
 OpenVMS x86-64 Cross-Compiler Release Notes

 Revision V9.2-1

 11-May-2023

 Copyright 2023 VMS Software, Inc.

1 Changes For The V9.2-1 Cross Compilers

This release includes refreshed C and Macro-32 cross-compilers;

and refreshed LINKER and ANALYZE tools. The BLISS, Fortran,

Pascal, COBOL, and x86 native assembler, cross-compilers are

unchanged from the V9.2 release.

2 Code Recompilation

While code compiled and linked on V9.2 should continue to work,

we strongly suggest that you recompile and relink with the

V9.2-1 cross-tools. There have been changes made to compilers and

linker to improve the debugging and exception handling experience.

3 Native Compilers Now Available

Most of the compilers are now available as native compilers. You

can download the field test kits from the VSI Service

Platform (http://sp.vmssoftware.com).

The native compilers include optimization and better debug

support. The native compilers still do not include things like

/MACHINE_CODE or "long double" support.

4 VSI BLISS

The x86-64 cross-tools kit includes the VSI BLISS-32 and BLISS-

64 cross-compilers hosted on OpenVMS IA64 that generate code for

OpenVMS x86.

The commands to invoke the BLISS cross-compilers are BLISS/X32

and BLISS/X64.

These cross-compilers behave very much like the native IA64

compilers in terms of command line options and language features.

In addition, some lexical functions were added along with changes to

how LINKAGES and GLOBAL REGISTERs are implemented for

communication with Macro-32 code.

The compiler versions numbers are:

$ bliss/x32/version

BLISS-32X T1.12-129-50W5U

$ bliss/x64/version

BLISS-32X T1.12-129-50W5U

4.1 New Lexical Functions

The lexical function %BLISS now access BLISS32X and BLISS64X as

the compiler name parameter.

 - The lexical function %BLISS(BLISS32X) will return 1

when compiled with the BLISS-32 x86 compiler; otherwise it will

return 0.

 - The lexical function %BLISS(BLISS64X) will return 1

when compiled with the BLISS-64 x86 compiler; otherwise it will

return 0.

The lexical function %TARGET now accepts X86_64 and X86 as

a parameter. The function will return 1 when compiled with

either BLISS-32 for x86-64 or BLISS-64 for x86-64. %TARGET will

also return 0 for names it does not recognize so a misspelling

like "X64_64" will just return 0 and not be flagged as an error.

4.2 LINKAGEs And GLOBAL REGISTERs

Unlike other BLISS target architectures, BLISS registers on x86

are mapped to memory locations managed by the operating system.

(See the section for Macro-32 for more information). BLISS will

automatically convert uses of Alpha registers R0-R30 into memory

loads and stores to backing memory locations. The behavior should

be identical to that on OpenVMS Alpha or OpenVMS Itanium. However,

since these registers are now memory operations, BLISS linkages

written as a performance enhancement might now result in slower

code since the default calling conventions will pass the first six

arguments in x86-64 hardware registers and the remaining

arguments on the stack.

4.3 /ALPHA_REGISTER_MAPPING

The /ALPHA_REGISTER_MAPPING DCL qualifier from BLISS for Itanium

is available on the x86 compiler but is hardcoded on. It

cannot be turned off. All register references correspond directly

to the Alpha R0-R30 register set to be compatible with the

Macro-32 compiler's behavior. On OpenVMS x86, register numbers

correspond to the equivalent Alpha pseudo registers implemented

by the Macro-32 compiler.

4.4 Bugs Fixed Since The T1.12-125 Release

 - Ensure that the count before a PLIT stays immediately

before the data and does not have alignment holes inserted.

 - Handle a GLOBAL BIND to a location "outside" of the

variable. For example,

 OWN V : VECTOR[5,LONG];

 GLOBAL BIND GB = V[-10];

 - Insert compiler-generated filler to ensure data layout

of complex PLITs and UPLITs matches the alignment and layout

from Itanium systems.

4.5 Bugs Fixed Since The T1.12-123 Release

 - The BLISS builtins that emulate VAX floating now actually

use VAX floating format.

4.6 Known Issues

 - More Than One MODULE Per Source File

 BLISS on prior OpenVMS systems allow multiple

MODULE/ELUDOMs in a single source file. Such files will get

an LLVM assertion or ACCVIO. We will attempt to resolve this in

a future release, but we suggest that you break up the single

source file into multiple source files with a single MODULE per

file.

5 VSI C

The x86-64 cross-tools kit includes the VSI C x86-64 cross-

compiler hosted on OpenVMS IA64 that generates code for OpenVMS x86.

The command to invoke the C cross-compiler is XCC.

The cross-compiler behaves very much like the native IA64 compiler

in terms of command line options and language features.

The compiler version number is:

$ xcc/version

VSI C X7.4-644 (GEM 50W81) for X86 on OpenVMS IA64 V8.4-2L1

Note that the cross compiler will not interfere with the normal

CC installed on the system. You can invoke either CC or XCC

without having to perform any intervening setup unless you also

use the DECC$SYSTEM_INCLUDE, DECC$USER_INCLUDE or

DECC$TEXT_LIBRARY logicals.

Both compilers use those logicals in the same way, so if you use

them to locate header files that might not be suited to both

IA64 and x86-64, you may need to redefine them.

The cross compiler uses the logical X86$LIBRARY to

find DECC$RTLDEF.TLB and DECC$SHR.EXE. In addition, any

header files normally found in SYS$LIBRARY and SYS$STARLET_C.TLB

must also be present in X86$LIBRARY.

This cross compiler behaves very much like the native IA64 compiler

in terms of command line options, language features, etc. The

primary differences are in the pragma linkage support and

the builtin functions. Also, the macros specifying IA64

architecture are not predefined, instead __x86_64 and __x86_64__ are

predefined (which is the same practice in Clang and gcc compilers

on x86-64).

5.1 Pragma Linkage

For x86-64, only general-purpose registers R0 through R30 are

allowed.

These registers are not mapped to any x86-64 hardware registers

but rather to legacy pseudo registers that are used to support

interfaces with Macro-32 code.

5.2 Using Itanium Builtins

The philosophy for the builtin functions is that any existing uses

of IA64 builtins should continue to work under x86-64 where

possible, but that the compiler will issue diagnostics where it

cannot support an IA64 builtin on x86-64.

The builtins.h header file contains a section conditionalized

for __x86_64 with all the x86-specific builtins. This

section also includes macro definitions for all the registers that

can be specified to the __getReg/__setReg/__getIndReg/__setIntReg

builtins.

5.3 Bugs Fixed Since The X7.4-547 Release

 - Fix LLVM assertion when a ternary operator is used

with function calls in both "true" and "false" expressions

5.4 Bugs Fixed Since The X7.4-528 Release

 - Outbound calls to routines using pragma linkage that

specify "r16" and "r17" as parameter locations should be treated

to mean "standard location for this target"

5.5 Bugs Fixed Since The X7.4-493 Release

 - VAX floating support has been enabled to match the

Itanium behavior

 - Modify the "align(page)" attribute to aligned to 2**13

bytes on x86-64

5.6 Known Issues

 - long double

 The long double data type is not yet fully supported.

Known issues include compile-time initialization of global/static

variables (including structures/unions with long double data types)

and calls to math intrinsic functions.

 - varargs.h vs stdarg.h

 Due to how the AMD64 ABI Calling Standard is

defined, varargs.h is awkward to support. Most Linux platforms

don't even support it at all. We have tried to retain as much as

possible, but strongly suggest that you convert to using

<stdarg.h> instead. It will require source modifications but they

will work on Alpha and Itanium so you can keep common code going

forward.

6 VSI Fortran

The x86-64 cross-tools kit includes the VSI Fortran cross-

compiler hosted on OpenVMS IA64 that generates code for OpenVMS x86.

The command to invoke the Fortran cross-compiler is FORTRAN

The cross-compiler behave very much like the native IA64 compiler

in terms of command line options and language features.

The compiler version number is:

$ fortran/version

VSI Fortran X8.4-104966 (GEM 50V4V) for X86 systems

The cross compiler uses the same CLD as the installed

Fortran compiler. Using the cross compiler will prevent you from

running an installed native Fortran compiler. You have to deassign

the F90$MAIN and F90$MSG logical names to regain access to the

native compiler.

This version of Fortran adds support for the ENTRY statement and

fixes several compiler crashes when using the /DEBUG qualifier.

This Fortran cross-compiler does not support VAX floating.

Using /FLOAT=G or /FLOAT=D is ignored and floating point data is

stored in IEEE format. However, the native Fortran compiler does

support VAX floating. If VAX floating in the cross-compiler is

important, please enter a support ticket and let us know.

6.1 Bugs Fixed Since The X8.4-104965 Release

 - Fix bugs with multi-ENTRY point routines interaction

with statement functions and certain format statements.

 - Ignore the /SEPARATE_COMPILATION qualifier. The version

of LLVM used by the cross-compilers does not easily support this

feature. We will revisit this in a future update.

6.2 Known Issues

 - Some of the run-time overflow checking has not

been implemented yet

 - REAL*16 is not fully supported at this time

7 VSI Macro-32 (XMACRO)

The x86-64 cross-tools kit includes the VSI Macro-32

(XMACRO) cross-compiler hosted on OpenVMS IA64 that generates code

for OpenVMS x86.

The command to invoke the Macro-32 cross-compiler is MACRO

The cross-compiler behave very much like the native IA64 compiler

in terms of command line options and language features.

The compiler version number is:

$ macro/flag=compiler_version tt:

XMAC X6.0-112 (GEM 50F9M)

.end

Yes, we know that if you don't type ".end" but rather type

a control-Z, you'll get a compiler error and traceback. A

proper /VERSION qualifier will be added.

7.1 Bugs Fixed Since The X6.0-111 Release

 - The CMPx instructions did not properly sign-extend

literals before comparing with non-literal operands.

7.2 Bugs Fixed Since The X6.0-109 Release

 - Sign-extended underlying register after a BBSS, BBSC,

BBCS, or BBCC that might have changed the signbit

 - Fix handling of auto-increment operands which also are

used as target operands. The auto-increment was deferred until

the end of the instruction but should have been ignored. For

example,

 MOVL (R7)+, R7

 - CMPB and CMPW of the most negative number would set

incorrect condition codes and subsequent conditional branches would

be wrong. This is due to the subtle difference between the VAX

CMPL instruction and the x86 cmp instruction.

7.3 Bugs Fixed Since The X6.0-107 Release

 - The code for the BBxx and BBxxI instructions was

not byte-granular and the interlocked BBSSI/BBCCI did not provide

the atomic interlocked access.

7.4 Known Issues

 - Most of the IA64_ builtins from OpenVMS IA64 are

not supported on OpenVMS x86-64. The builtins tend to be very

architecture-specific and have no counterparts on x86-64.

 - The EVAX_EXTWH, EVAX_EXTLH, EVAX_EXTQH,

EVAX_INSWH, EVAX_INSLH, and EVAX_INSQH builtins are not supported

since we didn't find any uses in the OS code. If they are

required, let us know.

 - The EVAX_INSBL, EVAX_INSBH, EVAX_INSWL, EVAX_INSLL,

and EVAX_INSQL are not supported with a non-literal as the 2nd

operand. If they are required, let us know.

 - Due to differences in architecture and calling

standards, code that JSBs to a .CALL_ENTRY might have to be

modified if the code accesses the argument list. Since this would

have not been legal on the VAX, the behavior is poorly defined at

best. The solution is to create a CALLG-style argblock, copy the

arguments, and use the EVAX_CALLG_64 or CALLG instruction to

transfer control to the .CALL_ENTRY target.

 - You will see a message

 %XMAC-I-CONCODEXP, built-in used does not set condition

codes; earlier instruction used instead

 if you use the PROBER or PROBEW VAX instructions. On

OpenVMS x86, these are implemented via macros. The current

macro expansion triggers these false messages from the compiler.

The underlying macro expansion is correct. We'll remove these

messages in a future release.

 - The VAX floating and VAX packed decimal instructions are

not available. On OpenVMS Alpha and OpenVMS Itanium via a set of

macros and some emulation routines. Those routines are not

available yet. While the macros in STARLET.MLB might expand, there

may be undefined symbols at link-time or undefined behavior.

8 VSI Pascal

The x86-64 cross-tools kit includes the VSI Pascal cross-

compiler hosted on OpenVMS IA64 that generates code for OpenVMS x86.

The command to invoke the Pascal cross-compiler is PASCAL

The cross-compiler behave very much like the native IA64 compiler

in terms of command line options and language features.

The compiler version number is:

$ pascal/version

VSI Pascal x86-64 X6.3-136 (50VCS) on OpenVMS I64 V8.4-2L1

The cross compiler uses the same CLD as the installed Pascal

compiler. Using the cross compiler will prevent you from running

an installed native Pascal compiler. You have to deassign the

PASCAL, PASCALER1, and PASCALER2 logical names to regain access to

the native compiler.

8.1 Bugs Fixed Since The X6.3-133 Release

 - A new DCL /USAGE=64BIT_TO_DESCR option has been added

to allow a well-defined P2 address (00000000.8xxxxxxx) to be

fetched from the DSC$A_POINTER field of a 32-bit descriptor. This

allows P2-allocated variables to be passed to conformant array

parameters.

 - Fix a bug with SET OF CHAR constructors used characters

with values greater than 127.

 - Fix a bug that prevented TO BEGIN DO, TO END DO,

and [INITIALIZE] from working.

8.2 Bugs Fixed Since The X6.3-132 Release

 - VAX floating support has been enabled to match the

Itanium behavior

8.3 Known Issues

 - Some of the run-time overflow checking has not

been implemented yet

 - Some of the run-time error messages produce a bogus

NONAME message in addition to the appropriate error. For example,

 $ run dka100:[pvs56]err06t

 ERROR...6.4.5-15 (ERR06T)

 %NONAME-W-NOMSG, Message number 00000000

 %PAS-F-SUBASGVAL, subrange assignment value is out of range

 - QUADRUPLE is not fully supported at this time

 - Using bound procedure values (PROCEDURE parameters that

rely on uplevel references) will result in link-time error with a

pair of missing RTL routines. These routines will be

implemented soon.

 - Uplevel GOTOs will generate a run-time error by mistake.

 - The cross-compiler will accept PEN files created by the

VSI Pascal compiler for Itanium systems with an informational

messages. Normally, the compiler will not accept PEN files from

other platforms, but the cross-compiler allows this.

9 VSI COBOL

The x86-64 cross-tools kit includes the VSI COBOL cross-

compiler hosted on OpenVMS IA64 that generates code for OpenVMS x86.

The command to invoke the COBOL cross-compiler is COBOL

The cross-compiler behave very much like the native IA64 compiler

in terms of command line options and language features.

The compiler version number is:

$ cobol/version

VSI COBOL x86-64 X3.1-0013 (50V8U) on OpenVMS IA64 V8.4-2L1

The cross compiler uses the same CLD as the installed COBOL

compiler. Using the cross compiler will prevent you from running

an installed native COBOL compiler. You have to deassign the COBOL

and COBOL$MSG logical names to regain access to the native

compiler.

9.1 Bugs Fixed Since The X3.1-0012 Release

 - VAX floating support has been enabled

9.2 Known Issues

 - The /NATIONALITY=JAPAN qualifier may cause an

internal compiler error

 - VSI has only conducted some limited testing ourselves

so there are other errors not yet enumerated. Your help is

appreciated.

10 X86-64 Assembler

This kit includes the LLVM tool named "llvm-mc". This provides

a native x86-64 assembler that is highly compatible with the gnu

"gas" assembler.

It is activated as a "foreign command" in DCL and a symbol "llvm_mc"

is created by the setup script.

The compiler version number is:

$ llvm_mc -version

LLVM (http://llvm.org/):

 LLVM version 3.4.2

 DEBUG build with assertions.

 Built May 9 2018 (14:34:01).

 Default target: x86_64-pc-linux-gnu

 Host CPU: (unknown)

 Registered Targets:

 x86 - 32-bit X86: Pentium-Pro and above

 x86-64 - 64-bit X86: EM64T and AMD64

A sample command is:

llvm_mc -filetype=obj -o=objectfilename.obj sourcefilename.s

Specify "--help" for additional options.

10.1 Known Issues

 - Source Files Must Be STREAM_LF

 llvm-mc will ACCVIO if the assembly source file is

not STREAM_LF format.

11 Known Issues For All Compilers

 1. The cross-compilers ignore the /OPTIMIZE qualifier

and generate non-optimized code. Native compilers (other than

the Macro-32 compiler) will provide the complete set of LLVM

optimizations. The Macro-32 compiler does provide some

optimization at present but additional code quality

improvements will appear in future releases.

 2. The cross-compilers ignore the /MACHINE_CODE qualifier.

You can use the ANALYZE/OBJECT/DISASSEMBLE command to see the

generated code. You can also use the undocumented

/SWITCH=ASSEMBLY to get an assembly code output file with the suffix

".S" instead of an ".OBJ" file. The assembly code file also

contains static data declarations and initializations.

 3. Debug support is not fully implemented and the compiler

may generate an assertion when using /DEBUG.

 4. VAX floating support has been enabled for all compilers

other than Fortran. The native Fortran compiler, currently in

field test, has VAX floating support.

 5. /DEBUG support is not yet complete. The compilers

may generate an assertion when compile code with /DEBUG. In that

case, remove the qualifier and enter a bug report with a

reproducer.

 6. Quadruple precision floating point (long double,

REAL*16, QUADRUPLE, etc.) is currently not supported. The

upcoming native compilers will introduce that support.

12 VSI Linker, ANALYZE/OBJECT, And ANALYZE/IMAGE

The x86-64 cross-tools kit includes the cross-linker hosted on

OpenVMS IA64 that generates images for OpenVMS x86. The kit also

contains an Itanium-hosted ANALYZE that works on both Itanium and

x86 objects and images.

The command to invoke the cross-linker is LINK. The command to

invoke the ANALYZE tool is ANALYZE.

The linker version number is "I02-94" and be found in a link map

file.

The analyze version number is "I01-86" and can be found in the

analyze output.

 - The linker generated incorrect run-time fixups for

COMMON blocks from an installed shared image. This has been fixed.

 - The linker's internal sorting of symbol tables did not

scale well with static libraries and a large number of symbols (for

example, the static SSL library has over 300,000 symbols).

 The simple sort was upgraded to use the CRTL's

qsort() interface instead.

 - The linker will automatically enable /THREAD_ENABLE if

it sees a reference to PTHREAD_CREATE. It will also print a

message about the qualifier. Adding an explicit

/THREAD_ENABLE will turn off the message.

 - ANALYZE/OBJECT now knows about DWARF-related ELF

section types that are generated by the LLVM backend but are

not present on OpenVMS Itanium.

 - ANALYZE/OBJECT now knows about the OpenVMS-unique SFC

(Source File Correlation) records that are generated along with

the standard .debug_line table. These SFC records allow the

debugger and traceback convert between the source file

numbers in the .debug_line table and listing line numbers that

are used in the traceback and debugger output.

 - The linker now recognizes certain ELF sections generated

by C++ such as ".fini_array" and ignores them. The fini_array

feature is not supported by OpenVMS. The supported mechanism is to

provide a LIB$INITIALIZE or init_array routine and have it call the

atexit() or SYS$DCLEXH service.

 - The linker now generates exception handling (EH) data

for linker-generated routines. The lack of this exception

handling data would cause the stack walking code in the

operating system would stop too soon. This caused various bugs

and cause the debugger to be unable to walk the stack. While

images linked older linkers should still work, we strongly

suggest that you relink images with this new linker. The linker in

the V9.2 "update 2" ECO kit contains the native version with the

same fix.

 - The default MAP file now contains the cluster and

image section synopsis that were previously only present in the

/FULL MAP file

 - New /TRACEBACK=LINE_NUMBERS keyword

 The /TRACEBACK qualifier causes all of the debug

information in the object files to be copied into the final.

It is essentially /DEBUG but the debugger doesn't start by default.

There is a new /TRACEBACK=LINE_NUMBERS which only includes a subset

of the debug information for module names and line numbers in

the traceback but does not include routine names. If you want module

names, routine names, and line numbers, you must use /TRACEBACK.

 - New Informational Messages in Linker I02-82

 When the cross-linker encounters writeable code

sections, with PSECT attributes set to WRT and EXE, it now prints

the following informational message:

 %ILINK-I-MULPSC, conflicting attributes for section

<PSECT name>

 conflicting attribute(s): EXE,WRT

 module: <module name>

 file: <obj-or-olb-filename>

 When the cross-linker finds unwind data in a module, but

no section with the PSECT attribute set to EXE, it prints the

following informational message:

 %ILINK-I-BADUNWSTRCT, one or more unwind related

sections are missing or corrupted

 section: .eh_frame, there is no non-empty EXE

section

 module: <module name>

 file: <obj-or-olb-filename>

 These messages are seen mainly with Macro-32 and BLISS

source modules. It is recommended to make all code sections

non-writeable. It is recommended to have code in sections with

the PSECT attribute set to EXE

 - Starting with version I02-82, the linker now

includes additional traceback and debug information in the image

file. This additional information will result in slightly larger

image files. The information is not read by the image

activator so it will not result in slower image activation. This

new information is only used by the newly supported traceback

and a future release of the debugger.

 - The x86-64 cross-linker and cross-analyzer accept the

same qualifiers and options as the native IA64 linker and ANALYZE.

The linker qualifier /SEGMENT_ATTRIBUTE=SHORT= is ignored

because there is no short segment on x86-64.

 - The x86-64 cross-linker uses the X86$LIBRARY logical

for default library searches.

 - Some parts of ELF object and image files

are processor-specific, and so will be different on this new

processor architecture. Certain flags, the ELF relocation types,

and ANALYZE's disassembly output are different.

 - There is no GP or short data segment in x86-64. Instead,

code segments will have an accompanying global offset table (GOT)

segment. These are marked with the FIXED OFFSET attribute in

Linker maps and ANALYZE output.

 - There are no function descriptors on x86-64, so the

way ANALYZE displays transfer vectors and symbol vectors is

different.

 - Each x86-64 symbol vector entry contains two

addresses, compared to the single address in IA64 symbol vector

entries.

 - The default page size for x86-64 is 0x2000 (4Kb), compared

to 0x10000 (8Kb) for IA64.

 - Code will be placed in 64-bit-addressible P2 space

by default. You can override this by using the

/SEGMENT_ATTRIBUTE=CODE=P0 linker qualifier.

 - With code now in 64-bit P2 space, you will

encounter DIR32NOT32BITS linker errors if you attempt to

initialize static data with the address of a routine. For

example, creating the arguments to a call to $LKWSET accepts a

vector of 2 32-bit addresses. For 64-bit address, you should use

$LKWSET_64.

 - Non-code PSECTs marked with the EXE attribute by

linker options files will also result in that PSECT being loaded

into 64-bit address space. OpenVMS x86 requires that all static

data remain in 32-bit address space. You should remove any

non-code PSECT EXE attributes from linker options files.

13 Programming Changes For OpenVMS X86-64

13.1 Code In 64-bit Address Space

On all prior releases of OpenVMS, user code resides in the 32-bit

P0 address space. Since the stack and 32-bit heap memory also

reside in the P0 address space, a large executable could restrict

the amount of stack or heap.

On OpenVMS Itanium, it is possible to place code into P2 space

by using the LINK qualifier /SEGMENT=CODE=P2 (C++ programs

must be compiled with /POINTER_SIZE=64 in order to use this

feature).

For OpenVMS x86, we have changed the default to place all

executable code into 64-bit P2 space. You can restore the old

behavior with /SEGMENT=CODE=P0.

The LINKER creates small stub routines in 32-bit P0 space to allow

the address of a routine to be stored in a 32-bit variable.

In most cases, the move to 64-bit address space is invisible to

a program. However, there are two places where you might notice.

 - The PC field in the exception signal array is only 32-

bits wide. Condition handlers would need to check the 64-bit

signal array for the correct value.

 - Code that attempts to use the $LKWSET system service

to "lock" code into the working set can encounter a LINKER

DIRNOT32BITS error trying to store the 64-bit code address will

not fit into a 32-bit data structure passed to $LKWSET (the address

of the 32-bit stub routine would not give the intended behavior).

Programs should have already been using the LIB$LOCK_IMAGE routine

that was provided beginning with OpenVMS Itanium.

13.2 OpenVMS X86-64 Calling Standard

OpenVMS x86 is using the AMD64 ABI calling standard (the same one

used by Linux 64-bit systems) with a small set of upward

compatible extensions. The OpenVMS Calling Standard document has

been updated to include the x86 information and lists the OpenVMS

specific extensions.

13.3 LIB$WAIT And Other Floating Routines

With VAX floating now enabled in the compilers, the system

routines like LIB$WAIT, CVT$CONVERT_FLOAT, LIB$CVT_DX_DX, and

others now work correctly.

