nma Software

VSI OpenVMS

VSI Reliable Transaction Router
Getting Started

Document Number: DO-RTRGST-01A
Publication Date: January 2020
Revision Update Information: This is a new manual.

Operating System and Version: VS| OpenVMS Integrity Version 8.4-2
VSI OpenVMS Alpha Version 8.4-2L1

Software Version: DECset Version 12.7

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

Copyright © 2019 VMS Software, Inc., (VSI), Bolton Massachusetts, USA

L egal Notice

Confidential computer software. Valid license from VS| required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Datafor Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VS| products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VS| shall not beliable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

The VS| OpenVMS documentation set is available on DVD.

VSI Reliable Transaction RouterGetting Started

Preface v
Lo ADOUL VST Lot \%

2. INtENACA AUGICIICEvetiiiiiiiiiiiiiiititttttee ettt sttt esesesenennne v

3. DOCUMENTt STIUCTUTE ...ceiiiiiiiiiiie ettt ettt e e e e ettt e e e e e e e eeeatbin e e e e \%

4. Related Documentationooeeiiieiiiiiiiiiii e \%
S.Reading Path ... vi

6. VSI Encourages YOur COMMENTSceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieieeeieeeeeee e eeeeeeeeee vii

R 1031153 1 U 101 3T vii
Chapter 1. INtroduCtionueeieeivennieensenssennsnnssnessnssssesssessssssssssssnsssssssassssssssssssssssssssssasssns 1
1.1. Reliable Transaction ROULETcooiiiiiiiiiiiiiiii e 1

1.2. RTR Continuous Computing CONCEPLSvvvrerreeeiiiiiiiiiiiieeeeeeiiiiiieieeeeeeessaiiiieeeeeeeeeaanans 2

0 TR N L 4103101 [. AP 3

1.4, RTR Server TYPES «ooceiiiiiiiiiiiiiiiiiiii 11

1.5. RTR Networking Capabilitiesccccuuuiiiiiiiiiiiiiiiiiiieeeee e 16
Chapter 2. Architectural CONCEPLScoveerrernrensseensnnssnnssnnssnesssnssssessassssscsssesssssssassssssssns 17
2.1. The Three-Tier ATCRItECTUIEuuuutiiiiieiiiiieitititieeeieeteeeeeaeeeeeeaeeeeaeeeeeaeeeaeseeesenesesesenenes 17

2.2. RTR Facilities Bridge the Gapccccoiiiiiiiiiiiiiiiiiiiiiiceee e 18

R = 5 o : T (o7 1] £ 18

2.4. Flexibility and GIOWthoouiiiiiiiiiiiiiiiie e 18

2.5. Transaction INTEGTILYccvvviiiiiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e e eeeees 19

2.6. The Partitioned Data MOdeluuuuuiiimiiiiiiiiiiiiiiiiiiiiieeeeeeeeeenenee 19

2.7. Object-Oriented Programmingeeeeeieeiiiiiiiiiiiieieeiiiiiiee e e e e 20
2710 ODBJEOLS ittt ettt e e et e e e e ettt e e e e e e e 21

2.7.2. MESSAZES oottt e e ettt ettt e ettt e e ettt e e e e e e ettt e eaeaaees 21

2.7.3. Class RelationShipscooviueiiiiiiiiiiiiiiiiiice e 22

2.7.4. POLYMOTIPIISIN .eeeiiiiiiiiiiiiiiiiiiiii et 22

2.7.5. Object Implementation Benefitscccceeiiiiiiiiiiiiiiiiiie e, 22

2.8, JAVA SUPPOIT ... 23

2.9, XA SUPPOTIT oottt 23
Chapter 3. Reliability Features 25
3.1 RTR SErver TYPES cooeiiiiiiiiiiiiiiiiiiiii 25

3.2. Failover and RECOVEIYccoeiiiiieieeeieieiee e 25
3.2.1. ROULET FAIlOVETuiuiiiiiiiiiiiiiiiiiiiiiitiitiiiiiii ittt esennnnnes 26

3.3. RECOVEIY SCENATIOS eeteeeiiiuiiiiiiiiieeeee ittt e e e e ettt e e e e ettt et e e e e e sttt e eeeeeesaaaes 26
3.3.1. Backend RECOVETYuuuiuiiiiiiiiiiiiiiiiiiiiiiiiitit ettt seseeeseseseeenenes 26

3.3.2. ROULET RECOVEIY oottt e s 26

3.3.3. Frontend RECOVETYuuuuuiiiiiiiiiiiiiiiii s seesenenees 26

Chapter 4. RTR INTErfACEeSueeiiervvniicsissnericsssnnicssssnnnecsssssssessssssssssssssssssssssssssssssssssssssnssss 29
4.1. Management INTETTACESuuuuuruuuiiriiiiiiiiiiiiitiiitititeteeeeeeebesebeseaeaeseeeeesesesesesesssesesnnenes 29

4.2. Programming INTETTACESuuuuuuuuuuuiiiiiiiiiiiiiiiiiiiiietiietaiaieeebeeeeebeaeeeeeeeesaeanenesensnenennes 30

4.3. Application DeVelOPIMENLtccoeiiiieiieeieieieee e 31

4.4, RTR MANAZEIMENL ...uuuiieiiiiiiiiiiiiiie et e ettt e ettt e e e e e et teabai e e e e e e eeeebtbaaeeeeaeeeeees 32
4.4.1. RTR AQMINISTIATOTttttitiiiiiiiiiiiiitiitteeettteeeeeeeeeseeeseaeeeseseaesesesesesesesesssesesssesennne 32

4.4.2. RTR MANAGET ...covviriiiieieeiiiiiiiiiee ettt e e e e ettt e e e e e e e eeaaeae s 32

L T N0 N 2 254 o] (o] (<) PRSPPI 33

4.4.4. RTR Command Line Interfacecccccvvviiiiiiiiiiiiiiiiiiiiiieeeeeceeeeeeeeeeee 35

445, EXAMPILS ooeeiieieieieiieeeeee e 36

4.5. Application Programming INterfacescccceiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeeeeeeeeeeeee 39
4.5.1. RTR Java Object-Oriented INterfaceccccceermmmiiiiiiiiiiiiiiniie e, 39

4.5.2. RTR C++ Object-Oriented Programming Interfaceccoeveeeeiiiiiinniinieeen.n. 40

iii

VSI Reliable Transaction RouterGetting Started

4.5.3. RTR C Programming Interface

... 43
Chapter 5. The RTR ENVIFONMENTcccovueieivricisnicssanisssnnessssnessssnsssssssssssssssssssssssssssssssssnss 45
5.1. The RTR System Management Environmentc.oovvvveiiineeeeiiiiiiiiiiineeeeeeeeeviiennnnnn 45
5.1.1. Monitoring RTR ..o e e e e e e e e eeaaaeens 47

5.1.2. Transaction ManQ@EIMENTcceeverrivuunnieeeerreeriiiiiineeeeeerrerrsennnaaeesereessennnnaaaees 47

5.1.3. Partition Managementuuuieeeeeeeiiriiiiiiiieeeeeereeriiiianaeeeeeeesssneeaaeeesseessnees 48

5.2. The RTR Runtime Environmentccoeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeee e 48

I T T 1 B3 Ao I TP 49

Preface

This document introduces VSI Reliable Transaction Router and describes its concepts for the system
manager, system administrator, and applications programmer.

1. About VSI

VMS Software, Inc., (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so

closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience

The purpose of this document is to assist an experienced system manager, system administrator, or
application programmer understand the Reliable Transaction Router (RTR) product.

3. Document Structure

This document contains the following chapters:

* Chapter 1, Introduction to RTR, provides information on RTR technology, basic RTR concepts,
and RTR terminology.

* Chapter 2, Architectural Concepts, introduces the RTR three-layer model and explains the use of
RTR functions and programming capabilities.

* Chapter 3, Reliability Features, highlights RTR server types and failover and recovery scenarios.
* Chapter 4, RTR Interfaces, introduces the management and programming interfaces of RTR.

* Chapter 5, The RTR Environment, describes the RTR system management and runtime
environments, and provides explicit pointers to further reading in the RTR documentation set.

4. Related Documentation

Additional resources in the RTR documentation kit include:

Document Content

For all users:

Reliable Transaction Router Release Notes Describes new features, changes, and known
restrictions for RTR.

RTR Commands Lists all RTR commands, their qualifiers and
defaults.

For the system manager:

Preface

Document

Content

Reliable Transaction Router Installation Guide

Describes how to install RTR on all supported
platforms.

Reliable Transaction Router System Manager's
Manual

Describes how to configure, manage, and monitor
RTR.

Reliable Transaction Router Migration Guide

Explains how to migrate from RTR Version 2 to
RTR Version 3 (OpenVMS only).

For the application programmer:

Reliable Transaction Router Application Design
Guide

Describes how to design application programs for
use with RTR, illustrated with both the C and C+
+ interfaces.

Reliable Transaction Router C++ Foundation
Classes

Describes the object-oriented C++ interface that
can be used to implement RTR object-oriented
applications.

Reliable Transaction Router C Application
Programmer's Reference Manual

Explains how to design and code RTR
applications using the C programming language;
contains full descriptions of the basic RTR API
calls.

5. Reading Path

The reading path to follow when using the Reliable
Figure 1.

Figure 1. RTR Reading Path

Transaction Router information set is shown in

%)

]

o
z
g
@
@

|-

Release _|

Getting
Started

—

Bl =

| —

= Glossary

System Manager Application Programmer
If Java

Application

Installation
Guide
| I

System
Manager's
Manual

RTR Help
(Online Only)

Design
Guide

Y

IfC

C Application
Programmer's
Reference
Manual

JRTR
Getting

Started

(Online Only)
I

If C++

C++
Foundation
Classes

-y

vi

Preface

6. VS| Encourages Your Comments

You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <doci nf o@nssof t war e. con®. Users who
have OpenVMS support contracts through VSI can contact <suppor t @ nssof t war e. con for
help with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

7. Conventions

VMScluster systems

are now referred to as OpenVMS Cluster systems. Unless otherwise specified,

references to OpenVMS Cluster systems or clusters in this document are synonymous with

VMScluster systems

The contents of the display examples for some utility commands described in this manual may differ
slightly from the actual output provided by these commands on your system. However, when the
behavior of a command differs significantly between OpenVMS Alpha and Integrity servers, that
behavior is described in text and rendered, as appropriate, in separate examples.

In this manual, every use of DECwindows and DECwindows Motif refers to DECwindows Motif for

OpenVMS software.

The following conventions are also used in this manual:

Convention

Meaning

Ctrl/ x

A sequence such as Ctrl/ x indicates that you must hold down the key labeled
Ctrl while you press another key or a pointing device button.

PF1 x

A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return

In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

A horizontal ellipsis in examples indicates one of the following possibilities:
» Additional optional arguments in a statement have been omitted.
» The preceding item or items can be repeated one or more times.

* Additional parameters, values, or other information can be entered.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

O

In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

[]

In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an assignment
statement.

vii

Preface

Convention Meaning

(1] In command format descriptions, vertical bars separate choices within brackets
or braces. Within brackets, the choices are options; within braces, at least one
choice is required. Do not type the vertical bars on the command line.

{} In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the

name of an argument, an attribute, or a reason.

italic text

Italic text indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER= name), and in command
parameters in text (where dd represents the predefined code for the device type).

UPPERCASE Uppercase text indicates a command, the name of a routine, the name of a file,

TEXT or the abbreviation for a system privilege.

Monospace Monospace type indicates code examples and interactive screen displays.

type
In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions
and files, syntax summaries, and references to variables or identifiers introduced
in an example.

- A hyphen at the end of a command format description, command line, or code
line indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.

Nondecimal radixes—binary, octal, or hexadecimal—are explicitly indicated.

viii

Chapter 1. Introduction

This document introduces RTR and describes RTR concepts. It is intended for the system manager or
administrator and for the application programmer who is developing an application that works with
Reliable Transaction Router (RTR).

1.1. Reliable Transaction Router

Reliable Transaction Router (RTR) is failure-tolerant transactional messaging middleware used to
implement large, distributed applications with client/server technologies. RTR helps ensure business
continuity across multivendor systems and helps maximize uptime.

Failure and fault tolerance

Failure tolerance is supplied by the RTR software that enables an application to continue even when
failures such as node or site outages occur. Failover is automatic. Fault tolerance is supplied by
systems with hardware that is built with redundant components to ensure that processing survives
failure of an individual component. Depending on system requirements and hardware, an RTR
configuration can be both failure and fault tolerant.

Interoperability

You use the architecture of RTR to ensure high availability and transaction completion. RTR supports
applications that run on different hardware and different operating systems. RTR applications can

be designed to work with several database products including Oracle, Microsoft Access, Microsoft
SQL Server, Sybase, and Informix. For specifics on operating systems, operating system versions, and
supported hardware, refer to the VSI Reliable Transaction Router Software Product Description for
each supported operating system.

Networking

RTR can be deployed in a local or wide area network and can use either TCP/IP or DECnet for its
underlying network transport.

Transaction processing

A transaction involves the exchange of something for something else, for example, the exchange
of cash for something purchased such as a book or restaurant meal. Transactions are the fodder of
the commercial world in which we live. Transaction processing is the use of computers to do the
bookkeeping for the physical transactions in which people engage. RTR is the premier transaction
processing software available for many computer systems, offering unique benefits to ensure the
integrity and correctness of transactions under its control.

Corporations and institutions benefit when the data they need is current and kept rapidly up-to-date.
This ensures that they have increased control of their business or institution, and can react more
effectively to changes in the business or institutional environment.

For example, an inventory management system provides current inventory for inquiry and can
automatically request inventory updates when needed. Or an production manager can make
production decisions based on current status of manufacturing elements directly from the shop floor,

Chapter 1. Introduction

and a credit card company can respond with accurate information when a card request for validation
arrives. Or a shipping company can determine and report the location of a package in transit anywhere
in the world, or a personnel system can enable an employee to update personal information online. All
of these systems perform transaction processing tasks as designed by their developers.

With RTR, applications can be written to be deployed over a wide geography to take advantage of
distributed resources, both computers and personnel. Implementing a transaction processing system
using RTR requires analysis, planning, and considered execution.

1.2. RTR Continuous Computing Concepts

RTR provides a continuous computing environment that is particularly valuable in financial
transactions, for example in banking, stock trading, or passenger reservations systems. RTR satisfies
many requirements of a continuous computing environment:

* Reliability

» Failure tolerance

* Data and transaction integrity

* Scalability

* Ease of building and maintaining applications

» Interoperability with multiple operating systems

RTR additionally provides the following capabilities, essential in the demanding transaction
processing environment:

* Flexibility

» Parallel execution at the transaction level

* Potential for step-by-step growth

e Comprehensive monitoring tools

* Management station for single console system management
* WAN deployability

RTR also ensures that transactions have the ACID properties that have been established as crucial in a
transaction processing environment. A transaction with the ACID properties is:

* Atomic
* Consistent
» Isolated
e Durable

For more details on transactional ACID properties, see the discussion later in this document, and in
the VSI Reliable Transaction Router Application Design Guide.

Chapter 1. Introduction

1.3. RTR Terminology

In addition to the terms previously defined, the following terms are either unique to RTR or redefined
when used in the RTR context. If you have learned any of these terms in other contexts, take the time
to assimilate their meaning in the RTR environment. These and other terms are also defined in the
Glossary of this manual. The terms are described in the following order:

* Application

* Client, client application
* Server, server application
* Channel

* RTR configuration

* Roles

¢ Frontend

* Router
e Backend
* Facility

e Transaction

* Transaction controller

* Transactional messaging

* Nontransactional messaging
* Transaction ID

o Tier

» Standby server

* Transactional shadowing

* RTR journal

e Partition
* Key range
+ XA

RTR Application

An RTR application is user-written software that executes within the confines of several distributed
processes. The RTR application may perform user interface, business, and server logic tasks and is

Chapter 1. Introduction

written in response to some business need. An RTR application can be written in one of the supported
languages, C, C++, or Java and includes calls to RTR. RTR applications are composed of two kinds of
actors, client applications and server applications. An application process is shown in diagrams as an
oval, open for a client application (see Figure 1.1), filled for a server application (see Figure 1.2).

Client

A client is always a client application, one that initiates and demarcates a piece of work. In the
context of RTR, a client must run on a node defined to have the frontend role. Clients typically deal
with presentation services, handling forms input, screens, and so on. A client could connect to a
browser running a browser applet or be a webserver acting as a gateway. In other contexts, a client
can be a physical system, but in RTR and in this document, physical clients are called frontends or
nodes. You can have more than one instance of a client on a node.

Figure 1.1. Client Symbol

Server

A server is always a server application, one that reacts to a client's units of work and carries them
through to completion. This may involve updating persistent storage such as a database file, toggling
a switch on a device, or performing another predefined task. In the context of RTR, a server must run
on a node defined to have the backend role. In other contexts, a server can be a physical system, but in
RTR and in this document, physical servers are called backends or nodes. You can have more than one
instance of a server on a node. Servers can have partition states such as primary, standby, or shadow.

Figure 1.2. Server Symbol

Channel

RTR expects client and server applications to identify themselves before they request RTR services.
During the identification process, RTR provides a tag or handle that is used for subsequent
interactions. This tag or handle is called an RTR channel. A channel is used by client and server
applications to exchange units of work with the help of RTR. An application process can have one or
more client or server channels. Channel management is handled transparently by the C++ and Java
APIs.

RTR configuration

An RTR configuration consists of nodes that run RTR client and server applications. An RTR
configuration can run on several operating systems including OpenVMS, Tru64 UNIX, and Windows
NT among others (for the full set of supported operating systems, see the title page of this document,
and the appropriate SPD). Nodes are connected by network /inks.

Chapter 1. Introduction

Roles

A node that runs client applications is called a frontend (FE), or is said to have the frontend role. A
node that runs server applications is called a backend (BE). Additionally, the transaction router (TR)
contains no application software but acts as a traffic cop between frontends and backends, routing
transactions to the appropriate destinations. The router controls the distributed RTR nodes, and takes
care of two-phase commit,failover and failback.

The router also eliminates any need for frontends and backends to know about each other in advance.
This relieves the application programmer from the need to be concerned about network configuration
details. The router can reside on a node running as a frontend or a backend but is often run on a node
where neither backends nor frontends are running. Figure 1.3 shows the symbol for each of the RTR

roles.

Figure 1.3. Roles Symbols

FE TR BE
Frontend Transactional Backend
Router

Facility

The mapping between nodes and roles is done using a facility. An RTR facility is the user-defined
name for a particular configuration whose definition provides the role-to-node map for a given
application. The facility symbol (see Figure 1.4) illustrates its use in the RTR environment. Nodes can
share several facilities. The role of a node is defined within the scope of a particular facility. Normally
a facility is defined across all roles but facility definition depends on application design

The router is the only role that knows about all three roles. A router can run on the same physical
node as the frontend or backend, if that is required by configuration constraints,but such a setup would
not take full advantage of failover characteristics.

Figure 1.4. Facility Symbol

A facility name is mapped to specific physical nodes and their roles using the CREATE FACILITY
command.

Figure 1.5 shows the logical relationship between client application, server application, frontends
(FEs), routers (TRs), and backends (BEs) in the RTR environment. The database is represented by the

Chapter 1. Introduction

cylinder. Two facilities are shown (indicated by the large double-headed arrows), the User Accounts
Facility and the General Ledger Facility. The User Accounts Facility uses three nodes, FE, TR,and
BE, while the General Ledger Facility uses only two, TR and BE in the configuration shown. Its FEs
are on nodes not shown in the figure, at another location

Figure 1.5. Components in the RTR Environment

User Accounts Facility

FE TR BE

Client / Server
application > — |\ application /) |——>

General Ledger Facility

Clients send messages to servers to ask that a piece of work be done. Such requests may be bundled
together into transactions. An RTR transaction consists of one or more messages that have been
grouped together by a client application, so that the work done as a result of each message can be
undone completely, if some part of that work cannot be done. If the system fails or is disconnected
before all parts of the transaction are done, then the transaction remains incomplete.

Transaction

A transaction is a piece of work or group of operations that must be executed together to perform
a consistent transformation of data. This group of operations can be distributed across many nodes
serving multiple databases. Applications use services that RTR provides.

Because typically a transaction consists of several operations, a system or network failure at any step
in the process will cause the transaction to be in doubt. RTR ensures that all transactions have the
ACID properties so that all transactions are in a known state. (See the description of “Transactional
messaging”’ for further clarification of transaction integrity.)

Transaction controller

With the C++ API, the Transaction Controller manages transactions (one at a time), channels,
messages, and events.

Transactional messaging

RTR provides transactional messaging in which transactions are enclosed in messages controlled by
RTR.

Transactional messaging ensures that each transaction is complete, and not partially recorded. For
example, a transaction or business exchange in a bank account might be to move money from a
checking account to a savings account. The complete transaction is to remove the money from the
checking account and add it to the savings account.

A transaction that transfers funds from one account to another consists of two individual updates: one
to debit the first account, and one to credit the second account. The transaction is not complete until
both actions are done. If a system performing this work goes down after the money has been debited
from the checking account but before it has been credited to the savings account, the transaction is
incomplete. With transactional messaging, RTR ensures that a transaction is “all or nothing” — either

Chapter 1. Introduction

fully completed or discarded; either both the checking account debit and the savings account credit are
done, or the checking account debit is backed out and not recorded in the database. RTR transactions
have the ACID properties.

Nontransactional messaging

An application will also contain nontransactional tasks such as writing diagnostic trace messages or
sending a broadcast message about a change in a stock price after a transaction has been completed.

Transaction ID

Every transaction is identified on initiation with a transaction identifier or transaction ID, with which
it can be logged and tracked. RTR guarantees that TIDs are unique.

To reinforce the use of these terms in the RTR context, this section briefly reviews other uses of
configuration terminology.

Tiers

A traditional two-tier client/server environment is based on hardware that separates application
presentation and business logic (the clients) from database server activities. The client hardware runs
presentation and business logic software, and server hardware runs database or data manager (DM)
software,also called resource managers (RM). This type of configuration is illustrated in Figure 1.6.
(In all diagrams, all lines are actually bidirectional, even when represented otherwise for clarity.
Fora given transaction, the initial action is typically from left to right.) In Figure 1.6, Application
Presentation and Business Logic are the first tier, and the Database Server is the second tier.

Further separation into three tiers is achieved by separating presentation software from business

logic on two systems,and retaining a third physical system for interaction with the database. This is
illustrated in Figure 1.7, where Presentation and User Interface are the first tier, the Application Server
and Business Logic are the second tier, and the Database Server is the third tier.

Figure 1.6. Two-Tier Client/Server Environment

il
Data Manager -
— . =

f—
=
Application Presentation Database
and Business Logic Server

(ODBC Model)

Figure 1.7. Three-Tier Client/Server Environment

L > Database

Server

— <>
&=

= -—&
D’:‘ Database
Application
Dl:‘
Presentation/User Interface Application Server/ Database

Business Logic Server

Chapter 1. Introduction

RTR extends the three-tier model, which is based on hardware, to a multilayer, or multicomponent
software model.

RTR SoftwareComponents

RTR provides a multicomponent software model where clients running on frontends, routers,
and servers running on backends cooperate to provide reliable service and transactional integrity.
Application users interact with the client (presentation layer) on the frontend node that forwards
messages to the current router. The router in turn routes the messages to the current, appropriate
backend, where server applications reside, for processing. The connection to the current router is
maintained until the current router fails or connections to it are lost.

All RTR software components can reside on a single node but are typically deployed on different
nodes to achieve modularity,scalability, and redundancy for availability. During initial application
development, it can be convenient to use a single physical node for all RTR roles and application
software.

With different physical systems, if one node goes down or offline, another router or backend node can
take over application processing. In a slightly different configuration, you could have an application
that uses an external applet component running on a browser that connects to a client running on the
RTR frontend. Such a configuration is shown in Figure 1.8. In the figure, the applet is separate from
but connects to the client application written to work directly with RTR.

Figure 1.8. Browser Applet Configuration

Applet Web Server
Process

RTR Client
Application

PC Browser RTR Frontend

The RTR client application could be an ASP (Active Server Page) script or a process interfacing to the
webserver through a standard interface such as CGI (Common Gateway Interface) script.

RTR provides automatic software failure tolerance and failure recovery in multinode environments
by sustaining transaction integrity in spite of hardware, communications, application, or site failures.
Automatic failover and recovery of service can exploit redundant or underutilized hardware and
network links.

For example, you could use an underutilized system as a standby server in certain configurations.

As you modularize your application and distribute its components on frontends and backends, you can
add new nodes, identify usage bottlenecks, and provide redundancy to increase availability. Adding
backend nodes can help divide the transactional load and distribute it more evenly. For example, you
could have a single node configuration as shown in Figure 1.9: RTR with Browser, Single Node, and
Database. A single node configuration can be useful during development, but would not normally be
used when your application is deployed.

Chapter 1. Introduction

Figure 1.9. RTR with Browser, Single Node, and Database

FE TR BE

F——
—
”E = Database

Browser

When applications are deployed, often the frontend is separated from the backend and router, as
shown in Figure 1.10.

Figure 1.10. RTR Deployed on Two Nodes

FE TR BE - 8
> g
Client ~ > Server Database
——— application application
== —]

Browser Journal

In this example, the frontend with the client application resides on one node, and the router with
the server application reside a node that has both the router and backend roles. This is a typical
configuration where routers are placed on backends rather than on frontends. A further separation
of workload onto three nodes is shown in Figure 1.11. However, in this configuration, there remain
several single points of failure where one node/role or a network outage can disrupt processing of
transactions.

Figure 1.11. RTR Deployed on Three Nodes

FE TR BE _ @
ﬁ -
Client > Server Database
application application
= =]
——»

Browser Journal

While this three-node configuration separates transaction load onto three nodes, it does not provide
for continuing work if one of the nodes fails or becomes disconnected from the others. In many
applications, there is a need to ensure that there is a server always available to access the database.

Standby server

In this case, a standby server will do the job. A standby server(see Figure 1.12) is a process or
application that can take over when the primary server is not available, due to hardware failure,
application software failure or network outage.

Both the primary and the standby server have the capability to access the same database, but

the primary processes all transactions unless it is unavailable. On the other hand, the standby
processes transactions only when the primary becomes unavailable. When not being used to process
transactions, the standby CPU can do other work.

The standby server is usually placed on a node other than the node where the primary server runs,
and should be, to avoid being a single point of failure. Network capability, clustering or disk-sharing

Chapter 1. Introduction

technology, and appropriate software must be available on both primary and standby backend systems
when running RTR.

Figure 1.12. Standby Server Configuration

FE TR BE

—>
- - —>

DE' — Database

Browser

Shadow Server and Transactional Shadowing

To increase transaction processing availability, transactions can be shadowed with a shadow server, as
shown in Figure 1.13.The system where the shadow server runs can be made available with clustering
technology. A shadow server eliminates the single point of failure that is evident in Figure 1.12. In a
shadow configuration, the second database of Figure 1.13 is available even when the first is not.

Use of a shadow server is called transactional shadowing and is accomplished by having a second
location, often at a different site, where transactions are also recorded. Data are recorded in two
separate data stores or databases. The router knows about both backends and sends all transactions to
both backends. RTR provides the server application with the necessary information to keep the two
databases synchronized.

Figure 1.13. Transactional Shadowing Configuration

BE Primary Server

Server
- application

TR

.

—~

_________ »l BE }------ Database

Server
application

. Standby Server

RTR Journal

In the RTR environment, one data store (database or data file) is elected the primary, and a second
data store is made the shadow. The shadow data store is a copy of the data store kept on the primary.
If either data store becomes unavailable, all transactions continue to be processed and stored on the
surviving data store. At the same time, RTR makes a record of (remembers) all transactions stored
only on the shadow data store in the RTR journal by the shadow server.

When creating the configuration used by an application and defining the nodes where a facility has its
frontends, routers,and backends, the setup must also define which nodes will have journal files. Each
backend in an RTR configuration must have a journal file to capture transactions when other nodes
are unavailable. When the primary server and data store become available again, RTR replays the

10

Chapter 1. Introduction

transactions in the journal to the primary data store through the primary server. This brings the data
store back into synchronization.

With transactional shadowing, there is no requirement that hardware, the data store, or the operating
system at different sites be the same. You could, for example, have one site running OpenVMS and
another running Windows; the RTR transactional commit process would be the same at each site.
Because the database resides at both sites, either backend can have an outage and all transactions will
still be processed and recovered.

Note

Transactional shadowing shadows only transactions controlled by RTR.

For full redundancy to assure maximum availability, a configuration could employ disk shadowing
in clusters at separate sites coupled with transactional shadowing across sites. Disk shadowing used
in specific cluster environments copies data to another disk to ensure data availability. Transactional
shadowing copies only transactional data.

Additionally, an RTR configuration typically deploys multiple frontends running client applications
with connections to several routers to ensure continuing operation if a particular router fails.

1.4. RTR Server Types

In the RTR environment, in addition to the placement of frontends, routers, and servers, the
application designer must determine what server capabilities to use. RTR provides four types of
software servers for application use:

» Standby servers

e Transactional shadow servers
» Concurrent servers

* (Callout servers

These are described in the next few paragraphs. You specify server types to your application in RTR
API calls.

RTR server types help to provide continuous availability and a secure transactional environment.

Standby server

The standby server remains idle while the RTR primary backend server performs its work, accepting
transactions and updating the database. When the primary server fails, the standby server takes over,
recovers any in-progress transactions, updates the database, and communicates with clients until the
primary server returns. There can be many instances of a standby server. Activation of the standby
server is transparent to the user.

A typical standby configuration is shown in Figure 1.12: Standby Server Configuration. Both physical
servers running the RTR backend software are assumed by RTR to connect to the same database.

The primary server is typically in use, and the standby server can be either idle or used for other
applications, or data partitions, or facilities. When the primary server becomes unavailable, the

Chapter 1. Introduction

standby server takes over and completes transactions as shown by the dashed line. Primary server
failure could be caused by server process failure or backend (node) failure.

Standby in a cluster

The intended and most common use of a standby server is in a recognized cluster environment. In a
noncluster or unrecognized cluster environment, seamless failover of standbys is not guaranteed. For
RTR, clusters supported by OpenVMS and Tru64 UNIX are recognized clusters, whose processing is
controlled by a lock manager. Windows and Sun clusters can use disk-sharing, unrecognized cluster
technology.

Standby servers are “spare” servers which automatically take over from the main backend if it fails.
This takeover is transparent to the application.

Figure 1.14 shows a simple standby configuration. The two backend nodes are members of a cluster
environment, and are both able to access the database.

For any one key range, the main or primary server (Server application) runs on one node while the
standby server (Standby application) runs on the other node. The standby server process is running,
but RTR does not pass any transactions to it. Should the primary node fail, RTR starts passing
transactions to the Standby application.

Note that one node can contain the primary servers for one key range and standby servers for another
key range to balance the load across systems. This allows the nodes in a cluster environment to act as
standby for other nodes without having idle hardware. When setting up a standby server, both servers
must have access to the same journal.

Figure 1.14. Standby Servers

FE BE
Client
application ap%ﬁ&?ir(m
FE TR

— >
Client 8
application

Y

FE BE

- > Standby
Client application
application

Terminals Frontends Router Backends Database

Transactional shadow server

The transactional shadow server places all transactions recorded on the primary server on a
second database. The transactional shadow server can be at the same site or at a different site, with
networking capability available.

12

Chapter 1. Introduction

When one member of a shadow set fails, RTR remembers the transactions executed at the surviving
site in a journal,and replays them when the failed site returns. Only after all journaled transactions
are recovered does the recovering site fully process new online transactions. During recovery, new
transactions are processed at the surviving site and added to the journal for the recovering site.

Transactional shadowing is done by partition. A transactional shadow configuration can have only
two members of the shadowset.

Shadow servers are servers on separate backends that handle the same transactions in parallel on
identical copies of the database.

Figure 1.15 shows a simple shadow configuration. The main backend server application at Site 1 and
the shadow server(Shadow application) at Site 2 both receive every transaction for the data partition
they are servicing. Should Site 1 fail,Site 2 continues to operate without interruption. Sites can be
geographically remote, for example, available at separate locations in a wide area network (WAN).

Figure 1.15. Shadow Servers

Site 1
FE BE

Client 3|
application ap?)ﬁ(r:‘;?i:)n
FE TR

Client
application

i =
— Stte 2

Y

A

BE

FE

| 5
i > Shadow
Client adoy
—
‘==

Terminals Frontends Router Backends Database

Concurrent server

The concurrent server is an additional instance of a server application running on the same node.
RTR delivers transactions to a free server from the pool of concurrent servers. If one server fails, the
transaction in process is replayed to another server in the concurrent pool. Concurrent servers are
designed primarily to increase throughput and can exploit Symmetric Multiprocessing (SMP) systems.
Figure 1.16: Concurrent Servers, illustrates the use of concurrent servers sending transactions to the
same partition on a backend, the partition A-N.

Concurrent servers allow transactions to be processed in parallel to increase throughput. Concurrent
servers deal with the same database partition, and may be implemented as multiple channels within

a single process or as one channel in separate processes. The application designer must determine if
transactions can be processed concurrently by the database or server application. Deadlocks can occur
if every transaction competes for the same database lock outside the RTR server application.

Chapter 1. Introduction

Figure 1.16. Concurrent Servers

T
BE S

A-N

e o
(Server 4) L

Partitioned Disks

Callout server

The callout server enables message authentication on transaction requests made in a given facility,
and could be used, for example, to provide audit trail logging. A callout server can run on either
backend or router nodes. A callout server receives a copy of all messages in a facility. Because the
callout server votes on the outcome of each transaction it receives, it can veto any transaction that
does not pass its security checks.

A callout server is facility based, not partition based; any message arriving at the facility is routed to
both the server and the callout. A callout server is enabled when the facility is defined. Figure 1.17

illustrates the use of a callout server that authenticates every transaction in a facility.

Figure 1.17. A Callout Server

User Accounts Facility

TR BE

Callout Server
Server application
\ / To

Partition A

Transaction

To authenticate any part of a transaction, the callout server must vote on the transaction, but does not
write to the database. RTR does not replay a transaction that is only authenticated.

Authentication

RTR callout servers provide partition-independent processing for authentication. For example, a
callout server can enable checks to be carried out on all requests in a given facility.

Callout servers run on backend or router nodes. They receive a copy of every transaction either
delivered to or passing through the node.

Callout servers offer the following advantages:

* The security check can run in parallel with the database updates thus improving response times.

14

Chapter 1. Introduction

* The security check can be run on the router hardware.
* The security checking code is completely separated from other application code.

Since this technique relies on backing out unauthorized transactions, it is most suitable when
only a small proportion of transactions are expected to fail the security check, so as not to have a
performance impact.

Partition

When working with database systems, partitioning the database can be essential to ensuring smooth
and untrammeled performance with a minimum of bottlenecks. When you partition your database,
you locate different parts of your database on different disk drives to spread both the physical storage
of your database onto different physical media and to balance access traffic across different disk
controllers and drives.

For example, in a banking environment, you could partition your database by account number, as
shown in Figure 1.18. A partition is a segment of your database.

Figure 1.18. Bank Partitioning Example

BE BE BE

]

BE 1

I L]

1 1

Server Server Server Server : Server 1
application application application application 1 \application :
1 1

1 1

TR

]

o 11
1
\A
O O & & &
1 n
___J
Accounts Accounts Accounts Accounts Accounts
1-19,999 20,000- 40,000- 70,000- 90,000-
39,999 69,999 89,999 99,999

Key range

Once you have decided to partition your database, you use key ranges in your application to specify
how to route transactions to the appropriate database partition. A key range is the range of data held
in each partition. For example, the key range for the first partition in the bank partitioning example
goes from 00001 to 19999.

You can assign a partition name in your application program or have it set by the system manager.

Note that sometimes the terms key range and partition are used as synonyms in code examples and
samples with RTR, but strictly speaking, the key range defines the partition. A partition has both a
name, its partition name, and an identifier generated by RTR — the partition ID. The properties of
a partition (callout, standby, shadow, concurrent, key segment range) can be defined by the system

Chapter 1. Introduction

manager with a CREATE PARTITION command. For details of the command syntax, see the V.S/
Reliable Transaction Router System Manager s Manual.

A significant advantage of the partitioning shown in the bank example is that you can add more
account numbers without making changes to your application; you need only add another server and
disk drive for the new account numbers. For example, say you need to add account numbers from
90,000 to 99,999 to the basic configuration of Figure 1.18: Bank Partitioning Example. You can add
these accounts and bring them on line easily. The system manager can change the key range with

a command, for example, in an overnight operation, or you can plan to do this during scheduled
maintenance.

A partition can also have multiple standby servers.

Standby Server Configurations

A node can be configured as a primary server for one key range and as a standby server for another
key range. This helps to distribute the work of the standby servers. Figure 1.19 illustrates this use of
standbys with distributed partitioning. As shown in Figure 1.19, Application Server A is the primary
server for accounts 1 to 19,999 and Application Server B is the standby for these same accounts.
Application Server B is the primary for accounts 20,000 to 39,999 and Application Server A can be
the standby for these same accounts (not shown in the figure). For clarity, account numbers are shown
only for primary servers and one standby server.

Figure 1.19. Standby with Partitioning

BE Accounts:
— 1-19,999
= 119999 1-19,999 >6
A
1-19,999 1-19,999 \
------------ > BE |f-----f-"-------
20,000-39,999 20,000-39,999 6
= Server >
B Accounts:

20,000-39,999

Anonymous clients

RTR supports anonymous clients, that is, clients can be set up in a configuration using wildcarded
node names.

Tunnel

RTR can also be used with firewall tunneling software, which supports secure internet communication
for an RTR connection, either client-to-router, or router-to-backend.

1.5. RTR Networking Capabilities

Depending on operating system, RTR uses TCP/IP or DECnet as underlying transports for the
virtual network (RTR facilities) and can be deployed in both local area and wide area networks.
PATHWORKS 32 is required for DECnet configurations on Windows NT.

16

Chapter 2. Architectural Concepts

This chapter introduces concepts on basic transaction processing and RTR architecture.

2.1. The Three-Tier Architecture

RTR is based on a three-tier physical architecture consisting of frontend (FE) roles, backend (BE)
roles and router (TR) roles. The roles are shown in Figure 2.1. (In this and subsequent diagrams,
rectangles represent physical nodes, ovals represent application software, and cylinders represent
the disks storing the database. The nodes connected to the actual database usually run the database
software that controls the database.)

In addition to the physical configuration where RTR is deployed, software plays a critical part,
extending the tier concept to more than three tiers. On certain pieces of hardware, client application
software runs, and on others, server application software runs. Users can connect to nodes that are
running the frontend role with appropriate non-RTR software. For example, a user can have a PC
where RTR runs; in this case, the PC has the frontend role. Or a user could use a PC running, say
Pathworks, to connect to another node that has the frontend role and run the RTR client application
from there. This would be a multitier configuration.

Figure 2.1. The Multitier Model

- FE BE

Client

—0
i} ==
=
Y

FE TR

F———>

i} =
=
A
FE BE
———>
Server
-3
o =
'== =
FE TR BE
F———>»
Ci
S - e -3
(==
Terminals Frontends Routers Backends Database

Client application processes run on nodes defined to have the frontend role. This tier allows
computing power to be provided locally at the end-user site for transaction acquisition and
presentation.

Server processes (represented by “Server application” in Figure 2.1) run on nodes defined to have the
backend role. This tier:

* Allows the database to be distributed geographically
* Permits replication of servers to cope with network, node or site failures

* Allows computer resources to be added to meet performance requirements

Chapter 2. Architectural Concepts

* Allows performance or geographic expansion while protecting the investments made in existing
hardware and application software

The router tier contains no application software unless running callout servers. This tier reduces the
number of logical network links required on frontend and backend nodes and helps ensure good
performance even in an unstable network. It also decouples the backend tier from the frontend tier so
that configuration changes in the (frequently changing) user environment have little influence on the
transaction processing and database (backend) environment.

The three-tier model can be mapped to any system topology. More than one role may be assigned
to any particular node. For example, on a system with few frontends, the router and backend tiers
can be combined in the same nodes. During application development and test, all three roles can be
combined in one node.

The nodes used by an application and their configuration roles are specified using RTR configuration
commands. RTR lets application code be completely location and configuration independent.

2.2. RTR Facilities Bridge the Gap

Many applications can use RTR at the same time without interfering with one another. This is
achieved by defining a separate facility for each application. A facility can be thought of as an
application network.

When an application calls the r t r _open_channel () routine to declare a channel as a client or
server, it specifies the name of the facility it will use.

Refer to the VSI Reliable Transaction Router System Manager’s Manual for information on how to
define facilities.

2.3. Broadcasts

Sometimes an application has a requirement to send unsolicited messages to multiple recipients.

An example of such an application is a commodity trading system, where the clients submit orders
and also need to be informed of the latest price changes.

The RTR broadcast capability meets this requirement.

Recipients subscribe to a class of broadcasts; a sender broadcasts a message in this class, all interested
recipients receive the message. However, broadcast reception is not guaranteed; network or node
outages can cause a particular client to fail to receive a broadcast message.

RTR permits clients to broadcast messages to one or more servers, or servers to broadcast to one or
more clients. If a server needs to broadcast a message to another server, it must open a second channel
as a client.

2.4. Flexibility and Growth

RTR allows you to cope easily with changes in:
* Network demand
» User access patterns

* The volume of data

18

Chapter 2. Architectural Concepts

Since an RTR-based system can be built using multiple systems at each functional layer, it easily
lends itself to step-by-step growth, avoiding unused capacity at each stage. With your system still up
and running, it is possible to:

» Create and delete concurrent server processes.
¢ Add or remove nodes (frontend, router or backend).
This means you do not need to provide spare capacity to allow for growth.

RTR also allows parallel execution. This means that different parts of a single transaction can be
processed in parallel by multiple servers.

RTR provides a comprehensive set of monitoring tools to help you evaluate the volume of traffic
passing through the system. This can help you respond to unexpected load changes by altering the
system configuration dynamically.

2.5. Transaction Integrity

RTR greatly simplifies the design and coding of distributed applications, because, with RTR, database
actions can be bundled together into transactions.

To ensure that your application deals with transactions correctly,its transactions must have the ACID
properties, fundamental properties of transaction processing systems. A transaction that has the ACID
properties is:

* Atomic
* Consistent
* Isolated
* Durable

An atomic transaction is all or nothing; that is, either the entire transaction is totally committed or
totally rolled back. A consistent transaction either creates a new, valid state of data,or, from any
failure, returns all data to its state as it was before the start of the transaction. An isolated transaction
does not cause changes to shared resources until commitment of the transaction. A durable transaction
survives system and media failures after transaction commitment. A durable transaction is thus both
persistent and stable.

For more detail on these properties and their use in transaction processing, refer to the VSI Reliable
Transaction Router Application Design Guide.

2.6. The Partitioned Data Model

One goal in designing for high transaction throughput is reducing the time that users must wait for
shared resources.

While many elements of a transaction processing system can be duplicated, one resource that must be
shared is the database. Users compete for a shared database in three ways:

¢ For use of the disk

* For locks on database records

Chapter 2. Architectural Concepts

* For the CPU resources needed to access the database

This competition can be alleviated by spreading the database across several backend nodes, each
node being responsible for a subset of the data, or partition. RTR enables you to implement this
partitioned data model, shown roughly in Figure 2.2 where the database has three partitions. RTR
routes messages to the correct partition on the basis of an application-defined key. For a more
complete description of partitioning as provided with RTR, refer to the VSI Reliable Transaction
Router Application Design Guide.

Each RTR API provides the capability to use partitions. For specific information on declaring
and using partitions, refer to the RTR documentation for the system manager and the applications
programmer.

2.7. Object-Oriented Programming

Java objects and the RTR the C++ foundation classes map traditional RTR functional programming
concepts into an object-oriented programming model. Using the power and features of these
foundation classes requires a basic understanding of the differences between functional and object-
oriented programming concepts. Table 2.1 compares the worlds of functional programming and
object-oriented programming.

Figure 2.2. Partitioned Data Model

FE BE

Client —
application ap?)ﬁ(?;etiz)n

FE TR
——— >
Client
—
] == >
El | Partition 1
A
M- =]
BE e
FE » |Partition 2
- — Server =]
» |Partition 3

application
1] E IE}I ~_

FE TR BE
———>»
Client Server
S
i —
Terminals Frontends Routers Backends Database

Table 2.1. Functional and Object-Oriented Programming Compared

Functional Programming Object-Oriented Programming
A program consists of data structures and A program consists of a team of cooperating
algorithms. objects.

20

Chapter 2. Architectural Concepts

Functional Programming Object-Oriented Programming

The basic programming unit is the function, that |The basic programming unit is the class, that
when run, implements an algorithm. when instantiated, implements an object.

Functions operate on elemental data types or data |Objects communicate by sending messages.
structures.

An application's architecture consists of a An applications architecture consists of objects
hierarchy of functions and sub-functions. that model entities of the problem domain.
Objects' relationships can vary.

2.7.1. Objects

In the object-oriented environment, a program or application is a grouping of cooperating objects. The
basic programming unit is the class. Instantiating, or declaring an instance of, a class implements an
object. RTR provides object-oriented programming capabilities with the C++ API, described in the C+
+ Foundation Classes manual. Objects are instances of a class. In a transaction class, each transaction
is an object. An object is an instantiated (declared) class. Its state and behavior are determined by the
attributes and methods defined in the class. An object or class is defined by its:

* State (attributes)
* Behavior (methods)
* Identity (name at instantiation)

The name given at object declaration is its identity. In Example 2.1, the two dog objects King and Fifi
are instances of Dog. The Dog class is declared in a header (Dog.h) file and implemented in a .cpp
file.

Example 2.1. Objects-Defined Sample

Dog. h:
cl ass Dog
{ ...
b
mai n. cpp:
#i ncl ude "Dog. h"
mai n()
{
Dog Ki ng;
Dog Fifi;
}

2.7.2. Messages

Objects communicate by sending messages. This is done by calling an object's methods.
Some principal categories of messages are:

* Constructors: Create objects

» Destructors: Delete objects

» Selectors: Return part or all of an object's state. For example, a Get method

21

Chapter 2. Architectural Concepts

* Modifiers: Change part or all of an object's state. For example, a Set method

» Iterators: Access multiple element objects within a container object. For example, an array.

2.7.3. Class Relationships

Classes can be related in the following ways:

» Simple association: One class is aware of another class. For example, "Dog object is associated
with a Master object." This is a "Knows a" relationship.

» Composition: One class contains another class as part of its attributes. For example, "Dog objects
contains Leg objects." This is a "Has a" relationship.

* Inheritance A child class is derived from one or more parent, or base, classes. For example, "Mutt
object derives from Collie object and Boxer object which both derive from Dog object." This is an
"Is a" relationship. Inheritance enables the use of polymorphism.

2.7.4. Polymorphism

Polymorphism is the ability of objects, inherited from a common base or parent class, to respond
differently to the same message. This is done by defining different implementations of the same
method name within the individual child class definitions. For example: A DogArray object,
"DogArray OurDogs[2];" refers to two element objects of class Dog, the base class:

* King, of class Doberman, is a derived or child class of Dog.
» Fifi, of class Minipoodle, is a derived or child class of Dog.
If, in a program, OurDogs[n]->Bark() is called in a loop, then:
* Initeration one ([1]), method King::Bark() is called.

* Initeration two ([2]), method Fifi::Bark() is called.

King's bark does not sound like Fifi's bark because each Bark() call is a separately defined method
within its child object definition. The virtual parent class (Dog) method Bark() is defined in the class
definition of Dog.

2.7.5. Object Implementation Benefits

The benefits of creating RTR solutions with C++ foundation classes include the following:

» Each major RTR concept is represented by its own individual foundation class.

» Simple methods within RTR classes transform features of RTR for streamlined solutions.
* Major classes include Get and Set methods for changing transaction states.

* Default handling code is provided for all Messages and Events, where appropriate.

* You do not need to provide handling code for all messages and events.

» The sending and receiving of data is abstracted to a higher level with transaction controller and
data classes.

22

Chapter 2. Architectural Concepts

* No buffers and links coding is needed.

* Internal RTR information is accessible without a need to know RTR internals.

2.8. Java Support

RTR clients and servers can be Java applications that obtain the benefits of high availability, fault
tolerance and scalability provided by RTR. RTR clients and servers employing Java technology use
standard Java and J2EE interfaces for transaction management, data input/output, and database access.

For additional information, see the JRTR Getting Started manual and associated online
documentation.

2.9. XA Support

Within its C API, RTR provides the capability of using the XA interface to work with XA-compliant
database systems. The XA interface is part of the X/Open DTP (Distributed Transaction Processing)
standard. It defines the interface that transaction managers (TM) and resource managers (RM) use

to perform the two-phase commit protocol. (Resource managers are underlying database systems
such as ORACLE RDBMS, Microsoft SQL Server, and others.) This interface is used by TM-to-RM
exchanges to coordinate a transaction from within an application program.

If your database application supports XA, you have less to implement in your application
environment; use of XA can also increase the portability of your application.

For details on using XA with RTR, refer to the VSI Reliable Transaction Router C Application
Programmer s Reference Manual and the VSI Reliable Transaction Router Application Design Guide.

23

Chapter 2. Architectural Concepts

24

Chapter 3. Reliability Features

This chapter addresses:

RTR server types
Failover and recovery

Recovery scenarios

3.1. RTR Server Types

Reliability in RTR is enhanced by the use of:

Concurrent servers
Standby servers
Shadow servers
Callout servers

Router failover

Note that, conceptually, servers can be contrasted as follows:

Concurrent servers handle similar transactions which access the same data partition and run on the
same node.

When transaction throughput is constrained by your server application, consider adding a second
instance of your server application with a concurrent server.

Shadow servers handle the same transactions and run on different nodes.

When there is concern that your database is a single point of failure, add a shadow server, if
possible at a different physical location.

Standby servers provide a node that can take over processing on a data partition when the primary
server or node fails.

When there is concern that your server application or the node where it is running is a single point
of failure in your configuration, configure a standby server to be ready to take over.

Callout servers run on backends or routers and receive all messages within a facility so that
authentication and logging operations can be performed in parallel.

Use a callout server to add processing logic (authentication or logging) to your transactions
without modifying your server application.

All servers are further described in the earlier section on RTR Terminology.

3.2. Failover and Recovery

RTR provides several capabilities to ensure failover and recovery under several circumstances.

25

Chapter 3. Reliability Features

3.2.1. Router Failover

Frontend nodes automatically connect to another router if the one being used fails. This reconnection
is transparent to the application.

Routers are responsible for coordinating the two-phase commit for transactions. If the original
router coordinating a transaction fails, backend nodes select another router that can ensure correct
transaction completion.

3.2.1.1. Backend Restart Recovery
Transactions in the process of being committed at the time of a failure are recovered from RTR's disk
journal. Recovery could be with a concurrent server, a standby server, or a restarted server created

when the failed backend restarts.

Correct ordering of the execution of transactions against the database is maintained.

3.2.1.2. Transaction Message Replay

Transaction messages which are lost in transit are re-sent when possible. The frontend and backend
nodes keep an in-memory copy of all active messages for this purpose.

3.2.1.3. Link Failure Recovery

In the event of a communications failure, RTR tries to reconnect the link or links until it succeeds.

3.3. Recovery Scenarios

This section describes how RTR recovers from different hardware and software failure. For
additional information on failure and recovery scenarios, refer to the VSI Reliable Transaction Router
Application Design Guide.

3.3.1. Backend Recovery

If standby or shadow servers are available on another backend node, operation of the rest of the
system will continue without interruption, using the standby or shadow server.

If a backend processor is lost, any transactions in progress are remembered by RTR and later
recovered, either when the backend restarts, or by a standby if one is present. Thus, the distributed
database is brought back to a transaction-consistent state.

3.3.2. Router Recovery

If a router fails and another router node is available, all in-progress transactions are transparently re-
routed by the other router. System operation will continue without interruption.

3.3.3. Frontend Recovery

If a frontend is lost:

» All transactions committed but not completed on the frontend node at the time of failure will be
completed.

26

Chapter 3. Reliability Features

All transactions started but not committed on the frontend node at the time of failure will be
aborted.

27

Chapter 3. Reliability Features

28

Chapter 4. RTR Interfaces

RTR provides interfaces for system management (the management interfaces) and for development of

transaction processing and management applications (the programming or application development
interfaces).

4.1. Management Interfaces

The management interfaces are:
¢ The RTR Administrator, a browser interface. This interface includes:
* RTR Manager
* RTR Explorer
* The command line interface or CLI
The RTR Administrator lets you manage RTR, its facilities, nodes, and network links, with a point-
and-click interface. It contains extensive help, both as inline popups, as linked help, and as links to

current information. For example, inline popups describe short headings more fully, and the system
manager can view many types of status as RTR and the applications under its control run.

Figure 4.1 shows the RTR Adminstrator screen where you select whether to use the RTR Manager or

the RTR Explorer.

Figure 4.1. RTR Administrator

3 Reliable Transaction Router Administrator - Microsoft = | Dlﬂ
File Edit \Wiew Favorites Tools Help ﬁ
d=Back - = - @ A} | Qisearch [GlFavortes Fvedia (4| E- S B - |Links =
Address |@ L] P Go

Reliable - g e =
Transaction Router el ol
RTR Manager

RTR Manager lets you manage and monitor individual nodes in your RTR
network using a web browser, The most commonly used RTR commands
are implemented. To start, enter the node names you want to manage,
separated by commas.

Enter Node Name(s) | RTR Manager |

RTR Explorer

RTR Explorer lets you assess the state of your entire RTR network using
a web browser, From the global views you can zoom in and manage RTR
on individual nodes without leaving the web browser. To start, enter
the name of a backend defined in the facilities you wish to browse.

Enter Name of Backend | RTR Explarer |

‘@ Done = ’_ Hél. My Computer

™

29

Chapter 4. RTR Interfaces

The RTR CLI contains all RTR system manager commands and calls to all RTR C API routines such
asrtr_open_channel orrtr_create facility. You can use either the RTR Manager
or the RTR CLI to manage your RTR configuration. You can also use the command line interface
to write short RTR C applications for testing and experimentation. The CLI is described in the VSI
Reliable Transaction Router System Manager s Manual. Its use is illustrated in this chapter.

Figure 4.2 shows the RTR command line interface.

Figure 4.2. RTR Command Line Interface

%' RTR command window 4i

RTR> rtr_opensserver/chan=s/fac=design
#RTR-8—0K. normal successful completion

RTR> rtr_receiveschan=s

#RTR-S§—-0K, normal successful completion
channel name:

msgsh

message

msgtype: rtr_mt_opened
msglen:

status: normal successful completion
B>BBBRBO6A

4.2. Programming Interfaces

RTR provides several programming or application development interfaces for design and
implementation of transaction processing programs. They include the following:

The object-oriented RTR Java interface

You can use this API for new development, and, where appropriate, for new development with
existing applications. This API can be used to implement applications with RTR using Java and
J2EE technologies.

The object-oriented API for C++ programming

You can use this API for new development and, where appropriate, for new work with existing
applications. An application can contain both object-oriented classes and Portable API calls. The
C++ API can be used to implement both management and transaction processing applications on
all platforms supported by RTR.

The RTR API for C programming
This interface was the first multiplatform API available with RTR.

An interface that enables use of an X/Open Distributed Transaction Processing-conformant
resource manager

This interface, invoked through the RTR management interfaces, enables RTR applications to be
used with X/Open-compliant resource managers such as Oracle8.

The OpenVMS API containing OpenVMS calls

This API, supported on OpenVMS only, is obsolete for new development. To take advantage of
new RTR features and capabilities, such applications can be rewritten with one of the newer APIs.
Older applications will continue to run with later versions of RTR.

30

Chapter 4. RTR Interfaces

The RTR application programming interfaces, where available, are identical on all hardware and
operating system platforms that support RTR. The object-oriented C++ API is fully described in the
VSI Reliable Transaction Router C++ Foundation Classes manual. The C-programming API is fully
described in the VSI Reliable Transaction Router C Application Programmer s Reference Manual.
Both APIs are used in examples in the VSI Reliable Transaction Router Application Design Guide.
The Java J2EE interface is described in the JTA material in the RTR JRTR kit. The XA interface is
described in materials from X/Open.

4.3. Application Development

The transaction processing environment poses special challenges for the development of applications,
challenges best addressed by following a defined methodology such as the software development life
cycle or object-oriented design fleshed out with use cases.

The software development life cycle consists of the following phases that are to be viewed as
iterative:

* QGathering requirements (what is needed?)
* Developing a high-level design (what will the transaction processing application do?)

* Constructing a detailed design (explicitly, what will each part of the application do and what are
its intended results?)

* Coding and unit testing

* Integration and system testing/deployment

L]

Maintenance
Many books are available to assist the developer with both design and development, including:

* J. Gray, A. Reuter, Transaction Processing: Concepts and Techniques, Morgan Kaufmann, San
Mateo, CA, 1992

* Philip A. Bernstein, Eric Newcomer, Principles of Transaction Processing, Morgan Kaufmann,
San Francisco, CA, 1997

Object-oriented methods and practice are described and elaborated on in many books, including:

» James Rumbaugh, Michael Blaha, William Lorenson, Object-Oriented Modeling and Design,
Prentice Hall, Englewood CLiffs, NJ, 1991

* Martin Fowler with Kendall Scott, UML Distilled, Addison-Wesley, Reading, MA 1997

Table 4.1 summarizes the RTR interfaces and their typical use.

Table 4.1. RTR Interfaces and their Use

With this interface: You can write:

RTR Java interface application programs

RTR C++ Foundation Classes application programs system management
programs

31

Chapter 4. RTR Interfaces

With this interface: You can write:

RTR C programming interface application programs

4.4. RTR Management

You can manage RTR from several locations:

* from a node on which RTR is running
* from a remote node from which you send RTR commands to a node running RTR

» from a web browser that can be on or access a node running RTR

4.4.1. RTR Administrator

With the RTR Administrator, you have a network-browserlike display from which you can view RTR
status and issue certain RTR commands with a point-and-click operation. The RTR Administrator
contains both the RTR Manager, with which you set up and manage your RTR configuration, and the
RTR Explorer, with which you observe and monitor your RTR configuration. Online help provided
with the RTR Administrator includes popups for screen headings, popups for some RTR Explorer
information, and extensive help for RTR commands.

In the RTR Manager or RTR Explorer, buttons have the following effect:

This button: Takes you to:
Back The previous level
Back to Home To the RTR Administrator

4.4.2. RTR Manager

Figure 4.3 shows the first RTR Manager screen through which you manage RTR and RTR
applications. Not all RTR CLI commands are accessible from the RTR Manager RTR Command

link; those rarely used are available only through the RTR CLI command window. The RTR Manager
provides help for input screens, logging windows, and links between displays.

32

Chapter 4. RTR Interfaces

Figure 4.3. RTR Manager

/3 RTR Manager on Kathyh3.espzk.zko.dec.com - Microsoft I =10] x|
| File Edit View Favorites Tools Help
d=Back + = -) a4 | Qlsearch [&lFavorites EMedia ¢4 ‘ S - = ‘Links L
Address I@ http://nodename x| @
System Status at 14:43:17 Tue Sep 14 2004
node: nodename
Resource 0K Warning
RTR MANAGER on nodename | Facility QUORTM states...... X
1 APPLICATIONS JOURIAL free space.......... X
11 CHARTS and MONITORS Link CONNECTS. ... X
8 FACLITY Link traffic STALLS . . X
i JavaRTR FLOW control credits........ X
8 JOURNAL PARTITION states.......... X
1 LINK CALL Msg outstanding. ... X
L LOGGING Transaction QUEUES ... X
I PARTITION Transaction REJECTS X
i RTR e
1 TRANSACTION Broadcast EVENT discards.... X
7] BACK TO HOME
{3] RTR COMMAND For additional detail about a resource, monitor the
-[8] RTR HELP appropriate subsystem. To customize threshold
values, edit SYSTEM.MOM. If viewing this page in a
browser, follow the hyperlinks above.
| 2 |
|&] open folder ’_ ’_ ’_‘ Local intranet 4

4.4.3. RTR Explorer

Figure 4.4 shows a sample screen of the RTR Explorer with several defined facilities. The RTR
Explorer lets the system manager or administrator view the entire RTR configuration by facility and
by node, and assess the state of the RTR network and the state of any individual node or facility in the

network.

The All Facilities View (Figure 4.4) shows all facilities by name, with icons showing status of normal
or one of three levels of alert (warning, error, or fatal). Additional views either by facility or node
enable the manager to drill down, with a simple point-and-click, to the facility or node of interest.

33

Chapter 4. RTR Interfaces

Figure 4.4. RTR Explorer: View of All Facilities

/3 All Facilities View - RTR Explorer - Mi ern 1ol x|

File Edit VYew Favorites Tools Help ‘
wBack + = - @D 4] @& | Qoearch [(ElFavorites DMeda | BN+ Sh ”‘ Links
Address [&] | @

ﬂra\l_images_fac

[:5;‘ error_facility
RTR EXPLORER ﬂ'falal_facility
Mode: Navigation guod facility
All Facilities

large_facility
f:tiugnack to Home [L“ : typical_facility

@I 5 waming_facilit
Back to Home ed y
Click to go back to the
home page, which lets
you access the RTR
Manager and the RTR Go |
Explorer on any node. B::k Swvitch to Alarm Mode | | Turn On Refresh] |Display Help
Home
0| Bl
@] Go Back to Home li li li E Local intranet 4

Information available for each facility includes the facility name, the alerts associated with nodes

participating in the facility, and the state of the facility. Information for each
role, cluster name, partition names, partition states, node state, and alerts.

Additional views either by facility or by node enable the administrator to zoom, with a simple point-
and-click, to the facility or node of interest. From the node view, the administrator can open the RTR
Manager for the node. Hence, RTR Explorer enables the administrator to both view and manage the

state of every facility and node.

Figure 4.5. RTR Explorer: View of One Facility

3 tours Facility Yiew - RTR Explorer - Microsoft Internet Explo = |D|£l

node includes its name,

File Edit View Favorites Tools Help

$Back ~ = - & 2| Qoearch [EFavorites @vedia (4| BN S B = ‘Links 3
Address I@ hitp://nodename j l'(")‘)GU
FEliGE
1 Backend [GROUPED BY PARTITION]
No Partitions
RTR EXPLORER B nodename
Mode: Navigation
Design Facility 1 Router 1 Frontend
Go Back to Home = nodename | = nodename |
Action
Back to Home
Click to go back to the home
F;s%_rghl!;:nl:;a?gﬁdarﬁ:zﬁrlq ;Gu Back to Hclme"SWrtch to Alarm Mude"Turn on Refresh"DispIay Helpl
Explorer on any node.
Wednesday, July 21
03:21:49 PM Eastern Daylight Time
Generated by nodename with 8 seconds old information
4 I
‘@ Go Back to Home ’7 ’7 ’7 Local intranet &

34

Chapter 4. RTR Interfaces

Nodes can monitor themselves for alerts. Each alert can be set at progressive levels of severity —
first Warning, second Error, and third Fatal. The severity of an alert indicates the urgency of the
alert. Warning means RTR may or may not be operating normally, but something needs to be looked
at. Error means that RTR is likely not operating normally, but may be able to continue operating.
Fatal means that RTR cannot continue to operate unless the alert is resolved. See the REMEMBER
EXPRESSION command in the System Manager’s Manual for how to define alerts.

The state of a facility shown by its icon in a view of all facilities (see Figure 4.4) indicates the worst
severity for all defined alerts for all nodes in that facility. Similarly, the state of a node or group of
nodes shown by its icon in a view of a single facility (see Figure 4.5) is the worst severity of all alerts
for that node or group of nodes. If there are no flags, the node or group is operating normally.

4.4.4. RTR Command Line Interface

The command line interface (CLI) to the RTR API enables the programmer to write short RTR
applications from the RTR command line. This can be useful for testing short program segments and
exploring how RTR works. Figure 4.2 shows the RTR CLI interface. For example, the commands
shown in the examples below start RTR and exchange a message between a client and a server.

Note

The channel identifier identifies the application process to the ACP. The client and server process
must each have a unique channel identifier. In this example, the channel identifier for the client is C
and for the server is S. Both use the facility called DESIGN.

Sample TP

The examples that follow show transaction processing (TP) communication between a client and a
server created by entering commands at a terminal keyboard. The client application is executing on
the frontend and the server on the backend.

The operational process is:

* Create the journal

» Create a facility

e Create a partition

e Open channels

» Start a transaction

* Accept the transaction

All applications will use some variants of these steps in the same order.

The user is called user, the facility being defined is called DESIGN, a client and a server are
established, and a test message containing the words "Kathy’s text today" is sent from the client to
the server. After the server receives this text, the user on the server enters the words "And this is my
response."

System responses begin with the characters %RTR-. Notes on the procedure are enclosed in square
brackets []. For clarity, commands you enter are shown in bold. You can view the status of a
transaction with the SHOW TRANSACTION command.

35

Chapter 4. RTR Interfaces

The exchange of messages you observe in executing these commands illustrates RTR activity. You
need to retain a similar sequence in your own designs for starting up RTR and initiating your own
application.

You can use RTR SHOW and MONITOR commands to display status and examine system state
at any time from the CLI. For more information on RTR commands, refer to the VSI Reliable
Transaction Router System Managers Manual.

Note

Thertr _recei ve_nmessage command waits or blocks if no message is currently available.
When using thertr _recei ve_nmessage command in the RTR CLI, use the /TIME=0 qualifier or
TIMEOUT to poll for a message, if you do not want your rtr _r ecei ve_nessage command to
block.

4.4.5. Examples

Example 4.1. The user issues the following commands on the server application where
RTR is running on the backend.

$ RTR

Copyri ght 1994, 2003 Hewl ett-Packard Devel opnent Conpany, L.P.
RTR> set node/ group

URTR- | - STACOMSRV, starting comand server on node NODEA
URTR- | - GRPMODCHG, group changed from" " to "usernane"
URTR- | - SRVDI SCON, server disconnected on node NODEA

RTR> CREATE JOURNAL

URTR- | - STACOMSRV, starting command server on node NODEA in group
"user nane"

URTR-S-JOURNALI NI, journal has been created on device D:

RTR> SHOW JOURNAL

Journal configuration on NODEA in group "username" at Mon Aug 28 14:54:11
2000: -

Di sk: D:\ Bl ocks: 1000

RTR> start rtr
UYRTR- | - NOLOGSET, | o0ggi ng not set
YRTR- S- RTRSTART, RTR started on node NODEA in group "usernane"
RTR> CREATE FACI LI TY DESI GV ALL_ROLES=(NODEA)
[- or [all=NODEA, NODEB]

URTR- S- FACCREATED, facility DESIGN created
RTR> SHOW FACI LI TY
Facilities on node NODEA in group "usernane" at Mon Aug 28 15:00:28 2000:
Facility Fr ont end Rout er Backend
DESI GN yes yes yes
RTR> rtr_open/ server/accept _explicit/prepare_explicit/chan=s/fac=DESI GN
URTR- S- OK, nornal successful conpletion
RTR> RTR_RECEIl VE_MESSAGE/ CHAN=S
URTR- S- OK, nornal successful conpletion

channel nane: S

nsgt ype: rtr_m _opened

36

Chapter 4. RTR Interfaces

st at us: normal successful conpletion

Example 4.2. When the next command is issued, RTR waits for the message from the
client, which does not appear until after the client sends it

RTR> RTR_RECEIl VE_MESSAGE/ CHAN=S
URTR- S- OK, nornal successful conpletion
channel name: S

negsh
negt ype: rtr_nt_nsgl
negl en: 19
usr hdl : 0
Ti d: 63b01d10, 0, 0, 0, 0, 2e59, 43ea2002
nmessage
of fset bytes t ext
000000 4B 61 74 68 79 27 73 20 74 65 78 74 20 74 6F 64 Kathy's text tod
000010 61 79 00 ay.
r eason: Ox00000000

RTR> RTR_REPLY_TO CLI ENT/ CHAN=S "And this is ny response.”
MRTR- S- OK, nornmal successful conpletion

RTR> show transaction

Frontend transacti ons on node NodeA in group "username” at Mn Aug 28

15:12:10 2000
Tid Facility FE- User State
63b01d10, 0, 0, 0, 0, 2e59, 43ea2002 DESI GN user nare. SENDI NG
Rout er transactions on node NodeA in group "username” at Mn Aug 28

15:12:10 2000:
63b01d10, 0, 0, 0, 0, 2e59, 43ea2002 DESI GN user nare. SENDI NG
Backend transacti ons on node NodeA in group "usernane"” at Mon Aug 28

15:12:10 2000:

63b01d10, 0, 0, 0, 0, 2e59, 43ea2002 DESI GN user nare. RECEI VI NG
RTR> RTR_RECEIl VE_MESSAGE/ CHAN=S
UMRTR- S- OK, nornmal successful conpletion

channel name: S

negsh
nsgt ype: rtr_nt_prepare
[if OK wuse: RTR_ACCEPT_TX
el se, use: RTR REJECT_TX]
RTR> RTR_RECEI VE_MESSAGE/ TI ME=0
RTR> STOP RTR [Ends exanple test.]

Example 4.3. Commands and system response at client.

$ RTR
RTR> START RTR
YRTR- S- RTRSTART, RTR started on node NODEA in group "usernane"

RTR> RTR_OPEN_CHANNEL/ CHANNEL=C/ CLI ENT/ f ac=DESI GN
URTR- S- OK, nornal successful conpletion

RTR> RTR_RECEI VE_MESSAGE/ CHANNEL=C/ ti m
[to get nt_opened or nt_cl osed]
URTR- S- OK, nornal successful conpletion
channel nane: C
nsgsb

37

Chapter 4. RTR Interfaces

nmsgt ype: rtr_m _opened
nmsgl en: 8
nessage
st at us: normal successful conpletion
reason: Ox00000000

RTR> RTR_START_TX/ CHAN=C

IRTR- S- OK, normal successful conpletion

RTR> RTR_SEND TO SERVER/ CHAN=C "Kat hy's text today." [text sent to the
server |

IRTR- S- OK, normal successful conpletion

RTR> show transaction

Frontend transacti ons on node NodeA in group "usernane” at Mn Aug 28
15: 05: 43 2000

Tid Facility FE- User State

63b01d10, 0, 0, O, 0, 2e59, 43ea2002 DESI GN user namne. SENDI NG
Rout er transacti ons on node NodeA in group "username" at Mn Aug 28

15: 06: 43 2000:

63b01d10, 0, 0, O, 0, 2e59, 43ea2002 DESI GN user namne. SENDI NG
Backend transacti ons on node NodeA in group "usernanme" at Mn Aug 28
15: 06: 43 2000:

63b01d10, 0, 0, O, 0, 2e59, 43ea2002 DESI GN user name. SENDI NG

RTR> RTR_RECEI VE_MESSACE/ TI ME=0/ CHAN=C

Example 4.4. The following lines arrive at the client from RTR after the user enters
commands at the server.

URTR- S- OK, nornal successful conpletion
channel nane: C

nsgsb

nsgt ype: rtr_ m _reply

nsgl en: 25

usr hdl : 0

tid: 63b01d10, 0, 0, 0, 0, 2e59, 43ea2002

nessage

of fset bytes t ext

000000 41 6E 64 20 74 68 69 73 20 69 73 20 6D 79 20 72 And this is ny r
000010 65 73 70 6F 6E 73 65 2E 00 esponse.

RTR> RTR_ACCEPT_TX/ CHANNEL=C
URTR- S- OK, nornal successful conpletion

RTR> show transaction

Frontend transacti ons on node NodeA in group "usernane" at Mon Aug 28
15:17: 45 2000

Tid Facility FE- User State
63b01d10, 0, 0, 0, 0, 2e59, 43ea2002 DESI GN user name. VOTI NG
Rout er transactions on node NodeA in group "usernane" at Mn Aug 28
15:17: 45 2000:

63b01d10, 0, 0, O, 0, 2e59, 43ea2002 DESI GN user name. VOTI NG
Backend transacti ons on node NodeA in group "username" at Mon Aug 28
15:17: 45 2000:

63b01d10, 0, 0, O, 0, 2e59, 43ea2002 DESI GN user name. cow T

RTR> RTR_RECEI VE_MESSACE
URTR- S- OK, nornal successful conpletion
channel nane: S

38

Chapter 4. RTR Interfaces

msgtype: rtr_nt_accepted

RTR> STOP RTR

4.5. Application Programming Interfaces

You write application programs and management applications with the RTR application programming
interfaces.

4.5.1. RTR Java Object-Oriented Interface

You can use Java and J2EE technology to write applications that use RTR. For additional information
on these technologies, see the documentation that is part of the JRTR downloadable kit. This
documentation includes the JRTR Getting Started manual and other supplementary materials,
including a sample application.

Java Technology

The following Java technology is used by:

RTR Clients RTR Servers
UserTransaction Interface InputStreams

OutputStreams
J2EE Technology

The following J2EE technology is used by RTR servers:
* adatabase and a JDBC driver that supports the JDBC 2.0 Optional Package javax.sql (required)
* a JNDI service provider (optional)

Figure 46 illustrates the required connection that must be defined for a service provider, with the
links to the connection pool and the JDBC driver that are set up by the system administrator. The
application program needs only to know about the service provider to use the connection.

RTR Java J2EE-based applications need to be able to locate and access database resources external
to the application. The J2EE JDBC 2.0 javax.sql package addresses these needs through datasources,
connections and connection pooling. For any particular database, the database vendor must provide
a JDBC driver which supports the JDBC 2.0 Optional Package (formerly known as the JDBC 2.0
Standard Extension). This package defines datasources and connection pools.

39

Chapter 4. RTR Interfaces

Figure 4.6. RTR Service Provider

JNDI

Service Provider

DataSource > Connection Pool
/
Y
JRTR Server
Application JDBC Driver

A database resource is represented by a datasource object. For the application to locate the datasource
representing the database resource, a naming service that implements the Java Naming and Directory
Interface (JNDI) must be present. Registering a datasource with the JNDI service enables the RTR
Java J2EE-based application to locate the datasource and connect to its corresponding database.

Once the datasource is located and the datasource object is instantiated, the datasource method
getConnection() is called to obtain a connection object.

Sample Java server code

The sample Java code from a server Java application illustrates Java use of a datasource and a
connection pool.

/1 Get a datasource that has been configured by the adm nistrator
Dat aSource ds = (DataSource)LookupFromJNDI (" nyDat aSour ce");

/1l CGet a connection to the database
Connection con = ds. get Connection();

Some complex applications require multiple connections to one or more databases. Connection
pooling allows applications to offload the high overhead of time and computing resources involved
in creating and maintaining multiple connections to one or more databases. This is accomplished by
using connectionpool objects. Connection pools (like datasources) are registered with a JNDI service.
For more information on JDBC, refer to the Sun Java web site link for the JDBC Standard Extension
APL

4.5.2. RTR C++ Object-Oriented Programming Interface

You can use the object-oriented programming interface to write C++ applications that use RTR.
For more information on the C++ object-oriented programming interface, refer to the VSI Reliable
Transaction Router C++ Foundation Classes manual and the VSI Reliable Transaction Router
Application Design Guide.

Sample C++ client code

The following example illustrates object creation in a program that is to act as an RTR client
application. The first step is to create a Transaction Controller. This is followed by creating an RTR
Data Object that will hold the ASCII message for the server, sending the message to the server
application, and finally accepting the transaction.

40

Chapter 4. RTR Interfaces

/1
/!l Create a Transaction Controller to receive inconm ng nessages
/1 and events froma client.
/1
RTRC i ent Transacti onControl |l er *pTransacti on = new
RTRC i ent Transacti onControl ler();
/1
/1l Create an RTRData object to hold an ASCI| nessage for the server.
/1
RTRDat a *pMessagel = new RTRData("You are pretty easy to use!!l");
/1
/1 Send the Server a nessage
/1
sStatus = pTransacti on->SendAppl i cati onMessage(pMessagel);
ASSERT(RTR_STS_OK == sStatus);
/1
/1 Since we have successfully finished our work, tell RTR we accept the
/1 transaction.
/1
pTransacti on->Accept Tr ansacti on() ;

Sample C++ server code

The following example illustrates creation of an object in a server application that is to act as an RTR
server. First it creates a key segment for a specific range of ASCII values (A to L) and creates a data
object to hold each incoming message or event. Then it loops continuously, receiving messages and
dispatching them to the handlers.

voi d Conbi nati onOrder Processor:: StartProcessi ngOrder sAt oL()

{

/1

/1 Create an RTRKeySegnent for all ASCI| val ues between "A" and "L."

/1

m pkeyRange = new RTRKeySegnent (rtr_keyseg string, //To process strings.

1, /1 Length of the key.
O fsetlntoApplicationProtocol, //Ofset val ue.
A", // Lowest ASCII| value for partition.
"L"); /1 Hi ghest ASCI| value for partition.
St art Processi ngOr der s(PARTI TI ON_NAMEAToL, m pKeyRange) ;
}
/1

/1l Create an RTRData Oobject to hold each incom ng nessage or event. This

/1 object will be reused.

/1

RTRDat a *pDat aRecei ved= new RTRDat a() ;

/1

/1 Continually |oop, receiving nessages and dispatching themto the
handl ers.

/1

whi | e(true)

{
sStatus = pTransacti on->Recei ve(&Dat aRecei ved);
ASSERT(RTR_STS K == sStatus);

sSt at us = pDat aRecei ved->Di spat ch();
ASSERT(RTR_STS K == sStatus);

41

Chapter 4. RTR Interfaces

Sample system management code

The following examples illustrates creation of objects in an application to perform system
management tasks for RTR.

Example 4.5. Creating a Facility with the C++ API

/1 Use the C++ interface to create an RTR facility
RTRFaci | i tyManager:: CreateFacilityWthAl | Rol es_3()
{
bool bOCveral | Result = true;
/l/Create facility manager, abort if creation fails
RTRFaci | i t yManager * pFacilityManager;
pFaci | i t yManager = new RTRFaci | it yManager;
if (IsFailure(pFacilityManager !'= NULL))
{

return fal se;

/1l Create the facility
rtr_status_t stsCreateFacility;
stsCreateFacility =
pFaci | i t yManager - >Creat eFaclity("FaclityWthAl | Rol es_3",
Get Def aul t Rout er Name() ,
Get Def aul t Front endNane() ,
Get Def aul t BackendNare() ,
true,
fal se);
/11f facility creation is not successful, report it
if (IsFailure(stsCreateFaciltiy == RTR STS (K))
{
bOveral | Result = fal se;
Qut put St atus(stsCreateFacility);

else // Delete a successfully created facility
{
rtr_status_t stsDeleteFacility;
stsDeleteFacility =
pFaci | i t yManager - >Del eteFacility("FacilityWthA | Rol es_3");
if (IsFailure(stsDeleteFacility == RTR STS (K))
{
bOveral | Result = fal se;
Qut put St atus) stsDel eteFacility);

}
}

/1 Clean up and return
del ete pFacilityManager;
return bOveral | Result;

}
Sample C++ system management code

The following examples perform specific RTR system management tasks. They can be used
individually or together.

e The first starts RTR.

* The second creates a facility.

42

Chapter 4. RTR Interfaces

* The third creates a partition in the previously created facility.

Example 4.6. Starting RTR with the C++ API

//Start RTR

RTR rtr;
rtr.Start();

Example 4.7. Creating a Facility with the C++ API
/I Create facility nanmed "nyFacility".

RTRFaci | i t yManager FacMyr;

rtr_status_t sts = FacMgr.CreateFacility("myFacility",
"router",
"frontend",
"backend",
fal se,
fal se) ;

Example 4.8. Creating a Partition with the C++ API
[/ Create a partition named "nyPartition” in facility "myFacility."

int low = 100;
i nt max 199;
RTRKeySegment Key100To199(rtr_keyseg unsi gned,
si zeof (i nt),
0,
&l ow,
&max);

RTRPartiti onManager PartitionMr;
sts = PartitionMr. CreateBackendPartition("myPartition",

"nmyFacility",
Key100T0199,
fal se,

fal se)

4.5.3. RTR C Programming Interface

You can use the C programming interface to write C applications that use RTR. For more information
on the C programming interface, refer to the VSI Reliable Transaction Router C Application
Programmer s Reference Manual and the VSI Reliable Transaction Router Application Design Guide.

Snippets from client and server programs using the RTR C-programing API follow and are more fully
shown in the VSI Reliable Transaction Router Application Design Guide.

Sample C client code

Example of an open channel call in an RTR client program:

status = rtr_open_channel (& Channel ,
Fl ags,
Facility,
Reci pi ent,

43

Chapter 4. RTR Interfaces

RTR_NO_PEVTNUM

Access,

RTR_NO_NUMSEG,

RTR_NO_PKEYSEQG) ;
if (Status != RTR_STS CK)

Sample C server code

Example of a receive message call in an RTR server program:

status = rtr_recei ve_nessage(& hannel ,
RTR_NO_FLAGS,
RTR_ANYCHAN,
MsgBuf f er,
Dat aLen,
RTR_NO_TI MOUTMS,
&VBgSt at usBl ock) ;

if (status != RTR_STS (K)

A client can have one or multiple channels, and a server can have one or multiple channels. A

server can use concurrent servers, each with one channel. How you create your design depends on
whether you have a single CPU or a multiple CPU machine, and on your overall design goals and
implementation requirements. For a more complete discussion of application designs, refer to the V'S
Reliable Transaction Router Application Design Guide.

44

Chapter 5. The RTR Environment

The RTR environment has two parts:
* The system management environment

e The runtime environment

5.1. The RTR System Management
Environment

You manage your RTR environment from a management station, which can be on a node running
RTR or on some other node. You can manage your RTR environment either from your management
station running a network browser, or from the command line using the RTR CLI. From a
management station using a network browser, processes use the http protocol for communication.

The RTR system management environment contains four processes:
¢ The RTR Control Process, RTRACP

¢ The RTR Command Line Interface, RTR CLI

¢ The RTR Command Server Process, RTRCOMSERV

¢ The RTR daemon, RTRD

¢ The RTR Problem Detection Process, RTRDETECT

The RTR Control Process, RTRACP, is the master program. It resides on every node where RTR has
been installed and is running. RTRACP performs the following functions:

* Manages network links
* Sends messages between nodes
* Handles all transactions and recovery

RTRACP handles interprocess communication traffic, network traffic, and is the main repository of
runtime information. ACP processes operate across all RTR roles and execute certain commands both
locally and at remote nodes. These commands include:

+ FACILITY

* SET LINK/NODE

SET/CREATE PARTITION

SHOW NODE
e STOP RTR
RTR CLI is the Command Line Interface that:

* Accepts commands entered locally by the system manager

45

Chapter 5. The RTR Environment

* Sends commands to the Command Server Process RTRCOMSERV
* Can initiate commands on one node and execute them on another in most cases
Commands executed directly by the CLI include:

* DISPLAY

* DO (to the local operating system)

* MONITOR commands

« RECALL

* SET ENVIRONMENT

+ SPAWN

 HELP

RTR COMSERY is the Command Server Process that:

* Receives commands from RTR

* Remains temporarily waiting for another command

» Exits automatically when idle for some time

The Command Server Process executes commands both locally and across nodes. Commands that can
be executed at the RTR COMSERYV include:

* START RTR

+ CREATE/MODIFY JOURNAL

* SHOW LINK/FACILITY/SERVER/CLIENT (ACP must be running)

* Application programmer commands (for testing and demonstration)

RTRDETECT is the problem detection process that:

* Detects problems associated with RTR on each node participating in an RTR network.

* Is an intermittent process created on a set interval and dies after it completes the problem
detection.

* Enables the web-based RTR Explorer to report problems on every node in the RTR network.

See the commands REMEMBER EXPRESSION and SET NODE /DETECTION_INTERVAL in
the VSI Reliable Transaction Router System Manager s Manual for more details on controlling the
behavior of RTR’s problem detection.

Figure 5.1illustrates the RTR system management environment.

While the figure shows the RTR Management Station on a node declared as a frontend (FE), you can
manage RTR from any node where RTR is running, whether the node is declared as a frontend, router,

46

Chapter 5. The RTR Environment

or backend. The RTR COMSERV must be running to manage RTR. The RTR Management Station
runs web browser software with which you manage RTR. It could alternatively be running the RTR
CLL

For further details on the RTR entities such as RTRACP and the RTR COMSERY, see RTR Runtime
Environment later in this manual.

Figure 5.1. RTR System Management Environment

FE TR BE
RTRACP RTRACP RTRACP
4 i : A A
) RTRD Y
RTRD T RTRD
A / Y A
A RTR COMSERV A A
RTR COMSERYV |- »| RTR COMSERV
A A
Y Y
RTR CLI RTR CLI
A
Y

Management Station
Running Browser Software

DE ==
5.1.1. Monitoring RTR

RTR Monitor pictures or the RTR Monitor let you view the status and activities of RTR and your
applications. A monitor picture is dynamic, its data periodically updated. RTR SHOW commands that
also let you view status are snapshots, giving you a view at one moment in time. A full list of RTR
Monitor pictures is available in the VSI Reliable Transaction Router System Manager s Manual “RTR
Monitoring” chapter and in the help file under RTR Monitoring. Many RTR Monitor pictures are
available using the RTR browser interface.

5.1.2. Transaction Management

The RTR transaction is the heart of an RTR application, and transaction state characterizes the current
condition of a transaction. As a transaction passes from one state to another, it undergoes a state
transition. Transaction states are maintained in memory, and some are stored in the RTR journal for
use in recovery.

RTR uses three transaction states to track transaction status:

* transaction runtime state

* transaction journal state

e transaction server state

47

Chapter 5. The RTR Environment

Transaction runtime state describes how a transaction progresses from the point of view of RTR
roles (FE, TR, BE). A transaction, for example, can be in one state as seen from the frontend, and in
another as seen from the router.

Transaction journal state describes how a transaction progresses from the point of view of the RTR
journal. The transaction journal state, not seen by frontends and routers, managed by the backend, is
used by RTR for recovery replay of a transaction after a failure.

Transaction server state, also managed by the backend, describes how a transaction progresses from
the point of view of the server. RTR uses this state to determine if a server is available to process a
new transaction, or if a server has voted on a particular transaction.

The RTR SHOW TRANSACTION command shows transaction status, and the RTR SET
TRANSACTION command can be used, under certain well-constrained circumstances, to change the
state of a live transaction. For more details on use of SHOW and SET commands, see the VSI Reliable
Transaction Router System Manager s Manual.

5.1.3. Partition Management

Partitions are subdivisions of a routing key range of values used with a partitioned data model and
RTR data-content routing. Partitions exist for each range of values in the routing key for which

a server is available to process transactions. Redundant instances of partitions can be started in

a distributed network, to which RTR automatically manages the state and flow of transactions.
Partitions and their characterisitcs can be defined by the system manager or operator, as well as within
application programs.

RTR management functions enable the operation to manage many partition-based attributes and
functions including:

* Creation/deletion of a partition with a user-specified name

* Defining/changing a key-range definition

e Selecting a preferred primary node

» Selecting failover precedence between local and cross-site shadows

* Suspending/resuming operations to synchronize database backup with transaction flow

* Overriding the automatic recovery procedures of RTR with manual recovery procedures, for
added flexibility

* Specifying retry limits for problem transactions

The operator can selectively inspect transactions, modify states, or remove transactions from
the journal or the running RTR system. This allows for greater operational control and enhanced
management of a system where RTR is running.

For more details on managing partitions and their use in applications, see the VSI Reliable Transaction
Router System Manager s Manual chapter “Partition Management.”

5.2. The RTR Runtime Environment

When all RTR and application components are running, the RTR runtime environment contains:

48

Chapter 5. The RTR Environment

* Client application

* Server application

* RTR shareable image, LIBRTR

* RTR control process, RTRACP

¢« RTR daemon, RTRD

* RTR command line interface, RTR CLI

* RTR command server, RTR COMSERV

Figure 5.2 shows these components and their placement on frontend, router, and backend nodes. The
frontend, router, and backend can be on the same or different nodes. If these are all on the same node,
there is only one RTRACP process.

Figure 5.2. RTR Runtime Environment

LIBRTR/RTRDLL

Client
application

RTRACP
A A

Y Y
RTR COMSERV

Server
application

I
I
I
I
I
I
I
I
:
I
| RTRACP
I
I
I
I
I
I
I
I
I
I
I

RTRD
A
A

B i T

DEI @

}

RTR CLI

»| RTR COMSERV
1
1
1
1
1
I
1

Optional External Applet
Not Running RTR

5.3. What's Next?

This concludes the material on RTR concepts and capabilities that all users and implementors should
know. For more information, proceed as follows:

If you are:

Read these documents:

software installer

a system manager, system administrator, or

1. RTR Release Notes

49

Chapter 5. The RTR Environment

If you are:

Read these documents:

2. RTR Installation Guide

3. RTR System Manager's Manual
an applications or system management developer, |1. RTR Application Design Guide
programmer, or software engineer

2. RTR JRTR Getting Started

3. RTR C++ Foundation Classes

4. RTR C Application Programmer's Reference

Manual

50

	VSI Reliable Transaction RouterGetting Started
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documentation
	5. Reading Path
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. Introduction
	1.1. Reliable Transaction Router
	1.2. RTR Continuous Computing Concepts
	1.3. RTR Terminology
	1.4. RTR Server Types
	1.5. RTR Networking Capabilities

	Chapter 2. Architectural Concepts
	2.1. The Three-Tier Architecture
	2.2. RTR Facilities Bridge the Gap
	2.3. Broadcasts
	2.4. Flexibility and Growth
	2.5. Transaction Integrity
	2.6. The Partitioned Data Model
	2.7. Object-Oriented Programming
	2.7.1. Objects
	2.7.2. Messages
	2.7.3. Class Relationships
	2.7.4. Polymorphism
	2.7.5. Object Implementation Benefits

	2.8. Java Support
	2.9. XA Support

	Chapter 3. Reliability Features
	3.1. RTR Server Types
	3.2. Failover and Recovery
	3.2.1. Router Failover
	3.2.1.1. Backend Restart Recovery
	3.2.1.2. Transaction Message Replay
	3.2.1.3. Link Failure Recovery

	3.3. Recovery Scenarios
	3.3.1. Backend Recovery
	3.3.2. Router Recovery
	3.3.3. Frontend Recovery

	Chapter 4. RTR Interfaces
	4.1. Management Interfaces
	4.2. Programming Interfaces
	4.3. Application Development
	4.4. RTR Management
	4.4.1. RTR Administrator
	4.4.2. RTR Manager
	4.4.3. RTR Explorer
	4.4.4. RTR Command Line Interface
	4.4.5. Examples

	4.5. Application Programming Interfaces
	4.5.1. RTR Java Object-Oriented Interface
	4.5.2. RTR C++ Object-Oriented Programming Interface
	4.5.3. RTR C Programming Interface

	Chapter 5. The RTR Environment
	5.1. The RTR System Management Environment
	5.1.1. Monitoring RTR
	5.1.2. Transaction Management
	5.1.3. Partition Management

	5.2. The RTR Runtime Environment
	5.3. What's Next?

