
VSI OpenVMS

TCP/IP Administrator's Guide:
Volume II

Document Number: DO-DVTIA2-01B

Publication Date: January 2020

This document describes how to administrate VSI TCP/IP for OpenVMS.

Revision Update Information: This guide supercedes the VSI TCP/IP
Administrator's Guide: Volume II, Version 10.5.

Operating System and Version: VSI OpenVMS Version 8.4-2L1 or higher

Software Version: VSI TCP/IP for OpenVMS Version 10.6

VMS Software, Inc., (VSI)
Bolton, Massachusetts, USA

TCP/IP Administrator's Guide: Volume II:

Copyright © 2020 VMS Software, Inc. (VSI), Bolton, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

Intel, Itanium and IA64 are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Java, the coffee cup logo, and all Java based marks are trademarks or registered trademarks of Oracle Corporation in the United States or
other countries.

Kerberos is a trademark of the Massachusetts Institute of Technology.

Microsoft, Windows, Windows-NT and Microsoft XP are U.S. registered trademarks of Microsoft Corporation. Microsoft Vista is either a
registered trademark or trademark of Microsoft Corporation in the United States and/or other countries.

Motif is a registered trademark of The Open Group

UNIX is a registered trademark of The Open Group.

The VSI OpenVMS documentation set is available on CD.

ii

TCP/IP Administrator's Guide: Volume II

Preface .. xi
1. About VSI ... xi
2. Intended Audience ... xi
3. Typographical Conventions .. xi
4. VSI TCP/IP Support .. xiii
5. VSI Encourages Your Comments .. xiii
6. How to Order Additional Documentation .. xiii

Chapter 6. RMT Server and Client Configuration .. 1
6.1. Configuring the Remote Magnetic Tape Server .. 1
6.2. About the RMT Client ... 3

6.2.1. Limitations of UNIX Devices and Software .. 3
6.3. Using RMTALLOC .. 4

6.3.1. RMTALLOC Tape Drive Access Example .. 4
6.3.2. RMTALLOC CD-ROM Access Examples .. 5

6.4. Using RMTALLOC Qualifiers .. 6
6.4.1. VMS-to-VMS Negotiation ... 6
6.4.2. Suppressing Messages ... 6
6.4.3. Controlling Remote Login ... 6
6.4.4. Interacting with the Remote Operator ... 6
6.4.5. Write Protection .. 7

Chapter 7. Configuring and Managing FTP .. 9
7.1. Configuring the FTP Client .. 9
7.2. Managing an FTP Server .. 9

7.2.1. Configuring Anonymous FTP .. 10
7.2.2. Specifying a Range of FTP Server Port Numbers .. 11
7.2.3. Creating an FTP Server Login Command Procedure .. 11
7.2.4. Using FTP Log Files ... 12
7.2.5. Managing FTP Security ... 13
7.2.6. Accepting Wildcards Upon Delete .. 14
7.2.7. Specifying a Message at Connect Time ... 14
7.2.8. Specifying UNIX-Style Listings ... 14
7.2.9. UNIX File Names ... 16
7.2.10. Specifying the Maximum Idle Time .. 17
7.2.11. Using FTP Site Commands .. 17
7.2.12. Defining FTP Messages ... 18
7.2.13. Specifying the Name of a Log File ... 19
7.2.14. Defining a File Name .. 19

7.3. Password Lifetime Warnings ... 19
7.3.1. Defining Password Messages ... 20
7.3.2. Checking IP Address ... 20

7.4. Configuring the FTP server for TLS (FTPS) .. 20
7.4.1. FTP server parameters for TLS .. 21

7.5. Network Service Monitoring ... 21
7.6. Session Accounting .. 22

7.6.1. Configuration File ... 23
7.6.2. File Format ... 23
7.6.3. Enabling the Accounting Logger .. 24
7.6.4. Displaying the Contents of the Logging File ... 24
7.6.5. Accounting File Record Format .. 24

7.7. FTP and IPv6 ... 25
Chapter 8. Configuring the Font Server ... 27

iii

TCP/IP Administrator's Guide: Volume II

8.1. Understanding the Font Server .. 27
8.2. The Font Server Configuration File ... 27
8.3. Specifying Font Servers .. 28
8.4. Supported Font Types ... 29
8.5. Enabling the Font Server .. 29
8.6. Getting Information About the Font Server .. 29

8.6.1. Checking the Font Server Configuration ... 30
8.6.2. Listing Available Fonts .. 30
8.6.3. Viewing Font Data .. 31

8.7. Controlling the VSI TCP/IP Font Server ... 32
8.7.1. Starting the Font Server ... 32
8.7.2. Stopping the FS Server .. 33
8.7.3. Restarting the Font Server .. 33
8.7.4. Reloading the Font Server Configuration .. 33
8.7.5. Flushing the Font Server Cache .. 33
8.7.6. Resetting the Font Server ... 34

8.8. Defining Font Catalogues ... 34
8.9. Adding Fonts to the Font Server ... 34

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP
Server ... 37

9.1. Choosing a Network Configuration Server ... 37
9.2. RARP (Reverse Address Resolution Protocol) ... 37
9.3. BOOTP (Bootstrap Protocol) .. 37
9.4. DHCP (Dynamic Host Configuration Protocol) .. 38
9.5. Using RARP .. 38

9.5.1. Obtaining Data for RARP Clients ... 38
9.5.2. Enabling RARP Packet Reception on Ethernet Interfaces 39
9.5.3. Enabling and Starting RARP Service .. 39
9.5.4. Adding Clients to the RARP Configuration File .. 39
9.5.5. Reloading RARP Configuration ... 39

9.6. Using BOOTP .. 39
9.6.1. Obtaining Data for BOOTP Clients .. 40
9.6.2. Enabling and Starting BOOTP ... 40
9.6.3. Modifying the BOOTP Configuration File .. 41
9.6.4. BOOTP Options for the BOOTP Server ... 41
9.6.5. Guidelines for the BOOTP Configuration File ... 43
9.6.6. Using a UNIX bootptab File .. 44
9.6.7. Reloading the BOOTP Configuration .. 44
9.6.8. Disabling BOOTP OPCOM Messages .. 44

9.7. Using DHCP .. 45
9.7.1. DHCP Process ... 45
9.7.2. Obtaining Data for DHCP Clients .. 47
9.7.3. Enabling and Starting DHCP .. 47

9.8. Checking the DHCP Configuration ... 47
9.9. Reloading the DHCP Configuration .. 48
9.10. Introducing the Configuration File ... 48

9.10.1. Address Allocation .. 51
9.10.2. Address Pools .. 51
9.10.3. Pool Permit Lists ... 52

9.11. Client Classing ... 53
9.11.1. Subclasses ... 54
9.11.2. Per-Class Limits on Dynamic Address Allocation .. 55

iv

TCP/IP Administrator's Guide: Volume II

9.12. Conditional Behavior .. 56
9.13. DNS Dynamic Updates Within DHCP ... 56

9.13.1. Transaction Signatures (TSIG) .. 57
9.14. Host Name Generation ... 58
9.15. Configuration File Declarations and Parameters ... 60
9.16. Expressions .. 74

9.16.1. BOOLEAN EXPRESSIONS .. 74
9.16.2. DATA EXPRESSIONS .. 75
9.16.3. NUMERIC EXPRESSIONS ... 77

9.17. DHCP Options ... 78
9.17.1. Standard DHCP Options .. 78
9.17.2. Relay Agent Information Option ... 86
9.17.3. Defining New Options ... 86
9.17.4. Vendor Encapsulated Options ... 88

9.18. DHCP Lease Format .. 89
9.18.1. Working with DHCP Leases ... 90
9.18.2. Abandoned Leases ... 90
9.18.3. Static Leases .. 91

9.19. Registering Clients While the DHCP Server is Running ... 91
9.19.1. Update File Statements .. 92

9.19.1.1. Examples: ... 93
9.20. DHCP Safe-failover Introduction ... 93
9.21. Configuring DHCP Safe-failover ... 94
9.22. Boot File for DHCP Safe-failover ... 95
9.23. State File for DHCP Safe-failover ... 96
9.24. DHCP Safe-failover Configuration File Statements .. 97
9.25. DHCP Safe-failover Lease File Statements .. 98
9.26. Transitioning to DHCP Safe-failover Partner Down State ... 98
9.27. Setting DHCP Parameters ... 99
9.28. Viewing DHCP Information .. 101

9.28.1. NETCONTROL SHOW Command ... 101
9.28.2. NETCONTROL STATISTICS Command .. 104

9.29. Address Lease States in DHCP Dump Files ... 104
9.29.1. Sample DHCPD.CONF File ... 105

9.30. DHCP Client .. 107
9.30.1. General Description ... 107
9.30.2. Setting DHCP Client Parameters ... 108
9.30.3. Setting Up the DHCP Client ... 109
9.30.4. Disabling the DHCP Client .. 110
9.30.5. DHCP Client Functions and Logicals .. 111
9.30.6. DHCP Client Configuration .. 111
9.30.7. Protocol Timing ... 112
9.30.8. Lease Requirements and Requests ... 113
9.30.9. Option Modifiers ... 113
9.30.10. Lease Declarations ... 114
9.30.11. Other Declarations .. 116
9.30.12. Example .. 116
9.30.13. Troubleshooting the DHCP Client ... 116

9.30.13.1. How do I know the DHCP client has configured my network
successfully? ... 116
9.30.13.2. What if I cannot ping an IP address on the internet? 117
9.30.13.3. What if I can ping a host by its IP address but not by its name? 117

v

TCP/IP Administrator's Guide: Volume II

9.30.13.4. Why is the local address "0.0.0.0" when I use "$ IP CONFIGURE /
INTERFACE" and then use “SHOW”? .. 117
9.30.13.5. Where can I find the status information of the DHCP client? 118

Chapter 10. Managing the XDM Server and X11-Gateway Configuration 119
10.1. Understanding X Display Management .. 119
10.2. Accessing the XDM Server ... 119

10.2.1. Special Features of the XDM Server of VSI TCP/IP 120
10.3. XDM Administrative Tasks ... 121
10.4. Enabling and Starting the XDM Server .. 121
10.5. Modifying the XDM Server Configuration ... 121
10.6. Controlling the XDM Server ... 123

10.6.1. Checking the Status of the XDM Server .. 123
10.6.2. Starting the XDM Server .. 124
10.6.3. Stopping the XDM Server .. 124
10.6.4. Restarting the XDM Server .. 124
10.6.5. Reloading the XDM Configuration ... 125

10.7. Controlling Access to the XDM Server .. 125
10.7.1. Handling Direct and Broadcast Requests ... 125

10.8. Managing X11R3 Displays .. 126
10.8.1. Specifying X11R3 Displays .. 126
10.8.2. Setting Up Host Access on the Display ... 127
10.8.3. Ensuring No Other Host Is Managing the Display .. 127
10.8.4. Reloading the XDM.SERVERS File ... 127

10.9. X11-Gateway Configuration .. 127
10.9.1. X11-Gateway Concepts .. 128
10.9.2. Allowing an IP Client Access to a DECnet Server ... 128

10.9.2.1. Running an IP Client on a DECnet Server .. 129
10.9.3. Allowing a DECnet Client Access to an IP Server ... 130

10.9.3.1. Running the DECnet Client on the IP Server 131
10.9.4. X11-Gateway Security ... 131
10.9.5. X11-Gateway Debugging ... 131

10.9.5.1. Selected Error Numbers from ERRNO.H .. 132
10.9.5.2. X11-Gateway Error Messages .. 132

Chapter 11. Configuring VSI TCP/IP SNMP Services .. 133
11.1. Understanding SNMP ... 133

11.1.1. SNMP Managers, Agents, and Traps ... 133
11.2. Configuring VSI TCP/IP SNMP Services ... 134

11.2.1. Enabling the SNMP Service ... 134
11.3. Private MIB Application Program Interface .. 135
11.4. Configuring SNMP Subagents (except AgentX) ... 135
11.5. SNMP Multiplexing Peers ... 135

11.5.1. SMUX_PEER IP-address ... 136
11.6. SNMP Agent Extensibility (AgentX) Peers .. 136

11.6.1. Setting Up VSI TCP/IP to Use Insight Manager ... 136
11.7. Configuration File ... 137

11.7.1. File Format .. 138
11.7.2. Values for MIB Objects .. 138
11.7.3. Community Parameters .. 139
11.7.4. Template Configuration File ... 140

11.8. Sending SNMP Traps from VSI TCP/IP .. 142
11.9. Disabling Traps .. 142

vi

TCP/IP Administrator's Guide: Volume II

11.10. Generating Traps ... 143
11.11. SNMP Log File .. 143
11.12. Start, Shutdown, or Reload the SNMP Configuration Without Rebooting 143
11.13. Performing SNMP Functions with VSI TCP/IP .. 144

Chapter 12. Configuring the VSI TCP/IP NFS Server .. 145
12.1. Understanding the VSI TCP/IP NFS Server ... 145
12.2. Servers and Clients ... 145

12.2.1. Security ... 146
12.2.2. NFS Server Architecture .. 147

12.3. NFS Server Configuration Overview ... 147
12.4. Enabling the VSI TCP/IP NFS Server ... 148
12.5. Reloading the VSI TCP/IP NFS Server Configuration and Restarting the Server 149
12.6. Shutting Down the NFS Server ... 149
12.7. Testing the System Configuration .. 149

12.7.1. Checking for Errors ... 150
12.8. Idiosyncrasies of ACL Support over NFS .. 150

12.8.1. How the VSI TCP/IP NFS Server Interprets ACL and UIC Protection 151
12.8.2. How the VSI TCP/IP NFS Server Handles ACLs .. 152
12.8.3. Handling ACLs with Unmappable ACEs ... 153

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server 155
13.1. Server Security & Initial Configuration .. 155
13.2. Mounting Client Directories .. 155
13.3. File Formats ... 155

13.3.1. Reading Files ... 156
13.3.2. Writing Files .. 156

13.4. Troubleshooting .. 156
13.5. Managing an Existing NFS Configuration .. 157
13.6. Mounting an NFS file system on VSI TCP/IP .. 175
13.7. Implementation ... 184

13.7.1. Restrictions .. 184
13.7.2. NFS Protocol Procedures .. 184

Chapter 14. Using the NFS Client ... 189
14.1. Servers and Clients ... 189

14.1.1. VSI TCP/IP NFS Client Use of User IDs .. 189
14.1.2. Grouping NFS Client Systems for UID/GID Mappings 190
14.1.3. Mapping Example .. 190
14.1.4. Effects of Incomplete Mappings ... 191
14.1.5. File System Limitations .. 191
14.1.6. DISKQUOTA Limitations .. 191
14.1.7. Security and File Protections .. 191
14.1.8. Storing OpenVMS File Attributes on an NFS Server 191
14.1.9. Storing OpenVMS File Names on an NFS Server .. 192
14.1.10. NFS Client Architecture ... 194

14.2. Mounting and Dismounting File Systems ... 195
14.2.1. Mounting a File System ... 195
14.2.2. Dismounting a File System ... 195

14.3. Reloading the NFS Client ... 195
14.4. Mounting File Systems During VSI TCP/IP Startup ... 196
14.5. Creating ACPs (Ancillary Control Processes) for NFS Mounts 197
14.6. NFS Clients Using BACKUP .. 198

vii

TCP/IP Administrator's Guide: Volume II

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2 199
15.1. SSH1 and SSH2 Differences ... 199
15.2. Understanding the VSI TCP/IP Secure Shell Server .. 199

15.2.1. Servers and Clients .. 200
15.2.2. Security ... 200
15.2.3. Break-in and Intrusion Detection .. 201

15.3. Configuring SSHD Master for SSH1 ... 202
15.4. Expired Passwords .. 203
15.5. OPTIONS .. 204
15.6. Configuration File ... 205
15.7. Starting the SSH Server for the First Time ... 206
15.8. Configuring the SSH1 Server on a OpenVMScluster with a Common System Disk 208
15.9. Changing SSH1 Configuration File after Enabling SSH1 .. 208
15.10. Connection and Login Process ... 208

15.10.1. SSH Connections Are Not Logged When SSHD.log Files Reach Maximum
Version Number .. 209

15.11. FILES .. 209
15.12. AUTHORIZED_KEYS File Format ... 211

15.12.1. SSH Port Forwarding and OpenVMS Captive Users 214
15.13. SSH_KNOWN_HOSTS File Format .. 214
15.14. SSH Logicals .. 214
15.15. Configuring the Secure Shell (SSH) 2 Server ... 216

15.15.1. Servers and Clients .. 217
15.15.2. Expired Password Handling .. 218
15.15.3. Break-In and Intrusion Detection .. 219
15.15.4. Configuring SSHD Master .. 220
15.15.5. SSHD2 Configuration File .. 221

15.15.5.1. HostSpecificConfig Notes: ... 230
15.15.5.2. UserSpecificConfig Notes: ... 231
15.15.5.3. KEYBOARD-INTERACTIVE Notes: .. 231
15.15.5.4. ForwardACL Notes ... 231
15.15.5.5. MappingFileFormat ... 232

15.15.6. Starting the SSH Server for the First Time ... 233
15.15.7. Configuring the SSH2 Server on a OpenVMScluster with a Common System
Disk .. 235
15.15.8. Changing SSHD2 Configuration File After Enabling SSH2 235
15.15.9. Connection and Login Process .. 235

15.15.9.1. FILES ... 236
15.15.10. SSH2 AUTHORIZATION File Format .. 238
15.15.11. SSH2 Logicals ... 238

Chapter 16. Configuring IPSEC and SETKEY ... 241
16.1. About the IP Security (IPSEC) Protocol .. 241
16.2. Security Associations and Security Policies .. 241
16.3. IPSEC Configuration File ... 242

16.3.1. Configuration File Options ... 242
16.3.2. Configuration File Operation Arguments ... 243

16.3.2.1. Extensions .. 244
16.3.2.2. Algorithm ... 244

16.4. Configuration Encryption Algorithms .. 246
16.5. Simple Configuration Example .. 246
16.6. The SETKEY Program ... 248

16.6.1. SETKEY Usage Examples ... 248

viii

TCP/IP Administrator's Guide: Volume II

16.7. IPSEC Configuration File Examples .. 250
16.7.1. Configuration Example: Host-to-Host Encryption .. 250
16.7.2. Configuration Example: Host-to-Host Authentication 251
16.7.3. Configuration Example: Host-to-Host Encryption+Authentication 252

16.8. Conformance to Standards and Interoperability .. 252
16.9. Racoon Internet Key Exchange Daemon .. 252

16.9.1. Meta Syntax .. 253
16.9.2. Path Specification .. 253
16.9.3. File Inclusion ... 254
16.9.4. Timer Specification .. 254
16.9.5. Listening Port Specification .. 254
16.9.6. Remote Nodes Specifications ... 254
16.9.7. Policy Specifications .. 258
16.9.8. Sainfo Specifications .. 258
16.9.9. Example RACOON configuration file: .. 260
16.9.10. Example pre-shared key file: .. 260

16.10. Restrictions ... 260
16.11. IPSec key management with Racoon2 .. 261

16.11.1. SPMD .. 261
16.11.2. Name resolution ... 262
16.11.3. SPMDCTL ... 262
16.11.4. IKED ... 262
16.11.5. Authentication with pre-shared keys .. 263
16.11.6. Authentication with Certificates .. 263
16.11.7. Scripts ... 264
16.11.8. Compatibility with Racoon ... 265
16.11.9. Troubleshooting ... 265
16.11.10. PSKGEN ... 266
16.11.11. Starting Racoon2 on VSI TCP/IP .. 266
16.11.12. Configuration ... 268

16.11.12.1. Introduction ... 268
16.11.12.2. How IKED works .. 269
16.11.12.3. Configuration Syntax ... 270
16.11.12.4. Directives details ... 277
16.11.12.5. Sample configuration ... 286

Chapter 17. Intrusion Prevention System (IPS) ... 291
17.1. IPS Operation ... 291
17.2. Configuring IPS .. 291

17.2.1. Configuring Process-Specific Parameters ... 292
17.2.2. Determining the Correct FILTER_SERVER Process Quotas 292
17.2.3. Determining the Correct FILTER_SEVER Mailbox Size 292
17.2.4. Filter Server Main Configuration .. 293
17.2.5. Filter Server Per-Component Configuration File .. 294

17.3. Sample Main Configuration File .. 296
17.4. Sample Component Configuration File .. 297
17.5. Configuring IPS for Paired Network Interfaces ... 301
17.6. Filter Reporting via OPCOM and Log File .. 303
17.7. Filter Reporting via SNMP ... 304
17.8. Correcting a Filter List ... 304
17.9. Configuring PMDF to use IPS on VSI TCP/IP ... 305
17.10. Controlling the Filter Server .. 306
17.11. Filter Server Files ... 307

ix

TCP/IP Administrator's Guide: Volume II

17.12. Instrumenting a User-Written Application with IPS ... 308
17.13. Filter Server API .. 309

Chapter 18. Configuring DECnet-over-IP Circuits ... 313
18.1. Using the Configuration Tools ... 313
18.2. Examples of Connecting Two Systems .. 313
18.3. DECnet Encapsulation Over Unreliable Networks .. 314
18.4. Using IP SET /DECNET ... 315

Appendix D. How NFS Converts File Names ... 317
Appendix E. DNSSEC ... 321

E.1. Generating Keys .. 321
E.2. Signing the Zone .. 322
E.3. Configuring Servers ... 324
E.4. DNSSEC, Dynamic Zones, and Automatic Signing .. 326

E.4.1. Converting from insecure to secure .. 326
E.4.2. Dynamic DNS update method .. 326
E.4.3. Fully automatic zone signing ... 327
E.4.4. Private-type records ... 327

E.5. DNSKEY rollovers .. 328
E.5.1. Dynamic DNS update method .. 328
E.5.2. Automatic key rollovers ... 328
E.5.3. NSEC3PARAM rollovers via UPDATE .. 328
E.5.4. Converting from NSEC to NSEC3 ... 328
E.5.5. Converting from NSEC3 to NSEC ... 329
E.5.6. Converting from secure to insecure .. 329
E.5.7. Periodic re-signing .. 329
E.5.8. NSEC3 and OPTOUT ... 329

E.6. Dynamic Trust Anchor Management ... 329
E.6.1. Validating Resolver ... 329
E.6.2. Authoritative Server .. 329

Appendix F. Language Support for TN3270 and TN5250 ... 331
Appendix G. Trademark and Copyright Notifications .. 333

x

Preface

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard
Enterprise to develop and support the OpenVMS operating system.

VSI seeks to continue the legendary development prowess and customer-first priorities that are so
closely associated with the OpenVMS operating system and its original author, Digital Equipment
Corporation.

2. Intended Audience
This manual is intended for anyone who will be administering VSI TCP/IP. It provides an overview of
VSI TCP/IP Version 10.5 and contains information about:

• RMT Server and client configuration

• FTP configuration and management

• Font Server configuration

• Remote Systems configuration with RARP, BOOTP, and DHCP Server

• XDM Server management and X11-Gateway configuration

• VSI TCP/IP SNMP services configuration

• NFS Client

• SecureShell (SSH) servers versions 1 & 2 configuration

• IPSEC and SETKEY configuration

• Intrusion Prevention System (IPS)

• DECnet-over-IP circuits configuration

The appendices in this document contain DNSSEC parameters and language support parameters for
TN3270 and TN5250.

3. Typographical Conventions
The following conventions are used in this manual:

Convention Meaning
Ctrl/X A sequence such as Ctrl/x indicates that you must hold down the key labeled

Ctrl while you press another key or a pointing device button.
PF1 X A sequence such as PF1 X indicates that you must first press and release

the key labeled PF1 and then press and release another key (x) or a pointing
device button.

Enter In examples, a key name in bold indicates that you press that key.

xi

Preface

Convention Meaning
... A horizontal ellipsis in examples indicates one of the following possibilities:-

Additional optional arguments in a statement have been omitted.- The
preceding item or items can be repeated one or more times.- Additional
parameters, values, or other information can be entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose
choices in parentheses if you specify more than one. In installation or
upgrade examples, parentheses indicate the possible answers to a prompt,
such as:

Is this correct? (Y/N) [Y]

[] In command format descriptions, brackets indicate optional choices. You
can choose one or more items or no items. Do not type the brackets on the
command line. However, you must include the brackets in the syntax for
directory specifications and for a substring specification in an assignment
statement. In installation or upgrade examples, brackets indicate the default
answer to a prompt if you press Enter without entering a value, as in:

Is this correct? (Y/N) [Y]

| In command format descriptions, vertical bars separate choices within
brackets or braces. Within brackets, the choices are optional; within braces,
at least one choice is required. Do not type the vertical bars on the command
line.

{ } In command format descriptions, braces indicate required choices; you
must choose at least one of the items listed. Do not type the braces on the
command line.

bold type Bold type represents the name of an argument, an attribute, or a reason. In
command and script examples, bold indicates user input. Bold type also
represents the introduction of a new term.

italic type Italic type indicates important information, complete titles of manuals, or
variables. Variables include information that varies in system output (Internal
error number), in command lines (/PRODUCER=name), and in command
parameters in text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine, the name of a
file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and interactive
screen displays. In text, this type also identifies website addresses, UNIX
command and pathnames, PC-based commands and folders, and certain
elements of the C programming language.

- A hyphen at the end of a command format description, command line, or
code line indicates that the command or statement continues on the following
line.

numbers All numbers in text are assumed to be decimal unless otherwise noted.
Nondecimal radixes-binary, octal, or hexadecimal-are explicitly indicated.

xii

Preface

4. VSI TCP/IP Support
VSI supports VSI TCP/IP running on VSI OpenVMS Integrity Version 8.4-2L1 (or higher) only.
Please contact your support channel for help with this product. Users who have OpenVMS support
contracts through VSI can contact support@vmssoftware.com [mailto:support@vmssoftware.com] for
help with this product. Users who have OpenVMS support contracts through HPE should contact their
HPE Support channel for assistance.

5. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>.

6. How to Order Additional Documentation
For information about how to order additional documentation, email the VSI OpenVMS information
account: <info@vmssoftware.com>. We will be posting links to documentation on our
corporate website soon.

xiii

mailto:support@vmssoftware.com
mailto:support@vmssoftware.com

Preface

xiv

Chapter 6. RMT Server and Client
Configuration
This chapter explains how to configure the RMT (Remote Magnetic Tape) server, and how to use
RMTALLOC (the RMT client) with tape drives and CD-ROM drives.

6.1. Configuring the Remote Magnetic Tape
Server
The VSI TCP/IP remote magnetic tape server (RMT) uses the BSD RMT protocol to allow UNIX and
PC users to access tape drives on OpenVMS systems. Most systems derived from BSD 4.2 and 4.3
support the rdump and rrestore commands for accessing tape drives served by RMT.

To enable and configure the OpenVMS RMT server:

1. Make sure RSHELL works from the UNIX Operating system user "root" to the OpenVMS user
ROOT. If no OpenVMS user ROOT exists, the RMT server uses the OpenVMS user SYSTEM.

Note

For ROOT and SYSTEM, the system-wide IP$:HOSTS.EQUIV file is ignored and an explicit entry
in SYS$LOGIN:.RHOSTS is required to grant access.

2. Make sure the ROOT /SYSTEM LOGIN.COM and the system-wide SYLOGIN.COM do not
print anything when you issue remote RSHELL (under OpenVMS) command. Anything written to
SYS$OUTPUT from these command procedures interferes with the RMT protocol.

The following example shows commands that prevent output from being displayed by SYSTEM /
ROOT LOGIN.COM and SYLOGIN.COM.

$ VERIFY = 'F$VERIFY(0) ! Turn off verify without echoing
$ IF F$MODE() .EQS. "OTHER" THEN EXIT ! If a DETACHED process (RSHELL)
$ IF VERIFY THEN SET VERIFY ! If a batch job, may want to turn
 verify back on.

You can specify OpenVMS-style magtape device names or an OpenVMS file name for writing to a
disk file.

When you specify UNIX-style names, options are encoded in the unit number (minor device number).
The correspondence between the options and their associated unit numbers is as follows:

Device Options
mt0 through
mt3

/NOMOUNT /STREAM /DENS=800 /REWIND /NOUNLOAD

mt4 through
mt7

/NOMOUNT /STREAM /DENS=800 /NOREWIND /NOUNLOAD

mt8 through
mt11

/NOMOUNT /STREAM /DENS=160 /REWIND /NOUNLOAD

1

Chapter 6. RMT Server and Client Configuration

Device Options
mt12 through
mt15

/NOMOUNT /STREAM /DENS=160 /NOREWIND /NOUNLOAD

mt16 through
mt19

/NOMOUNT /STREAM /DENS=625 /REWIND /NOUNLOAD

mt20 through
mt23

/NOMOUNT /STREAM /DENS=625 /NOREWIND /NOUNLOAD

rmt0 through
rmt3

/NOMOUNT /NOSTREAM /DENS=800 /REWIND /NOUNLOAD

rmt4 through
rmt7

/NOMOUNT /NOSTREAM /DENS=800 /NOREWIND /NOUNLOAD

rmt8 through
rmt11

/NOMOUNT /NOSTREAM /DENS=16 /REWIND /NOUNLOAD

rmt12 through
rmt15

/NOMOUNT /NOSTREAM /DENS=16 /NOREWIND /NOUNLOAD

rmt16 through
rmt19

/NOMOUNT /NOSTREAM /DENS=62 /REWIND /NOUNLOAD

rmt20 through
rmt23

/NOMOUNT /NOSTREAM /DENS=62 /NOREWIND /NOUNLOAD

The OpenVMS tape drive name is chosen automatically as the first tape drive, or you can set it using
the NET-CONFIG SET DEFAULT-RMT-TAPE-DEVICE command.

When you specify OpenVMS-style names, the options are encoded in qualifiers; the exact format is:
vms_node_name:volume_name[/qualifiers[...]]

For example: # rdump 0f abc.com:/dev/rmt8 /usr \

or:

rdump 0f abc.com:mua0:/nomount/nostream \
/dens=1600/nounload /USR

or:

rdump 0f abc.com:mua0:xxx/nostream
/dens=1600/nounload \
/comment="Please mount volume XXX on drive mua0" /usr

Table 6.1 shows the qualifiers available tape drive names.

Table 6.1. RMT Server Tape Drive Name Qualifiers

Qualifiers Description
/BLOCKSIZE=size Block size at which to write the tape. Default: 65534 bytes.
/DENSITY=density Specifies the density at which to write a tape. Default: current density.
/[NO]REWIND Specifies whether to rewind the drive on close; ignored unless /

NOMOUNT is specified. Default: /REWIND.
/[NO]UNLOAD Specifies whether to unload the drive on close. Default: /UNLOAD.

2

Chapter 6. RMT Server and Client Configuration

Qualifiers Description
/COMMENT="string" Comment to display in the remote OPCOM message, either appended

to or replacing the default text, depending on the resulting string length
being less than the 78-character maximum. This message is the only
opportunity to send a tape-specific message to the remote operator.
(MOUNT /COMMENT strings are not passed to a remote system.)
Because RMTALLOC will not complete until a tape has been loaded and
the drive is online, use COMMENT to make sure the operator is aware of
your request.

/[NO]MOUNT Mounts the tape drive using the OpenVMS MOUNT service /
NOMOUNT accesses the tape drive without mounting it. This qualifier
is used for UNIX utilities which expect the tape drive to hold its current
position (not rewind) if they close it. By not mounting it, the tape drive
does not rewind when dismounted. Default: /MOUNT.

/[NO]STREAMING Accesses the tape drive as a sequential device (a UNIX character device).
/NOSTREAMING accesses the tape drive as a raw device (a UNIX block
device). Default: /STREAMING.

6.2. About the RMT Client
The RMT client IP RMTALLOC is used for accessing tape or CD-ROM drives on remote hosts over
TCP (using RSHELL). If restrictions apply where RSHELL does not work, or if RSHELL outputs
spurious login messages or greetings, RMTALLOC does not work. RMTALLOC depends on an
RMT server to function properly. RMTALLOC creates a pseudo device that appears as an OpenVMS
physical device to the OpenVMS BACKUP, COPY, and other utilities. The pseudo device is named
"RMTx:", x is the unit number. The actual tape or CD-ROM drive can be on another VSI TCP/IP
system or on any host running the RMT server, such as those running the BSD or SunOS UNIX
operating system.

For CD-ROM, RMTALLOC treats the drive as a file system, which speeds file access.

There are some limits to the types of tape devices you can access on other operating systems and the
amount of control available. Because UNIX tapes and tape drivers cannot write variable-length blocks
and do not allow skipping forward over records between read operations, they cannot be used with
OpenVMS BACKUP or COPY commands.

6.2.1. Limitations of UNIX Devices and Software
The following list describes known limitations of common UNIX devices and software:

• UNIX QIC tape drives cannot be used.

• SunOS RMT servers require you to use /UNIX_SERVER=BROKEN so you can back up one
single-volume BACKUP saveset. Use BACKUP /REWIND to copy to or from tape.

• ULTRIX RMT servers require you to use /UNIX_SERVER=ULTRIX to obtain full OpenVMS
tape functionality.

• SGI's IRX RMT server (as of 4.0.5) does not interoperate with OpenVMS tape operations.

• IBM RS6000/AIX requires a special translation on the IBM side because IBM uses incompatible
RMT commands.

3

Chapter 6. RMT Server and Client Configuration

6.3. Using RMTALLOC
To use RMTALLOC:

1. Make sure the media is in the drive and the drive is online. If you verify this, use the /
SEMANTICS=(COMMENT=comment) qualifier to inform the remote OpenVMS operator of a
pending device mount.

2. Allocate the drive with RMTALLOC.

3. Mount the tape or CD-ROM drive. Use the same MOUNT command you would for a OpenVMS
device.

4. Read from or write to the tape, or read the information from the CD-ROM.

5. Dismount the tape or CD-ROM drive.

6. Deallocate the tape or CD-ROM drive.

7. Remove the media from the drive.

In its simplest form, you can specify RMTALLOC as follows:

$ IP RMTALLOChostname::devicename

For example, for a tape device, enter:

$ RMTALLOC CONE.IRIS.COM::MUA0: MYTAPE

For a CD-ROM drive, enter:

$ RMTALLOC /CD CONTROL::DISK$CD: MYCD /USER=SYSTEM

These examples are explained further in the following sections.

6.3.1. RMTALLOC Tape Drive Access Example
The following example shows how to allocate a tape drive and write to tape using the OpenVMS TAR
utility:

$ RMTALLOC CONE.FLOWERS.COM::MUA0: MYTAPE
%RMT-I-ALLOC, _MYSYS$RMT1: allocated (CONE.FLOWERS.COM::MUA0:)

$ MOUNT /FOREIGN /RECORD_SIZE=512 /BLOCK_SIZE=10240 MYTAPE
%MOUNT-I-MOUNTED, MYTAPE mounted on _MYSYS$RMT1:

$ TAR /ARCHIVE=MYTAPE WRITE AFILE.TXT
%TAR-S-WRITTEN, written USERS:[ME]AFILE.TXT;1 (13495 bytes)
%TAR-S-TOTWRITE, total of 1 file written

$ DISMOUNT _MYSYS$RMT1:
$ DEALLOCATE _MYSYS$RMT1:

In this example, the host CONE.FLOWERS.COM contains the tape drive. The two colons separating
the host name follow the style of DECnet device specifications; RMTALLOC accepts either single or
double colon separators. MYTAPE is the tape logical name associated with the pseudo device. In the
MOUNT statement, the /FOREIGN qualifier specifies that the device is not file structured.

4

Chapter 6. RMT Server and Client Configuration

6.3.2. RMTALLOC CD-ROM Access Examples
In the first example, a CD-ROM on an OpenVMS host is accessed from another OpenVMS host:

$ RMTALLOC/CD/NOWRITE CONTROL::DISK$CD: MYCD /USERNAME=SYSTEM
%RMT-I-ALLOC, _MYSYS$RCD3: allocated (CONTROL.FLOWERS.COM::DISK$CD:)
$ MOUNT/OVERRIDE=ID MYCD:
%MOUNT-I-WRITELOCK, volume is write locked
%MOUNT-I-MOUNTED, VMS055LST1 mounted on _MYSYS$RCD3:

Read from the CD-ROM drive, then dismount and deallocate the drive:

$ DISMOUNT MYCD:
$ DEALLOCATE MYCD:

In this example:

• The RMTALLOC statement includes the /CD qualifier to indicate the device is a CD-ROM drive.

• The /NOWRITE qualifier is the default whenever you specify /CD; omitting it indicates the
device is read-only.

• CONTROL: is the host on which the CD-ROM is located.

• DISK$CD: is the drive name.

• MYCD is the device name.

• The /USER=SYSTEM qualifier ensures the SYSTEM account is accessed on the remote host. If
the remote host is an OpenVMS system, the account used must have LOG_IO privilege.

• The /MOUNT command uses the /OVERRIDE=ID qualifier to inhibit MOUNT protection
checks of the volume identifier in the CD-ROM label.

• The DISMOUNT and DEALLOCATE commands are used after information is read from the
CD-ROM.

In the next example, a CD-ROM drive on a UNIX host is accessed:

$ RMTALLOC/CD/NOWRITE UNIXBOX::"/dev/rsr1" MYCD /USERNAME=root
%RMT-I-ALLOC, _MYSYS$RCD3: allocated (UNIXBOX.EXAMPLE.COM::/dev/rsr0)

$ MOUNT/OVERRIDE=ID MYCD:
%MOUNT-I-WRITELOCK, volume is write locked
%MOUNT-I-MOUNTED, VMS055LST2 mounted on _MYSYS$RCD3:

Read from the CD-ROM drive, then dismount and deallocate the drive:

$ DISMOUNT MYCD:
$ DEALLOCATE MYCD:

In this example, the RMTALLOC statement contains the name of the UNIX host (UNIXBOX)
that has the CD-ROM drive. The device name is specified in UNIX style. If the device name is not
specified, the default is the /dev/rsr0 device.

The user name is set to the root login, which is a UNIX login similar to the OpenVMS SYSTEM
login. The MOUNT, DISMOUNT, and DEALLOCATE commands are the same whether the CD-
ROM is on another OpenVMS system or a UNIX host.

5

Chapter 6. RMT Server and Client Configuration

6.4. Using RMTALLOC Qualifiers
RMTALLOC qualifiers, apart from those already discussed (/CD, /NOWRITE, and /USERNAME),
provide the following additional features:

• VMS-to-VMS negotiation

• Remote operator interaction

• Remote login control

• Message suppression

• Write protection

6.4.1. VMS-to-VMS Negotiation
When accessing a drive on an OpenVMS host, if both systems are running VSI TCP/IP, RMT uses an
improved protocol to transfer OpenVMS device attributes and I/O completion status values between
your system and the remote host. Because this negotiation is compatible with UNIX Operating
System implementations of RMT (including BSD and SunOS), it is enabled by default. You may
disable it with the RMTALLOC /NOVMS_ATTRIBUTES qualifier if compatibility problems arise.

6.4.2. Suppressing Messages
Use the /NOLOG qualifier to suppress system status messages. Use this option in DCL command
procedures to prevent the messages from displaying. /LOG is the default.

6.4.3. Controlling Remote Login
Use the /PASSWORD qualifier to specify a password for the remote host when you do not have
a .RHOSTS file. This qualifier poses a security risk because the password is transmitted over the
network as plain text. When you use /PASSWORD, the REXEC server (instead of the RSHELL
server) is called on the remote host. The password is in the format used by the system you are
contacting.

Similarly, use the /USERNAME qualifier to specify the login name to access on the remote system.
On a UNIX system, the specified login must exist in the /etc/passwd file.

Use the /TRUNCATE_USERNAME qualifier to truncate an OpenVMS user name to a maximum of
eight characters for use with some UNIX systems.

6.4.4. Interacting with the Remote Operator
Use the /SEMANTICS qualifier only with tape drive access to interact with the operator of the
remote system or to specify tape drive information to the remote system.

Use the optional BLOCKSIZE and DENSITY values to specify information used by the remote
system to read the tape. All other values send messages to the operator via the OPCOM message
facility. Without specifying any values, the following information is displayed when RMTALLOC is
called:

%%%%%%%%%%% OPCOM date time %%%%%%%%%%%

6

Chapter 6. RMT Server and Client Configuration

FROM NODE nodename AT date time
REQUEST nn, FROM USER username ON nodename
Please mount device _nodename$devicename:
RMT tape service request from nodename.domain

The COMMENT value is specified as a string enclosed in double-quotes; the information is
displayed in the remote OPCOM message, either appended to or replacing the default text depending
on whether the resulting length is less than the 78-character maximum. Supplying the COMMENT
value is the only way you can send a tape-specific message to the remote operator. The OPCOM
message from the DCL MOUNT /COMMENT command is not passed to the remote RMT server;
this message is only sent to OPCOM for a local operation. The default RMTALLOC command
mounts the remote tape foreign, causing an OPCOM message to be generated if the tape drive is
offline.

Note

The RMTALLLOC /SEMANTICS=NOMOUNT command does not work correctly with
multivolume BACKUP savesets.

6.4.5. Write Protection
Use the /WRITE qualifier to make sure that write protection is respected; /NOWRITE is the default
for CD-ROM drives.

By default, RMTALLOC mounts a remote tape drive for read-write access. If the remote tape drive
is physically protected from write access, you must use /NOWRITE to indicate you want read-only
access to the tape drive. Otherwise, the remote UNIX RMT server usually returns an error indicating
"Permission Denied."

7

Chapter 6. RMT Server and Client Configuration

8

Chapter 7. Configuring and Managing
FTP
The FTP (File Transfer Protocol) server provides file access between remote systems. FTP is
configured automatically during the VSI TCP/IP installation procedure. This chapter explains how to
administer the FTP client and server.

7.1. Configuring the FTP Client
Configuring the FTP client consists of creating a IP$:FTP.INIT file for site-specific purposes.
When the FTP client is started, the commands in the IP$:FTP.INIT file are executed before the
commands in the SYS$LOGIN:FTP.INIT file of the user running FTP. See the VSI TCP/IP User's
Guide for more information about creating FTP.INIT files.

The FTP client censors the output of the NLST /LIST commands. A period (.) replaces unprintable
characters.

If the logical name IP$FTP_DELAY_TRANSFER_NEGOTIATION is defined, then the FTP client
does not attempt to negotiate STRU O VMS transfer mode until after you have logged into the remote
system successfully. You can define this logical at the user or system level.

$ DEFINE IP$FTP_DELAY_TRANSFER_NEGOTIATION anything

If the logical IP$FTP_SIZE_BEFORE_GET is defined to FALSE, NO, or 0 (zero) the SIZE
command will not be sent before the GET command for a file. When the logical is not defined, or
is defined to a value other than FALSE, NO, or 0, the SIZE command is sent. Any returned value is
used to preallocate the file size and to report progress of a file transfer. Some FTP servers leave the
file open accidentally after the SIZE command.

If the logical name IP$FTP_NONPASV is defined, then the FTP client will start up in PASSIVE OFF
mode. The default client behavior is PASSIVE ON.

7.2. Managing an FTP Server
Managing an FTP server may include the following tasks:

• Creating an anonymous FTP login (see Section 7.2.1).

• Creating an FTP server login command procedure (see Section 7.2.3).

• Using log files (see Section 7.2.4).

• Managing FTP security (see Section 7.2.5).

• Specifying a message at connect time (see Section 7.2.7).

• Specifying UNIX-style listings (see Section 7.2.8).

• Specifying the maximum idle time before a connection times out (see Section 7.2.10).

• Using FTP server site commands (see Section 7.2.11).

• Using Network Service Monitoring (see Section 7.5).

9

Chapter 7. Configuring and Managing FTP

• Using Session Accounting (see Section 7.6).

7.2.1. Configuring Anonymous FTP
To set up anonymous FTP access on your system:

1. Create an account named ANONYMOUS with the password GUEST. Any password works
from the remote host but the account is validated with the password GUEST. Use the OpenVMS
AUTHORIZE utility to create the account:

$ RUN SYS$SYSTEM:AUTHORIZE
UAF>ADD ANONYMOUS /PASSWORD=GUEST /OWNER="Anonymous FTP" -
_UAF>/DEVICE=device /UIC=[uic]
UAF> Ctrl/Z

uic is the UIC to use for ANONYMOUS.
device is the device on which the directory [ANONYMOUS] is located.

2. Use the NOLOCAL, NOBATCH, NOREMOTE, and NODIALUP access restrictions for the
ANONYMOUS FTP user to prevent other forms of access. You set these restrictions by running
AUTHORIZE and issuing the command:

UAF>MODIFY ANONYMOUS /NOLOCAL /NOBATCH /NOREMOTE /NODIALUP

3. To prevent access through DECnet, do not grant the NETMBX privilege to the ANONYMOUS
FTP user. To make sure that ANONYMOUS does not have the NETMBX privilege, issue the
following AUTHORIZE command:

UAF>MODIFY ANONYMOUS /PRIV=NONETMBX /DEFPRIV=NONETMBX

4. To restrict anonymous FTP access to the [ANONYMOUS] directory tree, use the NET-CONFIG
SET ANONYMOUS-FTP-DIRECTORY command. To restrict the ANONYMOUS FTP user
permissions to list, read, write, or delete files, use the NET-CONFIG SET ANONYMOUS-FTP-
ACCESS command. See the VSI TCP/IP Administrator's Reference for additional information
about NET-CONFIG commands.

Anonymous FTP server processes are created with the following process name:

*FTP_pwd

pwd is the password the user specifies.

By convention, many people specify GUEST, their personal name, or their local user name for the
password, because anything is accepted.

If you do not want to create FTP_SERVER.LOG files in the anonymous directory, assign a new
default directory for the login with a directory restriction to make sure the log files appear in the
correct directory. In this example, an alternate FTP directory is created for the log files:

$ SET DEFAULT SYS$SYSTEM
$ RUN SYS$SYSTEM:AUTHORIZE
UAF>MODIFY ANONYMOUS/DEVICE=SYS$COMMON:/DIR=[SYSMGR.ANONYMOUS]
UAF>EXIT
$ CREATE/DIRECTORY/OWNER=ANONYMOUS SYS$COMMON:[SYSMGR.ANONYMOUS]
$ IP CONFIGURE
NET-CONFIG>SET ANONYMOUS-FTP-DIRECTORY USERS:[ANONYMOUS]
NET-CONFIG>EXIT

10

Chapter 7. Configuring and Managing FTP

You can control the setting of the IP$ANONYMOUS_FTP_CONTROL logical name using the NET-
CONFIG SET ANONYMOUS-FTP-ACCESS command. For example:

$ IP CONFIGURE
NET-CONFIG>SET ANONYMOUS-FTP-ACCESS NOSPAWN,NODELETE
NET-CONFIG>EXIT
[Changes take effect after the next VSI TCP/IP for OpenVMS reload]

You can make the changes take effect before the system reboot by defining the associated
IP$ANONYMOUS_FTP_CONTROL logical name as follows:

$ DEFINE /SYSTEM /EXECUTIVE_MODE IP$ANONYMOUS_FTP_CONTROL -
_$ "NOSPAWN,NODELETE"

By default, the NOWRITE, NOSPAWN settings are used for anonymous FTP sessions. See Table 7.1 for
detailed description of the access options.

If you do not want to use the "anonymous" name, there is a logical that will allow users to use names
which are not anonymous, but have the same anonymous account behavior. The
IP$ANONYMOUS_USERNAMES logical usage is shown in the following example:

$ DEFINE /SYSTEM /EXEC IP$ANONYMOUS_USERNAMES -
_$ "anonymous,user1,user2,..."

If you define this logical as shown in the preceding example and set the "user1,user2,…" accounts
using the same password as the anonymous account, then the FTP server will treat "user1,user2,…" as
an anonymous type of user.

7.2.2. Specifying a Range of FTP Server Port Numbers
The logical IP$FTP_SERVER_DATA_PORT_RANGE specifies the range of port numbers to use for
passive connections.

$ DEFINE /SYSTEM /EXEC IP$FTP_SERVER_DATA_PORT_RANGE -
_$ "starting port number end port number"

When this logical is defined, the FTP server will use port numbers between the specified values for
the data channel when operating in passive mode.

7.2.3. Creating an FTP Server Login Command
Procedure
To limit user activities during an FTP session, edit the FTP_SERVER.COM file using this command:

$ IP FTP/SERVER[qualifier]

Table 7.1 lists the FTP server qualifiers.

Table 7.1. FTP Server Qualifiers

Qualifier Purpose
/ACCESS=([NOLIST], [NOWRITE],
[NOSPAWN], [NOREAD], [NODELETE])

Defines file access rights and permission to spawn a
subprocess for the current FTP session.

NOLIST disables the listing of files.

11

Chapter 7. Configuring and Managing FTP

Qualifier Purpose
NOWRITE disables the storing of files.
NOSPAWN disables the SPAWN command.
NOREAD disables reading of files.
NODELETE disables the deletion/renaming of files.

By default, /ACCESS=(NOWRITE, NOSPAWN) is
used for anonymous FTP sessions.

Note

To cancel a restriction, omit the appropriate option
from the parameter list. By default, all access rights are
granted if not listed.

/DIRECTORY=(directory1,...) Restricts access to these directory trees.
/GET REMOTE INFO Gets information about the remote system. This

qualifier works by defining the logical names

IP$FTP_ADDRESS
IP$FTP_HOSTNAME
IP$FTP_LOCAL_ADDRESS
IP$FTP_ANONYMOUS_PASSWORD

and then exiting without invoking the FTP server.

Note

IP$FTP_ANONYMOUS_PASSWORD is only set if the
user name is "anonymous".

When IP$FTP_DONT_REPORT_FILESIZE is
defined, the estimate of the number of bytes to be
transmitted is not included in the 150 reply line to a
GET operation.

/MESSAGE=message Displays a banner message when the user logs in. This
message precedes the "User xxx logged in..." line.

/REJECT Instead of accepting the connection, rejects the login
with the error specified in the /MESSAGE qualifier.

7.2.4. Using FTP Log Files
The VSI TCP/IP FTP server keeps a log of all FTP transactions that occur after login between the
client and server in an FTP_SERVER.LOG file in the user's login directory on the server system. A
log file is created for each FTP client session. The previous log is overwritten when a new session
starts, but you can specify a number of log files to retain.

Note

If the VSI TCP/IP FTP server process does not start or mysteriously disappears, examine the
beginning of FTP_SERVER.LOG for error messages. Because the system-wide login command

12

Chapter 7. Configuring and Managing FTP

procedure (SYS$MANAGER:SYLOGIN.COM) and the user's LOGIN.COM are executed as part of
the server process creation, errors in these procedures can cause the server process to terminate.
In most instances, however, the reason for the process terminating appears at the beginning of the
FTP_SERVER.LOG file.

The following sample log file contains the FTP transactions involved when the user logs in under the
user name HOLMES, issues a DIRECTORY command, and then retrieves the file FOO.BAR.

FTP Login request received at Wed Jun 14 19:05:10 2017
from remote IP address 127.0.0.1

>>> 230 User HOLMES logged into U1:[HOLMES] at Wed 07-Jun-2017 19:05, job
 3a.
<<< TYPE A
>>> 200 Type A ok.
<<< STRU F
>>> 200 Stru F ok.
<<< MODE S
>>> 200 Mode S ok.
<<< PORT 127,0,0,1,4,14
>>> 200 Port 4.14 at Host 127.0.0.1 accepted.
<<< LIST
>>> 150 List started.
>>> 226 Transfer completed.
<<< PORT 127,0,0,1,4,15
>>> 200 Port 4.15 at Host 127.0.0.1 accepted.
<<< RETR foo.bar
>>> 150 ASCII retrieve of USERS:[HOLMES]FOO.BAR;1 started.
>>> 226 Transfer completed. 210 (8) bytes transferred.
<<< QUIT
>>> 221 QUIT command received. Goodbye.
 HOLMES job terminated at 11-JUN-2017 19:05:23.08

By setting the logical name IP$FTP_SERVER_LOG_LIMIT in the LOGIN.COM file, you can
specify that log files be retained. Set the logical name to a dash (-) to retain all log files, or specify a
number in the range of 1 to 32000.

Directory size restrictions limit the number of potential files that can actually be created. If you do not
specify a number or value, one log file is created or overwritten for each FTP session. Use the DCL
PURGE command to delete unneeded log files. The following example specifies that 42 log files be
retained:

$ DEFINE IP$FTP_SERVER_LOG_LIMIT 42

7.2.5. Managing FTP Security
Because the FTP server process is started by running SYS$SYSTEM:LOGINOUT.EXE, both the
system-wide login command procedure (SYS$MANAGER:SYLOGIN.COM) and the specific user's
LOGIN.COM are executed. As a result, any customization (default file protection, process/job logical
name definitions, and so on) done in these command procedures is available under the FTP server
process.

All standard OpenVMS security-checking mechanisms also validate the FTP server process creation.
If a login command procedure contains any commands specific to interactive jobs (for example, SET
TERMINAL commands), the FTP server process may crash. To avoid this problem without altering

13

Chapter 7. Configuring and Managing FTP

the functionality of command procedures, use the DCL lexical function F$MODE with interactive
commands. For example:

$ IF F$MODE() .EQS. "INTERACTIVE" THEN SET TERMINAL /INQUIRE

You can use the following logicals in the FTP_SERVER.COM command procedure to restrict specific
users from some types of access:

• The following logical restricts 'username' to accessing only the specified directories when
connecting to the host using FTP:

IP$'username'_FTP_DIRECTORY "directory-spec,..."

This logical is used in the FTP SERVER /DIRECTORY=directory_spec,... qualifier.

• The following logical restricts 'username' to only the type of access specified when accessing
the host via FTP:

IP$'username'_FTP_CONTROL "access-spec,..."

This logical is used in the FTP SERVER/ACCESS=access-spec,... qualifier.

access-spec=[NOLIST], [NOWRITE], [NOSPAWN], [NOREAD], or [NODELETE]

• The following logical limits the information given out on connection or when using the STAT
command:

IP$FTP_CONNECT_BANNER "FTP server name"

If this logical is defined as whitespace, operating system and TCP stack information is removed
from the FTP server connection banner. If this logical is defined with a specific FTP server name,
the information banner does not appear in response to the STAT command.

7.2.6. Accepting Wildcards Upon Delete
You can apply the logical IP$FTP_DISALLOW_WILDCARD_DELETES to anything to disallow the
new functionality of accepting wildcards on delete. This may be done at the process, group, or system
level.

7.2.7. Specifying a Message at Connect Time
The IP$FTP_ANNOUNCE logical provides a SYS$ANNOUNCE-style message along with the "220"
banner at connect time. Define the logical in a fashion similar to SYS$ANNOUNCE, using one of the
following commands:

$ DEFINE/SYSTEM IP$FTP_ANNOUNCE "message text"

In the following version, the announcement is in the specified file:

$ DEFINE/SYSTEM IP$FTP_ANNOUNCE "@file specification"

7.2.8. Specifying UNIX-Style Listings
If you define the logical name IP$FTP_UNIX_STYLE_BY_DEFAULT, the FTP Server starts in
UNIX emulation mode.

14

Chapter 7. Configuring and Managing FTP

The control of version number displays has been reworked in response to LIST and NLST
commands. The default is VMS-mode output.

The logical name IP$FTP_UNIX_STRIP_VERSION no longer has any effect. In UNIX mode, the
FTP Server always removes version numbers from directory listings.

The logical name IP$FTP_STRIP_VERSION causes VMS mode output to have no versions.

Note

It is recommended that you NOT use the IP$FTP_STRIP_VERSION logical. Stripping version
numbers from the VMS mode LIST output can cause problems for some FTP clients (notably
WS_FTP).

The logical name IP$FTP_ALL_VERSIONS requests the NLST and LIST commands to
display all version numbers. If IP$FTP_ALL_VERSIONS is defined, the logical name IP
$FTP_STRIP_VERSION has no effect.

Note

IP$FTP_ALL_VERSIONS is ignored if the FTP Server is in UNIX emulation mode.

The FTP Server updates UNIX emulation improving VSI TCP/IP interoperability with various FTP
Clients. Features of the UNIX emulation mode are:

• The syntax you use for a directory determines the mode you want. For example, CWD / uses
UNIX mode; CWD [] uses VMS mode.

• The LIST command returns output similar to that produced by ls -al.

• The logical name IP$FTP_UNIX_STYLE_CASE_INSENSITIVE allows UNIX style filename
handling to be case insensitive.

• Mixed case file names and those with special characters are translated into legal OpenVMS file
names using the NFS mappings.

• The directories listing uses UNIX syntax. For example, USERS:[MRUHL] becomes /users/
mruhl.

• When changing directories or referencing files using an absolute UNIX pathname, directory
lookups treat SYS$LOGIN as if they were the root directory (/). So, if SYS$LOGIN is USERS:
[MRUHL], /login.com refers to USERS:[MRUHL]LOGIN.COM and /IP$common_root/
IP refers to USERS:[MRUHL.IP$COMMON_ROOT.IP] if that directory exists. If it does not
exist, the first segment of the pathname is used as the device specification in a second lookup
attempt, and /IP$common_root/IP refers to IP$COMMON_ROOT:[IP].

• If the FTP Server is in UNIX mode, the SYST command displays the banner “UNIX VSI TCP/
IP Unix Emulation.” If the FTP Server is in VMS mode, the SYST command displays the
equivalence string associated with the IP$FTP_SYST_BANNER logical name (if defined).
Otherwise, the SYST command displays “VMS VSI TCP/IP Vx.y(rev)”:

• Vx.y is the VSI TCP/IP version number.

• (rev) is the revision number of the FTP Server.

15

Chapter 7. Configuring and Managing FTP

Note

The logical name IP$FTP_SYST_BANNER is ignored if the FTP Server is already in UNIX mode.

The FTP Server does not drop spaces in filenames. It converts them to the character sequence $7A.

The FTP Server protects privileged ports by not opening data connections to privileged ports.

The file open routines allow all modes to fetch data from a file open for write but marked for shared
access.

The FTP Service corrects synchronization problems resulting in messages repeatedly sent to the FTP
Client.

The interoperability problem with Microsoft Internet Explorer where Internet Explorer expects the
server PORT reply to a PASV request to be enclosed in parentheses contrary to RFC stipulation that
the client should search for a digit, not the left parenthesis has been fixed.

There is no PASV command interference with data link window sizing.

If you want the device name, the file name, and the directory name included in the results of all
NLST commands, define the logical IP$FTP_INCLUDE_DEVICE_IN_NLST. This logical may be
declared system wide or in the user’s LOGIN.COM file.

The FTP Service corrects a problem with RENAME operations with UNIX-style file specifications.
The RENAME operation overrides the current protection of the file to do the operation and then
restores it afterwards. This is necessary because directories are created such that they cannot be
deleted without changing the protection. To cause RENAME to observe the file protection, define the
logical IP$FTP_OBSERVE_VMS_PROTECTION to true.

7.2.9. UNIX File Names
An FTP default is to rename files by changing the final dot (.) to $5N. The logical IP
$FTP_DODROP1DOT lets you override this FTP default by dropping the final dot and NOT adding
$5N.

VMS always implies that a dot is present in file names regardless of whether it is followed by an
extension. OpenVMS also does not support multiple dots in a file name. The rule FTP follows is
that when there is only one dot, and that dot is the final character, the dot is converted to $5N. The
resultant local file is then distinguishable from a similarly named file that did not have a dot. For
example, “FILE.” becomes “FILE$5N” when using the FTP default; however, “FILE.” becomes
“FILE” with the logical defined.

The FTP server displays the creation month, day, and year of a file for a UNIX mode directory if the
file is older than 1 year (365 days). If the logical IP$FTP_UNIX_YEAR_OLD_FILES is defined
False, No, or 0 (zero), the old behavior is restored, displaying all files with Month, Day, and Time.

The logical IP$FTP_DISALLOW_UNIX_STYLE controls whether UNIX-style filename parsing is
done. The default value for IP$FTP_DISALLOW_UNIX_STYLE is true (T), UNIX-style filename
parsing is not handled. If you want UNIX-style filename parsing, you must define this logical as
FALSE. When UNIX-style parsing is enabled, it is not normally done until a CD command has been
done with a directory specification that contains a “/” in it. For example:

16

Chapter 7. Configuring and Managing FTP

FTP> cd ../my_directory

Note

For some FTP clients (VSI TCP/IP is one of them) you will have to enclose the directory specification
in quotes (“ ”) when it contains the “/” to prevent the client from attempting to parse it.

To exit UNIX-type filename parsing, use a CD command with either the “[” or “<” character in the
directory specification. For example:

FTP> cd [-.my_directory]
$ DEFINE/SYSTEM/NOLOG/EXEC IP$FTP_DISALLOW_UNIX_STYLE FALSE

Some graphical display FTP clients expect the output of directory commands to be in a UNIX system
format. To enable this UNIX format, use the following either at the system level or in the user's
LOGIN.COM:

$ DEFINE IP$FTP_DISALLOW_UNIX_STYLE FALSE

and

$ DEFINE IP$FTP_UNIX_STYLE_BY_DEFAULT ANYTHING

7.2.10. Specifying the Maximum Idle Time
The IP$FTP_MAXIMUM_IDLE_TIME logical specifies the length of time before an idle FTP server
connection times out. The value is set in seconds, with a default of 300 seconds. If this logical is set to
0, timeouts are disabled.

The logical name IP$FTP_FAST_TIMEOUT is equivalent to the settings in these logicals IP
$NAMESERVER_RETRANS and IP$NAMESERVER_RETRY for the FTP server process to 5 and
2 respectively. This helps the FTP Server start up faster when DNS PTR records for the client are
improperly defined or nonexistent.

7.2.11. Using FTP Site Commands
Table 7.2 lists the commands for controlling and configuring the FTP server from the FTP prompt.

Table 7.2. FTP Site Commands

Command Description
SITE SHOW TIME Shows the time on the system the FTP server is running on.
SITE NONE This is a NO OPERATION.
SITE PRIV [privileges] Turns ON or OFF OpenVMS privileges. If no privileges are

specified, displays the current privileges.
SITE RMS BLOCK [ON|
OFF]

Turns Block Image mode transfers ON or OFF, or if there is no
argument, displays the current state.

When image (binary) transfers are done with Block Image mode
OFF (the default), the FTP server opens OpenVMS record files
such that the record control information is not included in the data
and a linefeed separates each record. With Block Image mode ON
the record control information and the data are transferred.

17

Chapter 7. Configuring and Managing FTP

Command Description
SITE RMS RECSIZE
[value]

With no argument, displays the current record size. With an
argument, sets the record size for Image PUT transfers to the size
specified. The default is 512.

SITE SPAWN command Spawns a subprocess and uses the rest of the line as a OpenVMS
DCL command. Not valid for CAPTIVE processes.

SITE RMS STREAM [ON|
OFF]

With no argument, displays the current state. When ON, writes text
files in Stream-LF format.

When OFF (default), writes text files as OpenVMS carriage-control
record files.

SITE +VMS+ Enables VMS + mode transfers.
SITE VMS Disables VMS + mode transfers.
SITE WINDOW-SIZE With no argument, displays the TCP window size. With an

argument, sets the window size for the data channel. Default value
is 32768 bytes

7.2.12. Defining FTP Messages
The IP$FTP_221_REPLY logical lets you define the message users see when they end the FTP
session. If you do not define this logical, VSI TCP/IP uses the default message instead “221 QUIT
command received. Goodbye.” You can define a text string or file. If the string starts with the “at”
sign @, it specifies the name of a file containing text to be displayed. For example:

$ DEFINE/SYSTEM/EXEC IP$FTP_221_REPLY -
_$ "Connection to FTP server has been closed"

Now, when the user closes the FTP connection, the following message appears:

221 Connection to FTP server has been closed

The IP$FTP_230_REPLY logical defines a message to appear when a user successfully logs
in. If you do not define this logical, VSI TCP/IP uses the default message instead. As with IP
$FTP_221_REPLY, you can define a text string or file. For example:

$ DEFINE/SYSTEM/EXEC IP$FTP_230_REPLY-
_$ "Login successful"

Now, when the user logs in using FTP, the following message appears:

230 Login successful

The IP$FTP_ANONYMOUS_230_REPLY logical defines a message to appear when an
ANONYMOUS user successfully logs in. If you do not define this logical, VSI TCP/IP uses the
default message instead. As with IP$FTP_230_REPLY, you can define a text string or file. For
example:

$ DEFINE/SYSTEM/EXEC IP$FTP_ANONYMOUS_230_REPLY-
_$ "ANONYMOUS login successful"

Now, when a user logs in using the ANONYMOUS account, the following message appears:

230 ANONYMOUS login successful

18

Chapter 7. Configuring and Managing FTP

The IP$FTP_421_REPLY logical lets you defines the message user’s see when they connect to the
server but should not log in. After sending the message, the connection closes. For example, you can
define this logical to prevent FTP access for a short time period. Be sure to deassign the logical after
this period to allow FTP access again. If the string starts with the “at” sign @, it specifies the name of
a file containing text to be displayed. For example:

$ DEFINE/SYSTEM/EXEC IP$FTP_421_REPLY-
_$ "System maintenance in progress until 17:30"

Now, when the user connects to the host using FTP, the following message appears and then the
connection closes:

421 System maintenance in progress until 17:30

7.2.13. Specifying the Name of a Log File
The IP$FTP_LOGFILE (system level, executive mode) logical can be defined to specify the name
of a log file. For example:

$ DEFINE/SYSTEM/EXEC IP$FTP_LOGFILE-
_$ SYS$COMMON:[SYSMGR]FTPLOGIN.LOG

If this logical exists, the FTP server writes a record to the specified file each time a user attempts to
log in. Each record includes the date and time, the remote host's internet address, and whether the
login succeeded. This is especially useful to use if you suspect someone has tried to break into the
FTP server.

This logical specifies the name of the file to which all commands and responses to ANONYMOUS
FTP services are logged. If IP$FTP_LOG_ALL_USERS is also defined, then commands and
responses for all users are logged. If VSI TCP/IP is already running, the Master Server must be
restarted (IP$SYSTARTUP.COM) for these definitions to take effect.

The logical IP$FTP_LOG_ALL_USERS causes all commands and responses to be logged to the
file defined by IP$FTP_LOGFILE. The default (when this logical is not defined) is to just log the
commands and responses for anonymous users.

$ DEFINE/SYSTEM/EXEC IP$FTP_LOG_ALL_USERS TRUE

The FTP client and the FTP server normally check the record size of an ASCII transfer and disallow
more than 8192 byte records (as a sanity check). However, you can define the IP$FTP_MAXREC
logical to override the default of 8192. The definition of the IP$FTP_MAXREC logical is commented
out but defined in the FTP CONTROL.COM file as follows:

$ DEFINE/SYSTEM/NOLOG/EXEC IP$FTP_MAXREC 8192

Note that the maximum record size supported by OpenVMS is 65535.

7.2.14. Defining a File Name
The IP$DIRECTORY_MESSAGE_FILENAME logical can be defined to name the file you want to
appear when a session enters a directory. For example:

$ DEFINE/SYSTEM/EXEC IP$DIRECTORY_MESSAGE_FILENAME flowers.txt

7.3. Password Lifetime Warnings
This section describes how to define password messages in VSI TCP/IP.

19

Chapter 7. Configuring and Managing FTP

7.3.1. Defining Password Messages
The IP$FTP_PASSWORD_WARNING_MESSAGE logical lets you define the message users see when
their password is going to expire. If you want the amount of time before the password expires to be
included, add %s to the logical.

$ DEFINE/SYSTEM/EXEC IP$FTP_PASSWORD_WARNING_MESSAGE %s
$ DEFINE/SYSTEM/EXEC IP$FTP_PASSWORD_WARNING_MESSAGE message text string

The IP$FTP_PASSWORD_WARNING_TIME logical uses the OpenVMS delta time to specify the
minimum remaining lifetime for the user's password. If the remaining lifetime is greater than the
OpenVMS delta time then no message appears. It is necessary to define this value to enable checking
for the remaining lifetime of a password.

$ DEFINE/SYSTEM/EXEC IP$FTP_PASSWORD_WARNING_TIME dddd hh:mm:ss.hh

The IP$FTP_RECEIVE_THRESHOLD logical specifies the amount of buffer space that can be used
to buffer transmitted data on the data socket. The default value if 6144. If this logical is defined and it
begins with a /, then it specifies the fraction of the window size; if only a fraction is specified, then it
indicates the number of bytes to be used. The ? in the logical represents where defined values go.

$ DEFINE/SYSTEM/EXECUTIVE IP$FTP_RECEIVE_THRESHOLD ?

The IP$FTP_NOLOGIN_EXPIRED_PASSWORD logical lets you prevent accounts with expired
passwords from logging in.

$ DEFINE/SYSTEM/EXEC IP$FTP_NOLOGIN_EXPIRED_PASSWORD TRUE

will prevent a user with an expired password from logging in and displays the following message:

<Your password has expired; contact your system manager>

7.3.2. Checking IP Address
By default, the VSI TCP/IP FTP server checks the IP address given in the port command and does
not make the connection if the IP address does not match that of the control connection. This can be
disabled by defining the logical IP$FTP_SERVER_RELAXED_PORT_COMMAND.

$ DEFINE IP$FTP_SERVER_RELAXED_PORT_COMMAND 197.0.0.1

7.4. Configuring the FTP server for TLS
(FTPS)
Follow these steps to configure the VSI TCP/IP FTP server to allow TLS authentication:

• Generate or obtain certificate and key files. On OpenVMS V8.3
SSL1$COM:SSL1$CERT_TOOL can be used to do this.

• Place the certificate and key file where you want them and verify that the protection is set such
that world has no access.

• Using IP CONFIGURE /SERVER select FTP and set the RFC-4217-CERTIFICATE and
RFC-4217-KEY parameters to the location and filename of the appropriate files. see the following
example. Optionally set the REQUIRE_TLS parameter to YES.

$ IP CONFIGURE/SERVER

20

Chapter 7. Configuring and Managing FTP

SERVER-CONFIG> SELECT FTP
SERVER-CONFIG> SET PARAMETER
Add Parameter: RFC-4217-CERTIFICATE SSL$CERT:SERVER.CRT
Add Parameter: RFC-4217-KEY SSL$CERT:SERVER.KEY
Add Parameter:
[Service specific parameters for FTP changed]
SERVER-CONFIG>exit
[Writing configuration to SYS$COMMON:[IP.CONFIG]SERVICES.MASTER_SERVER]

• Restart the VSI TCP/IP master server IP$:START_SERVER RESTART.

7.4.1. FTP server parameters for TLS
RFC-4217-CERTIFICATE Specifies the certificate file to be used with RFC 4217 negotiation. The
certificate and key files must be created by an external means such as the SSL certificate tool and be
in PEM format. Both a certificate and key file must be specified set up to allow TLS negotiation. On
OpenVMS V8.3 you can use @SSL1$COM:SSL1$CERT_TOOL.

RFC-4217-KEY Specifies the private key file to be used with RFC 4217 negotiation. The certificate
and key files must be created by an external means such as the SSL certificate tool and be in
PEM format. Both a certificate and key file must be specified set up to allow TLS negotiation. On
OpenVMS V8.3 you can use @SSL1$COM:SSL1$CERT_TOOL.

REQUIRE-TLS YES Specifies that user authentications other than anonymous and users that have
no password must use TLS authentication. The FTP USER command will get a 530 response if it is
issued before TLS authentication has been done. This prevents passwords from being exchanged in
clear text mode with the users.

7.5. Network Service Monitoring
FTP’s network service monitoring is based on RFC 2788 (Network Services Monitoring MIB).
Information is maintained only while the service is active. The following items from the Network
Services Monitoring MIB (RFC 2788) are available in the enterprises.105.2.25 MIB:

Table 7.3. Network Services Monitoring Items

Item Description
ApplAccumulatedInboundAssociations (Counter) the total number of connections that the FTP

Listener program has serviced since it was started.
enterprises.105.2.21.10

ApplDescription (String) Description of the program/application. This banner
is printed when the client connects to the FTP Listener
program. enterprises.105.2.21.16

ApplInboundAssociations (Counter) The number of connections currently active.
enterprises.105.2.21.8

ApplIndex (Integer) unique application index. The port FTP is offered
on (21). enterprises.105.2.21.1

ApplLastChange (TimeTicks) the value of sysUpTime when the FTP Listener
program entered the current state. enterprises.105.2.21.7

ApplLastInboundActivity (TimeTicks) the value of sysUpTime at the time the most
recent connection was established. enterprises.105.2.21.12

ApplName (String) FTP. enterprises.105.2.21.2

21

Chapter 7. Configuring and Managing FTP

Item Description
ApplOperStatus (Integer) the operational status of the FTP Listener program;

the values are: up(1), down(2), halted(3), congested(4),
restarting(5), quiescing(6). Some of these values may not be
used. enterprises.105.2.21.6

ApplRejectedInboundAssociations (Counter) the number of connections that have been rejected
(due to not being allowed from the access list values).
enterprises.105.2.21.14

ApplUptime (TimeTicks) the value of the SNMP variable sysUpTime
when the FTP Listener program was started. This time has a
resolution of 5 minutes.

enterprises.105.2.21.5
ApplVersion (String) the version of the FTP Listener program.

enterprises.105.2.21.4

This feature requires the SNMP Agent X functionality. To use this SNMP must be configured to have
Agent X service enabled, and to allow the system's IP and the local host addresses (127.0.0.1) to each
be an AGENTX_PEER. See Chapter 11 for more information. This information can be displayed with
the IP SHOW /SNMP command and can be displayed with a MIB browser.

To enable network service monitoring, do the following:

$ IP CONFIGURE /SERVER
 SELECT FTP
 SET FLAGS SNMP_MONITORED | PASS_FOREIGN_SOCKET
 WRITE
 EXIT
$ @IP$:IP$SYSTARTUP

Any service using TCP_INIT, TCP_LISTEN, and TCP_CONNECTED routines may use SET
FLAGS SNMP_MONITORED. The level of functionality may vary with the service.

7.6. Session Accounting
VSI TCP/IP can record accounting information from services that have been enabled. Currently
this includes FTP and SMTP. The accounting information includes information about when a
network session took place and how much data was transferred. The accounting facility is enabled
by setting the accounting port and the accounting host and reading IP$:ACCOUNTING.CONF for
additional configuration information. The format of the accounting records is described in IP$ROOT:
[IP.EXAMPLES]ACCOUNTING.H.

A sample program using this is in IP$ROOT:[IP.EXAMPLES]ACC_DUMP.C.

You must configure FTP and session accounting in order to activate the accounting function.
FTP-ACCOUNTING-HOST is the name of the system running the accounting program. FTP-
ACCOUNTING-PORT is the port number that the program was set up to listen on. FTP accounting can
be configured with the following:

IP CONFIGURE /NETWORK
SET FTP-ACCOUNTING-HOST name
SET FTP-ACCOUNTING-PORT number
WRITE
EXIT

22

Chapter 7. Configuring and Managing FTP

In order for accounting to be activated before your next reboot, you can define the logicals as follows:

$ DEFINE/SYSTEM/EXECUTIVE IP$FTP_ACCOUNTING_HOST lillies
$ DEFINE/SYSTEM/EXECUTIVE IP$FTP_ACCOUNTING_PORT 1234

Note

The accounting port must be set to an unused port, not the port for the service on which accounting is
being enabled.

The next section explains how to configure the file.

The collected accounting information can be displayed with the IP ACCOUNTING command.
See the VSI TCP/IP Administrator’s Reference for more information about the IP ACCOUNTING
command.

7.6.1. Configuration File
The Accounting configuration file is IP$:ACCOUNTING.CONF. The Accounting configuration file
defines:

• The Port the Accounting program listens on. This should be an unused port, not the port for the
service on which logging is being enabled, and the same port specified to FTP or SMTP.

• The name of the file used for accounting records. This file is opened shareable and new records
are always appended to it. To start a new file stop the Accounting program, delete (or rename) the
existing file, and restart the Accounting program.

• The IP addresses of systems that are allowed to write accounting records to this host.

Note

After editing the configuration, stop and restart the Accounting program so that the changes can take
effect.

7.6.2. File Format
Follow these guidelines when entering data in the Accounting configuration file:

• Allow one line for each item.

• Enter information in any order; in upper- or lowercase.

• Use a pound sign (#) or exclamation point (!) to denote comments. The Accounting facility
ignores all information following these characters.

The commands that can be in IP$:ACCOUNTING.CONF are:

• PORT port_number: The TCP port that the accounting program should listen on.

• PEER ip-address: The IP address of a host that is allowed to log records with the accounting
software.

• FILENAME filename: The name of the file that the accounting records will be written to. The
IP$: device is assumed if a device is not specified as part of the file specification.

23

Chapter 7. Configuring and Managing FTP

7.6.3. Enabling the Accounting Logger
To enable the FTP accounting logger, do the following:

$ IP CONFIGURE/SERVER
SERVER-CONFIG> ENABLE ACCOUNTING
SERVER-CONFIG> WRITE
SERVER-CONFIG> EXIT
IP$SYSTARTUP.COM

7.6.4. Displaying the Contents of the Logging File
To view accounting information, do the following:

$ IP ACCOUNTING/INPUT=accounting_data_file [/output=output filename] -
_$ [/since=start_date] [/before=end_date] [/protocol={SMTP, FTP, MAIL}] [/
CSV]

• accounting_data_file is the name of the logging file you want to see.

• output filename is the name of the file you want to call this information. If this field is
omitted, the information displays to the terminal screen.

• start_date is the beginning date you want the command to start with. The date format is [DD-
MMM-YYYY [:]] [hh:mm:ss]cc]. If not specified, all records display up to the end of the data
found.

• DD is the day of the month, counting from 01.

• MMM is the abbreviation for the month, like JAN, FEB, MAR.

• YYYY is the number of the year, including the century (2013, 2014, 2015, 2016, 2017).

• hh is the hour, from 00 to 23.

• mm is the minute, from 00 to 59.

• ss is the second, from 00 to 59.

• cc is hundredths of seconds.

The time is always in local time.

• end_date is the ending date you want the command to end with. The date format is [DD-
MMM-YYYY [:]] [hh:mm:ss]cc]. If not specified, all records display until the end of the file.

• protocol is any combination of SMTP, FTP, or MAIL.

• CSV is the Comma Separated Values, for input to products like Excel.

7.6.5. Accounting File Record Format
The accounting file is written using OpenVMS RMS records. The format of these records is defined
in IP$ROOT:[IP.EXAMPLES]ACCOUNTING.H, and listed below:

/*

24

Chapter 7. Configuring and Managing FTP

 * PDU format
 */
struct accountingPDU {
 char version;
 char type; /* type of record */
/*
 * FTP:
 * C - Client
 * S - Server
 *
 * SMTP:
 * N - Network delivery (send)
 * L - Local delivery (received)
 * F - Forwarded
 * R - Returned
 * D - Delivery Receipt
 * Q - ReQueued
 *
 */
 char flags; /* not currently used */
 char reserved; /* for future use */
 int payload_length; /* length (in bytes) of data after header */
 int port; /* IP port of reporting service - 25 SMTP, 21 - FTP */
 int reporterIP; /* IP address of reporter */
};
struct FTPaccounting_data {
 struct accountingPDU header;
 int start_time[2]; /* OpenVMS time that session started */
 int end_time[2]; /* OpenVMS time that session ended */
 int datasent; /* KBytes of file data sent */
 int datarecv; /* KBytes of file data received */
 int filessent; /* Number of files sent */
 int filesrecv; /* Number of files received */
 int partnerIP; /* IP address of partner */
 char user[12]; /* username that operations were done under */
};
struct SMTPaccounting_data {
 struct accountingPDU header;
 int date[2]; /* Time of activity */
 int msg_size; /* size of message in bytes */
 int from_str_size; /* size of From: string */
 int to_str_size; /* size of To: string */
 char from_to_str[1]; /* text of From & To string */
};
#define accounting_Close 1
typedef struct accounting_peer_info {
 struct accounting_peer_info *next;
 ulong ia;
} accounting_peer_info;
#define MAX_STRING_LEN 255

7.7. FTP and IPv6
A separate service entry (FTP_INET6) is available to support FTP over IPv6. The Network Service
Monitoring and Session Accounting have not yet been updated for IPv6. The same logicals and
command files are used for both FTP over IPv4 and FTP over IPv6. When IPv6 is in use FTP uses the
EPSV and EPRT commands. Other than the differences noted, FTP over IPv6 should be the same as

25

Chapter 7. Configuring and Managing FTP

FTP over IPv4. FTP is capable of accepting mapped IPv4 connections, so it is possible to disable the
FTP service and enable FTP_INET6 to take care of both IPv4 and IPv6.

26

Chapter 8. Configuring the Font
Server
This chapter explains how to use the VSI TCP/IP font server to provide fonts for X11R5 (and later) X
servers on your network. To understand the material in this chapter, you should be familiar with font
administration on X11R5 servers.

8.1. Understanding the Font Server
The VSI TCP/IP font server makes fonts on your OpenVMS system available to remote X11R5 (and
later) X servers without using a distributed file system, such as NFS, or file transfer via FTP or TFTP.

The main advantages of font servers over distributed file systems or file transfer are:

• Simplicity of font administration.

• Redundancy. X servers can use multiple font servers. If one font server fails or is unavailable, the
X server can request fonts from another font server.

You can add font servers to an X server font search path the same way you add directories to the font
search path. For example, you can add a font server to the font search path of X servers running on
UNIX systems with the xset +fp and xset fp+ commands.

• When an X server needs a font, it sends a request to the font server.

• If the requested font is on the font server, the font is transferred to the X server.

• If the font is not on the font server, the X server continues to search the rest of the font search
path, which may include other font servers.

You can also configure the font server to return the names of other font servers (known as
alternates) that the X server can search when the font server fails to find a requested font.

8.2. The Font Server Configuration File
The VSI TCP/IP font server obtains its configuration parameters from the configuration file
IP$:FONT_SERVER.CONFIGURATION, which is equivalent to the /usr/lib/X11/fs/config
configuration file used by font servers on UNIX systems. Although the file names are different, the
file formats are identical; you can use configuration files from UNIX systems on your OpenVMS
host.

The configuration file is an ASCII text file that contains a list of configuration parameter names and
values. Each parameter name is followed by an equals sign (=) and the desired value.

Table 8.1 describes the font server configuration parameters.

Table 8.1. Font Server Configuration Parameters

Parameter Accepted Values Description
cache size cardinal number Specifies the size of the font server's font cache. To

improve font access speed, specify a large font cache.
Default: 10000.

27

Chapter 8. Configuring the Font Server

Parameter Accepted Values Description
catalogue list of strings Lists font path element names, delimited by commas.

The VSI TCP/IP font server supports only a single
catalogue (all), which contains all specified fonts.

alternate-server list of strings Lists alternate servers for this font server.
client-limit cardinal number Specifies the number of clients this font server

supports before refusing service.
default-point-size cardinal number Specifies the default point size (in decipoints) for

fonts that do not specify a point size.
default-resolutions comma-delimited list of

integers
Specifies the default resolutions the server supports.
This information may be used as a hint for pre-
rendering, and substituted for scaled fonts which do
not specify a resolution.

error-file string Specifies the log file into which all warnings and
errors are written.

port cardinal number Specifies the TCP port on which the server listens for
connections.

trusted-clients comma-delimited list of
host names

Determines which hosts can use the font server. If you
do not specify any hosts (the default), all hosts can
use the font server. If you specify hosts, they are the
only ones that can use the font server.

An example font server configuration file follows.

Font server configuration file
VSI TCP/IP for OpenVMS Font Server
Specify the font directories to export.
#
WARNING: The file DECW$FONT_DIRECTORY.DAT must exist. If it does not, you
can create it with the command $ IP FONT MKFONTDIR [directory,...]
#
catalogue = sys$common:[sysfont.decw.100dpi],
 sys$common:[sysfont.decw.75dpi],
 sys$common:[sysfont.decw.common],
 sys$common:[sysfont.decw.cursor16],
 sys$common:[sysfont.decw.cursor32]
#
Uncomment this line to start logging errors to a file on disk.
Restart the font server to put logging into effect.
#
error-file = VSI TCP/IP for OpenVMS:fs.errors
#
in decipoints
default-point-size = 120
default-resolutions = 75,75,100,100

8.3. Specifying Font Servers
All X11R5 (and later) servers use the same syntax for specifying font servers:

transport/host_name:port_number[/catalogue]

28

Chapter 8. Configuring the Font Server

• transport is "TCP."

• host_name is the name of the host on which the font server is running.

• port_number is the port on which the VSI TCP/IP font server listens for requests from remote
X servers. By convention, the VSI TCP/IP font server listens on port 7000.

• catalogue is the catalogue the VSI TCP/IP font server provides (by default, "all"). Catalogues
are the equivalent of search paths on the font server. For details on defining catalogues, see
Section 8.8.

8.4. Supported Font Types
The VSI TCP/IP font server supports the following font formats:BDF, MIT SNF, Speed,
DECwindows, PCF.

VSI TCP/IP also includes two commands for converting font formats:

Command Description
IP FONT COMPILE Compiles BDF fonts into PCF format. Type HELP IP FONT

COMPILE for online help.
IP FONT UNCOMPILE Converts fonts supported by the font server into BDF format. Type

HELP IP FONT UNCOMPILE for online help.

The default font alias file name is DECW$FONT_ALIAS.DAT to match the default font values used
by VSI.

8.5. Enabling the Font Server
To enable the VSI TCP/IP font server, use the SERVER-CONFIG utility (IP CONFIGURE /
SERVER). For example, to enable the font server on a single OpenVMS system, enter:

$ IP CONFIGURE /SERVER
SERVER-CONFIG>ENABLE FONTSERVER
SERVER-CONFIG>RESTART
Configuration modified, do you want to save it ? [YES] YES
SERVER-CONFIG>QUIT
$

8.6. Getting Information About the Font
Server
This section describes how to get information about a specific font server. Use the IP FONT
command to obtain the following information about the font server:

• Current font server configuration (see Section 8.6.1)

• Names of available fonts (see Section 8.6.2)

• Font file data (see Section 8.6.3)

29

Chapter 8. Configuring the Font Server

8.6.1. Checking the Font Server Configuration
To check the status of the VSI TCP/IP font server, enter:

$ IP FONT INFO /SERVER=font_server_name:port_number)

• font_server_name is the name of the font server you want to check. Use the font server
name syntax described in Section 8.3.

• port_number is the port on which the font server listens. By default, the VSI TCP/IP font
server listens on port 7000.

The following example shows the information generated by this command on a system that acts as a
font server with no alternates.

$ IP FONT INFO /SERVER=WHORFIN:7000
name of server: WHORFIN:7000
version number: 2
vendor string: ABC, Incorporated
vendor release number: 5001
maximum request size: 16384 longwords (65536 bytes)
number of catalogues: 1
all
Number of alternate servers: 0
number of extensions: 0
$

For more information, type HELP IP FONT INFO.

8.6.2. Listing Available Fonts
To list the names of available fonts on a font server, enter:

$ IP FONT LIST /SERVER=font_server_name font_spec

• font_server_name is the name of the font server from which you want to obtain the list of
fonts. Use the font server name syntax described in Section 8.3.

• font_spec is a font specification, in which you may include wildcard characters.

The following example shows the command that lists all "fixed" fonts on the font server.

$ IP FONT LIST /SERVER=WHORFIN:7000 *FIXED*
-misc-fixed-bold-r-normal--0-0-75-75-c-0-iso8859-1
-misc-fixed-bold-r-normal--13-120-75-75-c-70-iso8859-1
-misc-fixed-bold-r-normal--13-120-75-75-c-80-iso8859-1
-misc-fixed-bold-r-normal--15-140-75-75-c-90-iso8859-1
-misc-fixed-bold-r-semicondensed--0-0-75-75-c-0-iso8859-1
-misc-fixed-bold-r-semicondensed--13-120-75-75-c-60-iso8859-1
-misc-fixed-medium-r-normal--0-0-75-75-c-0-iso8859-1
-misc-fixed-medium-r-normal--10-100-75-75-c-60-iso8859-1
-misc-fixed-medium-r-normal--13-120-75-75-c-70-iso8859-1
-misc-fixed-medium-r-normal--13-120-75-75-c-80-iso8859-1
-misc-fixed-medium-r-normal--14-130-75-75-c-70-iso8859-1
-misc-fixed-medium-r-normal--15-140-75-75-c-90-iso8859-1
-misc-fixed-medium-r-normal--20-200-75-75-c-100-iso8859-1
-misc-fixed-medium-r-normal--8-80-75-75-c-50-iso8859-1

30

Chapter 8. Configuring the Font Server

-misc-fixed-medium-r-normal--9-90-75-75-c-60-iso8859-1
-misc-fixed-medium-r-semicondensed--0-0-75-75-c-0-iso8859-1
-misc-fixed-medium-r-semicondensed--12-110-75-75-c-60-iso8859-1
-misc-fixed-medium-r-semicondensed--13-120-75-75-c-60-iso8859-1
-sony-fixed-medium-r-normal--0-0-100-100-c-0-iso8859-1
-sony-fixed-medium-r-normal--16-120-100-100-c-80-iso8859-1
-sony-fixed-medium-r-normal--24-170-100-100-c-120-iso8859-1
fixed
fixed

For more information, type HELP IP FONT LIST.

8.6.3. Viewing Font Data
To list the data that comprises a specific font, log into the host running the font server, and enter:

$ IP FONT SHOW /SERVER=font_server_name font_spec

• font_server_name is the name of the font server from which you want to obtain the font
data. Use the font server name syntax described in Section 8.3.

• font_spec is a font specification, in which you may include wildcard characters.

For information on other IP FONT SHOW qualifiers, refer to the VSI TCP/IP Administrator's
Reference.

The following example shows the command that lists the data for two characters in the Courier font:

$ IP FONT SHOW /SERVER=WHORFIN:7000 /START=52 /END=53 *COURIER*
opened font *COURIER*
Direction: Left to Right
Range: 32 to 255
Default char: 32
Min bounds:
Left: -2 Right: 1 Ascent: -1 Descent: -5 Width: 6
Max bounds:
Left: 3 Right: 7 Ascent: 9 Descent: 2 Width: 6
Font Ascent: 8 Font Descent: 2
FONT -Adobe-Courier-Bold-O-Normal--11-80-100-100-M-60-ISO8859-1
FOUNDRY Adobe
FAMILY_NAME Courier
WEIGHT_NAME Bold
SLANT O
SETWIDTH_NAME Normal
ADD_STYLE_NAME
PIXEL_SIZE 11
POINT_SIZE 80
RESOLUTION_X 100
RESOLUTION_Y 100
SPACING M
AVERAGE_WIDTH 60
CHARSET_REGISTRY ISO8859
CHARSET_ENCODING 1
CAP_HEIGHT 6
X_HEIGHT 5
FACE_NAME Courier Bold Oblique
COPYRIGHT Copyright (c) 1984, 1987 Adobe Systems Incorporated. All
Rights Reserved. Copyright (c) 1988, 1991 Digital Equipment Corporation.

31

Chapter 8. Configuring the Font Server

All Rights Reserved.
NOTICE No mark
_DEC_DEVICE_FONTNAMES PS=Courier-BoldOblique
_DEC_PRODUCTINFO DECwindows Fonts V2.2, 07-Nov-1991
RELATIVE_SETWIDTH 50
RELATIVE_WEIGHT 70
CHARSET_COLLECTIONS ASCII ISO8859-1 ADOBE-STANDARD
FULL_NAME Courier Bold Oblique
RESOLUTION 138
QUAD_WIDTH 6
char #52 '4'
Left: 0 Right: 5 Ascent: 7 Descent: 0 Width: 6
---##
--###
-#-##
#--#-
#####
--##-
--##-
char #53 '5'
Left: 0 Right: 6 Ascent: 7 Descent: 0 Width: 6
--####
-##---
-###--
--##-
---##-
#--##-
###---
$

For more information, type HELP IP FONT SHOW.

8.7. Controlling the VSI TCP/IP Font Server
This section describes how to control the font server.

Use the IP NETCONTROL FONTSERVER command for the following tasks:

• Starting the font server (see Section 8.7.1)

• Stopping the font server (see Section 8.7.2)

• Restarting the font server (see Section 8.7.3)

• Reloading the font server configuration (see Section 8.7.4)

• Flushing the font server cache (see Section 8.7.5)

• Resetting the font server (see Section 8.7.6)

8.7.1. Starting the Font Server
To start the VSI TCP/IP font server, enter:

$ IP NETCONTROL FONTSERVER START
< FS Server Started, process id pid

32

Chapter 8. Configuring the Font Server

When the font server starts, it reads the master configuration file, IP
$:FONT_SERVER.CONFIGURATION. For information about the master configuration file, see
Section 8.2.

8.7.2. Stopping the FS Server
To stop the VSI TCP/IP font server, enter:

$ IP NETCONTROL FONTSERVER SHUTDOWN
< FS Server Shutdown

8.7.3. Restarting the Font Server
Restarting the font server is a convenient alternative to first stopping and then starting it as described
in Section 8.7.1 and Section 8.7.2.

When the font server restarts, it reads the configuration file, IP
$:FONT_SERVER.CONFIGURATION. For information about the font server configuration file, see
Section 8.2.

To restart the VSI TCP/IP font server, enter:

$ IP NETCONTROL FONTSERVER RESTART
< FS Server Started, process id pid

Note

Because the font server provides fonts on request, restarting does not disrupt any connections.

8.7.4. Reloading the Font Server Configuration
Changes to the font server configuration file (IP$:FONT_SERVER.CONFIGURATION) only
take effect when the font server is started, restarted, or when the configuration files are reloaded.
Reloading the font server allows you to reload font server configuration files without restarting the
font server.

For information on the font server configuration file, see Section 8.2. To reload the font server
configuration file, enter:

$ IP NETCONTROL FONTSERVER RELOAD
< WHORFIN.FLOWERS.COM Network Control 10.5 (nnn) at Wed 26-Apr-2017 1:33PM-
PST
< OK: FS server configuration reloading

Note

Because the font server provides fonts on request, reloading does not disrupt active connections.

8.7.5. Flushing the Font Server Cache
To improve performance, the font server keeps copies of requested fonts in a cache. To flush the font
cache, enter:

33

Chapter 8. Configuring the Font Server

$ IP NETCONTROL FONTSERVER FLUSH
< WHORFIN.FLOWERS.COM Network Control 10.5(nnn) at Wed 26-Apr-2017 1:36PM-
PST
< OK: Font Server cache flushed

The size of this cache is defined in the font server configuration file, IP
$:FONT_SERVER.CONFIGURATION. For details about the font server configuration, see
Section 8.2.

8.7.6. Resetting the Font Server
For convenience, VSI TCP/IP provides a RESET command to flush and reload the font server. To
reset the font server, enter:

$ IP NETCONTROL FONTSERVER RESET
< WHORFIN.FLOWERS.COM Network Control 10.5(nnn) at Wed 26-Apr-2017 1:37PM-
PST
< OK: Font Server reset

8.8. Defining Font Catalogues
Font catalogues are the font server equivalent of X server font search paths. To make fonts
available via the font server, add the directories in which they reside to the catalogue line in the font
server configuration file IP$:FONT_SERVER.CONFIGURATION.

For example, the default catalogue definition supplied with VSI TCP/IP is defined as:

catalogue = sys$common:[sysfont.decw.100dpi],
sys$common:[sysfont.decw.75dpi],
sys$common:[sysfont.decw.common],
sys$common:[sysfont.decw.cursor16],
sys$common:[sysfont.decw.cursor32]

If you modify the font server configuration file, the changes only take effect when you start, restart,
reload, or reset the font server.

8.9. Adding Fonts to the Font Server
To make a new font available via the font server:

1. Install the font file in the appropriate font directory on the font server host. If the font is in
BDF format, you may want to convert the font into PCF format with the IP FONT COMPILE
command to improve font server performance (type HELP IP FONT COMPILE for online help).

2. Update the font directory's DECW$FONT_DIRECTORY.DAT file with the IP FONT
MKFONTDIR command (type HELP IP FONT MKFONTDIR for online help). This
command creates the DECW$FONT_DIRECTORY.DAT file.

Note

If the DECW$FONT_DIRECTORY.DAT file is not found, the font server fails. Be sure to run IP
FONT MKFONTDIR manually in each DECwindows font directory in which you add a font file.
Failing to do so may result in the font server not serving the standard DECwindows fonts.

34

Chapter 8. Configuring the Font Server

Note

When using IP FONT MKFONTDIR you must specify directories, not logical disks. For example,
IP FONT MKFONTDIR IP$: is not valid.

3. If desired, add an alias for the new font to the font directory's DECW$FONT_ALIAS.DAT file.

4. Make sure the font directory is included in the catalogue statement in the font server configuration
file IP$:FONT_SERVER.CONFIGURATION. For details, see Section 8.8. If you must modify
the configuration file, reload the font server configuration (see Section 8.7.4).

For example, to configure the VSI TCP/IP font server to provide the fonts included in the
NCDware 3.0 distribution for OpenVMS, include the following font directories in your catalogue
definition:

NCD_ROOT:[FONTS.PCF.100DPI]
NCD_ROOT:[FONTS.PCF.75DPI]
NCD_ROOT:[FONTS.PCF.DW100DPI]
NCD_ROOT:[FONTS.PCF.DW75DPI]
NCD_ROOT:[FONTS.PCF.MISC]
NCD_ROOT:[FONTS.PCF.XOL]

35

Chapter 8. Configuring the Font Server

36

Chapter 9. Configuring Remote
Systems with RARP, BOOTP, and
DHCP Server
This chapter explains how to configure VSI TCP/IP to supply network configuration data to remote
client systems when they boot.

Three services of VSI TCP/IP provides configuration data to remote systems:

• RARP (Reverse Address Resolution Protocol)

• BOOTP (Bootstrap Protocol) (responds only to BOOTP clients)

• DHCP (Dynamic Host Configuration Protocol) (responds to both BOOTP and DHCP clients)

The BOOTP and DHCP servers allow a network administrator to configure various hosts on the
network from a single location. In addition to the management of IP addresses, BOOTP and DHCP
also provide configuration parameters to clients, such as default gateway, domain name server, and
subnet mask.

9.1. Choosing a Network Configuration
Server
This section presents a brief description of the services and some criteria for deciding which protocol
and services to use. The following table lists the advantages and disadvantages of the three protocols:

Service Advantages and Disadvantages
RARP Supplies IP addresses only.
BOOTP Lets you provide vendor-specific configuration data. Works in conjunction with

TFTP. Provides static configuration data only.
DHCP Lets you provide vendor-specific configuration data. Provides both BOOTP and

DHCP services. Provides dynamic configuration for mobile computing, but does
not solve all problems of mobile computing.

9.2. RARP (Reverse Address Resolution
Protocol)
RARP’s sole function is to provide IP addresses to hosts that broadcast RARP requests with their
hardware addresses.

9.3. BOOTP (Bootstrap Protocol)
BOOTP sends IP addresses and other configuration data to hosts that broadcast BOOTP requests.
Because some BOOTP clients require more data to boot than can fit in a BOOTP response, BOOTP
provides a means for specifying the location of a boot file. The BOOTP client can then load the file

37

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

using TFTP (Trivial File Transfer Protocol). Usually, the data in the boot file (such as an X server for
an X terminal) is specific to the vendor of the BOOTP client software.

The BOOTP service responds to BOOTP requests only. If you are using the BOOTP-only service,
DHCP services are not available. The BOOTP server is provided for backwards compatibility for
those sites not wanting to change their configuration.

9.4. DHCP (Dynamic Host Configuration
Protocol)
DHCP is an extension of the BOOTP protocol. DHCP sends IP addresses and other configuration data
to hosts that broadcast DHCP requests. DHCP "leases" an IP address to a remote system for a finite
time. DHCP lets you manage IP addresses and configuration data for a "pool" of remote systems,
which makes DHCP useful for mobile computers that connect to multiple subnets.

As with BOOTP, DHCP provides a means for specifying the location of a boot file, which the DHCP
client can load, using TFTP. For details on creating a downloadable boot file for a specific type of
host, refer to the vendor's documentation.

If you are using the DHCP server, all BOOTP services are available as well. A VSI TCP/IP host can
have only one of the servers (BOOTP or DHCP) enabled because both use the same port.

9.5. Using RARP
RARP (Reverse Address Resolution Protocol) is commonly used by diskless hosts to determine their
Internet address. While ARP (Address Resolution Protocol) lets hosts resolve Internet addresses into
Ethernet addresses, RARP lets them resolve Ethernet addresses into Internet addresses. Configuring
the VSI TCP/IP RARP server consists of:

1. Obtaining the data needed by each RARP client (see Section 9.5.1).

2. On Ethernet interfaces only, enabling RARP packet reception (see Section 9.5.2).

3. Enabling and starting RARP (see Section 9.5.3).

4. Adding client systems to the RARP configuration file (see Section 9.5.4).

5. Reloading the RARP configuration (see Section 9.5.5).

Note

Because RARP clients send their requests in a link-layer broadcast (Ethernet, for example) and most
routers do not forward link-layer broadcasts, make sure the VSI TCP/IP system and all its RARP
clients are on the same physical network.

9.5.1. Obtaining Data for RARP Clients
Obtain the IP and Ethernet addresses for each client you want to use with RARP. To obtain a client's
Ethernet interface address, refer to the interface documentation.

Ethernet addresses are expressed as six hexadecimal numbers (ranging from 0 to ff) separated by
colons. IP addresses are expressed in dotted-decimal format.

38

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.5.2. Enabling RARP Packet Reception on Ethernet
Interfaces
If your VSI TCP/IP system has an Ethernet interface, enable RARP packet reception with the IP
SET /INTERFACE command. For example, to enable RARP packet reception on the se0 interface:

$ IP SET/INTERFACE/VMS_DEVICE=XQA0:/LINK_LEVEL=ETHERNET/RARP SE0

To automatically enable RARP packet reception when VSI TCP/IP starts, make sure to add the /
RARP qualifier to the IP SET /INTERFACE command line in the custom initialization command
procedure for the interface.

9.5.3. Enabling and Starting RARP Service
To enable RARP, use SERVER-CONFIG. To enable the RARP server with SERVER-CONFIG:

$ IP CONFIGURE /SERVER
VSI TCP/IP for OpenVMS Server Configuration Utility 10.5(nnn)
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>ENABLE RARP
SERVER-CONFIG>EXIT
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]
$

Once you have enabled RARP, start it by restarting the VSI TCP/IP Master Server:

$ @IP$:IP$SYSTARTUP.COM

9.5.4. Adding Clients to the RARP Configuration File
The VSI TCP/IP RARP server uses Ethernet-to-IP address translations from the IP
$:RARP.CONFIGURATION file. Each single-line entry in RARP.CONFIGURATION contains an
Ethernet address and the corresponding Internet address.

The following RARP.CONFIGURATION sample shows the IP addresses assigned to the hosts with
Ethernet addresses aa:00:04:00:45:12 and 00:0c:00:17:12:67.

This is a sample RARP database. It provides the mapping between
ethernet addresses and IP addresses as used by RARP.
#
ethernet address ip address
---------------- ----------
 aa:00:04:00:45:12 192.0.0.1
 00:0c:00:17:12:67 192.0.0.2

9.5.5. Reloading RARP Configuration
After modifying the IP$:RARP.CONFIGURATION file, reload the RARP configuration with the
following command:

$ IP NETCONTROL RARP RELOAD

9.6. Using BOOTP
The OpenVMS BOOTP (Bootstrap Protocol) service lets your OpenVMS system help diskless hosts
and other network devices establish network connectivity. The remote system broadcasts a BOOTP

39

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

request over the network with its Ethernet address. The BOOTP server looks up the host's address in
a configuration file (IP$:BOOTP-SERVER.CONFIGURATION) and responds with the host's IP
address, subnet mask, gateway address, initial load file, and any other data needed by the client. Using
this information, the client can boot from the network.

Configuring the BOOTP server involves:

1. Obtaining the data required by each BOOTP client (see Section 9.6.1).

2. Enabling and starting BOOTP (see Section 9.6.2).

3. Modifying the BOOTP configuration file (see Section 9.6.3).

4. Reloading the BOOTP configuration (see Section 9.6.7).

5. Disabling debug messages, if desired (see Section 9.6.8).

Note

While BOOTP is often used with clients and servers on the same network, they can be on different
physical networks. Most routers can be configured to forward BOOTP requests; refer to your router
documentation.

9.6.1. Obtaining Data for BOOTP Clients
Make a list of the configuration parameters (known as BOOTP options) required by the devices you
want to configure using BOOTP. Table 9.1 lists BOOTP options.

Because some network devices require large amounts of information or vendor-specific configuration
at boot time, BOOTP lets you specify the path names of additional configuration files the client can
download from TFTP servers. For details on creating downloadable configuration files for a specific
host, refer to the vendor's documentation.

Note

If you are running DNS, make sure you use the same IP address and host name data used by your
primary site's DNS servers. If you are using host tables instead of DNS, make sure you use the same
IP address and host name data listed in IP$:HOSTS.LOCAL.

9.6.2. Enabling and Starting BOOTP
You can enable BOOTP with SERVER-CONFIG.

To enable BOOTP with SERVER-CONFIG, enter the following:

$ IP CONFIGURE /SERVER
VSI TCP/IP for OpenVMS Server Configuration Utility 10.5(nnn)
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>ENABLE BOOTP
SERVER-CONFIG>EXIT
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]
$

40

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Note

BOOTP cannot run while DHCP is enabled because both services use the same port. You can use
SERVER-CONFIG to disable DHCP.

After enabling BOOTP, start it by restarting the VSI TCP/IP Master Server:

$ @IP$:IP$SYSTARTUP.COM

9.6.3. Modifying the BOOTP Configuration File
VSI TCP/IP supplies a IP$:BOOTP-SERVER.CONFIGURATION file that contains comments and a
number of examples to help you enter information for your hosts.

9.6.4. BOOTP Options for the BOOTP Server
Table 9.1 describes the options you can define for each host and an example of each option.

Table 9.1. BOOTP Options

Field Description Example
bf File downloaded by TFTP to the client at boot time. This

file is supplied by the device vendor. The file must exist
and be world-readable. If the file is not found, a null file
specification is returned.

bf="mom
$load:xncd16_lt"

bs Bootfile size. If the value is the string "auto" or no value
is given, the server automatically determines the size.
Otherwise, the specified value is passed verbatim. The size
is expressed in 512-byte blocks.

bs=auto or bs=24

cs Space-separated list of "quote of the day" server IP
addresses. The cookie (as in "fortune cookie") server is
described in RFC-865.

cs=192.41.228.92

ds Space-separated list of domain name server IP addresses ds=192.41.228.65
gw IP address of the default gateway gw=128.2.13.1
ha Hardware address of the client. The format of the hardware

address depends on the hardware type (ht). Specify the
hardware type (ht) before the hardware address (ha).

ha=00DD00C88900

hd Home directory for the boot files hd="sys$sysroot:

[bootp-boot files]"
hn Flag requesting the host name to be sent to the client. When

an entry contains this tag, the contents of the name field
(the initial string of characters on each record up to, but not
including the first colon) are sent to the client. If the name
field is greater than 58 characters, only the host field (up to
the first period) is sent. If the host field by itself does not fit,
no value is sent.

hn

ht Hardware address type. The hardware type must be
interpreted before the hardware address (ha). Valid values
are the hardware type, expressed as a decimal number

ht=ethernet, ht=6

41

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Field Description Example
as defined by the RFCs or a text string that maps to the
hardware type number:
ethernet 1 ieee803 6 chaos 5
ethernet3 2 tr 6 arcnet 7
ether 1 token-

ring
6 ax.25 3

ether3 2 pronet 4
im Space-separated list of Imagen-type "Impress" server IP

addresses
im=192.168.228.92
192.168.228.93

ip IP address of the host ip=192.168.228.82
lg Space-separated list of MIT-LCS UDP log server IP

addresses
lg=192.168.228.42

lp Space-separated list of LPR server IP addresses lp=192.168.228.37
ns Space-separated list of IEN-116 name server IP addresses ns=192.168.228.77
rl Space-separated list of RLP (Resource Location Protocol)

server IP addresses
rl=192.168.228.19

sa IP address of a boot server sa=192.168.228.222
sm Subnetwork mask sm=255.255.255.192
tc Template host label. Use the tc field to "include" information

from another entry in the configuration file. You may
create a common entry for a group of hosts, such as a
specific vendor's X terminals. Use the tc field to combine
information specific to each model. Information in the
current entry overrides information included by the tc field.
A tc entry may also "include" another entry with a tc field of
its own.

tc=global.dummy

td TFTP directory. Used to reference part of a directory that
may be hidden from the client via the TFTP server.

td="TFTP$DIR:"

to Time offset (in seconds) east of GMT for the client.
Table 9.2 lists accepted values. BOOTP uses negative
numbers west of GMT and positive numbers east of GMT.
See Table 9.2 for the time offset values you can specify in
this field.

to=25200

ts Space-separated list of time server IP addresses ts=192.41.228.77
Tn "Generic" tag of the type "Tn=value,"

• n is the number assigned the option.

• value is either ASCII data enclosed in quotes or binary
data expressed as hexadecimal digits.

When expressing binary data that represents short or long
values, be sure to check the byte order to compensate for the
difference between OpenVMS byte order and network byte
order. For values with known tags, the server can convert
between the two. For values in generic tags, however, the

T123="Hello
World" or
T124=FFFE2CEF

42

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Field Description Example
server cannot tell the difference between a four-byte binary
string and an unsigned long value.

vm "Vendor magic" to send: "auto", "rfc1048", "rfc1084",
"cmu", or a dotted-decimal value. Vendor magic is always
"rfc1084" when using DHCP. Default: auto.

vm="rfc1048"

Table 9.2 provides time offset values you can specify in the to field.

Table 9.2. BOOTP “to” Option Values

Timezone Time Offset DST Time
Offset

Timezone Time Offset DST Time
Offset

AST/ADT -14400 -10800 MET/MET-
DST

3600 7200

BST 0 3600 MST/MDT -25200 -21600
CET/CET-DST 3600 7200 NST/NDT -12600 -9000
CST/CDT -21600 -18000 NZST 86400 90000
EET/EET-DST 10800 14400 PST/PDT -28800 -25200
EST/EDT -18000 -14400 SST +28800 none
GMT 0 none UTC 0 none
HST -36000 none WET/WET-

DST
3600 7200

JST 32400 none YST/YDT -32400 -28800

9.6.5. Guidelines for the BOOTP Configuration File
The following guidelines govern modification of the IP$:BOOTP-SERVER.CONFIGURATION
file:

• Edit the configuration file with any text editor.

• Use a pound sign (#) in the first column of the line to designate a comment line. Comment and
blank lines are ignored by the server.

• Specify the hardware type (ht) before the hardware address (ha).

• Specify IP addresses in dotted-decimal notation.

Note

If you enter an IP address with leading zeros as part of the address (for example, 192.41.012.011), the
octets with leading zeros are interpreted as octal values rather than decimal values.

• For readability, limit each entry to one line when possible. Otherwise, put each field on a separate
line.

• Separate entry fields with a colon (:). When lines are continued on another line, separate fields
with a colon followed by a backslash. You should start each new line with a tab followed by a
colon. Here are examples of the two different entry styles:

43

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

 ncd16s:\
 :ht=ethernet:\
 :bf="mom$load:xncd16_lt":\
 :gw=192.41.228.71:\
 :sm=255.255.255.192:\
 :ds=192.41.228.65:\
 :to=25200:
tree:tc=ncd16s:ha=0000C0545F24:ip=192.41.228.75:

• Use the tc field as an "include" statement to succinctly provide additional information for an
individual device, as shown in the example entries above. The entry called "tree" is for an
individual NCD terminal. Including the tc option adds all of the information in the "ncd16s" entry
to the "tree" entry.

The tc field lets you create a common entry for a class of hosts (such as a vendor's X terminals)
that conveys generic information. Entries that include tc options supply information specific to an
individual terminal, such as its IP address.

Information in the individual entry overrides the information included by the tc field.

• When specifying more than one server for the cs, ds, im, lg, lp, ns, rl, and ts fields, separate
subsequent server values with spaces.

9.6.6. Using a UNIX bootptab File
If you are also running a BOOTP server on a UNIX system, you can use the UNIX system's bootptab
configuration file after making the following changes:

• Copy the bootptab file to IP$:BOOTP-SERVER.CONFIGURATION.

• Change the syntax of directories and file names to OpenVMS format.

• Do not add names that conflict with existing entries.

9.6.7. Reloading the BOOTP Configuration
After modifying IP$:BOOTP-SERVER.CONFIGURATION, reload the BOOTP configuration with
the following command:

$ IP NETCONTROL BOOTP RELOAD

9.6.8. Disabling BOOTP OPCOM Messages
After you test your BOOTP configuration, you may want to suppress some of the messages the
BOOTP server sends to OPCOM by changing the debug level of the BOOTP server, as shown in this
example:

$ IP NETCONTROL BOOTP DEBUG -1

If you want this change to take place each time VSI TCP/IP is started, use the SERVER-CONFIG
SET PARAMETERS command as follows:

$ IP CONFIGURE /SERVER
VSI TCP/IP for OpenVMS Server Configuration Utility 10.5(nnn)
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>SELECT BOOTP

44

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

[The Selected SERVER entry is now BOOTP]
SERVER-CONFIG>SET PARAMETERS
Delete parameter "bootfile IP$:BOOTP-SERVER.CONFIGURATION" ? [NO]
You can now add new parameters for BOOTP. An empty line terminates.
Add Parameter: debug -1
Add Parameter:
[Service specific parameters for BOOTP changed]
SERVER-CONFIG>RESTART
Configuration modified, do you want to save it first ? [YES]
[Writing configuration to IP$COMMON_ROOT:[IP]
SERVICES.MASTER_SERVER]
%RUN-S-PROC_ID, identification of created process is 20600046
SERVER-CONFIG>EXIT
[Configuration not modified, so no update needed]
$

9.7. Using DHCP
The VSI TCP/IP DHCP (Dynamic Host Configuration Protocol) server lets your OpenVMS system
help diskless hosts and other network devices establish network connectivity. The DHCP server
provides all of the functions of BOOTP plus dynamic addressing and additional configuration options.

The DHCP server offers a network host a temporary lease of an IP address rather than an ownership
of an IP address, such as BOOTP does. The lease identifies the length of time the client can safely
use its assigned IP address. The network administrator sets the lease length using parameters in the
configuration file. It is recommended that the network administrator assign lease lengths based on the
number of network users and the number of available IP addresses the DHCP server can assign. To
configure the DHCP server:

1. Obtain the data required by each DHCP client (see Section 9.7.2).

2. Modify the DHCP configuration file (see Section 9.10).

3. Enable and start the DHCP server (see Section 9.7.3).

4. If you modify the configuration file after starting the DHCP server, reload the DHCP server (see
Section 9.9).

Note

DHCP uses DNS for host names and IP addresses; thus, a malfunction in your DNS server can affect
the DHCP server.

9.7.1. DHCP Process
DHCP goes through an initializing, selecting, requesting, binding, renewal, rebinding, and expiration
cycle when negotiating for an IP address, as shown in Figure 9.1. The process is as follows:

1. The client just added or relocated on the network requests an IP address by broadcasting a
DHCPDISCOVER message to the local subnet over the well-known BOOTP server port. (The
client can also go through a BOOTP router or relay agent to forward the DHCPDISCOVER to
additional remote DHCP servers.) This is the initializing state.

2. The participating DHCP servers respond with a DHCPOFFER message if they have a valid
configuration for the client. The client may get many of these messages, which contain the IP

45

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

address and configuration data. (The servers make sure to reserve the addresses so as not to
accidentally offer them to another client.) At this point the client enters the selecting state.

3. After selecting an address, the client broadcasts the selected address and name of the "winning"
server (DHCP Server 1 in the Figure 9.1) using a DHCPREQUEST message. This is the
requesting state. All the other servers can now safely unreserve their addresses.

4. Server 1 sends the client a DHCPACK (acknowledgement) message with the negotiated IP
address, the lease, and the network configuration parameters. The client now enters the binding
state and can fully use the assigned IP address.

5. About halfway through the lease, the client sends Server 1 another DHCPREQUEST for a lease
renewal, and enters the renewal state. If the server deems the lease renewable, it sends back
another DHCPACK to update the lease (including any new parameters). The client now returns to
the binding state, as in step 4.

6. If the client cannot renew the lease (such as if Server 1 is down), the client waits until about
87.5% of the way through the lease and broadcasts another DHCPREQUEST to all DHCP servers.
Any server can now return a DHCPACK containing the extended lease and updated parameters.
This is the rebinding state.

7. When the lease reaches 100% expired or a server sends back a DHCPNAK negative
acknowledgement message, the client must give up the IP address. It then returns to the
initializing state and has to start the address negotiation over again.

Figure 9.1. DHCP Address Request and Allocation Process

46

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

See the RFC 2131 and RFC 2132 for more information.

Two DHCP servers are recommended for a network. The benefit of having more than one server is if
one fails another is available to continue processing requests, ensuring that all hosts (old and new) are
serviced continuously. Refer to Section 9.20 for more information.

9.7.2. Obtaining Data for DHCP Clients
Make a list of the configuration parameters (known as DHCP options) required by the devices you
want to configure using DHCP.

9.7.3. Enabling and Starting DHCP
You can enable the DHCP server with SERVER-CONFIG. To enable the DHCP server with
SERVER-CONFIG, do the following:

$ IP CONFIGURE /SERVER
VSI TCP/IP for OpenVMS Server Configuration Utility 10.5(nnn)
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>ENABLE DHCP
SERVER-CONFIG>EXIT
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]
$

Note

DHCP cannot run while the BOOTP server is enabled because both servers use the same port.
Because the DHCP server provides BOOTP service as well, there is no need to run the BOOTP
service.

After you have enabled DHCP, start the DHCP server by restarting the VSI TCP/IP Master Server. If
the DHCP server is already running, shut it down first.

$ IP NETCONTROL DHCP SHUTDOWN
$ @IP$:IP$SYSTARTUP.COM

9.8. Checking the DHCP Configuration
After modifying the configuration file, it is good practice to verify the syntax by running the DHCP
server interactively specifying the -t flag, as follows:

$ dhcpd :== IP:dhcpd4.exe
$ dhcpd -t [-cf config-file]

You can test both the configuration file and the lease file using the -T flag:

$ dhcpd “-T” [-cf config-file] [-lf lease-file]

The -t flag causes the DHCP server to run just far enough to read and parse the configuration file. The
DHCP server displays a copyright notice as well as a message for each syntax error encountered. If
the DHCP server displays only the copyright notice, the configuration file has no syntax errors.

The -T flag causes the DHCP server to run just far enough to read and parse the configuration and
lease files.

47

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

DHCPD can be made to use an alternate configuration file with the -cf flag, or an alternate lease
file with the -lf flag. If you do not specify the -cf flag, the DHCP server reads the default
configuration file IP$:DHCPD.CONF. If you do not specify the -lf flag, the DHCP server reads the
default lease file IP$:DHCPD.LEASES. Because of the importance of using the same lease database
at all times when running DHCPD in production, these flags should be used only for testing lease files
or database files in a non-production environment.

9.9. Reloading the DHCP Configuration
If you modify IP$:DHCPD.CONF after starting the DHCP server, restart DHCP with the following
command so the DHCP server rereads DHCPD.CONF:

$ IP NETCONTROL DHCP RESTART

9.10. Introducing the Configuration File
VSI TCP/IP supplies a IP$:DHCPD.CONF file that contains comments and a number of examples to
help you enter information for your hosts. You can edit the configuration file with any text editor. Add
or remove entries as needed.

The DHCPD.CONF file is a free-form ASCII text file. The file may contain extra tabs and newlines
for formatting purposes. Keywords in the file are case-insensitive. Comments may be placed
anywhere within the file (except within quotation marks), beginning with the # character line. See
Example 9.3.

The file consists of a list of statements. Statements fall into two categories: parameters and
declarations.

Parameter statements always say one of the following:

• How to do something (e.g., how long a lease to offer).

• Whether to do something (e.g., should the DHCP server provide addresses to unknown clients).

• What parameters to provide to the client (e.g., use gateway 220.177.244.7).

Global parameters are at the beginning of the file. Some examples of global parameters are the
organization's domain name and the addresses of the name servers (if they are common to the entire
organization).

It is legal to specify host addresses in parameters as domain names rather than as numeric IP
addresses. If a given hostname resolves to more than one IP address (for example, if that host has
two ethernet interfaces), both addresses are supplied to the client.

Both the shared-network statement and the subnet statement can have parameters.

The most obvious reason for having subnet-specific parameters is that each subnet, of necessity, has
its own router. For example, something like:

option routers 204.254.239.1;

Note

The address here is specified numerically. This is not required. If you have a different domain name
for each interface on your router, it is perfectly appropriate to use the domain name for that interface

48

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

instead of the numeric address. However, there may be only one domain name for all of a router's IP
addresses, and it would not be appropriate to use that name here.

Parameters starting with the option keyword correspond to actual DHCP options. Parameters that
do not start with the option keyword either control the behavior of the DHCP server (e.g., how long
a lease the DHCP server will give out), or specify client parameters that are not optional in the DHCP
protocol (for example, server-name and filename).

Each host can have host-specific parameters. These could include such things as the:

• Hostname option.

• Name of a file to upload (the filename parameter).

• Address of the server from which to upload the file (the next-server parameter).

In general, any parameter can appear anywhere that parameters are allowed, and will be applied
according to the scope in which the parameter appears.

All parameters must be specified first before you can specify any declarations that depend on those
parameters. Parameters should be set inside declarations so they can be set on a per-subnet or a per-
host basis.

Declarations are used to:

• Describe the topology of the network.

• Describe clients on the network.

• Provide addresses that can be assigned to clients.

• Apply a group of parameters to a group of declarations.

Declarations about network topology include the subnet and the shared-network declarations.

For every subnet to be served, and for every subnet connected to the DHCP server, there must be one
subnet declaration. This declaration tells the DHCP server how to recognize that an address is on
that particular subnet. A subnet declaration is required for each subnet even if no addresses will be
dynamically allocated on that subnet.

There are different declarations required for different situations. The following is a list of the basic
declarations in a configuration file.

• For clients with dynamically assigned addresses, a range declaration must appear within the
subnet declaration, or a pool declaration.

• For clients with statically assigned addresses, or for installations where only known clients will be
served, each client must have a host declaration.

• If parameters are to be applied to a group of declarations that are not related strictly on a per
subnet, class, or pool basis, the group declaration can be used.

Some installations have physical networks allowing more than one IP subnet to operate. For example,
if your site has a requirement that 8-bit subnet masks be used, but a department with a single physical
ethernet network expands beyond 254 nodes, you may have to run two 8-bit subnets on the same
ethernet until a new physical network is added. In this case, you can enclose the subnet declarations
for these two networks in a shared-network declaration.

49

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Some sites may have departments that have clients on more than one subnet, but it may be desirable to
offer those clients a uniform set of parameters that are different than what would be offered to clients
from other departments on the same subnet.

• For clients declared explicitly with host declarations, enclose these declarations in a group
declaration using the parameters that are common to that department.

• For clients with dynamically assigned addresses, one way to group parameter assignments is by
network topology. Alternately, host declarations can provide parameters and if they have no fixed-
address. See Example 9.1 for more information.

• Clients can be grouped into classes and assigned IP addresses from specific pools.

When a client is to be booted, its boot parameters are determined by consulting the following
scopes in this order:

1. Client’s host declaration (if any).

2. Group declaration (if any) that enclosed the host declaration.

3. Subclass declaration for the subclass the client belongs to (if any).

4. Class declaration for the class the client belongs to (if any).

5. Pool declaration that the assigned IP address comes from (if any).

6. Subnet declaration for the subnet on which the client is booting.

7. Shared-network declaration (if any) containing that subnet.

8. Top-level parameters that may be specified outside of any declaration.

When searching for a host declaration, the DHCP server looks for one with a fixed-address
parameter that matches the subnet or shared network on which the client is booting.

Imagine that you have a site with a lot of NCD X-Terminals. These terminals come in a variety of
models, and you want to specify the boot files for each model. One way to do this would be to have
host declarations for each server and group them by model:

Example 9.1. Host Declarations

group {
 filename "Xncd19r";
 next-server ncd-booter;
 host ncd1 { hardware ethernet 0:c0:c3:49:2b:57; }
 host ncd4 { hardware ethernet 0:c0:c3:80:fc:32; }
 host ncd8 { hardware ethernet 0:c0:c3:22:46:81; }
}
group {
 filename "Xncd19c";
 next-server ncd-booter;
 host ncd2 { hardware ethernet 0:c0:c3:88:2d:81; }
 host ncd3 { hardware ethernet 0:c0:c3:00:14:11; }
}
group {
 filename "XncdHMX";
 next-server ncd-booter;
 host ncd1 { hardware ethernet 0:c0:c3:11:90:23; }
 host ncd4 { hardware ethernet 0:c0:c3:91:a7:8; }

50

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

 host ncd8 { hardware ethernet 0:c0:c3:cc:a:8f; }
}

9.10.1. Address Allocation
Address allocation is done when a client is in the INIT state and has sent a DHCPDISCOVER
message. When the DHCP server is looking for an IP address to allocate to a client, it checks first

• if the client has an active lease on an IP address, or

• if the client has an expired lease on an IP address that has not been reassigned.

It then follows these rules:

• If a lease was found but the client is not permitted to use it, then the lease is freed (if it was not
expired already).

• If no lease is found or a lease was found and the client is not permitted to use the address, then the
server looks for an address that is not in use and that the client is permitted to have among the list
of address pools on the client’s subnet.

• If no addresses are found that can be assigned to the client, then no response is sent to the client.

• If an address is found that the client is permitted to have, then the address is allocated to the client.

Note

IP addresses that have never been assigned are chosen over those that have previously been assigned
to other clients.

If the client thinks it has a valid lease and sends a DHCPREQUEST to initiate or renew that lease, the
server has three choices. It can

• Ignore the DHCPREQUEST.

• Send a DHCPNAK, telling the client to stop using the address.

• Send a DHCPACK, telling the client to use the address.

If the server finds the requested address and that address is available to the client, the server sends a
DHCPACK.

If the address is no longer available or the client is not permitted to have it, the server sends a
DHCPNAK.

If the server knows nothing about the address, the server remains silent. However, if the address is
incorrect for the network segment to which the client is attached and the server is authoritative for that
segment, the server sends a DHCPNAK.

9.10.2. Address Pools
Pool declarations let you have different allocation policies for different address allocation pools.
A client may be denied access to one pool, but allowed access to another pool on the same network
segment.

A pool declaration is used to specify how a group of addresses should be treated differently than
another group of addresses, even if they are on the same network segment or subnet.

51

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

For example, you can provide a large set of addresses assigned to DHCP clients that are known to
your DHCP server, while at the same time providing a small set of addresses that are available for
unknown clients. If you have a firewall, you can arrange for addresses from one pool to have access
to the Internet, while addresses in another pool do not have access to the Internet. The following
example illustrates how you could set up a pair of pool declarations.

subnet 10.0.0.0 netmask 255.255.255.0 {
 option routers 10.0.0.254;
 # Unknown clients get this pool.
 pool {
 option domain-name-servers bogus.example.com;
 max-lease-time 300;
 range 10.0.0.200 10.0.0.253;
 allow unknown clients;
 }
 # Known clients get this pool.
 pool {
 option domain-name-servers ns1.example.com, ns2.example.com;
 max-lease-time 28800;
 range 10.0.0.5 10.0.0.199;
 deny unknown clients;
 }
}

You can also set up entirely different subnets for known and unknown clients. This is possible because
address pools exist at the level of shared networks, so address ranges within pool declarations can be
on different subnets, as long as they are on the same shared network.

9.10.3. Pool Permit Lists
The above example shows that address pools can have permit lists. A permit list controls which
clients are allowed access to the address pool and which clients are not allowed access. Each entry in
a permit list is introduced with the allow or deny keyword. The following table describes the four
possibilities for eligibility to addresses from the address pool.

If a pool has... Then...
a permit list only those clients that match specific entries on the permit list are

eligible for addresses from the pool.
a deny list only those clients that do not match any entries on the deny list are

eligible for addresses from the pool.
both a permit list and a deny
list

only clients that match the permit list and do not match the deny list
are eligible for addresses from the pool.

neither a permit list nor a
deny list

all clients are eligible for addresses from the pool.

Range declarations that appear outside of pool declarations in the same shared-network are
grouped into two pools: one which allows all clients for range statements with the “dynamic-
bootp” keyword and one which denies dynamic-bootp clients for range statements without the
“dynamic-bootp” keyword.

The DHCP server checks each IP address to see if the client is permitted to use it, in response to both
DHCPDISCOVER and DHCPREQUEST messages. The DHCP server checks both the address pool
permit lists and the relevant in-scope allow and deny statements.

52

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Recognized allow and deny statements can be used to permit or refuse access to known or unknown
clients, members of a class, dynamic bootp clients, or all clients.

Note

The DHCP v2.0 style allow and deny statements (e.g., allow/deny unknown-clients) and
range statement dynamic-bootp keyword do not mix well with pool permit lists. A v2.0-style
deny statement overrides the pool permit lists, and the dynamic-bootp keyword is ignored inside
of pools. Note also that the default for dynamic-bootp changes from deny to allow when pools
are used.

9.11. Client Classing
You can separate clients into classes, treating each client differently depending on what class it is in.
To separate clients into classes, use conditional statements (see Section 9.12) or a match statement
within a class declaration. You can specify a limit on the total number of clients within a particular
class or subclass that may hold leases at one time using the lease limit statement. You can
specify automatic subclassing based on the contents of the client packet using the spawn with
statement.

To add clients to classes based on conditional evaluation, write a conditional statement to match the
clients you want in the class. Then, put an add statement in the conditional's list of statements. For
example, to identify requests coming from Microsoft(R) NT RAS servers:

if substring (option dhcp-client-identifier, 1, 3) = "RAS" {
 add "ras-clients";
}

An equivalent way to do this is to specify the conditional expression as a matching expression in the
class statement. For example:

class "ras-clients" {
 match if substring (option dhcp-client-identifier, 1, 3) = "RAS";
}

Note

Whether you use matching expressions or add statements (or both) to classify clients, you must write
a class declaration for any class that you use.

If you want no match statement and no in-scope statements for a class, the declaration looks like
this, for example:

class "ras-clients" {
}

Important

The add statement adds the client to the class after the address assignment has been completed. This
means the client will not be affected by pool permits related to that class if the client is a member of a
class due to an add statement.

53

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.11.1. Subclasses
In addition to classes, you can declare subclasses. A subclass is a class having the same name as a
regular class but with a specific submatch expression that is hashed for quick matching. It is quicker
to find five subclasses within one class than it is to find five classes with match expressions. The
following example illustrates how to code for subclasses:

class "allocation-class-1" {
 match hardware;
}
class "allocation-class-2" {
 match hardware;
}
subclass "allocation-class-1" 1:0:0:c4:aa:29:44;
subclass "allocation-class-1" 1:8:0:2b:4c:39:ad;
subclass "allocation-class-2" 1:8:0:2b:a9:cc:e3;

subnet 10.0.0.0 netmask 255.255.255.0 {
 pool {
 allow members of "allocation-class-1";
 range 10.0.0.11 10.0.0.50;
 }
 pool {
 allow members of "allocation-class-2";
 range 10.0.0.51 10.0.0.100;
 }
}

The data following the class name in the subclass declaration is a constant value used in matching
the match expression for the class. During class matching, the server evaluates the match expression
and looks up the result in the hash table. If a match if found, the client is considered a member of both
the class and the subclass.

You can specify subclasses with or without scope (i.e., statements). In the above example, the sole
purpose of the subclass is to allow some clients access to one address pool, while other clients are
given access to the other pool. Thus, these subclasses are declared without any statements (scope). If
you wanted to define different parameter values for some clients, you would declare those subclasses
with scopes.

For example: if you had a single client needing some configuration parameters, while most did not,
you might write the following subclass declaration for that client:

subclass "allocation-class-2" 1:08:00:2b:a1:11:31 {
 option root-path "samsara:/var/diskless/alphapc";
 filename "/tftpboot/netbsd.alphapc-diskless";
}

In the previous examples, subclassing is being used as a way to control address allocation on a per-
client basis. However, it is possible to use subclassing in ways that are not specific to clients. For
example, to use the value of the vendor-class-identifier option to determine what values to
send in the vendor-encapsulated-options option. See Section 9.17.4.

Note

If you are using <match hardware>, the hardware address is preceded by the hardware type. In
this example, the “1:” indicates Ethernet.

54

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.11.2. Per-Class Limits on Dynamic Address
Allocation
The number of clients in a class that can be assigned leases can be limited. This limiting makes it
difficult for a new client in a class to get an address. Once a class has reached its limit, the only way a
new client in that class can get a lease is for an existing client to relinquish its lease, either by

• letting it expire, or

• sending a DHCPRELEASE packet.

The following example illustrates how to specify classes with lease limits.

class "limited-1" {
 lease limit 4;
}

This produces a class in which a maximum of four members may hold leases at one time.

If you want to provide clients at a particular site with more than one IP address, but do not want to
provide these clients with their own subnet, nor give them an unlimited number of IP addresses from
the network segment to which they are connected, you can create a spawning class and use lease
limits. A spawning class is a class that produces subclasses automatically based on what the client
sends.

Many cable modem head-end systems can be configured to add a Relay Agent Information option to
DHCP packets when relaying them to the DHCP server. These systems typically add a circuit ID or
remote ID option that uniquely identifies the customer site. The following example illustrates how to
write a class declaration to take advantage of these relay agent options to create lease limited classes
on the fly:

class "customer" {
 match if exists agent.circuit-id;
 spawn with option agent.circuit-id;
 lease limit 4;
}

With this class declaration, whenever a request comes in from a customer site, the circuit ID option is
checked against the class's hash table.

• If a subclass matches the circuit ID, the client is classified in that subclass.

• If no subclass matches the circuit ID, a new subclass is created and logged in the
dhcpd.leases file and the client is classified in the new subclass.

Once a client is classified, it is treated according to the rules of the class; as in the example above,
being subjected to the per-site limit of four leases.

Note

The use of the subclass spawning mechanism is not restricted to relay agent options. This particular
example is given only because it is a straightforward one.

55

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.12. Conditional Behavior
The DHCP server can be configured to perform conditional behavior depending on the packets it
receives.

Conditional behavior is specified using the if statement and the else or elsif statements. A
conditional statement can appear anywhere that a regular statement can appear, and can enclose one or
more such statements. The following is an example of a conditional statement.

if option dhcp-user-class = "accounting" {
 max-lease-time 17600;
 option domain-name "accounting.example.org";
 option domain-name-servers ns1.accounting.example.org,
 ns2.accounting.example.org;
} elsif option dhcp-user-class = "engineering" {
 max-lease-time 17600;
 option domain-name "engineering.example.org";
 option domain-name-servers ns1.engineering.example.org,
 ns2.engineering.example.org;
} else {
 max-lease-time 600;
 option domain-name "misc.example.org";
 option domain-name-servers ns1.misc.example.org,
 ns2.misc.example.org;
}

Both the if statement and the elsif continuation statement take expressions that, when evaluated,
produce a boolean result. See Section 9.16 for more information.

• If the expression evaluates to true, then the statements enclosed in braces following the if
statement are executed. All subsequent elsif and else clauses are skipped.

• If the expression evaluates to false, then the statements enclosed in braces following the if
statement are not executed and each subsequent elsif clause is checked until an elsif clause
is encountered that evaluates to true.

• If such an elsif clause is found, then the statements in braces following it are executed. Any
subsequent elsif and else clauses are skipped.

• If all the if and elsif clauses are checked but none of their expressions evaluate to true, then
if there is an else clause, then the statements enclosed in braces following the else clause are
evaluated.

Note

Boolean expressions that evaluate to null are treated as false in conditionals.

9.13. DNS Dynamic Updates Within DHCP
The DHCP server performs dynamic updates to DNS using DNS's dynamic updating functionality. To
be sure that updates are allowed from the DHCP server, see the VSI TCP/IP Administrator’s Guide:
Volume I. The allow-update { <address_match_list> }; statement in the Zone section
enables the DNS server to allow updates from that system.

The following statements in the DHCP server's configuration file are related to dynamic updating:

56

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

• allow/deny dynamic-update;

• allow/deny update-A-record;

• allow/deny name-by-client;

• invalid-ddns-chars {fail | discard | replace [“chars”]};

Dynamic updates can be enabled or disabled by using the allow/deny dynamic-update statement in the
configuration file. The default is to not perform dynamic updates. Dynamic updates can be turned on
or off on a per subnet basis.

Note

Dynamic updates are not done at all for static assignments to BOOTP clients, and the support for
static assignments to DHCP clients is to add DNS entries only.

When dynamic updating is enabled, the DHCP server determines the client's Fully Qualified Domain
Name (FQDN) and assigns it an IP address. The FQDN is determined either by what the client sends
or by what is in the configuration file. This behavior is controlled by the allow/deny name-by-
client statement in the configuration file.

If you use the deny name-by-client statementor if the client does not send a name, you must
specify the host name in the configuration file using one of the following methods:

• Using option host-name “name” (see Section 9.14)

• Specifying use-host-decl-names on in conjunction with host declarations.

If the hostname specified by the client contains invalid characters for DNS, the DHCP server can
handle them one of three ways:

• Consider it a failure and not do the dynamic update.

• Throw away the invalid characters.

• Replace the invalid characters with specified valid characters.

This behavior is controlled by the invalid-ddns-chars statement in the configuration file.

The FQDN and IP address are used in the dynamic update to create a PTR resource record (RR).
The DHCP server also optionally creates an A RR. This option is enabled or disabled by using the
allow/deny update-A-record statement in the configuration file. The default is to not create
the A RR. This can be set on a per subnet basis.

When dynamic updating is allowed, the DHCP server adds the resource records whenever an IP
address is leased to a client. The RRs are deleted if the IP address is released or if the IP address is
leased to a different client. Also, the RRs are deleted for expired leases periodically.

9.13.1. Transaction Signatures (TSIG)
The DHCP server supports using Transaction Signatures (TSIG) on dynamic updates to DNS. Note
that you need a DNS server that supports TSIG, such as VSI TCP/IP BIND 8.2 server.

The use of TSIG can be enabled or disabled by using the secure-ddns statement in the
configuration file. The default is to not use TSIG. The use of TSIG can be turned on or off on a per
subnet basis. Turn on the use of TSIG using:

57

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

secure-ddns on;

For each DNS server that you want to use TSIG with, you must specify a key using the key
declaration:

key ip-address {
[algorithm "hmac-md5";]
key-id "key-name";
secret "key";
}

• ip-address is the IP address of the DNS server

• algorithm specifies the algorithm to use. The only supported algorithm is "hmac-md5". This
statement is optional.

• key-id specifies the name of the key as a string. This must match the key name being used by
the DNS server (e.g., configured in named.conf).

• secret specifies the secret key to use in base-64 format. This must match the secret key used by
the DNS server (in named.conf).

An example key declaration for the DNS server at IP address 10.9.8.7 is:

key 10.9.8.7 {
key-id "dhcp-tsig";
secret "A5vhC+DjsocELGEYhj0iBBSQRgJvxnY/emD0C3kRtEpo";
};

9.14. Host Name Generation
Some DHCP clients require that the server send them a host name. The VSI TCP/IP DHCP server
can generate a host name if it cannot get the host name in another way. The generated host name can
contain parts of the host's IP address, client ID, and/or MAC address. This host name is sent to the
client and is combined with the domain name to create the Fully Qualified Domain Name (FQDN)
required for dynamic DNS updates. See Section 9.13 for more information.

The DHCP server generates a host name if it is enabled to do so and either

• allow name-by-client is specified and the client does not send a host name.

or

• deny name-by-client is specified and the DHCP server does not find a host name in the
configuration file or in DNS (if get-lease-hostnames is set).

To enable the DHCP server to generate host names, specify in the configuration file an option
host-name statement with a value containing certain key values in addition to any characters that
are valid for the host-name option (see Table 9.4). The option host-name statement can be
specified for example at the top level, in a subnet statement, or in a host statement.

The key values are as follows. You can include more than one in the same host-name value.

Note

Some of these do not by themselves generate a unique identifier.

58

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Key Meaning
%A First byte of the host's IP address.

Example: for address 10.24.25.201, the key would return 10.
%B Second byte of the host's IP address.

Example: for address10.24.25.201, the key would return 24.
%C Third byte of the host's IP address.

Example: for address 10.24.25.201, the key would return 25.
%D Fourth byte of the host's IP address.

Example: for address 10.24.25.201, the key would return 201.
%H Host part of the host's IP address.

Example: for address 10.24.25.201 with subnet mask 255.255.0.0, the key would
return 6601.

%I Client Identifier sent by the host. (in hex). For example: 0174657374.
%-I Client ID as above, except that hyphens (-) are used to separate each byte.
%M MAC address of the host.
%-M MAC address of the host, as above, except that hyphens (-) are used to separate

each byte.
%N Host name sent by the client, if any. If none, “Host”.
%P Printable characters from the client ID. For example: if the client ID was

0174657374, the 01 is thrown away and the resulting hostname is “test”.
%S Subnet part of the host's IP address.

Example: for address 10.24.25.201 with subnet mask 255.255.0.0, the key would
return 102400.

%-S Subnet part of the host's IP address, as above, except that hyphens (-) are used to
separate each byte. For example: 10-24-0-0.

You can intersperse string constants such as hyphens between key definitions. However, if the
generated host name exceeds 63 characters, it is truncated. Here is an example host-name statement:

option host-name "Host%H-%-S";

For a lease pool defined with an address range of 192.168.11.6 through 192.168.11.10 and a subnet
mask of 255.255.255.0, the DHCP server generates the following host names:

Host6-192-168-11-0
Host7-192-168-11-0
Host8-192-168-11-0
Host9-192-168-11-0
Host10-192-168-11-0

The %N key allows you to use the host name as sent by the client (option 12) and then add something
unique to it to generate a unique name. For example, if multiple clients all send the name "dilbert" you
can make them unique by appending the MAC (hardware) address, as follows:

deny name-by-client;

59

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

option host-name "%N-%M";

This would generate the host name "dilbert-010203040506" for a client with hardware address
01:02:03:04:05:06.

9.15. Configuration File Declarations and
Parameters
Table 9.3 describes the declarations and parameters you can use in a configuration file.

See Table 9.10 for a list of DHCP Safe-failover-related configuration file statements.

Table 9.3. DHCP Statements

Statement Description
add Use the add statement to add a client to the class whose name is specified in

class-name.

Note

Because this statement executes after IP address allocation is completed, class
membership caused by this statement cannot be used in the address allocation
process.

add “class-name”;

algorithm Used only inside of key declarations, the algorithm statement specifies the
algorithm to use for Transaction Signatures (TSIG) on dynamic DNS updates. The
only supported algorithm is "hmac-md5". This statement is optional.

algorithm "hmac-md5";

allow and
deny

Use the allow and deny statements to control the behavior of the DHCP server.

The allow and deny keywords have different meanings depending on the context.

• In a pool context, use these keywords to set up access lists for address allocation
pools.

• In other contexts, use these keywords to control general server behavior with
respect to clients based on scope.

allow and
deny in scope

These allow and deny statements work the same way whether the client is sending a
DHCPDISCOVER or a DHCPREQUEST message,

• an address is allocated to the client (either the old requested address or a new
address), and then,

• that address is tested to see if it is okay for the client to have it.

If the client requested it, and it is not okay, the server sends a DHCPNAK message.
Otherwise, the server does not respond to the client. If it is okay to give the address to
the client, the server sends a DHCPACK message.

60

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description

Note

These are not recommended for use inside pool declarations. See Section 9.10.3 for
more information.

Use the unknown-clients flag to tell the DHCP server to dynamically assign
addresses to unknown clients or to not assign addresses to unknown clients. An
unknown client is one that does not have a host declaration. The default is to
allow dynamic address assignments to unknown clients.

allow unknown-clients; deny unknown-clients;

Use the bootp flag to tell the DHCP server to respond to bootp queries or to not
respond to bootp queries. The default is to allow bootp queries.

allow bootp; deny bootp;

Use the dynamic-bootp flag to tell the DHCP server to dynamically assign
addresses to bootp clients or to not do so. The default is to allow dynamic bootp
for IP addresses declared in pool declarations. The default for range statements
outside of pool declarations is set by the presence or absence of the dynamic-
bootp keyword. Deny dynamic-bootp overrides the dynamic-bootp range key
word.

allow dynamic-bootp; deny dynamic-bootp;

Use the booting flag to tell the DHCP server to respond to queries from a
particular client or to not respond to queries from a particular client. The default is to
allow booting. If it is disabled for a particular client, that client will not be able to
get an address from the DHCP server.

allow booting; deny booting;

allow and
deny in scope
(cont’d)

Use the dynamic-update flag to tell the DHCP server to perform dynamic DNS
updates or to not perform them. The default is to deny dynamic DNS updates.

allow dynamic-update; deny dynamic-update;

Use the name-by-client flag to tell the DHCP server to determine the hostname
and Fully Qualified Domain Name (FQDN) for dynamic DNS updates from
information sent by the client or from information in the configuration file. The
default is to deny use of client-specified information.

allow name-by-client; deny name-by-client;

Use the dhcpinform flag to tell the DHCP server to respond to DHCPINFORM
messages or to not respond. The default is to allow DHCPINFORM messages for
authoritative subnets, and to deny DHCPINFORM messages for non-authoritative
subnets.

allow dhcpinform; deny dhcpinform;

61

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
Use the update-A-record flag to tell the DHCP server to update the A resource
record or not when performing DNS updates (the PTR resource record is always
updated). The default is to deny updating the A resource record.

allow update-A-record; deny update-A-record;

Use the ras-servers flag to tell the DHCP server to respond to queries from
Microsoft (R) NT RAS Servers or to not respond to NT RAS queries. The default is
to allow NT RAS queries.

allow ras-servers; deny ras-servers;

Allow/deny ras-servers is supported for backward compatibility. The
way to do deny ras-servers in version 3.0 of DHCP is to use a conditional
statement:

if substring (option dhcp-client-identifier, 1,3) = “RAS” {
 deny booting;
}

allow and
deny in pool
declarations

See Section 9.10.3 for discussion, defaults, and important notes.

Use known clients to allow or prevent allocation from this pool to any client
that has a host declaration. A client is known if it has a host declaration in any scope.

allow known clients; deny known clients;

Use unknown clients to allow or prevent allocation from this pool to any client
that has no host declaration.

allow unknown clients; deny unknown clients;

Use members of “class” to allow or prevent allocation from this pool to any
client that is a member of the named class.

allow members of “class-name”;
deny members of “class-name”;

Use dynamic bootp clients to allow or prevent allocation from this pool to
any BOOTP client.

allow dynamic bootp clients;
deny dynamic bootp clients;

Use all clients to allow or prevent allocation from this pool to all clients. You
can use this, for example, when you want to write a pool declaration but you want
to hold it in reserve; or when you want to renumber your network quickly, and thus
want the server to force all clients that have been allocated addresses from this pool
to obtain new addresses immediately when they next renew their leases.

allow all clients; deny all clients;

always-
broadcast

Use the always-broadcast statement to cause the DHCP server to always
broadcast its responses. This feature is to handle clients who do not set the broadcast
flag in their requests and yet require a broadcast response. We recommend you
restrict the use of this feature to as few clients as possible.

62

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
always-broadcast flag;

always-reply-
rfc1048

Some BOOTP clients expect RFC 1048-style responses, but do not follow RFC
1048 rules when sending their requests. You can determine if a client is having this
problem:

• if it is not getting the options you have configured for it.

and

• if you see in the server log the message "(non-rfc1048)" printed with each
BOOTREQUEST that is logged.

If you want to send RFC 1048 options to this kind of client, set the always-
reply-rfc1048 option in that client's host declaration. The DHCP server
responds with an RFC 1048-style vendor options field. This flag can be set in any
scope, and affects all clients covered by that scope.

always-reply-rfc1048 flag;

[not]
authoritative

When the DHCP server receives a DHCPREQUEST message from a DHCP
client requesting a specific IP address, the DHCP protocol requires that the server
determine whether the IP address is valid for the network to which the client
is attached. If the address is not valid, the DHCP server should respond with a
DHCPNAK message, forcing the client to acquire a new IP address.

To make this determination for IP addresses on a particular network segment,
the DHCP server must have complete configuration information for that network
segment. Unfortunately, it is not safe to assume that DHCP servers are configured
with complete information. Therefore, the DHCP server normally assumes that it
does not have complete information, and thus is not sufficiently authoritative to
safely send DHCPNAK messages as required by the protocol.

This default assumption should not be true for any network segment that is in the
same administrative domain as the DHCP server. For such network segments, the

authoritative

statement should be specified, so that the server sends DHCPNAK messages as
required by the protocol. If the DHCP server receives requests only from network
segments in the same administrative domain, you can specify the

authoritative

statement at the top of the configuration file (in the global scope).

Note

Version 2.0 of the DCHP server makes the opposite assumption: that the DCHP
server is configured with all configuration information for all network segments of
which it is aware. If this assumption is not valid for your configuration, you must
write not authoritative statements for all network segments where this
assumption is not true (or at the top of the configuration file).

authoritative;

63

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
not authoritative;

class This statement groups clients together based on information they send. A client can
become a member of a class in the following ways:

• through an add statement

• based on the class’s matching rules

• because the client matches a subclass of that class

Class-name is the name of the class and is used in:

• add statements

• members of permit statements

• subclass declarations for subclasses of the named class

When a packet is received from a client, every class declaration is examined for
a match, match if, or spawn statement. That statement is checked to see if the
client is a member of the class.

The class declaration statements are lease limit, match, match if, and
spawn with.

class “class-name” {[statements][declarations]}

default-lease-
time

Time is the length (in seconds) that the DHCP server assigns to a lease if the
requesting client did not ask for a specific amount of time for the lease to be active.
The infinite lease value is “infinite”. The default is 43,200 seconds (12 hours).

You should set the value of default-lease-time NO larger than the value of max-lease-
time.

default-lease-time time;

dynamic-
bootp-lease-
cutoff

Use the dynamic-bootp-lease-cutoff statement to set the ending time for
all leases dynamically assigned to BOOTP clients. By default, the DHCP server
assigns infinite leases to all BOOTP clients because they do not have any way of
renewing leases, and do not know that their leases could expire. However, it may
make sense to set a cutoff date for all BOOTP leases. For example, the end of a
school term, or the time at night when a facility is closed and all machines are
required to be powered off.

Date should be the date all assigned BOOTP leases will end. The date is specified in
the form:

W YYYY/MM/DD HH:MM:SS

where:

W is the day of the week, from zero (Sunday) to six (Saturday).

YYYY is the year, including the century.

64

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
MM is the number of the month, from 01 to 12.

DD is the day of the month, counting from 01.

HH is the hour, from 00 to 23.

MM is the minute, from 00 to 59.

SS is the second, from 00 to 59.

The time is always in Greenwich Mean Time, not local time.

dynamic-bootp-lease-cutoff date;

dynamic-
bootp-lease-
length

Use the dynamic-bootp-lease-length statement to set the length of leases
dynamically assigned to BOOTP clients. You may be able to assume that a lease is no
longer in use if its holder has not used BOOTP or DHCP to get its address within a
certain time period. The length of the time period is your judgment call.

Specify length in seconds. The infinite lease value is “infinite”. If a BOOTP client
reboots during a timeout period, the lease duration is reset to length so a BOOTP
client that boots frequently never loses its lease. This parameter should be adjusted
with extreme caution. The default is an infinite lease.

dynamic-bootp-lease-length length;

filename Use the filename statement to specify the name of the initial boot file that is to be
loaded by a client. The filename should be recognizable to whatever file transfer
protocol the client can be expected to use.

filename filename;

fixed-address To make a static IP address assignment for a client, the client must match a host
declaration, as described later. In addition, the host declaration must contain a
fixed-address declaration. A fixed-address declaration specifies one or
more IP addresses or domain names that resolve to IP addresses. If a client matches
a host declaration, and one of the IP addresses specified in the host declaration is
valid for the network segment to which the client is connected, the client is assigned
that IP address.

A static IP address assignment overrides a dynamically assigned IP address that
is valid on that network segment. That is, if a new static mapping for a client is
added after the client has a dynamic mapping, the client cannot use the dynamic
mapping the next time it tries to renew its lease. The DHCP server will not assign an
IP address that is not correct for the network segment to which the client is attached
and will not override a valid dynamic mapping for one network segment based on a
static mapping that is valid on a different network segment.

You can specify a domain name instead of an IP address in a fixed-address
declaration. However, you should do this only for long-lived domain name records —
the DHCP server only looks up the record on startup. So, if the record changes while
the server is running, the server continues to use the record’s former value.

fixed-address address [,...,address];

65

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
get-lease-
hostnames

Use the get-lease-hostnames statement to tell the DHCP server to look up the
domain name corresponding to each address in the lease pool and use that address for
the DHCP hostname option.

If flag is true, the lookup is done for all addresses in the current scope.

If flag is false (the default), lookups are not done.

get-lease-hostnames flag;

group Use the group statement to apply one or more parameters to a group of declarations.
You can use it to group hosts, shared networks, subnets, or other groups.

group {[statements] [declarations]}

hardware Use the hardware clause inside a host statement to specify the network hardware
address of a BOOTP or DHCP client.

hardware-type must be the name of a physical hardware interface type. Ethernet,
Token-Ring, and FDDI are the only recognized types.

The hardware-address should be a set of hexadecimal octets (numbers from 0
through ff) separated by colons (:).

hardware hardware-type hardware-address;
host The host declaration provides information about a particular client.

Name should be a unique name for the host declaration, but a specific meaning is
not required. If the use-host-decl-names flag is enabled, name is sent in the
host-name option if no host-name option is specified.

Host declarations match DHCP or BOOTP clients based on either the client's
hardware address or the dhcp-client-identifier option that the client sends.
BOOTP clients do not normally send a dhcp-client-identifier option.
Therefore, you must use the hardware address for all clients that might send BOOTP
protocol requests.

The host declaration has three purposes:

• to assign a static IP address to a client

• to declare a client as "known"

• to specify a scope in which statements can be executed for a specific client

You can make the DHCP server treat some DHCP clients differently from others
if host declarations exist for those clients. Any request coming from a client that
matches a host declaration is considered to be from a "known" client. Requests that
do not match any host declaration are considered to be from "unknown" clients.
You can use this knowledge to control how addresses are allocated.

It is possible to write more than one host declaration for a client. If you want to
assign more than one static address to a given client, you can either specify more
than one address in the fixed-address statement or you can write multiple host
declarations.

66

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
Multiple host declarations are needed if the client has different requirements
(scopes) on different subnets. For each IP address that requires a different scope,
one host declaration should exist. A client can be in the scope of only one host
declaration at a time. Host declarations with static address assignments are in scope
for a client only if one of the address assignments is valid for the network segment to
which the client is connected. If you want to boot a client using static addresses on
some subnets, and using dynamically assigned addresses on other subnets, you need
to write a host declaration with no fixed-address statement. There can be only
one such host declaration per client. Its scope is used whenever that client receives
a dynamically assigned address.

host name { [statements] [declarations] }

if The if statement conditionally executes statements based on the values the client
sends or other information. See Section 9.12 for more information.

if boolean-expression { [statements] }
[elsif boolean-expression { [statements] }]
[else { [statements] }]

invalid-ddns-
chars

This statement specifies how DHCP should handle invalid characters in the hostname
for Dynamic DNS updates (DDNS).

fail tells DHCP to display a message and not perform any DNS updates if there are
any invalid characters in the hostname. This is the default.

invalid-ddns-chars fail;

discard tells DHCP to throw away the invalid characters in the hostname.

invalid-ddns-chars discard;

replace tells DHCP to replace the invalid characters with the specified
character(s). If none are specified, the default replacement character is the hyphen
('-').

invalid-ddns-chars replace ["characters"];

key The key declaration specifies keys to use for Transaction Signatures (TSIG) to sign
dynamic DNS updates. See Section 9.13.1 for more information.

key _ip-address_ {
 [algorithm "algorithm-name";]
 key-id "key-name";
 secret "key";
}

key-id Used only inside of key declarations, the key-id statement specifies the name of
the key to use for Transaction Signatures (TSIG) on dynamic DNS updates. This key
name must match the name that the DNS server is using (as specified in named.conf).

key-id "key-name";

lease limit This statement causes the DHCP server to limit the number of members of a class
that can hold a lease at any one time. This limit applies to all addresses the DHCP
server allocates in the class, not just addresses on a particular network segment.

67

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
• If a client is a member of more than one class with lease limits, the server assigns

the client an address based on either class.

• If a client is a member of one or more classes with limits and one or more classes
without limits, the classes without limits are not considered.

lease limit limit;

lease-scan-
interval

This statement specifies how frequently to scan for expired leases. The default is 60
seconds.

lease-scan-interval seconds;

match data-expression is evaluated using the contents of a client’s request. If it
returns a value that matches a subclass of the class in which the match statement
appears, the client is considered a member of both the subclass and the class.

match data-expression;

match if boolean-expression is evaluated when the server receives a packet from the
client. If it is true, the client is considered a member of the class. The boolean-
expression may depend on the contents of the packet the client sends.

match if boolean-expression;

max-delayed-
acks

Use the max-delayed-acks statement to specify the maximum number of
DHCPACKs to batch up. The default is 8. To disable the delaying of DHCPACKs,
specify a value of 1.

To improve performance under very heavy loads, the DHCP server delays sending
DHCPACK messages by up to 2 seconds. All DHCPACKs accumulated in that time
are sent in a batch.

max-delayed-acks count;

max-lease-
time

Use the max-lease-time statementto assign the maximum amount of time (in
seconds) to a lease. The only exception to this is Dynamic BOOTP lease lengths
because they are not specified by the client and are not limited by this maximum. The
infinite lease value is “infinite”. The default is 86,400 seconds (24 hours).

Note

You should set the value of max-lease-time at least as large as default-lease-time.

max-lease-time time;

min-lease-
time

Use the min-lease-time statement to assign the minimum length in seconds to a
lease. The infinite lease value is “infinite”. By default, there is no minimum.

min-lease-time should be less than or equal to default-lease-time and
max-lease-time.

min-lease-time time;

min-secs Use the min-secs statement to assign the minimum amount of time (in seconds) it
takes for the DHCP server to respond to a client’s request for a new lease.

68

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
The number of seconds is based on what the client reports in the secs field of the
requests it sends. The maximum value is 255 seconds. Usually, setting this to one
second results in the DHCP server not responding to the client's first request, but
always responding to the client’s second request.

You can use the min-secs statement to set up a secondary DHCP server to never
offer an address to a client until the primary server has been given a chance to do
so. If the primary server is down, the client binds to the secondary server; otherwise,
clients should always bind to the primary.

Note

This does not permit a primary server and a secondary server to share a pool of
dynamically-allocatable addresses.

min-secs seconds;

next-server Use the next-server statement to specify the host address of the server from
where the client will load the initial boot file (specified in the filename statement).

server-name should be a numeric IP address or a domain name. The DHCP
server’s IP address is used if no next-server parameter applies to a given client.

next-server name;

one-lease-per-
client

Use the one-lease-per-client statement to have the server free any other
leases the client holds when the client sends a DCCPREQRUEST for a particular
lease.

This presumes the client has forgotten any lease not mentioned in the
DHCPREQUEST. For example, the client has only a single network interface and
it does not remember leases it is holding on networks to which it is not currently
attached. Neither of these assumptions are guaranteed or provable, so use caution in
the use of this statement.

one-lease-per-client flag;

option This statement specifies actual DHCP protocol options to send to the client. The
option statement is described in Section 9.17.

option
definition

This statement assigns a name and a type to an option code. See Section 9.17.3 for
more information.

option name code code = definition;

option space This statement specifies a new option space. This declaration must precede all
definitions for options in the space being specified. Space-name should be the
name of the option space. Currently three option space names are predefined:

• DHCP (default)

• agent

• server

69

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
If an option name is specified without an option space, it is assumed the name
refers to an option in the dhcp option space. For example, the option names
dhcp.routers and routers are equivalent.

option space space-name;

ping The DHCP server uses ping to check if a particular IP address is in use by sending a
packet of information and waiting for a response. This statement turns ping on and
off. The default is ON.

ping flag;
ping-retries This statement defines the number of times the DHCP server pings an IP address

before it concludes that the address is not in use. The default is 1.

ping-retries count;

ping-timeout This statement defines the time (in seconds) that ping should wait for a response. The
default is 1 second.

ping-timeout time;

pool This statement specifies an address pool from which IP addresses can be allocated.
This pool can be customized to have its own permit list to control client access and
its own scope to declare pool-specific parameters. You can put pool declarations
within subnet declarations or within shared-network declarations. You can
use the range declaration to specify the addresses in a particular pool.

• For subnet declarations: specified addresses must be correct within the pool
declaration within which it is made.

• For shared-network declarations: specified addresses must be on subnets
that were previously specified within the same shared-network declaration.

pool {[permit list][range declaration][statements]}

range For any subnet on which addresses are assigned dynamically, there must be at
least one range declaration. The range declaration specifies that the server may
allocate to DHCP clients every address, from low-address to high-address.
You can specify a single IP address by omitting high-address.

All IP addresses in the range should be on the same subnet. If the range declaration
appears within a subnet declaration, all addresses should be on the declared subnet.
If the range declaration appears within a shared-network declaration, all
addresses should be on subnets already declared within the shared-network
declaration.

You may specify the dynamic-bootp flag if addresses in the specified range can be
dynamically assigned to both BOOTP and DHCP clients.

Note

The dynamic-bootp flag was deprecated in version 3.0 of the DHCP server in favor
of declaring the address within a pool and specifying in the permit list that dynamic
allocation for BOOTP clients is permitted.

70

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
range [dynamic-bootp] low-address [high-address];

requested-
options-only

Use the requested-options-only statement to send just the options requested
by the client. To send a specific set of options, set requested-options-only to
true and specify the dhcp-parameter-request-list option.

The following sends only the subnet-mask, routers, and domain-name-
servers options to the client (assuming they are defined in the configuration file):

host restricted {
 hardware ethernet 01:02:03:04:05:06;
 option dhcp-parameter-request-list 1, 3, 6;
 requested-options-only true;
}

We recommend you restrict the use of this feature to as few clients as possible.

requested-options-only flag;

secret Used only inside of key declarations, the secret statement specifies the actual
secret key to use forTransaction Signatures (TSIG) on dynamic DNS updates.
The format is base-64. The value must match the key used by the DNS server (as
specified in named.conf).

secret "key";

secure-ddns Use the secure-ddns statement to cause the DHCP server to use Transaction
Signatures (TSIG) to sign dynamic DNS updates. The default is to not use TSIG.

secure-ddns flag;

server-
identifier

The server-identifier statement is equivalent to the dhcp-server-
identifier option. See the dhcp-server-identifier option for more
information

server-identifier hostname;

server-name Use the server-name statement to inform the client of the server’s name from
which it is booting. name should be the name provided to the client.

server-name name;

shared-
network

Use this statement to inform the DHCP server that some IP subnets share the same
physical network. Declare all subnets in the same shared network within a shared-
network statement.

Parameters specified in the shared-network statement will be used when booting
clients on those subnets unless parameters provided at the subnet or host level
override them. If more than one subnet in a shared network has addresses available
for dynamic allocation, those addresses are collected into a common pool. There is no
way to specify which subnet of a shared network a client should boot on.

Name should be the name of the shared network. Make the name descriptive as it will
be used when printing debugging messages. Give it a syntax of a valid domain name
(although it will never be used as such), or any arbitrary name enclosed in quotation
marks.

shared-network name {[statements] [declarations]}

71

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
site-option-
space

Use the site-option-space statement to determine the option space from
which site-local options are taken. Site-local options have codes ranging from 128
to 254. If no site-option-space is specified, site-specific options are taken from the
default option space.

site-option-space option-space;

spawn with data-expression must evaluate to a non-null value for the server to look for a
subclass of the class that matches the evaluation.

• If such a subclass exists, the client is considered a member of both the subclass
and the class.

• If no such subclass exists, one is created and recorded in the lease database, and
the client is considered a member of the new subclass as well as the class.

spawn with data-expression;

subclass This statement specifies a subclass of the class named by class-name. Class-
data should be either

• a text string enclosed in quotes, or

• a list of bytes expressed in hexadecimal, separated by colons.

Clients match subclasses after evaluating the match or spawn with statements in
the class declaration for class-name. If the evaluation matches class-data,
the client is a member of the subclass and the class.

subclass “class-name” class-data;
subclass “class-name” class-data {
 [statements]
}

subnet This statement contains information specific to a subnet. The information
communicates the following to DHCP:

• Enough information for DHCP to determine if an IP address is on that subnet.

• What the subnet-specific parameters are.

• What addresses may be dynamically allocated to clients booting on that subnet.

Use the range declaration to specify what addresses are available to be dynamically
allocated to clients booting on the subnet.

Two things are required to define a subnet:

• The subnet-number

• The netmask

The subnet-number and the netmask entry is an IP address or domain name
that resolves to the subnet-number or the netmask of the subnet being
described. The subnet-number andthe netmask are enough to determine if any
given IP address is on the specified subnet.

72

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description

Note

A netmask must be given with every subnet declaration. If there is any variance
in subnet masks at a site, use a subnet-mask option statement in each subnet
declaration to set the desired subnet mask. The subnet-mask option statement
overrides the subnet mask declared in the subnet statement.

subnet subnet-number netmask netmask {[statements]
[declarations]}

use-host-decl-
names

If the use-host-decl-names parameter is true, the name provided for each host
declaration is given to the client as its hostname. The default is false. For example:

group {
 use-host-decl-names on;
 host joe {
 hardware ethernet 08:00:2b:4c:29:32;
 fixed-address joe.fugue.com;
 }
}
is equivalent to
host joe {
 hardware ethernet 08:00:2b:4c:29:32;
 fixed-address joe.fugue.com;
 option host-name “joe”;
}

An option host-name statement within a host declaration overrides the use of
the name in the host declaration.

use-host-decl-names flag;

use-lease-
addr-for-
default-route

If the use-lease-addr-for-default-route parameter is true in a given
scope, the IP address of the lease being assigned is sent to the client instead of the
value specified in the routers option (or sending no value at all). This causes some
clients to ARP for all IP addresses, which can be helpful if your router is configured
for proxy ARP.

If use-lease-addr-for-default-route is enabled and an option
routers statement are both in scope, use-lease-addr-for-default-
route is preferred.

use-lease-addr-for-default-route flag;

user-class This statement has been deprecated in favor of the more powerful class statement.
See Section 9.17.4.

vendor-class This statement has been deprecated in favor of the more powerful class statement.
See Section 9.17.4.

vendor-
option-space

Use the vendor-option-space statement to instruct the server to construct a
vendor-encapsulated-options option using all the defined options in the
option space. If no vendor-encapsulated-options option is defined, the
server sends this option to the client, if appropriate.

vendor-option-space option-space;

73

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.16. Expressions
The DHCP server can evaluate expressions while executing statements. The DHCP server’s
expression evaluator returns the following types:

• A boolean, a true or false (on or off) value.

• An integer, a 32-bit quantity that may be treated as signed or unsigned, depending on the
context.

• A string of data, a collection of zero or more bytes. Any byte value is valid in a data string
— the DHCP server maintains a length rather than depending on a NUL termination.

Expression evaluation is performed when a request is received from a DHCP client. Values in the
packet sent by the client can be extracted and used to determine what to send back to the client. If the
expression refers to a field or option in the packet for which there is no value, the result is null. Null
values are treated specially in expression evaluation. A Boolean expression that returns a null value
is considered false. A data expression that returns a null value generally results in the statement using
the value not having any effect.

The following is an example of using four types of expressions to produce the name of a PTR record
for the IP address being assigned to a client:

concat (binary-to-ascii (10, 8, “.”, reverse (1, leased-address)),
 “.in-addr.arpa.”);

9.16.1. BOOLEAN EXPRESSIONS
The following table lists the boolean expressions supported by DHCP.

Expression Description
boolean-expression-1 and boolean-expression-2 The and operator evaluates to true if both

boolean expressions evaluate to true. The and
operator evaluates to false if either boolean
expression does not evaluate to true. If either of
the boolean expressions is null, the result is null.

boolean-expression-1 or boolean-expression-2 The or operator evaluates to true if either of the
boolean expressions evaluate to true. The or
operator evaluates to false if both of the boolean
expressions evaluate to false. If either of the
boolean expressions is null, the result is null.

check “class-name” The check operator evaluates to true if the
packet being considered comes from a client in
the specified class. Class-name must be a
string that corresponds to the name of a defined
class.

data-expression-1 =

data-expression-2

The = operator compares the results of evaluating
two data expressions, evaluating to true if they
are the same; evaluating to false if they are not. If
one of the expressions is null, the result is null.

exists option-name The exists expression evaluates to true if the
specified option exists in the incoming DHCP
packet.

74

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Expression Description
known The known expression evaluates to true if the

client whose request is being processed is known;
that is, if the client has a host declaration.

not boolean-expression The not operator evaluates to true if the boolean
expression evaluates to false. The not operator
evaluates to false if the boolean expression
evaluates to true. If the boolean expression
evaluates to null, the result is null.

9.16.2. DATA EXPRESSIONS
The following table lists the expressions supported by DHCP that return a data string.

Expression Description
binary-to-ascii

(numeric-expr1,

numeric-expr2,

data-expr1, data-expr2)

numeric-expr1, numeric-expr2,
data-expr1, and data-expr2 are all
evaluated as expressions and the results of those
evaluations are used as follows.

The binary-to-ascii operator converts
the binary data in data-expr2 into an ASCII
string, using data-expr1 as a separator.
How the conversion is done is controlled by
numeric-expr1 and numeric-expr2.

• numeric-expr1 specifies the base to
convert into. Any value 2 through 16 is
supported. For example, a value of 10 would
produce decimal numbers in the result.

• numeric-expr2 specifies the number of
bits in data-expr2 to treat as a single unit. The
value can be 8, 16, or 32.

This example converts the binary value of an IP
address into its dotted decimal equivalent:

binary-to-ascii(10, 8, ".",
 168364039)

The result would be the string "10.9.8.7".
colon-separated hexadecimal list A list of hexadecimal octet values, separated

by colons, may be specified as a data expression.
A single hexidecimal number, appearing in
a context where a data string is expected, is
interpreted as a data string containing a single
byte.

concat (data-expr1,

data-expr2)

data-expr1 and data-expr2 are evaluated
and the concatenated result of these two
evaluations is returned.

75

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Expression Description
• If either subexpression evaluates to null, the

result is the value of the expression that did
not evaluate to null.

• If both expressions evaluate to null, the result
is null.

encode-int

(numeric-expr, width)

numeric-expr is evaluated and encoded as a
data string of the specified width, in network
byte order (with the most significant byte first). If
numeric-expr evaluates to null, the result is
null.

hardware The hardware operator returns a data string
whose first element is the htype field of the
packet being considered, and whose subsequent
elements are the first hlen bytes of the chaddr
field of the packet.

• If there is no packet, or if the RFC 2131 hlen
field is invalid, the result is null.

Supported hardware types are:

• ethernet (1)

• token-ring (6)

• fddi (8)
leased-address In any context where the processing client

request has been assigned an IP address, this data
expression returns that IP address.

option option-name The option operator returns the contents of the
specified option in the incoming DHCP packet.

packet (offset, length) The packet operator returns the specified
portion of the packet being considered. The
packet operator returns a value of null where
no packet is being considered. Offset and
length are applied to the contents of the packet
as in the substring operator. The link-layer,
IP, and UDP headers are not available.

reverse (numeric-expr1, data-expr2) numeric-expr1 and data-expr2 are
evaluated. The result of data-expr2 is
reversed in place, using chunks of the size
specified in numeric-expr1.

For example, if numeric-expr1 evaluates to
four and data-expr2 evaluates to twelve bytes
of data, the reverse expression evaluates to
twelve bytes of data constructed in the following
way:

76

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Expression Description
• the last four bytes of the input data,

• followed by the middle four bytes,

• followed by the first four bytes.
substring (data-expr, offset, length) The substring operator evaluates the data

expression and returns the substring of the result
of that evaluation that starts offset bytes from
the beginning and continues for length bytes.
Offset and length are numeric expressions.

• If data-expr, offset, or length
evaluate to null, the result is null.

• If offset is greater than or equal to the
length of the evaluated data, a zero-length
data string is returned.

• If length is greater than the remaining
length of the evaluated data after offset, a
data string containing all data from offset
to the end of the evaluated data is returned.

suffix (data-expr, length) The suffix operator evaluates data-expr
and returns the last length bytes of that
evaluation. Length is a numeric expression.

• If data-expr or length evaluate to null,
the result is null.

• If length evaluates to a number greater than
the length of the evaluated data, the evaluated
data is returned.

“text” A text string, enclosed in quotes, may be
specified as a data expression. The string
returns the text between the quotes, encoded in
ASCII.

9.16.3. NUMERIC EXPRESSIONS
Numeric expressions evaluate to an integer. In general, the precision of numeric expressions is at least
32 bits. However, the precision of such integers may be more than 32 bits.

• extract-int (data-expr, width)

The extract-int operator extracts an integer value in network byte order after evaluating
data-expr. Width is the width in bits (either 8, 16, 32) of the integer to extract. If the
evaluation of data-expr does not provide an integer of the specified size, a value of null is
returned.

• number

Number can be any numeric value between zero and the maximum representable size.

77

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.17. DHCP Options
The Dynamic Host Configuration protocol allows the client to receive options from the DHCP server
describing the network configuration and various services that are available on the network. When
configuring the DHCP server, options must often be declared. The syntax for declaring options, and
the names and formats of the options in the default dhcp option space that can be declared, are in
Table 9.4.

DHCP option statements always start with the keyword option, followed by an option name,
followed by option data. Only options needed by clients must be specified.

An option name is an optional option space name followed by a period (“.”) followed by the option
name. The default option space is dhcp. There are two other predefined option spaces: agent and
server. You can also define option spaces of your own. See Section 9.17.2 and Section 9.17.3.

Option data comes in these formats:

• The ip-address data type can be entered either as an explicit IP address (e.g., 239.254.197.10) or
as a domain name (e.g., haagen.isc.org). When entering a domain name, be sure that the domain
name resolves to the single IP address.

• The int32 and uint32 data types specify signed and unsigned 32-bit integers.

• The int16 and uint16 data types specify signed and unsigned 16-bit integers.

• The int8 and uint8 data types specify signed and unsigned 8-bit integers. Unsigned 8-bit integers
are also sometimes referred to as octets.

• The string data type specifies an NVT ASCII string. It must be enclosed in quotation marks. For
example, option domain-name “isc.org”;

• The flag data type specifies a boolean value. Booleans can be either true (ON) or false (OFF). You
can use TRUE and FALSE, or ON and OFF.

• The data-string data type specifies either an NVT ASCII string enclosed in quotation marks, or
a series of octets specified in hexadecimal, separated by colons. For example, option dhcp-
client-identifier “CLIENT-FOO”; or option dhcp-client-identifier
43:4c:49:54:2d:46:4f:4f;

Strings and data-strings when enclosed in quotation marks can contain normal C-type characters such
as “\t” for a tab.

If the option value is a list (such as for the routes option), you must list them in the configuration file
in the order you want the client to use the values. The DHCP server does not re-order them.

Also, option data may be specified using an expression that returns a data string (see Section 9.16).
The syntax is

option option-name = data-expression;

9.17.1. Standard DHCP Options
Table 9.4 describes the standard DHCP options. Underlined items indicate user input items.

Note

All of these options could be specified with the dhcp option space listed explicitly. For example:

78

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

option dhcp.bootfile-name “bootfile.lis”;

Table 9.4. DHCP Option Space Options

Option Description
option all-subnets-local flag; Use this option to indicate whether or not to

assume all subnets of the client’s IP network use
the same MTU as the client’s subnet.

ON means assume all subnets share the same
MTU.

OFF means assume some subnets have smaller
MTUs.

option arp-cache-timeout uint32; Use this option to identify the timeout (in
seconds) for ARP cache entries.

option bootfile-name string; Use this option to identify a bootstrap file. If this
option is supported by the client, it should have
the same effect as the filename declaration.
BOOTP clients are unlikely to support this
option. Some DHCP clients support it; others
require it.

option boot-size uint16; Use this option to specify the length in 512-octet
blocks of the client’s default boot image.

option broadcast-address ip-address; Use this option to identify the broadcast address
in use on the client’s subnet. See STD 3 (RFC
1122) for legal values for broadcast addresses.

option cookie-servers

ip-address [, ip-address ...];

Use this option to list RFC 865 cookie servers in
order of preference.

option default-ip-ttl uint8; Use this option to identify the default time-to-live
the client should use on outgoing datagrams.

option default-tcp-ttl uint8; Use this option to identify the default TTL to
use when sending TCP segments. The minimum
value is 1.

option dhcp-client-identifier

data-string;

Use this option to specify a DHCP client
identifier only in a host declaration. The DHCP
server uses it to locate the host record by
matching against the client identifier.

option dhcp-max-message-size uint16; Use this option to specify the maximum length
DHCP message that the client is able to accept.
Use this option in the DHCP configuration file to
supply a value when the client does not.

Note

Use this option with caution. Make sure that the
client can accept a message of the specified size.

79

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Option Description
option dhcp-parameter-request-list

uint8[,uint8...];

Use this option to request that the server return
certain options. Use this option in the DHCP
configuration file to override the client's list, or to
supply a list when the client does not. The value
is a list of valid DHCP option codes as listed in
RFC 2132.

option dhcp-server-identifier

ip-address;

Use this option to identify the value sent in the
DHCP Server Identifier option. The value must
be an IP address for the DHCP server, and must
be reachable by all clients it is sent to.

It is recommended to NOT use the dhcp-server-
identifier option. The only reason to use it is to
force a value other than the default value to be
sent on occasions where the default value would
be incorrect. The default value is the first IP
address associated with the physical network
interface on which the request arrived. The usual
case where the dhcp-server-identifier option
needs to be sent is when a physical interface
has more than one IP address, and the one being
sent by default is not appropriate for some or all
clients served by that interface.

Another case is when an alias is defined for the
purpose of having a consistent IP address for the
DHCP server, and it is desired that the clients use
this IP address when contacting the server.

option domain-name-servers

ip-address [, ip-address ...];

Use this option to list Domain Name System
(STD 12, RFC 1035) name servers in order of
preference.

option domain-name string; Use this option to identify the domain name the
client should use when resolving hostnames via
the Domain Name System.

option extensions-path string; Use this option to indicate the path-name of a file
the client should load containing more options.

option finger-server

ip-address [, ip-address ...];

Use this option to list the Finger servers in order
of preference.

option font-servers

ip-address [, ip-address ...];

Use this option to list X Window System Font
servers in order of preference.

option host-name string; Use this option to name the client. The name may
or may not be qualified with the local domain
name. It is preferable to use the domain-name
option to specify the domain name. See RFC
1035 for character set restrictions.

80

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Option Description
The host-name option is also used to specify
a template for hostname generation. See
Section 9.14.

option ieee802-3-encapsulation flag; If the interface is an Ethernet, use this option
to indicate whether the client uses Ethernet
Version 2 (RFC 894) or IEEE 802.3 (RFC 1042)
encapsulation.

OFF means use RFC 894 encapsulation.

ON means use RFC 1042 encapsulation.
option ien116-name-servers

ip-address [, ip-address ...];

Use this option to list IEN 116 name servers in
order of preference.

option impress-servers

ip-address [, ip-address ...];

Use this option to list Imagen Impress servers in
order of preference.

option interface-mtu uint16; Use this option to identify what MTU value to
use on this interface. The minimum legal value is
68.

option ip-forwarding flag; Use this option to indicate if the client should
configure its IP layer for packet forwarding.

ON means disable forwarding.

OFF means enable forwarding.
option irc-server

ip-address [, ip-address ...];

Use this option to list the IRC servers in order of
preference.

option log-servers

ip-address [, ip-address ...];

Use this option to list MIT-LCS UDP log servers
in order of preference.

option lpr-servers

ip-address [, ip-address ...];

Use this option to list RFC 1179 line printer
servers in order of preference.

option mask-supplier flag; Use this option to indicate whether the client
should respond to subnet mask requests using
ICMP.

ON means do not respond to subnet mask
requests.

OFF means respond to subnet mask requests.
option max-dgram-reassembly uint16; Use this option to indicate the maximum size

datagram the client should be prepared to
reassemble. The minimum legal value is 576.

option merit-dump string; Use this option to indicate the path-name of a
file to which the client’s core image should be
dumped in the event of a client crash. The path

81

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Option Description
is formatted as a character string using the NVT
ASCII character set.

option mobile-ip-home-agent

ip-address [, ip-address ...];

Use this option to list mobile IP home agents in
order of preference. Usually there will be only
one agent.

option nds-context data-string; Use this option to identify the initial NDS context
the client should use.

option nds-servers

ip-address [, ip-address...];

Use this option to list Novell Directory Services
servers in order of preference.

option nds-tree-name data-string; Use this option to name the NDS tree the client
will be contacting.

option netbios-dd-server

ip-address [, ip-address ...];

Use this option to list RFC 1001/1002 NetBIOS
Datagram Distribution servers in order of
preference.

option netbios-name-servers

ip-address [, ip-address ...];

Use this option to list RFC 1001/1002 NetBIOS
Name Server name servers in order of preference.

Note

NetBIOS is the same as WINS.

option netbios-node-type uint8; Use this option to configure configurable
NetBIOS over TCP/IP clients as described in
RFC 1001/1002. The value is a single octet
identifying the client type.

1 B-node: Broadcast — No WINS

2 P-node: Peer — WINS only

4 M-node: Mixed — Broadcast, then WINS

8 H-node: Hybrid — WINS, then Broadcast
option netbios-scope string; Use this option to specify the NetBIOS over TCP/

IP scope parameter for the client as specified in
RFC 1001/1002. See RFC1001, RFC1002, and
RFC1035 for character-set restrictions.

option nis-domain string; Use this option to specify the client’s NIS (Sun
Network Information Services) domain. Use the
NVT ASCII character set to define the domain
character string.

option nis-servers

ip-address [, ip-address ...];

Use this option to list NIS servers in order of
preference.

option nisplus-domain string; Use this option to specify the client's NIS+
domain. Use the NVT ASCII character set to
define the domain character string.

82

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Option Description
option nisplus-servers

ip-address [, ip-address ...];

Use this option to list NIS+ servers in order of
preference.

option non-local-source-routing flag; Use this option to indicate if the client should
configure its IP layer to allow forwarding of
datagrams with non-local source routes.

ON means disable forwarding.

OFF means enable forwarding.
option nntp-server

ip-address [, ip-address ...];

Use this option to list NNTP servers in order of
preference.

option ntp-servers

ip-address [, ip-address ...];

Use this option to list NTP (RFC 1305) servers in
order of preference.

option option-nnn data-string; Use this option to identify any DHCP option not
listed here. nnn is the number of the option.

option path-mtu-aging-timeout uint32; Use this option to specify the timeout to use (in
seconds) when aging Path MTU values that were
discovered by the mechanism defined in RFC
1191.

option path-mtu-plateau-table

uint16 [, uint16 ...];

Use this option to specify a table of MTU sizes
to use when performing Path MTU Discovery as
defined in RFC 1191. The table is a list of 16-bit
unsigned integers. You must list them in order
from smallest to largest. The minimum MTU
value cannot be smaller than 68.

option perform-mask-discovery flag; Use this option to indicate whether or not the
client should perform subnet mask discovery
using ICMP.

ON means do not perform mask discovery.

OFF means perform mask discovery.
option policy-filter ip-address

ip-address [, ip-address ip-address ...];

Use this option to indicate the policy filters for
non-local source routing. The filters consist
of IP addresses and masks that indicate which
destination/mask pairs to use when filtering
incoming source routes.

The client should discard any source routed
datagram whose next-hop address does not match
one of the filters. See STD 3 (RFC 1122) for
more information.

option pop-server

ip-address [, ip-address ...];

Use this option to list POP3 servers in order of
preference.

83

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Option Description
option resource-location-servers

ip-address [, ip-address ...];

Use this option to list RFC 887 Resource
Location servers in order of preference.

option root-path string; Use this option to specify the path-name that
contains the client’s root disk. The path is
formatted as a character string using the NVT
ASCII character set.

option router-discovery flag; Use this option to indicate whether or not the
client should solicit routers using the Router
Discovery mechanism defined in RFC 1256.

ON means do not perform router discovery.

OFF means perform router discovery.
option routers

ip-address [, ip-address ...];

Use this option to list IP addresses for routers on
the client’s subnet, listing the routers in order of
preference.

option router-solicitation-address

ip-address;

Use this option to identify the address where the
client transmits router solicitation requests.

option smtp-server

ip-address [, ip-address ...];

Use this option to list SMTP servers in order of
preference.

option static-routes ip-address

ip-address [, ip-address ip-address ...];

Use this option to specify a list of static routes
that the client should install in its routing cache. If
there are multiple routes to the same destination,
you should list them in descending order of
priority.

The routes are made up of IP address pairs. The
first address is the destination address; the second
address is the router for the destination.

The default route (0.0.0.0) is an illegal destination
for a static route. Use the routers option to
specify the default route.

option streettalk-directory-assistance-server ip-
address [, ip-address ...];

Use this option to list the StreetTalk Directory
Assistance (STDA) servers in order of preference.

option streettalk-server

ip-address [, ip-address ...];

Use this option to list the StreetTalk servers in
order of preference.

option subnet-mask ip-address; Use this option indicate the client’s subnet
mask as per RFC 950. If no subnet mask option
is in scope, the DHCP server uses the subnet
mask from the subnet declaration on which the
address is being assigned. If a subnet mask option
is in scope for the address being assigned, it
overrides the subnet mask specified in the subnet
declaration.

84

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Option Description
option swap-server ip-address; Use this option to identify the IP address of the

client’s swap server.
option tcp-keepalive-garbage flag; Use this option to indicate whether the client

sends TCP keepalive messages with an
octet of garbage for compatibility with older
implementations.

ON means do not send a garbage octet.

OFF means send a garbage octet.
option tcp-keepalive-interval uint32; Use this option to indicate the interval (in

seconds) the client TCP waits before sending a
keepalive message on a TCP connection. The
time is specified as a 32-bit unsigned integer.

0 (zero) means do not generate keepalive
messages unless requested by an application.

option tftp-server-name string; Use this option to identify a TFTP server. If
this option is supported by the client, it should
have the same effect as the server-name
declaration. BOOTP clients are unlikely to
support this option. Some DHCP clients support
it; others require it.

option time-offset int32; Use this option to specify the offset of the client’s
subnet (in seconds) from Coordinated Universal
Time (UTC). Use negative numbers for West of
UTC and positive number for East of UTC.

option time-servers

ip-address [, ip-address ...];

Use this option to list RFC 868 time servers in
order of preference.

option trailer-encapsulation flag; Use this option to indicate if the client negotiates
the use of trailers (RFC 893) when using the ARP
protocol.

ON means do not use trailers.

OFF means use trailers.
option vendor-encapsulated-options data-string; Use this option to specify vendor specific

information. See Section 9.17.4.
option www-server

ip-address [, ip-address ...];

Use this option to list WWW servers in order of
preference.

option x-display-manager

ip-address [, ip-address ...];

Use this option to list the systems running X
Window System Display Manager in order of
preference.

85

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.17.2. Relay Agent Information Option
A relay agent can add a series of encapsulated options to a DHCP packet when relaying that packet to
the DHCP server. The server can make address allocation decisions (or whatever decisions it wants)
based on these options. The server returns these options in any replies it sends through the relay agent.
The relay agent can use the information in these options for delivery or accounting purposes.

The relay agent option has two suboptions. To reference these options in the DHCP server, specify the
option space name "agent", followed by a period, followed by the option name.

Note

It is not useful to specify these options to be sent.

Table 9.5. Agent Option Space Options

option agent.circuit-id string; The circuit-id suboption encodes an
agent-local identifier of the circuit from
which a DHCP client-to-server packet
was received. It is intended for agents who
will use it in relaying DHCP responses back to
the proper circuit. The format of this option is
defined to be vendor-dependent.

option agent.remote-id string; The remote-id suboption encodes information
about the remote host end of a circuit. Examples
include the following: caller ID information,
username information, remote ATM address, and
cable modem ID. This is an opaque object that
is administratively guaranteed to be unique to a
particular remote end of a circuit.

9.17.3. Defining New Options
You can define new options with the DHCP server. Each DHCP option has the following:

• A name, used by you to refer to the option.

• A code, a number used by the DHCP server to refer to the option.

• A structure, describing what the contents of the option look like.

To define a new option, choose a name that is not in use for any other option. For example, you can
not use "host-name" because the DHCP protocol already defines a host-name option. You should refer
to the options listed in this chapter as these are all the DHCP options in use by VSI TCP/IP.

After choosing a name, choose a code. For site-local options, all codes between 128 and 254 are
reserved for DHCP options, so you can use any one of these.

The structure of an option is the format in which the option data appears. The DHCP server supports
a few simple types: for example, integers, booleans, strings, and IP addresses. The server also
supports the ability to define arrays of single types or arrays of fixed sequences of types. The syntax
for declaring new options is:

option new-name code new-code = definition ;

86

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

The values of new-name and new-code are the name and the code you have chosen for the new
option. The definition is one of the following simple option type definitions.

Definition Description
BOOLEAN option new-name code new-code = boolean ;

An option of type boolean is a flag with a value of either ON (true) or OFF
(false). For example:

option use-zephyr code 180 = boolean;
option use-zephyr on;

INTEGER option new-name code new-code = sign integer width ;

The sign token should either be blank, unsigned, or signed. The width can be either
8, 16 or 32, referring to the number of bits in the integer. For example, a definition
of the sql-connection-max option and its use:

option sql-connection-max code 192 = unsigned integer 16;
option sql-connection-max 1536;

IP-ADDRESS option new-name code new-code = ip-address ;

An option of type IP address can be expressed either as a domain name or as an
explicit IP address. For example:

option sql-server-address code 193 = ip-address;
option sql-server-address sql.example.com;

TEXT option new-name code new-code = text ;

An option of type text encodes an ASCII text string. For example:

option sql-default-connection-name code 194 = text;
option sql-default-connection-name "PRODZA";

DATA
STRING

option new-name code new-code = string ;

An option of type data string is a collection of bytes. It can be specified either
as quoted text, like the text type, or as a list of hexadecimal octets separated by
colons whose values must be between 0 and FF. For example:

option sql-identification-token code 195 = string;
option sql-identification-token 17:23:19:a6:42:ea:99:7c:22;

ARRAYS Options can contain arrays of any of the above types except for the text and the
data string types. For example:

option kerberos-servers code 200 = array of ip-address;
option kerberos-servers 10.20.10.1, 10.20.11.1;

RECORDS Options can contain data structures consisting of a sequence of data types,
sometimes called a record type. For example:

option contrived-001 code 201 = { boolean, integer 32, text };
option contrived-001 on 1772 "contrivance";

It is also possible to have options that are arrays of records. For example:

option new-static-routes code 201 = array of {
 ip-address, ip-address, ip-address, integer 8 };

87

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Definition Description
option static-routes
 10.0.0.0 255.255.255.0 net-0-rtr.example.com 1,
 10.0.1.0 255.255.255.0 net-1-rtr.example.com 1,
 10.2.0.0 255.255.224.0 net-2-0-rtr.example.com 3;

9.17.4. Vendor Encapsulated Options
The DHCP protocol defines the vendor-encapsulated-options option. This allows vendors
to define their own options that will be sent encapsulated in a standard DHCP option. The format
of the vendor-encapsulated-options option is either a chunk of opaque data, or an actual
option buffer just like a standard DHCP option buffer.

You can send this option to clients in one of two ways:

• define the data directly, using a text string or a colon-separated list of hexadecimal values

• define an option space, define some options in that option space, provide values for them, and
specify that this option space should be used to generate the vendor-encapsulated-options option

To send a simple chunk of data, provide a value for the option in the right scope. For example:

option vendor-encapsulated-options
 2:4:AC:11:41:1:
 3:12:73:75:6e:64:68:63:70:2d:73:65:72:76:65:72:31:37:2d:31:
 4:12:2f:65:78:70:6f:72:74:2f:72:6f:6f:74:2f:69:38:36:70:63;

To define a new option space to store vendor options, use the option space statement. The name
can then be used in option definitions. For example:

option space SUNW;
option SUNW.server-address code 2 = ip-address;
option SUNW.server-name code 3 = text;
option SUNW.root-path code 4 = text;

Once you have defined an option space and some options, you can set up scopes that define values for
those options and when to use them. For example, suppose you want to handle two different classes of
clients. Using the option space definition, the previous

option vendor-encapsulated-options example can be implemented using classes
 as follows:
class "vendor-classes" {
 match option vendor-class-identifier;
}
option SUNW.server-address 172.17.65.1;
option SUNW.server-name "sundhcp-server17-1";
subclass "vendor-classes" "SUNW.Ultra-5_10" {
 vendor-option-space SUNW;
 option SUNW.root-path "/export/root/sparc";
}
subclass "vendor-classes" "SUNW.i86pc" {
 vendor-option-space SUNW;
 option SUNW.root-path "/export/root/i86pc";
}

Regular scoping rules apply. This lets you define values that are global in the global scope, and define
values that are specific to a particular class in the local scope.

88

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

The vendor-option-space declaration indicates that in that scope the vendor-
encapsulated-options option should be constructed using the values of all the options in the
SUNW option space.

9.18. DHCP Lease Format
The DHCP server keeps a persistent database of leases it has assigned. This database is a free-form
ASCII file containing a series of lease declarations. Every time a lease is acquired, renewed, or
released, its new value is recorded at the end of the lease file. So, if more than one declaration appears
for a given lease, the last one in the file is the current one.

Currently, the only declaration that is used in the dhcpd.leases file is the lease declaration.

lease ip-address {statements...}

Each lease declaration includes the client’s leased IP address. The statements within the braces define,
for example, the duration of the lease and to whom it is assigned.

Table 9.6 describes the statements the DHCP server puts into a lease file. For a list of DHCP Safe-
failover related lease file statements see Table 9.11.

Table 9.6. DHCP Lease File Statements

Lease Statement Description
abandoned; Records that the DHCP server saw the IP address

in use on the network when it was thought to be
free. The DHCP server detects active addresses
with ping tests or "DHCP decline" messages from
DHCP clients.

billing class “class-name”; If this lease is a member of a class with “lease
limit” set, this records that class.

billing subclass “class-name” subclass-data; If this lease is a member of a subclass with “lease
limit” set, this records the class and subclass.

client-hostname “hostname”; Records the hostname if the client sends a
hostname using the hostname option.

domain-name “domain-name”; Specifies the DNS domain name sent to the client
(if any).

dynamic-bootp; Indicates the address was leased to a BOOTP
client.

ends date; Records the end time of a lease.

Lease dates are specified by the DHCP server as
follows:

W YYYY/MM/DD HH:MM:SS

where:

W is the day of the week, from zero (Sunday) to
six (Saturday).

YYYY is the year, including the century.

89

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Lease Statement Description
MM is the number of the month, from 01 to 12.

DD is the day of the month, counting from 01.

HH is the hour, from 00 to 23.

MM is the minute, from 00 to 59.

SS is the second, from 00 to 59.

The time is always in Greenwich Mean Time, not
local time.

FQDN

“fully-qualified-domain-name”;

Specifies the fully qualified domain name used
by the DHCP server to perform the dynamic DNS
update for the lease (if any).

hardware

hardware-type mac-address;

Specifies the hardware type and the MAC address
as a series of hexadecimal octets, separated by
colons.

hostname “hostname”; Records the hostname if the DHCP server looks
up the hostname in DNS. This happens only if the
parameter get-lease-hostnames was set.

starts date; Records the start time of a lease.
uid client-identifier; Records the client identifier as a series of

hexadecimal octets, regardless of whether the
client specifies an ASCII string or uses the
hardware type /MAC address format. If the client
used a client identifier to acquire its address,
the client identifier is recorded using the uid
statement.

9.18.1. Working with DHCP Leases
The DHCP server requires that a lease database be present before it will start. The VSI TCP/IP
installation supplies an empty IP$:DHCPD.LEASES file.

In order to prevent the lease database from growing without bound, the file is rewritten from time to
time. First, a temporary lease database is created and all known leases are dumped to it. Then, the old
lease database is renamed IP$:DHCPD.LEASES_OLD. Finally, the newly written lease database is
moved into place.

Be aware of the following situation: if the DHCP server process is killed or the system crashes after
the old lease database has been renamed but before the new lease database has been moved into place,
the IP$:DHCPD.LEASES file disappears. The DHCP server will refuse to start. Do not create a
new lease file when this happens. If you do, you will lose all your old bindings. Instead, rename IP
$:DHCPD.LEASES_OLD to IP$:DHCPD.LEASES, restoring the old, valid lease file, and then start
the DHCP server. This guarantees that a valid lease file will be restored.

9.18.2. Abandoned Leases
Abandoned leases are reclaimed automatically. When a client asks for a new address, and the server
finds that there are no addresses available, it checks to see if there are any abandoned leases. The

90

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

server allocates the oldest abandoned lease. The standard procedures for checking for lease address
conflicts are still followed, so if the abandoned lease's IP address is still in use, it is reabandoned.

If a client requests an abandoned address, the server assumes that the address was abandoned because
the lease file was corrupted, and that the client is the machine that responded when the lease was
pinged, causing it to be abandoned. In that case, the address is immediately assigned to the requesting
client.

9.18.3. Static Leases
Leases that are given to clients for statically assigned IP addresses are treated differently than those
for dynamically assigned IP addresses. An address is statically assigned by using a host declaration
with a fixed-address statement.

Static lease information is not saved by the DHCP server. This means that they are not recorded in the
lease file (DHCPD.LEASES). If your configuration uses only statically assigned IP addresses, you
will not see any entries in the lease file.

This also means that the NETCONTROL SHOW commands do not have any lease information to
display for static assignments.

• For SHOW CLIENT, statically assigned IP addresses are not supported.

• For SHOW SUBNET and SHOW LEASES, statically assigned IP addresses are not shown.

• For SHOW ALL, SHOW HADDR, SHOW CID, and in the dump file produced by the DUMP
command, statically assigned IP addresses are identified as "Static Assignment" and no lease
information is shown.

• For STATISTICS and SHOW POOLS, statically assigned IP addresses are not included in the
pool or subnet statistics.

DNS dynamic updates are supported only partially for static assignments. When the lease is granted,
the appropriate A and PTR resource records are added automatically. However, since the lease
information is not saved, the DHCP server does not delete the DNS entries when the lease expires or
is released.

9.19. Registering Clients While the DHCP
Server is Running
The DHCP server can register and unregister clients without having to restart the server. host
declarations and subclass declarations can be added or removed from the running server using
add and remove commands in an update file, by default IP$:DHCPD.UPDATES.

The commands that can be placed into the update file are described in Section 9.19.1.

You would use host declarations if you are controlling access to IP addresses via allow/
deny unknown-clients statements in your DHCPD.CONF configuration file. You would use
subclass statements if you are controlling access to IP address pools using classes configured with
the match statement and using pools with allow/deny members of _class_ statements.

91

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Note

The registration or unregistration of a client via the update file only affects the running server. The
host and subclass declarations must also be added to the DHCPD.CONF configuration file.

You tell the DHCP server to execute the commands in the update file using the NETCONTROL
DHCP UPDATE command:

$ IP NETCONTROL DHCP UPDATE

A different file name can optionally be specified:

$ IP NETCONTROL DHCP UPDATE mydir:dhcpd.updates

You can verify the syntax of the update file before sending it to the DHCP server by using the -u flag
on the dhcpd command line:

$ DHCPD :== IP:dhcpd4.exe
$ DHCPD -T -U filename

The update file name is not optional. Note that the configuration file is read in before the update file.
A different configuration file can be specified using the -cf flag.

You can check the DHCP server and see if a given host or subclass is known, for example to see if
you need to add it, using the following netcontrol commands:

$ IP NETCONTROL SHOW ISKNOWN HOST hw-addr-or-client-id
$ IP NETCONTROL SHOW ISKNOWN SUBCLASS class-name subclass-data

9.19.1. Update File Statements
Table 9.7 describes the commands you can use in an update file.

Table 9.7. DHCP Update File Commands

Statement Description
add host Registers a client by adding the specified host declaration. The host

declaration is in the same format as in the configuration file. This makes
the specified hardware address and/or client identifier "known".

add host name { [statements] }

Note that static IP address assignments can be added by specifying the
fixed-address statement in the host declaration.

add subclass Registers a client by adding the specified subclass to the specified class.
The class must be declared in the DHCPD.CONF configuration file. The
subclass declaration is the same format as in the configuration file. This
adds the specified subclass value as a member of the specified class.

add subclass "class-name" subclass-data;
add subclass "class-name" subclass-data {
[statements]
}

delete host Un-registers a client by removing the specified host declaration. The
host is specified by hardware address or client identifier. This makes the

92

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
specified host "unknown". Note that all host declarations that match the
hardware address or client identifier are deleted.

delete host hw-addr-or-client-id;

delete subclass Un-registers a client by removing the specified subclass from the
specified class. This makes the specified subclass no longer a member of
the class.

delete subclass "class-name" subclass-data;

9.19.1.1. Examples:
add host fred {
 hardware ethernet 01:02:03:04:05:06;
 fixed-address 10.9.8.7;
 option routers 10.9.8.1;
}
add host wilma {
 option dhcp-client-identifier "wilma-cid";
}
delete host 01:02:03:04:05:06;
delete host "wilma-cid";
add subclass "gold" 01:01:02:03:04:05:06 {
 option host-name "fred";
}
add subclass "silver" "wilma-cid";
delete subclass "gold" 01:01:02:03:04:05:06;
delete subclass "silver" "wilma-cid";

9.20. DHCP Safe-failover Introduction
Since a DHCP server is responsible for the network's IP management, it can also be a potential point
of network failure if it becomes unavailable. Using multiple servers with non-overlapping IP address
pools is one way to provide limited fault-tolerance. For example: imagine a network with two DHCP
servers. Server A has an address range of 100 IP addresses. Server B has a range of 50 different
addresses. Both servers have a non-overlapping range of addresses. When a node broadcasts for an
address, both servers respond, each offering an address from its own distinct range. Upon receiving
both offers, the node chooses one. Typically, the response that reaches the node first is selected. In this
case, Server A's. When Server B determines its offer is not needed, it returns the offered address to its
own range, allowing it to be offered again.

If one of the servers is down, the other server continues to service the nodes. Now, instead of having
two offers, each new node has only one offer, from the remaining server. Nodes that received their
lease from the unavailable server attempt to reconnect with it. If the unavailable server does not
respond in time, the nodes then attempt to get a new address from a new server. The other server
can then offer an address from its own range. So, even though one server is down, the DHCP clients
continue to function with the other server.

Note

The two DHCP servers operate without any communications or data sharing between them. Each
server works as a standalone server.

93

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Since most nodes select the first offer received, having two servers could result in partial use of both
IP address pools. Sometimes it is preferable to have a primary DHCP server with the bulk of the IP
addresses while the secondary server has a smaller range of IP addresses.

Note

One way to accomplish the above mentioned configuration is to put the secondary server behind a
router on a different subnet, while the primary server stays on the same segment as the nodes. This
allows the primary server to respond more quickly than the secondary server.

VSI takes the use of multiple servers to another level by offering DHCP Safe-failover. DHCP Safe-
failover allows a secondary DHCP server to back up the primary DHCP server with the addition
of taking into account network failure. This strategy insures that clients can reliably log into their
corporate network and know they will be able to connect to corporate resources.

In safe failover mode both the primary and the backup DHCP servers share a common IP address
lease pool. In the event the primary DHCP server fails the backup DHCP server automatically senses
the primary server is not operating and automatically assumes complete DHCP operation. When
the primary DHCP server becomes operational, it synchronizes with the backup DHCP server and
resumes all the responsibilities of the primary DHCP server. All assignments performed by the
backup DHCP server while acting as the primary server are transferred to the primary DHCP upon
resumption of primary server responsibilities.

Safe-failover adds support for network failure, as well as server failure. In the event the network fails,
the secondary server believes the primary server is out of service and begins operation. The secondary
server serves leases from a reserved pool shared by the Safe-failover partner servers. This reserve pool
can be adjusted by the MIS system administrator.

9.21. Configuring DHCP Safe-failover
To configure your DHCP servers to use Safe-failover, perform the following steps:

1. Choose one system to be the Primary and a second system to be the Secondary.

2. Determine the IP addresses of the Primary and Secondary systems. If a system has more than one
IP address, choose one to use for DHCP Safe-failover messages.

3. On the Primary system, create the boot file at IP$:DHCPD.BOOT with the keyword "primary",
the primary and secondary IP addresses, and configuration ID.

On the primary system, the configuration ID would normally be "DHCPD". See Section 9.22 for
more information about boot files.

Primary system boot file syntax:

primary primary-ip secondary-ip "config-id";

4. On the Secondary system, create the boot file at IP$:DHCPD.BOOT with the keyword
"secondary", the secondary and the primary IP addresses, and configuration ID. On the secondary
system, the configuration ID may be "dhcpd" or may be a name that refers to the primary. Either
way, the names of the configuration, lease, and state files must match this name.

Secondary system boot file syntax:

secondary secondary-ip primary-ip "config-id";

94

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

5. If you do not already have a configuration file, write a configuration file containing the subnets,
shared networks, IP address ranges, hosts, etc, that reflect your network and the hosts you want the
DHCP server to service. Include any DHCP Safe-failover parameters as needed (see Section 9.24).

6. Copy the configuration file to the IP directory on both the Primary and the Secondary systems.

Note

Make sure the name of the configuration file matches the config-id parameter in the boot file for that
system.

Preferably, the configuration files on the Primary and the Secondary server systems should be the
same. To help ensure that the configuration file is valid for both systems, make sure it contains a
subnet statement for every subnet that either the Primary or the Secondary system has a network
interface on.

7. Make sure that both the Primary and the Secondary systems have lease files in the IP$: directory
with the name that matches config-id. If the lease file does not exist, create an empty one.

8. Run the DHCP server on both the Primary and the Secondary systems. The two servers will
establish communications with each other. Now the process is completed successfully.

9.22. Boot File for DHCP Safe-failover
To use Safe-failover, create a boot file at IP$:DHCPD.BOOT. The boot file is used to specify the
following for Safe-failover operation:

• Server's mode of operation

• Server's own IP address

• Partner server's IP address

• Configuration ID

The format of the boot file is:

mode [server-IP partner-IP] "config-id";

If the boot file is not present, the server operates with DHCP Safe-failover disabled. It uses IP
$:DHCPD.CONF and IP$:DHCPD.LEASES for its default configuration and lease files. In this
state, the service parameters CONFIGFILE and LEASEFILE may be used to rename or move these
files. The server does not use a state file to keep track and remember its state transitions when running
in standalone mode (that is, with DHCP Safe-failover disabled). See Section 9.23 for a description of
state files. The following server modes are possible:

Table 9.8. DHCP Safe-failover Server Modes

Mode In this mode the server runs...
Primary As the Primary server, with DHCP Safe-failover functionality enabled. In

this mode, the server tries to "shadow" each of its lease transactions to its
configured secondary server.

Secondary As the Secondary or Backup server, with DHCP Safe-failover
functionality enabled. The server receives lease transaction updates from

95

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Mode In this mode the server runs...
its configured Primary server, and maintains an up-to-the-minute hot
backup of the lease database. If the primary server crashes, or is shut
down, the Secondary server takes over.

Standalone With DHCP Safe-failover disabled.

The IP address following the server mode is the server's own address, the next IP address is the
partner server's IP address.

The configuration ID is the file name (without the file type) of the configuration, lease, and state files.
For example, if the configuration id is ALPHA, the DHCP server will look for the configuration file
named ALPHA.CONF, a lease file named ALPHA.LEASES, and a state file named ALPHA.STATE.

Example 9.2. Boot File

primary 199.23.24.11 199.23.24.25 "ALPHA";

The example boot file designates the current server as the primary with its own IP address
199.23.24.11 and the partner server's IP address 199.23.24.25. The partner server is a Secondary
server. This follows from the current server being a Primary server.

If the mode of operation is "standalone", the server's IP address and partner server's IP address are not
needed. The format is as follows:

standalone "config-id";

9.23. State File for DHCP Safe-failover
The state file is written by the DHCP server when it is running with DHCP Safe-failover enabled. The
purpose of the state file is to save server state changes so that a server can "remember" its last state
if it crashes or is re-started. Alternately, the state file can be used by the operator to force the DHCP
server to start up in a desired mode (operator override). This feature allows the operator to switch the
server into partner-down mode without a lengthy time-out period, or to start up in recover mode (that
is, to force the DHCP server to download the entire lease database from the partner).

The server appends a line to the state file every time its DHCP Safe-failover state changes. The last
line in the file is the most current DHCP Safe-failover state.

The state file consists of one or more lines of the following format:

server_state transaction_count; [date-time;]

server_state is one of the following:

Table 9.9. DHCP Safe-failover Server States

failover-disabled primary-comint primary-conflict
startup backup-comint backup-conflict
primary-normal primary-partnerdown primary-recover
backup-normal backup-partnerdown backup-recover

Server-to-server messages are each assigned a monotonously increasing transaction number, which is
recorded in the transaction_count field. This is an unsigned 32 bit number.

96

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

If the date-time stamp is present, the DHCP server assumes that the state was recorded by the server
itself. In this case, the server, upon starting up, calculates the safest state based on the recorded state
and the time elapsed. If the date-time stamp is not present, the DHCP server treats the entry as an
operator-written override command and starts up in the specified state.

9.24. DHCP Safe-failover Configuration File
Statements
The statements shown in the Table 9.10 have been added to the DHCP configuration file for DHCP
Safe-failover. These are in addition to the DHCP configuration file statements listed in the Table 9.4.
All of the parameters in Table 9.10 must be placed in the configuration file's global scope. With the
exception of the backup-pool-size parameter. It may also be specified within a shared-network or
subnet declaration.

Table 9.10. DHCP Safe-failover Configuration File Statements

Statement Description
backup-ack-interval The number of seconds used as the basis of the DHCP server's

logarithmic back-off algorithm used for resending ACK messages to the
secondary server. The default is 1 second.

backup-ack-interval seconds;

backup-pool-size This is the percentage of the IP address pool set aside for the Secondary
server’s emergency use. The DHCP server will reserve no more than
50% of the available addresses. The default is 10%.

backup-pool-size percent;

com-int-timeout The number of seconds the server should wait for an expected response
from its partner before switching to communication interrupted mode.
The default is 600 seconds (10 minutes).

com-int-timeout seconds;

failover-port The UDP port the Primary and Secondary servers should use for DHCP
Safe-failover messages. The default is 647.

failover-port port;

mclt Maximum Client Lead Time: This is the length of lease in seconds to
give out on a first time basis, or the client lead time for renewals. See
the DHCP failover internet draft for a more detailed explanation. The
default is 3600 seconds (1 hour).

mclt seconds;

safe-period-timeout The number of seconds spent in communication interrupted state before
automatic switch over to partner-down state. A value of 0 means no
automatic switch over. The default is 0 seconds.

safe-period-timeout seconds;

startup-delay The number of seconds to wait during startup before the server moves
from STARTUP state to the state specified in the state file. The default
is 5 seconds.

startup-delay seconds;

97

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.25. DHCP Safe-failover Lease File
Statements
The statements shown in the Table 9.11 have been added to the DHCP lease file for DHCP Safe-
failover.

Table 9.11. DHCP Safe-failover Lease File Statements

Statement Description
acked-sec-interval seconds; Acknowledged secondary lease interval. For information, see the

DHCP failover internet draft.
acked-sec-interval-start date; The time when the partner was notified of the lease.
active; This IP address has a current lease.
backup; This IP address is reserved for use by the secondary (backup)

server.
desired-interval seconds; The length of the desired lease.
expired; The lease for this IP address has expired.
free; This IP address is available to be assigned.
last-partner-transaction date; The time when the partner last updated the lease.
released; The lease for this IP address has been released by the client or by

the operator.
reset; The DHCP server had marked this IP address as abandoned. The

operator changed its status to available.
revoked; The lease for this IP address has been revoked by the operator.
safe-lease; This is used in the Partner Down state to indicate that the IP

address belongs to this server.
transaction-id number; This is the transaction number that was assigned to this lease when

it was queued or sent as an update to the partner server.
update-count n; For each lease, the server which issues the lease sends an update to

its partner server. This statement records the state of that update.

0 — means no update is required

1 — means that no update has been sent

2+ — means 1 or more updates have been sent

9.26. Transitioning to DHCP Safe-failover
Partner Down State
There are three ways that the DHCP server can transition to Partner Down state, which indicates that
its DHCP Safe-failover partner is down.

1. If the parameter safe-period-timeout is specified in the configuration file, the DHCP server
transitions to Partner Down state automatically after it has been in Communication Interrupt state
for the specified time.

98

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

2. The operator can put the DHCP server into Partner Down state by executing the following
netcontrol command:

$ IP NETCONTROL DHCP PARTNERDOWN

3. The operator can edit the DHCP server's state file and add a line to the end containing the Partner
Down state and transaction number desired:

primary-partnerdown transaction-number;

or

4. backup-partnerdown transaction-number;

The next time the DHCP server is restarted, it starts up in Partner Down state. The operator can
restart the DHCP server by executing the following netcontrol command:

$ IP NETCONTROL DHCP RESTART

9.27. Setting DHCP Parameters
The DHCP service uses the parameters listed in the Table 9.12.

Table 9.12. DHCP Server Parameters

Parameter Description
ACCOUNTING This parameter determines if the DHCP server process performs OpenVMS

accounting. The default is 0 (OFF).
CONFIGFILE The name of the configuration file. The default is IP$:DHCPD.CONF. Not

used if DHCP Safe-failover is being used.
DEBUG A decimal integer that is a bitmask of debugging levels used to select

messages to pass to OPCOM and the debug log file specified in the
DEBUG-FILE parameter. The debugging levels are (in decimal):

1 Fatal Errors

3 Errors and Warnings

7 Informationals

15 Debug Messages

31 Dump Packets (Formatted)

63 Dump Packets (Hex)

By default, Fatal Errors, Errors, and Warnings are logged.
DEBUG-FILE The name of the debug log file. Use this parameter to capture debug logging

in a file. The default is that debug logging is not written to any file if
LOG-TO-OPCOM is 1. If LOG-TO-OPCOM is 0, the default file is IP
$:DHCPDEBUG.LOG.

DUMPFILE The name of the "dump" file. This is the output of the NETCONTROL
DUMP command. The default is IP$:DHCPD.DUMP.

99

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Parameter Description
IMAGE-NAME The name of the image to run in the DHCP server process. The default is

IP$:DHCPD.EXE.
LEASEFILE The name of the file DHCP uses to save client lease information to

survive across reboots. To completely clear the lease information,
delete the file specified and create an empty version. The default is IP
$:DHCPD.LEASES.

Not used if DHCP Safe-failover is being used.
LOG-DATE This parameter determines whether the date is included in each entry in the

debug log file. The default is 0; the date is not included.
LOG-TO-OPCOM This parameter determines whether debug logging messages are written

to OPCOM. Debug messages are also written to DEBUG-FILE parameter
value if DEBUG-FILE is specified or this parameter is 0. Severe errors
and warnings are always logged to OPCOM. The default is 1, everything is
logged to OPCOM.

PROCESS-NAME The name of the DHCP server process. The default is DHCP_SERVER.
SYS-ERROR The name of a file that will contain anything written to SYS$ERROR by the

DHCP server. This information could be helpful in diagnosing problems.
The default is _NL:. This means SYS$ERROR is not directed to any file.

SYS-OUTPUT The name of a file that will contain anything written to SYS$OUTPUT
by the DHCP server. This information could be helpful in diagnosing
problems. The default is _NL: meaning SYS$OUTPUT not directed to any
file.

SWAP This parameter determines whether process swapping is inhibited for the
DHCP server process. The default is 1, swapping is enabled.

UPDATEFILE The name of the update file. This file contains update commands that the
DHCP server executes upon a NETCONTROL UPDATE command. The
default is IP$:DHCPD.UPDATES.

You may set any of the parameters listed in the Table 9.6, as shown in the following example:

$ IP NETCONTROL DHCP SHUTDOWN (if DHCP is running)
$ IP CONFIGURE /SERVER

VSI TCP/IP for OpenVMS Server Configuration Utility 10.5(nnn)
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>SELECT DHCP
[The Selected SERVER entry is now DHCP]
SERVER-CONFIG>SET PARAMETERS
Delete parameter "configfile IP$:DHCPD.CONF" ? [NO]
You can now add new parameters for DHCP. An empty line terminates.
Add Parameter: debug 3
Add Parameter:
[Service specific parameters for DHCP changed]
SERVER-CONFIG>RESTART
Configuration modified, do you want to save it first ? [YES]
[Writing configuration to IP$COMMON_ROOT:[IP]
SERVICES.MASTER_SERVER]
%RUN-S-PROC_ID, identification of created process is 20600046
SERVER-CONFIG>EXIT
[Configuration not modified, so no update needed]

100

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

$

9.28. Viewing DHCP Information
VSI TCP/IP provides two NETCONTROL commands for displaying information about the DHCP
server:

• NETCONTROL SHOW (see Section 9.28.1)

• NETCONTROL STATISTICS (see Section 9.28.2)

9.28.1. NETCONTROL SHOW Command
The DHCP NETCONTROL SHOW command has seven subcommands: SHOW CLIENT, SHOW
LEASES, SHOW SUBNET, SHOW ALL, SHOW HADDR, SHOW CID, and SHOW POOLS.

Viewing Lease Information for Specific IP Addresses
The DHCP NETCONTROL SHOW CLIENT command displays the current lease binding details on
a particular IP address. It must be an IP address in the dynamic pool. Statically-bound IP addresses are
not supported. The syntax for SHOW CLIENT is:

$ IP NETCONTROL DHCP SHOW CLIENT dotted-decimal-ip-address

dotted-decimal-ip-address is the IP address of a client.

For example:

$ IP NETCONTROL DHCP SHOW CLIENT 10.5.64.1
Connected to NETCONTROL server on "LOCALHOST"
< x.process.com Network Control V10.5(10) at Fri 3-Mar-2017 3:23PM-EDT
< DHCP Client: 10.5.64.1
< IP Address=10.5.64.1
< State=Bound (expired)
< Subnet Mask=255.255.255.0
< Default Gateway=10.5.64.100
< Hardware Address=00004400AABB
< Client ID=74657374 (“test”)
< Lease=300 secs, Obtained 06-Mar-2017 22:21:22 GMT Expires 16-Mar-2017
 22:26:22 GMT (-75426 secs)
< End of Show DHCP Client

Viewing Lease Information for all Leased IP Addresses
The DHCP NETCONTROL SHOW LEASES command takes no arguments. It displays for all
subnets the IP addresses that have leases (pending, active, or expired). Lease information for
statically-assigned IP addresses is not available. For example:

$ IP NETCONTROL DHCP SHOW LEASES
Connected to NETCONTROL server on "LOCALHOST"
< x.process.com Network Control V10.5(10) at Fri 3-Mar-2017 3:23PM-EDT
< DHCP Client: 10.5.64.1
< IP Address=10.5.64.1
< State=Bound (expired)
< Subnet Mask=255.255.255.0

101

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

< Default Gateway=10.5.64.100
< Hardware Address=00004400AABB
< Client ID=74657374 (“test”)
< Lease=300 secs, Obtained 06-Mar-2017 22:21:22 GMT Expires 16-Mar-2017
 22:26:22 GMT (-75426 secs)
< End of Show DHCP Client

Viewing Address Pools for Specific Subnets
The DHCP NETCONTROL SHOW SUBNET command displays all of the DHCP address pools
for the shared network that ip-address is in. It lists each subnet that is on the shared network and
each IP address in each pool. Statically-bound IP addresses are not shown. The syntax for SHOW
SUBNET is:

$ IP NETCONTROL DHCP SHOW SUBNET dotted-decimal-ip-address

dotted-decimal-ip-address is any IP address in that subnet.

You would typically use the subnet value or an IP address from a pool for the subnet. For example:

$ IP NETCONTROL DHCP SHOW LEASES
Connected to NETCONTROL server on "LOCALHOST"
< x.process.com Network Control V10.5(10) at Fri 3-Mar-2017 2:32PM-EST
< List all leases
< Shared Network local
< Subnet 10.5.64.0 netmask 255.255.255.0
< Subnet 10.5.165.0 netmask 255.255.255.0
< Pool 1
< IP Addr=10.5.64.1, State=Bound (expired), Lease Expires
03-Mar-2017 19:32:43 GMT (-4 secs)
< IP Addr=10.5.64.13, State=Offered, Lease Expires 06-Mar-2017 19:34:07
 GMT (80 secs)
< IP Addr=10.5.64.2, State=Bound, Lease Expires 06-Mar-2017 19:36:52 GMT
 (245 secs)
< End of lease list

Viewing Address Pools for All Subnets
The DHCP NETCONTROL SHOW ALL command takes no arguments. It shows the SHOW
SUBNET output for all subnets in the DHCP server configuration. Then it prints information about all
static assignments.

For static assignments, lease information is not available. For example:

$ IP NETCONTROL DHCP SHOW ALL
Connected to NETCONTROL server on "LOCALHOST"
< x.process.com Network Control V10.5(10) at Mon 12-Jun-2017 11:24AM-EDT
< List all Subnet pools
< Shared Network local
< Subnet 10.5.64.0 netmask 255.255.255.0
< Subnet 10.5.165.0 netmask 255.255.255.0
< Pool 1
< IP Addr=10.5.64.3, State=Free, No Lease
< IP Addr=10.5.64.1, State=Bound, Lease Expires 12-Jun-2017 22:21:14 GMT
 (2867 secs)
< DHCP Static Assignments
< IP Addr=10.5.64.15, State=(Static Assignment)

102

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

< IP Addr=10.5.165.17, State=(Static Assignment)
< IP Addr=10.5.165.200, State=(Static Assignment)
< End of Subnet pool lists

Viewing Matched Leases for Hardware Addresses
The DHCP NETCONTROL SHOW HADDR command shows all client entries that match a given
hardware address. The clients can have leases on multiple subnets simultaneously.

Note

For hardware addresses that have static assignments, lease information is not available.

The syntax for the NETCONTROL SHOW HADDR command is

$ IP NETCONTROL DHCP SHOW HADDR MAC_address

For example:

$ IP NETCONTROL DHCP SHOW HADDR 00004400AABB
Connected to NETCONTROL server on "LOCALHOST"
< x.process.com Network Control V10.5(10) at Fri 07-Apr-2017 4:41PM-EDT
< DHCP Hardware Address: 00004400AABB
< IP Address=10.5.64.1
< State=Bound (expired)
< Subnet Mask=255.255.255.0
< Default Gateway=10.5.64.100
< Hardware Address=00004400AABB
< Client ID=74657374 (“test”)
< Lease=300 secs, Obtained 07-Apr-2017 22:21:22 GMT Expires 07-Apr-2017
 22:26:22 GMT (-80091 secs)
< End of Show DHCP HAddr

Viewing Matched Leases for Client ID
The DHCP NETCONTROL SHOW CID command shows all client entries that match a given Client
ID. The clients can have leases on multiple subnets simultaneously.

Note

For client IDs that have static assignments, lease information is not available, as shown in this
example. The syntax for the NETCONTROL SHOW CID command is

$ IP NETCONTROL DHCP SHOW CID Client_ID_in_hex

For example:

$ IP NETCONTROL DHCP SHOW CID 7465737431
Connected to NETCONTROL server on "LOCALHOST"
< x.process.com Network Control V10.5(10) at Mon 12-Jun-2017 6:36PM-EDT
< DHCP Client ID: 7465737431
< IP Address=10.24.25.1
< State=(Static Assignment)
< Subnet Mask=255.255.255.0
< Default Gateway=<none>

103

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

< Hardware Address=<none>
< Client ID=7465737431 (“test1”)
< End of Show DHCP Client ID

Viewing IP Address Pool Availability
The DHCP NETCONTROL SHOW POOLS command takes no arguments. It displays a table
showing for each IP address pool the number of IP addresses that are available. An IP address pool
corresponds to a shared-network statement, a subnet statement, or a pool statement in the
DHCP configuration file. For each pool the following information is displayed:

Shared Network The name from the shared-network statement or the subnet number from
the subnet statement.

Pool “Total” for the complete information for the shared network, otherwise a
number identifying the pool. You can see which IP addresses are in which
pools using the SHOW ALL or SHOW SUBNET command.

Total The total number of IP addresses in the pool.
Abandoned The number of IP addresses in the pool which were found in use on the

network when they were thought to be free.
Reserved If DHCP Safe-failover is in use, the number of IP addresses in the pool

reserved for the secondary DHCP server. These addresses are unassigned but
reserved for the secondary.

Available The number of IP addresses in the pool available to be leased.

For example:

Connected to NETCONTROL server on "LOCALHOST"
< x.process.com Network Control V10.5(10) at Sat 11-Feb-2017 5:25PM-EST
< List Pool Availability
< Shared Network Pool Total Abandoned Reserved Available
< -------------- ----- ----- --------- -------- ---------
< local total 44 5 0 15
< 1 44 5 0 15
< 10.12.1.0 total 128 2 0 57
< 1 111 0 0 54
< 2 11 2 0 0
< 3 6 0 0 3
< End of pool availability list

9.28.2. NETCONTROL STATISTICS Command
The DHCP NETCONTROL STATISTICS command displays the number of clients in each shared
network. This is supplied for backward compatibility only. Use SHOW POOLS instead.

9.29. Address Lease States in DHCP Dump
Files
After obtaining a DHCP dump using IP NETCONTROL DHCP DUMP, you will see fields in the
dump preceded by a pound sign (#). Those fields are values created while the server is running. These
fields are provided to help you troubleshoot problems. The lease states (denoted by # State= in the
dump) are described in the Table 9.13.

104

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Table 9.13. DHCP Address Lease States

State Description
Abandoned The address was seen in use on the network when it was thought to be free.

The DHCP server detects active addresses with ping tests or "DHCP decline"
messages from DHCP clients.

Bound The address was assigned in response to a DHCP Request message. If the
address lease expires, it remains in "bound" state to help the client regain
the same IP address it previously used. The address is actually free. The
"(expired)" modifier on the state value indicates this state.

Free The address has never been bound, and is available in the pool.
Offered The address has been offered to a client in response to the client's DHCP

Discover message, but the client has not asked for the address via a DHCP
Request message.

Pinging The address is in the middle of a ping test.
Reserved for
Secondary

Used for DHCP Safe-failover: The address is set aside for the secondary
server’s emergency use.

Static Assignment The client identifier or hardware address is statically assigned; the binding does
not expire.

9.29.1. Sample DHCPD.CONF File
Example 9.3 shows a sample DHCPD.CONF file.

Example 9.3. Sample DHCPD.CONF File

#
IP$:DHCPD.CONF -- sample DHCP configuration file
#
option definitions common to all supported networks...
option domain-name “fugue.com”;
option domain-name-servers toccato.fugue.com;
default-lease-time 43200;
option subnet-mask 255.255.255.0;
option time-offset 18000;
use-host-decl-names on;
Shared network declaration is used to group subnets which share the
 same physical network together. The name is specified so that the shared
 network can be referred to in log messages - it serves no other function.
#
Note: You must have a subnet declaration for the subnet that the DHCP
 server system is on even if you do not want any address pool for the same
 subnet (or multiple subnets if the system is multi-homed)shared-network
 FUGUE {
option definitions common to this shared network.
 option subnet-mask 255.255.255.224;
 default-lease-time 600;
 max-lease-time 7200;
One of the two IP subnets that share this physical network
#
Address ranges can be specified for each subnet attached to a shared
 network. Since these subnets share the same physical network, addresses
 are pooled together, and assignments are made without regard to the actual

105

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

 subnet. If the optional dynamic-bootp keyword is given in the address
 range declaration, then addresses in that range can be assigned either
 with the DHCP protocol or the BOOTP protocol; otherwise, only DHCP clients
 will have addresses allocated from the address range.
#
Note that each IP subnet can have its own options specific to that
 subnet. Options that are not specified in the subnet are taken from the
 shared network (if any) and then from the global option list.
 subnet 204.254.239.0 netmask 255.255.255.224 {
 range 204.254.239.10 204.254.239.20;
 option broadcast-address 204.254.239.20;
 option routers prelude.fugue.com;
}
The other subnet that shares this physical network
 subnet 204.254.239.32 netmask 255.255.255.224 {
 range dynamic-bootp 204.254.239.42 204.254.239.52;
 option broadcast-address 204.254.239.31;
 option routers snarg.fugue.com;
}
Subnets can have no pooled ip addresses.
 subnet 10.10.10.0 netmask 255.255.255.0 {
 }
}
IP subnets that are alone on their physical wire should be declared by
 themselves. The DHCP server still refers to them as shared networks in log
 messages, but this is simply an artifact of the underlying data structure.
#
Note that options can be specified in the subnet declaration that
 supercede the global options specified earlier.
subnet 192.5.5.0 netmask 255.255.255.224 {
 range 192.5.5.26 192.5.5.40;
 option domain-name-servers bb.home.vix.com, gw.home.vix.com;
 option domain-name “vix.com”;
 option routers 192.5.5.1;
 option subnet-mask 255.255.255.224;
 option broadcast-address 192.5.5.41;
 default-lease-time 600;
 max-lease-time 7200;
}
Hosts that require special configuration options can be listed in host
 statements. If no address is specified, the address will be allocated
 dynamically (if possible), but the host-specific information will still
 come from the host declaration.
host passacaglia {
 hardware ethernet 0:0:c0:5d:bd:95;
 filename “vmunix.passacaglia”;
 server-name “toccato.fugue.com”;
}
Fixed IP addresses can also be specified for hosts. These addresses
 should not also be listed as being available for dynamic assignment. Hosts
 for which fixed IP addresses have been specified can boot using BOOTP or
 DHCP. Hosts for which no fixed address is specified can only be booted
 with DHCP, unless there is an address range on the subnet to which a BOOTP
 client is connected which has the dynamic-bootp flag set.
host fantasia {
 hardware ethernet 08:00:07:26:c0:a5;
 fixed-address fantasia.fugue.com;
}

106

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

If a DHCP or BOOTP client is mobile and might be connected to a variety
 of networks, more than one fixed address for that host can be specified.
 Hosts can have fixed addresses on some networks, but receive dynamically
 allocated address on other subnets; in order to support this, a host
 declaration for that client must be given which does not have a fixed
 address. If a client should get different parameters depending on what
 subnet it boots on, host declarations for each such network should be
 given. Finally, if a domain name is given for a host’s fixed address
 and that domain name evaluates to more than one address, the address
 corresponding to the network to which the client is attached, if any, will
 be assigned.
host confusia {
 hardware ethernet 02:03:04:05:06:07;
 fixed-address confusia-1.fugue.com, confusia-2.fugue.com;
 filename “vmunix.confusia”;
 server-name “toccato.fugue.com”;
}
host confusia {
 hardware ethernet 02:03:04:05:06:07;
 fixed-address confusia-3.fugue.com;
 filename “vmunix.confusia”;
 server-name “snarg.fugue.com”;
}
host confusia {
 hardware ethernet 02:03:04:05:06:07;
 filename “vmunix.confusia”;
 server-name “bb.home.vix.com”;
}
Some other examples
host host1 {
 option dhcp-client-identifier “host1”;
 fixed-address 10.10.11.101, 10.11.22.101;
}
Do not allow this one to boot
host host2
 hardware ethernet aa:cc:04:00:33:11;
 deny booting;
}

9.30. DHCP Client
This section describes the Dynamic Host Configuration Protocol (DHCP) client.

9.30.1. General Description
The DHCP client resides on the client host and dynamically sets the network configuration. The
VSI TCP/IP DHCP client communicates with a DHCP server to get an IPv4 address and other
configuration information. It uses this information to configure the network parameters of the host and
to start up the network.

When the network starts on the host, the DHCP client communicates dynamically and automatically
with the DHCP server in case reconfiguration is needed. The configuration information the client uses
is defined by the policy stored in the DHCP server.

For more general DHCP information, see RFC2132 and RFC2131.

107

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

VSI TCP/IP 10.5 provides support for a DHCP client. Because it supports a single network interface
on the host, you can only use the DHCP client to configure a single network line in VSI TCP/IP.

VSI does not recommend you to use the DHCP client with other VSI TCP/IP components that usually
need a static IPv4 address on the same host, such as DHCP server, authoritative DNS server, and
GateD.

9.30.2. Setting DHCP Client Parameters
The DHCP Client service uses the parameters listed in the following table.

Table 9.14. DHCP Client Parameters

Parameters Description
CONFIGFILE The name of the configuration file. The default is IP

$CONFIG:DHCLIENT.CONF.
DEBUG A decimal integer that is a bitmask of debugging levels used to select messages

to pass to OPCOM and the debug log file specified in the DEBUG-FILE
parameter. The debugging levels are (in decimal):

1 Fatal Errors

3 Errors and Warnings

7 Informationals

15 Debug Messages

31 Dump Packets (formatted)

63 Dump Packets (hex)

By default, Fatal Errors, Errors, and Warnings are logged.
DEBUG-FILE The name of the debug log file. Use this parameter to capture debug logging

in a file. The default is that debug logging is not written to any file if LOG-
TO-OPCOM is 1. If LOG-TO-OPCOM is 0 (zero), the default file is IP
$CONFIG:DHCLIENT.LOG.

INTERFACE-
ROUTE

A decimal integer 1 (one). Use this parameter to add a static IP route to the
VSI TCP/IP Kernel routing table. The optional INTERFACE keyword forces
the routing to be for a locally connected interface. If the parameter is not set,
the default is to create a gateway route.

LEASEFILE The name of the file DHCP uses to save client lease information to
survive across reboots. To completely clear the lease information,
delete the file specified and create an empty version. The default is IP
$CONFIG:DHCLIENT.DB. This is not used if DHCP Safe-failover is used.

LOG-DATE This parameter determines whether the date is included in each entry in the
debug log file. The default is 0 (zero); the date is not included.

LOG-TO-OPCOM This parameter determines whether debug logging messages are written to
OPCOM. Debug messages are also written to DEBUG-FILE parameter value
if DEBUG-FILE is specified or this parameter is 0 (zero). Severe errors and
warnings are always logged to OPCOM. The default is 1, everything is logged
to OPCOM.

108

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.30.3. Setting Up the DHCP Client
Before setting up a DHCP client, you should talk to your network administrator. The administrator
may want to assign a host name to your DHCP client

If this is your first time using the DHCP client on the host, you need to do the following:

$ COPY IP$CONFIG:DHCLIENT_CONF.DEFAULT IP$CONFIG:DHCLIENT.CONF

Then, edit the file “IP$CONFIG:DHCLIENT.CONF” to replace this line:

#Send host-name “testing”;

with this line:

Send host-name “any hostname you want”;

You can configure your local host to use the DHCP client when you run the VSI TCP/IP configuration
utilities SERVER-CONFIG.

To enable the DHCP client service and to set a parameter, use:

$ IP CONFIGURE /SERVER

To set up the ethernet interface and enable it for DHCP client, refer to the following example:

$ IP CONFIGURE /NETWORK
VSI TCP/IP Network Configuration Utility
[No checking is done against the MAXIMUM configuration]
[Reading in configuration from IP$CONFIG:NETWORK_DEVICES.CONFIGURATION]
NET-CONFIG>MODIFY SE0
[Modifying configuration entry for device "se0"]
VMS Device [EWA0]:
Link Level Encapsulation Mode [ETHERNET]:
BSD Trailer Encapsulation: [DISABLED]
IP Address [0.0.0.0]: 10.10.2.6
IP SubNet Mask [NONE]: 255.255.255.0
Non-Standard IP Broadcast Address [10.10.2.255]:
DHCP CLIENT [ENABLED]: ENABLED
Jumbo Frames [DISABLED]:
IPv6 on this interface [DISABLED]:
[se0 (Shared VMS Ethernet/FDDI): Csr=NONE, Flags=%X0]
NET-CONFIG>EXIT
[Writing configuration to IP$CONFIG:NETWORK_DEVICES.CONFIGURATION]
[Writing Startup file SYS$STARTUP:IP$SYSTARTUP.COM]
[Changes take effect after the next VSI TCP/IP reload]

After configuring the local host to use the DHCP client, you can run IP$SYSTARTUP.COM to start
VSI TCP/IP as in the following example:

Example 9.4. Using IP CONFIGURE /SERVER

$ IP CONFIGURE /SERVER
VSI TCP/IP for OpenVMS Server Configuration Utility V10.5(nn)
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>ENABLE DHCLIENT4
SERVER-CONFIG>EXIT
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]
[Configuration not modified, so no update needed]

109

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

$

This procedure creates the Network configuration data file, IP
$:NETWORK_DEVICES.CONFIGURATION, as well as creating the Network Startup file, IP
$SYSTARTUP.COM to reflect your system’s configuration.

Follow these steps to activate your DHCP Client interface on a running system:

1. Enter the following command :

$ DEFINE/SYSTEM/EXECUTIVE IP$DHCP_CLIENT “1”

2. After enabling the DHCP Client, start the DHCP Client service by restarting the VSI TCP/IP
Master Server. If the DHCP Client service is already running, shut it down first by issuing this
command:

$ IP NETCONTROL DHCLIENT4 SHUTDOWN

3. Start the VSI TCP/IP Master Server with this command:

$ @IP$STARTUP:START_SERVER

9.30.4. Disabling the DHCP Client
To disable the DHCP Client, do the following:

1. Run $ IP CONFIGURE/SERVER

2. Issue the commands:

SERVER-CONFIG>DISABLE DHCLIENT4
SERVER-CONFIG>EXIT

3. Assign an IP address to your system and disable DHCP as shown in the follwing example:

$ IP CONFIGURE /NETWORK
VSI TCP/IP Network Configuration Utility
[No checking is done against the MAXIMUM configuration]
[Reading in configuration from IP$CONFIG:NETWORK_DEVICES.CONFIGURATION]
NET-CONFIG>MODIFY SE0
[Modifying configuration entry for device "se0"]
VMS Device [EWA0]:
Link Level Encapsulation Mode [ETHERNET]:
BSD Trailer Encapsulation: [DISABLED]
IP Address [0.0.0.0]: 10.10.2.6
IP SubNet Mask [NONE]: 255.255.255.0
Non-Standard IP Broadcast Address [10.10.2.255]:
DHCP CLIENT [ENABLED]: DISABLED
Jumbo Frames [DISABLED]:
IPv6 on this interface [DISABLED]:
[se0 (Shared VMS Ethernet/FDDI): Csr=NONE, Flags=%X0]
NET-CONFIG>EXIT
[Writing configuration to IP$CONFIG:NETWORK_DEVICES.CONFIGURATION]
[Writing Startup file SYS$STARTUP:IP$SYSTARTUP.COM]
[Changes take effect after the next VSI TCP/IP reload]

To avoid rebooting the system, deassign the logical IP$DHCP_CLIENT after disabling the DHCP
client and restart the VSI TCP/IP server with the @IP$STARTUP:START_SERVER command.

110

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

9.30.5. DHCP Client Functions and Logicals
The DHCP Client is started as a OpenVMS detached process (IP$DHCP_CLIENT) when VSI TCP/
IP starts.

When the client starts, it configures the network interface (the line) with an IP address of "0.0.0.0",
and then sends a DHCP discover packet to contact any DHCP server on the net. After getting an IP
address and other net configuration information back from a DHCP server, it restarts the network
interface with the IP address and configures VSI TCP/IP on the host with the information it received.
That information may include the default gateway, DNS domain name, host name, DNS servers’ IP
addresses, and other things. After the network interface is configured and started, the DHCP client
goes to sleep and waits for specified events (lease expired, renewal time reached) to wake it up again
for possible re-configuration.

If the DHCP client cannot get the information it needs from the DHCP server, it may re-try until it
succeeds. The re-try frequency can be controlled by the configuration file.

The DHCP client process sets the following items only when configuring the network interface, if it
received the appropriate information from the DHCP server:

• IP address of the network interface

• Host name of the network interface

• Domain Name

• DNS client (Resolver)

• Routes/Gateway

It may change or set IP$NAMESERVERS VSI TCP/IP logical.

It may change the following related OpenVMS logicals:

UCX$BIND_DOMAIN UCX$BIND_SERVER000

UCX$BIND_SERVER00x UCX$INET_DOMAIN

UCX$INET_HOST UCX$INET_HOSTADDR

TCPIP$BIND_DOMAIN TCPIP$BIND_SERVER000

TCPIP$BIND_SERVER00x TCPIP_DOMAINNAME

TCPIP_NAMESERVERS

9.30.6. DHCP Client Configuration
The VSI TCP/IP DHCP client uses the configuration file IP$:DHCLIENT.CONF to control the
behavior of the client. Use the template file IP$:DHCLIENT_CONF.DEFAULT to start with.

The IP$CONFIG:DHCLIENT4_CONF.DEFAULT file is a free-form ASCII text file. The file may
contain extra tabs and new lines for formatting purposes. Keywords in the file are case-insensitive.
Comments begin with the # character and end at the end of the line and may be placed anywhere
within the file (except within quotation marks). You can use the DHCLIENT.CONF file to configure
the behavior of the client in the following ways:

111

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

• Protocol timing

• Information requested from the server

• Information required of the server

• Defaults to use if the server does not provide certain information

• Values with which to override information provided by the server

• Values to prepend or append to information provided by the server

The configuration file can also be preloaded with addresses to use on networks that do not have
DHCP servers.

9.30.7. Protocol Timing
The timing behavior of the client need not be configured by the user. If no timing configuration is
provided by the user, a reasonable timing behavior will be used by default – one which results in
timely updates without placing an inordinate load on the server. The following statements can be used
to adjust the timing behavior of the DHCP client if required.

Table 9.15. DHCP Client Protocol Timing Statements

Statement Description
backoff-cutoff time The client uses an exponential backoff algorithm with some randomness,

so that if many clients try to configure themselves at the same time, they
will not make their requests in lockstep. The backoff-cutoff statement
determines the maximum amount of time the client is allowed to backoff.
The default is two minutes

initial-interval time The initial-interval statement sets the amount of time between
the first attempt to reach a server and the second attempt to reach a server
by recalculating the interval between messages. It is incremented by twice
the current interval multiplied by a random number between zero and one.
If it is greater than the backoff-cutoff amount, it is set to that amount. The
default is ten seconds.

reboot time When the client is restarted, it first tries to reacquire the last address it had.
This is called the INIT-REBOOT state. This is the quickest way to get
started if it is still attached to the same network it was attached to when
it last ran. The reboot statement sets the time that must elapse after the
client first tries to reacquire its old address before it gives up and tries to
discover a new address. The reboot timeout default is ten seconds.

retry time The retry statement determines the time that must pass after the client
has determined that there is no DHCP server present before it tries again to
contact a DHCP server. By default, this is 5 minutes.

select-timeout time It is possible to have more than one DHCP server serving any given
network. It is also possible that a client may receive more than one offer in
response to its initial lease discovery message. It may be that one of these
offers is preferable to the other (e.g., one offer may have the address the
client previously used, and the other may not). The select-timeout
is the time after the client sends its first lease discovery request at which it
stops waiting for offers from servers, assuming that it has received at least
one such offer. If no offers have been received by the time the select-timeout

112

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Statement Description
has expired, the client will accept the first offer that arrives. By default, the
select-timeout is zero seconds — that is, the client will take the first offer it
sees.

timeout time The timeout statement determines the amount of time that must pass
between when the client begins to try to determine its address and the time
it decides that it is not going to be able to contact a server. The default is 60
seconds. After the timeout has passed, if there are any static leases defined
in the configuration file, or any leases remaining in the lease database that
have not yet expired, the client loops through these leases attempting to
validate them. If it finds one that appears to be valid, it uses that lease’s
address. If there are no valid static leases or unexpired leases in the lease
database, the client restarts the protocol after the defined retry interval.

9.30.8. Lease Requirements and Requests
The DHCP protocol allows the client to request the server to send it specific information. The
protocol also allows the client to reject offers from servers if they do not contain information the client
needs, or if the information provided is not satisfactory. There is a variety of data contained in offers
that DHCP servers send to DHCP clients. The DHCP client can request any of the DHCP options, see
Table 9.16 for a list of options.

Table 9.16. DHCP Client Lease Options

Lease Option Description
request [option] [, ...
option];

The request statement causes the client to request that any server
responding to the client send the client its values for the specified
options. Only the option names should be specified in the request
statement, not option parameters. For example,

request subnet-mask, routers;

require [option] [, ...
option];

The require statement lists options that must be sent in order for an
offer to be accepted. Offers that do not contain all the listed options are
ignored.

send { [option
declaration]

[, ... option declaration]}

The send statement causes the client to send the specified options to
the server with the specified values. Options that are always sent in
the DHCP protocol should not be specified here. The one exception is
that the client can specify a requested-lease-time option other than the
default requested lease time, which is two hours. The other obvious use
for this statement is to send information to the server that allows it to
differentiate between this client and other clients or kinds of clients. For
example,

send host-name “my-name”;

9.30.9. Option Modifiers
In some cases, a client may receive option data from the server that is not appropriate for that client,
or may not receive information that it needs, and for which a useful default value exists. It may also
receive information that is useful, but needs to be supplemented with local information. To handle
these needs, these option modifiers are available.

113

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Table 9.17. DHCP Client Option Modifiers

Modifier Description
append [option declaration]; Use the append statement if the client should use the values supplied

by the server followed by a value you supply. The append statement
can only be used for options that allow more than one value to be
given. This restriction is not enforced. If you ignore it, the behavior is
unpredictable.

default [option declaration]; Use the default statement to specify a default value if no value was
supplied by the server.

prepend [option
declaration];

Use the prepend statement if the client should use a value you
supply followed by the values supplied by the server. The prepend
statement can only be used for options that allow more than one
value to be given. This restriction is not enforced. If you ignore it, the
behavior is unpredictable.

supersede [option
declaration];

Use the supersede statement if the client should always use a
locally-configured value or values rather than whatever is supplied by
the server.

9.30.10. Lease Declarations
A lease statement consists of the lease keyword, followed by a left curly brace ({), followed by
one or more lease declaration statements, followed by a right curly brace (}).

lease { lease-declaration [... lease-declaration] }

The DHCP client may determine after some period of time (see Section 9.30.7) that it is not going to
succeed in contacting a server. At that time, it consults its own database of old leases and tests each
one that has not yet timed out by pinging the listed router for that lease to see if that lease could work.
It is possible to define one or more fixed leases in the client configuration file for networks where
there is no DHCP or BOOTP service, so that the client can still configure its address automatically.
This is done with the lease statement.

Note

The lease statement is also used in the DHCLIENT.DB file in order to record leases that have been
received from DHCP servers. Some of the syntax for leases as described below is only needed in the
DHCLIENT.DB file. Such syntax is documented here for completeness.

The following lease declarations are possible:

Table 9.18. DHCP Client Lease Declarations

Declaration Description
bootp; The bootp statement indicates that the lease was acquired using the BOOTP

protocol rather than the DHCP protocol. It is never necessary to specify this in
the client configuration file. The client uses this syntax in its lease database file.

filename "string"; The filename statement specifies the name of the boot filename to use.
This is not used by the standard client configuration script, but is included for
completeness.

114

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Declaration Description
fixed-address ip-
address;

The fixed-address statement sets the IP address of a particular lease. This
is required for all lease statements. The IP address must be specified as a dotted
quad (e.g., 12.34.56.78).

interface "string"; The interface statement indicates the interface on which the lease is
valid. If set, this lease will be tried only on a particular interface. When the
client receives a lease from a server, it always records the interface number
on which it received that lease. If predefined leases are specified in the
DHCLIENT.CONF file, the interface should also be specified, although this is
not required.

option option-
declaration;

The option statement specifies the value of an option supplied by the server,
or, in the case of predefined leases declared in DHCLIENT.CONF, the value
that the user wants the client configuration script to use if the predefined lease
is used.

renew date;

rebind date;

expire date;

The renew statement defines the time at which the DHCP client should begin
trying to contact its server to renew a lease that it is using.

The rebind statement defines the time at which the DHCP client should
begin to try to contact any DHCP server in order to renew its lease.

The expire statement defines the time at which the DHCP client must stop
using a lease if it has not been able to contact a server in order to renew it.

These declarations are set automatically in leases acquired by the DHCP
client, but must be configured in predefined leases: a predefined lease whose
expiration time has passed will not be used by the DHCP client. Dates are
specified as follows:

weekday year/month/day hour:minute:second

W YYYY/MM/DD HH:MM:SS

W is the day of the week, from zero (Sunday) to six (Saturday).

YYYY is the year, including the century.

MM is the number of the month, from 01 to 12.

DD is the day of the month, counting from 01.

HH is the hour, from 00 to 23.

MM is the minute, from 00 to 59.

SS is the second, from 00 to 59.

The time is always in Greenwich Mean Time, not local time.
server-name
"string";

The server-name statement specifies the name of the boot server name to
use. This is not used by the standard client configuration script.

script "script-
name";

The script statement specifies the file name of the DHCP client
configuration script. This script is used by the DHCP client to set the interface's
initial configuration prior to requesting an address, to test the address once

115

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Declaration Description
it has been offered, and to set the interface's final configuration once a lease
has been acquired. If no lease is acquired, the script is used to test predefined
leases, if any, and also called once if no valid lease can be identified. The
default value for “script-name” is IP$:DHCLIENT-SCRIPT.COM.

9.30.11. Other Declarations
Table 9.19. DHCP Client Other Declarations

Declaration Description
reject ip-address; The reject statement causes the DHCP client to reject offers from

servers who use the specified address as a server identifier. This can be
used to avoid being configured by rogue or misconfigured DHCP servers,
although it should be a last resort; better to track down the bad DHCP
server and fix it.

9.30.12. Example
template of IP$:DHCLIENT.CONF
send host-name "lambda2";
send dhcp-lease-time 3600;
prepend domain-name-servers 127.0.0.1;
request subnet-mask, broadcast-address, time-offset, routers,
 domain-name, domain-name-servers, host-name;
require subnet-mask, domain-name-servers;
timeout 60;
retry 60;
reboot 10;
select-timeout 5;
initial-interval 2;
script "IP$:dhclient-script.com";
reject 10.10.10.10;
reject the offer from this DHCP server

The first line, starting with the #, is a comment line. The last line rejects the offer from the DHCP
server with an IP address of 10.10.10.10. This is not a simple DHCLIENT.CONF file. In many cases,
it is sufficient to just create an empty DHCLIENT.CONF file and let the DHCP client use default
values.

9.30.13. Troubleshooting the DHCP Client
9.30.13.1. How do I know the DHCP client has configured my
network successfully?
There are two ways to do it:

Check if the IP$DHCP_CLIENT logical is equal to "1", you can do:

$ SHOW LOGICAL IP$DHCP_CLIENT
"IP$DHCP_CLIENT" = "1" (LNM$SYSTEM_TABLE)
$

Run the $ IP CONFIGURE /INTERFACE command.

116

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

1. Check the line DHCP Client for which the interface is enabled.

2. Check that the line DHCP Client Flag: is set.

$ IP CONFIGURE /INTERFACE
VSI TCP/IP for OpenVMS Network Configuration Utility V10.5(nn)
[Reading in MAXIMUM configuration from IP$:IP.EXE]
[Reading in configuration from IP$:NETWORK_DEVICES.CONFIGURATION]
NET-CONFIG>SHOW
Interface Adapter CSR Address Flags/
Vector
--------- ------- -----------

se0 (Shared OpenVMS Ethernet/FDDI) -NONE- -NONE- -NONE-
 [TCP/IP$: 10.10.10.10]
 [VMS Device: EWA0, Link Level: Ethernet]
 DHCP Client for the interface is enabled
Official Host Name: dumdum.fuges.com
Domain Nameserver: 127.0.0.1
Timezone: EST
Timezone Rules: US/EASTERN
Load UCX $QIO driver: TRUE
Load PWIP (Pathworks) driver: TRUE
DHCP Client Flag: 1
NET-CONFIG>QUIT
$

9.30.13.2. What if I cannot ping an IP address on the internet?
If you can ping the same IP address from another host and the network interface has been configured
by the DHCP client, check the gateway and route configuration on the host.

9.30.13.3. What if I can ping a host by its IP address but not by its
name?
• The DNS client on the host may not be configured right. Type

$ SHOW LOGICAL IP$NAMESERVERS

to make sure the DNS client information is correct.

• The DNS server may be down.

9.30.13.4. Why is the local address "0.0.0.0" when I use "$ IP
CONFIGURE /INTERFACE" and then use “SHOW”?
The DHCP client has failed to allocate an IP address. The possible reasons and solutions are:

Reason Solution
There is no DHCP server on the net. Set up a DHCP server.
The DHCP server is not configured correctly. Modify the DHCP server configuration.
The DHCP client is configured to reject the
DHCP server.

Reconfigure the DHCP client to not reject the
DHCP server.

The hostname selection process failed. Use another host name.

117

Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server

Reason Solution
There are no IP addresses available in the DHCP
server.

Increase the IP address on the DHCP pool server.

9.30.13.5. Where can I find the status information of the DHCP
client?
• The file IP$:DHCLIENT-SCRIPT-ENV.TMP contains the most recent environment variables

used by the DHCP client script file to configure the network.

• The file IP$:DHCLIENT.DB contains the DHCP client lease history.

• The file IP$:DHCLIENT.LOG contains information about the DHCP client process.

The IP$:DHCLIENT.LOG file is not created by the default setting of the DHCP client. To create this
log file, configure the DHCP client to enable the error and debug logging:

$ IP CONFIGURE /SERVER
SERVER-CONFIG>SELECT DHCLIENT
SERVER-CONFIG>SET PARAMETERS
Add Parameter: DEBUG 7
Add Parameter:
SERVER-CONFIG>WRITE
SERVER-CONFIG>RESTART

(Debug levels are listed in Table 9.14.)

118

Chapter 10. Managing the XDM Server
and X11-Gateway Configuration
This chapter explains how to configure the XDM (X Display Manager) server of VSI TCP/IP
to manage remote systems running X (X Window System) servers. Also, this chapter includes
information about the X11-Gateway program

10.1. Understanding X Display Management
The XDM server of VSI TCP/IP provides login services to X servers through graphical dialog boxes.
From a user's perspective, logging in at a XDM-managed X server of VSI TCP/IP is no different than
logging in at an OpenVMS system console.

Initially, the user sees the standard DECwindows banner and login dialog. After the user supplies
a valid user name and password, the DECwindows Session Manager starts and launches any
applications configured for automatic startup. After the user logs out from the Session Manager, the
banner and login dialog reappear.

Users of X11R4 (and later) servers benefit from XDM because they can take advantage of the
DECwindows Session Manager as if they were using a host.

Users can also specify which host they want to use. This feature is provided by XDMCP (X Display
Management Communications Protocol), used for communication between X servers and XDM
servers.

From a system manager's perspective, XDM provides a convenient way to extend the LOGINOUT
service to users on remote X servers and to specify which X servers are managed by each XDM server
host.

The XDM server of VSI TCP/IP is based on X11R6 sources from MIT.

10.2. Accessing the XDM Server
Before an X server can be managed, you must grant it access to your XDM server. In a network of
dozens or hundreds of X servers, it may not be practical to manage every X server that requests XDM
service. In these cases, you can restrict access to your XDM server. The manner in which access is
granted depends on the version of the X server and how it requests XDM service.

X11R4 (and later) X servers can generate three basic types of management requests, as explained in
Table 10.1.

Table 10.1. XDMCP Requests

Request Type Description XDM Server Response
Direct Sent by X server to

a specific host
If the XDM server is configured to accept requests from
the user's X server, the host produces a login dialog on that
server. If the XDM server is configured to refuse service
to the user's X server, no login dialog appears, and the user
must try a different host. For information on selectively
rejecting XDMCP direct requests, see Section 10.7.1.

119

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

Request Type Description XDM Server Response
Broadcast Broadcast by

X server to all
hosts on the local
network

The XDM server responds to broadcast requests as if they
were direct requests. Broadcasts can result in several XDM
servers accepting the request; it is then up to the X server to
determine which host to use. Some X servers simply use the
first host to respond. Others present a list of responding hosts
in a chooser dialog box, and the user selects a host from the
list.

Indirect Sent by X server to
a specific host

If the host's XDM server is configured to handle indirect
requests from the X server, the host either forwards the
request to another XDM server host or returns a list of XDM
servers from which the user can choose.

Note

Only X11R5 and X11R6 XDM servers can properly handle
forwarded requests.

The XDM server of VSI TCP/IP does not handle indirect
requests.

From the user's perspective, broadcast and indirect requests provide similar benefits. From an
administrator's perspective, however, indirect requests allow the XDM server administrator to select
an XDM server for users.

Consider a situation in which BROWN.FLOWERS.COM, an X terminal, is configured to make indirect
requests for display management to an OpenVMS host, WHORFIN.FLOWERS.COM, running the
XDM server of VSI TCP/IP. The administrator of WHORFIN can specify which XDM servers will
manage BROWN by forwarding inquiries to another XDM server.

X11R3 servers cannot take advantage of XDMCP, which was not introduced until X11R4. Instead,
X11R3 servers do not allow users to choose a host. For information on managing X11R3 servers, see
Section 10.8.

10.2.1. Special Features of the XDM Server of VSI TCP/
IP
Unlike many XDM servers, the VSI TCP/IP XDM server does not control X sessions after users have
logged in. Instead, it starts the processes that produce the login dialog and authenticate the user, then
passes control to the DECwindows Session Manager. When the user terminates the session using
the Session Manager, the X session ends and XDM starts a new login cycle. This method allows
you to change XDM server configuration, stop the XDM server, and restart the XDM server without
interrupting any X sessions already in progress.

Configuration of a remote user's session is identical to the customization of a local DECwindows
user's session. Traditionally, XDM servers on UNIX systems allow user environments to be
configured by scripts (command procedures) that are run before, during, and upon ending each X
session. The VSI TCP/IP XDM server, however, takes advantage of the DECwindows STARTLOGIN
and LOGINOUT processes to eliminate the need for extra command procedures.

The VSI TCP/IP XDM server does not handle indirect requests.

120

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

10.3. XDM Administrative Tasks
The following are common administrative tasks for the XDM server:

• Enabling the XDM server (see Section 10.4).

• Modifying the XDM server configuration (see Section 10.5).

• Controlling the XDM server (see Section 10.6).

• Controlling access to the XDM server (see Section 10.7).

• Managing X11R3 displays (see Section 10.8).

With the exception of controlling the XDM server, each task requires you to modify XDM
configuration files and update the XDM server with the new information (as described in
Section 10.6).

10.4. Enabling and Starting the XDM Server
When VSI TCP/IP is first installed, the XDM server is disabled, and you must enable it. After the
server is enabled, it starts automatically when VSI TCP/IP starts.

1. Issue the following DCL command:

$ IP CONFIGURE /SERVER

2. At the SERVER-CONFIG prompt, enter:

SERVER-CONFIG>ENABLE XDM

3. To verify that the XDM server is enabled, enter:

SERVER-CONFIG>SHOW XDM

If no asterisk (*) appears to the left of XDM in the output, the service is enabled.

4. To exit the configuration utility, enter:

SERVER-CONFIG>EXIT

5. Restart the master server:

$ @IP$:IP$SYSTARTUP.COM

10.5. Modifying the XDM Server Configuration
XDM is configured through X resources and files specified through X resources. When the XDM
server starts or you reload its configuration, it configures itself according to the contents of its master
configuration file, IP$:XDM.CONFIGURATION, including reading the contents of files specified in
the master configuration file.

Resource parameters for VSI TCP/IP XDM are listed in Table 10.2 and Table 10.3.

These resources modify the global behavior of XDM. Because the resource manager uses colons
to separate the name of the resource from its value and dots to separate resource name parts, XDM
substitutes underscores for both dots and colons when generating the resource name.

121

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

Note

If you import an XDM configuration file from a UNIX system, the startup, session, and authorize
resources have no effect on the VSI TCP/IP XDM server.

The following is a sample XDM.CONFIGURATION file:

DisplayManager.logFile: IP$:xdm-errors.log
DisplayManager.servers: IP$:xdm.servers
DisplayManager.accessFile: IP$:xdm.access
DisplayManager.removeDomainname: false

Table 10.2. XDM Server Resources

Configuration File Resource Description
DisplayManager.accessFile Specifies a file containing a database of host names that

are either allowed direct access to this host or to which
queries should be forwarded. For details, see Section 10.7.
The equivalent file on UNIX systems is /usr/lib/X11/xdm/
Xaccess. Default: IP$:XDM.ACCESS.

DisplayManager.debugLevel Sets the debug output level. Default: 0.

You can also set this value while the XDM server is running
with the command IP NETCONTROL XDM DEBUG.

DisplayManager.logFile Specifies the file in which errors are logged when the
logType resource is FILE. The equivalent file on UNIX
systems is /usr/lib/X11/xdm/xdm-errors. Default: IP
$:XDM.LOG.

DisplayManager.logType Specifies where XDM server messages are logged:
OPCOM, SYSLOG, FILE, or STDOUT. Default: OPCOM.

DisplayManager.removeDomainName Specifies whether XDM removes the domain name portion
of host names if they are the same as the domain name
of the local host. Removing the domain name is useful
because name resolvers typically create fully qualified host
names when computing display names for XDMCP clients.
Default: true.

DisplayManager.requestPort Specifies the UDP port number to which the XDM server
listens for incoming XDMCP requests. Unless you need to
debug the system, do not change the value from the default.
Default: 177 (the standard for XDMCP).

DisplayManager.servers Specifies a file containing a list of foreign X servers to
manage. If the file specification is prefixed with an @
sign, it contains one listing per line. A foreign X server is
an X display that does not support the XDMCP protocol.
The equivalent file on UNIX systems is /usr/lib/X11/xdm/
Xservers.

Default: IP$:XDM.SERVERS.

You can use the configuration parameters in the Table 10.3 to adjust the way the XDM server transfers
control of the X terminal to a DECwindows process. The default values for these parameters should
be suitable for ordinary DECwindows usage.

122

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

Under normal operation, the XDM server creates an X connection to the managed display before
starting a process to invoke the DECwindows login screen. When the login completes and the
DECwindows Session Manager starts, it hands off the initial X connection to the process. The initial
X connection closes down automatically when the session ends, causing the X display to reset and
either shut down or restart the XDM login chooser (depending on how the X terminal or software is
configured).

Table 10.3. Advanced XDM Resources

Configuration Resource Description
DisplayManager.loginCheckInterval The number of seconds the XDM server waits between

checks to see if the DECwindows login process has
begun. Default: 5.

DisplayManager.loginTries The number of checks the XDM server makes to see if
the DECwindows login process has begun. Default: 12.

DisplayManager.sessionCheckInterval The number of seconds the XDM server waits between
checks to see if the DECwindows login process has
handed control to the user's Session Manager. Default:
10.

DisplayManager.sessionTries The number of checks the XDM server makes to see if
the user's Session Manager started. Default: 30.

DisplayManager.bypassSessionCheck If set to true, the check for the start of a Session
Manager is bypassed. Default: false.

DisplayManager.sessionManagers A comma-separated list of image names, without device
or directory specifications, that the XDM server should
consider to be Session Managers for a DECwindows
session. Default: DECW$SESSION.EXE.

10.6. Controlling the XDM Server
This section describes the following XDM tasks:

• Checking the status of the XDM server

• Starting the XDM server

• Stopping the XDM server

• Restarting the XDM server

• Reloading the XDM configuration

For most of these tasks, you use the IP NETCONTROL utility.

10.6.1. Checking the Status of the XDM Server
To check the status of the VSI TCP/IP XDM server, enter:

$ IP NETCONTROL XDM SHOW

The following example shows the information generated by this command on a system named
WHORFIN that manages three X terminals, BANZAI, BROWN, and MIGUEL. When the terminal

123

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

is displaying a DECwindows login screen, the following command output changes to show the words
"not logged in" instead of a process identifier number.

$ IP NETCONTROL XDM SHOW
Connected to NETCONTROL server on "WHORFIN"
< WHORFIN.YOYDYNE.COM
< Network Control 10.5(8) at Wed 8- Apr-2017 11:37AM-EST
< XDM Current Managed Displays:
< Display BANZAI.FLOWERS.COM:0.0 Type XDMCP Process 20E002A8
< Display BROWN.FLOWERS.COM:0.0 Type XDMCP Process 20E00289
< Display MIGUEL.FLOWERS.COM:2005.0 Type XDMCP Process 20E00242
< OK

10.6.2. Starting the XDM Server
This section describes how to start the VSI TCP/IP XDM server.

Note

The XDM server is automatically started when VSI TCP/IP starts.

Before starting the VSI TCP/IP XDM server, make sure it is enabled. For details, see Section 10.4.

To start the VSI TCP/IP XDM server, enter:

$ IP NETCONTROL XDM START

When the XDM server starts, it reads the master configuration file, IP$:XDM.CONFIGURATION,
to determine which configuration files to read, then reads them. (For information on modifying the
master configuration file, see Section 10.5). You can specify other configuration files simply by
modifying the contents of the master configuration file and then restarting the XDM server (see
Section 10.6.4), or by reloading the XDM configuration files (see Section 10.6.5).

The following example shows the information generated by this command:

$ IP NETCONTROL XDM START
< XDM Server Started, process id pid

10.6.3. Stopping the XDM Server
To stop the VSI TCP/IP XDM server, enter:

$ IP NETCONTROL XDM SHUTDOWN

The following example shows the information generated by this command:

$ IP NETCONTROL XDM SHUTDOWN
< XDM Server Shutdown

10.6.4. Restarting the XDM Server
Restarting the XDM server is a convenient alternative to stopping and starting the XDM server as
described in Section 10.6.2 and Section 10.6.3.

When the XDM server restarts, it reads the master configuration file IP$:XDM.CONFIGURATION
to determine which configuration files to read, then reads them.

124

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

To restart the XDM server, enter:

$ IP NETCONTROL XDM RESTART

The following example shows the information generated by this command:

$ IP NETCONTROL XDM RESTART
Connected to NETCONTROL server on "LOCALHOST"
< WHORFIN.FLOWERS.COM Network Control 10.5(8) at Tue 30-Apr-2017 12:47AM-
EST
< XDM Server Started, process id 2040024B

For information on modifying the master configuration file, see Section 10.5.

10.6.5. Reloading the XDM Configuration
Changes to XDM server configuration take effect when the XDM server is started or restarted or
when the configuration files are reloaded. Reloading the XDM server allows you to reload the XDM
server configuration files without restarting the XDM server and interrupting connections between X
servers and the XDM server.

When the XDM server reloads its configuration, it first reads the IP$:XDM.CONFIGURATION
master configuration file to determine which other files to read, then reads them. For information on
modifying the master configuration file, see Section 10.5.

To reload the XDM configuration files, enter:

$ IP NETCONTROL XDM RELOAD

The following example shows the information generated by this command produces:

$ IP NETCONTROL XDM RELOAD
< OK: XDM server configuration reloading

10.7. Controlling Access to the XDM Server
Access to the VSI TCP/IP XDM server by X11R4 (and later) servers is controlled through the IP
$:XDM.ACCESS file. This file contains the following information:

• Displays the XDM server will manage

• Displays the XDM server will not manage

• Displays and the XDM servers that will manage them

• Macro definitions

The following sections explain how to edit XDM.ACCESS to handle direct, broadcast, and indirect
requests.

10.7.1. Handling Direct and Broadcast Requests
To manage X servers that make direct or broadcast requests, add their names to the XDM.ACCESS file
as follows:

• To manage a specific X server, include a line with the server host name.

125

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

• To reject a specific X server, include a line with the server host name preceded by an exclamation
point (!).

• To manage any X server that requests management, include a line consisting of an asterisk (*).

For convenience, you can define lists of hosts in macros in XDM.ACCESS. To define a macro, include
a line at the top of the file in the following format:

%macroname host_list

You can then use the macro name (including the leading percent sign (%) in the file.

The following sample XDM.ACCESS file allows any host to be managed by the XDM server.

Access control file for XDMCP connections
#
* #any host can get a login window

10.8. Managing X11R3 Displays
Although X11R3 X servers do not allow users to select the host they are going to log into, they can
still be managed by the VSI TCP/IP XDM server. Once an X server is managed by one host, however,
the user has limited ability to change to another host.

To configure the VSI TCP/IP XDM server to manage a specific X11R3 display:

1. Add the X11R3 display to the VSI TCP/IP XDM server's XDM.SERVERS file (see
Section 10.8.1).

2. Configure the X11R3 display to grant access to the VSI TCP/IP host (see Section 10.8.2).

3. Make sure the X11R3 display is not already managed by another XDM server (see
Section 10.8.3).

4. Reload the XDM server configuration (see Section 10.8.3).

10.8.1. Specifying X11R3 Displays
The XDM server obtains a list of X displays to manage from the IP$:XDM.SERVERS file whenever
it starts or you reload its configuration files.

• The XDM server obtains its list of X11R3 servers from the file specified in the
DisplayManager.servers resource in the XDM master configuration file, IP
$:XDM.CONFIGURATION.

Add an entry to XDM.SERVERS in the following format:

server_name foreign

• server_name is the name of the X11R3 server you want to manage, in the standard X format
(hostname:server number[.screen number]).

• "foreign" indicates that server_name does not use XDMCP.

The following sample XDM.SERVERS file contains entries for two X11R3 servers, BANZAI:0 and
MIGUEL:0.

126

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

banzai.flowers.com:0 foreign
miguel.flowers.com:0 foreign

You can also specify classes of displays that share similar requirements.

10.8.2. Setting Up Host Access on the Display
Before the XDM server can produce a login dialog box on an X11R3 display, it must be granted
access to the display via the X host access mechanism.

Note

The VSI TCP/IP XDM server does not support the MIT-MAGIC-COOKIE-1 mechanism.

The XDM server can only present the LOGINOUT dialog on X11R3 servers on which host access
restrictions are entirely disabled, or enabled specifically for your VSI TCP/IP XDM server host.

For many X servers, you can disable access restrictions with the xhost client, or by modifying
configuration files before starting the server. Refer to your X server administration documentation for
information on granting access to remote hosts.

10.8.3. Ensuring No Other Host Is Managing the
Display
If an X11R3 display is already being managed by another XDM server, either remove the display
from the other XDM server's configuration (usually the XSERVERS file) or change the X server's host
access list so the other XDM server cannot access the display. Cancel the login dialog and verify that
the other XDM server's login dialog does not return.

10.8.4. Reloading the XDM.SERVERS File
Reload the IP$:XDM.SERVERS file (or stop and restart the XDM server) after you have:

• Specified which X11R3 servers you want to manage in the IP$:XDM.SERVERS file

• Granted access to your XDM server

• Made sure that no other XDM server is managing the X servers

The XDM server reads the XDM.SERVERS configuration file when it starts (see Section 10.6.2),
restarts (see Section 10.6.4), and when you reload its configuration (see Section 10.6.5).

10.9. X11-Gateway Configuration
The VSI TCP/IP X11-Gateway program provides X (X Window System) connectivity between a
DECnet-only host and an IP-only host by a VSI TCP/IP node as an application gateway. The X11-
Gateway is bidirectional; it functions as a gateway from a DECnet-only X client to an IP-only X
server, or vice versa.

The gateway node requires VSI TCP/IP and DECnet software only. There is no requirement for
the gateway to be running any X software. The gateway software can support multiple X Windows
connections simultaneously.

127

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

10.9.1. X11-Gateway Concepts
Before configuring the X11-Gateway, be sure you understand the following terms:

Term Description
Client The node executing the X application
Gateway The node connected to an IP network and a DECnet network. Information from

the client on one network is passed through the gateway to the server on
the other network.

Server The node running the X server software. (Typically a host with a mouse,
keyboard, and at least one bit-mapped screen.)

Server
number

A unique number identifying the X11-Gateway to VSI TCP/IP, DECnet, and the
X software on the client and server nodes. Each configured gateway is assigned a
unique server number by the system manager.

To avoid conflicts with current and future versions of DECwindows software, use numbers beginning
with 10 and increment for each new gateway. For example, assign the number 10 to the first X11-
Gateway, the number 11 to the second, and so on. As you remove X11-Gateways from the system,
you can reuse their server numbers.

10.9.2. Allowing an IP Client Access to a DECnet
Server
To configure the X11-Gateway host to allow an IP client access to a DECnet server:

1. Choose an X11-Gateway server number between 10 and 999.

2. Create a TCP port number by adding 6000 to the server number. For example, if the server
number is 13, the TCP port number is 6013. TCP port 6000 is used by DECwindows servers.
Select port numbers starting at 6010 to avoid conflicts with DECwindows.

3. Add the X11-Gateway service to the list of TCP/IP services using the Server Configuration Utility
(SERVER-CONFIG). Information about using this utility and its commands is provided in the VSI
TCP/IP Administrator’s Guide: Volume I.

The prefix "X11-GATEWAYxxx" is added to the name of the service you install; xxx is the server
number you selected in Step 1. For example, for server number 10, the service you add using
SERVER-CONFIG is X11-GATEWAY10. SERVER-CONFIG provides the X11-GATEWAY13
service, but the number 13 has no significance; this service is provided only as an example. You
can use this service or any number of your choice between 10 and 999. If you chose 13 as the
server number in Step 1, you can enable the existing X11-GATEWAY13 service using SERVER-
CONFIG. There is no need to add this service, as it has already been added it. The following
example adds an X11-Gateway server number of 12.

$ IP CONFIGURE/SERVER
VSI TCP/IP for OpenVMS Server Configuration Utility 10.5(nnn)
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>ADD X11-GATEWAY12
[Adding new configuration entry for service "X11-GATEWAY12"]
Protocol: [TCP]
TCP Port number: 6012

128

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

Program to run: IP$:X11-GATEWAY.EXE
[Added service X11-GATEWAY12 to configuration]
[Selected service is now X11-GATEWAY12]
SERVER-CONFIG>RESTART
Configuration modified, do you want to save it first ? [YES]
[Writing configuration to
IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]
%RUN-S-PROC_ID, identification of created process is 20E0026B
SERVER-CONFIG>EXIT

4. Define the X11-Gateway logical names. The X11-Gateway accepts connections from the IP
network and routes the X protocol requests to a specific DECnet X server. Specify the server using
the following logical names:

• IP$XGATEWAY_TCPIP_server_number_HOSTNAME

Specifies the DECnet host name. This logical name must be defined, but do not include the
colons from the DECnet host name.

• IP$XGATEWAY_TCPIP_server_number_SERVER

The X server number of the node where the X client application is displayed. Most hosts
run one X server, which is designated as server 0 (zero). This logical name is optional if the
DECnet X server number is zero. The X11-Gateway assumes a DECnet X server number of
zero if you do not define this logical. You should define the logical if the DECnet X server
number is not zero.

In the following example, the X11-Gateway server number is 12. The X11-Gateway accepts
connections from the IP network and gateways them to X server 1 on the DECnet node BRONX.
Assign values to these logical names using commands like the following examples:

$ DEFINE/SYSTEM/EXEC IP$XGATEWAY_TCPIP_12_HOSTNAME BRONX
$ DEFINE/SYSTEM/EXEC IP$XGATEWAY_TCPIP_12_SERVER 1

Insert these logical name definitions in the system startup procedure so they are invoked after the
DECnet and VSI TCP/IP startup procedures execute.

10.9.2.1. Running an IP Client on a DECnet Server

To bring up the X application on the IP-client-to-DECnet-server configuration:

1. On the DECnet server, authorize DECnet connections from user SYSTEM on the gateway node.
If the IP$SERVER process on the gateway node has been started under a user name other than
SYSTEM, that user should also be authorized. A less secure, but more reliable, method is to
authorize the "*" user. See Section 10.9.4.

To provide connection authorization on ULTRIX or OpenVMS, use the Session Manager.

2. On the IP client, set the display variable to point to the X11-Gateway host. Use the X11-Gateway
server number for the display server number.

To modify the DISPLAY environment on OpenVMS systems, use the SET DISPLAY command.

3. On the IP client, start the X application.

For example:

129

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

• The IP X client node is the UNIX node pelham.flowers.com. The X11-Gateway node is
amtrak.flowers.com (TCP/IP) and AMTRAK: (DECnet). The X11-Gateway server number is
12. BRONX:: is an OpenVMS DECnet X server.

• On the BRONX:: node, the user authorizes protocol DECNET, node AMTRAK, and user "*"
using the Security pull-down menu in the Session Manager.

• On the pelham.flowers.com UNIX node, the user runs setenv to set the DISPLAY environment
variable to the value amtrak.flowers.com:12.1. The user can then invoke an X application.

• The X application appears on the BRONX:: node.

10.9.3. Allowing a DECnet Client Access to an IP
Server
To configure the X11-Gateway to allow a DECnet client access to an IP server:

1. Choose an X11-Gateway server number as described in Section 10.9.2.

2. Add the X11-Gateway to the list of DECnet objects. The object name for the X11-Gateway has
the value X$Xserver_number. For example, for a server number of 17, set the object with this
command:

$ RUN SYS$SYSTEM:NCP
NCP>DEFINE OBJECT X$X17 NUMBER 0 FILE IP$:X11-GATEWAY.EXE
NCP>SET OBJECT X$X17 NUMBER 0 FILE IP$:X11-GATEWAY.EXE

If the DECnet default account is disabled, the command should include a valid USERNAME and
PASSWORD on the gateway system. In this example the X11-Gateway server number is 17:

$ RUN SYS$SYSTEM:NCP
NCP>DEFINE OBJECT X$X17 NUMBER 0 FILE -
_ IP$:X11-GATEWAY.EXE USER SYSTEM PASS systempassword
NCP>SET OBJECT X$X17 NUMBER 0 FILE IP$:X11-GATEWAY.EXE -
_ USER SYSTEM PASS systempassword

3. Define the logical names. The X11-Gateway accepts connections from the DECnet network and
directs X protocol requests to a specific IP X server. Specify the server is using the following
logical names:

• IP$XGATEWAY_DECNET_server_number_HOSTNAME

Specifies the IP X server host name. You must define this logical name.

• IP$XGATEWAY_DECNET_server_number_SERVER

Specifies the X server number, which is typically set at 0 (zero) to indicate that a single server
is being used. If a second server is in use, set this value to 1, and so on. If this logical name is
not defined, the default value is 0. For example, the X11-Gateway server number is 17. The
X11-Gateway accepts connections from the DECnet network and directs them to X server
number 1 on the IP node englewood-nj.flowers.com. The logical names are then defined as:

$ DEFINE/SYSTEM/EXEC IP$XGATEWAY_DECNET_17_HOSTNAME -
_$ ENGLEWOOD-NJ.FLOWERS.COM
$ DEFINE/SYSTEM/EXEC IP$XGATEWAY_DECNET_17_SERVER 1

130

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

Insert these logical name definitions into the system startup procedure so the definitions occur
after the invocation of the DECnet and VSI TCP/IP startup procedures.

10.9.3.1. Running the DECnet Client on the IP Server
To bring up the X application on the DECnet-client-to-IP-server configuration:

1. On the IP server, authorize IP connections from the gateway node. X-over-IP does not provide
user name information. If a user name is required as part of the authorization (for example, on
OpenVMS) use a "*" value. Connection authorization is usually accomplished with the xhost
command on UNIX systems, or with the OpenVMS or ULTRIX Session Manager.

2. On the DECnet client, set the display variable to point to the X11-Gateway host. The X11-
Gateway server number should be used for the display server number. On UNIX hosts (including
ULTRIX) use the setenv command; on OpenVMS systems, use the SET DISPLAY command.

3. On the DECnet client, execute the X Windows application.

For example:

• The DECnet X client is an OpenVMS node METRO::. The X11-Gateway node is DENISE::
(DECnet) and DENISE.FLOWERS.COM (TCP/IP). The X11-Gateway server number is
17. The IP X server is the UNIX host englewood-nj.flowers.com.

• On englewood-nj the user authorizes node denise.flowers.com by entering the command:

% xhost +denise.flowers.com

• On METRO, the user issues the command:

$ SET DISPLAY/CREATE/NODE=DENISE/TRANS=DECNET/SERVER=17

• The user can then invoke an X application, which appears on the englewood-nj server.

10.9.4. X11-Gateway Security
The X11-Gateway node does not attempt to restrict connections it receives from the network. As a
result, any node or user on the client side of the gateway can access the server, essentially allowing a
client user to monitor all activity on the X server via the X11-Gateway.

For IP-client-to-DECnet-server connections, you can reduce risk by using the ACCEPT-HOSTS/
ACCEPT-NETS capabilities of the VSI TCP/IP master server on the gateway host. For more
information, see VSI TCP/IP Administrator’s Guide: Volume I.

For DECnet-client-to-IP-server connections, your risk can be reduced by using the NCP utility to limit
access to the gateway host.

VSI does not recommend running the X11-Gateway on untrusted networks unless other restrictions
have been imposed by the system manager.

10.9.5. X11-Gateway Debugging
The best programs for testing client-to-gateway to server connectivity are based on the Xlib routines
(as opposed to widget toolkits).

131

Chapter 10. Managing the XDM Server and X11-Gateway Configuration

The ICO program is available on most X implementations (for example, /usr/bin/X11/ico or DECW
$EXAMPLES:ICO) and works well for debugging problems. The ICO program opens a window and
causes an icosahedron to bounce around the window. When this program works, X works as well. Exit
the OpenVMS version of this program by pressing Ctrl/Y in the window from which you invoked
ICO. You can also use the IP X11DEBUG command to debug OpenVMS IP client problems.

10.9.5.1. Selected Error Numbers from ERRNO.H
Table 10.4 lists error values from the ERRNO.H file.

Table 10.4. ERRNO.H Error Values

Error Value Description
ENETUNREACH 51 The IP network you are trying to contact is currently

unreachable.
ECONNRESET 54 The connection was reset by the remote node. This typically

occurs when the remote host has rebooted and the local host
attempts to transmit on a stale connection.

ETIMEDOUT 60 The connection timed out during the open.
ECONNREFUSED 61 The connection was refused. This occurs when a connection is

attempted to a nonexistent server process.
EHOSTUNREACH 65 There is no route to the host you are trying to contact.

10.9.5.2. X11-Gateway Error Messages
The X11-Gateway node transmits NETWORK class operator messages when an error is encountered.
You can change the level of information supplied by X11-Gateway messages by defining the logical
name IP$XGATEWAY_DEBUG_LEVEL in the system table. Set this value to:

• 0 — to receive fatal errors

• 1 — for debugging messages

• 2 — for informational messages

For example, to select debug level 1:

$ DEFINE/SYSTEM/EXEC IP$XGATEWAY_DEBUG_LEVEL 1
$ @IP$:IP$SYSTARTUP.COM

If the logical name does not exist, the DEBUG level defaults to a value of zero. All error messages
from the X11-Gateway are prefixed with "Xgateway:". The errno values can be translated by
examining Table 10.4. Status values are OpenVMS error values that you can examine using the
command WRITE SYS$OUTPUT F$MESSAGE (Status).

132

Chapter 11. Configuring VSI TCP/IP
SNMP Services
This chapter explains how to configure VSI TCP/IP SNMP (Simple Network Management Protocol)
agents. SNMP agents are the hosts managed by SNMP.

11.1. Understanding SNMP
SNMP is a protocol from which hosts called network management stations can obtain and
modify information on other network hosts called SNMP agents.

Typical SNMP-based network management systems employ a host that has been configured as an
SNMP agent from which the current network configuration of other network nodes can be analyzed
and modified. Such management systems often provide graphical interfaces for these tasks.

11.1.1. SNMP Managers, Agents, and Traps
SNMP-managed networks typically include the following network entities:

Network Management
Station (NMS)

A node requests information about, or makes changes to, remote
nodes. The NMS interface is completely vendor-specific. VSI TCP/IP
performs basic SNMP via the IP SET and IP SHOW commands using
the /SNMP_HOST qualifiers (see Section 11.13).

SNMP agent This software allows the local network configuration to be examined
or modified by an NMS. VSI TCP/IP provides an SNMP agent in the
form of the SNMP service.

The data managed by an SNMP agent is called the Management
Information Base (MIB). The VSI TCP/IP SNMP agent supports the
current Internet standard MIB known as MIB-II, described in the file
RFC1213-MIB.

VSI TCP/IP manages MIBs according to the IETF draft
draft_ref_dhcp_server_mib-02.txt. Both RFC1213-MIB
and “draft_ref_...” are found on the IETF website.

VSI TCP/IP SNMP agent software is extensible. To have private
MIBS served by the VSI TCP/IP SNMP agent, develop a shareable
image that exports the APIs in the private MIBs plus the routine
need to access the MIB variables. See the VSI TCP/IP Programmer’s
Reference.

Traps Traps receive requests such as non-authenticated SNMP requests that
are not handled directly by the SNMP agent. Traps are sent only to
clients configured to receive traps, as defined in the SNMP agent
configuration file (SNMPD.CONF). The agent supports all traps
defined in the SNMP protocol, except EGP-Neighbor-Loss, Warm-
Start, and Enterprise-Specific.

Before NMS can obtain or modify network configuration data, the
NMS must be authenticated by the agent. The agent compares a

133

Chapter 11. Configuring VSI TCP/IP SNMP Services

community string sent by the manager to the local read or write
community strings.

The agent must authenticate community strings sent by the NMS
before authenticating requests:

• For read operations, the NMS string must match the agent’s read
community string.

• For write operations, the NMS string must match the agent’s write
community string.

11.2. Configuring VSI TCP/IP SNMP Services
The following is an overview of how to configure a host as an SNMP agent. Each step is discussed in
detail following this overview.

1. Enable the SNMP service (see Section 11.2.1).

2. Configure an SNMP subagent by setting the subagent image (see Section 11.4).

3. Edit the SNMP configuration file (see Section 11.7).

4. Restart the master server.

When the VSI TCP/IP SNMP agent starts, it obtains configuration data from the IP$:SNMPD.CONF
file. Since the SNMPD.CONF file does not exist, you need to edit it using a text editor.

Note

SNMP parameters cannot be modified with the SNMP-CONFIG utility. The IP CONFIGURE /
SNMP command is not supported.

11.2.1. Enabling the SNMP Service
To enable the SNMP service using the SERVER-CONFIG utility:

1. Start SERVER-CONFIG:

$ IP CONFIGURE /SERVERS

2. Enable the SNMP service:

SERVER-CONFIG>ENABLE SNMP

3. If desired, enable SNMP service on specific OpenVMScluster nodes, or restrict access to the
service.

4. Save the modified service configuration.

SERVER-CONFIG>SAVE
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]

5. Restart the IP$SERVER process:

SERVER-CONFIG>RESTART

134

Chapter 11. Configuring VSI TCP/IP SNMP Services

Exit the utility:
SERVER-CONFIG>EXIT

11.3. Private MIB Application Program
Interface
In addition to SMUX and AgentX, VSI TCP/IP’s SNMP agent supports subagents serving private
MIBs through an application programming interface (API). Under this scheme, anyone willing to
have their private MIBs served by VSI TCP/IP’s SNMP agent should develop a shareable image that
exports the APIs in them in addition to the routines they may need for accessing the MIB variables.

The SNMP API routines are described in VSI TCP/IP Programmer's Reference.

11.4. Configuring SNMP Subagents (except
AgentX)
To configure an SNMP subagent on your host using the SERVER-CONFIG utility:

1. Start SERVER-CONFIG:

$ IP CONFIGURE /SERVERS

2. Select the SNMP service:

SERVER-CONFIG>SELECT SNMP

3. Set the subagent-image:

SERVER-CONFIG>SET SUBAGENT-IMAGE

You can now delete old entries or add new ones. Enter the name of one subagent per prompt, until
finished. When finished, press Return at the prompt. Do not enter the .EXE extension.

4. Save the modified server configuration and exit.

SEVER-CONFIG>SAVE
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]

5. Restart the IP$SERVER process:

SERVER-CONFIG>RESTART

6. Exit the utility:

SERVER-CONFIG>EXIT

11.5. SNMP Multiplexing Peers
The SNMP Multiplexing (SMUX) protocol is an SNMP subagent extension protocol. Each subagent
or peer registers a MIB subtree with the SNMP Agent. Requests for objects residing in a registered
MIB subtree are passed from the SNMP Agent using the SMUX protocol to the subagent. The
subagent passes the results of an SNMP query back to the SNMP Agent. The practical limit to the
number of peers is 30.

135

Chapter 11. Configuring VSI TCP/IP SNMP Services

Enabling SMUX (DEFINE /SYSTEM /EXEC IP$SNMP_SMUX 1) when there are no SMUX
subagents to use it can interfere with walking of the SNMP management base due to the SMUX MIB
returning NoSuchName when no subagents exist. SMUX is an historical protocol, and should not be
enabled unless there are subagents that will be using it. Specific items in the SNMP management base
that appear after the SMUX MIB can still be queried when they are accessed from the start of their
management base.

The SNMP server only accepts SMUX connections from peers listed by IP address in the
SNMPD.CONF file. To enable SMUX support, issue the following command before starting SNMP:

$ DEFINE/SYSTEM/EXECUTIVE IP$SNMP_SMUX 1

11.5.1. SMUX_PEER IP-address
The SNMP agent listens on TCP port 199 for peer connections, while the connection to the SNMP
client is over UDP port 161, with traps sent over UDP port 162. Multiple peers registering the same
subtree are each assigned a priority, and the agent can send multiple variables in a single request. The
SMUX protocol is described in RFC 1227.

11.6. SNMP Agent Extensibility (AgentX)
Peers
The SNMP agent listens on TCP port 705 for subagent connections. The AgentX framework consists
of a single processing entity called the master agent. This master agent, available on the standard
transport address, sends and receives SNMP protocol messages in an agent role but has little or no
direct access to management information. While some of the AgentX protocol messages appear
similar in syntax and semantics to the SNMP, remember that AgentX is not SNMP. Refer to RFCs
2741 and 2742 for complete AgentX information. The SNMP server only accepts AgentX connections
from peers listed in the SNMPD.CONF file. To enable AgentX support, issue the following command
before starting SNMP:

$ DEFINE/SYSTEM/EXECUTIVE IP$SNMP_AGENTX 1

or

$ IP CONFIGURE/NET
NET-CONFIG>SET SNMP-AGENTX TRUE

11.6.1. Setting Up VSI TCP/IP to Use Insight Manager
Insight Manager Support has been added to VSI TCP/IP. The Insight Manager (CIM) uses the SNMP
extensibility provided by Agent X to allow remote examination and notification of system conditions
that may need attention. Remote management agents like CIM allow systems administration
personnel to manage more systems while still meeting response time goals by providing access to
critical information from a central location. The remote management agent communicates with the
SNMP agent on the system being managed, which then sends the request to a program specifically
designed to manage a particular component of the system.

Note

Make sure all files extracted from the TCP/IP Services kit have WORLD:RE protection.

136

Chapter 11. Configuring VSI TCP/IP SNMP Services

1. Add the following to IP$:SNMPD.CONF:

AGENTX_PEER 127.0.0.1
community elmginkgo 127.0.0.1 read (and other community strings as
 needed)

2. Comment out SMUX_PEER from IP$:SNMPD.CONF

3. Restart SNMP with this command:

$ IP NETCONTROL SNMP RELOAD

or

Start VSI TCP/IP

4. Start Insight Manager

5. Run /PROCESS=HR_MIB SYS$SYSTEM:TCPIP$HR_MIB

The Host Resources MIB (RFC 1514) supplied with TCP/IP Services will now work with SNMP.

Note

The new ESNMP client interface in VSI TCP/IP services v10.5 uses Agent X to allow others to
provide additional objects for SNMP to manage. Insight Management Agents are written to use the
ESNMP client interface, hence the addition of Agent X protocol allows them to be used with VSI
TCP/IP. By using the ESNMP library or Agent X directly, writers of TCP/IP services can allow the
state of the service to be queried and controlled remotely. This can be useful if the service does not
have a user interface, or runs under batch, or as a detached process.

11.7. Configuration File
The SNMP configuration file SNMPD.CONF is located in the IP$CONFIG directory. The SNMP file
defines:

• Values for a subset of MIB management objects

• Clients and communities who can access the SNMP agent

• MIB access privileges for each client and community

• Authentication Failure, Link Up, and Link Down traps' status

• Originating addresses for traps

• SMUX peer details

• Agent X peer details

Note

After editing the configuration to fit your needs, stop and restart the SNMP agent so that the changes
can take effect. If you do not edit the configuration file, the SNMP agent uses default values.

137

Chapter 11. Configuring VSI TCP/IP SNMP Services

11.7.1. File Format
Follow these guidelines when entering data in the SNMP configuration file:

• Allow one line for each item.

• Enter information in any order, in upper- or lowercase.

• Enter variable string information (id-string and contact-name) in upper- or lowercase,
depending on the operating system. Some SNMP clients on your network (such as those running
UNIX) might require information in a specific case.

• Use a pound sign (#) or an exclamation point (!) to denote comments. SNMP ignores all
information following these characters.

• Place quotation marks (" ") around strings that contain spaces or that require more than one line in
the file, and around the comment characters when used as regular characters.

11.7.2. Values for MIB Objects
To define the values of several MIB objects in the SNMP configuration file, use the corresponding
keywords listed in Table 11.1.

Table 11.1. MIB Objects

MIB object name... Has keyword...
system.sysDescr SYSDESCR
system.sysContact SYSCONTACT
system.sysLocation SYSLOCATION
if.ifTable.ifEntry.ifDescr and
if.ifTable.ifEntry.ifSpeed

INTERFACE

system.sysServices SYSSERVICES

The following paragraphs explain how to define each item.

SYSDESCR [id-string]

The id-string is the full name of the hardware, operating system, and networking software. For
example:

SYSDESCR “HPE Integrity rx2800 i4 VSI TCP/IP for OpenVMS V8.4-2L1"

If you omit the id-string, VSI TCP/IP tries to obtain this information from your current system.
If the attempt fails, the default is System description is unknown. Try again, entering a
different id-string.

SYSCONTACT [contact-name]

The contact-name specifies the person to contact for the host, and how you can contact this
person (such as by mailbox address). For example:

SYSCONTACT "John Smith, X 1234, smith@process.com"

138

Chapter 11. Configuring VSI TCP/IP SNMP Services

The default is System contact is unknown at this time. Try again, entering a different
contact-name.

SYSLOCATION [system-location]

The system-location specifies the geographical location of the host. For example:

SYSLOCATION "Main Street, Anytown, MA"

The default is: System location is unknown at this time. Try again, entering a
different system-location.

INTERFACE [line-id line-speed description]

The line-id specifies the line identification for the IP layer network device. The line-speed
specifies the line speed in bits per second. The description is the manufacturer's name, product
name, and hardware version for the interface. For example:

INTERFACE SE0-1 10000000 "DELQA Ethernet Controller Version 1.0"

SYSSERVICES [services-set-number]

The services-set-number default is 72. See RFC 1213 for more information about services-set-
number value calculation.

HOSTID ip-address

Specifies the IP address to use as the source address for traps sent either from the SNMP Agent or
from the TRAP_GEN program. If this is not specified the address of the first interface (often SE0) is
used. When this is specified it is checked against the addresses of the interfaces present on the system.

11.7.3. Community Parameters
The SNMP configuration file must contain the following information for each client permitted access
to the SNMP agent:

COMMUNITY community-name internet-address type

community-name Specifies the name of the community to which the client belongs.
internet-address Specifies the client's internet address.

If you enter 0.0.0.0, any address can use the community. The internet
address can be optionally followed by /mask for READ and WRITE.

type Defines the access profile as one of the following:

• READ — The client can retrieve data from the MIB on this host.

• WRITE — The client can retrieve data from and write data to the
MIB on this host.

• TRAPS — The client will receive all enabled traps.

The following example shows community parameters defined in the configuration file.

139

Chapter 11. Configuring VSI TCP/IP SNMP Services

Example 11.1. Community Parameters

community northeast 192.168.4.56 READ
community northeast 192.168.220.1 WRITE
community southwest 192.168.23.1 WRITE
community southwest 192.168.23.1 TRAPS

• Client 192.168.4.56 in the northeast community has READ access to the MIB, while client
192.168.220.1 in the same community has WRITE access.

• Client 192.168.23.1 belongs to the southwest community. This community has WRITE access to
the MIB and can receive all traps.

11.7.4. Template Configuration File
SNMP Services provides a TEMPLATE_SNMPD.CONF file in IP$COMMON:[IP] that you can use
as a basis (see Example 11.2).

Example 11.2. Sample SNMP Configuration File

! SNMP Agent (SNMPD) Configuration File (template)
!
! System description: sysdescr <id string>
! Typically the id string would include:
! IA64 cpu model (such as HPE Integrity rx2800 i4)
! OpenVMS and version number
! "VSI TCP/IP for OpenVMS Version 10.5"
!
sysdescr "place system description string here"
!
! System Contact: syscontact contact name
!
syscontact "place name, phone number, and mail address of administrator
here"
!
! System Location: syslocation location
!
syslocation "place system location information here"

! Line Interfaces Information: interface line-id line speed
! description
! Note: You usually need not define these. SNMPD provides good defaults.
!
! line-id is one of LPB-, ETHER-, UNA-, QNA-, BNA-, SVA-, MNA-,ISA-,KFE,
! MXE-, ERA-, EWA-,CEC-, EIA-, CLIP-, ELA-,FDDI-,MFA-,FZA-, FAA-, FEA-,
! FQA-, FPA-, TR-, TRA-,TRE-, TRW-,PRO-, HYP-, DSV-, DSB-,DST-, X25-,SLIP,
! DECnet-, PPP-,PSD- followed by a unit number. Note that the unit number
! may be an encoding of the controller when the device is an ethernet
! adapter.
!
! (A = 0, B= 1, C=2, etc.)
!
! line-speed is an integer in bits per second of the data rate of the
! device
!
! description is a quoted string describing the device.
!

140

Chapter 11. Configuring VSI TCP/IP SNMP Services

!interface una-0 10000000 "HEWLETT-PACKARD DELUA Ethernet controller"
!
! Communities:
! community community name internet address
! <READ | WRITE | TRAPS>
!
community readers 192.168.1.2 READ
community netman 192.168.2.3 WRITE
community nettraps 192.168.3.4 TRAPS
!
! To disable authentication traps, remove the "!" from the following
! line.
!no-auth-traps
!
! To disable link status traps, remove the "!" from the following
!line.
!no-link-traps
!
! SMUX Peers:
! AGENTX_PEER ip-address
! SMUX_PEER ip-address
!
AGENTX_PEER 192.168.6.7
SMUX_PEER 192.168.4.5
SMUX_PEER 192.168.5.6

AGENTX_PEER ip-address — The SNMP server only accepts AGENT X connections from
peers listed by IP address in the SNMPD.CONF file. Use the following syntax in the file:

AGENTX_PEER ip-address

The COMMUNITY, SMUX_PEER, and AGENTX_PEER statements in the SNMPD.CONF file can
take an optional mask after the internet address. The mask should be separated from the internet
address with a / (slash). Valid values are from 0 to 32, with 32 being the default. Although the TRAPS
community accepts a mask, it is not used currently.

For example:

community ournet 192.168.1.10 write !implied /32
community ourmgr 192.168.1.0/24 read

The /24 specifies that only the first 24 bits must match. In this example, IP addresses from
192.168.1.0 to 192.168.1.255 can use the community ourmgr. The mask should be separated from
the internet address with a / (slash). Valid values are from 0 to 32, with 32 being the default. A more
restrictive IP address may be used within a less restrictive one. For example:

community process 192.168.6.0/24 READ
community process 192.168.6.42 WRITE

This allows all nodes in 192.168.6 to have READ access with the community name process and
192.168.6.42 to have WRITE access with the community name process.

The following command can be used to display enabled SNMP Agent X subagents in the output of the
SHOW command:

$ IP CONFIGURE /NETWORK
$ SET SNMP-AGENTX TRUE
$ SET SNMP-AGENTX FALSE

141

Chapter 11. Configuring VSI TCP/IP SNMP Services

TRUE enables SNMP Agent X service; FALSE disables SNMP Agent X service. A line displays in
the output of the SHOW command if SNMP Agent X subagents are enabled.

11.8. Sending SNMP Traps from VSI TCP/IP
SNMP traps can be sent from VSI TCP/IP in the following manner:

Define the symbol:

TRAP_GEN :== IP:TRAP_GEN

Then type:

$ TRAP_GEN enterprise generic_trap specific_trap
[trap_specific_values....]

enterprise identifies the location in the MIB tree that this trap pertains to.

An example would be:

1.3.6.1.4.105.3,

which denotes a location in VSI's portion of the MIB tree.

generic_trap is an integer representing the generic trap value.

specific_trap is an integer representing the specific trap value.

trap_specific_values are arbitrary strings separated by spaces that are passed to the agent
receiving the trap as octet strings.

The TRAP_GEN program uses the trap community definitions in the IP$:SNMPD.CONF file to
determine where to send the trap.

Note

For VSI TCP/IP 10.5 there is also a program available that will listen for traps and format them for
display. In order to invoke this program, run IP$:TRAP_LISTEN. It prompts for an optional file to
log information to (default it the terminal) and the port number to listen on (default is 162).

11.9. Disabling Traps
All traps that the SNMP agent supports are initially enabled. You can disable traps by editing the
configuration file. These changes take effect the next time you start the agent. The following table
shows how to disable traps.

Table 11.2. Disabling Traps

Disable this trap... By entering...
Authentication Failure no-auth-traps
Link Up no-link-traps
Link Down no-link-traps

142

Chapter 11. Configuring VSI TCP/IP SNMP Services

Note

SNMP clients can enable or disable the Authentication Failure trap while the SNMP agent is running.
These clients must have WRITE community access.

11.10. Generating Traps
To generate an SNMP trap, define the symbol:

TRAP_GEN :== IP:TRAP_GEN

Then type:

$ TRAP_GEN ENTERPRISE GENERIC_TRAP SPECIFIC_TRAP [TRAP_SPECIFIC_VALUES....]

where:

• enterprise: Identifies the location in the MIB tree that this trap pertains to. An example would
be: 1.3.6.1.4.105.3, denoting a location in VSI's portion of the MIB tree.

• generic_trap: It is an integer representing the generic trap value.

• specific_trap: Is an integer representing the specific trap value.

• trap_specific_values: Are arbitrary strings separated by spaces that are passed to the
agent receiving the trap as octet strings.

The TRAP_GEN program uses the trap community definitions in the IP$:SNMPD.CONF file to
determine where to send the trap.

To specify a particular IP-address for SNMP traps to originate from put the following line in IP
$:SNMPD.CONF:

HOSTID IP_ADDRESS

The IP_ADDRESS specified is checked against those on the system when the line is parsed.

11.11. SNMP Log File
When the SNMP agent starts up, it creates a log file called IP$:SNMPSERVER.LOG. This file
contains information about the activities of the SNMP agent, such as:

• The time the agent starts up and shuts down.

• When SMUX peers open or close a connection, and register or de-register a MIB tree.

• Any errors found in the SNMP configuration file.

• Any errors that occur when the agent is running.

11.12. Start, Shutdown, or Reload the SNMP
Configuration Without Rebooting
To start, shutdown, or reload the SNMP configuration using NETCONTROL:

143

Chapter 11. Configuring VSI TCP/IP SNMP Services

$ IP NETCONTROL SNMP START
$ IP NETCONTROL SNMP SHUTDOWN
$ IP NETCONTROL SNMP RELOAD

VSI TCP/IP has a separate SNMP_AGENT process. Once the SNMP service is enabled via the
IP CONFIGURE/SERVERS command, the SNMP_AGENT process can be accessible via the
NETCONTROL commands.

11.13. Performing SNMP Functions with VSI
TCP/IP
The IP SET and IP SHOW commands accept the /SNMP_HOST qualifier for using remote host
information.

Table 11.3 shows qualifiers you can use with the /SNMP_HOST qualifier in IP SHOW commands to
obtain information from remote SNMP agents.

Table 11.3. IP SHOW /SNMP Commands

Qualifier Description
/COMMUNITY_NAME=”string” Specifies the community name string sent with this command

to the remote host. The default is public.

Note

The case of the community name must match what is specified
in SNMPD.CONF. The name must be specified in quotes unless
it is all uppercase.

/CONNECTIONS[=ALL] Displays network connections. If you use the =ALL argument,
IP SHOW also displays sockets on which servers are listening.

/ARP Displays the Ethernet Address Resolution Protocol tables. This
qualifier (or /ROUTE) must precede all other qualifiers.

/MIB_VAR[=variable_name] Displays the value of the SNMP MIB variable,
variable_name. The value can be any MIB-II variable
described in RFC-1213. If you omit variable_name, all
MIB variables are displayed.

/ROUTE Displays routing information for the IP protocol. This qualifier
(or /ARP) must precede all other qualifiers.

/STATISTICS[=protocol] Causes IP SHOW to display either network interface statistics
or protocol statistics or both, as defined in MIB-II. If you
specify /STATISTICS without a value, INTERFACE statistics
is displayed.

144

Chapter 12. Configuring the VSI TCP/
IP NFS Server
This chapter describes how to configure and maintain the VSI TCP/IP NFS Server, the VSI TCP/IP
software that allows users of OpenVMS computers to export files to a variety of computers.

This chapter refers to the VSI TCP/IP NFS Server and NFS Client software as the NFS Server and
NFS Client, and to the OpenVMS server host as the server, and to NFS client hosts as clients.

12.1. Understanding the VSI TCP/IP NFS
Server
The VSI TCP/IP NFS Server is a high-performance OpenVMS implementation of Sun Microsystems'
Network File System (NFS) protocol. It allows client computers running a variety of operating
systems to remotely access files on an OpenVMS server. To users on a client system, all mounting and
access operations are transparent, and the mounted directories and files appear to reside on the client.

After the VSI TCP/IP NFS Server is installed, the system manager configures the server and its clients
to allow network file access. The VSI TCP/IP NFS Server includes configuration utilities for this
purpose.

The VSI TCP/IP NFS Server is exceptionally fast due to parallel request processing, a file and
directory cache between the file systems and the network, and an optional writeback cache feature.
For example, because the VSI TCP/IP NFS Server can process many client requests simultaneously, a
single client does not interfere with the requests of others.

12.2. Servers and Clients
A VSI TCP/IP NFS Server system is an OpenVMS system that makes its local files available to the
network. A client is a host that accesses these files as if they were its own. Typical clients include:

• Sun Microsystems hosts or similar systems running the UNIX Operating System

• IBM PC computers and PC-compatible systems running the MS-DOS Operating System

• Hewlett-Packard computers running the ULTRIX (Tru64 UNIX) Operating System

• OpenVMS computers running the VSI TCP/IP NFS Client.

The OpenVMS server can make any of its file systems available to the network. A file system is a
hierarchy of devices, directories, and/or files stored as a FILES-11 ODS-2 or ODS-5 on-line disk
structure. File systems can include bound volumes and shadow sets.

The OpenVMS server exports the file systems, making them available to the network. Authorized
clients mount the exported file systems, making them available to their users as if they were local
directories and files.

Each file system is identified by the name of its mount point; that is, the name of the device or
directory at the top of its hierarchy. When a client mounts a file system, it connects the mount point to
a mount directory in its own file system. Through this connection, all files below the mount point on
the server are available to client users as if they were below the client mount directory.

145

Chapter 12. Configuring the VSI TCP/IP NFS Server

Each client automatically converts mounted directory and file structures, contents, and names to the
format required by its own operating system. For example, an OpenVMS file named:

USERS:[JOE_NOBODY]LOGIN.COM

might appear to a UNIX end user as:

/vmsmachine/users/joe_nobody/login.com

and to an MS-DOS end user as:

E:\users\joe_nobody\login.com

Note

The VSI TCP/IP NFS Server can convert all valid UNIX, MS-DOS, or ULTRIX file names to valid
OpenVMS names. Similarly, the server can convert those OpenVMS file names back to valid UNIX,
MS-DOS, or ULTRIX names.

12.2.1. Security
The VSI TCP/IP NFS Server provides two levels of security:

Access to Individual... Description
File systems Can be restricted to specific clients listed in mount restriction lists for

those file systems.
Directories and files These are controlled on a per-user basis. The VSI TCP/IP NFS Server

consults a database that maps users on NFS client systems to OpenVMS
userids. When the NFS Server receives an NFS file access request, it
maps the client user identifier in the request to an OpenVMS userid/UIC
and compares the UIC to the owner, protection mask, and any directory or
file ACLs. The NFS Server either grants or denies access.

The VSI TCP/IP NFS Server considers default privileges as defined by the user's UAF entry that
override OpenVMS protection codes (SYSPRV, BYPASS, READALL, and GRPPRV) when granting
access. However, since UNIX clients don't understand OpenVMS privileges, the client may prevent
an operation which would otherwise have been allowed. If the UNIX user root (uid 0) is mapped to an
OpenVMS user with BYPASS privilege, the user root can access all files.

To get GROUP protection access to a file from UNIX clients, a user must pass both the client and
the server protection check. The client check is done using the UNIX GID; the server check is done
using the Group portion of the OpenVMS UIC. For GROUP access to be granted, a user must be in
the same UIC group on the OpenVMS system and have the same GID on the UNIX system.

Note

All NFS security relies on trusting the client to provide the server with truthful authentication
parameters. Nothing in the NFS protocol specification prevents a client from using fraudulent
parameters to bypass the security system.

VMS DELETE access does not directly translate to NFS. In NFS, a user with WRITE access to the
directory can delete a file. The NFS Server implements DELETE access in the same way as NFS.

146

Chapter 12. Configuring the VSI TCP/IP NFS Server

With this in mind, it is important for the system manager to review protection settings on exported file
systems.

12.2.2. NFS Server Architecture
The VSI TCP/IP NFS Server includes five top-level protocols that run parallel to each other over a
stack of lower-level protocols. The top-level protocols are:

• The Network File System protocol (NFS) is an IP-family protocol that provides remote file system
access, handling client queries.

• The RPC (Remote Procedure Call) mount protocol (RPCMOUNT) is used by clients to mount file
systems and get mount-point information.

• The RPC-protocol port mapper (RPCPORTMAP) performs the mapping between RPC program
numbers and UDP and TCP port numbers.

• The RPC quota daemon (RPCQUOTAD) returns disk quota information.

• The RPC status monitor (RPCSTATUS) and the RPC lock manager (RPCLOCKMGR) together
coordinate access to sections of files.

Underlying the NFS, RPCLOCKMGR, RPCMOUNT, RPCPORTMAP, RPCQUOTAD, and
RPCSTATUS protocols is a stack of protocols:

• The Remote Procedure Call (RPC) protocol allows clients to make procedure calls across the
network to the server.

• The external Data Representation (XDR) protocol handles architectural differences between
the client and server systems, allowing the NFS protocol to communicate between systems of
dissimilar architectures.

• The User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Internet Protocol
(IP) are used for the lowest levels of communication.

Traditionally, NFS has always been run over UDP. The VSI TCP/IP NFS Server also supports
communication over TCP, which may provide performance improvements when communicating with
NFS clients across slow network links or wide area networks (WANs), which suffer from packet loss
and delay.

12.3. NFS Server Configuration Overview
There are three main aspects to configuring the VSI TCP/IP NFS Server system:

1. Enabling the NFS Server on the server host.

2. Configuring the NFS server.

3. Configuring the clients.

These operations are performed normally in the following sequence:

1. Enable the NFS Server, using SERVER-CONFIG.

2. Make sure that each user who will access the server has an OpenVMS user account on the server
and an account on the client.

147

Chapter 12. Configuring the VSI TCP/IP NFS Server

3. Invoke NFS-CONFIG to perform Steps 4 through 6.

4. Provide the NFS Server with a basis for translating between the OpenVMS and client identifiers
for each user.

5. Export each file system:

a. Choose a name for the mount point.

b. Export the mount point and reload the server to make the change effective.

c. Mount and test the file system on each client.

d. If you want to restrict access to the file system to specific clients, create a mount restriction list
for the mount point, restart the server, and retest the mount operation from each client.

6. Only when necessary, change global parameter settings (followed by a server restart), and retest
the configuration. The default parameter settings are sufficient in most cases.

The following sections describe these operations.

12.4. Enabling the VSI TCP/IP NFS Server
Enable the VSI TCP/IP NFS Server by enabling the following services:

• NFS server

• RPCMOUNT mount server

• RPCQUOTAD quota server

• RPCLOCKMGR lock manager

• RPCSTATUS status monitor

• RPCPORTMAP RPC-protocol port mapper

For networks that include IBM PC or PC-compatible clients with PC-NFS software, you should also
enable the PC-NFSD server. Use the VSI TCP/IP Server Configuration Utility (SERVER-CONFIG) to
enable these services.

The following sample session show how to enable protocols with SERVER-CONFIG:

$ IP CONFIGURE/SERVER
VSI TCP/IP Server Configuration Utility
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>ENABLE NFS
SERVER-CONFIG>ENABLE RPCMOUNT
SERVER-CONFIG>ENABLE RPCQUOTAD
SERVER-CONFIG>ENABLE RPCPORTMAP
SERVER-CONFIG>ENABLE RPCLOCKMGR
SERVER-CONFIG>ENABLE RPCSTATUS
SERVER-CONFIG>RESTART
Configuration modified, do you want to save it first ? [YES] YES
[Writing configuration to SYS$COMMON:[IP]SERVICES.MASTER_SERVER]
%RUN-S-PROC_ID, identification of created process is 0000017A
SERVER-CONFIG>EXIT

148

Chapter 12. Configuring the VSI TCP/IP NFS Server

12.5. Reloading the VSI TCP/IP NFS Server
Configuration and Restarting the Server
Whenever you change the server configuration, you alter the NFS configuration data files
(NFS_EXPORT.DAT, NFS_GROUP.DAT, NFS_MNTLST.DAT, and NFS_PROXY.DAT). Most of
the remaining procedures described in this chapter change the configuration. Before you can use a
new or revised configuration, you must reload the VSI TCP/IP NFS Server, either from within NFS-
CONFIG or from DCL.

Reloading the server involves reloading the NFS and RPCMOUNT services:

• Enter the following command from DCL to restart only the VSI TCP/IP NFS Server:

$ IP NETCONTROL NFS RESTART

• Enter the following command from DCL to restart only the RPCMOUNT protocol:

$ IP NETCONTROL RPCMOUNT RELOAD

12.6. Shutting Down the NFS Server
You can edit your SYSHUTDOWN.COM procedure to include commands that stop the NFS Server.
For example:

$ IP NETCONTROL NFS SHUTDOWN

12.7. Testing the System Configuration
Test the configuration at these times:

• After your initial configuration, when you have:

• Specified the mappings between UIDs/GIDs and user names

• Configured the VSI TCP/IP NFS Server

• Restarted the NFS Server

• Configured one or more clients for the NFS Server

• After you modify the configuration by reconfiguring the NFS Server, adding clients, or
reconfiguring existing clients

To test a configuration, check all file systems from one client, and at least one file system from every
client:

1. Log in as one of the client's users. For example, on a Sun Microsystems host client, you might log
in as "joebob" (be sure your system includes a mapping for "joebob's" UID/GID and a user name
on the server system).

2. Mount a file system the user can access.

3. Check the mount as described in the next steps.

149

Chapter 12. Configuring the VSI TCP/IP NFS Server

a. Check the contents of the file system's mount directory. For example, on a Sun host client, use
the cd command to change to the mount directory, and the ls -l command to list the names of
the directory's files.

b. Verify that files in the mount directory can be read. For example, on a Sun host client, use the
cp command to copy a file from directories under the mount point to the /dev/null directory.

c. Verify that files can be written to the OpenVMS server. For example, on a Sun host client, use
the following command to copy a file to the current directory:

$ cp /vmunix .

Note

VSI recommends using the cp utility to test the server because it is better at reporting protection
problems than most other UNIX utilities, including cat.

4. Repeat this process until you have mounted and checked all file systems that the client's users
wish to access.

5. Log in from each of the other clients and check file system mounts as described in Steps 1 through
4.

12.7.1. Checking for Errors
After exporting file systems and restarting the server, but before configuring clients, enter the
following command:

$ REPLY/ENABLE=NETWORK/TEMP

This command causes network event messages to be displayed on your terminal, including error
messages from the NFS and RPCMOUNT servers. See the VSI TCP/IP Messages, Logicals, and
DECnet Applications manual for lists of error messages and the conditions that generate them.

12.8. Idiosyncrasies of ACL Support over NFS
When using ACLs, OpenVMS lets the VSI TCP/IP NFS Server assign different access masks for
many different groups of users. When a file's attributes are transmitted to the client, the NFS protocol
only lets the server return an access mask for the owner's GID; the protocol does not allow the VSI
TCP/IP NFS Server to return multiple GIDs and their associated access masks. Because some NFS
clients grant or deny access based on the protections returned with the file's attributes, the VSI TCP/
IP NFS Server's responses to attribute requests sometimes change the owner's GID and associated
access mask to properly represent access for the client user.

One anomaly these dynamic responses produce is that a directory listing on the client (for example,
an ls -l command on a UNIX client) shows files accessed through ACLs as being owned by different
GIDs at different times, depending on who accessed them most recently.

If the client grants or denies access based on the protection information in the cache, users may
experience intermittent access failures when more than one user tries to gain access to the same file
via an ACL. This phenomenon happens when the user would normally receive access through the
group or through an ACE (access control list entry).

150

Chapter 12. Configuring the VSI TCP/IP NFS Server

While world access can always be consistently mapped, owner access is only consistently mapped if
the ACL does not contain ACEs that cannot be mapped to a GID. For details, see the Section 12.8.2.
If the UID/GID translation table is configured correctly, users should never have access to files to
which they have no legitimate access on the server. However, they may intermittently be denied
access.

12.8.1. How the VSI TCP/IP NFS Server Interprets ACL
and UIC Protection
The main difficulty facing VSI TCP/IP NFS Server administrators is how to coordinate NFS use of
the UNIX-style UID/GID protection model with OpenVMS ACL support.

Note

Consulting ACLs as part of an NFS Server's access-checking scheme is necessary, but not sufficient,
to adequately support the presence of ACLs assigned to files.

Consider the case where an OpenVMS system manager wants to grant access to files based on project
groups without having to make sure that all client UIDs map to the same OpenVMS group. A single
user may be a member of several projects, a concept incompatible with the single-group model used
by OpenVMS.

It might seem that the system manager only needs to add rights identifiers to the mapped accounts and
then set up ACLs on the appropriate files. The problem with this scheme is that file protections would
normally be set to WORLD=NOACCESS, allowing file accesses to be granted only by the ACL.
However, because the file protections deny access on a UID basis, any local access checks performed
at the client will fail, bypassing the ACLs.

This problem can be solved if the VSI TCP/IP NFS Server makes intelligent use of the NFS GID.
The NFS protocol allows a single user to be identified with up to 10 groups (projects), consistent
with UNIX. In this model, the NFS client checks the list of GIDs assigned to the local user to see
if it matches the group ID associated with the file. If there is a match, the GROUP field of the file
protection mask is used to determine accessibility.

The VSI TCP/IP NFS Server takes advantage of this model by selectively modifying the returned
group ownership for files based upon applicable ACEs. The VSI TCP/IP NFS Server processes ACLs
in the following manner. To determine whether the NFS Server will grant access:

1. The NFS Server obtains rights identifiers for the OpenVMS account associated with the
requester's UID.

2. The NFS Server selects the first (if any) ACE assigned to the file (matching one of the rights
identifiers held by the OpenVMS account). The protection specified in the ACE is used in place of
the protection mask associated with the file.

3. If there are no matching ACEs, the VSI TCP/IP NFS Server performs the standard UIC protection
check.

When asked by the NFS client for the protection mask and ownership for a file, the NFS Server does
the following:

1. The NFS Server obtains rights identifiers for the OpenVMS account associated with the
requester's UID.

151

Chapter 12. Configuring the VSI TCP/IP NFS Server

2. If one of the ACE identifiers matches the file owner's UIC, the NFS server uses the protection
mask in the ACE to calculate the OWNER field of the protection mask returned to the NFS client.
Otherwise, the NFS Server uses the OWNER field of the protection mask associated with the file
to calculate the OWNER field returned to the NFS client.

3. The NFS Server selects the first (if any) protection ACE assigned to the file (matching one of the
rights identifiers held by the requester's OpenVMS account).

4. If the NFS server encounters a matching ACE whose identification is a UIC, and the identifier:

• Is in the same OpenVMS group as the file owner, the server ignores the ACE.

• Is not in the same OpenVMS group as the file owner, the server maps the requester's UIC
and GID along with the along with the ACE's protection mask as the owner of the file when
returning NFS attribute information

5. If the NFS server selects an ACE, the group ownership it returns to the NFS client is taken from
the GID associated with the matching identifier.

If no matching ACE is found, the VSI TCP/IP NFS server obtains the GID for the file from the file
owner.

To assign GIDs to UICs and identifiers, use the NFS-CONFIG ADD UID command.

Under this scheme, the system manager sets file protections as needed (for example, W:NOACCESS,
G:RWE), and creates an ACL to grant access to processes holding a specific rights identifier.

When the NFS client performs local access checking, it compares the list of GIDs (associated with the
user) against the file's group ownership, which the NFS Server bases on the ACL information for the
file. This scheme prevents the client's caching mechanism from defeating the ACLs associated with
the file.

12.8.2. How the VSI TCP/IP NFS Server Handles ACLs
The key to understanding how ACLs affect file access is in the exchange that takes place when an
NFS client requests attributes for a file or directory it wants to access. The client sends the server the
user's UID/GID pair when it identifies the file it wants to access. The server must respond with the
UID/GID pair of the file's owner along with the protections on that file in UNIX format (R/W/E for
owner, group, and world/others). To accomplish this, the NFS Server must translate the OpenVMS
protection mask, applicable ACEs, and UIC-based file owner into a UNIX-style protection mask and
UID/GID-based owner.

If the file being requested has no ACLs associated with it, the NFS Server simply returns the
OpenVMS file owner's UID/GID pair which it obtains from the NFS Server's UID translation table
and the file's owner, group, and world protections.

If the file has an ACL, the NFS Server scans the ACL for ACEs in a format that does not allow
the NFS Server to map group protections. These ACLs must be handled in a special way (see the
Section 12.8.3).

If there are no unmappable ACEs, the client's UID is translated, and the ACL is scanned for a match
based on the associated UIC. At the same time, the list is also scanned for ACEs that should be
mapped to world or owner protections. Based on the scan, the server returns attributes as follows:

• The OWNER protection mask returned is the owner default protection mask logically OR'd with
the access mask of the first ACE matching the owner's UIC and associated rights identifiers. This

152

Chapter 12. Configuring the VSI TCP/IP NFS Server

emulates OpenVMS behavior and prevents the owner of the file from being denied access because
of an ACE.

• The WORLD protection mask returned is the access mask associated with the first "wildcard"
ACE, if one exists. Otherwise, the WORLD protection mask returned is the default WORLD
protection.

• The GROUP protection mask returned is the access mask associated with the first ACE matching
the requestor's UIC and associated rights identifiers. The GID returned is the GID translation
of the rights identifier or UIC that matched this ACE. If no such ACE is found, the GROUP
protection mask returned is the default group protection mask and the GID returned is the GID
translation of the file's owner.

• The UID returned is the UID translation of the file's owner.

12.8.3. Handling ACLs with Unmappable ACEs
Occasionally, ACE access cannot be mapped to a GID as described in the previous section. This
happens when the ACE identifier is specified in the following manner:

[*,member]

This also happens in cases of multiple identifiers on a single ACE, such as:

ACE Description
A+B A and B represent rights identifiers.
[a,*]+[b,*] a and b represent UIC groups.
A+[a,*] A is a rights identifier and a is a UIC group.

If the ACL associated with the file contains any ACEs that cannot be mapped to a GID, file attributes
are returned as follows:

• The owner protection mask returned is the access mask associated with the first ACE matching the
requestor's UIC and associated rights identifiers. If no such ACE is found, the owner protection
mask returned is the default protection mask appropriate for the requestor; that is, the owner's
default protection mask if they own the file, the group protection mask if appropriate, and so on.

• The owner UID/GID returned is the UID/GID translation of the requestor.

• The group protection mask returned is NONE.

• The world protection mask returned is NONE.

The VSI TCP/IP NFS Server cannot accurately represent OpenVMS protections in this case. This
technique ensures no users are granted access to data to which they would not normally have access
in the client's cache on the server. However, on multi-user clients where access is denied based on
cached file attributes, this mapping may result in intermittent access failures to other users trying to
access the file simultaneously.

153

Chapter 12. Configuring the VSI TCP/IP NFS Server

154

Chapter 13. Configuring the
VSI TCP/IP NFS Client & Server
13.1. Server Security & Initial Configuration
VSI TCP/IP supports version 3 of the NFS server and client protocols. The NFS server provides
several features that maintain the integrity of the OpenVMS filesystem.

First, the server requires that the local system must register any user trying to access OpenVMS
files. You do this through the PROXY database when you configure the Server and through later
modifications as needed.

Second, you must export an OpenVMS directory for an NFS user to access it. The server does this
through the EXPORT database when you configure the Server and through later modifications as
needed.

13.2. Mounting Client Directories
NFS clients access OpenVMS files on the NFS server by mounting directories. The MOUNT protocol
services the mount requests from clients attempting to mount an NFS export.

Mounting procedures vary by client and may require superuser privileges, or in the case of PC clients,
a username and password. Some clients mount a remote directory automatically when they reboot the
system (as in the case of fstab). Others mount a remote directory dynamically when they reference the
remote file (as with an automount).

Mount procedures require the following information:

• The pathname of the exported directory that matches the pathname in the EXPORT database

• The name of the host running the server that contains the files you want mounted

• A pathname on the client designated as the mount point

Below is a mount command provided by a Solaris 9 Client to the NFS_SERVER running on host
IRIS, using the defined export of NFS0:[USER.MNT] . The export is mounted onto the local /mnt
partition.

mount IRIS:DKA0:\[USERS.MNT\] /mnt

In the example, IRIS is the name of the VSI TCP/IP host. DKA0:[USERS.MNT] is the exported
directory. /mnt is the mount point on the Solaris client host.

Check your NFS client documentation before mounting directories.

13.3. File Formats
The NFS protocol does not define standard file and record formats or a way of representing different
types, such as text or data files. Each operating system can have a unique file structure and record
format.

155

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

The Server provides access to all OpenVMS files. However, even though an NFS client can access a
file, the client may not be able to correctly interpret the contents of a file because of the differences in
record formats.

The UNIX operating system stores a file as a stream of bytes and uses a line feed (LF) character to
mark the end of a text file line. PC systems also store a file as a stream of bytes, but use a carriage-
return/line-feed (CRLF) character sequence to mark the end of a text file line. PC systems sometimes
also use a Ctrl/Z character to mark the end of a file.

The OpenVMS operating system, with its Record Management Services (RMS), provides many file
organizations and record formats. RMS supports sequential, relative, and indexed file organizations.
It also supports FIXED, STREAM, STREAM_CR, STREAM_LF, UNDEFINED, VARIABLE, and
variable with fixed size control area (VFC) files.

NFS clients most commonly need to share text files. STREAM is the RMS record format that most
closely matches PC text files. STREAM_LF is the RMS record format that most closely matches
UNIX text files.

In OpenVMS, you can store standard text files in VARIABLE, STREAM_LF, or VFC record format.
Most OpenVMS utilities can process these text files regardless of the record format because the
utilities access them through RMS.

The intent of the Server is to provide convenient access to the majority of OpenVMS files. Because
many OpenVMS text files are VARIABLE or VFC format, the Server converts these files to
STREAM or STREAM_LF format as it reads them.

13.3.1. Reading Files
The Server reads all files (except VARIABLE and VFC) block by block without interpreting
or converting them. It reads VARIABLE and VFC files by converting them to STREAM or
STREAM_LF, based on a selected option. The file on the NFS server remains unchanged.

The Server's automatic file conversion process can cause a slow reading of VARIABLE and VFC
files. For example, in returning the file size, it reads the entire file. Full directory listings can also
be slow if the directory contains a number of VARIABLE or VFC record format files. If you need
frequent access to these files, consider converting them using the OpenVMS CONVERT utilities.

13.3.2. Writing Files
By default, the Server creates STREAM_LF files, but can also create STREAM files on demand.
It writes all files except VARIABLE and VFC block by block without interpreting or converting
them. If an NFS client tries to write to or change the size of an existing file not having STREAM,
STREAM_LF, STREAM_CR, FIXED, or UNDEFINED format, the Server returns an EINVAL error.

13.4. Troubleshooting
If you are experiencing network communication-related problems on the NFS server, please check the
following items:

1. Make sure VSI TCP/IP is running on the OpenVMS system.

2. Confirm the RPC service is running with the following command at the DCL prompt:

$ IP SHOW /RPC

156

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

3. Make sure the server is running. If not, start it by entering the following command at the DCL
prompt:

$ IP NETCONTROL NFS RESTART

4. To verify general connectivity between the two systems, try using FTP or TELNET. For example,
try to open a TELNET connection with the remote host in question. If another product is not
available on your system, try using the PING utility

5. Verify the internet addresses the local host and the remote hosts are using. If your local network
includes a gateway, also verify the gateway address.

6. If you are experiencing problems performing NFS operations from a NFS client, check the
Server's NFS_SERVER.LOG file. It may contain messages that can help isolate the problem.

13.5. Managing an Existing NFS
Configuration
VSI TCP/IP includes a configuration utility IP CONFIGURE /NFS to manage NFS client and server
configurations.

$ IP CONFIGURE /NFS
NFS-CONFIG>

The configuration utility program has the following commands to manage the configuration:

ADD EXPORT
ADD EXPORT — NFS server only. Adds an entry to the EXPORT database that lets the NFS
server export the server filesystems to a remote NFS client. Users at the NFS-Client can then mount
the server filesystems. Requires write access to the IP$CONFIG:NFS_EXPORT.DAT file. The
EXPORT database is dynamic. Entries you add to the database become valid immediately. You do not
need to restart the server.

Format
ADD EXPORT nfs-path vms-directory

Parameters
nfs-path

NFS-style pathname used to reference the exported directory. Typically expressed as a UNIX-
style pathname. Enclose in quotation marks (" ").

Although nfs-path can be arbitrary, it usually reflects the actual OpenVMS directory path. The
NFS client user must refer to the same nfs-path in naming the mount point.

vms-directory

Directory on the local OpenVMS server that you want to export. The directory must include the
device specification, as in the following example:

$DISK1:[SALES.RECORDS]

157

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

When you export a directory, the NFS client user can potentially have access to all files and
directories below the export point. The device you export should be a "public" device. The server
does not implement volume protection. Also, the server supports Files-11 ODS-2 and ODS-5
structure level disks.

Qualifiers

Note

Many of the following qualifiers are specific to applications running on certain hosts. In these cases, it
is critical to use the /HOST qualifier in combination with these qualifiers.

/HOST=(host [,host...])

Only specified host(s) can have access to the exported OpenVMS directory specified as host
names or internet addresses. Use the parentheses only if you specify a list of hosts (separated by
commas). If you omit /HOST, any host can mount the exported directory.

/CONVERT={STREAM_LF (default) | STREAM_CRLF}
/NOCONVERT

/CONVERT converts files on reads to either STREAM_LF (the default) for UNIX systems or
STREAM_CRLF for Windows systems.

/NOCONVERT disables this conversion and must be specified when using the server together
with the VSI TCP/IP NFS Client. For use with VSI TCP/IP’s NFS Client.

/EXPLICIT_MOUNT
/NOEXPLICIT_MOUNT (default)

/EXPLICIT_MOUNT prevents users from subsequently mounting subdirectories of the mount
point. /NOEXPLICIT_MOUNT allows subdirectory mounts.

/FILENAME={ SRI | ODS5 | PATHWORKS | PATHWORKS_CASE }

Uses the SRI International, ODS5, or PATHWORKS filename mapping schemes. SRI is the default
scheme between UNIX and OpenVMS systems.ODS5 uses minimal mapping to get around
ODS-5 file naming restrictions. If the disk or system doesn’t support ODS-5, it falls through
to SRI. PATHWORKS specifies non-case-sensitive filename mapping. PATHWORKS_CASE
specifies case-sensitive filename mapping.

/HIGHEST_VERSION
/NOHIGHEST_VERSION (default)

/HIGHEST_VERSION returns only the highest version of files in directory requests. /
NOHIGHEST_VERSION does not. All file versions still exist in either case.

/NOPRIVILEGED_PORT (default)

/PRIVILEGED_PORT requests that incoming requests originate from privileged ports only. /
NOPRIVILEGED_PORT does not.

/PROXY_CHECK
/NOPROXY_CHECK (default)

/PROXY_CHECK specifies that mount requests only originate from users having mappings in the
PROXY database. /NOPROXY_CHECK does not

158

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

/RFM=option

Record format (RFM) of newly created files. The options are STREAMLF, STREAMCR,
STREAM, FIXED, and UNDEFINED.

/SERVER_ACCESS
/NOSERVER_ACCESS (default)

/SERVER_ACCESS requests the server to do access checking. /NOSERVER_ACCESS requests
that both the server and client do the checking.

/SUPERUSER_MOUNT
/NOSUPERUSER_MOUNT (default)

/SUPERUSER_MOUNT requests that only the superuser can mount a file system. /
NOSUPERUSER_MOUNT does not.

/VERSION={ DOT | SEMICOLON (default) | ALL | HIGHEST }

DOT changes the file version display for exported filesystems to file.ext.version (a dot) for UNIX
compatibility instead of the usual file.extension;version (a semicolon).

SEMICOLON (default) uses the regular semicolon.

ALL exports files with version numbers intact rather than the default of leaving the highest
numbered version unnumbered.

HIGHEST is a synonym for /HIGHEST_VERSION. Do not use DOT with SEMICOLON.

/WRITE (default)
/NOWRITE

/WRITE requests that the client have read-write access to the filesystem. /NOWRITE requests
that the client have read access only.

Example
Exports the directory SALES.RECORDS on device $DISK1: as path /vax/records to hosts ORCHID
and ROSE. Any subdirectories below SALES.RECORDS are also accessible. However, hosts
ORCHID and ROSE cannot have access to or mount directories above SALES.RECORDS or other
SALES subdirectories.

$ ADD EXPORT “/vax/records” $DISK1:[SALES.RECORDS] /HOST=(ORCHID,ROSE)

ADD GROUP
ADD GROUP — NFS client only. Adds an entry to the GROUP database that associates an
OpenVMS user with an NFS group or list of groups. Requires SYSPRV privilege and write access
to the IP$CONFIG:GROUP.DAT file. If the GROUP database does not exist, use the CREATE
GROUP command first to create an empty one. Use the REMOVE GROUP command to remove
a group from the database. The GROUP database is static. Use the RELOAD command when you
modify it.

Format
ADD GROUP nfs-group vms-identifier

159

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Parameters
nfs-group

NFS group number found in the /etc/group file on the server. For example, if the users group
appears in the /etc/group file as:

users:x:15:

Use 15 as the nfs-group.

vms-identifier

Associates either an OpenVMS rights identifier or UIC (or wildcarded UIC) with the NFS group.
Only associate one vms-identifier per NFS group. Use either of the following formats to
enter the value:

Format Description
Name OpenVMS rights identifier or username
Value UIC value in [group,member] or %Xnnnnnnnn format; you can use

wildcard entries such as [200,*].

"Name" and "value" correspond to the columns associated with entries in the OpenVMS rights
database. To have access to this database, use the commands:

$ SET DEFAULT SYS$SYSTEM
$ RUN AUTHORIZE
UAF>SHOW/IDENTIFIER *

For example, the following line may appear in the rights database:

Name Value Attributes
----- ----- ----------
USER [000200,000200]

Qualifier
/HOST=(host[,host...])

Server host(s) on which the group identification is valid. If omitted, any remote host is valid
for the group. /HOST accepts either host names or internet addresses. Use the parentheses with
multiple host entries.

Examples
1. Associates NFS group number 15 on server host IRIS with the "value" [200,*], meaning "any user

in group 200."

$ ADD GROUP /HOST=IRIS
_Group: 15
_Identifier: [200,*]

The nfs-group number derives from the entry in the /etc/group file on the server for the users
group:

>cat /etc/group
staff:*:10:

160

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

users:*:15:

2. Associates NFS group number 15 with the OpenVMS rights identifier, USERS. As in Example 1,
the nfs-group number derives from the entry in the /etc/group file on the server. Assuming that
the USERS rights identifier exists in the rights database, any user granted this identifier would be
in the group corresponding to GID 15 in NFS.

$ ADD GROUP 15 USERS

The resulting ADD GROUP entry would appear in the GROUP database as follows:

NFS GROUP Database
Group Name Value Host(s)
----- ---- ----- ------
15 USERS %X8001000C

ADD PROXY
ADD PROXY — NFS client and server. Registers an NFS or remote user as an OpenVMS
username in the PROXY database. Requires SYSPRV file and write access to the IP
$CONFIG:NFS_PROXY.DAT file. If you omit the /CLIENT or /SERVER qualifier, or do not define
the IP$NFS_DYNAMIC_PROXY logical accordingly, you must use the RELOAD PROXY command
to reload the database. (For details, see the RELOAD in this chapter.)

Format
ADD PROXY vms-username

Parameter
vms-username (required)

OpenVMS username to which you want to map an NFS user ID. The username must appear as in
the OpenVMS User Access File (SYSUAF.DAT).

Qualifiers
The /HOST, /UID, /GID, or /NFS qualifiers make the PROXY entry more restrictive. When you omit
a qualifier, NFS-OpenVMS interprets it as a wildcard. For example, the command ADD PROXY
SMITH/UID=210 creates an entry that lets a user with UID=210, but with any GID and from any
host, use OpenVMS username SMITH.

/HOST=(host[,host...])

Host(s) from which the UID/GID identification is valid. Specify at least one host name. If
omitted, MANAGE_NFS3 allows any remote host with the matching identification.

/HOST accepts either host names or internet addresses. Use parentheses for multiple hosts.

/UID=uid

User’s ID (UID). If omitted, MANAGE_NFS3 accepts any UID for the vms-username.

/GID=gid

User’s group ID (GID). If omitted, MANAGE_NFS3 accepts any GID for the vms-username.

161

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

/CLIENT
/NOCLIENT (default)

/CLIENT notifies the Client to immediately update its loaded PROXY database with an entry
for vms username. /NOCLIENT does not notify the client. This overrides any default action
specified using the logical IP$_NFS_DYNAMIC_PROXY.

/SERVER
/NOSERVER (default)

/SERVER notifies the server to immediately update its loaded PROXY database with an entry
for vms-username. /NOSERVER does not notify the Server. This overrides any default action
specified using the IP$NFS_DYNAMIC_PROXY logical.

Examples
The following examples range from most restrictive to least restrictive:

1. Registers a user with UID=210 and GID=5 at host ROSE to OpenVMS username SMITH for the
NFS server only.

$ ADD PROXY SMITH /UID=210 /GID=5 /HOST=ROSE /SERVER

2. Registers a user with UID=210 and GID=5 to OpenVMS username SMITH and dynamically
reloads the PROXY database on both the client and server.

$ ADD PROXY SMITH /UID=210 /GID=5 /CLIENT /SERVER

3. Registers any user with GID=5, any UID, and at any host to OpenVMS username JONES.

$ ADD PROXY JONES /GID=5

4. Registers any user from host ORCHID to OpenVMS username JONES.

$ ADD PROXY JONES /HOST=ORCHID

CREATE EXPORT
CREATE EXPORT — NFS server only. Creates an empty EXPORT database. Requires write access
to the IP$CONFIG:NFS_EXPORT.DAT file. NFS server installations create an empty EXPORT
database. Use this command to supersede an existing EXPORT database only.

Format
CREATE EXPORT

Example
Shows the current EXPORT database, overwrites it, and shows that the database is now empty.

SHOW EXPORT
NFS EXPORT Database
Path Directory Host(s)
---- --------- -------
/usr $DISK1:[SALES.RECORDS] SIGMA
CREATE EXPORT
SHOW EXPORT

162

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

no EXPORT entries found

CREATE GROUP
CREATE GROUP — NFS client only. Creates an empty GROUP database. Requires write access
to the IP$CONFIG:NFS_GROUP.DAT file. Client installation creates an empty GROUP database.
Only use this command to supersede an existing GROUP database.

Format
CREATE GROUP

Example
Shows the current GROUP database, overwrites it, and shows that the database is now empty.

SHOW GROUP
NFS GROUP Database
Group Name Value Host(s)
----- ---- ----- -------
15 GROUP %X8001000B
15 GROUP_16 %X8001000E
CREATE GROUP
SHOW GROUP
 No entries in GROUP database

CREATE PROXY
CREATE PROXY — NFS client and server. Creates an empty PROXY database. Requires write
access to the IP$CONFIG:NFS_PROXY.DAT file. Client and server installation creates an empty
PROXY database. Only use this command to supersede an existing PROXY database.

Format
CREATE PROXY

Example
Shows the current PROXY database, overwrites it, and shows that the database is now empty.

SHOW PROXY
NFS PROXY Database
Username UID GID Host(s)
-------- --- --- -------
BART 1116 15
MARGE 1115 15
LISA 1117 16
HOMER -2 -2
CREATE PROXY
SHOW PROXY
no PROXY entries found

EXIT
EXIT — This command exits the NFS_CONFIG Utility.

163

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Format
EXIT

FIND PROXY
FIND PROXY — NFS client and server. Locates and displays a single entry in the PROXY database.
Requires read access to the IP$CONFIG:NFS_PROXY.DAT file. On the client, use this command to
find the UIC assigned a specific user. On the server, use this command to determine which OpenVMS
username the server uses when it receives a request from the specified UID, GID, and host name.

Format
FIND PROXY

Qualifiers

Note

You must specify all threeof the following qualifiers.

/HOST=host-name

Host on which the user is valid. This qualifier is required.

/UID=uid

User’s ID (UID). This qualifier is required.

/GID=gid

User’s group ID (GID). This qualifier is required.

Example
Locates an OpenVMS username for an NFS user with UID=210, GID=5, at host ROSE.

FIND PROXY /UID=210 /GID=5 /HOST=ROSE
NFS PROXY Database
Username UID GID Host(s)
-------- --- --- -------
SMITH 210 15 ROSE

RELOAD EXPORT
RELOAD EXPORT — NFS server only. Implements changes made to the EXPORT database
without having to restart the client system. Requires SYSLCK privilege. The EXPORT database is
normally static. The RELOAD command puts the changes into effect. Use this command sparingly.
The client can take a significant amount of time to reload the database. The reloading process blocks
NFS activity.

Format
RELOAD EXPORT

164

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Parameter
nfs-path (optional)

NFS-style pathname used to reference the exported directory. Typically expressed as a UNIX-
style pathname. Enclose in quotation marks (" ").

RELOAD GROUP
RELOAD GROUP — NFS client only. Implements changes made to the GROUP database without
having to restart the client system. Requires SYSLCK privilege. The GROUP database is normally
static. The RELOAD command puts the changes into effect. Use this command sparingly. The client
can take a significant amount of time to reload the database. The reloading process blocks NFS
activity.

Format
RELOAD GROUP

Parameter
nfs-path (optional)

NFS-style pathname used to reference the exported directory. Typically expressed as a UNIX-
style pathname. Enclose in quotation marks (" ").

RELOAD PROXY
RELOAD PROXY — NFS client and server. Implements changes made to the PROXY database
without having to restart the client or server. Not necessary if the IP$NFS_DYNAMIC_PROXY
logical was defined as CLIENT or SERVER or the combination of the two. Requires SYSLCK
privilege. When both CLIENT and SERVER are specified the logical should be defined as if it is
a search list, not a single value. The PROXY database is normally static. The RELOAD PROXY
command puts the changes into effect. Use this command sparingly. The client can take a significant
amount of time to reload the database. The reloading process blocks NFS activity.

Format
RELOAD PROXY [vms-username] [vms-username]

Parameter
vms-username

Reloads only the PROXY database entries for the specified username (or list of usernames
separated by commas). This is useful for notifying the client or server of changes to the
OpenVMS SYSUAF.DAT file, such as changes to the rights list or user privileges.

Qualifiers

Note

If you omit both qualifiers, the PROXY database reloads on both the client and server.

165

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

/CLIENT
/NOCLIENT

/CLIENT reloads the PROXY database on the client only. /NOCLIENT does not reload the
database on the client.

/SERVER
/NOSERVER

/SERVER reloads the PROXY database on the server only. /NOSERVER does not reload the
database on the server.

REMOVE EXPORT
REMOVE EXPORT — NFS server only. Removes an entry from the EXPORT database so that you
can remove access to an exported directory for a single host or a list of hosts. Requires write access to
the IP$CONFIG:NFS_EXPORT.DAT file. The EXPORT database is dynamic. Any path that you
remove from the database becomes invalid immediately. You do not need to restart the server.

Format
REMOVE EXPORT "nfs-path"

Parameter
"nfs-path"

NFS-style pathname used to reference the exported directory. Typically expressed as a UNIX-
style pathname. You must enclose the nfs-path in quotation marks (" ").

Qualifier
/HOST=(host[,host...])

The following example removes access to an nfs-path for a single host or a list of hosts. If
omitted, MANAGE_NFS3 removes nfs-path for all hosts.

Example
Removes a record from the EXPORT database so that NFS host ORCHID can no longer mount an
OpenVMS directory on the /vax/records pathname.

REMOVE EXPORT "/vax/records" /HOST=ORCHID

REMOVE GROUP
REMOVE GROUP — NFS client only. Removes a group mapping from the GROUP database.
Requires write access to the IP$CONFIG:NFS_GROUP.DAT file. The GROUP database is static.
The RELOAD command puts changes into effect.

Format
REMOVE GROUP nfs-group [vms-identifier,...]

166

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Parameters
nfs-group

NFS group number. If you specify nfs-group alone, MANAGE_NFS3 removes the entire
group from the database.

vms-identifier

OpenVMS rights identifier(s) or UIC(s) associated with the NFS group. If you specify one,
MANAGE_NFS3 removes only that identifier from the database; MANAGE_NFS3 does not
change the remaining entries for that group. See the ADD command for the valid format of vms-
identifier entries.

Qualifier
/HOST=(server[server,...])

Server host(s) on which the group number is valid. Either host names or internet addresses are
valid. This qualifier removes the GROUP entry for the specified host(s) only. Use the parentheses
with multiple server specifications.

Example
Removes a record from the GROUP database so that you can no longer associate group number 15
with a group account on the client.

REMOVE GROUP 15

REMOVE PROXY
REMOVE PROXY — NFS client and server. Removes an entry from the PROXY database.
Requires SYSPRV privilege and write access to the IP$CONFIG:NFS_PROXY.DAT file. If you
omit the /CLIENT or /SERVER qualifier, or do not define the IP$NFS_DYNAMIC_PROXY logical
accordingly, you must use the RELOAD PROXY command to reload the database. (For details, see
the RELOAD command in this chapter.)

Format
REMOVE PROXY vms-username

Parameter
vms-username

OpenVMS account you want to remove from the PROXY database. You can use the wildcard *
in place of vms-username as long as you use one of the qualifiers below to be more selective
about the update.

Qualifiers
If you omit a /HOST, /GID, or /UID qualifier, the command removes all entries containing the vms-
username account from the database.

167

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

/HOST=(server[,server...])

Server host(s) on which the user is valid. MANAGE_NFS3 removes the PROXY entry for the
specified host(s) only. Use the parentheses with multiple server specifications.

/GID=gid

User’s group ID (GID). MANAGE_NFS3 removes the PROXY entry for the specified GID only.

/UID=uid

User’s ID (UID). MANAGE_NFS3 removes the PROXY entry for the specified UID only.

/CLIENT
/NOCLIENT (default)

/CLIENT notifies the client to immediately update its loaded PROXY database with an entry
for vms-username. /NOCLIENT does not notify the client. This overrides any default action
specified using the IP$NFS_DYNAMIC_PROXY logical.

/SERVER
/NOSERVER (default)

/SERVER notifies the server to immediately update its loaded PROXY database with an entry
for vms-username. /NOSERVER does not notify the server. This overrides any default action
specified using the IP$NFS_DYNAMIC_PROXY logical.

Examples
1. Removes authorization for an NFS user at host MARIGOLD with UID=210 and GID=5 to use the

OpenVMS username SMITH.

REMOVE PROXY SMITH /UID=210 /GID=5 /HOST=MARIGOLD

2. Removes authorization for all users at host CROCUS to use OpenVMS username JONES.

REMOVE PROXY JONES /HOST=CROCUS

3. Removes authorization for any user at host MARIGOLD to use any OpenVMS username.

REMOVE PROXY * /HOST=MARIGOLD

4. Removes all entries containing the OpenVMS username SMITH.

REMOVE PROXY SMITH

5. Removes authorization for a user with UID=210 and GID=5 to use the OpenVMS username
SMITH and dynamically reloads the PROXY database on both the client and server.

REMOVE PROXY SMITH /UID=210 /GID=5 /CLIENT /SERVER

SHOW EXPORT
SHOW EXPORT — Server host(s) from which exports are shown.

Format
SHOW EXPORT [(host,[host...])]

168

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Parameter
host

Name of host. If omitted, local exports are shown. Host accepts either host names or internet
addresses. Use the parentheses with multiple host entries.

Qualifiers
/FULL

Displays all information about the exports.

/OUTPUT=filespec

Uses the specified file instead of the terminal for output.

/PATH=path-name

Displays information about an export with a particular path name.

/UDP

Shows exports using UDP. Can be used when specifying the host name.

Example
Shows the NFS group number on host IRIS and corresponding OpenVMS group name and value.

SHOW GROUP /HOST=IRIS
NFS GROUP Database
Group Name Value Host(s)
----- ---- ----- -------
15 USER [200,*] IRIS

SHOW GROUP
SHOW GROUP — NFS client only. Displays entries in the client's GROUP database. Requires read
access to the IP$CONFIG:NFS_GROUP.DAT file.

Format
SHOW GROUP [nfs-group]

Parameter
nfs-group

NFS group number for which to show database entries. If omitted, MANAGE_NFS3 displays
entries for all groups on the local client.

Qualifiers
/HOST=(server[,server...])

Server host(s) on which the group number is valid. MANAGE_NFS3 accepts either host names or
internet addresses. Use the parentheses with multiple server specifications.

169

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

/OUTPUT=filespec

Uses the specified file instead of the terminal for output.

Example
Shows the NFS group number on host IRIS and corresponding OpenVMS group name and value.

SHOW GROUP /HOST=IRIS
NFS GROUP Database
Group Name Value Host(s)
----- ---- ----- -------
15 USER [200,*] IRIS

SHOW MOUNT
SHOW MOUNT — NFS client and server. Displays a list of client hosts that mounted a file
system served by a specified NFS server. Returns the mounted directories by the pathnames
MANAGE_NFS3 uses to export them, not the directory names as the OpenVMS system knows them.

Format
SHOW MOUNT [server-host]

Parameter
server-host

NFS server host from which to get the list of mounted file systems. If omitted, MANAGE_NFS3
uses the local server.

Qualifier
/OUTPUT=filespec

Uses the specified file instead of the terminal for output.

Examples
1. Because the user did not specify the server host name, the system displays the full domain name

for the local server ZETA. In this example no client hosts have mounted any of the server file
system.

SHOW MOUNT
NFS Mount List
Server: ZETA.example.com
Path Host
---- ----

2. Displays the list of client hosts and directories by pathnames for mounted file systems served by
the specified server IRIS.

SHOW MOUNT IRIS
NFS Mount List
Server: IRIS
Path Host
---- ----

170

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

/sales/records bart.example.com
/exported/spool bart.example.com

SHOW PROXY
SHOW PROXY — NFS client and server. Displays the contents of the PROXY database. Requires
read access to the IP$CONFIG:NFS_PROXY.DAT file.

Format
SHOW PROXY [vms-username]

Parameter
vms-username

OpenVMS account entries you want to display. If omitted, the system displays the contents of the
PROXY database determined by the qualifiers listed below.

Qualifiers
/HOST=(server[,server...])

Displays the PROXY entries restricted to the specified server host(s) only, or for which there are
no host restrictions given. Specify one or more server hosts (if multiple, separate by a comma and
use the parentheses).

/GID=gid

NFS user's group ID (GID). MANAGE_NFS3 displays only entries containing the specified GID.

/UID=uid

NFS user's ID (UID). The system displays only entries containing the specified UID.

/OUTPUT=filespec

Uses the specified file instead of the terminal for output.

Example
Displays the PROXY database entries for user SMITH.

SHOW PROXY SMITH
NFS PROXY Database
Username UID GID Host(s)
-------- --- --- -------
SMITH 100 101

SHOW STATISTICS
SHOW STATISTICS — NFS server only. Displays statistics information on the NFS server, useful
in troubleshooting if problems occur. The server must be running.

Format
SHOW STATISTICS

171

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Qualifiers
/RESET

Displays the counter information, then resets the counters. Requires OPER privilege.

/TIMES

Displays the additional average and maximum times (in milliseconds) for certain NFS requests
listed.

/OUTPUT=filespec

Uses the specified file instead of the terminal for output.

Description
The NFS statistics returned by the command are:

Started Date and time someone started the server.
Uptime Total amount of time the server has been running.
Memory in use Total amount of dynamic memory (in bytes) the NFS server uses. This includes

memory allocated for the RPC server routines.
Threads NFS thread counters give the total threads available, the current number of

threads in use, and the maximum number of threads that have been in use at one
time.

These statistics can give an indication of server load. If the maximum number of
threads in use at one time is equal to the total threads available, you may want to
increase the number of threads defined by the parameter NFS_THREADS.

Files File system counters include the number of opens and closes performed by the
server, the number of files currently open, and the maximum open files at one
time since someone started the server.

The number of files currently open and the maximum open files at one time can
be an indication of the load on the server.

NFS NFS counters return the total NFS procedure calls, and the total calls for
each NFS procedure since you started the server. These counters can give an
indication of the load on the server.

total is the total number of calls

bad call is the number of bad calls

fail is the number of failed calls

null is the number of null calls

getattr is the number of get attribute calls

setattr is the number of set attribute calls

read is the number of reads

lookup is the number of lookups

172

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

mkdir is the number of make directory calls

write is the number of writes

create is the number of creates

remove is the number of removes

rename is the number of renames

rmdir is the number of directory removes

readdir is the number of address reads

statfs is the number of file system statistics calls

link is the number of create link to file calls

symlink is the number of create symbolic link calls

readlink is the number of read from symbolic link calls

other is the number of other calls
RPC RPC counters provide information on RPC operations. This includes the total

number of receives, transmits, XID hits, and duplicate receives.

The XID hits counter gives the number of cached replies the NFS Server
retransmitted. The duplicate receives counter gives the number of times the
server received a duplicate request for an operation that was in progress at the
time of the request. If either of these counters is excessive you may need to
increase the timeout time on the NFS-Client host(s).

RPC Errors RPC counters also returns the following error conditions: receive and transmit
errors, authentication errors, decode errors, and RPC program errors.

MOUNT MOUNT counters return the total MOUNT procedure calls, the calls for each
MOUNT procedure since someone started the server, the total number of
directory mounts since someone started the server, and the number of directories
currently mounted.

total is the number of MOUNT calls

bad call is the number of bad MOUNT calls

fail is the number of failed MOUNT calls

mount is the number of successful mounts

unmount is the number of successful dismounts

null is the number of null mounts

dump is the number of dumps from MOUNT calls

mnt export is the number of exported mounts

cur mount is the number of current mounts

173

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Example

The command description section describes the output parameters for this example. The /TIME
qualifier includes the average and maximum times for the indicated NFS requests.

SHOW STATISTICS /TIME
NFS Server Statistics
Started: 1-FEB-2014 07:24:05 Uptime: 14 07:05:53 Memory in use: 1414850
Threads: total 40 current 0 max 11
Files: opens 54 closes 54 cur. open 0 max.open 5
NFS: total 2519 bad call 0 fail 0
 null 6 getattr 149 setattr 6 read 396 lookup 1381
ave: 0 ms 7 ms 82 ms 78 ms 20 ms
max: 0 ms 40 ms 100 ms 180 ms 50 ms
 mkdir 0 write 396 create 6 remove 12 rename 18
ave: 0 ms 38 ms 83 ms 38 ms 117 ms
max: 0 ms 510 ms 90 ms 120 ms 130 ms
 rmdir 0 readdir 51 statfs 1 link 0 symlink 0
ave: 0 ms 32 ms 10 ms 0 ms 0 ms
max: 0 ms 230 ms 10 ms 0 ms 0 ms
 readlink 0 other 0 adfread 97 adfwrite 6
ave: 0 ms 0 ms 7 ms 27 ms
max: 0 ms 0 ms 50 ms 30 ms
RPC: recv 2520 xmit 2520 xid hits 0 dup recv 0
RPC errors: recv 0 xmit 0
 authweak 0 authother 0 decode 0 noproc 0 noprog 0
 progvers 2 systemerr 0
MOUNT: total 1 bad call 0 fail 0
mount 1 unmount 0 null 0 dump 0 mnt export 0
mounts 1 cur. mount 1

UNMOUNT ALL
UNMOUNT ALL — NFS client only. Removes all the mount list entries for the local client host on
the specified NFS server or servers. Useful for notifying the remote server host that the server file
systems are no longer mounted on the client in the event that the client system goes down and you
need to reboot it. Unmounting is not the same as dismounting. UNMOUNT ALL does not dismount a
mounted file system. After using UNMOUNT, you can use SHOW MOUNT (in VSI TCP/IP) or show
mount (on a UNIX system server) to verify that the list entry you requested to be unmounted on the
specified server(s) is no longer there. The mount list entries are in the /etc/rmtab file on most UNIX
systems.

Format

UNMOUNT ALL

Qualifier

/HOST=(server,server...)

Server host or hosts. The parentheses are required for multiple servers. If omitted, the client sends
a broadcast message to all local network servers to remove the list entry for the local client host.

174

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Examples
1. Sends a broadcast message to all local network servers to remove the mount list entry for the local

client host.

UNMOUNT ALL

2. Sends a request to hosts TAU and SIGMA to remove the mount list entry for the local client host.

UNMOUNT ALL /HOST=(TAU,SIGMA)

Note

The following message can occur after an UNMOUNT ALL request sent to a UNIX system server:

RPC Client call failed, RPC: Remote system error

Ignore this message. However, confirm through a SHOW MOUNT command that the mount list
entry was, in fact, removed.

13.6. Mounting an NFS file system on
VSI TCP/IP
NFSMOUNT
NFSMOUNT — Mounts an NFS file system on VSI TCP/IP.

Format
NFSMOUNT server "nfs-path" [mountpoint [logical]]

Parameters
server

Name of the remote server, in domain name or IP address format.

"nfs-path"

Pathname (enclosed in quotation marks) on the remote server. The pathname must match an
exported directory, subdirectory, or file of an exported filesystem on the server. (You can use
the SHOW EXPORT command in the MANAGE_NFS3 utility to obtain a list of the exported
directories.)

mountpoint

NFS device (and, optionally, directory tree) specification for the local mount point. If specified,
this parameter must be in the format:

NFSn:[[dir.dir....]][filename]

The value n can range from 1 to 9999, and dir is a directory level (up to eight in addition to
the [000000] directory). If you omit the mountpoint specification or specify NFS0:, the client
creates an NFSn:[000000] mount point, and increases n by one for each subsequent mount.

175

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

logical

Optional logical name associated with the volume. The client defines the logical as follows:

If you mount NFSn:[000000] NFSn:
If you mount NFSn:[dir.dir] NFSn:[dir.dir.]

The extra dot after the last dir in the second definition allows for relative directory specifications. If
you perform the following function:

SET DEFAULT logical:[subdir]

the full default definition becomes:

NFSn:[dir.dir.subdir]

The client places the logical name in the SYSTEM logical name table unless you specify the /GROUP
or /SHARE qualifier. The client deletes the logical name from the SYSTEM table when you dismount
the volume. The process must have SYSNAM privilege to mount a system mount point. Without
SYSNAM or GRPNAM privilege, the user must specify /SHARE for a JOB mount.

Qualifiers
/ACP_PARAMS= ([BUFFER_LIMIT= limit-value] [,DUMP] [,IO_DIRECT=value]
[,IO_BUFFERED=value] [,MAX_WORKSET=pages] [,PAGE_FILE=filespec]
[,PRIORITY=base-priority] [,WORKSET=pages])

Includes SYSGEN ACP and detached process parameters the system manager can set or modify.
The SYSGEN parameters that affect ACPs are dynamic. The client applies the ACP parameters
only at the initial start of an ACP and ignores them in subsequent mount requests when the client
uses the same ACP.

/ADF=option
/NOADF

Controls whether you want to use attributes data files (ADFs). These files appear on a non-VMS
server as .ADFfilename files and the server uses them to store OpenVMS file attributes. You
cannot directly view these files on the client system. The possible ADF option values are:

CREATE (the default and forced
if /SERVER_TYPE=VMS_SERVER)

If ADFs exist on the server, the client will use, update, and
create them for new files.

UPDATE If ADFs exist on the server, the client will use and update
them, but not create them for new files.

USE If ADFs exist on the server, the client will use them, but not
update them nor create them for new files.

Avoid using UPDATE and USE. The client may create ADFs anyway in certain cases, such as when
renaming files. Also, changing OpenVMS attributes for a hard-linked file may result in inconsistent
OpenVMS attributes between the linked files.

/AUTOMOUNT [= (INACTIVITY = inactive-time)]

Mounts a server filesystem automatically and transparently when you obtain the pathname.
INACTIVITY specifies a maximum inactive period for the mount attempt. When the client
reaches this period, it unmounts the pathname. Specify the time in delta (see the VSI TCP/IP

176

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Administrator’s Guide: Volume I for the information on network time). The default is five minutes
(:5). Seconds are rounded to the nearest minute.

/BACKGROUND [=(DELAY=delay-time, RETRY=retries)]

Attempts to mount the filesystem at least once in background mode. If the first mount attempt
fails, it informs you and keeps retrying after an optionally specified time delay and number of
retries. If omitted, the DELAY defaults to 30 seconds (::30 in delta time). The maximum delay
period you can specify is approximately 49 days. The default RETRY time value is 10. If you
specify RETRY=0, the client uses 1 instead.

/CACHE_TIMEOUT [= ([DIRECTORY= t] [,ATTRIBUTE=t] [,READ_DIRECTORY])]

Caching timeout information for the mount point. The following keywords apply:

The DIRECTORY timer Specifies the amount of time (t) the client waits between rereading a
directory's status or contents. Specify the time in delta format (see the VSI
TCP/IP Administrator’s Guide: Volume I for the information on network
time). The default is 30 seconds (::30 in delta time).

The ATTRIBUTE timer Specifies the amount of delta time (t) the client waits between rereading
a file's attributes from the server. The default is 15 seconds (::15 in delta
time)

The
READ_DIRECTORY
keyword

Forces the client to read the contents of the directory requested when the
cache timeout occurs, rather than relying on the directory's modified time.
By reading the directory contents, the client can be aware of any changes
to the number of files within the directory even if the directory's modify
time was not updated.

/CONVERT={ STREAM_LF (default) | STREAM_CRLF } /NOCONVERT (forced for VSI TCP/IP's
NFS Server)

Controls whether the Client should convert sequential, variable-length, carriage return carriage
control (VAR-CR) files to STREAM-LF files for UNIX system servers or STREAM_CRLF
for PC system servers. Some OpenVMS applications require that certain files remain VAR-CR.
The default is /CONVERT=STREAM_LF unless you use /SERVER_TYPE=VMS_SERVER, in
which case VSI TCP/IP forces a /NOCONVERT.

You can only convert files opened using RMS sequential access to STREAM-LF or
STREAM_CRLF format when written by the client.

The NFS Client does not perform conversions when “block mode transfers” are performed.
COPY and EDT use block mode transfers when copying or creating files. Instead of COPY, use
the CONVERT command. Instead of EDT, use the TPU command. Most applications do RMS
sequential access when they create files on the export and these will be converted.

/CONFIG=filsespec

Mounts one or more remote NFS directories based on information in a configuration file. In this
way, you can maintain a regular list of server filesystems that you can automatically mount using
one command.

filsespec

OpenVMS file containing the configuration information. The contents of the file should include
line entries in the format prescribed by the NFSMOUNT command:

177

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Note

The client uses qualifiers specified with the NFSMOUNT /CONFIG command as defaults for mount
requests in the configuration file. However, qualifiers included with mount requests in the file
override these defaults.

The configuration file must have complete information for a mount on each line (continuation lines
are not allowed). The client ignores blank or comment lines. Mount requests in the file can have
further configuration file references, although there is limited nesting of these requests.

Examples
1. The following command consults the CONFIG_NFS.TXT file for mounting information.

$ NFSMOUNT /CONFIG=CONFIG_NFS.TXT

2. The following command also sets data size and username parameters (which can be overridden by
qualifiers in the configuration file).

$ NFSMOUNT /CONFIG=CONFIG_NFS.TXT /DATA=512 /USER=BART

/DATA=[([read-bytes],[write-bytes])]

Largest amount of NFS data received (read-bytes) or transmitted (write-bytes) in a
single network operation. The default for both is 8192 bytes, the maximum allowable value
appropriate for most servers. The minimum is 512. If you specify only one value, that value
applies to both read and write. However, you can use different values for each.

You do not normally need to use the /DATA qualifier unless a remote server imposes a
restriction on data size. Also, if the NFS server requests a smaller transfer size than the one set
with this qualifier, the server's requested value will override the one set by /DATA.

/FILEIDS={UNIQUE | NONUNIQUE}

With UNIQUE (the default), the client uses filenames and 32-bit NFS file IDs when
processing the directory information returned by the server, to determine whether cached
information is valid.

With NONUNIQUE, the client uses file handles instead of file IDs in retrieving directory
information. This can refresh directory entries in the client's cache more quickly, resulting in
fewer "no such file" errors. However, this can degrade performance since the client must issue
additional RPC requests. /FILEIDS=NONUNIQUE automatically implies a /LOOKUPS, so
do not use it together with an explicit /NOLOOKUPS.

/FORCE
/NOFORCE (default)

Controls whether or not to force an overmount or a mount that can cause filesystem occlusion.
This qualifier requires OPER privilege. Overmounting a /SYSTEM mount requires SYSNAM
privilege. Overmounting a /GROUP mount requires GRPNAM privilege.

/GID=gid

Default GID if no GID mapping exists for file access. The default value is -2. Requires OPER
privileges.

178

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

/GROUP

Places the logical name in the group logical name table. If the mount is the first group or
system mount on the volume, /GROUP marks the volume as group-mounted and increments
the mount count. Requires GRPNAM privilege. Do not use with /SYSTEM.

/LABEL=volume-label

ODS-2 volume label used for the remote pathname. You can use this qualifier to provide a
unique volume label on a system where there is a conflict. The default is the first 12 characters
of the combined server:mountpoint parameter. The client accepts only the first 12
characters for all other entries. The client applies the /LABEL qualifier on the first mount of
an NFS device only and ignores it with subsequent mounts on that device.

/LOCK
/NOLOCK (default)

Specifies whether the client should use advisory network file locking by way of the Network
Lock Manager (NLM) to coordinate access to server files.

/NOLOOKUPS (default)
/LOOKUPS

With /NOLOOKUPS (the default), the client does not look up file handles when building
directory caches. However, when accessing an individual file, it does look up its file handle;
and with a directory operation, it still looks up the handle for every file in the directory. Do
not use an explicit /NOLOOKUPS together with /FILEIDS=NONUNIQUE.

/NOREADDIRPLUS

For NFS this disables the use of the READDIRPLUS command to read directory and file
information. The client will fall back to using READDIR if it detects that the server does
not support READDIRPLUS, so this is only necessary if there is a problem when using
READDIRPLUS. Note that READDIRPLUS is generally more efficient than READDIR.

/OWNER_UIC=uic

Specifies the UIC assigned ownership of the volume while you mount it, thereby overriding
the ownership recorded on the volume. The client applies the /OWNER_UIC qualifier on the
first mount of an NFS device only and ignores it with subsequent mounts on that device.

/PROCESSOR={UNIQUE | SAME:nfs-device | FILE:filespec}

Requests that NFSMOUNT associate an Ancillary Control Process (ACP) to process the
volume, which overrides the default manner in which the client associates ACPs with NFS
devices. The qualifier requires OPER privilege. The possible keyword values are:

UNIQUE Creates a new ACP (additional address space) for the new NFS device.
This is useful for mounting large remote filesystems so that you can
accommodate more cached information.

SAME:nfs-device Uses the same ACP as the specified device. The nfs-device specified
cannot be mounted as UNIQUE. Care should be taken when using this as
NFS and NFS mount points cannot share an ACP.

179

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

FILE:filespec Creates a new ACP running the image specified by a particular file.
You cannot use wildcards, node names, and directory names in the
filespec. Requires CMKRNL or OPER privilege.

/PROTECTION=protection-code

Protection code assigned the volume, following the standard syntax rules for specifying
protection. If you omit a protection category, the client denies that category of user access.
The default is (S:RWED,O:RWED,G:RWED,W:RWED).

The client applies the /PROTECTION qualifier on the first mount of an NFS device only and
ignores it with subsequent mounts on that device. /PROTECTION requires OPER privilege.

/RETRIES=max-retries

Maximum number of times the client retransmits an RPC request. The default is zero (0),
where the client retries the request indefinitely.

/SERVER_TYPE=server-type

Type of server from which the client mounts data. The valid values for server-type are:

• UNIX

• VMS_SERVER

• IBM_VM

The default is either UNIX or VMS_SERVER (if the server runs VSI TCP/IP's server).

With /SERVER_TYPE=VMS_SERVER, VSI TCP/IP forces /NOCONVERT
and /ADF=CREATE regardless of their specified settings.

/SHARE

Places the logical name in the job logical name table and increments the volume mount
count regardless of the number of job mounts. When the job logs out, all job mounts are
dismounted, causing the volume mount count to be decremented.

/SHOW

Displays the mounted directories at all mount points or at a particular mount point.

$ NFSMOUNT /SHOW [mountpoint | device:]

mountpoint

Full NFS device name and directory tree for which to show mount information. For example:

NFS1:[USER.NOTES]

180

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

device:

NFS device name part of the mountpoint parameter (such as NFS1:). Alternately, you
can use a logical name for the mount point. With the /ALL qualifier, the client uses only the
device portion of the logical name.

Qualifiers

/ALL

Shows mount information for all servers, or a specified server or NFS device.

/FULL

Displays the full, current operating parameters related to each mount.

See the NFSMOUNT command for descriptions of the qualifiers that correspond to each of the
operating parameters.

/QUOTA

Displays quota information for the current user's mount. The qualifier used by itself shows four
columns at the top of the display indicating the block usage, soft limit (quota), hard limit, and
grace period.

Use /QUOTA with the /FULL qualifier to show four additional columns indicating any possible
file quotas. These show as zeros for an OpenVMS system but as actual values for UNIX systems
that support file quotas.

Use /QUOTA with the /USER qualifier to request quotas for other than the default user.

/USER=username

Use with /QUOTA to show quotas for a specific user. This requires the mount to have been
performed using the /SUPERVISOR qualifier, which maps users with SYSPRV, BYPASS, or
READALL privileges to the superuser UID. /USER requires SYSPRV or GRPPRV privileges.

Examples

1. This example provides the default command display.

$ NFSMOUNT /SHOW
_NFS1:[000000] automount (inactivity timer 0 00:23:00.00), mounted
SIGMA.EXAMPLE.COM:/usr
_NFS2:[000000] mounted
IRIS.EXAMPLE.COM:/usr/users

2. This example shows characteristics of all mounts on a specific NFS device.

$ NFSMOUNT /SHOW NFS0: /ALL
_NFS1:[A.B] mounted
SIGMA.EXAMPLE.COM:/usr
_NFS2:[A.C] mounted
SIGMA.EXAMPLE.COM:/work

181

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

3. This example shows the full mount display with all operating parameters for a specific NFS
device. Note that you can either enable or disable Writing and Write conversion.

$ NFSMOUNT /SHOW NFS1: /FULL
_NFS1:[000000] mounted
MERAK.EXAMPLE.COM:/eng/nfsuser
Transport UDP Writing Enabled
Read/write size 8192/8192 Write conversion Disabled
RPC timeout 0 00:00:01.00 ADF usage
 USE,UPDATE,CREATE
RPC retry limit 0 Fileids Unique,
 Nolookups
Attribute time 0 00:00:15.00 Server type TCPware, NFS
Directory time 0 00:00:30.00 Advisory Locking Disabled
Cache Validation MODIFY TIME Default user [USER]
Superuser No Default UID,GID 100,15

4. This example shows the additional full block and file quotas for the user's mount.

$ NFSMOUNT /SHOW NFS2: /QUOTA /FULL
_NFS2:[000000] mounted
viola:/pctest
Disk Quotas for user [SMITH]: (inactive)
Blocks Quota Limit Grace Files Quota Limit Grace
117355 500000 600000 0 0 0
Transport UDP Writing Enabled
Read/write size 8192/8192 Write conversion Disabled
RPC timeout 0 00:00:01.00 ADF usage USE,UPDATE,CREATE
RPC retry limit 0 Fileids Unique, Nolookups
Attribute time 0 00:00:15.00 Server type VSI TCP/IP, NFS
Directory time 0 00:00:30.00 Advisory Locking Disabled
Cache Validation MODIFY TIME Default user [USER]
Superuser No Default UID,GID 100,15

/SUPERUSER=uid
/NOSUPERUSER

Controls whether the client maps users with SYSPRV, BYPASS, or READALL privileges to the
superuser UID. The server must allow superuser access. The normal superuser UID is 0.

/SYSTEM

Places the logical name in the system logical name table (the default action). If the mount is
the first group or system mount on the volume, this marks the volume as system mounted and
increments the volume mount count. Requires SYSNAM privilege. Do no use with /GROUP.

/TIMEOUT=timeout-period

Minimum timeout period (in OpenVMS delta time) for initial RPC request retransmissions. The
default is ::1 (one second).

The timeout-period value should reflect the estimated typical round trip time for RPC
requests. For slower speed links (like NFS traffic over SLIP or WANs), a larger value than the
default would be appropriate.

For example, for a maximum read/write size of 8192 (see the /DATA qualifier) over a 19,200-
baud SLIP line, the absolute minimum timeout value should be:

182

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

The 10240 bytes are 8192 data bytes plus the worst case RPC overhead of 1048 bytes. Since 4.27
seconds is the absolute minimum, a more realistic value for this link would be in the range of 15
to 30 seconds to allow for other traffic.

/TRANSPORT=protocol-type

Network protocol used to transfer the data. The valid values are TCP and UDP (the default).

/UID=uid

Default UID, if no UID mapping exists for file access. The default value is -2. Requires OPER
privileges.

/USER=username

Existing OpenVMS account to which the client maps unknown UIDs. The default is the USER
account. If the Client does not find the USER account, the DECNET account becomes the default.
If the client does not find the DECNET account, [200,200] becomes the default.

/VERSION (default)
/NOVERSION

Use the /NOVERSION qualifier to enforce a limit of one version on a file. This is a way of
imposing an NFS file versioning scheme on OpenVMS files. /VERSION, allowing multiple
versions, is the default. This qualifier is disabled if connected to a VSI TCP/IP NFS server.

/WRITE (default)
/NOWRITE

Allows that you mount the filesystem either with write access (/WRITE) or read-only
(/NOWRITE) on the local machine. If /NOWRITE, file creation, deletion, and other
modifications are not allowed.

Examples
1. In this example, the client mounts the /usr filesystem from sigma onto the OpenVMS mount point

when it references the pathname. The client keeps the path mounted until the client reaches an
inactive period of 10 minutes, after which it unmounts the pathname. Subsequent references cause
the client to remount the filesystem.

$ NFSMOUNT SIGMA "/usr" NFS0: /AUTOMOUNT=(INACTIVITY=00:10:00)

2. This example shows an overmount. The second mount specifies a lower level in the server path.

$ NFSMOUNT SIGMA "/usr" NFS1:[USERS.MNT]
%NFSMOUNT-S-MOUNTED, /usr mounted on _NFS1:[USERS.MNT]
$ NFSMOUNT SIGMA "/usr/users" NFS1:[USERS.MNT] /FORCE
%NFSMOUNT-S-REMOUNTED, _NFS1:[USERS.MNT] remounted as /usr/users on
 SIGMA

3. This example shows an occluded mount. The mount point specification is "backed up" one
subdirectory on the second mount. Both mounts are visible in an NFSMOUNT/SHOW. However,

183

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

if you do a directory listing on NFS2:[USERS.SMITH], the [MNT] directory is no longer visible.
To make the directory visible again, dismount NFS2:[USERS.SMITH].

$ NFSMOUNT SIGMA "/usr" NFS2:[USERS.SMITH.MNT]
%NFSMOUNT-S-MOUNTED, /usr mounted on _NFS2:[USERS.SMITH.MNT]
$ NFSMOUNT SIGMA "/usr" NFS2:[USERS.SMITH] /FORCE
%NFSMOUNT-S-MOUNTED, /usr mounted on _NFS2:[USERS.SMITH]
-IP-I-OCCLUDED, previous contents of _NFS2:[USERS.SMITH] occluded

13.7. Implementation
This section describes the Server restrictions and implementation of the Network File System (NFS)
protocol. The material presented here requires a thorough understanding of the protocols. It does not
explain or describe the protocols.

13.7.1. Restrictions
The Server has the following OpenVMS-related restrictions:

• The Server supports Files-11 ODS-2 structure level disks, ODS-5 formatted disks, and any CD-
ROM format.

• The Server does not implement volume protection. All exported devices should be public devices.

• The Server does not generate security or audit alarms. However, the Server writes access
violations to log file IP$LOG:NFS_SERVER.LOG.

• When creating files and directories, the Server sets the owner UIC of the file or directory to the
UIC derived from the UID/GID in the create request authentication information or to the UID/GID
in the set attributes information (if available).

13.7.2. NFS Protocol Procedures
The Server implements the following NFS protocol (version 3) procedures (while continuing to
support version 2):

Procedures Description
ACCESS (access) The server determines the access rights that a user, as identified by the

credentials in the request, has with respect to a file system object.
COMMIT CACHED
WRITE DATA (commit)

The server forces data to stable storage that was previously written with
an asynchronous write call

CREATE FILE (create) The server creates files using the record format specified in the EXPORT
database entry. The client may specify one of 3 methods to create the file:
UNCHECKED: File is created without checking for the existence of a
duplicate file. GUARDED: Checks for the presence of a duplicate and
fails the request if a duplicate exists. EXCLUSIVE: Follows exclusive
creation semantics, using a verifier to ensure exclusive creation of the
target.

GET ATTRIBUTES
(getattr)

Gets a file's attributes. The Server handles certain file attributes in ways
that are compatible with the OpenVMS system. These attributes are:

File protection—The server maps the OpenVMS file protection mask to
the UNIX file protection mask.

184

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Procedures Description
Number of links—Although OpenVMS supports hard links, it does not
maintain a reference count. Therefore, the server sets this value to 1 for
regular files and 2 for directory files.

UID/GID—The server maps a file owner's UIC to a UID/GID pair
through the PROXY database.

Device number—The server returns the device number as -1.

Bytes used—The total number of bytes used by the file.

Filesystem id—The server returns the filesystem ID as 0.

Access, modify, status change times—The OpenVMS system does not
maintain the same file times as NFS requires. The server returns the
OpenVMS revision (modify) time for all three NFS times.

For directory files, the Server returns the access, status change, and
modify times as a reasonably recent time, based on the time of the last
Serverinitiated directory change, and the NFS_DIRTIME_TIMER
parameter. This is a benefit to clients that cache directory entries based
on the directory times. OpenVMS bases its time on local time, while
UNIX bases its time on Universal time (or Greenwich mean time), and
these times may not agree. The offset from Universal time specified
when configuring VSI TCP/IP resolves the difference between local and
Universal time.

GET DYNAMIC
FILESYSTEM INFO
(fsstat)

The server provides volatile information about a filesystem, including:

• total size and free space (in bytes)

• total number of files and free slots

• estimate of time between file system modifications
GET STATIC
FILESYSTEM INFO
(fsinfo)

The server provides nonvolatile information about a filesystem,
including:

• preferred and maximum read transfer sizes

• preferred and maximum write transfer sizes

• flags for support of hard links and symbolic links

• preferred transfer size of readdir replies

• server time granularity

• whether or not times can be set in a setattr request
LINK (link) Creates a hard link to a file. The Server stores the link count in an

application access control entry (ACE) on the file.
LOOKUP FILE (lookup) Looks up a file name. If the file name does not have a file extension,

the server first searches for a directory with the specified name. If the

185

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Procedures Description
server fails to locate a directory, it searches for the file name without an
extension.

MAKE DIRECTORY
(mkdir)

Creates a directory. The OpenVMS system does not allow the remote host
to create more than eight directory levels from the root of the OpenVMS
filesystem. The server ignores access and modifies times in the request.

READ DIRECTORY
(readdir)

Reads a directory. The Server returns file names using the filename
mapping scheme as specified in the EXPORT database entry. The Server
also drops the OpenVMS version number from the file name for the
highest version of the file.

READ DIRECTORY
PLUS ATTRIBUTES
(readdirplus)

In addition to file names, the server returns file handles and attributes in
an extended directory list.

READ FROM FILE
(read)

Reads from a file. The Server converts VARIABLE and VFC files to
STREAM or STREAM_LF format (depending on the option set) as it
reads them. The server returns EOF when detected.

REMOVE DIRECTORY
(rmdir)

Deletes a directory.

REMOVE FILE (remove) Deletes a file.
RENAME FILE (rename) Renames a file. If the destination filename is the same as an existing

filename and the destination filename does not have a zero or negative
version number, the Server overwrites the existing file.

READ LINK (readlink) Reads the contents of a symbolic link.
SET ATTRIBUTES
(setattr)

Sets file attributes. The Server handles certain file attributes in ways that
are compatible with the OpenVMS system. These attributes are:

File protection—The Server maps the UNIX file protection mask to the
OpenVMS file protection mask, as shown earlier in this chapter.

UID/GID—The client changes the file owner's UIC. The PROXY
database maps the new UID/GID to an OpenVMS UIC. If the Server
cannot locate the new UID/GID in the database, it returns an error and
does not change the owner UIC.

Size—If the file size is larger than the allocated size, the Server extends
the file. If the size is 0, the Server truncates the file and sets the record
attributes to sequential STREAM_LF. You cannot change the size of
variable length or VFC files (except to zero).

Access time—Changing the access time has no effect on the OpenVMS
system.

Modify time—The modify time updates the OpenVMS revision time.
SYMBOLIC LINK
(symlink)

Creates a symbolic link. The server creates the file with an undefined
record structure and uses an application ACE on the file to mask it as a
symbolic link.

WRITE TO FILE (write) Writes to a file. The Server does not allow a remote host to write to a
directory file, or to VARIABLE and VFC files.

186

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

Procedures Description
If the server allowed a remote host to write to an existing OpenVMS file
that was not a STREAM_LF or fixed-length record format file, the file
could become corrupted.

The server does not allow a remote host to explicitly change the record
format of an OpenVMS file. The server can return the non-standard NFS
error ETXTBSY (26) and EINVAL (22). The Server returns ETXTBSY
when an OpenVMS user has a file open for exclusive access and an NFS
user tries to use the file in a way that is inconsistent with the way the
OpenVMS user opened the file. The server returns EINVAL if an NFS
user tries to write to or change the size of a VARIABLE or VFC record
format file.

With version 3, the server supports asynchronous writes (see commit).

187

Chapter 13. Configuring the VSI TCP/IP NFS Client & Server

188

Chapter 14. Using the NFS Client
This chapter describes how to configure and maintain the VSI TCP/IP NFS Client, which allows users
of OpenVMS client computers to access files on a variety of server computers.

This chapter refers to the VSI TCP/IP NFS Client and NFS Server software as the NFS Client and
NFS Server and the OpenVMS client system and server system as the client and server.

14.1. Servers and Clients
The VSI TCP/IP NFS Client software allows an OpenVMS system to access file systems made
available to the network by many types of server systems, including:

• Sun Microsystems hosts or similar systems running the UNIX operating system

• Hewlett-Packard computers running the ULTRIX (HP UNIX) operating system

• OpenVMS systems running the VSI TCP/IP NFS Server

The client identifies each file system by the name of its mount point on the server, which is the name
of the device or directory at the top of the file system hierarchy. When mounting the file system, the
client connects the mount point to a mount device in its own hierarchy; for example, NFS2:. Through
this connection, all files below the mount point are available to client users as if they resided on the
mount device.

The client converts all mounted directory and file structures, contents, and names to the format
required by OpenVMS automatically. For example, a UNIX file named:

/usr/joe/.login

appears to an OpenVMS client user as:

DISK$UNIX:[USR.JOE].LOGIN;1

The VSI TCP/IP NFS Client can convert most valid UNIX or ULTRIX file names to valid OpenVMS
names and vice versa. See the Section 14.1.9 for a complete description of the VSI TCP/IP NFS
Client file-naming conventions.

14.1.1. VSI TCP/IP NFS Client Use of User IDs
NFS server systems identify each of their users to the network by a pair of UNIX or UNIX-style user-
ID (UID) and group-ID (GID) codes. During an access operation, the client translates back and forth
between the user's OpenVMS UIC (user identification code) and UID/GID pair.

For example, a user named Moore has an account on a UNIX server with a UID of 504 and a GID
of 10. The UID and GID are mapped on the OpenVMS client to a user name BMOORE with a UIC
consisting of the userid 504 and group affiliation 10.

When the NFS client ACP (ancillary control process) starts, it reads the NFS_EXPORT.DAT,
NFS_GROUP.DAT, NFS_MNTLST.DAT, and NFS_PROXY.DAT. file, including the UID
translations list. The client uses the list to translate each OpenVMS user name to its UID/GID pair and
builds a translation table that maps UID/GID pairs to their corresponding OpenVMS UICs.

As described in the following sections, you must create and maintain the UID translation list that
maps each user's OpenVMS user name to a UID/GID pair. For file protections to work properly,

189

Chapter 14. Using the NFS Client

mappings must be both unique and consistent in each direction (see the Section 14.1.2 for a
description of exceptions to this rule). You cannot map a single UID to multiple OpenVMS user
names, nor can you use a single user name for multiple UIDs.

Whenever the UID/GID to OpenVMS UIC mapping is modified, the VSI TCP/IP NFS Client must
be reloaded for the changes to take effect. See the Section 14.3 for more information on restarting the
NFS Client.

14.1.2. Grouping NFS Client Systems for UID/GID
Mappings
If all the systems in your environment share the same UID/GID pairs, you need not create or specify
NFS groups. All translations are automatically placed in the default group, which has no group name
associated with it.

In the database that translates between UID/GID pairs and OpenVMS user names, each entry is
associated with a particular NFS group. An NFS group is a collection of NFS systems sharing a single
set of UID/GID pairs. An example of a collection of systems that would be placed in an NFS group
would be a UNIX file server and diskless UNIX client systems which share the same /etc/passwd file.
Within an NFS group, the mapping between UID/GID pairs and OpenVMS user names must be one-
to-one: you cannot map a single UID/GID to multiple user names, nor can you use a single user name
for multiple UID/GIDs. However, duplicate translations may exist between NFS groups.

When the VSI TCP/IP NFS Client sends an NFS request to a server, it consults the local NFS
group database to determine with which group the server is associated. If the server is not specified
explicitly in a group, it is assumed to be in the default group. Once the NFS Client has determined
the NFS group to which the server belongs, it uses the UID/GID translation list for that group to
determine the UID/GID pair to use for a particular local user when accessing files on the server.

14.1.3. Mapping Example
Consider the following example. At Example, Inc., the engineering department has a group of UNIX
hosts, the sales department has a collection of PCs, and the marketing department has a mix of PCs
and UNIX hosts. Each group also has its own UNIX system acting as an NFS server for the group.
Unfortunately, the groups did not coordinate with each other when they assigned user names and UID/
GID pairs; and none of the groups are willing to change their current configurations. The accounting
department, on the other hand, recently purchased an HPE RX2800 server running OpenVMS
with VSI TCP/IP NFS Client. The department wants to use NFS to access personnel data that each
department maintains on a local server.

The accounting system manager configures the NFS Client on the OpenVMS system as follows:

1. Using the NFS-CONFIG ADD NFS-GROUP command, the system manager creates the three
NFS groups ENGINEERING, SALES, and MARKETING, placing the NFS systems in each
department in the appropriate NFS group (the default group will be used for systems in the
accounting department).

2. Departments create accounts (and hence UID/GID pairs) on their servers that the system manager
can map to local OpenVMS user ids.

3. Finally, the system manager uses the NFS Configuration Utility ADD UID-TRANSLATION and
ADD NFS-PASSWD-FILE commands to create mappings between OpenVMS user names and
UID/GID pairs for each NFS group.

190

Chapter 14. Using the NFS Client

14.1.4. Effects of Incomplete Mappings
When mappings are incomplete or nonexistent, access operations are denied or severely limited.

If any server files or directories are owned by a UID for which there is no mapping, the client handles
them as though they were owned by the OpenVMS user DEFAULT ([200,200]). The client grants
access only according to the WORLD file protection setting of these files.

14.1.5. File System Limitations
If your VSI TCP/IP system is running both the VSI TCP/IP NFS Client and NFS Server, you cannot
configure the Server to export a file system that has been mounted by the Client. The Server can
export local disks only when the Server and Client are running on the same system.

Because the NFS Client does not completely emulate the "on disk" structure of the OpenVMS file
system, some applications that directly read the file system may not work correctly over the NFS
Client.

Note

The NFS Client can only mount file systems from OpenVMS systems that are using the VSI TCP/IP
NFS Server.

Finally, you may notice that a file's ID (FID) changes every time the file system is remounted. This
happens because the NFS protocol does not allow a local file ID to be stored on the remote host;
therefore, each NFS client device (NFSx:) has its own idea of what the FID is. The client keeps a
cache of local FIDs which it generates by choosing monotonically increasing numbers. Therefore,
a file mounted multiple times in a cluster may have a different FID on each node. This might cause
trouble with print queues that execute on a node other than the one that submitted the job.

14.1.6. DISKQUOTA Limitations
Although the NFS Client supports NFS server disk quotas, it does not support use of the DCL SHOW
QUOTA command or the DISKQUOTA utility to examine or manipulate these quotas.

14.1.7. Security and File Protections
The NFS Client supports the standard OWNER, GROUP, and WORLD protections allowing READ,
WRITE, EXECUTE, and DELETE access (DELETE access is taken from the WRITE access settings
on the server system). Each user has a user account on the OpenVMS client as well as on the server.
The NFS Client compares the UIC of the user to the owner and protection mask of the directory or file
and then grants or denies access, as indicated earlier in the Section 14.1.1.

OpenVMS Access Control Lists (ACLs) are supported when accessing files on VSI TCP/IP NFS
Server OpenVMS systems, as well as most UNIX NFS server systems.

14.1.8. Storing OpenVMS File Attributes on an NFS
Server
The NFS protocol assumes an underlying file system in which files are merely streams of bytes with
records delimited by linefeed characters (corresponding to the OpenVMS RMS Stream_LF record
format). The NFS Client supports storage of non-Stream_LF files on an NFS server through attribute
description files and file name-dependent attribute defaults.

191

Chapter 14. Using the NFS Client

When using the NFS Client, if you create a non-Stream_LF OpenVMS file or a file with ACLs
associated with it on an NFS server, the NFS Client automatically creates a companion file to hold the
attributes. The companion file is a text file in FDL (File Description Language) format.

The client hides the companion file from the user's view; the user sees only a single file with all of the
attributes. If you rename or delete the original file from the client, the client automatically renames
or deletes the companion file. However, if you rename or delete a file from the server side, you must
also rename the companion file. If you do not, file attributes will be lost, the file will revert to stream
attributes, and its contents may become unusable.

For example, if you create the remote indexed sequential file foo.bar, the client creates a second
remote file .fdlfoo.bar to hold the attributes.

Ordinary text files (Stream_LF files) are stored in UNIX byte-stream format and do not require
companion files. If you use the OpenVMS COPY command to copy a non-Stream_LF file to
an NFS client mounted disk, the file will be converted automatically to Stream_LF format. To
disable this conversion, use the NOSTREAM_CONVERSION option of the NFSMOUNT /
SEMANTICS=qualifier.

Note

When communicating with a UNIX NFS server system, this option prevents UNIX users from
accessing these unconverted files as Stream_LF text files.

Certain types of files default to a type other than Stream_LF, and the absence of a companion file
implies attributes other than Stream_LF. For example, a *.EXE file defaults to a fixed length 512-
byte record file. The below table lists the default file attributes included with VSI TCP/IP.

File Name File Type Default File Attributes
*.EXE Executable Fixed 512-byte records
*.OBJ Object File Variable-length records
*.OLB Object Library Fixed 512-byte records
*.MAI Mail Folder Indexed file, variable-length

records
*.MLB Macro Library Fixed 512-byte records
*.HLB Help Library Fixed 512-byte records
*.TLB Text Library Fixed 512-byte records
*.STB Symbol Table Variable-length records
*.DECW$BOOK Bookreader Book Variable-length records
*.DECW$FONT Bookreader Font Sequential file, FORMAT

undefined
*.DECW_BOOK ULTRIX Book Variable-length records
*.UID DECwindows UID Fixed 4096-byte records w/ CR

14.1.9. Storing OpenVMS File Names on an NFS Server
The VSI TCP/IP NFS Client uses a special file-naming convention to provide a one-to-one mapping
between UNIX and OpenVMS file names. As a result of this convention, there are certain restrictions
on names that can be assigned to files accessed using the NFS Client.

192

Chapter 14. Using the NFS Client

The VSI TCP/IP NFS Client attempts to give OpenVMS users access to all files on servers, even
when server file names contain characters not permitted by OpenVMS. To accomplish this, the VSI
TCP/IP NFS Client performs a mapping between OpenVMS and NFS server file names, using the
inverse mapping of the VSI TCP/IP NFS Server. This mapping ensures consistency between other
NFS clients accessing and creating files using the VSI TCP/IP NFS Server, and the VSI TCP/IP NFS
Client accessing and creating files using other NFS servers. All mapping sequences on the OpenVMS
client begin with the escape character "$".

As "$" is the mapping sequence escape character, a real "$" in a file name on the server is mapped
to "$$" on the OpenVMS client. For example, the server file name foo$bar.c would map to FOO$
$BAR.Con the OpenVMS client.

A "$" followed by a letter (A to Z) in a file name on the client indicates a case-shift in the file name
on the server. For server systems like UNIX, which support case-sensitive file names, a file name can
begin in lowercase and alternate between uppercase and lowercase. For example, the server file name
aCaseSENSITIVEFilename would map to ACASE$SENSITIVEF$ILENAME on the OpenVMS
client. A "$" followed by any digit 4 to 9 indicates a mapping as shown below.

VMS
Char.

Server
Char.

Hex
Value

VMS
Char.

Server
Char.

Hex
Value

VMS
Char.

Server
Char.

Hex
Value

$4A ^A 1 $5A ! 21 $7A Space 20
$4B ^B 2 $5B “ 22 $7B ; 3B
$4C ^C 3 $5C # 23 $7C < 3C
$4D ^D 4 $5E % 25 $7D = 3D
$4E ^E 5 $5F & 26 $7E > 3E
$4F ^F 6 $5G ‘ 27 $7F ? 3F
$4G ^G 7 $5H (28
$4H ^H 8 $5I) 29 $8A @ 40
$4I ^I 9 $5J * 2A $8B [5B
$4J ^J A $5K + 2B $8C \ 5C
$4K ^K B $5L ’ 2C $8D] 5D
$4L ^L C $5N . 2E $8E ^ 5E
$4M ^M D $5O / 2F
$4N ^N E $5Z : 3A $9A ‘ 60
$4O ^O F $9B { 7B
$4P ^P 10 $6A ^@ 00 $9C | 7C
$4Q ^Q 11 $6B ^[1B $9D } 7D
$4R ^R 12 $6C ^\ 1C $9E ~ 7E
$4S ^S 13 $6D ^] 1D $9F DEL 7F
$4T ^T 14 $6E ^^ 1E
$4U ^U 16 $6F ^_ 1F
$4V ^V 16
$4W ^W 17
$4X ^X 18
$4Y ^Y 19

193

Chapter 14. Using the NFS Client

VMS
Char.

Server
Char.

Hex
Value

VMS
Char.

Server
Char.

Hex
Value

VMS
Char.

Server
Char.

Hex
Value

$4Z ^Z 1A

The digit after the dollar sign and the trailing letter indicates the character in the server file name.
In the special case of the "dot" character (.), the first dot in the server file name maps directly to a
dot in the client OpenVMS file name. Any following dot characters on the server are mapped to the
character sequence $5N on the OpenVMS client. In directory files, any dot character in the server file
name maps to $5N on the client. For example, the server file name foo.bar#1.old maps to FOO.BAR
$5C1$5NOLD on the OpenVMS client (unless foo.bar#1.old is a directory file, in which case it maps
to FOO$5NBAR$5C1$5NOLD.DIR on the OpenVMS client).

The NFS Client also supports OpenVMS file version numbers. If a file created using the NFS Client
has a file version number other than 1, the resulting file on the server contains the OpenVMS version
number. The highest version of the file is hard-linked to the name without the version number.

Finally, a "$" followed by a three-digit octal number indicates a character in the file name on the
server that has the binary value of that three-digit octal number. As all character binary values from
0 to 177 (octal) already have mappings, only characters from 200 to 377 are mapped in this fashion.
Thus, the leading digit of the octal number must be either 2 or 3.

14.1.10. NFS Client Architecture
The NFS Client consists of a device driver and an ACP process that receives requests from the
OpenVMS Record Management Services (RMS) and translates them into NFS requests. Because
the NFS Client is called by RMS, applications using RMS or the standard input/output routines of
OpenVMS programming languages do not need to be modified to access files through the NFS Client.
The NFS Client presents a $QIO interface identical to the interface documented in the VSI OpenVMS
I/O User's Reference Manual.

The NFS Client includes two top-level protocols that run parallel to each other above a stack of lower-
level protocols:

• The Network File System (NFS) protocol is an IP-family protocol that provides remote file system
access, handling client queries.

• The Remote Procedure Call (RPC) mount protocol, RPCMOUNT, is used by the NFSMOUNT
and NFSDISMOUNT commands to get mount-point information from the server systems.

Underlying the NFS and RPCMOUNT protocols is a stack of protocols:

• The remote Procedure Call (RPC) protocol allows the client to make procedure calls across the
network to servers.

• The external Data Representation (XDR) protocol handles architectural differences between the
client and server systems, allowing the NFS protocol to communicate between systems with
dissimilar architectures.

• The RPC/NFS Lock Manager protocol allows the NFS Client to support file-locking (exclusive
write access).

• User Datagram Protocol (UDP), Transmission Control Protocol (TCP), and Internet Protocol (IP)
are used for the lowest levels of communication.

194

Chapter 14. Using the NFS Client

Traditionally, NFS has only run over UDP. The VSI TCP/IP NFS Client also supports communication
over TCP. This may provide reliability and performance improvements when communicating with
NFS server systems across slow network links or wide area networks (WANs), which suffer from
packet loss and delay.

14.2. Mounting and Dismounting File
Systems
The final step in performing the first NFS Client configuration is to mount the remote file systems
that you want client users to access as if they were local files. You can also modify an existing client
configuration by mounting or dismounting file systems.

14.2.1. Mounting a File System
Use the NFSMOUNT command to mount an NFS file system. NFSMOUNT requires CMKRNL,
SETPRV, SYSPRV, SYSNAM, ALTPRI, DETACH, ACNT, and SYSLCK privileges. For example:

$ NFSMOUNT sun::"/ufs" disk$sun
%NFSMOUNT-I-MOUNTED, /usr NFS mounted on _NFS3:[000000]
$

The example command mounts the file system /ufs which is located on the server sun on the local
mount device _NFS2:.

The double quotes are necessary in the sample command because of the special meaning of the slash
(/) character in OpenVMS. The quotes are not necessary when mounting a file system exported by
another OpenVMS system.

14.2.2. Dismounting a File System
When you dismount a file system, you free the resources used by the NFS client. To dismount a file
system, use the NFSDISMOUNT command:

$ nfsdismount mount_device

For example:

$ nfsdismount nfs2:

You can use either the logical name specified in the NFSMOUNT command or the actual NFS device
name (such as NFS2:) in the mount_device field of the NFSDISMOUNT command.

14.3. Reloading the NFS Client
Before you can use a new or revised set of UID translations, you must first reload the UID mappings
into the NFS Client with the DCL command:

$ NFSMOUNT /RELOAD

You may also update the client's UID mappings using NFS-CONFIG with the following command:

NFS-CONFIG>RELOAD

For instructions on using the NFSDISMOUNT and NFSMOUNT commands, see the Section 14.2.

195

Chapter 14. Using the NFS Client

Note

If no file systems are mounted, reloading does not work.

14.4. Mounting File Systems During VSI TCP/
IP Startup
When the IP$SYSTARTUP.COM script executes during VSI TCP/IP startup, it checks the IP$:
directory for the existence of a file named NFS_MOUNT.COM. If this file exists, it will be executed
in order to mount any remote file system desired by the system manager. The following example
illustrates such a file:

$ SET NOON
$ Show Queue 'F$GetSYI("NODENAME")'_BATCH/Output=Sys$Manager:Nfs_Mount.Tmp/
All
$ Open/Read File SYS$MANAGER:NFS_Mount.Tmp
$Loop:
$ Read/End=Done File Line
$ If "''F$Element(1," ",F$Edit(Line,"TRIM,COMPRESS"))'" .Eqs. "NFS_MOUNT"
-
 Then Goto Skip
$ Goto Loop
$Done:
$ Submit/User=System/Queue='F$GetSYI("NODENAME")'_BATCH -
 /NoPrint -
 IP$:NFS_MOUNT_BATCH -
 /Name=NFS_MOUNT/Log=Sys$Manager:NFS_Mount.Log
$Skip:
$ Close File
$ Delete Sys$Manager:NFS_Mount.Tmp;*

This DCL program submits another DCL command file, NFS_MOUNT_BATCH.COM, to the queue
node_BATCH to do the work after the system boots.

The following is an example of NFS_MOUNT_BATCH.COM:

$ Verify = 'f$verify(0)
$ Set Proc/Name="NFS Mounter"
$ Purge NFS_MOUNT.Log
$ SET NOON
$ Errors = 0
$!
$! Attempt to mount the CD player on NFS.EXAMPLE.COM
$!
$ IF .Not. F$GetDVI("DISK$CD","EXISTS") Then -
NFSMOUNT/VMS/TRANS=TCP/SOFT NFS.EXAMPLE.COM::DISK$CD: DISK$CD -
/VOLUME="CD_ROM"
$ If .Not. $Status Then Errors = Errors + 1
$!
$! Check the status and requeue job if necessary.
$!
$ If Errors .Eq. 0 Then Exit
$ Submit/User=System/Queue=SYS$BATCH -
 /NoPrint /Name=NFS_MOUNT -
 IP$:NFS_MOUNT_BATCH -

196

Chapter 14. Using the NFS Client

 /After="''F$CvTime("+01:00","ABSOLUTE")'"

14.5. Creating ACPs (Ancillary Control
Processes) for NFS Mounts
The NFS Client has an NFS_CLIENT_ACP process that assists the driver by performing some
operations that are easier to do in a separate process rather than at the driver level.

Because this ACP process is single-threaded, using a single ACP for all NFS devices has a significant
drawback. If you have multiple NFS devices mounted to different computer systems and an operation
hangs on one system, all of the NFS devices are affected.

Specifying NFSMOUNT /PROCESSOR=UNIQUE creates a separate ACP process for each NFS
device. This allows NFS devices to function in parallel so one device does not have to wait for an
NFS operation on another device to complete. Multiple ACPs provide for multiple outstanding I/O
operations on different devices.

The setting /PROCESSOR=UNIQUE creates a separate NFS_CLIENT_n process for each mount,
n is the number of the NFS device (for example, NFS_CLIENT_2, which corresponds to the device
NFS2).

The following example illustrates the use of /PROCESSOR=UNIQUE, creating four ACP processes
(one for each device):

$ NFSMOUNT /PROCESSOR=UNIQUE SCROOGE::USERS: SCROOGE$USERS
$ NFSMOUNT /PROCESSOR=UNIQUE PIP::UTIL: PIP$UTIL
$ NFSMOUNT /PROCESSOR=UNIQUE HAVERSHAM::ADMIN: HAVERSHAM$ADMIN
$ NFSMOUNT /PROCESSOR=UNIQUE MARLEY::ENG:MARLEY$ENG

A setting of /PROCESSOR=SAME=nfs_device assigns the mount to the same ACP process as
the specified nfs_device. For example, /PROCESSOR=SAME=NFS3 assigns this mount to the
NFS_CLIENT_3 ACP process.

Note

The specified device may be either the NFS device name itself (for example, NFS3), or a logical name
pointing at the NFS device.

Mounts specified without the /PROCESSOR qualifier use the default process NFS_CLIENT_ACP.

VSI recommends that you use the /PROCESSOR qualifier to group mounts on the remote server. If
the server goes down, access to other servers is not affected. You can use the

/SOFT qualifier to permit NFS operations to time-out instead of hanging indefinitely.

The following example illustrates the use of /PROCESSOR=SAME. In this example, all access
to the server SCOOBY goes through one ACP process, and all access to PIP goes through another
process.

$ NFSMOUNT /PROCESSOR=UNIQUE SCROOGE::USERS: SCROOGE$USERS
$ NFSMOUNT /PROCESSOR=SAME=SCROOGE$USERS SCROOGE::DKA100: SCROOGE$DKA100
$ NFSMOUNT /PROCESSOR=UNIQUE PIP::UTIL: PIP$UTIL
$ NFSMOUNT /PROCESSOR=SAME=PIP$UTIL PIP::FOO: PIP$FOO

197

Chapter 14. Using the NFS Client

14.6. NFS Clients Using BACKUP
The OpenVMS BACKUP utility can write a saveset to an NFS-mounted disk, but the VSI TCP/
IP NFS Client does not support specifying files on an NFS-mounted disk as the input-specifier in a
BACKUP command.

BACKUP works with the VSI TCP/IP NFS Client in a limited way with the following restrictions:

• BACKUP preserves the UIC it finds on a file. If an NFS UNIX file has a UID that does not map
to an OpenVMS UIC, the file is backed up as if it belonged to DEFAULT. When you restore the
file, it will belong to the UNIX user nobody (UID -2, GID -2).

• BACKUP does not preserve certain bits of information associated with UNIX (such as the
"sticky" or set-UID bits).

• NFS identifies UNIX files using a 32-byte file handle. However, the file handle must be presented
to OpenVMS as a 6-byte FID. Because the number of possible 32-byte file handles is much
greater than the number of possible 6-byte FIDs, VSI TCP/IP must implement a cached mapping
scheme. This approach works well with applications that only care about FID consistency as long
as the file is accessed. However, some applications (such as BACKUP) expect consistent FIDs for
the life of the file.

Note

Using BACKUP with NFS-mounted files copies the contents of the files, but does not copy the
semantics of files created from foreign operating systems. VSI recommends backing up OpenVMS
files to a remote tape via RMT (Remote Magtape Protocol).

198

Chapter 15. Configuring the Secure
Shell (SSH) Servers Versions 1 & 2
This chapter describes how to configure and maintain the VSI TCP/IP Secure Shell (SSH) Server of
versions 1 and 2.

This is the server side of the software that allows secure interactive connections to other computers in
the manner of rlogin/rshell/telnet. The SSH server has been developed to discriminate between SSH
v1 and SSH v2 protocols, so the two protocols can coexist simultaneously on the same system.

15.1. SSH1 and SSH2 Differences
SSH1 and SSH2 are different, and incompatible, protocols. While SSH2 is generally regarded
to be more secure than SSH1, both protocols are offered by VSI TCP/IP, and although they are
incompatible, they may exist simultaneously on a VSI TCP/IP system. The VSI TCP/IP server front-
end identifies what protocol a client desires to use, and will create an appropriate server for that client.

The cryptographic library used by VSI TCP/IP SSH2 (this does not apply to SSH1 sessions) is FIPS
140-2 level 2 compliant, as determined by the Computer Security Division of the National Institute of
Science and Technology (NIST).

Note

You must install the DEC C 6.0 backport library on all OpenVMS VAX v5.5-2 and v6.0 systems
prior to using SSH. This is the AACRT060.A file. You can find the ECO on the VSI TCP/IP CD the
following directory: VAX55_DECC_RTL.DIR.

Restrictions:
When using SSH1 to connect to a OpenVMS server, if the OpenVMS account is set up with a
secondary password, SSH1 does not prompt the user for the secondary password. If the OpenVMS
primary password entered is valid, the user is logged in, bypassing the secondary password.

When using SSH1 to execute single commands (in the same manner as RSHELL), some keystrokes
like CTRL/Y are ignored. In addition, some interactive programs such as HELP may not function as
expected. This is a restriction of SSH1. If this behavior poses a problem, log into the remote system
using SSH1 in interactive mode to execute the program.

15.2. Understanding the VSI TCP/IP Secure
Shell Server
Secure Shell daemon (SSHD) is the daemon program for SSH that listens for connections from
clients. The server program replaces rshell and telnet programs. The server/client programs provide
secure encrypted communications between two untrusted hosts over an insecure network. A new
daemon is created for each incoming connection. These daemons handle key exchange, encryption,
authentication, command execution, and data exchange.

199

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

15.2.1. Servers and Clients
A VSI TCP/IP SSH server is an OpenVMS system server that acts as a host for executing interactive
commands or for conducting an interactive session. The server software consists of two processes (for
future reference, SSHD will refer to both SSHD_MASTER and SSHD, unless otherwise specified):

• SSHD_MASTER, recognizes the differences between SSH v1 and SSH v2 and starts the
appropriate server. If the request is for SSH v1, then a new SSH v1 server is run; if the request is
for SSH v2, then a new SSH v2 server is run.

• SSHD, a copy of which is spawned for each time a new connection attempt is made from a client.
SSHD handles all the interaction with the SSH client.

A client is any system that accesses the server. A client program (SSH) is provided with VSI TCP/
IP, but any SSH client that uses SSH version 1 protocol may be used to access the server. Examples
of such programs are FISSH, VSI TCP/IP SSH, and TCPware SSH on OpenVMS systems; TTSSH,
SecureCRT, F-Secure SSH Client, and PuTTY on Windows®-based systems; and other SSH
programs on UNIX-based systems.

15.2.2. Security
Each host has a host-specific RSA key (normally 1024 bits) that identifies the host. Additionally,
when the SSHD daemon starts, it generates a server RSA key (normally 768 bits). This key is
regenerated every hour (the time may be changed in the configuration file) if it has been used, and is
never stored on disk. Whenever a client connects to the SSHD daemon:

• SSHD sends its host and server publickeys to the client.

• The client compares the hostkey against its own database to verify that it has not changed.

• The client generates a 256 bit random number. It encrypts this random number using both the
hostkey and the server key, and sends the encrypted number to the server.

• The client and the server start to use this random number as a session key which is used to encrypt
all further communications in the session.

The rest of the session is encrypted using a conventional cipher. Currently, IDEA (the default), DES,
3DES, Blowfish, and ARCFOUR are supported.

• The client selects the encryption algorithm to use from those offered by the server.

• The server and the client enter an authentication dialog.

• The client tries to authenticate itself using any of the following methods:

• .rhosts authentication

• .rhosts authentication combined with RSA host authentication

• RSA challenge-response authentication

• password-based authentication

200

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Note

Rhosts authentication is normally disabled because it is fundamentally insecure, but can be enabled in
the server configuration file, if desired.

System security is not improved unless the RLOGIN and RSHELL services are disabled.

When the client authenticates itself successfully, a dialog is entered for preparing the session. At this
time the client may request things such as:

• forwarding X11 connections

• forwarding TCP/IP connections

• forwarding the authentication agent connection over the secure channel

Finally, the client either requests an interactive session or execution of a command. The client and
the server enter session mode. In this mode, either the client or the server may send data at any
time, and such data is forwarded to/from the virtual terminal or command on the server side, and the
user terminal in the client side. When the user program terminates and all forwarded X11 and other
connections have been closed, the server sends command exit status to the client, and both sides exit.

15.2.3. Break-in and Intrusion Detection
Care must be exercised when configuring the SSH clients and server to minimize problems due to
intrusion records created by OpenVMS security auditing. The SSH user should consult the system
manager to determine the authentication methods offered by the SSH server. The client should then be
configured to not attempt any authentication method that is not offered by the server.

If a client attempts authentication methods not offered by the server, the OpenVMS security auditing
system may log several intrusion records for each attempt to create a session to that server. The result
being that the user could be locked out and prevented from accessing the server system without
intervention from the server's system manager.

The authentication methods to be offered by the server are determined by the configuration keywords
RhostsAuthentication, RhostsRSAAuthentication, RSAAuthentication, and PasswordAuthentication.
The number of intrusion records to be logged for any attempted SSH session is determined by the
StrictIntrusionLogging configuration keyword.

When StrictIntrusionLogging is set to YES (the default), each method that is tried and fails causes an
intrusion record to be logged. When Rhosts, RhostsRSA or RSA authentications are attempted and
fail, one intrusion record will be logged for each failed method.

When password authentication is attempted, one intrusion record will be logged for each failed
password.

Example 1
The server is set up to allow Rhosts, RSA, and password authentication; also, up to three password
attempts are allowed. If all methods fail, five intrusion records are logged:

1 for the failed Rhosts

1 for the failed RSA

201

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

3 for the failed password attempts, one per attempt

When StrictIntrusionLogging is set to NO, it has the effect of relaxing the number of intrusions
logged. Overall failure of all authentication methods simply counts as a single failure, except for
password authentication. The following rules apply:

• When password authentication is attempted, one intrusion record is logged for each failed
password.

• When any of Rhosts, RhostsRSA, or RSA authentication fails, and password authentication is not
attempted, exactly one intrusion record is logged, as opposed to one for each failed method.

• When any of Rhosts, RhostsRSA, or RSA authentication fails, but password authentication is
attempted and succeeds, the only intrusion record(s) logged is one for each failed password
attempt.

Example 2:
The server is set up to allow Rhosts, RSA, and password authentication; also, up to three password
attempts are allowed. If all methods fail, three intrusion records are logged:

0 for the failed Rhosts

0 for the failed RSA

3 for the failed password attempts, one per attempt

Example 3:
The server is set up to allow Rhosts, RSA, and password authentication; also, up to three password
attempts are allowed. Rhosts and RSA fail, but password authentication is successful after 1 failed
password. Therefore, one intrusion record is logged:

0 for the failed Rhosts

0 for the failed RSA

1 for the failed password attempt

Example 4:
The server is set up to allow Rhosts, RhostsRSA, and RSA authentication, but not password
authentication. If all methods fail, one intrusion record is logged.

Example 5:
The server is set up to allow Rhosts, RhostsRSA, and RSA authentication, but not password
authentication. Rhosts and RSA authentication both fail, but RhostsRSA succeeds. No intrusion
records are logged.

15.3. Configuring SSHD Master for SSH1
SSHD Master is configured using the IP CONFIGURE/SERVER command, selecting SSH, and
using the following options:

202

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Note

The recommended method to start SSHD Master is to use the IP NETCONTROL SSH START
command. All of these options are set using IP CONFIG /SERVER, and modifying the SSH service.

$ IP CONFIGURE /SERVER
VSI TCP/IP Server Configuration Utility
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>SELECT SSH
[The Selected SERVER entry is now SSH]
SERVER-CONFIG>SET PARAM
Delete parameter "enable-ssh1" ? [NO]
Delete parameter "enable-ssh2" ? [NO]
You can now add new parameters for SSH. An empty line terminates.
Add Parameter:PORT 33000
Add Parameter:
[Service specific parameters for SSH changed]
SERVER-CONFIG>SHOW/FULL
Service "SSH":
 INIT() = Merge_Image
 Program = "IP$:LOADABLE_SSH_CONTROL"
 Priority = 5
 Log for Accepts & Rejects = OPCOM
 Parameters = "enable-ssh1"
 "enable-ssh2"
 "port 33000"
SERVER-CONFIG>EXIT
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]

15.4. Expired Passwords
The SSH v1 protocol does not provide a method for changing an expired OpenVMS password. When
an expired password is encountered by the SSH1 server, it will do one of two things.

1. If the logical name IP$SSH_ALLOW_EXPIRED_PW is defined for allowing access for
passwords that have exceeded the UAF value for PWDLIFETIME, or if the logical name
IP$SSH_ALLOW_PREEXPIRED_PW is defined for allowing access for users that have a
pre-expired password, the server will allow the user to log in. In the logical name table LNM
$SSH_LOGICALS, the logical name IP$SSH_pid_PWDEXP (where pid is the process ID for
the user process) will be defined. The system manager can look for this logical to be defined, and
if so, take action such as executing the DCL SET PASSWORD command.

2. If the appropriate logical is not set as described above, the user will be denied access to the
system. In that case, the user must log in interactively via another mechanism such as telnet and
change the password, or the system manager must reset the password.

When a user is allowed access to the system with an expired password, the LOGIN_FLAGS for the
process will reflect this. The values of the LOGIN_FLAGS will be as follows:

• new mail has been received (JPI$M_NEW_MAIL_AT_LOGIN)

• the password is about to expire (JPI$M_PASSWORD_WARNING)

• the password has expired (JPI$M_PASSWORD_EXPIRED)

203

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

The DCL lexical function F$GETJPI may be used to examine these flags, as can the $GETJPI(W)
system service or LIB$GETJPI RTL function. When an expired password value is detected, the user
may then execute a SET PASSWORD command in the command procedure run for the account.

For example:

$!
$! Login_flags:
$! 1 = new mail messages waiting (JPI$M_NEW_MAIL_AT_LOGIN)
$! 4 = password expired during login (JPI$M_PASSWORD_EXPIRED)
$! 5 = password expires within 5 days (JPI$M_PASSWORD_WARNING)
$!
$ flags = f$getjpi("", "LOGIN_FLAGS")
$ new_flags = (flags/2)*2
$ if new_flags .ne. flags then write sys$output "New mail waiting"
$!
$!Note - new_flags is used below because it has the NEW_MAIL_AT_LOGIN$
$! bit stripped. The rest of the possible values are all
$! discrete; i.e., you can't have combinations of them at the
$! same time.
$!
$ if new_flags .eq. 4 then write sys$output "Password expired during login"
$ if new_flags .eq. 5 then write sys$output "Password expires within 5
 days"
$!

15.5. OPTIONS
bits n

Specifies the number of bits in the server key. The default is 768.

ssh1-config-file filename

Specifies the name of the configuration file. The default is IP$:SSHD_CONFIG.

debug debug-level

Turns debugging on using any non-zero debug level.

enable-ssh1

Enables SSH v1 sessions.

host-key-file filename

Specifies the file from which the hostkey is read. The default is IP$:SSH_HOST_KEY.

keygen-time n

Specifies how often the server key is regenerated. The default is 3600 seconds (one hour). The
motivation for regenerating the key often is that the key is never stored physically on disk. It is kept
in the address space of the server, and after an hour, it becomes impossible to recover the key for
decrypting intercepted communications even if the machine is broken into or physically seized. A
value of zero indicates that the key will never be regenerated.

204

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

listen-address

Specify the IPV4 address on which to listen for connect request. This may be a valid IPV4 address or
ANY to listen on all addresses. If not specified, the default is to listen on all addresses.

port n

Specifies the port on which the server listens for connections. The default is 22.

quiet_mode

Specifies that nothing is sent to the SSH system log. Normally, the beginning, authentication, and
termination of each connection is logged.

verbose

Specifies that verbose message logging will be performed by SSHD MASTER.

15.6. Configuration File
SSHD reads configuration data from IP$SPECIFIC:[IP.SSH] (or the file specified with the
ssh1-config-file keyword in IP CONFIGURE/SERVER). The file contains keyword value pairs, one
per line. The following keywords are possible. Keywords are case insensitive.

Keyword Value Default Description
AllowForwardingPort Port list Permit forwarding for the

specified ports
AllowForwardingTo Host/port list Permit forwarding for hosts
AllowGroups List Access control by UAF

rightslist entries
AllowHosts Host list Access control by hostname
AllowShosts Host list Access control by hostname
AllowTcpForwarding Y/N Y Enable TCP port forwarding
AllowUsers User list Access control by username
DenyForwardingPort Port list Forbid forwarding for ports
DenyForwardingTo Host/port list Forbid forwarding for hosts
DenyGroups Rights list Deny access for UAF

rightslist identifiers
DenyHosts Host list Deny access for hosts
DenySHosts Host list Deny access for hosts
DenyUsers User list Access control by username
FascistLogging Y/N Y Verbose logging
Hostkey Filename Ssh_host_key. Hostkey filename
IdleTimeout Time 0 (infinite) Set idle timeout
IgnoreRhosts Y/N N Ignore local rhosts
IgnoreRootRhosts Y/N Y Ignore system rhosts

205

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Keyword Value Default Description
KeepAlive Y/N Y Send keepalives
ListenAddress IP address 0.0.0.0 Listen on given interface
LoginGraceTime Time 600 Time limit for authentication

in seconds
PasswordAuthentication Y/N Y Permit password

authentication
PermitEmptyPasswords Y/N N Permit empty (blank)

passwords
PermitRootLogin Y/N N SYSTEM can log in
QuietMode Y/N N Quiet mode
RandomSeed Filename Random_seed Random seed file
RhostsAuthentication Y/N N Enable rhosts authentication
RhostsRSAAuthentication Y/N Y Enable rhosts with RSA

authentication
RSAAuthentication Y/N Y Enable RSA authentication
StrictIntrusionLogging Y/N Y Determine how intrusion

records are created by failed
authentication attempts

StrictModes Y/N N Strict checking for directory
and file protection

SyslogFacility Syslog level “DAEMON” Syslog log facility
VerboseLogging Y/N Y Verbose logging (also known

as FacistLogging)
X11Forwarding Y/N Y Enable X11 forwarding
X11DisplayOffset #offset 10 Limit X displays for SSH

15.7. Starting the SSH Server for the First
Time
Follow these instructions for using SSH for the first time.

1. Use the IP CONFIGURE /SERVER command to enable the SSH v1 server.

$ IP CONFIGURE/SERVER
VSI TCP/IP Server Configuration Utility
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>SHOW/FULL SSH
Service "SSH": ***DISABLED***
 INIT() = Merge_Image
 Program = "IP$:LOADABLE_SSH_CONTROL"
 Priority = 5
 Parameters = “enable-ssh1”
 “enable-ssh2”
SERVER-CONFIG>ENABLE SSH
SERVER-CONFIG>EXIT
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]

206

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Note

The parameter enable-ssh1 must be set. If it is not set, SSH v1 sessions will not be accepted by the
server.

2. Use SSHKEYGEN /SSH1 to generate an ssh1 key and to create the file SSH_HOST_KEY in the
IP$: directory.

$ IP SSHKEYGEN /SSH1 /HOST
Initializing random number generator...
Generating p: ...++ (distance 64)
Generating q: ++ (distance 516)
Computing the keys...
Testing the keys...
Key generation complete.
Key file will be IP$ROOT:[IP]SSH_HOST_KEY.
Your identification has been saved in IP$:SSH_HOST_KEY.
Your publickey is:
1024 37
1210318365576698697865367869291969476388228444969905611864276308
9072776904462744415966821020109463617644202397294642277946718549
4404442577594868297087171013359743853182442579923801302020844011
5343754909847513973160249324735913146330232410424936751015953611
18716872491123857940537322891584850459319961275605927
SYSTEM@roadrr.acme.com
Your publickey has been saved in IP$ROOT:[IP]SSH_HOST_KEY.pub

3. Copy the template configuration file to the IP: directory renaming it to SSHD_CONFIG.;

$ COPY IP$SPECIFIC:[IP.SSH].TEMPLATE IP$SPECIFIC:[IP.SSH].;

Note

As delivered, the template file provides a reasonably secure SSH environment. However, VSI
recommends this file be examined and modified appropriately to reflect the security policies of your
organization.

4. Restart VSI TCP/IP. This creates the SSH server process and defines the SSH logical names.

$ @IP$:IP$SYSTARTUP.COM RESTART
$ SHOW PROCESS "SSHD Master"
7-APR-2016 09:03:06.42 User: SYSTEM Process ID: 00000057
 Node: PANTHR Process name: "SSHD Master"
Terminal:
User Identifier: [SYSTEM]
Base priority: 4
Default file spec: Not available
Number of Kthreads: 1
Devices allocated: BG1:
 BG2:
$ SHOW LOGICAL/SYSTEM SSH*
(LNM$SYSTEM_TABLE)
 "SSH_DIR" = "IP$SPECIFIC_ROOT:[IP]"
 "SSH_EXE" = "IP$COMMON_ROOT:[IP]"
 "SSH_LOG" = "IP$SPECIFIC_ROOT:[IP.SSH]"

207

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

 "SSH_TERM_MBX" = "MBA23:

15.8. Configuring the SSH1 Server on a
OpenVMScluster with a Common System
Disk
When configuring the SSH1 server on a OpenVMScluster with a common system disk, you must
create the appropriate directories on all cluster nodes other than one on which VSI TCP/IP was
originally installed. Note that this does not need to be done for cluster members that do not share a
common system disk.

The following procedure should be followed on each cluster node other than the cluster node on
which VSI TCP/IP was originally installed:

• Create the necessary directory:

$ CREATE/DIR IP$SPECIFIC[IP$SSH]/PROT=(WO:RE,GR:RE)

• Edit the IP$SPECIFIC:[IP.SSH]SSHD_CONFIG file as necessary. This may be copied from
another cluster node, or it may be created fresh from the SSHD_CONFIG.TEMPLATE file.

• Configure the SSH1 server using IP CONFIGURE /SERVER

• Generate the SSH1 hostkeys using IP SSHKEYGEN/SSH1 /HOST

• (Re)start SSHD Master using IP NETCONTROL SSH RESTART

15.9. Changing SSH1 Configuration File after
Enabling SSH1
If you make a change to the SSH1 configuration file after you have enabled SSH1, you must restart
SSH for these changes to take effect.

$ IP NETCONTROL SSH RESTART

Note

When issuing the RESTART command for SSH, all active SSH server sessions are terminated.
Active client sessions are not affected.

15.10. Connection and Login Process
To create a session, SSHD does the following:

1. SSHD_MASTER process sees the connection attempt. It creates an SSHD v1 or v2 process,
depending on the protocol version presented to it by the client. SSHD_MASTER then passes
necessary information to the SSHD process, such as the server key and other operating
parameters.

2. SSHD process performs validation for the user.

208

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

3. Assuming the login is successful, SSHD process creates a pseudoterminal for the user (an
_FTAnn: device). This device is owned by the user logging in.

4. SSHD process creates an interactive process on the pseudoterminal, using the username, priority,
and privileges of the user logging in. If a command was specified, it is executed and the session is
terminated.

5. SSH generates the file SSHD.LOG in the directory IP$ROOT:[IP.SSH] for each connection
to the SSH server. Many connections result in many log files. Instead of purging the files on a
regular basis, use the following DCL command to limit the number of versions:

$ SET FILE /VERSION_LIMIT=x IP$ROOT:[IP.SSH]SSHD.LOG

Note

The value for /VERSION_LIMIT must not be smaller than the maximum number of simultaneous
SSH sessions anticipated. If the value is smaller, SSH users may be prevented from establishing
sessions with the server.

Note

When the SSHD.LOG file version reaches the maximum number of 32767, new log files are
not generated. SSH connections still function, however, VSI recommends that you rename the
SSHD.LOG to fix the problem. You can change the log file name by defining the logical name IP
$SSH_LOG_FILE with one or more of the following tokens:

%D date in yyyymmdd format
%N system SCS node name
%C value of childcount

For example, defining the following logical name:

$ DEFINE /SYSTEM IP$SSH_LOG_FILE "SSH_%N_%D"

This results in the following SSH log file names:

IP$LOG:SSH_MYNODE_20190513.LOG

VSI also recommends that files be removed regularly to allow space for new file creation.

15.10.1. SSH Connections Are Not Logged When
SSHD.log Files Reach Maximum Version Number

15.11. FILES
IP$:HOSTS.EQUIV

Contains host names, one per line. This file is used during .rhosts authentication. Users on those hosts
are permitted to log in without a password, provided they have the same username on both machines.
The hostname may also be followed by a username. Such users are permitted to log in as any user on
the remote machine (except SYSTEM). Additionally, the syntax +@group can be used to specify

209

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

netgroups. Negated entries start with a dash (-). If the client host/user is matched in this file, login is
permitted provided the client and server usernames are the same. Successful RSA host authentication
is required. This file should be world-readable but writeable only by SYSTEM.

It is never a good idea to use usernames in hosts.equiv. It means the named user(s) can log in as
anybody, which includes accounts that own critical programs and directories. Using a username grants
the user SYSTEM access. The only valid use for usernames is in negative entries.

Note

This warning also applies to rshell/rlogin.

IP$:SHOSTS.EQUIV

Processed as IP$:HOSTS.EQUIV. May be useful in environments that want to run both rshell/rlogin
and ssh.

IP$:SSH_HOST_KEY

Contains the private part of the hostkey. This file does not exist when VSI TCP/IP is first installed.
The SSH server starts only with this file. This file must be created manually using the command:

$ IP SSHKEYGEN /SSH1 /HOST

This file should be owned by SYSTEM, readable only by SYSTEM, and not accessible to others.

To create a hostkey with a name that is different than what SSHKEYGEN creates, do one of the
following:

• Generate with IP SSHKEYGEN /SSH1 /HOST and simply rename the file.

• Generate a public/private key pair using SSHKEYGEN without the /HOST switch, and copying
and renaming the resulting files appropriately.

By default the logical name SSH_DIR points to the IP$SPECIFIC_ROOT:[IP] directory.

Refer to the VSI TCP/IP User’s Guide for more details about SSHKEYGEN.

IP$:SSH_HOST_KEY.PUB

Contains the public part of the hostkey. This file should be world-readable but writeable only by
SYSTEM. Its contents should match the private part of the key. This file is not used for anything; it is
only provided for the convenience of the user so its contents can be copied to known hosts files.

IP$:SSH_KNOWN_HOSTSSYS$LOGIN:[.SSH]KNOWN_HOSTS

Checks the publickey of the host. These files are consulted when using rhosts with RSA host
authentication. The key must be listed in one of these files to be accepted. (The client uses the same
files to verify that the remote host is the one you intended to connect.) These files should be writeable
only by SYSTEM (the owner). IP$:SSH_KNOWN_HOSTS should be world-readable, and SYS
$LOGIN:[.SSH]KNOWN_HOSTS can, but need not be, world-readable.

SSH2:SSH_RANDOM_SEEDSYS$LOGIN:[.SSH]RANDOM_SEED

Contains a seed for the random number generator. This file should only be accessible by system.

210

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

IP$SPECIFIC:[IP.SSH]

Contains configuration data for SSHD. This file should be writeable by system only, but it is
recommended (though not necessary) that it be world-readable.

AUTHORIZED_KEYS

In the user’s SYS$LOGIN[.SSH] directory

Lists the RSA keys that can be used to log into the user's account. This file must be readable by
system. It is recommended that it not be accessible by others. The format of this file is described
below.

SYS$LOGIN:.SHOSTS

In the user’s SYS$LOGIN:[.SSH] directory

Permits access using SSH only. For SSH, this file is the same as for .rhosts. However, this file is not
used by rlogin and rshell daemon.

SYS$LOGIN:.RHOSTS

This file contains host-username pairs, separated by a space, one per line. The given user on the
corresponding host is permitted to log in without a password. The same file is used by rlogin and
rshell. SSH differs from rlogin and rshell in that it requires RSA host authentication in addition to
validating the hostname retrieved from domain name servers. The file must be writeable only by the
user. It is recommended that it not be accessible by others. It is possible to use netgroups in the file.
Either host or username may be of the form +@groupname to specify all hosts or all users in the
group.

15.12. AUTHORIZED_KEYS File Format
The SYS$LOGIN:[.SSH]AUTHORIZED_KEYS file lists the RSA keys that are permitted for
RSA authentication. Each line of the file contains one key (empty lines and lines starting with a # are
comments and ignored). Each line consists of the following fields, separated by spaces:

Key Description
bits Is the length of the key in bits.
comment Not used for anything (but may be convenient for the user to identify the key).
exponent Is a component used to identify and make up the key.
modulus Is a component used to identify and make up the key.
options Optional; its presence is determined by whether the line starts with a number or

not (the option field never starts with a number.)

Note

Lines in this file are usually several hundred characters long (because of the size of the RSA key
modulus). You do not want to type them in; instead, copy the IDENTITY.PUB file and edit it. The
options (if present) consists of comma-separated option specifications. No spaces are permitted,
except within double quotes. Option names are case insensitive.

211

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

The following RSA key file AUTHORIZED_KEYS option specifications are supported:

Allowforwardingport=”port list”

Can be followed by any number of port numbers, separated by spaces. Remote forwarding is allowed
for those ports whose number matches one of the patterns.

You can use * as a wildcard entry for all ports.

You can use these formats “>x”, “<x”, and “x_y” to specify greater than, less than, or inclusive port
range. By default, all port forwardings are allowed.

The quotes (“ “) are required. The <> show a list. Do not use the < > in the specification. For
example:

allowforwardingport “2,52,2043”

Allowforwardingto=”hostname and port list”

Can be followed by any number of hostname and port number patterns, separated by spaces. A port
number pattern is separated from a hostname pattern by a colon. For example: hostname:port

Forwardings from the client are allowed to those hosts and port pairs whose name and port number
match one of the patterns.

You can use ‘*’ and ‘?’ as wildcards in the patterns for host names. Normal name servers are used to
map the client’s host into a fully-qualified host name. If the name cannot be mapped, its IP address is
used as the hostname.

You can use ‘*’ as a wildcard entry for all ports.

You can use these formats ‘>x’, ‘<x’, and ‘x_y’ to specify greater than, less than, or inclusive port
range. By default, all port forwardings are allowed.

command=”command”

Specifies the command to be executed whenever this key is used for authentication. The user-supplied
command (if any) is ignored. You may include a quote in the command by surrounding it with a
backslash (\). Use this option to restrict certain RSA keys to perform just a specific operation. An
example might be a key that permits remote backups but nothing else. Notice that the client may
specify TCP/IP and/or X11 forwardings unless they are prohibited explicitly.

Denyforwardingport=”port list”

Can be followed by any number of port numbers, separated by spaces. Remote forwardings are
disallowed for those ports whose number matches one of the patterns.

You can use ‘*’ as a wildcard entry for all ports.

You can use these formats ‘>x’, ‘<x’, and ‘x_x’ to specify greater than, less than, or inclusive port
range.

Denyforwardingto=”hostname port list”

Can be followed by any number of hostname and port number patterns, separated by spaces. A port
number pattern is separated from a hostname by a colon. For example: hostname:port number pattern

212

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Forwardings from the client are disallowed to those hosts and port pairs whose name and port number
match one of the patterns.

You can use ‘*’ and ‘?’ as wildcards in the patterns for host names. Normal name servers are used to
map the client’s host into a fully-qualified host name. If the name cannot be mapped, its IP address is
used as a host name.

You can use ‘*’ as a wildcard entry for all ports.

You can use these formats ‘>x’, ‘<x’, and ‘x_x’ to specify greater than, less than, or inclusive port
range.

from=”pattern-list”

In addition to RSA authentication, specifies that the fully-qualified name of the remote host must be
present in the comma-separated list of patterns. You can use ‘*’ and ‘?’ as wildcards.

The list may contain patterns negated by prefixing them with ‘!’; if the fully-qualified host name
matches a negated pattern, the key is not accepted.

This option increases security. RSA authentication by itself does not trust the network or name servers
(but the key). However, if somebody steals the key, the key permits login from anywhere in the world.
This option makes using a stolen key more difficult because the name servers and/or routers would
have to be comprised in addition to just the key.

idle-timeout=time

Sets the idle timeout limit to a time in seconds (s or nothing after the number), in minutes (m), in
hours (h), in days (d), or in weeks (w). If the connection has been idle (all channels) for that time, the
process is terminated and the connection is closed.

no-agent-forwarding

Forbids authentication agent forwarding when used for authentication.

no-port-forwarding

Forbids TCP/IP forwarding when used for authentication. Any port forward requests by the client will
return an error. For example, this might be used in connection with the command option.

no-X11-forwarding

Forbids X11 forwarding when used for authentication. Any X11 forward requests by the client will
return an error.

Example 15.1. RSA Key File Examples

1024 33 12121...312314325 ylo@foo.bar
from="*.emptybits.com,!sluf.psccos.com"

1024 35 23...2334 ylo@niksula
command="dir *.txt",no-port-forwarding

1024 33 23...2323 xxxxx.acme.com
allowforwardingport="localhost:80"

1024 35 23...2334 www@localhost

213

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

15.12.1. SSH Port Forwarding and OpenVMS Captive
Users
SSH implements a user group, known internally by SSH, which designates the users of captive
accounts. This group, IP$SSH_CAPTIVE_USERS, gives the system administrator a method by
which to specify captive users in various aspects of SSH configuration without requiring definition
and management of OpenVMS rights identifiers. Additionally, the supplied SSH configuration
template, SSHD2_CONFIG.TEMPLATE, disables port forwarding for captive users by default.

To enable the SSH port forwarding feature for captive users, remove the line
“DenyTcpForwardingForGroups” from the SSHD2_CONFIG.CONF, which can be found in
SYS$SPECIFIC:[IP.CONFIG.SSH2].

15.13. SSH_KNOWN_HOSTS File Format
The IP$:SSH_KNOWN_HOSTS and SYS$LOGIN:[.SSH]KNOWN_HOSTS files contain host
publickeys for all known hosts. The global file should be prepared by the administrator (optional),
and the per-user file is maintained automatically; whenever the user connects an unknown host its
key is added to the per-user file. Each line in these files contains the following fields: hostnames, bits,
exponent, modulus, comment. The fields are separated by spaces.

Hostnames is a comma-separated list of patterns (* and ? act as wildcards). Each pattern is matched
against the fully-qualified host names (when authenticating a client) or against the user-supplied name
(when authenticating a server). A pattern may be preceded by '!' to indicate negation; if the hostname
matches a negated pattern, it is not accepted (by that line) even if it matched another pattern on the
line.

Bits, exponent, and modulus are taken directly from the hostkey. They can be obtained from IP
$:SSH_HOST_KEY.PUB. The optional comment field continues to the end of the line, and is
not used. Lines starting with # and empty lines are ignored as comments. When performing host
authentication, authentication is accepted if any matching line has the proper key.

It is permissible (but not recommended) to have several lines or different hostkeys for the same
names. This happens when short forms of host names from different domains are put in the file. It is
possible that the files contain conflicting information. Authentication is accepted if valid information
can be found from either file.

Note

The lines in these files are hundreds of characters long. Instead of typing in the hostkeys, generate
them by a script or by copying IP$:SSH_HOST_KEY.PUB and adding the host names at the front.

Example
bos,bos.example.com,...,10.0.0.41
1024 37 159...93 bos.example.com

15.14. SSH Logicals
These logicals are used with the SSH server in the system logical name table.

214

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

$ SHOW LOGICAL/SYSTEM *SSH*

SSH_DIR

Points to the directory where the SSH1 configuration, master server log file, and hostkey files are
kept. Normally, this is IP$SPECIFIC_ROOT:[CONFIG]. It is defined in START_SSH.COM.

SSH_EXE

Points to the directory where SSH executables are kept. Normally, this is IP$COMMON_ROOT:[IP].
It is defined in START_SSH.COM.

SSH_LOG

Points to the directory where the log files are kept. Normally, this is IP$SPECIFIC_ROOT:
[IP.LOG]. It is defined in START_SSH.COM.

SSH_TERM_MBX

Mailbox used by SSHD_MASTER to receive termination messages from SSHD daemon processes.
Do not change this logical name. This is created by the SSHD_MASTER process.

IP$SSH_ACC_REJ_LOG_FILE

If the user has set a log file to log connection accept and reject messages, this logical will be defined
and will provide the name of the log file. This logical is set by using the SET LOG-FILE keyword in
IP CONFIGURE /SERVER, and should not be modified directly by the user.

IP$SSH_ALLOW_EXPIRED_PW

Allows logging in to an account when the account's password has expired due to pwdlifetime
elapsing. This applies to all users and circumvents normal OpenVMS expired-password checking, and
therefore should be used with caution. An entry is made into the SSH_LOG:SSHD.LOG file when
access is allowed using this logical name.

When access is allowed by way of this logical, the logical name table LNM$SSH_LOGICALS
contains a logical name constructed as IP$SSH_pid_PWDEXP (where pid is the PID for the
process). The system manager can use this to execute, for example, the DCL SET PASSWORD
command in the site SYLOGIN.COM file.

IP$SSH_ALLOW_PREEXPIRED_PW

Allows logging in to an account when the password has been pre-expired. This applies to all users
and circumvents normal OpenVMS expired-password checking, and therefore should be used with
caution. An entry is made into the SSH_LOG:SSHD.LOG file when access is allowed using this
logical name.

When access is allowed by way of this logical, the logical name table LNM$SSH_LOGICALS
contains a logical name constructed as IP$SSH_pid_PWDEXP (where pid is the PID for the
process). The system manager can use this to execute, for example, the DCL SET PASSWORD
command in the site SYLOGIN.COM file.

IP$SSH_DISPLAY_SYS$ANNOUNCE

215

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

The SSH v1 protocol does not allow for the display of SYS$ANNOUNCE prior to logging in. If
this logical is set, the contents of SYS$ANNOUNCE is displayed immediately after successful
authentication and prior to the display of the contents of SYS$WELCOME.

IP$SSH_ENABLE_SSH1_CONNECTIONS

Set by the VSI TCP/IP master server process to enable SSH V1 sessions.

IP$SSH_KEYGEN_MIN_PW_LEN

Defines the minimum passphrase length when one is to be set in SSHKEYGEN. If not defined,
defaults to zero.

IP$SSH_LOG_ACCEPTS

When set, causes the server to log successful connection requests as either an OPCOM message
or a line in a log file. Specified by the SET LOG-ACCEPT command in IP CONFIGURE /
SERVER. Note that the server does not use the information set in the ACCEPT-HOSTS keyword
in CONFIGURE /SERVER. Rather, it uses the AllowHosts and DenyHosts keywords in the
SSH server configuration file. Also, a successful connection request doesn't equate to a successful
authentication request. This logical should not be modified directly by the user.

IP$SSH_LOG_MBX

Points to the OpenVMS mailbox used to log connection accept and reject messages. This must not be
modified by the user.

IP$SSH_LOG_REJECTS

When set, causes the server to log rejected connection requests as either an OPCOM message or a line
in a log file. Specified by the SET LOG-REJECT command in IP CONFIGURE /SERVER. Note
that the server does not use the information set in the REJECT-HOSTS keyword in CONFIGURE /
SERVER. Rather, it uses the AllowHosts and DenyHosts keywords in the SSH server configuration
file. This logical should not be modified directly by the user.

IP$SSH_MAX_SESSIONS

Set this to the maximum number of concurrent SSH sessions you want to allow on the server system.
If IP$SSH_MAX_SESSIONS is not defined, the default is 1000. Setting IP$SSH_MAX_SESSIONS
to zero (0) causes an error. The value must be between 1 and 1000. The suggested place to set this is
in START_SSH.COM. You must restart SSH for these changes to take effect.

IP$SSH_PARAMETERS_n

These values are set by VSI TCP/IP and must not be modified by the user.

IP$SSH_USE_SYSGEN_LGI

If defined, causes SSHD to use the OpenVMS SYSGEN value of LGI_PWD_TMO to set the login
grace time, overriding anything specified in the command line or the configuration file.

15.15. Configuring the Secure Shell (SSH) 2
Server
This section describes how to configure and maintain the VSI TCP/IP Secure Shell (SSH) server v2.

216

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

15.15.1. Servers and Clients
A VSI TCP/IP SSH server is an OpenVMS system that acts as a host for executing interactive
commands or for conducting an interactive session. The server software consists of two pieces
of software (for future reference, “SSHD” will refer to both SSHD_MASTER and SSHD, unless
otherwise specified):

• SSHD_MASTER, recognizes the differences between SSH v1 and SSH v2 and starts the
appropriate server. If the request is for SSH v1, then the existing SSH v1 server is run; if the
request is for SSH v2, then the SSH v2 server is run.

• SSHD, a copy of which is spawned for each connection instance. SSHD handles all the interaction
with the SSH client.

A client is any system that accesses the server. A client program (SSH) is provided with VSI TCP/IP,
but any SSH client that uses SSH version 2 protocol may be used to access the server. Examples of
such programs are VSI TCP/IP SSH, TCPware SSH, puTTY, SecureCRT, and other SSH programs on
UNIX-based systems.

Each host has a key using DSA encryption and is usually 1024 bits long (although, the user may
create a different-sized key, if desired). The same key may be used on multiple machines. For
example, each machine in a OpenVMScluster could use the same key.

When a client connects to the SSHD daemon:

• The client and server together, using the Diffie-Hellman key-exchange method, determine
a 256-bit random number to use as the "session key". This key is used to encrypt all further
communications in the session.

• Note that this key may be renegotiated between the client and the server on a periodic
basis by including the RekeyIntervalSeconds keyword in the server configuration file
(SSH2_DIR:SSHD2_CONFIG). This is desirable because during long sessions, the more data that
is exchanged using the same encryption key, the more likely it is that an attacker who is watching
the encrypted traffic could deduce the session key.

• The server informs the client which encryption methods it supports. See the description of the
CIPHERS configuration keyword for the encryption methods supported.

• The client selects the encryption algorithm from those offered by the server.

• The client and the server then enter a user authentication dialog. The server informs the client
which authentication methods it supports, and the client then attempts to authenticate the user by
using some or all of the authentication methods.

The following authentication algorithms are supported:

• public-key (DSA keys)

• host-based

• password keyboard-interactive

• Kerberos V5 (password, kerberos-tgt, kerberos-1, kerberos-tgt-1, kerberos-2, kerberos-tgt-2)

• Certificate

217

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

System security is not improved unless the RLOGIN and RSHELL services are disabled.

If the client authenticates itself successfully, a dialog is entered for preparing the session. At this time
the client may request things like:

• forwarding X11 connections

• forwarding TCP/IP connections

• forwarding the authentication agent connection over the secure channel

Finally, the client either requests an interactive session or execution of a command. The client and
the server enter session mode. In this mode, either the client or the server may send data at any
time, and such data is forwarded to/from the virtual terminal or command on the server side, and the
user terminal in the client side. When the user program terminates and all forwarded X11 and other
connections have been closed, the server sends command exit status to the client, and both sides exit.

15.15.2. Expired Password Handling
The SSH2 server supports expired password changing for interactive accounts without the CAPTIVE
or RESTRICTED flags set and, via the DCL SET PASSWORD command. When an expired
password is detected, the server will behave as if a SET PASSWORD command was specified by the
user as a remotely-executed command (e.g., $ ssh foo set password), and the user will be logged out
after changing the password. The user may then log in again using the changed password.

For CAPTIVE or RESTRICTED accounts, or for those accounts where LGICMD is set in the UAF
record, the scenario is different. In these cases, the server can't directly execute SET PASSWORD
command, because the command procedure specified in the LGICMD field of the UAF record will
override the SSH server attempting to do a SET PASSWORD command. For these types of accounts,
the system manager and/or user can use the value of the LOGIN_FLAGS for the process (normal
interactive sessions may also examine these flags). For SSH logins, these flags will reflect:

• new mail has been received (JPI$M_NEW_MAIL_AT_LOGIN)

• the password is about to expire (JPI$M_PASSWORD_WARNING)

• the password has expired (JPI$M_PASSWORD_EXPIRED)

The DCL lexical function F$GETJPI may be used to examine these flags, as can the $GETJPI(W)
system service or LIB$GETJPI RTL function. When an expired password value is detected, the user
may then execute a SET PASSWORD command in the command procedure run for the account.

For example:

$!
$! Login_flags:
$! 1 = new mail messages waiting (JPI$M_NEW_MAIL_AT_LOGIN)
$! 4 = password expired during login (JPI$M_PASSWORD_EXPIRED)
$! 5 = password expires within 5 days (JPI$M_PASSWORD_WARNING)
$!
$ flags = f$getjpi("", "LOGIN_FLAGS")
$ new_flags = (flags/2)*2
$ if new_flags .ne. flags then write sys$output "New mail waiting"
$!
$! Note - new_flags is used below because it has the NEW_MAIL_AT_LOGIN$

218

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

$! bit stripped. The rest of the possible values are all
$! discrete; i.e., you can't have combinations of them at the
$! same time.
$!
$ if new_flags .eq. 4 then write sys$output "Password expired during login"
$ if new_flags .eq. 5 then write sys$output "Password expires within 5
 days"
$!

When an account in the SYSUAF has an expired password and the system syslogin.com or user’s
login.com has a SET TERM command, a warning message will be displayed prior to prompting to
change the password as shown in the following example:

Your password has expired; you must set a new password to log in
% SET-W-NOTSET, error modifying DKA0:
-SET-E-INVDEV, device is invalid for requested operation

Old password:

The way to suppress these warning messages would be to check for the appropriate login flag,
ignoring any SET TERM commands. For example:

$ flags = $getjpi(““, “LOGIN_FLAGS”)
$ new_flags = (flags/2)*2
$ if new_flags.eq.4 then goto skip_the_inquiry

15.15.3. Break-In and Intrusion Detection
Care must be exercised when configuring the SSH clients and server to minimize problems due to
intrusion records created by OpenVMS security auditing. The SSH user should consult the system
manager to determine the authentication methods offered by the SSH server. The client should then be
configured to not attempt any authentication method that is not offered by the server.

If a client attempts authentication methods not offered by the server, the OpenVMS security auditing
system may log several intrusion records for each attempt to create a session to that server. The result
being that the user could be locked out and prevented from accessing the server system without
intervention from the server's system manager.

The authentication methods to be offered by the server are determined by the configuration keywords
AllowedAuthentications and RequiredAuthentications. The number of intrusion records to be logged
for any attempted SSH session is determined by the StrictIntrusionLogging configuration keyword.

When StrictIntrusionLogging is set to YES (the default), each method that is tried and fails causes an
intrusion record to be logged. The following rules apply:

• When HostBased or PublicKey authentications are attempted and fail, one intrusion record is
logged for each failed method.

• When password authentication is attempted, one intrusion record is logged for each failed
password.

Example 1:

The server is set up to allow HostBased and password authentication; also, up to three password
attempts are allowed. If all methods fail, four intrusion records are logged:

219

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

1 for the failed HostBased

3 for the failed password attempts, one per attempt

When StrictIntrusionLogging is set to NO, it has the effect of relaxing the number of intrusions
logged. Overall failure of all authentication methods simply counts as a single failure, except for
password authentication. The following rules apply:

• When password authentication is attempted, one intrusion record is logged for each failed
password.

• When any of HostBased or PublicKey authentication fails, and password authentication is not
attempted, exactly one intrusion record is logged, as opposed to one for each failed method.

• When any of HostBased or PublicKey authentication fails, but password authentication is
attempted and succeeds, the only intrusion record(s) logged is one for each failed password
attempt.

Example 2:

The server is set up to allow HostBased and password authentication; also, up to three password
attempts are allowed. If all methods fail, three intrusion records are logged:

0 for the failed HostBased

3 for the failed password attempts, one per attempt

Example 3:

The server is set up to allow HostBased and password authentication; also, up to three password
attempts are allowed. HostBased and RSA fail, but password authentication is successful after 1 failed
password. Therefore, one intrusion record is logged:

0 for the failed HostBased

1 for the failed password attempt

Example 4:

The server is set up to allow HostBased and PublicKey authentication, but not password
authentication. If all methods fail, one intrusion record is logged.

Example 5:

The server is set up to allow HostBased and PublicKey authentication, but not password
authentication. HostBased authentication fails, but PublicKey succeeds. No intrusion records are
logged.

15.15.4. Configuring SSHD Master
SSHD Master is configured using the IP CONFIGURE /SERVER command, selecting SSH, and
using the following parameters:

220

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Note

The only supported methods to start SSHD Master are to restart the VSI TCP/IP server if SSH is not
currently running, or to use the IP NETCONTROL SSH START command. All of these options are
set using IP CONFIGURE /SERVER, and modifying the SSH service.

bits n

Specifies the number of bits in the server key. The default is 768.

debug debug-level

Disables or enables debugging levels. Values are between 0 and 50. Zero (0) disables debugging and
higher values turn on successively more debugging.

ipv4-disable

Disables the server from listening on an IPv4 socket.

ipv6-disable

Disables the server from listening on an IPv6 socket.

enable-ssh2

Enables SSH V2 sessions.

listen-address

Specify the IPV4 or IPV6 address on which to listen for connect request. This may be a valid IPV4 or
IPV6 address, or ANY to listen on all addresses. If not specified, the default is to listen on all IPV4
and IPV6 addresses.

port n

Specifies the port on which the server listens for connections. The default is 22.

quiet_mode

Specifies that nothing is sent to the system log. Normally, the beginning, authentication, and
termination of each connection is logged.

ssh2-config-file filename

Specifies the name of the configuration file. The default is SSH2_DIR:SSHD2_CONFIG.

verbose

Specifies that verbose message logging will be performed by SSHD Master.

15.15.5. SSHD2 Configuration File
SSHD reads configuration data from its configuration file. By default, this file is
SSH2_DIR:SSHD2_CONFIG. The file contains keyword value pairs, one per line. Lines starting

221

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

with # and empty lines are interpreted as comments. The following keywords are possible. Keywords
are case insensitive.

Keyword Value Default Description
AllowedAuthentications List Publickey,

Password
Permitted techniques.
Valid values are:

Keyboard-interactive,
password, public-
key, hostbased,
kerberos-1, kerberos-
tgt-1, kerberos-2,
kerberos-tgt-2

Along
withRequiredAuthentications,
the system administrator
can force the users
to complete several
authentications before
they are considered
authenticated.

AllowedPasswordAuthenticationsList kerberos, local Specifies the different
password authentication
schemes that are allowed.

Only kerberos and local
are acceptable.

AllowGroups List Access control by UAF
rights list entries

AllowHosts Host list Access control by
hostname

AllowShosts Host list Access control by
hostname

AllowTcpForwarding Y/N Y Enable TCP port
forwarding

AllowTcpForwardingForUsers User list Per-User forwarding
AllowTcpForwardingForGroups Rights list Per-Rights list ID

forwarding
AllowUsers User list Access control by

username
AllowX11Forwarding Y/N Y Enable X11 forwarding
AuthInteractiveFailureTimeout Seconds 2 Delay, in seconds, that the

server delays after a failed
attempt to log in using
keyboard-interactive and
password authentication.

AuthKbdInt.NumOptional Number 0 Specifies how many
optional submethods

222

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Keyword Value Default Description
must be passed before
the authentication is
considered a success.
(Note that all reported
submethods must
always be passed.) See
AuthKbdInt.Optional
for specifying optional
submethods, and
AuthKbdInt.Required for
required submethods. The
default is 0, although if no
required submethods are
specified, the client must
always pass at least one
optional submethod.

AuthKbdint.Optional List None Specifies the optional
submethods keyboard-
interactive will use.
Currently only the
submethod password is
defined.

AuthKbdInt.NumOptional
specifies how many
optional submethods must
be passed. The keyboard-
interactive authentication
method is considered
a success when the
specified amount of
optional submethods and
all required submethods
are passed.

AuthKbdInt.Required Specifies the required
submethods that must
be passed before the
keyboard-interactive
authentication method can
succeed.

AuthKbdInt.Retries Number 3 Specifies how many
times the user can retry
keyboard-interactive.

AuthorizationFile Filename Authorization Authorization file for
publickey authentication.

AuthPublicKey.MaxSize Number 0 Specifies the maximum
size of a publickey that
can be used to log in.

223

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Keyword Value Default Description
Value of 0 disables the
check.

AuthPublicKey.MinSize Number 0 Specifies the minimum
size of a publickey that
can be used to log in.
Value of 0.

Cert.RSA.Compat.HashScheme md5 or sha md5 Previous clients and
servers may use hashes
in RSA certificates
incoherently (sometimes
SHA-1 and sometimes
MD5). This specifies
the hash used when a
signature is sent to old
versions during the initial
key exchanges.

BannerMessageFile Filename SYS
$ANNOUNCE

Message sent to the client
before authentication
begins.

CheckMail Y/N Y Display information about
new mail messages when
logging in

Ciphers Cipher list Encryption ciphers
offered

DenyGroups Rights list Deny access for UAF
rightslist identifiers

DenyHosts Host list Deny access for hosts
DenySHosts Host list Deny access for hosts
DenyTcpForwardingForUsers User list Forbid forwarding for

listed users
DenyTcpForwardingForGroups Rights list Forbid forwarding for

listed rightslist names
DenyUsers User list Access control by

username
FascistLogging Y/N Y Verbose logging
ForwardACL Pattern None With this option, you

can have more fine-
grained control over what
the client is allowed to
forward, and to where.
See Section 15.15.5.4

ForwardAgent Y/N Y Enable agent forwarding
HostCA Certificate None Specifies the CA

certificate (in binary
or PEM (base64)
format) to be used when

224

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Keyword Value Default Description
authenticating remote
hosts. The certificate
received from the host
must be issued by
the specified CA and
must contain a correct
alternate name of type
DNS (FQDN). If no CA
certificates are specified
in the configuration
file, the protocol tries to
do key exchange with
ordinary publickeys.
Otherwise, certificates are
preferred. Multiple CAs
are permitted.

HostCANoCRLs Certificate None Similar to HostCA,
but disables CRL
checking for the given CA
certificate.

HostCertificateFile Filename None This keyword works
very much like
PublicHostKeyFile,
except that the file is
assumed to contain
an X.509 certificate
in binary format. The
keyword must be paired
with a corresponding
HostKeyFileoption. If
multiple certificates
with the same publickey
type (DSS or RSA) are
specified, only the first
one is used.

HostbasedAuthForceClient

HostnameDNSMatch

Y/N N Host name given by
client.

Hostkeyfile Filename Hostkey Hostkey filename
HostSpecificConfig Pattern None Specifies a

subconfiguration file for
this server, based on the
hostname of the client
system.

IdentityFile Filename Identification Identity filename
IdleTimeout Time 0 = none Set idle timeout (in

seconds)

225

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Keyword Value Default Description
IgnoreRhosts Y/N N Do not use rhosts and

shosts for hostbased
authentication for all
users

IgnoreRootRhosts Y/N Y Don’t use rhosts
and shosts files for
authentication of
SYSTEM

KeepAlive Y/N Y Send keepalives
LdapServers Server URL None Specified asldap://

server.domain-name:389

CRLs are automatically
retrieved from the CRL
distribution point defined
in the certificate to be
checked if the point
exists. Otherwise, the
comma-separated server
list given by option
LdapServersis used.
If intermediate CA
certificates are needed
in certificate validity
checking, this option must
be used or retrieving the
certificates will fail.

ListenAddress IP address 0.0.0.0 Listen on given interface
Macs Algorithm Select MAC (Message

Authentication Code)
algorithm

MapFile Filename None This keyword specifies
a mapping file for the
preceding Pkikeyword.
Multiple mapping
files are permitted per
one Pkikeyword. The
mapping file format is
described below.

MaxBroadcastsPerSecond #broadcasts 0 Listen for UDP
broadcasts

NoDelay Y/N N Enable Nagel Algorithm
PasswordAuthentication Y/N Y Permit password

authentication
PasswordGuesses #guesses 3 Limit number of

password tries to
specified number

226

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Keyword Value Default Description
PermitEmptyPasswords Y/N N Permit empty (blank)

passwords
PermitRootLogin Y/N N SYSTEM can log in
Pki Filename None This keyword enables

user authentication
using certificates. CA-
certificate must be an
X.509 certificate in binary
format. This keyword
must be followed by
one or more MapFile
keywords. The validity
of a received certificate
is checked separately
using each of the defined
Pkikeywords in turn
until they are exhausted
(in which case the
authentication fails), or a
positive result is achieved.
If the certificate is valid,
the mapping files are
examined to determine
whether the certificate
allows the user to log
in. A correct signature
generated by a matching
private key is always
required.

PkiDisableCrls Y/N Y This keyword disables
CRL checking for the
Pkikeyword, if argument
is Y.

PrintMotd Y/N Y Display SYS
$WELCOME when
logging in

PublicHostKeyFile Filename Hostkey.pub Hostkey file location
QuietMode Y/N N Quiet mode
RandomSeedFile Filename Random_seed Random seed file
RekeyIntervalSeconds # seconds 0 Frequency of rekeying
RequiredAuthentication Authentication list Authentications client

must support
RequireReverseMapping Y/N N Remote IP address must

map to hostname
ResolveClientHostName Y/N Y Controls whether the

server will try to resolve
the client IP address

227

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Keyword Value Default Description
at all, or not. This is
useful when you know
that the DNS cannot be
reached, and the query
would cause additional
delay in logging in. Note
that if you set this to
N, you should not set
RequireReverseMappingto
Y.

RSAAuthentication Y/N Y Enable RSA
authentication

SendKeyGuess Y/N Y This parameter controls
whether the server will
try to guess connection
parameters during key
exchange, or not. Some
clients do not support key
exchange guesses and
may fail when they are
present.

SftpSysLogFacility log facility None Defines the log facility
the SFTP server will use

StrictIntrusionLogging Y/N Y Determine how intrusion
records are created by
failed authentication
attempts.

StrictModes Y/N N Strict checking for
directory and file
protection.

SyslogFacility Facility AUTH Defines what log facility
to be used when logging
server messages.

Terminal.AllowUsers pattern All users List users that are allowed
terminal (interactive)
access to the server.

Terminal.DenyUsers pattern None List users that are denied
terminal (interactive)
access to the server.

Terminal.AllowGroups pattern All groups Similar to
Terminal.AllowUsers but
matches groups instead of
usernames.

Terminal.DenyGroups pattern None Similar to
Terminal.DenyUsers but
matches groups instead of
usernames

228

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Keyword Value Default Description
UserConfigDirectory Directory SYS$LOGIN: Location of user SSH2

directories
UserKnownHosts Y/N Y Respect user [.ssh2]

known hosts keys
UserSpecificConfig Pattern None Specifies a

subconfiguration file for
this server, based on user
logging in.

VerboseMode Y/N N Verbose mode

The keywords /MAC and /CIPHER have discrete values, plus there are values that actually denote a
grouping of 2 or more of the discrete values. Each of these values may be put in the configuration file
(SSH2_DIR:SSHD2_CONFIG).

Discrete values:

hmac-sha1, hmac-sha256, hmac-md5, hmac-ripemd160, none
Group ANYMAC consists of:

hmac-sha1, hmac-sha256, hmac-md5, hmac-ripemd160
Group ANY consists of:

hmac-sha1, hmac-sha256, hmac-md5, hmac-ripemd160, none
Group ANYSTD consists of:

hmac-sha1, hmac-md5, none

MACs

Group ANYSTDMAC consists of:

hmac-sha1, hmac-md5
Discrete values:

3des, aes, blowfish, aes128-ctr, aes128-cbc, aes192-ctr, aes192-cbc, aes256-ctr,
aes256-cbc, 3des-ctr, 3des-cbc, blowfish-ctr, blowfish-cbc, des-cbc, rc2-cbc,
none
Group ANYSTDCIPHER consists of:

aes128-ctr, aes128-cbc, aes192-ctr, aes192-cbc, aes256-ctr, aes256-cbc, 3des-ctr,
3des-cbc, blowfish-ctr, blowfish-cbc
Group ANY consists of:

aes128-ctr, aes128-cbc, aes192-ctr, aes192-cbc, aes256-ctr, aes256-cbc, 3des-ctr,
3des-cbc, blowfish-ctr, blowfish-cbc, des-cbc, rc2-cbc, none
Group ANYCIPHER consists of:

aes128-cbc, 3des-cbc, twofish128-cbc, cast128-cbc, twofish-cbc, blowfish-cbc,
aes192-cbc, aes256-cbc, twofish192-cbc, twofish256-cbc, arcfour,

des-cbc, rc2-cbc

Ciphers

Group ANYSTD consists of:

229

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

aes128-cbc, 3des-cbc, twofish128-cbc, cast128-cbc, twofish-cbc, blowfish-cbc,
aes192-cbc, aes256-cbc, twofish192-cbc, twofish256-cbc, arcfour, none

A discrete value or a group identifier may be used with MACS and CIPHERS. For example, in the
configuration file, the following examples could be used:

Ciphers ANYCIPHER

Ciphers 3des,aes128-cbc

MACs ANYMAC

MACs hmac-sha1

Aliases may be used for some standard ciphers:

Alias Value
aes aes128-cbc
3des 3des-cbc
blowfish blowfish-cbc

15.15.5.1. HostSpecificConfig Notes:

The global server file (SSH2_DIR:SSHD2_CONFIG) now can use the keyword HostSpecificConfig
to allow the specification of a configuration file based on the client system. These lines are specified
as:

HostSpecificConfig hostname subconfig-file

hostnamewill be used to match the client host, as specified under option AllowHosts. The file
subconfig-file will then be read, and configuration data amended accordingly. The file is read before
any actual protocol transactions begin, and you can specify most of the options allowed in the main
configuration file. You can specify more than one subconfiguration file, in which case the patterns
are matched and the files read in the order specified. Later defined values of configuration options
will either override or amend the previous value, depending on which option it is. The effect of
redefining an option is described in the documentation for that option. For example, setting Ciphers in
the subconfiguration file will override the old value, but setting AllowUsers will amend the value.

The subconfig-file will be assumed by default to exist in the SSH2_DIR directory. However, this may
be overridden by specifying a complete directory/file specification. For example:

HostSpecificConfig bos.example.com dka0:[sshconfigs]bosconfig.dat

HostSpecificConfig clt.example.com cltconfig.dat

In the first instance, an incoming connection from bos.example.com will use the subconfig file dka0:
[sshconfigs]bosconfig.dat. In the second example, an incoming connection from clt.example.com will
use ssh2_dir:cltconfig.dat.

Unlike ssh2_config, the subconfig files may have configuration blocks, or stanzas, in them. They are
used per-host. The subconfiguration heading is interpreted identically to what is described above (i.e,
with UserSpecificConfig, the pattern is of the format “hostname”.)

230

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

Note

If the subconfig file cannot be found or cannot be parsed successfully for any reason, access to the
system will be denied for the system to which the subconfig file applies.

15.15.5.2. UserSpecificConfig Notes:
The global server file (SSH2_DIR:SSHD2_CONFIG) can use the keyword UserSpecificConfig to
allow the specification of a configuration file based on the username of the user who’s logging into
the server. These keywords are of the form:

UserSpecificConfig user[%group] [@host] subconfig-file

patternwill be used to match the username, as specified under the option AllowUsers. The file
subconfig-file will then be read, and configuration data amended accordingly. The file is read before
any actual protocol transactions begin, and you can specify most of the options allowed in the main
configuration file. You can specify more than one subconfiguration file, in which case the patterns
are matched and the files read in the order specified. Later defined values of configuration options
will either override or amend the previous value, depending on which option it is. The effect of
redefining an option is described in the documentation for that option. For example, setting Ciphers in
the subconfiguration file will override the old value, but setting AllowUsers will amend the value.

Unlike sshd2_config, the subconfig files may have configuration blocks, or stanzas, in them. They are
used per user. The subconfiguration heading is interpreted identically to what is described above (i.e.,
with UserSpecificConfig, the pattern is of the format user[%group] [@host].

The subconfig-file will be assumed by default to exist in the SSH2_DIR directory. However, this may
be overridden by specifying a complete directory/file specification. For example:

UserSpecificConfig dilbert dka0:[sshconfigs]dilbert.dat

UserSpecificConfig boss@lima.beans.com pointyhair.dat

In the first instance, an incoming connection for user alice will use the subconfig file dka0:
[sshconfigs]alice.dat. In the second example, an incoming connection from user bob at system
lima.beans.com will use ssh2_dir:bob.dat.

Note

If the subconfig file cannot be found or cannot be parsed successfully for any reason, access to the
system will be denied for the user to which the subconfig file applies.

15.15.5.3. KEYBOARD-INTERACTIVE Notes:
At this point, KEYBOARD-INTERACTIVE mode is simply another form of password
authentication. The user won’t notice anything different with this mode. In the future, VSI may
implement items such as system passwords, secondary passwords, and true OpenVMS-style password
changing using this authentication method. As other clients support the use of the KEYBOARD-
INTERACTIVE authentication method for doing password authentication (without using any external
callouts from the mechanism such as SecureID cards), the server should support those clients.

15.15.5.4. ForwardACL Notes
With this option, you can have more fine-grained control over what the client is allowed to forward,
and to where. Format for this option is:

231

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

[allow|deny] [local|remote] user-pat forward-pat [originator-pat]

user-pat will be used to match the client-user, as specified under the option UserSpecificConfig.
forward-pat is a pattern of format host-id[%port]. This has different interpretations,
depending on whether the ACL is specified for local or remote forwards. For local forwards,
the host-id will match with the target host of the forwarding, as specified under the option
AllowHosts. port will match with the target port. Also, if the client sent a host name, the IP address
will be looked up from the DNS, which will be used to match the pattern. For remote forwardings,
where the forward target is not known (the client handles that end of the connection); this will be
used to match with the listen address specified by the user (and as such is not as usable as with local
forwards). port will match the port the server is supposed to be listening to with this forward.
With local forwards, originator-pat will match with the originator address that the client has
reported. Remember, if you do not administer the client machine, users on that machine may use a
modified copy of ssh that can be used to lie about the originator address. Also, with NATs (Network
Address Translation), the originator address will not be meaningful (it will probably be an internal
network address). Therefore, you should not rely on the originator address with local forwards, unless
you know exactly what you are doing. With remote forwards, originator-pat will match with
the IP address of the host connecting to the forwarded port. This will be valid information, as it is the
server that is checking that information.

If you specify any allow directives, all fowards in that class (local or remote) not specifically allowed
will be denied (note that local and remote forwards are separate in this respect, e.g., if you have
one “allow remote” definition, local forwards are still allowed, pending other restrictions). If a
forward matches with both allow and deny directives, the forwarding will be denied. Also, if you have
specified any of the options [Allow.Deny]TcpForwardingForUsers.Groups] or AllowTcpForwarding,
and the forwarding for the user is disabled with those, an allow directive will not re-enable the
forwarding for the user. Forwarding is enabled by default.

15.15.5.5. MappingFileFormat
When certificates are used in user authentication, one or more mapping files determine whether the
user can log to an account with a certificate. The mapping file must contain one or more lines in the
following format:

account-id keyword arguments

Keyword must be one of the following: Email, EmailRegex, Subject, SerialAndIssuer, or
SubjectRegex.

Arguments are different for each keyword. The following list describes each variation:

Email

arguments: an email address in standard format. If the certificate contains the email address as an
alternate name, it is good for logging in as user account-id.

Subject

arguments: a subject name in DN notation (LDAP style). If the name matches the one in the
certificate, the certificate is good for logging in as user account-id.

SerialAndIssuer

arguments: a number and an issuer name in DN notation (LDAP style), separated by whitespace. If
the issuer name and serial number match those in the certificate, the certificate is good for logging in
as user account-id.

232

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

EmailRegex

arguments: a regular expression (egrep syntax). If it matches an altername (of type email-address)
in the certificate, the certificate is good for logging in as user account-id. As a special feature, if
account-id contains a string %subst%, it is replaced by the first parenthesized substring of the regular
expression before comparing it with the account the user is trying to log into.

SubjectRegex

Works identically to EmailRegex, except it matches the regular expression to the canonical subject
name in the received certificate.

Empty lines and lines beginning with # are ignored.

EXAMPLE: MAPPINGFILE

guest email guest@domain.org

guest subject C=Fl,O=Company Ltd., CN-Guest User

guest SerialAndUser 123 C=Fl, O=Foo\Ltd., CN=Test CA

%subst% EmailRegex ([a-z]+)@domain.\org

%subst% Subjectregex ^C=Fl,O=Company,CN=([a-z]+)$

The example EmailRegexpermits in users with email addresses with domain domain.org and
usernames that contain only letters, each user to the account that corresponds to the username part of
the email address.

The example SubjectRegex lets in all users with fields C=Fl and O=Company in the subject name if
their CN field contains only letters and is the account name they are trying to log into.

Note the ^ and $ at the beginning and end of the regular expression; they are required to prevent the
regular expression from matching less than the whole string (subject name).

Note also that all characters interpreted by the regular expression parser as special characters must
be escaped with a backslash if they are a part of the subject name. This also means that the backslash
in the SerialAndIssuer example would have to be escaped with another backslash if the same subject
name was used in a SubjectRegexrule.

15.15.6. Starting the SSH Server for the First Time
Follow these instructions for using SSH for the first time.

1. Use the IP CONFIGURE /SERVER command to enable the SSH v2 server.

$ IP CONFIGURE/SERVER
VSI TCP/IP Server Configuration Utility
[Reading in configuration from IP$:SERVICES.MASTER_SERVER]
SERVER-CONFIG>SHOW/FULL SSH
Service "SSH": ***DISABLED***
 INIT() = Merge_Image
 Program = "IP$:LOADABLE_SSH_CONTROL"
 Priority = 5
 Parameters = “enable-ssh1”
 “enable-ssh2”

233

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

SERVER-CONFIG>ENABLE SSH
SERVER-CONFIG>EXIT
[Writing configuration to IP$COMMON_ROOT:[IP]SERVICES.MASTER_SERVER]

Note

The parameter enable-ssh2 must be set. If it is not set, SSH v2 sessions will not be accepted by the
server.

2. Use SSHKEYGEN /SSH2 to generate an ssh2 key and to create the server keys in the
SSH2_HOSTKEY_DIR directory:

$ DEFINE IP$SSH2_HOSTKEY_DIR -
_$ IP$SPECIFIC_ROOT:[IP.SSH2.HOSTKEYS]
$ IP SSHKEYGEN /SSH2 /HOST
Generating 1024-bit dsa key pair
 8 .oOo.oOoo.oO
Key generated.
1024-bit dsa, lillies@sfo.example.com, Mon Aug 04 2015 09:19:47
Private key saved to ip$ssh2_hostkey_dir:hostkey.
publickey saved to ip$ssh2_hostkey_dir:hostkey.pub

3. Copy the template server configuration file to the SSH2_DIR: directory renaming it
SSHD2_CONFIG.:

$ COPY IP$CONFIG:SSHD2_CONFIG.TEMPLATE IP$SPECIFIC_ROOT:
[IP.SSH2]SSHD2_CONFIG

4. Copy the template client configuration file to the SSH2_DIR: directory renaming it
SSH2_CONFIG.:

$ COPY IP$SPECIFIC_ROOT:[IP.SSH2]SSH2_CONFIG.TEMPLATE -
_$ IP$SPECIFIC_ROOT:[IP.SSH2]SSH2_CONFIG.

Note

As delivered, the template files provide a reasonably secure SSH environment. However, VSI
recommends these files be examined and modified appropriately to reflect the security policies of
your organization.

5. Restart VSI TCP/IP. This creates the SSH server process and defines the SSH logical names.

$ @IP$:IP$SYSTARTUP.COM RESTART
$ SHOW SYSTEM/PROCESS="IP$SSH_SERVER"
OpenVMS V8.4-2L1 on node HNALOR 18-DEC-2017 13:09:33.58 Uptime 2
 19:01:55
 Pid Process Name State Pri I/O CPU Page flts
 Pages
0000082E IP$SSH_SERVER LEF 7 761 0 00:00:00.23 1344
 529
$ SHOW LOGICAL/SYSTEM *SSH*
 "IP$SSH2_HOSTKEY_DIR" =
 "IP$SPECIFIC_ROOT:[IP.SSH2.HOSTKEYS]"
 "IP$SSH2_KNOWNHOSTS_DIR" =
 "IP$SPECIFIC_ROOT:[IP.SSH2.KNOWNHOSTS]"
 "IP$SSH_ENABLE_SSH2_CONNECTIONS" = "1"

234

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

 "SSH2_DIR" = "IP$SPECIFIC_ROOT:[IP.SSH2]"
 "SSH_DIR" = "IP$SPECIFIC_ROOT:[IP]"
 "SSH_EXE" = "IP$COMMON_ROOT:[IP]"
 "SSH_LOG" = "IP$SPECIFIC_ROOT:[IP.SSH]"
 "SSH_TERM_MBX" = "MBA36:"

15.15.7. Configuring the SSH2 Server on a
OpenVMScluster with a Common System Disk
When configuring the SSH2 server on a OpenVMScluster with a common system disk, you must
create the appropriate directories on all cluster nodes other than the one on which VSI TCP/IP was
originally installed. Note that this does not need to be done for cluster members that do not share a
common system disk.

The following procedure should be followed on each cluster node other than the cluster node on
which VSI TCP/IP was originally installed:

• Create the necessary directories:

$ CREATE/DIR IP$SPECIFIC_ROOT:[IP.SSH2]/PROT=(WO:RE,GR:RE)
$ CREATE/DIR IP$SPECIFIC_ROOT:[IP.SSH2.KNOWNHOSTS]/PROT=(WO:R,GR:R)
$ CREATE/DIR IP$SPECIFIC_ROOT:[IP.SSH2.HOSTKEYS]/PROT=(WO:R,GR:R)
$ CREATE/DIR IP$SPECIFIC_ROOT:[IP.SSH]/PROT=(WO:RE,GR:RE)

• Edit the IP$SPECIFIC_ROOT:[IP.SSH2]SSHD2_CONFIG file as necessary.
This may be copied from another cluster node, or it may be created fresh from the
SSHD2_CONFIG.TEMPLATE file.

• Edit the IP$SPECIFIC_ROOT:[IP.SSH2]SSH2_CONFIG file as necessary.
This may be copied from another cluster node, or it may be created fresh from the
SSH2_CONFIG.TEMPLATE file.

• Configure the SSH2 server using IP CONFIGURE/SERVER

• Generate the SSH2 hostkeys using IP SSHKEYGEN/SSH2/HOST

• (Re)start SSHD Master using IP NETCONTROL SSH RESTART

15.15.8. Changing SSHD2 Configuration File After
Enabling SSH2
If you make a change to the SSH server configuration file after you have enable SSH, you must restart
SSH for these changes to take effect for subsequent new connections.

$ IP NETCONTROL SSH RESTART

Note

When issuing the RESTART command for SSH, all active SSH server sessions are terminated.
Active client sessions are not affected.

15.15.9. Connection and Login Process
To create a session, SSHD does the following:

235

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

1. SSHD_MASTER sees the connection attempt. It creates an SSHD process, passing the operating
parameters to it. SSHD performs validation for the user.

2. Assuming the login is successful, SSHD creates a pseudo terminal for the user (an FTAnn:
device). This device is owned by the user attempting to log in.

3. SSHD creates an interactive process on the pseudo terminal, using the username, priority, and
privileges of the user who is attempting to log in. If a command was specified, it is executed and
the session is terminated.

4. SSH generates the file SSHD.LOG for each connection to the SSH server. Many connections
result in many log files. Instead of purging the files on a regular basis, use the following DCL
command to limit the number of versions:

$ SET FILE /VERSION_LIMIT=x IP$LOG:SSHD.LOG

Note

The value for /VERSION_LIMIT must not be smaller than the maximum number of simultaneous
SSH sessions anticipated. If the value is smaller, SSH users may be prevented from establishing
sessions with the server.

15.15.9.1. FILES
IP$:HOSTS.EQUIV

Contains host names, one per line. This file is used during .rhosts authentication. Users on those hosts
are permitted to log in without a password, provided they have the same username on both machines.
The hostname may also be followed by a username. Such users are permitted to log in as any user
on the remote machine (except SYSTEM). Additionally, the syntax +@group can be used to specify
netgroups. Negated entries start with dash (-). If the client host/user is matched in this file, login is
permitted provided the client and server usernames are the same. Successful RSA host authentication
is required. This file should be world-readable but writable only by SYSTEM.

It is never a good idea to use usernames in hosts.equiv. It means the named user(s) can log in as
anybody, which includes accounts that own critical programs and directories. Using a username grants
the user SYSTEM access. The only valid use for usernames is in negative entries.

Note

This warning also applies to rshell/rlogin.

IP$:SHOSTS.EQUIV

Processed as IP$:HOSTS.EQUIV. May be useful in environments that want to run both rshell/rlogin
and ssh.

IP$SSH2_HOSTKEY_DIR:HOSTKEY

Contains the private part of the hostkey. This file does not exist when VSI TCP/IP is installed. The
SSH server starts only with this file. This file must be created manually using the command:

$ IP SSHKEYGEN /SSH2 /HOST.

This file should be owned by SYSTEM, readable only by SYSTEM, and not accessible to others.

236

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

To create a hostkey with a name that is different than what SSHKEYGEN creates, do one of the
following:

• Generate with SSHKEYGEN /SSH2 /HOST and simply rename the file(s).

• Generate without the /HOST switch and then name the file(s) whatever you want.

By default the logical name SSH2_DIR points to the IP$SPECIFIC_ROOT:[CONFIG.SSH2]
directory.

Refer to the VSI TCP/IP User’s Guide, for more details about SSHKEYGEN.

IP$SSH2_HOSTKEY_DIR:HOSTKEY.PUB

Contains the public part of the hostkey. This file should be world-readable but writable only by
SYSTEM. Its contents should match the private part. This file is not used for anything; it is only
provided for the convenience of the user so its contents can be copied to known hosts files.

SSH2:SSH_RANDOM_SEED
SYS$LOGIN:[.SSH]RANDOM_SEED

Contains a seed for the random number generator. This file should only be accessible by system.

SSH2_DIR:SSHD2_CONFIG

Contains configuration data for the v2 SSHD server. This file should be writable by system only, but it
is recommended (though not necessary) that it be world-readable.

SYS$LOGIN:[.SSH2].SHOSTS

Permits access using SSH2 only. For SSH2, this file is the same as for .rhosts. However, this file is not
used by rlogin and rshell daemon.

SYS$LOGIN:.RHOSTS

This file contains host-username pairs, separated by a space, one per line. The given user on the
corresponding host is permitted to log in without a password. The same file is used by rlogin and
rshell. SSH2 differs from rlogin and rshell in that it requires RSA host authentication in addition to
validating the hostname retrieved from domain name servers (unless compiled with the -with-rhosts
configuration option). The file must be writable only by the user. It is recommended that it not be
accessible by others. It is possible to use netgroups in the file. Either host or username may be of the
form +@groupname to specify all hosts or all users in the group.

SYS$LOGIN:[.SSH2]AUTHORIZATION

This file contains information on how the server verifies the identity of a user.

SYS$LOGIN:[.SSH2.KNOWNHOSTS]xxxxyyyy.pub

These are the public hostkeys of hosts that a user wants to log in from using "hostbased"
authentication (equivalent to the SSH1's RhostsRSAAuthentication). Also, a user must set up his/
her individual .SHOSTS or .RHOSTS file. If the username is the same in both hosts, it is adequate
to put the public hostkey in SSH2_DIR:KNOWNHOSTS and add the host's name to the system-wide
SHOSTS.EQUIV or RHOSTS.EQUIV file.

xxxx is the hostname (FQDN) and yyyy denotes the publickey algorithm of the key (ssh-dss or ssh-
rsa).

237

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

For example bos.example.com's hostkey algorithm is ssh-dss. The hostkey would then be
bos_example_com_ssh-dss.pub in the [.SSH2.KNOWNHOSTS] directory.

15.15.10. SSH2 AUTHORIZATION File Format
The Authorization file contains information on how the server verifies the identity of a user. This file
has the same general syntax as the SSH2 configuration files. The following keywords may be used:

Keyword Description
KEY The filename of a publickey in the [.SSH2] directory in the user's SYS

$LOGIN directory. This key is used for identification when contacting the host.
If there are multiple KEY lines, all are acceptable for login.

COMMAND This keyword, if used, must follow the KEY keyword above. This is used to
specify a "forced command" that executes on the server side instead of anything
else when the user is authenticated. This option might be useful for restricting
certain publickeys to perform certain operations.

15.15.11. SSH2 Logicals
These logicals are used with the SSH server in the system logical name table.

$ SHOW LOGICAL/SYSTEM *SSH*

SSH_DIR

Points to the directory where the master server log file is kept. Normally, this is IP
$SPECIFIC_ROOT:[IP]. It is defined in START_SSH.COM.

SSH_EXE

Points to the directory where SSH executables are kept. Normally, this is IP$COMMON_ROOT:[IP].
It is defined in START_SSH.COM.

SSH_LOG

Points to the directory where the log files are kept. Normally, this is IP$SPECIFIC_ROOT:
[IP.SSH]. It is defined in START_SSH.COM.

IP$LOG_MBX

Points to the OpenVMS mailbox used to log connection accept and reject messages. This must not be
modified by the user.

IP$SSH_ACC_REJ_LOG_FILE

If the user has set a log file to log connection accept and reject messages, this logical will be defined
and will provide the name of the log file. This logical is set by using the SET LOG-FILE keyword in
IP CONFIGURE/SERVER, and should not be modified directly by the user.

IP$SSH_LOG_ACCEPTS

When set, causes the server to log successful connection requests as either an OPCOM message
or a line in a log file. Specified by the SET LOG-ACCEPT command in IP CONFIGURE /
SERVER. Note that the server does not use the information set in the ACCEPT-HOSTS keyword

238

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

in CONFIGURE /SERVER. Rather, it uses the AllowHosts and DenyHosts keywords in the
SSH server configuration file. Also, a successful connection request doesn't equate to a successful
authentication request. This logical should not be modified directly by the user.

IP$SSH_LOG_REJECTS

When set, causes the server to log rejected connection requests as either an OPCOM message or a line
in a log file. Specified by the SET LOG-REJECT command in IP CONFIGURE/SERVER. Note
that the server does not use the information set in the REJECT-HOSTS keyword in CONFIGURE/
SERVER. Rather, it uses the AllowHosts and DenyHosts keywords in the SSH server configuration
file. This logical should not be modified directly by the user.

IP$SSH_MAX_SESSIONS

Set this to the maximum number of concurrent SSH sessions you want to allow on the server system.
If IP$SSH_MAX_SESSIONS is not defined, the default is 1000. Setting IP$SSH_MAX_SESSIONS
to zero (0) will cause an error. The value must be between 1 and 1000. The suggested place to set this
is in START_SSH.COM. SSH must be restarted to use the new value if it is changed.

SSH_TERM_MBX

Mailbox used by SSHD_MASTER to receive termination messages from SSHD daemon processes. Do
not change this logical name. This is created by the SSHD_MASTER process.

IP$SSH_KEYGEN_MIN_PW_LEN

Defines the minimum passphrase length when one is to be set in SSHKEYGEN. If not defined,
defaults to zero.

IP$SSH_PARAMETERS_n

These values are set by VSI TCP/IP and must not be modified by the user.

IP$SSH_USE_SYSGEN_LGI

If defined, causes SSHD to use the OpenVMS SYSGEN value of LGI_PWD_TMO to set the login
grace time, overriding anything specified in the command line or the configuration file.

IP$SSH_ENABLE_SSH2_CONNECTIONS

Enables SSHD Master to accept SSH V2 sessions.

IP$SSH2_HOSTKEY_DIR

Directory containing the hostkeys for the SSH V2 server. Normally set to IP$SPECIFIC_ROOT:
[IP.SSH2.HOSTKEYS].

IP$SSH2_KNOWNHOSTS_DIR

Directory containing the publickeys for known systems. Normally set to IP$SPECIFIC_ROOT:
[IP.SSH2.KNOWNHOSTS].

SSH2_DIR

Contains all SSH V2-specific files, such as configuration files. Normally set to IP
$SPECIFIC_ROOT:[IP.SSH2].

239

Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2

SSH daemon Files

These files are used by or created by SSH when you log into a daemon. These files are not to be
altered in any way.

SSH_LOG:SSHD.LOG

This log file is created by each SSHD daemon.

SSHD_MASTER.LOG

This log file is created by SSHD_MASTER.

SSH_START.COM

This files is used to start SSH.

240

Chapter 16. Configuring IPSEC and
SETKEY
This chapter describes how to configure the IP Security (IPSEC) and SETKEY protocols. IPSEC
provides per-packet authenticity/confidentiality guarantees between peers that communicate using
IPSEC.

IPSEC provides security for transmission of sensitive information over unprotected networks such
as the Internet. IPSEC acts at the network layer, protecting and authenticating IP packets between
participating IPSEC devices.

16.1. About the IP Security (IPSEC) Protocol
IPSEC consists of a couple of separate protocols that are listed below:

Authentication Header (AH): Provides authenticity guarantee for packets, by attaching strong crypto
checksums to packets. Unlike other protocols, AH covers the whole packet, from the IP header to the
end of the packet.

If you receive a packet with AH and the checksum operation was successful, you can be sure about
two things if you and the peer share a secret key, and no other party knows the key:

• The packet was originated by the expected peer. The packet was not generated by impersonator.

• The packet was not modified in transit.

Encapsulating Security Payload (ESP): Provides confidentiality guarantee for packets, by
encrypting packets with encryption algorithms. If you receive a packet with ESP and have
successfully decrypted it, you can be sure that the packet was not wiretapped in the middle, provided
that you and the peer share a secret key, and no other party knows the key.

IP payload compression (IPcomp): ESP provides encryption service to the packets. However,
encryption tends to give negative impact to compression on the wire (such as ppp compression).
IPcomp provides a way to compress packets before encryption by ESP. (Of course, you can use
IPcomp alone if you wish to).

Internet Key Exchange (IKE): An alternate form of keying is called Internet Key Exchange.

Note

Security of IPSEC protocols depends on the secrecy of secret keys. If secret keys are compromised,
IPSEC protocols can no longer be secure. Take precautions about permission modes of configuration
files, key database files, or whatever may lead to information leakage.

16.2. Security Associations and Security
Policies
Both ESP and AH rely on security associations. A security association (SA) consists of a source,
destination and an instruction. The collection of all SA is maintained by the network kernel for a

241

Chapter 16. Configuring IPSEC and SETKEY

system is termed the security association database (SAD). A sample authentication SA may look like
this:

add 10.0.0.11 10.0.0.216 ah 15700 -A hmac-md5 ”1234567890123456”;

This says “traffic going from 10.0.0.11 to 10.0.0.216 that needs an AH can be signed using HMAC-
MD5 using secret 1234567890123456”. This instruction is labelled with SPI (“Security Parameter
Index”) id “15700” (SPI’s will be covered later). SAs are symmetrical; both sides of a conversation
share exactly the same SA, it is not mirrored on the other side. Note that there is no ‘autoreverse’ rule
- this SA only describes a possible authentication from 10.0.0.11 to 10.0.0.216. For two-way traffic,
two SAs are needed.

Following is a sample SA:

add 10.0.0.11 10.0.0.216 esp 15701 -E 3des-cbc “123456789012123456789012”;

This says “traffic going from 10.0.0.11 to 10.0.0.216 that needs encryption can be enciphered using
3des-cbc with key 123456789012123456789012”. The SPI id is “15701”.

SAs describe possible instructions, but do not in fact describe policy as to when these need to be used.
In fact, there could be an arbitrary number of nearly identical SAs with only differing SPI ids. To do
actual cryptography, we need to describe a security policy (SP). This policy can include things such
as “use ipsec if available” or “drop traffic unless we have ipsec”. The collection of SPs for a system is
termed the security policy database (SPD).

A typical simple Security Policy (SP) looks like this:

spdadd 10.0.0.216 10.0.0.11 any -P out ipsec esp/transport//require ah/
transport//require;

If entered on host 10.0.0.216, this means that all traffic going out to 10.0.0.11 must be encrypted and
be wrapped in an AH authenticating header. Note that this does not describe which SA is to be used,
that is left as an exercise for the kernel to determine.

In other words, a Security Policy specifies what we want; a Security Association describes how we
want it.

Outgoing packets are labelled with the SA SPI (“the how”) which the kernel used for encryption and
authentication so the remote can look up the corresponding verification and decryption instruction.

16.3. IPSEC Configuration File
The configuration file for IPSEC is loaded by the SETKEY program. The default name and location
of this file is IP$:IPSEC.CONF, but other filenames may be used when specifying the -f switch for
SETKEY.

The configuration file describes all the Security Associations (SA) and Security Policies (SP) for the
system. Lines starting with the “#” character are treated as comment lines. Configuration descriptions
can be spread over multiple lines in the file. Each description must end with a semicolon.

16.3.1. Configuration File Options
add [-4n] src dst protocol spi [extensions] algorithm ...;
Add an SAD entry. This can fail with multiple reasons, including when the key length does not match
the specified algorithm.

242

Chapter 16. Configuring IPSEC and SETKEY

get [-4n] src dst protocol spi;
Show an SAD entry.

delete [-4n] src dst protocol;
Remove all SAD entries that match the specification.

deleteall [-4n] src dst protocol;
Removes all SAD entries that match the specification.

flush [protocol];
Clears all SAD entries matched by the options. -F on the command line achieves the same
functionality.

dump [protocol];
Dumps all SAD entries matched by the options. -D on the command line achieves the same
functionality.

spdadd [-4n] src_range dst_range upperspec policy;
Adds an SPD entry.

spdflush ;
Clears all SPD entries. -FP on the command line achieves the same functionality.

spddump ;
Dumps all SPD entries. -DP on the command line achieves the same functionality.

16.3.2. Configuration File Operation Arguments
Arguments for the configuration file operations are as follows:

src/dst
Source/destination of the secure communication is specified as IPv4/v6 addresses. SETKEY can
resolve a FQDN into numeric addresses. If the FQDN resolves into multiple addresses, SETKEY
will install multiple SAD/SPD entries into the kernel by trying all possible combinations. -4 and -n
restricts the address resolution of FQDN in certain ways. -4 restricts results into IPv4/v6 addresses
only. -n avoids FQDN resolution and requires addresses to be numeric addresses.

Protocol (where protocol is one of the following):
• esp ESP based on RFC 2406

• esp-old ESP based on RFC 1827

• ah AH based on RFC 2402

243

Chapter 16. Configuring IPSEC and SETKEY

• ah-old AH based on RFC 1826

• ipcomp IPComp

spi
Security Parameter Index (SPI) for the SAD and the SPD. spi must be a decimal number or a
hexadecimal number prefixed by ‘0x’.

SPI values between 0 and 255 are reserved for future use by IANA.

16.3.2.1. Extensions
May take the following values:

-m mode

Specify a security protocol mode for use. Mode is one of the following: transport,tunnel or any. The
default value is any.

-r size

Specify window size in bytes for replay prevention. size must be a decimal number in 32-bit word. If
size is zero or not specified, replay checks do not take place.

-u id

Specify the identifier of the policy entry in SPD. See policy.

-f pad_option

Defines the content of the ESP padding, and must be one of the following:

• zero-pad All of the padding are zero.

• random-pad A series of randomized values are set.

• seq-pad A series of sequential increasing numbers started from 1 are set.

-f nocyclic-seq

Do not allow cyclic sequence number.

-ls time in seconds

Specify the soft lifetime duration of the SA.

-lh time in seconds

Specify the hard lifetime duration of the SA.

16.3.2.2. Algorithm

-E ealgo key

Specify an encryption algorithm for ESP.

244

Chapter 16. Configuring IPSEC and SETKEY

-E ealgo key -A aalgokey

Specify an encryption algorithm ealgo, as well as a payload authentication algorithm aalgo, for ESP.

-A aalgo key

Specify an authentication algorithm for AH.

-C calgo [-R]

Specify a compression algorithm for IPComp. If -R is specified, the spi field value will be used as the
IPComp CPI (compression parameter index). If -R is not specified, the kernel will use well-known
CPI, and the spi field will be used only as an index for kernel internal usage.

key must be a double-quoted character string, or a series of hexadecimal digits preceded by “0x”.

Possible values for ealgo, aalgo, and calgo are specified in Table 16.1 and Table 16.2.

src_range

dst_range

These are selections of the secure communication specified as an IPv4/v6 address or an IPv4/v6
address range, and it may also include a TCP/UDP port specification. The addresses may take one of
the following forms (an example of each is shown):

Address 192.168.0.15
Address/prefixlen 192.168.0.15/24
Address[port] 192.168.0.15[1234]
Address/prefixlen[port] 192.168.0.15/24[1234]

Note that prefixlen and port must be decimal numbers. The square brackets around port are necessary.
For FQDN resolution, the rules applicable to src and dst apply here as well.

upperspec

Upper-layer protocol to be used. icmp6, ip4, and any can be specified, where any indicates “any
protocol.” The protocol number may also be used.

policy

Policy is one of the following three formats:

• -P direction discard protocol/mode/src-dst/level[...]

• -P direction none protocol/mode/src-dst/level[...]

• -P direction ipsec protocol/mode/src-dst/level[...]

• direction must be out or in.

• discard means the packet matching indexes will be discarded.

• none means that IPsec operations will not take place on the packet.

• ipsec means that IPsec operations will take place on the packet.

• protocol/mode/src-dst/level specifies the rule as to how the packet will be processed:

245

Chapter 16. Configuring IPSEC and SETKEY

• protocol must be one of ah, esp or ipcomp.

• mode must be transport. Note that only transport is valid for the implementation of VSI TCP/IP, as
tunneling is not supported.

• Both src and dst can be omitted.

level must be one of the following:

• default means the kernel consults the system-wide default against the protocol specified.

• use means that the kernel uses a SA if one is available.

• require means SA is required whenever the kernel sends a packet matched with the policy.

• unique is the same as require; in addition, it allows the policy to bind with the unique outbound
SA.

16.4. Configuration Encryption Algorithms
The following table shows the supported algorithms that can be used as aalgo in a -A aalgo protocol
parameter:

Table 16.1. Authentication Algorithms

Algorithm Key Length in Bits
hmac-md5 128
hmac-sha1 160
keyed-md5 128
keyed-sha1 160
null 0 to 2048

The following table shows the supported algorithms that can be used as ealgo in a -E ealgo protocol
parameter:

Table 16.2. Encryption Algorithms

Algorithm Key Length in Bits
blowfish-cbc 40 to 448
cast128-cbc 40 to 128
des-cbc 64
3des-cbc 192
des-deriv 64
rijndael-cbc 128/192/256

Only deflate may be used as calgo in a -C ealgo protocol parameter.

16.5. Simple Configuration Example
What follows is a very simple configuration for talking from host 10.0.0.216 to 10.0.0.11 using
encryption and authentication.

246

Chapter 16. Configuring IPSEC and SETKEY

On host 10.0.0.216:

add 10.0.0.216 10.0.0.11 ah 24500 -A hmac-md5 “1234567890123456”;
add 10.0.0.216 10.0.0.11 esp 24501 -E 3des-cbc
 “12345678901212345678901222”;
spdadd 10.0.0.216 10.0.0.11 any -P out ipsec esp/transport//require ah/
transport//require;

On host 10.0.0.11, the same Security Associations, no Security Policy:

add 10.0.0.216 10.0.0.11 ah 24500 -A hmac-md5 “1234567890123456”;
add 10.0.0.216 10.0.0.11 esp 24501 -E 3des-cbc
 “12345678901212345678901222”;

With the above configuration in place, $ IP ping 10.0.0.11 from 10.0.0.216 looks like this using
tcpdump:

22:37:52
 10.0.0.216>10.0.0.11:AH(spi=0x00005fb4,seq=0xa):ESP(spi=0x00005fb5,seq=0xa)
(DF)
23:37:52 10.0.0.11>10.0.0.216:icmp:echo reply

Note how the ping back from 10.0.0.11 is plainly visible. The forward ping cannot be read by
tcpdump (as the packet is encrypted), but it does show the Security Parameter Index of AH and ESP,
which tells 10.0.0.11 how to verify the authenticity of our packet and how to decrypt it.

A problem with the previous example is that it specifies a policy on how 10.0.0.216 should treat
packets going to 10.0.0.11, and that it specifies how 10.0.0.11 should treat those packets. However, it
does not instruct 10.0.0.11 to discard unauthenticated or unencrypted traffic. Hence, anybody could
insert spoofed and completely unencrypted data and 10.0.0.11 will accept it. To remedy the above, we
need an incoming Security Policy on 10.0.0.11, as follows:

spdadd 10.0.0.216 10.0.0.11 any -P in ipsec esp/transport//require ah/
transport//require;

This instructs 10.0.0.11 that any traffic coming in to it from 10.0.0.216 is required to have valid ESP
and AH.

To complete this configuration, the return traffic needs to be encrypted and authenticated as well.
Therefore, the following configurations will be required:

On 10.0.0.216:

flush;
spdflush;
AH
add 10.0.0.11 10.0.0.216 ah 15700 -A hmac-md5 “1234567890123456”;
add 10.0.0.11 10.0.0.11 ah 24500 -A hmac-md5 “1234567890123456”;
ESP
add 10.0.0.11 10.0.0.216 esp 15701 -E 3des-cbc “1234567890123456789012”;
add 10.0.0.11 10.0.0.216 esp 24501 -E 3des-cbc “1234567890123456789012”;
spdadd 10.0.0.216 10.0.0.11 any -P out ipsec esp/transport//require ah/
transport//require;
spdadd 10.0.0.11 10.0.0.216 any -P in ipsec esp/transport//require ah/
transport//require;

And on 10.0.0.11:

247

Chapter 16. Configuring IPSEC and SETKEY

flush;
spdflush;
AH
add 10.0.0.11 10.0.0.216 ah 15700 -A hmac-md5 “1234567890123456”;
add 10.0.0.11 10.0.0.11 ah 24500 -A hmac-md5 “1234567890123456”;
ESP
add 10.0.0.11 10.0.0.216 esp 15701 -E 3des-cbc “1234567890123456789012”;
add 10.0.0.11 10.0.0.216 esp 24501 -E 3des-cbc “1234567890123456789012”;
spdadd 10.0.0.216 10.0.0.11 any -P out ipsec esp/transport//require ah/
transport//require;
spdadd 10.0.0.11 10.0.0.216 any -P in ipsec esp/transport//require ah/
transport//require;

Note that in this example, identical keys were used for both directions of traffic. However, it is not
required to use identical keys for both directions.

16.6. The SETKEY Program
The configuration file for IPSEC is loaded by the SETKEY program. A foreign command must be
defined to invoke SETKEY:

$ setkey :== IP:setkey
$ setkey [-v] -f filename
$ setkey [“-aPlv”] “-D”
$ setkey [“-Pv”] “-F”
$ setkey [-h] -x

The possible command options for SETKEY are:

-D Dump the SAD entries. If with -P, the SPD entries are dumped.

If with -a, the dead SAD entries will be displayed as well.
-f filename Read the configuration commands from the specified file.
-F Flush the SAD entries. If with -P, the SPD entries are flushed.
-a A dead SAD entry means that it has been expired but remains in the system because

it is referenced by some SPD entries.
-h Add hexadecimal dump on -x mode.
-l Loop forever with short output on -D.
-v Be verbose. The program will dump messages exchanged on PF_KEY socket,

including messages sent from other processes to the kernel.
-x Loop forever and dump all the messages transmitted to PF_KEY socket.

16.6.1. SETKEY Usage Examples
Example 1: Parse and load the policies in the file IP$:IPSEC.CONF into the kernel (note that the
output from parsing can be quite verbose, so part of the output has been deleted from the middle this
example to keep it to a reasonable size):

$ setkey “-f” IP$:ipsec.conf
Starting parse
Entering state 0
Reducing via rule 1 (line 126), -> commands

248

Chapter 16. Configuring IPSEC and SETKEY

state stack now 0
Entering state 1
Reading a token: Next token is 261 (ADD)
Shifting token 261 (ADD), Entering state 2
Reducing via rule 57 (line 537), -> ipaddropts
state stack now 0 1 2
entering state 23
Reading a token: Next token is 292 (STRING)
Shifting token 292 (STRING), Entering state 36
Reducing via rule 61 (line 568), STRING -> ipaddr
state stack now 0 1 2 23
Entering state 39
...
Entering state 19
Reducing via rule 9 (line 141),spdadd_command -> command
state stack now 0 1
Entering state 12
Reducing via rule 2 (line 127), commands command -> commands
state stack now 0
Entering state 1
Reading a token: Now at end of input.
Shifting token 0 ($), Entering state 137
Now at end of input.

Example 2: Dump out the policies in the kernel:

$ setkey “-PD”
192.168.154.10/24[any] 192.168.228.100/24[any]any
 out ipsec
 esp/transport//use
 ah/transport//use
 spid=1 seq=0 pid=149
 refcnt=1

Example 3: Dump out the SAD entries in the kernel:

$ setkey “-D”
192.168.228.100 192.168.154.10
 ah mode=any spi=1000(0x00002711)reqid=0(0x00000000)
 A:hmac -sha1 6d6f6761 6d6f6761 6d6f6761 6d6f6761
 replay=0 flags=0x00000040 state=mature seq=3 pid=149
 created: Apr 22 15:52:49 2017 current: Apr 22 15:54:30 2017
 diff: 101(s) hard:0(s) soft:0(s)
 last: hard:0(s) soft:0(s)
 current:0(bytes) hard:0(bytes) soft:0(bytes)
 allocated:0 hard:0 soft:0
 refcnt=1
192.168.154.10.192 168.228.100
ah mode=any spi=9877(0x00002695)reqid=0(0x00000000)
 A:hmac -sha1 686f6765 686f6765 686f6765 686f6765
 replay=0 flags=0x00000040 state=mature seq=2 pid=149
 created: Apr 22 15:52:49 2017 current: Apr 22 15:54:30 2017
 diff: 101(s) hard:0(s) soft:0(s)
 last: hard:0(s) soft:0(s)
 current:0(bytes) hard:0(bytes) soft:0(bytes)
 allocated:0 hard:0 soft:0
 refcnt=1
192.168.228.100.192 168.154.10

249

Chapter 16. Configuring IPSEC and SETKEY

ah mode=transport spi=10000(0x00002710)reqid=0(0x00000000)
 E:3des-cbc deadbeef deadbeef deadbeef deadbeef deadbeef
 replay=0 flags=0x00000040 state=mature seq=1 pid=149
 created: Apr 22 15:52:49 2017 current: Apr 22 15:54:30 2017
 diff: 101(s) hard:0(s) soft:0(s)
 last: hard:0(s) soft:0(s)
 current:0(bytes) hard:0(bytes) soft:0(bytes)
 allocated:0 hard:0 soft:0
 refcnt=1
192.168.154.10 192.168.228.100
ah mode=transport spi=9876(0x00002694)reqid=0(0x00000000)
 E:3des-cbc 686f6765 686f6765 686f6765 686f6765 686f6765
 replay=0 flags=0x00000040 state=mature seq=0 pid=149
 created: Apr 22 15:52:49 2017 current: Apr 22 15:54:30 2017
 diff: 101(s) hard:0(s) soft:0(s)
 last: hard:0(s) soft:0(s)
 current:0(bytes) hard:0(bytes) soft:0(bytes)
 allocated:0 hard:0 soft:0
 refcnt=1

Example 4: Dump the messages out on the PF_KEY socket.

$ setkey “-hx”
14:38:47.009961
00000000:02 0b 00 00 06 00 00 00 00 00 00 00 00 00 00 00
0000000010:02 0b 00 01 02 00 00 00 00 00 00 95 00 00 00
sadb_msg { version=2 type=1 1 errno=0 satype=1
 len=2 reserved=0 seq=0 pid=149
14:38:47 057809
00000000:02 0b 00 01 02 00 00 00 00 00 00 00 95 00 00 00

Example 5: Flush all of the entries from the kernel.

$ setkey “-F”
$ setkey “-D”
No SAD entries.

16.7. IPSEC Configuration File Examples
16.7.1. Configuration Example: Host-to-Host
Encryption
If you want to run host-to-host (transport mode) encryption with manually configured secret keys, the
following configuration should be sufficient:

IP$:ipsec.conf
#
packet will look like this: IPv4 ESP payload
the node is on 10.1.1.1, peer is on 20.1.1.1
add 10.1.1.1 10.2.1.1 esp 9876 -E 3des-cbc “hogehogehogehogehogehoge”;
add 10.2.1.1 10.1.1.1 esp 10000 -E 3des-cbc
0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef;
spdadd 10.1.1.1 10.2.1.1 any -P out ipsec esp/transport//use;

From 10.1.1.1 to 10.2.1.1, use the 3DES-CBC algorithm with SPI 9876, with secret key
“hogehogehogehhogehogehoge”.The traffic will be identified by SPI 9876.

250

Chapter 16. Configuring IPSEC and SETKEY

From 10.2.1.1 to 10.1.1.1, use 3DES-CBC algorithm with SPI 10000, with secret key
0xdeadbeefdeadbeefdeadbeefdeadbeef.

The last line configures per-packet IPSEC policy for the node. Using this configuration, the transmit
node (10.1.1.1) used to send packets to the peer (20.1.1.1), is encrypted whenever a secret key is
configured in to the kernel. The configuration does not prohibit unencrypted packets from 20.1.1.1 to
reach 10.1.1.1. To reject unencrypted packets, the following line would be added to the configuration
file:

spdadd 10.2.1.1 10.1.1.1 any -P in ipsec esp/transport//require;

On the peer’s node (10.2.1.1), the configuration will look similar to what is shown in the following
example. Note that the addresses need to be swapped on the “spdadd” line, but “add” lines do not
need to be swapped.

IP$:ipsec.conf
#
packet will look like this: IPv4 ESP payload
the node is on 10.2.1.1, peer is on 10.1.1.1
add 10.1.1.1 10.2.1.1 esp 9876 -E 3des-cbc “hogehogehogehogehogehoge”;
add 10.2.1.1 10.1.1.1 esp 10000 -E 3des-cbc
0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef
spdadd 10.2.1.1 10.1.1.1 any -P out ipsec esp/transport//use;

The previous example uses human-readable secret keys. However, using human-readable secret keys
is discouraged by the IPSEC policy specification, since they are more likely to be compromised than
binary keys. Binary keys should be used for normal operations.

Key length is determined by algorithms. See Table 16.1 and Table 16.2 for the required key lengths.
For 3des-cbc, the secret key must be 192 bits (24 bytes). If a shorter or longer key is specified,
SETKEY will return an error when parsing the line.

The following is an example of rijndael-cbc (also known as AES) using 128-bit keys.

IP$:ipsec.conf
#
the packet will look like this: IPv4 ESP payload
the node is on 10.1.1.1, peer is on 10.2.1.1
rijndael -cbc with 128bit key
add 10.1.1.1 10.2.1.1 esp 9876 -E rijndael -cbc “hogehogehogehoge”;
add 10.2.1.1 10.1.1.1 esp 10000 -E rijndael -cbc
0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef;
spdadd 10.1.1.1 10.2.1.1 any -P out ipsec esp/transport//use;

16.7.2. Configuration Example: Host-to-Host
Authentication
The following example shows a sample configuration for host-to-host authentication:

IP$:ipsec.conf
#
the packet will look like this: IPv4 ESP payload
the node is on 10.1.1.1, peer is on 10.2.1.1
rijndael -cbc with 128bit key
add 10.1.1.1 10.2.1.1 esp 9876 -E rijndael -cbc “hogehogehogehoge”;
add 10.2.1.1 10.1.1.1 esp 10000 -E rijndael -cbc

251

Chapter 16. Configuring IPSEC and SETKEY

0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef;
spdadd 10.1.1.1 10.2.1.1 any -P out ipsec esp/transport//use;

16.7.3. Configuration Example: Host-to-Host
Encryption+Authentication
The following example shows sample keys that are configured for both AH and ESP.

Note

It is recommended that you apply AH after ESP.

IP$:ipsec.conf

packet will look like this: IPv4 AH ESP payload
the node is on 10.1.1.1, peer is on 10.2.1.1
add 10.1.1.1 10.2.1.1 esp 9876 -E 3des-cbc “hogehogehogehogehogehoge”;
add 10.2.1.1 10.1.1.1 esp 10000 -E 3des-cbc
0xdeadbeefdeadbeefdeadbeefdeadbeefdeadbeefdeadbeef;
add 10.1.1.1 10.2.1.1 ah 9877 -A hmac-md5 “mogamogamogamoga”;
spdadd 10.1.1.1 10.2.1.1 any -P out ipsec esp/transport//use
ah/transport//use;

16.8. Conformance to Standards and
Interoperability
The VSI TCP/IP IPSEC implementation conforms to the following IPSEC standards: RFC 2401, RFC
2402, RFC 2404, RFC 2406, RFC 4835, RFC 4868. The IKEv2 (Racoon2) implementation provides
support for RFC 4306, RFC 4307 and RFC 4718.

16.9. Racoon Internet Key Exchange Daemon
The RACOON service performs the task of securely creating security associations for participating
systems. When a security policy senses the need of a security association, RACOON is notified and
securely communicates with an Internet Key Exchange daemon on the other system to establish the
security association. Security Policies must still be configured manually with the SETKEY program.

The RACOON service can be controlled through the following IP NETCONTROL commands:

• DEBUG – set the debug level for a currently running Racoon IKE daemon.

• ESTABLISH remote-IP-address [local-IP-address] – initiate key exchange protocol
communication between the remote IP-address and the local IP-address. If local-IP-address is not
specified then the value of IP$HOST_NAME is used. This does not install Security Associations,
but does the initial negotiation necessary to allow Security Associations to be established when
necessary. It is not necessary to manually establish the negotiation information – RACOON will
do it automatically when necessary.

• FLUSH – flush all existing keys

• NOOP – No Operation

252

Chapter 16. Configuring IPSEC and SETKEY

• SHOW – show existing key associations

• SHUTDOWN – Shutdown the Racoon IKE Daemon. All established keys are flushed as part of
this process.

• START – Start the Racoon IKE Daemon

• STOP – Same as SHUTDOWN

• VERSION – Display control interface version

The configuration file (IP$:RACOON.CONF) can be configured to handle all systems in general, or
specific systems.

RACOON negotiates security associations for itself (ISAKMP SA, or phase 1 SA) and for kernel
IPsec (IPsec SA, or phase 2 SA). The file consists of a sequence of directives and statements. Each
directive is composed by a tag, and statements are enclosed by ‘{‘ and ‘}’. Lines beginning with ‘#’
are comments.

16.9.1. Meta Syntax
Keywords and special characters that the parser expects exactly are displayed using this font.
Parameters are specified with this font. Square brackets ‘[‘ and ‘]’ are used to show optional keywords
and parameters. Note that you have to pay attention when this manual is describing port numbers.
The port number is always enclosed by ‘[‘ and ‘]’. In this case, the port number is not an optional
keyword. If it is possible to omit port number, the expression becomes [[port]]. The vertical bar (‘|’)
is used to indicate a choice between optional parameters. Parentheses ‘(‘ and ‘)’ are used to group
keywords and parameters when necessary. Major parameters are listed below.

Number means a hexadecimal or a decimal number. The former must be prefixed with `0x'.

string path file means any string enclosed in ‘"‘ (double quote).

Address means IPv4 address.

Port means a TCP/UDP port number. The port number is always enclosed by ‘[‘ and ‘]’.

Timeunit is one of following: sec, secs, second, seconds, min, mins, minute, minutes, hour, hours.

16.9.2. Path Specification
path include path;

specifies a path to include a file. See Section 16.9.3.

path pre_shared_key file;

specifies a file containing pre-shared key(s) for various ID(s). See Section 16.9.10.

path certificate path;

racoon will search this directory if a certificate or certificate request is received.

path backupsa file;

253

Chapter 16. Configuring IPSEC and SETKEY

specifies a file to be stored a SA information which is negotiated by racoon. racoon will install SA(s)
from the file with a boot option -B. The file is increasing because racoon simply adds a SA to the file
at the moment. You should maintain the file manually.

16.9.3. File Inclusion
include file

other configuration files can be included.

16.9.4. Timer Specification
timer { statements }

specifies various timer values.

counter number;

the maximum number of retries to send. The default is 5.

interval number timeunit;

the interval to resend, in seconds. The default time is 10 seconds.

persend number;

the number of packets per send. The default is 1.

phase1 number timeunit;

the maximum time it should take to complete phase 1. The default time is 15 seconds.

phase2 number timeuni;

the maximum time it should take to complete phase 2. The default time is 10 seconds.

16.9.5. Listening Port Specification
listen { statements }

If no listen directive is specified, racoon will listen on all of the available interface addresses. The
following is the list of valid statements:

isakmp address [[port]];

If this is specified, racoon will only listen on address. The default port is 500, which is specified by
IANA. You can provide more than one address definition.

strict_address;

require that all addresses for ISAKMP must be bound. This statement will be ignored if you do not
specify any addresses.

16.9.6. Remote Nodes Specifications
remote (address | anonymous) [[port]] { statements }

254

Chapter 16. Configuring IPSEC and SETKEY

specifies the parameters for IKE phase 1 for each remote node. The default port is 500. If anonymous
is specified, the statements apply to all peers which do not match any other remote directive.

The following are valid statements:

exchange_mode (main | aggressive | base);

defines the exchange mode for phase 1 when racoon is the initiator. In addition, it means the
acceptable exchange mode when racoon is responder. More than one mode can be specified by
separating them with a comma. All of the modes are acceptable. The first exchange mode is what
racoon uses when it is the initiator.

doi ipsec_doi;

means to use IPSEC-DOI as specified RFC 2407. You can omit this statement.

situation identity_only;

means to use SIT_IDENTITY_ONLY as specified RFC 2407. You can omit this statement.

my_identifier idtype ...;

specifies the identifier sent to the remote host and the type to use in the phase 1 negotiation. address,
fqdn, user_fqdn, keyid and asn1dn can be used as an idtype. they are used like:

my_identifier address [address];

the type is the IP address. This is the default type if you do not specify an identifier to use.

my_identifier user_fqdn string;

the type is a USER_FQDN (user fully-qualified domain name).

my_identifier fqdn string;

the type is a FQDN (fully-qualified domain name).

my_identifier keyid file;

the type is a KEY_ID. my_identifier asn1dn [string]; the type is an ASN.1 distinguished name. If
string is omitted, racoon will get DN from Subject field in the certificate.

peers_identifier idtype ...;

specifies the peer's identifier to be received. If it is not defined then racoon will not verify the peer's
identifier in ID payload transmitted from the peer. If it is defined, the behavior of the verification
depends on the flag of verify_identifier. The usage of idtype is same to my_identifier.

verify_identifier (on | off);

If you want to verify the peer's identifier, set this to on. In this case, if the value defined by
peers_identifier is not same to the peer's identifier in the ID payload, the negotiation will failed. The
default is off.

certificate_type certspec;

255

Chapter 16. Configuring IPSEC and SETKEY

specifies a certificate specification. certspec is one of followings:

x509certfile privkeyfile;

certfile means a file name of certificate. privkeyfile means a file name of secret key.

peers_certfile (dnssec | certfile);

If dnssec is defined, racoon will ignore the CERT pay- load from the peer, and try to get the peer's
certificate from DNS instead. If certfile is defined, racoon will ignore the CERT payload from the
peer, and will use this certificate as the peer's certificate.

send_cert (on | off);

If you do not want to send a certificate for some reason, set this to off. The default is on.

send_cr (on | off);

If you do not want to send a certificate request for some reason, set this to off. The default is on.

verify_cert (on | off);

If you do not want to verify the peer's certificate for some reason, set this to off. The default is on.

lifetime time number timeunit;

define a lifetime of a certain time which will be proposed in the phase 1 negotiations. Any proposal
will be accepted, and the attribute(s) will be not proposed to the peer if you do not specify it (them).
They can be individually specified in each proposal.

initial_contact (on | off);

enable this to send an INITIAL-CONTACT message. The default value is on. This message is useful
only when the implementation of the responder choices an old SA when there are multiple SAs
which are different established time, and the initiator reboots. If racoon did not use the message,
the responder would use an old SA even when a new SA was established. The KAME stack has the
switch in the system wide value, net.key.preferred_oldsa. When the value is zero, the stack always use
a new SA.

passive (on | off);

If you do not want to initiate the negotiation, set this to on. The default value is off. It is useful for a
server.

proposal_check level;

specifies the action of lifetime length and PFS of the phase 2 selection on the responder side. The
default level is strict. If the level is:

• obey the responder will obey the initiator anytime.

• Strict If the responder's length is longer than the initiator's one, the responder uses the initiator's
one. Otherwise, it rejects the proposal. If PFS is not required by the responder, the responder will
obey the proposal. If PFS is required by both sides and if the responder's group is not equal to the
initiator's one, then the responder will reject the proposal.

256

Chapter 16. Configuring IPSEC and SETKEY

• Claim If the responder's length is longer than the initiator's one, the responder will use the
initiator's one. If the responder's length is shorter than the initiator's one, the responder uses its
own length AND sends a RESPONDER-LIFETIME notify message to an initiator in the case of
lifetime. About PFS, this directive is same as strict.

• exact If the initiator's length is not equal to the responder's one, the responder will reject the
proposal. If PFS is required by both sides and if the responder's group is not equal to the initiator's
one, then the responder will reject the proposal.

support_mip6 (on | off);

If this value is set on then both values of ID payloads in phase 2 exchange are always used as the
addresses of end-point of IPsec-SAs. The default is off.

generate_policy (on | off);

This directive is for the responder. Therefore you should set passive on in order that racoon only
becomes a responder. If the responder does not have any policy in SPD during phase 2 negotiation,
and the directive is set on, then racoon will choice the first proposal in the SA payload from the
initiator, and generate policy entries from the proposal. It is useful to negotiate with the client
which is allocated IP address dynamically. Note that inappropriate policy might be installed by the
initiator because the responder just installs policies as the initiator proposes. Therefore, that other
communication might fail if such policies installed. This directive is ignored in the initiator case. The
default value is off.

nonce_size number;

define the byte size of nonce value. Racoon can send any value although RFC2409 specifies that the
value MUST be between 8 and 256 bytes. The default size is 16 bytes.

proposal { sub-substatements }

encryption_algorithm algorithm;

specify the encryption algorithm used for the phase 1 negotiation. This directive must be defined.
algorithm is one of following: des, 3des, blowfish, cast128 for Oakley. For other transforms, this
statement should not be used.

hash_algorithm algorithm;

define the hash algorithm used for the phase 1 negotiation. This directive must be defined. algorithm
is one of following: md5, sha1 for Oakley.

authentication_method type;

defines the authentication method used for the phase 1 negotiation. This directive must be defined.
type is one of: pre_shared_key, rsasig, gssapi_krb.

dh_group group;

define the group used for the Diffie-Hellman exponentiations. This directive must be defined. group
is one of following: modp768, modp1024, modp1536. Alternatively, you can define 1, 2, or 5 as the
DH group number. When you want to use aggressive mode, you must define same DH group in each
proposal.

lifetime time number timeunit;

257

Chapter 16. Configuring IPSEC and SETKEY

define lifetime of the phase 1 SA proposal. Refer to the description of lifetime directive immediately
defined in remote directive.

gssapi_id string;

define the GSS-API endpoint name, to be included as an attribute in the SA, if the gssapi_krb
authentication method is used. If this is not defined, the default value of `ike/hostname' is used, where
hostname is the FQDN of the interface being used.

16.9.7. Policy Specifications
The policy directive is obsolete, policies are now in the SPD. racoon will obey the policy configured
into the kernel by setkey, and will construct phase 2 proposals by combining sainfo specifications in
racoon.conf, and policies in the kernel.

16.9.8. Sainfo Specifications
sainfo (source_id destination_id | anonymous) { statements }

defines the parameters of the IKE phase 2 (IPsec-SA establishment). source_id and destination_id are
constructed like:

address address [/ prefix] [[port]] ul_proto

or

idtype string

It means exactly the content of ID payload. This is not like a filter rule. For example, if you define
3ffe:501:4819::/48 as source_id. 3ffe:501:4819:1000:/64 will not match.

pfs_group group;

define the group of Diffie-Hellman exponentiations. If you do not require PFS then you can omit
this directive. Any proposal will be accepted if you do not specify one. group is one of following:
modp768, modp1024, modp1536. Alternatively, you can define 1, 2, or 5 as the DH group number.

lifetime time number timeunit;

define the lifetime of amount of time which are to be used IPsec-SA. Any proposal will be
accepted, and no attribute(s) will be proposed to the peer if you do not specify it(them). See
Section 16.9.6 [256] on the proposal_check directive.

racoon does not have the list of security protocols to be negotiated. The list of security protocols are
passed by SPD in the kernel. Therefore, you have to define all of the potential algorithms in the phase
2 proposals even if there is an algorithm which will not be used. These algorithms are define by using
the following three directives, and they are lined with single comma as the separator. For algorithms
that can take variable-length keys, algorithm names can be followed by a key length, like ``blowfish
448''. racoon will compute the actual phase 2 proposals by computing the permutation of the specified
algorithms, and then combining them with the security protocol specified by the SPD. For example,
if des, 3des, hmac_md5, and hmac_sha1 are specified as algorithms, we have four combinations
for use with ESP, and two for AH. Then, based on the SPD settings, racoon will construct the actual
proposals. If the SPD entry asks for ESP only, there will be 4 proposals. If it asks for both AH and
ESP, there will be 8 proposals. Note that the kernel may not support the algorithm you have specified.

258

Chapter 16. Configuring IPSEC and SETKEY

encryption_algorithm algorithms;

des, 3des, des_iv64, des_iv32, rc5, rc4, idea, 3idea, cast128, blowfish, null_enc, twofish, rijndael
(used with ESP)

authentication_algorithmalgorithms;

des, 3des, des_iv64, des_iv32, hmac_md5, hmac_sha1, non_auth (used with ESP authentication
and AH)

compression_algorithm algorithms;

deflate (used with IPComp)

Logging level

log level;

define logging level. Level is one of following: notify, debug and debug2. The default is notify. If
you put too high logging level on slower machines, IKE negotiation can fail due to timing constraint
changes.

Specifying the way to pad

padding { statements }

specified padding format. The following are valid statements:

randomize (on | off);

enable using a randomized value for padding. The default is on.

randomize_length (on | off);

the pad length is random. The default is off.

maximum_length number;

define a maximum padding length. If randomize_length is off, this is ignored. The default is 20
bytes.

exclusive_tail (on | off);

means to put the number of pad bytes minus one into last part of the padding. The default is on.

strict_check (on | off);

means to be constrained the peer to set the number of pad bytes. The default is off.

Special directives

complex_bundle (on | off);

defines the interpretation of proposal in the case of SA bundle. Normally "IP AH ESP IP payload''
is proposed as "AH tunnel and ESP tunnel''. The interpretation is more common to other IKE

259

Chapter 16. Configuring IPSEC and SETKEY

implementations, however, it allows very limited set of combinations for proposals. With the option
enabled, it will be pro- posed as "AH transport and ESP tunnel''. The default value is off.

Pre-shared key File

Pre-shared key file defines a pair of the identifier and the shared secret key which are used at Pre-
shared key authentication method in phase 1. The pair in each lines are separated by some number of
blanks and/or tab characters like hosts (5). Key can be included any blanks because all of the words
after 2nd column are interpreted as a secret key. Lines start with `#' are ignored. Keys which start with
`0x' are hexadecimal strings. Note that the file must be owned by the user ID running racoon (usually
the privileged user), and must not be accessible by others.

16.9.9. Example RACOON configuration file:
#
Basic Racoon configuration file
#
path pre_shared_key "IP$:psk.txt" ;
remote anonymous
{
 exchange_mode aggressive, main, base ;
 lifetime time 24 hour ;
 proposal {
 encryption_algorithm blowfish 448;
 hash_algorithm md5; #sha1;
 authentication_method pre_shared_key ;
 dh_group 5 ;
 }
}
sainfo anonymous
{
 pfs_group 2;
 lifetime time 12 hour ;
 encryption_algorithm blowfish 448;
 authentication_algorithm hmac_sha1, hmac_md5 ;
 compression_algorithm deflate ;
}

16.9.10. Example pre-shared key file:
192.168.1.2 deadbeef
192.168.1.3 deadbeef
192.168.1.4 deadbeef
192.168.1.5 face0ff0

16.10. Restrictions
The following restrictions exist regarding the use of IPSEC in VSI TCP/IP. These restrictions may be
lifted in future releases of VSI TCP/IP.

• Security may not be set on a socket-by-socket basis via the use of setsockopt().

• Only transport mode is supported to both AH and ESP. Tunnel mode (primarily used for VPN’s) is
not supported in any mode (AH or ESP).

• IPcomp is not currently implemented.

260

Chapter 16. Configuring IPSEC and SETKEY

16.11. IPSec key management with Racoon2
Racoon2 is the IPSEC key management package that replaces Racoon. The VSI TCP/IP
implementation is based upon racoon2-20090327c from the WIDE project. Racoon2 is available
on VSI OpenVMS TCP/IP and offers IKEv1 in main mode and IKEv2. Racoon2 consists of three
images:

• SPMD – the Security Policy Management Daemon, which installs security policies and acts on
various requests from IKED

• SPMDCTL – the program to send SPMD control messages while it is running

• IKED – the IPSEC Key Exchange Daemon, which authenticates the identification of a remote
system and establishes security associations. IKED supports the following specifications:

• Internet Key Exchange (IKEv2) Protocol

• RFC 4306, Internet Key Exchange (IKEv2) Protocol

• RFC 4307, Cryptographic Algorithms for Use in the Internet Key Exchange Version 2
(IKEv2)

• RFC 4718, IKEv2 Clarifications and Implementation Guidelines

• The Internet Key Exchange (IKE)

• RFC 2409, The Internet Key Exchange (IKE)

• RFC 3947, Negotiation of NAT-Traversal in the IKE

• RFC 3948, UDP Encapsulation of IPsec ESP Packets

All images assume a default configuration file of IP$:RACOON2.CONF.

Additional information on Racoon2 is available from http://www.racoon2.wide.ad.jp/.

Note

KINKD is not provided because there are a number of Kerberos routines that it needs that are not
visible in the packages provided.

16.11.1. SPMD
SPMD manages IPsec Security Policy for racoon2, the key management daemon (IKED). It can also
serve as a local DNS proxy server if you set on in racoon2 configuration file.

usage:
 spmd [-dhV] [-f config] [-D level]
 -V show version number
 -f specify config file
 -d increase debug level(max ddd)
 -D specify debug level(1-3)
 -h show this help

261

http://www.racoon2.wide.ad.jp/

Chapter 16. Configuring IPSEC and SETKEY

Note

When using command line options, make sure to enclose them in double quotes to preserve case.

SPMD must be started first. Users who are familiar with SPMD on Unix platforms will notice that
SPMD on VSI TCP/IP only runs in “foreground mode”.

16.11.2. Name resolution
• SPMD can provide name resolution for IKED on systems that do not run a name server. This can

be either as a name server proxy, or based completely upon the HOSTS.LOCAL file. The logical
IP$SVCORDER can be used to define the order of name resolution and can be defined to any
combination of local and bind. The default value is bind.

$ define/system IP$SVCORDER “local, bind”

16.11.3. SPMDCTL
SPMDCTL connects to the spmd interface which is specified in the racoon2 configuration file,
and requests operations to SPMD. These requests can be changes to the currently managed security
policies and name servers, if SPMD is acting as a proxy name server.

usage:
spmdctl [-d] [-f RACOON2_CONF_FILE] COMMAND
 -d : display messages corresponded with spmd
 -f RACOON2_CONF_FILE : specify racoon2 configuration file
 COMMAND:
 ns {add|delete} address : add/delete nameserver
 ns list : show nameservers
 policy add selector_index \
 lifetime(sec) {transport|tunnel} \
 sp_src_ipaddr sp_dst_ipaddr \
 [sa_src_ipaddr sa_dst_ipaddr]
 : add policy
 policy delete selector_index
 : delete policy
 policy dump : show policies under spmd management
 interactive : process only login
 shutdown : tell spmd to shutdown
 status : show statistics

Note

When using command line options, make sure to enclose them in double quotes to preserve case.

16.11.4. IKED
IKED is a key management daemon, which supports the Internet Key Exchange (IKE) protocol
version 1 (RFC2409) and version 2 (RFC4306). It is driven by messages from the kernel via the
PF_KEYv2 interface or by negotiation requests from remote peers, and manages IPSec Security
Associations according to racoon2.conf. Users who are familiar with IKED on UNIX platforms
will notice that IKED on VSI TCP/IP only runs in “foreground mode”.

262

Chapter 16. Configuring IPSEC and SETKEY

usage:
iked [-f file] [-p port] [-46] [-I address] \
 [-S selector_index]
 [-D number] [-dvVh] [-l logfile]
 -f specify the configuration file.
 -p specify the isakmp port number to listen to.
 -4 use IPv4 only.
 -6 use IPv6 only.
 -I immediately initiate to the address specified.
 -S immediately initiate using the selector specified.
 -D specify the debug flags.
 -d increase the debug level.
 -v specify to output messages to standard error,
 in addition to syslog.
 -V show the iked version.
 -h show this help.
 -l specify log output file (instead of syslog).
 Debug option:
 0x0001 DEBUG_FLAG_DEBUG log debug messages.
 0x0002 DEBUG_FLAG_TRACE show internal processing trace.
 0x0004 DEBUG_FLAG_CONFIG show config parsing trace.
 0x0008 DEBUG_FLAG_PFKEY PFKEY and SPMIF are ignored.

Note

When using command line options, make sure to enclose them in double quotes to preserve case.

16.11.5. Authentication with pre-shared keys
IKED uses the entire contents of the PSK file as the key, so watch for any trailing newlines that might
get inadvertently added. This is different from Racoon, which uses a PSK file that is keyed by IP
Address to designate the key.

16.11.6. Authentication with Certificates
The following steps are required to get two hosts using Racoon2 IKED to authenticate each other with
certificates when using the IKEv1 or IKEv2 protocol:

• Create a Certificate Signing Request with an unencrypted private key

• Send the CSR file to the Certificate Authority (CA) for signing. Make sure that the CA includes
the following information in the CRT (or PEM) file that is returned:

• SubjectAtlName = DNS:FQDN

• SubjectAltName = email:email_address_of_contact

• SubjectAltName = IP$:ip_address_of_system

If the OpenVMS OpenSSL software is used, then the above information needs to be added to the SSL
$CONF:SSL$CA.CNF file before signing each certificate under the [CA_x509_extensions] section.

• Convert the CRT files to PEM files (if necessary) with the following commands:

263

Chapter 16. Configuring IPSEC and SETKEY

• Openssl x509 –in host.crt –out host.der –outform DER

• Openssl x509 –in host.der –inform DER –out host.pem –outform PEM

• Hash certificates (PEM files) (option 9 with SSL1$COM:SSL1$CERT_TOOL)

• Distribute the PEM files and hashed files to the hosts involved.

The default format for the SubjectAltName IP address is a binary value. If your CA encodes this as a
text string then define the logical IP$RACOON2_BINARY_IPV4_SUBJECTALTNAME FALSE (or
IP$RACOON2_BINARY_IPV6_SUBJECTALTNAME for IPv6).

In addition to the above, IKEv2 needs the following in the Racoon2 configuration:

Send_peers_id on;

The OpenSSL code that IKED is built with looks in SSLCERTS: (not SSL$CERTS:) for the CA
certificate, so you need to define the logical SSLCERTS to point to the directory that contains the CA
certificate and any intermediate certificates in the chain.

16.11.7. Scripts
Command files (or scripts) can be invoked when certain events occur. The command files are passed
up to 8 parameters in the following format:

• Parameter_name=parameter_value

• Possible parameter names:

• LOCAL_ADDR

• LOCAL_PORT

• REMOTE_ADDR

• REMOTE_PORT

• SELECTOR_INDEX

• IPSEC_MODE

• UPPER_LAYER_PROTOCOL

• INTERNAL_ADDR4

• APPLICATION_VERSION

• OLD_SRC

• OLD_DST

• NEW_SRC

• NEW_DST

• INTERNAL_ADDR

264

Chapter 16. Configuring IPSEC and SETKEY

• INTERNAL_DNS4

• INTERNAL_WINS4

• INTERNAL_DHCP4

• INTERNAL_ADDR6

• INTERNAL_DNS6

• INTERNAL_DHCP6

• LOCAL_NET_ADDR

• LOCAL_NET_PREFIXLEN

• LOCAL_NET_PORT

• REMOTE_NET_ADDR

• REMOTE_NET_PREFIXLEN

• REMOTE_NET_PORT

16.11.8. Compatibility with Racoon
The VSI TCP/IP implementation of IKED has been modified so that it works with Racoon with more
encryption keys than the typical IKED implementation would. Unfortunately, these changes will
prevent it from working with other implementations of IKED in IKEv1 mode for some encryption
methods. To disable this change define the following logical to No/False/0 before starting IKED:

$ DEFINE/SYSTEM IP$RACOON2_IKEV1_MORE_DEFAULT_KEYLENS NO

16.11.9. Troubleshooting
The first step in troubleshooting is to start IKED with “-D7”. If possible, this should be done on both
sides of the connection because one side may provide more useful information than the other as to
why the security associations could not be negotiated. Potential causes of problems are:

• Identification parameters (FQDN and IPADDR)

• Authentication (pre-shared key or certificate)

• IPSec requirements (requested combinations of ESP and AH, encryption and hash algorithms.)

For IKEv1 there may be a set of lines similar to:

2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:372: Compared: DB:Peer
2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:373: (lifetime = 28800:600)
2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:376: (lifebyte = 0:0)
2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:382: enctype = 3DES-CBC:3DES-
CBC
2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:387: (encklen = 0:0)
2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:389: hashtype = MD5:SHA1
2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:394: authmethod = pre-shared
 key:pre-shared key

265

Chapter 16. Configuring IPSEC and SETKEY

2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:399: dh_group = 1536-bit MODP
 group:1536-bit MODP group
2017-06-24 09:34:24 [DEBUG]: IPSEC_DOI.C;23:271: no suitable proposal
 found.

The above information points out the differences in the IKEv1 transport configurations between
the two systems. The values compared are a combination of program defaults, values in the default
configuration file, and values in the transport_ike configuration file, so all configuration files must be
checked for the differences.

16.11.10. PSKGEN
PSKGEN is a simple program to write a text string to a specified file such that there is no record
information in the file and no extraneous carriage control characters. This makes the file compatible
with a file that might be generated on a Unix system. Use PSKGEN to generate a pre-shared key file,
if that is the authentication method you have chosen. To use the program, define a symbol:

$ pskgen :== IP:pskgen
$ pskgen IP$:racoon2_psk.txt deadbeef

usage:
pskgen file_specification pre_shared_key_text

16.11.11. Starting Racoon2 on VSI TCP/IP
Perform the following steps to start Racoon2 on VSI TCP/IP.

1. Set up IP$CONFIG:LOCAL_INITIALIZATION.COM to enable IPsec in the kernel before
services are started.

$ COPY [.CONFIG.IP.CONFIG]LOCAL*.* IP$CONFIG:/LOG
%COPY-S-COPIED, SYS$SYSDEVICE:
[KITS.CONFIG.IP.CONFIG]LOCAL_INITIALIZATION.COM;2
COPIED TO SYS$SYSROOT:[IP.CONFIG]LOCAL_INITIALIZATION.COM;2 (1 BLOCK)
$ TYPE IP$CONFIG:LOCAL_INITIALIZATION.COM
$ IP SET /KERNEL NO_IPSEC 0
$
$ @SYS$STARTUP:IP$STARTUP

%IP-I-STARTUP, starting VSI TCP/IP

The system displays status messages incuding:

%IP-I-LDRIMG, added Loaded Image Descriptor for IP$KERNEL, base address
 89937D40
%IP-I-LOADING, loading configuration from SYS$SYSROOT:
[IP.CONFIG]NETWORK_DEVICES
.CONFIGURATION;2
.
.
.
VSI TCP/IP Mail Configuration Utility V5.5(28)
[Assembling configuration information from old locations]
[Writing configuration to IP$COMMON_ROOT:[SYS
$STARTUP]START_SMTP_LOCAL.COM]
[Writing configuration to IP$COMMON_ROOT:[SYS$STARTUP]START_SMTP.COM]

266

Chapter 16. Configuring IPSEC and SETKEY

$

2. Copy over the needed templates:

$ SET DEF IP$CONFIG:
$ DIR *.TEMPLATE

$ COPY RACOON2_CONF.TEMPLATE RACOON2.CONF/LOG
%COPY-S-COPIED, SYS$COMMON:[IP.CONFIG]RACOON2_CONF.TEMPLATE;1 COPIED TO
 SYS$SYSR
OOT:[IP.CONFIG]RACOON2.CONF;1 (3 BLOCKS)
$ COPY RACOON2_DEFAULTS_CONF.TEMPLATE RACOON2_DEFAULTS.CONF/LOG
%COPY-S-COPIED, SYS$COMMON:[IP.CONFIG]RACOON2_DEFAULTS_CONF.TEMPLATE;1
 COPIED TO
 SYS$SYSROOT:[IP.CONFIG]RACOON2_DEFAULTS.CONF;1 (4 BLOCKS)
$ COPY TRANSPORT_IKE_CONF.TEMPLATE TRANSPORT_IKE.CONF/LOG
%COPY-S-COPIED, SYS$COMMON:[IP.CONFIG]TRANSPORT_IKE_CONF.TEMPLATE;1
 COPIED TO SY
S$SYSROOT:[IP.CONFIG]TRANSPORT_IKE.CONF;1 (3 BLOCKS)
$ COPY VALS_CONF.TEMPLATE VALS.CONF/LOG
%COPY-S-COPIED, SYS$COMMON:[IP.CONFIG]VALS_CONF.TEMPLATE;1 COPIED TO SYS
$SYSROOT
:[IP.CONFIG]VALS.CONF;1 (6 BLOCKS)
$

3. Create IP$CONFIG:SPMD.PWD that is used to validate communication between SPMD and
IKED:

$ EDIT/TPU SPMD.PWD

Add the password to the first line of the file and save it.

4. Create the preshared key that matches the key that is found on the peer system:

$ EDIT/TPU PSK.TXT

Add the key to the first line of the file and save it.

5. Adjust the values in VALS.CONF with the appropriate ‘this host’ and peer IP and names:

setval {
Directory Settings
 # Preshared key file directory : specify if you want to use
 preshared k#
 PSKDIR "ip$config:";

 # Cert file directory : specify if you want to use certs
 CERTDIR "sys$specific:[ip.certs]";

ID Settings
 # your FQDN : specify if you want to use FQDN as your ID
 MY_FQDN "tbs.eng.vmssoftware.com";

 # Peer's FQDN : specify if you want to use FQDN as peer's ID
 PEERS_FQDN "tba.eng.vmssoftware.com";

Preshared Key Setting
 # Preshared Key file name
 # You can generate it by pskgen.

267

Chapter 16. Configuring IPSEC and SETKEY

 PRESHRD_KEY "psk.txt";

Certicate Setting
 # Set following parameters if you use certificates in IKE
 negotiation
 # and _SET_ 'kmp_auth_method { rsasig; };' in each remote{}
 section of
 # tunnel_ike{_natt}.conf/transport_ike.conf files.
 # For more information, please see USAGE.
 #
 # Your Public Key file name
 MY_PUB_KEY "thishost_signed.crt";

 # Your Private Key file name
 MY_PRI_KEY "thishost.key";

 # Peer's Public Key file name
 PEERS_PUB_KEY "peerhost_pub.pem";

Transport Mode Settings
 # Your IP Address
 MY_IPADDRESS "192.168.1.187";

 # Peer's IP Address
 PEERS_IPADDRESS "192.168.2.188";

Tunnel Mode Settings
 # Your Network Address or Host Address (host-to-host tunnel
 mode)
 MY_NET "10.0.0.0/24";
 # Peer's Network Address or Host Address (host-to-host tunnel
 mode)
 PEERS_NET "10.0.1.0/24";

6. Start Racoon2 with the following command:

$ @IP$STARTUP:START_RACOON2

16.11.12. Configuration

Note

The following is copied from the doc directory in the Racoon2 distribution; some misspellings and
grammatical errors have been corrected and some information has been changed to match the VSI
TCP/IP implementation.

The iked of Racoon2 supports Configuration Payload in IKEv2 protocol. This section describes how
to use it with iked.

16.11.12.1. Introduction
The Configuration Payload (CP) is used to exchange configuration information between IKE
peers. There are several kinds of information to be exchanged with CP in RFC4306. The current
implementation however supports only the following pieces of information:

• INTERNAL_IP4_DNS

268

Chapter 16. Configuring IPSEC and SETKEY

• INTERNAL_IP4_NBNS

• INTERNAL_IP4_DHCP

• APPLICATION_VERSION

• INTERNAL_IP6_DNS

• INTERNAL_IP6_NBNS

• INTERNAL_IP6_DHCP

The Configuration Payload has two types of exchange. One is request/reply and the other is set/ack.
The current specification only defines the request/reply usage. The IKED support only request/reply
exchange accordingly.

16.11.12.2. How IKED works
The IKED of an initiator side sends a request to the responder and it receives the reply. Then it
parses the reply and validates. The IKED exports the information from the Configuration Payload as
environment variables and calls the scripts in the configuration files. An administrator can use the
information to configure callback scripts.

The IKED of a responder side receives a request from the initiator. It looks up the configuration
and sends the reply. There is no callback interface which the responder calls in the process of the
Configuration Payload.

Initiator side

There are two directives to configure the Configuration Payload. One is "request" and the other is
"script". They are in the "ikev2" directive in the "remote" directive.

The "request" is used to configure what information will be requested. For example:

request { ip4_dns; application_version; };

Specifies that IKED will request INTERNAL_IP4_DNS and APPLICATION_VERSION.

"script" is used to configure the callback scripts of the Configuration Payload exchange. To use the
Configuration Payload, we should configure child_up and child_rekey. For example:

script {
child_up "IP$:child-up";
child_rekey "IP$:child-rekey";
};

In child-up and child-rekey, the information from the Configuration Payload is available as
parameters to the command procedure containing the name and value of environment variables
corresponding to the information. For example, the environment variable INTERNAL_DNS4 stores
INTERNAL_IP4_DNS.

Responder side

There are directives to configure the Configuration Payload. The "provide" directive specifies the
information that will be provided to the initiators. The directive is in the "ikev2" directive in the
"remote" directive. For example:

269

Chapter 16. Configuring IPSEC and SETKEY

provide {
dhcp { 192.168.39.10; };
application_version "Racoon2";
};

It specifies that the IKED can provide "192.168.39.10" as an INTERNAL_IP4_DNS and "Racoon2"
as an APPLICATION_VERSION.

16.11.12.3. Configuration Syntax

This section describes the syntax of the configuration of Racoon2.

The syntax of the Racoon2 configuration is not compatible with the syntax of old Racoon. Note that
this syntax might be changed in the future because Racoon2 is still under development.

Structure

There are ten main directives in the configuration. For the detailed information on the directives, refer
to Section 16.11.12.4.

• setval - It defines a constant string value which is unique in the whole configuration file.

• default - It defines default values.

• interface - It defines interfaces of each protocol.

• resolver - It defines the resolver.

• remote - It defines parameters for the remote KMP peer.

• selector - It defines parameters of a selector.

• policy - It defines a behavior when a packet is matched to a selector.

• ipsec - It defines a SA or a SA bundle.

• sa - It defines parameters of a SA.

• addresspool - It defines the address ranges for address pool.

The following picture shows how each directive relates to the others.

setval default interface resolver
 +---(selector_index)--- remote
 | ^
 | |
 | (remote_index) +-(sa_index)-
> sa
 v | |
selector -+ | +-(ipsec_index)-> ipsec -+-(sa_index)-
> sa
 | | |
selector -+-(policy_index)-> policy -+-(ipsec_index)-> ipsec ---(sa_index)-
> sa
 | |
selector -+ +-(ipsec_index)-> ipsec ...

270

Chapter 16. Configuring IPSEC and SETKEY

 : :

Limitation of string

A string consists of the following characters:

0x30-0x39 0-9
0x41-0x5a A-Z
0x61-0x7a a-z
0x25 %
0x2a *
0x2d -
0x2e .
0x2f /
0x3a :
0x3f ?
0x40 @
0x5f _

A non-reserved string must be enclosed by double-quotations (" : 0x22"). When characters are
enclosed by double-quotations, it is distinguished as just a string. An index, selector_index for
example, should consist of alpha-numeric characters (0-9 a-z A-Z). An index is not required to be
enclosed by ". An IP address and a port number are not required to be enclosed by ".

Representation of IP addresses

An IPv4 address must consist of numeric characters (0-9) and periods (.).

e.g. 203.178.141.194

An IPv6 address must consist of hexadecimal-digit (0-9 a-f A-F), colons (:) and a percentage-mark
(%) if necessary.

e.g. 2001:200:0:8002:203:47ff:fea5:3085

When a port number is required, the string "port" must follow an IP address string, and must be
followed by a port number or a service name defined by the platform generally defined by /etc/
services. The string "any" means that it will match with all port numbers.

e.g.
 2001::1 port 80
 203.178.141.194 port any

A network prefix is represented by a number delimited by a slash (/).<screen>e.g. ::1/0</screen>

Some reserved strings can be used.

• MY_IP - all of IP addresses assigned to the interfaces.

• MY_IPV6 - all of IPv6 addresses assigned to the interfaces.

• MY_IPV6_GLOBAL - all of IPv6 global addresses assigned to the interfaces.

• MY_IPV6_LINKLOCAL - all of IPv6 link-local addresses assigned to the interfaces.

• MY_IPV4 - all of IPv4 addresses assigned to the interfaces.

An interface name can be specified with a percentage-mark (%) followed by the interface name.

271

Chapter 16. Configuring IPSEC and SETKEY

e.g. MY_IPV6%fxp0

The following strings will be implemented.

IP_ANY means ::0 and 0.0.0.0.

Representation of bytes

The following directives are followed by a numeric byte amount specification as its parameter.

• nonce_size

• max_pad_len

• max_retry_to_send

• kmp_sa_lifetime_byte

• ipsec_sa_lifetime_byte

The following units can be used.

• B

• Byte

• Bytes

• KB

• MB

• GB

Representation of time

The following directives are followed by a numeric time data.

• interval_to_send

• times_per_send

• kmp_sa_lifetime_time

• kmp_sa_nego_time_limit

• kmp_sa_grace_period

• ipsec_sa_nego_time_limit

• ipsec_sa_lifetime_time

• dpd_delay

• dpd_retry

The following units can be used.

272

Chapter 16. Configuring IPSEC and SETKEY

• infinite

• sec

• secs

• second

• seconds

• min

• mins

• minute

• minutes

• hour

• hours

• day

• days

• 0 (zero) means infinite.

Cryptographic algorithm and its representation

The following directives define an algorithm type.

• kmp_enc_alg

• esp_enc_alg

• esp_auth_alg

• ah_auth_alg

All of them are sent as a proposal, and a receiver evaluates the proposal with logical OR.

They can define a size of a key and a key if needed.

(algorithm name)[,(key length)[,(key)]]

(key) is hexadecimal-digits or string. A string of hexadecimal-digits must start with (0x).

e.g. 0x0123456789abcdef

In the string case, it must be closed by ("). Note that some algorithms specify the length of the key.

If you do not specify size of key, you can define like below:

(algorithm name),,(key)

If you need to specify multiple algorithms, defining an algorithm list for example, you can define it by
using (;) as delimiter, e.g.:

273

Chapter 16. Configuring IPSEC and SETKEY

kmp_enc_alg { aes192_cbc,,0x1234; aes192_cbc; 3des_cbc; };

The following lists cryptographic functions and algorithm names. Note that some algorithms are not
implemented.

kmp_enc_alg directive and esp_enc_alg directive can have one of the following algorithm types.

• des_cbc_iv64

• des_cbc

• 3des_cbc

• rc5_cbc

• idea_cbc

• cast128_cbc

• blowfish_cbc

• 3idea_cbc

• des_cbc_iv32

• rc4_cbc

• null_enc

• rijndael_cbc

• aes128_cbc

• aes192_cbc

• aes256_cbc

• twofish_cbc

kmp_hash_alg directive can have one of the following algorithm types.

• md5

• sha1

• tiger

• sha2_256

• sha2_384

• sha2_512

In case of IKEv2, kmp_hash_alg directive is used to specify an integrity check (MAC) algorithm for
IKE_SA communication, and the following algorithm types are accepted.

• hmac_md5

274

Chapter 16. Configuring IPSEC and SETKEY

• hmac_sha1

• sha2_256

• sha2_384

• sha2_512

• aes_xcbc

• aes_cmac

• kmp_prf_alg directive can have one of the following algorithm types.

• hmac_md5

• hmac_sha1

• hmac_sha2_256

• hmac_sha2_384

• hmac_sha2_512

• aes_xcbc

• aes_cmac

• des_mac

• kpdk_md5

In case of IKEv1, kmp_prf_alg directive is not used. Instead, HMAC version of hash algorithm
specified by kmp_hash_alg is used.

kmp_dh_group directive can have the group number or one of the following algorithm types.

• 1 modp768

• 2 modp1024

• 3 ec2n155

• 4 ec2n185

• 5 modp1536

• 14 modp2048

• 15 modp3072

• 16 modp4096

• 17 modp6144

• 18 modp8192

275

Chapter 16. Configuring IPSEC and SETKEY

kmp_auth_method directive can have one of the following algorithm types.

• psk

• dss

• rsasig

• rsaenc

• rsarev

• gssapi_krb

esp_auth_alg and ah_auth_alg directive can have one of the following algorithm types.

• hmac_md5

• hmac_sha1

• aes_xcbc

• hmac_sha2_256

• hmac_sha2_384

• hmac_sha2_512

• kpdk_md5

• non_auth

ipcomp_alg directive can have one of the following algorithm types.

oui
deflate
lzs

Variable substitution

Environment variables can be referred from configuration files. The form is like $[environment
variable].

e.g. $[HOME]

The C getenv routine is used to determine the value of the variable. You can also define variables by
using setval directives. They are evaluated at once after all configuration files are read. When there is
a duplicate string, it fails and stops evaluation of the configuration file.

To define a variable, a variable name must be followed by a string:

(string) (value) ;

The string must begin with a capital alphabet, followed by alpha-numeric capital characters. Alpha-
numeric capital characters are:

0x30-0x39 0-9

276

Chapter 16. Configuring IPSEC and SETKEY

0x41-0x5a A-Z
0x5f _

To refer the variable, the form is like ${string}.

e.g. ${HISNAME}

setval can have a environment variable referred by $[variable] as its parameter.

When (# 0x23) is found, all characters from it to a new line are ignored.

16.11.12.4. Directives details
A directive consists of a string, a value and ";"(semi-colon) e.g.

string value ;

Values can be enclosed by "{" and "}" like

directive {
 value ;
 value ;
 :
 };

A value might be a directive recursively.

Values enclosed with ({) and (}) must also end with a semi-colon (;). The word is case-sensitive. The
following lists the syntax of each directive.

include
 include (file) ;

The parser includes (file). Note that variables defined by setval are not allowed here. Environment
variables can be used.

setval
 setval { (definitions) } ;

It defines a constant string value which is unique in the whole configuration file. It will be basically
expanded after the whole configuration files are loaded.

default
 default { (directives) } ;

It defines default values. Each directive can be included. Default values are overwritten by each
specific value.

interface
 interface { (directives) } ;

It defines interfaces of each protocol. Sub-directives are:

ike (address) [port (port)] ;

It defines port numbers which IKED uses.

spmd (address) [port (port)] ;

277

Chapter 16. Configuring IPSEC and SETKEY

Defines port numbers by which spmd makes communication with IKED. The loopback address
(127.0.0.1) is recommended.

 spmd_password (file) ;

Defines the file name which contains the password to be used for communication between spmd and
iked.

 application_bypass (on|off) ;

When on (default) KMP daemons bypass the IPsec policies. When off, they rely on explicit policies
but they can run encapsulated into IPsec tunnels for instance. Note the last configuration can be
unsafe when a KMP uses a non-privileged port.

resolver
 resolver { (directives) } ;

It defines the SPMD resolver proxy configuration. Sub-directives in the resolver directive are the
followings.

resolver (on|off) ;

It controls the behavior of spmd as the resolver. When the directive is on, the spmd behaves as a
resolver. Default is off.

nameserver (address) [port (port)] ;

It defines IP addresses of the upper DNS servers. The port number can be defined if needed. The
default port number is 53.

dns_query (address) [port (port)] ;

It defines IP addresses to be listened to for DNS requests. The port number can be defined if needed.
The default port number is 53.

remote
 remote (remote_index) { (directives) } ;

It defines parameters for the remote KMP peer. remote_index is a string value to identify a remote
directive. A remote directive is referred from one or more policies by the remote_index. A remote
might refer to the selector directive with the selector_index. Sub-directives in the remote directive are
the followings.

ikev1 { (directives) } ;

It defines the IKEv1 configuration.

ikev2 { (directives) } ;

It defines the IKEv2 configuration.

acceptable_kmp (ikev1|ikev2) ;

It defines key management protocols to be used. The list defines the KMPs whom the responder
allows to accept. The first protocol in the list defines the mode that the initiator uses.

passive (on|off) ;

278

Chapter 16. Configuring IPSEC and SETKEY

It controls the behavior of the daemon. When this directive is on, the daemon acts as responder only.
The default is off.

peers_ipaddr (address) [port (port)];

It defines the IP addresses of the peer. The port number may be specified if needed. It can be used as
the first search key to match with the IKE initial packet from initiator. Omitting this field or writing it
as IP_RW requires default directive to handle IKE initial packets.

my_id (ipaddr|email|fqdn|keyid|x509_subject) (value) ;

They are valid in all KMP directives. It defines identifiers for the local-side entity.

ipaddr (ip address)

IPv4 or IPv6 address

fqdn (FQDN)

Fully Qualified Domain Name

email (e-mail address)

E-Mail address

keyid ([file]|tag) (filename|data)

A binary data a.k.a KEY-ID. Use a filename (default) or directly the data.

x509_subject (filename)

Subject Name in the certificate.

peers_id (ipaddr|email|fqdn|keyid|x509_subject) (value) ;

They are valid in all KMP directives. It defines the identifiers for the remote-side entity.

send_peers_id (on|off) ;

It enables the initiator to send the peer's ID. The default is off.

obey

It means that the policy from the initiator will be installed. It is same as "generate_policy on;" in the
IKEv1 case.

exact

If there is no policy matching with the intiator's one, it is rejected. The default is obey.

obey

It means that the initiator's policy will be used.

strict

It means that the initiator's policy will be used if the lifetime in the policy from the initiator is less
than the responder's one, AND the PFS is required. If it is not suitable, it is rejected.

279

Chapter 16. Configuring IPSEC and SETKEY

claim

It is valid for the ikev1 directive. It means that the responder will use own policy if the specified value
is smaller than peer's proposal, and sends a RESPONDER_LIFETIME notification.

exact

It means that the policy from the initiator exactly matches with the responder's one. If it is not
suitable, it is rejected. The default is obey.

random_pad_content (on|off) ;
padlen_random (on|off) ;
max_padlen (number) ;

They are valid in all KMP directives. They define the padding.

max_retry_to_send (number) ;
interval_to_send (number) ;
times_per_send (number) ;

They are valid in all KMP directives. They define the retransmission timer.

kmp_sa_lifetime_time (number) ;
kmp_sa_lifetime_byte (number) ;
kmp_sa_nego_time_limit (number) ;
kmp_sa_grace_period (number) ;
ipsec_sa_nego_time_limit (number) ;

They are valid for both directives of the ikev1 and ikev2. They define the lifetime.

kmp_enc_alg (algorithm) ;
kmp_hash_alg (algorithm) ;
kmp_prf_alg (algorithm) ;
kmp_dh_group (algorithm) ;
kmp_auth_method (algorithm) ;

They are valid for both directives of the ikev1 and ikev2. They define the algorithms for each
function. (algorithm) is described at the cryptographic algorithm and its representation. For
IKEv1, kmp_prf_alg directive is not used. Instead, HMAC version of hash algorithm specified by
kmp_hash_alg is used as prf algorithm.

cookie_required (on|off);

It is valid for the ikev2 directive. It controls whether the responder requires the cookie. Default is off.

need_pfs (on|off) ;

It is valid for both directives of the ikev1 and ikev2. It controls to enable PFS or not. The daemon will
send a KE payload in the phase 2 of IKEv1. Default is off.

x509pem

X.509 PEM format

pkcs12

PKCS12 format

ascii

280

Chapter 16. Configuring IPSEC and SETKEY

PGP ASCII ARMORED format

pre_shared_key (file)

It is valid for both directives of the ikev1 and ikev2. It defines the file name contained the pre-shared
key.

my_principal (principal-id)

It is valid for the kink directive. It defines my principal identifier to be used. (principal-id) is like
"principal@realm".

peers_principal (principal-id)

It is valid for the kink directive. It defines the peer's principal identifier.

mobility_role (agent|mobile|correspondent)

It is valid in all KMP directives. It is used by mobile IPv6 daemons.

request { (config_request_list) };

(available with IKEv2 only) Request Configuration Payload option to peer. config_request_list is an
arbitrary list of following:

dns;
ip4_dns;
ip6_dns;
dhcp;
ip4_dhcp;
ip6_dhcp;
application_version;

dns is equivalent to specifying both ip4_dns and ip6_dns; dhcp is equivalent to specifying both
ip4_dhcp and ip6_dhcp;

provide { (provide_option_list) } ;

(available with IKEv2 only) Provide Configuration Payload option to peer. provide_option_list is a
list of following options:

addresspool (addresspool_index) ;
dhcp (address) ;
dns (address) ;
application_version (string) ;

dpd (boolean) ;

(available with IKEv1 only) This option (default on) enables negotiating RFC 3706 Dead Peer
Detection. For IKEv2, DPD (liveliness check) is always enabled.

dpd_delay (number) ;

(available with IKEv1 or IKEv2) This option activates the DPD and sets the time (in seconds) allowed
between two proof of life requests. For IKEv1, the default value is 0, which disables DPD monitoring,
but still negotiates DPD support. For IKEv2, the default value is 3600 (1 hour).

dpd_retry (number) ;

281

Chapter 16. Configuring IPSEC and SETKEY

(available with IKEv1 only) If dpd_delay is set, this sets the delay (in seconds) to wait for a proof
of life before considering it failed and sending another request. The default value is 5. For IKEv2,
normal retransmission time is used instead.

dpd_maxfail (number) ;

(available with IKEv1 only) If dpd_delay is set, this sets the maximum number of proofs of life to
request before considering the peer dead. The default value is 5. For IKEv2, normal retransmission
algorithm with max_retry_to_send is used instead.

script { (script_list) } ;

(available with IKEv1 or IKEv2) Defines a list of hook scripts. script_list is a list of following items.

phase1_up (script_path) ;
phase1_down (script_path) ;
phase2_up (script_path) ;
phase2_down (script_path) ;
phase1_rekey (script_path) ;
phase2_rekey (script_path) ;
migration (script_path) ;

Also, ike_sa_up, ike_sa_down, ike_sa_rekey, child_up, child_down, child_rekey are synonymous to
phase1_up, phase1_down, phase1_rekey, phase2_up, phase2_down, phase2_rekey, respectively. For
IKEv1, only the phase1_up and phase1_down are effective. No other events are available. Scripts'
argv[1] is equivalent to the event name. Parameters are passed using the environment variables. For
phase1_up and phase1_down, following environment variables are defined:

LOCAL_ADDR
LOCAL_PORT
REMOTE_ADDR
REMOTE_PORT

For phase2_up and phase2_down:

LOCAL_ADDR
REMOTE_ADDR
SELECTOR_INDEX
IPSEC_MODE
LOCAL_NET_ADDR
LOCAL_NET_PREFIXLEN
LOCAL_NET_PORT
REMOTE_NET_ADDR
REMOTE_NET_PREFIXLEN
REMOTE_NET_PORT
UPPER_LAYER_PROTOCOL (decimal number or any)
INTERNAL_ADDR (only if an address is leased to peer)
INTERNAL_ADDR4 (leased from peer)
INTERNAL_DNS4
INTERNAL_WINS4
INTERNAL_DHCP4
INTERNAL_ADDR6
INTERNAL_DNS6
INTERNAL_DHCP6

For migration:

OLD_SRC

282

Chapter 16. Configuring IPSEC and SETKEY

OLD_DST
NEW_SRC
NEW_DST

selector

selector (selector_index) { (directives) } ;

It defines parameters of a selector. selector_index is a string value to identical a selector directive. A
selector directive refers to the policy directive with the policy_index. Sub-directives in the selector
directive are the followings.

direction (inbound|outbound);

It defines the direction of the packet.

src (address) [port (port)];

dst (address) [port (port)];

It defines an IP address to be matched with packets. It can not be listed. A port number can be defined
if needed.

upper_layer_protocol (protocol) [(options)];

It defines the last upper layer protocol to be matched with packets. Any and strings in /etc/protocols
can be used in (protocol). (options) depends on the protocol. For example, ipv6-icmp (type) (code)

tagged (pf_tag_name);

It overloads at the bootstrap installation the previous selectors by a pf tag. The usual selectors are still
taken into account by KMPs but not by the kernel. Dynamic operations have to be done on pf rules,
not on the SPD.

policy_index (policy_index) ;

It has policy_index to define a policy.

reqid (number);

It defines the request ID for SA sharing

(cf. unique ipsec_level).

It is used to support Mobile-IP.

policy

policy (policy_index) { (directives) } ;

It defines a behavior after a packet is matched to a selector. policy_index is a string value to identical
a policy directive. A policy is referred from one or more selectors by the policy_index(es). A policy
refers to one or more IPSEC directives. The IPSEC directives will evaluate in logical OR by a KMP
daemon. A policy may refer to a remote directive. Sub-directives in the policy directive are the
followings.

action (auto_ipsec|static_ipsec|discard|none) ;

It defines an action of the policy.

283

Chapter 16. Configuring IPSEC and SETKEY

auto_ipsec

It means the policy needs a key management.

static_ipsec

IT IS NOT IMPLEMENTED.

discard

It means the policy discards packets.

none

It means the policy bypasses the IPsec stack.

install (on|off) ;

Default is on, it makes possible to only declare the policy.

remote_index

It has a remote_index.

ipsec_index

It has ipsec_index(es) to define proposals of IPsec. It is valid when the action directive is auto_ipsec.

my_sa_ipaddr (address) ;

It defines an IP address of the end points of the SAs on my side. (address) is an IP address. It must be
defined when the action directive is static_ipsec or tunnel.

peers_sa_ipaddr (address) ;

It defines an IP address of the end points of the SAs on the peer's side. Write IP_RW to generate
policy dynamically.

ipsec_level (unique|require|use) ;

use

NOT IMPLEMENTED. When there is no SA for the packet, the kernel sends an acquire for the SA to
KMPs, and sends the packet.

require

When there is no SA for the packet, the kernel sends an acquire for the SA to KMPs, and discards the
packet. This SA installed will be used from other policies.

unique

PARTIALLY IMPLEMENTED, NOT EXPECTED TO WORK In addition to require directive, this
SA will not be used from any other policy.

ipsec_mode (transport|tunnel) ;

It defines a IPsec mode.

ipsec

284

Chapter 16. Configuring IPSEC and SETKEY

ipsec (ipsec_index) { (directives) } ;

It defines a SA or a SA bundle. ipsec_index is a string value to identical a ipsec directive. An ipsec
directive refers to one or more sa directives with sa_index(es). An ipsec directive is referred from the
policy directive by the ipsec_index. Sub-directives in the ipsec are the followings.

ipsec_sa_lifetime_time (number) ;

It defines a life time of the SA in time.

ipsec_sa_lifetime_byte (number) ;

It defines a life time of the SA in bytes.

ext_sequence (on|off) ;

It enables extended sequence number processing described in the 2401bis. The default is off.

sa_index (sa_index) ;

It has sa_index(es) to define an SA bundle. It can have three sa_indexes in maximum. When you want
to define multiple SAs as an SA bundle, note that the following patterns are only allowed.

AH
ESP
IPCOMP
AH_ESP
AH_IPCOMP
ESP_IPCOMP
AH_ESP_IPCOMP

sa

sa (sa_index) { (directives) } ;

It defines parameters of an SA. sa_index is a string value to identical the sa directive. A sa directive is
referred from the ipsec directive by the sa_index. Sub-directives in the sa are the followings.

sa_protocol (ah|esp|ipcomp) ;

It defines a protocol to be used.

esp_enc_alg (algorithm) ;

It defines encryption algorithms to be used. It is valid when the sa_protocol is esp.

esp_auth_alg (algorithm) ;

It defines authentication algorithms to be used. It is valid when the sa_protocol is esp.

ah_auth_alg (algorithm) ;

It defines authentication algorithms to be used. It is valid when the sa_protocol is ah.

ipcomp_alg (algorithm) ;

It defines compression algorithms to be used. It is valid when the sa_protocol is ipcomp.

spi (spi) ;

NOTE THAT IT MAY BE OBSOLETE. It defines a SPI for a static SA.

285

Chapter 16. Configuring IPSEC and SETKEY

addresspool

addresspool (addresspool_index) { (address_ranges) } ;

It defines address ranges to make available for remote host. For the address range, the first and last
IP addresses of the range should be specified, separated with a - (hyphen-minus), followed by a ;
(semicolon):

(address) - (address) ;

Note: you should put spaces before and after the hyphen, or else it may be parsed as a part of address
string.

16.11.12.5. Sample configuration
The sample configuration files below are intended to show some of the functionality available, and do
not illustrate the complete configuration language.

racoon2.conf

Edit racoon2_vals.conf for your environment
include "IP$:racoon2_vals.conf";
interface info
interface
{
 ike {
 MY_IP port 500;
 };
#
For OpenVMS specify loopback address and port number.
#
 spmd {
 127.0.0.1 port 5500;
 };
 spmd_password "IP$:spmd.pwd";
};

resolver info
resolver
{
 resolver off;
resolver on;
nameserver {
192.168.0.3 port 53;
};
dns_query {
127.0.0.1 port 53;
::1 port 53;
};
};

#
This line includes default configuration file;
Please don't touch this line (especially novice user);
#

include "IP$:racoon2_default.conf";

286

Chapter 16. Configuring IPSEC and SETKEY

Transport mode IKEv2 or IKEv1
include "IP$:transport_ike.conf";

racoon2_vals.conf

setval {
Directory Settings
Preshared key file directory : specify if you want to use preshared
keys
 PSKDIR "IP$:";

 # Cert file directory : specify if you want to use certs
 CERTDIR "SSL$CERTS:";
ID Settings
 # your FQDN : specify if you want to use FQDN as your ID
 MY_FQDN "client.example.com";
 # Peer's FQDN : specify if you want to use FQDN as peer's ID
 PEERS_FQDN "server.example.com";
Preshared Key Setting
 # Preshared Key file name
 # You can generate it by pskgen.
 PRESHRD_KEY "psk2.txt";

Certicate Setting
 # Set following parameters if you use certificates in
 # IKE negotiation and
 #_SET_ 'kmp_auth_method { rsasig;};' in each remote{}
 # section of tunnel_ike{_natt}.conf/transport_ike.conf
 # files.
 # For more information, please see USAGE.
 #
 # Your publickey file name
 MY_PUB_KEY "client.pem";

 # Your Private Key file name
 MY_PRI_KEY "client.key";

 # Peer's publickey file name
 PEERS_PUB_KEY "server.pem";

Transport Mode Settings

 # Your IP Address

 MY_IPADDRESS "192.168.0.1”;

 # Peer's IP Address
 PEERS_IPADDRESS "198.168.0.2";

Configuration Payload Settings (for IKEv2)###
 # IPv4 Address Pool For Assignment
 CP_ADDRPL4_START "10.7.73.128";
 CP_ADDRPL4_END "10.7.73.254";

 # IPv6 Address Pool For Assignment
 CP_ADDRPL6_START "fd01::1000";
 CP_ADDRPL6_END "fd02::2000";

287

Chapter 16. Configuring IPSEC and SETKEY

 # DNS Server Address(es) (ex. "10.7.73.1; 10.7.73.2")
 CP_DNS "10.7.73.1";

 # DHCP Server Address(es)
 CP_DHCP "10.7.73.1";

 # Application Version String
 CP_APPVER "Racoon2 iked"

Scripts
 ## IKEv2
IKESAUP_SCR "IP$:ikesa-up.com";
IKESADOWN_SCR "IP$:ikesa-down.com";
CHILDUP_SCR "IP$:child-up.com";
CHILDOWN_SCR "IP$:child-down.com";
IKESAREKEY_SCR "IP$:ikesa-rekey.com";
CHILDREKEY_SCR "IP$:child-rekey.com";
MIGRATION_SCR "IP$:migration.com";
 ## IKEv1
PH1UP_SCR "IP$:ph1-up.com";
PH1DOWN_SCR "IP$:ph1-down.com";

racoon2_default.conf

#
default section
#
default
{
 remote {
 acceptable_kmp { ikev2; ikev1; };
 ikev1 {
 logmode normal;
 kmp_sa_lifetime_time 600 sec;
 kmp_sa_lifetime_byte infinite;
 interval_to_send 10 sec;
 times_per_send 1;
 ipsec_sa_nego_time_limit 40 sec;
 kmp_enc_alg { 3des_cbc; };
 kmp_hash_alg { sha1; md5; };
 kmp_dh_group { modp3072; modp2048; modp1024; modp1536;};
 kmp_auth_method { psk; };
 random_pad_content off;
 };
 ikev2 {
 logmode normal;
 kmp_sa_lifetime_time infinite;
 kmp_sa_lifetime_byte infinite;
 max_retry_to_send 3;
 interval_to_send 10 sec;
 times_per_send 1;
 kmp_sa_nego_time_limit 60 sec;
 ipsec_sa_nego_time_limit 40 sec;
 kmp_enc_alg { 3des_cbc; };
 kmp_prf_alg { hmac_md5; hmac_sha1; };
 kmp_hash_alg { hmac_sha1; hmac_md5; };
 kmp_dh_group { modp3072; modp2048; modp1024; };
 kmp_auth_method { psk; };

288

Chapter 16. Configuring IPSEC and SETKEY

 random_pad_content on;
 random_padlen on;
 max_padlen 50 bytes;
 };
 };

 policy {
 ipsec_mode transport;
 ipsec_level require;
 };
 ipsec {
 ipsec_sa_lifetime_time infinite;
 ipsec_sa_lifetime_byte infinite;
 };

 sa {
 esp_enc_alg { 3des_cbc; };
 esp_auth_alg { hmac_sha1; hmac_md5; };
 };
};
ipsec ipsec_ah_esp {
 ipsec_sa_lifetime_time 28800 sec;
 sa_index { ah_01; esp_01; };
};
ipsec ipsec_esp {
 ipsec_sa_lifetime_time 28800 sec;
 sa_index esp_01;
};

sa ah_01 {
 sa_protocol ah;
 ah_auth_alg { hmac_sha1; hmac_md5; };
};

sa esp_01 {
 sa_protocol esp;
 esp_enc_alg { 3des_cbc; };
 esp_auth_alg { hmac_sha1; hmac_md5; };
};

transport_ike.conf

#
default section
#
default
{
 remote {
 acceptable_kmp { ikev2; ikev1; };
 ikev1 {
 logmode normal;
 kmp_sa_lifetime_time 600 sec;
 kmp_sa_lifetime_byte infinite;
 interval_to_send 10 sec;
 times_per_send 1;
 ipsec_sa_nego_time_limit 40 sec;
 kmp_enc_alg { 3des_cbc; };
 kmp_hash_alg { sha1; md5; };

289

Chapter 16. Configuring IPSEC and SETKEY

 kmp_dh_group { modp3072; modp2048; modp1024; modp1536;};
 kmp_auth_method { psk; };
 random_pad_content off;
 };
 ikev2 {
 logmode normal;
 kmp_sa_lifetime_time infinite;
 kmp_sa_lifetime_byte infinite;
 max_retry_to_send 3;
 interval_to_send 10 sec;
 times_per_send 1;
 kmp_sa_nego_time_limit 60 sec;
 ipsec_sa_nego_time_limit 40 sec;
 kmp_enc_alg { 3des_cbc; };
 kmp_prf_alg { hmac_md5; hmac_sha1; };
 kmp_hash_alg { hmac_sha1; hmac_md5; };
 kmp_dh_group { modp3072; modp2048; modp1024; };
 kmp_auth_method { psk; };
 random_pad_content on;
 random_padlen on;
 max_padlen 50 bytes;
 };
 };

 policy {
 ipsec_mode transport;
 ipsec_level require;
 };
 ipsec {
 ipsec_sa_lifetime_time infinite;
 ipsec_sa_lifetime_byte infinite;
 };

 sa {
 esp_enc_alg { 3des_cbc; };
 esp_auth_alg { hmac_sha1; hmac_md5; };
 };
};
ipsec ipsec_ah_esp {
 ipsec_sa_lifetime_time 28800 sec;
 sa_index { ah_01; esp_01; };
};
ipsec ipsec_esp {
 ipsec_sa_lifetime_time 28800 sec;
 sa_index esp_01;
};

sa ah_01 {
 sa_protocol ah;
 ah_auth_alg { hmac_sha1; hmac_md5; };
};

sa esp_01 {
 sa_protocol esp;
 esp_enc_alg { 3des_cbc; };
 esp_auth_alg { hmac_sha1; hmac_md5; };
};

290

Chapter 17. Intrusion Prevention
System (IPS)
This chapter describes the VSI TCP/IP Intrusion Prevention System (IPS). This security feature
monitors network and/or system activities for malicious or unwanted behavior and can react, in real-
time, to block or prevent those activities. IPS is highly flexible and customizable. When an attack
is detected, pre-configured rules will block an intruder's IP address from accessing the VSI TCP/IP
system, prevent an intruder from accessing a specific application, or both. The time period that the
filter is in place is configurable. An API is provided so that VSI TCP/IP customers can incorporate the
IPS functionality into user-written applications.

IPS is implemented by instrumenting components (e.g., VSI TCP/IP SSH or FTP, or user-supplied
components) with a VSI supplied API that allows them to report events, such as invalid login
attempts, to the FILTER_SERVER process. The filter server, started when VSI TCP/IP starts,
maintains the component rulesets and lists of events, based on the originating address for the
offending connection, and when defined limits are reached, creates and sets timed filters in the VSI
TCP/IP kernel to filter that traffic.

17.1. IPS Operation
All of the operating parameters such as the definition of rule, the number of events/unit time to trigger
a filter, the duration of a filter, etc. are all defined by component configuration files.

Events are recorded per source address, per rule, per destination address, per component. This
provides the ability to have differing filtering criteria for different interfaces (for example, an internal
network vs. an external network). Addresses or networks may be excluded from consideration when
an event is logged. This feature allows, for example, different settings to be used for internal vs.
external networks.

Events “age”; after a time period, old events are discarded from the list of events so that infrequent
event occurrences (e.g., mistyping a password) have less chance of inadvertently causing a filter to be
set. Note that when a filter is triggered for an address and rule, the list of known events for that rule
and address are deleted.

Multiple filters may be set in sequence for a component/rule/source address/destination address as
events are logged. The purpose of this is to make a filter progressively longer. For example, the first
filter set for an address and rule might be 5 minutes long; the next, 10 minutes long; the next, 15
minutes long; etc., up to 5 filter times.

17.2. Configuring IPS
IPS is configured in two steps:

1. Configuring the main process-specific parameters of the FILTER_SERVER process
(for example, the size of the mailbox used by applications to communicate with the
FILTER_SERVER process).

2. Editing the FILTER_SERVER configuration files to set the operating parameters of IPS; for
example, the applications that will use IPS and setting the rule parameters for reporting events.

291

Chapter 17. Intrusion Prevention System (IPS)

Note

The FILTER_SERVER process will not be started if the file IP$:FILTER_SERVER_CONFIG.TXT
does not exist.

17.2.1. Configuring Process-Specific Parameters
Logical names are used to set process-specific parameters for the FILTER_SERVER mailbox and
some of the process-specific quotas for the FILTER_SERVER process. These logical names are:

IP$FILTER_SERVER_TQELM

IP$FILTER_SERVER_ASTLM

IP$FILTER_SERVER_MBX_MSGS

17.2.2. Determining the Correct FILTER_SERVER
Process Quotas
It is important to determine correctly the correct process quotas for the FILTER_SERVER
process. High-volume systems, for example, an E-mail server where SMTP may detect many
anomalies, may log large numbers of events in a short time. If the TQELM and ASTLM quotas for
FILTER_SERVER are too low, the FILTER_SERVER process could enter MUTEX state and hang,
preventing any events from being logged and possibly leading to other problems such as processes
hanging while trying to log events.

The amount of additional TQELM quota in addition to the default value (specified via the
PQL_DTQELM SYSGEN parameter) required for the FILTER_SERVER process can be calculated as
follows:

• 1 for automated hourly reporting

• 1 for automated 24-hour maintenance

• 1 for each source address per rule per component for which an event has been received. These
timers are used to clean up internal address structures and disappear after 24 hours of inactivity
from that address.

• 1 for each non-empty event queue per source address per rule per component. These timers are
used to delete aged events from the event queue.

Thus, the event frequency must be anticipated and the quotas adjusted appropriately for each
installation. The hourly FILTER_SERVER logs will be of use for determining traffic patterns.

The ASTLM quota tends to track the value for TQELM closely, but should have an additional 10%
added to it for other uses.

Both the ASTLM and TQELM quotas are controlled by logical names described in the previous
section. Both of the ASTLM and TQELM values default to 500.

17.2.3. Determining the Correct FILTER_SEVER
Mailbox Size
In addition to setting the TQELM and ASTLM process quotas correctly, the size of the mailbox used
for communication with the FILTER_SERVER process must be correctly determined. Failure to do

292

Chapter 17. Intrusion Prevention System (IPS)

can result in events reported by instrumented components being lost. The mailbox is sized to handle
400 simultaneous event messages by default.

Once the mailbox size has been configured, either the system must be rebooted to allow the new
mailbox size to be used (this is the preferred method), or the following procedure can be used to avoid
a reboot in the near term:

1. Stop IPS (IP SET /IPS /STOP).

2. Stop all applications using IPS (e.g., telnet sessions, ftp session, etc.).

3. Delete the old mailbox by running IP$:DELMBX.EXE.

4. Start IPS (IP SET /IPS /START).

5. Start any other applications previously stopped.

17.2.4. Filter Server Main Configuration
The filter server is configured using a main configuration file and per-component configuration files.
The main configuration file is used to set overall configuration options for filter server operation,
while the per-component configuration files contain configuration information for each instrumented
component such as the ruleset to use, the prototype filter to be set, etc. Per-component configuration
files are referenced by the main configuration file by using the “INCLUDE” keyword.

Sample configuration files are supplied in the VSI TCP/IP distribution and must be copied and
modified as necessary to conform to the particular site’s security profile and interface configuration.
These files are copied to the IP$: directory when VSI TCP/IP is installed. Once these have been
copied and modified, the filter server configuration may be reloaded via the IP SET /IPS /RELOAD
command. The template files supplied are:

FILTER_SERVER_CONFIG.TEMPLATE

SSH_FILTER_CONFIG.TEMPLATE

IMAP_FILTER_CONFIG.TEMPLATE

POP3_FILTER_CONFIG.TEMPLATE

SNMP_FILTER_CONFIG.TEMPLATE

SMTP_FILTER_CONFIG.TEMPLATE

TELNET_FILTER_CONFIG.TEMPLATE

REXEC_FILTER_CONFIG.TEMPLATE

RSHELL_FILTER_CONFIG.TEMPLATE

RLOGIN_FILTER_CONFIG.TEMPLATE

The following table lists the main configuration file keywords. These are found in the file IP
$:FILTER_SERVER_CONFIG.TXT:

Table 17.1. Main configuration Keywords

Keyword Default Description
BLOCK_AT_DESTINATION_PORT NO If set to YES, indicates that all filters

generated by the filter server will be for

293

Chapter 17. Intrusion Prevention System (IPS)

Keyword Default Description
a specific destination port (the equivalent
of a filter line of “EQ portnumber”).
The port number to be used is specified
for each component in the per-component
configuration file.

If set NO, all filters generated by the filter
server will deny access to all destination
ports.

DEBUG value 0 Indicates the amount of debug to output.
Zero means no debug, while higher
number mean more debug. This value
should ordinarily never be set above 4
without direction.

ENTERPRISE_STRING Defines the location in the MIB tree that
the trap used to send filter logging events
via SNMP pertains to.

GENERIC_TRAP_ID An integer representing the generic trap
value when filter logging events are sent
via SNMP.

INCLUDE filename Specifies a per-component configuration
file to load. Any number of INCLUDE
statements may occur in the main
configuration file.

LOG_TO_LOGFILE NO If YES, information log messages are sent
to the log file specified by the logfile
keyword.

LOG_TO_OPCOM NO If YES, informational messages are
reported via OPCOM.

LOG_TO_SNMP NO If YES, informational messages are
reported via an SNMP trap.

LOGFILE Specifies the log file used when the
log_to_logfile keyword is specified.

OPCOM_TARGET NETWORK,

SECURITY

Specifies the list of operator types to
which events are written when the
keyword LOG_TO_OPCOM is set. This is
a comma-separated list, and may contain
any of the values that are valid for the
OpenVMS REPLY/ENABLE command.

SPECIFIC_TRAP_ID An integer representing the specific trap
value when filter logging events are sent
via SNMP.

17.2.5. Filter Server Per-Component Configuration File
The per-component configuration files are loaded using the INCLUDE keyword in the main filter
server configuration file. Each of these configuration files have the following format. The definition
must begin with a COMPONENT keyword. Comments lines begin with a “#” character.

294

Chapter 17. Intrusion Prevention System (IPS)

COMPONENT component-name
 DESTINATION_ADDRESS
 EXCLUDE_ADDRESS
 DESTINATION_PORT
 PROTO_FILTER
RULE rulename
 DESTINATION_ADDRESS
 DESTINATION_PORT
 MAX_COUNT
 DELTA_TIME
 FILTER_DURATIONS
RULE rulename
 MAX_COUNT
 DELTA_TIME
 FILTER_DURATIONS

Each component may have as many rules defined for it as are appropriate for the component.
However, the more rules defined for a component, the more complex it may be to instrument the
component to actually report those rules. All entries in configuration files are not case-sensitive.

The following table shows the keywords for a per-component configuration file:

Table 17.2. Per-Component Configuration Keywords

Keyword Scope Description
COMPONENT component-
name

component Name of the component to which this
applies (e.g., SSH).

DELTA_TIME time rule Time, in seconds, where if max_count
events are received for a rule from the
same address, that will cause a filter to be
set for that address.

This is also the time for aging events. If
the age of an event exceeds delta_time
seconds, the event is dropped from the
event list.

DESTINATION_ADDRESS
address

component or rule Destination IP address (the VSI TCP/IP
interface address) in CIDR format to check.
This may be in ipv4 or ipv6 format.

If destination_address occurs
before the first rule in the per-component
configuration file, it will be used as a
default for any rule for the component
that does not have a destination address
specified.

Note

Multiple destination_address lines
may be specified at the component level if
all the interfaces specified have the same
filtering criteria.

295

Chapter 17. Intrusion Prevention System (IPS)

Keyword Scope Description
DESTINATION_PORT port component or rule Optional destination port. This will

only be effective if the keyword
BLOCK_AT_DESTINATION_PORT is set
in the main configuration file.

EXCLUDE_ADDRESS address component or rule A source address/mask in CIDR format
from which events are ignored. This
allows, for example, events from an
internal network to be ignored while
counting events from external networks.

Multiple EXCLUDE_ADDRESS lines may
be specified for each rule.

FILTER_DURATIONS list rule List of durations for filters. This is a
comma-delimited list of up to five filter
durations, and it must be terminated with a
-1.

MAX_COUNT count rule Maximum number of events from the
same address for a specific rule over
delta_time seconds that will trigger a
filter.

PROTO_FILTER component This is a prototype filter to be used to build
the filter set against an interface when a
filter is triggered. The format of this filter
is the same used in a filter file.

RULE rulename component The user-defined name for a rule.

17.3. Sample Main Configuration File
#===
#
FILTER_SERVER_CONFIG.TEMPLATE
#
#===
#
The following parameter determines the level of debug information
written to the debug log file. This should normally be set to a
value of 2 or less, and shouldn't be set above 4 without the
recommendation, as higher debug levels will
negatively impact the filter server (and possibly, system)
performance. The debug messages will be found in the file
IP$:FILTER_SERVER.OUT.
#
debug 4
#
The following parameters define the logging locations. Note
that debug messages are not written to the logging locations.
#
The first two parameters are used when logging to a log file.
#
logfile IP$:filter_logfile.log
log_to_logfile yes

296

Chapter 17. Intrusion Prevention System (IPS)

#
The next parameter is used when logging to OPCOM.
#
log_to_opcom yes
opcom_target NETWORK,SECURITY,OPER3
#
The next parameters are used when logging via SNMP. Details
on the values for enterprise_string, generic_trap_id and
specific_trap_id can be found in the VSI TCP/IP for OpenVMS
Administrators Guide.
#
log_to_snmp no
enterprise_string
generic_trap_id
specific_trap_id
#
The following parameter determines how filters are created. If
set to YES, then the destination port field is added to the filter
(e.g., "192.168.0.11/32 eq 22"). If set to NO, then no source
port field is added, which will cause the filter to block all
traffic of the specified protocol from the source address. If
not set, default is NO.
#
block_at_destination_port yes
#
#===
#
The following lines define the individual configuration files
for each configured component that uses the filter server
#
#===
#
include IP$:ftp_filter_config.txt
include IP$:imap_filter_config.txt
include IP$:pop3_filter_config.txt
include IP$:smtp_filter_config.txt
include IP$:snmp_filter_config.txt
include IP$:ssh_filter_config.txt
#

For this configuration:

• Debug will be reported at level 4 (this produces detailed information, normally useful only by VSI
when debugging a problem).

• Log messages will be logged to IP$:FILTER_LOGFILE.LOG and OPCOM.

• When filters are logged, the destination port specified in the per-configuration files will be used.

• Per-component configuration files for the VSI TCP/IP FTP, IMAP, POP3, SMTP, SNMP and SSH
servers will be loaded.

17.4. Sample Component Configuration File
The following is a configuration file for the SSH component:

component ssh

297

Chapter 17. Intrusion Prevention System (IPS)

 proto_filter "deny tcp 192.168.0.100/32 192.168.0.11/32 log"
 destination_address 192.168.0.16/32
 exclude_address 192.168.0/24
 destination_port 22
 rule ssh_bogus_id
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 rule ssh_authfailed
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 rule ssh_authfailed
 destination_address 192.168.10.2/16
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 rule ssh_userauth
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 rule ssh_invaliduser
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1

For component SSH, a “deny tcp” filter will be used. The source address/mask and destination
address/mask parts of the prototype filter are ignored and are overwritten by the actual data specified
by the source information gathered from the event that triggered the filter, and by the destination
address/mask/port information specified by the corresponding keywords in this file. Events from the
192.168.0 network are all excluded from being counted.

To examine the first three rules specified above:

The rule is “ssh_bogus_id”. Since no address or mask is specified for this rule, it will use the default
destination address of 192.168.0.16 and mask of 255.255.255.255 specified at the beginning of the
component configuration. The rule states that if 10 events from the same source address are seen over
90 seconds, a filter is created using the proto_filter specified above. The first filter is 5 minutes
long, the second, 10 minutes, and so on, until at the 5th time, a permanent filter is put in place for the
address and interface that is causing the problem.

The second rule is “ssh_authfailed”, and applies to events received as a result of connections on the
interface with the default address of 192.168.0.16 and mask of 255.255.255.255, respectively.

The third rule is also “ssh_authfailed”, but applies to events received a result of connections on
the interface with the address 192.168.10.2, using a mask of 255.255.0.0. The max_count and
delta_time parameters are different for this interface from for the previous ssh_authfailed
rule in the system.

The remaining rules for this component will use the default address 192.168.0.16 and mask of
255.255.255.255.

Note

If a rule specifies a destination address for an interface that does not currently exist, events for that
interface will be dropped until the interface becomes available.

298

Chapter 17. Intrusion Prevention System (IPS)

If your system has multiple interfaces (for example, SE0, SE1 and PD0), you must specify all
interfaces in the same config file. For each rule in the config file, you must supply a separate section
for each destination address (i.e., interface). The component keyword may occur exactly once in the
configuration file. The following example shows a config file for component ftp for 5 interfaces (SE0,
SE1, PD0, PD1, PD2):

===
#
FTP_FILTER_CONFIG.TXT
#
Filter server configuration file for the FTP component.
#
#===
component ftp
 proto_filter "deny tcp 192.168.0.100/32 192.168.0.1/24 log"
 destination_port 21
#
For SE0 and SE1
#
 destination_address 192.168.0.29/32
 destination_address 192.168.0.25/32
 rule ftp_invaliduser
 max_count 10
 delta_time 300
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.29/32
 rule ftp_userauth
 max_count 21
 delta_time 180
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.29/32
 rule ftp_authfailed
 max_count 21
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.29/32
 rule ftp_timeout
 max_count 21
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.29/32
#
For PD0
#
 rule ftp_invaliduser
 max_count 10
 delta_time 300
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.28/32
 destination_port 1521
 rule ftp_userauth
 max_count 21
 delta_time 180
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.28/32
 destination_port 1521
 rule ftp_authfailed

299

Chapter 17. Intrusion Prevention System (IPS)

 max_count 21
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.28/32
 destination_port 1521
 rule ftp_timeout
 max_count 21
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.28/32
 destination_port 1521
#
For PD1
#
 rule ftp_invaliduser
 max_count 10
 delta_time 300
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.27/32
 exclude_address 192.168.0.0/24
 rule ftp_userauth
 max_count 21
 delta_time 180
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.27/32
 exclude_address 192.168.0.0/24
 rule ftp_authfailed
 max_count 21
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.27/32
 exclude_address 192.168.0.0/24
 rule ftp_timeout
 max_count 21
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.27/32
 exclude_address 192.168.0.0/24
#
For PD2
#
 rule ftp_invaliduser
 max_count 10
 delta_time 300
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.21/32
 rule ftp_userauth
 max_count 21
 delta_time 180
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.21/32
 rule ftp_authfailed
 max_count 21
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.21/32
 rule ftp_timeout
 max_count 21

300

Chapter 17. Intrusion Prevention System (IPS)

 delta_time 0
 filter_durations 300,600,1800,3600,-1
 destination_address 192.168.0.21/32

The above example shows some configuration options for the system with 5 interfaces. Specifically:

• Interfaces SE0 and SE1 will use identical rules, because they did not specify destination addresses
within their rulesets and the destination addresses for SE0 and SE1 were specified at the
component level. All other interface rules specified their own destination addresses at the rule
level, so they will use specific rules for those specific addresses.

• A default port of 21 was been specified for all interfaces. However, interface PD0 has specified a
port of 1521, so that port will be used for PD0 only. All other interfaces will use the default port of
21.

• Interface PD1 has an exclude_address specified for net 192.168.0.0/24. All events for
PD1 that originated from that source net will be excluded from being counted by IPS. All other
interfaces will count events from that network.

17.5. Configuring IPS for Paired Network
Interfaces
To configure IPS for a paired netowrk interface environment where multiple interfaces are treated as a
common link set, the rules are fairly simple.

• Each physical and pseudo interface must be specified in the configuration files via
destination_address rules for each interface.

• All physical interfaces are treated equally. When an event is logged for any interface in the set, it
is as if it was logged against each interface in the set. Thus, when a filter is set on any interface in
the set, the same filter is set on all physical interfaces in the set.

• Filters are set only on the physical interfaces. Since pseudo devices (PD nnn) are not true
interfaces, they cannot have filters set on them.

• When a filter is created as a result of events coming in via a pseudo device, the destination address
shown in the filter (using the IP SHOW INTERFACE /FILTER command) will show the
destination address for the pseudo device.

When IP SET INTERFACE is used to perform any of the following tasks:

• Create a paired network interface set via SET INTERFACE /COMMON_LINK

• Start an interface via SET INTERFACE/UP

IPS is notified of the change being made. This allows the FILTER_SERVER process to reevaluate
all interfaces it knows about, so it can determine if modifications must be made to paired network
interface sets about which it currently knows.

The following example shows a configuration for the SSH component for a paired network interface
configuration that consists of SE0, SE1, and PD0 where PD0’s physical interface is SE1:

component ssh
 proto_filter "deny tcp 192.168.0.100/32 192.168.0.11/24 log"

301

Chapter 17. Intrusion Prevention System (IPS)

 #
 # SE0’s address
 #
 destination_address 192.168.0.70/32
 #
 # SE1’s address
 #
 destination_address 192.168.0.71/32
 #
 # PD0’s address
 #
 destination_address 192.168.0.72/32
 #
 destination_port 22
 rule ssh_bogus_id
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 rule ssh_authfailed
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 rule ssh_authfailed
 destination_address 192.168.10.2/32
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 rule ssh_userauth
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1
 rule ssh_invaliduser
 max_count 10
 delta_time 90
 filter_durations 300,600,1800,3600,-1

Using the above configuration, the next item illustrates a filter being set due to events that occurred on
line PD0:

RAPTOR_$
%%%%%%%%%% OPCOM 29-MAR-2017 13:00:55.77 %%%%%%%%%%%(from node VOODOO at
 29-MAR-2017 13:00:59.12)
Message from user JOHNDOE on VOODOO
FILTER_SERVER: Filter queued on SE0 (192.168.0.70/32) at 29-MAR-2017
 13:00:59.12
 Component: ssh, Rule: ssh_bogus_id
Deny tcp 192.168.0.11/32
 192.168.0.72/32 eq 22
 FLTSVR,LOG
 START: 29-MAR-2017 13:00:59.12 END: 29-MAR-2017 14:00:59.12
RAPTOR_$
%%%%%%%%%%% OPCOM 29-MAR-2017 13:00:55.80 %%%%%%%%%%%(from node VOODOO at
 29-MAR-2017 13:00:59.15)
Message from user JOHNDOE on VOODOO
FILTER_SERVER: Filter queued on SE1 (192.168.0.71/32) at 29-MAR-2017
 13:00:59.15
 Component: ssh, Rule: ssh_bogus_id
Deny tcp 192.168.0.11/32

302

Chapter 17. Intrusion Prevention System (IPS)

 192.168.0.72/32 eq 22
 FLTSVR,LOG
 START: 29-MAR-2017 13:00:59.15 END: 29-MAR-2017 14:00:59.15
RAPTOR_$

Note some things illustrated above:

• Each physical address (SE0 and SE1) had a filter set on it.

• No filter was set on interface PD0 because it is a pseudo interface.

• The destination address for each event is that of interface PD0, since that was the source of the
events that caused the filters to be set.

17.6. Filter Reporting via OPCOM and Log
File
When a filter is set for an address/rule/destination/component, an informational message will appear
either in OPCOM (if LOG_TO_OPCOM is set) or in the logfile (if LOG_TO_LOGFILE is set). The
following message illustrates an OPCOM message, but the message to a logfile will have the same
format.

TWEET_$
%%%%%%%%%%% OPCOM 16-MAY-2017 10:33:19.74 %%%%%%%%%%%
Message from user SYSTEM on TWEET
FILTER_SERVER: Filter queued on se0 (192.168.0.16) at 16-MAY-2017
 10:33:19.74
 Component: ssh, Rule: ssh_bogus_id
Deny tcp 192.168.0.11/32
 192.168.0.0/24 eq 22
 FLTSVR,LOG
 START: 16-MAY-2017 10:33:19 END: 16-MAY-2017 10:38:19
TWEET_$

This message is in essentially the same format as that when a IP SHOW /INTERFACE /FILTER
command is performed:

TWEET_$ IP show/interface se0/filter
Device se0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST,D2>
 VMS Device = EWA0
 IP Address = 192.168.0.16
 No common links defined
VSI TCP/IP for OpenVMS Packet Filter List for se0:
Logging is disabled
 Source Address / Port
Action Proto Hits Destination Address / Port
------ ----- ----- --
Deny tcp 0 192.168.0.11/32
 192.168.0.0/24 eq 22
 FLTSVR,LOG
 START: 16-MAY-2017 10:33:19 END: 16-MAY-2017 10:38:19
Permit ip 13484 0.0.0.0/0
 0.0.0.0/0
 FLTSVR
 Average 0 bytes out, 0 bytes in per second
 Average 0 packets out, 0 packets in per second

303

Chapter 17. Intrusion Prevention System (IPS)

TWEET_$

Note the second filter (the “permit IP” filter) that is shown. If there are currently no filters set for an
interface when the filter server determines it needs to set a filter, it will add an explicit “permit IP”
filter. This is done because the existence of any filter in a list of filters causes VSI TCP/IP to act as if a
“deny everything” filter terminates the list. The “permit IP” filter will essentially prevent that problem
from happening.

17.7. Filter Reporting via SNMP
When logging a filter via SNMP, the configuration keywords ENTERPRISE_STRING,
GENERIC_TRAP_ID and SPECIFIC_TRAP_ID must be specified (as well as the keyword
LOG_TO_SNMP). In addition, the SNMP configuration file must be properly set up on the VSI TCP/
IP system.

When a filter is logged, the following fields will be reported:

FILTER_SERVER: Filter queued on interface (address) at time

COMPONENT=component-name

RULE=rulename

ACTION=actionname (e.g., “deny”)

PROTOCOL=protocol (e.g., “TCP”)

SOURCE=source address in CIDR format

SOURCE_PORT=operator port(e.g., “EQ 22”)

DESTINATION=destination address in CIDR format

DEST_PORT=operator port (e.g., “EQ 22”)

START=VMS absolute time

END=VMS absolute time

17.8. Correcting a Filter List
If a filter is inadvertently created by the filter server, the system manager should first correct the
configuration problem (if one exists) that allowed the filter to be incorrectly set. Then, the system
manager may retrieve the current list of filters in “manual filter form” that can be edited then reloaded
onto the interface. The list is retrieved via the IP SHOW/INTERFACE/EXTRACT_FILTER
command. For example:

TWEET_$ IP show/int se0/filt
Device se0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST,D2>
 VMS Device = EWA0
 IP Address = 192.168.0.16
 No common links defined
VSI TCP/IP for OpenVMS Packet Filter List for se0:
Logging is disabled

304

Chapter 17. Intrusion Prevention System (IPS)

 Source Address / Port
Action Proto Hits Destination Address / Port
------ ----- ----- --
Deny tcp 0 192.168.0.11/32
 192.168.0.0/24 eq 22
 FLTSVR,LOG
 START: 16-MAY-2017 10:33:19 END: 16-MAY-2017 10:38:19
Deny tcp 15 192.168.0.38/32
 192.168.011/24 eq 22
Permit IP 13484 0.0.0.0/0
 0.0.0.0/0
 FLTSVR
 Average 0 bytes out, 0 bytes in per second
 Average 0 packets out, 0 packets in per second
TWEET_$ IP show/interface se0/extract_filter=filter.txt
TWEET_$ type filter.txt
#
FILTER.TXT
#
Generated 16-MAY-2017 10:51:31
#
#===
deny tcp 192.168.0.100/32 192.168.0.11/24 eq 22 start “16-MAY-2017
 10:33:19” end “16-MAY-2017 10:38:19”LOG
deny tcp 192.168.0/32.192.168.0.11/24
permit ip 0.0.0.0/32 0.0.0.0/32
TWEET_$ <edit to remove the first (filter) line>
TWEET_$ IP set/interface se0/filter=filter.dat
TWEET_$ IP show/interface se0/filt
Device se0: flags=8863<UP,BROADCAST,NOTRAILERS,RUNNING,MULTICAST,D2>
 VMS Device = EWA0
 IP Address = 192.168.0.16
 No common links defined
VSI TCP/IP for OpenVMS Packet Filter List for se0:
Logging is disabled
 Source Address / Port
Action Proto Hits Destination Address / Port
------ ----- ----- --
Deny tcp 15 192.168.0.38/32
 192.168.011/24 eq 22
Permit IP 13484 0.0.0.0/0
 0.0.0.0/0
 Average 0 bytes out, 0 bytes in per second
 Average 0 packets out, 0 packets in per second
TWEET_$

17.9. Configuring PMDF to use IPS on VSI
TCP/IP
The IMAP, POP3 and SMTP servers referred to in the configuration template files above refer to the
VSI TCP/IP servers only. Beginning with PMDF V6.4, PMDF has been instrumented to use IPS. The
following PMDF template files are available in the PMDF_TABLE directory:

FILTER_SERVER_PMDF_IMAP.TEMPLATE

FILTER_SERVER_PMDF_POP3.TEMPLATE

305

Chapter 17. Intrusion Prevention System (IPS)

FILTER_SERVER_PMDF_SMTP.TEMPLATE

These files should be copied to IP$:*.TXT and modified as appropriate for your installation. Edit
IP$:FILTER_SERVER_CONFIG.TXT to add INCLUDE lines for these component files, and
comment out the INCLUDE lines for the standard VSI TCP/IP IMAP, POP and SMTP files.

Next, make sure the appropriate PMDF images are installed. The legacy IMAP and POP servers
(PMDF_EXE:IMAPD.EXE and PMDF_EXE:POP3D.EXE) are already installed. The msgstore
IMAP and POP servers (PMDF_EXE:IMAP_SERVER.EXE, PMDF_EXE:POP_SERVER.EXE), as
well as the SMTP server (PMDF_EXE:TCP_SMTP_SERVER.EXE) are not installed, so they will
need to be added to your PMDF_COM:PMDF_SITE_STARTUP.COM file if your PMDF installation
uses them. These must all be installed using the /OPEN qualifier.

At this point, define the logical name PMDF_DO_FILTER_SERVER to 1, using the /SYSTEM
qualifier (this can be put in PMDF_COM:PMDF_SITE_STARTUP.COM as well).

Finally, restart IPS via the IP SET/IPS/RESTART command.

Note

The PMDF_TABLE:FILTER_SERVER_PMDF_POP3.TEMPLATE file as distributed in PMDF V6.4
has the incorrect port number of 143 specified. Make sure port 110 is specified in this file.

17.10. Controlling the Filter Server
The filter server is started at system startup time. However, it can be controlled using the IP SET /IPS
command. The valid commands and their uses are:

Table 17.3. Filter Server Control Commands

Command Description
/DEBUG_LEVEL=level Change the debug level for the server. See the description

for the debug main configuration keyword.
/CLEAR_FILTERS Causes the FILTER_SERVER process to remove all filters

set by IPS on all interfaces configured for IPS. This may be
used with SET /IPS /START and SET /IPS/RESTART, or
may be used by itself with SET /IPS/CLEAR_FILTERS.
When used by itself this causes a running IPS subsystem to
remove the IPS filters and reset the event count information
for the source address associated with each filter being
removed.

/RELOAD Re-read and parse the configuration files. Note that this will
not wipe out existing event and rule information; it will
simply update it so no potential filter information will be
lost.

/RESTART Stop and restart the filter server. All existing event and
rule information will be lost and reloaded from the
configuration files.

/START Start the filter server if it is not already running.
/STOP Stop the filter server from running. All existing event and

rule information will be lost.

306

Chapter 17. Intrusion Prevention System (IPS)

The current configuration of the filter server may also be displayed using the IP SHOW/IPS /
CONFIG=filename command. For example:

$ IP show/ips/config=server_stats.out
$ type server_stats.out
Filter server snapshot
Debug level 6
Block at destination port or system: PORT
Log to: OPCOM SNMP trap
Component ssh
 Rule ssh_bogus_id
 dest address: 192.168.0.16/32
 interface: se0
 max event count: 10
 delta time: 0 00:01:30.00
 filter durations: 300 600 1800 3600 -1
 Address 192.168.0.11/32
 number of still-queued events: 1
 number of filters created: 0
 Address entry to be deleted: N/A
 Event
 event time: 29-APR-2017 10:00:12.41
 expires: 29-APR-2017 10:01:42.41
 Rule ssh_authfailed
 dest address: 192.168.0.16/32
 interface: se0
 max event count: 10
 delta time: 0 00:01:30.00
 filter durations: 300 600 1800 3600 -1
 Rule ssh_userauth
 dest address: 192.168.0.16
 interface: se0
 max event count: 10
 delta time: 0 00:01:30.00
 filter durations: 300 600 1800 3600 -1
 Rule ssh_invaliduser
 dest address: 192.168.0.16/32
 interface: se0
 max event count: 10
 delta time: 0 00:01:30.00
 filter durations: 300 600 1800 3600 -1
 Rule ssh_invalid_id_msg
 dest address: 192.168.0.16/32
 interface: se0
 max event count: 5
 delta time: 0 00:02:00.00
 filter durations: 300 600 1800 3600 -1

17.11. Filter Server Files
The following files are associated with the filter server:

IP$:FILTER_SERVER_HOURLY_LOG.yyyymmdd

This file is an hourly activity log for the filter server. The file extension changes daily at midnight to
reflect the current day. What follows is a sample log segment for one hour:

Filter server hourly snapshot for hour 2 of 05/18/2017

307

Chapter 17. Intrusion Prevention System (IPS)

Component ssh
 Rule ssh_bogus_id
 number of hits 0
 Rule ssh_authfailed
 number of hits 0
 Rule ssh_userauth
 number of hits 0
 Rule ssh_invaliduser
 number of hits 2
 Address 192.168.0.10/32
 number of still-queued events: 0
 number of all events: 0
 number of filters created: 1
 Address entry to be deleted: 18-MAY-2017 05:55:45.45
 Address 192.168.0.204
 number of still-queued events: 0
 number of all events: 2
 number of filters created: 0
 Address entry to be deleted: 18-MAY-2017 06:22:03.97

This log is showing that during the hour 01:00-02:00, 2 different source addresses were being tracked
by the filter server:

The first address (192.168.0.10) had a filter created sometime in the last 4 hours (the time it takes an
address to have no activity before its records are deleted by the filter server). The log indicates the
address entry is to be deleted in 3 hours if there is no more activity; therefore, the filter was actually
set in the previous hour (looking at the previous hour’s entry in the log file will confirm this).

The second address (192.168.0.204) had 2 events during the hour that never triggered a filter and were
deleted after they aged. This address entry is scheduled to be deleted in 4 hours if there is no more
activity for it.

IP$:FILTER_SERVER_CONFIG.TXT

This is the main filter server configuration file. Optionally, the server will use the logical name
FILTER_SERVER_CONFIG to determine the name of the main configuration file.

IP$:FILTER_SERVER.OUT

This file contains any output resulting from starting the filter server (e.g., the output from any DCL
commands executed to start it) and all debug messages.

17.12. Instrumenting a User-Written
Application with IPS
When instrumenting an application (aka, a component), there are several steps to be followed:

• The user determines the component-specific parameters. These include:

• The prototype filter to be used when a filter is created. This is the same format as that
used when using a filter file. All filter features are supported, with the exception of the
ESTABLISHED and REPEATING keywords. Note that the source address/mask/port and
destination address/mask/port fields of the filter will be overwritten during creation of the
filter, according to the other parameters set in the configuration file.

308

Chapter 17. Intrusion Prevention System (IPS)

• Whether the filters created will block at the destination port or simply block all traffic from the
source system (the BLOCK_AT_DESTINATION_PORT keyword).

• The logging to be used.

• The user determines the ruleset:

• The user determines what rules are to be supported. There is no limit on the number of
rules the filter server can maintain; the limit is really on how complex you want to make the
component.

• For each rule, you need to determine:

• The name of the rule. This string (maximum length 35 characters) will be used by the filter
server and by the call to the filter server API call send_filter_event.

• The number of events/unit time that will trigger a filter (the MAX_COUNT and
DELTA_TIME fields).

• The duration(s) of a filter. Up to 5 may be chosen, and the list must end with -1.

• The user creates the component-specific configuration file, then adds a reference to it via the
INCLUDE keyword in the main filter server configuration file. At this point, the filter server
can be made aware of this new (or updated) configuration by using the IP SET /IPS/RELOAD
command.

Note

The filter server configuration may be reloaded multiple times without causing problems for the filter
server.

17.13. Filter Server API
There are two calls available in the filter server API. The function prototypes are defined in IP
$COMMON_ROOT:[IP.INCLUDE]FILTER_SERVER_API.H. The first call is used to register
with the filter server:

int filter_server_register(char *component, 0, 0)

where

component is the name of the component

The remaining two arguments are there for future expansion, and are ignored, but must be specified.

The return values from this function are 1 (success) or 0 (an error occurred; most likely, this is
because the filter server isn’t running). Normally this function is called once when the first event is
logged. However, if an error is returned, it may be called again when additional events are logged.

Note

The application that is registering MUST be an installed image, using /OPEN or /SHARED. It does
not need to be installed with privileges. This is an attempt to help cut down on bogus applications

309

Chapter 17. Intrusion Prevention System (IPS)

registering with the server; it takes a conscious effort - and privileges - by the system manager to do
this and therefore, to control this.

The next function is used to format and send events to the filter server:

int send_filter_event(char *rule,
 char *source_address,
 u_short source_port,
 char *dest_address)

where

rule is the name of the rule to be enforced. This must correspond to a rule keyword specified in
the per-component configuration file for the component. If a match cannot be made, the event will be
ignored by the filter server.

source_address is the address of the system that caused the event to be logged (e.g.,
“192.168.0.1”). This may be in ipv4 or ipv6 format, but must be of the same address family as that of
the destination_address specified for the component in the per-component configuration file.
Note that this is an address only. Do not specify address mask bits (e.g., “192.168.0.1/24”) with it.

source_port is the source port on the originating system.

dest_address is the destination address of the socket used to communicate to
source_address. This information may be obtained by performing a getsockname
function on the socket. Note that this is an address only. Do not specify address mask bits (e.g.,
“192.168.0.11/24”) with it.

To include these routines in your application, link using the library IP$COMMON_ROOT:
[IP.LIBRARY]FILTER_SERVER_API.OLB.

The following is an example of code used to send events to the filter server:

void ssh_send_filter_event(int code, char *addr, int port, char *dest_addr)
{
 char *rule;
 static int filter_server = -1;
if (filter_server == -1)
filter_server = filter_server_register("SSH", 0, 0);
if (!filter_server)
return;
 switch(code)
 {
case LGI$_NOSUCHUSER:
case LGI$_NOTVALID:
rule = "SSH_INVALIDUSER";
break;
case LGI$_USERAUTH:
rule = "SSH_USERAUTH";
break;
case LGI$_DISUSER:
case LGI$_ACNTEXPIR:
 case LGI$_RESTRICT:
 case LGI$_INVPWD:
 case LGI$_PWDEXPIR:
 rule = "SSH_AUTHFAILED";
 break;

310

Chapter 17. Intrusion Prevention System (IPS)

 default:
 printf("Unrecognized status code %d", code));
 return;
 }
 send_filter_event(rule, addr, (unsigned short)port, dest_addr);
}

311

Chapter 17. Intrusion Prevention System (IPS)

312

Chapter 18. Configuring DECnet-over-
IP Circuits
A special DECnet device driver allows the VSI TCP/IP system manager to configure a DECnet line
and circuit between two cooperating VSI TCP/IP systems across an arbitrary IP network. This special
driver encapsulates DECnet packets in UDP datagrams for transport via the IP protocols, in much the
same way as OpenVMS PSI encapsulates DECnet packets in X.25 when doing Data Link Mapping.

18.1. Using the Configuration Tools
VSI TCP/IP provides one tool for configuring DECnet-over-IP connections: DECNET-CONFIG. The
command-line configuration utility invoked with the IP CONFIGURE /DECNET command.

For details about these utilities, see the VSI TCP/IP Administrator's Reference, and the online
command reference (invoked with the HELP IP command).

Once configured, a DECnet-over-IP circuit comes up automatically when the hosts on each side of the
DECnet connection are rebooted.

When configuring a DECnet-over-IP circuit, you are prompted for:

• The IP address of the host on the opposite side of the connection

• The COST that DECnet assigns to the circuit

• The HELLO TIMER that DECnet should use on this circuit

For proper DECnet operation, the COST and HELLO TIMER must be the same on both sides of the
connection.

Note

If you configure a DECnet-over-IP link, and you also run DECnet over another Ethernet interface,
you must configure your system as a router as follows:

 $ RUN SYS$SYSTEM:NCP
NCP>DEFINE EXECUTOR TYPE ROUTING IV

Non-routing hosts can only communicate with the hosts reachable via the circuit with the lowest cost.
If, for example, your Ethernet circuit has a cost of 4, and your DECnet-over-IP link has a cost of 1
(the default), your system will be unable to communicate with hosts accessible over the Ethernet link.

18.2. Examples of Connecting Two Systems
The following examples show how to make a connection between two systems, betty.urub.edu (IP
address 192.0.0.6) and wilma.fstone.com (IP address 128.0.0.125). The first example shows the
circuit configuration on the host "betty":

$ IP CONFIGURE /DECNET
VSI TCP/IP for OpenVMS DECNET Circuit Configuration Utility 10.5(nnn)
[Reading in configuration from IP$:DECNET-CIRCUITS.COM]
DECNET-CONFIG>ADD

313

Chapter 18. Configuring DECnet-over-IP Circuits

[Adding new configuration entry for DECnet circuit "TCP-0-0"]
Destination IP Address: [NONE] 128.0.0.125
DECnet circuit cost: [1] 1
DECnet hello timer (in seconds): [300] 300
[TCP-0-0 => 128.0.0.125 (Cost=1, Hello Timer=300)]
DECNET-CONFIG>EXIT
[Writing configuration to IP$:DECNET-CIRCUITS.COM]
$

The next example shows the circuit configuration on the host "wilma":

$ IP CONFIGURE /DECNET
VSI TCP/IP for OpenVMS DECNET Circuit Configuration Utility 10.5(nnn)
[Reading in configuration from IP$:DECNET-CIRCUITS.COM]
DECNET-CONFIG>ADD
[Adding new configuration entry for DECnet circuit "TCP-0-0"]
Destination IP Address: [NONE] 192.0.0.6
DECnet circuit cost: [1] 1
DECnet hello timer (in seconds): [300] 300
[TCP-0-0 => 192.0.0.6 (Cost=1, Hello Timer=300)]
DECNET-CONFIG>EXIT
[Writing configuration to IP$:DECNET-CIRCUITS.COM]
$

18.3. DECnet Encapsulation Over Unreliable
Networks
Both TCP and DECnet guarantee reliable delivery of data over unreliable networks. This is
accomplished through an acknowledgment scheme in which the receiver of the data tells the
transmitter of the data that the data has arrived intact. If the acknowledgment is not received within
a certain period of time (known as the retransmission timer), the data is resent by the
transmitter.

The data transmitter must make a good estimate of the retransmission timer. Too long an interval
causes unnecessary waits before retransmission occurs, reducing the usable bandwidth of the network.
Too short an interval means the transmitter might retransmit data that was merely delayed in transit,
unnecessarily loading the network.

• TCP chooses the retransmission timer as a function of the mean and the variance in the
roundtrip time so that a statistically small percentage of packets are unnecessarily
retransmitted.

• DECnet chooses the retransmission timer as the product of the round trip time (with a minimum of
one second) and the delay factor.

The method used by DECnet does not take into account the variance of the round-trip time and
estimated roundtrip times of less than one second.

DECnet uses a very conservative value for the delay factor to avoid any unnecessary retransmissions
into congested, low-speed links. A single lost packet results in a delay of at least five seconds in
DECnet traffic. Over high-speed, low-latency circuits with any substantial packet loss, this delay
results in a severe performance degradation.

If your network has these characteristics, you can substantially increase performance by reducing
the delay factor using NCP on each of your nodes. Doing so gives DECnet a more aggressive

314

Chapter 18. Configuring DECnet-over-IP Circuits

retransmission strategy, which results in shorter delays following a lost packet. Specify the delay
factor in units of 1/16th of the mean round-trip time using the NCP EXECUTOR parameter DELAY
FACTOR.

Reasonable factors range from 1.5 to 3, or DELAY FACTOR values from 24 to 48. A retransmission
factor of 1.5 is very aggressive and about as small as is reasonable before many extra retransmissions
occur; a value of 3 more closely mimics TCP's behavior over lines which have typical variances in the
roundtrip time.

You can set the DELAY FACTOR to 24/16ths (1.5) using the following NCP commands:

$ MCR NCP
NCP>SET EXECUTOR DELAY FACTOR 24
NCP>DEFINE EXECUTOR DELAY FACTOR 24
NCP>EXIT
$

18.4. Using IP SET /DECNET
Use the IP SET /DECNET command to configure the TCPAx: DECnet devices for running DECnet
over UDP.

Note

You should configure DECnet circuits using DECNET-CONFIG, which invokes IP SET /DECNET as
part of network startup to set up the DECnet link. You can use this utility to change the configuration
once the network has started.

315

Chapter 18. Configuring DECnet-over-IP Circuits

316

Appendix D. How NFS Converts File
Names
The NFS to OpenVMS file name translation rules in the Table D.1 are based on the character mapping
scheme in Table D.2. The OpenVMS to NFS mapping rules are the converse of these rules.

Table D.1. NFS Server to OpenVMS Client File Name Conversion Rules

Rule What Happens to File Names from NFS to OpenVMS
1 Lowercase characters become uppercase (unless Rule 2 applies). For example,

file becomes FILE.;1
2 Initial uppercase characters or a sequence of case-shifted characters are

prefixed with the "$" escape character. For example, CaseShiftedFile becomes
CASESHIFTEDFILE.;1

3 A file without a version gets a version number preceded by a semicolon. For
example, file becomes FILE.;1

4 If a file name does not include a dot (.), a dot is added before the version
number semicolon. For example, file becomes FILE.;1

5 After its name is converted, a file will not appear in an OpenVMS directory
listing if any one of the following criteria are met:

• The file name is more than 39 characters long.

• The file extension is more than 39 characters long.

• The version number is greater than 32767.
6 If the file name has a dot, the dot is preserved unless the resulting file name

fails one of the tests in Rule 5; if so, the dot becomes "$5N" and the same rule
applies to each subsequent dot found. For example, more.file.text becomes
MORE.FILE$5NTEXT;1

7 If the file name is a directory, each dot becomes "$5N" and the file name
gets the ".DIR" extension. For example, dot.directory.list becomes DOT
$5NDIRECTORY$5NLIST.DIR;1

8 Invalid OpenVMS characters become the escape character sequences in
the second column of Table D.2 ("$" followed by a digit and a letter). For
example, special#character&file becomes SPECIAL$5CCHARACTER
$5FFILE.;1 ("#" becomes "$5C" and "&" becomes "$5F")

9 Any existing "$" becomes "$$" (plus any "$" added due to Rule 2 or 8 above).
For example, dollar$Sign$5cfile becomes DOLLAR$$$S$IGN$$5CFILE.;1

Table D.2 provides a complete list of OpenVMS character sequences, corresponding server characters,
and octal values used for NFS name conversion.

Table D.2. NFS Client Name Conversion

OpenVMS Character
Sequence

Server Character Octal Value

$6A <CTRL/@> 000

317

Appendix D. How NFS Converts File Names

OpenVMS Character
Sequence

Server Character Octal Value

$4A <CTRL/A> 001
$4B <CTRL/B> 002
$4C <CTRL/C> 003
$4D <CTRL/D> 004
$4E <CTRL/E> 005
$4F <CTRL/F> 006
$4G <CTRL/G> 007
$4H <CTRL/H> 010
$4I <CTRL/I> 011
$4J <CTRL/J> 012
$4K <CTRL/K> 013
$4L <CTRL/L> 014
$4M <CTRL/M> 015
$4N <CTRL/N> 016
$4O <CTRL/O> 017
$4P <CTRL/P> 020
$4Q <CTRL/Q> 021
$4R <CTRL/R> 022
$4S <CTRL/S> 023
$4T <CTRL/T> 024
$4U <CTRL/U> 025
$4V <CTRL/V> 026
$4X <CTRL/W> 027
$4X <CTRL/X> 030
$4Y <CTRL/Y> 031
$4Z <CTRL/Z> 032
$6B <CTRL/[> 033
$6C <CTRL/\>> 034
$6D <CTRL/]> 035
$6E <CTRL/^> 036
$6F <CTRL/_> 037
$7A <SPACE> 040
$5A ! 041
$5B " 042
$5C # 043
$5E % 045
$5F & 046

318

Appendix D. How NFS Converts File Names

OpenVMS Character
Sequence

Server Character Octal Value

$5G ' 047
$5H (050
$5I) 051
$5J * 052
$5K + 053
$5L , 054
$5N . 056
i$5O / 057
$5Z : 072
$7B ; 073
$7C < 074
$7D = 075
$7E > 076
$7F ? 077
$8A @ 100
$8B [133
$8C \ 134
$8D] 135
$8E ^ 136
$9A ` 140
$9B { 172
$9C | 174
$9D } 175
$9E ~ 176
$9F 177

319

Appendix D. How NFS Converts File Names

OpenVMS Character
Sequence

Server Character Octal Value

320

Appendix E. DNSSEC
Cryptographic authentication of DNS information is possible through the DNS Security (DNSSEC-
bis) extensions, defined in RFC 4033, RFC 4034, and RFC 4035. This section describes the creation
and use of DNSSEC signed zones.

In order to setup a DNSSEC secure zone, there are a series of steps, which must be followed. BIND9
ships with several tools that are used in this process, which are explained in more detail below. In all
cases, the -h option prints a full list of parameters.

Note

For use with VSI TCP/IP 10.5, define symbols for each of the tools, and call the symbol from the
command line. For example, to use the dnssec-keygen tool, a symbol could be created as follows:

$ keygen :== IP:dnssec-keygen
$ keygen -h

There must also be communication with the administrators of the parent and/or child zone to transmit
keys. A zone’s security status must be indicated by the parent zone for a DNSSEC capable resolver to
trust its data. This is done through the presence or absence of a DS record at the delegation point.

For other servers to trust data in this zone, they must either be statically configured with this zone’s
zone key or the zone key of another zone above this one in the DNS tree.

E.1. Generating Keys
The dnssec-keygen program is used to generate keys. A secure zone must contain one or more zone
keys. The zone keys will sign all other records in the zone, as well as the zone keys of any secure
delegated zones. Zone keys must have the same name as the zone, a name type of ZONE, and must be
usable for authentication. It is recommended that zone keys use a cryptographic algorithm designated
as “mandatory to implement” by the IETF; currently the only one is RSASHA1. For convenience, run
the dnssec-keygen tool in the directory the zone data files are located, do you won’t need to use full
pathnames as arguments.

The following command will generate a 768-bit RSASHA1 key for the child.example zone, the
symbol keygen has been created to refer to the dnssec-keygen executable:

$ keygen -a RSASHA1 -b 768 -n ZONE child-example

Note

File names specified with the tools must conform to OpenVMS naming conventions. Be aware of
using multiple dots, etc. which will generate errors upon file creation.

Two output files will be produced: Kchild-example-005-12345.key and Kchild-
example-005-12345.private (where 12345 is an example of a key tag). The key filenames
contain the key name (child-example.), algorithm (3 is DSA, 1 is RSAMD5, 5 is RSASHA1,
etc.), and the key tag (12345 in this case). The private key (in the .private file) is used to generate
signatures, and the publickey (in the .key file) is used for signature verification.

321

Appendix E. DNSSEC

Note

Always protect the .private key, anyone who knows it can forge signed zone data. The
.private key file will be written readable and writable only by the user who runs it. VSI
recommends running the DNSSEC tools from a suitably privileged account.

To generate another key with the same properties (but with a different key tag), repeat the above
command.

The dnssec-keyfromlabel program is used to get a key pair from a crypto hardware and build the key
files. Its usage is similar to dnssec-keygen.

The publickeys can be inserted into the zone file by pasting in their contents, or better yet by
including the .key file using $include statements. For example, to insert the publickey for child-
example, add the following $include statement to the zone file:

$ include Kchild-example-005-12345.key ;

The zone file (for examples in this Appendix, the file name is zone.1) may look like this:

$TTL 100
$ORIGIN child-example.
@ IN SOA a.example. a.a.example. 1 360 36 60480 12
 NS a.example.
 NS b.example.
one A 10.10.10.10
two A 10.10.10.100
 MX 10 one.zz.example.
$include Kchild-example-005-12345.key ;

E.2. Signing the Zone
With the key included in the zone file, use the dnssec-signzone program to sign the zone.

Any keyset files corresponding to secure subzones should be present. The zone signer will generate
NSEC, NSEC3 and RRSIG records for the zone, as well as DS for the child zones if ‘-g’ is specified.
If ‘-g’ is not specified, then DS RRsets for the secure child zones need to be added manually.

The following command signs the zone, assuming it is in a file called zone.1. By default, all zone
keys which have an available private key are used to generate signatures. First, define a symbol for
dnssec-signzone:

$ signer :== IP:dnssec-signzone

The -o option specifies the zone origin, the default is the zone file name.

$ signer -o child-example zone.1

Note

You may see the message “No self signing KSK found.” This is normal, as no KSK (key signing key)
has been generated at this point. Only a ZSK (zone signing key) is present.

One output file is produced: zone.1_signed.

322

Appendix E. DNSSEC

This file should be referenced by named.conf as the input file for the zone.

The output file, zone.1_signed,shown in the following example:

; dnssec_signzone version 9.7.2-p3
child-example. 100 IN SOA a.example. a.a.example. (
 1 ; serial
 360 ; refresh (6 minutes)
 36 ; retry (36 seconds)
 60480 ; expire (16 hours 48 minutes)
 12 ; minimum (12 seconds)
)
100 RRSIG SOA 5 1 100 20110428114855 (
 20110329114855 36111 child-example.
 rWVs/euooBTVk0MzhxHQio61rDBhzAId13sV
 KXphVsA64bqyayhJcCfikmxww6vq6gG0W3mR
 z1tbIQ7znZ0SN90dsWhEcoEaEmm1Sl6hwSVY
 OzaYrN8HgahzcrNlsX5l)
100 NS a.example.
100 NS b.example.
100 RRSIG NS 5 1 100 20110428114855 (
 20110329114855 36111 child-example.
 SOrA8BihARhE+SPl/iYjB8PTqk+8lc4sEE4b
 CYhgcF6d9VOZtCotQFUqVKrk65xoGqf60+9R
 kBJr6lsOwr6mqDVCiZzVnAy1frWD8T8q5HNK
 nzVR8gb7AXyPtbgKqOS3)
12 NSEC one.child-example. NS SOA RRSIG NSEC DNSKEY
12 RRSIG NSEC 5 1 12 20110428114855 (
 20110329114855 36111 child-example.
 L0K9USccXSgO4iYBaXDOrQ0zzrxVVRECwjAb
 DAeZqVec525V6kNIB5F2mCxjSJqlJ5C40vr+
 lCqe/EGzjxplEzqq0nSN/fCtTgXqhLL6EfZx
 M1lvB5C+4K4hR20neVWy)
100 DNSKEY 256 3 5 (
 AwEAAcXIK+ljUWgMENcS9TUqnZGEFMOE5DBP
 WyQu5aIGSZqTTcvMWsaFtS7800LjapDB4kcs
 xwecfdA4I/0dUHPuHqmQREGfq/xstyxLPHKS
 MEkJthkVurf4MWzdX8dAVEd/GQ==
 ; key id = 36111
100 RRSIG DNSKEY 5 1 100 20110428114855 (
 20110329114855 36111 child-example.
 O8t91OOvLCSotc7mTG7iVr6fyeg7AA6ZuzHR
 GfN0dbOFzZHGxSAj2pRXPz8FC/eYz+ngy6rK
 23UhdklmuJN35IEA+qkXBilS7NJtEvaONOud
 1ANN6qQDtXyYFxnCuEN0)
one.child-example. 100 IN A 10.10.10.10
100 RRSIG A 5 2 100 20110428114855 (
 20110329114855 36111 child-example.
 o3TPUffd5dLuxoac0TVVsT8HU3MFoJtIbfXV
 apidfBY7IbxU6YWgPPwkYO1oKgJ3CnWmKTZQ
 sUB+QRE1VHn8GmPbyjbg9QfhIKZDEQyT2f7x
 41QDNznnKnJyYjhmbyCf)
12 NSEC two.child-example. A RRSIG NSEC
12 RRSIG NSEC 5 2 12 20110428114855 (
 20110329114855 36111 child-example.
 w3RXqBeiUk/njCh/nHg2s1hv9kYynGdRsp2A
 vYm8ahrq4pGv1DLr6uuwCT5vBfjor1l5ePBj
 jsIO3FLkWyO7miBpfiLLPa7umKSQLN0AZGIE

323

Appendix E. DNSSEC

 /5Z7LSc80o2fzwqcBkub)
two.child-example. 100 IN A 10.10.10.100
100 RRSIG A 5 2 100 20110428114855 (
 20110329114855 36111 child-example.
 jQAof31o6bO4oOVlhLAt6NQkifz1l4qnfN4a
 viZiB0RmLYuRNnHFRAPyZLkoI8PTgCuCdV/e
 co1ifFnXU9UauNnK/wQw8Djurvra/YMq8f5W
 ZZcOReQvZUoD8mS4C3ec)
100 MX 10 one.zz.example.
100 RRSIG MX 5 2 100 20110428114855 (
 20110329114855 36111 child-example.
 hIQI20XS9qYdi5/3qMp1VeU0aQqBwQsugwkw
 mCD9gY7BrpYjMeeg3XQHY0Qx7ElqLc9Q0F3C
 kC0ETM5CDnUAicXCy2TOc1DAKfSOYlKRnzVd
 a5LlFGymsi2gVyW7VssH)
12 NSEC child-example. A MX RRSIG NSEC
12 RRSIG NSEC 5 2 12 20110428114855 (
 20110329114855 36111 child-example.
 OhIM8y6IGXixOUtD+ZH/bicznRtX6YrdeXxg
 5bD3ROSUcfpCL5YAUxfk/B9nj2n1OStle88r
 O7EeMB2rSiAPqYW88ZbIXXhOHsE6z3ff7Plc
 B3pT56MBxUh5cm2WDYTL)

dnssec-signzone will also produce a keyset and dsset files and optionally a dlvset file. These are used
to provide the parent zone administrators with the DNSKEYs (or their corresponding DS records) that
are the secure entry point to the zone.

E.3. Configuring Servers
To enable named to respond appropriately to DNS requests from DNSSEC aware clients, the option
dnssec-enable must be set to yes. (This is the default setting.)

To enable named to validate answers from other servers, the dnssec-enable and dnssec-validation
options must both be set to yes, and at least one trust anchor must be configured with a trusted-keys
or managed-keys statement in named.conf.

trusted-keys are copies of DNSKEY RRs for zones that are used to form the first link in the
cryptographic chain of trust. All keys listed in trusted-keys (and corresponding zones) are deemed to
exist and only the listed keys will be used to validated the DNSKEY RRset that they are from.

managed-keys are trusted keys which are automatically kept up to date via RFC 5011 trust anchor
maintenance.

After DNSSEC is established, a typical DNSSEC configuration will look something like the
following. It has one or more publickeys for the root. This allows answers from outside the
organization to be validated. It will also have several keys for parts of the namespace the organization
controls. These are here to ensure that named is immune to compromises in the DNSSEC components
of the security of parent zones.

managed-keys {
/* Root Key */
 "." initial-key 257 3 3

"BNY4wrWM1nCfJ+CXd0rVXyYmobt7sEEfK3clRbGaTwS
JxrGkxJWoZu6I7PzJu/E9gx4UC1zGAHlXKdE4zYIpRh
aBKnvcC2U9mZhkdUpd1Vso/HAdjNe8LmMlnzY3zy2Xy
4klWOADTPzSv9eamj8V18PHGjBLaVtYvk/ln5ZApjYg

324

Appendix E. DNSSEC

hf+6fElrmLkdaz MQ2OCnACR817DF4BBa7UR/beDHyp
5iWTXWSi6XmoJLbG9Scqc7l70KDqlvXR3M/lUUVRbke
g1IPJSidmK3ZyCllh4XSKbje/45SKucHgnwU5jefMtq
66gKodQj+MiA21AfUVe7u99WzTLzY3qlxDhxYQQ20FQ
97S+LKUTpQcq27R7AT3/V5hRQxScINqwcz4jYqZD2fQ
dgxbcDTClU0CRBdiieyLMNzXG3";
};

trusted-keys {
/* Key for our organization’s forward zone */
example.net. 257 3 5
"AwEAAaxPMcR2x0HbQV4WeZB6oEDX+r0QM6
5KbhTjrW1ZaARmPhEZZe3Y9ifgEuq7vZ/z
GZUdEGNWy+JZzus0lUptwgjGwhUS1558Hb
4JKUbbOTcM8pwXlj0EiX3oDFVmjHO444gL
kBOUKUf/mC7HvfwYH/Be22GnClrinKJp1O
g4ywzO9WglMk7jbfW33gUKvirTHr25GL7S
TQUzBb5Usxt8lgnyTUHs1t3JwCY5hKZ6Cq
FxmAVZP20igTixin/1LcrgX/KMEGd/biuv
F4qJCyduieHukuY3H4XMAcR+xia2nIUPvm
/oyWR8BW/hWdzOvnSCThlHf3xiYleDbt/o
1OTQ09A0=";

/* Key for our reverse zone. */

2.0.192.IN-ADDRPA.NET. 257 3 5
"AQOnS4xn/IgOUpBPJ3bogzwc
xOdNax071L18QqZnQQQAVVr+i
LhGTnNGp3HoWQLUIzKrJVZ3zg
gy3WwNT6kZo6c0tszYqbtvchm
gQC8CzKojM/W16i6MG/eafGU3
siaOdS0yOI6BgPsw+YZdzlYMa
IJGf4M4dyoKIhzdZyQ2bYQrjy
Q4LB0lC7aOnsMyYKHHYeRvPxj
IQXmdqgOJGq+vsevG06zW+1xg
YJh9rCIfnm1GX/KMgxLPG2vXT
D/RnLX+D3T3UL7HJYHJhAZD5L
59VvjSPsZJHeDCUyWYrvPZesZ
DIRvhDD52SKvbheeTJUm6Ehkz
ytNN2SN96QRk8j/iI8ib";
};

options { ...
dnssec-enable yes;
dnssec-validation yes;
};

Note

None of the keys listed in this example are valid. In particular, the root key is not valid.

When DNSSEC validation is enabled and properly configured, the resolver will reject any answers
from signed, secure zones which fail to validate, and will return SERVFAIL to the client.

Responses may fail to validate for any of several reasons, including missing, expired, or invalid
signatures, a key that does not match the DS RRset in the parent zone, or an insecure response from a
zone, which, according to its parent, should have been secure.

325

Appendix E. DNSSEC

When the validator receives a response from an unsigned zone that has a signed parent, it must
confirm with the parent that the zone was intentionally left unsigned by verifying or via signed and
validated NSEC/NSEC3 records,because the parent zone contains no DS records for the child. If the
validator can prove that the zone is insecure, then the response is accepted. However, if it cannot,
then it must assume an insecure response to be a forgery; it rejects the response and logs an error. The
logged error reads “insecurity proof failed” and “got insecure response; parent indicates it should be
secure”.

E.4. DNSSEC, Dynamic Zones, and Automatic
Signing
As of BIND 9.7.0 it is possible to change a dynamic zone from insecure to signed and back again. A
secure zone can use either NSEC or NSEC3 chains.

E.4.1. Converting from insecure to secure
Changing a zone from insecure to secure can be done in two ways: using a dynamic DNS update, or
the auto-dnssec zone option.

For either method, you need to configure named so that it can see the K* files which contain the
public and private parts of the keys that will be used to sign the zone. These files will have been
generated by dnssec-keygen. You can do this by placing them in the key-directory, as specified in
named.conf:

zone example.net {
 type master;
 update-policy local;
 file "example.net";
 key-directory "IP$COMMON_ROOT:[IP]";
};

If one KSK and one ZSK DNSKEY key have been generated, this configuration will cause all records
in the zone to be signed with the ZSK, and the DNSKEY RR set to be signed with the KSK as well.
An NSEC chain will be generated as part of the initial signing process.

E.4.2. Dynamic DNS update method
To insert the keys via dynamic update:

$ nsupdate :== IP:nsupdate.exe
$ nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7
 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y
> update add example.net DNSKEY 257 3 7
 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+
> send

While the update request will complete almost immediately, the zone will not be completely signed
until named has had time to walk the zone and generate the NSEC and RRSIG records. The NSEC
record at the apex will be added last, to signal that there is a complete NSEC chain.

If you wish to sign using NSEC3 instead of NSEC, you should add an NSEC3PARAM record to the
initial update request. If you wish the NSEC3 chain to have the OPTOUT bit set, set it in the flags
field of the NSEC3PARAM record.

326

Appendix E. DNSSEC

$ nsupdate
> ttl 3600
> update add example.net DNSKEY 256 3 7
 AwEAAZn17pUF0KpbPA2c7Gz76Vb18v0teKT3EyAGfBfL8eQ8al35zz3Y
> update add example.net DNSKEY 257 3 7
 AwEAAd/7odU/64o2LGsifbLtQmtO8dFDtTAZXSX2+X3e/
> update add example.net NSEC3PARAM 1 1 100 1234567890
> send

Again, this update request will complete almost immediately; however, the record will not show
up until named has had a chance to build/remove the relevant chain. A private type record will be
created to record the state of the operation (see below for more details), and will be removed once the
operation completes.

While the initial signing and NSEC/NSEC3 chain generation is happening, other updates are possible
as well.

E.4.3. Fully automatic zone signing
To enable automatic signing, add the auto-dnssec option to the zone statement in named.conf. auto-
dnssec has two possible arguments: allow or maintain.

With auto-dnssec allow, named can search the key directory for keys matching the zone, insert
them into the zone, and use them to sign the zone. It will do so only when it receives an rndc sign
zonename or rndc loadkeys zonename command.

auto-dnssec maintain includes the above functionality, but will also automatically adjust the zone’s
DNSKEY records on schedule according to the keys’ timing metadata. If keys are present in the key
directory the first time the zone is loaded, it will be signed immediately, without waiting for an rndc
sign or rndc loadkeys command. (Those commands can still be used when there are unscheduled key
changes, however.)

Using the auto-dnssec option requires the zone to be configured to allow dynamic updates, by adding
an allow-update or update-policy statement to the zone configuration. If this has not been done, the
configuration will fail.

E.4.4. Private-type records
The state of the signing process is signaled by private-type records (with a default type value of
65534). When signing is complete, these records will have a non-zero value for the final octet (for
those records that have a non-zero initial octet).

The private type record format: If the first octet is non-zero then the record indicates that the zone
needs to be signed with the key matching the record, or that all signatures that match the record
should be removed.

algorithm (octet 1)

key id in network order (octet 2 and 3)

removal flag (octet 4)

complete flag (octet 5)

Only records flagged as “complete” can be removed via dynamic update. Attempts to remove other
private type records will be silently ignored. If the first octet is zero (this is a reserved algorithm
number that should never appear in a DNSKEY record) then the record indicates changes to the

327

Appendix E. DNSSEC

NSEC3 chains are in progress. The rest of the record contains an NSEC3PARAM record. The flag
field tells what operation to perform based on the flag bits.

0x01 OPTOUT

0x80 CREATE

0x40 REMOVE

0x20 NONSEC

E.5. DNSKEY rollovers
As within secure-to-secure conversions, rolling DNSSEC keys can be done in two ways: using a
dynamic DNS update, or the auto-dnssec zone option.

E.5.1. Dynamic DNS update method
To perform key rollovers via dynamic update, you need to add the K* files for the new keys so that
named can find them. You can then add the new DNSKEY RRs via dynamic update. named will then
cause the zone to be signed with the new keys. When the signing is complete the private type records
will be updated so that the last octet is non-zero.

If this is for a KSK you need to inform the parent and any trust anchor repositories of the new KSK.

You should then wait for the maximum TTL in the zone before removing the old DNSKEY. If it is
a KSK that is being updated, you also need to wait for the DS RRset in the parent to be updated and
its TTL to expire. This ensures that all clients will be able to verify at least one signature when you
remove the old DNSKEY.

The old DNSKEY can be removed via UPDATE. Take care to specify the correct key. named will
clean out any signatures generated by the old key after the update completes.

E.5.2. Automatic key rollovers
When a new key reaches its activation date (as set by dnssec-keygen or dnssec-settime), if the auto-
dnssec zone option is set to maintain, named will automatically carry out the key roll over. If the key’s
algorithm has not previously been used to sign the zone, then the zone will be fully signed as quickly
as possible. However, if the new key is replacing an existing key of the same algorithm, then the zone
will be re-signed incrementally, with signatures from the old key being replaced with signatures from
the new key as their signature validity periods expire. By default, this rollover completes in 30 days,
after which it will be safe to remove the old key from the DNSKEY RRset.

E.5.3. NSEC3PARAM rollovers via UPDATE
Add the new NSEC3PARAM record via dynamic update. When the new NSEC3 chain has been
generated, the NSEC3PARAM flag field will be zero. At this point, you can remove the old
NSEC3PARAM record. The old chain will be removed after the update request completes.

E.5.4. Converting from NSEC to NSEC3
To do this, you just need to add an NSEC3PARAM record. When the conversion is complete, the
NSEC chain will have been removed and the NSEC3PARAM record will have a zero flag field. The
NSEC3 chain will be generated before the NSEC chain is destroyed.

328

Appendix E. DNSSEC

E.5.5. Converting from NSEC3 to NSEC
To do this, use nsupdate to remove all NSEC3PARAM records with a zero flag field. The NSEC chain
will be generated before the NSEC3 chain is removed.

E.5.6. Converting from secure to insecure
To convert a signed zone to unsigned using dynamic DNS, delete all the DNSKEY records from the
zone apex using nsupdate. All signatures, NSEC or NSEC3 chains, and associated NSEC3PARAM
records will be removed automatically. This will take place after the update request completes.

This requires the dnssec-secure-to-insecure option to be set to yes in named.conf.

In addition, if the auto-dnssec maintain zone statement is used, it should be removed or
changed to allow instead (or it will re-sign).

E.5.7. Periodic re-signing
In any secure zone which supports dynamic updates, named will periodically re-sign RRsets which
have not been re-signed as a result of some update action. The signature lifetimes will be adjusted to
spread the re-sign load over time rather than all at once.

E.5.8. NSEC3 and OPTOUT
named supports creating new NSEC3 chains where all the NSEC3 records in the zone have the same
OPTOUT state. named also supports UPDATES to zones where the NSEC3 records in the chain have
mixed OPTOUT state. named does not support changing the OPTOUT state of an individual NSEC3
record, the entire chain needs to be changed if the OPTOUT state of an individual NSEC3 needs to be
changed.

E.6. Dynamic Trust Anchor Management
BIND 9.7.0 introduces support for RFC 5011, dynamic trust anchor management. Using this feature
allows named to keep track of changes to critical DNSSEC keys without any need for the operator to
make changes to configuration files.

E.6.1. Validating Resolver
To configure a validating resolver to use RFC 5011 to maintain a trust anchor, configure the trust
anchor using a managed-keys statement.

E.6.2. Authoritative Server
To set up an authoritative zone for RFC 5011 trust anchor maintenance, generate two (or more) key
signing keys (KSKs) for the zone. Sign the zone with one of them; this is the “active” KSK. All
KSK’s which do not sign the zone are “stand-by” keys.

Any validating resolver which is configured to use the active KSK as an RFC 5011-managed trust
anchor will take note of the stand-by KSKs in the zone’s DNSKEY RRset, and store them for future
reference. The resolver will recheck the zone periodically, and after 30 days, if the new key is still
there, then the key will be accepted by the resolver as a valid trust anchor for the zone. Any time after

329

Appendix E. DNSSEC

this 30-day acceptance timer has completed, the active KSK can be revoked, and the zone can be
“rolled over” to the newly accepted key.

The easiest way to place a stand-by key in a zone is to use the “smart signing” features of dnssec-
keygen and dnssec-signzone. If the key has a publication date in the past, but an activation date
which is unset or in the future, “dnssec-signzone -S” will include the DNSKEY record in the
zone, but will not sign with it:

$ dnssec-keygen -K keys -f KSK -P now -A now+2y example.net
$ dnssec-signzone -S -K keys example.net

To revoke a key, the new command dnssec-revoke has been added. This adds the REVOKED bit to
the key flags and re-generates the K*.key and K*.private files. After revoking the active key, the
zone must be signed with both the revoked KSK and the new active KSK. (Smart signing takes care
of this automatically.)

Once a key has been revoked and used to sign the DNSKEY RRset in which it appears, that key will
never again be accepted as a valid trust anchor by the resolver. However, validation can proceed using
the new active key (which had been accepted by the resolver when it was a stand-by key).

See RFC 5011 for more details on key rollover scenarios.

When a key has been revoked, its key ID changes, increasing by 128, and wrapping around at 65535.
So, for example, the key “Kexample-net-005-10000” becomes “Kexample-net-005-10128”.

If two keys have ID’s exactly 128 apart, and one is revoked, then the two key ID’s will collide,
causing several problems. To prevent this, dnssec-keygen will not generate a new key if another key
is present which may collide. This checking will only occur if the new keys are written to the same
directory that holds all other keys in use for that zone.

Older versions of BIND9 did not have this precaution. Exercise caution if using key revocation on
keys that were generated by previous releases, or if using keys stored in multiple directories or on
multiple machines.

It is expected that a future release of BIND9 will address this problem in a different way, by storing
revoked keys with their original unrevoked key ID’s.

330

Appendix F. Language Support for
TN3270 and TN5250
All of the TN3270 and TN5250 clients have been modified to properly handle large key mapping files
like MAP3270.DAT and MAP5250.DAT without causing any access violations.

The extended TN3270 client has been modified to allow you to change its notion of the local language
and Icelandic has been added to the supported languages.

To use the extended TN3270 client, do the following:

$ DEFINE IP_TN3270_EMULATOR DPC_EXTENDED

To change the local language,

$ DEFINE IP_DPC_TN3270_LANGUAGE language

The language parameter can be one of the following:

BRAZILIAN FRENCH CANADIAN NEW HEBREW SPANISH
BUILTIN HEBREW GERMAN OLD BELGIAN SPANISH SPEAKING
DANISH ICELANDIC OLD HEBREW SWISS
FINNISH ITALIAN OLD PORTUGUESE UK ENGLISH
FRENCH NEW BELGIAN PORTUGUESE US ENGLISH

331

Appendix F. Language Support for TN3270 and TN5250

332

Appendix G. Trademark and
Copyright Notifications
This appendix contains a complete listing of trademarks and copyright notification contained in this
manual.

The material in this document is for informational purposes only and is subject to change without
notice. It should not be construed as a commitment by VMS Software, inc. VMS Software, inc.
assumes no responsibility for any errors that may appear in this document.

Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013.

The following third-party software may be included with your product and will be subject to the
software license agreement.

Network Time Protocol (NTP). Copyright © 1992-2004 by David L. Mills. The University of
Delaware makes no representations about the suitability of this software for any purpose.

Point-to-Point Protocol. Copyright © 1989 by Carnegie-Mellon University. All rights reserved. The
name of the University may not be used to endorse or promote products derived from this software
without specific prior written permission. Redistribution and use in source and binary forms are
permitted provided that the above copyright notice and this paragraph are duplicated in all such forms
and that any documentation, advertising materials, and other materials related to such distribution
and use acknowledge that the software was developed by Carnegie Mellon University. The name of
the University may not be used to endorse or promote products derived from this software without
specific prior written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE
IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

RES_RANDOM.C. Copyright © 1997 by Niels Provos <provos@physnet.uni-hamburg.de> All
rights reserved. Redistribution and use in source and binary forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement: This product includes software developed by Niels Provos.

4. The name of the author may not be used to endorse or promote products derived from this
software without specific prior written permission.

Copyright © 1990 by John Robert LoVerso. All rights reserved. Redistribution and use in source and
binary forms are permitted provided that the above copyright notice and this paragraph are duplicated

333

Appendix G. Trademark and Copyright Notifications

in all such forms and that any documentation, advertising materials, and other materials related to
such distribution and use acknowledge that the software was developed by John Robert LoVerso.

Kerberos. Copyright © 1989, DES.C and PCBC_ENCRYPT.C Copyright © 1985, 1986, 1987,
1988 by Massachusetts Institute of Technology. Export of this software from the United States
of America is assumed to require a specific license from the United States Government. It is the
responsibility of any person or organization contemplating export to obtain such a license before
exporting. WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted, provided that the
above copyright notice appear in all copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of M.I.T. not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior permission. M.I.T.
makes no representations about the suitability of this software for any purpose. It is provided "as is"
without express or implied warranty.

DNSSIGNER (from BIND distribution) Portions Copyright (c) 1995-1998 by Trusted Information
Systems, Inc.

Portions Copyright (c) 1998-1999 Network Associates, Inc.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee is
hereby granted, provided that the above copyright notice and this permission notice appear in all
copies. THE SOFTWARE IS PROVIDED "AS IS" AND TRUSTED INFORMATION SYSTEMS
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
TRUSTED INFORMATION SYSTEMS BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT,
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

ERRWARN.C. Copyright © 1995 by RadioMail Corporation. All rights reserved. Redistribution
and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. Neither the name of RadioMail Corporation, the Internet Software Consortium nor the names
of its contributors may be used to endorse or promote products derived from this software
without specific prior written permission. THIS SOFTWARE IS PROVIDED BY RADIOMAIL
CORPORATION, THE INTERNET SOFTWARE CONSORTIUM AND CONTRIBUTORS
``AS IS’’ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL RADIOMAIL
CORPORATION OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

334

Appendix G. Trademark and Copyright Notifications

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE. This software was written for RadioMail Corporation by Ted Lemon under a
contract with Vixie Enterprises. Further modifications have been made for the Internet Software
Consortium under a contract with Vixie Laboratories.

IMAP4R1.C, MISC.C, RFC822.C, SMTP.C Original version Copyright © 1988 by The Leland
Stanford Junior University

ACCPORNAM technology Copyright (c) 1999 by Brian Schenkenberger - TMESIS SOFTWARE

NS_PARSER.C Copyright © 1984, 1989, 1990 by Bob Corbett and Richard Stallman

This program is free software. You can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation, either version 1, or (at your
option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have
received a copy of the GNU General Public License along with this program; if not, write to the Free
Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139 USA

IF_ACP.C Copyright © 1985 and IF_DDA.C Copyright © 1986 by Advanced Computer
Communications

IF_PPP.C Copyright © 1993 by Drew D. Perkins

ASCII_ADDR.C Copyright © 1994 Bell Communications Research, Inc. (Bellcore)

DEBUG.C Copyright © 1998 by Lou Bergandi. All Rights Reserved.

NTP_FILEGEN.C Copyright © 1992 by Rainer Pruy Friedrich-Alexander Universitaet Erlangen-
Nuernberg

RANNY.C Copyright © 1988 by Rayan S. Zachariassen. All Rights Reserved.

MD5.C Copyright © 1990 by RSA Data Security, Inc. All Rights Reserved.

Portions Copyright © 1981, 1982, 1983, 1984, 1985, 1986, 1987, 1988, 1989 by SRI International

Portions Copyright © 1984, 1989 by Free Software Foundation

Portions Copyright © 1993, 1994, 1995, 1996, 1997, 1998 by the University of Washington.
Permission to use, copy, modify, and distribute this software and its documentation for any purpose
and without fee is hereby granted, provided that the above copyright notices appear in all copies and
that both the above copyright notices and this permission notice appear in supporting documentation,
and that the name of the University of Washington or The Leland Stanford Junior University
not be used in advertising or publicity pertaining to distribution of the software without specific,
written prior permission. This software is made available "as is", and THE UNIVERSITY OF
WASHINGTON AND THE LELAND STANFORD JUNIOR UNIVERSITY DISCLAIM ALL
WARRANTIES, EXPRESS OR IMPLIED, WITH REGARD TO THIS SOFTWARE, INCLUDING
WITHOUT LIMITATION ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE, AND IN NO EVENT SHALL THE UNIVERSITY OF
WASHINGTON OR THE LELAND STANFORD JUNIOR UNIVERSITY BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER

335

Appendix G. Trademark and Copyright Notifications

RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, TORT (INCLUDING NEGLIGENCE) OR STRICT LIABILITY, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions Copyright © 1980, 1982, 1985, 1986, 1988, 1989, 1990, 1993 by The Regents of the
University of California. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3. All advertising materials mentioning features or use of this software must display the following
acknowledgement:

This product includes software developed by the University of California, Berkeley and its
contributors.

4. Neither the name of the University nor the names of its contributors may be used to endorse or
promote products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS''
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Portions Copyright © 1993 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute this software for any purpose with or without fee
is hereby granted, provided that the above copyright notice and this permission notice appear
in all copies, and that the name of Hewlett-Packard Corporation not be used in advertising or
publicity pertaining to distribution of the document or software without specific, written prior
permission. THE SOFTWARE IS PROVIDED "AS IS" AND HEWLETT-PACKARD CORP.
DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
HEWLETT-PACKARD CORPORATION BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT,
OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Portions Copyright © 1995 by International Business Machines, Inc.

336

Appendix G. Trademark and Copyright Notifications

International Business Machines, Inc. (hereinafter called IBM) grants permission under its copyrights
to use, copy, modify, and distribute this Software with or without fee, provided that the above
copyright notice and all paragraphs of this notice appear in all copies, and that the name of IBM not
be used in connection with the marketing of any product incorporating the Software or modifications
thereof, without specific, written prior permission. To the extent it has a right to do so, IBM grants
an immunity from suit under its patents, if any, for the use, sale or manufacture of products to the
extent that such products are used for performing Domain Name System dynamic updates in TCP/
IP networks by means of the Software. No immunity is granted for any product per se or for any
other function of any product. THE SOFTWARE IS PROVIDED "AS IS", AND IBM DISCLAIMS
ALL WARRANTIES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL IBM BE LIABLE
FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE, EVEN IF IBM IS APPRISED OF THE POSSIBILITY OF
SUCH DAMAGES.

Portions Copyright © 1995, 1996, 1997, 1998, 1999, 2000 by Internet Software Consortium. All
Rights Reserved. Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this permission notice
appear in all copies. THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO
EVENT SHALL INTERNET SOFTWARE CONSORTIUM BE LIABLE FOR ANY SPECIAL,
DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright (c) 1996-2000 Internet Software Consortium.

Use is subject to license terms which appear in the file named ISC-LICENSE that should have
accompanied this file when you received it. If a file named ISC-LICENSE did not accompany this
file, or you are not sure the one you have is correct, you may obtain an applicable copy of the license
at: http://www.isc.org/isc-license-1.0.html.

This file is part of the ISC DHCP distribution. The documentation associated with this file is listed
in the file DOCUMENTATION, included in the top-level directory of this release. Support and other
services are available for ISC products - see http://www.isc.org for more information.

ISC LICENSE, Version 1.0

1. This license covers any file containing a statement following its copyright message indicating that
it is covered by this license. It also covers any text or binary file, executable, electronic or printed
image that is derived from a file that is covered by this license, or is a modified version of a file
covered by this license, whether such works exist now or in the future. Hereafter, such works will
be referred to as "works covered by this license," or "covered works."

2. Each source file covered by this license contains a sequence of text starting with the copyright
message and ending with "Support and other services are available for ISC products - see http://
www.isc.org for more information." This will hereafter be referred to as the file's Bootstrap
License.

3. If you take significant portions of any source file covered by this license and include those
portions in some other file, then you must also copy the Bootstrap License into that other file, and

337

Appendix G. Trademark and Copyright Notifications

that file becomes a covered file. You may make a good-faith judgement as to where in this file the
bootstrap license should appear.

4. The acronym "ISC", when used in this license or generally in the context of works covered by this
license, is an abbreviation for the words "Internet Software Consortium."

5. A distribution, as referred to hereafter, is any file, collection of printed text, CD ROM, boxed set,
or other collection, physical or electronic, which can be distributed as a single object and which
contains one or more works covered by this license.

6. You may make distributions containing covered files and provide copies of such distributions to
whomever you choose, with or without charge, as long as you obey the other terms of this license.
Except as stated in (9), you may include as many or as few covered files as you choose in such
distributions.

7. When making copies of covered works to distribute to others, you must not remove or alter the
Bootstrap License. You may not place your own copyright message, license, or similar statements
in the file prior to the original copyright message or anywhere within the Bootstrap License.
Object files and executable files are exempt from the restrictions specified in this clause.

8. If the version of a covered source file as you received it, when compiled, would normally produce
executable code that would print a copyright message followed by a message referring to an ISC
web page or other ISC documentation, you may not modify the file in such a way that, when
compiled, it no longer produces executable code to print such a message.

9. Any source file covered by this license will specify within the Bootstrap License the name of
the ISC distribution from which it came, as well as a list of associated documentation files. The
associated documentation for a binary file is the same as the associated documentation for the
source file or files from which it was derived. Associated documentation files contain human-
readable documentation which the ISC intends to accompany any distribution.

If you produce a distribution, then for every covered file in that distribution, you must include all
of the associated documentation files for that file. You need only include one copy of each such
documentation file in such distributions.

Absence of required documentation files from a distribution you receive or absence of the list
of documentation files from a source file covered by this license does not excuse you from this
requirement. If the distribution you receive does not contain these files, you must obtain them
from the ISC and include them in any redistribution of any work covered by this license. For
information on how to obtain required documentation not included with your distribution, see:
http://www.isc.org/getting-documentation.html.

If the list of documentation files was removed from your copy of a covered work, you must obtain
such a list from the ISC. The web page at http://www.isc.org/getting-documentation.html contains
pointers to lists of files for each ISC distribution covered by this license.

It is permissible in a source or binary distribution containing covered works to include reformatted
versions of the documentation files. It is also permissible to add to or modify the documentation
files, as long as the formatting is similar in legibility, readability, font, and font size to other
documentation in the derived product, as long as any sections labeled CONTRIBUTIONS in
these files are unchanged except with respect to formatting, as long as the order in which the
CONTRIBUTIONS section appears in these files is not changed, and as long as the manual page
which describes how to contribute to the Internet Software Consortium (hereafter referred to as the
Contributions Manual Page) is unchanged except with respect to formatting.

338

Appendix G. Trademark and Copyright Notifications

Documentation that has been translated into another natural language may be included in place
of or in addition to the required documentation, so long as the CONTRIBUTIONS section and
the Contributions Manual Page are either left in their original language or translated into the new
language with such care and diligence as is required to preserve the original meaning.

10. You must include this license with any distribution that you make, in such a way that it is
clearly associated with such covered works as are present in that distribution. In any electronic
distribution, the license must be in a file called "ISC-LICENSE".

If you make a distribution that contains works from more than one ISC distribution, you may
either include a copy of the ISC-LICENSE file that accompanied each such ISC distribution in
such a way that works covered by each license are all clearly grouped with that license, or you
may include the single copy of the ISC-LICENSE that has the highest version number of all the
ISC-LICENSE files included with such distributions, in which case all covered works will be
covered by that single license file. The version number of a license appears at the top of the file
containing the text of that license, or if in printed form, at the top of the first page of that license.

11. If the list of associated documentation is in a separated file, you must include that file with any
distribution you make, in such a way that the relationship between that file and the files that refer
to it is clear. It is not permissible to merge such files in the event that you make a distribution
including files from more than one ISC distribution, unless all the Bootstrap Licenses refer to files
for their lists of associated documentation, and those references all list the same filename.

12. If a distribution that includes covered works includes a mechanism for automatically installing
covered works, following that installation process must not cause the person following that
process to violate this license, knowingly or unknowingly. In the event that the producer of a
distribution containing covered files accidentally or wilfully violates this clause, persons other
than the producer of such a distribution shall not be held liable for such violations, but are not
otherwise excused from any requirement of this license.

13. COVERED WORKS ARE PROVIDED "AS IS". ISC DISCLAIMS ALL WARRANTIES
WITH REGARD TO COVERED WORKS INCLUDING THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

14. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, INDIRECT, OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING
FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
WITH THE USE OF COVERED WORKS.

Use of covered works under different terms is prohibited unless you have first obtained a license from
ISC granting use pursuant to different terms. Such terms may be negotiated by contacting ISC as
follows:

Internet Software Consortium

950 Charter Street

Redwood City, CA 94063

Tel: 1-888-868-1001 (toll free in U.S.)

Tel: 1-650-779-7091

Fax: 1-650-779-7055

339

Appendix G. Trademark and Copyright Notifications

Email: info@isc.org

Email: licensing@isc.org

DNSSAFE LICENSE TERMS

This BIND software includes the DNSsafe software from RSA Data Security, Inc., which is
copyrighted software that can only be distributed under the terms of this license agreement.

The DNSsafe software cannot be used or distributed separately from the BIND software. You only
have the right to use it or distribute it as a bundled, integrated product.

The DNSsafe software can ONLY be used to provide authentication for resource records in the
Domain Name System, as specified in RFC 2065 and successors. You cannot modify the BIND
software to use the DNSsafe software for other purposes, or to make its cryptographic functions
available to end-users for other uses.

If you modify the DNSsafe software itself, you cannot modify its documented API, and you must
grant RSA Data Security the right to use, modify, and distribute your modifications, including the
right to use any patents or other intellectual property that your modifications depend upon.

You must not remove, alter, or destroy any of RSA's copyright notices or license information. When
distributing the software to the Federal Government, it must be licensed to them as "commercial
computer software" protected under 48 CFR 12.212 of the FAR, or 48 CFR 227.7202.1 of the
DFARS.

You must not violate United States export control laws by distributing the DNSsafe software or
information about it, when such distribution is prohibited by law.

THE DNSSAFE SOFTWARE IS PROVIDED "AS IS" WITHOUT ANY WARRANTY
WHATSOEVER. RSA HAS NO OBLIGATION TO SUPPORT, CORRECT, UPDATE OR
MAINTAIN THE RSA SOFTWARE. RSA DISCLAIMS ALL WARRANTIES, EXPRESS,
IMPLIED OR STATUTORY, AS TO ANY MATTER WHATSOEVER, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
AND NON-INFRINGEMENT OF THIRD PARTY RIGHTS.

If you desire to use DNSsafe in ways that these terms do not permit, please contact:

RSA Data Security, Inc.

100 Marine Parkway

Redwood City, California 94065, USA

340

	TCP/IP Administrator's Guide: Volume II
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Typographical Conventions
	4. VSI TCP/IP Support
	5. VSI Encourages Your Comments
	6. How to Order Additional Documentation

	Chapter 6. RMT Server and Client Configuration
	6.1. Configuring the Remote Magnetic Tape Server
	6.2. About the RMT Client
	6.2.1. Limitations of UNIX Devices and Software

	6.3. Using RMTALLOC
	6.3.1. RMTALLOC Tape Drive Access Example
	6.3.2. RMTALLOC CD-ROM Access Examples

	6.4. Using RMTALLOC Qualifiers
	6.4.1. VMS-to-VMS Negotiation
	6.4.2. Suppressing Messages
	6.4.3. Controlling Remote Login
	6.4.4. Interacting with the Remote Operator
	6.4.5. Write Protection

	Chapter 7. Configuring and Managing FTP
	7.1. Configuring the FTP Client
	7.2. Managing an FTP Server
	7.2.1. Configuring Anonymous FTP
	7.2.2. Specifying a Range of FTP Server Port Numbers
	7.2.3. Creating an FTP Server Login Command Procedure
	7.2.4. Using FTP Log Files
	7.2.5. Managing FTP Security
	7.2.6. Accepting Wildcards Upon Delete
	7.2.7. Specifying a Message at Connect Time
	7.2.8. Specifying UNIX-Style Listings
	7.2.9. UNIX File Names
	7.2.10. Specifying the Maximum Idle Time
	7.2.11. Using FTP Site Commands
	7.2.12. Defining FTP Messages
	7.2.13. Specifying the Name of a Log File
	7.2.14. Defining a File Name

	7.3. Password Lifetime Warnings
	7.3.1. Defining Password Messages
	7.3.2. Checking IP Address

	7.4. Configuring the FTP server for TLS (FTPS)
	7.4.1. FTP server parameters for TLS

	7.5. Network Service Monitoring
	7.6. Session Accounting
	7.6.1. Configuration File
	7.6.2. File Format
	7.6.3. Enabling the Accounting Logger
	7.6.4. Displaying the Contents of the Logging File
	7.6.5. Accounting File Record Format

	7.7. FTP and IPv6

	Chapter 8. Configuring the Font Server
	8.1. Understanding the Font Server
	8.2. The Font Server Configuration File
	8.3. Specifying Font Servers
	8.4. Supported Font Types
	8.5. Enabling the Font Server
	8.6. Getting Information About the Font Server
	8.6.1. Checking the Font Server Configuration
	8.6.2. Listing Available Fonts
	8.6.3. Viewing Font Data

	8.7. Controlling the VSI TCP/IP Font Server
	8.7.1. Starting the Font Server
	8.7.2. Stopping the FS Server
	8.7.3. Restarting the Font Server
	8.7.4. Reloading the Font Server Configuration
	8.7.5. Flushing the Font Server Cache
	8.7.6. Resetting the Font Server

	8.8. Defining Font Catalogues
	8.9. Adding Fonts to the Font Server

	Chapter 9. Configuring Remote Systems with RARP, BOOTP, and DHCP Server
	9.1. Choosing a Network Configuration Server
	9.2. RARP (Reverse Address Resolution Protocol)
	9.3. BOOTP (Bootstrap Protocol)
	9.4. DHCP (Dynamic Host Configuration Protocol)
	9.5. Using RARP
	9.5.1. Obtaining Data for RARP Clients
	9.5.2. Enabling RARP Packet Reception on Ethernet Interfaces
	9.5.3. Enabling and Starting RARP Service
	9.5.4. Adding Clients to the RARP Configuration File
	9.5.5. Reloading RARP Configuration

	9.6. Using BOOTP
	9.6.1. Obtaining Data for BOOTP Clients
	9.6.2. Enabling and Starting BOOTP
	9.6.3. Modifying the BOOTP Configuration File
	9.6.4. BOOTP Options for the BOOTP Server
	9.6.5. Guidelines for the BOOTP Configuration File
	9.6.6. Using a UNIX bootptab File
	9.6.7. Reloading the BOOTP Configuration
	9.6.8. Disabling BOOTP OPCOM Messages

	9.7. Using DHCP
	9.7.1. DHCP Process
	9.7.2. Obtaining Data for DHCP Clients
	9.7.3. Enabling and Starting DHCP

	9.8. Checking the DHCP Configuration
	9.9. Reloading the DHCP Configuration
	9.10. Introducing the Configuration File
	9.10.1. Address Allocation
	9.10.2. Address Pools
	9.10.3. Pool Permit Lists

	9.11. Client Classing
	9.11.1. Subclasses
	9.11.2. Per-Class Limits on Dynamic Address Allocation

	9.12. Conditional Behavior
	9.13. DNS Dynamic Updates Within DHCP
	9.13.1. Transaction Signatures (TSIG)

	9.14. Host Name Generation
	9.15. Configuration File Declarations and Parameters
	9.16. Expressions
	9.16.1. BOOLEAN EXPRESSIONS
	9.16.2. DATA EXPRESSIONS
	9.16.3. NUMERIC EXPRESSIONS

	9.17. DHCP Options
	9.17.1. Standard DHCP Options
	9.17.2. Relay Agent Information Option
	9.17.3. Defining New Options
	9.17.4. Vendor Encapsulated Options

	9.18. DHCP Lease Format
	9.18.1. Working with DHCP Leases
	9.18.2. Abandoned Leases
	9.18.3. Static Leases

	9.19. Registering Clients While the DHCP Server is Running
	9.19.1. Update File Statements
	9.19.1.1. Examples:

	9.20. DHCP Safe-failover Introduction
	9.21. Configuring DHCP Safe-failover
	9.22. Boot File for DHCP Safe-failover
	9.23. State File for DHCP Safe-failover
	9.24. DHCP Safe-failover Configuration File Statements
	9.25. DHCP Safe-failover Lease File Statements
	9.26. Transitioning to DHCP Safe-failover Partner Down State
	9.27. Setting DHCP Parameters
	9.28. Viewing DHCP Information
	9.28.1. NETCONTROL SHOW Command
	9.28.2. NETCONTROL STATISTICS Command

	9.29. Address Lease States in DHCP Dump Files
	9.29.1. Sample DHCPD.CONF File

	9.30. DHCP Client
	9.30.1. General Description
	9.30.2. Setting DHCP Client Parameters
	9.30.3. Setting Up the DHCP Client
	9.30.4. Disabling the DHCP Client
	9.30.5. DHCP Client Functions and Logicals
	9.30.6. DHCP Client Configuration
	9.30.7. Protocol Timing
	9.30.8. Lease Requirements and Requests
	9.30.9. Option Modifiers
	9.30.10. Lease Declarations
	9.30.11. Other Declarations
	9.30.12. Example
	9.30.13. Troubleshooting the DHCP Client
	9.30.13.1. How do I know the DHCP client has configured my network successfully?
	9.30.13.2. What if I cannot ping an IP address on the internet?
	9.30.13.3. What if I can ping a host by its IP address but not by its name?
	9.30.13.4. Why is the local address "0.0.0.0" when I use "$ IP CONFIGURE /INTERFACE" and then use “SHOW”?
	9.30.13.5. Where can I find the status information of the DHCP client?

	Chapter 10. Managing the XDM Server and X11-Gateway Configuration
	10.1. Understanding X Display Management
	10.2. Accessing the XDM Server
	10.2.1. Special Features of the XDM Server of VSI TCP/IP

	10.3. XDM Administrative Tasks
	10.4. Enabling and Starting the XDM Server
	10.5. Modifying the XDM Server Configuration
	10.6. Controlling the XDM Server
	10.6.1. Checking the Status of the XDM Server
	10.6.2. Starting the XDM Server
	10.6.3. Stopping the XDM Server
	10.6.4. Restarting the XDM Server
	10.6.5. Reloading the XDM Configuration

	10.7. Controlling Access to the XDM Server
	10.7.1. Handling Direct and Broadcast Requests

	10.8. Managing X11R3 Displays
	10.8.1. Specifying X11R3 Displays
	10.8.2. Setting Up Host Access on the Display
	10.8.3. Ensuring No Other Host Is Managing the Display
	10.8.4. Reloading the XDM.SERVERS File

	10.9. X11-Gateway Configuration
	10.9.1. X11-Gateway Concepts
	10.9.2. Allowing an IP Client Access to a DECnet Server
	10.9.2.1. Running an IP Client on a DECnet Server

	10.9.3. Allowing a DECnet Client Access to an IP Server
	10.9.3.1. Running the DECnet Client on the IP Server

	10.9.4. X11-Gateway Security
	10.9.5. X11-Gateway Debugging
	10.9.5.1. Selected Error Numbers from ERRNO.H
	10.9.5.2. X11-Gateway Error Messages

	Chapter 11. Configuring VSI TCP/IP SNMP Services
	11.1. Understanding SNMP
	11.1.1. SNMP Managers, Agents, and Traps

	11.2. Configuring VSI TCP/IP SNMP Services
	11.2.1. Enabling the SNMP Service

	11.3. Private MIB Application Program Interface
	11.4. Configuring SNMP Subagents (except AgentX)
	11.5. SNMP Multiplexing Peers
	11.5.1. SMUX_PEER IP-address

	11.6. SNMP Agent Extensibility (AgentX) Peers
	11.6.1. Setting Up VSI TCP/IP to Use Insight Manager

	11.7. Configuration File
	11.7.1. File Format
	11.7.2. Values for MIB Objects
	11.7.3. Community Parameters
	11.7.4. Template Configuration File

	11.8. Sending SNMP Traps from VSI TCP/IP
	11.9. Disabling Traps
	11.10. Generating Traps
	11.11. SNMP Log File
	11.12. Start, Shutdown, or Reload the SNMP Configuration Without Rebooting
	11.13. Performing SNMP Functions with VSI TCP/IP

	Chapter 12. Configuring the VSI TCP/IP NFS Server
	12.1. Understanding the VSI TCP/IP NFS Server
	12.2. Servers and Clients
	12.2.1. Security
	12.2.2. NFS Server Architecture

	12.3. NFS Server Configuration Overview
	12.4. Enabling the VSI TCP/IP NFS Server
	12.5. Reloading the VSI TCP/IP NFS Server Configuration and Restarting the Server
	12.6. Shutting Down the NFS Server
	12.7. Testing the System Configuration
	12.7.1. Checking for Errors

	12.8. Idiosyncrasies of ACL Support over NFS
	12.8.1. How the VSI TCP/IP NFS Server Interprets ACL and UIC Protection
	12.8.2. How the VSI TCP/IP NFS Server Handles ACLs
	12.8.3. Handling ACLs with Unmappable ACEs

	Chapter 13. Configuring the VSI TCP/IP NFS Client & Server
	13.1. Server Security & Initial Configuration
	13.2. Mounting Client Directories
	13.3. File Formats
	13.3.1. Reading Files
	13.3.2. Writing Files

	13.4. Troubleshooting
	13.5. Managing an Existing NFS Configuration
	ADD EXPORT
	ADD GROUP
	ADD PROXY
	CREATE EXPORT
	CREATE GROUP
	CREATE PROXY
	EXIT
	FIND PROXY
	RELOAD EXPORT
	RELOAD GROUP
	RELOAD PROXY
	REMOVE EXPORT
	REMOVE GROUP
	REMOVE PROXY
	SHOW EXPORT
	SHOW GROUP
	SHOW MOUNT
	SHOW PROXY
	SHOW STATISTICS
	UNMOUNT ALL

	13.6. Mounting an NFS file system on VSI TCP/IP
	NFSMOUNT

	13.7. Implementation
	13.7.1. Restrictions
	13.7.2. NFS Protocol Procedures

	Chapter 14. Using the NFS Client
	14.1. Servers and Clients
	14.1.1. VSI TCP/IP NFS Client Use of User IDs
	14.1.2. Grouping NFS Client Systems for UID/GID Mappings
	14.1.3. Mapping Example
	14.1.4. Effects of Incomplete Mappings
	14.1.5. File System Limitations
	14.1.6. DISKQUOTA Limitations
	14.1.7. Security and File Protections
	14.1.8. Storing OpenVMS File Attributes on an NFS Server
	14.1.9. Storing OpenVMS File Names on an NFS Server
	14.1.10. NFS Client Architecture

	14.2. Mounting and Dismounting File Systems
	14.2.1. Mounting a File System
	14.2.2. Dismounting a File System

	14.3. Reloading the NFS Client
	14.4. Mounting File Systems During VSI TCP/IP Startup
	14.5. Creating ACPs (Ancillary Control Processes) for NFS Mounts
	14.6. NFS Clients Using BACKUP

	Chapter 15. Configuring the Secure Shell (SSH) Servers Versions 1 & 2
	15.1. SSH1 and SSH2 Differences
	15.2. Understanding the VSI TCP/IP Secure Shell Server
	15.2.1. Servers and Clients
	15.2.2. Security
	15.2.3. Break-in and Intrusion Detection

	15.3. Configuring SSHD Master for SSH1
	15.4. Expired Passwords
	15.5. OPTIONS
	15.6. Configuration File
	15.7. Starting the SSH Server for the First Time
	15.8. Configuring the SSH1 Server on a OpenVMScluster with a Common System Disk
	15.9. Changing SSH1 Configuration File after Enabling SSH1
	15.10. Connection and Login Process
	15.10.1. SSH Connections Are Not Logged When SSHD.log Files Reach Maximum Version Number

	15.11. FILES
	15.12. AUTHORIZED_KEYS File Format
	15.12.1. SSH Port Forwarding and OpenVMS Captive Users

	15.13. SSH_KNOWN_HOSTS File Format
	15.14. SSH Logicals
	15.15. Configuring the Secure Shell (SSH) 2 Server
	15.15.1. Servers and Clients
	15.15.2. Expired Password Handling
	15.15.3. Break-In and Intrusion Detection
	15.15.4. Configuring SSHD Master
	15.15.5. SSHD2 Configuration File
	15.15.5.1. HostSpecificConfig Notes:
	15.15.5.2. UserSpecificConfig Notes:
	15.15.5.3. KEYBOARD-INTERACTIVE Notes:
	15.15.5.4. ForwardACL Notes
	15.15.5.5. MappingFileFormat

	15.15.6. Starting the SSH Server for the First Time
	15.15.7. Configuring the SSH2 Server on a OpenVMScluster with a Common System Disk
	15.15.8. Changing SSHD2 Configuration File After Enabling SSH2
	15.15.9. Connection and Login Process
	15.15.9.1. FILES

	15.15.10. SSH2 AUTHORIZATION File Format
	15.15.11. SSH2 Logicals

	Chapter 16. Configuring IPSEC and SETKEY
	16.1. About the IP Security (IPSEC) Protocol
	16.2. Security Associations and Security Policies
	16.3. IPSEC Configuration File
	16.3.1. Configuration File Options
	16.3.2. Configuration File Operation Arguments
	16.3.2.1. Extensions
	16.3.2.2. Algorithm

	16.4. Configuration Encryption Algorithms
	16.5. Simple Configuration Example
	16.6. The SETKEY Program
	16.6.1. SETKEY Usage Examples

	16.7. IPSEC Configuration File Examples
	16.7.1. Configuration Example: Host-to-Host Encryption
	16.7.2. Configuration Example: Host-to-Host Authentication
	16.7.3. Configuration Example: Host-to-Host Encryption+Authentication

	16.8. Conformance to Standards and Interoperability
	16.9. Racoon Internet Key Exchange Daemon
	16.9.1. Meta Syntax
	16.9.2. Path Specification
	16.9.3. File Inclusion
	16.9.4. Timer Specification
	16.9.5. Listening Port Specification
	16.9.6. Remote Nodes Specifications
	16.9.7. Policy Specifications
	16.9.8. Sainfo Specifications
	16.9.9. Example RACOON configuration file:
	16.9.10. Example pre-shared key file:

	16.10. Restrictions
	16.11. IPSec key management with Racoon2
	16.11.1. SPMD
	16.11.2. Name resolution
	16.11.3. SPMDCTL
	16.11.4. IKED
	16.11.5. Authentication with pre-shared keys
	16.11.6. Authentication with Certificates
	16.11.7. Scripts
	16.11.8. Compatibility with Racoon
	16.11.9. Troubleshooting
	16.11.10. PSKGEN
	16.11.11. Starting Racoon2 on VSI TCP/IP
	16.11.12. Configuration
	16.11.12.1. Introduction
	16.11.12.2. How IKED works
	16.11.12.3. Configuration Syntax
	16.11.12.4. Directives details
	16.11.12.5. Sample configuration

	Chapter 17. Intrusion Prevention System (IPS)
	17.1. IPS Operation
	17.2. Configuring IPS
	17.2.1. Configuring Process-Specific Parameters
	17.2.2. Determining the Correct FILTER_SERVER Process Quotas
	17.2.3. Determining the Correct FILTER_SEVER Mailbox Size
	17.2.4. Filter Server Main Configuration
	17.2.5. Filter Server Per-Component Configuration File

	17.3. Sample Main Configuration File
	17.4. Sample Component Configuration File
	17.5. Configuring IPS for Paired Network Interfaces
	17.6. Filter Reporting via OPCOM and Log File
	17.7. Filter Reporting via SNMP
	17.8. Correcting a Filter List
	17.9. Configuring PMDF to use IPS on VSI TCP/IP
	17.10. Controlling the Filter Server
	17.11. Filter Server Files
	17.12. Instrumenting a User-Written Application with IPS
	17.13. Filter Server API

	Chapter 18. Configuring DECnet-over-IP Circuits
	18.1. Using the Configuration Tools
	18.2. Examples of Connecting Two Systems
	18.3. DECnet Encapsulation Over Unreliable Networks
	18.4. Using IP SET /DECNET

	Appendix D. How NFS Converts File Names
	Appendix E. DNSSEC
	E.1. Generating Keys
	E.2. Signing the Zone
	E.3. Configuring Servers
	E.4. DNSSEC, Dynamic Zones, and Automatic Signing
	E.4.1. Converting from insecure to secure
	E.4.2. Dynamic DNS update method
	E.4.3. Fully automatic zone signing
	E.4.4. Private-type records

	E.5. DNSKEY rollovers
	E.5.1. Dynamic DNS update method
	E.5.2. Automatic key rollovers
	E.5.3. NSEC3PARAM rollovers via UPDATE
	E.5.4. Converting from NSEC to NSEC3
	E.5.5. Converting from NSEC3 to NSEC
	E.5.6. Converting from secure to insecure
	E.5.7. Periodic re-signing
	E.5.8. NSEC3 and OPTOUT

	E.6. Dynamic Trust Anchor Management
	E.6.1. Validating Resolver
	E.6.2. Authoritative Server

	Appendix F. Language Support for TN3270 and TN5250
	Appendix G. Trademark and Copyright Notifications

