
VSI OpenVMS

VSI Reliable Transaction Router
C++ Foundation Classes

Document Number: DO-RTRCFC-01A

Publication Date: January 2020

Revision Update Information: This is a new manual.

Operating System and Version: VSI OpenVMS Integrity Version 8.4-2
VSI OpenVMS Alpha Version 8.4-2L1

Software Version: DECset Version 12.7

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

Copyright © 2019 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VSI OpenVMS documentation set is available on DVD.

ii

VSI Reliable Transaction RouterC++ Foundation Classes

Preface ... v
1. About VSI .. v
2. Programming Requirements ... v
3. Document Structure .. v
4. Related Documentation .. vi
5. VSI Encourages Your Comments ... vii
6. Conventions .. vii

Chapter 1. C++ API Concepts ... 1
1.1. Overview ... 1
1.2. Application Classes .. 2

1.2.1. Transaction Classes ... 2
1.2.2. Data Classes .. 3
1.2.3. Messages .. 5
1.2.4. Events ... 5
1.2.5. Client and Server Interaction .. 5
1.2.6. The Class Factory ... 6
1.2.7. Stream Classes .. 8
1.2.8. Application Classes Summary .. 9

1.3. Management Classes .. 13
1.3.1. Management Classes Descriptions .. 14

1.4. Processing Models .. 16
1.4.1. Event-Driven Model .. 17
1.4.2. Polling Model ... 19

1.5. Base Classes Message and Event Mapping .. 21
1.5.1. Client Messages .. 22
1.5.2. Client Events ... 22
1.5.3. Server Messages .. 23
1.5.4. Server Events for RTREvent .. 23

1.6. Using the C++ API with Existing Applications .. 24
1.6.1. Classes that Legacy Applications Can Use .. 25
1.6.2. Encapsulating Application Protocols ... 26
1.6.3. Implementation Example .. 27

1.7. Compiling and Linking your Application ... 27
Chapter 2. Design and Implementation .. 31

2.1. Design Steps .. 31
2.2. Implementation Steps ... 32

2.2.1. Implementing a Server ... 32
2.2.2. Implementing a Client ... 35
2.2.3. Implementation Example .. 35

2.3. Sample Application Walkthrough .. 38
2.3.1. Deriving from Base Classes in the Sample Application 40
2.3.2. Adding Functionality to Data Objects ... 40
2.3.3. Encapsulating Data with RTRData .. 41
2.3.4. Examining RTRData Objects .. 43
2.3.5. Sample Server Application ... 43
2.3.6. Sample Client Application ... 46

2.4. RTR Applications in a Multiplatform Environment .. 47
2.4.1. Defining a Message Format ... 48

Chapter 3. Application Classes .. 49
3.1. Server Classes .. 49

iii

VSI Reliable Transaction RouterC++ Foundation Classes

3.2. RTRServerEventHandler ... 50
3.3. RTRServerMessageHandler ... 62
3.4. RTRServerTransactionController ... 69
3.5. RTRServerTransactionProperties ... 85
3.6. Client Classes .. 94
3.7. RTRClientEventHandler .. 94
3.8. RTRClientMessageHandler ... 102
3.9. RTRClientTransactionController .. 108
3.10. RTRClientTransactionProperties .. 118
3.11. Data Classes and the Class Factory .. 119
3.12. RTRApplicationEvent Class .. 120
3.13. RTRApplicationMessage Class .. 124
3.14. RTRClassFactory Class ... 127
3.15. RTRData .. 131
3.16. RTREvent Class ... 137
3.17. RTRMessage .. 140
3.18. RTRStream Class .. 143

Chapter 4. Management Classes .. 151
4.1. RTR ... 151
4.2. RTRBackendPartitionProperties ... 158
4.3. RTRFacilityManager ... 165
4.4. RTRFacilityMember ... 177
4.5. RTRFacilityMemberArray ... 182
4.6. RTRFacilityProperties ... 187
4.7. RTRKeySegment .. 190
4.8. RTRKeySegmentArray ... 198
4.9. RTRPartitionManager ... 205
4.10. RTRSignedCounter ... 209
4.11. RTRStringCounter .. 215
4.12. RTRUnsignedCounter ... 218

Chapter 5. Sample Application Tutorial ... 225
5.1. Purpose .. 225
5.2. Summary .. 225

Chapter 6. Sample Application Code .. 247
6.1. Sample Main Program .. 247
6.2. Client Application ABCOrderTaker ... 249
6.3. Server Application ABCOrderProcessor .. 251
6.4. Data Class ABCOrder .. 253
6.5. Data Class ABCBook ... 254

iv

Preface
This document describes the C++ interface for Reliable Transaction Router (RTR) in which RTR
concepts are represented as individual classes. The flexibility and extensibility of these classes enable
existing as well as new applications to use features that were otherwise unavailable. This application
programming interface (API) is backward-compatible with existing RTR applications.

1. About VSI
VMS Software, Inc., (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Programming Requirements
Programs using the C++ API require the following files:

NT platform:
File Description
rtrapi.h Header file defining RTR classes
rtrapicpp.lib Library file that applications link against to make

use of the RTRAPI
rtrapicpp.dll Library used by all RTR applications using RTR

V4.0

UNIX platforms:
File Description
rtrapi.h Header file defining RTR classes
rtrapicpp.so File used by all RTR applications using RTR

V3.2 or later

OpenVMS platforms:

File Description
rtrapi.h Header file defining RTR classes
rtrapicpp_shr.exe File used by all RTR applications using RTR

V3.2 or later

3. Document Structure
• Chapter 1, C++ API Concepts

v

Preface

Overview of the C++ Foundation classes and introduction to RTR application concepts. Includes
C++ Foundation Class concepts and terminology and introduces RTR transactional messaging
concepts for C++ API client and server applications.

There is also a section on using the C++ API with existing applications. This section describes
how to use C++ Foundation classes with legacy applications.

• Chapter 2, Design and Implementation

Covers client and server application design and implementation. Provides foundation class
overloading examples and design concepts.

• Chapter 3, Application Classes

Lists all foundation class application classes and their inherited methods. Includes separate
sections for server, client, and common data classes.

• Chapter 4, Management Classes

Lists all C++ API management classes and their inherited methods.

• Chapter 5, Sample Application Tutorial

Provides a walkthrough of the basics of RTR with the C++ API book processing sample
application included in the examples directory of the RTR kit.

• Appendices

There are three appendices that offer class design diagrams, sample C++ API client and server
application code examples, and a multithreading example.

4. Related Documentation
Additional resources in the RTR documentation kit include:

Document Description
Reliable Transaction Router Getting Started Provides an overview of RTR technology

concepts and solutions.
Reliable Transaction Router Application Design
Guide

Provides design guidelines for implementing RTR
client and server applications.

Reliable Transaction Router C Application
Programmer's Reference Manual

Explains how to design and code RTR
applications; contains full descriptions of the RTR
API calls for the C programming language.

Reliable Transaction Router System Manager's
Manual

Describes how to configure, manage, and monitor
RTR.

Reliable Transaction Router Migration Guide Explains how to migrate from RTR Version 2 to
RTR Version 3.

Reliable Transaction Router Installation Guide Describes how to install RTR.
Reliable Transaction Router Release Notes Describes new features, changes, and known

restrictions for RTR.

vi

Preface

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who
have OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

6. Conventions
VMScluster systems are now referred to as OpenVMS Cluster systems. Unless otherwise specified,
references to OpenVMS Cluster systems or clusters in this document are synonymous with
VMScluster systems.

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for
OpenVMS software.

The following conventions are also used in this manual:

Convention Meaning
Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled

Ctrl while you press another key or a pointing device button.
PF1 x A sequence such as PF1 x indicates that you must first press and release the key

labeled PF1 and then press and release another key or a pointing device button.
Return In examples, a key name enclosed in a box indicates that you press a key on the

keyboard. (In text, a key name is not enclosed in a box.)
… A horizontal ellipsis in examples indicates one of the following possibilities:

• Additional optional arguments in a statement have been omitted.

• The preceding item or items can be repeated one or more times.

• Additional parameters, values, or other information can be entered.
.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

vii

Preface

Convention Meaning
[|] In command format descriptions, vertical bars separate choices within brackets

or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file,
or the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

viii

Chapter 1. C++ API Concepts
This chapter provides an overview of the RTR C++ foundation classes and describes concepts
that apply to application development using the this application programming interface (API). It
includes conceptual descriptions of client and server interaction and application processing. Detailed
information is provided on each class and its associated methods in later chapters of this manual. For
code examples and implementation information, see the Design and Implementation chapter of this
manual.

1.1. Overview
The C++ foundation classes enable you to implement new RTR client and server applications, or to
integrate specific classes into existing applications to add additional functionality.

RTR concepts have been mapped to and implemented by the set of foundation classes for handling
system management and the needs of business applications.

Figure 1.1 shows the C++ foundation classes. Management classes represent RTR, facilities,
partitions, and key segments (part of the partitioning classes in Figure 1.1 whereas application classes
represent transactions, data, messages and events.

The primary application classes include client classes, server classes, and data classes that are
common to both client and server classes. There are also server and client transaction property classes.

You use management classes to implement applications that can help manage RTR. You use
application classes to implement client and server applications. However, client and server
applications can also use the management classes to dynamically set up RTR facilities and partitions.

Figure 1.1. C++ Foundation Classes

Facility, partition, and transaction property classes include methods that provide access to facilities,
partitions, and transactions. These classes enable a program to obtain additional information on a
facility, partition, or a transaction. Transaction property classes are useful for transaction recovery and
for obtaining and setting transaction states.

Property classes work with other foundation classes in new applications; they can also be used
independently in legacy RTR applications. They do this by using information that existing RTR
applications already have, including transaction IDs (tids), facility names, and partition names.

1

Chapter 1. C++ API Concepts

1.2. Application Classes
RTR C++ foundation application classes include:

• Client application classes

• Server application classes

• Data classes

Data classes are common classes for passing data between client and server applications.

(Client and server transaction property classes are included within the client application classes and
server application classes, respectively.)

To use RTR application classes, it is useful to understand RTR concepts necessary for implementing
application solutions with the C++ API, C++ API- specific information, and object-oriented concepts.

Figure 1-2 illustrates the client and server classes and the paths through which they typically
communicate. (There are design alternatives to the illustrated path.) TransactionController objects
control transactions. Communication between client and server applications is through messages and
events sent and received by the RTR application. Data objects (instances of data classes) carry these
messages and events between RTR clients and servers.

Figure 1.2. C++ API Classes

The principal application classes are the transaction controller classes and data classes. A transaction
controller object manages a transaction. The RTRData-derived data object is the common means
through which client and server applications interact. A message handler encapsulates the data. Most
events are not related to transactions. A message is sent from a client to a server or a server to a client
(1-to-1). An event can go from one client or server to many clients and servers.

1.2.1. Transaction Classes
In RTR, a transaction is a logical grouping of messages.

A transaction is controlled by a TransactionController object. The client transaction controller class
(RTRClientTransactionController) creates single instances of a transaction. The server transaction
controller class (RTRServerTransactionController) manages single instances of a transaction.

A transaction controller object:

• Handles the sending and receiving of a specific data object.

• Votes to accept or reject a transaction.

Typically, a transaction controller object processes multiple consecutive transactions, but there is at
most one active transaction in a transaction controller object at any one time.

2

Chapter 1. C++ API Concepts

A transaction controller:

• Contains at most one transaction at a time (0 or 1).

• Is typically constructed once and reused for each transaction.

• Controls the transaction.

• Processes one transaction at a time. For example, if you need 50 concurrent transactions (at the
same time), you need 50 transaction controllers.

• Comes in a client and a server version.

1.2.2. Data Classes
Applications use data objects to carry data between RTR clients and servers. Thus, the data classes are
common to both client and server applications. RTRData is the base class from which four kinds of
data are derived:

• RTRMessage

• RTREvent

• RTRApplicationMessage

• RTRApplicationEvent

The class factory, RTRClassFactory, creates instances of data classes based on the content of a
transaction controller Receive call for a message or event.

Communication between client and server applications is through messages and events. Data objects
contain these messages and events sent and received by RTR clients and servers.

Figure 1-3 illustrates the data classes and their relationships to the RTRData base class and a
memory buffer. For example, the base class of RTRStream is RTRData and the base class of
RTRApplicationMessage is RTRStream.

Figure 1.3. Data Classes

An application wanting to send or receive data specifies an RTRData object. The mechanism for
sending and receiving is different as follows:

• Sending

3

Chapter 1. C++ API Concepts

When calling SendApplicationMessage on a transaction controller, the caller specifies an
RTRApplicationMessage.

• Receiving

When calling the Receive method, the application supplies an RTRData pointer to NULL. When
the transaction controller determines the type of data which is about to be obtained it calls a class
factory to create an instance of the appropriate object.

After a successful call to the Receive method, the RTRData pointer contains one of the following
kinds of objects:

• RTRMessage, containing an RTR-generated message

• RTREvent, containing an RTR-generated event

• RTRApplicationMessage, containing an application-generated message

• RTRApplicationEvent, containing an application-generated event

The RTRClassFactory class creates the above data objects. Based on the type of message contained
on the transaction controller Receive call the class factory creates an instance of the appropriate
data class. The class factory also enables you to customize the behavior of data object creation. An
application may derive its own RTRClassFactory class and register it with the transaction controller.
In this case, the transaction controller calls the application's class factory to create the data object.

Dispatch Methods and Handlers
Since all Data classes are derived from RTRData, an application can treat the data polymorphically,
especially when receiving data on the server.

For example:

ServerTransactionController ServerTransactionController;
RTRData *pDataBeingReceived = NULL;
while (true)
{
// Receive some data
ServerTransactionController.Receive(&pDataBeingReceived);
// No need to determine what we received.
// Just call Dispatch()
pDataBeingReceived->Dispatch();
}

The RTRData class has a pure virtual method named Dispatch(). This means that all classes derived
from RTRData provide an implementation of Dispatch(). This implementation of Dispatch, which is
provided by the derived class, determines the exact message or event number that it contains and calls
the appropriate method in the handler.

The message and event handler classes are:

• RTRServerMessageHandler

• RTRServerEventHandler

• RTRClientMessageHandler

4

Chapter 1. C++ API Concepts

• RTRClientEventHandler

An application may derive its own class from any or all of these handlers to provide its own custom
handling of the specific messages and events.

1.2.3. Messages
Data objects carry messages between clients and servers. These messages are of two types:

• RTR-generated messages such as rtr_mt_rejected (the transaction has been rejected).

• Application-generated messages (the protocol that drives application business logic).

1.2.4. Events
Data objects carry events between clients and servers. These events are of two types:

• RTR-generated events such as RTR_EVTNUM_SRPRIMARY (server is in primary state for a
registered partition).

• Application-generated events (the protocol that drives application business logic).

Application events can be transmitted only within the RTR facility in which they are defined.
Application events cannot be sent between facilities or outside RTR.

1.2.5. Client and Server Interaction
For client and server applications to work together, you create a ClientTransactionController in the
client application and a ServerTransactionController in the server application. These transaction
objects communicate by using objects derived from the RTRData class.

RTR applications need to define an application-level protocol to pass data between client and server.
From the point of view of a client or server application, the application protocol is just data. The data
object encapsulates the application protocol as shown in Figure 1-4. In this example, a protocol is
defined for sending data between a client and server application that processes book orders, as in the
book ordering sample application. This data protocol includes fields for ISBN number, book-price,
book-name, and author. These fields are contained in a buffer in an RTRData object.

The data protocol is encapsulated in a user-defined ApplicationProtocol class. The
ApplicationProtocol class is an (derives from) RTRApplicationMessage, which is an (derives from)
RTRStream, which is an (derives from) RTRData object that contains the application protocol in its
buffer.

Figure 1.4. RTRData Encapsulation

5

Chapter 1. C++ API Concepts

The data classes are used by both client and server RTR applications. When applications want to send
or receive data, they specify an RTRData-derived object.

Figure 1-5 illustrates client/server deployment and interaction. The numbered steps represent client
logic within the client application and server logic within the server application. For a more detailed
description of transactional messaging, see the RTR Application Design Guide.

Figure 1.5. Client/Server Interaction

An RTR transaction processing system consists of separate client applications and server applications.
This example demonstrates a client sending a message to the server and the server responding, but the
server calls the first Receive. The logical interaction between client and server is as follows:

1. Call Receive from an RTRServerTransactionController object to obtain an
RTRApplicationMessage object from the client. (The server first creates an
RTRServerTransactionController object and then calls Receive.)

2. Create a transaction in the RTRClientTransactionController object by calling StartTransaction.

3. Create an RTRApplicationMessage object (or one derived from RTRApplicationMessage).

4. Send the RTRApplicationMessage object to the server and wait for a message from the server by
calling SendApplicationMessage.

5. Process the data in the server application.

6. Send an RTRApplicationMessage object from the server back to the client by calling
SendApplicationMessage.

For more information on client and server messaging, see the RTR Application Design Guide.

1.2.6. The Class Factory
An instance of the class RTRClassFactory is an object that creates other data objects. The class
RTRClassFactory has four methods:

• RTRMessage * CreateRTRMessage()

• RTREvent * CreateRTREvent()

6

Chapter 1. C++ API Concepts

• RTRApplicationMessage * CreateRTRApplicationMessage()

• RTRApplicationEvent * CreateRTRApplicationEvent()

Client and server transaction controllers use the class factory when receiving a message or event.
Every transaction controller has a class factory. If the application does not register its own, a default is
provided.

When the application calls Receive, the transaction controller determines what kind of message or
event is about to be received, and then calls the appropriate method in the application-derived and
registered class factory object (for example, CreateRTRMessage). This method creates the appropriate
data object (for example, an RTRMessage object) and returns it to the transaction controller. The
transaction controller copies the incoming data into the data object returned from the class factory and
returns back to the application's call to Receive().

Applications can override the methods of the RTRClassFactory and return their own customized
versions of the data classes.

Receiving an Application Message
Typical client requests processed by a server application are sent and received as
RTRApplicationMessage objects. The most common method for implementing business logic data
protocols is deriving from the RTRApplicationMessage class. In Figure 1-6, AM represents an
incoming application message.

Figure 1.6. Receiving an Application Message

In Figure 1-6:

1. An application calls a transaction controller Receive (for example,
RTRServerTransactionController::Receive) to receive a message or event (AM, in the above
figure).

2. The transaction controller determines what kind of message or event is to be received (in this
case, an application message) and calls the appropriate method in the registered RTRClassFactory
object (for example, CreateRTRApplicationMessage).

3. The RTRClassFactory object CreateRTRApplicationMessage method creates the appropriate data
object (in this case, an RTRApplicationMessage object) and returns it to the transaction controller.

4. The application processes the message according to the application implementation.

7

Chapter 1. C++ API Concepts

Receiving a User-Defined Application Message
User-defined application messages are sent and received as RTRApplicationMessage objects. In
Figure 1-7: Receiving a User-Defined Application Message, AM represents an incoming application
message.

Figure 1.7. Receiving a User-Defined Application Message

In Figure 1-7:

1. An application calls a transaction controller Receive (for example,
RTRServerTransactionController::Receive) to receive a message or event (AM, in the above
figure).

2. The transaction controller determines what kind of message or event is to be received (in this case,
an application message) and calls the appropriate method in the application-derived and registered
ABCClassFactory object (for example, CreateApplicationMessage).

3. The ABCClassFactory object CreateApplicationMessage method creates the appropriate data
object (in this case, an ABCOrder object) and returns it to the transaction controller.

4. The application processes the message according to the application implementation.

Note that the derived class factory does not have to handle the all messages. It is only handling
the application message (AM) and taking all of the other default methods (for example,
CreateRTRMessage).

1.2.7. Stream Classes
For an added level of functionality, the RTRStream data class allows for easier access to the data
passed between the client and server applications. This class provides methods with which you can
read from and write to the data buffer contained in RTRData. With these methods, maintaining offset
into the buffer is automatic.

The RTRStream class allows the serialization and deserialization of objects. For example, if a client
application called,

RTRStream::WriteToStream("WarandPeace");
 RTRStream::WriteToStream("Tolstoy");

and a server then called,

8

Chapter 1. C++ API Concepts

RTRStream::ReadFromStream(pString1); RTRStream::ReadFromStream(pString2);

pString1 would point to "WarandPeace" and after the second read, pString2 would point to "Tolstoy."

For large amounts of data to be sent and received, a WriteToStream method takes a void pointer to the
length of the buffer.

1.2.8. Application Classes Summary
Figure 1-8 illustrates the client, data, and server classes in the application classes and shows their
parallelism. Data classes are common to both client and server applications.

Figure 1.8. Application Classes

Table 1.1 shows application class categories and their descriptions. Table 1.2 lists the application
data classes that are common to both client and server applications. Except for data classes, the class
categories describe the characteristics of the associated client and server classes (for example, the
Transaction Controller class category in Table 1.1 describes the RTRServerTransactionController and
RTRClientTransactionController classes). For detailed descriptions of individual foundation classes
and their associated methods, see the Application Classes chapter of this manual.

Table 1.1. Application Class Category Descriptions

Class Category Description
Transaction Controller The transaction controller manages each

transaction and also manages the channels,
messages, and events associated with that
transaction.

• Has client and server versions.

• Manages each RTR transaction (1 transaction
controller for each transaction.).

• Controls at most one active transaction at a
time.

• Can process many sequential transactions.
Transaction Properties The RTRTransactionProperties class:

• Has client and server versions.

• Can be used by new or existing applications.

9

Chapter 1. C++ API Concepts

Class Category Description
• Includes:

• GetTransactionState.

• SetTransactionState.

• GetInvocationType.
Event Handlers Use RTREventHandler classes to obtain

information about a transaction such as whether a
server is primary, standby or shadow.

The RTREventHandler class:

• Has client and server versions.

• Provides default implementation for every
event.

• Enables the application to override only the
events it wants to process.

• Can be extended to have application-specific
handlers such as OnProcessOrder.

You must register an event handler with
the RegisterHandlers method in the
TransactionController class.

Message Handlers Message handlers can be used for all transactions
and all application data.

The RTRMessageHandler class:

• Has client and server versions.

• Provides default implementation for every
message.

• Enables an application to override only the
messages it wants to process.

• Can be extended to have application-specific
handlers.

RTRMessageHandler lets you override only
messages you want to use. For example,
OnApplicationMessage can be implemented
with business-logic-specific objects such as
OnStockBuy or OnStockSell.

Table 1.2. Data Class Descriptions

Class Category Description
RTRMessage The RTRMessage class:

10

Chapter 1. C++ API Concepts

Class Category Description
• Holds an RTR Message.

• Derives from the RTRData class.

• Is generated internally by RTR.

If an application has not registered a class factory,
the application calls the default class factory to
allocate this object. The application:

• Calls the Dispatch method to send this
message to the appropriate handler.

• Can optionally derive from RTRMessage to
create a more business-specific class.

RTREvent The RTREvent class:

• Holds an RTR Event.

• Derives from the class RTRData.

• Is generated internally by RTR.

If an application has not registered a class factory,
the application calls the default class factory to
allocate this object. The application:

• Calls the Dispatch method to send this
message to the appropriate handler.

• Can optionally derive from RTREvent to
create a more business-specific class.

RTRData The RTRData class is used to send and receive
messages and events. It is the abstract base class
for the following four data classes:

• RTREvent

• RTRMessage

• RTRApplicationEvent

• RTRApplicationMessage
RTRApplicationMessage The RTRApplicationMessage class:

• Holds an Application Message.

• Derives from class RTRStream.

• Is generated by a C++ API application.

• Can be treated as a stream to write and read
the state of a higher level object.

11

Chapter 1. C++ API Concepts

Class Category Description
The application:

• Calls the Dispatch method to send this
message to the appropriate handler.

• Can optionally derive from
RTRApplicationMessage to create a more
business-specific class.

RTRApplicationEvent The RTRApplicationEvent class:

• Holds an application Event.

• Derives from the class RTRStream.

• Is generated by a C++ API application.

• Can be treated as a stream to write and read
the state of a higher level object.

The application:

• Calls the Dispatch method to send this
message to the appropriate handler.

• Can optionally derive from
RTRApplicationMessage to create a more
business-specific class.

RTRStream The RTRStream class:

• Derives from and extends the RTRData class

• Allows RTR applications to issue multiple
read and write requests to the memory buffer
(managed by RTR).

• Automatically handles buffer pointer
management

• Can be used to serialize and deserialize
objects through RTR.

RTRClassFactory The RTRClassFactory class creates instances of
the data classes:

• RTRMessage

• RTREvent

• RTRApplicationMessage

• RTRApplicationEvent

An application registers its own class that is
derived from the RTRClassFactory and returns its

12

Chapter 1. C++ API Concepts

Class Category Description
own business level objects. If an application does
not register a customized version, by default, a
class factory object is internally created.

1.3. Management Classes
Management classes manage the environment in which an RTR application executes, not the business-
logic infrastructure of the application. This allows you to do in a program what formerly had to be
done at the system management command level.

Facility Management
Managing facilities is based on three concepts provided as separate foundation classes:

• Facility manager (RTRFacilityManager class)

A facility manager creates and deletes facilities, and adds and removes facility members based on
facility name.

• Facility properties (RTRFacilityProperties class)

Facility properties represent the information and properties of a single facility.

• Facility member (RTRFacilityMember class)

Facility members represent the individual members of a particular facility. A facility member is
both a role and a node combined, because a node can have more than one role. For example, a
nodename can represent three members by being defined three times with the same node but with
different roles (backend, frontend, router).

For general information on RTR facilities, see RTR Getting Started and the RTR System Manager's
Manual.

Partitions and Key Segments
One of the benefits of the routing capability in RTR is that it enables you to partition your data across
multiple servers and nodes for increased performance. Within an application, the partition determines
how messages are routed from clients to servers. RTR routes messages to the correct partition on the
basis of an application-defined key.

The contents of a message determine its destination. The router tracks the location of data partitions
and sends client messages to the appropriate server for processing. The routing key, or key segment, is
embedded within the RTR message.

The foundation classes provide the object-oriented framework to implement data partitioning with the
following classes:

• Partition manager (RTRPartitionManager class)

A partition manager creates and deletes partitions, and returns properties for individual partitions
based on partition name.

• Partition properties (RTRBackendPartitionProperties class)

13

Chapter 1. C++ API Concepts

Partition properties represent individual partitions within RTR and provide statistics for a
partition.

• Key segment (RTRKeySegment class)

A key segment object defines the range of a partition.

An RTRKeySegment object specifies a data key range and is associated with a partition when a
Partition Manager creates a partition.

Figure 1.9 illustrates the relationship between RTR entities and partition classes. Partition classes refer
to an RTR partition. As the figure illustrates, the actual partition resides in RTR, not in the foundation
class objects. Methods within the partition classes can create and delete partitions, and get partition
properties for the RTR partitions.

Figure 1.9. Partition Objects and RTR

1.3.1. Management Classes Descriptions
Figure 1-10 shows the management class categories and their classes. These classes can be used in
new applications or integrated into existing legacy applications.

Figure 1.10. Management Classes

With the management classes, you can create a facility or a partition programmatically instead of
using the command language interface (CLI). For legacy applications, you can write management
routines to create your application environment in an existing RTR C-language application.

14

Chapter 1. C++ API Concepts

Facility, management, and partition information exists in RTR. The management classes access the
information from RTR.

Table 1.3 describes the management classes. For detailed descriptions of individual classes and their
associated methods, see the Management Classes chapter of this manual.

Table 1.3. Management Class Descriptions

Class Description
RTRFacilityManager Is used to manage the creation, deletion, and

viewing of facilities based on facility name
(existing RTR programs use facility names).

RTRFacilityMember Represents a member of a particular facility. The
member can be anynode in the facility, including
the local node.

Knows the relationship to the local node.

Provides member functions to
evaluate connectivity. For example,
IsConnectedToLocalNode returns a boolean
return to a query such as: "Is node A connected to
me?"

RTRFacilityProperties Represents a single facility that exists within
RTR.

Knows other members in the facility.
RTRPartitionManager Manages the creation and deletion of partitions

based on partition name.
RTRKeySegment Defines and represents the key range of a

partition associated with an RTR server.
RTR The RTR class represents RTR on the local node

and performs actions that apply to RTR as a
whole including:

• Starting RTR.

• Stopping RTR.

• Creating a journal.

• Deleting a journal.

• Starting a web server.

• Stopping a web server.
RTRCounter Enables an application to define and manipulate

a counter within RTR. They can be used within
monitor screens to mix RTR and application
diagnostic information. RTRCounter is the base
class for:

• RTRStringCounter

15

Chapter 1. C++ API Concepts

Class Description
• RTRSignedCounter

• RTRUnsignedCounter
RTRBackendPartitionProperties Supplies information about a partition, once it has

been created.

Can be used by new or existing applications.

Can be used to obtain information on partitions
created at the command line or by the
RTRPartitionManager.

Represents a single partition that exists within
RTR. Since a partition property object is not
an actual partition but an object that knows the
properties of an RTR partition, if the partition is
deleted, the partition class points to nothing and
returns an error.

Provides statistics for a partition.

1.4. Processing Models
You can use either of two processing models to implement client and server applications. Depending
on which processing model you use, you implement the classes differently. The two processing
models are:

• Event-driven

• Polling

Processing mechanisms are different for the polling and event-driven models. With the polling model,
when receiving the data object, obtaining the RTR message value requires a GetMessageType call.
With event-driven processing, if you are using the handlers, a Receive returns your states. Event-
driven is an addition to the primitive polling mechanism. By adding a call to Dispatch in the polling
mechanism in the application, you can enable default processing for all messages and events.

Table 1.4 compares the two processing models. These comparisons apply to both client and server.
The sample application and code examples in this book use event-driven processing in server
applications, and polling in client applications.

Table 1.4. Transaction Processing Models Compared

Processing Method What You Get Programming Logic Message and Event
Handling

Event-Driven Default handling of
all RTR messages and
events.

Create a loop containing
Receive() and
Dispatch() calls.

Messages and Events
are handled by the
MessageHandler and
EventHandler objects.

Polling RTRData methods
that allow for user-
implemented detection

Use RTRData methods
to detect incoming data
types. Develop logic

User-implemented
logic in place of

16

Chapter 1. C++ API Concepts

Processing Method What You Get Programming Logic Message and Event
Handling

of incoming data
and development of
message and event
handling.

to handle all possible
messages and events.

MessageHandler and
EventHandler classes.

1.4.1. Event-Driven Model
Figure 1-11 shows the steps in the event-driven model of transaction processing as used in a server
application.

Figure 1.11. Event-Driven Server Processing

In the event-driven model, the application is informed when there is something for it. RTR
automatically sends messages to the server and the server runs a transaction, using the Receive and
Dispatch methods within a while loop. Business logic resides in the message and event handlers. The
event-driven model is the recommended method for implementing server applications.

As shown in Figure 1.11, the sequence of operations is as follows:

1. Create an environment that has one or more partitions that are defined in key segments.

2. Create a TransactionController object.

3. Create the handler classes derived from base classes. Business logic resides in the message and
event handlers.

4. Call Register methods to register facility, class factory, partition, and handlers. This internal
hookup creates a mapping to the message and event handlers.

5. Start to receive information (messages or events) for the partition registered to the
ServerTransactionController by calling Receive, a method on the ServerTransactionController.
The class factory creates a data object on the Receive call. The Transaction Controller receives the
data object.

6. Call Dispatch. Dispatch knows which handler to go to.

User-implemented logic and methods are stored in the data object. Checking for RTR-generated
data, retrieving messages, and retrieving events are all done for you automatically, if you call

17

Chapter 1. C++ API Concepts

Dispatch. For example, on a Receive call, if the message is rtr_mt_msgn, then calling
Dispatch calls OnApplicationMessage by default. OnApplicationMessage is a method in the
RTRServerMessageHandler and RTRClientMessageHandler classes.

Business logic is typically implemented in the server message handler. However, you can
implement business logic in other ways as well.

7. Loop for next event.

Event-Driven Processing
Using the event-driven model implements the following mechanism:

1. Receive within a loop to receive a message or event.

2. Call Dispatch.

The Data Object is passed on this call. All handler methods have two parameters: a message
type, and a pointer to the TransactionController from which the message came. Data Objects,
which are stateless, are not tied to a TransactionController; they can be handled by different
TransactionControllers. Thus, using a TransactionController does not restrict client applications.

3. By default, the RTRData object automatically accesses the appropriate Handler by the
appropriate method, depending on the message or event with the RTRClassFactory class.
For example, if RTRData contains RTR message type rtr_mt_msgn , then Dispatch calls
OnApplicationMessage(RTRApplicationMessage).

4. The Data Object is processed within the appropriate Handler. For example, the RTRData object
containing rtr_mt_msgn is processed by OnApplicationMessage. This is where the business
logic is typically implemented.

This sequence is shown in Figure 1-12.

Figure 1.12. Event-Driven Processing Example

Message and Event Handling
This section provides event and message handling examples that are processed based on what RTR
message or event is received on a Receive call. Depending on the message received, the subsequent
process is different, as shown in Table 1.5.

18

Chapter 1. C++ API Concepts

Table 1.5. Message and Event Handling Examples

If the message received is: Then:
rtr_mt_msgn The Data Object goes to the Message Handler by

the OnApplicationMessage(Data Object) method.
Then, in the Message Handler, the Data Object is
processed by OnApplicationMessage.

rtr_mt_rejected The Data Object goes to the Message Handler
using the OnRejected(Data Object) method.
Then, in the Message Handler, the Data Object is
processed by OnRejected.

rtr_mt_prepare The Data Object is dispatched to be handled
internally. Application business logic does not
need to know about RTR Prepares. In the C++
API, Prepares are transparent.

EVTNUM_SRPRIMARY The Data Object goes to the Event Handler using
the OnServerIsPrimary(Data Object) method.
Then, in the Event Handler, the Data Object is
processed by OnServerIsPrimary.

RTRMessageHandler and RTREventHandler are the default handlers. Processing is done by an
application's derived business logic. Default handlers do not keep state, so the application must return
to BackendPartitionProperties to get state.

Event-Driven Example

Example 1-1 illustrates the looping implementation for event-driven processing.

Example 1.1. Example 1-1: Receive Loop

ServerTransactionController ServerTransactionController;
RTRData *pDataBeingReceived = NULL;
while (true)
{
// Receive some data
ServerTransactionController.Receive(&pDataBeingReceived);
// No need to determine what we received.
// Just call Dispatch();
pDataBeingReceived->Dispatch();
}

1.4.2. Polling Model
Figure 1-13 shows the steps in the polling model of transaction processing as used in a client
application.

19

Chapter 1. C++ API Concepts

Figure 1.13. Polling Processing Model

The polling model processing steps are:

1. Create an environment that has one or more partitions defined in key segments.

2. Create a transaction controller object.

3. Call Register methods to register facility (for client) and partitions (for server) and class factory.

4. Call Receive to check the data object.

5. In place of Dispatch, start gathering information for the partition on RTR by calling RTRData
methods such as IsApplicationMessage, IsMessage, and IsEvent (for a full listing of boolean
RTRData methods, see the Application Classes chapter of this manual) to determine what type of
data is being received in order to process it.

User-implemented logic handles all possible messages, events, and serialized objects using
RTRData methods.

6. Call Receive again.

In the polling model, you create a receive loop to poll for incoming data. Messages or events are
received one at a time, and Register does not connect message and event handlers. The server asks
RTR for a request.

You can still check the data object and code tasks as follows:

• Create the polling loop logic.

• In place of Dispatch, detect the incoming data type using the RTRData methods
IsApplicationData, IsMessage, and IsEvent. If you call Dispatch, RTR responds that there are no
handlers.

• In place of the Handler classes, you must develop logic to handle all possible RTR and
application messages, events, and serialized objects using RTRData methods such as GetBuffer,
GetMessageType, and GetEventNumber. These methods are used in the Dispatch call.

As Figure 1.13 illustrates, in common with the event driven model, you use a subset of the same
objects, but Register does not connect the message and event handlers.

20

Chapter 1. C++ API Concepts

Polling Model Example

Example 1.2 illustrates an implementation for the polling model of processing. As this example
illustrates, the flow is controlled by the object that is polling for a message or event from RTR with
Receive.

Example 1.2. Example 1-2: Polling Model Example

ServerTransactionController ServerTransactionController;
RTRData *pDataBeingReceived = NULL;
while (true){
// Receive some data
ServerTransactionController.Receive(&pDataBeingReceived);
// Since handlers are not being used, determine what is
 // received. Application-generated message or event.
 // RTR-generated message or event.
if (true = pDataBeingReceived->IsApplicationMessage())
{
 // Process accordingly
}
else
if (true = pDataBeingReceived->IsApplicationEvent())
{
 // Process accordingly
}
else
if (true = pDataBeingReceived->IsRTRMessage())
{
 // Process accordingly
}
else
if (true = pDataBeingReceived->IsRTREvent())
{
 // Process accordingly
}
}

1.5. Base Classes Message and Event
Mapping
The foundation class message and event handler methods are provided in base classes. You derive
from them and choose which ones to use in your implementation. Base handlers are used by default, if
you do not derive from them.

Figure 1.14 illustrates RTR messaging between client and server. RTR messages are contained in
the data object passing between the client and server. With event-driven processing, the class factory
creates the appropriate data object.

21

Chapter 1. C++ API Concepts

Figure 1.14. RTR Messaging Between Client and Server Applications

To connect, the client registers a facility and the server registers a facility and a partition. The client
transaction ends with rtr_mt_accepted or rtr_mt_rejected. The server transaction ends with the
AcknowledgeTransactionOutcome method.

When Dispatch is called, certain handlers are called for transactions on the client and server, as shown
in the following tables.

1.5.1. Client Messages
When Dispatch is called, certain handlers are called for transactions on the client, as shown in
Table 1.6.

Table 1.6. Client Handlers by Message Type

When the RTR Message Type
is:

Contained in: The
RTRClientMessageHandler
Call is:

rtr_mt_accepted RTRMessage OnAccepted
rtr_mt_reply RTRApplicationMessage OnApplicationMessage
rtr_mt_rttosend RTRMessage OnReturnToSender
rtr_mt_prepared RTRMessage OnAllPreparedTransaction
rtr_mt_rejected RTRMessage OnRejected

For example, using the event-driven processing model, when RTRData contains rtr_mt_reply, by
default, the RTRApplicationMessage Dispatch method calls OnApplicationMessage.

1.5.2. Client Events
When Dispatch is called, certain handlers are called for transactions on the client, as listed in
Table 1.7.

Table 1.7. Client Handlers by Event for RTREvent

When the RTR Event Number is: The RTRClientEventHandler Call is:
RTR_EVTNUM_FACDEAD OnFacilityDead
RTR_EVTNUM_FACREADY OnFacilityReady
RTR_EVTNUM_FERTRGAIN OnFrontendGainedLinkToRouter

22

Chapter 1. C++ API Concepts

When the RTR Event Number is: The RTRClientEventHandler Call is:
RTR_EVTNUM_FERTRLOSS OnFrontendLostLinkToRouter
RTR_EVTNUM_RTRBEGAIN OnRouterGainedLinkToBackend
RTR_EVTNUM_RTRBELOSS OnRouterLostLinkToBackend
RTR_EVTNUM_KEYRANGEGAIN OnNewKeyRangeAvailable
RTR_EVTNUM_KEYRANGELOSS OnKeyRangeNoLongerAvailable

For example, with the event-driven processing model, when RTRData contains
RTR_EVTNUM_FACREADY, by default, the RTREvent Dispatch method calls OnFacilityReady.

1.5.3. Server Messages
When Dispatch is called, certain handlers are called for transactions on the server side, as listed in
Table 1.8.

Table 1.8. Server Handlers by Message Type

When the RTR Message Type
is:

Contained in: The
RTRServerMessageHandler
Call is:

rtr_mt_accepted RTRMessage OnAccepted
rtr_mt_msg1 RTRApplicationMessage OnInitialize

OnApplicationMessage
rtr_mt_msg1_uncertain RTRApplicationMessage OnUncertainTransaction
rtr_mt_msgn RTRApplicationMessage OnApplicationMessage
rtr_mt_prepare RTRMessage OnPrepareTransaction
rtr_mt_rejected RTRMessage OnRejected

For example, with the event-driven processing model, by default when RTRData contains
rtr_mt_msg1, the RTRServerMessageHandler first calls OnInitialize and then calls
OnApplicationMessage. With the polling model, use IsMessage in place of Dispatch and implement
GetMessageType to handle the message.

A typical series of Server messages processed for a Transaction in an RTRTransactionController
object would be as follows:

• Start the loop and execute the following receives:

OnInitialize
OnApplicationMessage
OnPrepareTransaction
OnAccepted

• Loop again and get another transaction.

1.5.4. Server Events for RTREvent
When Dispatch is called, certain handlers are called for transactions on the server side, as listed in
Table 1.9.

23

Chapter 1. C++ API Concepts

Table 1.9. Server Handlers by Event

When the RTR Event Number is: The RTRServerEventHandler Call is:
RTR_EVTNUM_BERTRLOSS OnBackendGainedLinkToRouter
RTR_EVTNUM_BERTRGAIN OnBackendGainedLinkToRouter
RTR_EVTNUM_FACDEAD OnFacilityDead
RTR_EVTNUM_FACREADY OnFacilityReady
RTR_EVTNUM_RTRFEGAIN OnFrontendGainedLinkToRouter
RTR_EVTNUM_RTRFELOSS OnFrontendLostLinkToRouter
RTR_EVTNUM_SRSHADOWGAIN OnServerGainedShadow
RTR_EVTNUM_SRSHADOWLOST OnServerLostShadow
RTR_EVTNUM_SRRECOVERCMPL OnServerRecoveryComplete
RTR_EVTNUM_SRPRIMARY OnServerIsPrimary
RTR_EVTNUM_SRSECONDARY OnServerIsSecondary
RTR_EVTNUM_SRSTANDBY OnServerIsStandby

For example, with the event-driven processing model, by default, when RTRData contains
RTR_EVTNUM_FACREADY, the RTRServerEventHandler calls OnFacilityReady. With the polling
model, use IsEvent in place of Dispatch, and implement GetEventNumber to handle the event.

For more information, see the state diagrams in Appendix C of the RTR Application Design Guide.

1.6. Using the C++ API with Existing
Applications
When working with existing RTR applications, you can integrate individual C++ foundation classes
into existing client or server applications and also write new management routines that work with
existing applications. With the C++ foundation classes, there are no migration issues. There is no need
to rewrite existing code to integrate C++ foundation classes. Existing client and server applications
are linked transparently by RTR.

In existing applications, objects defined in the application can point to instances of foundation classes.

These classes are designed to be used:

• With other foundation classes

• Independently in legacy RTR applications (property classes are constructable from legacy
applications)

Objects defined in your application can point to instances of the foundation classes, and inherit the
rich functionality within these base classes.

The C++ foundation classes provide a method for implementing RTR solutions that is easier to use
than the C API. The C++ foundation classes:

• Replaces RTR structures with easily manageable classes. You no longer need to master complex
structures and flags, a common cause of programming errors. These structures and flags are not
part of the foundation classes.

24

Chapter 1. C++ API Concepts

• Replaces all flags with Get/Set methods. This completely eliminates the use of channels in new
implementations.

• Provides for transparent creation and use of channels using the transaction controller classes,
RTRServerTransactionController and RTRClientTransactionController.

• Provides default handling code for all messages and events where appropriate. Formerly, an
application had to provide handling for all messages and events and could not write common
processing code.

• Abstracts the sending and receiving of data to a higher level. Sending and receiving data is no
longer handled at a low level. The foundation classes eliminate coding for buffers and links.

• Transforms the features of rtr_request_info() and rtr_set_info() into simple
methods of RTR classes. rtr_request_info() and rtr_set_info() calls require
internal knowledge of RTR data structures. The C++ API obtains this information without the
application needing to know the internals of RTR.

• Represents each major RTR concept in its own individual class.

1.6.1. Classes that Legacy Applications Can Use
Table 1.10 lists the classes that legacy RTR server applications can use to create and manage the
environment in which RTR applications run. The second column of Table 1.10 lists the information
required to implement instances of these classes.

Table 1.10. Foundation Classes for Legacy Applications

Class Requires:
Setup class:
###RTR Nothing
Facility classes:
###RTRFacilityManager Facility Name
###RTRFacilityMember Facility Name
Partition classes:
###RTRPartitionManager Nothing
###RTRKeySegment Nothing
Property classes:
###RTRClientTransactionProperties TID (Transaction ID)
###RTRServerTransactionProperties TID
###RTRBackendPartitionProperties Partition Name
###RTRFacilityProperties Facility Name
Diagnostic class: Nothing (for new applications)
###RTRCounter Group Name

Facility, management, and partition information exists in RTR. The methods within the management
and property classes rely on attributes that RTR applications have.

25

Chapter 1. C++ API Concepts

For example, the diagnostic class RTRCounter relies on the following attributes for getting
information:

• Group name

• Counter name

• Data type

These are all attributes found in RTR.

The RTRBackendPartitionProperties class relies on partition name and facility name; existing
applications already know the partition name. This enables you to call methods, such as
GetRetryCount, in this class by passing in a partition. For example:

RTRBackendPartitionProperties
MyPartition("MyPartitionName");
MyPartition.GetRetryCount();

1.6.2. Encapsulating Application Protocols
Since foundation classes work with existing applications, the protocol for passing data has not
changed. As Figure 1-15 illustrates, legacy applications and new applications both use the same
protocol for passing data. Thus, all combinations of old and new clients and servers can communicate
with each other.

Figure 1.15. C++ API into Existing Applications

The protocol manager represents an object that knows how to send and receive a protocol defined by
the application. The protocol is your data. This is achieved by deriving a class from RTRData that
knows how to store information (data) in it. RTRData does this by pointing to a buffer.

Figure 1.16 illustrates an example of data encapsulation in the protocol manager objects that are
shown in Figure 1.15.

Figure 1.16. The Protocol Manager Object

For more information on defining a class that encapsulates an application protocol, see the Design and
Implementation chapter of this manual.

26

Chapter 1. C++ API Concepts

1.6.3. Implementation Example
In the example shown in Figure 1.17, there is an existing server application and a new client
application. To have your existing RTR legacy server application communicate with and obtain
information from a new C++ client application, you do not need to integrate C++ foundation classes
into your server application.

Figure 1.17. Legacy Application Example

Legacy applications do not have a TransactionController but with the
RTRServerTransactionProperties and RTRClientTransactionProperties classes, you need only a TID
(transaction identifier) to get state information. You obtain the TID with the existing RTR C API
using the rtr_get_tid method. You can pass this TID into the RTRServerTransactionProperties and
RTRClientTransactionProperties classes.

By using the rtr_get_tid method of the RTR C API to get the TID, you can pass this value to the
new C++ API to construct a ServerTransactionProperties object, with this TID as the parameter
(ServerTransactionProperties(TID)). Creating an application with this ServerTransactionProperties
object enables you to call any member functions within the ServerTransactionProperties class, such as
GetTransactionState and GetFacility.

1.7. Compiling and Linking your Application
All client and application programs must be written using C, C++, or a language that can use RTR C
++ API calls. Include the RTR data types and error messages file rtrapi.h in your compilation so that
it will be appropriately referenced by your application. For each client and server application, your
compilation/link process is as follows:

1. Write your application code using RTR calls.

2. Use RTR data and status types for cross-platform interoperability.

3. Compile your application code calling in rtrapi.h using ANSI C include rules. For example, if
rtrapi.h is in the same directory as your C++ code, use with the following statement: #include
"rtrapi.h".

4. Link your object code with the RTR library to produce your application executable.

This process is illustrated in Figure 1.18. In this figure, Library represents the RTR C++ API
shareable images (OpenVMS), DLLs (Win32), and shared libraries (UNIX).

27

Chapter 1. C++ API Concepts

Figure 1.18. RTR Compile Sequence

The following command lines show the sort of command lines that are needed to compile and link
a C++ RTR application that uses the C++ foundation classes, with and without Posix or Microsoft
threads. The parts of the command relating to RTR and the parts relating to threads are shown. You
may need to specify library directories explicitly if the RTR header files and libraries are not installed
in the same directory or in system directories. Note that the exact name of the RTR foundation
classes shared library, DLL or shareable image file, and how it is referenced in a command line,
varies slightly according to the conventions for the particular platform. Most compilers recognize the
extensions .cc .cpp and .cxx for C++ source files.

• VSI C++ for OpenVMS, single threaded application:

$ cxx yourapp.cxx
$ cxxlink yourapp,sys$input/opt
librtrcpp/share
$

• VSI C++ for OpenVMS 7 Alpha, multi-threaded application:

$ cxx yourapp.cxx
$ cxxlink yourapp,sys$input/opt
librtrcpp_r/share
$

• Windows MSVC (always multithreaded):

> cl /c -D_MT yourapp.cpp
> link yourapp.obj /out:yourapp.exe rtrcppapi.lib

• VSI C++ for Tru64 UNIX (also available for Linux Alpha), single threaded:

% cxx yourapp.cc -o yourapp -lrtrcpp

• VSI C++ for Tru64 UNIX (also available for Linux Alpha), multi-threaded:

% cxx -pthread yourapp.cc -o yourapp -lrtrcpp

28

Chapter 1. C++ API Concepts

Compilers commonly used in developing RTR applications include those in the following table. For
additional information, see the Reliable Transaction Router Software Product Description.

Operating System Compiler Compiler Version
Microsoft Windows Microsoft Visual C++ Version 6.0 SP4
OpenVMS Alpha Compaq C Version 6.2-006

Compaq C++ Version 6.2-035
OpenVMS VAX Compaq C Version 6.2-003
Sun Workshop Compilers Version 4.2
Tru64 UNIX Compaq C Version 6.3-126

Compaq C++ Version 6.2-033

29

Chapter 1. C++ API Concepts

30

Chapter 2. Design and
Implementation
This chapter contains suggestions for designing and implementing a new client or server application
using the C++ foundation classes. It also includes code examples from the C++ book order and
processing sample application included in the examples directory of the RTR kit. This sample
application shows how to implement a derived-receive model. Topics include:

• Design steps

• Implementation steps

• Implementation example

• Derived receive models

• Sample application walkthrough

2.1. Design Steps
When creating a new client or server application:

1. Analyze your application requirements.

Consider your business functions and map them to C++ classes. In the sample application, the
client application accepts orders to purchase books, and the server application processes these
orders from the client application.

2. Define your data protocol.

The data protocol defines the data that is passed between client and server applications. In the
sample application, orders are passed between client and server. These orders can be books or
magazines. Book is a type of Order.

3. Determine if your application should use the default Message and Event handlers.

A properly designed RTR application must handle all the possible messages and events that it may
receive. To make this task easier Handler classes are provided, RTRServerMessageHandler and
RTRServerEventHandler. These two classes provide a separate method for each potential message
and event that an application may receive. The methods provide a default implementation for the
application.

Most applications will benefit from using the default handlers. Using these handlers simplifies
your design by allowing you to derive your own handlers from the default handlers and override
only the messages and events which are of interest to your application. The messages and events,
which are not overridden, are processed using the default implementation supplied in the base
class.

Review: The Receive() method on a Transaction Controller returns an object derived from
RTRData. This may be a Message or Event sent by the application or RTR itself. To process this
unknown message or event the application simply needs to call the Dispatch() method on the
RTRData derived object.

31

Chapter 2. Design and Implementation

In rare situations an application may decide that it does not wish to use handlers. Unless a handler
is registered with the Transaction controller it will not be used. In this case calling Dispatch would
return an error.

4. Determine if your application should derive from RTRClassFactory.

When the Receive() method of a Transaction Controller is called RTR needs to create an object
derived from RTRData to hold the data being received. More specifically, it creates one of the
following objects:

• RTRApplicationMessage

• RTRApplictionEvent

• RTRMessage

• RTREvent

An application may wish to have its own object returned when Receive is called. This is easily
achieved by registering its own class factory object, which is derived from RTRClassFactory. RTR
will call the appropriate method in the class factory and the application may return its own class,
which is derived from the base class being created. This allows the application great flexibility
when processing incoming data.

Many applications will find it very valuable to derive their own class(es) from
RTRApplicationMessage and return instances of this class from their custom class factory.

RTR calls the CreateRTRApplicationMessage() method of the class factory with the data being
received. This allows the application to parse the data before it is received and return the correct
object for the application. For example, the sample application looks at the application message
being received, determines if it is receiving a book or magazine and returns an instance of the
correct object.

In some circumstances an application may always pass only one type of data, in this case it may
chose not to register a class factory.

2.2. Implementation Steps
The steps described in this section for client and server applications implement a polling client
application and an event-driven server application. These steps include code examples that are part of
the book processing sample application for ordering books and magazines.

While the steps in this section are representative of client and server applications, there are design
alternatives. A sampling of these design alternatives is provided in later sections of this chapter.

2.2.1. Implementing a Server
To implement a server application, you:

• Create an environment for the application to run. This includes starting RTR, creating a facility,
defining one or more key segments and creating one or more partitions.

• Create an RTRServerTransactionController within your server code.

32

Chapter 2. Design and Implementation

• Register a facility by name.

• Register a partition by name.

• Register a class derived from RTRClassFactory [optional].

• Register a class derived from RTRServerMessageHandler [optional].

• Register a class derived from RTRServerEventHandler [optional].

• Create the control loop that includes receive and dispatch methods.

• Accept the transaction when your business logic succeeds.

• Acknowledge the outcome of the transaction.

For example, the typical steps for implementing a server are the following:

1. Create an environment for the application to run by registering a partition for the server.

• Create an RTRKeySegment class. For example, the following sample creates an
RTRKeySegment for all ASCII values between "A" and "z":

// Create a partition that processes ISBN numbers in the
// range 0-99
 unsigned int low = 0;
 unsigned int max = 99;
 RTRKeySegment KeyZeroTo99(rtr_keyseg_unsigned,
 sizeof(int),
 0,
 &low,
 &max);

• Create an RTR partition with the above KeySegment. The following example includes
constants for the names of the partition and facility.

RTRPartitionManager PartitionManager;
sStatus = PartitionManager.CreateBackendPartition(ABCPartition1,
ABCFacility,
KeyZeroTo99,false,true,false);
print_status_on_failure(sStatus);

While the above example shows only the RTR_STS_OK return value, typical applications
must check for other status returns.

2. Instantiate the RTRServerEventHandler and RTRServerMessageHandler classes.

 SimpleServerEventHandler *pEventHandler = new
 SimpleServerEventHandler();
 SimpleServerMessageHandler *pMessageHandler = new
 SimpleServerMessageHandler();

3. Create an RTRServerTransactionController to receive incoming messages and events from a
client.

 RTRServerTransactionController *pTransaction = new
 RTRServerTransactionController();

33

Chapter 2. Design and Implementation

4. Register the facility, partition and both handlers with the transaction controller.

 sStatus = pTransaction->RegisterFacility(pFacilityName);
 assert(RTR_STS_OK == sStatus);
 sStatus = pTransaction->RegisterPartition(pPartitionName);
 assert(RTR_STS_OK == sStatus);
 sStatus = pTransaction->RegisterHandlers(pMessageHandler,
 pEventHandler);
 assert(RTR_STS_OK == sStatus);

5. Create a RTRData pointer. This pointer is assigned a pointer to a message or event when
RTRSoerverTransactionController::Receive is called.

 RTRData *pDataReceived = NULL;

6. Create a control loop to continually receive messages and dispatch them to the message and event
handlers.

while (true)
 {
 sStatus = pTransaction->Receive(pDataReceived);
 print_status_on_failure(sStatus);
 sStatus = pDataReceived->Dispatch();
 print_status_on_failure(sStatus);
 }

7. Accept the Transaction when your business logic succeeds. When the server has successfully
finished its work, tell RTR that it is willing to accept the transaction.

 RTRServerTransactionController * pController;
 pController->AcceptTransaction();

Note the default behavior supplied by the OnPrepareTransaction method of the
RTRServerMessage handler is to call AcceptTransaction on behalf of the application.

The sample application overrides this default behavior to reject the transaction if the order could
not be processed.

 void ABCSHandlers::OnPrepareTransaction(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
 // Check to see if anything has gone wrong. If so, reject the
 // transaction, otherwise accept it.

 if (true == m_bVoteToAccept)
 {
 pController->AcceptTransaction();
 }
 else
 {
 pController->RejectTransaction();
 }

8. Acknowledge the outcome of the transaction. A server must tell RTR that it has received the
outcome of the transaction. This explicitly tells RTR that it is ok for this Transaction Controller to
process the next transaction.

The default behavior in RTRServerMessageHandler::OnAccepted is to acknowledge the outcome
of the transaction.

34

Chapter 2. Design and Implementation

 void ABCSHandlers::OnAccepted(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
 { pController->AcknowledgeTransactionOutcome();
 return;
 }

2.2.2. Implementing a Client
To implement a client application, you:

• Create an RTRClientTransactionController.

• Register a facility

• Send a message

• Accept the transaction

In more detail:

1. Create a ClientTransactionController to receive the incoming messages and events from a server.

RTRClientTransactionController *pTransaction = new
 RTRClientTransactionController();

2. Register the facility with the TransactionController object.

sStatus = RegisterFacility(ABCFacility);
 print_status_on_failure(sStatus);
if(RTR_STS_OK == sStatus)
 {
 m_bRegistered = true;
 }

3. Create an RTRApplicationMessage derived class that adds to the Data object the information
that is to be sent to the server. Usually the data is added within the derived class by calling
RTRStream::WriteToStream.

 class MyApplicationMessage : public RTRApplicationMessage
 MyApplicationMessage *pMessage1 = new MyApplicationMessage()

4. Send a message to the server.

 sStatus = pTransaction->SendApplicationMessage(pMessage1);
 print_status_on_failure(sStatus);

5. Accept the transaction. When the application has successfully finished the transaction, the client
tells RTR that it votes to accept the transaction.

 pTransaction->AcceptTransaction();

The client application's business logic operates between sending a first message to the server and
accepting the transaction (Step 5).

2.2.3. Implementation Example
The following server application example shows the steps in setting up the infrastructure for running
an application to process transactional requests. There is a server.h and a server.cpp file.

35

Chapter 2. Design and Implementation

In the server.h file, after including the necessary header files and defining pointers to RTR facility
and partition names, the business class, deriving from the RTRServerTransactionController class is
defined. This includes declaring a transaction controller constructor and destructor.

 #include <iostream.h>
 #include <rtrapi.h>
 #include <assert.h>

 const char *ABCFacility = "MyFacility";
 const char *ABCPartition = "MyPartition";

 class SRVTransactionController: public
 RTRServerTransactionController
 {
 public:
 SRVTransactionController();
 ~SRVTransactionController();
 private:
 };
 SRVTransactionController::SRVTransactionController()
 {
 cout << "In Server Transaction Controller constructor " << endl;
 }
 SRVTransactionController::~SRVTransactionController()
 {
 cout << "In Server Transaction Controller destructor " << endl;
 }

The server message and event handlers are then declared and defined. MySRVMessageHandler
derives from RTRServerMessageHandler and MySRVEventHandler derives from
RTRServerEventHandler. In this example, the RTRServerMessageHandler methods OnAccepted,
OnPrepareTransaction and the RTRServerEventHandler method OnServerIsPrimary are overridden.
Both handler classes also define constructors and destructors.

 class MySRVMessageHandler: public RTRServerMessageHandler
 {
 public:
 MySRVMessageHandler();
 ~MySRVMessageHandler();
 rtr_status_t OnPrepareTransaction(RTRMessage *pmyMsg,
 RTRServerTransactionController *pTC);
 rtr_status_t OnAccepted(RTRMessage *pmyMsg,
 RTRServerTransactionController *pTC);
 private:
 };
 MySRVMessageHandler::MySRVMessageHandler()
 {
 }
 MySRVMessageHandler::~MySRVMessageHandler()
 {
 }
 rtr_status_t MySRVMessageHandler::OnPrepareTransaction(
 RTRMessage *pmyMsg,
 RTRServerTransactionController *pTC)
 {
 cout << "prepare txn " << endl;
 pTC->AcceptTransaction();
 return RTR_STS_OK;

36

Chapter 2. Design and Implementation

 }
 rtr_status_t MySRVMessageHandler::OnAccepted(
 RTRMessage *pmyMsg,
 RTRServerTransactionController *pTC)
 {
 cout << "accepted txn " << endl;
 pTC->AcknowledgeTransactionOutcome();
 return RTR_STS_OK;
 }
 class MySRVEventHandler: public RTRServerEventHandler
 {
 public:
 MySRVEventHandler();
 ~MySRVEventHandler();
 rtr_status_t OnServerIsPrimary(RTREvent *pRTREvent,
 RTRServerTransactionController *pTC);
 };
 MySRVEventHandler::MySRVEventHandler()
 {
 }
 MySRVEventHandler::~MySRVEventHandler()
 {
 }
 MySRVEventHandler::OnServerIsPrimary(RTREvent *pRTREvent,
 RTRServerTransactionController *pTC)
 {
 cout << "This server is primary " <<endl;
 return RTR_STS_OK;
 }

In the server.cpp file, after including the server.h file and instantiating the SRVTransactionController
class (myTC), the management class steps for setting up the RTR infrastructure take place. These
steps create the RTR environment for client and server transactional messaging. This includes:

• Starting RTR (myRTR.Start)

• Creating a journal (myRTR.CreateJournal(true))

• Creating a facility (myFac)

• Defining a partition (myPartition)

• Defining a key segment (mySegment)

• Creating a server partition (myPartition.CreateBackendPartition)

 #include "srv.h"
 int main(void)
 {
 rtr_status_t sStatus;
 SRVTransactionController myTC;
 // start rtr
 RTR myRTR;
 sStatus = myRTR.Start();
 cout << myRTR.GetErrorText(sStatus) << endl;
 // create journal
 sStatus = myRTR.CreateJournal(true);
 cout << myRTR.GetErrorText(sStatus) << endl;

37

Chapter 2. Design and Implementation

 // create facility
 RTRFacilityManager myFac;
 // get nodes names for facility
 char *pszBackendNodes = "dejavu";
 char *pszRouterNodes = "dejavu";
 char *pszFrontendNodes = "dejavu";
 char *nodename = "dejavu";
 sStatus = myFac.CreateFacility(ABCFacility,pszRouterNodes,
 pszFrontendNodes,pszBackendNodes,false,false);
 cout << myRTR.GetErrorText(sStatus) << endl;
 RTRPartitionManager myPartition;
 char *low="A";
 char *high="Z";
 RTRKeySegment mySegment(rtr_keyseg_string,1,
 0,low,high);
 sStatus = myPartition.CreateBackendPartition(ABCPartition,

 ABCFacility,mySegment,false,true,true);
 cout << myRTR.GetErrorText(sStatus) << endl;

Then register the facility, partition and handler classes and instantiate a pointer to a data object
(*myData).

 sStatus = myTC.RegisterFacility(ABCFacility);
 cout << myRTR.GetErrorText(sStatus) << endl;
 sStatus = myTC.RegisterPartition(ABCPartition);
 cout << myRTR.GetErrorText(sStatus) << endl;
 MySRVMessageHandler myHandler;
 MySRVEventHandler myEventHandler;
 myTC.RegisterHandlers(&myHandler,&myEventHandler);
 RTRData *myData;

Finally, create control loop logic with the Receive and Dispatch methods.

 while(true)
 {
 sStatus = myTC.Receive(&myData);
 cout << "message received " << myRTR.GetErrorText(sStatus) <<
 endl;
 if (sStatus != RTR_STS_OK)
 {
 assert(false);
 }
 sStatus = myData->Dispatch();
 cout << myRTR.GetErrorText(sStatus) << endl;
 delete myData;
 }
 cout << "hey I am done" <<endl;
 return 0;
 }

2.3. Sample Application Walkthrough
This section uses the sample application included in the RTR kit as an example of implementing both
a client and a server application using the C++ foundation classes.

The sample application is a simple client and server for ordering books and magazines.

38

Chapter 2. Design and Implementation

The client takes orders and creates the corresponding Book or Magazine object. This object is told to
serialize itself (write its state to a stream) and the client then sends the serialized object to a server.

The server application creates and registers two partitions. These partitions represent orders with
ISBN numbers from 1-99 and 100-199. The server will register a custom class factory to peek at
the object, which it is about to receive and determine its type, book or magazine. When the object
has been created by the class factory and returned to the application the server will tell the object to
deserialize itself and then to process itself. Processing means to carry out the business logic of buying
the book or magazine.

The sample application demonstrates the following features:

• Serializing and Deserializing an application-defined object with RTR.

• Creating multiple partitions, each with a different key segment, including ABCPartition1 and
ABCPartition2.

• Using default handlers for RTR messages, for example, default calls to methods such as
OnAccepted and OnRejected.

• Using default handlers for RTR events, for example, default calls to methods such as
OnServerIsPrimary.

• Dispatching RTRData-derived objects, for example, pOrder->Dispatch().

In this sample there are three server classes and one client class. Each class is declared in its own .h
file and implemented in a .cpp file.

The server classes are:

• ABCOrderProcessor: this class derives from RTRServerTransactionController.

• ABCSClassFactory: this class derives from RTRClassFactory.

• ABCSHandlers: this class derives from RTRServerEventHandler and RTRServerMessageHandler.

The client classes are:

• ABCOrderTaker: this class derives from RTRClientTransactionController.

• ABCCHandlers this class derives from RTRClientEventHandler and RTRClientMessageHandler.

There are three common data classes:

• ABCOrder: this class derives from RTRApplicationMessage.

• ABCBook: this class derives from ABCOrder.

• ABCMagazine: this class derives from ABCOrder.

Figure 2.1 illustrates the messaging between the sample client and server applications.

39

Chapter 2. Design and Implementation

Figure 2.1. Sample Application Messaging

2.3.1. Deriving from Base Classes in the Sample
Application
This section provides examples of creating derived classes in the book- ordering sample application
for implementing additional functionality in client and server application code by:

• Adding functionality to RTRData-derived data objects

• Encapsulating data

• Examining RTRData objects

2.3.2. Adding Functionality to Data Objects
You can add functionality to an RTRData object without changing any code in the Message or Event
handlers or the Receive loop, by deriving a class from RTRData.

Figure 2.2 illustrates the base class relationships to the ABCOrder data class. This class adds
functionality to the RTRApplicationMessage class by defining three additional methods.

40

Chapter 2. Design and Implementation

Figure 2.2. Adding Functionality to RTRData

For example, a book is represented as an ABCBook object with its inherited Dispatch method from
ABCOrder. This class overrides the WriteObject, ReadObject, and Process methods. A magazine
is represented as an ABCMagazine object with overridden WriteObject ReadObject, and Process
methods, and the Dispatch method inherited from ABCOrder.

2.3.3. Encapsulating Data with RTRData
The following example illustrates the protocol class that encapsulates application-level data with an
RTRData-derived class. In this sample application, two kinds of orders are processed by the server
application, book orders and magazine orders. An order is defined as an ABCOrder object which
derives from RTRApplicationMessage. All data sent between the client and server applications
represents either a magazine order or a book order. As Figure 2.3 shows, there are two kinds or orders,
book orders and magazine orders. This information is represented in a buffer organized for sending to
the server from the client.

41

Chapter 2. Design and Implementation

Figure 2.3. Encapsulating Data with RTRData

These two classes have been derived from the application's base class, ABCOrder. Book and
Magazines are kinds of Orders. The order class tells its derived classes when to serialize their data.
When this happens, the data in stored in the RTRData class via the methods of the RTRStream class.

When the client application is to make a request, the user enters the data for the fields illustrated
above. The client application then stores this information in the corresponding book or magazine
object and sends it to the server using SendOrder. The server then calls Receive to obtain the Book or
Magazine order. Note that a Book (or magazine) is an RTRApplicationMessage.

In addition to RTRApplicationMessage data objects, three other kinds of RTR data can exist in the
RTR application:

• RTRApplicationEvent

• RTRMessage

• RTREvent

The application must be set up to handle these data classes, even if an application chooses to ignore
them. In the sample application, if an order is an RTRApplicationMessage, then the object (an order)
is processed by the Dispatch method. If the data is an RTRMessage or an RTREvent, then default
handling occurs, and the event and message handler methods are called. The default Dispatch methods
then execute, as each RTRData-derived data class has its own Dispatch method.

When ABCOrderProcessor calls its derived Receive method, one of the four types of data objects
is assigned. The server can receive RTRMessage and RTREvent or can overwrite code in the class
factory class to receive book or magazine orders. The class factory returns a pointer to incoming data
(as an RTRData pointer) and knows what kind of object to return.

42

Chapter 2. Design and Implementation

2.3.4. Examining RTRData Objects
You can check the contents of an RTRData object by calling any RTRData method such as IsMessage.
The following example from the client application ABCOrderTaker illustrates how an application can
retrieve and use the message from an RTRData derived object.

 while (OrderBeingProcessed == eTxnResult)
 {
 sStatus = Receive(&pResult);
 print_status_on_failure(sStatus);
 if (true == pResult->IsRTRMessage())
 {
 // Check to see if we have a status for the transaction.
 // rtr_mt_accepted = Server successfully processed our request.
 // rtr_mt_rejected = Server could not process our request.
 sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
 print_status_on_failure(sStatus);
 if (rtr_mt_accepted == mtMessageType) return eTxnResult =
 OrderSucceeded;
 if (rtr_mt_rejected == mtMessageType) return eTxnResult =
 OrderFailed;
 }
 }
 return eTxnResult;

2.3.5. Sample Server Application
The following figure illustrates the objects within the ABCOrderProcessor server application. Each of
the four server classes derives from the associated base classes.

Figure 2.4. Sample Server Application

The implementation of ABCOrderProcessor uses default construction and destruction and then
follows the steps described earlier in this chapter to create a server application.

Processing Method

The sample server application implements the event-driven processing model in
ProcessIncomingTransactions. Implementation of ProcessIncomingTransactions is as follows:

43

Chapter 2. Design and Implementation

1. Create a transaction controller to receive incoming messages and events from a client.

2. Create an environment where the server can run, then Register with RTR the partitions, handler
classes, class factory and objects using the transaction controller:

 sStatus = RegisterFacility(ABCFacility);
 print_status_on_failure(sStatus);
 // ABC Partition
 sStatus = RegisterPartition(ABCPartition1);
 print_status_on_failure(sStatus);
 sStatus = RegisterPartition(ABCPartition2);
 print_status_on_failure(sStatus);
 // ABC Class Factory
 sStatus = RegisterClassFactory(&m_ClassFactory);
 print_status_on_failure(sStatus);
 // ABC Handlers
 sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
 print_status_on_failure(sStatus);
 return;
// Create the environment :
void ABCOrderProcessor::CreateRTREnvironment()
{
 rtr_status_t sStatus;
 // If RTR is not already started then start it now.
 StartRTR();
 // Create a Facility if not already created.
 CreateFacility();
// Create a partition that processes ISBN numbers in the range 0 -
// 99
 unsigned int low = 0;
 unsigned int max = 99;
 RTRKeySegment KeyZeroTo99(rtr_keyseg_unsigned,
 sizeof(int),
 0,
 &low,
 &max);
RTRPartitionManager PartitionManager;
sStatus = PartitionManager.CreateBackendPartition(ABCPartition1,
 ABCFacility,
 KeyZeroTo99,
 false,
 true,
 false);
 print_status_on_failure(sStatus);
// Create a partition that processes ISBN numbers in the range 100 -
// 199
 low = 100;
 max = 199;
 RTRKeySegment Key100To199(rtr_keyseg_unsigned,
 sizeof(int),
 0,
 &low,
 &max);
 sStatus = PartitionManager.CreateBackendPartition(ABCPartition2,
 ABCFacility,
 Key100To199,
 false,
 true,

44

Chapter 2. Design and Implementation

 false);
 print_status_on_failure(sStatus);
 }

3. Instantiate the handler class ABCSHandlers.

4. Create an RTRData object to hold each incoming message or event. This object will be reused.

 // Start processing orders.
 abc_status sStatus;
 RTRData *pOrder = NULL;

5. Continually loop, receiving messages and dispatching them to the handlers:

 while (true)
 {
 // Receive an Order
 sStatus = Receive(&pOrder);
 print_status_on_failure(sStatus);
 if(ABC_STS_SUCCESS != sStatus) break;
 // if we can't get an Order then stop processing.
 // Dispatch the Order to be processed
 sStatus = pOrder->Dispatch;
 print_status_on_failure(sStatus);
 // Exception handling:
 // Check to see if there were any problems processing the order.
 // If so, let the handler know to reject this transaction when
 // asked to vote.
 CheckOrderStatus(sStatus);
 ...
 }

6. Check to see if there were any problems processing the order. If so, let the handler know that this
transaction is to be rejected when asked to vote.

 void ABCOrderProcessor::CheckOrderStatus (abc_status sStatus)
 if (sStatus == ABC_STS_ORDERNOTPROCESSED)
 {
 // Let the handler know that the current txn should be rejected
 GetHandler()->OnABCOrderNotProcessed();
 };

7. Cleanup. Delete this order that was allocated by the class factory. In the sample application, the
class factory returns a separate instance of an order each time it is called.

 delete pOrder;

Server Message and Event Handler

The ABCOrderProcessor server application includes the derived class ABCSHandler for event-driven
message and event handling. As Figure 2.5 illustrates, it combines both handlers into one handler
class by deriving from both RTRServerEventHandler and RTRServerMessageHandler classes.

45

Chapter 2. Design and Implementation

Figure 2.5. Figure 2-5: Sample Server-Handler-Derived Class

The ABCSHandler class overrides the following four handler methods:

• OnApplicationMessage

• OnPrepareTransaction

• OnAccepted

• OnRejected

It uses the default handler methods for:

• OnInitialize

• OnUncertainTransaction

In addition to the above over-ridden methods, it also contains an application-defined method to handle
exceptions, OnABCOrderNotProcessed().

2.3.6. Sample Client Application
Figure 2.6 illustrates the ABCOrderTaker sample application. This example uses the polling receive
processing model, not message or event handlers.

Figure 2.6. Figure 2-6: Sample Client Application

The client application header file ABCOrderTaker.h declares the interface for the ABCOrderTaker
class. The file ABCOrderTaker.cpp provides the implementation.

In addition to the default constructor and destructor, there are two methods within class
ABCOrderTaker:

46

Chapter 2. Design and Implementation

• SendOrder

• Register

• DetermineOutcome

SendOrder

1. Create the environment where ABCOrderTaker is to run by registering a facility:

 sStatus = RegisterFacility(ABCFacility);
 print_status_on_failure(sStatus);
 if(RTR_STS_OK == sStatus)
 {
 m_bRegistered = true;
 }

2. Create a Transaction Controller to receive incoming messages and events from a client.

 ABCOrderTaker OrderTaker;

3. Send the server a message:

 sStatus = SendApplicationMessage(pOrder);
 print_status_on_failure(sStatus);

4. Since we have successfully finished our work, tell RTR that we are willing to accept the
transaction. Let RTR know that this is the object being sent and that we are done with our work:

 sStatus = AcceptTransaction();
 print_status_on_failure(sStatus);

5. Determine if the server successfully processed the request

 eTxnResult = DetermineOutcome();
 return true;

2.4. RTR Applications in a Multiplatform
Environment
Applications using RTR in a multiplatform (mixed endian) environment with non-string application
data must tell RTR how to marshall the data both for the destination of the application data being sent
and the application data itself. This description is supplied as the rtr_const_msgfmt_t argument
to:

• RTRClientTransactionController::SendApplicationMessage

• RTRServerTransactionController::SendApplicationMessage

• RTRClientTransactionConrtroller::SendApplicationEvent

• RTRServerTransactionController::SendApplicationEvent

The default (that is, when rtr_const_msgfmt_t is supplied) is to assume the application
message is string data.

47

Chapter 2. Design and Implementation

2.4.1. Defining a Message Format
The rtr_const_msgfmt_t string is a null-terminated ASCII string consisting of a number of
field-format specifiers: [field-format-specifier, ...]

The field-format specifier is defined as: %[dimension]field-type

where:

Field Description Meaning
% Indicates a new field description

is starting.
dimension Is an optional integer denoting

array cardinality (default 1).
field-type Is one of the following codes:

UB 8 bit unsigned byte
SB 8 bit signed byte
UW 16 bit unsigned
SW 16 bit signed
UL 32 bit unsigned
SL 32 bit signed
C 8 bit signed char
UC 8 bit unsigned char
B boolean

For example, consider a data object containing the following:

 unsigned int m_uiISBN;
 unsigned int m_uiPrice;
 char m_szTitle[ABCMAX_STRING_LEN];
 char m_szAuthor[ABCMAX_STRING_LEN];

The rtr_const_msgfmt_t for this object could be ("%UL%SL%12C%12C").

The transparent data-type conversion of RTR does not support certain conversions (for example,
floating point). These should be converted to another format, such as character string.

48

Chapter 3. Application Classes
The RTR C++ API major application classes are:

• Server classes

• Client classes

• Data classes

This chapter describes these major classes in the above order. Within each major class, each class
is described in alphabetical order. Within each class, all of its inherited methods are described in
alphabetical order.

RTRData-derived classes are used for passing data between client and server applications.

An application can send two data categories:

• Application-defined messages

• Application-defined events.

An application can receive four data categories:

• Application-defined messages

• Application-defined events

• RTR-defined messages

• RTR-defined events

The four RTRData-derived classes are:

• RTRApplicationMessage

• RTRApplicationEvent

• RTRMessage

• RTREvent

An RTRClassFactory object creates these four classes. The RTR application does not need to register
a class factory with a transaction controller, but if it does, it can customize how the objects are
allocated including allocating a class that is derived from any of the four data classes above.

3.1. Server Classes
The server application classes are:

• RTRServerEventHandler

• RTRServerMessageHandler

49

Chapter 3. Application Classes

• RTRServerTransactionController

• RTRServerTransactionProperties

3.2. RTRServerEventHandler
This class defines event handlers for all potential events that an RTR server application can receive.
Each handler has a default behavior. Applications should override those member functions for which
they want to perform application-specific processing.

Note

Applications can extend this class by deriving from it and adding their own application-level event
handlers.

For further information see RTRData::Dispatch().

Construction
Method Description
RTRServerEventHandler() Constructor.
~RTRServerEventHandler() Destructor.

Operations
Method Description
OnApplicationEvent(RTRApplicationEvent,
RTRServerTransactionController)

The application has generated an event for the
server.

OnBackendGainedLinkToRouter(RTREvent,
RTRServerTransactionController)

Default handler for the event where a backend
link to the current router has been established.

OnBackendLostLinkToRouter(RTREvent,
RTRServerTransactionController)

Default handler for the event where the backend
link to the current router has been lost.

OnFacilityDead(RTREvent,

RTRServerTransactionController)

Default handler for the event where the facility is
no longer operational.

OnFacilityReady(RTREvent,

RTRServerTransactionController)

Default handler for the event where the facility
has become operational.

OnServerGainedShadow(RTREvent,

RTRServerTransactionController,

(rtr_const_parnam_t))

The server gained its shadow partner.

OnServerIsPrimary(RTREvent,

RTRServerTransactionController)

Default handler for the event where the server is
in primary mode.

OnServerIsSecondary(RTREvent, Default handler for the event where the server is
in secondary mode.

50

Chapter 3. Application Classes

Method Description
RTRServerTransactionController)
OnServerIsStandby(RTREvent,

RTRServerTransactionController)

Default handler for the event where the server is
in standby mode.

OnServerLostShadow(RTREvent,

RTRServerTransactionController,

(rtr_const_parnam_t))

The server lost its shadow partner.

OnServerRecoveryComplete(RTREvent,
RTRServerTransactionController)

Default handler for the event where the server has
completed recovery.

OnApplicationEvent()
OnApplicationEvent() — RTRServerMessageHandler::OnApplicationEvent();

Prototype
virtual rtr_status_t OnApplicationEvent (RTRApplicationEvent
 *pRTRApplicationEvent,
 RTRServerTransactionController
 *pController)
{
 return RTR_STS_OK;
}

Parameters

pRTRApplicationEvent
Pointer to an RTRApplicationEvent object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this event was received.

Description

The pRTRApplicationEvent parameter contains an application event sent to it by the client
application.

Override this method if your application is to receive an indication that this event has occurred.

The default behavior is that the handler dismisses the notification.

Example
void CombinationOrderProcessor::OnApplicationEvent (RTRApplicationEvent
*pApplicationEvent, RTRServerTransactionController *pController)
{

51

Chapter 3. Application Classes

// This handler is called by RTR when the client has sent an event.
}

OnBackendGainedLinkToRouter()
OnBackendGainedLinkToRouter() — RTRServerEventHandler::OnBackendGainedLinkToRouter();

Prototype
virtual rtr_status_t OnBackendGainedLinkToRouter(RTREvent * pRTREvent,
 RTRServerTransactionController
 *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where a backend link to the current router has
been established.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_BERTRGAIN (104) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnBackendGainedLinkToRouter(RTREvent
 *pEvent, RTRServerTransactionController *pController)
{
}

OnBackendLostLinkToRouter()
OnBackendLostLinkToRouter() — RTRServerEventHandler::OnBackendLostLinkToRouter();

Prototype
virtual rtr_status_t OnBackendLostLinktToRouter(RTREvent * pRTREvent,
 RTRServerTransactionController *pController)
{

52

Chapter 3. Application Classes

return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where the backend link to the current router
has been lost.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_BERTRLOSS (105) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnBackendLostLinkToRouter(RTREvent
 *pEvent, RTRServerTransactionController *pController)
{
}

OnFacilityDead()
OnFacilityDead() — RTRServerEventHandler::OnFacilityDead();

Prototype
virtual rtr_status_t OnFacilityDead(RTREvent * pRTREvent,
 RTRServerTransactionController
 *pController)
{
 return RTR_ST_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

53

Chapter 3. Application Classes

Description
This method provides the default handler for the event where the facility is no longer operational.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_FACDEAD (97) and any associated data.

Override this method if your application wants to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnFacilityDead(RTREvent *pEvent,
RTRServerTransactionController *pController)
{
}

OnFacilityReady()
OnFacilityReady() — RTRServerEventHandler::OnFacilityReady();

Prototype
virtual rtr_status_t OnFacilityReady(RTREvent * pRTREvent,
 RTRServerTransactionController
 *pController)
{
 return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where the facility has become operational.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_FACREADY (96) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnFacilityReady(RTREvent *pEvent,
RTRServerTransactionController *pController)
{

54

Chapter 3. Application Classes

}

OnRouterGainedLinkToFrontend()
OnRouterGainedLinkToFrontend() — RTRServerEventHandler::OnFrontendGainedLinkToRouter();

Prototype
virtual rtr_status_t OnRouterGainedLinkToFrontend(RTREvent * pRTREvent,
 RTRServerTransactionController *pController)
{
 return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description

This method provides the default handler for the event where the router gained link to a frontend.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_RTRFEGAIN (106) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnRouterGainedLinkToFrontend(RTREvent
 *pEvent,
RTRServerTransactionController *pController)
{
}

OnRouterLostLinkToFrontend()
OnRouterLostLinkToFrontend() — RTRServerEventHandler::OnRouterLostLinkToFrontend();

Prototype
virtual rtr_status_t OnRouterLostLinkToFrontend(RTREvent * pRTREvent,
 RTRServerTransactionController *pController)
{
 return RTR_STS_OK;
}

55

Chapter 3. Application Classes

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where the router lost link to the current
frontend.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_RTRFELOSS (107) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnRouterLostLinkToFrontend(
 RTREvent *pEvent,
 RTRServerTransactionController *pController)
{
}

OnServerGainedShadow()
OnServerGainedShadow() — RTRServerEventHandler::OnServerGainedShadow();

Prototype
virtual rtr_status_t OnServerGainedShadow(RTREvent * pRTREvent,
 RTRServerTransactionController *pController
 rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the partition name on which the message or event was received.

Description
This method provides the default handler for the event where the server gained its shadow partner.

56

Chapter 3. Application Classes

The server application is receiving an RTR generated event. RTREvent contains the RTR defined
event number RTR_EVTNUM_SRSHADOWGAIN (112) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnServerGainedShadow (*pEvent, *pController,
pszPartitionName)
{
}

OnServerIsPrimary()
OnServerIsPrimary() — RTRServerEventHandler::OnServerIsPrimary();

Prototype
virtual rtr_status_t OnServerIsPrimary(RTREvent * pRTREvent,
 RTRServerTransactionController *pController
 rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to the partition name on which the message or event was received.

Description

This method provides the default handler for the event where the server is in primary mode.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_SRPRIMARY (108) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnServerIsPrimary(*pEvent, *pController,
pszPartitionName)

57

Chapter 3. Application Classes

{ }

OnServerIsSecondary()
OnServerIsSecondary() — RTRServerEventHandler::OnServerIsSecondary();

Prototype
virtual rtr_status_t OnServerIsSecondary(RTREvent * pRTREvent,
 RTRServerTransactionController *pController
 rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction controller.

Description
This method provides the default handler for the event where the server is in secondary mode.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_SRSECONDARY (110) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnServerIsSecondary(*pEvent,
 *pController, pszPartitionName)
{ }

OnServerIsStandby()
OnServerIsStandby() — RTRServerEventHandler::OnServerIsStandby();

Prototype
virtual rtr_status_t OnServerIsStandby(RTREvent * pRTREvent,
 RTRServerTransactionController *pController

58

Chapter 3. Application Classes

 rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction controller.

Description
This method provides the default handler for the event where the server is in standby mode.

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_SRSTANDBY (109) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnServerIsStandby(*pEvent,
 *pController, pszPartitionName)
{
}

OnServerLostShadow()
OnServerLostShadow() — RTRServerEventHandler::OnServerLostShadow();

Prototype
virtual rtr_status_t OnServerLostShadow(RTREvent * pRTREvent,
 RTRServerTransactionController *pController
 rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

59

Chapter 3. Application Classes

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction controller.

Description
This method provides the default handler for the event where the server lost its shadow partner

The server application is receiving an RTR-generated event. RTREvent contains the RTR defined
event number RTR_EVTNUM_SRSHADOWLOST (111) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnServerShadowLost(*pEvent,
 *pController, pszPartitionName)
{
}

OnServerRecoveryComplete()
OnServerRecoveryComplete() — RTRServerEventHandler::OnServerRecoveryComplete();

Prototype
virtual rtr_status_t OnServerRecoveryComplete(RTREvent * pRTREvent,
 RTRServerTransactionController *pController
 rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR-generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction controller.

Description
This method provides the default handler for the event where the server has completed recovery.

60

Chapter 3. Application Classes

The server application is receiving an RTR-generated event. RTREvent contains the RTR-defined
event number RTR_EVTNUM_SRRECOVERCMPL (113) and any associated data.

Override this method if your application is to receive an indication that this event has occurred.

Example
void RTRServerEventHandler::OnServerRecoveryComplete(*pEvent,
 *pController,
pszPartitionName)
{ }

RTRServerEventHandler()
RTRServerEventHandler() — RTRServerEventHandler::RTRServerEventHandler();

Prototype
 RTRServerEventHandler();
 virtual ~RTRServerEventHandler();

Return Value

None

Parameters

None

Description

Call this constructor to create and RTRServerEventHandler object.

Example
class MySRVEventHandler: public RTRServerEventHandler
{
public:
 MySRVEventHandler();
 ~MySRVEventHandler();
 rtr_status_t OnServerIsPrimary(RTREvent *pRTREvent,
 RTRServerTransactionController *pTC);
private:
};

MySRVEventHandler::MySRVEventHandler()
{
}
MySRVEventHandler::~MySRVEventHandler()
{
}

MySRVEventHandler::OnServerIsPrimary(RTREvent *pRTREvent,
 RTRServerTransactionController *pTC)

61

Chapter 3. Application Classes

{
 cout << "This server is primary " <<endl;
 return RTR_STS_OK;
}

3.3. RTRServerMessageHandler
This class defines message handlers for all potential messages that an RTR server application can
receive. Each handler has a default behavior. Applications should override those member functions for
which they want to perform application-specific processing.

Note

Applications can extend this class by deriving from it and adding their own application-level message
handlers.

For further information see RTRData::Dispatch().

Table 3.1. Construction

Method Description
RTRServerMessageHandler() Constructor
~RTRServerMessageHandler() Destructor

Method Description
OnAccepted(RTRMessage,

RTRServerTransactionController)

The specified transaction has been accepted by all
participants.

OnApplicationMessage

RTRApplicationMessage,

RTRServerTransactionController

The client has sent the server this message.

OnInitialize(RTRApplicationMessage,
RTRServerTransactionController)

A new transaction is being processed.

OnPrepareTransaction(RTRMessage,
RTRServerTransactionController)

The specified transaction is complete (that is, all
messages from the client have been received).

OnRejected(RTRMessage,

RTRServerTransactionController)

The specified transaction has been rejected by a
participant.

OnUncertainTransaction

(RTRApplicationMessage,

RTRServerTransactionController)

RTR is replaying a transaction which may or may
not have been completed.

OnAccepted()
OnAccepted() — RTRServerMessageHandler::OnAccepted();

62

Chapter 3. Application Classes

Prototype
virtual rtr_status_t OnAccepted(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
{
 pController->AcknowledgeTransactionOutcome();
};

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_OK Normal successful completion.

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this message was received.

Description
The specified transaction has been accepted by all participants.

RTR is informing the application that the current transaction has been accepted by all parties of the
transaction and successfully completed. RTRMessage will contain rtr_mt_accepted.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t MySRVMessageHandler::OnAccepted(RTRMessage *pmyMsg,
 RTRServerTransactionController *pTC)
{
 cout << "accepted txn " << endl;
 pTC->AcknowledgeTransactionOutcome();
 return RTR_STS_OK;
}

OnApplicationMessage()
OnApplicationMessage() — RTRServerMessageHandler::OnApplicationMessage();

Prototype
virtual rtr_status_t OnApplicationMessage(RTRApplicationMessage

63

Chapter 3. Application Classes

 *pRTRApplicationMessage,
 RTRServerTransactionController
 *pController
 rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this event was received.

pszPartitionName
Pointer to a partition name that is registered for the server transaction controller.

Description

The RTRApplicationMessage parameter contains application data sent to it by an RTR client.
RTRApplicationMessage will contain rtr_mt_msg1 or rtr_mt_msgn and associated data.

The default behavior is the handler dismisses the notification.

Example
void ClassDerivedFromHandler::OnApplicationMessage(*pApplicationMessage,
*pController, pszPartitionName)
{
// This handler is called by RTR when the client has sent a message.
// This is where you process the application's business logic
return RTR_STS_OK;
}

OnInitialize()
OnInitialize() — RTRServerMessageHandler::OnInitialize(RTRApplicationMessage);

Prototype
virtual rtr_status_t OnInitialize(RTRApplicationMessage
 *pRTRApplicationMessage,
 RTRServerTransactionController
 *pController)
{
 return RTR_STS_OK;

64

Chapter 3. Application Classes

}

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
The OnInitialize member function is called by the RTR framework at the beginning of every new
transaction this object processes. Your application should override this member function to perform
any special logic for each transaction processed.

Example
rtr_status_t ABCSHandlers::OnInitialize(RTRApplicationMessage
*pRTRApplicationMessage, RTRServerTransactionController *pController)
{
// This message notifies the RTR application that a new transaction
// is about to begin. Do any per-transaction state handling here.
cout << endl << endl << endl << "New Transaction being received..."
<< endl;
 m_bVoteToAccept = true;
 return RTR_STS_OK;
}

OnPrepareTransaction()
OnPrepareTransaction() — RTRServerMessageHandler::OnPrepareTransaction();

Prototype
virtual rtr_status_t OnPrepareTransaction(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
{
 return RTR_STS_OK;
}

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this event was received.

65

Chapter 3. Application Classes

Description

The current transaction is complete (that is, all messages from the client have been received).
RTRMessage will contain rtr_mt_prepare.

The default behavior is the handler dismisses the notification. Note that if you must override
the defaults with a vote to accept or reject the transaction being processed so the transaction is
successfully completed.

Example
rtr_status_t ABCSHandlers::OnPrepareTransaction(RTRMessage *pRTRMessage,
RTRServerTransactionController *pController)
{
// This handler is called by RTR when the client has accepted the
// transaction. This is our notification that we have all orders
// for this transaction.
// We must now give RTR a vote for this transaction. A vote means
// either calling Accept or Reject.
// We simply check to see if anything has gone wrong. If so, reject
// the transaction, otherwise accept it.
 rtr_status_t sStatus;
 if (true == m_bVoteToAccept)
 {
 cout << "Voting to Accept..." << endl;
 sStatus = pController->AcceptTransaction();
 }
 else
 {
 cout << "Voting to Reject..." << endl;
 sStatus = pController->RejectTransaction();
 }
 return sStatus;
}

OnRejected()
OnRejected() — RTRServerMessageHandler::OnRejected();

Prototype
virtual rtr_status_t OnRejected(RTRMessage * pRTRMessage,
 RTRServerTransactionController *pController)
{
 pController->AcknowledgeTransactionOutcome();
};

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_NOMESSAGE The data object does not contain a message.

66

Chapter 3. Application Classes

Status Message
RTR_STS_OK Normal successful completion.

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
The specified transaction has been rejected by a participant. RTRMessage will contain
rtr_mt_rejected .

The default behavior is the handler dismisses the notification.

Example
 rtr_status_t ABCSHandlers::OnRejected(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController) { cout
<
< "Entire Transaction Rejected..."
<
< endl; return
 RTRServerMessageHandler::OnRejected(pRTRMessage,pController); }

OnUncertainTransaction()
OnUncertainTransaction() — RTRServerMessageHandler::OnUncertainTransaction();

Prototype
virtual rtr_status_t OnUncertainTransaction(RTRMessage
 *pRTRApplicationMessage,
 RTRServerTransactionController *pController
 rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

Parameters

pRTRApplicationMessage
Pointer to an RTRMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this event was received.

67

Chapter 3. Application Classes

pszPartitionName
Pointer to a partition name that is registered for the server transaction controller.

Description
The OnUncertainTransaction() member function is called by the RTR framework when RTR is
replaying or recovering a transaction. The user's application should override this member function to
perform any special logic for each transaction processed. OnInitialize is also called when the server
receives an rtr_mt_msg1_uncertain message.

This member function is only called for transactions whose RTRServerEnvironment object has set
bXAManaged = FALSE.

The default behavior is the handler dismisses the notification.

Example
ABCSHandlers::OnUncertainTransaction(RTRApplicationMessage
*pRTRApplicationMessage, RTRServerTransactionController
*pController, rtr_const_parnam_t pszPartitionName)
{
 return RTR_STS_OK;
}

RTRServerMessageHandler()
RTRServerMessageHandler() — RTRServerMessageHandler::RTRServerMessageHandler();

Prototype
RTRServerMessageHandler();
virtual ~RTRServerMessageHandler();

Return Value
None

Parameters
None

Description
Call this constructor to create an RTRServerMessageHandler object.

Example
class MySRVMessageHandler: public RTRServerMessageHandler
{
public:
 MySRVMessageHandler();
 ~MySRVMessageHandler();

68

Chapter 3. Application Classes

 rtr_status_t OnPrepareTransaction(RTRMessage *pmyMsg,
 RTRServerTransactionController *pTC);
 rtr_status_t OnAccepted(RTRMessage *pmyMsg,
 RTRServerTransactionController *pTC);
private:
};
MySRVMessageHandler::MySRVMessageHandler()
{
}
MySRVMessageHandler::~MySRVMessageHandler()
{
}

3.4. RTRServerTransactionController
RTRServerTransactionController is the class most commonly used to create an RTR server
application. Typically, one instance of this class is used to process multiple consecutive transactions.
A transaction controller object is used to send and receive all data between RTR clients and servers.

RTRServerTransactionController Class Members

Construction
Method Description
RTRServerTransactionController Constructor
~RTRServerTransactionController Destructor

Operations
Method Description
RegisterClassFactory

(RTRClassFactory)

Register a class factory for RTR to call when
creating RTRData-derived objects.

RegisterHandlers

(RTRServerMessageHandler,
RTRServerEventHandler)

Register your handlers with this transaction.

RegisterPartition

(rtr_const_parnam_t rtr_const_rcpnam_t,
rtr_const_access_t)

Add a partition to the list of partitions for which
this transaction controller processes requests.

Basic Methods
Method Description
AcknowledgeTransactionOutcome() Allow RTR to remove the current transaction

from the journal and proceed with the next
request from a client.

AcceptTransaction(rtr_reason_t, bool) Accept the current transaction.

69

Chapter 3. Application Classes

Method Description
UnRegisterPartition(rtr_const_parnam_t) Remove a partition from the list of partitions

for which this transaction controller processes
requests.

ForceTransactionRetry() Tell RTR to cancel the current transaction and re-
present it.

Receive(RTRData, rtr_timout_t) Receive an RTR or application- generated
message or an RTR event.

RejectTransaction(rtr_reason_t) Vote to reject the current transaction.
SendApplicationEvent

(RTRApplicationEvent, rtr_const_rcpspc_t,
rtr_const_msgfmt_t)

Send an application-defined event within the
current facility to the client.

SendApplicationMessage

(RTRApplicationMessage, rtr_const_msgfmt_t)

Send an application-defined message to the client
whose transaction this controller call is currently
processing.

Get State Methods
Method Description
GetFacilityName (rtr_facnam_t,

const size_t)

Get facility name for the current transaction, if
one exists.

GetPartitionName

(rtr_parnam_t,const size_t)

Get partition name for the current transaction, if
one exists.

GetProperties() Get properties of the current transaction.

AcceptTransaction()
AcceptTransaction() — RTRServerTransactionController::AcceptTransaction();

Prototype
virtual rtr_status_t AcceptTransaction(rtr_reason_t
 rtrReasonCode = RTR_NO_REASON,
 bool bIndependent = false);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_NOACCEPT Client or Server has already voted or there is no

active transaction.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_OK Normal successful completion.
RTR_STS_TXNOTACT No transaction currently active on this channel.

70

Chapter 3. Application Classes

Parameters

rtrReasonCode
Optional reason for accepting the transaction. This reason is ORed together with the reasons of the
other participants in the transaction and returned to all participants of the transaction. The participants
can retrieve this reason by calling RTRMessage::GetReason().

bIndependent
If set to true, the transaction is considered independent of other transactions that RTR is processing.
Independent transactions can improve performance in certain shadowing conditions because RTR will
not need to maintain the order in which this transaction is processed on the shadow node.

Description
Call this member function to accept the transaction currently being processed.

Example
ABCSHandlers::OnPrepareTransaction(RTRMessage *pRTRMessage,
RTRServerTransactionController *pController)
{
// We simply check to see if anything has gone wrong. If so,
// reject the transaction, otherwise accept it.
 if (true == m_bVoteToAccept)
 {
 pController->AcceptTransaction();
 }
 else
 {
 pController->RejectTransaction();
 }
 return;
 }

AcknowledgeTransactionOutcome()
AcknowledgeTransactionOutcome() —
RTRServerTransactionController::AcknowledgeTransactionOutcome();

Prototype
virtual rtr_status_t AcknowledgeTransactionOutcome();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_ACKTXN AcknowledgeTransactionOutcome may only be

called after receiving the transaction outcome.

71

Chapter 3. Application Classes

Status Message
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_OK Normal successful completion.

Parameters
None.

Description
Call this member function after the application receives an indication of the outcome of the
transaction, that is, the transaction has been either accepted or rejected.

Calling this method is mandatory. RTR will not process the next transaction until the application
acknowledged that it has received the outcome of the transaction.

Example
ABCSHandlers::OnAccepted(RTRMessage *pRTRMessage,
RTRServerTransactionController *pController)
{ pController->AcknowledgeTransactionOutcome();
 return;
}

ForceTransactionRetry()
ForceTransactionRetry() — RTRServerTransactionController::ForceTransactionRetry();

Prototype
virtual rtr_status_t ForceTransactionRetry ();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_NORETRYTXN ForceRetryTransaction may only be called while

processing a transaction.
RTR_STS_OK Normal successful completion.

Parameters
None.

Description
Call this function when your application wants the current transaction to be represented to your
application without being rejected. If this call is made before the application votes to accept or
reject the transaction, the maximum number of attempts will be 3. If this function is called after the
application has voted, the maximum number of attempts will be determined by the current value of

72

Chapter 3. Application Classes

the Recovery Retry Count attribute of the partition. Note that this attribute can be changed by using
the RTRPartitionProperties class or by issuing command to the RTR command line interface.

Example
pController-> ForceTransactionRetry();

GetFacilityName()
GetFacilityName() — RTRServerTransactionController::GetFacilityName();

Prototype
virtual rtr_status_t GetFacilityName (rtr_facnam_t pszFacilityName,
 size_t uiFacilityNameSize);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_INVARGPTR Invalid argument pointer.
RTR_STS_OK Normal successful completion.

Parameters

pszFacilityName
A null-terminated pointer to a facility name. Memory is allocated by the function call.

uiFacilityNameSize
Specifies size of buffer passed by the facility name. If the size of the facility name intended for the
pszFacilityName character string is greater than the size in uiFacilityNameSize, the
error code RTR_STS_APPBUFFTOOSMALL is returned and the facility name is not copied into the
character string.

Description
Obtain the facility name, which the current transaction is executing in.

Memory is allocated by the caller and if uiFacilityNameSize is not big enough, an error
message is returned.

Example
pController->GetFacilityName(pszFacilityName, uiFacilityNameSize);

GetPartitionName()
GetPartitionName() — RTRServerTransactionController::GetPartitionName();

73

Chapter 3. Application Classes

Prototype
virtual rtr_status_t GetPartitionName(rtr_parnam_t pszPartitionName,
 const size_t uiPartitionNameSize
 RTRData *pRTRData);

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_DATANOTAVAILABL A required property was not available.
RTR_STS_INVARGPTR Invalid argument pointer.
RTR_STS_OK Normal successful completion
RTR_STS_TXNOTACT Transaction not active.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

uiPartitionNameSize
An unsigned integer for the size of the named partition.

pRTRData
The name of the partition on which the data object (message or event) was received.

Description

Obtain the partition name, which the current transaction is using.

Example
char szPartitionName[RTR_MAX_PARNAM_LEN+1];
sStatus = pController-> GetPartitionName(&szPartitionName[0],
 RTR_MAX_PARNAM_LEN+1,
 pRTRData);
// This call will either succeed or return RTR_STS_NOPARTITION.
// This means that the dat object has no partition associated with
// it. Only application messages and certain RTR events have a
// partition associated with them.

GetProperties()
GetProperties() — RTRServerTransactionController::GetProperties();

74

Chapter 3. Application Classes

Prototype
virtual RTRServerTransactionProperties* GetProperties();

Parameters
None.

Description
This method gets a pointer to the RTRServerTransacitonProperties object describing the server
transaction. If a transaction does not exist NULL is returned.

Example
RTRServerTransactionProperties *pTxnProp =
 pController->GetProperties();
if (PTxnProp->TransactionIsOriginal())
{
.
}

Receive()
Receive() — RTRServerTransactionController::Receive();

Prototype
virtual rtr_status_t Receive(RTRData **pRTRData,
 rtr_timout_t tTimeout = RTR_NO_TIMOUTMS);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_ACPNOTVIA RTR ACP not a viable entity.
RTR_STS_INVCHANNEL Invalid channel argument.
RTR_STS_INVDATPTRPTARG Invalid pointer-to-data-pointer pointer argument
RTR_STS_INVFLAGS Invalid flags argument.
RTR_STS_INVMSG Invalid pmsg argument.
RTR_STS_INVRMNAME Invalid resource manager name.
RTR_STS_NOACP No RTRACP process available.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_NORECEIVE Attempting to receive at this point is not allowed.
RTR_STS_OK Normal successful completion.
RTR_STS_TIMOUT Call to Receive timed out.
RTR_STS_TRUNCATED Buffer too short for message. Message has been

truncated.

75

Chapter 3. Application Classes

Parameters

pRTRData
A pointer passed by reference, which will receive an object, derived from RTRData. This object can
be any of the following:

• RTRMessage

• RTREvent

• RTRApplicationMessage

• RTRApplicationEvent

If a class factory is registered with the transaction controller, the application has the ability to have
this object be any application class derived from RTRData. By calling the Dispatch() method, the
most over ridden implementation of dispatch will be called.

For more information see the description of the RTR receive model in the RTR Application Design
Guide.

tTimeout
The maximum amount of time that the application is willing to wait for this receive to complete. The
timeout value is in milliseconds.

Description

This member function should be called when the application is ready to receive messages and events
from the RTR framework. Typically this function is called in a loop. The RTRData object returned
contains the message or event type, as well as other information useful to the application.

For more information see:

RTRData

Example
// Continually loop receiving messages and dispatching them to the
 handlers.

void ABCOrderProcessor::ProcessIncomingOrders()

{
 // Start processing orders

 abc_status sStatus = RTR_STS_OK;

 RTRData *pOrder = NULL;

 while (1)

 {

76

Chapter 3. Application Classes

// Receive an Order

sStatus = Receive(&pOrder);

print_status_on_failure(sStatus);

if(ABCSuccess != sStatus) break;

// If we can't get an Order then stop processing.

 delete pOrder;

 }

 return;

 }

RegisterClassFactory()
RegisterClassFactory() — RTRServerTransactionController::RegisterClassFactory();

Prototype
virtual rtr_status_t RegisterClassFactory(RTRClassFactory *pFactory);

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVFACTORYPTARG The factory argument pointer is invalid.
RTR_STS_OK Normal successful completion

Parameters

pFactory
Pointer to an RTRClassFactory object that is called, if registered, from the RTR framework when
processing all Receive calls in your application.

Description

A class factory returns an object for RTR to use (write data to) when the method
RTRServerTransactionController::Receive is called. The application can register their own class
factory and override the functions to return their own objects derived from the RTR data classes.
The four RTR data classes are RTRApplicationMessage, RTRApplicationEvent, RTRMessage, and
RTREvent.

Registering a class factory is not a requirement. An application would register a class factory only
when they wish to customize the object that is being allocated.

77

Chapter 3. Application Classes

Example
sStatus = RegisterClassFactory(&m_ClassFactory);
print_status_on_failure(sStatus);

RegisterFacility()
RegisterFacility() — RTRServerTransactionController::RegisterFacility();

Prototype
virtual rtr_status_t RegisterFacility (rtr_const_facnam_t pszFacilityName);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVALIDFACILITY The specified facility does not exist.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_OK Normal successful completion
RTR_STS_RTRNOTRUNNING RTR is not running.

Parameters

pszFacilityName
A null-terminated pointer to a facility name. Memory is allocated by the function call. If the size
of the parameter is not big enough, the return error message RTR_STS_APPBUFFTOOSMALL is
returned.

Description
Call the RegisterFacility() member function to register an existing RTR facility for your application.
By registering a facility, your application informs RTR of the facility for which your application can
process transactions.

Example
// Register the facility with the transaction controller.
 sStatus = RegisterFacility(ABCFacility);
 print_status_on_failure(sStatus);

RegisterHandlers()
RegisterHandlers() — RTRServerTransactionController::RegisterHandlers();

Prototype
virtual rtr_status_t RegisterHandlers (
 RTRServerMessageHandler *pMessageHandler,
 RTRServerEventHandler *pEventHandler);

78

Chapter 3. Application Classes

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVEVNTHNDPTARG The event handler pointer argument is invalid.
RTR_STS_INVMSGHNDLPTARG The message handler pointer argument is invalid.
RTR_STS_OK Normal successful completion

Parameters

pMessageHandler
Pointer to an RTRServerMessageHandler object that will process all server messages in your
application.

pEventHandler
Pointer to an RTRServerMessageHandler object that will process all server events in your application.

Description
Call the RegisterHandlers member function to register RTR message and event handlers for your
application. By registering the handlers, your application informs RTR of the different configurations
for which your application can process transactions. Your application can only use one partition at a
time. The message and event handlers are called by the RTRData::Dispatch method.

Specify pMessageHandler and/or pEventHandler if your application wishes to make use of the RTR
frameworks predefined handlers.

For more information on handlers see:

• RTRApplicationMessage::Dispatch

• RTRApplicationEvent::Dispatch

• RTRMessage::Dispatch

• RTREvent::Dispatch

• RTRServerMessageHandler

• RTRServerEventHandler

Example
// Register the message and event handlers with the transaction
 controller.
 sStatus = pTransaction->RegisterHandlers(
pAppClassDerivedFromRTRMessageHandler,
pAppClassDerivedFromRTREventHandler
);
assert(RTR_STS_OK == sStatus);

79

Chapter 3. Application Classes

RegisterPartition()
RegisterPartition() — RTRServerTransactionController::RegisterPartition();

Prototype
virtual rtr_status_t RegisterPartition(rtr_const_parnam_t
 pszPartitionName,
 rtr_const_rcpnam_t szRecipientName = RTR_NO_RCPNAM,
 rtr_const_access_t pszAccess = RTR_NO_ACCESS);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_DUPLPARTITION Attempting to insert a duplicate partition.
RTR_STS_FACNOTREG Facility is not registered.
RTR_STS_INVACCSTRPTRARG The access string argument is invalid.
RTR_STS_INVPARTNAMEARG The partition name argument is invalid
RTR_STS_INVRECPNAMPTARG The recipient name argument is invalid.
RTR_STS_OK Normal successful completion
RTR_STS_RTRNOTRUNNING RTR is not running.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

szRecipientName
Name of the recipient. This null-terminated string contains the name of the recipient. This is an
optional parameter.

Wildcards ("*" for any sequence of characters, and "%" for any one character) can be used in this
string to address more than one recipient.

Note that szRecipientName is case sensitive.

pszAccess
Pointer to a null-terminated string containing the access parameter. The default value is
RTR_NO_ACCESS.

Description
Call the RegisterPartition member function to register an RTR partition for your application. By
registering a partition, your application informs RTR of the different configurations for which your
application can process transactions. Your application can only use one partition at a time.

80

Chapter 3. Application Classes

Note

It is mandatory to register a partition that already exists in a registered facility. RegisterPartition may
be called multiple times to register multiple partitions.

Example
// Register the partition with the transaction controller.
sStatus = pTransaction->RegisterPartition("MyPartition);
assert(RTR_STS_OK == sStatus);

RejectTransaction()
RejectTransaction() — RTRServerTransactionController::RejectTransaction();

Prototype
virtual rtr_status_t RejectTransaction(rtr_reason_t rtrReasonCode =
 RTR_NO_REASON);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_NOREJECT Client or Server has already voted or there is no

active transaction.
RTR_STS_OK Normal successful completion.
RTR_STS_TXNOTACT No transaction is currently active on this channel.

Parameters

rtrReasonCode
Optional reason for rejecting the transaction. This reason is returned to the other participants in the
transaction. The participants can retrieve this reason by calling RTRMessage::GetReason.

Description
Call this member function to reject the transaction currently being processed by this object.

Example
 sStatus = pController->RejectTransaction();

RTRServerTransactionController()
RTRServerTransactionController() —
RTRServerTransactionController::RTRServerTransactionController();

81

Chapter 3. Application Classes

Prototype
RTRServerTransactionController();
virtual ~RTRServerTransactionController();

Return Value
None.

Parameters
None.

Description
Call this constructor to create an RTRServerTransactionController object.

Example
ABCOrderProcessor::ABCOrderProcessor()
{
}

SendApplicationEvent()
SendApplicationEvent() — RTRServerTransactionController::SendApplicationEvent();

Prototype
virtual rtr_status_t SendApplicationEvent(RTRApplicationEvent
 * pRTRApplicationEvent,
 rtr_const_rcpspc_t szRecipientName = "*",
 rtr_const_msgfmt_t mfMessageFormat = RTR_NO_MSGFMT);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INSVIRMEM Insufficient virtual memory.
RTR_STS_INVAPPEVNTPTARG Invalid application event pointer argument.
RTR_STS_INVMSGFMTPTRARG The message format string argument is invalid.
RTR_STS_INVRECPNAMPTARG The recipient name argument is invalid.
RTR_STS_NOEVENTDATA There is no event data associated with the event.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_OK Normal successful completion.

Parameters

pRTRApplicationEvent
Pointer to an RTRApplicationEvent object which contains application data to be sent to the client.

82

Chapter 3. Application Classes

szRecipientName
Name of the recipient. This null-terminated character string contains the
name of the recipient specified with the szRecipientName parameter on the
RTRServerTransactionController::RegisterPartition method.

Wildcards ("*" for any sequence of characters, and "%" for any one character) can be used in this
string to address more than one recipient. szRecipientName is an optional parameter.

Note that szRecipientName is case sensitive.

mfMessageFormat
Message format description. mfMessageFormat is a null-terminated character string containing the
format description of the message. RTR uses this description to convert the contents of the message
appropriately when processing the message on different hardware platforms. If no parameter is
specified, the default is no special formatting.

Description
This member function should be called when the application wants to send an application-defined
(broadcast) event to the client. Formerly, application- defined events are only delivered to the clients
that have subscribed for them and these are not related to any transaction. Only reply messages go
to the client that started the transaction. Simply calling this function will not deliver the event to the
client, unless it has subscribed for it. With the C++ API, you "subscribe" by overriding the event
handler methods. The events are only received if they are overridden.

Example
sStatus = pTransaction->SendApplicationEvent(pEventA);
assert(RTR_STS_OK == sStatus);

SendApplicationMessage()
SendApplicationMessage() — RTRServerTransactionController::SendApplicationMessage();

Prototype
virtual rtr_status_t SendApplicationMessage(RTRApplicationMessage
 *pRTRApplicationMessage,
 rtr_const_msgfmt_t mfMessageFormat = RTR_NO_MSGFMT);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INSVIRMEM Insufficient virtual memory.
RTR_STS_INVAPPMSGPTAR Invalid application message pointer argument.
RTR_STS_INVMSGFMTPTRARG The message format string argument is invalid.
RTR_STS_NOMESSAGE The data object does not contain a message.

83

Chapter 3. Application Classes

Status Message
RTR_STS_NOSEND Attempting to send an application message at this

point is not allowed.
RTR_STS_OK Normal successful completion.

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object which contains application data to be sent to the client.

mfMessageFormat
Message format description. mfMessageFormat is a null-terminated character string containing the
format description of the message. RTR uses this description to convert the contents of the message
appropriately when processing the message on different hardware platforms. If no parameter is
specified, the default is no special formatting.

Description
This member function should be called when the application wants to send application data to the
client which originally established the transaction. The RTRData object contains the data to be sent.

For more information see:

RTRData

Example
// Send the Server a message
sStatus = pTransaction->SendApplicationMessage(pMessage1);
assert(RTR_STS_OK == sStatus);

UnRegisterPartition()
UnRegisterPartition() — RTRServerTransactionController::UnRegisterPartition();

Prototype
virtual rtr_status_t UnRegisterPartition(rtr_const_parnam_t
pszPartitionName);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVPARTNAMEARG The partition name argument is invalid
RTR_STS_NOPARTITION The partition name has not been previously

registered.

84

Chapter 3. Application Classes

Status Message
RTR_STS_OK Normal successful completion

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

Description
Remove a partition from the list of partitions for which this transaction controller processes requests.

Example
pController-> UnRegisterPartition();

3.5. RTRServerTransactionProperties
This class holds, makes available, and allows modification of the properties of its associated
RTRServerTransactionController object. It provides attributes for a given transaction.

Typically, RTR C++ API applications obtain this object by calling GetProperties on the transaction
controller. Other applications, including legacy applications, may create an instance of this object by
calling the constructor with the TID of the transaction.

RTRServerTransactionProperties Class Members

Construction
Method Description
RTRServerTransactionProperties (const rtr_tid_t) Constructor
~RTRServerTransactionProperties() Destructor

Get the Type of Transaction
Method Description
TransactionIsOriginal() Tests whether the transaction is an original

transaction.
TransactionIsReplay() Tests whether the transaction is a replayed

transaction.
TransactionIsRecovery() Tests whether the transaction is a recovered

transaction.

Get Functions
Method Description
GetFacilityName(rtr_facnam_t, Get the facility.

85

Chapter 3. Application Classes

Method Description
const size_t)
GetTransactionState

(rtr_tx_jnl_state_t)

Get the transaction state

GetTID(rtr_tid_t) Get the TID (transaction ID).

When setting the state of a transaction, the state transaction must be valid, or else the call will return
an error. For each of the set state methods, there are two versions. The versions with no parameters
attempt to transition the transaction to the requested state. The second version for each method will
only transition to the requested state if the current trnasaction state matches the state passed in the
stCurrentTxnState argument.

Set the State of Transaction
Method Description
SetStateToAbort() Sets the transaction state to abort.
SetStateToAbort(rtr_tx_jnl_state_t) Sets the transaction state to abort.
SetStateToCommit() Sets the transaction state to commit.
SetStateToCommit

(rtr_tx_jnl_state_t)

Sets the transaction state to commit.

SetStateToDone() Sets the transaction state to done.
SetStateToDone(rtr_tx_jnl_state_t) Sets the transaction state to done.
SetStateToException() Sets the transaction state to exception.
SetStateToException

(rtr_tx_jnl_state_t)

Sets the transaction state to exception.

GetFacilityName()
GetFacilityName() — RTRServerTransactionProperties::GetFacilityName();

Prototype
rtr_status_t GetFacilityName(rtr_facnam_t pszFacilityName,
 size_t uiFacilityNameSize);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_DATANOTAVAILABL A required property was not available.
RTR_STS_INVARGPTR Invalid argument pointer.
RTR_STS_OK Normal successful completion.

86

Chapter 3. Application Classes

Parameters

pszFacilityName
A null-terminated pointer to a facility name. Memory is allocated by the function call.

uiFacilityNameSize
Specifies size of buffer passed by the facility name. If the size of the facility name intended for the
pszFacilityName character string is greater than the size in uiFacilityNameSize, the
error code RTR_STS_APPBUFFTOOSMALL is returned and the facility name is not copied into the
character string.

Description

This method gets the facility name associated with the transaction and described by the
RTRServerTransactionProperties object.

Example
pTransaction->GetFacility(pszFacilityName);

GetPartitionName()
GetPartitionName() — RTRServerTransactionController::GetPartitionName();

Prototype
virtual rtr_status_t GetPartitionName(rtr_parnam_t pszPartitionName,
 const size_t uiPartitionNameSize
 RTRData *pRTRData);

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_DATANOTAVAILABL A required property was not available.
RTR_STS_INVARGPTR Invalid argument pointer.
RTR_STS_OK Normal successful completion
RTR_STS_TXNOTACT Transaction not active.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

87

Chapter 3. Application Classes

uiPartitionNameSize
An unsigned integer for the size of the named partition.

pRTRData
The name of the partition on which the data object (message or event) was received.

Description
Obtain the partition name, which the current transaction is using.

Example
char szPartitionName[RTR_MAX_PARNAM_LEN+1];
sStatus = pController-> GetPartitionName(&szPartitionName[0],
 RTR_MAX_PARNAM_LEN+1,
 pRTRData);
// This call will either succeed or return RTR_STS_NOPARTITION.
// This means that the dat object has no partition associated with
// it. Only application messages and certain RTR events have a
// partition associated with them.

GetTID()
GetTID() — RTRServerTransactionProperties::GetTID();

Prototype
rtr_status_t GetTID(rtr_tid_t &rtrTID);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion. Returns RTR_STS_NOTID on failure.

Parameters

rtrTID
An RTR transaction identifier.

Description
This method copies the transaction identifier (TID) of the transaction described by the
RTRServerTransactionProperties object for the current transaction.

Example
rtr_tid_t tid = pController->GetTID(&rtrTID);

GetTransactionState()
GetTransactionState() — RTRServerTransactionProperties:: GetTransactionState ();

88

Chapter 3. Application Classes

Prototype
rtr_status_t GetTransactionState (rtr_tx_jnl_state_t &pstCurrentTxnState);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVTXNSTATPTARG Invalid transaction state pointer argument.
RTR_STS_DATANOTAVAILABL A required property was not available.
RTR_STS_OK Normal successful completion

Parameters

pstCurrentTxnState
Pointer to the transaction state of type rtr_tx_jnl_state_t.

Description
Get the transaction state for the current transaction.

Example
rtr_tx_jnl_state_t txnState;
rtr_status_t sStatus = GetTransactionState(txnState);
if (rtr_tx_jnl_voted == txnState)
{

}

RTRServerTransactionProperties()
RTRServerTransactionProperties() —
RTRServerTransactionProperties::RTRServerTransactionProperties();

Prototype
RTRServerTransactionProperties(const rtr_tid_t &tid);
virtual ~RTRServerTransactionProperties();

Return Value
None.

Parameters

tid
A transaction identifier value of type rtr_tid_t.

89

Chapter 3. Application Classes

Description
Call this constructor to create an RTRServerTransactionProperties object associated with the specified
tid.

Example
RTRServerTransactionProperties::RTRServerTransactionProperties
{
}

SetStateToAbort()
SetStateToAbort() — RTRServerTransactionProperties::SetStateToAbort();

Prototype
rtr_status_t SetStateToAbort();

rtr_status_t SetStateToAbort(rtr_tx_jnl_state_t stCurrentTxnState);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

stCurrentTxnState
A transaction state of type rtr_tx_jnl_state_t.

Description
This method is used to set the current server transaction state to abort. There are two forms:

• For the form with no parameter, the current transaction state is internally tested. If it is currently
valid to transition from that state to the abort state, the call succeeds.

• For the form with the transaction state parameter, if it is valid to transition from that state to the
abort state, the call succeeds.

Example
rtr_status_t sStatus = SetStateToAbort(txnState);

SetStateToCommit()
SetStateToCommit() — RTRServerTransactionProperties::SetStateToCommit();

Prototype
rtr_status_t SetStateToCommit();

90

Chapter 3. Application Classes

rtr_status_t SetStateToCommit(rtr_tx_jnl_state_t stCurrentTxnState);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

stCurrentTxnState
A transaction state of type rtr_tx_jnl_state_t.

Description
This method is used to set the current server transaction state to commit. There are two forms:

• For the form with no parameter, the current transaction state is internally tested. If it is currently
valid to transition from that state to the commit state, the call succeeds.

• For the form with the transaction state parameter, if it is valid to transition from that state to the
commit state, the call succeeds.

Example
rtr_status_t sStatus = SetStateToCommit(txnState);

SetStateToDone()
SetStateToDone() — RTRServerTransactionProperties::SetStateToDone();

Prototype
rtr_status_t SetStateToDone();

rtr_status_t SetStateToDone(rtr_tx_jnl_state_t stCurrentTxnState);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

stCurrentTxnState
A transaction state of type rtr_tx_jnl_state_t.

Description
This method is used to set the current server transaction state to done. There are two forms:

• For the form with no parameter, the current transaction state is internally tested. If it is currently
valid to transition from that state to the done state, the call succeeds.

91

Chapter 3. Application Classes

• For the form with the transaction state parameter, if it is valid to transition from that state to the
done state, the call succeeds.

Example
rtr_status_t sStatus = SetStateToDone(txnState);

SetStateToException()
SetStateToException() — RTRServerTransactionProperties::SetStateToException();

Prototype
rtr_status_t SetStateToException();

rtr_status_t SetStateToException(rtr_tx_jnl_state_t stCurrentTxnState);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

stCurrentTxnState
A transaction state of type rtr_tx_jnl_state_t.

Description
This method is used to set the current server transaction state to exception.There are two forms:

• For the form with no parameter, the current transaction state is internally tested. If it is currently
valid to transition from that state to the exception state, the call succeeds.

• For the form with the transaction state parameter, if it is valid to transition from that state to the
exception state, the call succeeds.

Example
rtr_status_t sStatus = SetStateToException(txnState);

TransactionIsOriginal()
TransactionIsOriginal() — RTRServerTransactionProperties::TransactionIsOriginal();

Prototype
bool TransactionIsOriginal();

Return Value
bool A true or false return value.

92

Chapter 3. Application Classes

Parameters
None.

Description
This method tests if the transaction is an original transaction. Note that this does not necessarily mean
that the transaction has never been presented before.

Example
RTRServerTransactionProperties *pstProperties =
 pController->GetProperties();
bool bOriginal = pTransactionController ->TransactionIsOriginal();

TransactionIsRecovery()
TransactionIsRecovery() — RTRServerTransactionProperties::TransactionIsRecovery();

Prototype
bool TransactionIsRecovery();

Return Value
bool A true or false return value.

Parameters
None.

Description
This method tests if the transaction is a recovered transaction. A recovered transaction is one where
the transaction was held in the RTR journal during a crash of a node, and has been restored and can be
committed in the database.

Example
rtr_status_t sStatus = TransactionIsRecovery();

TransactionIsReplay()
TransactionIsReplay() — RTRServerTransactionProperties::TransactionIsReplay();

Prototype
bool TransactionIsReplay();

Return Value
bool A true or false return value.

93

Chapter 3. Application Classes

Parameters
None.

Description
This method tests if the transaction is a replayed transaction.

Example
rtr_status_t sStatus = TransactionIsReplay();

3.6. Client Classes
The client classes of the RTR API are:

• RTRClientEventHandler

• RTRClientMessageHandler

• RTRClientTransactionController

• RTRClientTransactionProperties

These classes are described in this section in alphabetical order.

3.7. RTRClientEventHandler
This class defines event handlers for all potential events that an RTR client application can receive.
Each handler has a default behavior. Applications should override those member functions for which
they intend to perform application-specific processing.

Applications can extend this class by deriving from it and adding their own application-level event
handlers.

For further information see RTRData::Dispatch().

RTRClientEventHandler Class Members
Construction
Method Description
RTRClientEventHandler() Constructor
~RTRClientEventHandler() Destructor

Operations
Method Description
OnApplicationEvent (RTRApplicationEvent,

RTRClientTransactionController)

There is an event generated by the application, for
the client.

OnFacilityDead(RTREvent, Default handler for the event where the facility is
no longer operational.

94

Chapter 3. Application Classes

Method Description
RTRClientTransactionController)
OnFacilityReady(RTREvent,

RTRClientTransactionController)

Default handler for the event where the facility
has become operational.

OnFrontendGainedLinkToRouter

(RTREvent, RTRClientTransactionController)

Default handler for the event where a frontend
link to the current router has been established.

OnFrontendLostLinkToRouter

(RTREvent, RTRClientTransactionController)

Default handler for the event where the frontend
link to the current router has been lost.

OnKeyRangeNoLongerAvailable

(RTREvent, RTRClientTransactionController)

Default handler for the event where no more
servers remain for a particular routing key range.

OnNewKeyRangeAvailable(RTREvent,
RTRClientTransactionController)

Default handler for the event where one or
more servers for a new key range have become
available.

OnRouterGainedLinkToBackend

(RTREvent, RTRClientTransactionController)

Default handler for the event where a current
router established a link to a backend.

OnRouterLostLinkToBackend

(RTREvent, RTRClientTransactionController)

Default handler for the event where the current
router lost a link to a backend.

OnApplicationEvent()
OnApplicationEvent() — RTRClientEventHandler::OnApplicationEvent();

Prototype
virtual rtr_status_t OnApplicationEvent(RTRApplicationEvent
 *pRTRApplicationEvent,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTRApplicationEvent
Pointer to an RTRApplicationEvent object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
The RTRData parameter contains an application event sent to it by an RTR server.

95

Chapter 3. Application Classes

The default behavior is the handler dismisses the notification.

Example
MyCLIEventHandler::OnApplicationEvent(RTRApplicationEvent
 *pRTRApplicationEvent,
 RTRClientTransactionController
 *pCTC)
{
 cout << "An application event... " <<endl;
 return RTR_STS_OK;
}

OnFacilityDead()
OnFacilityDead() — RTRClientEventHandler::OnFacilityDead();

Prototype
virtual rtr_status_t OnFacilityDead(RTREvent *pRTREvent,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where the facility is no longer operational.

The client application is receiving an RTR-generated event. RTREvent contains the application-
defined number RTR_EVTNUM_FACDEAD (97) and any associated data.

Example
MyCLIEventHandler::OnFacilityDead(RTREvent *pRTREvent,
 RTRClientTransactionController *pCTC)
{
 return RTR_STS_OK;
}

OnFacilityReady()
OnFacilityReady() — RTRClientEventHandler::OnFacilityReady();

96

Chapter 3. Application Classes

Prototype
virtual rtr_status_t OnFacilityReady(RTREvent *pRTREvent,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where the facility has become operational.

The client application is receiving an RTR-generated event. RTREvent contains the application-
defined number RTR_EVTNUM_FACREADY (96) and any associated data.

Example
MyCLIEventHandler::OnFacilityReady(RTREvent *pRTREvent,
 RTRClientTransactionController *pCTC)
{
 return RTR_STS_OK;
}

OnFrontendGainedLinkToRouter()
OnFrontendGainedLinkToRouter() — RTRClientEventHandler::OnFrontendGainedLinkToRouter();

Prototype
virtual rtr_status_t OnFrontendGainedLinktToRouter(RTREvent *pRTREvent,
 RTRClientTransactionController
 *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

97

Chapter 3. Application Classes

Description
This method provides the default handler for the event where a frontend link to the current router has
been established.

The client application is receiving an RTR-generated event. RTREvent contains the application-
defined event number RTR_EVTNUM_FERTRGAIN (98) and any associated data.

Example
MyCLIEventHandler::OnFrontendGainedLinkToRouter(RTREvent
 *pRTREvent,
 RTRClientTransactionController
 *pCTC)
{
 return RTR_STS_OK;
}

OnFrontendLostLinkToRouter()
OnFrontendLostLinkToRouter() — RTRClientEventHandler::OnFrontendLostLinkToRouter();

Prototype
virtual rtr_status_t OnFrontendLostLinkToRouter(RTREvent *pRTREvent,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where the frontend link to the current router
has been lost.

The client application is receiving an RTR-generated event. RTREvent contains the application-
defined number RTR_EVTNUM_FERTRLOSS (99) and any associated data.

Example
MyCLIEventHandler:: OnFrontendLostLinkToRouter (
 RTREvent *pRTREvent,
 RTRClientTransactionController *pCTC)
{

98

Chapter 3. Application Classes

 return RTR_STS_OK;
}

OnNewKeyRangeAvailable()
OnNewKeyRangeAvailable() — RTRClientEventHandler::OnNewKeyRangeAvailable();

Prototype
virtual rtr_status_t OnKeyRangeNoLongerAvailable(
 RTREvent * pRTREvent,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where one or more servers for a new routing
key range have become available.

The client application is receiving an RTR-generated event. RTREvent contains the application-
defined number RTR_EVTNUM_KEYRANGEGAIN (102) and any associated data.

Example
MyCLIEventHandler:: OnKeyRangeNoLongerAvailable(
 RTREvent *pRTREvent,
 RTRClientTransactionController *pCTC)
{
return RTR_STS_OK;
}

OnKeyRangeNoLongerAvailable()
OnKeyRangeNoLongerAvailable() — RTRClientEventHandler::OnKeyRangeNoLongerAvailable();

Prototype
virtual rtr_status_t OnNewKeyRangeAvailable(RTREvent * pRTREvent,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

99

Chapter 3. Application Classes

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where no more servers remain for a particular
routing key range.

The client application is receiving an RTR-generated event. RTREvent contains the application-
defined number RTR_EVTNUM_KEYRANGELOSS (103) and any associated data.

Example
MyCLIEventHandler:: OnNewKeyRangeAvailable (
 RTREvent *pRTREvent,
 RTRClientTransactionController *pCTC)
{
 return RTR_STS_OK;
}

OnRouterGainedLinkToBackend()
OnRouterGainedLinkToBackend() — RTRClientEventHandler::OnRouterGainedLinkToBackend();

Prototype
virtual rtr_status_t OnRouterGainedLinkToBackend(RTREvent * pRTREvent,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where the current router established a link to
the backend.

100

Chapter 3. Application Classes

The client application is receiving an RTR-generated event. RTREvent contains the application-
defined event number RTR_EVTNUM_RTRBEGAIN (100) and any associated data.

Example
MyCLIEventHandler::OnRouterGainedLinkToBackend(
 RTREvent *pRTREvent,
 RTRClientTransactionController *pCTC)
{
return RTR_STS_OK;
}

OnRouterLostLinkToBackend()
OnRouterLostLinkToBackend() — RTRClientEventHandler::OnRouterLostLinkToBackend();

Prototype
virtual rtr_status_t OnRouterLostLinkToBackend(RTREvent * pRTREvent,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTREvent
Pointer to an RTREvent object that describes the RTR- generated event being processed.

pController
Pointer to the transaction controller within which this event was received.

Description
This method provides the default handler for the event where the current router lost a link to a
backend.

The client application is receiving an RTR-generated event. RTREvent contains the application-
defined number RTR_EVTNUM_RTRBELOSS (101) and any associated data.

Example
MyCLIEventHandler::OnRouterLostLinkToBackend(
 RTREvent *pRTREvent,
 RTRClientTransactionController *pCTC)
{
 return RTR_STS_OK;
}

RTRClientEventHandler()
RTRClientEventHandler() — RTRClientEventHandler::RTRClientEventHandler();

101

Chapter 3. Application Classes

Prototype
RTRClientEventHandler();

Return Value
None.

Parameters
None.

Description
Construct a client event handler object.

Example
 RTRClientEventHandler::RTRClientEventhandler()
 {
 }

3.8. RTRClientMessageHandler
This class defines message handlers for all potential messages that an RTR client application can
receive. Each handler has a default behavior. Applications should override those member functions for
which they intend to perform application specific processing.

Note

Applications can extend this class by deriving from it and adding their own application-level message
handlers.

For further information see RTRData::Dispatch().

RTRClientMessageHandler Class Members

Construction
Method Description
RTRClientMessageHandler() Constructor
~RTRClientMessageHandler() Destructor

Operations
Method Description
OnAccepted(RTRMessage,

RTRClientTransactionController)

The specified transaction has been accepted by all
participants.

102

Chapter 3. Application Classes

Method Description
OnAllPreparedTransaction

(RTRMessage, RTRClientTransactionController)

The specified transaction has been prepared by all
participants.

OnApplicationMessage

(RTRApplicationMessage,
RTRClientTransactionController)

The server has sent the client a message.

OnInitialize() A new transaction is being processed.
OnRejected(RTRMessage,

RTRClientTransactionController)

The specified transaction has been rejected by a
participant.

OnReturnToSender(RTRMessage,

RTRClientTransactionController)

The message could not be delivered and has been
returned to the sender.

OnAccepted()
OnAccepted() — RTRClientMessageHandler::OnAccepted();

Prototype
virtual rtr_status_t OnAccepted(RTRMessage *pRTRMessage,
 RTRClientTransactionController *pController)
{
 return RTR_STS_OK;
}

Return Value
None.

Parameters

pRTRMessage
Pointer to an RTRApplicationMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this message was received.

Description
The specified transaction has been accepted by all participants.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t ABCCHandlers::OnAccepted(RTRMessage *pRTRMessage,

103

Chapter 3. Application Classes

RTRClientTransactionController *pController)
{
 return ABCOrderSucceeded;
}

OnAllPreparedTransaction()
OnAllPreparedTransaction() — RTRClientMessageHandler::OnAllPreparedTransaction();

Prototype
virtual rtr_status_t OnAllPreparedTransaction (RTRMessage * pRTRMessage,
 RTRClientTransactionController *pController)
{
RTR_STS_OK;
}

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this message was received.

Description
The specified transaction has been prepared by all participants.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t MyCLIMessageHandler::OnAllPreparedTransaction(
 RTRMessage *pmyMsg,
 RTRClientTransactionController *pTC)
{
 cout << "prepare txn " << endl;
 rtr_return RTR_STS_OK;
}

OnApplicationMessage()
OnApplicationMessage() — RTRClientMessageHandler::OnApplicationMessage();

Prototype
virtual rtr_status_t OnApplicationMessage(RTRApplicationMessage
 *pRTRApplicationMessage,
 RTRClientTransactionController *pController)
{

104

Chapter 3. Application Classes

RTR_STS_OK;
}

Return Value

None.

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this message was received.

Description

The RTRApplicationMessage parameter contains application data sent to it by an RTR server.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t MyCLIMessageHandler::OnApplicationMessage(
 RTRApplicationMessage *pmyMsg,
 RTRClientTransactionController *pTC)
{
 return RTR_STS_OK;
}

OnInitialize()
OnInitialize() — RTRClientMessageHandler::OnInitialize();

Prototype
virtual rtr_status_t OnInitalize()'
{
RTR_STS_OK;
}

Parameters

None.

Description

This method is called at the beginning of each transaction to prepare the server for a transaction.
Allowing the application to perform any application-specific initialization necessary to process the
transaction.

105

Chapter 3. Application Classes

Example
rtr_status_t MyCLIMessageHandler::OnInitialize()
{
 return RTR_STS_OK;

}

OnRejected()
OnRejected() — RTRClientMessageHandler::OnRejected();

Prototype
virtual rtr_status_t OnRejected(RTRMessage * pRTRMessage,
 RTRClientTransactionController *pController)
{
return RTR_STS_OK;
}

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this message was received.

Description
The specified transaction has been rejected by a participant.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t ABCCHandlers::OnRejected(RTRMessage *pRTRMessage,
RTRClientTransactionController *pController)
{
 return ABCOrderFailed;
}

OnReturnToSender()
OnReturnToSender() — RTRClientMessageHandler::OnReturnToSender();

prototype
virtual rtr_status_t OnReturnToSender(RTRMessage * pRTRMessage,
 RTRClientTransactionController *pController)
{

106

Chapter 3. Application Classes

return RTR_STS_OK;
}

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being processed.

pController
Pointer to the transaction controller within which this message was received.

Description
The message could not be delivered and has been returned to sender.

The default behavior is the handler dismisses the notification.

Example
rtr_status_t MyCLIMessageHandler::OnReturnToSender(
 RTRMessage *pmyMsg,
 RTRClientTransactionController *pTC)
{
 return RTR_STS_OK;
}

RTRClientMessageHandler()
RTRClientMessageHandler() — RTRClientMessageHandler::RTRClientMessageHandler();

Prototype
RTRClientMessageHandler();
virtual ~RTRClientMessageHandler();

Return Value
None.

Parameters
None.

Description
Call this constructor to create an RTRClientMessageHandler object.

Example
MyCLIMessageHandler::MyCLIMessageHandler()

107

Chapter 3. Application Classes

{

}

MyCLIMessageHandler::~MyCLIMessageHandler()

{

}

3.9. RTRClientTransactionController
RTRClientTransactionController is the main class used to create an RTR client application. The
transaction controller object is used to send and receive all data between RTR clients and servers.
Typically one instance of this class is used to process multiple consecutive transactions.

RTRClientTransactionController Class Members

Construction

Method Description
RTRClientTransactionController() Constructor
~RTRClientTransactionController() Destructor

Basic Methods

Method Description
AcceptTransaction(rtr_reason_t) Accept the current transaction.
Receive(RTRData, rtr_timout_t) Receive an RTR or application- generated

message or an RTR event.
RegsiterClassFactory

(RTRClassFactory)

Register a class factory for RTR to call when
creating RTR Data derived objects.

RegisterFacility(rtr_const_facnam_t,
rtr_const_rcpspc_t, rtr_const_access_t)

Inform the controller that it should operate within
the given facility.

RegisterHandlers

(RTRClientMessageHandler,
RTRClientEventHandler)

Register handlers for messages and events.

RejectTransaction(const rtr_reason_t) Reject the current transaction.
SendApplicationEvent

(RTRApplicationEvent, rtr_const_rcpspc_t,
rtr_const_msgfmt_t)

Send an application-defined event to the server.

SendApplicationMessage

(RTRApplicationMessage, bool, bool,
rtr_const_msgfmt_t)

Send an application-defined message to the
server.

108

Chapter 3. Application Classes

Method Description
StartTransaction(rtr_timout_t) Start a new transaction.

AcceptTransaction()
AcceptTransaction() — RTRClientTransactionController::AcceptTransaction();

Prototype
virtual rtr_status_t AcceptTransaction(rtr_reason_t rtrReasonCode =
 RTR_NO_REASON);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_NOACCEPT Client or Server has already voted or there is no

active transaction.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_OK Normal successful completion.
RTR_STS_TXNOTACT No transaction currently active on this channel.

Parameters

rtrReasonCode
Optional reason for accepting the transaction. This reason is OR ed together with the reasons of the
other participants in the transaction and returned to all participants of the transaction. The participants
can retrieve this reason by calling RTRMessage::GetReason().

Description
Call this member function to accept the transaction currently being processed by this object.

Example
// Let RTR know that this is the only object being sent and that
// we are done with our work.
 cout << "AcceptTransaction..." << endl;
 sStatus = AcceptTransaction();
 print_status_on_failure(sStatus);

Receive()
Receive() — RTRClientTransactionController::Receive();

Prototype
virtual rtr_status_t Receive (RTRData **pRTRData,
 rtr_timout_t tTimeout = RTR_NO_TIMOUTMS);

109

Chapter 3. Application Classes

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVDATPTRPTARG Invalid pointer-to-data-pointer pointer argument
RTR_STS_NORECEIVE Attempting to receive at this point is not allowed.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_OK Normal successful completion.
RTR_STS_TIMOUT Call to Receive timed out.
RTR_STS_TRUNCATED Buffer too short for message. Message has been

truncated.

Parameters

pRTRData
A pointer passed by reference, which will receive an object, derived from RTRData. This object can
be any of the following:

• RTRMessage

• RTREvent

• RTRApplictionMessage

• RTRApplicationEvent

If a class factory is registered with the transaction controller, the application has the ability to have
this object be any application class derived from RTRData. By calling the Dispatch() method, the
most over ridden implementation of dispatch will be called.

For more information see the description of the RTR receive model.

tTimeout
An optional receive timeout value in milliseconds. If the timeout expires, the call completes with
status RTR_STS_TIMOUT.

Description
This member function should be called when the application is ready to receive messages and events
from the RTR framework. Typically this function is called in a loop. The RTRData object returned
contains the message or event type as well as other information useful to the application.

For more information see:

RTRData

Example
abc_status ABCOrderTaker::DetermineOutcome()

110

Chapter 3. Application Classes

{
 RTRData *pResult = NULL;
 abc_status sStatus = ABCSuccess;
 bool bDone = false;
 while (!bDone)
 {
 sStatus = Receive(&pResult);
 print_status_on_failure(sStatus);
 }
delete pResult;
 return sStatus;
}

RegisterClassFactory()
RegisterClassFactory() — RTRClientTransactionController::RegisterClassFactory();

Prototype
virtual rtr_status_t RegisterClassFactory (RTRClassFactory *pFactory);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVFACTORYPTARG The factory argument pointer is invalid.
RTR_STS_OK Normal successful completion

Parameters

pFactory
Pointer to an RTRClassFactory object that is called, if registered, from the RTR framework when
processing all Receive methods in your application.

Description
Registering a class factory is not a requirement. An application would register a class factory only
when they wish to customize the object that is being allocated.

Example
 sStatus = RegisterClassFactory(*pFactory);
 print_status_on_failure(sStatus);

RegisterFacility()
RegisterFacility() — RTRClientTransactionController::RegisterFacility();

Prototype
virtual rtr_status_t RegisterFacility (rtr_const_facnam_t pszFacilityName,

111

Chapter 3. Application Classes

 rtr_const_rcpspc_t szRecipientName = "*",
 rtr_const_access_t pszAccess = RTR_NO_ACCESS);

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVACCSTRPTRARG The access string argument is invalid.
RTR_STS_INVALIDFACILITY The specified facility does not exist.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVRECPNAMPTARG The recipient name argument is invalid.
RTR_STS_OK Normal successful completion
RTR_STS_RTRNOTRUNNING RTR is not running.

Parameters

pszFacilityName
Pointer to a null-terminated facility name.

szRecipientName
Name of the recipient. This null-terminated string contains the name of the recipient. This is an
optional parameter.

Wildcards ("*" for any sequence of characters, and "%" for any one character) can be used in this
string to address more than one recipient.

Note that szRecipientName is case sensitive.

pszAccess
Pointer to a null-terminated string containing the access parameter. The default is
RTR_NO_ACCESS.

Description

Call the RegisterFacility() member function to register an RTR facility for your application. By
registering a facility, your application informs RTR of the facility for which your application can
process transactions.

Example
// Register the facility with RTR.
 sStatus = RegisterFacility(ABCFacility);
 print_status_on_failure(sStatus);
if(RTR_STS_OK == sStatus)
 {
 m_bRegistered = true;

112

Chapter 3. Application Classes

 }

RegisterHandlers()
RegisterHandlers() — RTRClientTransactionController::RegisterHandlers();

Prototype
virtual rtr_status_t RegisterHandlers (RTRClientMessageHandler
 *pMessageHandler,
 RTRClientEventHandler
 *pEventHandler);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVEVNTHNDPTARG The event handler pointer argument is invalid.
RTR_STS_INVMSGHNDLPTARG The message handler pointer argument is invalid.
RTR_STS_OK Normal successful completion

Parameters

pMessageHandler
Pointer to an RTRClientMessageHandler object that processes messages received.

pEventHandler
Pointer to an RTRClientEventHandler object that processes events received.

Description
Call the RegisterHandlers member function to register message and event handlers for your
application. By registering an environment (a facility and a partition), your application informs RTR
of the different configurations for which your application can process transactions. Your application
will only use one environment at a time. The RTR framework picks the most efficient environment
for your application depending on the number of client requests being received. If no environment is
specified, RTR uses any of the previously defined environments in your applications process.

Specify pMessageHandler and/or pEventHandler in order for your application to make use of the RTR
frameworks predefined handlers.

For more information on handlers see:

• RTRData::Dispatch

• RTRClientMessageHandler

• RTRClientMessageHandler

113

Chapter 3. Application Classes

Example
// ABC Handlers
// Register the both handlers with RTR
sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
print_status_on_failure(sStatus);

RejectTransaction()
RejectTransaction() — RTRClientTransactionController::RejectTransaction();

Prototype
virtual rtr_status_t RejectTransaction(const rtr_reason_t rtrReasonCode =
 RTR_NO_REASON);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_FACNOTREG Facility is not registered.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_NOREJECT Client or Server has already voted or there is no

active transaction.
RTR_STS_OK Normal successful completion.
RTR_STS_TXNOTACT No transaction is currently active on this channel.

Parameters

rtrReasonCode
Optional reason for rejecting the transaction. This reason is returned to the other participants in the
transaction. The participants can retrieve this reason by calling RTRMessage::GetReason().

Description
Call this member function to reject the transaction currently being processed by this object.

Example
pController->RejectTransaction();

RTRClientTransactionController()
RTRClientTransactionController() —
RTRClientTransactionController::RTRClientTransactionController();

Prototype
RTRClientTransactionController();

114

Chapter 3. Application Classes

virtual ~RTRClientTransactionController();

Return Value
None.

Parameters
None.

Description
Call this constructor to create an RTRClientTransactionController object.

Example
ABCOrderTaker::ABCOrderTaker():m_bRegistered(false)
{

}

SendApplicationEvent()
SendApplicationEvent() — RTRClientTransactionController::SendApplicationEvent();

Prototype
virtual rtr_status_t SendApplicationEvent(RTRApplicationEvent
 * pRTRApplicationEvent,
 rtr_const_rcpspc_t szRecipientName = "*",
 rtr_const_msgfmt_t mfMessageFormat =
 RTR_NO_MSGFMT);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INSVIRMEM Insufficient virtual memory.
RTR_STS_INVAPPEVNTPTARG Invalid application event pointer argument.
RTR_STS_INVMSGFMTPTRARG The message format string argument is invalid.
RTR_STS_INVRECPNAMPTARG The recipient name argument is invalid.
RTR_STS_NOEVENT The data object does not contain an event.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_OK Normal successful completion.

Parameters

RTRApplicationEvent
Pointer to an RTRApplicationEvent object which contains application data to be sent to the server.

115

Chapter 3. Application Classes

szRecipientName
Name of the recipient. This null-terminated character string contains the name of the recipient. This is
an optional parameter.

Wildcards ("*" for any sequence of characters, and "%" for any one character) can be used in this
string to address more than one recipient

Note that szRecipientName is case sensitive.

mfMessageFormat
Message format description. mfMessageFormat is a null-terminated character string containing the
format description of the message. RTR uses this description to convert the contents of the message
appropriately when processing the message on different hardware platforms. If no parameter is
specified, the default is no special formatting.

Description

This member function should be called when the application wants to send an application-defined
event to the server. Formerly, application-defined events are only delivered to the clients or servers
that have subscribed for them and these are not related to any transaction. Only reply messages go
to the client that started the transaction. Simply calling this function does not deliver the event to
the client, unless it has subscribed for it. With the C++ API, you "subscribe" by overriding the event
handler methods. The events are only received if they are overridden.

Example
sStatus = SendApplicationEvent(pOrder);
print_status_on_failure(sStatus);

SendApplicationMessage()
SendApplicationMessage() — RTRClientTransactionController::SendApplicationMessage();

Prototype
virtual rtr_status_t SendApplicationMessage(RTRApplicationMessage
 *pRTRApplicationMessage,
 bool bReadonly = false,
 bool bReturnToSender = false,
 rtr_const_msgfmt_t
 mfMessageFormat = RTR_NO_MSGFMT);

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INSVIRMEM Insufficient virtual memory.
RTR_STS_INVAPPMSGPTARG Invalid application message pointer argument.

116

Chapter 3. Application Classes

Status Message
RTR_STS_INVMSGFMTPTRARG The message format string argument is invalid.
RTR_STS_INVRECPNAMPTARG The recipient name argument is invalid.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_NOSEND Attempting to send an application message at this

point is not allowed.
RTR_STS_OK Normal successful completion.

Parameters

pRTRApplicationMessage
Pointer to an RTRApplicationMessage object which contains application data to be sent to the server.

mfMessageFormat
Message format description. mfMessageFormat is a null-terminated character string containing the
format description of the message. RTR uses this description to convert the contents of the message
appropriately when processing the message on different hardware platforms. If no parameter is
specified the default is no special formatting.

bReadonly
Set this Boolean to true to indicate to RTR that this message does not perform and writes that would
need to be shadowed.

bReturnToSender
Set this Boolean to true to indicate to RTR that, if the message is not delivered to the server, it should
return a to this transaction controller a message indicating that.

Description
This member function should be called when the application wants to send application data to the
server. The RTRData object contains the data to be sent.

For more information see:

RTRData

Example
// Send this Book Order object to a server capable of processing it.
 cout << "SendApplicationMessage..." << endl;
 sStatus = SendApplicationMessage(pOrder);
 print_status_on_failure(sStatus);

StartTransaction()
StartTransaction() — RTRClientTransactionController::StartTransaction();

117

Chapter 3. Application Classes

Prototype
virtual rtr_status_t StartTransaction(rtr_timout_t
 timeout = RTR_NO_TIMOUTMS);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_CONNECTIONLOST An RTR connection has been lost.
RTR_STS_FACNOTREG Facility is not registered.
RTR_STS_INVTIMOUTMS Invalid timeout argument
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_NOSTARTTXN A client transaction is already active.
RTR_STS_OK Normal successful completion.
RTR_STS_TIMOUT Timeout time expired.

Parameters

timeout
Transaction timeout. This value is specified in milliseconds. If the timeout time expires, RTR
aborts the transaction and returns status RTR_STS_TIMOUT. If no timeout is required, specify
RTR_NO_TIMOUTMS.

Description
Explicitly start a transaction from a client transaction controller. This method is mandatory.

The StartTransaction method is used to start a transaction explicitly. An explicit transaction start is
only necessary if:

• either a join to an existing transaction is to be done

• or a transaction timeout is to be specified

Transactions are implicitly started when a message is sent on a currently inactive transaction
controller. Implicitly started transactions have no timeout and are not joined to other RTR
transactions.

Example
 abc_status sStatus;

cout << "StartTransaction..." << endl;
 sStatus = StartTransaction();
 print_status_on_failure(sStatus);

3.10. RTRClientTransactionProperties
This class holds the properties of its associated RTRServerTransaction object.

118

Chapter 3. Application Classes

RTRClientTransactionProperties Class Members

Construction
Method Description
RTRClientTransactionProperties() Constructor
~RTRClientTransactionProperties() Destructor

RTRClientTransactionProperties()
RTRClientTransactionProperties() —
RTRClientTransactionProperties::RTRClientTransactionProperties();

Prototype
RTRClientTransactionProperties(); virtual
~RTRClientTransactionProperties();

Return Value
None.

Parameters
None.

Description
This class holds the properties of its associated RTRClientTransaction object.

Example
RTRClientTransactionProperties::RTRClientTransactionProperties();
{
}

3.11. Data Classes and the Class Factory
The data classes of the C++ API are common to both server and client applications. There classes
include:

• RTRData

• RTRApplicationMessage

• RTRApplicationEvent

• RTRMessage

• RTREvent

• RTRClassFactory

119

Chapter 3. Application Classes

• RTRStream

The RTRData class is the base class of all the C++ foundation class data classes. When applications
want to receive data they specify Pointer to an RTRData object. After a successful call to the Receive
method in either the client or server RTRtransactionController class, RTRData contains one of the
following:

• RTRMessage

• RTREvent

• RTRApplicationMessage

• RTRApplicationEvent

The data classes are common to both client and server applications.

The RTRStream class is an RTRData-derived class designed for RTRApplicationMessage and
RTRApplicationEvent data objects to read from and write to a buffer.

The RTRClassFactory class creates instances of data classes based on the contents of a Receive call
for a message or event. For more information on RTR message and event processing, see the RTR
Application Design Guide.

3.12. RTRApplicationEvent Class
RTRApplicationEvent Class Members

Construction

Method Description
RTRApplicationEvent () Default constructor
RTRApplicationEvent

(RTRApplicationEvent &)

Copy constructor

Operations

Method Description
Dispatch() Basic method.
GetEventData(rtr_msgbuf_t) Retrieve the application data associated with this

RTRApplicationEvent object.
GetEventDataLength(); Retrieve the actual length of the buffer allocated

for this RTRApplicationEvent object.
GetEventNumber(rtr_evtnum_t) Retrieve the application event associated with the

data in this RTRApplicationEvent object.
SetEventData(rtr_msgbuf_t,

rtr_msglen_t)

Set the actual data length of the buffer allocated
for this RTRApplicationEvent object.

120

Chapter 3. Application Classes

Method Description
SetEventNumber(const rtr_evtnum_t) Set the application event number associated with

the data in this RTRApplicationEvent object.

Dispatch()
Dispatch() — RTRApplicationEvent::Dispatch();

Prototype
rtr_status_t Dispatch();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_HANDLERDELETED The application has deleted the handler.
RTR_STS_NOEVENT The data object does not contain an event.
RTR_STS_NOEVENTDATA There is no event data associated with the event.
RTR_STS_NOHANDLRREGSTRD The application has not registered a handler
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_OK Normal successful completion.
RTR_STS_TCDELETED The application has deleted the transaction

controller.

Parameters
None.

Description
This member function must be overridden by the RTR application. When called, the data contained
within the object is processed. Processing the data may include performing some application specific
logic and/or dispatching to a handler.

Example
sStatus = pApplicationEvent->Dispatch();
{
}

GetEventData()
GetEventData() — RTRApplicationEvent::GetEventData();

Prototype
rtr_status_t GetEventData(rtr_msgbuf_t &evEventData);

121

Chapter 3. Application Classes

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVARGPTR Invalid argument pointer.
RTR_STS_NOEVENT The data object does not contain an event.
RTR_STS_NOEVENTDATA There is no event data associated with the event.
RTR_STS_OK Normal successful completion

Parameters

evEventData
Pointer to event data.

Description
Retrieve the application data associated with this RTRApplicationEvent object.

Example
GetEventData(&evEventData);

GetEventDataLength()
GetEventDataLength() — RTRApplicationEvent::GetEventDataLength();

Prototype
rtr_msglen_t GetEventDataLength();

Return Value
rtr_msglen_t: Returns the size of the event data length.

Parameters
None.

Description
Call this member function to receive the size of the application event data length.

Example
rtr_msglen_t LengthOfData =
 pRTRApplicationEvent->GetEventDataLength();

GetEventNumber()
GetEventNumber() — RTRApplicationEvent::GetEventNumber();

122

Chapter 3. Application Classes

Prototype
rtr_status_t GetEventNumber (rtr_evtnum_t &evEventNumber);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_NOEVENT The data object does not contain an event.
RTR_STS_NOMESSAGE The data object does not contain a message
RTR_STS_OK Normal successful completion.

Parameters

evEventNumber
An event number.

Description
Get the event number associated with the received application event.

Example
GetEventNumber (&evEventNumber);

SetEventData()
SetEventData() — RTRApplicationEvent::SetEventData();

Prototype
rtr_status_t SetEventData (rtr_msgbuf_t &evEventData, rtr_msglen_t
dlDataLength);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_INVARGPTR The data object does not contain an event.

Parameters

evEventData
Pointer to event data.

123

Chapter 3. Application Classes

dlDataLength
The length of the data.

Description

Set the application data associated with this RTRApplicationEvent object.

Example
SetEventData (&evEventData, dlDataLength);

SetEventNumber()
SetEventNumber() — RTRApplicationEvent::SetEventNumber();

Prototype
rtr_status_t SetEventNumber (const rtr_evtnum_t &evEventNumber);

Return Value

rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

evEventNumber
An event number.

Description

Set the application event number associated with the data in this RTRApplicationEvent object.

Example
SetEventNumber (&evEventNumber);

3.13. RTRApplicationMessage Class
RTRApplicationMessage Class Members

Construction

Method Description
RTRApplicationMessage() Default constructor
~RTRApplicationMessage () Default destructor

124

Chapter 3. Application Classes

Operations
Method Description
Dispatch() Basic method.
GetMessage() Retrieve the message associated with the data in

this object.
GetMessageLength() Retrieve the actual length of the message

associated with the data in this object.

Dispatch()
Dispatch() — RTRApplicationMessage::Dispatch();

Prototype
rtr_status_t Dispatch();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_HANDLERDELETED The application has deleted the handler.
RTR_STS_NOHANDLRREGSTRD The application has not registered a handler
RTR_STS_NOMESSAGE The data object does not contain a message
RTR_STS_OK Normal successful completion
RTR_STS_TCDELETED The application has deleted the transaction

controller.

Parameters
None.

Description
This member function must be overridden by the RTR application. When called the data contained
within the object is processed. Processing the data may include performing some application specific
logic and/or dispatching to a handler.

Example
void ABCOrderProcessor::ProcessIncomingOrders()
{
 abc_status sStatus = RTR_STS_OK;
 RTRData *pOrder = NULL;
 while (1)
 {
 sStatus = pOrder->Dispatch();
 print_status_on_failure(sStatus);
 delete pOrder;

125

Chapter 3. Application Classes

 }
return;
}

GetMessage()
GetMessage() — RTRApplicationMessage::GetMessage();

Prototype
rtr_msgbuf_t GetMessage();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_NOMESSAGE The data object does not contain a message

Parameters
None.

Description
Retrieve the message associated with the data in this object.

Example
RTRApplicationMessage.GetMessage();

GetMessageLength()
GetMessageLength() — RTRApplicationMessage::GetMessageLength();

Prototype
rtr_msgbuf_t GetMessageLength();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_NOMESSAGE The data object does not contain a message

Parameters
None.

126

Chapter 3. Application Classes

Description
Retrieve the actual length of the message associated with the data in this object.

Example
RTRApplicationMessage.GetMessageLength();

3.14. RTRClassFactory Class
The RTRClassFactory class constructs an RTR application event or message directly from an RTR
message data buffer.

RTRClassFactory Class Members

Construction
Method Description
RTRClassFactory() Default constructor
~RTRClassFactory() Default destructor

Operations
Method Description
CreateRTRApplicationEvent

(rtr_const_msgbuf_t, rtr_msglen_t,
RTRApplicationEvent)

Create an RTRApplicationEvent data object.

CreateRTRApplicationMessage

(rtr_const_msgbuf_t, rtr_msglen_t,
RTRApplicationMessage)

Create an RTRApplicationMessage data object.

CreateRTREvent(RTREvent) Create an RTREvent data object.
CreateRTRMessage(RTRMessage) Create an RTRMessage data object.

CreateRTRApplicationEvent()
CreateRTRApplicationEvent() — RTRClassFactory::CreateRTRApplicationEvent();

Prototype
virtual rtr_status_t CreateRTRApplicationEvent(rtr_const_msgbuf_t
 pmsgCallersData,
 rtr_msglen_t msglCallersDataLength
 RTRApplicationEvent *&pApplicationEvent)
{
 rtr_status_t sStatus = RTR_STS_OK;
 pApplicationEvent = new RTRApplicationEvent();
 if (NULL == pApplicationEvent);
 {

127

Chapter 3. Application Classes

 sStatus = RTR_STS_INSVIRMEM;
 }
 return sStatus;
};

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_INSVIREM Insufficient virtual memory.

Parameters

pmsgCallersData
Pointer to the caller's data.

msglCallersDataLength
The length of the caller's data.

pApplicationEvent
Pointer to the application event.

Description
Create an RTRApplicationEvent data object if the transaction controller determines that Receive call
points to a message of type RTRApplicationEvent.

Example
pApplicationEvent = new ApplicationEvent();

CreateRTRApplicationMessage()
CreateRTRApplicationMessage() — RTRClassFactory::CreateRTRApplicationMessage();

Prototype
virtual rtr_status_t CreateRTRApplicationMessage(rtr_const_msgbuf_t
 pmsgCallersData,
 rtr_msglen_t msglCallersDataLength,
 RTRApplicationMessage *&pApplicationMessage)
{
 rtr_status_t sStatus = RTR_STS_OK;
 pApplicationMessage = new RTRApplicationMessage();
 if (NULL == pApplicationMessage)
 {
 sStatus = RTR_STS_INSVIRMEM;
 }

128

Chapter 3. Application Classes

 return sStatus;
};

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_INSVIREM

Parameters

pmsgCallersData
Pointer to the caller's data.

msglCallersDataLength
The length of the caller's data.

pApplicationMessage
Pointer to the application message.

Description
Create an RTRApplicationMessage data object if the transaction controller determines that Receive
call points to a message of type RTRApplicationMessage.

Example
rtr_status_t ABCSClassFactory::CreateRTRApplicationMessage(
rtr_const_msgbuf_t pmsgCallersData,
rtr_msglen_t msglCallersDataLength,
RTRApplicationMessage *&pApplicationMessage)
{ // Determine what kind of serialized object we are receiving.
 // The ABC company protocol defines the first integer of the
 // message to represent the type of the object we are receiving.
 // Book = ABC_BOOK. Magazine = ABC_MAGAZINE unsigned int
 // uiClassType = *(unsigned int*)pmsgCallersData;
switch (uiClassType)
 {
 case ABC_BOOK : pApplicationMessage = new ABCBook(); break;
 case ABC_MAGAZINE : pApplicationMessage = new ABCMagazine(); break;
 default:
 // If we ever get here then the client is sending us data that we
 // can't recognize. For some applictations this may not be an
 // issue. For the ABC company this should be impossible.
 assert(false);
 }
// Make sure we are passing back a valid address
if (NULL == pApplicationMessage)
return RTR_STS_INSVIRMEM;

129

Chapter 3. Application Classes

return ABC_STS_SUCCESS;}

CreateRTREvent()
CreateRTREvent() — RTRClassFactory::CreateRTREvent();

Prototype
virtual rtr_status_t CreateRTREvent(RTREvent *&pRTREvent)
{
 rtr_status_t sStatus = RTR_STS_OK;
 pRTREvent = new RTREvent();
 if (NULL == pRTREvent)
 {
 sStatus = RTR_STS_INSVIRMEM;
 }
 return sStatus;
};

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_INSVIREM Insufficient virtual memory.

Parameters

pRTREvent
Pointer to an RTREvent object that describes the message which is being processed.

Description
Create an RTREvent data object if the transaction controller determines that Receive call points to a
message of type RTREvent.

Example
CreateRTREvent(*&pRTREvent)

CreateRTRMessage()
CreateRTRMessage() — RTRClassFactory::CreateRTRMessage ();

Prototype
virtual rtr_status_t CreateRTRMessage(RTRMessage *&pRTRMessage)
{
 rtr_status_t sStatus = RTR_STS_OK;
 pRTRMessage = new RTRMessage();
 if (NULL == pRTRMessage)

130

Chapter 3. Application Classes

 {
 sStatus = RTR_STS_INSVIRMEM;
 }
 return sStatus;
};

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_INSVIREM

Parameters

pRTRMessage
Pointer to an RTRMessage object that describes the message which is being processed.

Description
Create an RTRMessage data object if the transaction controller determines that Receive call points to
a message of type RTRMessage.

Example
pApplicationMessage = new ApplicationMessage();

3.15. RTRData
RTRData is the abstract base class for all data classes.

RTRData Class Members

Construction
Method Description
RTRData() Default constructor
RTRData() Default destructor

Operations
Method Description
Dispatch() Basic method.
GetActualBufferLength() Return the message buffer length.
GetLogicalBufferLength() Return the logical buffer length.
IsApplicationEvent() Determine if this object contains application-

generated data.

131

Chapter 3. Application Classes

Method Description
IsApplicationMessage() Determine if this object contains application-

generated message.
IsEvent() Determine if this object contains an RTR or

application-generated event.
IsMessage() Determine if this object contains an RTR or

application-generated message.
IsRTREvent() Determine if this object contains RTR-generated

data.
IsRTRMessage() Determine if this object contains RTR-generated

message.

Dispatch()
Dispatch() — RTRData::Dispatch();

Prototype
virtual rtr_status_t Dispatch() = 0;

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters
None.

Description
This is a pure virtual member function. RTRData does not supply an implementation for Dispatch
and therefore cannot be instantiated. All classes that derive from RTRData must implement their own
version of Dispatch, with the functionality based on their needs.

GetActualBufferLength()
GetActualBufferLength() — RTRData::GetActualBufferLength();

Prototype
rtr_msglen_t GetActualBufferLength ();

Return Value
rtr_msglen_t The message buffer length.

Parameters
None.

132

Chapter 3. Application Classes

Description
The method returns the message buffer length.

Example
GetActualBufferLength ();

GetLogicalBufferLength()
GetLogicalBufferLength() — RTRData::GetLogicalBufferLength();

Prototype
rtr_msglen_t GetLogicalBufferLength();

Return Value
rtr_msglen_t Return the logical buffer length.

Parameters
None.

Description
Call this method for the logical buffer length.

Example
GetLogicalBufferLength();

IsApplicationEvent()
IsApplicationEvent() — RTRData::IsApplicationEvent();

Prototype
bool IsApplicationEvent ();

Return Value
bool A true or false return value.

Parameters
None.

Description
If the RTRData object contains an event sent by the application, this function returns TRUE.
Otherwise it returns FALSE.

133

Chapter 3. Application Classes

Example
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if (true == pResult->IsApplicationEvent();)

IsApplicationMessage()
IsApplicationMessage() — RTRData::IsApplicationMessage();

Prototype
bool IsApplicationMessage();

Return Value
bool A true or false return value.

Parameters
None.

Description
If the RTRData object contains a message sent by the application, this function returns TRUE.
Otherwise it returns FALSE.

Example
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if (true == pResult->IsApplicationMessage();)

IsEvent()
IsEvent() — RTRData::IsEvent();

Prototype
bool IsEvent();

Return Value
bool A true or false return value.

Parameters
None.

Description
If the RTRData object contains an event, generated by either RTR or an application, this function
returns TRUE. Otherwise it returns FALSE.

134

Chapter 3. Application Classes

Example
if (IsEvent();)
{
 rtr_evtnum_t enEvent;
 sStatus = GetEventNumber(enEvent);
}

IsMessage()
IsMessage() — RTRData::IsMessage();

Prototype
bool IsMessage();

Return Value
bool A true or false return value.

Parameters
None.

Description
If the RTRData object contains a message, generated by either RTR or an application, this function
returns TRUE. Otherwise it returns FALSE.

Example
// Look for a status for this transaction.
RTRData *pTransactionData = new RTRData();
sStatus = GetTransaction()->Receive(pTransactionData);
// Determine if we have a message or an event
if (false == pTransactionData->IsMessage();)
 {
 pTransactionData->Dispatch();
 }

IsRTREvent()
IsRTREvent() — RTRData::IsRTREvent();

Prototype
bool IsRTREvent();

Return Value
bool A true or false return value.

Parameters
None.

135

Chapter 3. Application Classes

Description
If the RTRData object contains an event sent by the application, this function returns TRUE.
Otherwise it returns FALSE.

Example
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if (true == pResult->IsRTREvent();)

IsRTRMessage()
IsRTRMessage() — RTRData::IsRTRMessage();

Prototype
bool IsRTRMessage();

Return Value
bool A true or false return value.

Parameters
None.

Description
If the RTRData object contains a message sent by the application, this function returns TRUE.
Otherwise it returns FALSE.

Example
sStatus = Receive(&pResult);
print_status_on_failure(sStatus);
if (true == pResult->IsRTRMessage();)

RTRData()
RTRData() — RTRData::RTRData();

Prototype
RTRData(); virtual ~RTRData();

Parameters
None.

Description
This constructor is a pure virtual function and requires an associated higher-level data object (for
example, RTRApplicationMessage). The default constructor should be used by applications when

136

Chapter 3. Application Classes

receiving data from a call to Receive that does not intend to handle allocation and de-allocation of
memory for the call. By using this form of the constructor, the application requests that RTR allocate
enough memory to receive the data.

3.16. RTREvent Class
RTREvent Class Members

Construction
Method Description
RTREvent() Default constructor
~RTREvent() Default destructor

Operations
Method Description
Dispatch() Basic method.
GetEventData(rtr_msgbuf_t) Retrieve the RTR data associated with this

RTREvent object.
GetEventDataLength(); Retrieve the actual length of the data associated

for this RTREvent object.
GetEventNumber(rtr_evtnum_t) Retreive the RTR event associated with the data

in this RTREvent object.

Dispatch()
Dispatch() — RTREvent::Dispatch();

Prototype
rtr_status_t Dispatch();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_TCDELETED The application has deleted the transaction

controller.
RTR_STS_EVENT The data object does not contain an event.
RTR_STS_NOEVENTDATA There is no event data associated with the event.
RTR_STS_MESSAGE The data object does not contain a message.
RTR_STS_HANDLERDELETED The application has deleted the handler.

137

Chapter 3. Application Classes

Status Message
RTR_STS_NOHANDLRREGSTRD The application has not registered a handler

Parameters
None.

Description
This member function must be overridden by the RTR application. When called the data contained
within the object is processed. Processing the data may include performing some application specific
logic and/or dispatching to a handler.

Example
sStatus = pOrderEvent->Dispatch();

GetEventData()
GetEventData() — RTREvent::GetEventData();

Prototype
rtr_status_t GetEventData(rtr_msgbuf_t &evEventData);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_INVARGPTR
RTR_STS_NOEVENTDATA There is no event data associated with the event.

Parameters

evEventData
Pointer to event data.

Description
Retrieve the RTR data associated with this RTREvent object.

Example
RTREvent.GetEventData(&evEventData);

GetEventDataLength()
GetEventDataLength() — RTREvent::GetEventDataLength();

138

Chapter 3. Application Classes

Prototype
 rtr_msglen_t GetEventDataLength();

Return Value

rtr_msglen_t: Returns the size of the event data length.

Parameters

None.

Description

Retrieve the actual length of the data associated for this RTREvent object.

Example
RTREvent.GetEventDataLength();

GetEventNumber()
GetEventNumber() — RTREvent::GetEventNumber();

Prototype
rtr_status_t GetEventNumber(rtr_evtnum_t &evEventNumber);

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_NOEVENT The data object does not contain an event.

Parameters

evEventNumber
An event number.

Description

Call this member function to retrieve the RTR event associated with the data in this RTREvent object.
This function is typically used by only those applications that do not register an event.

Example
RTREvent.GetEventNumber(&evEventNumber);

139

Chapter 3. Application Classes

3.17. RTRMessage
RTRMessage

Construction

Method Description
RTRMessage() Default constructor
~RTRMessage() Default destructor

Operations

Method Description
Dispatch() Basic method.
GetMessageType(rtr_msg_type_t) Retrieve the RTR message associated with the

data in this RTRMessage object.
GetReason() Retrieve the reason associated with the accepting

or rejection of the transaction.
GetSecondaryStatus() Retrieve the secondary status associated with the

accepting or rejection of the transaction.

Dispatch()
Dispatch() — RTRMessage::Dispatch();

Prototype
rtr_status_t Dispatch();

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_TCDELETED The application has deleted the transaction

controller.
RTR_STS_NOMESSAGE The data object does not contain a message.
RTR_STS_HANDLERDELETED The application has deleted the handler.
RTR_STS_NOHANDLRREGSTRD The application has not registered a handler.

Parameters

None.

140

Chapter 3. Application Classes

Description
This member function must be overridden by the RTR application. When called, the data contained
within the object is processed. Processing the data may include performing some application specific
logic and/or dispatching to a handler.

Example
 sStatus = pOrderMessage->Dispatch();

GetMessageType()
GetMessageType() — RTRMessage::GetMessageType();

Prototype
rtr_status_t GetMessageType(rtr_msg_type_t& mtMessageType);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_NOMESSAGE The data object does not contain a message

Parameters

mtMessageType
An RTR message.

Description
Retrieve the RTR message associated with the data in this RTRMessage object.

Example
sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
print_status_on_failure(sStatus);

GetReason()
GetReason() — RTRMessage::GetReason();

Prototype
rtr_reason_t GetReason();

Return Value
rtr_status_t This function either returns RTR_NO_REASON or the value specified by the
participants in the transaction. If different participants provide different reason codes, RTR ORs them.

141

Chapter 3. Application Classes

Parameters
None.

Description
Retrieve the reason associated with the accepting or rejection of the transaction.

Example
void OnAccepted(RTRMessage* pRTRData,
 RTRClientTransactionController* pController)
{
 rtr_status_t sStatus =
 pRTRData->GetSecondaryStatus();
 rtr_reason_t rcReasonCode = pRTRData->GetReason();
 m_bAcceptReceived = true;
};

GetSecondaryStatus
GetSecondaryStatus — RTRMessage::GetSecondaryStatus();

Prototype
rtr_status_t GetSecondaryStatus();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_NOMESSAGE The data object does not contain a message.

Parameters
None.

Description
Retrieve the secondary status associated with the accepting or rejection of the transaction.

Example
void OnAccepted(RTRMessage* pRTRData,
 RTRClientTransactionController* pController)
{
 rtr_status_t sStatus =
 pRTRData->GetSecondaryStatus();
 rtr_reason_t rcReasonCode = pRTRData->GetReason();
 m_bAcceptReceived = true;

142

Chapter 3. Application Classes

};

3.18. RTRStream Class
The RTRStream class derives from RTRData and extends the RTRData class by allowing RTR
applications to issue multiple read and write requests to the buffer (managed by RTRData) without
needing to maintain Pointer to the end of the buffer.

An RTRStream object automatically handles the details of maintaining the offset within the buffer
when the application wants to read and write multiple times to a buffer.

When reading from and writing to a stream, a copy of the data is performed.

RTRStream

Construction

Method Description
RTRStream() Default constructor
~RTRStream Default destructor

Operations

Method Description
WriteToStream(rtr _msgbuf_t,

rtr_msglen_t);

Copy data to the end of the buffer managed by
RTRData.

WriteToStream(const char); Copy string to the end of the buffer managed by
RTRData.

WriteToStream(rtr_sgn_32_t); Copy the signed integer to the end of the buffer
managed by RTRData.

WriteToStream(rtr_uns_32_t); Copy the unsigned integer to the end of the buffer
managed by RTRData.

ReadFromStream(rtr _msgbuf_t, rtr_msglen_t,
rtr_msglen_t);

Copy the data from the buffer managed by
RTRData to the buffer specified.

ReadFromStream(rtr_sgn_32_t); Copy the signed integer from the buffer managed
by RTRData to uiNumber.

ReadFromStream(char, size_t); Copy the data from the buffer managed by
RTRData to pString.

ReadFromStream(rtr_uns_32_t); Copy the unsigned integer from the buffer
managed by RTRData to uiNumber.

Operators

Operator Description
RTRStream& operator>> (char) ReadFromStream operator

143

Chapter 3. Application Classes

Operator Description
RTRStream& operator>>

(rtr_sgn_32_t)

ReadFromStream operator

RTRStream& operator>>

(rtr_uns_32_t)

ReadFromStream operator

RTRStream& operator < <

(const char)

WriteToStream operator

RTRStream& operator < <

(rtr_sgn_32_t)

WriteToStream operator

RTRStream& operator < <

(rtr_uns_32_t)

WriteToStream operator

operator>>
operator>> — RTRStream::operator>>

Prototype
RTRStream& operator>> (char *pString)
 {
 ReadFromStream(pString);
 return *this;
 }
RTRStream& operator>> (rtr_sgn_32_t &iNumber)
 {
 ReadFromStream(iNumber);
 return *this;
 }
RTRStream& operator>> (rtr_uns_32_t &uiNumber)
 {
 ReadFromStream(uiNumber);
 return *this;
 }

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_INVARGPTR

Parameters

pString
Pointer to a character string.

144

Chapter 3. Application Classes

iNumber
A signed integer.

uiNumber
An unsigned integer.

Description
>> denotes the ReadFromStream operators. These member functions extract data from a buffer by
calling ReadFromStream to read the data and return *this. The three types of stream data are string,
signed, and unsigned.

Example
// Populate this object with the data
 *this >> m_uiPrice >> m_uiISBN >> m_szTitle >> m_szAuthor;

// The 1 line call above is equivilant to the 4 lines below.
// ReadFromStream(m_uiISBN);
// ReadFromStream(m_uiPrice);
// ReadFromStream(m_szTitle);
// ReadFromStream(m_szAuthor);

operator<<
operator<< — RTRStream::operator < <

Prototype
RTRStream& operator<< (char *pString)
 {
 WriteToStream(pString);
 return *this;
 }
RTRStream& operator<< (rtr_sgn_32_t &iNumber)
 {
 WriteToStream(iNumber);
 return *this;
 }
RTRStream& operator<< (rtr_uns_32_t &uiNumber)
 {
 WriteToStream(uiNumber);
 return *this;
 }

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion

145

Chapter 3. Application Classes

Status Message
RTR_STS_INVSTRINGPTRARG The string pointer argument is invalid - string too

long.

Parameters

pString
Pointer to a character string.

iNumber
A signed integer.

uiNumber
An unsigned integer.

Description
< < denotes the WriteToStream operators. These member functions write data to a buffer by calling
WriteToStream to write the data and return *this. The three types of stream data are string, signed, and
unsigned.

Example
// Save the type of object we are. This is used by the class factory
// on the server side to determine which type of class to allocate.
 *this << ABC_BOOK;
 *this << m_uiPrice << m_uiISBN << m_szTitle << m_szAuthor;
// The 1 line call above is equivalent to the 4 lines below. We
// can use the << and >> operators because we know that the data
// which we store is not > the current RTR maximum = 65535 bytes.
// WriteToStream(m_uiISBN);
// WriteToStream(m_uiPrice);
// WriteToStream(m_szTitle);
// WriteToStream(m_szAuthor);

ReadFromStream()
ReadFromStream() — RTRStream::ReadFromStream();

Prototype
rtr_status_t ReadFromStream(rtr_msgbuf_t pvBuffer,
 rtr_msglen_t &uiBufferSize
 rtr_msglen_t &uiSizeCopied);

rtr_status_t ReadFromStream(char *pString, size_t uiStringSize);

rtr_status_t ReadFromStream(rtr_sgn_32_t &iNumber);

rtr_status_t ReadFromStream(rtr_uns_32_t &uiNumber);

146

Chapter 3. Application Classes

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_ENDOFSTREAM The end-of-stream has been reached.

Parameters

uiBufferSize
An unsigned integer for length of the buffer.

pvBuffer
A void pointer to a buffer.

uiNumber
An unsigned integer.

pString
Pointer to a character string.

iNumber
A signed integer.

Description
Reads the first instance of a data type from a buffer as specified in the ReadFromStream methods.
Note that the string buffer is assumed to be large enough (RTR_MAX_MSGLEN).

Example
RTRStream::ReadFromStream(pString);

RTRStream()
RTRStream() — RTRStream::RTRStream();

Prototype
RTRStream();

Return Value
None.

147

Chapter 3. Application Classes

Parameters
None.

Description
Constructor method for the RTRStream class.

Example
RTRStream::RTRStream();

WriteToStream()
WriteToStream() — RTRStream::WriteToStream();

Prototype
rtr_status_t WriteToStream(rtr_const_msgbuf_t pvBuffer, rtr_msglen_t
 uiBufferLength);

rtr_status_t WriteToStream(const char *pString);

rtr_status_t WriteToStream(rtr_sgn_32_t iNumber);

rtr_status_t WriteToStream(rtr_uns_32_t uiNumber);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_ENDOFSTREAM The end-of-stream has been reached.

Parameters

uiBufferLength
An unsigned integer for length of the buffer.

pvBuffer
A void pointer to a buffer.

uiNumber
An unsigned integer.

iNumber
A signed integer.

148

Chapter 3. Application Classes

pString
Pointer to a character string.

Description
Write to a data buffer, specifying the data with either buffer and buffer length, as unsigned integer, or
string.

Example
RTRStream::WriteToStream(uiNumber);

149

Chapter 3. Application Classes

150

Chapter 4. Management Classes
Management classes are offered for both new and existing RTR applications. The types of
management classes include:

• Setup class:

RTR class

• Facility classes:

• RTRFacilityMember class

• RTRFacilityMemberArray class

• RTRFacilityProperties class

• RTRFacilityManager class

• Partition classes:

• RTRBackendPartitonProperties class

• RTRKeySegment class

• RTRKeySegmentArray

• RTRPartitionManager class

• Counter classes:

• RTRCounter class

• RTRSignedCounter class

• RTRStringCounter class

• RTRUnsignedCounter class

4.1. RTR
The RTR class is a setup class, for RTR system management operations, designed for starting and
stopping RTR, and creating and deleting RTR journals.

RTR Class Members

Construction

Method Description
RTR() Constructor
~RTR() Destructor

151

Chapter 4. Management Classes

Operations
Method Description
CreateJournal(bool) Create a journal for RTR.
DeleteJournal() Delete the journal for RTR.
GetErrorText(rtr_status_t) Get the error text associated with the rtr_status_t

return value.
IsRunning() Determine if RTR is running.
Start() Start RTR.
StartWebServer(bool, bool) Start RTR on a web server.
Stop() Stop RTR.
StopWebServer() Stop RTR on a web server.

CreateJournal()
CreateJournal() — RTR::CreateJournal();

Prototype
rtr_status_t CreateJournal(bool bSupersede = false);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_ ILLDEVTYP RTR can only create its journal files on directory

structured devices.

Parameters

bSupersede
A boolean attribute that specifies how to handle cases where a journal already exists. Set bSupersede
to true to overwrite an existing journal. If set to false, a journal is created only if no journal previously
existed.

Description
Call this method to create an RTR journal file. A journal is required for all facility members with a
backend role, and any frontends that participate in nested transactions.

For more information on RTR journals, see the RTR Application Design Guide and the RTR System
Manager's Manual.

Example
// Declare an RTR object.

152

Chapter 4. Management Classes

RTR *myRTR = new RTR();
 rtr_status_t sStatus;
 bool bSupersede = false; // false -> no supersede
 sStatus = myRTR->CreateJournal(bSupersede);

DeleteJournal()
DeleteJournal() — RTR::DeleteJournal();

Prototype
rtr_status_t DeleteJournal();

Return Value
rtr_status_t The RTR status message return value. RTR_STS_OK is the normal successful
completion.

Parameters
None.

Description
Call this method for deleting a journal.

For more information on RTR journals, see the RTR System Manager's Manual.

Example
 // declare an RTR object
 RTR *myRTR = new RTR();
 rtr_status_t sStatus;
 sStatus = myRTR->DeleteJournal();

GetErrorText()
GetErrorText() — RTR::GetErrorText();

Prototype
static const char *GetErrorText(rtr_status_t sStatus);

Return Value
Returns a pointer to the error message text associated with a known RTR message.

Parameters

rtr_status_t
The RTR status message return value. RTR_STS_OK is the normal successful completion.

153

Chapter 4. Management Classes

Description
Call this method to retrieve the error message text associated with an RTR status.

Example
 // start rtr
 RTRmyRTR;
 sStatus = myRTR.Start();
 cout << myRTR.GetErrorText(sStatus) << endl;
 // create journal
 sStatus = myRTR.CreateJournal(true);
 cout << myRTR.GetErrorText(sStatus) << endl;

 //An example from the Sample application in the Examples directory
 inline void print_status_on_failure(rtr_status_t sStatus)
 {
 switch (sStatus)
 {
 case ABCSuccess :
 case ABCOrderSucceeded :
 case ABCOrderFailed :{
 break;
 }
 default: {
 cout << RTR::GetErrorText(sStatus);
 break;
 };
 }
 return;
 }

IsRunning()
IsRunning() — RTR::IsRunning();

Prototype
bool IsRunning();

Return Value

Status Message
TRUE RTR is running.
FALSE RTR is not running.

Parameters
None.

Description
Call this method to find out if RTR is running on this node. If RTR is running, it will return a true,
otherwise an error code.

154

Chapter 4. Management Classes

Example
 RTR *myRTR = new RTR();
 rtr_status_t sStatus;
 sStatus = myRTR->IsRunning();

RTR()
RTR() — RTR::RTR();

Prototype
RTR();

Return Value
None.

Parameters
None.

Description
Call this method to declare an RTR object.

Example
aRTR *myRTR = new RTR();

Start()
Start() — RTR::Start();

Prototype
rtr_status_t Start();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_ ACPDIED The RTR ACP is no longer running, restart RTR.
RTR_STS_ ACPNOTVIA ACP is no longer a viable entity.
RTR_STS_ BYTLMNSUFF Insufficient process quota bytlm, required

100000.
RTR_STS_ ERRSTAACP Unable to start ACP.
RTR_STS_ EXWSMAX Requested memory quotas exceed the system

limit WSMAX.

155

Chapter 4. Management Classes

Status Message
RTR_STS_OK Normal successful completion.

Parameters
None.

Description
Call this method to start RTR on a node.

Example
 // declare RTR object.
 RTR *myRTR = new RTR();
 rtr_status_t sStatus;
 sStatus = myRTR->Start();

Stop()
Stop() — RTR::Stop();

Prototype
rtr_status_t Stop();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Description
RTR_STS_ ACPDIED The RTR ACP is no longer running, restart RTR.
RTR_STS_OK Normal successful completion.
RTR_STS_ RTRNOTRUN RTR not running.

Parameters
None.

Description
Call this method to stop RTR on a node. Calling this method stops all RTR activity on the computer
where it is called. Any running applications receive the error indication RTR_STS_NOACP. All
facilities, links, and partitions are destroyed.

Example
 // declare RTR object
 RTR *myRTR = new RTR();
 rtr_status_t sStatus;
 sStatus = myRTR->Stop();

156

Chapter 4. Management Classes

StartWebServer()
StartWebServer() — RTR::StartWebServer();

Prototype
rtr_status_t StartWebServer(bool bAuthentication = true,
 bool bReadOnlyAccess = false);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

bAuthentication
A boolean attribute for specifying and controlling the web server user authentication. The default
setting is for the server to perform user authentication using the username and password. This may be
disabled, allowing anyone with a browser to access the management component.

bReadOnlyAccess
A boolean attribute for specifying read-only access to the web browser RTR management component.
A server started with the StartWebServer method servers status and monitor pages but does not permit
any changes to be made to the configuration. By specifying read-only access for server operation, no
shadowing or journaling is required. The message is still written to the journal but is not played to a
shadow and is purged after the transaction is completed on the primary server. The message is still
needed in the journal to allow recovery of in-flight transactions.

Description
Call this method to start RTR on a web server. This starts a user's HTTP server component, thus
enabling usage of the web browser RTR management component for the calling user.

Example
bool RTR::StartWebServer()
{
 bool bOverallResult = true;
 RTR MyRTR;
rtr_status_t stsStartWebServer;
stsStartWebServer = MyRTR.StartWebServer();
if (IsFailure(stsStartWebServer == RTR_STS_OK))
{
 bOverallResult = false;
 OutputStatus(stsStartWebServer);
}

StopWebServer()
StopWebServer() — RTR::StopWebServer();

157

Chapter 4. Management Classes

Prototype
rtr_status_t StopWebServer();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_ NFW Operation requires SETPRV privilege.
RTR_STS_OK Normal successful completion.
RTR_STS_SRVDISCON Server disconnected on node 'nodename.'

Parameters
None

Description
Call this method to stop RTR on a web server.

Example
rtr_status_t stsStopWebServer;
stsStopWebServer = MyRTR.StopWebServer();
if (IsFailure(stsStopWebServer == RTR_STS_OK || stsStopWebServer ==
RTR_STS_SRVDISCON))
{ bOverallResult = false;
 OutputStatus(stsStopWebServer);
}

4.2. RTRBackendPartitionProperties
This class holds and makes available the properties of its associated RTRPartition object. This allows
the RTR application to Get and Set various attributes of an RTR partition. This class may be called by
both new C++ API and legacy applications.

RTRBackendPartitionProperties Class Members
Construction
Method Description
RTRPartitionProperties(const char) Constructor
~RTRPartitionProperties(const char) Destructor

Operations()
Method Description
GetFacilityName(rtr_facnam_t,

const size_t)

Gets the facility name associated with the
RTRPartition object this RTRPartitionProperties
object describes.

158

Chapter 4. Management Classes

Method Description
GetNumberOfRecoveredTransactions Gets the number of recovered transactions

associated with the RTRPartition object this
RTRPartitionProperties object describes.

GetPartitionName(rtr_parnam_t, const size_t) Gets the partition name associated with the
RTRPartition object this RTRPartitionProperties
object describes.

GetRetryCount(rtr_uns_32_t) Gets the number of retrys associated with the
RTRPartition object this RTRPartitionProperties
object describes.

SetFailoverPolicy(const eRTRFailoverPolicy) Defines the policy that RTR should take when a
primary partition fails.

SetPriorityList(const char) Sets a relative priority used by RTR when
selecting a backend member to make active.

SetRecoveryRetryCount Indicates the maximum number of times that
a transaction should be presented for recovery
before being written to the journal as an
exception.

GetFacilityName()
GetFacilityName() — RTRBackendPartitionProperties::GetFacilityName();

Prototype
rtr_status_t GetFacilityName(rtr_facnam_t pszFacilityName,
 const size_t uiFacilityNameSize);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_ APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_INVARGPTR Invalid parameter address specified on last call.
RTR_STS_OK Normal successful completion.

Parameters

pszFacilityName
Pointer to a zero-terminated string receiving the facility name for the RTRPartition this
RTRPartitionProperties object describes.

uiFacilityNameSize
An unsigned integer for the size of the specified facility name. The maximum string length is
RTR_MAX_FACNAM_LEN.

159

Chapter 4. Management Classes

Description

Gets the facility name associated with the RTRPartition object this RTRPartitionProperties object
describes.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =
 PartitionManager.GetBackendPartitionProperties("MyPartition");
char *pszFacilityName = new char[RTR_MAX_FACNAM_LEN+1];
sStatus = pPartProperties->GetFacilityName(pszFacilityName,
 RTR_MAX_FACNAM_LEN+1);

GetNumberOfRecoveredTransactions()
GetNumberOfRecoveredTransactions() —
RTRBackendPartitionProperties::GetNumberOfRecoveredTransactions()

Prototype
rtr_status_t GetNumberOfRecoveredTransactions(rtr_uns_32_t
 &uiNumberRecoveredTxns);

Return Value

Interpret value for the success or failure of this call. RTR_STS_OK is the normal successful
completion.

Parameters

uiNumberRecoveredTxns
A referenced value of type rtr_uns_32_t which receives the number of recovered transactions.

Description

Gets the number of recovered transactions associated with the RTRPartition object this
RTRPartitionProperties object describes.

For more information, see the RTR System Manager's Manual.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =
 PartitionManager.GetBackendPartitionProperties()"MyPartition");
rtr_uns_32_t iNumberRecoveredTxns
sStatus = pPartProperties->
 GetNumberOfRecoveredTransactions(iNumberRecoveredTxns);

160

Chapter 4. Management Classes

GetPartitionName()
GetPartitionName() — RTRBackendPartitionProperties::GetPartitionName();

Prototype
rtr_status_t GetPartitionName(rtr_parnam_t pszPartitionName
 const size_t uiPartitionNameSize);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.
RTR_STS_INVARGPTR Invalid parameter address specified on last call.
RTR_STS_OK Normal successful completion.

Parameters

pszPartitionName
Pointer to a null-terminated string receiving the partition name for the RTRPartition this
RTRPartitionProperties object describes.

uiPartitionNameSize
An unsigned integer for the size of the specified partition name.

Description
Gets the partition name associated with the RTRPartition object this RTRPartitionProperties object
describes.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =
 PartitionManager.GetBackendPartitionProperties("MyPartition");
char *pszPartitionName = new char[RTR_MAX_PARNAM_LEN+1];
sStatus = pPartProperties->GetPartitionName(pszPartitionName,
 RTR_MAX_PARNAM_LEN+1);

GetRetryCount()
GetRetryCount() — RTRBackendPartitionProperties::GetRetryCount();

Prototype
rtr_status_t GetRetryCount(rtr_uns_32_t &uiRetryCount);

161

Chapter 4. Management Classes

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

uiRetryCount
A referenced value of type rtr_uns_32_t which receives the number of retries.

Description
Gets the number of times a transaction has been retried after a failure.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =
PartitionManager.GetBackendPartitionProperties("MyPartition");
rtr_uns_32_t iRetryCount;
sStatus = pPartProperties->GetRetryCount(iRetryCount);

RTRBackendPartitionProperties()
RTRBackendPartitionProperties() —
RTRBackendPartitionProperties::RTRBackendPartitionProperties();

Prototype
RTRBackendPartitionProperties(rtr_const_parnam_t pszPartitionName);
virtual ~RTRBackendPartitionProperties();

Return Value
None.

Parameters

pszPartitionName
Pointer to a zero-terminated string containing the partition name for which this
RTRPartitionProperties object is being created.

Description
Call this constructor to create an RTRPartitionProperties object for the partition named.

Example
// Create BackendPartitionProperties object

162

Chapter 4. Management Classes

RTRBackendPartitionProperties *pBEPartitionProperties;
pBEPartitionProperties = pPartitionManager->
 GetBackendPartitionProperties(GetDefaultPartitionName());
if (IsFailure(pBEPartitionProperties != NULL))
{
bOverallResult = false;
cout << endl << " In Test_GetFacilityName(),
 pPartitionManager->GetBackendPartitionProperties()
 call failed." << endl;
delete pPartitionManager;
return bOverallResult; }

SetFailoverPolicy()
SetFailoverPolicy() — RTRBackendPartitionProperties::SetFailoverPolicy();

Prototype
rtr_status_t SetFailoverPolicy(const eRTRFailoverPolicy eFailoverPolicy);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_PRTBADCMD Partition command invalid or not implemented in

this version of RTR.

Parameters

eRTRFailoverPolicy
An attribute for specifying an RTR failover policy:

1 = RTRFailOverToShadow

2 = RTRFailOverToStandBy

Description
Determines the action to take when the primary partition fails. The default action is to allow a standby
of the primary to become the new primary. Optionally, RTR can be set to change state so that the
secondary becomes primary, and a standby of the old primary (if any) becomes the new secondary.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =
 PartitionManager.GetBackendPartitionProperties("MyPartition");
const RTRFailoverPolicy eFailoverPolicy = RTRFailOverToShadow;
sStatus = pPartProperties->SetFailoverPolicy(eFailoverPolicy);

163

Chapter 4. Management Classes

SetPriorityList()
SetPriorityList() — RTRBackendPartitionProperties::SetPriorityList();

Prototype
rtr_status_t SetPriorityList(const char *pszPriorityList);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_PRTBADCMD Partition command invalid or not implemented in

this version of RTR.

Parameters

pszPriorityList
A null-terminated string pointer to a priority list.

Description
Sets a relative priority used by RTR when selecting a backend member to make active. List the
backends in your configuration in decreasing order of priority; the order of the list is taken into
consideration when RTR is decides where to make a partition active.

Suspend partitions before changing the priority list. It is not an error to enter different versions of
the priority list at different backends, but this is not recommended. If calling SetPriorityList, it is
recommended to call SetPriorityList programmatically before you register the partition with the server
transaction controller.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =
 PartitionManager.GetBackendPartitionProperties("MyPartition");
char *pszPriorityList = "depth,length"; // list of BE for prioirty
sStatus = pPartProperties->SetPriorityList(pszPriorityList);

SetRecoveryRetryCount()
SetRecoveryRetryCount() — RTRBackendPartitionProperties::SetRecoveryRetryCount();

Prototype
rtr_status_t SetRecoveryRetryCount(rtr_uns_32_t & uiRetryCount);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

164

Chapter 4. Management Classes

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_APPBUFFTOOSMALL The application buffer is too small.

Parameters

uiRetryCount
A referenced value of type rtr_uns_32_t that receives the number of retries.

Description
Call this method to set the recovery retry count. The recovery retry count indicates the maximum
number of times that a transaction should be presented for recovery before being written to the journal
as an exception. Once a transaction has been recorded as an exception, it is no longer considered
eligible for recovery and will require manual processing by a qualified individual.

Example
// declare a partition properties object.
rtr_status_t sStatus;
RTRBackendPartitionProperties *pPartProperties =
 PartitionManager.GetBackendPartitionProperties("MyPartition");
rtr_uns_32_t iRetryCount=10; // #of times to retry before giveup.
sStatus = pPartProperties->SetRecoveryRetryCount(iRetryCount);

4.3. RTRFacilityManager
RTRFacilityManager Class Members

Construction
Method Description
RTRFacilityManager Constructor
~RTRFacilityManager() Destructor

Operations
Method Description
AddBackend(rtr_const_facnam_t,
rtr_const_nodnam_t)

Add a backend role to an existing facility.

AddFrontend(rtr_const_facnam_t,
rtr_const_nodnam_t)

Add a fronted role to an existing facility.

AddRouter(rtr_const_facnam_t,
rtr_const_nodnam_t)

Add a router role to an existing facility.

CreateFacility(rtr_const_facnam_t,
rtr_const_nodnam_t, rtr_const_nodnam_t, bool)

Create a facility, designating router and frontend.

165

Chapter 4. Management Classes

Method Description
CreateFacility(rtr_const_facnam_t,
rtr_const_nodnam_t, rtr_const_nodnam_t, bool,
bool)

Create a facility, designating router and backend.

CreateFacility(rtr_const_facnam_t,
rtr_const_nodnam_t, rtr_const_nodnam_t,
rtr_const_nodnam_t, bool, bool)

Create a facility, designating router, frontend, and
backend.

DeleteFacility(rtr_const_facnam_t) Delete a facility.
GetFacilityProperties(rtr_const_facnam_t,
RTRFacilityProperties)

Retrieve properties for an existing facility.

RemoveBackend(rtr_const_facnam_t,
rtr_const_nodnam_t)

Remove a backend role from an existing facility.

RemoveFrontend(rtr_const_facnam_t,
rtr_const_nodnam_t)

Remove a fronted role from an existing facility.

RemoveRouter(rtr_const_facnam_t,
rtr_const_nodnam_t)

Remove a router role from an existing facility.

AddBackend()
AddBackend() — RTRFacilityManager::AddBackend();

Prototype
rtr_status_t AddBackend(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszBackend);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_ENOIPNAM Entered node name does not exist.
RTR_STS_INVBCKENDNAMARG The backend name argument is invalid.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_NOSUCHFAC No such facility.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszBackend
A pointer to a null-terminated string containing the nodename to add as a backend (BE).

166

Chapter 4. Management Classes

Description
Call this method to extend a backend to a facility. Facility name and backend node names should
not be null values. A node does not have to be reachable but must be valid or RTR returns
RTR_STS_ENOIPNAM.

The Backend parameter can be a comma-separated list of nodenames.

Example
// Add a Backend
rtr_status_t stsAddBackend;

stsAddBackend = pFacilityManager->AddBackend("AddBackend",
 m_psTest_ExtraNodeName);
if (IsFailure(stsAddBackend == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsAddBackend);
}

AddFrontend()
AddFrontend() — RTRFacilityManager::AddFrontend();

Prototype
rtr_status_t AddFrontend(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszFrontend);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_ENOIPNAM Entered node name does not exist.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFRNTENDNMARG The frontend name argument is invalid.
RTR_STS_NOROUTERS No routers.
RTR_STS_NOSUCHFAC No such facility.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszFrontend
A pointer to a null-terminated string containing the nodename to add as a frontend (FE).

167

Chapter 4. Management Classes

Description
Call this method to extend a frontend node for a facility. Facility names and node names should not be
null values.

The Frontend parameter can be a comma-separated list of nodenames.

Example
char *pszFacilityName = "Myfacility";
char *pszNodeName = "FENodeNamesSeparatedbyComma";
sStatus = myFac-> AddFrontend (pszFacilityName,l_ pszNodeName);

AddRouter()
AddRouter() — RTRFacilityManager::AddRouter();

Prototype
rtr_status_t AddRouter(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszRouter);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_FACEXTENDED Router added successfully.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVROUTRNAMEARG The router name argument is invalid.
RTR_STS_NOFRONTEN No frontends specified.
RTR_STS_NOSUCHFAC No such facility.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszRouter
A null-terminated pointer to a facility member with a router (TR) role.

Description
Call this method to extend a router for a facility. Facility name and node names should not be null
values.

168

Chapter 4. Management Classes

Example
char *pszFacilityName = "Myfacility";
char *pszNodeName = "FENodeNamesSeparatedbyComma";
sStatus = myFac-> AddRouter (pszFacilityName,l_ pszNodeName);

CreateFacility()
CreateFacility() — RTRFacilityManager::CreateFacility();

Prototype
rtr_status_t CreateFacility(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszRouter,
 rtr_const_nodnam_t pszFrontend,
 bool bEnableRouterCallout);

rtr_status_t CreateFacility(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszRouter,
 rtr_const_nodnam_t pszBackend,
 bool bEnableRouterCallout,
 bool bEnableBackendCallout);

rtr_status_t CreateFacility(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszRouter,
 rtr_const_nodnam_t pszFrontend,
 rtr_const_nodnam_t pszBackend,
 bool bEnableRouterCallout,
 bool bEnableBackendCallout);

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_DUPNODNAM Duplicate node names in list.
RTR_STS_INVBCKENDNAMARG The backend name argument is invalid.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFRNTENDNMARG The frontend name argument is invalid.
RTR_STS_INVROUTRNAMEARG The router name argument is invalid.
RTR_STS_OWNNODMIS Executing node is not specified as frontend,

router, or backend.
RTR_STS_NOBACKEND No backend specified in facility.
RTR_STS_NOFRONTEN No frontend specified in facility.
RTR_STS_NOROUTERS No routers specified in facility.
RTR_STS_OK Normal successful completion.
RTR_STS_OWNNODMIS Executing node is not specified as

Frontend ,router or backend.
RTR_STS_JOUNOTFOU Journal file not found.

169

Chapter 4. Management Classes

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszRouter
A null-terminated pointer to a facility member with a router (TR) role.

pszFrontend
A null-terminated pointer to a facility member with a frontend (FE) role.

pszBackend
A null-terminated pointer to a facility member with a backend (BE) role.

bEnableRouterCallout
A boolean attribute for specifying a callout router.

bEnableBackendCallout
A boolean attribute for specifying a callout backend.

Description
Call this method to create a facility. There are three versions of the CreateFacility method.
One version designates router, frontend, and backend nodes. One version designates router and
frontend nodes. One version designates router and backend nodes. For these last two versions, the
CreateFacility method requires the router name to be non-local.

For example, the following two calls would succeed:

stsCreateFacility
pFacilityManager->CreateFacility("FacilityWithoutBackend",
 "router_nonlocal_nodename",
 "frontend_local_nodename",
 true);
stsCreateFacility
pFacilityManager->CreateFacility("FacilityWithoutFrontend",
 "router_nonlocal_nodename",
 "backend_local_nodename",
 true);

These two calls would return the RTR_STS_xxx errors indicated:

stsCreateFacility
pFacilityManager->CreateFacility("FacilityWithoutBackend",
 "router_local_nodename",
 "frontend_local_nodename",
 true);
NOBACKEND

170

Chapter 4. Management Classes

No backends specified

Explanation: No backends were specified on a CREATE FACILITY command and the node where the
command was executed was specified as being a router. This error message is displayed by the RTR
utility.

stsCreateFacility
pFacilityManager->CreateFacility("FacilityWithoutFrontend",
 "router_local_nodename",
 "backend_local_nodename",
 true);
NOFRONTEN
No frontends specified

Explanation: No frontends were specified on a CREATE FACILITY command and the node where
the command was executed was specified as being a router. This error message is displayed by the
RTR utility.

Example
 RTRFacilityManager::CreateFacilityWithAllRoles_3()
 {
 bool bOverallResult = true;
 //Create facility manager, abort if fails
 RTRFacilityManager * pFacilityManager;
 pFacilityManager = new RTRFacilityManager;
 if (IsFailure(pFacilityManager != NULL))
 {
 return false;
 }
 // Create the facility
 rtr_status_t stsCreateFacility;
 stsCreateFacility =
 pFacilityManager->CreateFacility("FacilityWithAllRoles_3",
 GetDefaultRouterName(),
 GetDefaultFrontendName(),
 GetDefaultBackendName(),
 true,
 false);
 // If facility creation is not successful, report it
 if (IsFailure(stsCreateFacility == RTR_STS_OK))
 {
 bOverallResult = false;
 OutputStatus(stsCreateFacility);
 }
 else // Delete a successfully created facility
 {
 rtr_status_t stsDeleteFacility;
 stsDeleteFacility =
 pFacilityManager->DeleteFacility("FacilityWithAllRoles_3");
 if (IsFailure(stsDeleteFacility == RTR_STS_OK))
 {
 bOverallResult = false;
 OutputStatus(stsDeleteFacility);
 }
 }
 // Cleanup and return
 delete pFacilityManager;

171

Chapter 4. Management Classes

 return bOverallResult;
 }

An example from the Sample application in the Examples directory:

 inline rtr_status_t CreateFacility()
 {
 // Create a Facility
 rtr_status_t sStatus;
 RTRFacilityManager FacilityManager;
 // Get the local node name to create the facility.
 char nodename[ABCMAX_STRING_LEN];
 gethostname(&nodename[0],ABCMAX_STRING_LEN);
 // Create the facility specifying that the local node has all roles.
 sStatus =
 FacilityManager.CreateFacility(ABCFacility,nodename,nodename,
 nodename,true,false);
 print_status_on_failure(sStatus);
 return sStatus;
 }

For more information on creating a facility, see the RTR System Manager's Manual.

DeleteFacility()
DeleteFacility() — RTRFacilityManager::DeleteFacility();

Prototype
rtr_status_t DeleteFacility(rtr_const_facnam_t pszFacilityName);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_FACDELETE Facility deleted successfully
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_NOSUCHFAC No such facility available
RTR_STS_OK Normal successful completion
RTR_STS_RTRNOTSTA RTR not started

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

Description
Call this method to delete a facility. This does not clean out the journal; transactions that are to be
processed stay in the journal. However, the facility must be recreated before you can process the
transactions stored in the journal.

172

Chapter 4. Management Classes

For more information on creating a facility, see the RTR System Manager's Manual.

Example
 rtr_status_t sStatus;
 char *pszFacilityName = "Myfacility";
 sStatus = myFac->DeleteFacility(pszFacilityName);

GetFacilityProperties()
GetFacilityProperties() — RTRFacilityManager::GetFacilityProperties();

Prototype
rtr_status_t GetFacilityProperties(rtr_const_facnam_t pszFacilityName,
 RTRFacilityProperties *&pFacProp);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFACPROPPTARG Invalid facility properties object pointer

argument.
RTR_STS_INVSTRINGPTRARG The string pointer argument is invalid - string too

long.
RTR_STS_OK Normal successful completion

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pFacProp
Pointer to properties for a given facility.

Description
Retrieve properties for an existing facility. Caller must delete pFacProp later.

Example
 // Create a FacilityProperties object to get the properties from.
 RTRFacilityProperties *pFacilityProperties =
 new RTRFacilityProperties("GetFacilityProperties");
 if (IsFailure(pFacilityProperties != NULL))
 {
 //Can't continue, so cleanup and return
 delete pFacilityManager;
 return false;

173

Chapter 4. Management Classes

 }
 rtr_status_t stsGetFacilityProperties;
 stsGetFacilityProperties =
 pFacilityManager->GetFacilityProperties("GetFacilityProperties",
 pFacilityProperties);
 if (IsFailure(stsGetFacilityProperties == RTR_STS_OK))
 {
 bOverallResult = false;
 OutputStatus(stsGetFacilityProperties);
 }

RemoveBackend()
RemoveBackend() — RTRFacilityManager::RemoveBackend();

Prototype
rtr_status_t RemoveBackend(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszBackend);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVBCKENDNAMARG The backend name argument is invalid.
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFACPROPPTARG Invalid facility properties object pointer

argument.
RTR_STS_NOBACKEND No more backends are available in this facility.
RTR_STS_ NOSUCHFAC No such facility available.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR is not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszBackend
A null-terminated pointer to a facility member with a backend (BE) role.

Description
Call this method to remove backend node from a facility.

Example
rtr_status_t sStatus;

174

Chapter 4. Management Classes

char *pszFacilityName = "MyFacilityName";
char *pszNodeName = "BENodeNamesSeparatedbyComma";
sStatus = myFac->RemoveBackend(pszFacilityName,pszNodeName);

RemoveFrontend()
RemoveFrontend() — RTRFacilityManager::RemoveFrontend();

Prototype
rtr_status_t RemoveFrontend(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszFrontend);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVFRNTENDNMARG The frontend name argument is invalid.
RTR_STS_ NOSUCHFAC No such facility available.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR is not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszFrontend
A null-terminated pointer to a facility member with a frontend (FE) role.

Description
Call this method to remove frontend nodes from a facility.

Example
rtr_status_t sStatus;
char *pszFacilityName = "MyFacilityName";
char *pszNodeName = "FENodeNamesSeparatedbyComma";
sStatus = myFac-> RemoveFrontend (pszFacilityName,pszNodeName);

RemoveRouter()
RemoveRouter() — RTRFacilityManager::RemoveRouter();

Prototype
rtr_status_t RemoveRouter(rtr_const_facnam_t pszFacilityName,

175

Chapter 4. Management Classes

 rtr_const_nodnam_t
 pszRouter);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVROUTRNAMEARG The router name argument is invalid.
RTR_STS_NOROUTERS No more routers are available in this facility.
RTR_STS_ NOSUCHFAC No such facility available.
RTR_STS_OK Normal successful completion.
RTR_STS_RTRNOTSTA RTR is not started.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszRouter
A null-terminated pointer to a facility member with a router (TR) role.

Description
Call this method to remove router nodes from a facility.

Example
rtr_status_t sStatus;
char *pszFacilityName = "MyFacilityName";
char *pszNodeName = "TRNodeNamesSeparatedbyComma";
sStatus = myFac-> RemoveRouter (pszFacilityName,pszNodeName);

RTRFacilityManager()
RTRFacilityManager() — RTRFacilityManager::RTRFacilityManager();

Prototype
RTRFacilityManager(); virtual ~RTRFacilityManager();

Return Value
None.

Parameters
None.

176

Chapter 4. Management Classes

Description

Use this method to declare a facility manager object. Facility manager object should be declared for
accessing any properties of a facility.

Example
RTRFacilityManager *myFac = new RTRFacilityManager();

4.4. RTRFacilityMember
RTRFacilityMember provides members that can retrieve information about facilities including
member name, role of the member, connectivity to or property of being the local node.

RTRFacilityMember Class Members

Construction

Method Description
RTRFacilityMember(rtr_const_facnam_t,
rtr_const_nodnam_t, const
eRTRMemberRoleType)

Constructor

~RTRFacilityMember() Destructor

Operations

Method Description
GetName(rtr_facnam_t, const size_t) Retrieve the name of the facility member.
HasBackendRole(bool) Determine if this facility member has a backend

role.
HasFrontendRole(bool) Determine if this facility member has a frontend

role.
HasRouterRole(bool) Determine if this facility member has a router

role.
IsConnectedToLocalNode(bool) Determine if this facility member has

connectivity to the local node.
IsLocalNode(bool) Determine if this facility is the local node.

GetName()
GetName() — RTRFacilityMember::GetName();

Prototype
rtr_status_t GetName(rtr_facnam_t pszNodeName, const size_t
 uiNodeNameSize);

177

Chapter 4. Management Classes

Return Value
rtr_status_t

Parameters

pszFacilityName
A pointer to a facility name.

uiFacilityNameSize
An unsigned integer for the facility name size.

Description
Retrieve the name of the facility member.

Example
 #define MAX_NODNAME 256
 char szNodName[MAX_NODNAME];
 rtr_status_t stsGetName = FacMember.GetName(szNodName, MAX_NODNAME);
 if (IsFailure(stsGetName == RTR_STS_OK))
 {
 cout << " RTRFacilityMember::GetName failed\n";
 OutputStatus(stsGetName);
 }
 else
 {...

HasBackendRole()
HasBackendRole() — RTRFacilityMember::HasBackendRole();

Prototype
rtr_status_t HasBackendRole(bool &bHasRole);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

bHasRole
A boolean that is true or false for HasBackendRole.

Description
Call this method to find out a node is configured as backend.

178

Chapter 4. Management Classes

Example
rtr_status_t stsHasRole;
bool bHasRole;
stsHasRole = FacMember.HasBackendRole(bHasRole);
if (IsFailure(stsHasRole == RTR_STS_OK))
 {
 bOverallResult = false;
 OutputStatus(stsHasRole);
 }
bOverallResult = (bHasRole == true);

HasFrontendRole()
HasFrontendRole() — RTRFacilityMember::HasFrontendRole();

Prototype
rtr_status_t HasFrontendRole(bool &bHasRole);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

bHasRole
A boolean that is true or false for HasFrontendRole.

Description
Call this method to find out if a node is configured as frontend.

Example
rtr_status_t stsHasRole;
bool bHasRole;
stsHasRole = FacMember.HasFrontendRole(bHasRole);
if (IsFailure(stsHasRole == RTR_STS_OK))
 {
 bOverallResult = false;
 OutputStatus(stsHasRole);
 }
bOverallResult = (bHasRole == true);

HasRouterRole()
HasRouterRole() — RTRFacilityMember::HasRouterRole();

Prototype
rtr_status_t HasRouterRole(bool &bHasRole);

179

Chapter 4. Management Classes

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

bHasRole
A boolean that is true or false for HasRouterRole.

Description
Call this method to find out if a node is configured as router.

Example
rtr_status_t stsHasRole;
bool bHasRole;
stsHasRole = FacMember.HasRouterRole(bHasRole);
if (IsFailure(stsHasRole == RTR_STS_OK))
 {
 bOverallResult = false;
 OutputStatus(stsHasRole);
 }
bOverallResult = (bHasRole == true);

IsConnectedToLocalNode()
IsConnectedToLocalNode() — RTRFacilityMember::IsConnectedToLocalNode();

Prototype
rtr_status_t IsConnectedToLocalNode(bool &bIsConnected);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

bIsConnected
A boolean that is true if the node is connected to the local node.

Description
Call this method to find out if this node is connected to the local node.

Example
bool bIsConnected;
rtr_status_t stsIsConnected;

180

Chapter 4. Management Classes

stsIsConnected = FacMember.IsConnectedToLocalNode(bIsConnected);
if (IsFailure(stsIsConnected == RTR_STS_OK))
 {
 OutputStatus(stsIsConnected);
 bOverallResult = false;
 }
if (IsFailure(bIsConnected == true))
 {
 cout << " RTRFacilityMember::IsConnectedToLocalNode failed\n";
 bOverallResult = false;
 }

IsLocalNode()
IsLocalNode() — RTRFacilityMember::IsLocalNode();

Prototype
rtr_status_t IsLocalNode(bool &bIsLocal);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

bIsLocal
A boolean that is true if the node is a local node.

Description
Call this method to find out if the node is a local node.

Example
rtr_status_t stsIsLocal;
bool bIsLocalNode;
stsIsLocal = FacMember.IsLocalNode(bIsLocalNode);
if (IsFailure(stsIsLocal == RTR_STS_OK))
 {
 OutputStatus(stsIsLocal);
 bOverallResult = false;
 }
if (IsFailure(bIsLocalNode == true))
 {
 cout << " RTRFacilityMember::IsLocalNode failed\n";
 bOverallResult = false;
 }

RTRFacilityMember()
RTRFacilityMember() — RTRFacilityMember::RTRFacilityMember();

181

Chapter 4. Management Classes

Prototype
RTRFacilityMember(rtr_const_facnam_t pszFacilityName,
 rtr_const_nodnam_t pszMemberName);
virtual ~RTRFacilityMember();

Return Value
None.

Parameters

pszFacilityName
A null-terminated pointer to a facility name.

pszMemberName
A null-terminated string pointer to the name of a facility member.

Description
Call this method to declare a facility member object. The member role type can be:

• 1 (RTRFacilityBackend)

• 2 (RTRFacilityRouter)

• 3 (RTRFacilityFrontend)

Example
Char *pszFac = "Myfacility";
Char *pszNode ="NodeName";
RTRFacilityMember *FacilityMember =
 new RTRFacilityMember(pszFac,pszNode);

4.5. RTRFacilityMemberArray
An RTRFacilityMemberArray object contains pointers to array elements.

Note

The RTRFacilityMemberArray class requires the holder of the array to clean up the objects pointed to
by the elements of the array. The array does not clean up these objects.

RTRFacilityMemberArray Class Members

Construction
Method Description
RTRFacilityMemberArray() Constructor

182

Chapter 4. Management Classes

Method Description
~RTRFacilityMemberArray() Destructor

Operations
Method Description
Add(RTRFacilityMember) Adds a pointer to an RTRFacility member to the

array.
Clear() Clears elements of the array.
Insert(size_t, RTRFacilityMember) Inserts a pointer to an RTRFacility member.
operator[] (size_t) Returns an element of the array which is a pointer

to an RTRFacility member.
Remove(const size_t) Removes an element of the array.
Size(const) Returns the number of elements in the array.

Add()
Add() — RTRFacilityMemberArray::Add();

Prototype
bool Add(RTRFacilityMember* pFacMember);

Return Value
True or False.

Parameters

pFacMember
A pointer to a facility member.

Description
Add a member to a facility member array by adding a pointer to an RTRFacility member. The caller
is responsible for creating and destroying the actual object. The array destructor does not destroy the
objects pointed to.

Example
bool RTRFacilityMemberArray::Add()
{
bool bArrayAddStatus;
RTRFacilityMemberArray ar;
RTRFacilityMember* pFacMember;

pFacMember = new RTRFacilityMember(GetDefaultFacilityName(),
 GetDefaultRouterName());
if (IsFailure(pFacMember != NULL))

183

Chapter 4. Management Classes

{
cout << " new RTRFacilityMember failed.\n";
return false;
}
bArrayAddStatus = ar.Add(pFacMember);
if (IsFailure(bArrayAddStatus))
{
cout << " RTRFacilityMemberArray::Add failed\n";
}
return bArrayAddStatus;
}

Clear
Clear — RTRFacilityMemberArray::Clear();

Prototype
bool Clear();

Return Value
True or False.

Parameters
None.

Description
This method clears the elements of the array, resulting in the array having a size of zero. This method
does not destroy the objects pointed to; the caller must delete the contents.

Example
bool bArrayClearStatus = ar.Clear();
 if (IsFailure(bArrayClearStatus))
 {
 cout << " RTRFacilityMemberArray::Clear failed\n";
 }
 return bArrayClearStatus;

Insert
Insert — RTRFacilityMemberArray::Insert();

Prototype
bool Insert(size_t n, RTRFacilityMember* pFacMember);

Return Value
True or False.

184

Chapter 4. Management Classes

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer to an object.

pFacMember
A pointer to a facility member.

Description
This method inserts a pointer to an RTRFacility member into the Nth position, moving the remainder
of the array to make room.

Example
 bool bArrayInsertStatus;
 bArrayInsertStatus = ar.Insert(1, pFacMember);
 if (IsFailure(bArrayInsertStatus))
 {
 cout << " RTRFacilityMemberArray::Insert failed\n";
 }
 return bArrayInsertStatus;

operator[]
operator[] — RTRFacilityMemberArray::GetMemberList();

Prototype
RTRFacilityMember*& operator[] (size_t n);

Return Value
Pointer to the Nth element of the array.

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer to an object.

Description
This operator returns the Nth element of the array which is a pointer to an RTRFacility member. You
can also use this operator to set the Nth element of the array.

The existing element pointed to is not destroyed; the caller must delete the contents.

Example
RTRFacilityMemberArray array;

185

Chapter 4. Management Classes

RTRFacilityMember* pFacMember;
pFacMember = array;
if (IsFailure(pFacMember != NULL))
{
cout << " RTRFacilityMemberArray operator[] failed\n";
}
return pFacMember != NULL;

Remove
Remove — RTRFacilityMemberArray::Remove();

Prototype
bool Remove (const size_t n);

Return Value

True or False.

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer to an object.

Description

This method removes the Nth element of the array. This does not destroy the object pointed to; the
caller must delete the contents.

Example
 bool bArrayRemoveStatus;
 bArrayRemoveStatus = ar.Remove(1);
 if (IsFailure(bArrayRemoveStatus))
 {
 cout << " RTRFacilityMemberArray::Remove failed\n";
 }
 return bArrayRemoveStatus;

RTRFacilityMemberArray
RTRFacilityMemberArray — RTRFacilityMemberArray:: RTRFacilityMemberArray();

Prototype
RTRFacilityMemberArray(); virtual ~RTRFacilityMemberArray;

Return Value

None.

186

Chapter 4. Management Classes

Parameters
None.

Description
Construct an RTRFacilityMemberArray object.

Example
RTRFacilityMemberArray::RTRFacilityMemberArray()
{
}

Size
Size — RTRFacilityMemberArray::Size();

Prototype
size_t Size() const;

Return Value
size_t

Parameters
None.

Description
The method returns the number of elements in the array.

Example
size_t nArraySize = ar.Size();
if (IsFailure(nArraySize == 1))
{
cout << " RTRFacilityMemberArray::Size failed\n";
}
return nArraySize == 1;

4.6. RTRFacilityProperties
RTRFacilityProperties Class Members

Construction
Method Description
RTRFacilityProperties(rtr_const_facnam_t) Constructor

187

Chapter 4. Management Classes

Method Description
~RTRFacilityProperties Destructor

Operations
Method Description
GetMemberList(RTRFacilityMemberArray) Retrieves a list of nodes and their roles for an

existing facility.
SetBalance(bool) Allows intelligent reconnection of frontend to

routers according to the number of connections
on each active router.

GetMemberList()
GetMemberList() — ww

Prototype
rtr_status_t GetMemberList(RTRFacilityMemberArray &aFacilityMembers);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_DATANOTAVAILABL Member list data not available.

Parameters

aFacilityMembers
An array listing a facility's members.

Description
Retrieve a list of nodes and their roles for an existing facility.

Example
rtr_status_t stsGetMemberList;
RTRFacilityMemberArray arFacMembers;
stsGetMemberList = FacProps.GetMemberList(arFacMembers);
if (IsFailure(stsGetMemberList == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsGetMemberList);
}
int nNbrFacMembers = arFacMembers.Size();
for (int i=0; i<nNbrFacMembers; i++)
{

188

Chapter 4. Management Classes

delete arFacMembers[i];
}
CleanupRTR();
return bOverallResult;

RTRFacilityProperties()
RTRFacilityProperties() — RTRFacilityProperties::RTRFacilityProperties();

Prototype
RTRFacilityProperties(rtr_const_facnam_t pszFacilityName);
virtual ~RTRFacilityProperties();

Return Value
None.

Parameters

pszFacility
A null-terminated pointer to a facility name.

Description
This method retrieves the properties associated with the facility object.

Example
char *pszFacility = "Myfacilityname";
RTRFacilityProperties *FacilityPropterties = new
 RTRFacilityProperties(pszFacility);

SetBalance()
SetBalance() — RTRFacilityProperties::SetBalance();

Prototype
rtr_status_t SetBalance(bool bBalancingOn);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

bBalancingOn
A boolean attribute for specifying RTR balancing of client requests for server processing.

189

Chapter 4. Management Classes

Description

Specifies whether router balancing is to be performed.

Example
rtr_status_t sStatus;
char *pszFacilityName= "MyfacilityName";
bool bBalanceON = true;
sStatus = MyFacilityProperties->SetBalance(bBalanceOn);

4.7. RTRKeySegment
A key segment describes the data that the RTR application is sending. RTR uses this description for
routing the data to an appropriate server. Key segments are of no value unless they are associated with
a partition. When creating a partition, the caller is allowed to specify one or more key segments.

The RTRKeySegment class defines key segments (ranges) used in defining RTRPartition objects.
RTRPartition objects are used to enable the partitioning of data across multiple servers.

RTRKeySegment Class Members

Construction

Method Description
RTRKeySegment(rtr_keyseg_type_t,
rtr_keylen_t, rtr_keylen_t, rtr_const_pointer_t,
rtr_const_pointer_t)

Constructor

~ RTRKeySegment() Destructor

Operations

Method Description
GetKeySegmentHighValue() Gets the upper bound of the key range for the key

segment.
GetKeySegmentLength() Gets the length of the key segment key.
GetKeySegmentLowValue() Gets the lower bound of the key range for the key

segment.
GetKeySegmentOffset() Gets the offset of the key segment key.
GetKeySegmentType() Gets the type of the key segment.
SetKeySegmentHighValue(rtr_const_pointer_t) Sets the upper bound of the key range for the key

segment.
SetKeySegmentLength(const rtr_keylen_t) Sets the length of the key segment key.
SetKeySegmentLowValue(rtr_const_pointer_t) Sets the lower bound of the key range for the key

segment.
SetKeySegmentOffset(const rtr_keylen_t) Sets the offset of the key segment key.

190

Chapter 4. Management Classes

Method Description
SetKeySegmentType(const rtr_keyseg_type_t) Sets the type of the key segment.

GetKeySegmentHighValue()
GetKeySegmentHighValue() — RTRKeySegment::GetKeySegmentHighValue();

Prototype
rtr_pointer_t GetKeySegmentHighValue();

Return Value
rtr_pointer_t Pointer to the returned upper-bound key value.

Parameters
None.

Description
This method returns the upper-bound key value of the key segment.

Example
RTRKeySegment CharacterStringSegment.GetKeySegmentHighValue();

GetKeySegmentLength()
GetKeySegmentLength() — RTRKeySegment::GetKeySegmentLength();

Prototype
rtr_keylen_t GetKeySegmentLength();

Return Value
rtr_keylen_t The returned value is the length of the key segment.

Parameters
None.

Description
This method gets the length of the key segment key.

Example
rtr_keylen_t keylength =
 CharacterStringSegment.GetKeySegmentLength();

191

Chapter 4. Management Classes

GetKeySegmentLowValue()
GetKeySegmentLowValue() — RTRKeySegment::GetKeySegmentLowValue();

Prototype
rtr_pointer_t GetKeySegmentLowValue();

Return Value
rtr_pointer_t Pointer to the returned lower-bound key value.

Parameters
None.

Description
This method returns the lower-bound key value of the key segment.

Example
rtr_keylen_t keylength =
 CharacterStringSegment.GetKeySegmentLowValue();

GetKeySegmentOffset()
GetKeySegmentOffset() — RTRKeySegment::GetKeySegmentOffset();

Prototype
rtr_keylen_t GetKeySegmentOffset();

Return Value
rtr_keylen_t The returned value is the offset of the key value.

Parameters
None.

Description
This method gets the offset of the key segment key within the message stream.

Example
rtr_keylen_t keylength =
 CharacterStringSegment.GetKeySegmentOffset();

GetKeySegmentType()
GetKeySegmentType() — RTRKeySegment::GetKeySegmentType();

192

Chapter 4. Management Classes

Prototype
rtr_keyseg_type_t GetKeySegmentType();

Return Value
rtr_keyseg_type_t

One of the values of type rtr_keyseg_type_t, that can be:

• rtr_keyseg_signed

• rtr_keyseg_unsigned

• rtr_keyseg_string

Parameters
None.

Description
This method gets the data type of the key segment.

Example
rtr_keylen_t keylength = CharacterStringSegment.GetKeySegmentType();

RTRKeySegment()
RTRKeySegment() — RTRKeySegment::RTRKeySegment();

Prototype
RTRKeySegment(rtr_keyseg_type_t keySegmentType,
 rtr_keylen_t keySegmentLength,
 rtr_keylen_t keySegmentOffset,
 rtr_const_pointer_t pKeySegmentLowValue,
 rtr_const_pointer_t pKeySegmentHighValue);
virtual ~RTRKeySegment();

Return Value
None.

Parameters

keySegmentType
One of the values of type rtr_keyseg_type_t, that can be one of the following:

• rtr_keyseg_signed

• rtr_keyseg_unsigned

193

Chapter 4. Management Classes

• rtr_keyseg_string

keySegmentLength
A numerical length value in bytes of type rtr_keylen_t.

Default = 4

keySegmentOffset
A numerical offset value in bytes of type rtr_keylen_t.

Default = 0.

pKeySegmentLowValue
A pointer of type rtr_pointer_t to a lower-bound key value of type rtr_keyseg_type_t.

Default = NULL.

PKeySegmentHighValue
A pointer of type rtr_pointer_t to an upper-bound key value of type rtr_keyseg_type_t.

Default = NULL.

Description
Call this constructor to create an RTRKeySegment object.

Example
 void ClassDerivedFromHandler::StartProcessingOrdersAtoL()
 {
 // This function defines a key segment and calls
 StartProcessingOrders to process all orders that have a ticker
 symbol beginning with the letters A-L.
 // Create a KeyRange
 m_pkeyRange = new RTRKeySegment(rtr_keyseg_string,
 1,
 OffsetIntoApplicationProtocol,
 "A",
 "L");
 StartProcessingOrders(PARTITION_NAMEAToL,m_pkeyRange);
 }

SetKeySegmentHighValue()
SetKeySegmentHighValue() — RTRKeySegment::SetKeySegmentHighValue();

Prototype
rtr_status_t SetKeySegmentHighValue(rtr_const_pointer_t

194

Chapter 4. Management Classes

 pKeySegmentHighValue);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_INVKYSGVLPTARG Invalid key segment value pointer argument.

Parameters

pKeySegmentHighValue
Pointer to the upper-bound key value to be set.

Description
This method sets the upper bound of the key range for the key segment.

Example
rtr_keyseg_type_t PKeySegmentHighValue = L;
CharacterStringSegment.SetKeySegmentHighValue(KeySegmentHighValue);

SetKeySegmentLength()
SetKeySegmentLength() — RTRKeySegment::SetKeySegmentLength();

Prototype
rtr_status_t SetKeySegmentLength(const rtr_keylen_t keySegmentLength);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

keySegmentLength
This parameter holds the key length value of type rtr_keylen_t to be set.

Description
This method sets the length of the key segment key.

Example
rtr_keylen_t keylength = 1;

195

Chapter 4. Management Classes

CharacterStringSegment.SetLength(keylength);

SetKeySegmentLowValue()
SetKeySegmentLowValue() — RTRKeySegment::SetKeySegmentLowValue();

Prototype
rtr_status_t SetKeySegmentLowValue(rtr_const_pointer_t
 pKeySegmentLowValue);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_INVKYSGVLPTARG Invalid key segment value pointer argument.

Parameters

pKeySegmentLowValue
Pointer to the lower-bound key value to be set.

Description
This method sets lower bound of the key range for the key segment.

Example
rtr_keyseg_type_t PKeySegmentLowValue = A;
CharacterStringSegment.SetKeySegmentLowValue(KeySegmentLowValue);

SetKeySegmentOffset()
SetKeySegmentOffset() — RTRKeySegment::SetKeySegmentOffset();

Prototype
rtr_status_t SetKeySegmentOffset(const rtr_keylen_t keySegmentOffset);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

keySegmentOffset
This parameter holds the key segment key offset of type rtr_keylen_t.

196

Chapter 4. Management Classes

Description
This method sets the offset of the key segment key within the message stream.

Example
rtr_keylen_type_t PKeySegmentOffset = ;
CharacterStringSegment.SetKeySegmentOffset(KeySegmentOffset);

SetKeySegmentType()
SetKeySegmentType() — RTRKeySegment::SetKeySegmentType();

Prototype
rtr_status_t SetKeySegmentType(const rtr_keyseg_type_t keySegmentType);

Return Value
rtr_status_t Interpret value for the success or failure of this call. RTR_STS_OK is the normal
successful completion.

Parameters

keySegmentType
One of the values of type rtr_keyseg_type_t, that can be one of the following:

• rtr_keyseg_signed

• rtr_keyseg_unsigned

• rtr_keyseg_string

Description
This method sets the data type of the key segment.

Example
rtr_status_t stsSetKeySegmentType;
rtr_keyseg_type_t NewType = rtr_keyseg_string;
stsSetKeySegmentType = KeySeg.SetKeySegmentType(NewType);
if (IsFailure(stsSetKeySegmentType == RTR_STS_OK))
{
bOverallResult = false;
}
rtr_keyseg_type_t CurrType;
CurrType = KeySeg.GetKeySegmentType();
if (IsFailure(CurrType == NewType))
{
bOverallResult = false;
cout <<) RTRKeySegment::Set/GetKeySegmentType failed.\n);
}
return bOverallResult;

197

Chapter 4. Management Classes

4.8. RTRKeySegmentArray
An RTRKeySegmentArray object contains pointers to array elements.

Note

The RTRKeySegmentArray class requires the holder of the array to clean up (delete) the objects
pointed to by the elements of the array; the array does not clean up these objects (does not delete the
contents of the array).

RTRKeySegment Class Members

Construction
Method Description
RTRKeySegmentArray() Constructor
~ RTRKeySegment() Destructor

Operations()
Method Description
Add(RTRKeySegment) Add a pointer to the array.
Clear() Clear the elements of the array.
Insert(size_t, RTRKeySegment) Insert a pointer to an RTRKeySegment member.
Remove() Remove an element of the array.
RTRKeySegment operator(size_t) Return an element of the array which will be a

pointer to an RTRKeySegment member.
Size() Return the number of elements in the array.

Add()
Add() — RTRKeySegmentArray::Add();

Prototype
bool Add(RTRKeySegment* pFacMember);

Return Value
True or False.

Parameters

pFacMember
Pointer to a facility member.

198

Chapter 4. Management Classes

Description

Add a pointer to an RTRKeySegment member to the array. The caller is responsible for creating and
destroying the actual object. The array destructor does not destruct the objects pointed to.

Example
bool RTRKeySegmentArray::Add ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg;
unsigned low=0;
unsigned high=10000;
pKeySeg = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),
 0, &low, &high);
if (IsFailure(pKeySeg != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg);
if (IsFailure(bAddOk == true))
{
delete pKeySeg;
return false;
}
delete pKeySeg;
return true;
}

Clear()
Clear() — RTRKeySegmentArray::Clear();

Prototype
bool Clear();

Return Value

True or False.

Parameters

None.

Description

This method clears the elements of the array, resulting in the array having a size of zero. The Clear
method does not destroy the objects pointed to.

Example
bool RTRKeySegmentArray::Clear ()
{
bool bArrayAddStatus;

199

Chapter 4. Management Classes

RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg0 = NULL;
RTRKeySegment* pKeySeg1 = NULL;
unsigned low0=0;
unsigned high0=10000;
unsigned low1=10001;
unsigned high1=20000;
pKeySeg0 = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),
 0, &low0, &high0);
if (IsFailure(pKeySeg0 != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg0);
if (IsFailure(bAddOk == true))
{
delete pKeySeg0;
return false;
}
if (ar.Size() != 1)
{
delete pKeySeg0;
return false;
}
pKeySeg1 = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),
 0, &low1, &high1);
if (IsFailure(pKeySeg1 != NULL))
{
delete pKeySeg0;
return false;
}
bool bInsertOk = ar.Insert(0, pKeySeg1);
if (IsFailure(bInsertOk == true))
{
delete pKeySeg0;
delete pKeySeg1;
return false;
}
bool bClearOk = ar.Clear();
if (IsFailure(bClearOk == true))
{
delete pKeySeg0;
delete pKeySeg1;
return false;
}
if (IsFailure(ar.Size() == 0))
{
delete pKeySeg0;
delete pKeySeg1;
return false;
}
delete pKeySeg0;
delete pKeySeg1;
return true;
}

Insert()
Insert() — RTRKeySegmentArray::Insert();

200

Chapter 4. Management Classes

Prototype
bool Insert(size_t n, RTRKeySegment* pFacMember);

Return Value
True or False.

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer to an object.

pFacMember
Pointer to a facility member.

Description
Insert a pointer to an RTRKeySegment member into the Nth position, moving the remainder of the
array to make room.

Example
bool RTRKeySegmentArray::Insert ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg0;
RTRKeySegment* pKeySeg1;
unsigned low0=0;
unsigned low1=10001;
unsigned high0=10000;
unsigned high1=20000;
pKeySeg0 = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),
 0, &low0, &high0);
if (IsFailure(pKeySeg0 != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg0);
if (IsFailure(bAddOk == true))
{
delete pKeySeg0;
return false;
}
if (ar.Size() != 1)
{
delete pKeySeg0;
return false;
}
pKeySeg1 = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),
 0, &low1, &high1);
if (IsFailure(pKeySeg1 != NULL))
{
delete pKeySeg0;

201

Chapter 4. Management Classes

return false;
}
bool bInsertOk = ar.Insert(0, pKeySeg1);
if (IsFailure(bInsertOk == true))
{
delete pKeySeg0;
delete pKeySeg1;
return false;
}
delete pKeySeg0;
delete pKeySeg1;
return true;
}

Remove()
Remove() — RTRKeySegmentArray::Remove(const size_t n);

Prototype
size_t Remove(const size_t n);

Return Value
size_t The amount of allocated space.

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer to an object.

Description
This method removes the Nth element of the array. Calling this method does not destroy the object
pointed to; the caller needs to delete the contents.

Example
bool RTRKeySegmentArray::Remove ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg;
unsigned low=0;
unsigned high=10000;
pKeySeg = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),
 0, &low, &high);
if (IsFailure(pKeySeg != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg);
if (IsFailure(bAddOk == true))
{
delete pKeySeg;
return false;

202

Chapter 4. Management Classes

}
bool bRemoveOk = ar.Remove(0);
if (IsFailure(bRemoveOk == true))
{
delete pKeySeg;
return false;
}
delete pKeySeg;
return true;
}

RTRKeySegmentArray()
RTRKeySegmentArray() — RTRKeySegmentArray::RTRKeySegmentArray();

Prototype
RTRKeySegmentArray(); virtual ~RTRKeySegmentArray();

Return Value
None.

Parameters
None.

Description
Call this method to construct new RTRKeySegmentArray object.

Example
Test_RTRKeySegmentArray::Test_RTRKeySegmentArray ()
{
}

Operator()
Operator() — RTRKeySegmentArray::operator();

Prototype
RTRKeySegment*& operator[] (size_t n);

Return Value
Returns the Nth element of the array.

Parameters

n
The element in the array (ar[0] is the first element). The element is a pointer to an object.

203

Chapter 4. Management Classes

Description
This operator returns the Nth element of the array which will be a pointer to an RTRKeySegment
member. This operator can also be used to set the Nth element of the array. The existing element
pointed to is not destroyed; the caller must delete this.

Example
bool Test_RTRKeySegmentArray::arrayoper()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg;
unsigned low=0;
unsigned high=10000;
pKeySeg = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),
 0, &low, &high);
if (IsFailure(pKeySeg != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg);
if (IsFailure(bAddOk == true))
{
delete pKeySeg;
return false;
}
if (ar.Size() != 1)
{
delete pKeySeg;
return false;
}
RTRKeySegment* pSeg0 = ar[0];
if (IsFailure(pSeg0 != NULL))
{
delete pKeySeg;
return false;
}
delete pKeySeg;
return true;
}

Size()
Size() — RTRKeySegmentArray::Size();

Prototype
size_t Size() const;

Return Value
size_t The amount of space to be allocated.

Parameters
None.

204

Chapter 4. Management Classes

Description

The method returns the number of elements in the array.

Example
bool RTRKeySegmentArray::Size ()
{
bool bArrayAddStatus;
RTRKeySegmentArray ar;
RTRKeySegment* pKeySeg;
unsigned low=0;
unsigned high=10000;
pKeySeg = new RTRKeySegment(rtr_keyseg_unsigned, sizeof(unsigned),
 0, &low, &high);
if (IsFailure(pKeySeg != NULL))
return false;
bool bAddOk = ar.Add(pKeySeg);
if (IsFailure(bAddOk == true))
{
delete pKeySeg;
return false;
}
if (ar.Size() != 1)
{
delete pKeySeg;
return false;
}
delete pKeySeg;
return true;
}

4.9. RTRPartitionManager
The RTRPartitionManager allows the RTR applictaion to create, delete and obtain properties for a
partition.

A partition is composed of one or more key segments. These key segments define the location of data
within the applications message, the type of the data and a range of values for the data. RTR uses
this information to perform its data routing. One or more partitions can be registered with a server
transaction controller.

The key segments are associated with a partition when the partition is created. A partition exists
within one facility. A facility can have many partitions.

RTRPartitionManager Class Members

Construction

Method Description
RTRPartitionManager() Constructor
~RTRPartitionManager() Destructor

205

Chapter 4. Management Classes

Operations
Method Description
CreateBackendPartition(rtr_const_parnam_t,
rtr_const_facnam_t, RTRKeySegment, const
bool, const bool, const bool)

Creates a partition on a backend within an
existing facility.

CreateBackendPartition(rtr_const_parnam_t,
rtr_const_facnam_t, RTRKeySegmentArray,
const bool, const bool, const bool)

Creates a partition on a backend within an
existing facility.using an RTRKeySegmentArray.

DeletePartition(rtr_const_parnam_t,
rtr_const_facnam_t)

Deletes a partition.

GetBackendPartitionProperties(rtr_const_parnam_t)Retrieves properties for a partition on a backend.

CreateBackendPartition()
CreateBackendPartition() — RTRPartitionManager::CreateBackendPartition();

Prototype
virtual rtr_status_t CreateBackendPartition(
 rtr_const_parnam_t pszPartitionName,
 rtr_const_facnam_t pszFacilityName,
 RTRKeySegment &KeySegment,
 const bool bShadow = false,
 const bool bConcurrent = true,
 const bool bStandby = true);
virtual rtr_status_t CreateBackendPartition(
 rtr_const_parnam_t pszPartitionName,
 rtr_const_facnam_t pszFacilityName,
 RTRKeySegment &KeySegmentArray,
 const bool bShadow = false,
 const bool bConcurrent = true,
 const bool bStandby = true);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVKEYSEGPTARG Invalid key segment object pointer argument.
RTR_STS_INVPARTNAMEARG The partition name argument is invalid.
RTR_STS_MAXPARTREG Maximum partition limit.
RTR_STS_OK Normal successful completion.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

206

Chapter 4. Management Classes

pszFacilityName
A null-terminated pointer to a facility name.

KeySegment
A key segment for the specified partition name.

KeySegmentArray
An array of key segments for the specified partition name.

bShadow
A boolean attribute for specifying a shadow server.

bConcurrent
A boolean attribute for specifying a concurrent server.

bStandby
A boolean attribute for specifying a standby server.

Description

CreateBackendPartition method creates an RTR backend partition. The partition characteristics that
may be defined include key range or ranges and whether attached server process can be shadows or
standbys. The command must be issued before any server application programs using the partition are
started.

Example
RTRKeySegment *pCharacterStringSegment = new RTRKeySegment(
 rtr_keyseg_string, 1,0,"y","z");

RTRPartitionManager PartitionManager;

sStatus = PartitionManager.CreateBackendPartition(

 "MyPartition",
 "myfac",
 &pCharacterStringSegment,
 false,true,true);
// boolean parameters are for specifying shadow, concurrent, standby

From the Sample application in the Examples directory:

RTRPartitionManager PartitionManager;
sStatus = PartitionManager.CreateBackEndPartition(ABCPartition1,
 ABCFacility,
 KeyZeroTo99,false,true,false);

207

Chapter 4. Management Classes

DeletePartition()
DeletePartition() — RTRPartitionManager::DeletePartition();

Prototype
virtual rtr_status_t DeletePartition(rtr_const_parnam_t pszPartitionName,
 rtr_const_facnam_t pszFacility);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_INVFACNAMEARG The facility name argument is invalid.
RTR_STS_INVPARTNAMEARG The partition name argument is invalid.
RTR_STS_OK Normal successful completion.
RTR_STS_PRTNDELETED Deletion of partition failed with error.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

pszFacility
A null-terminated pointer to a facility name.

Description
Call this method to delete a partition from a facility.

Example
Char *pszFac = "MyFacility";
Char *pszPartition = "MyPartitionName";
sStatus = PartitionManager.DeletePartition(pszFac,pszPartition);

GetBackendPartitionProperties()
GetBackendPartitionProperties() — RTRPartitionManager::GetBackendPartitionProperties();

Prototype
virtual RTRBackendPartitionProperties*
 GetBackendPartitionProperties(rtr_const_parnam_t pszPartitionName);

Return Value
RTRBackendPartitionProperties* Pointer to the RTRBackendPartitionProperties object associated
with this RTRPartitionManager object.

208

Chapter 4. Management Classes

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_INVPARTNAMEARG The partition name argument is invalid.

Parameters

pszPartitionName
A null-terminated pointer to a partition name.

Description

This method retrieves the properties associated with the RTRPartitionManager object. These
properties are contained within an associated RTRBackendPartitionProperties object.

Example
RTRBackendPartitionProperties *pPartProperties =
PartitionManager.GetBackendPartitionProperties("MyPartition");

RTRPartitionManager()
RTRPartitionManager() — RTRPartitionManager::RTRPartitionManager();

Prototype
RTRPartitionManager();
virtual ~RTRPartitionManager();

Return Value

None.

Parameters

None.

Description

This method defines an RTRPartitionManager object.

Example
 RTRPartitionManager PartitionManager;

4.10. RTRSignedCounter
To use a counter, perform the following steps:

• Declare the names for counter name and group name.

209

Chapter 4. Management Classes

• Instantiate the counter using the counter name and group.

• Set the counter value and test for success.

• Increment the counter.

• Get the incremented value.

RTRSignedCounter Class Members

Construction

Method Description
RTRSignedCounter(rtr_const_countername_t,
rtr_const_countergroupname_t)

Constructor

~RTRSignedCounter() Destructor

Operations

Method Description
Decrement() Decrement the value managed by the counter

class.
GetValue(rtr_sgn_32_t) Retrieve the value managed by the counter class.
Increment() Increment the value managed by the counter

class.
SetValue(rtr_sgn_32_t) Set the value managed by the counter class.

Decrement()
Decrement() — RTRSignedCounter::Decrement();

Prototype
rtr_status_t Decrement();

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_CTRBADOPER The supplied argument specifies an illegal

counter operation.
RTR_STS_CTRBADREF The supplied argument does not reference a valid

counter.
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.

210

Chapter 4. Management Classes

Status Message
RTR_STS_OK Normal successful completion.
RTR_STS_PRTBADCMD Partition command invalid or not implemented in

this version of RTR.

The more specific counter class error status descriptions for RTR_STSCTRBADREF and
RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be given a default value
by calling SetValue() after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

Parameters
None.

Description
Call this method to decrement a numeric counter. Decrement method can be called only after setting
value (RTRSignedCounter::SetValue(CounterVal)).

Example
rtr_const_countername_t kCounter = "test-counter-signed-decrement";
rtr_const_countergroupname_t kGroup = "test-counter-group";
RTRSignedCounter c(kCounter, kGroup);
rtr_sgn_32_t v = 0;
const rtr_sgn_32_t kValue = 669;
bool bOverallResult = true;

rtr_status_t stsSetValue;
stsSetValue = c.SetValue(kValue);
if (IsFailure(stsSetValue == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsSetValue);
}

rtr_status_t stsDecrement;
stsDecrement = c.Decrement();
if (IsFailure(stsDecrement == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsDecrement);
}

GetValue()
GetValue() — RTRSignedCounter::GetValue();

211

Chapter 4. Management Classes

Prototype
rtr_status_t GetValue(rtr_sgn_32_t &CounterVal);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_CTRBADREF The supplied argument does not reference a valid

counter.
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.
RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for RTR_STSCTRBADREF and
RTR_STS_INVOBJFAILCNSTR are:

RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be given a default value by
calling SetValue() after object construction.

RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

Parameters

CounterVal
A counter value for a specified RTR counter.

Description
Call this method to get a counter value. GetValue can be called only after setting value (SetValue).

Example
rtr_status_t stsGetValue;
stsGetValue = c.GetValue(v);
if (IsFailure(stsGetValue == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsGetValue);
}

Increment()
Increment() — RTRSignedCounter::Increment();

Prototype
rtr_status_t Increment();

212

Chapter 4. Management Classes

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_CTRBADOPER The supplied argument specifies an illegal

counter operation.
RTR_STS_CTRBADREF The supplied argument does not reference a valid

counter.
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.
RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for RTR_STSCTRBADREF and
RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be given a default value
by calling SetValue() after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

Parameters

None.

Description

Call this method to increment a numeric counter. This method can be called only after setting value.

Example
rtr_const_countername_t kCounter = "test-counter-signed-increment";
rtr_const_countergroupname_t kGroup = "test-counter-group";

RTRSignedCounter c(kCounter, kGroup);
rtr_sgn_32_t v = 0;
const rtr_sgn_32_t kValue = 668;
bool bOverallResult = true;

rtr_status_t stsSetValue;
stsSetValue = c.SetValue(kValue);
if (IsFailure(stsSetValue == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsSetValue);
}

rtr_status_t stsIncrement;
stsIncrement = c.Increment();

213

Chapter 4. Management Classes

if (IsFailure(stsIncrement == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsIncrement);
}

SetValue()
SetValue() — RTRSignedCounter::SetValue();

Prototype
rtr_status_t SetValue(rtr_sgn_32_t CounterVal);

Return Value

rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.

The more specific counter class error status description for RTR_STS_INVOBJFAILCNSTR is:

The object is invalid because the values passed in the constructor were invalid.

Parameters

CounterVal
A counter value for a specified RTR counter.

Description

Call this method to set value for a counter. Object should be declared before setting value.

Example
rtr_status_t sStatus;
int iSetValue = 100;
sStatus = IIntCounter->SetValue(iSetValue);

RTRSignedCounter()
RTRSignedCounter() — RTRSignedCounter::RTRSignedCounter();

Prototype
RTRSignedCounter(rtr_const_countername_t pszCounterName ,
 rtr_const_countergroupname_t pszCounterGroupName);

214

Chapter 4. Management Classes

Return Value

None.

Parameters

pszCounterName
A null-terminated string pointer to the name of an RTR counter.

pszCounterGroupName
A null-terminated string pointer to the name of an RTR counter group.

Description

This method used to declare an RTRSignedCounter object. The constructor creates an instance of the
RTRSignedCounter class. The application must call SetValue() to initialize the counter.

All counters are process-specific. All counter names must be unique within the entire process
without regard to the group name. For example, it is invalid to have an RTRSignedCounter name
"MyCounter" and another RTRStringCounter name "MyCounter."

Example
rtr_counter_data_type eCtrtype = rtr_counter_int;
RTRSignedCounter *iIntCounter = new
 RTRSignedCounter("MyCounter3","GroupName",eCtrtype);

4.11. RTRStringCounter
To use a counter, perform the following steps:

• Declare the names for counter name and group name.

• Instantiate the counter using the counter name and group.

• Set the counter value and test for success.

• Increment the counter.

• Get the incremented value.

RTRStringCounter Class Members

Construction

Method Description
RTRStringCounter(const char, const char,
rtr_counter_data_type)

Constructor

215

Chapter 4. Management Classes

Method Description
~RTRStringCounter() Destructor

Operations
Method Description
GetValue(char) Retrieve the value managed by the counter class.
SetValue(const char) Set the value managed by the counter class.

GetValue()
GetValue() — RTRStringCounter::GetValue();

Prototype
rtr_status_t GetValue(char * pszCounterVal);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_CTRBADREF The supplied argument does not reference a valid

counter.
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.
RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for RTR_STSCTRBADREF and
RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be given a default value
by calling SetValue() after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

Parameters

pszCounterVal
A null-terminated string pointer to the name of an RTR counter.

Description
Call this method to get a counter value. GetValue can be called only after setting a value (SetValue).

216

Chapter 4. Management Classes

Example
int IIntCounter;
rtr_status_t sStatus;
sStatus = cMyCounter.GetValue(IIntCounter);
if (sStatus!= RTR_STS_OK) cerr<<"Error while getting counter value";

SetValue()
SetValue() — RTRStringCounter::SetValue();

Prototype
rtr_status_t SetValue(const char * pszCounterVal);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.

The more specific counter class error status description for RTR_STS_INVOBJFAILCNSTR is:

The object is invalid because the values passed in the constructor were invalid.

Parameters

pszCounterVal
A null-terminated string pointer to the value of an RTR counter.

Description
Call this method to set a counter value.

Example
rtr_status_t sStatus;
int iSetValue = 100;
sStatus = IIntCounter->SetValue(iSetValue);

RTRStringCounter()
RTRStringCounter() — RTRStringCounter::RTRStringCounter();

Prototype
RTRStringCounter(const char *pszCounterName ,
 const char *pszCounterGroupName);

217

Chapter 4. Management Classes

Return Value
None.

Parameters

pszCounterName
A null-terminated string pointer to the name of an RTR counter.

pszCounterGroupName
A null-terminated string pointer to the name of an RTR counter group.

Description
This method used to declare an RTRStringCounter object. The constructor creates an instance of the
RTRStringCounter class. The application must call SetValue() to initialize the counter.

All counters are process-specific. All counter names must be unique within the entire process without
regard to the group name. For example, it is invalid to have an RTRStringCounter name "MyCounter"
and another RTRSignedCounter name "MyCounter."

Example
rtr_counter_data_type eCtrtype = rtr_counter_int;

RTRStringCounter *iIntCounter = new
 RTRStringCounter("MyCounter2","GroupName",eCtrtype);

4.12. RTRUnsignedCounter
To use a counter, perform the following steps:

• Declare the names for counter name and group name.

• Instantiate the counter using the counter name and group.

• Set the counter value and test for success.

• Increment the counter.

• Get the incremented value.

RTRUnsignedCounter Class Members

Construction
Method Description
RTRUnsignedCounter(rtr_const_countername_t,
rtr_const_countergroupname_t)

Constructor

218

Chapter 4. Management Classes

Method Description
~RTRUnsignedCounter() Destructor

Operations
Method Description
Decrement() Decrement the value managed by the counter

class.
GetValue(rtr_uns_32_t) Retrieve the value managed by the counter class.
Increment() Increment the value managed by the counter

class.
SetValue(rtr_uns_32_t) Set the value managed by the counter class.

Decrement()
Decrement() — RTRUnsignedCounter::Decrement();

Prototype
rtr_status_t Decrement();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_CTRBADOPER The supplied argument specifies an illegal

counter operation.
RTR_STS_CTRBADREF The supplied argument does not reference a valid

counter.
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.
RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for RTR_STSCTRBADREF and
RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be given a default value
by calling SetValue() after object construction.

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

Parameters
None.

219

Chapter 4. Management Classes

Description
Call this method to decrement a numeric counter. Decrement method can be called only after setting
value.

Example
RTRUnsignedCounter c(kCounter, kGroup);
rtr_uns_32_t v = 0;
const rtr_uns_32_t kValue = 669;
bool bOverallResult = true;

rtr_status_t stsSetValue;
stsSetValue = c.SetValue(kValue);
if (IsFailure(stsSetValue == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsSetValue);
}

rtr_status_t stsDecrement;
stsDecrement = c.Decrement();
if (IsFailure(stsDecrement == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsDecrement);
}

GetValue()
GetValue() — RTRUnsignedCounter::GetValue();

Prototype
rtr_status_t GetValue(rtr_uns_32_t &CounterVal);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_CTRBADREF The supplied argument does not reference a valid

counter.
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.
RTR_STS_OK Normal successful completion.

The more specific counter class error status descriptions for RTR_STSCTRBADREF and
RTR_STS_INVOBJFAILCNSTR are:

• RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be given a default value
by calling SetValue() after object construction.

220

Chapter 4. Management Classes

• RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

Parameters

CounterVal
A counter value for a specified RTR counter.

Description
Call this method to get a counter value. GetValue can be called only after setting value (SetValue).

Example
rtr_status_t sStatus;
sStatus = IIntCounter->GetValue(iReturnValue);

Increment()
Increment() — RTRUnsignedCounter::Increment();

Prototype
rtr_status_t Increment();

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_CTRBADOPER The supplied argument specifies an illegal

counter operation for the counter type.
RTR_STS_CTRBADREF The supplied argument does not reference a valid

counter.
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.
RTR_STS_OK Normal successful completion

The more specific counter class error status descriptions for RTR_STSCTRBADREF and
RTR_STS_INVOBJFAILCNSTR are:

RTR_STSCTRBADREF

The object has not been initialized by the application. All counters must be given a default value by
calling SetValue() after object construction.

RTR_STS_INVOBJFAILCNSTR

The object is invalid because the values passed in the constructor were invalid.

221

Chapter 4. Management Classes

Parameters
None.

Description
Call this method to increment a numeric counter. This method can be called only after setting value.

Example
rtr_status_t stsIncrement;
stsIncrement = c.Increment();
if (IsFailure(stsIncrement == RTR_STS_OK))
{
bOverallResult = false;
OutputStatus(stsIncrement);
}

SetValue()
SetValue() — RTRUnsignedCounter::SetValue();

Prototype
rtr_status_t SetValue(rtr_uns_32_t CounterVal);

Return Value
rtr_status_t Interpret value for the success or failure of this call.

Status Message
RTR_STS_OK Normal successful completion
RTR_STS_INVOBJFAILCNSTR Invalid object due to failure during object

construction.

The more specific counter class error status description for RTR_STS_INVOBJFAILCNSTR is:

The object is invalid because the values passed in the constructor were invalid.

Parameters

CounterVal
A counter value for a specified RTR counter.

Description
Call this method to set value for a counter. Object should be declared before setting value.

Example
rtr_status_t sStatus;

222

Chapter 4. Management Classes

int iSetValue = 100;
sStatus = IIntCounter->SetValue(iSetValue);

RTRUnsignedCounter()
RTRUnsignedCounter() — RTRUnsignedCounter::RTRUnsignedCounter();

Prototype
RTRUnsignedCounter(rtr_const_countername_t pszCounterName ,
 rtr_const_countergroupname_t pszCounterGroupName);

Return Value
None.

Parameters

pszCounterName
A null-terminated string pointer to the name of an RTR counter.

pszCounterGroupName
A null-terminated string pointer to the name of an RTR counter group.

Description
This method used to declare an RTRUnsignedCounter object. The constructor creates an instance of
the RTRUnsignedCounter class. The application must call SetValue() to initialize the counter.

All counters are process-specific. All counter names must be unique within the entire process
without regard to the group name. For example, it is invalid to have an RTRUnsignedCounter name
"MyCounter" and another RTRStringCounter name "MyCounter."

Example
rtr_counter_data_type eCtrtype = rtr_counter_int;
RTRUnsignedCounter *iIntCounter = new
 RTRUnsignedCounter("MyCounter1","GroupName",eCtrtype)

223

Chapter 4. Management Classes

224

Chapter 5. Sample Application
Tutorial
5.1. Purpose
This tutorial goes through all of the steps needed to set up a simple RTR C++ API-based application
for a new developer. The intent is to provide a starting point for learning about RTR, and to simplify
the main concepts of RTR; you will be able to cruise through this at a more rapid pace than you
normally would with the RTR reference information. At the end of this tutorial, you'll find brief
descriptions of some of the more complex features RTR provides, and pointers to the documentation
where you can study them in detail.

5.2. Summary
This tutorial walks you through designing, coding and setting up a basic RTR- based client-server
application. To do this, you'll use RTR to perform two important services for you:

• To act as the communication mechanism between the client and the server applications

• To insure that the server application is always available to its clients

In the system that you are about to develop, the client application interacts with the user to read and
display data. The server application handles requests from the client, and sends replies back to it.
When we refer to `client' and `server', we will be referring to the applications. When we refer to the
computer nodes on which the client or server is executing, we will call them `frontend' and `backend'
nodes, respectively.

In most applications, the server would probably talk to a database in order to retrieve or save data
according to what a user had entered in the user- interface. In the interest of simplifying this tutorial,
however, this server is only going to tell you whether it received your client's request.

What is different in this system from a non-RTR system is that there will be two servers: one of the
servers, also known as the `primary server', almost always talks with the client. In a perfect world,
nothing would ever happen to this server; clients would always get the information they asked for,
and all changes would be made to the database when the user updated information. Every time anyone
attempted to access this server, it would always be there, ready and waiting to `serve', and users could
feel secure in the knowledge that the data in the database was changed exactly as they had requested.

But we're all well aware that this is not always the case, and when servers do go down, it's usually at
the most inopportune time. So you are going to use RTR to designate a second server as a "standby"
server. In this way, if a user is attempting to get some real work done, and the primary server is down,
the user will never notice. The standby server will spring into action, and replace the original server
by handling the user's requests in just the same way as the primary server had been doing. And, this
will be done from the same point at which the primary server had crashed!

Materials List
In order to fully develop this system, you need a client application and frontend node, a server
application and two backend nodes, and a router.

225

Chapter 5. Sample Application Tutorial

Frontend
The frontend node is the system on which your client application is executing. As in any client-
server system, the client application interacts with the user, then conveys the user's requests to the
server. When developing an RTR-based client-server system, your client will have the following
characteristics:

• Display an interface to the user, allow the user make a request, then communicate with the server
to get or set data according to what actions the user has taken

• Execute on a Solaris, Tru64 UNIX, Windows (NT or 95 or 98) or OpenVMS system node, which
has RTR installed on it

• Be attached to a TCP/IP or DECnet network and able to "see" the server machines; this means that
if you use the `ping' utility to find a computer node by name, the computer responds back to the
node you are on

Example code for the client application and the server application can be found in the `examples'
subdirectory of your RTR installation directory.

Backend1
Your first backend node will be running the primary server application. It, too, can be on any of the
above operating systems, except the Windows system must be NT. It also must have RTR installed on
it, and will contain your server application. Your server application will use RTR to listen for requests
from the client, receive and handle those requests, and return the result with a message to the client.

Backend2
This machine will run the standby server application. It will probably also be doing any one of a
number of other things that have nothing to do with this tutorial, or even with RTR. It most probably
will be sitting on one of your co-workers' desks, helping him or her to earn their weekly salary and
support their family. Hopefully, you get along with this coworker well enough that they will install
RTR on their machine, so that you may complete this tutorial.

Router
Your router is simply RTR software which keeps track of everything that is going on for you when
your application is running. The router can execute on a separate machine, on a frontend machine, or
on a backend machine. In this tutorial, the router is kept on the same machine as the client.

Install RTR
Your first step, once you have determined the three computers you are going to use for this tutorial, is
to be sure RTR is installed and configured on each machine. The RTR installation is well documented
and straightforward, although slightly different for each operating system on which the installation
is being run. Refer to the section in the RTR Installation Guide for the system on which you are
installing RTR. For the purpose of documenting examples, the machine you have decided to use for
the:

• Client application is referred to as FE (frontend)

• Primary server is referred to as as BE1 (backend 1)

226

Chapter 5. Sample Application Tutorial

• Secondary server is referred to as BE2 (backend 2)

Remember that the router is on the FE machine. The journal must be accessible to both backend
servers. (This requires clusters, NFS or Windows share are not supported)

Start RTR
You need to start RTR on each of the machines on which you have installed it. You may do this
from one machine. In order to be able to issue commands to RTR on a remote node, however, you
must have an account on that node with the necessary access privileges. The operating system's
documentation, or your system manager, will have information on how to set up privileges to enable
users to run applications over the network. Use the command interface on your system to interact with
RTR. At the command prompt, type in RTR, and press the Return or Enter key. You are then at the
RTR> prompt, and can start RTR on all of the nodes. (Start RTR and create facilities independently on
separate nodes.) For example, on a UNIX system, it looks like this:

 % rtr
 RTR> start rtr/node=(FE,BE1,BE2)
 RTR> exit

This command starts `services' or `daemons' on each of the nodes in the list. These are processes that
listen for messages being sent by other RTR services or daemons over the network. After executing
the command, a `ps', `show process' or Task Manager review of processes executing on your system
should now show at least one process named `rtr' or `rtr.exe' on each of the machines. This process
is the one that manages the communications between the nodes in the RTR-based application, and
handles all transactions and recoveries.

Starting RTR can also be done programmatically.

Create a Recovery Journal
This step holds the key to letting the second server pick up on the work at exactly the right time
through a recovery journal. In the case of a failure, the secondary server ensures that no work is
lost, and the hot swap to the standby server is automatic. RTR keeps track of the work being done
by writing data to the recovery journal. If a failure occurs, all incomplete transactions are being
kept track of here, and can be replayed by the standby server when it comes to the rescue. When
transactions have been completed, they are removed from this journal. For this example, only your
backend nodes need a recovery journal, and you must create the journal before creating your facility;
you'll learn more about facilities in the next section. You'll now need to go to each of the backend
nodes that you'll be using and create a journal there. Log into each machine and, using the command
prompt interface, run RTR and create the journal. When you specify the location of the journal,
it should be the disk name or share name where the journal will be located. The journal must be
accessible by both of the backend servers.

This is an example of what the command would look like on an OpenVMS system.

 $ RTR
 RTR> create journal user2
 RTR> exit

To allow both servers to access the journal, you have a number of options:

• Use a disk in the disk farm on your cluster if you use clusters. This is supported on OpenVMS,
Windows NT, and Tru64.

227

Chapter 5. Sample Application Tutorial

• Use a disk served via NFS with UNIX systems.

• Use a share when using Windows NT systems.

NFS and Windows shares are not supported for journal disks.

In any case, you should be sure the disk is not on your primary server, since this is the machine that
we are protecting, in case of a crash. If the machine goes down, the standby server would not be able
to access the disk.

The Database
While we are having this discussion on sharing resources, we should also mention how a database
fits into this system, as well. This tutorial and the example code provided with it does not do database
transactions. However, there are likely places in the code where you would probably want to access
the database in most applications. Because the standby server steps into place when the primary server
crashes, each must have access to your database.

This configuration can be supplied using a number of options:

• Use a database server, such as SQL Server or Oracle's database server

• Use machines in a cluster to run the database as well as the servers

• Use a database API that implements RPC stubs to move data across the network

Create a Facility
There can be numerous RTR applications running on any of your computers in your network. The
systems or nodes that service one RTR application and the role of each must be clearly defined. This
makes the RTR daemons and processes aware of who is talking with whom, and why. The description
of a configuration of a group of nodes into frontends, backends and routers is called a facility. To
create a facility, use your command prompt utility again and type `RTR'; at the RTR> prompt, create
the facility for this example with the following command on a Windows system in the DOS command
prompt window:

 C:\> rtr
 RTR> create facility RTRTutor/node=(FE,BE1,BE2) -
 _RTR> /frontend=FE/router=FE/backend=(BE1,BE2)
 RTR> exit

(You can also repeat this command separately on all three nodes rather than using remote commands.)

With this command, you have now:

• Created a Facility named `RTRTutor' on all three nodes, and

• Defined the role of each node in that facility to show who participates as the client, the primary
server, the secondary server and the router.

You can create a facility programmatically as follows:

 rtr_sStatus_t sStatus;
 RTRFacilityManager FacilityManager;
 char nodename[ABCMAX_STRING_LEN] = "kenmare";

228

Chapter 5. Sample Application Tutorial

 // gethostname(&nodename[0],ABCMAX_STRING_LEN);
 sStatus = FacilityManager.CreateFacility(ABCFacility,
 nodename,
 nodename,
 nodename,
 true,
 false);
 print_sStatus_on_failure(sStatus);
 return sStatus;

Take a Break
At this point you have accomplished a lot; you've configured RTR to protect a multi-tiered application
by providing failover capability, and to handle communications between your client and your server.
Next, you write the application for your client to talk to RTR, and your server to talk to RTR. RTR
delivers the messages between the client and server and, if the server crashes, brings in the standby
server to handle your client's requests. The client never knows that the server has been switched, and
no data or requests to retrieve or modify data is lost.

Sample Application Code
The C++ modules and header files for this sample application are located in the `examples'
subdirectory of the directory into which you installed RTR. They consist of the following files:

• ABC_clientfilenames.h and cpp: The client application

These files include:

• ABCOrderTaker

• ABC_serverfilenames .h and cpp: The server application

These files include:

• ABCOrderProcessor

• ABCSClassFactory

• ABCSHandlers

• ABC_sharedfilenames.h and cpp: Data object implementation that is common to both the client
and server applications

These files include:

• ABCBook

• ABCMagazine

• ABCOrder

• ABCCommon.h: Header file containing definitions specific to both sample applications

Although you won't have much typing to do, this tutorial explains what the code in each file is doing.
Copy all of these files into a working directory of your own. For convenience, you may also wish to
copy rtrapi.h from the RTR installation directory into your working directory as well.

229

Chapter 5. Sample Application Tutorial

The example code you'll run must reference the facility you created earlier, so edit the example file
headerfilename.h and change the FACILITY value to "RTRTutor".

The sample application code supplied with RTR has a lot going on inside of it, but can be broken
down into a few general and very simple concepts that will give you an idea of the power of RTR,
and how to make it work for you. As you see, you have code for the client application and the server
application. Each application talks only to RTR. RTR moves the messages and data between the client
and sample applications. This frees you from the worrying about:

• RPC Stubs

• Time zones

• Endianism

• Network protocols and packets

Aren't you relieved? Maybe you should take another break to celebrate!

Client Application
The files shipped with the RTR kit used in the client application for this tutorial are ABCOrderTaker.h
and ABCOrderTaker.cpp. and all of the common files. All applications that wish to talk to RTR
through its C++ API need to include `rtrapi.h' as a header file. This file lives in the directory into
which RTR was installed, and contains the definitions for RTR classes and values that you'll need
to reference in your application. Please do not modify this file. Always create your own application
header file to include, as we did in the sample (ABCCommon.h) whenever you need additional
definitions for your application.

 #include "ABCCommon.h"
 #include "rtrapi.h"

The client application design follows this outline:

1. Initialize RTR

2. Send a message to the server

3. Send a second message to the server

4. Get a response from the server

5. Decide what to do with the response

The messages the client sends are for book orders and magazine orders. These orders are implemented
as ABCBookOrder and ABCMagazineOrder data objects.

Initialize RTR Client Application
This is the first thing that every RTR client application needs to do: tell RTR that it wants to get a
facility up and running, and to talk with the server. You find this happening in the (RegisterFacility
method in the RTRClientTransactionController class. In the sample application, the implementation
for this is in private methods, Initialize and Register, of the ABCOrderTaker class, which derives
from RTRClientTransactionController. You remember from the `Start RTR' step in this tutorial that
there are RTR daemons or processes executing on the nodes in a facility, listening for communications

230

Chapter 5. Sample Application Tutorial

from other RTR components and applications. Your client application is going to request that all
processes associated with the RTRTutor facility "listen up." To do this, you create a client transaction
controller and then register a facility in order to enable communication between the client transaction
controller and the RTR router. Remember that the RTR router has been described as "keeping track of
everything" that goes on in an RTR application.

Create an RTRClientTransactionController object:

 ABCOrderTaker::ABCOrderTaker():m_bRegistered(false)
 {
 }

First, register with RTR if the client hasn't already done so:

 rtr_sStatus_t ABCOrderTaker::Register()
 {
 rtr_sStatus_t sStatus = RTR_STS_OK;
 if(false == m_bRegistered)
 {
 // If RTR is not already started then start it now.
 sStatus = StartRTR();
 // Create a Facility if not already created.
 sStatus = CreateFacility();

Register the facility with RTR:

 sStatus = RegisterFacility(ABCFacility);
 print_sStatus_on_failure(sStatus);
 if (RTR_STS_OK == sStatus)
 {
 m_bRegistered = true;

The transaction controller represents the means of communication from the client to the rest of the
components in this system. There is a lot going on here to make the communication work, but it's all
being done by RTR so you won't have to worry about all of the problems inherent in communicating
over a network.

Let's examine what the RegisterFacility method does. First, the RTRFacilityName parameter we sent
to it is ABCFacility. This tells RTR the name of the facility we created earlier. Suddenly, RTR has a
whole lot more information about your application: where to find the server, the standby server, and
the router. You will see later in this tutorial that the server also declares itself and supplies the same
facility name.

The RegisterFacility method tells RTR that this application is acting as a client. So now RTR knows
that if the server goes down, it certainly doesn't want to force this application to come to the rescue as
the standby server! And there will be other things that RTR will be handling that are appropriate only
to clients or only to servers. This information helps it to keep track of all the players.

The second parameter, szRecipientName, designates the facility member that has the backend role.
The default value is the wildcard "*", meaning that there is no specific recipient name specified.

The third parameter, *pszAccess, is a pointer to the null-terminated string containing the access
parameter. This is a security key for authorizing access to a facility by clients and servers. The default
value is RTR_NO_ACCESS, when there is no specified access parameter.

At this point, RTR has all of the information it needs to put the pieces together into one system; you're
ready to start sending messages to the server, and to get messages back from it.

231

Chapter 5. Sample Application Tutorial

RTR Return Status
Your facility may have more than just one client talking to your server. In fact, your neighbor who so
generously allowed you to run your standby server on his or her machine might want to get in on this
RTR thing, too. That's all right: just add a machine to the RTRTutor facility definition that will also
run a copy of the client. But not yet; we're only telling you this to illustrate the point that there can
be more than one client in an RTR-based application. Because of this, after the RTR router hands off
your client's request to your server, it must then be able to do the same for other clients.

Servers can also decide they want to talk to your client, and the RTR router may need to handle their
requests at any time, as well. If RTR were to wait for the server to do its processing and then return
the answer each time, there would be an awful bottleneck.

But RTR doesn't wait. This means that the sStatus that you get back from each call means only, "I
passed your message on to the server", not that the server successfully handled it and here is the
result. So how does your client actually get the result of the request it made on the server? It will need
to explicitly "receive" a message, as you'll see later in this tutorial.

Checking RTR Status
Throughout this code example, you'll see a line of code that looks like:

 assert(RTR_STS_OK == sStatus);

or

 if(RTR_STS_OK == sStatus)

This is good because, as you know from your Programming 101 course, you should always check
your return sStatus. But it's also good that your program knows when something has gone wrong and
can tell the user, or behave accordingly. The assert function is not part of RTR, but is something you
will probably want to do in your application.

To check RTR's return sStatus, compare it to RTR_STS_OK. If it's the same, everything is fine,
and you can go on to the next call. But if it is something else, you'll probably to print a message to
the user. To get the text string that goes with this sStatus, call `rtr_error_text' which returns a null
terminated ASCII string containing the message in human readable format.

Receiving Messages
As explained earlier, RTR does not hold your client up while it processes your request, or even a
request from another client. You must first wait for the client transaction controller RegisterFacility
call to let you know that everything is ready to go for the client to start sending messages to a server
application.

With the C++ API, your client application receives messages through data class objects on the
Receive method of the transaction controller class. The RTRClassFactory class creates the appropriate
data object based on the type of data that the transaction controller is about to receive. All C++ API
data objects derive from the RTRData class.

The Receive call waits to receive a message or event from RTR:

 sStatus = Receive(*pRTRData);

232

Chapter 5. Sample Application Tutorial

The *pRTRData is a pointer to a data object and RTR_NO_TIMEOUTMS is the default for the
tTimeout parameter.

Remember Programming 101 - check your sStatus every time!

 assert(RTR_STS_OK == sStatus);

In the client sample application ABCOrderTaker, the client derived receive method is
DetermineOutcome. This method receives a message from RTR to determine whether the book or
magazine order was processed successfully or not.

 eOrderStatus ABCOrderTaker::DetermineOutcome()
 {
 RTRData *pResult = NULL;
 rtr_sStatus_t sStatus;
 eOrderStatus eTxnResult = OrderBeingProcessed;
 rtr_msg_type_t mtMessageType;

This code illustrates how an application can retrieve and use the message from an RTRData derived
object.

 while (OrderBeingProcessed == eTxnResult)
 {
 sStatus = Receive(&pResult);
 print_sStatus_on_failure(sStatus);
 if (true == pResult->IsRTRMessage())
 {

Check to see if we have a sStatus for the transaction. If the transaction sStatus is:

• rtr_mt_accepted, then the server successfully processed the request.

• rtr_mt_rejected, then the server could not process the request.

 sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
 print_sStatus_on_failure(sStatus);
 if (rtr_mt_accepted == mtMessageType) return eTxnResult =
 OrderSucceeded;
 if (rtr_mt_rejected == mtMessageType) return eTxnResult = OrderFailed;
 }
 }
 return eTxnResult;
 }

Information about whether RTR or your server has successfully handled your client's request is
returned in the data object. It is received by the transaction controller from RTR in the RTRData
object on the Receive call.

The implementation for the handler methods OnAccepted and OnRejected in ABCSHandlers.cpp is:

 void ABCSHandlers::OnAccepted(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
 {
 pController->AcknowledgeTransactionOutcome();
 return;
 }
 void ABCSHandlers::OnRejected(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
 {

233

Chapter 5. Sample Application Tutorial

 pController->AcknowledgeTransactionOutcome();
 return;
 }

Send Messages
With the C++ API, the start of a transaction is implicit, with the sending of the first message to a
server application. Once the client transaction controller has registered a facility and its message and
event handlers, the rest of the client application is simply a `send/receive' message loop. It continues
to send messages to the server, then listen for the server's response. It is important to remember that,
although the client is sending these messages to the server, it is doing so through RTR. Because of
this, the client can receive, asynchronously, different types of messages and events, including:

• A notice from the server of failure to process the sent message

• An answer to the sent message from the server

• An "out of band" message from the server regarding server sStatus

With the C++ API, there are four types of data you can receive:

• RTREvent

• RTRMessage

• RTRApplicationEvent

• RTRApplicationMessage

The RTRClassFactory creates these data objects when a Receive method is called for a transaction
controller. The class factory takes the incoming RTRData object and creates the appropriate data
object based on the type of incoming data.

In addition to clients and servers sending and receiving messages, RTR may send the client messages
under certain conditions. So the client application must be prepared to accept any of these messages,
and not necessarily in a particular sequence.

That's certainly a tall order! How should you handle this? Well, there are a number of ways, but you
typically implement these possibilities in the client message and event handlers. (The implementation
details of handling messages and events on a Receive are implemented in the sample server
application ABCOrderProcessor.) In this tutorial we will explain how to run a "message loop" that
both sends and receives messages.

The client sample application ABCOrderTaker has a derived SendOrder method for sending
RTRApplicationMessage objects to the server application. These objects can be either book orders or
magazine orders. (ABCOrderTaker derives from RTRClientTransactionController and thus inherits
the Register and SendApplicationMessage methods.)

 bool ABCOrderTaker::SendOrder(ABCOrder *pOrder)
 {
 rtr_sStatus_t sStatus;
 eOrderStatus eTxnResult = OrderBeingProcessed;
 // Register with RTR if we havn't already done so.
 // This will make sure we are ready to start sending data.
 sStatus = Register();
 if (RTR_STS_OK != sStatus) return false;
 // If we can't register with RTR then exit

234

Chapter 5. Sample Application Tutorial

 // Send this Book Order object to a server capable
 // of processing it.
 sStatus = SendApplicationMessage(pOrder);
 print_sStatus_on_failure(sStatus);
 // Let RTR know that this is the object being sent and
 // that we are done with our work.
 sStatus = AcceptTransaction();
 print_sStatus_on_failure(sStatus);
 // Determine if the server successfully processed the request
 eTxnResult = DetermineOutcome();
 return true;
 }

A Word about RTR Data types
You may have noticed that your client, server and router can be on any one of many different
operating systems. And you've probably written code for more than one operating system and noticed
that each has a number of data types that the other doesn't have. If you send data between a Solaris
UNIX machine and an OpenVMS or Windows NT machine, you'll also have to worry about the
order different operating system stores bytes in their data types (called "endian" order). And what
happens to the data when you send it from a 16 bit Intel 486 Windows machine to a 64 bit Alpha
UNIX machine?

Thanks to RTR, you don't need to worry about it. RTR will handle everything for you. Just write
standard C++ code that will compile on the machines you choose, and the run-time problems won't
complicate your design. When you do this, you need to use RTR data types to describe your data.
RTR translates everything necessary when your data gets to a new machine by converting the data to
the native data types on the operating system with which it happens to be communicating at the time.

To illustrate this, the example code evaluates your input parameters and places them into an RTRData-
derived RTRApplicationMessage object, ABCOrder. One sample application data class is ABCBook,
which derives from ABCOrder. This subclass defines the data that is passed from client to server for a
book order. This data class is defined in ABCBook.h and implemented in ABCBook.cpp

You'll notice that the data types which make up this object aren't your standard data types - they are
RTR data types. And they are generic enough to be able to be used on any operating system: 8 bit
unsigned, 32 bit unsigned, and a string.

 UINT m_uiPrice;
 UINT m_uiISBN;
 CString m_csTitle;
 CString m_csAuthor;)
 unsigned int m_uiISBN;
 unsigned int m_uiPrice;
 char m_szTitle[ABCMAX_STRING_LEN];
 char m_szAuthor[ABCMAX_STRING_LEN];

Send/Receive Message Loop
As mentioned earlier, an RTR client application typically contains a message loop that sends messages
to the server via the RTR router, and handles messages that come from the server via the router, or
from RTR itself.

This code illustrates how an application can retrieve and use the message from an RTRData derived
object.

235

Chapter 5. Sample Application Tutorial

 while (OrderBeingProcessed == eTxnResult)
 {
 sStatus = Receive(&pResult);
 print_sStatus_on_failure(sStatus);
 if (true == pResult->IsRTRMessage())
 {
 // Check to see if we have a sStatus for the txn.
 // rtr_mt_accepted = Server successfully processed our request.
 // rtr_mt_rejected = Server could not process our request.
 sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
 print_sStatus_on_failure(sStatus);
 if (rtr_mt_accepted == mtMessageType)
 return eTxnResult = OrderSucceeded;
 if (rtr_mt_rejected == mtMessageType)
 return eTxnResult = OrderFailed;
 }
 sStatus = SendApplicationMessage(*pRTRApplicationMessage,
 bReadonly = false,
 bReturnToSender = false,
 mfMessageFormat=RTR_NO_MSGFMT);
 }
 assert(RTR_STS_OK == sStatus);

The first message is sent to the server in the first parameter of the SendApplicationMessage
call. As you will see, this is part of the flexibility and power of RTR. The parameter
pRTRApplicationMessage is a pointer to a block of memory containing your data. RTR doesn't know
what it's a pointer to, but it doesn't need to know this. You, as the programmer, are the only one who
cares what it is. It's your own data object that carries any and all of the information your server will
need in order to do your bidding. We'll see this in detail when we look at the server code.

You do not need to tell RTR how big the piece of memory being pointed to pRTRApplicationMessage
is. The data object automatically lets RTR know how many bytes to move from your client machine to
your server machine, so that your server application has access to the data being sent by the client.

And now, the client waits for a response from the server.

The client receives the server's reply or an rtr_mt_rejected and calls the client message handler
method, OnRejected

 sStatus = Receive(*pRTRData);
 assert(RTR_STS_OK == sStatus);

Again you see the pRTRData parameter is a pointer to a data object created by you as the
programmer, and can carry any information you need your server to be able to communicate back to
the your client.

The RTRData object contains a code that tells you what kind of a message you are now receiving on
your transaction controller. If the RTR message type contains the value rtr_mt_reply, then you are
receiving a reply to a message you already sent, and your receive message object has been written to
with information from your server.

 sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
 print_sStatus_on_failure(sStatus);
 if (rtr_mt_accepted == mtMessageType)
 return eTxnResult = OrderSucceeded;
 if (rtr_mt_rejected == mtMessageType)
 return eTxnResult = OrderFailed;

236

Chapter 5. Sample Application Tutorial

If GetMessageType contains the value rtr_mt_rejected, then something has happened that caused your
transaction to fail after you sent it to the router. You can find out what that `something' is by looking
at the sStatus returned by the Receive call. You will recall that making the rtr_error_text call and
passing the sStatus value will return a human readable null terminated ASCII string containing the
error message.

This is where you'll need to make a decision about what to do with this transaction. You can abort and
exit the application, issue an error message and go onto the next message, or resend the message to the
server. This code re-sends a rejected transaction to the server.

When your client application receives an rtr_mt_reply message, your message has come full circle.
The client has made a request of the server on behalf of the user; the server has responded to this
request. If you're satisfied that the transaction has completed successfully, you must notify RTR so
that it can do its own housekeeping. To this point, this transaction has been considered "in progress",
and its sStatus kept track of at all times. If all parties interested in this transaction (this includes the
client AND the server) notify RTR that the transaction has been completed, RTR will stop tracking it,
and confirm to all parties that it has been completed. This is called `voting'.

 if (msgsb.msgtype == rtr_mt_reply)
 {
 sStatus = AcceptTransaction(RTR_NO_REASON)
 assert (RTR_STS_OK == sStatus);

And now the client waits to find out what the result of the voting is.

 sStatus = Receive(*pRTRData, RTR_NO_TIMOUTMS);
 assert(RTR_STS_OK == sStatus);

If everyone voted to accept the transaction, the client can move on to the next one. But if one of the
voters rejected the transaction, then another decision must be made regarding what to do about this
transaction. This code attempts to send the transaction to the server again.

 sStatus = ((RTRMessage*)pResult)->GetMessageType(mtMessageType);
 print_status_on_failure(sStatus);
 if (rtr_mt_accepted == mtMessageType) return eTxnResult =
 OrderSucceeded;
 if (rtr_mt_rejected == mtMessageType) return eTxnResult =
 OrderFailed;

All of the requested messages, or transactions, have been sent to the server, and responded to. The
only RTR cleanup we need to do before we exit the client is to close the transaction controller. This is
similar to signing off, and RTR releases all of the resources it was holding for the client application.

Now, that wasn't so bad, was it? Of course not. And what has happened so far? The client application
has sent a message to the server application. The server has responded. RTR has acted as the
messenger by carrying the client's message and the server's response between them.

Next, let's see how the server gets these messages, and sends a response back to the client.

Server Application
The files shipped with the RTR kit used in the server application for this tutorial are the
ABCOrderProcessor, ABCSHandlers and ABCSClassFactory files , in addition to the common
files . These common files, including ABCCommon, ABCBook, and ABCMagazine are used in
both client and the server applications. This is for a number of reasons, but most importantly that

237

Chapter 5. Sample Application Tutorial

both the client and the server use the same definitions for the data objects they pass back and forth
as messages. With the exception of only two items, there will be nothing in this server that you
haven't already seen in the client. It's doing much the same things as the client application is doing.
It creates a server transaction controller object for connecting to the router, telling the router that it is
a server application; and then registers a partition. It waits to hear that the RegisterPartition request
has been successfully executed; runs a loop that receives messages from the client; carries out the
client's orders; sends the response back to the client. And the server gets to vote, too, on whether each
message/response loop is completed.

One of the differences between the client andserver is the types of messages a server can receive from
RTR; we'll go through some of them in this section of the tutorial about the server application.

The other difference is the RegisterPartition call which is sent to RTR. We mentioned partitions while
discussing the client application, but said we'd discuss them later. Well, it's later...

Initialize RTR
The server creates a transaction controller and registers a partition. In addition, the server registers
message and event handlers and a class factory, causing RTR to initialize a number of resources for
use by the server, as well as to gather information about the server. In the Register methods in the
server application, ABCOrderProcessor.cpp, you'll find the example server calling RegisterPartition.
You see that the RegisterPartition method creates a single RTR data partition for each time it is called.
In the server code, there are two partitions, ABCPartition1 and ABCPartition2.

 sStatus = RegisterPartition(ABCPartition1);
 print_sStatus_on_failure(sStatus);

 sStatus = RegisterPartition(ABCPartition2);
 print_sStatus_on_failure(sStatus);

In order to call RegisterPartition, the sample application includes a CreateRTREnvironment method
that is first called in the ABCOrderProcessor::Register method.

Data Partitions
What is data partitioning, and why would you wish to take advantage of it? It is possible to run a
server application on each of multiple backend machines, and to run multiple server applications
on any backend machine. When a server registers a partition to begin communicating with the
RTR router, it uses the KeySegment information to tell RTR that it is available to handle certain
key segments. A key segment can be "all last names that start with A to K" and "all last names that
start with L to Z", or "all user identification numbers from zero to 1000" and "all user identification
numbers from 1001 to 2000".

In the sample application, the implementation is as follows:

 void ABCOrderProcessor::CreateRTREnvironment()
 {
 rtr_sStatus_t sStatus;
 // If RTR is not already started then start it now.
 StartRTR();
 // Create a Facility if not already created.
 CreateFacility();
 // Create a partition that processes ISBN numbers in
 // the range 0 - 99

238

Chapter 5. Sample Application Tutorial

 unsigned int low = 0;
 unsigned int max = 99;
 RTRKeySegment KeyZeroTo99(rtr_keyseg_unsigned,
 sizeof(int),
 0,
 &low,
 &max);
 RTRPartitionManager PartitionManager;
 sStatus = PartitionManager.CreateBackendPartition(ABCPartition1,
 ABCFacility,
 KeyZeroTo99,
 false,
 true,
 false);
 print_sStatus_on_failure(sStatus);
 // Create a partition that processes ISBN numbers in
 // the range 100 - 199
 low = 100;
 max = 199;
 RTRKeySegment Key100To199(rtr_keyseg_unsigned,
 sizeof(int),
 0,
 &low,
 &max);
 sStatus = PartitionManager.CreateBackendPartition(ABCPartition2,
 ABCFacility,
 Key100To199,
 false,
 true,
 false);
 print_sStatus_on_failure(sStatus);
 }

Each key segment describes a data partition. Data partitions allow you to use multiple servers to
handle the transactions all of your clients are attempting to perform; in this way, they don't all have
to wait in line to use the same server. They can get more done in less time. Data partitions can be
specified through a command line interface or programmatically through the RTRPartitionManager
class.

The RTR Application Design Guide and goes into more detail about data partitioning.

Again, we use the RTR data object that RTR will place information in, and the user-defined data
object, ABCOrder, that the client's data will be copied into. But at this point, the server is talking with
RTR only, not the client, so it is expecting an answer from RTR; all the server really wants to know is
that the transaction controller is ready to receive a client request. If it isn't, the server application will
write out an error message and exit with a failure sStatus. The implementation of the sample server
application's Register function:

• Creates the environment for the server to run in

• Registers a facility

• Registers two partitions

• Registers a class factory

• Registers message and event handlers

239

Chapter 5. Sample Application Tutorial

The sStatus is checked after each of these calls and if they are all successful, the server is ready to
receive incoming requests from the client application.

 void ABCOrderProcessor::Register()
 {
 rtr_sStatus_t sStatus;
 // Create an environment that our server can run in.
 CreateRTREnvironment();
 // Register with RTR the following objects
 sStatus = RegisterFacility(ABCFacility);
 print_sStatus_on_failure(sStatus);
 // ABC Partition
 sStatus = RegisterPartition(ABCPartition1);
 print_sStatus_on_failure(sStatus);
 sStatus = RegisterPartition(ABCPartition2);
 print_sStatus_on_failure(sStatus);
 // ABC Class Factory
 sStatus = RegisterClassFactory(&m_ClassFactory);
 print_sStatus_on_failure(sStatus);
 // ABC Handlers
 sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
 print_sStatus_on_failure(sStatus);
 return;

The RegisterHandlers method takes two parameters; the first parameter is a pointer
to an RTRServerMessageHandler object and the second parameter is a pointer to an
RTRSeverEventHandler object. ABCHandlers multiply derives from both of these foundation classes.

The server message handler specifies all messages generated by RTR or the RTR application that a
server application may receive. The server event handler specifies all events generated by RTR or the
RTR application that a server application may receive.

And now that the transaction controller has been established, the server waits to receive messages
from the client application and the RTR router.

Receive/Reply Message Loop
The server sits in a message loop receiving messages from the router, or from the client application
via the router. Like the client, it must be prepared to receive various types of messages in any order
and then handle and reply to each appropriately. But the list of possible messages the server can
receive is different than that of the client. This example includes some of those. First, the server waits
to receive a message from RTR.

The implementation in the ProcessIncomingOrders method of the ABCOrderProcessor class:

 // Start processing orders
 abc_sStatus sStatus;
 RTRData *pOrder = NULL;
 while (true)
 {
 // Receive an Order
 sStatus = Receive(&pOrder);
 print_sStatus_on_failure(sStatus);
 // If we can't get an Order then stop processing.
 if(ABC_STS_SUCCESS != sStatus) break;
 // Dispatch the Order to be processed
 sStatus = pOrder->Dispatch();

240

Chapter 5. Sample Application Tutorial

 print_sStatus_on_failure(sStatus);
 // Check to see if there were any problems processing the order.
 // If so, let the handler know to reject this txn when asked to
 // vote.
 CheckOrderStatus(sStatus);

Upon receiving the message the server checks the RTRData object's message type field to see what
kind of message it is. Some are messages directly from RTR and others are from the client. In any
event, the class factory creates the appropriate data object for the server application to handle the
incoming data. When the message is from the client, your application will read the data object you
constructed to pass between your client and server and, based on what it contains, do the work it was
written to do. In many cases, this will involve storing and retrieving information using your database.

But when the message is from RTR, how should you respond? Let's look at some of the types of
messages a server gets from RTR, and what should be done about them.

The following implementation from the ABCSHandlers.cpp file is for an rtr_mt_msg1_uncertain RTR
message:

 void ABCSHandlers::OnUncertainTransaction(RTRApplicationMessage
 *pRTRData, RTRServerTransactionController *pController)
 {
 return;
 }

The rtr_mt_msg1 and rtr_mt_msg1_uncertain messages identify the beginning of a new transaction.
The rtr_mt_msg1 message says that this is a message from the client, and it's the first in a transaction.
When you receive this message type, you will find the client data in the object pointed to by
pRTRData parameter of this call. The client and server have agreed on a common data object that
the client will send to the server whenever it makes a request: this is the ABCOrder object we looked
at in the client section of this tutorial. RTR has copied the data from the client's data object into the
one whose memory has been supplied by the server. The server's responsibility when receiving this
message is to process it. On receiving an rtr_mt_msg1, the server application calls the OnInitialize
and OnApplicationMessage server message handler methods.

On receiving an RTR message rtr_mt_msg1, the server application calls the handler methods
OnInitialize and OnApplicationMessage by default. Business logic processing can be done within the
OnApplicationData method.

The sample server application implements the OnInitialize method and overloads the Dispatch method
with an implementation in ABCOrder that deserializes the ABCOrder data object, rather than having
the default Dispatch method invoking OnApplicationMessage.

From the ABCSHandlers class:

 void ABCSHandlers::OnInitialize(RTRApplicationMessage *pRTRData,
 RTRServerTransactionController *pController)
 {
 m_bVoteToAccept = true;
 return;
 }

The overloaded Dispatch method in the ABCOrder data object:

 rtr_sStatus_t ABCOrder::Dispatch()
 {
 // Populate the derived object

241

Chapter 5. Sample Application Tutorial

 ReadObject();
 // Process the purchase that the derived object represents
 bool bStatus = Process();
 if (true == bStatus)
 {
 return ABC_STS_SUCCESS;
 }
 else
 {
 return ABC_STS_ORDERNOTPROCESSED;
 }
 }

Recovered Transactions:
The rtr_mt_msg1_uncertain message type tells the server that this is the first message in a recovered
transaction. In this instance, the original server the application was communicating with failed,
possibly leaving some of its work incomplete, and now the client is talking to the standby server.
What happens to that incomplete work left by the original server? Looking back at the client you will
recall that everyone got to vote as to whether the transaction was accepted or rejected, and then the
client waited to see what the outcome of the vote was. While the client was waiting for the results of
this vote, the original server failed, and the standby server took over. RTR uses the information it kept
storing to the recovery journal, which you also created earlier, to replay to the standby server so that it
can recover the incomplete work of the original server.

When a server receives the `uncertain' message, it knows that it is stepping in for a defunct server
that had, to this point, been processing client requests. But it doesn't know how much of the current
transaction has been processed by that server, and how much has not, even though it receives the
replayed transactions from RTR. The standby server will need to check in the database or files to see
if the work represented by this transaction is there and, if not, then process it. If it has already been
done, the server can forget about it .

If the received message contains rtr_mt_msg1_uncertain:

 replay = RTR_TRUE;
 else
 replay = RTR_FALSE;
 if (replay == TRUE)
 // The server should use this opportunity to
 // clean up the original attempt, and prepare
 // to process this request again.
 else
 // Process the request.

The server then replies to the client indicating that it has received this message and handled it.

The server typically uses the SendApplicationMessage call to answer the request the client has made.
In some cases, this may mean that data needs to be returned. This will be done in the data object that
has been agreed upon by both the client and the server.

Prepare Transaction
The rtr_mt_prepare message tells the server to prepare to commit the transaction. All messages from
the client that make up this transaction have been received, and it is now almost time to commit the
transaction in the database. This message type will never be sent to a server that has not requested an
explicit prepare.

242

Chapter 5. Sample Application Tutorial

After determining whether it is possible to complete the transaction based on what has occurred to this
point, the server can either call RejectTransaction to reject the transaction, or set all of the required
locks on the database before calling AcceptTransaction to accept the transaction.

 void ABCSHandlers::OnPrepareTransaction(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
 {
 // Check to see if anything has gone wrong. If so, reject
 // the transaction, otherwise accept it.
 if (true == m_bVoteToAccept)
 {
 pController->AcceptTransaction();
 }
 else
 {
 pController->RejectTransaction();
 }
 return;
 }

Because this example code is not dealing with a database, nor is it bundling multiple messages into a
transaction, the code here immediately votes to accept the transaction.

Transaction Rejected
The rtr_mt_rejected message is from RTR, telling the server application that a participant in the
transaction voted to reject it. If one participant rejects the transaction, it fails for all. The transaction
will only be successful if all participants vote to accept it. When it receives this message, the server
application should take this opportunity to roll back the current transaction if it is processing database
transactions.

The sample server application includes the following code to check the order if it was not processed.
If the order was not processed properly, then the handler method OnABCOrderNotProcessed is called
and m_bVoteToAccept is set to false. This causes OnPrepareTransaction to reject the transaction.

 void ABCOrderProcessor::CheckOrderStatus (abc_sStatus sStatus)
 {
 // Check to see if there were any problems
 // processing the order. If so, let the handler know
 // to reject this txn when asked to vote.
 if (sStatus == ABC_STS_ORDERNOTPROCESSED)
 {
 // Let the handler know that the current txn should be rejected
 GetHandler()->OnABCOrderNotProcessed();
 };
 };
 void ABCSHandlers::OnABCOrderNotProcessed()
 {
 m_bVoteToAccept = false;
 return;
 }

Finally, explicitly end the transaction on a reject, the handler method OnRejected is called:

 void ABCSHandlers::OnRejected(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
 {

243

Chapter 5. Sample Application Tutorial

 pController->AcknowledgeTransactionOutcome();
 return;
 }

Transaction Accepted
RTR is telling the server that all participants in this transaction have voted to accept it. If database
transactions are being done by the server, this is the place at which the server will want to commit the
transaction to the database, and release any locks it may have taken on the database.

 void ABCSHandlers::OnAccepted(RTRMessage *pRTRMessage,
 RTRServerTransactionController *pController)
 {
 pController->AcknowledgeTransactionOutcome();
 return;
 }

Note the AcknowledgeTransactionOutcome call in the server. This is an explicit method for
completing a transaction.

That's it. You now know how to write a client and server application using RTR as your network
communications, availability and reliability infrastructure. Congratulations!

Build and Run the Servers
Compile the ABC server and ABC shared files on the operating system that will run your server
applications. If you are using two different operating systems, then compile it on each of them. To
build on UNIX, issue the command:

 cxx -o server server.c shared.c /usr/shlib/librtr.so -DUNIX

You should start the servers before you start your clients. They will register with the RTR router so
that the router will know where to send client requests. Start your primary server with the appropriate
`run' command for its operating system along with the two parameters `1' and `h'. To run on UNIX:

 % ./server 1 h

Start your standby server with the parameters `2' and `h'.

 % ./server 2 h

Build and Run the Client: Compile the ABC CLIENT and ABC SHARED modules on the operating
system which will run your client application. To build on UNIX:

 % cxx -o client client.c shared.c /usr/shlib/librtr.so -DUNIX

Run the client with the following command:

 % ./client 1 h 10

or

 C:\RtrTutor\> client.exe 1 h 10

In many ways, this tutorial has only scratched the surface of RTR. There is a great deal more that RTR
gives you to make your distributed application reliable, available, and perform better. The following
sections of this document highlight some of the capabilities you have at your service. For more details

244

Chapter 5. Sample Application Tutorial

on each item, and information on what additional features will help you to enhance your application,
look first through the RTR Application Design Guide. Then, earlier sections of this C++ Foundation
Classes manual will tell you in detail how to implement each capability.

Compaq Computer Corporation also offers training classes for RTR, and if you'd like to attend any of
them, contact your Compaq representative.

Callout Server
RTR supports the concept of a "callout server" for authentication. You may designate an
additional application on your server machines or your router machine as a callout server with the
RTRFacilityManager class methods. Callout servers will be asked to check all requests in a facility,
and are asked to vote on every transaction.

The CreateFacility method in the RTRFacilityManager class includes a boolean parameter
bEnableBackendCallout for specifying a callout server.

Events
In addition to messages, RTR can be used to dispatch asynchronous events on servers and clients. A
callback function in the user's server and client applications can be designated which RTR will call
asynchronously to dispatch events to your application.

Shadowing
This tutorial only discussed failover to a standby server. But RTR also supports shadowing: while
your server is making changes to your database, another "shadow" server can be making changes to
an exact copy of your database in real time. If your primary server fails, your shadow server will take
over, and record all of the transactions occurring while your primary server is down. Your primary
server will be given the opportunity to update the original database and catch up to the correct state
when it comes back up. Primary and secondary shadow server can also have standby servers for
failover! So as you can see, if your database and transactions are important enough to you, you have
the opportunity to double and triple protect them with an RTR configuration including any of

• Multiple standby software servers on a primary hardware backend system

• Shadow backend system replicating all transactions on a duplicate database

• Failover backend systems for each of your primary and shadow backends

• Failover routers

Transactions
One of RTR's greatest strengths is in supporting transactions. The RTR Application Design Guide
goes into more detail regarding transactions and processing of transactions.

RTR Utility
You've seen how to use the RTR utility (or the command line interface) to start RTR and to create
a facility. But the RTR utility contains many more features than this, and in fact can be used to
prototype an application. Refer to the RTR System Manager's Manual for details.

245

Chapter 5. Sample Application Tutorial

246

Chapter 6. Sample Application Code
The RTR book ordering sample application shows how the C++ Foundation classes can be used to
simulate purchasing merchandise for a fictitious company named ABC.

The client, ABCOrderTaker, has a hard-coded book request which is represented by the ABCBook
class. This book request has an ISBN number used for data routing. The server will display a dialog
box containing the contents of the newly reconstituted ABCBook object.

The following sample application code comes from the Examples directory and includes:

• Sample1

This file contains int main and provides a sample for which the sample application takes book
and magazine orders from the client application (ABCOrderTaker) and processes them in the
server application (ABCOrderProcessor).

• ABCOrderTaker

Located in ABCOrderTaker.h and ABCOrderTaker.cpp, this client-side class supplies
ability to pass an object derived from ABCOrder to a server. This class is derived from
RTRClientTransactionController and derives from RTRClientMessageHandler and
RTRClientEventHandler

• ABCOrderProcessor

Located in ABCOrderProcessor.h, ABCOrderProcessor.cpp, this server-side class processes the
request sent to it by the client. This class is derived from RTRServerTransactionController.

• ABCOrder

Located in ABCOrder.h, ABCOrder.cpp, this is an abstract base class (for ABCBook and
ABCMagazine) which requires all derived classes to implement three member functions.

ReadObject()
WriteObject()
Process()

This class is derived from RTRApplicationMessage.

• ABCBook

Located in ABCBook.h, ABCBook.cpp, this class represents a book order. This class is able to
write and read its state to the memory managed by its base class RTRData. This class derives from
ABCOrder.

There are also class factory, client and server handlers, ABCMagazine, and ABCCommon classes in
the Examples directory.

6.1. Sample Main Program
 #include "ABCCommon.h"
 #include "ABCOrderTaker.h"
 #include "ABCOrderProcessor.h"
 #include "ABCBook.h"
 #include "ABCMagazine.h"

247

Chapter 6. Sample Application Code

 void GenerateOrders();

 int main(int argc, char* argv[])
 {
 bool bValidInput = false;
 while (false == bValidInput)
 {
 cout << endl;
 cout << "**" << endl;
 cout << endl;
 cout << "1 - Start Server to process incoming orders" << endl;
 cout << "2 - Start Client to generate predefined orders" << endl;
 cout << "0 - Quit" << endl;
 cout << endl;
 cout << "**" << endl;
 cout << endl << "Which Test should be run? : ";
 unsigned int uiAnswer;
 cin >> uiAnswer;
 switch (uiAnswer)
 {
 case 1 : { ABCOrderProcessor OrderProcessor;
 // Call ProcessIncomingOrders which will loop
 //forever processing orders from clients.
 OrderProcessor.ProcessIncomingOrders();
 break;
 }
 case 2 : {
 // Send some orders
 GenerateOrders();
 break;
 }
 case 0 : {
 return 0;
 }
 } // switch
 } //while
 return 0;
 }

 void GenerateOrders()
 {
 abc_status sStatus;
 // Create an Order Taker.
 ABCOrderTaker OrderTaker;

 // Create a sample book order and populate it with the
 // ISBN 49, Price and Title
 ABCBook Book;
 Book.AddOrder(49, 12345, "Everything to the Internet",
 "Michael Capellas");
 // Send this book order to the server for processing.
 // note: This will be txn #1
 cout << endl << "Transaction # 1" <<endl;
 sStatus = OrderTaker.SendOrder(&Book);
 cout << endl;
 // Reset the stream. This way we will reuse the beginning of
 // the buffer that the stream manages.
 Book.ResetStream();

248

Chapter 6. Sample Application Code

 // Send another order to a server which handles ISBN 99
 Book.AddOrder(99, 56789, "Java How To Program",
 "Deitel & Deitel");
 // Send this book order to the server for processing.
 // note: This will be txn #2
 cout << endl << "Transaction # 2" <<endl;
 sStatus = OrderTaker.SendOrder(&Book);
 cout << endl;

 ABCMagazine Magazine;

 Magazine.AddOrder(29,"PC Week","ZIFF-DAVIS", "February 2000");

 // Send this book order to the server for processing.
 // note: This will be txn #3
 cout << endl << "Transaction # 3" <<endl;
 sStatus = OrderTaker.SendOrder(&Magazine);
 cout << endl;
 }

6.2. Client Application ABCOrderTaker
 // ABCOrderTaker.cpp: implementation of the ABCOrderTaker class.
 //
 //

 #include "ABCCommon.h"
 #include "ABCOrderTaker.h"

 //
 // Construction/Destruction
 //

 ABCOrderTaker::ABCOrderTaker() : m_bRegistered(false)
 {

 }

 ABCOrderTaker::~ABCOrderTaker()
 {

 }

 abc_status ABCOrderTaker::SendOrder(ABCOrder *pOrder)
 {
 abc_status sStatus;
 // Register with RTR if we havn't already done so.
 // This will make sure we are ready to start sending data.
 sStatus = Register();
 if (ABCSuccess != sStatus) return false;
 // If we can't register with RTR then exit
 // Start the Transaction
 cout << "StartTransaction..." << endl;
 sStatus = StartTransaction();
 print_status_on_failure(sStatus);
 // Send this Book Order object to a server capable

249

Chapter 6. Sample Application Code

 // of processing it.
 cout << "SendApplicationMessage..." << endl;
 sStatus = SendApplicationMessage(pOrder);
 print_status_on_failure(sStatus);

 // Let RTR know that this is the only object being sent
 // and that we are done with our work.
 cout << "AcceptTransaction..." << endl;
 sStatus = AcceptTransaction();
 print_status_on_failure(sStatus);
 // Determine if the server successfully processed the request
 return DetermineOutcome();
 }
 rtr_status_t ABCOrderTaker::Register()
 {
 rtr_status_t sStatus = RTR_STS_OK;
 if(false == m_bRegistered)
 {
 // If RTR is not already started then start it now.
 sStatus = StartRTR();
 // Create a Facility if not already created.
 sStatus = CreateFacility();

 // Register our facility with RTR.
 sStatus = RegisterFacility(ABCFacility);
 print_status_on_failure(sStatus);
 if(RTR_STS_OK == sStatus)
 {
 m_bRegistered = true;
 }

 // ABC Handlers
 sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
 print_status_on_failure(sStatus);
 }
 return sStatus;
 }
 abc_status ABCOrderTaker::DetermineOutcome()
 {
 RTRData *pResult = NULL;
 abc_status sStatus = ABCSuccess;

 // Simply wait for RTR to send us an accepted or rejected.

 // We can dispatch everything we get and let the default
 // handlers process what we don't care about.

 bool bDone = false;
 while (!bDone)
 {
 sStatus = Receive(&pResult);
 print_status_on_failure(sStatus);
 sStatus = pResult->Dispatch();
 if (ABCOrderSucceeded == sStatus)
 {
 cout << "Transaction succeeded..." << endl;
 bDone = true;
 }

250

Chapter 6. Sample Application Code

 else
 if (ABCOrderFailed == sStatus)
 {
 cout << "Transaction failed..." << endl;
 bDone = true;
 }
 }
 delete pResult;
 return sStatus;
 }

6.3. Server Application ABCOrderProcessor
 // ABCOrderProcessor.cpp: implementation of the ABCOrderProcessor
 class.
 //
 //

 #include "ABCCommon.h"
 #include "ABCOrderProcessor.h"
 #include <stdio.h>

 //
 // Construction/Destruction
 //

 ABCOrderProcessor::ABCOrderProcessor()
 {

 }

 ABCOrderProcessor::~ABCOrderProcessor()
 {

 }

 void ABCOrderProcessor::ProcessIncomingOrders()
 {
 // Register with RTR. This will make sure we are ready to
 // start receiving data.
 Register();
 // Start processing orders
 abc_status sStatus = RTR_STS_OK;
 RTRData *pOrder = NULL;

 while (1)
 {
 // Receive an Order
 sStatus = Receive(&pOrder);
 print_status_on_failure(sStatus);
 if(ABCSuccess != sStatus) break;
 // if we can't get an Order then stop processing.

 // Dispatch the Order to be processed
 // note: This could be any kind of data. ie. RTRMessage RTREvent,
 // RTRApplicationMessage or RTRApplicationEvent.
 // The class ABCOrder(derived from RTRApplicationMessage) has

251

Chapter 6. Sample Application Code

 // redefined the Dispatch() method to call the Process() method
 // of its derived class (ABCBook or ABCMagazine). All other
 // data classes use the default implemenation of Dispatch()
 // which will call the appropriate handler.
 sStatus = pOrder->Dispatch();
 print_status_on_failure(sStatus);
 // Check to see if there were any problems processing the order.
 // If so, let the handler know to reject this txn when asked to
 // vote.
 // note : For the ABC company, orders are processed in the
 // Process() method of all ABCOrder derived classed.
 CheckOrderStatus(sStatus);

 // Delete this order that was allocated by the class factory.
 // note: In this sample the class factory returns a separate
 // instance of an order each time it is called.
 delete pOrder;
 }
 return;
 }
 void ABCOrderProcessor::Register()
 {
 rtr_status_t sStatus;

 // Create an environment that our server can run in.
 CreateRTREnvironment();

 // Register with RTR the following objects
 sStatus = RegisterFacility(ABCFacility);
 print_status_on_failure(sStatus);

 // ABC Partition
 sStatus = RegisterPartition(ABCPartition1);
 print_status_on_failure(sStatus);

 sStatus = RegisterPartition(ABCPartition2);
 print_status_on_failure(sStatus);

 // ABC Class Factory
 sStatus = RegisterClassFactory(&m_ClassFactory);
 print_status_on_failure(sStatus);

 // ABC Server Handlers
 sStatus = RegisterHandlers(&m_rtrHandlers,&m_rtrHandlers);
 print_status_on_failure(sStatus);

 return;
 }

 void ABCOrderProcessor::CreateRTREnvironment()
 {
 rtr_status_t sStatus;
 // If RTR is not already started then start it now.
 StartRTR();
 // Create a Facility if not already created.
 CreateFacility();
 // Create a partition that processes ISBN numbers in the
 // range 0 - 99

252

Chapter 6. Sample Application Code

 unsigned int low = 0;
 unsigned int max = 99;
 RTRKeySegment KeyZeroTo99(rtr_keyseg_unsigned,
 sizeof(int),
 0,
 &low,
 &max);
 RTRPartitionManager PartitionManager;
 sStatus = PartitionManager.CreateBackendPartition(
 ABCPartition1,
 ABCFacility,
 KeyZeroTo99,
 false,
 true,
 false);
 print_status_on_failure(sStatus);

 // Create a partition that processes ISBN numbers in the
 // range 100 - 199
 low = 100;
 max = 199;
 RTRKeySegment Key100To199(rtr_keyseg_unsigned,
 sizeof(int),
 0,
 &low,
 &max);
 sStatus = PartitionManager.CreateBackendPartition(
 ABCPartition2,
 ABCFacility,
 Key100To199,
 false,
 true,
 false);
 print_status_on_failure(sStatus);
 }

 void ABCOrderProcessor::CheckOrderStatus (abc_status sStatus)
 {
 // Check to see if there were any problems processing the order.
 // If so, let the handler know to reject this transaction when
 // asked to vote.
 if (sStatus == ABCOrderFailed)
 {
 // Let the handler know that the current txn should be rejected
 GetHandler()->OnABCOrderNotProcessed();
 };

 }

6.4. Data Class ABCOrder
 // ABCOrder.cpp: implementation of the ABCOrder class.
 //
 //

 #include "ABCCommon.h"

253

Chapter 6. Sample Application Code

 #include "ABCOrder.h"

 //
 // Construction/Destruction
 //

 ABCOrder::ABCOrder() : m_uiPrice(0)
 {
 m_szTitle[0] = '\0';
 m_szAuthor[0] = '\0';
 }

 ABCOrder::~ABCOrder()
 {

 }

 rtr_status_t ABCOrder::Dispatch()
 {
 // Populate the derived object
 ReadObject();
 // Since we have overridden Dispatch() in our base class
 // (RTRApplictaionMessage), the handler will not be called
 // unless we do it ourselves. If we call our base class Dispatch
 // method the handler methods OnInitialize() and
 // OnApplictionMessage() will be called. This sample uses
 // OnInitialize() to print out notification that a new
 // transaction
 // is starting.
 RTRApplicationMessage::Dispatch();
 // Process the purchase which the derived object represents
 abc_status status = ProcessOrder();
 return status;
 }

6.5. Data Class ABCBook
 // ABCBook.cpp: implementation of the ABCBook class.
 //
 //

 #include "ABCCommon.h"
 #include "ABCBook.h"

 //
 // Construction/Destruction
 //

 ABCBook::ABCBook() : m_uiISBN(0)
 {

 }

 ABCBook::~ABCBook()
 {

 }

254

Chapter 6. Sample Application Code

 bool ABCBook::AddOrder(unsigned int uiPrice,
 unsigned int uiISBN,
 char *pszName,
 char *pszAuthor)
 {
 // Copy the Book purchase to our Book object.
 m_uiISBN = uiISBN;
 m_uiPrice = uiPrice;
 strcpy(&m_szTitle[0],pszName);
 strcpy(&m_szAuthor[0],pszAuthor);
 WriteObject();
 return true;
 }
 void ABCBook::WriteObject()
 {
 // Save the type of object we are. This is used by the
 // class factory on the server side to determine which type
 // of class to allocate.
 *this << ABC_BOOK;
 *this << m_uiPrice << m_uiISBN << m_szTitle << m_szAuthor;
 // The 1 line call above is equivalent to the 4 lines below. We
 // can use the << and >> operators because we know that the data
 // which we store is not > the current RTR maximum = 65535 byes.
 // WriteToStream(m_uiISBN);
 // WriteToStream(m_uiPrice);
 // WriteToStream(m_szTitle);
 // WriteToStream(m_szAuthor);
 char mystring[] = "ABCDEFGHIJKLMNOPQRSTUVWZYZ";
 rtr_msgbuf_t p = &mystring[0];
 rtr_msglen_t length = strlen(mystring)+1;
 WriteToStream(p,length);
 }
 void ABCBook::ReadObject()
 {
 // The first data is the type of class we should be.
 // Validate that everything is fine.
 unsigned int uiClassType = 0;
 *this >> uiClassType;
 assert(uiClassType == ABC_BOOK);
 // Populate this object with the data
 *this >> m_uiPrice >> m_uiISBN >> m_szTitle >> m_szAuthor;
 // The 1 line call above is equivilant to the 4 lines below.
 // ReadFromStream(m_uiISBN);
 // ReadFromStream(m_uiPrice);
 // ReadFromStream(m_szTitle,GetLogicalBufferLength());
 // ReadFromStream(m_szAuthor,GetLogicalBufferLength());
 }
 abc_status ABCBook::ProcessOrder()
 {
 // It is here that we would process the request for this book.
 // For this sample simply print out the Book order.
 cout <<"ABCBook::ProcessOrder()" << endl;
 cout << " " << "ISBN = " << m_uiISBN << endl;
 cout << " " << "Price = " << m_uiPrice << endl;
 cout << " " << "Title = " << m_szTitle << endl;
 cout << " " << "Author = " << m_szAuthor << endl;

255

Chapter 6. Sample Application Code

 return ABCOrderSucceeded;
 }
}

256

	VSI Reliable Transaction RouterC++ Foundation Classes
	Table of Contents
	Preface
	1. About VSI
	2. Programming Requirements
	3. Document Structure
	4. Related Documentation
	5. VSI Encourages Your Comments
	6. Conventions

	Chapter 1. C++ API Concepts
	1.1. Overview
	1.2. Application Classes
	1.2.1. Transaction Classes
	1.2.2. Data Classes
	1.2.3. Messages
	1.2.4. Events
	1.2.5. Client and Server Interaction
	1.2.6. The Class Factory
	1.2.7. Stream Classes
	1.2.8. Application Classes Summary

	1.3. Management Classes
	1.3.1. Management Classes Descriptions

	1.4. Processing Models
	1.4.1. Event-Driven Model
	1.4.2. Polling Model

	1.5. Base Classes Message and Event Mapping
	1.5.1. Client Messages
	1.5.2. Client Events
	1.5.3. Server Messages
	1.5.4. Server Events for RTREvent

	1.6. Using the C++ API with Existing Applications
	1.6.1. Classes that Legacy Applications Can Use
	1.6.2. Encapsulating Application Protocols
	1.6.3. Implementation Example

	1.7. Compiling and Linking your Application

	Chapter 2. Design and Implementation
	2.1. Design Steps
	2.2. Implementation Steps
	2.2.1. Implementing a Server
	2.2.2. Implementing a Client
	2.2.3. Implementation Example

	2.3. Sample Application Walkthrough
	2.3.1. Deriving from Base Classes in the Sample Application
	2.3.2. Adding Functionality to Data Objects
	2.3.3. Encapsulating Data with RTRData
	2.3.4. Examining RTRData Objects
	2.3.5. Sample Server Application
	2.3.6. Sample Client Application

	2.4. RTR Applications in a Multiplatform Environment
	2.4.1. Defining a Message Format

	Chapter 3. Application Classes
	3.1. Server Classes
	3.2. RTRServerEventHandler
	OnApplicationEvent()
	OnBackendGainedLinkToRouter()
	OnBackendLostLinkToRouter()
	OnFacilityDead()
	OnFacilityReady()
	OnRouterGainedLinkToFrontend()
	OnRouterLostLinkToFrontend()
	OnServerGainedShadow()
	OnServerIsPrimary()
	OnServerIsSecondary()
	OnServerIsStandby()
	OnServerLostShadow()
	OnServerRecoveryComplete()
	RTRServerEventHandler()

	3.3. RTRServerMessageHandler
	OnAccepted()
	OnApplicationMessage()
	OnInitialize()
	OnPrepareTransaction()
	OnRejected()
	OnUncertainTransaction()
	RTRServerMessageHandler()

	3.4. RTRServerTransactionController
	AcceptTransaction()
	AcknowledgeTransactionOutcome()
	ForceTransactionRetry()
	GetFacilityName()
	GetPartitionName()
	GetProperties()
	Receive()
	RegisterClassFactory()
	RegisterFacility()
	RegisterHandlers()
	RegisterPartition()
	RejectTransaction()
	RTRServerTransactionController()
	SendApplicationEvent()
	SendApplicationMessage()
	UnRegisterPartition()

	3.5. RTRServerTransactionProperties
	GetFacilityName()
	GetPartitionName()
	GetTID()
	GetTransactionState()
	RTRServerTransactionProperties()
	SetStateToAbort()
	SetStateToCommit()
	SetStateToDone()
	SetStateToException()
	TransactionIsOriginal()
	TransactionIsRecovery()
	TransactionIsReplay()

	3.6. Client Classes
	3.7. RTRClientEventHandler
	OnApplicationEvent()
	OnFacilityDead()
	OnFacilityReady()
	OnFrontendGainedLinkToRouter()
	OnFrontendLostLinkToRouter()
	OnNewKeyRangeAvailable()
	OnKeyRangeNoLongerAvailable()
	OnRouterGainedLinkToBackend()
	OnRouterLostLinkToBackend()
	RTRClientEventHandler()

	3.8. RTRClientMessageHandler
	OnAccepted()
	OnAllPreparedTransaction()
	OnApplicationMessage()
	OnInitialize()
	OnRejected()
	OnReturnToSender()
	RTRClientMessageHandler()

	3.9. RTRClientTransactionController
	AcceptTransaction()
	Receive()
	RegisterClassFactory()
	RegisterFacility()
	RegisterHandlers()
	RejectTransaction()
	RTRClientTransactionController()
	SendApplicationEvent()
	SendApplicationMessage()
	StartTransaction()

	3.10. RTRClientTransactionProperties
	RTRClientTransactionProperties()

	3.11. Data Classes and the Class Factory
	3.12. RTRApplicationEvent Class
	Dispatch()
	GetEventData()
	GetEventDataLength()
	GetEventNumber()
	SetEventData()
	SetEventNumber()

	3.13. RTRApplicationMessage Class
	Dispatch()
	GetMessage()
	GetMessageLength()

	3.14. RTRClassFactory Class
	CreateRTRApplicationEvent()
	CreateRTRApplicationMessage()
	CreateRTREvent()
	CreateRTRMessage()

	3.15. RTRData
	Dispatch()
	GetActualBufferLength()
	GetLogicalBufferLength()
	IsApplicationEvent()
	IsApplicationMessage()
	IsEvent()
	IsMessage()
	IsRTREvent()
	IsRTRMessage()
	RTRData()

	3.16. RTREvent Class
	Dispatch()
	GetEventData()
	GetEventDataLength()
	GetEventNumber()

	3.17. RTRMessage
	Dispatch()
	GetMessageType()
	GetReason()
	GetSecondaryStatus

	3.18. RTRStream Class
	operator>>
	operator<<
	ReadFromStream()
	RTRStream()
	WriteToStream()

	Chapter 4. Management Classes
	4.1. RTR
	CreateJournal()
	DeleteJournal()
	GetErrorText()
	IsRunning()
	RTR()
	Start()
	Stop()
	StartWebServer()
	StopWebServer()

	4.2. RTRBackendPartitionProperties
	GetFacilityName()
	GetNumberOfRecoveredTransactions()
	GetPartitionName()
	GetRetryCount()
	RTRBackendPartitionProperties()
	SetFailoverPolicy()
	SetPriorityList()
	SetRecoveryRetryCount()

	4.3. RTRFacilityManager
	AddBackend()
	AddFrontend()
	AddRouter()
	CreateFacility()
	DeleteFacility()
	GetFacilityProperties()
	RemoveBackend()
	RemoveFrontend()
	RemoveRouter()
	RTRFacilityManager()

	4.4. RTRFacilityMember
	GetName()
	HasBackendRole()
	HasFrontendRole()
	HasRouterRole()
	IsConnectedToLocalNode()
	IsLocalNode()
	RTRFacilityMember()

	4.5. RTRFacilityMemberArray
	Add()
	Clear
	Insert
	operator[]
	Remove
	RTRFacilityMemberArray
	Size

	4.6. RTRFacilityProperties
	GetMemberList()
	RTRFacilityProperties()
	SetBalance()

	4.7. RTRKeySegment
	GetKeySegmentHighValue()
	GetKeySegmentLength()
	GetKeySegmentLowValue()
	GetKeySegmentOffset()
	GetKeySegmentType()
	RTRKeySegment()
	SetKeySegmentHighValue()
	SetKeySegmentLength()
	SetKeySegmentLowValue()
	SetKeySegmentOffset()
	SetKeySegmentType()

	4.8. RTRKeySegmentArray
	Add()
	Clear()
	Insert()
	Remove()
	RTRKeySegmentArray()
	Operator()
	Size()

	4.9. RTRPartitionManager
	CreateBackendPartition()
	DeletePartition()
	GetBackendPartitionProperties()
	RTRPartitionManager()

	4.10. RTRSignedCounter
	Decrement()
	GetValue()
	Increment()
	SetValue()
	RTRSignedCounter()

	4.11. RTRStringCounter
	GetValue()
	SetValue()
	RTRStringCounter()

	4.12. RTRUnsignedCounter
	Decrement()
	GetValue()
	Increment()
	SetValue()
	RTRUnsignedCounter()

	Chapter 5. Sample Application Tutorial
	5.1. Purpose
	5.2. Summary

	Chapter 6. Sample Application Code
	6.1. Sample Main Program
	6.2. Client Application ABCOrderTaker
	6.3. Server Application ABCOrderProcessor
	6.4. Data Class ABCOrder
	6.5. Data Class ABCBook

