE_PASTEBOARD
| NTEGER SME$PASTE_VI RTUAL_DI SPLAY, SMGSPUT_CHARS

142

Chapter 8. Screen Management (SMG$) Routines

| NTEGER SMZ$DELETE_CHARS, DI SPLAY1, PASTE1l
| NTEGER ROA5, COLUMNS, BORDER, STATUS
C+
C Create the virtual display be calling SMG3CREATE VI RTUAL_DI SPLAY.
C To give it a border, set BORDER = 1. No border would be BORDER = 0.
C

RONG = 7
COLUWNS = 50
BORDER = 1

STATUS = SMGSCREATE_VI RTUAL_DI SPLAY
1 (ROAS, COLUMNS, DI SPLAY1, BORDER)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+
C Cal | SMG$CREATE_PASTEBOARD to create the pasteboard.
C
STATUS = SMGBSCREATE_PASTEBOARD (PASTEL)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Use SM3PUT_CHARS to put data in the virtual display.
C
STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This virtual display has 7 rows and 50 colums.', 2, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This is a bordered virtual display.', 4, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' SMEPPUT_CHARS puts data in this virtual display.',6, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Paste the virtual display to the pasteboard using
C SMGHSPASTE_VI RTUAL_DI SPLAY.
C

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTEL, 4, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+

C Call SME$DELETE CHARS to delete 4 characters fromrow 4

C starting fromcharacter (columm) 14, renoving the characters
C "rder"” fromthe word "bordered".

C

STATUS = SMGSDELETE_CHARS (DI SPLAY1, 4, 4, 14)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END

The output generated by this Fortran program before the call to SMGSDELETE CHARS is shown in
Figure 8.10.

143

Chapter 8. Screen Management (SMG$) Routines

Figure 8.10. Output Generated Before the Call to SMGSDELETE CHARS

This wvirtual display has 7 rows and 50 columms.
This is a bordered wvirtual display.

SMGSPUT_CHARS puts data in this wvirtual display.

ZK-4101-GE

The output generated after the call to SMGSDELETE CHARS is shown in Figure 8.11.

Figure 8.11. Output Generated After the Call to SMGSDELETE_CHARS

This wvirtual display has 7 rows and 50 columns.
This is a boed wvirtual display.

SMGSPUT CHARS puts data in this wvirtual display.

ZK-4107-GE

ml

144

Chapter 8. Screen Management (SMG$) Routines

SMG$DELETE_KEY_DEF

SMGSDELETE_KEY DEF — The Delete Key Definition routine deletes a key definition from the
specified table of key definitions.

Format

SMGSDELETE_KEY_DEF key-table-id , key-nane [,if-state]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

key-table-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifies the key table from which the key definition is deleted. The key-table-id argument is the
address of an unsigned longword that contains the key table identifier.

key-name

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

String containing the name of the key whose definition is to be deleted. The key-name argument is
the address of a descriptor pointing to the key name. The key name is stripped of trailing blanks and
converted to uppercase before use.

Table 3.1 lists the valid key names.

if-state

OpenVMS usage: char_string

type: character string

145

Chapter 8. Screen Management (SMG$) Routines

access: read only

mechanism: by descriptor

String containing a state name that further qualifies key-name. The if-state argument is the address
of a descriptor pointing to the state name. If omitted, the null state is used. Thus if a key has several

definitions depending on various values of if-state, this routine lets you delete only one of those
definitions.

Description

SMGSDELETE_KEY DEF deletes a key definition from the specified table of key definitions.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVKEYNAM Invalid key-name.

SMG$ INVKTB ID Invalid key-table-id.

SMG$ KEYDEFPRO Key definition is protected.
SMG$ KEYNOTDEF Key is not defined.

SMG$ WRONUMARG Wrong number of arguments.

SMG$DELETE_LINE

SMGSDELETE LINE — The Delete Line routine deletes lines from a virtual display.

Format

SMEDELETE_LI NE di splay-id ,start-row [, nunber - of -rows]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

146

Chapter 8. Screen Management (SMG$) Routines

Identifies the virtual display from which lines are to be deleted. The display-id argument is the
address of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the first line to be deleted from the virtual display. The start-row argument is the address of
a signed longword that contains the number of the first line to be deleted.

number-of-rows

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the number of lines to be deleted. The number-of-rows argument is the address of a signed
longword that contains the number of lines to be deleted. If omitted, one line is deleted.

Description
SMGSDELETE_LINE deletes one or more lines from a virtual display and scrolls the remaining lines

up into the space created by the deletion. Blank lines fill the display on the bottom. The virtual cursor
is left at the first column position in start-row.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$ INVARG Invalid argument.

SMGS$ INVDIS ID Invalid display-id.

SMGS INVROW Invalid row.

SMG$ WILUSERMS Pasteboard is not a video terminal.

SMG$ WRONUMARG Wrong number of arguments.

Example

C+
C This Fortran exanpl e program denonstrates the use of SMGSDELETE LI NE.
C

147

Chapter 8. Screen Management (SMG$) Routines

| MPLICI T | NTEGER (A-2)
C+
C Create the virtual display by calling SMG3CREATE VI RTUAL_DI SPLAY.
C To give it a border, set BORDER = 1. No border woul d be BORDER = 0.
C

RONG = 7
COLUWNS = 50
BORDER = 1

STATUS = SMGSCREATE_VI RTUAL_DI SPLAY
1 (ROAS, COLUMNS, DI SPLAY1, BORDER)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+
C Cal | SMG$CREATE_PASTEBOARD to create the pasteboard.
C
STATUS = SMGBSCREATE_PASTEBOARD (PASTEL)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Use SM3PUT_CHARS to put data in the virtual display.
C
STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This virtual display has 7 rows and 50 colums.', 2, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This is a bordered virtual display.', 4, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' SMEPPUT_CHARS puts data in this virtual display.', 6, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Paste the virtual display to the pasteboard using
C SMGHSPASTE_VI RTUAL_DI SPLAY.

C
STATUS = SMSBPASTE_VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1l, 4, 15)
I F (. NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+

C Call SMESDELETE LINE to delete rows 3, 4, and 5.

C

STATUS = SMGSDELETE_LINE (DI SPLAY1, 3, 3)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END

The output generated by this Fortran program before the call to SMGSDELETE_LINE is shown in
Figure 8.12.

148

Chapter 8. Screen Management (SMG$) Routines

Figure 8.12. Output Generated by Fortran Program Before the Call to
SMGSDELETE_LINE

This wvirtual display has 7 rows and 50 columms.
This is a bordered wvirtual display.

SMGSPUT CHARS puts data in this wvirtual display.

ZK-4103-GE
The output generated after the call to SMGSDELETE_LINE is shown in Figure 8.13.

Figure 8.13. Output Generated After the Call to SMGSDELETE_ LINE

This wvirtual display has 7 rows and 50 columns.
SMGSPUT CHARS puts data in this wvirtual display.

ZK-4109-GE

149

Chapter 8. Screen Management (SMG$) Routines

SMGS$SDELETE_MENU

SMGSDELETE _MENU — The End Access to a Menu in the Virtual Display routine ends access to
the menu choices in the specified virtual display.

Format

SMESDELETE_MENU di spl ay-id [, fl ags]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the virtual display in which the menu choices are displayed. The display-id argument is
the address of an unsigned longword containing this identifier.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Optional bit mask specifying possible actions to take when deleting the menu. The flags argument
is the address of an unsigned longword that contains the flag. At this time, the only valid value is
SMGS$M_ERASE MENU. If this option is specified, all rows containing menu items are erased.

Description
SMGSDELETE MENU discontinues access to the menu choices in the specified virtual display. The

optional flags argument lets you specify that the menu choices be removed from the display when the
menu is deleted.

Condition Values Returned

SS$ NORMAL Normal successful completion.

150

Chapter 8. Screen Management (SMG$) Routines

LIBS xxxx Any condition value returned by LIBSFREE_VM.
SMGS$_xxxx Any condition value returned by SMGSERASE DISPLAY.

SMGSDELETE_PASTEBOARD

SMGSDELETE PASTEBOARD — The Delete Pasteboard routine deletes a pasteboard.

Format

SMGSDELETE_PASTEBOARD past eboard-id [, fl ags]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard to be deleted. The pasteboard-id argument is the address of an unsigned
longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Optional bit mask specifying whether the screen is cleared after the specified pasteboard is deleted.
The flags argument is the address of an unsigned longword that contains the flag. Valid values are as
follows:

0 Does not clear the screen.

151

Chapter 8. Screen Management (SMG$) Routines

SMGS$M_ERASE PBD Clears the screen (default).

SMGSM_IGNORE BATCHED |Deletes the pasteboard even if batching is in effect.

Description

SMGSDELETE PASTEBOARD flushes all output to the display, terminates all use of the specified
pasteboard, and deallocates all resources associated with the pasteboard.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$ INVPAS ID Invalid pasteboard-id.

SMG$ NOTPASTED The specified virtual display is not pasted to the specified pasteboard.
SMG$ WILUSERMS Pasteboard is not a video terminal.

SMG$ WRONUMARG Wrong number of arguments.

Any condition values returned by SDASSGN, LIB$SFREE VM, LIBSFREE_EF, or
SMGSFLUSH BUFFER.

SMGSDELETE_SUBPROCESS

SMGSDELETE_SUBPROCESS — The Terminate a Subprocess routine deletes a subprocess that
was created with the SMGSCREATE SUBPROCESS routine.

Format

SMGSDELETE_SUBPROCESS di spl ay-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

152

Chapter 8. Screen Management (SMG$) Routines

Identifier of the virtual display associated with the subprocess being deleted. The display-idargument
is the address of an unsigned longword that contains this virtual display identifier.

Description

SMGSDELETE_SUBPROCESS deletes a subprocess that was created by a call to
SMGSCREATE_SUBPROCESS. Because the Screen Management Facility provides its own exit
handlers, do not invoke SMG$DELETE_SUBPROCESS from within your own exit handler. For
more information, see Section 4.4.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SS$_xxxx Any status returned by SDELPRC.
SMGS$ _INVDIS ID Invalid display-id.

SMG$ NOSUBEXI No subprocess exists.

LIB$_xxxx Any status returned by LIBSFREE VM.

SMGS$DELETE_VIEWPORT

SMGSDELETE_VIEWPORT — The Delete a Viewport routine deletes the specified viewport from
any pasteboards to which it is pasted.

Format

SMGSDELETE_VI EWPORT di spl ay-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the virtual display associated with the viewport to be deleted. The display-id argument is
the address of an unsigned longword containing the display identifier.

153

Chapter 8. Screen Management (SMG$) Routines

Description

SMGSDELETE_VIEWPORT deletes a viewport. The viewport is automatically "unpasted" from
any pasteboards to which it is pasted. However, the virtual display associated with the deleted
viewport has not been deleted. To view this virtual display, you must paste it to the pasteboard

with the SMGSPASTE _VIRTUAL DISPLAY routine. To delete this virtual display, use the
SMGSDELETE_VIRTUAL DISPLAY routine.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$ INVDIS ID Invalid display-id.

SMG$ NO_ WINASSOC No viewport associated with the virtual display.
SMG$ WRONUMARG Wrong number of arguments.

SMGS$DELETE_VIRTUAL_DISPLAY

SMGSDELETE _VIRTUAL DISPLAY — The Delete Virtual Display routine deletes a virtual
display.

Format

SMG$DELETE_VI RTUAL_DI SPLAY di spl ay-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display to be deleted. The display-id argument is the address of an unsigned
longword that contains the display identifier.

The display identifier display-id is returned by SMGSCREATE VIRTUAL DISPLAY.

154

Chapter 8. Screen Management (SMG$) Routines

Description

SMGSDELETE VIRTUAL DISPLAY deletes a virtual display and removes it from any pasteboard
on which it is pasted. It also deallocates any buffer space associated with the virtual display.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$ _INVDIS ID Invalid display-id.

SMGS$ NOTPASTED The specified virtual display is not pasted to the specified pasteboard.
SMGS$ WILUSERMS Pasteboard is not a video terminal.

SMG$_WRONUMARG Wrong number of arguments.

Any condition values returned by LIBSFREE VM.

SMGS$DELETE_VIRTUAL_KEYBOARD

SMGSDELETE VIRTUAL KEYBOARD — The Delete Virtual Keyboard routine deletes a virtual
keyboard.

Format

SMGSDELETE_VI RTUAL_KEYBOARD keyboar d-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

keyboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual keyboard to be deleted. The keyboard-id argument is the address of an unsigned
longword that contains the keyboard identifier.

The keyboard identifier is returned by SMGSCREATE VIRTUAL KEYBOARD.

155

Chapter 8. Screen Management (SMG$) Routines

Description
SMGSDELETE VIRTUAL KEYBOARD deletes a virtual keyboard. Any terminal attributes
specified when the keyboard was created are reset to their previous values and the keypad mode

(numeric or application) is reset to its original state. In addition, the channel is deassigned and, if the
virtual keyboard was a file, the file is closed.

Because SMGS provides its own exit handlers, this routine should not be called from your own exit
handler. For more information, see Section 4.4.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVKBD ID Invalid keyboard-id.
SMG$ WRONUMARG Wrong number of arguments.

SMG$DEL_TERM_TABLE

SMGSDEL_TERM TABLE — The Delete Terminal Table routine terminates access to a private
TERMTABLE.EXE and frees the associated virtual address space.

Format

SME$DEL_TERM TABLE

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

None.

Description

SMGS$DEL _TERM TABLE terminates access to a private TERMTABLE.EXE. Calling this routine
is optional. This routine is useful in the case where a calling program might need to reuse the virtual
address space used by a private TERMTABLE. This routine should be used only when you perform
direct (non-SMGS$) I/O to terminals.

Condition Values Returned

SS$ NORMAL Normal successful completion.

156

Chapter 8. Screen Management (SMG$) Routines

SMGS$DISABLE_BROADCAST_TRAPPING

SMGSDISABLE BROADCAST TRAPPING — The Disable Broadcast Trapping routine disables
trapping of broadcast messages for the specified terminal.

Format

SMG$DI SABLE_BROADCAST_TRAPPI NG past eboard-id

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard for the terminal to be affected. The pasteboard-id argument is the address of
an unsigned longword that contains the pasteboard identifier.

Description

SMGSDISABLE BROADCAST TRAPPING disables trapping of broadcast messages for the
specified terminal. SMGSDISABLE BROADCAST TRAPPING deassigns the mailbox set with
SMGSSET BROADCAST TRAPPING, resets the terminal characteristics, and therefore allows the
user to call LIBSSPAWN. This routine must be used to disable any broadcast trapping set with the
routine SMGSSET BROADCAST TRAPPING.

When you disable broadcast trapping, any broadcast messages that have been queued to the terminal
are lost. If you enable broadcast trapping with SMGSSET BROADCAST_TRAPPING but do not
disable it with SMGSDISABLE BROADCAST TRAPPING before the image exits, any messages
that have been broadcast to the terminal are lost when the image exits.

Note that if both broadcast trapping and the trapping of unsolicited input are enabled, then both

SMGSDISABLE BROADCAST TRAPPING and SMGS$DISABLE UNSOLICITED INPUT must
be invoked to deassign the mailbox.

Condition Values Returned

SS$ NORMAL Normal successful completion.

157

Chapter 8. Screen Management (SMG$) Routines

SMG$ WRONUMARG Wrong number of arguments.

Any condition value returned by $QIOW.

Example

10

I+

I This VAX BASIC programcreates three virtual displays on

I one past eboard.

I

I'The first virtual display contains instructions for the user
I'the second shows trapped unsolicited input, and the third

I'lists trapped broadcast nessages. The programsits in an
linfinite loop until the user types a Crl/Z

!

I'VWWhen the programtraps unsolicited input, both broadcast nessage
land unsolicited i nput trapping are disabled, and a subprocess
l'is spawned whi ch executes the trapped user input.

!

I'VWWhen control returns to the nain process, broadcast trapping and
I'the trapping of unsolicited input are both reenabled. If the

lunsolicited input which is trapped is a Crl/Z, the programexits.
I -

OPTION TYPE = EXPLICI T

I+

I Declaration of all routines called by the main program
I -

% NCLUDE " LI B$ROUTI NES" %-ROM %.1 BRARY " SYS$LI BRARY: BASI CSSTARLET"
% NCLUDE " SMGSROUTI NES" %-ROM %.1 BRARY " SYS$LI BRARY: BASI CSSTARLET"

I+

I Decl aration of the two AST routines:

IGET_MsG is called when a broadcast nmessage is trapped
IGET_INPUT is called when there is unsolicited input

IGET_INPUT is the routine which spawns the subprocess
I -

EXTERNAL | NTEGER CGET_MSG
EXTERNAL | NTEGER GET_I NPUT

DECLARE LONG pb_id, ret_status, display_id, display2_id,
di splay3 id, & key_id, key tab _id, counter

I+
ICreate a MAP area for variabl es which nust be shared between the

I'mai n program and the AST routines.
I -

MAP (paranms) LONG disp_info(2), LONG keyboard i nfo(4),
LONG done_fl ag

DECLARE STRI NG CONSTANT top_l abel = "User Input"
DECLARE STRI NG CONSTANT ins_|abel = "lInstructions”
DECLARE STRI NG CONSTANT nsg | abel = "Messages"

158

Chapter 8. Screen Management (SMG$) Routines

DECLARE STRI NG CONSTANT instr_0 = "Type commands to fill | NPUT
di splay."

DECLARE STRI NG CONSTANT instr_1 = "Type Crl/T to fill MESSAGES
di splay."

DECLARE STRI NG CONSTANT instr_2 = "Type CGrl/Z to exit."

DECLARE LONG CONSTANT advance =1

% NCLUDE " $SMGEDEF" %-ROM %.| BRARY " SYS$LI BRARY: BASI CSSTARLET"
% NCLUDE " $SMAVSG' %-ROM %.| BRARY " SYS$LI BRARY: BASI CSSTARLET"

|+

I The done_flag variable is clear (0) unless the user input was
la Crl/Z 1n that case, the programexits.

I -

done_flag = 0

I+

ICreate the pasteboard and the virtual keyboard
I -

ret_status = SMESCREATE_PASTEBOARD (pb_i d)
IF (ret_status AND 1% = 0% THEN

CALL LI B$STOP(ret_status BY VALUE)
END | F

I+

!This is one of the values which nust be stored in the MAP area.

I -
di sp_info(0) = pb_id

ret _status = SMEBCREATE_VI RTUAL_KEYBOARD (key_i d)
IF (ret_status AND 1% = 0% THEN

CALL LI B$STOP(ret_status BY VALUE)
END | F

ret_status = SMGSCREATE_KEY_TABLE (key_tab_id)
IF (ret_status AND 1% = 0% THEN

CALL LI B$STOP(ret_status BY VALUE)
END I F

I+

ICreate the three virtual displays
I -

ret_status = SMESCREATE_VI RTUAL_DI SPLAY(3 BY REF, 75 BY REF, &
di spl ay3_i d, SM3M BORDER BY REF, SM3$M REVERSE BY REF)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END | F

ret_status = SMESCREATE_VI RTUAL_DI SPLAY(6 BY REF, 75 BY REF, &
di spl ay_i d, SM3M BORDER BY REF, SM3$M REVERSE BY REF)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END | F

159

Chapter 8. Screen Management (SMG$) Routines

ret_status = SMESCREATE_VI RTUAL_DI SPLAY(6 BY REF, 75 BY REF, &
di spl ay2_i d, SM3M BORDER BY REF, SM3$M REVERSE BY REF)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END | F

I+

I The disp_info and keyboard_info arrays are required in the NAP.
| -

disp_info(1) = display2 id

keyboard_info(0) = key_id
keyboard_info(1l) = key tab_id
keyboard_info(2) = display_id
keyboard_info(4) = pb_id

I+

I Put Label borders around the three virtual displays.
I -

ret_status = SMGSLABEL_BORDER (display3_ id, ins_|label,,, &
SME$M BOLD BY REF, SME$M REVERSE BY REF)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END I F

ret_status = SMGSLABEL_BORDER (display_id, top_|label,,, &
SME$M BOLD BY REF,)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END | F

ret_status = SMGSLABEL_BORDER (display2_id, nsg_|l abel,,, &
SME$M BOLD BY REF,)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END | F

I+

F'Fill the INSTRUCTIONS virtual display with user instructions.
I -

ret_status = SMGSPUT_LI NE(di splay3_id, instr_0, &
advance, ,, sng$m w ap_char)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END I F

ret_status = SMGSPUT_LINE(di splay3_id, instr_1, &
advance, ,, sng$m w ap_char)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END I F

ret_status = SMGSPUT_LINE(di splay3_id, instr_2, &
advance,,, smg$m w ap_char)

160

Chapter 8. Screen Management (SMG$) Routines

IF (ret_status AND 1% = 0% THEN
CALL LIB$STOP(ret_status BY VALUE)
END | F

I+

I Paste the virtual displays to the screen.
I -

ret_status = SMEBPASTE VI RTUAL_DI SPLAY(di splay3_id, pb_id, &
2 BY REF, 4 BY REF)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END | F

ret_status = SMEBPASTE VI RTUAL_DI SPLAY(di splay_id, pb_id, &
8 BY REF, 4 BY REF)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END | F

ret_status = SMGEBPASTE VI RTUAL_DI SPLAY(di splay2_id, pb_id, &
18 BY REF, 4 BY REF)
IF (ret_status AND 1% = 0% THEN
CALL LI B$STOP(ret_status BY VALUE)
END | F

|+
I Enabl e the trapping of unsolicited input. GET_INPUT is the
I'AST procedure that is called when unsolicited input is

I'received. This AST has one paraneter, passed as null.
I -

ret_status = SMGSENABLE_UNSOLI ClI TED | NPUT(pb_i d, LOC(GET_I NPUT))
IF (ret_status AND 1% = 0% THEN

CALL LI B$STOP(ret_status BY VALUE)
END | F

|+
I Enabl e the trappi ng of broadcast nessages. GET_MSG is the
I'AST which is called when broadcast nmessages are received.

I'This AST outputs the trapped nmessage into the MESSAGES di spl ay.
I -

ret_status = SMGSSET_BROADCAST_TRAPPI NG pb_i d, LOC(GET_MSQ)
IF (ret_status AND 1% = 0% THEN

CALL LI B$STOP(ret_status BY VALUE)
END | F

|+
I'This | oop continually executes until done_flag is set to 1.
I Done_flag is set to 1 when the user input is a CGrl/Z

I''f done_flag is 1, delete the pasteboard and exit the program
I -

Infinite_l oop:
| F done_flag = 0 THEN

161

Chapter 8. Screen Management (SMG$) Routines

20

GOTO i nfinite_l oop

ELSE
ret_status = SMESDELETE_PASTEBCQARD (pb_i d)
GOTO al | _done

END | F

Al | _done:

END

|+

IStart of AST routine GET_INPUT. This AST is called whenever there
lis unsolicited input. The unsolicited input is displayed in the
F'I'NPUT virtual display, and if this input is not Grl/Z, a

subprocess

and

lis spawned and the input comand is executed. VWile this spawned
I subprocess is executing, broadcast and unsolicited input trapping

lare di sabl ed.
I -

SUB GET_I NPUT (paste_id, param nl_1, nl_2, nl_3, nl_4)

MAP (parans) LONG disp_info(2), LONG keyboard_i nfo(4),
LONG done_f 1 ag

DECLARE LONG z_status, status2, keybd id, keybd tab id, disp_id, &
past ebd, new di spl ay, spawn_st atus

DECLARE WORD nsg2_|I en

DECLARE STRI NG nsg2

DECLARE LONG CONSTANT next _line =1

% NCLUDE " SMGHROUTI NES" %-ROM %.1 BRARY " SYS$LI BRARY: BAS| CSSTARLET"
% NCLUDE " LI B$ROUTI NES" %-ROM %.1 BRARY " SYS$LI BRARY: BAS| CSSTARLET"
% NCLUDE " $SMAVSG' %-ROM %.| BRARY " SYS$LI BRARY: BASI CSSTARLET"

EXTERNAL | NTEGER CGET_MSG
EXTERNAL | NTEGER GET_I NPUT

|+
IAssign to the local variables the values that were stored from

I'the main programusing the MAP area.
I -

keybd_id = keyboard_i nf o(0)
keybd_tab id = keyboard_i nfo(1)
disp_id keyboard_i nf o(2)
past ebd keyboard_i nf o(3)

|+
I SMGSENABLE_UNSCLI Cl TED_I NPUT does not read the input, it sinmply
I'signals the specified AST when there is unsolicited input present.

'You must use SMGSREAD COMPOSED LINE to actually read the input.
|

At this tine, we check to see if the unsolicited input was a Crl/

I''f so, we skip over the programlines that spawn the subprocess

lget ready to exit the program
I -

162

Chapter 8. Screen Management (SMG$) Routines

status2 = SMESREAD COVPCSED LI NE (keybd_ id, keybd_ tab_id, nsg2,, &
nmsg2_l en, disp_id)
| F (status2 = SM&$_EOF) THEN
GOTO Control _Z
END | F

|F (status2 AND 1% = 0% THEN
CALL LIB$STOP (status2 BY VALUE)
END | F

|+
I'l'n order to spawn a subprocess, we nmust first disable

lunsolicited input trapping and broadcast trapping.
I -

status2 = SMGSDI SABLE_UNSOLI Cl TED | NPUT (past ebd)
|F (status2 AND 1% = 0% THEN

CALL LIB$STOP (status2 BY VALUE)
END | F

status2 = SMGSDI SABLE_BROADCAST TRAPPI NG (past ebd)
|F (status2 AND 1% = 0% THEN

CALL LIB$STOP (status2 BY VALUE)
END | F

|+
I Save the current screen so that it will not be destroyed when

't he subprocess is executing.
I -

status2 = SMGEPSAVE_PHYSI CAL_SCREEN (past ebd, new di spl ay)
I F (status2 AND 1% = 0% THEN

CALL LIB$STOP (status2 BY VALUE)
END | F

|+
I'Call LIB$SPAWN to create the subprocess, and pass the unsolicited

l'input as the conmand |i ne.
I -

spawn_status = LI BESPAVWN (nsg2)

I+

I Restore the saved screen image.
I -

status2 = SMEPRESTORE_PHYSI CAL_SCREEN (past ebd, new_di spl ay)
I F (status2 AND 1% = 0% THEN

CALL LIB$STOP (status2 BY VALUE)
END | F

I+

I Reenabl e broadcast trapping and unsolicited input trapping.
I -

status2 = SMGSENABLE_UNSOLI CI TED | NPUT (pastebd, LOC(GET | NPUT))

163

Chapter 8. Screen Management (SMG$) Routines

30

|F (status2 AND 1% = 0% THEN
CALL LIB$STOP (status2 BY VALUE)
END | F

status2 = SMGSSET BROADCAST TRAPPI NG (past ebd, LOC(GET_MSG))
|F (status2 AND 1% = 0% THEN

CALL LIB$STOP (status2 BY VALUE)
END | F

|+
I'Skip the steps which are perforned if the unsolicited input

lwas a Crl/Z.
I -

GOTO Qut _of _sub

Control _Z:

|+
'V shoul d di sable unsolicited input and broadcast trapping

I before we | eave the program
I -

status2 = SMGSDI SABLE_UNSOLI Cl TED | NPUT (past ebd)
|F (status2 AND 1% = 0% THEN

CALL LIB$STOP (status2 BY VALUE)
END | F
status2 = SMGSDI SABLE_BROADCAST TRAPPI NG (past ebd)
|F (status2 AND 1% = 0% THEN

CALL LIB$STOP (status2 BY VALUE)
END | F

|+
ISet the done flag to 1 so that the main program knows we have

lto exit.
I -

done flag =1

Qut _of _sub:

END SUB

|+
IStart of AST routine GET_MSG This AST is called whenever there
lis a broadcast nessage. This routine prints the nmessage in the

I MESSAGES vi rtual displ ay.
I -

SUB GET_MSG (paste_id, nl_1, nl_2, nl_3, nl_4)
DECLARE LONG statusl, pasteboard, second_disp
DECLARE WORD nsg_| en

DECLARE STRI NG nsg

DECLARE LONG CONSTANT forward = 1

MAP (parans) LONG disp_info(2), LONG keyboard_i nfo(4)
% NCLUDE " SMGHROUTI NES" %-ROM %.1 BRARY " SYS$LI BRARY: BAS| CSSTARLET"

% NCLUDE " LI BSROUTI NES" %-ROM %.1 BRARY " SYS$LI BRARY: BAS| CSSTARLET"
% NCLUDE " $SMGEDEF" %-ROM %.| BRARY " SYS$LI BRARY: BASI C3STARLET"

164

Chapter 8. Screen Management (SMG$) Routines

% NCLUDE " $SMAVSG' %-ROM %.| BRARY " SYS$LI BRARY: BASI C8STARLET"

|+
' Assign values to the | ocal variables according to the val ues

Istored in the MAP area.
I -

past eboard
second_di sp

di sp_i nfo(0)
di sp_i nfo(1)

|+
I'Print the trapped nessage in the MESSAGES display. If there are

Imore nmessages, go back to the infinite loop in the main program
I -

VWHI LE 1
statusl = SMGPGET_BROADCAST_MESSAGE (pasteboard,
nmsg, nsg_l en)
IF (statusl = SMG$_NO MORVBG) THEN
GOTO Exitl oop
END | F
IF (statusl AND 1% = 0% THEN
CALL LIB$STOP (statusl BY VALUE)
END | F

statusl = SMEBPUT_LI NE (second_di sp, nmsg, &
forward,,, SM33M WRAP_CHAR)
|F (statusl AND 1% = 0% THEN
CALL LIBS$STOP (statusl BY VALUE)

END | F
NEXT
Exi tl oop:
END SUB

To run the example program, use the following commands:

$ BASI C TRAPPI NG
$ LI NK TRAPPI NG
$ RUN TRAPPI NG

no

The output for this program is shown in the following figures. In Figure 8.14, the program is waiting

for either unsolicited input or broadcast messages.

165

Chapter 8. Screen Management (SMG$) Routines

Figure 8.14. Output Generated Before Any Input or Messages Are Trapped

— — Instructions
Type commands to £i11 INPUT display.

Type CTRL/T to f£ill MESSACES display.
Type CTRL/Z to exit.

User Input

Messages

ZK-4805-GE

The output generated after the user presses Ctrl/T is shown in Figure 8.15.

Figure 8.15. Output Generated After a Broadcast Message Is Trapped

- Ingtructicns
Type commands to £ill INPUT display.

Type CTRL/T to £ill MESSAGES display.

Type CTRL/Z to exit.

Usexr Input

Messages
FUTBAL::COLLINS 1 0B:26:43 SAVE CPU=00:00:02.87 PF=401 I0=287 MEM=313

ZK-4806-GE

If the user types a command, that command is displayed in the INPUT display, and a subprocess is
spawned. The output generated after the user types the MAIL command is shown in Figure 8.16.

166

Chapter 8. Screen Management (SMG$) Routines

Figure 8.16. Output Generated After a Call to LIBSSPAWN

You have 3 new messages.

MATL=>

ZK-4807-GE
Once the subprocess completes execution, control is returned to the main process. At this point, the

screen is repainted and the program continues to wait for broadcast messages or unsolicited input. The
user must press Ctrl/Z to exit the program.

SMGS$DISABLE_UNSOLICITED_INPUT

SMGSDISABLE UNSOLICITED INPUT — The Disable Unsolicited Input routine disables the
trapping of unsolicited input.

Format

SMGSDI SABLE_UNSOLI CI TED_| NPUT past eboard-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier
type: longword (unsigned)

167

Chapter 8. Screen Management (SMG$) Routines

access: read only

mechanism: by reference

Specifies the keyboard (associated with the specified pasteboard) for which unsolicited input is being
disabled. The pasteboard-id argument is the address of an unsigned longword that contains the
pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

Description

SMGSDISABLE UNSOLICITED INPUT disables unsolicited input ASTs for the specified
pasteboard. SMGSDISABLE UNSOLICITED INPUT deassigns the mailbox set with
SMGSENABLE UNSOLICITED_ INPUT, resets the terminal characteristics and, therefore, allows
the user to call LIBSSPAWN. This routine must be used to disable any unsolicited input trapping
enabled with the SMGSENABLE UNSOLICITED_INPUT routine.

Note that if both unsolicited input trapping and the trapping of broadcast messages are enabled, then
both SMGSDISABLE UNSOLICITED INPUT and SMG$SDISABLE BROADCAST TRAPPING
must be invoked in order to deassign the mailbox.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVPAS ID Invalid pasteboard-id.
SMG$ WRONUMARG Wrong number of arguments.

Any condition values returned by $QIOW.

Example

For an example of using SMGSDISABLE UNSOLICITED_INPUT, see the example for the
SMGSDISABLE BROADCAST TRAPPING routine.

SMG$DRAW _CHAR

SMGS$DRAW_ CHAR — The Draw a Character in a Virtual Display routine draws a character at the
specified position in a virtual display.

Format
SMGSDRAW CHAR

di splay-id ,flags [,row] [,colum] [,rendition-set]
[,rendition-conpl enent]

Returns

OpenVMS usage: cond_value
type: longword (unsigned)

168

Chapter 8. Screen Management (SMG$) Routines

access: write only
mechanism: by value
Arguments
display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the virtual display. The display-id argument is the address of an unsigned longword
containing this identifier.

flags

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Optional bit mask indicating the character to be drawn. The flags argument is the address of an
unsigned longword that contains the flag. The flags argument accepts the following character values:

« SMGS$M _UP

+ SMG$M_DOWN
+ SMGS$M_LEFT

« SMG$M _RIGHT

Note that you may perform a logical OR operation to draw T characters, corner characters, cross
characters, and so forth. A value of 0 draws a diamond character.

row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Optional row number specifying the row position at which the specified character is drawn. The
rowargument is the address of a signed longword containing the row number. If row is omitted, the
character is drawn at the row position of the current virtual cursor.

column

OpenVMS usage: longword_signed

169

Chapter 8. Screen Management (SMG$) Routines

type: longword (signed)
access: read only
mechanism: by reference

Optional column number specifying the column position at which the specified character is drawn.
The column argument is the address of a signed longword containing the column number. If columnis
omitted, the character is drawn at the column position of the current virtual cursor.

rendition-set

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute specifier. The optional rendition-set argument is the address of a longword bit mask in
which each attribute set causes the corresponding attribute to be set in the display. The following
attributes can be specified using the rendition-set argument:

SMG$M_BLINK Displays blinking characters.
SMG$M_BOLD Displays characters in higher-than-normal intensity.
SMG$M_REVERSE Displays characters in reverse video; that is, using the opposite of the

default rendition of the virtual display.
SMGS$M_UNDERLINE Displays underlined characters.

SMG$M_INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMGS$M_USERI through |Displays user-defined attributes.
SMG$M_USERS8

The display-id argument must be specified when you use the rendition-set argument.

rendition-complement

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute complement specifier. The optional rendition-complement argument is the address of a
longword bit mask in which each attribute set causes the corresponding attribute to be complemented
in the display. All of the attributes that can be specified with the rendition-set argument can be
complemented with the rendition-complement argument. The display-id argument must be specified
when you use the rendition-complement argument.

The optional arguments rendition-set and rendition-complement let the user control the attributes of
the virtual display. The rendition-set argument sets certain virtual display attributes, whilerendition-
complement complements these attributes. If the same bit is specified in both the rendition-set

and rendition-complement parameters, rendition-set is evaluated first, followed byrendition-

170

Chapter 8. Screen Management (SMG$) Routines

complement. By using these two parameters together, the user can control each virtual display
attribute in a single procedure call. On a single-attribute basis, the user can cause the following
transformations:

Set Complement | Action

0 0 Attribute set to default

1 0 Attribute on

0 1 Attribute set to complement of default setting
1 1 Attribute off

Description

SMGS$DRAW_ CHAR draws a designated character at the specified position in the specified virtual
display. Note that this routine does not change the position of the virtual cursor. The characters drawn
depend on the type of terminal. For example, SMGS$ uses the terminal's line-drawing character set if
possible. If that is not available, SMGS$ uses the plus sign (+), minus sign (-), and vertical bar (|) to
draw a line.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVCOL Invalid column number.
SMGS$ INVROW Invalid row number.

SMG$ WRONUMARG Wrong number of arguments.

Example

C+
C This Fortran exanpl e denonstrates the use of
C SMGBPDRAW CHAR to use the ternminal |ine draw ng
C characters.
C
| MPLICI T | NTEGER (A-2)
I NCLUDE ' ($SMGDEF)

s = SMGSCREATE_PASTEBOARD(p_i d)

IF (.NOT. s) CALL LI BS$SI GNAL(%/AL(S))

s = SMESCREATE_VI RTUAL_DI SPLAY(17, 7, d_i d, SMG3M_BORDER)
IF (.NOT. s) CALL LI BS$SI GNAL(%W/AL(s))

s = SMESPASTE VI RTUAL_DI SPLAY(d_i d, p_i d, 4, 30)

IF (.NOT. s) CALL LI BS$SI GNAL(%/AL(S))

s = SME$SET_CURSOR REL(d_i d, 1, 3)

IF (.NOT. s) CALL LIBS$SI GNAL(%/AL(s))

s = SMGSDRAW CHAR(d_i d, SM3$M UP, 1, 4, SM3$M BOLD)

IF (.NOT. s) CALL LI BS$SI GNAL(%/AL(s))

s = SMGSDRAW CHAR(d_i d, SMGSM DOWN, 2, 4, 0, SMG$M REVERSE)
IF (.NOT. s) CALL LI BS$SI GNAL(%/AL(S))

s = SMGSDRAW CHAR(d_i d, SMGSM LEFT, 3, 4, SM3$M BLI NK)

IF (.NOT. s) CALL LI BS$SI GNAL(%/AL(S))

s = SMGESDRAW CHAR(d_i d, SM3$M RI GHT, 4, 4, 0, 0)

171

Chapter 8. Screen Management (SMG$) Routines

IF (.NOT. s) CALL LIB$SI GNAL(%/AL(sS))

s = SMGSDRAW CHAR(d_i d, SM33M UP + SMGSM DOWN, 5)

IF (.NOT. s) CALL LIB$SI GNAL(%/AL(S))

s = SMGSDRAW CHAR(d_i d, SM3M UP + SMG$M LEFT, 6)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(sS))

s = SMGSDRAW CHAR(d_i d, SM3$M UP + SMGSM RI GHT, 7)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(sS))

s = SMGSDRAW CHAR(d_i d, SM3$M DOMN + SME$M LEFT, 8)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(sS))

s = SMGSDRAW CHAR(d_i d, SM3M DOAN + SMG$M RI GHT, 9)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(sS))

s = SMGSDRAW CHAR(d_i d, SM3$M LEFT + SM3$M RI GHT, 10)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(sS))

s = SMGSDRAW CHAR(d_i d, SM3M UP + SM3$M DOWN + SMG$M LEFT, 11)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(sS))

s = SMGESDRAW CHAR(d_i d, SM3SM UP + SMGSM DOWN + SMGSM RI GHT, 12)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(S))

s = SMGSDRAW CHAR(d_i d, SM3$M DOWN + SMESM LEFT + SMESM RI GHT, 13)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(S))

s = SMGESDRAW CHAR(d_i d, SM3$M UP + SMGSM LEFT + SMGSM RI GHT, 14)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(S))

s = SMGSDRAW CHAR(d_i d, SM3M UP + SM3$M DOWN + SMG$M RI GHT +
1 SMG$M LEFT, 15)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(S))

s = SMGSDRAW CHAR(d_i d, 0, 16)

F (.NOT. s) CALL LIB$SI GNAL(%/AL(S))

END

This example generates line-drawing characters in a single column.

SMG$DRAW _LINE

SMGS$DRAW_LINE — The Draw a Line routine draws a horizontal or vertical line.

Format

SMGSDRAW LI NE
di splay-id ,start-row ,start-columm , end-row , end-col umm
[,rendition-set] [,rendition-conplenment]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

172

Chapter 8. Screen Management (SMG$) Routines

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display on which the line is to be drawn. The display-id argument is the address
of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row at which to begin drawing the line. The start-row argument is the address of a
signed longword that contains the row number at which to begin drawing the line.

start-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the column at which to begin drawing the line. The start-column argument is the address of
a signed longword that contains the column number at which to begin drawing the line.

end-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row at which the drawn line ends. The end-row argument is the address of a signed
longword that contains the row number at which the drawn line ends.

end-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the column at which the drawn line ends. The end-column argument is the address of a
signed longword that contains the column number at which the drawn line ends.

173

Chapter 8. Screen Management (SMG$) Routines

rendition-set

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute specifier. The optional rendition-set argument is the address of a longword bit mask in
which each attribute set causes the corresponding attribute to be set in the display. The following
attributes can be specified using the rendition-set argument:

SMG$M_BLINK Displays blinking characters.
SMG$M_BOLD Displays characters in higher-than-normal intensity.
SMGS$M_REVERSE Displays characters in reverse video; that is, using the opposite of the

default rendition of the virtual display.
SMGS$M_UNDERLINE Displays underlined characters.

SMGS$M_INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMGS$M_USERI1 through Displays user-defined attributes.
SMG$M_USERS8

The display-id argument must be specified when you use the rendition-set argument.

rendition-complement

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute complement specifier. The optional rendition-complement argument is the address of a
longword bit mask in which each attribute set causes the corresponding attribute to be complemented
in the display. All of the attributes that can be specified with the rendition-set argument can be
complemented with the rendition-complement argument. The display-id argument must be specified
when you use the rendition-complement argument.

The optional arguments rendition-set and rendition-complement let the user control the attributes of
the virtual display. The rendition-set argument sets certain virtual display attributes, whilerendition-
complement complements these attributes. If the same bit is specified in both the rendition-set

and rendition-complement parameters, rendition-set is evaluated first, followed byrendition-
complement. By using these two parameters together, the user can control each virtual display
attribute in a single procedure call. On a single-attribute basis, the user can cause the following
transformations:

Set Complement |Action
0 0 Attribute set to default
0 Attribute on
0 1 Attribute set to complement of default setting

174

Chapter 8. Screen Management (SMG$) Routines

Set Complement | Action
1 1 Attribute off
Description

SMGS$DRAW _LINE draws a line from a specified starting row and column to a specified ending row
and column. Note that this routine does not change the virtual cursor position. You can draw only
horizontal or vertical lines. The characters used to draw the line depend on the type of terminal. If
possible, SMGS$ uses the terminal's line-drawing character set. If that is not available, SMGS$ uses the
plus sign (+), minus sign (-), and vertical bar (|) to draw the line.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ DIALINNOT Diagonal line not allowed.

SMG$ INVCOL Invalid column number. The specified column is outside the virtual
display.

SMGS$ INVDIS ID Invalid display-id.

SMG$ INVROW Invalid row number. The specified row is outside the virtual display

SMG$ WRONUMARG Wrong number of arguments.

Example

C+
C This Fortran exanpl e program denponstrates the use of SMGSDRAW LI NE.
C

| NTEGER SMGSCREATE_VI RTUAL_DI SPLAY, SMGSCREATE_PASTEBOARD

| NTEGER SMGBPASTE_VI RTUAL_DI SPLAY, SMS$DRAW LI NE

| NTEGER DI SPLAY1, PASTEl, ROW5, COLUWNS, BORDER, STATUS
C+
C First, create the virtual display using SMESCREATE VI RTUAL DI SPLAY.
C To give it a border, set BORDER = 1. No border woul d be BORDER = 0.
C

RONG = 7
COLUWNS = 50
BORDER = 1

STATUS = SMGSCREATE_VI RTUAL_DI SPLAY
1 (ROAS, COLUMNS, DI SPLAY1, BORDER)
| F (. NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+
C Call SMESCREATE_PASTEBOARD to create the pasteboard.
C

STATUS = SMGSCREATE_PASTEBCQARD (PASTE1)

I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Draw a vertical l|ine using SMEDRAW LI NE.
C Start at row 2, colum 20. End at row 6.

175

Chapter 8. Screen Management (SMG$) Routines

STATUS = SMGSDRAW LI NE (DI SPLAY1, 2, 20, 6, 20)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+

C Now, use SMGSDRAWLINE to draw a vertical line.

C Start at row 6, colum 40. End at row 2.

C This is simlar to the |line drawn above, but we are draw ng the
Cline in the reverse direction.

C

STATUS = SMGSDRAW LI NE (DI SPLAY1, 6, 40, 2, 40)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Draw a horizontal |ine now, again calling SMEG3DRAW LI NE.
C Start at row 4, colum 8. End at columm 50.
C

STATUS = SMGSDRAW LI NE (DI SPLAY1, 4, 8, 4, 50)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+
C Paste the virtual display using SMESPASTE VI RTUAL_DI SPLAY.
C

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1, 4, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END

The output generated by this Fortran example is shown in Figure 8.17.

Figure 8.17. Output Generated by Fortran Program Calling SMGSDRAW _LINE

ZK-4110-GE

176

Chapter 8. Screen Management (SMG$) Routines

SMG$DRAW_RECTANGLE

SMG$SDRAW_RECTANGLE — The Draw a Rectangle routine draws a rectangle.

Format

SMGSDRAW RECTANGLE
di splay-id ,start-row ,start-columm ,end-row , end-col um
[,rendition-set] [,rendition-conplenment]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display on which the rectangle is to be drawn. The display-id argument is the
address of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row number of the top left corner of the rectangle. The start-row argument is the
address of a signed longword that contains the row number of the top left corner of the rectangle.

start-column

OpenVMS usage: longword_signed
type: longword (signed)

177

Chapter 8. Screen Management (SMG$) Routines

access: read only

mechanism: by reference

Specifies the column number of the top left corner of the rectangle. The start-column argument is the
address of a signed longword that contains the column number of the top left corner of the rectangle.

end-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row number of the bottom right corner of the rectangle. The end-row argument is the
address of a signed longword that contains the row number of the bottom right corner of the rectangle.

end-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the column number of the bottom right corner of the rectangle. The end-column argument
is the address of a signed longword that contains the column number of the bottom right corner of the
rectangle.

rendition-set

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute specifier. The optional rendition-set argument is the address of a longword bit mask in
which each attribute set causes the corresponding attribute to be set in the display. The following
attributes can be specified using the rendition-set argument:

SMG$M_BLINK Displays blinking characters.
SMGS$M_BOLD Displays characters in higher-than-normal intensity.
SMG$M_REVERSE Displays characters in reverse video; that is, using the opposite of the

default rendition of the virtual display.

SMGS$M_UNDERLINE Displays underlined characters.

SMGS$M _INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

178

Chapter 8. Screen Management (SMG$) Routines

SMG$M_USERI1 through Displays user-defined attributes.
SMGS$M_USERS

The display-id argument must be specified when you use the rendition-set argument.

rendition-complement

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute complement specifier. The optional rendition-complement argument is the address of a
longword bit mask in which each attribute set causes the corresponding attribute to be complemented
in the display. All of the attributes that can be specified with the rendition-set argument can be
complemented with the rendition-complement argument. The display-id argument must be specified
when you use the rendition-complement argument.

The optional arguments rendition-set and rendition-complement let the user control the attributes of
the virtual display. The rendition-set argument sets certain virtual display attributes, whilerendition-
complement complements these attributes. If the same bit is specified in both the rendition-set

and rendition-complement parameters, rendition-set is evaluated first, followed byrendition-
complement. By using these two parameters together, the user can control each virtual display
attribute in a single procedure call. On a single-attribute basis, the user can cause the following
transformations:

Set Complement |Action

0 0 Attribute set to default

1 0 Attribute on

0 1 Attribute set to complement of default setting
1 1 Attribute off

Description

SMGS$DRAW_RECTANGLE draws a rectangle in a virtual display, given the position of the upper
left corner and the lower right corner. Note that this routine does not change the virtual cursor
position. The characters used to draw the lines making up the rectangle depend on the type of
terminal. If possible, SMGS$ uses the terminal's line-drawing character set. If that is not available,
SMGS uses the plus sign (+), minus sign (-), and vertical bar (]) to draw the lines.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ _INVCOL Invalid column number. The specified column is outside the virtual
display.

SMGS$ INVDIS ID Invalid display-id.

SMG$ INVROW Invalid row number. The specified row is outside the virtual display.

179

Chapter 8. Screen Management (SMG$) Routines

SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanpl e program denonstrates the use of

C SMGSDRAW RECTANGLE.

C

C This routine creates a virtual display and uses SMGSDRAW RECTANGLE
Cto draw a rectangle inside the bordered virtual display.

C

C+
C Include the SM5 definitions. In particular, we want SM3SM BORDER.
C

| NCLUDE ' ($SMGDEF) '

| NTEGER SME$CREATE_VI RTUAL_DI SPLAY, SMG$CREATE_PASTEBOARD
| NTEGER SME$PASTE_VI RTUAL_DI SPLAY, SMG$DRAW RECTANGLE

| NTEGER DI SPLAY1, PASTE1, ROAS, COLUWNS, STATUS

C+
C Create a virtual display with a border by calling
C SMGSCREATE_VI RTUAL_DI SPLAY.

C

RONS = 7

COLUMNS = 50

STATUS = SMGSCREATE_VI RTUAL_DI SPLAY

1 (ROAB, COLUMNS, DI SPLAY1, SMG$M BORDER)

IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Use SMSPCREATE_PASTEBOARD to create the pasteboard.
C

STATUS = SMGBCREATE_PASTEBOARD (PASTEL)

IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Usi ng SMGSDRAW RECTANGLE, draw a rectangl e inside the bordered region.
STATUS = SMGSDRAW RECTANGLE (DI SPLAY1, 2, 10, 6, 20)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+

C Paste the virtual display by calling SMEPASTE VI RTUAL_DI SPLAY.

C

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1, 4, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END

The output generated by this Fortran example is shown in Figure 8.18.

180

Chapter 8. Screen Management (SMG$) Routines

Figure 8.18. Output Generated by Fortran Program Calling
SMGSDRAW_RECTANGLE

ZK-4111-GE

SMGS$SENABLE_UNSOLICITED_INPUT

SMGSENABLE UNSOLICITED INPUT — The Enable Unsolicited Input routine detects
unsolicited input and calls an AST routine in response.

Format

SMGSENABLE_UNSOLI Cl TED_| NPUT past eboard-id , AST-routine [, AST-ar gunent]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier
type: longword (unsigned)

access: read only

181

Chapter 8. Screen Management (SMG$) Routines

mechanism: by reference

Specifies the pasteboard for which unsolicited input is being enabled. The pasteboard-id argument is
the address of an unsigned longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE VIRTUAL PASTEBOARD.

AST-routine

OpenVMS usage: ast_procedure

type: procedure value
access: read only
mechanism: by value

AST routine to be called upon receipt of unsolicited input at the terminal. The AST-routineargument
contains the routine's procedure value. SMGSENABLE UNSOLICITED INPUT detects the presence
of unsolicited input and calls the AST routine with six arguments: the pasteboard-id, the AST-
argument, RO, R1, PC, and PSL (on VAX systems) or PS (on Alpha systems). The AST routine
arguments are shown in Figure 8.19.

Figure 8.19. AST Routine Arguments

Pasteboard ID
AST Argument
RO
R1
PC
PSL
ZK-4802-GE
AST-argument
OpenVMS usage: user_arg
type: longword (unsigned)
access: read only
mechanism: by value

A value to be passed to the AST routine. The AST-argument argument contains the value to be
passed to the AST routine.

Description

SMGSENABLE UNSOLICITED INPUT detects the presence of unsolicited input and calls an AST
routine in response.

182

Chapter 8. Screen Management (SMG$) Routines

Note that this routine does not read any input characters; it merely calls an AST routine to "notify"
the application that it should issue a read operation with SMGSREAD COMPOSED LINE,
SMGS$READ KEYSTROKE, SMGSREAD STRING or SMGSREAD VERIFY. It is up to you to
read the unsolicited input.

SMGSENABLE UNSOLICITED INPUT establishes a mailbox that receives messages when
terminal-related events occur that require the attention of the user image. This mailbox carries status
messages, not terminal data, from the driver to the user program. This status message is sent to the
mailbox when there is unsolicited data in the type-ahead buffer. In this case, the user process enters
into a dialogue with the terminal after an unsolicited data message arrives. Once this dialogue is
complete, the Screen Management Facility reenables the unsolicited data message function on the

last I/O exchange. Only one message is sent between read operations. (The SYSGEN parameters
DEFMBXBUFQUO and DEFMBXMXMSG are used when creating the mailbox.)

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$ INVPAS ID Invalid pasteboard-id.
SMG$ WRONUMARG Wrong number of arguments.

Any condition values returned by SQIOW.

Example

For an example using SMGSENABLE UNSOLICITED INPUT, see the example for the
SMGSDISABLE BROADCAST TRAPPING routine.

SMGS$SEND_DISPLAY_UPDATE

SMGSEND DISPLAY UPDATE — The End Display Update routine ends update batching for a
virtual display.

Format

SMGSEND_DI SPLAY_UPDATE di spl ay-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

183

Chapter 8. Screen Management (SMG$) Routines

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display to be affected. The display-id argument is the address of an unsigned
longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

Description

SMGS$END DISPLAY UPDATE and SMG$BEGIN_DISPLAY UPDATE work

together to control the batching of output operations on a given virtual display. Each

call to SMG$BEGIN DISPLAY UPDATE increments a batch count. Each call to

SMGSEND DISPLAY UPDATE decrements this count. When the batch count reaches 0, the virtual
display is updated with all operations done under batching, and written to the pasteboard if the virtual
display is pasted.

Calling SMGSEND DISPLAY UPDATE when the batch count is zero is a valid operation; therefore
a success status is returned.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ BATSTIPRO Successful completion. Note that batching is still in progress.
SMGS$ BATWASOFF Successful completion. Note that batching was already off.
SMGS$_INVDIS ID Invalid display-id.

SMG$ WRONUMARG Wrong number of arguments.

SMGS$SEND_PASTEBOARD_UPDATE

SMGSEND PASTEBOARD UPDATE — The End Pasteboard Update routine ends update batching
for a pasteboard.

Format

SMGSEND_PASTEBOARD UPDATE past eboar d-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value

184

Chapter 8. Screen Management (SMG$) Routines

Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard on which the batch count is to be decremented. The pasteboard-id argument
is the address of an unsigned longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD. If the batch count reaches
0, all buffered output for the specified pasteboard is written out.

Description

SMGSEND PASTEBOARD UPDATE and SMG$SBEGIN PASTEBOARD UPDATE

work together to control the batching of output operations on a given pasteboard. Each

call to SMGSBEGIN PASTEBOARD UPDATE increments a batch count. Each call to
SMGSEND PASTEBOARD UPDATE decrements this count. When the batch count reaches 0, the
pasteboard is written to the screen.

Calling SMGSEND PASTEBOARD_UPDATE when the batch count is 0 is a valid operation; a
success status is returned.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$_BATSTIPRO Successful completion. Note that batching is still in progress.
SMGS$ BATWASOFF Successful completion. Note that batching was already off.
SMGS$_INVDIS ID Invalid display-id.

SMG$_WRONUMARG Wrong number of arguments.

SMGS$ERASE_CHARS

SMGSERASE CHARS — The Erase Characters routine erases characters in a virtual display by
replacing them with blanks.

Format

SME$SERASE _CHARS di spl ay-i d , nunber-of -characters ,start-row ,start-colum

Returns

OpenVMS usage: cond_value

185

Chapter 8. Screen Management (SMG$) Routines

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display from which characters will be erased. The display-id argument is the
address of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

number-of-characters

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the number of characters to be replaced with blanks. The number-of-characters argument
is the address of a signed longword that contains the number of characters to be replaced with blanks.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row on which the erase operation begins. The start-row argument is the address of a
signed longword that contains the number of the row at which the erasure is to begin.

start-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

186

Chapter 8. Screen Management (SMG$) Routines

Specifies the column on which the erase operation begins. The start-column argument is the address
of a signed longword that contains the number of the column at which the erasure is to begin.

Description

SMGSERASE CHARS erases characters in a virtual display by replacing them with blanks. The
remaining text in the display is not moved. An erase operation is limited to the specified line. If
number-of-characters is greater than the number of characters remaining in the line, all characters
from the specified starting position to the end of the line are erased. This routine leaves the virtual
cursor at the position of the first character erased.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVCOL Invalid column.

SMGS$ INVDIS ID Invalid display-id.

SMG$ INVROW Invalid row.

SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanpl e denonstrates the use of SMGSERASE CHARS.

C

C Include the SM5 definitions. In particular, we want SMG3M BORDER.
C

I MPLI CI T | NTEGER (A-2)
| NCLUDE ' ($SMGDEF) '

C+
C Create a virtual display with a border by calling
C SMGBCREATE_VI RTUAL_DI SPLAY.

C

RONS = 7

COLUMNS = 50

STATUS = SMESCREATE VI RTUAL_DI SPLAY

1 (ROANS, COLUWNS, DI SPLAY1, SME$M BORDER)

| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Call SMESCREATE_PASTEBOARD to create the pasteboard.
C

STATUS = SMGSCREATE PASTEBOARD (PASTE1)

| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Usi ng SMGSPUT_CHARS, put data in the virtual display.
C

STATUS = SME$PUT_CHARS (DI SPLAY1,

187

Chapter 8. Screen Management (SMG$) Routines

1 ' This virtual display has 7 rows and 50 colums.', 2, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This is a bordered virtual display.', 4, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGESPUT_CHARS (DI SPLAY1,
1 ' SMEPUT_CHARS puts data in this virtual display.', 6, 1)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+
C Cal | SMS$PASTE_VI RTUAL_DI SPLAY to paste the virtual display.
C

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1, 4, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+

C Erase 4 characters on row 4 starting fromcharacter (columm) 14 by
C calling SMEPERASE CHARS. This will renove the characters "rder"
Cfromthe word "bordered".

C

STATUS = SMGSERASE CHARS (DI SPLAY1, 4, 4, 14)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END
The initial output generated by this Fortran example program is shown in Figure 8.20.

Figure 8.20. Output Before the Call to SMGSERASE CHARS

This wvirtual display has 7 rows and 50 columns.
This is a bordered wirtual display.

SMGSPUT CHARS puts data in this wvirtual display.

ZK-4105-GE

The output generated after the call to SMGSERASE CHARS is shown in Figure 8.21.

188

Chapter 8. Screen Management (SMG$) Routines

Figure 8.21. Output After the Call to SMGSERASE CHARS

This wvirtual display has 7 rows and 50 columms.
This is a bo ed virtual display.

SMGSPUT CHARS puts data in this wvirtual display.

ZK-4113-GE

SMG$ERASE_COLUMN

SMGS$ERASE COLUMN — The Erase Column from Display routine erases the specified portion of
the virtual display from the given position to the end of the column.

Format

SMEBERASE_COLUMN di splay-id [,start-row] [,columm-nunber] [, end-row

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

189

Chapter 8. Screen Management (SMG$) Routines

Identifier of the virtual display to be affected. The display-id argument is the address of an unsigned
longword containing this virtual display identifier.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Optional line number at which the erase operation begins. The start-row argument is the address of
a signed longword that contains the specified line number. If this argument is omitted, the column-
number argument is ignored and the erase operation begins at the current location of the virtual
cursor for that virtual display.

column-number

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Optional column number at which the erase operation begins. The column-number argument is the
address of a signed longword that contains the specified column number. If this argument is omitted,
the start-row argument is ignored and the erase operation begins at the current location of the virtual
cursor for that virtual display.

end-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Optional row number at which the erase operation ends. The end-row argument is the address of a
signed longword that contains the specified row number.

Description
SMGSERASE COLUMN lets you erase a column of the virtual display from the specified position
to the end of the column. If the position is not specified, the erase operation begins at the current

position of the virtual cursor in the specified virtual display. After the erase operation has completed,
this routine leaves the virtual cursor at the position of the first character erased.

Condition Values Returned

SS$ NORMAL Normal successful completion.

190

Chapter 8. Screen Management (SMG$) Routines

SMGS$ERASE_DISPLAY

SMGSERASE DISPLAY — The Erase Virtual Display routine erases all or part of a virtual display
by replacing text characters with blanks.

Format

SMGESERASE_DI SPLAY
di splay-id [,start-row] [,start-colum] [,end-row] [, end-col um]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display to be erased. The display-id argument is the address of an unsigned
longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.
start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row at which the erase operation begins. The start-row argument is the address of a
signed longword that contains the number of the row at which the erasure begins.

If the start-row argument is not specified, start-column is also ignored and the entire virtual display
is erased. If you do not specify start-row and start-column, then end-row and end-column are
ignored and the entire virtual display is erased.

start-column

OpenVMS usage: longword_signed
type: longword (signed)

access: read only

191

Chapter 8. Screen Management (SMG$) Routines

mechanism: by reference

Specifies the column at which the erase operation begins. The start-column argument is the address
of a signed longword that contains the number of the column at which the erasure begins.

If the start-column argument is not specified, start-row is also ignored and the entire virtual display
is erased. If you do not specify start-row and start-column, then end-row and end-column are
ignored and the entire virtual display is erased.

end-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row at which the erase operation ends; that is, the last row to be erased. The end-
rowargument is the address of a signed longword that contains the number of the last row to be
erased.

If the end-row argument is not specified, end-column is also ignored and all remaining rows in the
display are erased.

end-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the column at which the erase operation ends; that is, the last column to be erased. The end-
column argument is the address of a signed longword that contains the number of the last column to
be erased.

If the end-column argument is not specified, end-row is also ignored and all remaining columns in
the display are erased.

Description

SMGSERASE DISPLAY causes all or part of a virtual display to be erased by replacing text
characters with blanks. If omitted, the starting positions default to 1,1. The ending positions default to
the last row or column in the display. Thus, to erase the entire virtual display, you need only pass the
display-id. This routine leaves the virtual cursor at the start of the erased position. If the entire display
is erased, the virtual cursor is left at position 1,1.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ INVCOL Invalid column number. The specified column is outside the virtual
display.

SMGS$ INVDIS ID Invalid display-id.

SMG$ INVROW Invalid row number. The specified row is outside the virtual display.

192

Chapter 8. Screen Management (SMG$) Routines

SMG$ WRONUMARG Wrong number of arguments.

Example

C+
C This Fortran exanpl e program denonstrates the use of SMGSERASE DI SPLAY.
C

| MPLICI T | NTEGER (A-2)

C+

C Call SMECREATE_VI RTUAL_DI SPLAY to create the virtual
C display. To give it a border, set BORDER = 1.

C No border would be BORDER = 0.

C
RONS = 7
COLUMNS = 50
BORDER = 1
STATUS = SMESCREATE VI RTUAL_DI SPLAY
1 (ROANS, COLUWNS, DI SPLAY1, BORDER)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Usi ng SMGBCREATE_PASTEBQARD, create the pasteboard.
C
STATUS = SMGSCREATE PASTEBOARD (PASTE1)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Call SMGEBPUT_CHARS to put data in the virtual display.
C
STATUS = SMGESPUT_CHARS (DI SPLAY1,
1 ' This virtual display has 7 rows and 50 colums.', 2, 1)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
STATUS = SMGESPUT_CHARS (DI SPLAY1,
1 ' This is a bordered virtual display.', 4, 1)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
STATUS = SMGESPUT_CHARS (DI SPLAY1,
1 ' SMGSPUT_CHARS puts data in this virtual display.', 6, 1)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Paste the virtual display by calling SMESPASTE VI RTUAL_ DI SPLAY.
C

STATUS = SMGSPASTE_VI RTUAL_DI SPLAY (DI SPLAY1, PASTEL, 4, 15)
| F (. NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+

C Call SMSBERASE DI SPLAY to erase the display fromrow 2,
C colum 6, through row 4, columm 28.

C

193

Chapter 8. Screen Management (SMG$) Routines

STATUS = SMGSERASE DI SPLAY (DI SPLAY1, 2, 6, 4, 28)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

END

The initial display output by this Fortran program is shown in Figure 8.22.

Figure 8.22. Initial Output of Fortran Program Calling SMGSERASE DISPLAY

This wvirtual display has 7 rows and 50 columns.
This is a bordered wvirtual display.

SMGSPUT_CHARS puts data in this wvirtual display.

ZK-4105-GE

This output displayed after the call to SMGSERASE DISPLAY is shown in Figure 8.23.

194

Chapter 8. Screen Management (SMG$) Routines

Figure 8.23. Output Displayed After the Call to SMGSERASE DISPLAY

This
dieplay.

SMGSPUT_CHARS puts data in this virtual display.

ZK-4115-GE

SMGS$SERASE_LINE

SMGSERASE LINE — The Erase Line routine erases all or part of a line in a virtual display.

Format

SMEPERASE LI NE display-id [,start-row] [,start-colum]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display to be affected. The display-id argument is the address of an unsigned
longword that contains the display identifier.

195

Chapter 8. Screen Management (SMG$) Routines

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the line at which the erase operation starts. The start-row argument is the address of a
signed longword that contains the number of the row at which the erasure starts. If omitted, start-
column is also ignored and the current cursor position is used.

start-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the column at which the erase operation starts. The start-column argument is the address
of a signed longword that contains the number of the column at which the erasure starts. If omitted,
start-row is also ignored and the current cursor position is used.

Description
SMGSERASE LINE erases a line from the specified starting position to the end of the line. If you

do not specify a starting position, SMGSERASE_LINE erases text from the current virtual cursor
position to the end of the line. This routine leaves the virtual cursor at the start of the erased portion.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ _INVCOL Invalid column number. The specified column is outside the virtual
display.

SMGS$ INVDIS ID Invalid display-id.

SMG$ INVROW Invalid row number. The specified row is outside the virtual display.

SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanpl e program denonstrates the use of
C SMGBERASE_LI NE.

C

| MPLI CI T | NTEGER (A-2)
| NCLUDE ' ($SMGDEF) '

196

Chapter 8. Screen Management (SMG$) Routines

C+
C Use SMGSBCREATE_VI RTUAL_DI SPLAY to create a virtual display
Cwith a border.

C_
ROWS = 7
COLUWNS = 50
STATUS = SMGSCREATE_VI RTUAL_DI SPLAY
1 (ROWS, COLUMNS, DI SPLAY1, SMG3$M BORDER)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))
C+

C Cal | SMG$CREATE_PASTEBOARD to create the pasteboard.
C

STATUS = SMGSCREATE_PASTEBOARD (PASTE1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+

C Put data in the virtual display by calling SME3PUT_CHARS.
C

STATUS = SMS$PUT_CHARS (DI SPLAY1,

1 ' This virtual display has 7 rows and 50 col ums. ",

IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
STATUS = SMGSPUT_CHARS (DI SPLAY1,

1 ' This is a bordered virtual display.', 4, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMS$PUT_CHARS (DI SPLAY1,

1 " SMEPPUT_CHARS puts data in this virtual display.'

| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+
C Use SMSBPASTE_VI RTUAL_DI SPLAY to paste the virtual display.
C

21

61

1)

1)

STATUS = SMGBSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1l, 4, 15)

I F (. NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Call SMSBERASE_LINE to erase line 2, and then again to
C erase the last 4 words on |ine 4.
C

STATUS = SMGSERASE LINE (DI SPLAY1, 2, 1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSERASE LINE (DI SPLAY1, 4, 9)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END

The initial output generated by the Fortran program is shown in Figure 8.24.

197

Chapter 8. Screen Management (SMG$) Routines

Figure 8.24. Initial Output Generated by Fortran Program Calling
SMGSERASE_LINE

This wirtual display has 7 rows and 50 columms.
This is a bordered wvirtual display.

SMGSPUT CHARS puts data in this wvirtual display.

ZK-4108-GE
The output generated after the call to SMGSERASE LINE is shown in Figure 8.25.

Figure 8.25. Output Generated After the Call to SMGSERASE_LINE

This is

SMG$PUT CHARS puts data in this virtual display.

ZK-4117-GE

198

Chapter 8. Screen Management (SMG$) Routines

SMGS$SERASE_PASTEBOARD

SMGSERASE PASTEBOARD — The Erase Pasteboard routine erases the contents of a pasteboard.

Format

SMGESERASE PASTEBOARD past eboard-i d
Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

mechanism: by value
Arguments

pasteboard-id
OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard to be erased. The pasteboard-id argument is the address of an unsigned
longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

Description

SMGSERASE PASTEBOARD erases the contents of a specified pasteboard. The physical cursor is
left at position 1,1. If there are any virtual displays pasted to the pasteboard, they will be redrawn the
next time the Screen Management Facility is used to output to the pasteboard.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SS$ xxxx Any status from $QIOW.
SMG$ BATWAS ON Pasteboard is batched.

SMGS$ INVPAS ID Invalid pasteboard-id.

SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanpl e program denonstrates the use of
C SMGHERASE_PASTEBQOARD.

C

I MPLICI T | NTEGER*4 (A-2)

199

Chapter 8. Screen Management (SMG$) Routines

CHARACTER* 80 QUT_STR, TRI M STR
CHARACTER* 18 PROVPT /' Pl ease enter data '/

SMESM BOLD = 1
SMGSM _REVERSE = 2
SMGSM BLI NK = 4
SMGSM _UNDERLI NE = 8
C+
C Establish the term nal screen as a pasteboard using
C SMGSCREATE_PASTEBQARD.
C

STATUS = SMGBCREATE_PASTEBOARD (NEWPID,, ,)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))
C+
C Establish the term nal keyboard as the virtual keyboard
C by calling SM33CREATE_VI RTUAL_KEYBQARD.
C

STATUS = SMGBSCREATE_VI RTUAL_KEYBOARD(KEYBOARD I D, , ,)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+

C Establish a virtual display region by

C cal l i ng SMESCREATE_VI RTUAL_DI SPLAY.

C

STATUS = SMGBCREATE_VI RTUAL_DI SPLAY (5, 80, DI SPLAY_I D, , ,)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+

C Paste the virtual display to the screen, starting at

C row 10, colum 15. To paste the virtual display, use

C SMGHSPASTE_VI RTUAL_DI SPLAY.

C

STATUS = SMGBPASTE_VI RTUAL_DI SPLAY(DI SPLAY_| D, NEW PI D, 10, 15)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+

C Prompt the user for input, and accept that input using

C SMESREAD_STRI NG

C
STATUS = SMGSREAD_STRI NG(KEYBOARD | D, QUT_STR, PROWPT, , , ,,,,)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))
C+
C Cear the screen using SMGSERASE PASTEBOARD.
C
STATUS = SMGBSERASE PASTEBOARD (NEW PI D)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))
C+

C Trimany trailing blanks fromthe user input

C by calling STR$TRI M

C
STATUS = STR$TRI M TRI M_STR, QUT_STR, STR_LEN)
IF (.NOT. STATUS) CALL LI B$STOP(%/AL(STATUS))

C+
C Display the data input by the user using SMEPUT_CHARS

200

Chapter 8. Screen Management (SMG$) Routines

C and SMGSPUT_LI NE.
C_

STATUS = SMG$PUT_CHARS(DI SPLAY ID,"' You entered: ',,,,,,)
| F (.NOT. STATUS) CALL LIB$STOP(%/AL(STATUS))
STATUS = SMG$PUT LI NE(DI SPLAY_ | D, TRI M STR(1: STR LEN), ,
1 SME$M REVERSE, 0, ,)
| F (.NOT. STATUS) CALL LIB$STOP(%/AL(STATUS))
END

This Fortran program calls Run-Time Library Screen Management routines to format screen output,
and to accept and display user input.

SMGS$SEXECUTE_COMMAND

SMGSEXECUTE COMMAND — The Execute Command in a Subprocess routine executes the
specified command in the subprocess created with the SMGSCREATE SUBPROCESS routine.

Format

SMESEXECUTE_COVMAND di spl ay-i d , conmand-desc [,flags] [, ret-status]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Display identifier of the virtual display with which the subprocess is associated. The display-
idargument is the address of an unsigned longword containing this identifier.

command-desc

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Command string. The command-desc argument is the address of a descriptor pointing to the
command string.

201

Chapter 8. Screen Management (SMG$) Routines

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Optional bit mask that specifies optional behavior. The flags argument is the address of an unsigned
longword that contains the flag. The valid values for flags are as follows:

SMGS$M_DATA FOLLOWS |Input data follows. The next call to SMGSEXECUTE COMMAND
contains input data for the currently executing command. Do not
specify this value if this is the last input data item. If you do specify
this value, ret-status is not returned.

SMG$M_SEND_EOF Send end-of-file marker. The end-of-file marker is sent to the
subprocess.

ret-status

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by reference

Optional status of the executed command, provided that the commands are not being buffered. The
ret-status argument is the address of an unsigned longword containing this status.

Description

SMGSEXECUTE _COMMAND lets you execute the specified command in the subprocess created
with SMGSCREATE _SUBPROCESS. If commands are being buffered, this routine returns control
after the command has been buffered, and the user-specified AST routine is invoked when the
command completes. If commands are not being buffered, SMGSEXECUTE COMMAND waits
until the command has completed execution before returning the status of the command.

When specifying the command string, you must specify a dollar sign (8$) as the first character of any
DCL command. Any command string that does not begin with a dollar sign is assumed to be input
data for the previous command. SMGSEXECUTE COMMAND outputs the commands and their
output to the specified virtual display as they are executed. Do not perform 1/O to the specified virtual
display. Note that the commands SPAWN, GOTO, and LOGOUT are illegal to use as command
strings and generate unpredictable results.

Since 1/0 is performed using mailboxes and not through the terminal driver, command prompts and
single-character commands such as Ctrl/C, Ctrl/Y, Ctrl/Z, and so forth have no effect. You should
specify SMGSM_SEND_ EOF for the flags argument in order to send a Ctrl/Z to the subprocess.
For more information on mailboxes, see the mailbox driver section of the VST OpenVMS 1/O User's
Reference Manual.

Condition Values Returned

SS$ NORMAL Normal successful completion.

202

Chapter 8. Screen Management (SMG$) Routines

SS$_xxxx Any status from $QIO, $SDCLAST, or $SSYNCH.
SMG$ INPTOOLON Input is longer than 255 characters.

SMGS$ INVDIS ID Invalid display-id.

SMG$ NOSUBEXI No subprocess exists.

SMG$_xxxx Any status from SMGS$PUT_LINE.

LIB$ xxxx Any status from LIBSANALYZE SDESC.

SMGS$FIND_CURSOR_DISPLAY

SMGSFIND CURSOR DISPLAY — The Find Display that Contains the Cursor routine returns the
identifier of the most recently pasted virtual display that contains the physical cursor.

Format

SMGSFI ND_CURSCR_DI SPLAY
past eboard-id ,display-id [, pasteboard-row] [, pasteboard-col um]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard in which the physical cursor is to be found. The pasteboard-id argument is
the address of an unsigned longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.
display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the identifier of the display in which the physical cursor was found. The display-idargument
is the address of an unsigned longword into which the display identifier is written.

203

Chapter 8. Screen Management (SMG$) Routines

pasteboard-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

The row position at which to begin the search for the physical cursor. The optional pasteboard-
rowargument is the address of a signed longword containing the pasteboard row. You can
usepasteboard-row instead of the physical cursor row.

pasteboard-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

The column position at which to begin the search for the physical cursor. The optional pasteboard-
column argument is the address of a signed longword containing the pasteboard column. You can use
pasteboard-column instead of the physical cursor column.

Description

SMGSFIND CURSOR DISPLAY determines which virtual display contains the physical cursor on
a specified pasteboard, and returns the virtual display's identifier. SMGSFIND CURSOR DISPLAY
returns the display-id of the most recently pasted virtual display that contains the physical cursor. If

no virtual display contains the physical cursor, this routine returns a zero, which is an invalid display
identifier.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$ INVPAS ID Invalid pasteboard-id.
SMG$ WRONUMARG Wrong number of arguments.

SMG$FLUSH_BUFFER

SMGSFLUSH BUFFER — The Flush Buffer routine flushes all buffered output to the terminal.

Format

SME$FLUSH BUFFER past eboard-i d

Returns

OpenVMS usage: cond_value

204

Chapter 8. Screen Management (SMG$) Routines

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard to be flushed. The pasteboard-id argument is the address of an unsigned
longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

Description

SMGSFLUSH BUFFER causes all buffered output that is not already output to be sent to the
pasteboard immediately. The Screen Management Facility outputs the text when the buffer is full;
therefore, this routine is only needed when a partial buffer must be output. The calling program would
normally call this routine just before performing some CPU-intensive calculations, or whenever the
pasteboard must be up to date.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SS$_xxxx Any error from $QIOW.
SMGS$ INVPAS ID Invalid pasteboard-id.

SMG$ WRONUMARG Wrong number of arguments.

SMGS$FLUSH_DISPLAY_UPDATE

SMGSFLUSH DISPLAY UPDATE — The Flush Display Update routine flushes any update
batching to the screen and leaves the update batching in effect.

Format

SMGBSFLUSH DI SPLAY_UPDATE di spl ay-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only

205

Chapter 8. Screen Management (SMG$) Routines

mechanism: by value
Arguments
display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display to be affected. The display-id argument is the address of an unsigned
longword that contains the display identifier.

The display argument is returned by SMGSCREATE VIRTUAL DISPLAY.

Description

SMGS$FLUSH_DISPLAY UPDATE works with SMGSEND DISPLAY UPDATE and
SMGS$BEGIN DISPLAY UPDATE to control the batching of output operations on a given virtual
display. Each call to SMGSFLUSH_DISPLAY UPDATE immediately updates the virtual display
with all operations previously performed under batching, and written to the pasteboard if the virtual
display is pasted.

SMGSFLUSH _DISPLAY UPDATE can be used in place of a call to

SMGSEND DISPLAY UPDATE that is immediately followed by a call to

SMGS$BEGIN DISPLAY UPDATE, when the batch count is zero, with much better performance
than the two calls.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$_INVDIS ID Invalid display-id.
SMG$ WRONUMARG Wrong number of arguments.

SMG$GET_BROADCAST_MESSAGE

SMGSGET _BROADCAST MESSAGE — The Get Broadcast Message routine determines whether a
message has been broadcast to the pasteboard and returns the message.

Format

SMG$GET_BROADCAST_MESSAGE
past eboard-id [, message] [, nessage-length] [, message-type]

Returns

OpenVMS usage: cond_value

206

Chapter 8. Screen Management (SMG$) Routines

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the pasteboard to be checked for the presence of a broadcast message. The pasteboard-id
argument is the address of an unsigned longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

message

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

A string that receives the broadcast message, if such a message is available. The message argument
is the address of a descriptor that points to the string into which the message text is written. If this
argument is omitted, the broadcast message is discarded.

message-length

OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Receives the actual length of the broadcast message. The message-length argument is the address of
an unsigned word into which is written the length of the message.

message-type

OpenVMS usage: word_unsigned

type: word (unsigned)
access: write only
mechanism: by reference

Receives the type of broadcast message. The message-type argument is the address of an unsigned
word into which is written the type of message. Values for message-type are defined by the

207

Chapter 8. Screen Management (SMG$) Routines

$MSGDEEF library definition. If the value for message-type is not MSG$ TRMBRDCST, the
condition value returned is SMG$ NOBRDMSG.

Description

SMGSGET BROADCAST MESSAGE determines if any broadcast messages have been sent to

the specified pasteboard while broadcast trapping was enabled and, if so, returns the message in

the message argument. You may call this routine repeatedly until all broadcast messages have been
returned. If there are no more broadcast messages available, SMGSGET BROADCAST MESSAGE
returns the success status SMG$ NO_MORMSG.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$_INVPAS ID Invalid pasteboard-id.

SMG$ NO MORMSG Successful completion. No more messages to be returned.
SMG$ NONBRDMSG Nonbroadcast message returned.

SMG$ WRONUMARG Wrong number of arguments.

Any condition values returned by LIB§SCOPY DXDX.

SMG$GET _CHAR_AT PHYSICAL_CURSOR

SMGSGET CHAR AT PHYSICAL CURSOR — The Return Character at Cursor routine returns
the character at the current physical cursor position.

Format

SMGBCGET_CHAR_AT_PHYSI CAL_CURSOR
past eboard-id ,character-code [,rendition] [,user-rendition]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

208

Chapter 8. Screen Management (SMG$) Routines

Specifies the pasteboard from which to retrieve the character. The pasteboard-id argument is the
address of an unsigned longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

character-code

OpenVMS usage: byte unsigned

type: byte (unsigned)
access: write only
mechanism: by reference

Returned character code. The character-code argument is the address of an unsigned byte into which
is written the character's ASCII code.

rendition

OpenVMS usage: byte unsigned

type: byte (unsigned)
access: write only
mechanism: by reference

Receives the rendition code associated with the character code returned by the character-
codeargument. The rendition argument is the address of an unsigned byte into which is written the
rendition code.

user-rendition

OpenVMS usage: byte unsigned

type: byte (unsigned)
access: write only
mechanism: by reference

Receives the user rendition code associated with the character code returned by the character-
codeargument. The user-rendition argument is the address of an unsigned byte into which is written
the user rendition code.

Description

SMGSGET CHAR AT PHYSICAL CURSOR returns the character that occupies the screen
position corresponding to the current physical cursor position.

Note

If the Screen Management Facility has not written to the screen location occupied by the physical
cursor, then the contents of that position are unknown.

If the returned character has an ASCII value less than 32 (decimal), it is not a printable character.
Rather, it is an internal terminal-independent code denoting what should be displayed at that position

209

Chapter 8. Screen Management (SMG$) Routines

(for example, an element of the line-drawing character set). Do not attempt to use this code for
subsequent output operations.

SMGSGET_CHAR_AT PHYSICAL CURSOR may not return valid data if display batching or
pasteboard batching is on. This can occur because the cursor position does not reflect any calls to
SMGSSET PHYSICAL CURSOR or the SMGSSET CURSOR_xxxx routines until batching ends.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$ INVPAS ID Invalid pasteboard-id.
SMG$ WRONUMARG Wrong number of arguments.

SMGSGET_DISPLAY_ATTR

SMGSGET DISPLAY ATTR — The Get Display Attributes routine receives the attributes associated
with a virtual display.

Format

SMGEPGET_DI SPLAY_ATTR
di splay-id[,height] [,width] [,display-attributes] [,video-attributes]
[,character-set] [, flags]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display for which information is requested. The display-id argument is the
address of an unsigned longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

height

OpenVMS usage: longword_signed

210

Chapter 8. Screen Management (SMG$) Routines

type: longword (signed)
access: write only
mechanism: by reference

Receives the number of rows in the display. The optional height argument is the address of a signed
longword into which the height is written.

width

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Receives the number of columns in the display. The optional width argument is the address of a
signed longword into which is written the number of columns in the display.

display-attributes

OpenVMS usage: mask longword

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the current default display attributes. The optional display-attributes argument is the
address of an unsigned longword into which the current display attributes are written.

Valid values for display-attributes are as follows:

SMG$M_BORDER Specifies a bordered display. If omitted, the display is not
bordered.

SMG$M_BLOCK BORDER Specifies a block bordered display. If omitted, the display is not
bordered.

SMGS$M_DISPLAY CONTROLS |Specifies that control characters such as carriage return and
line feed are displayed as graphic characters, if your terminal
supports them.

SMGS$M_TRUNC ICON Specifies that an icon (generally a diamond shape) is displayed
where truncation of a line exceeding the width of the virtual
display has occurred.

video-attributes

OpenVMS usage: mask longword

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the current default video attributes. The optional video-attributes argument is the address of
an unsigned longword into which the current video attributes are written.

211

Chapter 8. Screen Management (SMG$) Routines

Valid video attributes are as follows:

SMGS$M_BLINK

Displays blinking characters.

SMGS$M_BOLD

Displays characters in higher-than-normal intensity.

SMGSM_REVERSE

Displays characters in reverse video; that is, using the opposite of the
default rendition of the virtual display.

SMG$M_UNDERLINE

Displays underlined characters.

SMGS$M_INVISIBLE

Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMGS$M_USERI1 through
SMG$M_USERS

Displays user-defined attributes.

character-set

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the default character set for all text in this virtual display. The optional character-set
argument is the address of an unsigned longword that specifies the character set. Valid values are
SMGS$C_ASCII (the default) and SMG$C SPEC_GRAPHICS.

flags

OpenVMS usage: mask_longword

type: longword (unsigned)
access: write only
mechanism: by reference

Optional bit mask specifying attributes of the specified display. The flags argument is the address of
an unsigned longword containing the flag. Valid values for flags are as follows:

SMGSM_SUBPROCESS

Display has a subprocess attached to it.

SMG$SM_MENU

Display contains a menu.

SMG$M_VIEWPORT

Display contains a viewport.

Description

SMGSGET_DISPLAY ATTR receives the attributes of a virtual display.

Condition Values Returned

SS$ NORMAL
SMG$_INVDIS_ID
SMG$_WRONUMARG

Normal successful completion.
Invalid display-id.

Wrong number of arguments.

212

Chapter 8. Screen Management (SMG$) Routines

SMG$GET_KEYBOARD_ATTRIBUTES

SMGSGET KEYBOARD_ ATTRIBUTES — The Get Keyboard Attributes routine gets information
about a virtual keyboard and leaves it in a user-supplied area: the keyboard information table (KIT).

Format

SMGSCGET_KEYBQARD_ATTRI BUTES
keyboard-id , keyboard-info-table , keyboard-info-tabl e-size

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

keyboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Keyboard identifier. The keyboard-id argument is the address of an unsigned longword containing
the identifier of the virtual keyboard from which to read.

Create a virtual keyboard by calling the SMGSCREATE VIRTUAL KEYBOARD routine.

keyboard-info-table

OpenVMS usage: unspecified

type: unspecified
access: write only
mechanism: by reference, array reference

Receives the keyboard attributes. The keyboard-info-table argument is the address of a data block
into which the keyboard attributes are written.

The KIT is a byte block whose size and field references are described in $SMGDEF. It is the caller's
responsibility to allocate the correct size block and to pass its address to this routine.

The values in the keyboard-info-table can be accessed through the following symbolic names:

SMGS$L DEV_CHAR Device characteristics (longword)
SMGSL DEV_DEPEND Specific characteristics 1 (longword)

213

Chapter 8. Screen Management (SMG$) Routines

SMGSL DEV_DEPEND?2 Specific characteristics 2 (longword)

SMGSL DEV_DEPEND3 Specific characteristics 3 (longword)

SMGS$B DEV_CLASS Device class (byte)—for example, DC$ TERM
SMG$B_RECALL NUM Size of recall buffer (byte)*

SMG$B_DEVTYPE Physical device type (byte)—for example, TT$_VT100

SMGS$B_TYPEAHD CHAR First character in type-ahead buffer (byte)*

SMG$W_NUM_COLUMNS Terminal width (word)

SMGS$W_TYPEAHD CNT Number of characters in type-ahead buffer (word)*

Items marked with an asterisk (*) will be zero unless the device is a terminal (DEVCLASS =
DC§$ TERM).

keyboard-info-table-size

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Size of the keyboard information table. The keyboard-info-table-size argument is the address of an
unsigned longword containing the size of the KIT in bytes.

The size you specify must be exact. You can specify this size with the symbolic constant
SMGS$C KEYBOARD INFO BLOCK.

Description

SMGSGET KEYBOARD_ ATTRIBUTES retrieves information about a virtual keyboard and leaves
this information in the KIT.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVARG KIT is the wrong size.

SMG$ INVKBD ID Invalid keyboard-id.
Example

10 I+

I This VAX BASI C program denonstrates the use of

! SM3GET_KEYBOARD_ATTRI BUTES.
-

OPTION TYPE = EXPLICI T
OPTI ON CONSTANT TYPE = | NTEGER

% NCLUDE " $SMGEDEF" %-ROM %.| BRARY " SYS$LI BRARY: BASI C8STARLET"
% NCLUDE " $SSDEF' 9%-ROM %.| BRARY " SYS$LI BRARY: BASI C8STARLET"

214

Chapter 8. Screen Management (SMG$) Routines

EXTERNAL LONG FUNCTI ON LI B$SI GNAL(LONG BY VALUE), &
SMGSCREATE_VI RTUAL_KEYBOARD(LONG), &
SMGSGET_KEYBOARD ATTRI BUTES(LONG, ANY,
LONG)

DECLARE SMSBATTRI BUTE_| NFO_BLOCK SMG | NFO
DECLARE LONG S, KEYBOARD | D

S = SMEPCREATE_VI RTUAL_KEYBOARD(KEYBQOARD | D)
IF S <> SS$_NORMAL THEN CALL LIB$SIGNAL(S) END IF

S = SMEBGET_KEYBOARD ATTRI BUTES(KEYBOARD I D, &
SMG_| NFO, &
SME$C_KEYBOARD | NFO BLOCK)
IF S <> SS$_NORMAL THEN CALL LIB$SIGNAL(S) END IF

PRI NT SMG_ | NFO : SMG5L_DEV_CHAR I Device characteristics

PRI NT SMG_| NFO : SME$L_DEV_DEPEND I Specific characteristics
(1)

PRI NT SMG_| NFO : SMG5L_DEV_DEPEND2 I Specific characteristics

(2)
PRI NT SMG | NFO : SMG$B_DEV_CLASS
PRI NT SMG | NFO : SMG$B_RECALL_NUM
PRI NT SMG_| NFO : SM3$B_DEV_TYPE
PRI NT SMG | NFO : SM3$B_TYPEAHD CHAR

Device class (DC$_TERM)
Size of SMG recall buffer
Device type (DT$_VT100)
First character in

t ypeahead buffer

Term nal wi dth

Number of characters in
t ypeahead buffer

PRI NT SMG | NFOr : SMGSW NUM_COLUWNS
PRI NT SMG | NFO : SMGSW TYPEAHD CNT

END

SMG$GET_KEY_DEF

SMGSGET _KEY DEF — The Get Key Definition routine returns the key definition for a specified
key.

Format

SMGBCGET_KEY_DEF
key-table-id ,key-nane [,if-state] [,attributes] [, equival ence-string]
[,state-string]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

key-table-id

215

Chapter 8. Screen Management (SMG$) Routines

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the key table from which you are extracting a definition. The key-table-id argument is the
address of an unsigned longword that contains the key table identifier.

The key table identifier is returned by SMGSCREATE KEY TABLE.

key-name

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Specifies the name of the key associated with the definition. The key-name argument is the address of
a descriptor pointing to the key name.

Table 3.1 lists the valid key names.

if-state

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

Specifies the current state name in effect after the key is pressed. The if-state argument is the address
of a descriptor pointing to the state name.

See the SMGSADD KEY DEF routine for more information.

attributes

OpenVMS usage: mask_longword

type: longword (unsigned)
access: write only
mechanism: by reference

Receives the attributes bit mask for this key definition. The attributes argument is the address of a
longword into which is written the bit mask describing the key's attributes.

Valid values are as follows:

SMGS$M_KEY NOECHO If set, this bit specifies that equiv_string is not to be
echoed when this key is pressed. If clear, equiv_string

216

Chapter 8. Screen Management (SMG$) Routines

is echoed. If SMG$SM_KEY TERMINATE is not set,
SMG$M_KEY NOECHO is ignored.

SMG$SM_KEY TERMINATE

If set, this bit specifies that when this key is pressed (as qualified
by if-state), the input line is complete and more characters
should not be accepted. If clear, more characters may be
accepted.

SMG$M_KEY LOCKSTATE

If set, and if state-string is specified, the state name specified
bystate-string remains at the current state until explicitly
changed by a subsequent keystroke whose definition includes
a state-string. If clear, the state name specified by state-string
remains in effect only for the next defined key stroke.

SMG$M_KEY PROTECTED

If set, this bit specifies that this key definition cannot be modified
or deleted. If clear, the key definition can be modified or deleted.

equivalence-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Receives the equivalence string for this key definition. The equivalence-string argument is the
address of a descriptor pointing to the string into which is written the equivalence string.

state-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Receives the new state name, if any, which is set by this key definition. The state-string argument is
the address of a descriptor pointing to the string into which is written the new state string.

Description

SMGSGET _KEY_ DEF returns the key definition associated with a specified key-name and if-state.
This key definition may be used in calls to SMGSREAD COMPOSED_LINE.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVKEYNAM Invalid key-name.

SMGS$ _INVKTB_ID Invalid key-table-id.

SMG$ KEYNOTDEF Key not defined.

SMG$ WRONUMARG Wrong number of arguments.

Any condition values returned by LIBSSCOPY DXDX.

217

Chapter 8. Screen Management (SMG$) Routines

SMG$GET _NUMERIC_DATA

SMGSGET NUMERIC DATA — The Get Numeric Terminal Data routine accesses
TERMTABLE.EXE and returns the value associated with a specified Boolean or numeric capability.

Format

SMESGET_NUMERI C_DATA ternt abl e- address , request-code , buffer-address
Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

termtable-address

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the address of the TERMTABLE entry for the desired terminal. The termtable-address
argument is the address of an unsigned longword that contains the address of the terminal capabilities
table (TERMTABLE).

Before calling SMGSGET NUMERIC DATA, you must obtain this terminal table address by calling
either SMGSINIT TERM_ TABLE or SMGSINIT TERM TABLE BY TYPE.

request-code

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Request code that specifies the desired capability. The request-code argument is an unsigned
longword constant containing this request code. The request code is of the form SMGS$K code,
where code corresponds to a keyword in the terminal capabilities table (TERMTABLE), for example,
ANSI _CRT. The SMGS$K _code constants can be found in the $SMGTRMPTR library.

See Tables 5.1 through 5.4 for valid capability fields.

buffer-address

OpenVMS usage: address

218

Chapter 8. Screen Management (SMG$) Routines

type: longword (unsigned)
access: write only
mechanism: by reference

Address of the first byte of the longword to which SMGSGET _NUMERIC_ DATA writes the numeric
capability data. The buffer-address argument is an unsigned longword that contains the address of
this buffer.

Description

SMGSGET NUMERIC DATA extracts the requested numeric information from a specified terminal
table. Before calling SMGSGET NUMERIC DATA, you must obtain that terminal table address by
calling either SMGSINIT TERM TABLE or SMGSINIT TERM TABLE BY_TYPE. This routine
need only be used if you are doing your own TERMTABLE access, and only when you perform direct
(non-SMG$) 1/0 to terminals.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$ INVREQCOD Invalid request code.
SMG$ INVTERTAB Invalid terminal table address.

SMGS$GET_PASTEBOARD_ATTRIBUTES

SMGSGET PASTEBOARD ATTRIBUTES — The Get Pasteboard Attributes routine gets
pasteboard attributes and stores them in the pasteboard information table.

Format

SME$GET_PASTEBOARD_ATTRI BUTES
past eboard-i d , pasteboard-i nfo-tabl e , pasteboard-info-tabl e-size

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

219

Chapter 8. Screen Management (SMG$) Routines

Specifies the pasteboard for which information is requested. The pasteboard-id argument is the
address of an unsigned longword that contains the pasteboard identifier.

The pasteboard identifier is returned by SMGSCREATE PASTEBOARD.

pasteboard-info-table

OpenVMS usage: unspecified

type: unspecified
access: write only
mechanism: by reference, array reference

Receives the pasteboard attributes. The pasteboard-info-table argument is the address of a data
structure into which are written the pasteboard attributes.

The values in the pasteboard-info-table can be accessed through the following symbolic names:

SMGSL_DEVCHAR

Device characteristics (longword).

SMGS$L_DEVDEPEND

Specific characteristics 1 (longword).

SMGS$L DEVDEPEND2

Specific characteristics 2 (longword).

SMGSL_DEVDEPEND?3

Specific characteristics 3 (longword).

SMGSB_DEVCLASS

Device class (byte)—for example, DC$ TERM.

SMG$B_SMG DEVTYPE

Internal SMG device type (byte). The four possible values
for SMGSB_SMG_DEVTYPE are as follows:

SMG$K_UNKNOWN
SMGS$K_VTFOREIGN
SMG$K_HARDCOPY
SMGS$K_VTTERMTABLE

SMGS$SB_PHY DEVTYPE

Physical device type (byte)—for example, TT$ VT100.
The possible values for SMG$B_PHY _DEVTYPE are
defined in STTDEF in STARLET.

SMGSB_ROWS

Number of rows on pasteboard (byte).

SMG$W_WIDTH

Pasteboard width (word).

SMGS$SB_COLOR

Background color setting (byte). Valid values for
SMGS$B_COLOR are as follows:

SMG$C COLOR UNKNOWN | Unknown background
color

SMG$C COLOR_WHITE Light background

SMG$C COLOR BLACK Dark background

SMG$C COLOR BLUE Blue background

SMG$C COLOR CYAN Cyan (green-blue)
background

SMG$C _COLOR_GREEN Green background

SMG$C COLOR MAGENTA |Magenta background

SMG$C COLOR RED Red background

220

Chapter 8. Screen Management (SMG$) Routines

SMGS$C _COLOR_YELLOW Yellow background
SMG$C COLOR LIGHT White background
SMGS$C COLOR_DARK Black background
SMGS$C COLOR _USERI1 User-defined
background 1
SMGS$C _COLOR_USER2 User-defined
background 2
SMGS$B_PARITY Parity attributes (byte)—this field is zero if the pasteboard
is not a terminal.
SMG$W_SPEED Terminal speed (word)—this field is zero if the pasteboard
is not a terminal.
SMGS$W_FILL Fill characteristics (word)—this field is zero if the
pasteboard is not a terminal.
SMG$W_PHYS CURSOR ROW Pasteboard row containing physical cursor (word).
SMGS$W_PHYS CURSOR_COL Pasteboard column containing physical cursor (word).
SMGS$L_CURSOR_DID Display identifier of topmost display containing physical
cursor (longword).

pasteboard-info-table-size

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the number of bytes in the pasteboard information table. The pasteboard-info-table-
sizeargument is the address of an unsigned longword that contains the size (in bytes) of the pasteboard
information table.

The size you specify must be exact. You can specify this size with the symbolic constant
SMG$C_PASTEBOARD INFO BLOCK.

Description

SMGSGET PASTEBOARD ATTRIBUTES gets pasteboard attributes and stores them in the
pasteboard information table.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$_INVARG Incorrect size specified in pasteboard-info-table-size.
SMG$ WRONUMARG Wrong number of arguments.

SMG$GET_PASTING_INFO

SMGSGET PASTING INFO — Provided that the specified virtual display is currently pasted, the
Return Pasting Information routine returns the row and column of the pasting.

221

Chapter 8. Screen Management (SMG$) Routines

Format

SMGEBGET_PASTI NG_I NFO
di splay-id , pasteboard-id ,flags [, pasteboard-row] [, pasteboard-col um]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the virtual display to be examined. The display-id argument is the address of an unsigned
longword containing the identifier of this virtual display.

pasteboard-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the pasteboard on which the virtual display is pasted. The pasteboard-id argument is the
address of an unsigned longword containing the identifier of this pasteboard.

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: write only
mechanism: by reference

Bit mask indicating the status of the specified virtual display with respect to the specified pasteboard.
The flags argument is the address of an unsigned longword that contains the flag. Valid values for
flags are as follows:

0 The virtual display is not pasted to the specified pasteboard.

222

Chapter 8. Screen Management (SMG$) Routines

SMGS$M_DISPLAY PASTED The virtual display specified by display-id is pasted to the
pasteboard specified by the pasteboard-id argument.

pasteboard-row

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Row of the pasteboard that contains row 1 of the specified virtual display. The optional pasteboard-
row argument is the address of a signed longword containing the number of the pasteboard row that
contains the first row of the virtual display.

pasteboard-column

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Column of the pasteboard that contains column 1 of the specified virtual display. The optional
pasteboard-column argument is the address of a signed longword containing the number of the
pasteboard column that contains the first column of the virtual display.

Description

SMGSGET PASTING INFO first checks to see if the virtual display specified by display-id

is pasted to the pasteboard specified by pasteboard-id. If this virtual display is pasted to this
pasteboard, SMGSGET PASTING INFO returns the row and column numbers of the pasteboard that
correspond to row 1 and column 1 of the pasted virtual display.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS_ILLBATFNC Display is batched.

SMGS$ INVDIS ID Invalid display-id.

SMGS$ INVPAS ID Invalid pasteboard-id.

SMG$ WRONUMARG Wrong number of arguments.

SMG$GET_TERM_DATA

SMGSGET _TERM_DATA — The Get Terminal Data routine accesses TERMTABLE.EXE and
returns the character sequence that causes a terminal to perform a specified operation.

Format

SMGSGET_TERM DATA

223

Chapter 8. Screen Management (SMG$) Routines

ternt abl e- address , request -code , maxi mum buffer-|ength
,return-length ,capability-data [,input-argunment-vector]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

termtable-address

OpenVMS usage: address

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the address of the TERMTABLE entry for the desired terminal. The termtable-address
argument is the address of an unsigned longword that contains the address of the terminal capabilities
table (TERMTABLE).

The TERMTABLE address is returned by SMGSINIT TERM_TABLE or
SMGS$INIT TERM TABLE BY TYPE.

request-code

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Longword constant of the form SMG$K _code, where code is the name of the desired capability field.
The request-code argument is the address of a signed longword that contains the request code. The
SMGS$K code constants can be found in the $SMGTRMPTR library.

See Tables 5.1 through 5.4 for valid capability fields.

maximum-buffer-length

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Maximum length of the buffer into which the requested capability data is written. The maximum-
buffer-length argument is the address of a signed longword that contains the maximum number of
bytes that can be written into the buffer.

224

Chapter 8. Screen Management (SMG$) Routines

return-length

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Receives the number of bytes actually written into the buffer. The return-length argument is the
address of a signed longword into which is written the number of bytes transferred into the buffer.

capability-data

OpenVMS usage: unspecified
type: unspecified

access: by reference, array reference

Address of the first byte of the buffer which is to receive the capability data. The capability-
dataargument contains the address of the buffer.

input-argument-vector

OpenVMS usage: vector_longword_ unsigned

type: longword (unsigned)
access: read only
mechanism: by reference, array reference

Address of a list of longwords used for capabilities that require a variable number of arguments, and
for those that require substitution or arithmetic operations on an argument. The input-argument-
vector argument is the address of an array of unsigned longwords that contains capability arguments.
The first longword must contain the number of arguments that follow.

Description

SMGSGET TERM_DATA should be used only when you perform direct (non-SMG$) I/0 to
terminals. It accesses the TERMTABLE.EXE entry for the specified type of terminal and returns
the character sequence that performs the specified operation. It is up to you to send this character
sequence to the terminal.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$_INVREQCOD Invalid request code.
SMG$ INVTERTAB Invalid terminal table address.

SMGS$GET_VIEWPORT_CHAR

SMGSGET_VIEWPORT CHAR — The Get Characteristics of Display Viewport routine returns the
characteristics of the specified viewport.

225

Chapter 8. Screen Management (SMG$) Routines

Format

SMGBCGET_VI EWPORT_CHAR
di splay-id [,viewort-rowstart] [,viewport-colum-start]
[, viewport-nunber-rows] [, viewport-nunber-col ums]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Identifier of the virtual display associated with the viewport. The display-id argument is the address

of an unsigned longword containing this identifier.

viewport-row-start

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Optional argument that receives the starting row number of the viewport. The viewport-row-

startargument is the address of a signed longword that receives this row number.

viewport-column-start

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Optional argument that receives the starting column number of the specified viewport. The viewport-
column-start argument is the address of a signed longword that receives this column number.

viewport-number-rows

OpenVMS usage: longword_signed

226

Chapter 8. Screen Management (SMG$) Routines

type: longword (signed)
access: write only
mechanism: by reference

Optional argument that receives the number of rows in the specified viewport. The viewport-
number-rows argument is the address of a signed longword that receives this number.

viewport-number-columns

OpenVMS usage: longword_signed

type: longword (signed)
access: write only
mechanism: by reference

Optional argument that receives the number of columns in the specified viewport. The viewport-
number-columns argument is the address of a signed longword that receives this number.

Description

SMGSGET_VIEWPORT CHAR returns the requested characteristics of the specified viewport.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$ INVDIS ID Invalid display-id.

SMG$ NO_WINASSOC No viewport associated with the virtual display.
SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanpl e denbnstrates the use of SMGSGET_ VI EWPORT _CHAR.

C The viewport created will start at row 3, colum 4. It will consist of

C 7 rows and 29 columms. Note the paraneters used in
t he SMGESCREATE_VI EWPORT
Croutine. | request 26 rows and 55 colums, but nmy viewport is truncated
Cto fit.
C
| MPLICI T | NTEGER (A-2)
I NCLUDE ' ($SMGDEF)

C Create the virtual display. Gve it a border.

ROAS = 4
COLUMNS = 34
STATUS = SMG$CREATE_VI RTUAL_DI SPLAY

1 (ROWS, COLUMNS, DI SPLAY1, SMG3M BORDER)
| F (. NOT. STATUS) CALL LIB$SI GNAL(%al (STATUS))

C Create the pasteboard.

227

Chapter 8. Screen Management (SMG$) Routines

STATUS = SMGSCREATE_PASTEBOARD (PASTE1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%al (STATUS))

C Put data in the virtual display.

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 "This is row nunber 1 of 4, you see', 1, 1)
IF (.not. STATUS) CALL LI B$SI GNAL(%val (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 2 of 4, you see', 2, 1)
IF (.not. STATUS) CALL LI B$SI GNAL(%val (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 "This is row nunber 3 of 4, you see', 3, 1)
IF (.not. STATUS) CALL LI B$SI GNAL(%val (STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 '"This is row nunber 4 of 4, you see', 4, 1)
IF (.not. STATUS) CALL LI B$SI GNAL(%val (STATUS))

C Paste the virtual display.

STATUS = SMG$COPY_VI RTUAL_DI SPLAY(DI SPLAY1, DI SPLAY2)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSLABEL_BORDER (DI SPLAY1, 'Full Display',,, SMSM BOLD)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSLABEL_BORDER (DI SPLAY2, ' Vi ewport' , , , SMGSM BOLD)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTEL, 2, 2)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSCREATE VI EWPORT (DI SPLAY2, 1, 5, 26, 55)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY2, PASTEL, 8, 2)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

CALL SME$SET_PHYSI CAL_CURSOR(PASTE1, 16, 1)
TYPE *, '
TYPE *, LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSGET VI EWPORT CHAR (DI SPLAY2, A, B, C, D)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

TYPE *, '

WRI TE(5,7) A B

7 FORMAT(1X,' Row start = "',12,8X 'Colum start ="',12)

TYPE *, '

WRI TE(5,8) C D

8 FORMAT(1X, ' Nunber of rows =',12,4X 'Number of colums =',13)
END

The output for this program is shown in Figure 8.26.

228

Chapter 8. Screen Management (SMG$) Routines

Figure 8.26. Output Generated by SMGSGET_VIEWPORT_CHAR

Full Display

This is row number 1 of 4, you see
This is row number 2 of 4, you see
This is row number 3 of 4, you see
This is row number 4 of 4, you see

Viewport
row number 1 of 4, you see
row number 2 of 4, you see
row number 3 of 4, you see
row number 4 of 4, you see

mommim

%SMG-S-WINTRUNCFIT, Viewport truncated to fit

2146623360
Row start = 1 Column start = &
Number of rows = 4 Number of columns = 30

ZK-6425-GE

SMG$HOME_CURSOR

SMG$HOME CURSOR — The Home Cursor routine moves the virtual cursor to the specified corner
of a virtual display.

Format

SME$HOVE_CURSCR di spl ay-id [, position-code]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

229

Chapter 8. Screen Management (SMG$) Routines

Specifies the virtual display in which the virtual cursor is moved. The display-id argument is the
address of a longword that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

position-code

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the point to which the virtual cursor moves. The position-code argument is the address of a
longword that contains the position code.

Valid codes for position-code are as follows:

Code Meaning

SMGS$C UPPER LEFT Row 1, column 1 (the upper left corner). This is the default ifposition-
code is not specified.

SMG$C LOWER LEFT Row n, column 1 (where # is the number of rows in the display).
That is, the lower left corner. It is useful to specify this position when
accepting input for an upward-scrolling virtual display.

SMGS$C UPPER_RIGHT Row 1, column m (where m is the number of columns in the display).
That is, the upper right corner.

SMGS$C LOWER RIGHT |Row n, column m (where # is the number of rows and m is the number
of columns in the display). That is, the lower right corner.

Description

SMGS$HOME CURSOR moves the virtual cursor to a corner of the specified virtual display,
according to the code specified in the position-code argument. You do not need to know the
dimensions of the virtual display, or the virtual cursor location. If you omit the position-code
argument, SMGSHOME CURSOR moves the virtual display cursor to the upper left corner of the
virtual display.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$_INVARG Invalid argument.
SMGS$ INVDIS ID Invalid display-id.

SMG$ WRONUMARG Wrong number of arguments.

SMGSINIT_TERM_TABLE

SMGSINIT TERM TABLE — The Initialize Terminal Table routine initializes the TERMTABLE
database for the terminal named, so that subsequent calls to SMGSGET TERM_DATA can extract
information and command strings for that terminal.

230

Chapter 8. Screen Management (SMG$) Routines

Format

SMGHI NI T_TERM TABLE t erm nal - nane, terntabl e-address

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

terminal-name

OpenVMS usage: device name

type: character string
access: read only
mechanism: by descriptor

Specifies the name of the terminal. The terminal-name argument is the address of a descriptor
pointing to the terminal name. The name must be an entry in TERMTABLE.EXE.

termtable-address

OpenVMS usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

Address of the entry for a particular type of terminal in TERMTABLE.EXE. The termtable-address
argument is the address of an unsigned longword that contains the address of the terminal capabilities
table.

You use this address when calling the SMGSGET _TERM_DATA procedure for the specified type of
terminal. The TERMTABLE address is also returned by SMGSINIT TERM TABLE BY TYPE.

Description

SMGSINIT TERM_TABLE initializes the TERMTABLE database for the terminal named, so that
subsequent calls to SMGSGET TERM_DATA can extract information and command strings for that
terminal. This routine should be used only when you perform direct (non-SMGS$) I/O to terminals.

SMGSINIT TERM_TABLE first searches for TERMTABLE.EXE in the area logically named
TERMSTABLOC. If TERMTABLE.EXE is not found there, the routine searches the global section
SMGSTERMTABLE.

Condition Values Returned

SS$ NORMAL Normal successful completion.

231

Chapter 8. Screen Management (SMG$) Routines

SMG$ GBLSECMAP Successful completion. The definition was found in the global
TERMTABLE.

SMG$ PRISECMAP Successful completion. The definition was found in a private
TERMTABLE.

SMGS$ UNDTERNAM Undefined terminal name.

SMG$ UNDTERNOP Undefined terminal. No definition was found for the terminal and no
private TERMTABLE was found.

SMG$ UNDTERNOS Undefined terminal. No definition was found for the terminal and no

system TERMTABLE was found.

SMGSINIT TERM_TABLE_BY TYPE

SMGSINIT TERM_TABLE BY TYPE — The Initialize TERMTABLE by OpenVMS Terminal
Type routine initializes the TERMTABLE database for the terminal named, so that subsequent calls to
SMGSGET _TERM DATA can extract information and command strings for that terminal.

Format

SMG$I NI T_TERM TABLE_BY_TYPE
term nal -type ,terntabl e-address [,terninal-nane]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

terminal-type

OpenVMS usage: byte_signed

type: byte (signed)
access: read only
mechanism: by reference

The device type of the terminal, as designated by an OpenVMS symbolic terminal type or by another
value returned by the SGETDVI system service. The terminal-type argument is the address of a
signed byte that contains the terminal type.

termtable-address

OpenVMS usage: address

type: longword (unsigned)
access: write only
mechanism: by reference

232

Chapter 8. Screen Management (SMG$) Routines

Address of the entry for a particular type of terminal in TERMTABLE.EXE. The termtable-
addressargument is the address of an unsigned longword into which is written the address of a
terminal entry.

Use this address when calling the SMGSGET _TERM_DATA procedure for the specified type of
terminal.

terminal-name

OpenVMS usage: device_name

type: character string
access: write only
mechanism: by descriptor

A string into which is written the terminal name associated with the device type. The terminal-name
argument is the address of a descriptor pointing to the string into which the terminal name is written.

Description

SMGSINIT TERM_TABLE BY_ TYPE initializes the TERMTABLE database for the terminal

type specified, so that subsequent calls to SMGSGET TERM_DATA can extract information and
command strings for that type of terminal. This routine should be used only when you perform direct
(non-SMG$) I/O to terminals.

SMGSINIT TERM TABLE BY TYPE first searches for TERMTABLE.EXE in the area logically
named TERMS$TABLOC. If TERMTABLE.EXE is not found there, the routine searches the global
section SMGSTERMTABLE.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMGS$_GBLSECMAP Successful completion. The definition was found in the global
TERMTABLE.

SMG$ PRISECMAP Successful completion. The definition was found in a private
TERMTABLE.

SMGS$ UNDTERNAM Undefined terminal name.

SMGS$_UNDTERNOP Undefined terminal. No definition was found for the terminal and no
private TERMTABLE was found.

SMGS$ _UNDTERNOS Undefined terminal. No definition was found for the terminal and no

system TERMTABLE was found.

SMGSINSERT_CHARS

SMGSINSERT CHARS — The Insert Characters routine inserts characters into a virtual display.

Format

SMGHI NSERT_CHARS
di splay-id ,character-string ,start-row ,start-columm [,rendition-set]

233

Chapter 8. Screen Management (SMG$) Routines

[,rendition-conplenent] [,character-set]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display affected. The display-id argument is the address of an unsigned longword
that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.
character-string

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

The character string to be inserted. The character-string argument is the address of a descriptor that
points to the string to be inserted.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

The row position at which to begin the insertion. The start-row argument is the address of a signed
longword that contains the row number.

start-column

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

234

Chapter 8. Screen Management (SMG$) Routines

The column position at which to begin the insertion. The start-column argument is the address of a
signed longword that contains the column number.

rendition-set

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute specifier. The optional rendition-set argument is the address of a longword bit mask in
which each attribute set causes the corresponding attribute to be set in the display. The following
attributes can be specified using the rendition-set argument:

SMG$M_BLINK Displays blinking characters.
SMGS$M_BOLD Displays characters in higher-than-normal intensity.
SMGS$M_REVERSE Displays characters in reverse video; that is, using the opposite of the

default rendition of the virtual display.

SMG$M_UNDERLINE Displays underlined characters.

SMGS$M _INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMGS$M_USERI1 through Displays user-defined attributes.
SMGS$M_USERS

The display-id argument must be specified when you use the rendition-set argument.
rendition-complement

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute complement specifier. The optional rendition-complement argument is the address of a
longword bit mask in which each attribute set causes the corresponding attribute to be complemented
in the display. All of the attributes that can be specified with the rendition-set argument can be
complemented with the rendition-complement argument. The display-id argument must be specified
when you use the rendition-complement argument.

The optional arguments rendition-set and rendition-complement let the user control the attributes of
the virtual display. The rendition-set argument sets certain virtual display attributes, whilerendition-
complement complements these attributes. If the same bit is specified in both the rendition-set

and rendition-complement parameters, rendition-set is evaluated first, followed byrendition-
complement. By using these two parameters together, the user can control each virtual display
attribute in a single procedure call. On a single-attribute basis, the user can cause the following
transformations:

Set Complement |Action
0 0 Attribute set to default
1 0 Attribute on

235

Chapter 8. Screen Management (SMG$) Routines

Set Complement | Action
0 1 Attribute set to complement of default setting
1 1 Attribute off

character-set

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the default character set for all text in this virtual display. The character-set argument is the
address of an unsigned longword that contains the character set code. Valid values are SMG$C_ASCII
(the default) and SMGSC_SPEC_GRAPHICS.

Description

SMGSINSERT CHARS inserts the specified character string at the start-row and start-
columnpositions specified. Characters to the right of the insertion are shifted to the right. Any
characters that do not fit on the current line are discarded. The virtual cursor remains at the character
position following the last character inserted.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVARG Unrecognized rendition code.
SMGS$ INVCOL Invalid column.

SMGS$ INVDIS ID Invalid display-id.

SMG$ INVROW Invalid row.

SMG$ WILUSERMS Pasteboard is not a video terminal.
SMG$ WRONUMARG Wrong number of arguments.
LIB$ INVSTRDES Invalid string descriptor.
Example

C+

C This Fortran exanpl e program denonstrates the use of SMGHI NSERT CHARS.
C

| MPLI CI T | NTEGER (A-2)
| NCLUDE ' ($SMGDEF) '

C+

C Use SMGBCREATE VI RTUAL_DI SPLAY to create a virtual display
Cwith a border.

C

RONS = 7
COLUWNS = 50

236

Chapter 8. Screen Management (SMG$) Routines

STATUS = SMGSCREATE_VI RTUAL_DI SPLAY
1 (ROAS, COLUMNS, DI SPLAY1, SM3$M BORDER)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+
C Cal | SMGHCREATE_PASTEBOARD to create the pasteboard.
C

STATUS = SMGBSCREATE_PASTEBOARD (PASTEL)

I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Put data in the virtual display by calling SME3PUT_CHARS.
C

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This virtual display has 7 rows and 50 colums.', 2, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This is a bordered virtual display.', 4, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGESPUT_CHARS (DI SPLAY1,
1 ' SMEPPUT_CHARS puts data in this virtual display.', 6, 1)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+
C Use SMSBPASTE_VI RTUAL_DI SPLAY to paste the virtual display.
C

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1, 4, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+

C Cal |l SMS$HI NSERT_CHARS to add a row 1 of text, starting at colum 6.
C Underline these characters.

C

STATUS = SMG$I NSERT_CHARS (DI SPLAY1,
1 "This is a newrow. ', 1, 6, SMESM UNDERLI NE)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+

C Cal ling SM3$l NSERT_CHARS agai n, add text to row 6.

C Note that there will be some characters that will no
Clonger fit on the line. They will be discarded. The
C new text will be bol ded.

C

STATUS = SMG$I NSERT_CHARS (DI SPLAY1,

1 "to this bordered display.', 6, 28, SM&M BOLD)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
END

The output generated by this Fortran program before the call to SMGSINSERT CHARS is shown in
Figure 8.27.

237

Chapter 8. Screen Management (SMG$) Routines

Figure 8.27. Output Generated by Fortran Program Before the Call to
SMGSINSERT_CHARS

This wirtual display has 7 rows and 50 columms.
This is a bordered wvirtual display.

SMGSPUT_CHARS puts data in this wvirtual display.

ZK-4132-GE

The output generated by this Fortran program after the call to SMGSINSERT CHARS is shown in
Figure 8.28.

Figure 8.28. Output Generated by Fortran Program After the Call to
SMGSINSERT _CHARS

This is a new row.

Thie wirtual display has 7 rows and 50 columns.
This is a bordered virtual display.

SMG$PUT CHARS puts data inte this bordered display.

ZK-4144-GE

238

Chapter 8. Screen Management (SMG$) Routines

SMGSINSERT_LINE

SMGSINSERT LINE — The Insert Line routine inserts a line into a virtual display and scrolls the
display.

Format

SMGHI NSERT_LI NE
di splay-id ,start-row [, character-string] [,direction] [,rendition-set]
[,rendition-conplenent] [,flags] [, character-set]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display affected. The display-id argument is the address of an unsigned longword
that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

start-row

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the row number at which the string is inserted and at which scrolling begins. The start-
rowargument is the address of a signed longword that contains the row number.

character-string
OpenVMS usage: char_string

type: character string

access: read only

239

Chapter 8. Screen Management (SMG$) Routines

mechanism: by descriptor

The character string to be inserted by SMGSINSERT LINE. The character-string argument is the
address of a descriptor pointing to this string.

direction

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the scrolling direction. The direction argument is the address of a longword bit mask that
contains the direction code. Valid values are SMG$M_UP and SMG$M_DOWN. SMG$M_UP is the
default.

rendition-set

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute specifier. The optional rendition-set argument is the address of a longword bit mask in
which each attribute set causes the corresponding attribute to be set in the display. The following
attributes can be specified using the rendition-set argument:

SMG$M_BLINK Displays blinking characters.
SMG$M_BOLD Displays characters in higher-than-normal intensity.
SMG$M_REVERSE Displays characters in reverse video; that is, using the opposite of the

default rendition of the virtual display.

SMGS$M_UNDERLINE Displays underlined characters.

SMGS$M_INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMGS$M_USERI1 through |Displays user-defined attributes.
SMGS$M_USERS

The display-id argument must be specified when you use the rendition-set argument.

rendition-complement

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute complement specifier. The optional rendition-complement argument is the address of a
longword bit mask in which each attribute set causes the corresponding attribute to be complemented
in the display. All of the attributes that can be specified with the rendition-set argument can be

240

Chapter 8. Screen Management (SMG$) Routines

complemented with the rendition-complement argument. The display-id argument must be specified
when you use the rendition-complement argument.

The optional arguments rendition-set and rendition-complement let the user control the attributes of
the virtual display. The rendition-set argument sets certain virtual display attributes, whilerendition-
complement complements these attributes. If the same bit is specified in both the rendition-set

and rendition-complement parameters, rendition-set is evaluated first, followed byrendition-
complement. By using these two parameters together, the user can control each virtual display
attribute in a single procedure call. On a single-attribute basis, the user can cause the following
transformations:

Set Complement |Action

0 0 Attribute set to default

1 0 Attribute on

0 1 Attribute set to complement of default setting
1 1 Attribute off

flags

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Optional bit mask that specifies the action to take if the text does not fit on the line. The
flagsargument is the address of an unsigned longword that contains the flag. Valid values for flags are
as follows:

0 Does not wrap (the default)
SMGS$SM_WRAP CHAR Wraps at the last character on the line
SMG$SM_WRAP_ WORD Wraps at the last space on the line

character-set

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the default character set for all text in this virtual display. The character-set argument is the
address of an unsigned longword that contains the character set code. Valid values are SMG$C_ASCII
(the default) and SMGSC_SPEC_GRAPHICS.

Description

SMGSINSERT LINE lets you insert a line into a virtual display at a location other than the first or
last line. Existing lines are scrolled in the specified direction to create an open space. If you specify
acharacter-string argument, that string is written in the space created; otherwise, the new line
remains blank. If the string does not span the width of the display, it is padded with blanks.

241

Chapter 8. Screen Management (SMG$) Routines

If the value of flags is SMG$M_WRAP WORD or SMG$M_WRAP CHAR and the specified
character-string is longer than the width of the virtual display, SMGSINSERT LINE scrolls another
line and writes the excess characters in the created space. If flags is 0, any excess characters are
discarded. The virtual cursor remains at the character position following the last character written.

See SMGS$PUT _LINE to add lines and scroll at the first or last line in a virtual display.

Condition Values Returned

SS$ NORMAL Normal successful completion.

SMG$ INVARG Invalid argument. The specified direction is not up or down.
SMG$ INVCOL Invalid column.

SMGS$ INVDIS ID Invalid display-id.

SMGS$ INVROW Invalid row.

SMG$ WILUSERMS Pasteboard is not a video terminal.

SMG$ WRONUMARG Wrong number of arguments.

Example

C+

C This Fortran exanpl e program denponstrates the use of SMGHI NSERT LI NE.
C

C Include the SM5 definitions. In particular, we want SMGSM BORDER,

C SMEBM _UNDERLI NE, and SMG$M_UP.

C

I MPLI CI T | NTEGER (A-2)
| NCLUDE ' ($SMGDEF) '

C+
C Use SMGBCREATE_VI RTUAL_DI SPLAY to create a virtual display
Cwith a border.

C

RONS = 7

COLUMNS = 50

STATUS = SMESCREATE VI RTUAL_DI SPLAY

1 (ROANB, COLUWNS, DI SPLAY1, SM3$M BORDER)

| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Call SMESCREATE_PASTEBOARD to create the pasteboard.
C

STATUS = SMGSCREATE PASTEBOARD (PASTE1)

| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Use SM33PUT_CHARS to put data in the virtual display.
C

STATUS = SMGESPUT_CHARS (DI SPLAY1,
1 ' This virtual display has 7 rows and 50 colums.', 2, 1)

242

Chapter 8. Screen Management (SMG$) Routines

| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 ' This is a bordered virtual display.', 4, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGESPUT_CHARS (DI SPLAY1,
1 ' SMEPPUT_CHARS puts data in this virtual display.', 6, 1)
| F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+
C Paste the virtual display by calling SMEPASTE VI RTUAL_DI SPLAY.
C

STATUS = SMG$PASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1, 4, 15)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

C+

C Call SMEHINSERT LINE to add a Iline of text after Iine 6 and scroll
C the display. Also, underline the new characters.

C

STATUS = SMG$I NSERT LI NE (DI SPLAY1, 7,

1 "This is a new line.', SM3M UP, SM3$M UNDERLI NE)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))
END

The initial output generated by this Fortran program is shown in Figure 8.29.

Figure 8.29. Output Generated Before the Call to SMGSINSERT LINE

This wvirtual display has 7 rows and 50 columms.
This is a bordered wvirtual display.

SMGSPUT_CHARS puts data in this wvirtual display.

ZK-4132-GE

The output generated after the call to SMGSINSERT LINE is shown in Figure 8.30.

243

Chapter 8. Screen Management (SMG$) Routines

Figure 8.30. Output Generated After the Call to SMGSINSERT LINE

This wvirtual display has 7 rows and 50 columns.
This is a bordered wvirtual display.
SMGSPUT_CHARS puts data in this wvirtual display.

This is a new row.

ZK-4131-GE

SMGSINVALIDATE_DISPLAY

SMGSINVALIDATE DISPLAY — The Mark a Display as Invalid routine marks a display as invalid
and causes the entire display to be redrawn.

Format

SMG$I NVAL| DATE_DI SPLAY di spl ay-i d

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

Specifies the virtual display affected. The display-id argument is the address of an unsigned longword
that contains the display identifier.

display-id

244

Chapter 8. Screen Management (SMG$) Routines

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference
Description

SMGSINVALIDATE DISPLAY marks a display as invalid and redraws the entire display. You would
normally use this routine after you determine that output has been written to the display without
benefit of the Screen Management Facility.

This routine redraws the virtual display by invalidating the pasteboard contents of the virtual display's

"footprint." If the display is occluded, only the occluded portion of the occluding virtual display is
redrawn; the entire display is not redrawn.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMGS$ INVDIS ID Invalid display-id.

SMG$KEYCODE_TO_ NAME

SMGSKEYCODE TO NAME — The Translate a Key Code into a Key Name routine translates the
key code of a key on the keyboard into its associated key name.

Format

SMGSKEYCODE_TO_NAME key-code , key- nane

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

key-code

OpenVMS usage: word_unsigned

type: word (unsigned)
access: read only
mechanism: by reference

245

Chapter 8. Screen Management (SMG$) Routines

Specifies the key code to translate into a key name. The key-code argument is the address of an
unsigned word that contains the key code.

The key code is returned by SMGSREAD COMPOSED_LINE, SMGSREAD KEYSTROKE,
SMGS$READ STRING, and SMGSREAD VERIFY in the word-terminator-code argument.

key-name

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

String containing the name of the key into which key-code is to be translated. The key-name
argument is the address of a descriptor pointing to the character string containing the key name.
Thekey-name argument is simply the name of the key (for example, COMMA, PERIOD, KP4, and so
forth).

Description

SMGSKEYCODE TO NAME translates the key code of a key on the keyboard into its associated
key name. This key code is the same code returned by the SMGSREAD COMPOSED_LINE,
SMGS$READ KEYSTROKE, SMGSREAD STRING, and SMGSREAD VERIFY routines in the
word-terminator-code argument. The form of key-code is SMG$K TRM _keyname (for example,
SMG$K_TRM_DELETE).

For more information on terminator values, see Table 3.1.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVKEYNAM Invalid key-name.

SMGS$LABEL_BORDER

SMGSLABEL BORDER — The Label a Virtual Display Border routine supplies a label for a virtual
display's border.

Format

SMGSLABEL_BORDER
display-id [,text] [,position-code] [,units] [,rendition-set]
[,rendition-conplenment] [,character-set]

Returns

OpenVMS usage: cond_value

246

Chapter 8. Screen Management (SMG$) Routines

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the virtual display affected. The display-id argument is the address of an unsigned longword
that contains the display identifier.

The display identifier is returned by SMGSCREATE VIRTUAL DISPLAY.

text

OpenVMS usage: char_string

type: character string
access: read only
mechanism: by descriptor

The new label for this display's border. The text argument is the address of a descriptor pointing to
the label text. If this string is supplied, it replaces the current label text for this border. If omitted, the
display is not labeled.

position-code

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies which of the display's borders contains the label. The position-code argument is the address
of an unsigned longword that contains the position code.

Valid positions are as follows:
+ SMGS$K_TOP

- SMGS$K BOTTOM

+ SMGS$K_RIGHT

« SMGSK LEFT

247

Chapter 8. Screen Management (SMG$) Routines

If this argument is omitted, the label is displayed on the top border.

units

OpenVMS usage: longword_signed

type: longword (signed)
access: read only
mechanism: by reference

Specifies the character position at which the label begins within the border. The units argument is the
address of a signed longword that contains the character position. If omitted, the label is centered in
the specified border.

rendition-set

OpenVMS usage: mask longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute specifier. The optional rendition-set argument is the address of a longword bit mask in
which each attribute set causes the corresponding attribute to be set in the display. The following
attributes can be specified using the rendition-set argument:

SMG$M_BLINK Displays blinking characters.
SMGS$M_BOLD Displays characters in higher-than-normal intensity.
SMG$M_REVERSE Displays characters in reverse video; that is, using the opposite of the

default rendition of the virtual display.

SMGS$M_UNDERLINE Displays underlined characters.

SMGS$M_INVISIBLE Specifies invisible characters; that is, the characters exist in the virtual
display but do not appear on the pasteboard.

SMGS$M_USERI1 through Displays user-defined attributes.
SMGS$M_USERS

The display-id argument must be specified when you use the rendition-set argument.

rendition-complement

OpenVMS usage: mask_longword

type: longword (unsigned)
access: read only
mechanism: by reference

Attribute complement specifier. The optional rendition-complement argument is the address of a
longword bit mask in which each attribute set causes the corresponding attribute to be complemented
in the display. All of the attributes that can be specified with the rendition-set argument can be

248

Chapter 8. Screen Management (SMG$) Routines

complemented with the rendition-complement argument. The display-id argument must be specified
when you use the rendition-complement argument.

The optional arguments rendition-set and rendition-complement let the user control the attributes of
the virtual display. The rendition-set argument sets certain virtual display attributes, whilerendition-
complement complements these attributes. If the same bit is specified in both the rendition-set

and rendition-complement parameters, rendition-set is evaluated first, followed by rendition-
complement. By using these two parameters together, the user can control each virtual display
attribute in a single procedure call. On a single-attribute basis, the user can cause the following
transformations:

Set Complement | Action

0 0 Attribute set to default

1 0 Attribute on

0 1 Attribute set to complement of default setting
1 1 Attribute off

character-set

OpenVMS usage: longword_unsigned

type: longword (unsigned)
access: read only
mechanism: by reference

Specifies the default character set for all text in this virtual display. The character-set argument is the
address of an unsigned longword that contains the character set code. Valid values are SMG$C_ASCII
(the default) and SMGSC_SPEC_GRAPHICS.

Description

SMGSLABEL BORDER lets you specify text to label a virtual display. If the specified virtual
display does not already have the border display attribute (SMG$SM_BORDER), then this attribute is
forced. A display border, which includes all four sides of the display, can have only one label. If the
label string is supplied, it replaces the current label text for this border. If you supply an empty (null)
label string, the border is not labeled. If the label text (as positioned within the border) does not fit
within the border, this routine returns SMG$_INVARG.

The position-code and units arguments together specify the starting position of the label text within

a border. If position-code is omitted, the default is the top border. If units is omitted, this routine
chooses a starting position so as to center the text either horizontally or vertically, depending on the
implicit or explicit position argument. If both pesition-code and units are omitted, the text is centered
in the top border.

Note

The label may shift when it is applied to a viewport. This occurs when the label needs to be moved
to appear in a sensible location. For example, the default location for a label in a virtual display is at
the top of the display and centered. When a viewport is created, that label may shift to remain in the
center of the display.

249

Chapter 8. Screen Management (SMG$) Routines

Condition Values Returned

SS§ NORMAL Normal successful completion.

SMGS$ INVARG Invalid argument. The combination of position-code, units, and
textarguments resulted in a position outside the border area.

SMGS$_INVDIS ID Invalid display-id.

SMG$_WRONUMARG Wrong number of arguments.

Example

C+
C This Fortran exanpl e program denonstrates the use of SMGSLABEL BORDER
C

C+

C Include the SM5 definitions. In particular, we want SMG3M BORDER,
C SMGEBK_TOP, SM33K_BOTTOM and SME$K_RI GHT.

C

I MPLI CI T | NTEGER (A-2)
| NCLUDE ' ($SMGDEF) '

C+
C Call SMESCREATE VI RTUAL_DI SPLAY to create virtual display nunber 1.
C Gve it a border.

C_
ROAS = 4
COLUMNS = 30
STATUS = SMGSCREATE_VI RTUAL_DI SPLAY
1 (ROWS, COLUMNS, DI SPLAY1, SM3$M BORDER)
| F (. NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Call SMESCREATE VI RTUAL_DI SPLAY to create virtual display nunber 2.
C Gve it a border.

C_
ROAS = 3
COLUMNS = 30
STATUS = SMGSCREATE_VI RTUAL_DI SPLAY
1 (ROWS, COLUMNS, DI SPLAY2, SMG$M BORDER)
| F (. NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Create virtual display number 3. Do NOT give it a border.
C

ROAS = 4
COLUMNS = 35

STATUS = SMS$CREATE_VI RTUAL_DI SPLAY

250

Chapter 8. Screen Management (SMG$) Routines

1 (ROANB, COLUMNS, DI SPLAY3)

IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Use SMSBCREATE_PASTEBOARD to create the pasteboard.
C

STATUS = SMGBSCREATE_PASTEBOARD (PASTEL)

I F (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+

C Call SME$PUT_CHARS to put data into the virtual displays.
C

STATUS = SMGSPUT_CHARS (DI SPLAY1,
1 " A bordered virtual display.', 2, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAY2,
1 " A bordered virtual display.', 1, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

STATUS = SMGSPUT_CHARS (DI SPLAYS,
1 ' Started as an unbordered display.', 2, 1)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))

C+
C Cal | SMS$LABEL_BORDER to | abel the virtual display borders.
C

STATUS = SMGSLABEL_BORDER (DI SPLAY1, 'Side', SM3$K_RI GHT)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSLABEL_BORDER (DI SPLAY2, 'LABEL Bottoni,
1 SME$K_BOTTOM 1)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSLABEL_BORDER (DI SPLAY3, ' Forced bordering ',
1 SME$K_TOP)
IF (.NOT. STATUS) CALL LI B$SI GNAL(%/AL(STATUS))
C+
C Cal | SMS$PASTE_VI RTUAL_DI SPLAY to paste the virtual displays.
C

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY1, PASTE1, 2, 10)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMGSPASTE VI RTUAL_DI SPLAY (DI SPLAY2, PASTE1, 2, 45)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

STATUS = SMG$PASTE VI RTUAL_DI SPLAY (DI SPLAY3, PASTE1, 10, 5)
| F (.NOT. STATUS) CALL LIB$SI GNAL(%/AL(STATUS))

END

The output generated by this program is shown in Figure 8.31.

251

Chapter 8. Screen Management (SMG$) Routines

Figure 8.31. Output Generated by Program Calling SMGSLABEL_BORDER

A bordered wirtual display.
2 bordered wvirtual display.

—ih Cn e L —

LABEL EBottom

———— Forced bordering

Started as an unbordered
display.

ZK-4127-GE

SMGS$LIST _KEY_DEFS

SMGSLIST KEY DEFS — The List Key Definitions routine returns, one at a time, the definitions
(equivalence strings) associated with specified keys in a specified key definition table.

Format

SMG$LI ST_KEY_DEFS
key-table-id ,context [,key-nanme] [,if-state] [,attributes]
[, equival ence-string] [,state-string]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

key-table-id

OpenVMS usage: identifier
type: longword (unsigned)

access: read only

252

Chapter 8. Screen Management (SMG$) Routines

mechanism: by reference

Specifies the key definition table from which you are extracting a key definition. The key-table-id
argument is the address of an unsigned longword that contains the key table identifier.

The key definition table identifier is returned by SMGSCREATE KEY TABLE.

context

OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

Provides a means to extract a series of key definitions from a key definition table. The context
argument is the address of an unsigned longword that contains the context variable. For the first call to
this routine, you should set the context argument to zero.

The context argument is incremented by the SMGSLIST KEY_DEFS routine so that the next call
returns the next key definition.

key-name

OpenVMS usage: char_string

type: character string
access: modify
mechanism: by descriptor

Identifies the key whose value you are listing. The key-name argument is the address of a descriptor
pointing to the key name.

if-state

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

Receives the state name which qualifies the next definition in the key definition table. The if-state
argument is the address of a descriptor pointing to the string into which the state name is written.

attributes

OpenVMS usage: mask_longword

type: longword (unsigned)
access: write only
mechanism: by reference

Attributes of this key definition. The attributes argument is the address of an unsigned longword into
which the key attributes are written.

253

Chapter 8. Screen Management (SMG$) Routines

Possible attributes are as follows:

SMG$SM_KEY NOECHO

If set, this bit specifies that equiv_string is not to be
echoed when this key is pressed; if clear, equiv_string
is echoed. If SMG$SM_KEY TERMINATE is not set,
SMG$M_KEY NOECHO is ignored.

SMG$M_KEY TERMINATE

If set, this bit specifies that when this key is pressed (as qualified
by if-state), the input line is complete and more characters
should not be accepted. If clear, more characters may be
accepted.

SMG$M_KEY LOCKSTATE

If set, and if state-string is specified, the state name specified
bystate-string remains at the current state until explicitly
changed by a subsequent keystroke whose definition includes
a state-string. If clear, the state name specified by state-string
remains in effect only for the next defined keystroke.

SMGS$M_KEY PROTECTED

If set, this bit specifies that this key definition cannot be modified
or deleted. If clear, the key definition can be modified or deleted.

equivalence-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

The character string into which the equivalence string is written for the next key definition. The
equivalence-string argument is the address of a descriptor pointing to the string into which

equivalence-string is written.

state-string

OpenVMS usage: char_string

type: character string
access: write only
mechanism: by descriptor

A string into which is written the new state name, if any, set by the next key definition. The state-
string argument is the address of a descriptor pointing to the string into which the state name is
written. If this key definition sets a state, the attributes flag SMGSM_KEY SETSTATE is also set.

Description

SMGSLIST KEY DEFS, when called repeatedly, lets you examine all the definitions in a key
definition table. These definitions may be used with the routine SMGSREAD COMPOSED LINE.

Condition Values Returned

SS$ NORMAL Normal successful completion.
SMG$ INVKEYNAM Invalid key-name.

254

Chapter 8. Screen Management (SMG$) Routines

SMG$_INVKTB_ID Invalid key-table-id.
SMG$ NOMOREKEYS No more keys in this table.

Any condition value returned by LIBSSCOPY DXDX.

SMGSLIST_PASTEBOARD_ORDER

SMGSLIST PASTEBOARD ORDER — The Return Pasting Information routine returns the
pasteboard identifier of the pasteboard to which the specified virtual display is pasted. Optionally, the
pasteboard row 1 and column 1 (origins) of the virtual display are also returned.

Format

SMGSLI ST_PASTEBOARD_ORDER
di splay-id ,context ,pasteboard-id [, pasteboard-row
[, past eboar d- col umm]

Returns

OpenVMS usage: cond_value

type: longword (unsigned)
access: write only
mechanism: by value
Arguments

display-id

OpenVMS usage: identifier

type: longword (unsigned)
access: read only
mechanism: by reference

Display identifier of the virtual display that is pasted. The display-id argument is the address of an
unsigned longword containing the identifier of this display.

context

OpenVMS usage: context

type: longword (unsigned)
access: modify
mechanism: by reference

Context to search. The context argument is the address of an unsigned longword containing this
context. On the initial call, you should set context to zero. SMG$LIST PASTEBOARD ORDER
updates the value of context. The updated value should then be passed on the subsequent calls to
obtain the next pasted display identifier.

255

Chapter 8. Screen Management (SMG$) Routines

pasteboard-id

OpenVMS usage: identifier