
DEC Ada

Developing Ada Programs on
OpenVMS Systems
Order Number: AA–PWGYA–TK

January 1993

This manual describes how to compile, link, and execute DEC Ada
programs. It describes the use of the DEC Ada compiler and DEC Ada
program library manager.

Revision/Update Information: This revised manual supersedes
Developing Ada Programs on VMS
Systems (Order No. AA–EF86B–TE).

Operating System and Version: VMS Version 5.4 or higher
OpenVMS AXP Version 1.0 or higher

Software Version: DEC Ada Version 3.0

Digital Equipment Corporation
Maynard, Massachusetts

February 1985
Revised, May 1989
Revised, January 1993

The information in this document is subject to change without notice and should not be
construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation
assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license and may be used or copied
only in accordance with the terms of such license.

No responsibility is assumed for the use or reliability of software on equipment that is not
supplied by Digital Equipment Corporation or its affiliated companies.

Restricted Rights: Use, duplication, or disclosure by the U.S. Government is subject to
restrictions as set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013.

© Digital Equipment Corporation 1985, 1989, 1993.

All Rights Reserved.

The postpaid Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: AXP, DEC, DEC Ada, DECnet,
DECset VMS, Digital, OpenVMS, ULTRIX, VAX, VAX Ada, VAX Pascal, VAXcluster, VAXELN,
VAXset, VAXStation, VMS, VAX–11/780, XD Ada, and the DIGITAL logo.

ZK5577

This document is available on CD–ROM.

This document was prepared using VAX DOCUMENT, Version 2.1.

Contents

Preface . xiii

New and Changed Features . xxi

1 Introduction to the DEC Ada Program Development
Environment

1.1 Getting Started with DEC Ada for the Experienced
Programmer . 1–2

1.2 Getting Started with DEC Ada for the Novice User 1–3
1.2.1 Creating a Working Directory and Defining a Current

Default Directory . 1–5
1.2.2 Creating a Source File . 1–6
1.2.3 Creating a Program Library . 1–6
1.2.4 Defining the Current Program Library 1–7
1.2.5 Compiling the Program . 1–8
1.2.6 Displaying Unit Information . 1–9
1.2.7 Linking the Program . 1–9
1.2.8 Executing the Program . 1–10
1.2.9 Debugging the Program . 1–10
1.2.10 Compiling and Recompiling a Modified Program 1–11
1.3 Using the DEC Ada Program Library Manager 1–12
1.3.1 Overview of ACS Commands . 1–12
1.3.2 Entering ACS Commands . 1–16
1.3.3 Exiting from the Program Library Manager and Interrupting

ACS Commands . 1–17
1.3.4 Defining Synonyms for ACS Commands 1–17
1.3.5 Using DCL Commands with Program Libraries 1–18
1.4 Concepts and Terminology . 1–18

iii

1.4.1 Program and Compilation Units . 1–18
1.4.1.1 Compilation Unit Dependences . 1–19
1.4.1.2 Current and Obsolete Units . 1–19
1.4.1.3 Unit and File-Name Conventions 1–20
1.4.2 Order-of-Compilation Rules . 1–22
1.4.3 Closure . 1–24

2 Working with DEC Ada Program Libraries and Sublibraries

2.1 Program Library and Sublibrary Operations 2–2
2.1.1 Creating a Program Library or Sublibrary 2–3
2.1.2 Defining the Current Program Library 2–5
2.1.3 Identifying the Current Program Library 2–5
2.1.4 Obtaining Library Information . 2–5
2.1.5 Controlling Library Access . 2–6
2.1.5.1 Read-Only Access . 2–7
2.1.5.2 Exclusive Access . 2–8
2.1.6 Deleting a Program Library or Sublibrary 2–9
2.2 Unit Operations . 2–10
2.2.1 Specifying Units in ACS Commands 2–10
2.2.2 Displaying General Unit Information 2–11
2.2.3 Displaying Dependence and Portability Information 2–12
2.2.4 Checking Unit Currency and Completeness 2–16
2.2.5 Using Units from Other Program Libraries 2–18
2.2.5.1 Copying Units into the Current Program Library 2–18
2.2.5.2 Entering Units into the Current Program Library 2–20
2.2.6 Introducing Foreign (Non-Ada) Code into a Library 2–24
2.2.7 Deleting Units from the Current Program Library 2–25
2.3 Using Program Sublibraries . 2–26
2.3.1 Using ACS Commands with Program Sublibraries 2–27
2.3.2 Creating a Nested Sublibrary Structure 2–28
2.3.3 Changing the Parent of a Sublibrary 2–29
2.3.4 Merging Modified Units into the Parent Library 2–30
2.3.5 Modifying and Testing Units in a Sublibrary

Environment . 2–30

iv

3 Working with DEC Ada Library Search Paths

3.1 Understanding Current and Default Library Search Paths 3–2
3.2 Defining the Current Path . 3–3
3.3 Identifying the Current and Default Paths 3–5
3.4 Modifying the Default Path . 3–7
3.5 Configuring and Reconfiguring Program Libraries Using Library

Search Paths . 3–8
3.6 Specifying Library Search Paths . 3–11
3.6.1 Understanding How Library Search Paths are Evaluated . . . 3–11
3.6.2 Specifying Library Search Paths in Commands 3–12
3.6.3 Specifying Library Search Paths in Files 3–13
3.6.4 Specifying Library Search Paths in Default Paths 3–13

4 Compiling and Recompiling DEC Ada Programs

4.1 Compiling Units into a Program Library 4–4
4.2 Recompiling Obsolete Units . 4–6
4.3 Completing Incomplete Generic Instantiations 4–9
4.4 Compiling a Modified Program . 4–13
4.5 Forcing the Recompilation of a Set of Units 4–14
4.6 Using Search Lists for External Source Files 4–15
4.7 Choosing Optimization Options . 4–16
4.8 Processing and Output Options . 4–17
4.8.1 Loading Units and Executing Compilations in a

Subprocess . 4–18
4.8.2 Executing Compilations in Batch Mode 4–18
4.8.3 Conventions for Defaults, Symbols, and Logical Names 4–19
4.8.4 Directing Program Library Manager and Compiler

Output . 4–19
4.8.5 Setting Compiler Error Limits . 4–20

5 Using the Professional Development Option

5.1 Overview of Smart Recompilation . 5–2
5.1.1 Using Smart Recompilation to Recompile Obsolete Units . . . 5–3
5.1.2 Determining the Impact of a Change 5–5
5.1.3 Forcing Recompilation when Smart Recompilation is in

Effect . 5–6
5.1.4 Optimizing the Development Environment for Smart

Recompilation . 5–7
5.1.5 Understanding Inter-Unit Dependences 5–8

v

5.1.6 Fragments, Inter-Dependence, and Independence 5–8
5.1.6.1 Searching for Identifiers and Overloading Resolution . . . 5–9
5.1.6.2 Resolving Access Types . 5–10
5.1.6.3 Inlining and Generic Expansion . 5–10
5.1.6.4 With and Use Clauses . 5–10
5.1.6.5 Pragmas and Representation Clauses 5–11
5.1.7 Coding Your Programs to Use Smart Recompilation

Efficiently . 5–11
5.2 Overview of Program Library File-Block Caching 5–13
5.3 Overview of the Directory Structure Feature 5–14

6 Linking Programs

6.1 Linking Programs Having Only DEC Ada Units 6–2
6.2 Linking Mixed-Language Programs . 6–2
6.2.1 Using the ACS COPY FOREIGN and ENTER FOREIGN

Commands . 6–3
6.2.2 Using the ACS LINK Command . 6–6
6.2.3 Using the ACS EXPORT and DCL LINK Commands 6–7
6.3 Processing and Output Options . 6–9
6.3.1 Conventions for Defaults, Symbols, and Logical Names 6–10
6.3.2 Executing the Link Operation in a Subprocess or in Batch

Mode . 6–10
6.3.3 Saving the Linker Command File and Package Elaboration

File . 6–11

7 Managing Program Development

7.1 Decomposing Your Program for Efficient Development 7–1
7.2 Setting up an Efficient Program Library Structure 7–6
7.3 Integration with Other DEC Tools . 7–10
7.3.1 Setting up Source Code Directories . 7–10
7.3.2 Managing Source Code Modifications 7–11
7.4 Efficient Use of DEC Ada on VMS Systems 7–14
7.4.1 Reducing Disk Traffic Times . 7–14
7.4.2 Reorganizing Library Structures . 7–16
7.5 Protecting Program Libraries . 7–16
7.5.1 Program Library Access Requirements for ACS

Commands . 7–16
7.5.2 Standard User Identification Code (UIC) Based Program

Library Protection . 7–18
7.5.3 Program Library Protection Through Access Control

Lists . 7–20

vi

7.6 Accessing Program Libraries from Multiple Systems 7–22
7.7 General Guidelines for Network Access . 7–23
7.7.1 Network Protection Mechanisms for Program Libraries 7–23
7.7.2 Achieving Efficient Network Access to Program Libraries . . . 7–23
7.7.3 Effect of Network Failures . 7–23
7.8 Accessing Program Libraries Using DFS 7–24
7.8.1 Configuring a Program Library using DFS 7–24
7.9 Accessing Progam Libraries with DECnet FAL 7–24
7.9.1 Configuring a Library Structure using DECnet FAL 7–24
7.9.2 Restrictions on Using Program Libraries Accessed by

DECnet FAL . 7–26
7.10 Maintaining Program Libraries . 7–27
7.10.1 Making References to Program Libraries Independent of

Specific Devices and Directories . 7–27
7.10.1.1 Using Concealed-Device Logical Names 7–28
7.10.1.2 Using Rooted Directory Syntax . 7–29
7.10.2 Copying Program Libraries . 7–29
7.10.3 Backing Up and Restoring Program Libraries 7–30
7.10.4 Reorganizing Program Libraries . 7–31
7.10.5 Verifying and Repairing Program Libraries 7–31
7.10.6 Recompiling Units After a New Release or Update of DEC

Ada . 7–35
7.11 Working with Multiple Targets . 7–36
7.11.1 Determining DEC Ada Program Portability 7–36
7.11.1.1 Factors Affecting Portability . 7–37
7.11.1.2 Features Listed in the Portability Summary 7–38
7.11.2 Setting the System Name . 7–42

8 Debugging DEC Ada Tasks

8.1 A Sample Tasking Program . 8–2
8.2 Referring to Tasks in Debugger Commands 8–7
8.2.1 Ada Language Expressions for Tasks 8–8
8.2.2 Task ID (%TASK) . 8–9
8.2.3 Pseudotask Names . 8–11
8.2.3.1 Active Task (%ACTIVE_TASK) . 8–11
8.2.3.2 Visible Task (%VISIBLE_TASK) 8–11
8.2.3.3 Next Task (%NEXT_TASK) . 8–12
8.2.3.4 Caller Task (%CALLER_TASK) . 8–12
8.2.4 Debugger Support of Ada Task Attributes 8–13
8.3 Displaying Task Information (SHOW TASK) 8–13
8.3.1 Displaying Basic Information on All Tasks 8–14

vii

8.3.2 Selecting Tasks for Display . 8–17
8.3.2.1 Task List . 8–17
8.3.2.2 Task-Selection Qualifiers . 8–17
8.3.2.3 Task List and Task Selection Qualifiers 8–18
8.3.3 Obtaining Additional Information . 8–19
8.4 Examining and Manipulating Tasks . 8–22
8.5 Changing Task Characteristics (SET TASK) 8–23
8.6 Setting Breakpoints and Tracepoints . 8–25
8.6.1 Task-Specific and Task-Independent Debugger

Eventpoints . 8–25
8.6.2 Task Bodies, Entry Calls, and Accept Statements 8–27
8.6.3 Monitoring Ada Task Events . 8–29
8.7 Additional Task-Debugging Topics . 8–34
8.7.1 Debugging Programs with Deadlock 8–35
8.7.2 Debugging Programs that Use Time Slicing 8–36
8.7.3 Using Ctrl/Y when Debugging Tasks 8–37
8.7.4 Automatic Stack Checking in the Debugger 8–37

A ACS Command Dictionary

($) ADA . A–3
ATTACH . A–18
CHECK . A–20
COMPILE . A–25
COPY FOREIGN . A–45
COPY UNIT . A–47
CREATE LIBRARY . A–51
CREATE SUBLIBRARY . A–55
DELETE LIBRARY . A–59
DELETE SUBLIBRARY . A–62
DELETE UNIT . A–65
DIRECTORY . A–69
ENTER FOREIGN . A–74
ENTER UNIT . A–77
EXIT . A–81
EXPORT . A–82
EXTRACT SOURCE . A–85
HELP . A–89
LINK . A–90
LOAD . A–102

viii

MERGE . A–114
MODIFY LIBRARY . A–118
RECOMPILE . A–121
REENTER . A–140
REORGANIZE . A–144
SET LIBRARY . A–146
SET PRAGMA . A–151
SET SOURCE . A–153
SHOW LIBRARY . A–155
SHOW PROGRAM . A–159
SHOW SOURCE . A–165
SHOW VERSION . A–166
SPAWN . A–167
VERIFY . A–169

B Comparison of DEC Ada Commands for ULTRIX and VMS
Systems

C Supplemental Information for Debugging Ada Programs

C.1 Sample Debugging Session . C–1
C.2 Using the Package GET_TASK_INFO . C–4

D Program Design Language Support

D.1 Program Design Support . D–1
D.2 Program Processing . D–4
D.3 Restrictions on Placeholders . D–6
D.4 Name Resolution . D–8
D.5 Design Qualifiers . D–10
D.6 Processing Level Qualifiers . D–11

E Diagnostic Messages

E.1 Diagnostic Message Format . E–1
E.2 Diagnostic Messages and Their Severity E–2
E.3 Informational Messages and the /[NO]WARNINGS Qualifier . . . E–4
E.4 Run-Time Diagnostic Messages . E–5

ix

F Reporting Problems

Index

Examples

3–1 Output from the ACS SHOW LIBRARY/FULL Command . . . 3–6
7–1 Decomposed Stack Application . 7–3
7–2 Command Procedure for Doing LSE Ada Compilations in

Batch Mode . 7–12
8–1 Procedure TASK_EXAMPLE . 8–2
8–2 Sample Debugger Initialization File for DEC Ada Tasking

Programs . 8–33

Figures

1 Documentation Reading Path for Related Documents xiv
2 Documentation Reading Path for DEC Ada

Documentation . xv
3 Figure Conventions . xix
1–1 Dependences Among the Hotel Reservation Program

Compilation Units . 1–4
1–2 Source Files for the Hotel Reservation Program 1–5
1–3 Directory Structure for the Hotel Reservation Program 1–7
1–4 Sample Compilation Units Used to Show Closure 1–26
2–1 Simple Nested Sublibrary Structure 2–28
2–2 Sublibrary Configuration for the HOTEL Program 2–31
3–1 Program Library Configuration for Smith 3–10
3–2 Program Library Reconfiguration for Smith 3–11
7–1 Diagram of Decomposed Stack Application 7–6
7–2 Efficient Program Library and Sublibrary Structure 7–8
7–3 Ada Program Library and Sublibrary Structure with CMS

Libraries . 7–11
7–4 DECnet Program Library Configuration 7–25
8–1 Task State Transitions . 8–15
8–2 Diagram of a Task Stack . 8–22

x

Tables

1 Conventions Used in This Manual . xvi
1–1 ACS Program Library Management Commands 1–13
1–2 Compilation, Linking, and Execution Commands 1–14
1–3 Additional ACS Commands . 1–15
1–4 Conventions for Naming DEC Ada Source Files 1–22
3–1 Results of Evaluating Terms in Path Expressions 3–12
4–1 Summary Comparison of the DCL ADA and ACS LOAD,

RECOMPILE, and COMPILE Commands 4–2
4–2 Comparison of the DCL ADA and ACS LOAD Commands . . . 4–4
4–3 Differences Between ACS RECOMPILE and COMPILE in

Recompiling Obsolete Units . 4–7
7–1 Program Library Access Needed to Use ACS Commands 7–17
7–2 Minimum UIC Protection for Each Kind of Library

Access . 7–19
7–3 Features or Constructs that May Appear in a Portability

Summary . 7–39
8–1 Task States . 8–15
8–2 Task Substates . 8–16
8–3 SHOW TASK Command Qualifiers for Task Selection 8–18
8–4 SHOW TASK Command Qualifiers for Information

Selection . 8–19
8–5 SET TASK Command Qualifiers . 8–23
8–6 DEC Ada Event Names . 8–30
8–7 Kinds of Deadlock and Debugger Commands for Diagnosing

Them . 8–35
B–1 Comparison of DEC Ada Commands on ULTRIX and VMS

Systems . B–1
C–1 GET_TASK_INFO Functions . C–4

xi

Preface

This manual describes how to compile, link, and execute DEC Ada programs.
It describes the use of the DEC Ada compiler and DEC Ada program library
manager.

All references to VMS systems refer to OpenVMS AXP systems and OpenVMS
VAX systems unless otherwise specified.

Intended Audience
This manual is intended for any programmer who needs information on
compiling, linking, and executing DEC Ada programs. The reader should have
a working knowledge of Ada, the Digital Command Language (DCL), and DCL
command procedures.

Documentation Reading Path
Figures 1 and 2 show the relationship of the Ada documentation set to other
documentation that may be helpful.

xiii

Figure 1 Documentation Reading Path for Related Documents

Ada Language

ZK−5349A−2−GE

For introductory or
tutorial Ada language

information

Other Layered Products

System
Documentation

For more information
on the OpenVMS System

For more information
on various layered

products

Individual
Layered
Product

Documentation

Commercial
Ada

Textbooks

OpenVMS Environment

OpenVMS

xiv

Figure 2 Documentation Reading Path for DEC Ada Documentation

Developing and
compiling

Designing and imple−
menting applications

Installing

DEC Ada

* Operating System−Specific Manual

ZK−5349A−1−GE

DEC Ada

*

Developing
Ada

Programs

*

DEC Ada

DEC Ada

Language
Reference

Manual

*

DEC Ada

Implementation and
run−time details Run−Time

Reference
Manual

Installation
Guide

xv

Document Structure
This manual contains the following chapters and appendixes:

• Chapter 1 provides introductory material on DEC Ada and the DEC Ada
programming environment.

• Chapter 2 discusses working with DEC Ada program libraries.

• Chapter 3 discusses working with DEC Ada library search paths.

• Chapter 4 describes how to compile and recompile DEC Ada programs.

• Chapter 5 describes the features and capabilities of the Professional
Development option.

• Chapter 6 describes how to link DEC Ada programs.

• Chapter 7 discusses how to manage program development.

• Chapter 8 discusses how to debug Ada tasks using the debugger.

• Appendix A describes the DEC Ada commands.

• Appendix B compares the commands for DEC Ada for ULTRIX and VMS
systems.

• Appendix C provides supplemental debugging information for debugging
DEC Ada programs.

• Appendix D describes how to use program design support.

• Appendix E discusses DEC Ada diagnostic messages.

• Appendix F describes how to report problems.

Conventions
Table 1 shows the conventions used in this manual.

Table 1 Conventions Used in This Manual

Convention Description

VMS systems Refers to OpenVMS AXP and OpenVMS VAX systems
unless otherwise specified.

$ A dollar sign ($) represents the VMS DCL system prompt.

(continued on next page)

xvi

Table 1 (Cont.) Conventions Used in This Manual

Convention Description

Return In interactive examples, a label enclosed in a box indicates
that you press a key on the terminal, for example, Return .

Ctrl/x The key combination Ctrl/x indicates that you must press
the key labeled Ctrl while you simultaneously press another
key, for example, Ctrl/Y or Ctrl/Z.

boldface monospace
text

In interactive examples, boldface monospace text represents
user input.

file-spec, . . . A horizontal ellipsis following a parameter, option, or value
in syntax descriptions indicates that additional parameters,
options, or values can be entered.

n A lowercase italic n indicates the generic use of a number.

. . . A horizontal ellipsis in an Ada example or figure indicates
that not all of the statements are shown.

.

.

.

A vertical ellipsis in an interactive figure or example
indicates that not all of the commands and responses are
shown.

() In format descriptions, if you choose more than one option,
parentheses indicate that you must enclose the choices in
parentheses.

[expression] Square brackets indicate that the enclosed item is optional.
(Square brackets are not, however, optional in the syntax of
a directory name in a file specification or in the syntax of a
substring specification in an assignment statement.)

{, mechanism_name } Braces in Ada syntax indicate that the enclosed item can be
repeated zero or more times. Braces in debugger command
syntax enclose lists from which you must choose one item.

boldface text Boldface text indicates Ada reserved words.

italic text Italic text emphasizes important information, indicates
variables, and indicates complete titles of manuals. Italic
text also represents information that can vary in system
messages (for example, Internal error number.)

(continued on next page)

xvii

Table 1 (Cont.) Conventions Used in This Manual

Convention Description

type_name Italicized words in syntax descriptions indicate descriptive
prefixes that are intended to give additional semantic
information rather than to define a separate syntactic
catgegory.

UPPERCASE TEXT Uppercase indicates the name of a command, routine,
parameter, procedure, utility, file, file protection code, or the
abbreviation for a system privilege.

Figure 3 explains the shapes and conventions used in figures that diagram Ada
programs.

xviii

Figure 3 Figure Conventions

is

generic

Package units

GENERIC
COMPILATION UNITS

Subprogram units
(procedures or functions)

 . . .

package C is
 . . .

package body
 C . . .

function C;
generic

CONVENTIONS:

Arrows point from dependent units to the units on which
they depend.

Heavy lines indicate relative importance; primary dependence
relationships, specifications, main subprograms, and so on.

Generic instantiations look like nongeneric units, but will
always depend on the generic units from which they are
derived.

 . . .
function C is

Package units and subunits

NONGENERIC
COMPILATION UNITS

Subprogram units and subunits
(procedures or functions)

separate (A)
package body

 B is . . .

 . . .
 A isfunction

package body
 A is . . .

 . . .
function A;

Task subunits

separate (A)

 . . .
isfunction

separate (A)

 . . .
 B istask body

procedure
MAIN is

procedure A
is . . .

. . .

package

Package units

GENERIC
INSTANTIATIONS

Subprogram units
(procedures or functions)

 D is
 C . . .new

ZK−0827A−GE

is Dfunction
 C . . .new

B

 . . .
package A is

xix

New and Changed Features

This release brings VAX Ada into the family of DEC Ada compilers by
renaming it and improving its functionality. This release also adds a new
member of the DEC Ada family by supporting Ada on the OpenVMS AXP
platform.

This manual has been reorganized, information has been clarified and
corrected, and examples have been added.

This version of the manual also discusses the following features, which have
been added or changed since VAX Ada Version 2.0:

• Support for smart recompilation has been added. (See Chapter 5 for more
information.) Several qualifiers have been added or changed to support
smart recompilation. Specifically, the following changes have been made:

– The /[NO]SMART_RECOMPILATION qualifier has been added to the
DCL ADA and ACS CHECK, COMPILE, LOAD, RECOMPILE, and
SHOW PROGRAM commands. This qualifier controls whether detailed
information about unit dependences is stored in the program library
and used to minimize the number of units that are considered obsolete
and actually recompiled. By default (/SMART_RECOMPILATION),
detailed information is stored and used to minimize recompilations.

– The /LOG qualifier for the ACS CHECK, COMPILE, RECOMPILE
and SHOW PROGRAM commands has been enhanced to report on
units that may not need to be recompiled due to smart recompilation
support.

• The defaults for several existing qualifiers were changed as follows:

– The default behavior of the ACS COMPILE, LOAD, and RECOMPILE
commands has changed. The new behavior is to invoke the compiler
interactively (/WAIT). Prior to Version 3.0, the default behavior for
these commands was to submit a batch job (/SUBMIT) to perform the
compilations.

xxi

– The default for the /[NO]PRELOAD qualifier for the ACS COMPILE
command has changed. The default is now /PRELOAD.

– The /[NO]STATISTICS qualifier has been added to the ACS CHECK,
COMPILE and RECOMPILE commands. This qualifier controls
whether statistical information, such as the number of obsolete units
and the amount of time the recompilation requires, is displayed.

• To revert to the old behavior (prior to Version 3.0) for the DCL ADA and
ACS COMPILE, LOAD and RECOMPILE commands, define the following
global symbols as shown:

ADA == ADA/NOSMART
ACS$COM*PILE == "COMPILE/NOSMART_RECOMP/NOPRELOAD/NOSTATISTICS/SUBMIT"
ACS$REC*OMPILE == "RECOMPILE/NOSMART_RECOMPILATION/NOSTATISTICS/SUBMIT"
ACS$LO*AD == "LOAD/SUBMIT/NOSMART_RECOMPILATION"

• Support for library search paths has been added. (See Chapter 3.) In
particular, the following changes have been added:

– The /PATH qualifier has been added to the DCL ADA and ACS SET
LIBRARY commands. This qualifier, which is also available to the ACS
MODIFY LIBRARY command, allows you to specify a library search
path as a parameter or qualifier value.

– The DCL ADA command now accepts a library search path as the value
of the /LIBRARY qualifier when the /PATH qualifier is also specified.

– The ACS MODIFY LIBRARY command has been added. This command
is useful for changing the default library search path of a program
library.

– The output of the ACS SHOW LIBRARY/FULL command has been
enhanced with information on library search paths.

– The /[NO]VERIFY qualifier has been added to the ACS SET LIBRARY
command and controls whether the current path is evaluated and
verified when the ACS SET LIBRARY command is entered. This
qualifier is also available with the new ACS MODIFY LIBRARY
command.

• Two qualifiers have been added that allow you to use DEC Ada as a
program design processor:

– The /[NO]DESIGN qualifier has been added to the DCL ADA, ACS
COMPILE, LOAD, and RECOMPILE commands. This qualifier
allows you to process Ada source files as a detailed program design.
(The /DESIGN qualifier accepts the following qualifier options:
[NO]COMMENTS and [NO]PLACEHOLDERS.)

xxii

– The /PROCESSING_LEVEL qualifier has been added to the ACS
CHECK and SHOW PROGRAM commands. This qualifier determines
the kind of obsolete units identified. (The /PROCESSING_LEVEL
qualifier accepts the following qualifier options: SYNTAX, DESIGN,
and FULL).

See Appendix D for more information.

• The /[NO]OBSOLETE qualifier has been added to the ACS CHECK,
COMPILE, RECOMPILE, and SHOW PROGRAM commands. For the ACS
CHECK and SHOW PROGRAM commands, this qualifier allows you to
ask what the effect on a program or set of units would be if some specific
units were made obsolete. For the ACS COMPILE and RECOMPILE
commands, this qualifier allows you to force the recompilation of specific
units. (The /OBSOLETE qualifier accepts the following qualifier options:
UNIT, SPECIFICATION, and BODY.)

See Section 4.5 for more information on using the /OBSOLETE qualifier.

Note that the /[NO]OBSOLETE qualifier replaces the /[NO]DATE_CHECK
and /FORCE_BODY qualifiers in this release.

• The logical name ADA$PREDEFINED is now defined using rooted
directory syntax. This allows references to ADA$PREDEFINED to be
independent of a specific device or directory.

xxiii

1
Introduction to the DEC Ada Program

Development Environment

DEC Ada implements the American National Standards Institute (ANSI)
and International Standards Organization (ISO) standard Ada programming
language on the VMS operating system. Where allowed by the standard, DEC
Ada also implements features designed to make programming in the VMS
environment convenient and efficient.

The environment for developing DEC Ada programs consists of the set of tools
and utilities provided by DEC Ada and the VMS operating system, plus any
optional layered products you have installed on your system.

DEC Ada provides a program library manager, which is also the user interface
to the DEC Ada compiler and the OpenVMS Linker (linker). The VMS
operating system provides the VMS Debugger and a choice of text editors.
Some of the optional layered products that you can install for use in developing
DEC Ada programs are:

• The DEC Language-Sensitive Editor (LSE)

• DEC/Code Management System (CMS)

• The DEC/Test Manager

• The DEC Performance and Coverage Analyzer (PCA)

• The DEC Source Code Analyzer (SCA)

• Various DEC Information Architecture products

DEC Ada is an integral part of the development environment for VAXELN
Ada, which allows Ada programs to be developed on a VMS system and run
on a VAXELN target. DEC Ada is also related to XD Ada, a family of VMS
cross-compilers that produce Ada code for a number of non-VAX targets. See
the VAXELN Ada Programming Guide for more information on VAXELN Ada.
See the XD Ada documentation for more information on XD Ada.

Introduction to the DEC Ada Program Development Environment 1–1

This chapter provides information on developing Ada programs for both
the experienced programmer and the novice user. For the experienced
programmer, a short section on getting started is provided. For the novice user,
a step-by-step tutorial on developing Ada programs is provided. This chapter
also provides an overview of the program library manager and its command
language, and explains the DEC Ada conventions and terminology related to
compiling, linking, and managing program libraries.

1.1 Getting Started with DEC Ada for the Experienced
Programmer

If you are an experienced programmer—that is, you are familiar with Ada or
programming on VMS systems—you may not need very much instruction to
get started. This section provides a quick overview of the commands you will
need to get an Ada program compiled and linked.

You compile and link DEC Ada programs in the context of an Ada program
library, which is managed by the DEC Ada program library manager (ACS). To
start using DEC Ada, enter the following ACS commands to create, initialize,
and define your current program library. This series of commands assumes
that your program library is a subdirectory of your current working directory.

$ ACS CREATE LIBRARY [.ADALIB]
$ ACS SET LIBRARY [.ADALIB]

Then, compile, link, and execute your program using the following commands
(assuming that the name of your program is MYPROG, and that it depends on
the package MYPACK):

$ ADA MYPACK_.ADA, MYPACK.ADA, MYPROG.ADA
$ ACS LINK MYPROG
$ RUN MYPROG

You can also use the following equivalent set of commands:

$ ACS LOAD MY*
$ ACS COMPILE MYPROG
$ ACS LINK MYPROG
$ RUN MYPROG

Note that when you successfully compile an Ada program, the program library
manager stores the object files associated with the program in your current
program library, not in your current default directory.

Once you compile an Ada compilation unit into a program library, the program
library manager recognizes the unit by its unit name, not by its source file
name.

1–2 Introduction to the DEC Ada Program Development Environment

1.2 Getting Started with DEC Ada for the Novice User
If you are a novice user—that is, you are unfamiliar with Ada or programming
on VMS systems—you may need an overview of how to develop DEC Ada
programs on VMS systems. The following sections provide detailed instructions
on how to compile, link, and execute DEC Ada programs.

When you develop a DEC Ada program, you perform the following steps:

1. Create a working directory for your Ada source files, and define a current
default directory for operations such as editing, debugging, and so on.

2. Create Ada source files for all of the compilation units in your program.

3. Create a program library.

4. Define a current program library for operations such as compilation,
recompilation, and so on.

5. Compile the program into the current program library.

6. Link the program.

7. Execute the program.

8. Debug the program and make changes to the source file, if necessary.

9. Go back to step 5, and compile the program again if debugging has resulted
in modifications to any of the source files.

The following sections explain these steps using an example program. The
program, a hotel reservation system, consists of a main program named
HOTEL and a library package named RESERVATIONS. The program has
three compilation units:

• The specification of the library package RESERVATIONS

• The body of the library package RESERVATIONS

• The procedure body HOTEL, which names the library package
RESERVATIONS in a with clause

Figure 1–1 shows the dependences among these compilation units. The
dependences affect the order in which the compilation units can be compiled,
and determine how the units must be recompiled as units are modified,
compiled again, and so on. In Figure 1–1, arrows point from dependent units
to the units they depend on.

Introduction to the DEC Ada Program Development Environment 1–3

Figure 1–1 Dependences Among the Hotel Reservation Program
Compilation Units

procedure
HOTEL

ZK−6743−GE

package body
RESERVATIONS

RESERVATIONS
package

Figure 1–2 shows the source files and the relevant fragments of the compilation
units for the example program. Note the following points:

• Each compilation unit is in a separate source file.

• The name of each source file matches the name of the compilation unit it
contains. Specifications and bodies share the same unit name. However,
the name of the source file for the package specification has a trailing
underscore character (RESERVATIONS_.ADA) to distinguish it from the
source file for the package body (RESERVATIONS.ADA). (These file-name
conventions are also used by the DEC Ada program library manager and
the VMS Debugger.)

• The working directory and current default directory are the directory
[JONES.HOTEL].

• The program library is the directory [JONES.HOTEL.ADALIB] (in this
case a subdirectory of the working directory and current default directory).

1–4 Introduction to the DEC Ada Program Development Environment

Figure 1–2 Source Files for the Hotel Reservation Program

ZK−3090−GE

USER: [JONES.HOTEL]HOTEL.ADA

with

 . . .
procedure

end

RESERVATIONS;
HOTEL

HOTEL;

is

USER: [JONES.HOTEL]RESERVATIONS.ADA

ispackage body
 . . .
end

RESERVATIONS

RESERVATIONS;

USER: [JONES.HOTEL]RESERVATIONS_.ADA

package

end
 . . .

RESERVATIONS

RESERVATIONS;

is

1.2.1 Creating a Working Directory and Defining a Current Default
Directory

The first steps in developing a DEC Ada program are to create a working
directory and define a current default directory. You create a working directory
by entering the DCL CREATE/DIRECTORY command. You define a current
default directory by entering the DCL SET DEFAULT command. For example:

$ CREATE/DIRECTORY [JONES.HOTEL]
$ SET DEFAULT [JONES.HOTEL]

The working directory is the directory that contains your source files; the
current default directory is the target directory for DCL commands (such as
text-editing commands) and for some of the files produced during program
development. As shown in the previous example, these directories are usually
the same.

Introduction to the DEC Ada Program Development Environment 1–5

1.2.2 Creating a Source File
You create an Ada source file in your working directory by using a text editor.
For example:

$ EDIT HOTEL.ADA

This command invokes EDT which is an interactive text editor available with
the VMS operating system. Another editor is the Extensible VAX Editor (EVE),
which is an interface to the VAX Text Processing Utility (DECTPU).

You can also use the DEC Language-Sensitive Editor (LSE) to create Ada
source files. LSE is an optional, multilanguage text editor designed specifically
for software development. LSE provides formatted language templates to help
you construct syntactically correct Ada source code, and allows you to compile,
review, and correct compilation errors from within the editor. DECTPU is
part of and accessible from LSE. LSE is integrated with the DEC Source Code
Analyzer (SCA) and DEC/Code Management System (CMS).

For further information on the available text editors, see the following
manuals:

• Guide to VMS Text Processing—provides tutorial information on the EDT
editor, EVE editor, and Digital Standard Runoff (DSR)

• OpenVMS EDT Reference Manual—provides comprehensive reference
information on the EDT editor

• Guide to the DEC Text Processing Utility—provides comprehensive
reference information on DECTPU and EVE

• Guide to Language-Sensitive Editor for VMS Systems—provides tutorial
and reference information on LSE

1.2.3 Creating a Program Library
To compile or link an Ada program, you must have a program library. A
program library is a special VMS directory that you create with the ACS
CREATE LIBRARY command, specifying the name of the directory as a
parameter. For example:

$ ACS CREATE LIBRARY [JONES.HOTEL.ADALIB]

The program library holds the products of DEC Ada compilations (object files
and so on), and is used by the program library manager to keep track of
compilation units. You should not use it for any purpose other than the one for
which it was designed; for example, do not use it to store Ada source files or
other files that have not been created by the program library manager.

1–6 Introduction to the DEC Ada Program Development Environment

Figure 1–3 shows the directory structure for the hotel reservation program. In
this case, the program library [JONES.HOTEL.ADALIB] is a subdirectory of
the working directory that contains the source files.

Figure 1–3 Directory Structure for the Hotel Reservation Program

[JONES]

[JONES.HOTEL]

[JONES.HOTEL.ADALIB]

Main directory

Working directory and
current default directory

Program library

ZK−3091−GE

DEC Ada also allows you to create one or more program sublibraries. See
Chapters 2 and 7 for more information on using sublibraries.

1.2.4 Defining the Current Program Library
To use a program library for a compilation, you must first define it as the
current program library. You define a current program library by entering the
ACS SET LIBRARY command, specifying the name of the program library as
the parameter. For example:

$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

The current program library is the library to which compiler and ACS
command operations apply. As such, the current program library is also
the context for any units that are compiled or linked. For example, when the
unit HOTEL is compiled, the compiler searches the current program library
for the specification of the unit RESERVATIONS, because HOTEL mentions
RESERVATIONS in a with clause.

The ACS SET LIBRARY command allows you to change the definition of the
current program library from one library to another.

When working with several program libraries, you can determine which library
is the current program library with the ACS SHOW LIBRARY command. For
example:

$ ACS SHOW LIBRARY
%I, Current program library is USER:[JONES.HOTEL.ADALIB]

Introduction to the DEC Ada Program Development Environment 1–7

1.2.5 Compiling the Program
To compile DEC Ada compilation units, enter either the DCL ADA command
or the ACS LOAD and COMPILE commands. The ADA and LOAD commands
take one or more Ada source file names as parameters; the COMPILE
command takes one or more Ada compilation unit names as parameters.

For example, the following ADA command compiles the files for the units
RESERVATIONS and HOTEL. Because the ADA command assumes a .ADA
file type by default, the file type is omitted.

$ ADA RESERVATIONS_, RESERVATIONS, HOTEL

Similarly, the following ACS LOAD and COMPILE commands compile the
same set of files (again, .ADA is the default file type):

$ ACS LOAD RESERVATIONS*, HOTEL
$ ACS COMPILE HOTEL

Each time a compilation is successful, the program library is updated with
information about the compilation units, as well as with files that are products
of the compilation (object files and so on). One difference between the DCL
ADA and ACS LOAD commands is that the ADA command fully compiles the
units it processes; the LOAD command only partially compiles the units it
processes. After entering an ACS LOAD command, you must subsequently
enter an ACS COMPILE or RECOMPILE command to finish the processing.

For the ADA or LOAD command to execute successfully, you must have
satisfied the following prerequisites:

• Defined a current default directory for your Ada source files (see
Section 1.2.1)

• Created and set a current program library for the products of compilation
(see Section 1.2.3)

For the ADA command to execute successfully, you must also have specified the
files so that the units contained in the files are compiled in the correct order.
The ACS LOAD command processes the units contained in the source files in
any order, so it does not have this requirement.

You can determine the order of compilation by following the Ada rules for
dependences among compilation units. For example, the order of compilation
for the three compilation units of the hotel reservation program is as follows:

• The specification of RESERVATIONS must be compiled before the main
procedure HOTEL because HOTEL names RESERVATIONS in a with
clause.

• The specification of RESERVATIONS must be compiled before its body.

1–8 Introduction to the DEC Ada Program Development Environment

• The procedure HOTEL and the body of RESERVATIONS may be compiled
in either order once the specification of RESERVATIONS has been
compiled.

See Section 1.4.2 and the DEC Ada Language Reference Manual for more
information on Ada order-of-compilation rules.

1.2.6 Displaying Unit Information
To display the contents of your program library, enter the ACS DIRECTORY
command, specifying zero or more unit names as parameters. For example:

$ ACS DIRECTORY HOTEL, RESERVATIONS
HOTEL

procedure body 16-DEC-1992 17:54:24.06 <main>

RESERVATIONS
package specification 16-DEC-1992 17:54:09.46
package body 16-DEC-1992 17:54:30.80

Total of 3 units.

The ACS DIRECTORY command identifies all compilation units that are part
of the program library. Compilation units are listed alphabetically by unit
name, and the date and time of the most recent compilation is given for each
unit.

You can obtain information on how portable your program is by using the
/PORTABILITY qualifier with the ACS SHOW PROGRAM command.

1.2.7 Linking the Program
Once you have compiled all of the units of a program into the current program
library, you link the program by entering the ACS LINK command (not the
DCL LINK command). You specify the unit name (not the file name) of the
main program unit as the parameter. For example:

$ ACS LINK HOTEL

The ACS LINK command invokes the DEC Ada program library manager,
which serves as the interface to the linker and performs the following link-
related operations:

• Checks that a complete set of units exists for the unit specified (the main
program), and that all of the units are current

• If the set of units is complete and current (see Sections 1.4.1.2 and 1.4.3),
generates a temporary command file for the linker

• Invokes the linker

Introduction to the DEC Ada Program Development Environment 1–9

The linker uses the information in the command file to link the appropriate
object modules and produces an executable image file (.EXE) with the same
name as the main program. This image file is stored in your current default
directory (not the current program library). Thus, in the example hotel
reservation program, the resulting executable image file, HOTEL.EXE, is in
the directory [JONES.HOTEL], not in the directory [JONES.HOTEL.ADALIB].

1.2.8 Executing the Program
To execute a successfully linked program, enter the DCL RUN command,
specifying the name of the executable image file as the parameter. For
example:

$ RUN HOTEL

Because the DCL RUN command assumes a .EXE file type by default, you
can omit the file type of the executable image when you enter the DCL RUN
command, as shown in the previous example.

1.2.9 Debugging the Program
If you expect to encounter run-time errors or need to check your Ada program
as it is running, you can compile and link the program so that it will run under
the control of the VMS Debugger when you execute the DCL RUN command.
While you are executing your program under debugger control, you can set
breakpoints, watchpoints, tracepoints, examine the contents of variables,
control the operation of tasks, and so on (see Chapter 8 for information on
debugging tasks; see the OpenVMS Debugger Manual for information on the
debugger).

The following commands show how the example hotel reservation program
is compiled and linked for execution under debugger control. Because the
/DEBUG qualifier is a default qualifier for the DCL ADA command, it is not
shown here.

$ ADA HOTEL
$ ACS LINK/DEBUG HOTEL
$ RUN HOTEL

OpenVMS VAX DEBUG Version 5.5

%I, language is ADA, module set to HOTEL
%I, type GO to get to start of main program
DBG>

Once you are in the debugger, you can obtain help on any of the debugger’s
features by typing the HELP command at the debugger prompt (DBG>). You
can exit from the debugger at any time with the debugger EXIT command.

1–10 Introduction to the DEC Ada Program Development Environment

If you have compiled and linked a program with the /DEBUG qualifier,
and want to execute it without debugger control, you can enter the DCL
RUN/NODEBUG command, as follows:

$ RUN/NODEBUG HOTEL

1.2.10 Compiling and Recompiling a Modified Program
If your program has been compiled once and then modified, you can compile
it again by entering the DCL ADA command as described in Section 1.2.5.
Alternatively, you can use the ACS COMPILE command, specifying the unit
name of the main program. For example:

$ ACS COMPILE HOTEL

The ACS COMPILE command finds all of the compilation units that are
required for the execution of the unit specified, automatically compiles any
source files that have been modified, and recompiles any units that are made
obsolete or incomplete by the compilation. (See Section 1.4.1.2 for more
information on obsolete units, incomplete units, and recompilation.)

Because the ACS COMPILE command assumes the /PRELOAD qualifier
by default, you can compile a modified set of units whose compilation order
has changed in the correct order. However, if you have created new source
files to add new units to your program, you must add the new units by first
compiling them into the library with the ADA command or loading them
into the library with the ACS LOAD command, and then entering the ACS
COMPILE command.

If you have a set of units that have not been modified but are obsolete because
a unit that they depend on has changed, you can recompile them using the
ADA command, or you can use either the ACS RECOMPILE or COMPILE
command. For example:

$ ACS RECOMPILE HOTEL

The COMPILE or RECOMPILE command finds all of the compilation units
that are required for the execution of the unit specified, and recompiles any
obsolete or incomplete units.

By entering the COMPILE and RECOMPILE commands with the /OBSOLETE
qualifier, you can use them to force the recompilation of a set of units.

Like the DCL ADA command, the ACS COMPILE and RECOMPILE
commands assume the /DEBUG qualifier by default.

See Chapter 4 for more information on using the ACS COMPILE and
RECOMPILE commands.

Introduction to the DEC Ada Program Development Environment 1–11

1.3 Using the DEC Ada Program Library Manager
The DEC Ada program library manager is an interactive utility with ACS
commands. You enter these commands to perform a variety of functions.
The program library manager handles all of the program library operations
associated with Ada compilation units and automates many of those functions
for you. The program library manager also provides much of the user interface
to the DEC Ada compiler and linker.

This section gives an overview of the ACS commands and discusses the
following topics:

• Entering ACS commands

• Exiting from the program library manager and interrupting ACS
commands

• Defining synonyms for ACS commands

• Using DCL commands with program libraries

1.3.1 Overview of ACS Commands
ACS commands provide program library management, compilation, and linking
operations. These operations are summarized in this section as follows:

• Table 1–1 summarizes program library management commands. (See
Chapters 2 and 7 for more information on program library management.)

• Table 1–2 summarizes compilation and linking commands. (See Chapter 4
for more information on compilation; see Chapter 6 for more information
on linking.)

• Table 1–3 summarizes additional ACS commands that are useful in the
VMS environment.

Appendix A of this manual is a dictionary of all of the ACS commands. It
provides details on the format, parameters, and qualifiers for each command.
The same information is provided on line when you type ACS HELP at the
DCL prompt ($).

Note

For completeness, the DCL ADA and DCL RUN commands are included
in these tables. These are the only non-ACS commands presented.

1–12 Introduction to the DEC Ada Program Development Environment

Table 1–1 ACS Program Library Management Commands

Command Function

CHECK Forms the execution closure1 of one or more compiled units,
and checks the completeness and currency of the units in the
closure.

COPY FOREIGN Copies a foreign (non-Ada) object file into the current program
library as a library unit body.

COPY UNIT Copies a compiled unit from one program library to the
current program library.

CREATE LIBRARY Creates a DEC Ada program library.

CREATE SUBLIBRARY Creates a DEC Ada program sublibrary, which allows you to
isolate the development of selected units.

DELETE LIBRARY Deletes a program library and its contents.

DELETE SUBLIBRARY Deletes a program sublibrary and its contents.

DELETE UNIT Deletes one or more compiled units from the current program
library.

DIRECTORY Lists the units in the current program library. Displays
information, such as the name and date-time of the last
compilation, about one or more units in the current program
library.

ENTER FOREIGN Enters a reference (pointer) from the current program library
to an external file as a foreign (non-Ada) library body.

ENTER UNIT Enters a reference (pointer) from the current program library
to a unit that has been compiled into another program library.
Entered units can be used in the current program library as
if they were actually in it.

EXPORT Creates an object file that contains the object code for one or
more units in the current program library.

EXTRACT SOURCE Obtains copies of source files contained in the current
program library.

MERGE Merges, into the parent library, new versions of one or more
units from the sublibrary where they were modified. The
MERGE command replaces the older, obsolete versions in the
parent library.

1In simple terms, execution closure is the complete set of units that a given unit depends on, plus
any other units needed for its execution. Currency and closure are discussed in Sections 1.4.1.2
and 1.4.3, respectively.

(continued on next page)

Introduction to the DEC Ada Program Development Environment 1–13

Table 1–1 (Cont.) ACS Program Library Management Commands

Command Function

MODIFY LIBRARY Modifies the default path of a DEC Ada program library or
sublibrary.

REENTER Enters current references to units that were compiled after
they were last entered with the ENTER UNIT command.

REORGANIZE Optimizes the organization of a program library.

SET LIBRARY Defines a program library to be the current program library—
that is, the library that is to be the compilation context,
as well as the target library for compiler output and ACS
commands in general.

SET PRAGMA Redefines specified values of the library characteristics
FLOAT_REPRESENTATION, LONG_FLOAT, MEMORY_
SIZE, and SYSTEM_NAME.

SHOW LIBRARY Displays the name and characteristics of one or more program
libraries.

SHOW PROGRAM Displays information, such as dependence on other units,
about the closure of one or more units in the current program
library. Also displays a portability summary.

SHOW VERSION Displays the version of the DEC Ada compiler and program
library manager being used.

VERIFY Performs a series of consistency checks on a program library
to determine whether the library structure and library
files are in valid form. Optionally corrects some of the
inconsistencies detected.

Table 1–2 Compilation, Linking, and Execution Commands

Command Function

DCL Commands

ADA Invokes the DEC Ada compiler to compile the specified Ada
source files.

RUN Executes the specified executable image file.

(continued on next page)

1–14 Introduction to the DEC Ada Program Development Environment

Table 1–2 (Cont.) Compilation, Linking, and Execution Commands
ACS Commands

COMPILE Forms the execution closure1 of one or more specified units;
checks the completeness and currency of the units in the
closure; identifies units that have revised source files;
compiles units that have revised source files; recompiles
units that are obsolete or will become obsolete. Completes
incomplete generic instantiations.

LOAD Loads (partially compiles) the units in the specified Ada
source files into the current program library as obsolete units;
updates the current program library with unit dependence
and source-file information.

LINK Creates an executable image file for the specified units.

RECOMPILE Forms the execution closure1 of one or more specified units;
checks the completeness and currency of the units in the
closure; recompiles any obsolete units in the appropriate
order to make them current. Completes incomplete generic
instantiations.

SET SOURCE Defines a source file search list for the COMPILE
command.

SHOW SOURCE Displays the source file search list used by the COMPILE
command.

1In simple terms, execution closure is the complete set of units that a given unit depends on, plus
any other units needed for its execution. Currency and closure are discussed in Sections 1.4.1.2
and 1.4.3, respectively.

Table 1–3 Additional ACS Commands

Command Function

ATTACH Switches control of your terminal from the current process
running the DEC Ada program library manager (same as the
DCL ATTACH command).

EXIT Exits from the program library manager. You can also use
Ctrl/Z.

HELP Invokes the HELP facility to obtain information about ACS
commands.

SPAWN Creates a subprocess of the current process (same as the DCL
SPAWN command).

Introduction to the DEC Ada Program Development Environment 1–15

1.3.2 Entering ACS Commands
You can enter ACS commands in two ways:

• By invoking the program library manager interactively

• In the form of one-line DCL commands

To use the program library manager interactively, you must first invoke it by
typing ACS at the DCL prompt ($). The library manager responds with the
ACS prompt. For example:

$ ACS
ACS>

Once you have invoked the program library manager, you can enter any ACS
command. For example:

ACS> SET LIBRARY [JONES.HOTEL.ADALIB]

To enter an ACS command as a one-line DCL command, type the ACS prefix
and then the ACS command line. For example:

$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

This form allows you to use DCL symbol substitution, parameter passing, and
lexical functions in ACS commands (These DCL features are described in the
OpenVMS User’s Manual.). For example:

$! CLG.COM -- DCL procedure for compile-link-go processing.
$! Parameter P1 is source file name and main program name.
$ ADA ’P1’
$ ACS LINK ’P1’
$ RUN ’P1’

Regardless of the ACS command format you choose, the program library
manager prompts you for any required parameters that are missing.

If your ACS command is too long to fit on one line, you can continue the
command by typing a hyphen (-) as the last character of a line. For example:

ACS> LINK/DEBUG/MAP/FULL/CROSS_REFERENCE -
_ACS> MY_MAIN_PROGRAM -
_ACS> DISK:[MATRIX.SHARE]MATHPACK.OLB/LIB

An ACS command can have a maximum of 1024 characters. Individual
command lines can have a maximum of 256 characters.

1–16 Introduction to the DEC Ada Program Development Environment

1.3.3 Exiting from the Program Library Manager and Interrupting ACS
Commands

If you are using the program library manager interactively, you can exit and
return to DCL level by entering the ACS EXIT command or by pressing Ctrl/Z
at the ACS> prompt. For example:

ACS> EXIT
$

If you need to interrupt an ACS command before its execution has completed,
press Ctrl/C rather than Ctrl/Y. Ctrl/C interrupts the command in an orderly
fashion, while Ctrl/Y may not. In particular, use Ctrl/C if the ACS command
is one that alters the contents of a program library, for example, the ACS
DELETE UNIT command. When you use Ctrl/Y to interrupt an ACS command,
control passes directly to DCL, and the program library may be left in an
inconsistent state.

1.3.4 Defining Synonyms for ACS Commands
As with DCL commands, you can define synonyms (symbols) to abbreviate
commonly used combinations of ACS commands and qualifiers. You can place
these symbol definitions in your LOGIN.COM file so that they take effect
whenever you log in to your system.

A synonym for an ACS command must have the prefix ACS$. Otherwise, the
conventions are identical to those for defining synonyms for DCL commands
(see the OpenVMS User’s Manual). For example:

$ ACS$DB == "DIRECTORY/BRIEF"
$ ACS$DF == "DIRECTORY/FULL"

You can use these synonyms when working interactively with the program
library manager. For example:

ACS> DB
HOTEL
QUEUE_MANAGER
RESERVATIONS
SCREEN_IO

Total of 7 units.

Note from this example that you use only the letters following the ACS$ prefix
as the synonym.

Introduction to the DEC Ada Program Development Environment 1–17

1.3.5 Using DCL Commands with Program Libraries
Program libraries are implemented in DEC Ada as VMS directories. However,
the file relationships inside a program library are quite different from those in
a conventional VMS directory. Therefore, in general, you should use only ACS
commands to manipulate program libraries and their contents.

You may need to use DCL commands in certain situations. For example,
you may need to use the DCL SET PROTECTION command to change the
protection of a library directory so that you can delete it (see Chapters 2
and 7). Similarly, you may need to use the DCL BACKUP command to copy or
back up a program library (see Chapter 7).

1.4 Concepts and Terminology
The following sections summarize the basic concepts and terminology that
apply to compilation and linking in the DEC Ada environment. These concepts
are related to modular program development, which is a primary feature of the
Ada language.

1.4.1 Program and Compilation Units
Program units are the functional building blocks of Ada programs. There
are four kinds of program units: subprograms (procedures and functions),
packages, tasks, and generic units. An Ada program generally consists of a
main program and its related program units. A main program is always a
subprogram.

To facilitate modular development, each program unit consists of a specification
and sometimes a body. The specification contains only the declarations
that need to be made visible to other program units; the body contains the
implementation of the declarations in the specification.

Ada program units that can be compiled separately are called compilation
units. Compilation units consist of the following:

• Package specifications and bodies

• Subprogram specifications and bodies

• Generic unit (subprogram and package) specifications and bodies

• Generic instantiations (subprogram and package) of generic units

1–18 Introduction to the DEC Ada Program Development Environment

• Subunits

Note

A task specification or body must be contained within a package or a
subprogram before it can be compiled, except when the task body is a
subunit.

1.4.1.1 Compilation Unit Dependences
During and after compilation, the compiler and program library manager
maintain current data on the status of compilation units and the dependences
among units. In this way, the compiler can enforce certain order-of-compilation
rules (see Section 1.4.2), and the program library manager can manage the
program library to support those rules.

Compilation unit dependences are derived from Ada’s scope and visibility
conventions:

• A library body depends on its library specification, if there is one.

• A subunit depends on its parent unit and therefore depends on its parent’s
associated library body and library specification.

• Each compilation unit depends on the library specifications of any units
that are named in with clauses.

Compilation unit dependences can also be caused by the following:

• The value of the predefined constant SYSTEM.SYSTEM_NAME if the
package SYSTEM is named in a with clause. (Chapter 7 describes this
constant and its effects in more detail.)

• Calls of subprograms that have been specified with the pragma INLINE.

• Instantiations of generics that have been specified with the pragma
INLINE_GENERIC.

1.4.1.2 Current and Obsolete Units
Whenever a unit is compiled, any dependent unit, as defined in Section 1.4.1.1,
becomes obsolete and must eventually be recompiled before it can be included
in a set of units to be linked. For example, compiling a library specification
makes the associated library body and any subunits obsolete; moreover, if the
library specification is named in a with clause of a unit, that unit is also made
obsolete, as are its dependent units. Incomplete instantiations (instantiations
that were compiled before their corresponding generic body was compiled or
recompiled) are also counted as obsolete units.

Introduction to the DEC Ada Program Development Environment 1–19

The program library manager keeps track of current and obsolete units. ACS
commands such as SHOW PROGRAM and CHECK allow you to determine the
status of the units in the current program library. If you try to link a set of
units that contains any obsolete units, the program library manager warns you
about those units and terminates the operation. Because obsolete units are a
natural consequence of Ada’s compilation rules (see Section 1.4.2), DEC Ada
provides the ACS COMPILE and RECOMPILE commands. These commands
automatically find the set of units that need to be compiled to make an obsolete
unit current, and then compile that set in the right order. This process makes
the units current.

Note

The verb to recompile is used in a restricted sense in this manual; it
means to make a set of obsolete units current.

If smart recompilation is in effect, dependent units are recompiled only if they
are actually affected by a change. See Chapter 5 for more information.

1.4.1.3 Unit and File-Name Conventions
While developing programs in the DEC Ada environment, you need to recognize
the distinction between source files and units. A source file (having a default
file type of .ADA) can contain several compilation units. However, after a file
is compiled, the program library manager maintains information about the
individual units, and most of the ACS commands operate on units (not on
source files).

If you have one source file for all of your compilation units, the name of the
file will be different from most, if not all, of the units. Because most program
library manager commands accept unit names and give information about
units, having one source file with a different name from most units can become
confusing. To keep the distinction between source files and compilation units
clear, use a separate source file for each compilation unit.

Use of a separate source file for each compilation unit also promotes efficient
use of the compiler. For example, every time a unit is compiled, any dependent
unit in the program library becomes obsolete and must be recompiled. Thus,
if you have two library specifications in the same source file, every time you
modify one specification, you must compile both in the same compilation.
Then, the units that depend on both specifications become obsolete and must
be recompiled. If the specifications were in separate source files, only the
modified specification would be compiled, and only the units that depend on
the modified specification would become obsolete and have to be recompiled.

1–20 Introduction to the DEC Ada Program Development Environment

When you use separate source files for individual compilation units, you should
follow file-name conventions that parallel the Ada language rules for naming
compilation units. For example, although a library specification and its library
body are distinct compilation units, they share the same name, called the unit
name. All of the unit names in a program library must be unique. Similarly,
all of the subunit names associated with a given ancestor unit must be unique.
(Every subunit mentions the name of its parent unit, and the top-level parent
in a hierarchy of subunits is the ancestor unit.)

To support these rules, the following file-name conventions are recommended.
These conventions are consistent with program library manager and VMS
file-name conventions.

• The name of the source file for a library specification should be the name
of the unit, followed by a trailing underscore character (_): for example,
SCREEN_IO_.ADA.

• The name of the source file for a library body should be the name of the
unit (without a trailing underscore): for example, SCREEN_IO.ADA.

• The name of the source file for a library generic instantiation should be the
name of the instantiation: for example, INTEGER_TEXT_IO.ADA.

• The name of the source file for a subunit should be the name of the ancestor
unit, followed by two underscore characters, followed by the name of the
subunit: for example, SCREEN_IO_ _INPUT.ADA (where INPUT is a
subunit of SCREEN_IO).

Table 1–4 shows the conventions for naming source files by comparing unit
names with source file names. The names in the table represent the following
arbitrary set of units:

• Package specification and body SCREEN_IO

• Generic package declaration and body MATH

• Generic instantiation HOTEL_MATH

• Subunit INPUT (of SCREEN_IO)

• Subunit BUFFER (of INPUT)

Introduction to the DEC Ada Program Development Environment 1–21

Table 1–4 Conventions for Naming DEC Ada Source Files

Compilation Unit Ada Unit Name Ada Source File Name

package SCREEN_IO
specification
body

SCREEN_IO
SCREEN_IO

SCREEN_IO_
SCREEN_IO

generic package MATH
declaration
body

MATH
MATH

MATH_
MATH

generic instantiation HOTEL_MATH HOTEL_MATH

subunits
INPUT
BUFFER

SCREEN_IO.INPUT
SCREEN_IO.INPUT.BUFFER

SCREEN_IO_ _INPUT
SCREEN_IO_ _BUFFER

1.4.2 Order-of-Compilation Rules
The DEC Ada compiler and program library manager enforce the rules
governing the order in which compilation units are compiled. These order-
of-compilation rules stem from Ada’s scope and visibility conventions, which
create the dependences among units described in Section 1.4.1.1. The rules are
as follows:

• You can compile a given unit only after compiling all of the library
specifications named in that unit’s context clause.

• You can compile a library body only after compiling its library specification.
However, the body of a nongeneric library subprogram can also serve as its
own library specification, and therefore does not necessarily depend on a
separately compiled specification.

• You can compile a subunit only after compiling its parent unit.

In summary, a unit must be compiled before any of its dependent units.

If you follow these rules, then the following additional rules are true:

• You can submit the compilation units of a program to the compiler in one or
more compilations (invocations of the compiler). Also, you can submit one
or more compilation units of a program at any one time. The units of any
one compilation are compiled in the given order, whether submitted in one
or more files. Thus, a pragma that applies to the whole of a compilation
must appear before the first unit of that compilation.

1–22 Introduction to the DEC Ada Program Development Environment

• Units can be compiled in an otherwise arbitrary order relative to each
other. For example, compiling a subunit affects only its subunits, if any;
compiling a library body generally does not affect any other units except its
own subunits, if any. However, compiling a library body does affect other
units in the following three cases:

If a pragma INLINE or equivalent /OPTIMIZE qualifier option applies
to a subprogram, then compiling the library body containing the
subprogram body makes obsolete any unit in which a call of the
subprogram is expanded inline.

If a pragma INLINE_GENERIC or equivalent /OPTIMIZE qualifier
option applies to a generic unit or to an instance of a generic unit,
then compiling the generic body makes obsolete any unit in which an
instantiation of the generic is expanded inline.

If an inline pragma or equivalent /OPTIMIZE qualifier option does not
apply, then compiling a generic body makes all instantiations of the
generic incomplete. However, units that contain instantiations of the
generic do not become obsolete. (See Chapter 4 for more information on
completing incomplete generic instantiations.)

If you follow these rules when you compile a unit or set of units, and no other
errors are detected during the compilation, then the program library is updated
with information on all of the units in the compilation. If the compilation is
unsuccessful for any reason, no updating is done.

Although the DEC Ada compiler always processes compilation units in a
manner that is consistent with Ada’s order-of-compilation rules, observance
of the compilation rules does not ensure that the set of units in a program
library is current. Nor does observance of the rules ensure that the set of units
is complete. For example, a library body or a subunit may still be missing
from the program library, or may have been made obsolete by a previous
compilation. If you try to link an incomplete set of units, the program library
manager warns you about the missing units, and terminates the operation.

Obsolete units are discussed in Section 1.4.1.2; what constitutes a complete set
of units is discussed in Section 1.4.3; smart recompilation, a compiler feature
which significantly reduces the number of compilations needed to rebuild a
program after some units change, is discussed in Chapter 5.

Introduction to the DEC Ada Program Development Environment 1–23

1.4.3 Closure
When you compile a given unit, the compiler identifies any unit that the given
unit depends on, as specified in Section 1.4.1.1, and determines whether that
unit is defined and current in the current program library. For example, if the
given unit is a library body, the compiler looks for the unit’s specification.

Any unit that a given unit depends on may itself depend on another unit,
which must also be defined in the current program library. The total set of
library units that the given unit depends on, directly and indirectly, is called
the compilation closure of that unit. Thus, the compilation closure of a given
unit consists of all the units that must be defined and current in the current
program library before you can compile that unit.

To link a program into an executable image, the execution closure of the main
program must be formed. The execution closure consists of the compilation
closure plus all associated library bodies and subunits. A set of units is
complete when no units in the execution closure are missing.

A number of ACS commands operate on the execution closure of a specified set
of units—for example, the ACS CHECK, COMPILE, COPY UNIT/CLOSURE,
ENTER UNIT/CLOSURE, EXPORT, LINK, RECOMPILE, and SHOW
PROGRAM commands.

Note

In this manual, the term closure is used to signify execution closure,
unless otherwise specified.

The execution closure of a specified set of compilation units is defined formally
as the smallest set of units with the following properties:

• All the specified units are contained in the closure.

• For any given unit in the closure, the following are also contained in the
closure, as applicable:

Its specification, if the given unit is a body

Its body, if the given unit is a specification

Its immediate subunits, if any

Its immediate parent unit, if the given unit is a subunit

All units named by the given unit in its with clause

1–24 Introduction to the DEC Ada Program Development Environment

A unit that names a given unit in its with clause is not part of the execution
closure of the given unit.

Figure 1–4 shows one possible configuration of an extended version of the
HOTEL reservation program. The units involved are the library packages
RESERVATIONS, SCREEN_IO, and HOTEL_MATH, the library subprograms
HOTEL and CONFIRM, and the subunit RESERVATIONS.CANCEL. Arrows
point from dependent units to the units they depend on.

The units shown in Figure 1–4 form the following closures:

• The closure of the unit CONFIRM consists of the function CONFIRM.

• The closure of the specification or body of the package SCREEN_IO consists
of the specification and body of the package SCREEN_IO.

• The closure of the specification, body, or subunit of the package
RESERVATIONS consists of all of the units shown, except for the procedure
HOTEL.

• The closure of the procedure HOTEL consists of all of the units shown.

The following command recompiles any of the units shown that are obsolete,
except HOTEL (the closure of RESERVATIONS does not include HOTEL):

$ ACS RECOMPILE RESERVATIONS

The following command recompiles any of the units shown that are obsolete
(the closure of HOTEL includes all of the units):

$ ACS RECOMPILE HOTEL

Introduction to the DEC Ada Program Development Environment 1–25

Figure 1–4 Sample Compilation Units Used to Show Closure

ZK−6744−GE

generic package
 MATH

package body
 MATH

package body
 SCREEN_IO

procedure
 HOTEL

package
 HOTEL_MATH

package
 SCREEN_IO

function
 CONFIRM

separate

procedure
 (RESERVATIONS)

 CANCEL

 RESERVATIONS
package

package body
 RESERVATIONS

1–26 Introduction to the DEC Ada Program Development Environment

2
Working with DEC Ada Program Libraries

and Sublibraries

Ada compilations are performed in the context of a program library. The
program library manager and compiler use the program library to maintain
information about compilation units.

A DEC Ada program library is a dedicated VMS directory that contains a set
of files for each compilation unit successfully compiled. A DEC Ada program
sublibrary is a program library that has a parent library. Units in a sublibrary
are compiled in the context of both the sublibrary and the parent library, but
only the sublibrary is updated.

Note

Because program libraries and sublibraries are so similar, many
library and compilation unit operations have the same effect. Thus,
this chapter uses the term library to denote a sublibrary as well as a
program library. The terms program library and sublibrary are used
only where emphasis is needed or a distinction must be made.

When your library context is a sublibrary, the units in the sublibrary and
parent libraries are visible in a fashion analogous to multiple panes of glass.
The units in the sublibrary appear on the top pane, units in the immediate
parent library appear on the next pane, units in the parent of the immediate
parent appear on a following pane, and so on. Then, units by the same name
hide each other such that a unit in a parent library is hidden (made not
visible) by a unit of the same name in a closer sublibrary. Thus, the search
for a unit begins with the closest pane of glass (the sublibrary) and follows
through the parent panes until the unit is found.

Working with DEC Ada Program Libraries and Sublibraries 2–1

You can organize program libraries and sublibraries to suit the needs of your
project. For example, you can store the compilation units of an entire Ada
program in a single program library, or you can distribute them among a
number of program libraries. Sublibraries are designed to allow you to isolate
particular compilation units so that you can develop them individually.

This chapter explains how you can work with program libraries and
sublibraries using ACS commands. Chapter 7 covers additional topics related
to program library management and maintenance.

Note

The information in this chapter is task oriented. For full details on the
format, parameters, and qualifiers of the various ACS commands, see
Appendix A. For information on working with DEC Ada library search
paths, see Chapter 3.

2.1 Program Library and Sublibrary Operations
The following sections describe a number of program library and sublibrary
operations:

• Creating a program library or sublibrary

• Defining the current program library

• Identifying the current program library

• Obtaining library information

• Controlling library access

• Deleting a program library or sublibrary

In general, the effect of these operations on program libraries and sublibraries
is the same. When the effect is different, information is provided, as
appropriate. See Section 2.3.1 for a summary of the commands where the
effect is different.

See Chapter 7 for information on how to configure, protect, and maintain
program libraries and sublibraries.

2–2 Working with DEC Ada Program Libraries and Sublibraries

Note

Use only ACS commands (not DCL commands) to manipulate program
libraries and sublibraries. Exceptions to this rule are noted where
appropriate.

2.1.1 Creating a Program Library or Sublibrary
To create a program library, enter the ACS CREATE LIBRARY command,
specifying a directory as a parameter. For example:

$ ACS CREATE LIBRARY [JONES.HOTEL.ADALIB]

To create a sublibrary, enter the ACS CREATE SUBLIBRARY command,
specifying a directory as a parameter, and optionally specifying the parent
library with the /PARENT qualifier. For example:

$ ACS CREATE SUBLIBRARY/PARENT=[JONES.HOTEL.ADALIB] -
_$ [JONES.HOTEL.SUBLIB]

When creating a sublibrary, you can specify any previously created program
library or sublibrary to be the parent library. If you omit the /PARENT
qualifier, the current program library is defined to be the parent library by
default. See Section 2.1.2 for information on defining and identifying the
current program library; see Section 2.1.4 for information on identifying the
parent of a sublibrary.

Note

By using concealed-device logical names and rooted directory syntax
for program library and sublibrary directories, you can make the
maintenance of program libraries and sublibraries easier. In particular,
you can change the parent of a sublibrary. See Section 2.3.3 and
Chapter 7 for more information.

As an alternative to using concealed-device logical names, you can use
library search paths. For more information, see Chapter 3.

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commands are the
same in the following respects:

• They create the specified directory (if it does not already exist).

• They cannot be used when a node name is given in a directory specification
unless the directory for the library already exists.

Working with DEC Ada Program Libraries and Sublibraries 2–3

• They create the library, but do not automatically make it a target for
compilation and ACS commands. To use the library, you must enter the
ACS SET LIBRARY command (see Section 2.1.2).

• They cause the library directory to inherit the default system file
protection. Both commands have a /PROTECTION qualifier, which allows
you to change the default. See Chapter 7 for more information on library
protection.

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commands are
different in the following respects:

• The CREATE LIBRARY command initializes the program library to be
self-contained. The CREATE SUBLIBRARY command puts a reference to
the parent library in the sublibrary.

• The CREATE LIBRARY command enters the Ada predefined units into the
newly created program library by default. The CREATE SUBLIBRARY
command does not enter the Ada predefined units into the newly created
sublibrary.

• When you create a program library, the following system characteristics
are in effect by default:

– FLOAT_REPRESENTATION = VAX_FLOAT

– LONG_FLOAT = G_FLOAT

– MEMORY_SIZE = 2147483647

– SYSTEM_NAME = VAX_VMS or OpenVMS_AXP

When you create a sublibrary, the sublibrary inherits the defaults of
its parent library or sublibrary. The CREATE LIBRARY and CREATE
SUBLIBRARY commands have qualifiers that allow you to override
these defaults. See Chapter 7 and the descriptions of these commands in
Appendix A for more information; see also the description of the ACS SET
PRAGMA command, which allows you to change the system characteristics
for existing libraries or sublibraries.

A program library or sublibrary is meant to hold only the files needed for the
program library manager. You should not use it for any other purpose. For
example, you should keep it distinct from any working directory (such as the
current default directory) where you store and edit your source files.

2–4 Working with DEC Ada Program Libraries and Sublibraries

2.1.2 Defining the Current Program Library
The current program library is the target library for compilation and many
ACS commands. To define a library as the current program library, enter the
ACS SET LIBRARY command, specifying the directory specification for the
library as the parameter. For example:

$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

The program library manager assigns the directory specification provided in
the SET LIBRARY command to the process logical name ADA$LIB. Both the
program library manager and the compiler use that logical name to maintain
the current program library context when performing various operations.

Note that if you specify an invalid library directory specification, the program
library manager issues a diagnostic message and then sets the library (and
assigns ADA$LIB) to the invalid specification. This behavior is designed to
protect you from incorrectly modifying the wrong library with subsequent ACS
commands.

2.1.3 Identifying the Current Program Library
To identify the current program library, enter the ACS SHOW LIBRARY
command without a parameter. For example:

$ ACS SHOW LIBRARY
%I, Current program library is USER:[JONES.HOTEL.ADALIB]

2.1.4 Obtaining Library Information
To obtain information about the current program library, enter the ACS SHOW
LIBRARY command with one of a number of qualifiers. For example, you can
use the /FULL qualifier to determine a library’s current and default paths and
system characteristics:

$ ACS SHOW LIBRARY/FULL
Current program library USER:[JONES.HOTEL.ADALIB]

Current path evaluates to:

USER:[JONES.HOTEL.ADALIB]

Program library USER:[JONES.HOTEL.ADALIB]

Created: 10-NOV-1992 14:37:30.63, by DEC Ada V3.0
Last reorganized: <No reorganization date>

Default path in its original form:

USER:[JONES.HOTEL.ADALIB]

Default path evaluates to:

Working with DEC Ada Program Libraries and Sublibraries 2–5

USER:[JONES.HOTEL.ADALIB]

Pragmas that affect STANDARD and SYSTEM:

pragma FLOAT_REPRESENTATION(VAX_FLOAT)
pragma LONG_FLOAT(G_FLOAT)
pragma MEMORY_SIZE(2147483647)
pragma SYSTEM_NAME(VAX_VMS)

(For information on current and default paths, see Section 3.3.)

To obtain information about libraries that are not the current program library,
enter the ACS SHOW LIBRARY command, specifying the libraries of interest
as parameters. For example:

$ ACS SHOW LIBRARY/FULL [SMITH.ADALIB]
Program library USER:[SMITH.ADALIB]

Created: 11-NOV-1992 20:12:47.14, by DEC Ada V3.0
Last reorganized: <No reorganization date>

Default path in its original form:

USER:[SMITH.ADALIB]

Default path evaluates to:

USER:[SMITH.ADALIB]

Pragmas that affect STANDARD and SYSTEM:

pragma FLOAT_REPRESENTATION(VAX_FLOAT)
pragma LONG_FLOAT(G_FLOAT)
pragma MEMORY_SIZE(2147483647)
pragma SYSTEM_NAME(VAX_VMS)

To display the contents of a library, you can use the /UNITS qualifier on
the ACS SHOW LIBRARY command. To display the contents of the current
program library, you can use the ACS DIRECTORY command. The results of
the SHOW LIBRARY/UNITS command and the DIRECTORY command are
the same. However, you can apply the DIRECTORY command only to the
current program library; you can apply the SHOW LIBRARY/UNITS command
to any library. See Section 2.2.2 for more information on the ACS DIRECTORY
command.

2.1.5 Controlling Library Access
The ACS SET LIBRARY command has two qualifiers that allow you to
temporarily control library access:

• The /READ_ONLY qualifier temporarily allows you to access libraries in a
read-only manner.

2–6 Working with DEC Ada Program Libraries and Sublibraries

• The /EXCLUSIVE qualifier temporarily limits library access to one process.

To use either qualifier, execute the ACS SET LIBRARY command interactively
from the program library manager. For example:

ACS> SET LIBRARY/READ_ONLY DISK:[SMITH.SHARE.ADALIB]

ACS> SET LIBRARY/EXCLUSIVE [JONES.HOTEL.ADALIB]

When you use these qualifiers, they remain in effect until you exit from the
program library manager or until you execute another ACS SET LIBRARY
command.

The following sections describe the use of these qualifiers in more detail. See
Chapter 7 for information on permanently controlling library access using file
and directory protection mechanisms.

2.1.5.1 Read-Only Access
The /READ_ONLY qualifier to the ACS SET LIBRARY command is useful
when you want to limit your access to a library for reading only. For example,
the /READ_ONLY qualifier is useful when you want to protect yourself from
accidentally modifying a library to which you also have write access. (Read
access is also determined by the protection set for the library directory; see
Section 2.1.1 and Chapter 7.)

The /READ_ONLY qualifier has an effect only when you enter the ACS SET
LIBRARY command interactively. After executing the ACS SET LIBRARY
command with the /READ_ONLY qualifier, you have read-only access to that
library until you exit from the program library manager or until you enter
another SET LIBRARY command. Read-only access means that you can enter
only the following ACS commands that do not require write access:

• CHECK

• DIRECTORY

• EXPORT

• EXTRACT SOURCE

• LINK

• SHOW LIBRARY

• SHOW PROGRAM

• SHOW VERSION

• VERIFY

Working with DEC Ada Program Libraries and Sublibraries 2–7

In the following example, the /READ_ONLY qualifier limits the user to read-
only access of a general project library:

ACS> SET LIBRARY/READ_ONLY [PROJ.ADALIB]
%I, Current program library is DISK:[PROJ.ADALIB]
ACS> CHECK HOTEL
%I, All units current, no recompilations required
ACS> EXPORT HOTEL

.

.

.
ACS> EXIT

2.1.5.2 Exclusive Access
When more than one process has both read and write access to a library,
although the library will not be corrupted, there is some risk that it may
be updated in a way that gives unexpected results. For example, a unit
can become obsolete the moment it enters the library because a unit that
it depends on has been simultaneously updated. You can use the ACS SET
LIBRARY/EXCLUSIVE command to make sure that your process is the only
one updating a library at a particular time.

For example, on a multiperson project you can use this command to
temporarily protect the project program library while you enter, copy, or link
units from another library:

$ ACS
ACS> CREATE LIBRARY [HOTEL.TEST]
%I, Library DISK:[HOTEL.TEST] created
ACS> SET LIBRARY/EXCLUSIVE [HOTEL.TEST]
%I, Current program library is DISK:[HOTEL.TEST]
. . . Enter, copy, or link units . . .
ACS> EXIT

The /EXCLUSIVE qualifier is also useful when you are repairing (ACS
VERIFY/REPAIR) or reorganizing (ACS REORGANIZE) a library.

After executing an ACS SET LIBRARY command with the /EXCLUSIVE
qualifier, you have exclusive read and write access to that library until you exit
from the program library manager or until you enter another SET LIBRARY
command. If your process has exclusive access to a library, no other process
can access that library for either reading or writing.

Note that while the /EXCLUSIVE qualifier is in effect, batch jobs will not be
able to access the library. In other words, this qualifier will affect the behavior
of any commands (ACS LOAD, COMPILE, RECOMPILE, and so on) that
process in batch mode (/SUBMIT).

2–8 Working with DEC Ada Program Libraries and Sublibraries

You cannot execute the ACS SET LIBRARY command with the /EXCLUSIVE
qualifier while another process is accessing the specified library. You also
cannot use the /EXCLUSIVE qualifier if the specified library is accessed via
DECnet FAL.

2.1.6 Deleting a Program Library or Sublibrary
To delete a program library or sublibrary, enter the ACS DELETE LIBRARY or
DELETE SUBLIBRARY command, specifying a directory as a parameter. The
directory you specify must be a DEC Ada library that was previously created
with the ACS CREATE LIBRARY or CREATE SUBLIBRARY command.

For example:

$ ACS DELETE LIBRARY [JONES.TEMP.ADALIB]

You cannot use the ACS DELETE LIBRARY command to delete a sublibrary;
similarly, you cannot use the ACS DELETE SUBLIBRARY command to delete
a program library.

Note

Use the ACS DELETE LIBRARY and DELETE SUBLIBRARY
commands with caution when you have program sublibraries. A
parent library does not contain references to its sublibraries; therefore,
when you delete a program library or sublibrary, you will not be warned
of the existence of any sublibraries.

The effect of either command is to delete the contents of the library. If there
are no more files in the library directory, and if the directory is not delete
protected against the owner, then the directory is also deleted (by default, the
VMS operating system protects a directory against deletion by its owner). If
the directory still contains other files, or if the directory is delete protected
against the owner, then the directory is not deleted. You must use the DCL
DELETE command to first empty and then delete the directory. If the library
directory is delete protected against the owner, you must use the DCL SET
PROTECTION command to change the protection before you can delete the
directory.

The ACS CREATE LIBRARY and CREATE SUBLIBRARY commands cause a
library directory to inherit the default system file protection. Both commands
have a /PROTECTION qualifier that allows you to specify the protection when
you create the library or sublibrary. See Chapter 7 for more information on
library protection.

Working with DEC Ada Program Libraries and Sublibraries 2–9

Note that all updates to a program library accessed via the VAX Distributed
File System (DFS) is done using the /EXCLUSIVE qualifier. (See the
DECnet for OpenVMS Guide to Networking for more information on files
and networking.)

2.2 Unit Operations
The following sections describe a number of unit operations:

• Obtaining information about the units in a library

• Checking units for currency and completeness

• Sharing units among different libraries

• Putting non-Ada units into a library

• Deleting units

In general, the effect of these operations on program libraries and sublibraries
is the same. When the effect is different, information is provided, as
appropriate. For a summary of the commands where the effect is different, see
Section 2.3.1.

Note

Use only ACS commands (not DCL commands) to manipulate units in
program libraries and sublibraries.

2.2.1 Specifying Units in ACS Commands
ACS commands that operate on compilation units accept one or more unit
names, not file names, as parameters. When you enter ACS commands
involving compilation units, observe the following conventions:

• You can specify a single unit name, or a list of unit names separated by
commas (,). For example:

$ ACS DIRECTORY SCREEN_IO, RESERVATIONS.CANCEL

• You can use the standard wildcard characters in many ACS commands.
The wildcarding rules are similar to those for VMS file specifications (see
the OpenVMS DCL Dictionary). The percent sign (%) matches any single
character in the position that the percent sign occupies in the unit name.
The asterisk (*) matches zero or more characters in the position that
the asterisk occupies in the unit name. Wildcard matching treats the
unit name as a string. In a unit name, the period character (.) has no

2–10 Working with DEC Ada Program Libraries and Sublibraries

special standing as a punctuation character. For example, the following
command displays information about the unit RESERVATIONS and any of
its subunits:

$ ACS DIRECTORY RESERVATIONS*

By default, ACS commands usually operate on groups of related units, such
as the specification and the body (for example, ACS DIRECTORY or DELETE
UNIT) or the execution closure of the specified units (for example, ACS
CHECK). The exact behavior reflects the typical use of the command.

Qualifiers are available to modify the default behavior. For example, the ACS
DELETE UNIT/BODY_ONLY command deletes the body without affecting the
specification; the ACS COPY UNIT/CLOSURE command copies the closure of
the specified units.

Commands that operate on several units provide /LOG and /CONFIRM
qualifiers. The /LOG qualifier allows you to control whether information about
an operation is displayed when the operation is performed. The /CONFIRM
qualifier allows you to confirm that an operation should be carried out for one
or more units involved in the operation. For example, the ACS MERGE/
LOG command displays a list of the units being merged. The ACS DELETE
UNIT/CONFIRM command asks you for confirmation before deleting each of
the units specified in the command.

2.2.2 Displaying General Unit Information
You enter the ACS DIRECTORY command to list units in the current program
library and display general information about them. The ACS DIRECTORY
command lists compilation units alphabetically by unit name. Subunit names
are expressed using selected component notation. For example:

$ ACS DIRECTORY *QUEUE, HOTEL, SCREEN_IO*
GUEST_QUEUE

package instantiation 11-NOV-1992 17:12:47.41 <entered>

QUEUE
generic package 11-NOV-1992 17:12:22.54 <entered>
generic package body 11-NOV-1992 17:12:39.46 <entered>

HOTEL
procedure body 11-NOV-1992 11:36:31.26 <main>

SCREEN_IO
package specification 11-NOV-1992 14:51:03.51
package body 11-NOV-1992 17:21:40.01

SCREEN_IO.INPUT
procedure body 11-NOV-1992 17:21:51.72

Working with DEC Ada Program Libraries and Sublibraries 2–11

SCREEN_IO.INPUT.BUFFER
function body 11-NOV-1992 17:21:56.00

SCREEN_IO.OUTPUT
procedure body 11-NOV-1992 17:21:48.09

Total of 9 units.

As shown in the previous example, the ACS DIRECTORY command identifies
units by name and by kind (package specification, procedure body, and so on).
The display also shows the date and time of the compilation of each unit, and
identifies entered units.

By using an asterisk wildcard (*) or by omitting its parameter, you can use
the ACS DIRECTORY command to list all of the units that are defined in the
current program library.

By using qualifiers (/BRIEF, /FULL, and /ENTERED), you can control the level
of information displayed.

If the current program library is a sublibrary, the ACS DIRECTORY command
shows only the units in the sublibrary; it does not show units in any of the
parent libraries.

2.2.3 Displaying Dependence and Portability Information
The ACS SHOW PROGRAM command displays information about the
execution closure of a set of compilation units in the current program library.
In particular, the ACS SHOW PROGRAM command displays information about
unit dependences (the use of with clauses), potential portability constraints,
unit currency, and so on.

Because it displays information about the execution closure of a set of units,
the ACS SHOW PROGRAM command displays information about all of the
relevant units, even if the current program library is a sublibrary and some of
the units are in parent libraries.

The ACS SHOW PROGRAM command lists compilation units alphabetically by
unit name. Subunit names are expressed using selected component notation.
The command has qualifiers (/BRIEF, /FULL, and /PORTABILITY) that allow
you to specify the level of information and the kind of information to be
displayed.

You can use the /BRIEF qualifier with the ACS SHOW PROGRAM command
to limit the display to the following information:

• The name of the program and the time the ACS SHOW PROGRAM
command was executed

• The name of the library

2–12 Working with DEC Ada Program Libraries and Sublibraries

• The default path in its original and evaluated forms (see Chapter 3 for
more information)

• The values of pragmas that affect the predefined packages STANDARD
and SYSTEM

• The name and kind of each unit contained in the closure

• The compilation date for each unit in the closure

• The name of the source file for each unit or the library from which the unit
was entered

For example:

$ ACS SHOW PROGRAM/BRIEF SCREEN_IO
SCREEN_IO
10-NOV-1992 18:43:29.67

Program library USER:[PROJ]

Created: 10-NOV-1992 14:37:30.63, by DEC Ada V3.0
Last reorganized: <No reorganization date>

Default path in its original form:

USER:[JONES.HOTEL.ADALIB]

Default path evaluates to:

USER:[JONES.HOTEL.ADALIB]

Pragmas that affect STANDARD and SYSTEM:

pragma FLOAT_REPRESENTATION(VAX_FLOAT)
pragma LONG_FLOAT(G_FLOAT)
pragma MEMORY_SIZE(2147483647)
pragma SYSTEM_NAME(VAX_VMS)

The closure of the specified units is:

IO_EXCEPTIONS
Package specification

Compiled: 5-NOV-1992 01:06:13.45
Entered from: ADA$PREDEFINED_ROOT:[ADALIB]

SCREEN_IO
Package specification

Compiled: 10-NOV-1992 18:39:31.09
Source file: 20-FEB-1992 13:27:03.63
USER:[PROJ]SCREEN_IO_.ADA;7

Package body
Compiled: 10-NOV-1992 18:40:57.00
Source file: 4-NOV-1992 19:39:12.86 USER:[PROJ]SCREEN_IO.ADA;5

Working with DEC Ada Program Libraries and Sublibraries 2–13

SCREEN_IO.INPUT
Procedure body

Compiled: 10-NOV-1992 18:41:14.36
Source file: 20-FEB-1992 11:56:50.22 USER:[PROJ]SCREEN_IO____INPUT.ADA;3

SCREEN_IO.INPUT.BUFFER
Function body

Compiled: 10-NOV-1992 18:41:24.23
Source file: 20-FEB-1992 11:56:32.72 USER:[PROJ]SCREEN_IO____BUFFER.ADA;3

SCREEN_IO.OUTPUT
Procedure body

Compiled: 10-NOV-1992 18:41:30.15
Source file: 20-FEB-1992 11:57:11.82 USER:[PROJ]SCREEN_IO____OUTPUT.ADA;3

SYSTEM
Builtin package

TEXT_IO
Package specification

Compiled: 10-NOV-1992 18:39:33.73
Source file: 27-OCT-1992 09:35:43.60 USER:[PROJ]TEXT_IO_.ADA;1

Package body
Compiled: 10-NOV-1992 18:39:53.32
Source file: 27-OCT-1992 09:35:57.80 USER:[PROJ]TEXT_IO.ADA;1

You enter the ACS SHOW PROGRAM command with no qualifiers to add
dependence information (with list information) to the display. For example:

$ ACS SHOW PROGRAM SCREEN_IO

.

.

.
SCREEN_IO

Package specification
Compiled: 11-NOV-1992 14:51:03.51
Source file: 1-SEP-1991 10:39:54.91 USER:[PROJ]SCREEN_IO_.ADA;2

Package body
Compiled: 11-NOV-1992 17:21:40.01
Source file: 1-SEP-1991 10:39:53.72 USER:[PROJ]SCREEN_IO.ADA;2
With list: TEXT_IO

.

.

.

You can use the /PORTABILITY qualifier to display a portability summary (see
Chapter 7 for details on the kinds of information that appear in the portability
summary). For example:

2–14 Working with DEC Ada Program Libraries and Sublibraries

$ ACS SHOW PROGRAM/PORTABILITY SCREEN_IO
. . .

SCREEN_IO
Package specification

Compiled: 11-NOV-1992 14:51:03.51
Source file: 1-SEP-1991 10:39:54.91 USER:[PROJ]SCREEN_IO_.ADA;2

Package body
Compiled: 11-NOV-1992 17:21:40.01
Source file: 1-SEP-1991 10:39:53.72 USER:[PROJ]SCREEN_IO.ADA;2
With list: TEXT_IO

.

.

.
PORTABILITY SUMMARY

predefined SHORT_INTEGER or SHORT_SHORT_INTEGER
SYSTEM spec

with SYSTEM TEXT_IO body

predefined floating types in package SYSTEM*
TEXT_IO body

enumeration representation clause
SYSTEM spec
TEXT_IO spec

length SIZE representation clause
SYSTEM spec

record representation clause
SYSTEM spec

pragma IMPORT_EXCEPTION*
IO_EXCEPTIONS spec

pragma IMPORT_FUNCTION* TEXT_IO spec

pragma IMPORT_PROCEDURE*
TEXT_IO

pragma INTERFACE TEXT_IO

pragma INLINE_GENERIC* TEXT_IO spec

pragma PACK SYSTEM spec

where * indicates an implementation-defined feature

Working with DEC Ada Program Libraries and Sublibraries 2–15

2.2.4 Checking Unit Currency and Completeness
The DEC Ada compiler processes compilation units in a manner that is
consistent with Ada’s rules. However, observance of the compilation rules
does not ensure that the execution closure of a set of units in a program
library is either complete or current (see Chapter 1 for definitions of closure,
completeness, and currency). For example, a library package body may still
be missing from the program library, or a library specification may have been
modified and compiled more recently than some dependent units, making the
dependent units obsolete and in need of recompilation.

If you try to link a program that has missing or obsolete units, these errors will
be automatically detected, and the operation will be terminated. Alternatively,
you can enter the ACS CHECK command to check the completeness and
currency of the units in your program before you link it.

The ACS CHECK command accepts one or more unit names as parameters,
and then searches the execution closure of the set of units specified for missing
or obsolete units. Because it searches for the execution closure of a set of units,
the ACS CHECK command searches the current program library and any
parent libraries, if the current program library is a sublibrary. Note, however,
that for units specified with wildcards, the ACS CHECK command searches
only the current program library for the specified units.

If the set of units in the closure is both complete and current, the following
message is displayed:

%I, All units current, no recompilations required

If the ACS CHECK command finds that a unit, such as a subunit, is missing, a
message like the following is displayed:

%E, Separate procedure body SCREEN_IO.OUTPUT not found in library

For example, consider the following situation:

• The body of RESERVATIONS names SCREEN_IO in a with clause.

• The specification of SCREEN_IO has been compiled more recently than the
specification, body, and subunits of RESERVATIONS.

The following ACS CHECK command identifies the obsolete units that need
to be recompiled. Note that because SCREEN_IO is in the execution closure
of RESERVATIONS, the CHECK command also identifies the missing subunit
SCREEN_IO.OUTPUT.

2–16 Working with DEC Ada Program Libraries and Sublibraries

$ ACS CHECK RESERVATIONS
%E, Separate procedure body SCREEN_IO.OUTPUT not found in library
%E, Obsolete library units are detected

%I, The following syntax-checked units are obsolete:
RESERVATIONS

package body 11-NOV-1992 20:38:46.53

%I, The following units depend on missing units:
RESERVATIONS.RESERVE

procedure body 11-NOV-1992 17:54:38.98 (00:00:05.50)
RESERVATIONS.RESERVE.BILL

procedure body 11-NOV-1992 17:54:45.75 (00:00:05.11)
RESERVATIONS.CANCEL

procedure body 11-NOV-1992 17:54:52.07 (00:00:05.28)

1 obsolete unit

You can also use the ACS CHECK command to identify units that depend on
generic bodies. A unit that depends on a generic body must be completed with
the ACS RECOMPILE or COMPILE command under the following conditions:

• After the generic body is first compiled

• Whenever the generic body is compiled again

For example, consider the following situation:

• The package GUEST_QUEUE is a library instantiation of the generic
package QUEUE.

• The specification of the package QUEUE_MANAGER names GUEST_
QUEUE in a with clause.

If the generic body of package QUEUE is compiled more recently than its
instantiation GUEST_QUEUE, then GUEST_QUEUE becomes incomplete and
must be recompiled:

$ ADA QUEUE_, QUEUE, GUEST_QUEUE, QUEUE_MANAGER_, QUEUE_MANAGER
.
.
.

$ ADA QUEUE
$ ACS CHECK QUEUE_MANAGER
%E, Obsolete library units are detected

%I, Instantiations within the following units need to be completed (use ACS
COMPILE or ACS RECOMPILE):
GUEST_QUEUE

package instantiation 20-FEB-1992 16:40:32.84

Working with DEC Ada Program Libraries and Sublibraries 2–17

Note that when GUEST_QUEUE is completed, QUEUE_MANAGER, the unit
that depends on GUEST_QUEUE, does not become obsolete. See Chapter 4 for
more information on generic completions and their effect on dependent units.

2.2.5 Using Units from Other Program Libraries
The program library manager allows you to use units from other program
libraries either by direct copy or by reference.

The ACS COPY UNIT command allows you to copy one or more units into
the current program library from another library. The ACS ENTER UNIT
command allows you to create a reference from the current program library to
units in another library. The process of entering references to units with the
ACS ENTER UNIT command is called entering units (into the current program
library from another library).

The choice of whether to copy or enter units depends on the circumstances, as
described in the following sections. To use the ACS COPY UNIT or ENTER
UNIT command, you must have read access to the program library where
the unit is stored. See Chapter 7 for more information on library access and
library protection.

As an alternative to copying or entering units, you can use library search
paths to share units from other program libraries. For more information, see
Chapter 3.

2.2.5.1 Copying Units into the Current Program Library
The ACS COPY UNIT command copies one or more units into the current
program library from another library.

The following example shows the use of the ACS COPY UNIT com-
mand to copy the unit QUEUE_MANAGER from the program library
DISK:[SMITH.SHARE.ADALIB] into the current program library:

$ ACS COPY UNIT DISK:[SMITH.SHARE.ADALIB] QUEUE_MANAGER

For each unit specified, the ACS COPY UNIT command copies the specification
and body. Units that have been loaded with the ACS LOAD command but not
yet recompiled, are not copied.

When a unit is copied, information about the external source file associated
with the unit is also copied. This information may affect the behavior of
any subsequent ACS COMPILE commands, if you change the location of the
external source file. Thus, you may need to manage the behavior of the ACS
COMPILE command by taking one of the following actions:

• Using the ACS SET SOURCE command to direct the ACS COMPILE
command to the correct location.

2–18 Working with DEC Ada Program Libraries and Sublibraries

• Using a concealed logical name to refer to the directory containing the
source files and change the meaning of the logical name as necessary. See
Chapter 7 for more information on concealed logical names.

Copied units behave and can be handled as if they had been compiled directly
into the current program library. The ACS COPY UNIT command has no effect
on the program library from which a unit has been copied.

Once a unit has been copied, it is independent of the unit from which it
was copied. The same is not true for a unit that has been entered (see
Section 2.2.5.2). Therefore, if the external unit you need is subject to frequent,
unexpected changes, you may want to use the ACS COPY UNIT command,
rather than the ACS ENTER UNIT command, to create a stable local copy
and minimize the impact on dependent units. However, when you use the ACS
COPY UNIT command, you must keep track of when the original unit you
copied has been modified.

If you find that the original unit has been revised and compiled again in
its original program library, you can use the ACS COPY UNIT/REPLACE
command to copy the modified version. If you use the ACS COPY UNIT
command without the /REPLACE qualifier in this situation, the program
library manager informs you that the unit already exists in the current
program library and does not replace it.

If the unit you need to copy depends on other units, you can use the /CLOSURE
qualifier to automatically copy the entire execution closure of the unit into the
current program library. If the specified library is a sublibrary, then all parent
libraries are searched for units in the closure.

For example, consider the following situation:

• The package QUEUE_MANAGER names the generic instantiation
GUEST_QUEUE in a with clause.

• The generic instantiation GUEST_QUEUE depends on the generic package
QUEUE.

• The units QUEUE_MANAGER, GUEST_QUEUE, and QUEUE have all
been compiled into the program library DISK:[SMITH.SHARE.ADALIB].

Working with DEC Ada Program Libraries and Sublibraries 2–19

The closure of the unit QUEUE_MANAGER includes the units QUEUE_
MANAGER, GUEST_QUEUE, and QUEUE. The following command copies all
of these units into the current program library:

$ ACS COPY UNIT/LOG/CLOSURE DISK:[SMITH.SHARE.ADALIB] QUEUE_MANAGER
%I, Generic instantiation GUEST_QUEUE copied
%I, Generic package QUEUE copied
%I, Generic package body QUEUE copied
%I, Package specification QUEUE_MANAGER copied
%I, Package body QUEUE_MANAGER copied

Note that the ACS COPY UNIT command makes local copies of units that
have been entered into a given library (see Section 2.2.5.2), as well as
units that have been compiled into a given library. Thus, the result of this
example would have been the same if the unit QUEUE had been entered
into DISK:[SMITH.SHARE.ADALIB] from yet another library, such as
USER:[PROJECT.ADALIB].

2.2.5.2 Entering Units into the Current Program Library
The ACS ENTER UNIT command creates a reference in the current program
library to a unit in another library. Units that have been loaded with the ACS
LOAD command but not yet recompiled, are not entered.

Note

The use of concealed-device logical names and rooted directory syntax
to specify program libraries helps in working with entered units. See
Chapter 7 for more information.

The following example shows the use of the ACS ENTER UNIT command
to enter the unit QUEUE_MANAGER into the current program library from
DISK:[SMITH.SHARE.ADALIB]:

$ ACS ENTER UNIT DISK:[SMITH.SHARE.ADALIB] QUEUE_MANAGER

For each unit specified, the ACS ENTER UNIT command enters a reference to
the specification and a reference to the body. The ACS ENTER UNIT command
has no effect on the library from which units have been entered.

You can determine which units are entered in the current program library by
using the ACS DIRECTORY command. For example:

2–20 Working with DEC Ada Program Libraries and Sublibraries

$ ACS DIRECTORY
$ STANDARD
package specification 11-NOV-1983 00:00:00.00 <entered>

.

.

.
AUX_IO_EXCEPTIONS

package specification 3-NOV-1992 11:06:37.81 <entered>

CALENDAR
package specification 3-NOV-1992 11:27:00.25 <entered>
package body 3-NOV-1992 11:27:13.32 <entered>

CDD_TYPES
package specification 3-NOV-1992 11:27:30.46 <entered>
.
.
.

You can also identify entered units by using the ACS SHOW PROGRAM
command.

An example of entered units is the set of DEC Ada predefined units
(STANDARD, SYSTEM, TEXT_IO, STARLET, and so on) that are entered
into any newly created program library. The predefined units are entered
from the program library on your system denoted by the logical name
ADA$PREDEFINED.

If an entered unit is subsequently compiled in its original program library, any
reference to that unit from another library is made obsolete. You cannot
use the entered unit until you have reentered it using the ACS ENTER
UNIT/REPLACE or ACS REENTER command. In contrast, compiling a unit
that has been copied has no effect on the copies. Therefore, you may want
to use the ACS COPY UNIT command rather than the ACS ENTER UNIT
command if the external unit is subject to frequent changes; see Section 2.2.5.1.

The ACS ENTER UNIT command is particularly useful for units that need
to be used by several program libraries. You may want to share units for two
reasons:

• Maintaining one master copy of a shared unit (or a set of shared units)
conserves disk space.

• If an entered unit is modified and compiled again in its original library, all
references to that unit from other libraries are made obsolete (the program
library manager issues appropriate messages when you try to use the
entered unit). Thus, you are assured that a revision to an entered unit is
automatically detected in all libraries that share that unit. (See Chapter 3
as another way of sharing units across libraries.)

Working with DEC Ada Program Libraries and Sublibraries 2–21

The ACS CHECK, COMPILE, LINK, and RECOMPILE commands automati-
cally warn you of any obsolete references to units that have been entered into
the current program library. For example, consider the following situation:

• The main program, HOTEL, depends on the package RESERVATIONS.

• The specification of RESERVATIONS depends on the package SCREEN_IO,
which has been entered from the library USER:[PROJECT.ADALIB].

• The body of RESERVATIONS depends on the package QUEUE_
MANAGER, which has been entered from the library
DISK:[SMITH.SHARE.ADALIB].

• Both SCREEN_IO and QUEUE_MANAGER have been modified and
compiled more recently than HOTEL and RESERVATIONS.

When the main program HOTEL is linked, the program library manager issues
the following messages:

$ ACS LINK HOTEL
%E, package specification SCREEN_IO has been recompiled in

USER:[PROJECT.ADALIB] and must be reentered
%E, package body SCREEN_IO has been recompiled in

USER:[PROJECT.ADALIB] and must be reentered
%E, package specification QUEUE_MANAGER has been recompiled in

DISK:[SMITH.SHARE.ADALIB] and must be reentered
%E, package body QUEUE_MANAGER has been recompiled in

DISK:[SMITH.SHARE.ADALIB] and must be reentered

These messages identify the entered units that need to be reentered to make
their references current and usable. These units must be reentered before the
obsolete dependent units in the current program library can be recompiled.

You can reenter units using either the ACS ENTER UNIT/REPLACE command
or the ACS REENTER command. Use the ACS ENTER UNIT/REPLACE
command when you need to reenter one or more units from one library; use the
ACS REENTER command when you need to reenter a number of units from a
number of libraries.

For example, you can use the ACS REENTER command with the asterisk
wildcard character (*) to make current all obsolete references in your current
program library, regardless of whether or not the references are to more than
one other library:

2–22 Working with DEC Ada Program Libraries and Sublibraries

$ ACS REENTER/LOG *
%I, Package specification $STANDARD entered

.

.

.
%I, Package specification AUX_IO_EXCEPTIONS entered
%I, Package specification CALENDAR entered
%I, Package body CALENDAR entered
%I, Package specification CDD_TYPES entered
%I, Package specification CLI entered
%I, Package specification CONDITION_HANDLING entered
%I, Package specification CONTROL_C_INTERCEPTION entered
%I, Generic package DIRECT_IO entered
%I, Generic package body DIRECT_IO entered
%I, Package specification DIRECT_MIXED_IO entered
%I, Package body DIRECT_MIXED_IO entered

.

.

.

%I, Package specification QUEUE_MANAGER entered
%I, Package body QUEUE_MANAGER entered
%I, Package specification SCREEN_IO entered
%I, Package body SCREEN_IO entered

.

.

.

The units reentered in the previous example are from the libraries
ADA$PREDEFINED, USER:[PROJECT.ADALIB], and
DISK:[SMITH.SHARE.ADALIB].

After the obsolete entered units have been reentered, the remaining obsolete
units can be recompiled in the current program library, using the ACS
RECOMPILE command. For example, by specifying HOTEL as the parameter
to the ACS RECOMPILE command, all obsolete units in the closure of HOTEL
are recompiled (see Chapter 4 for more information on recompilation and the
ACS RECOMPILE command):

$ ACS RECOMPILE HOTEL

The program HOTEL can now be linked.

Working with DEC Ada Program Libraries and Sublibraries 2–23

2.2.6 Introducing Foreign (Non-Ada) Code into a Library
When you are working with mixed-language programs, you can use the ACS
COPY FOREIGN and ENTER FOREIGN commands to introduce linkable non-
Ada code into the current program library. You can then use ACS commands to
manipulate the resulting units as though they were DEC Ada units.

The ACS COPY FOREIGN command copies a foreign object file into the current
program library. The ACS ENTER FOREIGN command enters a reference to
an external file into the current program library. An entered foreign file may
be an object file, object library, shareable image library, shareable image, or
linker options file. The /LIBRARY, /OBJECT, /OPTIONS, and /SHAREABLE
qualifiers to the ACS ENTER FOREIGN command specify the kind of file you
are entering; the default is an object file.

Before copying or entering a foreign file, you must create an Ada specification
for it and compile that specification into the library. You then copy or enter
the foreign file as a library body—that is, the body of a library package
specification, library procedure specification, or library function specification.
Note that compiling the specification of a unit that has a foreign body does not
cause the body to become obsolete.

When you write a subprogram (procedure or function) specification that will
have a foreign body, you must use the pragma INTERFACE and (optionally)
a DEC Ada import pragma. See Chapter 6 for examples of linking; see the
DEC Ada Run-Time Reference Manual for OpenVMS Systems for examples of
writing mixed-language programs.

The ACS COPY FOREIGN and ENTER FOREIGN commands provide useful
mechanisms for importing package bodies. In the following example, the
body for IMPORTED_BODY is written in VAX Pascal. Note the use of the
INITIALIZE attribute with the declaration of the Pascal procedure; without
it the package body code is never ‘‘elaborated’’ and the variable Total never
receives the value it is assigned in Procedure Pas_Body.

-- Ada package specification.
--
package IMPORTED_BODY is

TOTAL: FLOAT;
pragma IMPORT_OBJECT(TOTAL);

end IMPORTED_BODY;

{ Pascal body. }

Module Pas_Body;
VAR

Total: [GLOBAL]REAL;

2–24 Working with DEC Ada Program Libraries and Sublibraries

[INITIALIZE] Procedure Pas_Body;
CONST

Rate = 0.06;
VAR

Amt, Tax: REAL;
BEGIN

Amt := 5.0;
Tax := Amt * Rate;
Total := Tax + Amt;

END;

END.
--
-- Ada main program.
--
with IMPORTED_BODY; use IMPORTED_BODY;
with FLOAT_TEXT_IO; use FLOAT_TEXT_IO;
procedure PRINT_TOTAL is
begin

PUT(Total);
end PRINT_TOTAL;

You would compile the Ada and Pascal code in the previous example using the
DEC Ada and VAX Pascal compilers, and then you would either copy or enter
the resulting Pascal object file into the current program library. For example:

$ ACS ENTER FOREIGN PAS_BODY IMPORTED_BODY

Now, because the Pascal module Pas_Body is known to the current program
library as the body of the Ada package IMPORTED_BODY, the Ada procedure
PRINT_TOTAL can be linked using the ACS LINK command. See Chapter 6
for more information on linking mixed-language programs.

2.2.7 Deleting Units from the Current Program Library
You enter the ACS DELETE UNIT command to delete one or more units from
the current program library. For each unit name specified, the ACS DELETE
UNIT command deletes the specification and body. For example:

$ ACS DELETE UNIT/LOG SCREEN_IO
%I, Package specification SCREEN_IO deleted
%I, Package body SCREEN_IO deleted

This command is used in the same way regardless of whether a unit was
compiled, copied, or entered into the library. The ACS DELETE UNIT
command operates only on the current program library and has no effect
on any other library.

Working with DEC Ada Program Libraries and Sublibraries 2–25

If you want to delete only the body of a specified unit, you can use the /BODY_
ONLY qualifier with the ACS DELETE UNIT command. In this case, the
specification is not deleted. Thus, you can use the /BODY_ONLY qualifier
to delete a package body for a package that has been redefined so that it no
longer needs a body. For example:

$ ACS DELETE UNIT/BODY_ONLY/LOG SCREEN_IO
%I, Package body SCREEN_IO deleted
$ ACS DIRECTORY SCREEN_IO
SCREEN_IO

package specification 11-NOV-1992 10:11:09.99

Total of 1 unit.

If you want to delete one or more entered units, you can use the /ENTERED
qualifier with the ACS DELETE UNIT command. For example, the
following command deletes all of the units entered from the library
[SMITH.SHARE.ADALIB]:

$ ACS DELETE UNIT/LOG/NOLOCAL/ENTERED=[SMITH.SHARE.ADALIB] *
%I, Package instantiation GUEST_QUEUE deleted
%I, Generic package QUEUE deleted
%I, Generic package body QUEUE deleted
%I, Package specification QUEUE_MANAGER deleted
%I, Package body QUEUE_MANAGER deleted

Note that in this case, the /NOLOCAL qualifier is also required to prevent the
local (nonentered) units from also being deleted (/LOCAL is the default).

2.3 Using Program Sublibraries
Although a single program library is useful in many software project situations,
it may prove unwieldy when used for a system with many components or many
developers. For example, every time a compilation unit is compiled, it is
redefined in its program library, and the previous versions are discarded.
Any errors introduced during the modification immediately affect dependent
units. Moreover, if the modified unit is a library specification, all dependent
units must be recompiled. Program sublibraries alleviate these problems by
allowing you to isolate a collection of units while they are being developed or
maintained.

The following sections give more detail on how to use sublibraries. The
techniques discussed in these sections can be used with a project of any size.
See Chapter 7 for information related to choosing a particular sublibrary
configuration.

2–26 Working with DEC Ada Program Libraries and Sublibraries

2.3.1 Using ACS Commands with Program Sublibraries
When using ACS commands with sublibraries, note the following points:

• The ACS CHECK, COMPILE, COPY FOREIGN, ENTER FOREIGN,
EXPORT, EXTRACT SOURCE, LINK, RECOMPILE, and SHOW
PROGRAM commands search the entire library hierarchy, starting with
the current program library and working up through its parents to the
root or ancestor parent library, for all units specified as parameters to the
command using names that do not involve wildcard characters.

For units selected with names that have wildcard characters, only the
current program library is searched. The ACS LINK/MAIN (the default)
and EXPORT/MAIN commands do not accept names with wildcard
characters. However, the ACS LINK/NOMAIN and EXPORT/NOMAIN
(the default) do accept names with wildcard characters.

• The ACS COPY UNIT, DELETE UNIT, DIRECTORY, ENTER UNIT,
MERGE, and REENTER commands search only the current program
library for the specified units, irrespective of wildcards.

• The ACS CHECK, COMPILE, COPY UNIT/CLOSURE, ENTER UNIT
/CLOSURE, EXPORT, LINK, RECOMPILE, and SHOW PROGRAM
commands, which operate on the execution closure of the units specified,
search the entire library hierarchy for all (other) units in the closure,
regardless of whether one of the other units was in the closure of a unit
specified with a name with wildcards or not.

• All commands that search the entire library hierarchy select units
according to the panes-of-glass visibility conventions described at the
beginning of this chapter.

For example, the following command will search only the current program
library for units whose names match the wildcard patterns B* and C% (for
example, B1, B2, and C3). It will search the entire library hierarchy for units
A and D, as well as all other units in the execution closure of A, B1, B2, C3,
and D.

$ ACS CHECK A, B*, C%, D

The following command will search only the current program library for A, D,
and units whose names match the wildcard patterns B* and C%:

$ ACS DIRECTORY A, B*, C%, D

Working with DEC Ada Program Libraries and Sublibraries 2–27

2.3.2 Creating a Nested Sublibrary Structure
By using a sublibrary as the parent library of another library, you can use the
ACS CREATE SUBLIBRARY command to create a nested sublibrary structure
(see Section 2.1.1). Nested sublibraries give you the flexibility of creating
additional controlled subenvironments for modifying units. The following
command lines represent the structure shown in Figure 2–1:

$ ACS CREATE SUBLIBRARY/PARENT=[HOTEL.ADALIB] [JONES.HOTEL.SUBLIB]

$ ACS CREATE SUBLIBRARY/PARENT=[JONES.HOTEL.SUBLIB] -
_$ [JONES.TEST.SUBLIB]

Figure 2–1 Simple Nested Sublibrary Structure

[HOTEL.ADALIB]

 Entered units
 (ADA$PREDEFINED)

[SMITH.HOTEL.SUBLIB]

Finished copies of

 subunits
 SCREEN_IO and its

[JONES.HOTEL.SUBLIB]

Finished copies of
 RESERVATIONS and its
 subunits

[JONES.TEST.SUBLIB]

Working copies of
 RESERVATIONS and its
 subunits

ZK−6747−GE

HOTEL

There is no specific limit on the depth of sublibrary nesting, but performance
decreases as more sublibrary levels are added.

The ACS SHOW LIBRARY/FULL command identifies the immediate parent
library of a sublibrary in the default path of the sublibrary. For example:

2–28 Working with DEC Ada Program Libraries and Sublibraries

$ ACS SHOW LIBRARY/FULL [JONES.HOTEL.SUBLIB]

Program library USER:[JONES.HOTEL.SUBLIB]
.
.
.

Default path in its original form:

USER:[JONES.HOTEL.SUBLIB]
@USER:[HOTEL.ADALIB]

Default path evaluates to:

[JONES.HOTEL.SUBLIB]
USER:[HOTEL.ADALIB]

.

.

.

2.3.3 Changing the Parent of a Sublibrary
By using a concealed-device logical name and rooted directory syntax for
the VMS specification of a parent library directory, you can later change
the parent library. For example, the following command defines the
root directory PROJECT_LIB to correspond to the device and directory
DUA7:[PROJECT.ADALIB]:

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED -
_$ PROJECT_LIB DUA7:[PROJECT.ADALIB.]

The next command creates the sublibrary USER:[JONES.SUBLIB] with the
parent PROJECT_LIB:[000000]. Note the use of [000000] to refer to the root
directory, which in this case is [PROJECT.ADALIB].

$ ACS CREATE SUBLIBRARY/PARENT=PROJECT_LIB:[000000] -
_$ USER:[JONES.HOTEL.SUBLIB]

To change the parent library, all you need to do is redefine the logical name
PROJECT_LIB. For example:

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED PROJECT_LIB -
_$ DUA6:[NEWPROJECT.ADALIB.]

For more information on using concealed-device logical names and rooted
directory syntax with parent libraries and sublibraries, see Chapter 7. For
general information on concealed-device logical names and rooted directory
syntax, see the OpenVMS User’s Manual and Guide to OpenVMS File
Applications.

You can also change the parent of a sublibrary by using the ACS MODIFY
LIBRARY command to modify the default path of the sublibrary. See
Section 3.4 for more information.

Working with DEC Ada Program Libraries and Sublibraries 2–29

2.3.4 Merging Modified Units into the Parent Library
The ACS MERGE command moves new versions of a set of units from a
sublibrary into its parent library. By default, any earlier versions of the
merged units are deleted from the parent library.

Units are not merged under the following circumstances:

• If they are older than the units in the parent library

• If a unit by the same name in the parent library has a more recent external
source file

• If they have been loaded with the ACS LOAD command or converted with
the ACS CONVERT LIBRARY command, but not yet recompiled

When a unit is merged, information about the external source file associated
with the unit is also merged. This information may affect the behavior of
any subsequent ACS COMPILE commands, if you change the location of the
external source file. Thus, you may need to manage the behavior of the ACS
COMPILE command by taking one of the following actions:

• Using the ACS SET SOURCE command to direct the ACS COMPILE
command to the correct location.

• Using a concealed logical name to refer to the directory containing the
source files and change the meaning of the logical name as necessary. See
Chapter 7 for more information on concealed logical names.

The following command merges all of the units that are in the current program
library (sublibrary) into the library’s parent library:

$ ACS MERGE *

2.3.5 Modifying and Testing Units in a Sublibrary Environment
You modify and test units in a sublibrary environment by first isolating the
units that need testing. Then, you generally follow these steps:

1. Create a sublibrary of the library where the units currently exist, and
define the sublibrary to be the current program library.

2. Edit the source text for the units being modified. (Note that the DEC Ada
program library manager does not provide a reservation system, so if you
need to reserve the source files for the units you are modifying, you must
use another tool such as the DEC/Code Management System (CMS). See
Chapter 7 for more information about managing modified source files.)

2–30 Working with DEC Ada Program Libraries and Sublibraries

3. Compile the modified source text using the sublibrary as the current
program library. Units are compiled in the context of both the sublibrary
and its parent library, but only the sublibrary is updated with the compiled
units. Therefore, the parent library remains stable while the units are
being modified and tested independently in the sublibrary.

4. When you have finished modifying and testing the units, check the impact
of any modifications with the ACS CHECK command. Then, use the ACS
MERGE command to update the parent library with the latest versions of
the modified units.

5. If you have used a mechanism such as CMS to reserve the source files,
replace the source files.

For example, consider the sublibrary configuration for the HOTEL program
shown in Figure 2–2. Each of the sublibraries is to be used to modify and test
a different set of units.

Figure 2–2 Sublibrary Configuration for the HOTEL Program

SCREEN_IO.OUTPUT

HOTEL
RESERVATIONS
SCREEN_IO

MATH
HOTEL_MATH
All subunits

and so forth
Entered units (ADA$PREDEFINED)

Project Program Library

RESERVATIONS

RESERVATIONS.CANCEL

RESERVATIONS.RESERVE

RESERVATIONS.RESERVE.BILL

MATH

Development Sublibrary Development Sublibrary Development Sublibrary

ZK−6748−GE

 package specification
 package body

 procedure body

 procedure body

 procedure body

SCREEN_IO.INPUT
 procedure body

 procedure body

 generic package
 generic package body

Working with DEC Ada Program Libraries and Sublibraries 2–31

Modification and testing of the generic unit MATH would involve the following
series of ACS commands:

1. Create the sublibrary and define it to be the current program library:

$ ACS CREATE SUBLIBRARY [JONES.HOTEL.SUBLIB]
$ ACS SET LIBRARY [JONES.HOTEL.SUBLIB]

2. Modify the source files in a working directory.

3. Compile the files into the sublibrary:

$ ADA MATH_, MATH

4. Enter the ACS CHECK command to determine the impact of the
modifications on any dependent units in the parent library:

$ ACS CHECK HOTEL
%E, Obsolete library units are detected

%I, The following units need to be recompiled:
ACCOUNTING

package instantiation 11-NOV-1992 15:16.19.97 (00:00:10)
RESERVATIONS

package body 11-NOV-1992 15:15:44.99 (00:00:05)
RESERVATIONS.RESERVE

procedure body 11-NOV-1992 15:15:51.63 (00:00:03)
RESERVATIONS.RESERVE.BILL

procedure body 11-NOV-1992 15:15:56.79 (00:00:03)
RESERVATIONS.CANCEL

procedure body 11-NOV-1992 15:16:02.00 (00:00:04)

By specifying the main program, you can detect obsolete units in the entire
program.

5. Recompile any obsolete units:

$ ACS RECOMPILE HOTEL

Note that only the sublibrary is updated when HOTEL is recompiled.

6. Link the entire program and run it to test its behavior:

$ ACS LINK HOTEL
$ RUN HOTEL

7. Repeat the previous steps, as necessary.

8. When the modified units are behaving correctly, merge them into the
parent library:

$ ACS MERGE/LOG MATH

See Section 2.3.4 for more information on merging units.

2–32 Working with DEC Ada Program Libraries and Sublibraries

Because the sublibrary configuration in Figure 2–2 is set up so that each
sublibrary contains a different set of units, you could execute the preceding
steps concurrently for each sublibrary. However, because some units in one
sublibrary may depend on units in another sublibrary, merging into the project
program library needs to be coordinated carefully among project members. See
Chapter 7 for additional information on configuring sublibrary structures and
managing program development.

Working with DEC Ada Program Libraries and Sublibraries 2–33

3
Working with DEC Ada Library Search

Paths

In many ways, you can view sublibrary relationships as defining a list of
libraries to be searched. When your library context is a sublibrary, the
compiler and program library manager search for a unit in the sublibrary first.
If the unit is not found, then the search continues in the immediate parent
library, the parent of the immediate parent library, and so on. Thus, the
search list begins with the sublibrary and follows through the parent libraries
until the unit is either found or until there are no more parent libraries to be
searched.

DEC Ada library search paths provide another way to define a list of libraries
to be searched. Like a sublibrary, a library search path simply defines a list
of DEC Ada libraries which are searched by the compiler and program library
manager to locate units. You can use library search paths to achieve the same
effects as sublibraries but with more flexibility.

When you begin development of a program, you may find it convenient to
store units in a sublibrary. As your application becomes more complex,
a static sublibrary structure may become too unwieldly and difficult to
use. Furthermore, you may require that different people work on different
components at the same time. In this case, you can use library search paths to
add flexibility to your sublibrary structure.

You can use library search paths to dynamically change the relationships
among libraries. For example, suppose you want to change the parent of a
sublibrary so that you can test units in your sublibrary with another library.
You can change the library search path to identify your sublibrary and the
other library. (You can achieve the same results using concealed-device logical
names and rooted-directory syntax with sublibraries. See Sections 2.3.3 and
7.10.1 for more information.)

Working with DEC Ada Library Search Paths 3–1

You can use library search paths to allow different project members to define
different relationships among the same set of program libraries. For example,
one project member may be working on one version of the system and another
member could be working on a different version. If the units for each version
are stored in separate libraries, each member can set up a library search path
which identifies the libraries that they need.

Library search paths are implemented in such a way as to be compatible with
sublibraries. Furthermore, you can define library search paths to identify
independent libraries together with sublibraries.

This chapter explains how you can define, change, and modify library search
paths. It also explains how you can use library search paths to configure and
reconfigure program libraries.

Note

The information in this chapter is task oriented. For full details on the
format, parameters, and qualifiers of the various ACS commands, see
Appendix A.

3.1 Understanding Current and Default Library Search Paths
A library search path, called the current library search path, or current path,
defines the particular library search path that is used during compilation or an
ACS operation. The compiler and program library manager search for a unit
starting with the first library of the current path. If the unit is not found in
that library, the search for the unit continues in subsequent libraries in the
current path until the unit is either found or until the end of the current path
is reached.

For example, suppose that the current path is a list consisting of two libraries:
[JONES.SUBLIB] and [JONES.PARENTLIB]. The search for a particular
unit begins in the library [JONES.SUBLIB]. If the unit is not found in
[JONES.SUBLIB], then [JONES.PARENTLIB] is searched. Note that this
search has the same effect as the search from a sublibrary to its parent.

Typically, the current path is a path that is associated with the current
program library. This path, called the default library search path, or default
path, is defined when you create a DEC Ada program library or sublibrary.
When you enter the ACS SET LIBRARY command, the specified library
becomes the current program library, and the default path associated with that
library becomes the current path.

3–2 Working with DEC Ada Library Search Paths

The default path that is defined during library creation differs depending on
whether a library or sublibrary is created:

• The default path for a program library is the library itself. With this path,
only the library itself is searched.

• The default path for a program sublibrary is the sublibrary itself, followed
by the default path of the parent library. With this path, the sublibrary is
searched first; then, all libraries in the default path of the parent library
are searched in turn.

There are several ways to specify library search paths. The simplest form of a
library search path is a list of one or more directory specifications for DEC Ada
libraries. For example:

[JONES.ADALIB],[HOTEL.ADALIB]

You can store library search paths in text files, and then include them in other
library search paths. In addition, you can include the default path associated
with a library in a library search path. (See Section 3.6 for more information
on specifying library search paths.)

Before a unit can be looked up during a library search, the library search path
must first be evaluated. During this evaluation, text files and any default
paths are included as indicated, and each library in the resulting list is
checked to verify that it is a valid DEC Ada library.

When you enter a library search path in a text file or command, the program
library manager always saves the path as you typed it without first evaluating
it. The current library search path is reevaluated whenever you invoke the
compiler or program library manager. (See Section 3.6.1 for more information
on how library search paths are evaluated.)

3.2 Defining the Current Path
You can define the current path using one of two methods. In the first method,
you enter the ACS SET LIBRARY command. When you enter this command,
the specified library becomes the current program library, and the default path
associated with that library becomes the current path. For example, suppose
that the default path for library [SMITH.SUBLIB] is as follows:

[SMITH.SUBLIB]
[HOTEL.ADALIB]

Working with DEC Ada Library Search Paths 3–3

In this case, the following command establishes the current program library
to be [SMITH.SUBLIB], and the current path to be the default path for
[SMITH.SUBLIB]:

$ ACS SET LIBRARY [SMITH.SUBLIB]

In the previous example, when the program library manager and compiler
search for a unit, the library [SMITH.SUBLIB] is searched first. If the unit is
not found, then [HOTEL.ADALIB] is searched.

In the second method, you enter the ACS SET LIBRARY command with the
/PATH qualifier. This qualifier allows you to establish a current path that is
different than the default path associated with a program library. For example,
suppose you want to change your current path to be as follows:

[SMITH.ADALIB]
[JONES.ADALIB]
[HOTEL.ADALIB]

In this case, the following command defines the current path to the desired set
of libraries and establishes the current program library to be the first library
in the path ([SMITH.ADALIB]):

$ ACS SET LIBRARY/PATH [SMITH.ADALIB],[JONES.ADALIB],[HOTEL.ADALIB]

In some situations, you may want to identify the default path associated
with a library or sublibrary in your current path along with other libraries.
To specify a default path, you precede the library with an at sign (@). For
example, suppose you want to add the default path of [HOTEL.ADALIB] to
[JONES.ADALIB]:

$ ACS SET LIBRARY/PATH [JONES.ADALIB],@[HOTEL.ADALIB]

In the previous example, the default path of [HOTEL.ADALIB] is included:

[HOTEL.ADALIB]
[PROJECT.ADALIB]

Thus, the current path evaluates as follows:

[JONES.ADALIB]
[HOTEL.ADALIB]
[PROJECT.ADALIB]

When you enter the /PATH qualifier, you must specify the at sign (@) to
identify the default path associated with a library or sublibrary in the current
path. If you do not specify the at sign (@), the Ada compiler and program
library manager search for units only in the libraries or sublibraries specified.

3–4 Working with DEC Ada Library Search Paths

For example, the following command establishes the current path to be
[SMITH.SUBLIB] (but does not identify any parent libraries):

$ ACS SET LIBRARY/PATH [SMITH.SUBLIB]

Note that the following commands have the same effect:

$ ACS SET LIBRARY [SMITH.SUBLIB]
$ ACS SET LIBRARY/PATH @[SMITH.SUBLIB]

Because the ACS SET LIBRARY/PATH command allows you to perform
compilations or ACS operations using different libraries or a different library
search order than what is specified in the default path, it is useful when you
want to temporarily change the current path. If you want to permanently
change the default path, use the ACS MODIFY LIBRARY command (see
Section 3.4.)

The ACS SET LIBRARY/PATH command stores the specified library search
path in the logical name ADA$LIB in the form that you specified. Subsequent
invocations of the compiler and program library manager individually
reevaluate the current path and reestablish the current program library.

Note that you can define your current program library using the following
command:

$ ACS SET LIBRARY/PATH @[.ADALIB]

In this case, your current program library is always a subdirectory of your
current default directory and changes as you change your current default
directory.

See Section 3.6 for other ways to specify library search paths.

3.3 Identifying the Current and Default Paths
To identify the current and default paths, enter the ACS SHOW LIBRARY
command with the /FULL qualifier. Example 3–1 shows the output of the ACS
SHOW LIBRARY/FULL command.

Working with DEC Ada Library Search Paths 3–5

Example 3–1 Output from the ACS SHOW LIBRARY/FULL Command

Current program library USER:[JONES.HOTEL.SUBLIB]1

Current path evaluates to:2

USER:[JONES.HOTEL.SUBLIB]
USER:[HOTEL.ADALIB]

Program library USER:[JONES.HOTEL.SUBLIB]
Created: 10-NOV-1992 11:35:10.62, by DEC Ada V3.0
Last reorganized: <No reorganization date>
Default path in its original form:3

USER:[JONES.HOTEL.SUBLIB]
@USER:[HOTEL.ADALIB]

Default path evaluates to:4

USER:[JONES.HOTEL.SUBLIB]
USER:[HOTEL.ADALIB]

.

.

.

The following list shows the current and default paths for the library
[JONES.HOTEL.SUBLIB]. The numbers match identifying numbers in
Example 3–1.

1 The current program library.

2 The current path in its evaluated form. This path is used by the compiler
and program library manager to locate units.

3 The default path in the form that you specified. In the previous example,
the default path was created when [JONES.HOTEL.ADALIB] and
[HOTEL.ADALIB] were created. The at sign (@) which precedes
[HOTEL.ADALIB] identifies the default path of that library should be
used. In this example, the default path for the library [HOTEL.ADALIB] is
itself.

4 The default path in its evaluated form.

If you use the ACS SET LIBRARY/PATH command, the current path in its
original form is also listed.

3–6 Working with DEC Ada Library Search Paths

For a library or sublibrary other than the current program library, the ACS
SHOW LIBRARY/FULL command displays both the default path in its original
form and in its evaluated form.

Note that the current path is not displayed when you use this command for a
library other than the current program library.

3.4 Modifying the Default Path
The ACS MODIFY LIBRARY/PATH command redefines the default path of
the specified program library. This command stores the new default path
in the form that you specified. By default, it also evaluates and verifies
the new default path, and reports any errors. For example, to modify the
default path of the current program library to also identify the default path of
[JONES.SUBLIB], enter the following command:

$ ACS MODIFY LIBRARY/PATH [JONES.HOTEL],@[JONES.SUBLIB]

In the previous example, the default path is stored exactly as you typed it:

[JONES.HOTEL],@[JONES.SUBLIB]

Also, the default path of [JONES.SUBLIB] is:

[JONES.SUBLIB]
[JONES.PARENTLIB]

Thus, the new default path for the library [JONES.HOTEL] evaluates as
follows:

[JONES.HOTEL]
[JONES.SUBLIB]
[JONES.PARENTLIB]

You can use the /EDIT qualifier to invoke an editor to modify the default path.
When you specify the /EDIT qualifier, the current definition of the default
path is placed in a text file, and the specified editor is invoked. If you do not
specify an editor with the /EDIT qualifier, callable EDT is invoked. When you
exit from the editor, the default path is redefined to be the library search path
contained in the edited file.

When you edit a particular default path for the first time, the term
"^_ _FILE_ _" is displayed. For more information on this term, see
Section 3.6.4.

You can use the /LIBRARY qualifier to modify the default path for a library
other than the current program library. For example:

$ ACS MODIFY LIBRARY/PATH/LIBRARY=[SMITH.ADALIB] [SMITH.ADALIB],@[JONES.HOTEL]

Working with DEC Ada Library Search Paths 3–7

In the previous example, the default path of [SMITH.ADALIB] has been
modified as follows:

[SMITH.ADALIB]
@[JONES.HOTEL]

Suppose the default path of [JONES.HOTEL] is as follows:

[JONES.SUBLIB]
[JONES.PARENTLIB]

In this situation, the new default path for user SMITH evaluates as follows:

[SMITH.ADALIB]
[JONES.HOTEL]
[JONES.SUBLIB]
[JONES.PARENTLIB]

You can also specify the ACS MODIFY LIBRARY/PATH command with the
/[NO]VERIFY qualifier. When you specify the /NOVERIFY qualifier, the
program library manager suppresses the evaluation and verification of the new
default path. The default for this qualifier is /VERIFY.

If you enter the ACS MODIFY LIBRARY/PATH command interactively (at the
ACS> prompt), the current path is not reevaluated. Thus, if you modified the
default path for the current program library, this modification will not take
effect until you invoke the Ada compiler or reinvoke ACS.

3.5 Configuring and Reconfiguring Program Libraries Using
Library Search Paths

During the different phases of development, you may want to configure or
reconfigure your program library for several reasons:

• To work on a different part of the program

• To work with more stable or less stable versions of code

• To allow others to work on an individual programmer’s code

DEC Ada library search paths allow you to configure and reconfigure your
program library to suit the needs of your project.

Figure 3–1 shows a program library configuration for the user Smith. Note the
following points about Figure 3–1:

• The library [SMITH.ADALIB] is Smith’s private program library. Smith is
developing a part of the HOTEL program called SCREEN_IO.

3–8 Working with DEC Ada Library Search Paths

• Smith’s current program library is [SMITH.ADALIB]. The current path,
which is indicated by the arrows, is as follows:

– The library [SMITH.ADALIB]

– The library [PROJECT.ADALIB]

• The library [PROJECT.ADALIB] is the project library that contains stable
versions of the HOTEL program. The default path associated with this
library is the library itself.

• The library [JONES.ADALIB] is Jones’ private program library. Jones is
developing another part of the HOTEL program called RESERVATIONS.

• Jones’ current program library is [JONES.ADALIB]. The current path,
which is not indicated by the arrows, is as follows:

– The library [JONES.ADALIB]

– The library [PROJECT.ADALIB]

Suppose that Smith wants to create a temporary library configuration
that allows testing of changes to SCREEN_IO with Jones’ changes to
RESERVATIONS. For this configuration, Smith wants the library search
order to be:

• Smith’s library ([SMITH.ADALIB])

• Jones’ library ([JONES.ADALIB])

• Project library ([PROJECT.ADALIB])

One way to reconfigure Smith’s program library is to modify the default
path associated with the library [SMITH.ADALIB] using the ACS MODIFY
LIBRARY command. The problem with modifying a default path is that the
change affects all library search paths that reference the default path for that
library.

A better way to reconfigure Smith’s program library is to redefine the current
path to the desired configuration. By using the ACS SET LIBRARY/PATH
command, Smith can test Jones’ code without changing any of the default
paths associated with the libraries in the reconfiguration. For example, Smith
can redefine the current path to identify Smith’s library ([SMITH.ADALIB])
and the default path of Jones’s library (@[JONES.ADALIB]):

$ ACS SET LIBRARY/PATH [SMITH.ADALIB],@[JONES.ADALIB]

Working with DEC Ada Library Search Paths 3–9

Figure 3–1 Program Library Configuration for Smith

Finished copies of
 HOTEL
 RESERVATIONS and
 its subunits
 SCREEN_IO and
 its subunits

Working copies of
 SCREEN_IO and
 its subunits

ZK−4676A−GE

[SMITH.ADALIB]

Default path
evaluates to
[SMITH.ADALIB]
[PROJECT.ADALIB]

[PROJECT.ADALIB]

Default path
evaluates to
[PROJECT.ADALIB]

Working copies of
 RESERVATIONS and
 its subunits

[JONES.ADALIB]

Default path
evaluates to

[PROJECT.ADALIB]
[JONES.ADALIB]

Figure 3–2 shows the reconfigured library structure.

Once testing is completed, Smith can change back to the previous configuration
as follows:

$ ACS SET LIBRARY [SMITH.ADALIB]

3–10 Working with DEC Ada Library Search Paths

Figure 3–2 Program Library Reconfiguration for Smith

Working copies of
 RESERVATIONS and
 its subunits

Finished copies of
 HOTEL
 RESERVATIONS and
 its subunits
 SCREEN_IO and
 its subunits

[JONES.ADALIB] [PROJECT.ADALIB]

Working copies of
 SCREEN_IO and
 its subunits

[SMITH.ADALIB]

Default path
evaluates to
[PROJECT.ADALIB]

Default path
evaluates to
[JONES.ADALIB]
[PROJECT.ADALIB]

ZK−4677A−GE

3.6 Specifying Library Search Paths
You specify library search paths as a expression consisting of a list of terms. A
term in a path expression can be:

• A directory name for an Ada library

• A reference to the default path for an Ada library

• A reference to a library search path stored in a text file

Expressions in library search paths must be evaluated before a unit can be
looked up during a library search. The following sections describe how library
search paths are evaluated and provide detailed information on specifying
library search paths in commands, in files, and as a default path.

3.6.1 Understanding How Library Search Paths are Evaluated
When you enter a DEC Ada command, the terms in the current path are
evaluated to form an ordered list of DEC Ada program libraries. Table 3–1
shows what terms can appear in a path expression and the result of their
evaluation.

Working with DEC Ada Library Search Paths 3–11

Table 3–1 Results of Evaluating Terms in Path Expressions

Term Description Result of Evaluation

dirname A directory name of an
Ada library

The value of dirname is appended to the
ordered list of Ada libraries that define a
library search path.

@dirname Directory name of an
Ada library preceded
by @

The default path associated with a
library is evaluated.

@file-spec File specification
preceded by @

The path expression in the file is
evaluated. If you do not specify a full
file specification, the default file name is
PATH and the default file extension is
.TXT.

As the terms in path expressions are evaluated, the names of directories that
result from the evaluation are appended to the resulting list in the order in
which these expressions are specified. If a program library occurs more than
once in the resulting list of libraries, subsequent occurrences are ignored by
the compiler and program library manager.

Library search paths are not allowed to cycle. In other words, if the library
search path for library [ALIB] contains [BLIB], then the library search path
for library [BLIB] cannot contain library [ALIB] in its library search path.

3.6.2 Specifying Library Search Paths in Commands
You can specify library search paths with several commands:

• As a command parameter to the ACS SET LIBRARY/PATH command

• As a command parameter to the ACS MODIFY LIBRARY/PATH command

• As the value of the /LIBRARY qualifier when you also specify the /PATH
qualifier with the DCL ADA command

When you specify library search paths in ACS commands, note the following
point:

• You must use commas to separate terms in path expressions. For example:

$ ACS SET LIBRARY/PATH [JONES.ADALIB], [HOTEL.ADALIB]

3–12 Working with DEC Ada Library Search Paths

When you specify library search paths in the DCL ADA command, note the
following point:

• If a term in the value of the /LIBRARY qualifier contains the at sign (@),
you must use double quotes (") to surround that term. For example:

$ ADA/LIBRARY=([JONES.ADALIB], "@[HOTEL.ADALIB]")/PATH

Note that you can only specify a library search path as a value to the
/LIBRARY qualifier when you also specify the /PATH qualifier.

3.6.3 Specifying Library Search Paths in Files
You can store library search paths in text files, and then include the files in
other library search paths by using the at sign (@). Terms in a library search
path in a text file are separated by commas, spaces, or carriage returns.

For example, the file MYPATH.TXT is a text file containing the following
libraries:

[JONES.HOTEL.ADALIB]
[HOTEL.ADALIB]

When the following command is followed by a subsequent compilation or ACS
operation, the libraries [JONES.TEST.SUBLIB], [JONES.HOTEL.ADALIB],
and [HOTEL.ADALIB] are searched in order for the required units.

$ ACS SET LIBRARY/PATH [JONES.TEST.SUBLIB], @MYPATH.TXT

Two restrictions apply when you store a library search path in a file:

• The maximum length of a line in the file is 256 characters.

• The at sign (@) must appear on the same line as the directory or file
specification that follows it.

3.6.4 Specifying Library Search Paths in Default Paths
A special notation is used in the default path of a library to refer to that library
in a symbolic manner so that you can move the library to another directory
without having to modify the default path.

The special notation used for such symbolic self-references is the string
^_ _FILE_ _. (The nonalphabetic characters in the string are a circumflex and a
double underscore.) When a default path for a library is evaluated, ^_ _FILE_ _
is replaced by the directory name of that library.

Working with DEC Ada Library Search Paths 3–13

For example, suppose you modified the default path of [JONES.TEST.SUBLIB]
to be as follows:

^____FILE____
[JONES.HOTEL.ADALIB]

When this path is evaluated, ^_ _FILE_ _ is replaced with the directory name of
an Ada library ([JONES.TEST.SUBLIB]). Thus, the default path of the library
[JONES.TEST.SUBLIB] evaluates as follows:

[JONES.TEST.SUBLIB]
[JONES.HOTEL.ADALIB]

Suppose you used the backup utility to move all the files in
[JONES.TEST.SUBLIB] to [SMITH.TEST.SUBLIB]. When the default
path of [SMITH.TEST.SUBLIB] is evaluated, ^_ _FILE_ _ is replaced by
[SMITH.TEST.SUBLIB]. Thus, the resulting default path of the library
[SMITH.TEST.SUBLIB] is as follows:

[SMITH.TEST.SUBLIB]
[JONES.HOTEL.ADALIB]

3–14 Working with DEC Ada Library Search Paths

4
Compiling and Recompiling DEC Ada

Programs

In DEC Ada, compilation and recompilation are done in the context of the
current program library, which can be either a program library or a sublibrary
(see Chapter 2). Depending on the compilation command used, the source text
to be compiled can come from two kinds of Ada source files:

• Files external to the library—source files edited and managed by you.
These files are called external source files.

• Files internal to the library—files created by the /COPY_SOURCE
compilation qualifier and managed by the program library manager. These
files are called copied source files.

Each time a unit is compiled without error, the current program library is
updated with the new unit and any other products of compilation, such as the
object module and copied source file. If the compilation of the unit causes an
error with a severity level greater than a warning (W), the current program
library is not updated.

By default, whenever a unit is compiled, any dependent units may become
obsolete and must be recompiled before the program can be linked. Linking
also requires that all units in the execution closure (bodies and subunits) be
current. Furthermore, any generic instantiations must be complete.

DEC Ada has four commands that you can use in different ways to compile,
recompile, and complete units: the DCL ADA command, the ACS LOAD
command, the ACS COMPILE command, and the ACS RECOMPILE
command. Table 4–1 summarizes and compares the characteristics and use of
each command.

See Chapter 1 for detailed definitions of obsolescence, currency, and
incompletion.

Compiling and Recompiling DEC Ada Programs 4–1

Table 4–1 Summary Comparison of the DCL ADA and ACS LOAD, RECOMPILE,
and COMPILE Commands

Command Usage

($) ADA Compiles the units in the specified Ada source files into the
current program library.

Useful for compiling units into a library for the first time or
to compile again a set of units whose compilation order has
changed. In both cases, you must know the compilation order.

Available qualifiers provide a variety of options.

ACS LOAD Processes the units in the specified Ada source files, and puts
them into the current program library as obsolete units. You
must recompile the units to make them current.

Useful for putting a set of units into a library for the first time,
especially if you do not know the compilation order. Also useful
for adding units to an existing program.

Available qualifiers are similar to the DCL ADA and ACS
COMPILE and RECOMPILE qualifiers; has additional
qualifiers to help select the files to be processed.

ACS RECOMPILE Recompiles any obsolete unit or completes any incomplete
generic instantiations in the execution closure of the specified
units. Uses the copied source files stored in the program
library. Ignores any source files external to the program library.

Useful for making obsolete units current if the source files
have not changed, for completing an incomplete generic
instantiation, or for forcing the recompilation of an entire
set of units with different qualifiers (such as /NOCHECK).

For a unit to be recompiled or completed with this command, it
must have been originally compiled with the /COPY_SOURCE
qualifier.

Available qualifiers are a superset of the qualifiers for the
DCL ADA command, and are identical to the qualifiers for
the ACS COMPILE command (although some qualifiers, like
the /DIAGNOSTICS, /COPY_SOURCE, and /NOTE_SOURCE
qualifiers, have no effect).

(continued on next page)

4–2 Compiling and Recompiling DEC Ada Programs

Table 4–1 (Cont.) Summary Comparison of the DCL ADA and ACS LOAD,
RECOMPILE, and COMPILE Commands

Command Usage

ACS COMPILE Compiles any unit whose external source file has been modified,
as well as recompiling obsolete units and completing incomplete
generic instantiations in the execution closure of the specified
units. To compile units whose source files have been modified,
uses external source files (source files in the current default
directory or source files in a location determined by a search
list). To recompile obsolete units or complete incomplete generic
instantiations, uses external source files if they are available;
if external source files are not available, uses the copied source
files stored in the program library.

Useful for automatic compilation and recompilation of modified
units whose external source files have changed.

In cases where copied source files are used, units must have
been compiled with the /COPY_SOURCE qualifier. You can use
the ACS SET SOURCE command to specify the directories to
be searched for the source files.

Available qualifiers are a superset of the qualifiers for the DCL
ADA command, and are identical to the qualifiers for the ACS
RECOMPILE command.

The use of these commands is discussed in this chapter. The form of diagnostic
messages is described in Appendix E.

Note

The information in this chapter is task oriented. For full details on the
format, parameters, and qualifiers of the various ACS commands, see
Appendix A.

Many examples in this manual were created with smart recompilation
in effect. For more information about smart recompilation, see
Chapter 5.

Compiling and Recompiling DEC Ada Programs 4–3

4.1 Compiling Units into a Program Library
To compile units into the current program library, you can use either the
DCL ADA command or the ACS LOAD command. These two commands have
different requirements and effects, as shown in Table 4–2.

Table 4–2 Comparison of the DCL ADA and ACS LOAD Commands

DCL ADA Command ACS LOAD Command

Compiles the units contained in the
files in the order given (or in the order
within the file, if a file contains more
than one unit).

Processes the units contained in the files;
processing includes syntax checking and
updating the library with unit dependence
and source-file information, but the units are
obsolete. The order in which the files are
processed is not important.

Must be executed at DCL level;
runs in interactive mode by default
(unless executed in batch mode from a
command procedure).

Can be executed at DCL or ACS level; runs
in interactive mode by default.

Takes one or more file specifications as
parameters.

Takes one or more file specifications as
parameters.

Cannot use wildcards in the file-
specification parameters.

Can use wildcards in the file-specification
parameters.

Must specify each file to be compiled. Can use a number of qualifiers to select files
based on backup and creation dates, user
identification code, and so on.

Can specify the program library to be
used for the duration of the compilation
(/LIBRARY qualifier).

Cannot choose another program library.

When the command has finished
executing, units compiled into the
library are current and can be linked
(assuming that their execution closure
is complete).

When the command has finished executing,
units loaded into the library are obsolete and
must be recompiled with the ACS COMPILE
or RECOMPILE command before they can be
linked (see Section 4.2).

Best used in the following cases:

• When you know the compilation
order (for any number of units)

• When fast compilation is important

Best used in the following cases:

• When you do not know the compilation
order of the units contained in the set of
files; for example, after you fetch a CMS
class of Ada files from a CMS library to
build a system

In the following example, the ADA command compiles the two source files
SCREEN_IO_.ADA and RESERVATIONS_.ADA in the order given. Because

4–4 Compiling and Recompiling DEC Ada Programs

the default input file type for the ADA command is .ADA, the file type has
been omitted in the command line.

$ ADA/LIST SCREEN_IO_,RESERVATIONS_

The /LIST qualifier causes a listing file (.LIS) to be created in the current
default directory. In the previous example, one listing file is created for each
of the two input files. The listing-file names are, by default, the same as the
source-file names, but instead of a file type of .ADA, they have a file type of
.LIS.

In the following example, the ACS LOAD command processes all of the units
contained in the source files in the current default directory, and updates the
current program library. Again, the default input file type is .ADA; the /LOG
qualifier causes the files processed (not the units) to be listed.

$ ACS LOAD/LOG *
%I, The following files will be loaded:

DISK:[JONES.HOTEL]SCREEN_IO.ADA
DISK:[JONES.HOTEL]SCREEN_IO_.ADA
DISK:[JONES.HOTEL]RESERVATIONS.ADA
DISK:[JONES.HOTEL]RESERVATIONS_.ADA
DISK:[JONES.HOTEL]HOTEL.ADA

%I, Invoking the DEC Ada compiler

The units are loaded into the library as obsolete units. To make them current
and able to be linked, you must subsequently enter an ACS COMPILE or
RECOMPILE command, keeping in mind that these commands operate on the
execution closure of the units specified. For example:

$ ACS COMPILE HOTEL

See Section 4.2 for more information on recompiling obsolete units.

Both the DCL ADA and ACS LOAD commands accept more than one unit in a
source file, but this practice is not recommended (see Chapter 1).

Both the DCL ADA and ACS LOAD commands assume the /COPY_SOURCE
and /NOTE_SOURCE qualifiers by default. The /[NO]COPY_SOURCE
qualifier controls whether copied source files are created in the current
program library. Note the following points about this qualifier:

• When it is in effect, a copied source file is created in the current program
library for each unit compiled without error.

• Copied source files are used by the ACS RECOMPILE and COMPILE
commands.

Compiling and Recompiling DEC Ada Programs 4–5

• Copied source files are used by the debugger (see OpenVMS Debugger
Manual).

The /[NO]NOTE_SOURCE qualifier controls whether the compiler records the
file specification of a unit’s external source file in the program library. The
ACS COMPILE command uses this information to locate revised source files.
When it is in effect, the file specification of each unit’s source file is recorded in
the current program library when the unit is compiled without error.

Keep in mind that the default values of the /[NO]COPY_SOURCE and
/[NO]NOTE_SOURCE qualifiers make the copied source files and the location
of the source files available to anyone who has read access to a program library.

4.2 Recompiling Obsolete Units
Units can be obsolete for a number of reasons:

• One or more units that they depend on have been compiled more recently
into the program library (see Chapter 1).

• The value of a global program library characteristic such as FLOAT_
REPRESENTATION, LONG_FLOAT or SYSTEM_NAME has been changed
(for example, after you have used the ACS SET PRAGMA command). Note
that the value of SYSTEM_NAME affects only those units that name the
package SYSTEM in a with clause.

• The units were loaded into the current program library with the ACS
LOAD command (see Section 4.1).

• One or more units were loaded into the library using the ACS
LOAD/DESIGN command. These units are design-checked only (see
Appendix D for more information on program design support).

To recompile a set of obsolete units, you can enter either the ACS RECOMPILE
or the ACS COMPILE command. In DEC Ada, the term recompilation refers
to the following series of steps:

1. Formation of the execution closure of a given set of units

2. Identification of the obsolete units in the closure

3. Recompilation of the obsolete units

Table 4–3 notes the differences between the ACS RECOMPILE and COMPILE
commands in performing these steps.

4–6 Compiling and Recompiling DEC Ada Programs

Table 4–3 Differences Between ACS RECOMPILE and COMPILE in Recompiling
Obsolete Units

ACS RECOMPILE ACS COMPILE

Performs only the recompilation steps Performs the recompilation after compiling
any units whose external source files have
changed

Uses copied source files to do the
recompilation

Uses external source files to do the
recompilation; if external source files are
not available, uses copied source files

Note the use of copied source files for recompilation. If a copied source file
needed for a recompilation is missing (because /NOCOPY_SOURCE was
specified in a previous compilation), the program library manager identifies
the missing file, and the recompilation is not attempted. Thus, if you intend
to use the ACS RECOMPILE command, you should not compile units with the
/NOCOPY_SOURCE qualifier on any of the compilation commands.

The following example shows the use of the RECOMPILE command to
recompile obsolete units. Consider the following set of units:

• The unit HOTEL, which is the main program and which names the unit
RESERVATIONS in a with clause.

• The unit RESERVATIONS, whose specification names the unit SCREEN_
IO in a with clause. The units RESERVATIONS and SCREEN_IO each
have a specification, body, and some subunits.

All of the units have been compiled into the program library with the /COPY_
SOURCE qualifier, so that a copied source file exists in the library for each
unit.

If SCREEN_IO’s specification is compiled again, then its dependent units are
potentially obsolete, as follows:

• The specification of RESERVATIONS is potentially obsolete because it
names SCREEN_IO in a with clause.

• The body of RESERVATIONS is potentially obsolete because it depends on
the specification of RESERVATIONS.

• The subunits of RESERVATIONS are potentially obsolete because they
depend on the body of RESERVATIONS.

• The unit HOTEL is potentially obsolete because it names the unit
RESERVATIONS in a with clause.

Compiling and Recompiling DEC Ada Programs 4–7

The following RECOMPILE command operates on the closure of
RESERVATIONS, and compiles units that become obsolete by the change
to the specification of SCREEN_IO.

$ ACS RECOMPILE/LOG RESERVATIONS
%I, The following syntax-checked units are obsolete:
SCREEN_IO

package specification 13-NOV-1992 12:10:17.54

%I, The following units may also be recompiled:
SCREEN_IO.INPUT

procedure body 13-NOV-1992 11:39:11.67 (00:00:06.42)
SCREEN_IO.INPUT.BUFFER

function body 13-NOV-1992 11:39:19.18 (00:00:04.10)
SCREEN_IO.OUTPUT

procedure body 13-NOV-1992 11:39:24.21 (00:00:04.61)
RESERVATIONS

package body 13-NOV-1992 11:39:35.04 (00:00:10.61)
package specification 13-NOV-1992 11:38:55.34 (00:00:04.30)

RESERVATIONS.RESERVE
procedure body 13-NOV-1992 11:39:46.79 (00:00:05.34)

RESERVATIONS.RESERVE.BILL
procedure body 13-NOV-1992 11:39:53.27 (00:00:04.79)

RESERVATIONS.CANCEL
procedure body 13-NOV-1992 11:39:59.39 (00:00:05.64)

1 obsolete unit, 7 possibly obsolete (total 8)

%I, Invoking the DEC Ada compiler

Note that when smart recompilation is in effect, only those units that are
actually affected by the change are recompiled. See Chapter 5 for more
information.

As shown in the previous example, you can use the /LOG qualifier to display
the potentially obsolete units and the order in which they may be recompiled.
Obsolete units that are actually affected by the changes are recompiled using
the copied source files in the current program library.

The equivalent ACS COMPILE command would recompile the obsolete units
using the external source files (as well as compiling any units whose source
files had been modified); it would use copied source files only if the external
files were not available. By default (/PRELOAD), the ACS COMPILE command
compiles a modified set of units whose compilation order has changed (or to
which new units have been added) in the correct order (see Section 4.4).

Note that the execution closure of a given unit does not include any units that
name the given unit in a with clause. Therefore, in the previous example,
the unit HOTEL is not recompiled (although it is also obsolete) because
HOTEL is not part of the execution closure of RESERVATIONS. If you were

4–8 Compiling and Recompiling DEC Ada Programs

to specify HOTEL with the ACS RECOMPILE or COMPILE command, you
would recompile the execution closure of HOTEL, which includes HOTEL,
RESERVATIONS, and SCREEN_IO, and any subunits. Thus, to recompile the
obsolete units of an entire program, you must specify the unit name of the
main program with the RECOMPILE or COMPILE command.

Also note that the RECOMPILE and COMPILE commands do not recompile
any entered units. However, because they check the execution closure of the
units specified, these commands do detect obsolete units. For example:

$ ACS RECOMPILE HOTEL
%E, Package specification QUEUE_MANAGER has been recompiled in

USER:[JONES.HOTEL.ADALIB] and must be reentered
%E, Package body QUEUE_MANAGER has been recompiled in

USER:[JONES.HOTEL.ADALIB] and must be reentered

4.3 Completing Incomplete Generic Instantiations
An Ada program is considered to be incomplete if more processing needs to be
done before the program can be linked. For example, a program with missing
subunits is incomplete—you must compile the subunits into the program
library before you can link the program. A program with incomplete generic
instantiations is also incomplete—you must complete the instantiations before
you can link the program.

An incomplete generic instantiation can occur for a number of reasons:

• If the body or subunits of the body for the corresponding generic unit are
not available when the instantiation of the generic unit is compiled (in this
case, you must compile the body or subunits before you can complete the
instantiation). A special case of this situation occurs when the generic body
is the result of another instantiation that has not been completed.

• If the body for the corresponding generic unit is compiled or recompiled
after the instantiation of the generic unit is compiled.

You can use either the ACS RECOMPILE or the ACS COMPILE command to
complete generic instantiations. The ACS RECOMPILE command uses copied
source files to complete generic instantiations. The ACS COMPILE command
uses external source files if they are available; copied source files if external
source files are not available. In some cases, particularly when a generic unit
contains an instantiation of another generic unit, you may need to use the ACS
RECOMPILE or COMPILE command more than once to complete all of the
instantiations in a set of units.

Compiling and Recompiling DEC Ada Programs 4–9

Note that when completing a generic instantiation, the compiler uses the
values of the /CHECK, /DEBUG, and /OPTIMIZE qualifiers that were in effect
when the instantiation was created. The compiler uses the original qualifier
values even if you specify other values for the ACS RECOMPILE or COMPILE
command that will perform the completion.

By default, a unit that contains a generic instantiation does not depend on
the body for the corresponding generic unit. Thus, when the generic body is
compiled, the unit containing the instantiation does not become obsolete, even
though the instantiation has become incomplete. Consequently, when the unit
containing the instantiation is recompiled to complete the instantiation, units
that depend on the unit containing the instantiation do not become obsolete
and do not need to be recompiled.

However, an implicit or explicit inline pragma for the generic instantiation
may cause the unit containing the instantiation to depend on the body for
the corresponding generic unit. If this dependence exists (see Chapter 1), the
instantiation is expanded inline and the unit containing the instantiation may
become obsolete when the generic body is recompiled. Consequently, when the
unit containing the instantiation is recompiled to complete the instantiation,
the unit containing the instantiation is also recompiled, and all units that
depend on the containing unit may also need to be recompiled.

See the DEC Ada Language Reference Manual and DEC Ada Run-Time
Reference Manual for OpenVMS Systems for more information on inline
pragmas (pragma INLINE and pragma INLINE_GENERIC). See Appendix A
for information on the /OPTIMIZE qualifier, which has options that have
effects equivalent to the inline pragmas. See Chapter 1 for more information
on incomplete and obsolete units.

Consider the following set of units:

• The unit MATH is a generic package, with a specification (MATH_) and a
body (MATH).

• ACCOUNTING is a library package instantiation of the unit MATH.

• The unit RESERVATIONS is a nongeneric package; its body depends on
the package ACCOUNTING.

• The main program HOTEL depends on the unit RESERVATIONS.

The specifications and bodies of these units are compiled into the program
library in the following order. Note that the body of the generic unit MATH is
compiled after the instantiation ACCOUNTING.

MATH_
ACCOUNTING

4–10 Compiling and Recompiling DEC Ada Programs

RESERVATIONS_
RESERVATIONS
HOTEL
MATH

As the following commands show, the main program HOTEL cannot be linked
until the body of the unit MATH is in the program library and ACCOUNTING
has been completed:

$ ADA MATH_
$ ADA ACCOUNTING
$ ADA RESERVATIONS_, RESERVATIONS
$ ADA HOTEL
$ ACS LINK HOTEL
%E, Body for MATH not found in library
%E, Obsolete library units are detected

%I, The following units need to be completed (use ACS COMPILE
or ACS RECOMPILE):

ACCOUNTING
package instantiation 15-Apr-1992 16:35

$ ADA MATH
$ ACS LINK HOTEL
%E, Obsolete library units are detected

%I, The following units need to be completed (use ACS COMPILE
or ACS RECOMPILE):

ACCOUNTING
package instantiation 15-Apr-1992 16:35

$ ACS RECOMPILE/LOG ACCOUNTING
%I, The following units will be completed:
ACCOUNTING

package instantiation 15-Apr-1992 16:35

$ ACS LINK HOTEL
$ RUN HOTEL

Consider also the following example:

generic
package GENERIC_PACKAGE is

procedure INNER_PROCEDURE;
end GENERIC_PACKAGE;

--

with GENERIC_PACKAGE;
package CONTAINS_INST is

package NEW_GENERIC_PACKAGE is new GENERIC_PACKAGE;
. . .

end CONTAINS_INST;

Compiling and Recompiling DEC Ada Programs 4–11

--

with CONTAINS_INST;
procedure MAIN is
begin

. . .
end MAIN;
--

package body GENERIC_PACKAGE is
procedure INNER_PROCEDURE is
begin

. . .
end INNER_PROCEDURE;

end GENERIC_PACKAGE;

Suppose that the units are compiled in the order shown and that all compile
without errors. Because the package body for GENERIC_PACKAGE is
compiled after the package CONTAINS_INST, the instantiation of NEW_
GENERIC_PACKAGE is incomplete. By entering an ACS COMPILE or
RECOMPILE command, you would complete the instantiation.

You can detect incomplete generic instantiations during a compilation by check-
ing the compiler listing file, or by using the /WARNINGS=(STATUS:TERMINAL)
qualifier on your compilation command. For example:

$ ADA/WARNINGS=(STATUS:TERMINAL) GENERIC_PACKAGE

%I, Generic package GENERIC_PACKAGE added to library
USER:[JONES.HOTEL.ADALIB]

Replaces older version compiled 8-Mar-1992 21:15
%I, Package specification CONTAINS_INST added to library

USER:[JONES.HOTEL.ADALIB]

10 package NEW_GENERIC_PACKAGE is new GENERIC_PACKAGE;
...........1
%I, (1) Instantiation incomplete because the generic body

for generic package GENERIC_PACKAGE in GENERIC_PACKAGE
at line 1 is not available

%I, Procedure body MAIN added to library
USER:[JONES.HOTEL.ADALIB]

%I, Generic package body GENERIC_PACKAGE added to library
USER:[JONES.HOTEL.ADALIB]

Replaces older version compiled 8-Mar-1992 21:15
Corresponds to generic package GENERIC_PACKAGE compiled

8-Mar-1992 21:16
.
.
.

The ACS CHECK and SHOW PROGRAM commands also detect incomplete
instantiations (see Chapter 2).

4–12 Compiling and Recompiling DEC Ada Programs

4.4 Compiling a Modified Program
To compile a modified program, you can use the ACS COMPILE command
with one or more qualifiers and the unit name of the program. The COMPILE
command locates modified source files, compiles them, and then recompiles
any obsolete units using information stored in the program library from
previous compilations. It also forms any generic completions involved in the
compilation. For example:

• To locate the modified source files, the COMPILE command uses
information obtained with the /NOTE_SOURCE compilation qualifier.

• To carry out recompilations and generic completions, it uses information
obtained with the /NOTE_SOURCE qualifier; if it cannot find that
information, it uses information obtained with the /COPY_SOURCE
qualifier.

When the COMPILE command searches for modified source files, it searches
source-file directories as indicated in Section 4.6. If the COMPILE command
finds that no files have been modified and all units are current and complete,
the program library manager issues a success message. For example:

$ ACS COMPILE QUEUE_MANAGER, ACCOUNTING
%I, All units and files current, no compilations required

If the COMPILE command cannot find the files it needs for compilation,
recompilation, or to complete a generic instantiation, an error message is
issued, and no compilation occurs. See Section 4.2 for more information on how
the COMPILE command recompiles obsolete units. See Section 4.3 for more
information on generic completions.

The following example shows the functions of the COMPILE command when
it finds revised source files. The COMPILE command in the previous example
was issued after the specification and body of RESERVATIONS were revised,
but before they were compiled into the current program library. The command
operates on the closure of RESERVATIONS, the specified unit. The /LOG
qualifier displays the units to be compiled from external source files, and those
to be recompiled either from external or copied source files.

$ ACS COMPILE/LOG RESERVATIONS

Compiling and Recompiling DEC Ada Programs 4–13

%I, The following syntax-checked units are obsolete:
RESERVATIONS

package specification 15-DEC-1992 17:27:32.94
package body 15-DEC-1992 17:27:29.90

RESERVATIONS.RESERVE
procedure body 15-DEC-1992 17:21:37.33

RESERVATIONS.RESERVE.BILL
procedure body 15-DEC-1992 17:21:34.41

RESERVATIONS.CANCEL
procedure body 15-DEC-1992 17:21:36.08

5 obsolete units

%ACS-I-CL_COMPILING, Invoking the DEC Ada compiler

5 units compiled in 00:00:45

By default, the ACS COMPILE command (by way of the /PRELOAD qualifier)
looks within a source file to determine the use of with clauses, subunit stubs,
and so on when it does a compilation. Thus, this qualifier allows you to use the
COMPILE command to compile a modified set of units whose compilation order
has changed (or to which new units have been added).

4.5 Forcing the Recompilation of a Set of Units
In some cases, you may want to force the recompilation of a set of units. For
example, you may want to recompile a set of units with different qualifiers,
such as /NOOPTIMIZE or /NOCHECK. Because the ACS COMPILE and
RECOMPILE commands do not recompile current units by default, you can use
the /OBSOLETE qualifier to accomplish this task.

The /OBSOLETE qualifier allows you to specify a set of units to be considered
obsolete when determining the currency of the units in the closure. For
example, the following command specifies that the specification and
body of RESERVATIONS should be considered obsolete and forces their
recompilation (and possibly the recompilation of any dependent units) with the
/NOOPTIMIZE qualifier:

$ ACS RECOMPILE/OBSOLETE=UNIT:RESERVATIONS/NOOPTIMIZE RESERVATIONS

You can use wildcards to specify units in the /OBSOLETE=UNIT:unit-name
qualifier. For example, to force the recompilation of the entire closure with the
/NOCHECK qualifier, enter the following command:

$ ACS RECOMPILE/OBSOLETE=UNIT:*/NOCHECK HOTEL

4–14 Compiling and Recompiling DEC Ada Programs

Because they contain most of the executable code, bodies and subunits are apt
to be modified and compiled more often than specifications. You can use the
/OBSOLETE=BODY:unit-name qualifier if a unit is current, but you want to
force the recompilation of only its body. In this way, any unit that depends
on the specification by way of a with clause is not made obsolete. In the
following example, the RECOMPILE command considers obsolete and forces
the recompilation of the body (and possibly any dependents of the body) of
SCREEN_IO:

$ ACS RECOMPILE/OBSOLETE=BODY:SCREEN_IO RESERVATIONS

Note that you cannot recompile entered units using the ACS COMPILE or
RECOMPILE commands.

4.6 Using Search Lists for External Source Files
The ACS SET SOURCE command allows you to define a search list for the
ACS COMPILE command. Then, when it searches for an external source
file, the COMPILE command first tries to use the source-file-directory
search list defined with the most recent SET SOURCE command. If no SET
SOURCE command has been entered for the current process, the default
source-file-directory search order is as follows:

1. SYS$DISK:[] (the current default directory)

2. ;0 (the directory that contained the file when it was last compiled), or
node::;0 (if the file specification of the source file being compiled contains a
node name)

The search order takes precedence over the version number or revision date-
time if different versions of a file exist in two or more directories. Within any
one directory, the version of a particular file that has the highest number is
considered for compilation.

One possible use of the ACS SET SOURCE command is to define a search
list that includes a CMS library. See Chapter 7 for more information on the
interaction between CMS and the DEC Ada program library manager.

The following example shows the use of the ACS SET SOURCE command:

$ ACS SET SOURCE SYS$DISK:[],USER:[JONES.HOTEL],;0

After this command is executed, a subsequent ACS COMPILE command
will search for source files first in the current default directory, then in
USER:[JONES.HOTEL], then in the directory where a particular source file
was last compiled.

Compiling and Recompiling DEC Ada Programs 4–15

The ACS SET SOURCE command assigns the specified search list to the
process logical name ADA$SOURCE. The search list defined by the SET
SOURCE command stays in effect until you either enter another SET
SOURCE command or log out.

You can use the ACS SHOW SOURCE command to display the current search
list selected by the last ACS SET SOURCE command. For example:

$ ACS SHOW SOURCE
%I, Current source search list (ADA$SOURCE) is

SYS$DISK:[]
USER:[JONES.HOTEL]
;0

4.7 Choosing Optimization Options
The /OPTIMIZE qualifier to the DCL ADA and ACS COMPILE and
RECOMPILE commands gives you a number of options for controlling the
level of optimization applied to your program by the compiler. You can also
use this qualifier and its options to override the behavior of the pragmas
OPTIMIZE, INLINE, INLINE_GENERIC, and SHARE_GENERIC.

There are four primary options: TIME, SPACE, DEVELOPMENT, and
NONE. There are two secondary options, INLINE and SHARE, which have a
number of values and which can be used in combination with the four primary
options, or can be used themselves as primary options. The compiler issues
informational messages when the options you have chosen affect pragmas in
your program. See Appendix A for a detailed description of each option and its
values.

In general, you should use the DEVELOPMENT option during active
development, and you should use the secondary options to tune the
performance of production programs.

The following optimization options generally give the best overall results:

/OPTIMIZE=DEVELOPMENT Programs under active development

/OPTIMIZE=INLINE:MAXIMAL Production programs that do not make extensive
use of generics, or that do make extensive use of
generics, but explicitly specify a pragma SHARE_
GENERIC for larger generics that are instantiated
many times

Maximal inline expansion often results in programs that execute faster.
However, you should not use maximal subprogram or generic inline expansion
during active development because changes to subprogram or generic bodies
that are expanded inline can cause many other units to need to be recompiled.

4–16 Compiling and Recompiling DEC Ada Programs

The following options are also of interest:

/OPTIMIZE=INLINE:SUBPROGRAMS Generally provides the fastest running code on
VMS systems and usually results in decreased
code size as well.

/OPTIMIZE=INLINE:GENERICS Results in maximal generic inline expansion
and generally optimizes execution time. All
generic instantiations (except for those to
which an explicit pragma SHARE_GENERIC
applies) are expanded inline at the point of
instantiation if the generic body is available.

/OPTIMIZE=SHARE:MAXIMAL Maximizes generic code sharing. This option
optimizes space at the expense of execution
time. Note, however, that sharing will not
occur unless the code that is generated for one
instance is similar to the code for another.

You should not use the SHARE:MAXIMAL
option when you are compiling all of the files
in your program. You will obtain better results
if you use the pragma SHARE_GENERIC or
compile a portion of your program with this
option.

See the DEC Ada Run-Time Reference Manual for OpenVMS Systems for more
information on inline expansion (subprogram and generic) and generic code
sharing. See the DEC Ada Language Reference Manual for more information
on the pragmas OPTIMIZE, INLINE, INLINE_GENERIC, and SHARE_
GENERIC.

4.8 Processing and Output Options
When you load, compile, and recompile Ada compilation units, you have
a variety of processing and output options available to you. This section
describes the following options:

• Executing the ACS LOAD, COMPILE, or RECOMPILE compilations in a
subprocess (the default mode).

• Batch processing. When processing in batch mode, use a dedicated batch
queue with the DCL ADA and ACS LOAD, COMPILE, and RECOMPILE
commands.

• Retaining, for future use, a DCL command file generated by the ACS
LOAD, COMPILE, and RECOMPILE commands.

• Using certain defaults, symbols, and logical names for the ACS LOAD,
COMPILE, and RECOMPILE commands.

Compiling and Recompiling DEC Ada Programs 4–17

• Directing ACS LOAD, COMPILE, and RECOMPILE command output to
the terminal and to files.

See Appendix A for complete details on the qualifiers and defaults that control
these options.

4.8.1 Loading Units and Executing Compilations in a Subprocess
By default (/WAIT), the ACS LOAD, COMPILE, or RECOMPILE commands
are executed in a subprocess.

The following example creates a subprocess and invokes the compiler command
file created by the program library manager to load the closure of unit
RESERVATIONS:

$ ACS LOAD RESERVATIONS

The current process is suspended while the program library manager executes
the command, and you must wait until the command is terminated before you
can enter another command. The net effect is like executing the command
interactively.

4.8.2 Executing Compilations in Batch Mode
In a multiuser environment, you can improve the use of machine time by
executing the DCL ADA and ACS LOAD, COMPILE, and RECOMPILE
commands in batch mode, using a dedicated batch queue.

The suggested batch-queue and SYSGEN parameters for best use of system
resources during compilation are specified in the DEC Ada Installation Guide
for OpenVMS VAX Systems. These parameters should be set by your system
manager. The batch-queue parameters limit the number of concurrent batch
jobs (and, therefore, compilations), and define an expanded value for the
working set size.

You can submit DCL ADA compilations in batch mode using command
procedures and the DCL SUBMIT command. The DCL SUBMIT command
makes all of the DCL batch options available with the DCL ADA command.
See the OpenVMS DCL Dictionary for more information on these options.

You can also submit ACS LOAD, COMPILE, and RECOMPILE compilation in
batch mode. To execute these compilations in batch mode, you must use the
/SUBMIT qualifier with these commands. The ACS LOAD, COMPILE, and
RECOMPILE commands submit compilations to the batch queue named by
the logical name ADA$BATCH by default. If ADA$BATCH is not defined, the
system batch queue SYS$BATCH is used.

4–18 Compiling and Recompiling DEC Ada Programs

To use a dedicated queue for DEC Ada compilations, define ADA$BATCH as a
logical name whose translation is the name of the appropriate queue. Consult
your system manager for additional information.

4.8.3 Conventions for Defaults, Symbols, and Logical Names
When executing the ACS LOAD, COMPILE, or RECOMPILE command,
the program library manager transmits the current definitions of certain
defaults, symbols, and logical names to the batch or subprocess environment.
Specifically:

• The current default directory is preserved. By default, any files created
outside the current program library (for example, a command file or a
listing file) are created in the current default directory.

• The current definition of the symbol ADA is used. For example, you could
define ADA as follows:

$ ADA == "ADA/LIST"

Then the following commands would have the same effect:

$ ACS COMPILE/NOOPTIMIZE SCREEN_IO
$ ACS COMPILE/LIST/NOOPTIMIZE SCREEN_IO

• The current value of the logical name ADA$LIB is used to maintain the
current program library context.

The DCL command file that you can obtain with the /COMMAND qualifier
contains the current definitions of the default directory, the symbol ADA, and
the logical name ADA$LIB.

4.8.4 Directing Program Library Manager and Compiler Output
When you use the ACS LOAD, COMPILE, or RECOMPILE command, any
program library manager output and diagnostic messages generated before the
compiler is invoked are directed to SYS$OUTPUT, by default. Examples of
such ACS output and diagnostics include the following:

• A list of the units to be processed, as displayed by the /LOG qualifier

• A diagnostic message indicating that some units are obsolete or missing

You can use the /OUTPUT=file-spec qualifier to direct program library manager
output and diagnostic messages to a file (in that case, program library manager
diagnostic messages are directed to both the file and SYS$OUTPUT).

Diagnostic messages issued by the compiler are directed as follows:

• To a batch log file in the case of a batch job

Compiling and Recompiling DEC Ada Programs 4–19

• To your terminal in the case of a subprocess

When you specify the /SUBMIT qualifier, the batch log file is created in your
current default directory by default. You can use the /BATCH_LOG=file-spec
qualifier with the ACS LOAD, COMPILE, and RECOMPILE commands to
specify the target directory (and/or file name) for the batch log file.

4.8.5 Setting Compiler Error Limits
You can use the /ERROR_LIMIT qualifier to control whether execution of the
DCL ADA or ACS LOAD, COMPILE, or RECOMPILE command for a given
compilation unit is terminated upon the occurrence of the nth E-level error
within that unit.

Error counts are not accumulated across a sequence of compilation units. For
example, if /ERROR_LIMIT=5 is specified, each compilation unit submitted
may have up to four errors without terminating the compilation. When the
error limit is reached within a compilation unit, compilation of that unit is
terminated, but compilation of subsequent units continues.

The default value of the qualifier is /ERROR_LIMIT=30.

4–20 Compiling and Recompiling DEC Ada Programs

5
Using the Professional Development

Option

DEC Ada provides several features and capabilities which support the
development of large Ada programs. These features and capabilities are
licensed separately under the Professional Development option.

The Professional Development option includes the following features and
capabilities:

• Smart recompilation

This feature can significantly reduce the number of recompilations that
are needed to rebuild your program after some compilation units change.
Smart recompilation allows the compiler to propagate changes quickly
through a system, eliminating up to 100% of the usual recompilations. (See
Section 5.1 for more information.)

• Program Library File-Block Caching

This feature minimizes the actual amount of disk input-output that must
be performed by using an in-memory cache of file blocks from the .ACU
files. As a result of file-block caching, the elapsed time for compilations is
significantly reduced. (See Section 5.2 for more information.)

• Directory Structure

This feature improves the performance of access to large program libraries.
(See Section 5.3 for more information.)

All of the features and capabilities of the Professional Development option
are designed so that you do not need to change your current development
procedures, source code, or program libraries when you first enable it.
Once the license is enabled, you can use your currently existing programs
and program libraries without any special linkers, loaders, or conversion
procedures.

Using the Professional Development Option 5–1

Note that if you do not have a license for the Professional Development option,
the features and capabilities discussed in this chapter are not available for use.
(For information on how to obtain a license for the Professional Development
option, contact your local Digital sales representative.)

The following sections describe the Professional Development option features
and capabilities.

5.1 Overview of Smart Recompilation
Smart recompilation is a compiler feature that reduces the number of
compilations that are needed to rebuild a program after some compilation units
change. When you compile a unit whose source file has changed, only those
dependent units affected by the changes are recompiled, rather than all of the
dependent units.

When smart recompilation is in effect, the compiler stores dependence
information at a more detailed level than it normally does. This information
describes the dependences of a unit at a finer level than the compilation unit
level. During a subsequent compilation, the compiler uses this information
to determine which units are actually affected by a source code change and
recompiles only those units affected by the change. (For more information
about dependences, see Section 5.1.5.)

When smart recompilation is not in effect, a unit is obsolete when any of the
units it depends on have been compiled more recently than it. Because that
unit is obsolete, all units that depend on it are also obsolete and need to be
recompiled. However, because smart recompilation handles unit dependences
at a much finer granularity, it prevents this domino effect of recompiling
obsolete units just because they depend on a unit that has been compiled.

To invoke smart recompilation, use the /SMART_RECOMPILATION qualifier
with the DCL ADA and the ACS CHECK, COMPILE, LOAD, RECOMPILE,
and SHOW PROGRAM commands. When the license for Professional
Development option is enabled, /SMART_RECOMPILATION is the default for
these commands. (See the OpenVMS License Management Utility Manual for
more information on enabling licenses.)

When smart recompilation is in effect, note the following points:

• You can use entered units in the same way as you use them without smart
recompilation. Specifically, reentering a unit into the program library after
recompiling it in its original library has the same effect as recompiling it
into the local library. In other words, units that depend on the entered unit
become obsolete only if they depend on fragments of the entered unit that
changed.

5–2 Using the Professional Development Option

• The compiler uses the same rules as described in Chapters 2 and 3
when searching for units and determining where the results of the
compilation should be stored. Specifically, any obsolete compilation units
are recompiled into the program library (and current units are not updated
into the program library).

5.1.1 Using Smart Recompilation to Recompile Obsolete Units
During incremental program development, you may need to rebuild your
program frequently. For example, you may need to rebuild your program after
you a make change to one or more units, add new units, or recompile parts of
your program with new qualifiers.

When smart recompilation is in effect, modified source files are always
compiled. However, the ACS COMPILE and RECOMPILE commands use the
detailed dependence information to detect when an unmodified unit in the
closure is unaffected by changes (if any) in the units it depends on. The ACS
COMPILE and RECOMPILE commands do not recompile such dependent units
and thus minimize unnecessary recompilations.

Conversely, when smart recompilation is not in effect—that is, you explicitly
specify the /NOSMART_RECOMPILATION qualifier—units are considered
obsolete and are recompiled based on their time of compilation. In addition, if
the /NOSMART_RECOMPILATION qualifier is specified, detailed information
about dependences is not stored in the program library.

The following example shows the use of the RECOMPILE command with smart
recompilation. Consider the following set of units:

• The unit HOTEL, which is the main program and which names the unit
RESERVATIONS in a with clause.

• The unit RESERVATIONS, whose specification names the unit SCREEN_
IO in a with clause. The units RESERVATIONS and SCREEN_IO each
have a specification, body, and some subunits.

If SCREEN_IO’s specification is modified and compiled again, then its
dependent units may become obsolete, as follows:

• The body of SCREEN_IO.

• The subunits of SCREEN_IO.

• The specification of RESERVATIONS is potentially affected because it
names SCREEN_IO in a with clause.

• The body of RESERVATIONS is potentially affected because it depends on
the specification of RESERVATIONS.

Using the Professional Development Option 5–3

• The subunits of RESERVATIONS are potentially affected because they
depend on the body of RESERVATIONS.

• The unit HOTEL is potentially affected because it names the unit
RESERVATIONS in a with clause.

When you enter the ACS RECOMPILE command, it uses the detailed
information about dependences stored in the program library, and may
determine that only the body of RESERVATIONS needs to be recompiled.
Further, the ACS RECOMPILE command determines the currency of the
units that are dependent on the body of RESERVATIONS (and any subunits of
RESERVATIONS) only after the body of RESERVATIONS is recompiled. For
example (because the /SMART_RECOMPILATION qualifier is the default, you
do not need to specify it on the command line):

$ ACS RECOMPILE/LOG HOTEL
%I, The following units will be recompiled:
RESERVATIONS

package body 16-DEC-1992 12:47:54.60 (00:00:08.61)

%I, The following units may also be recompiled:
RESERVATIONS.RESERVE

procedure body 16-DEC-1992 12:44:22.50 (00:00:01.48)
RESERVATIONS.RESERVE.BILL

procedure body 16-DEC-1992 12:44:24.61 (00:00:01.28)
RESERVATIONS.CANCEL

procedure body 16-DEC-1992 12:44:26.54 (00:00:01.50)

1 obsolete unit, 3 possibly obsolete (total 4)
Total elapsed time for last compilation of all 4 units was 0:00:12.87

%I, Invoking the DEC Ada compiler
%I, Package body RESERVATIONS added to library

Replaces older version compiled 16-DEC-1992 12:47:54.60
.
.
.

1 unit compiled in 00:00:09, 3 units did not need to be recompiled
Estimated elapsed time savings due to Smart Recompilation was 0:00:04.26 (33%)

As shown in the previous example, the /LOG qualifier displays the units that
will be recompiled and the units that may be recompiled.

Note that when smart recompilation is not in effect, all units that are directly
or indirectly dependent on the specification of SCREEN_IO are recompiled.
For example:

5–4 Using the Professional Development Option

$ ACS RECOMPILE/LOG/NOSMART_RECOMPILATION HOTEL
I, The following units will be recompiled:
RESERVATIONS

package specification 16-DEC-1992 12:44:15.17 (00:00:01.88)
package body 16-DEC-1992 12:51:50.26 (00:00:08.35)

HOTEL
procedure body 16-DEC-1992 12:44:17.69 (00:00:01.66)

RESERVATIONS.RESERVE
procedure body 16-DEC-1992 12:44:22.50 (00:00:01.48)

RESERVATIONS.RESERVE.BILL
procedure body 16-DEC-1992 12:44:24.61 (00:00:01.28)

RESERVATIONS.CANCEL
procedure body 16-DEC-1992 12:44:26.54 (00:00:01.50)

SCREEN_IO
package body 16-DEC-1992 12:44:28.72 (00:00:00.99)

SCREEN_IO.INPUT
procedure body 16-DEC-1992 12:44:34.08 (00:00:07.09)

SCREEN_IO.INPUT.BUFFER
function body 16-DEC-1992 12:44:42.05 (00:00:01.27)

SCREEN_IO.OUTPUT
procedure body 16-DEC-1992 12:44:43.93 (00:00:00.88)

10 obsolete units
Total elapsed time for last compilation of the 10 units was 0:00:26.38

%I, Invoking the DEC Ada compiler
.
.
.

10 units compiled in 00:00:39

5.1.2 Determining the Impact of a Change
During program development, you may want to determine the impact of a
change without actually compiling the change into the program library. To
determine the impact of a change, follow these steps:

1. Create a sublibrary that has as its ancestors the desired program libraries.
(Alternatively, you can create a program library and include the desired
libraries in your path. See Chapter 3.) For example:

$ ACS CREATE SUBLIBRARY/PARENT=[PROJECT.ADALIB] [.TMPLIB]

2. Define the newly created sublibrary as the current program library using
the ACS SET LIBRARY command. For example:

$ ACS SET LIBRARY [.TMPLIB]

Using the Professional Development Option 5–5

3. Make the desired changes to your Ada source files and compile them
into the library. For example, if you modified the body of the unit
RESERVATIONS, you enter the following command to compile that
unit into your program library:

$ ADA RESERVATIONS

4. Enter the ACS CHECK command to determine the impact of the change.
For example, you can determine the impact of a change to the unit
RESERVATIONS on the HOTEL program by entering the following
command:

$ ACS CHECK HOTEL
%E, Obsolete library units are detected

%I, The following units need to be recompiled:
RESERVATIONS.RESERVE

procedure body 16-DEC-1992 13:14:02.08 (00:00:01.61)

%I, The following units may also need to be recompiled:
RESERVATIONS.RESERVE.BILL

procedure body 16-DEC-1992 13:06:19.55 (00:00:01.40)

1 obsolete unit, 1 possibly obsolete (total 2)
Total elapsed time for last compilation of all 2 units was 0:00:03.01

In this example, the ACS CHECK command lists the units that are
affected by the change to RESERVATIONS, but it does not actually compile
or recompile these units.

Alternatively, you can enter the ACS SHOW PROGRAM command to
obtain the same information in a different format. In addition, the ACS
SHOW PROGRAM command provides a detailed listing of all of the units
(obsolete and current) in the closure and lists information about the
program library.

5.1.3 Forcing Recompilation when Smart Recompilation is in Effect
When smart recompilation is in effect, you may want to force a unit or a set of
units to be recompiled that would not otherwise be recompiled. For example,
you may want to recompile a set of units with different qualifiers. Because
smart recompilation does not recompile dependent units if they are not affected
by a change, you must explicitly force the recompilation of those units.

To force the recompilation of a set of units, you can enter either of the following
commands:

• ACS RECOMPILE/OBSOLETE=UNIT:unit-name

• ACS RECOMPILE/NOSMART_RECOMPILATION

5–6 Using the Professional Development Option

You enter the ACS RECOMPILE/OBSOLETE=UNIT:unit-name command
when you want to force the recompilation of the specified unit only. Dependent
units are not recompiled because the specified unit is not actually obsolete
(neither its source nor the units it depends on have changed). For example, the
following command forces the unit RESERVATIONS to be recompiled:

$ ACS RECOMPILE/OBSOLETE=UNIT:RESERVATIONS RESERVATIONS

Note that you can force the recompilation of the unit RESERVATIONS and all
of its dependents with the /OBSOLETE=UNIT:* qualifier. For example:

$ ACS RECOMPILE/OBSOLETE=UNIT:* RESERVATIONS

A less desirable way to force recompilation of the specified unit and
all of its dependent units is to use the ACS RECOMPILE/NOSMART_
RECOMPILATION command. Using the /NOSMART_RECOMPILATION
qualifier has the following effects:

• Obsolesence is determined by using the compilation date.

• Detailed information about dependences is not created for the units
specified.

For more information on forcing the recompilation of units, see Section 4.5.

5.1.4 Optimizing the Development Environment for Smart
Recompilation

You can optimize the development environment in the following ways:

• Use library search paths and sublibraries whenever possible.

To avoid the risk of having the main library being potentially unusable
while an unpredictable number of recompilations happen, use library
search paths to perform compilations into a sublibrary. Once the
compilations have finished, compilation units can be merged into the
main parent library.

For example, this is especially useful when using a Ram disk, such as
DECRam, as there is no reason to ever write the temporary sublibrary to a
physical disk.

• Force the recompilation of units in your library periodically using the ACS
RECOMPILE/OBSOLETE command.

You can achieve better compile-time performance by periodically forcing
recompilation. When you periodically force the recompilation of units, the
detailed information is updated so that dates can be used to check for
obsolescence in subsequent compilations. (Obsolescence checks between
two units is more efficient if a date check (rather than a check through the

Using the Professional Development Option 5–7

detailed information) is used.) See Section 5.1.3 for more information on
forcing recompilation.

5.1.5 Understanding Inter-Unit Dependences
The following sections describe inter-unit dependences as they relate to some
Ada language features and smart recompilation.

5.1.6 Fragments, Inter-Dependence, and Independence
In general, smart recompilation breaks the compilation unit into fragments,
where each fragment is either a complete declaration or part of one. The
inter-compilation-unit dependences are established on one or more of these
fragments. When the information in one of these fragments changes, the
compilation units that depended on it become obsolete.

Smart recompilation uses the following rules when establishing inter-unit
dependences:

• A fragment in a package specification or body does not include other
fragments of the specification or body. For example, a call to a procedure
body does not become obsolete because you changed the statements within
a procedure, unless that procedure is inlined. Similarly, if you add, remove,
or change declarations inside a package, smart recompilation does not
make the references to other declarations within the package obsolete.

• A fragment for a variable usually does not include its initial expression.
A fragment for a constant object is similar but may include the initial
expression if the expression is a compile-time constant or constrains the
object.

This means that changes to most initial expressions will not cause
compilation units to become obsolete.

• The fragment for an incomplete or private type is merged with the
fragment for the full type if the two fragments are in the same compilation
unit. Thus, adding components to record types in private parts does make
uses of the private type obsolete.

• Changes in one fragment will make another fragment obsolete only if the
other fragment makes a reference to the first, either directly or indirectly.
(Reducing such interactions is one of the reasons that initial expressions
are not included in variable fragments.)

Note that changes to comments has no effect on fragments, and therefore, does
not cause any dependent units to be recompiled.

5–8 Using the Professional Development Option

5.1.6.1 Searching for Identifiers and Overloading Resolution
When smart recompilation is in effect, dependences are created between units
when identifiers are searched. Dependences are created when the identifiers
are found and when they are not found.

Inter-unit dependences start when one unit names another unit in a with
clause. Most references into the unit within the with clause now take place
either as part of the compiling of a selected name (for example, TEXT_
IO.NEW_LINE) or as a search of a series of scopes for a simple name (for
example, use TEXT_IO;...NEW_LINE;...).

Searching for a name can be viewed as a search of a series of declaration lists
for a specific identifier or operator. Smart recompilation records each scope and
the name being sought.

When the entity is found, a dependence is made on the corresponding fragment.

Note that not finding an occurrence of the identifier or operator is just as
important as finding it. If a future version of the scope has this identifier added
to it, then this search would be affected, and so the unit whose compilation
caused this search needs to become obsolete.

This means that adding a new nonoverloadable declaration (for example, a
type, subtype, constant, variable, or generic) will usually not cause compilation
units to become obsolete. However, a use clause or uplevel reference from a
subunit may have caused this declaration list to be searched for this identifier,
so the searching compilation unit must now be obsolete.

Adding overloadable declarations such as subprograms or enumerals will
similarly cause all compilation units that searched this declaration list for the
added identifier to become obsolete.

Adding a new nonlimited type also adds the =, /= operations for that type, and
perhaps other operators, so all compilation units that searched this declaration
list for one of these will become obsolete.

Similarly, when a type is modified (for example, by adding another component),
the type changes. This means that all the subprograms that have a parameter
or result of this type change. Therefore, all compilation units that searched
this declaration list for one of these identifiers become obsolete because
overloading resolution might behave differently.

Using the Professional Development Option 5–9

5.1.6.2 Resolving Access Types
There are a few other ways that dependences are established. For example,
resolving an allocator (X := new INTEGER;) requires an exhaustive search for
access types whose accessed type is INTEGER.

Adding new access types may thus result in compilation units containing such
allocators to become obsolete.

5.1.6.3 Inlining and Generic Expansion
All generic instantiations depend on all of the generic specification, and
any reordering or changing the contents of this generic specification will
make the compilation unit containing the instantiation obsolete. However
this is not too harmful because of the way the instantiation is processed.
The instantiation produces a specification which is treated like a normal
specification. Each declaration in the resulting specification is matched against
the old instantiation, and usually ends up being a compatible replacement for
it, so the dependents do not become obsolete.

All inlined subprogram calls and inlined generic instantiations depend on
all of the body, and any reordering or changing of the contents of the body
makes the compilation unit containing the call or instantiation obsolete.
Again, recompiling this compilation unit will usually not make its dependents
obsolete.

Note

On the common case that dependent units do not need to be recompiled,
the previous source files for the replaced generic unit or inlined
subprogram should be retained in the debugger source list. This
enables source line debugging of the calls or instantiations to work,
since the dependents units’ debugging information refers to these
previous source files.

5.1.6.4 With and Use Clauses
Changing with clauses is like adding or removing a declaration in the package
STANDARD. The body or subunit compilation units of this unit become
obsolete if they searched the package STANDARD for this identifier. Similarly,
any body or subunit that is affected by a use clause in a specification or parent
compilation unit becomes obsolete when that use clause no longer applies.
Adding a use clause can cause new scopes to be searched which might contain
declarations that are homographs of previously resolved declarations. This
could cause declarations no longer to be visible (see the DEC Ada Language

5–10 Using the Professional Development Option

Reference Manual). Therefore, a body or subunit is considered obsolete if a use
clause is added to a specification or parent.

5.1.6.5 Pragmas and Representation Clauses
In general, changing or adding a representation clause or pragma for
a declaration will make all the compilation units that depended on the
declaration obsolete.

In general, changing the pragma INTERFACE or any related import-export
pragma invalidates the declaration these pragmas apply to, and invalidates all
other declarations of the same identifier in the same declaration list.

Changing the pragma ELABORATE may make a compilation unit’s dependents
obsolete, especially if they have exploited the presence of the pragma to
eliminate an access-before-elaboration check.

5.1.7 Coding Your Programs to Use Smart Recompilation Efficiently
In general, you do not need to change your coding conventions to use smart
recompilation. However, there are some conventions that are good to follow.
For example:

• Use use clauses carefully.

Use clauses increase the number of declaration lists searched for
identifiers, so you should not use them indiscriminately. Placing them
in block statements around the few statements where they are convenient
is better than placing them in outer scopes. This placement limits the
number of identifiers that are looked up in the declaration lists, and
reduces the dangers of a clash when more declarations are added. This is
especially true for such subprograms as + and =, where the addition of a
type in one of the used packages will make all the lookups of the operators
obsolete.

• Do not place unrelated type declarations in the same package specification.

Placing unrelated type declarations in the same package specification
increases the number of declaration lists that are searched. When coding
unrelated type declarations, use nested subpackages to group types and
operations. Each additional declaration list reduces the likelihood of
changes in identifier searches, and thereby reduces the likelihood of
compilation units becoming obsolete.

Using the Professional Development Option 5–11

• Implement widely occurring types that change frequently as access types to
an incomplete type. For example:

package FOO_SUPPORT is
type FOO is limited private;
procedure GET_C1 (F : in out FOO; Value : Integer);
procedure SET_C1 (F : in out FOO; Value : Integer);
procedure GET_C2 (F : in out FOO; Value : Integer);
procedure SET_C2 (F : in out FOO; Value : Integer);
procedure COPY (From : FOO; To : in out FOO);
procedure FINALIZE (F : in out FOO);

private
type FOO_INFO;
type FOO is access FOO_INFO;

end;

package body FOO_SUPPORT is
type FOO_INFO is record ...
end record;
.
.
.

end;

The style in the previous example has both benefits and costs as follows:

– A benefit is that adding new components to the full type FOO_INFO
in the package body and adding the corresponding GETn and SETn
subprograms in the package specification will not make any dependent
packages obsolete. This is because the subprograms being added do
not have the same identifiers as existing subprograms, and thus smart
recompilation avoids recompiling the dependents of FOO_SUPPORT.

– The biggest development cost is the run-time cost in allocating and
deallocating objects of the type FOO and a development cost in the
extra lines of code required to do the deallocation.

– Another cost, the performance of calling the GET and SET
subprograms, can be eliminated near the end of the project by adding
the pragma INLINE or INLINE_GENERIC. However, adding these
pragmas too early during development causes extra dependences and
recompilations.

5–12 Using the Professional Development Option

5.2 Overview of Program Library File-Block Caching
One of the features provided by the Professional Development option is
program library file-block caching. This feature is enabled when the license is
enabled, and you do not need to specify any qualifiers or define any logicals to
cause file caching to occur.

Whenever the compiler is invoked, compilation units and the units they depend
on (directly and indirectly) are accessed by reading the .ACU files in the
program library. These files are accessed in an arbitrary manner such that
not all blocks are read, and some blocks are read multiple times. The order in
which the .ACU files are read depends on the following:

• The particular unit dependences

• The phase of the compiler making use of the information represented by
the dependence

To minimize the actual amount of disk input-output that must be performed,
the DEC Ada compiler contains an in-memory cache of file blocks from the
.ACU files. When the compiler needs a particular block, it first looks in the
cache and uses the data there. If the block is not in the cache, then a single
disk read is performed to bring the block and several adjacent blocks disk.
This may cause other blocks to be displaced from memory if the cache is not
large enough to hold all of the blocks needed during the compilation.

The program library file-block caching feature can significantly reduce the
elapsed time for compilation as follows:

• When the block is already in the cache, there is no elapsed-time expense.

• When the block must come from disk storage, several blocks are accessed
in a single operation so the single disk read latency is amortized over
several blocks.

• When you compile a single unit, these benefits apply because the compiler
may need to read the same block several times to access unrelated data
during different compiler phases.

The Professional Development option optimizes the file-block cache for large
programs. The cache size is adjusted to increase the probability of cache hits
(to reduce the number of useful blocks that are displaced from the cache).

The major benefits accrue when multiple units are compiled at once, either
using the DCL ADA or the ACS COMPILE or RECOMPILE command.
Typically, the units being compiled depend on a common set of .ACU files;
these files are read into memory when the first unit is compiled and used from
memory for the subsequent units.

Using the Professional Development Option 5–13

5.3 Overview of the Directory Structure Feature
With the Professional Development option, the program libary manager
reduces the time required to perform ACS operations for large programs. This
time savings is achieved by employing multiple subdirectories in the program
library. Without the Professional Development option, a DEC Ada program
library is implemented as a dedicated directory that contains a set of files
for each unit compiled into the program library. For a program library that
contains a large number of compilation units, the program library directory
contains a correspondingly large number of files and the directory (.DIR) file
for the program library directory also becomes correspondingly large.

When a directory file becomes larger than 128 blocks, access to files becomes
inefficient, particularly when the files are being created or deleted. Therefore,
access to the library files in large program libraries can become slow.

To improve the performance of access to large program libraries, the
Professional Development option causes the program library manager to
create a series of subdirectories within the program library. Then, whenever
units are added, changed, or deleted from a program library, they are updated
in the subdirectories rather than in the library directory itself. Since these
operations are performed on relatively small directories, access to the program
library remains fast even for large program libraries. Furthermore, the
program library manager adjusts the number and size of the subdirectories as
needed.

Note that program library manager creates subdirectories automatically once
the license for the Professional Development option is enabled.

DEC Ada supports program libraries created or updated with and without
the Professional Development option in effect. Specifically, DEC Ada without
the Professional Development option supports program libraries in which the
library files exist in library subdirectories rather than in the library directory,
and DEC Ada with Professional Development option supports program
libraries in which the library files exist in the library directory rather than in
the library subdirectories.

5–14 Using the Professional Development Option

6
Linking Programs

After you have compiled all of the units of your DEC Ada program, you must
link the resulting object modules to form an executable image before you can
run the program.

DEC Ada programs are linked using the VMS Linker. To link DEC Ada object
modules, you invoke the linker through the program library manager using the
ACS LINK command (you do not invoke the linker directly). The ACS LINK
command operates in the context of the current program library and performs
the following steps:

1. Forms the execution closure of the main program.

2. Verifies that all units are defined in the current program library and are
current. If any units are obsolete, incomplete, or missing, the command is
terminated before the linker is invoked.

3. Creates an object file in the current default directory to elaborate any
library packages in the closure at run time.

4. Creates a DCL command file that contains commands to invoke the linker
to link all of the units.

5. By default, spawns a subprocess of your current process and invokes the
linker command file just created (Section 6.3 describes the processing and
output options available with the ACS LINK command). When the linker
is invoked, it performs the following functions:

Combines object modules into one executable image

Resolves local and global symbolic references in the object code

Assigns values to global symbolic references

Generates an error message for any unresolved symbolic references

6. After the link operation is completed, deletes both the linker command file
and the object file that was created to elaborate library packages.

Linking Programs 6–1

Note that, as the DEC Ada interface to the linker, the program library
manager performs several necessary operations before invoking the linker.
Also, the ACS LINK command allows you to select several processing and
output options through appropriate qualifiers.

The result of a successful link operation is an executable image. The default
file specification for the image is as follows:

SYS$DISK:[]main-program-name.EXE

SYS$DISK is a system and/or process logical name that generally represents
your default disk, and [] represents your current default directory, not your
program library.

This chapter explains how to accomplish linking in the DEC Ada environment.

See Appendix A for more information on the ACS LINK command and its
qualifiers.

6.1 Linking Programs Having Only DEC Ada Units
If your program consists only of DEC Ada units that are defined in the current
program library or its parent library, enter the ACS LINK command with a
single parameter: the name of the main program. For example:

$ ACS LINK HOTEL

This command causes the execution closure of HOTEL to be formed, and
obsolete or incomplete units to be identified. If there are no obsolete or
incomplete units, an object file and DCL command file are created, and the
command file is executed to link all of the units in the closure. Finally, the
image file HOTEL.EXE is created in the current default directory.

If the ACS LINK command does detect obsolete or incomplete units, you must
recompile before the link operation will succeed. See Chapter 4 for more
information on recompiling obsolete units and completing units containing
incomplete generic instantiations.

6.2 Linking Mixed-Language Programs
The DEC Ada program library manager provides a number of link-related
features that allow you to link Ada unit object modules with non-Ada object
modules, as well as with object libraries and shareable image libraries. You
can also use linker options files. These features are supported by the following
ACS commands:

6–2 Linking Programs

• The ACS LINK command syntax and qualifiers allow you to link Ada
units directly against non-Ada object files, object libraries, shareable image
libraries, or linker options files.

• The ACS COPY FOREIGN command allows you to copy a non-Ada object
file into your current program library. You can then use the ACS LINK
command to link the object file as the body for a library package or
subprogram specification.

• The ACS ENTER FOREIGN command allows you to enter a reference to a
non-Ada object file, object library, shareable image library, shareable image,
or linker options file into your current program library. When you execute
the ACS ENTER FOREIGN command, you associate the reference with a
library package or subprogram specification. You can then use the ACS
LINK command to link the reference as the body for the associated library
package or subprogram specification.

• The ACS EXPORT command creates a concatenated object file for the
closure of one or more DEC Ada units in your current program library,
and places the file in your current default directory by default. You can
then use the DCL LINK command to link the concatenated object file with
non-Ada object files.

The following sections discuss the use of these features in more detail. See
Appendix A for complete descriptions of the syntax and qualifiers for the ACS
COPY FOREIGN, ENTER FOREIGN, and EXPORT commands.

6.2.1 Using the ACS COPY FOREIGN and ENTER FOREIGN Commands
The ACS COPY FOREIGN and ENTER FOREIGN commands allow you to
introduce linkable non-Ada files into your program library. Foreign files that
have been copied or entered into your program library in this manner are then
handled by the ACS LINK command as Ada units.

When you use the ACS COPY FOREIGN or ENTER FOREIGN command,
you copy or enter a foreign file as a library body—that is, the body of
a library package specification, library procedure specification, or library
function specification. Before you can copy or enter a foreign file, you must
have compiled an Ada specification for it into the program library. The
specification must contain the pragma INTERFACE and (if appropriate)
a pragma IMPORT_FUNCTION, IMPORT_PROCEDURE, or IMPORT_
VALUED_PROCEDURE for any procedure or function that the specification
requires.

Linking Programs 6–3

For example, consider the following situation:

• You have a DEC Ada procedure named ADA_CALLER that calls a squaring
function named SQR.

• The body of SQR is written in VAX Pascal.

Before you can copy or enter the body of SQR into your program library, you
must write a specification for SQR and compile it into the program library.
For example, you could specify SQR as a library function whose body is to be
imported:

-- Ada function specification for SQR
--
function SQR (Y : INTEGER) return INTEGER;
pragma INTERFACE (PASCAL, SQR);
pragma IMPORT_FUNCTION (INTERNAL => SQR,

EXTERNAL => SQUARE,
PARAMETER_TYPES => (INTEGER),
RESULT_TYPE => INTEGER);

In the preceding example, the EXTERNAL parameter in the pragma IMPORT_
FUNCTION indicates that SQUARE is the name of the Pascal routine that
will serve as the body for the Ada function SQR. (See the DEC Ada Run-Time
Reference Manual for OpenVMS Systems and DEC Ada Language Reference
Manual for detailed information on the syntax for and use of the DEC Ada
import pragmas.)

Assume that the Pascal routine SQUARE is coded as follows (note the use of
the GLOBAL attribute):

{ Foreign (Pascal) function SQUARE }
MODULE SQUARE;
[GLOBAL] FUNCTION Square (X : Integer) : Integer;

BEGIN
. . .
END;

END.

Also assume that the Ada procedure ADA_CALLER mentions SQR in a with
clause:

with SQR;
procedure ADA_CALLER is
. . .
end ADA_CALLER;

Then, you would use the following series of commands to create a library body
from the foreign file (the default file types are included for clarity):

6–4 Linking Programs

1. Compile the foreign function (SQUARE.PAS) to create its object file; the
object file will be located in the current default directory (not the current
program library):

$ PASCAL SQUARE.PAS

2. Compile the associated Ada specification (SQR_.ADA) and the calling
subprogram (ADA_CALLER.ADA); the resulting object files will be located
in the current program library (not the current default directory). Note
that compiling the specification of a unit that has a foreign body does not
cause the body to become obsolete.

$ ADA SQR_.ADA, ADA_CALLER.ADA

3. Copy (or enter) the foreign object file (SQUARE.OBJ) into the current
program library as the body of function specification SQR:

$ ACS COPY FOREIGN SQUARE.OBJ SQR

After you execute these commands, you can use the ACS LINK command to
link ADA_CALLER and SQR, as follows:

$ ACS LINK ADA_CALLER

If you have a number of non-Ada routines that need to be called (imported)
by an Ada main program, you can simplify the linking operation by writing
a package that specifies the imported routines and has an imported linker
options file as its body. For example, assume you have the following package
specification:

package MANY_ROUTINES is
subtype STRING_TYPE is STRING(1..25);

function READ_STRING (X: STRING_TYPE) return STRING_TYPE;
pragma INTERFACE (PASCAL, READ_STRING);

procedure SORT_STRING (X: STRING_TYPE);
pragma INTERFACE (PLI, SORT_STRING);

procedure PRINT_LIST;
pragma INTERFACE (FORTRAN, PRINT_LIST);

end MANY_ROUTINES;

Also assume that you have a linker options file named MANY_ROUTINES_
BODY.OPT that contains references to the following .OBJ files:

READ_STRING,SORT_STRING,PRINT_LIST

Linking Programs 6–5

After the specification MANY_ROUTINES is compiled, you can enter the linker
options file into the current program library as the body of package MANY_
ROUTINES, using the ACS ENTER FOREIGN command, as follows:

$ ACS ENTER FOREIGN/OPTIONS MANY_ROUTINES_BODY.OPT MANY_ROUTINES

Then, assuming that package MANY_ROUTINES is named by a main program
in a with clause, you can link the main program (and the routines in this
package) by entering the ACS LINK command. The linker options file is
appended to the command file generated by the ACS LINK command to
perform the linking operation.

6.2.2 Using the ACS LINK Command
The ACS LINK command has two forms that allow you to link Ada units
directly with foreign files, in cases where you do not want to copy or enter the
foreign files into your program library. The first form allows you to link foreign
files with a DEC Ada main program:

ACS LINK/MAIN DEC-Ada-main-program-name [file-spec[,...]]

In DEC Ada, a main program is a procedure or function with no parameters;
if it is a function, it must return a value of a discrete type. A main program
can also be a procedure declared with the pragma EXPORT_VALUED_
PROCEDURE that has one formal out parameter that is of a discrete type.
The ACS LINK command assumes the /MAIN qualifier by default.

The second form allows you to specify that the image transfer address is in one
of the foreign files (a foreign file is the main program):

ACS LINK/NOMAIN unit-name[,...] file-spec[,...]

With this form, one or more DEC Ada units may be specified and may be
listed in arbitrary order. At least one foreign file containing the image transfer
address must also be specified. The file containing the image transfer address
must be specified according to the requirements of the particular language.

With either form of the ACS LINK command, you can specify the following
kinds of VMS (foreign) files:

• Object files—By default, the ACS LINK command assumes that the
specified file is an object file, with a default file type of .OBJ.

• Object libraries or shareable image libraries—When specifying an object
library file or a shareable image library file, you must append the
/LIBRARY qualifier to the file specification. The default file type
is .OLB.

6–6 Linking Programs

You can also append the /INCLUDE qualifier to an object library file or
shareable image library file specification to link particular library modules
against your DEC Ada units. If you use the /INCLUDE qualifier, you do
not also have to use the /LIBRARY qualifier. The default file type for the
library file specification is .OLB.

• Linker options files—When specifying a linker options file, you must
append the /OPTIONS qualifier to the file specification. The default file
type is .OPT.

• Shareable image files—When specifying a shareable image file, you must
append the /SHAREABLE qualifier to the file specification. The default file
type is .EXE.

You can use the /USERLIBRARY qualifier to tell the linker to also search
user-defined default libraries after it has searched any specified libraries.

By default, DEC Ada units are linked against the default system libraries:
the linker first searches the system default shareable image library
(SYS$LIBRARY:IMAGELIB.OLB) and then the system default object library
(SYS$LIBRARY:STARLET.OLB) to resolve references to routines and symbols
not defined in the specified units or files. If you specify the /NOSYSLIB
command qualifier, neither of these libraries is searched. If you specify
the /NOSYSSHR command qualifier, only SYS$LIBRARY:STARLET.OLB is
searched.

The following examples show the use of the ACS LINK command with foreign
files. In the first example, the linker is instructed to link the main program
HOTEL against the user library NETWORK.OLB and to use the linker options
file NET.OPT:

$ ACS LINK HOTEL NETWORK.OLB/LIBRARY,NET.OPT/OPTIONS

In the next example, the linker is instructed to link two Ada units (FLUID_
VOLUME and COUNTER) with a foreign main program (MONITOR.OBJ):

$ ACS LINK/NOMAIN FLUID_VOLUME,COUNTER MONITOR.OBJ

6.2.3 Using the ACS EXPORT and DCL LINK Commands
The ACS EXPORT command allows you to export Ada object files from your
current program library to another directory, so that you can subsequently link
them with foreign programs using the DCL LINK command.

The ACS EXPORT command creates an object file that contains the code for
all units in a closure of DEC Ada units. The file also contains code to elaborate
any library packages in the closure.

Linking Programs 6–7

By default, the exported object file does not include an image transfer address
(in other words, the ACS EXPORT command assumes the /NOMAIN qualifier
by default). To include an image transfer address and thus identify an
exported Ada unit as a main program, use the /MAIN qualifier with the
EXPORT command. The image transfer address applies to the first Ada unit
specified with the command.

The object file created with the ACS EXPORT command has the following
default file specification:

SYS$DISK:[]first-unit-name.OBJ

SYS$DISK is a system and/or process logical name that generally represents
your default disk, and [] represents your current default directory, not your
program library.

You can use the /OBJECT=file-spec qualifier to provide another file
specification for the object file.

Any exported units that are to be called from a foreign module must contain
the appropriate export pragma in the source code: EXPORT_FUNCTION,
EXPORT_PROCEDURE, EXPORT_VALUED_PROCEDURE, EXPORT_
OBJECT, PSECT_OBJECT, or EXPORT_EXCEPTION. For example, to
export the Ada procedure SWAP, you must include the pragma EXPORT_
PROCEDURE (see the DEC Ada Language Reference Manual and DEC Ada
Run-Time Reference Manual for OpenVMS Systems for exact details):

procedure SWAP (A,B: in out INTEGER) is
. . .

begin
. . .

end;
pragma EXPORT_PROCEDURE (SWAP);

The following examples show the use of the ACS EXPORT command. In the
first example, the EXPORT command creates the object file QUEUE.OBJ.
The file contains the code for all units in the closure of QUEUE and QUEUE_
MANAGER, including any package elaboration code. The file does not contain
an image transfer address.

$ ACS EXPORT QUEUE, QUEUE_MANAGER

Note that object files created by different invocations of the ACS EXPORT
command may include some code that is common—for example, if each closure
includes the predefined unit TEXT_IO. In such cases, you cannot link those
files into the same image. Whenever the closures could include units in
common, you should specify all the units in a single EXPORT command line,
as in the previous example.

6–8 Linking Programs

The next example creates the object file EXP_HOTEL.OBJ that contains the
code for all units in the closure of HOTEL, including any package elaboration
code and the image transfer address:

$ ACS EXPORT/MAIN HOTEL/OBJECT=EXP_HOTEL

The ACS EXPORT command is affected by and can affect the value of
SYSTEM.SYSTEM_NAME. In particular, the /SYSTEM_NAME qualifier
to this command allows you to target the resulting concatenated object file to a
particular value of SYSTEM.SYSTEM_NAME. See Chapter 7 and Appendix A
for more information.

6.3 Processing and Output Options
The ACS LINK command has a number of qualifiers that allow you to control
how the link operation is processed and what kind of output you will receive.
For example:

• You can use the /WAIT or /SUBMIT qualifiers to control whether the link
operation is executed in a subprocess or as a batch job.

• You can use the /COMMAND qualifier to save the linker DCL command file
(which invokes the linker) and the package-elaboration object file generated
by the program library manager.

• You can use the /[NO]MAP qualifier to create a linker map file. When
using the /[NO]MAP qualifier, you can specify the /BRIEF, /FULL, and
/[NO]CROSS_REFERENCE qualifiers to vary the type and amount of
information.

• You can use the /OUTPUT=file-spec qualifier to direct ACS output to a
file. The options for directing ACS and linker messages to the terminal or
to an output file with the ACS LINK command are the same as those for
directing compiler messages with the ACS COMPILE and RECOMPILE
commands (see Chapter 4).

• You can use the /[NO]DEBUG and /[NO]TRACEBACK qualifiers to control
the presence of debug symbol records and traceback information in the
executable image.

You cannot create a shareable image with the ACS LINK command.

The following sections discuss some of these options. For detailed information
on all of them, see Appendix A. For more information on the linker map file,
see the OpenVMS Linker Utility Manual.

Linking Programs 6–9

6.3.1 Conventions for Defaults, Symbols, and Logical Names
When the program library manager executes the ACS LINK command, it
uses the command file it creates to transmit the current definitions of certain
defaults, symbols, and logical names to the processing environment (batch or
subprocess). Specifically:

• It preserves the current default directory. Then, by default, any new files
are created in that directory.

• It transmits the current definition of the symbol LINK. For example,
consider the following symbol definition:

$ LINK == "LINK/DEBUG"

Then, the following commands have the same effect:

$ ACS LINK/MAP HOTEL
$ ACS LINK/DEBUG/MAP HOTEL

Note that some new qualifiers are available with the linker that are not
supported by the ACS LINK command. You can pass such qualifiers to the
linker by defining a symbol like the following before invoking the ACS LINK
command:

$ LINK :== LINK/NATIVE_ONLY/SYSEXE

This symbol is then used by the ACS LINK command procedure that invokes
the linker.

6.3.2 Executing the Link Operation in a Subprocess or in Batch Mode
By default (/WAIT), the link operation for the ACS LINK command is executed
in a subprocess. The program library manager creates a spawned subprocess
and invokes the DCL command file that invokes the linker. Your current
process is suspended while the program library manager executes the
command, and you must wait until the command terminates before you
can enter another command. The net effect is like executing the command
interactively.

By specifying the /SUBMIT qualifier, you can execute the link operation for the
ACS LINK command in batch mode. In the following example, the program
library manager submits the linker command file for the program HOTEL as a
batch job:

$ ACS LINK/SUBMIT HOTEL

All batch options available with the ACS COMPILE and RECOMPILE
commands are also available with the ACS LINK command (see Chapter 4).

6–10 Linking Programs

6.3.3 Saving the Linker Command File and Package Elaboration File
When you use the ACS LINK command, the program library manager creates
a DCL command file for the linker and an object file that elaborates all library
packages in the closure of the units specified. By default, the program library
manager deletes both the command file and the object file when the ACS LINK
command terminates.

You can use the /COMMAND[=file_spec] qualifier to save the command file
and optionally provide a file specification. The default file specification for the
command file is as follows:

SYS$DISK:[]first-unit-name.COM

SYS$DISK is a system and/or process logical name that generally represents
your default disk, and [] represents your current default directory, not your
program library.

When you use the /COMMAND qualifier, the program library manager does
not invoke the linker. You can edit the command file and later submit it as
a batch job, using the DCL SUBMIT command. Use of the DCL SUBMIT
command allows you to use certain batch qualifiers that are supported by DCL
but not by the program library manager.

When you use the /COMMAND qualifier, the program library manager also
saves the package-elaboration object file. The default file specification for the
object file is as follows:

SYS$DISK:[]first-unit-name.OBJ

You can use the /OBJECT=file-spec qualifier to choose an alternative file
specification.

Linking Programs 6–11

7
Managing Program Development

Ada program development often involves more than creating, compiling,
linking, executing, and debugging Ada programs. In particular, large projects,
involving many programmers and large numbers of Ada compilation units,
need to be managed efficiently.

This chapter addresses some of the problems involved in managing program
development, and presents information that you can use to solve those
problems when working with DEC Ada.

7.1 Decomposing Your Program for Efficient Development
Efficient development involves saving compilation and recompilation time.
Separate compilation is a feature of the Ada language that allows you to
decompose your application into parts, so that you can compile and recompile
the parts that change frequently without having to compile and recompile the
entire application.

As discussed in Chapter 1, the following parts, or compilation units, of an Ada
program can be compiled separately:

• Package specifications and bodies

• Subprogram specifications and bodies

• Generic unit (subprogram and package) specifications and bodies

• Generic instantiations (subprogram and package) of generic units

• Subunits

An efficiently decomposed program consists of three groups of compilation
units:

• The specifications of each functionally coherent part of the program. A
functionally coherent part comprises one or more operations (and any
related type definitions, object declarations, and so on) needed to perform a
certain task or group of related tasks. For example, the package SCREEN_
IO is a functionally coherent part of the hotel reservation program because

Managing Program Development 7–1

it defines the operations needed to perform the task of screen input-output;
a general package of all possible input-output operations would not be a
functionally coherent part.

• The bodies that implement the specifications.

• Subunits that further decompose the bodies. Each subunit may itself be
divided into smaller subunits.

In general, changes occur most often in the compilation units comprising the
implementation, rather than in the specifications. Because this decomposition
method suggests concentrating the implementation in subunits, and subunits
usually do not have dependent units, you can change and recompile the units
that implement each functionally coherent part of the program without having
to recompile most or all of the rest of the program. (A compilation unit depends
on a body or subunit only when a pragma INLINE or INLINE_GENERIC is
involved.)

By using generic units to consolidate common kinds of packages and
subprograms across different areas of your implementation, you can also
save development, compilation, and recompilation time.

Note

Use the ACS LOAD, COMPILE, and RECOMPILE commands to
efficiently compile and recompile units without having to determine
the order of compilation or which units have become obsolete. See
Chapter 4 and Appendix A for more information on these commands.

You can reduce the compilation load on your system by putting each
compilation unit (specification, body, subunit, and so on) into a separate
source file. Be sure to use the file-name conventions described in
Chapter 1.

See the DEC Ada Language Reference Manual for more information on
packages, generic units, and subunits. See Chapter 1 for more information on
unit dependences.

Example 7–1 is a simple application that is decomposed into a main program
and a generic package. The package is further decomposed into a specification,
body, and subunits.

7–2 Managing Program Development

Example 7–1 Decomposed Stack Application

generic

type ELEMENT_TYPE is private;
SIZE: INTEGER := 3;

package STACKS is

type STACK_TYPE is array (INTEGER range <>) of ELEMENT_TYPE;
type STACK is

record
TOP: INTEGER;
ELEMENTS: STACK_TYPE(1..SIZE);

end record;

-- CREATE sets up a new stack.
--
procedure CREATE (X: in out STACK);

-- PUSH adds ELEMENT to the stack, sets OK to TRUE
-- if successful and to FALSE otherwise.
--
procedure PUSH (X: in out STACK;

ELEMENT: in ELEMENT_TYPE;
OK: out BOOLEAN);

-- POP sets ELEMENT to whatever is popped, sets OK to TRUE
-- if successful and to FALSE otherwise.
--
procedure POP (X: in out STACK;

ELEMENT: out ELEMENT_TYPE;
OK: out BOOLEAN);

-- EMPTY returns TRUE if the stack is empty and FALSE otherwise.
--
function EMPTY (X: in STACK) return BOOLEAN;

-- FULL returns TRUE if the stack is full and FALSE otherwise.
--
function FULL (X: in STACK) return BOOLEAN;

end STACKS;

(continued on next page)

Managing Program Development 7–3

Example 7–1 (Cont.) Decomposed Stack Application

package body STACKS is

procedure CREATE (X: in out STACK) is separate;

procedure PUSH (X: in out STACK;
ELEMENT: in ELEMENT_TYPE;
OK: out BOOLEAN) is separate;

procedure POP (X: in out STACK;
ELEMENT: out ELEMENT_TYPE;
OK: out BOOLEAN) is separate;

function EMPTY (X: in STACK) return BOOLEAN is separate;

function FULL (X: in STACK) return BOOLEAN is separate;

end STACKS;

--

separate (STACKS)
procedure CREATE (X: in out STACK) is
begin

. . .
end CREATE;

--

separate (STACKS)
procedure PUSH (X: in out STACK;

ELEMENT: in ELEMENT_TYPE;
OK: out BOOLEAN) is

begin
. . .

end PUSH;

--

separate (STACKS)
procedure POP (X: in out STACK;

ELEMENT: out ELEMENT_TYPE;
OK: out BOOLEAN) is

begin
. . .

end POP;

(continued on next page)

7–4 Managing Program Development

Example 7–1 (Cont.) Decomposed Stack Application

--

separate (STACKS)
function EMPTY (X: in STACK) return BOOLEAN is
begin

. . .
end EMPTY;

--

separate (STACKS)
function FULL (X: in STACK) return BOOLEAN is
begin

. . .
end FULL;

with TEXT_IO; use TEXT_IO;
with STACKS;
procedure TEST_STACKS is

-- Main program that instantiates and uses the stack operations.
--
subtype STRING_TYPE is STRING(1..5);

package INTEGER_STACK is new STACKS(INTEGER,3);
use INTEGER_STACK;

package STRING_STACK is new STACKS(STRING_TYPE,3);
use STRING_STACK;
. . .

begin
-- Do some work with the stacks and stack operations.
. . .

end TEST_STACKS;

Figure 7–1 diagrams the application in Example 7–1 to show the unit
dependences. Note that because the procedure TEST_STACKS instantiates
the generic package STACKS, the procedure itself is still current (unless an
inline pragma or equivalent applies), but the instantiations must be completed
if the package body or subunits of the package STACKS are compiled again or
recompiled. See Chapter 1 and Chapter 4 for more information on incomplete
units, obsolete units, and generic completions.

Managing Program Development 7–5

Figure 7–1 Diagram of Decomposed Stack Application

STACKSpackage body

ZK−7860−GE

PUSHprocedure

POP

EMPTYfunction

FULLfunction

STACKS

CREATEprocedure

procedure

procedure
TEST_STACKS

generic package

7.2 Setting up an Efficient Program Library Structure
Ideally, you should consider the following factors when setting up a program
library and sublibrary structure:

• The structure of the application

• The number of programmers developing the application

• Whether or not the application is going to be run on more than one target

• Whether or not all of the software is being written from scratch

7–6 Managing Program Development

• Whether you will need to produce different versions of the application as it
changes over time (for example, Versions 1.0, 1.1, and 1.2)

Figure 7–2 shows a library structure for the decomposed stack application from
Example 7–1. Note the following points about Figure 7–2:

• The top-level program library contains the generic package specification
STACKS.

• The immediate sublibraries contain the body of STACKS and the main
program TEST_STACKS; two sublibraries are used because this application
is being developed for two targets: VMS and VAXELN. Off-the-shelf or
other prewritten source code could also go in these sublibraries.

• Programmers work in lower-level sublibraries to develop the subunits of
STACKS. Although four sublibraries are shown, any number of sublibraries
could be used to develop STACKS and its subunits.

Figure 7–2 does not show multiple versions of the application, but additional
sublibraries could be used to create and develop different versions or other
development streams. Furthermore, you can use library search paths to create
new relationships among program libraries (see Chapter 3).

A structure like the one in Figure 7–2 allows testing from the bottom up.
See Chapter 2 for additional information on developing and testing units in
sublibraries.

After programmers have developed and tested new, stable versions of the units
in the application, they return the units to the appropriate project source code
directory. For simplicity, Figure 7–2 shows one source code directory to the
right of the program library structure. See Section 7.3.1 for more information
on setting up and managing source code directories.

You can make the new, stable units available to the other programmers in a
number of ways:

• You can merge or copy units from the sublibraries into the more global
parent libraries.

• You can compile the units from the source code directory into the
appropriate parent libraries.

• You can store the stable units in a separate library and define your current
path to identify that library plus any other libraries that you need.

Managing Program Development 7–7

Figure 7–2 Efficient Program Library and Sublibrary Structure

[PROJ.MAIN_LIB]

DEC Ada predefined units

STACKS
 generic package

[JONES.SUBLIB] [SMITH.SUBLIB]

[PROJ.VAXELN_SUBLIB]

TEST_STACKS

 Finished subunits

STACKS

 procedure body

 generic package body

ZK−7862−GE

STACKS.POP

STACKS.FULL

STACKS.EMPTY

 procedure body
STACKS.CREATE

STACKS.PUSH

 procedure body

 procedure body function body

function body

Source code directories

 STACKS_. ADA

 STACKS. ADA
 Subunits
 And so on

 Subunits
 STACKS. ADA

 And so on

Common source files:

VMS source files

VAXELN source files

[WHITE.SUBLIB] [MCCOY.SUBLIB]

[PROJ.VMS_SUBLIB]

STACKS

TEST_STACKS

 Finished subunits

 generic package body

 procedure body

STACKS.CREATE

STACKS.EMPTY

STACKS.FULL

 procedure body
STACKS.PUSH

STACKS.POP

 procedure body

 procedure bodyfunction body

function body

When you use the ACS MERGE command, be careful to enter it at the right
level. For example, if you use a low-level sublibrary to modify and test a new
specification, and you merge the specification into its immediate parent library,
the specification may end up in the sublibrary containing the package bodies
rather than in the library containing the specifications. In this case, you may
want to do one of the following operations:

• Copy (rather than merge) the new specification to its appropriate
location

• Create a temporary sublibrary at the correct level, copy the specification to
that sublibrary, and merge from there

7–8 Managing Program Development

• Change the parent of the sublibrary you are working in before doing the
merge

See Chapter 2 for more information on merging units and changing the parent
of a sublibrary.

Merging or copying units from the sublibraries to the more global parent
libraries has the advantage that the new units are immediately available to
other programmers on the project. However, the replacement of these units
may cause other units in upper- as well as lower-level libraries to become
obsolete. The obsolete units must then be recompiled to become current again.
If recompilations are required too often, they may disrupt the work being done
by individual programmers on the project. Also, the source code directories
must be carefully maintained in parallel with the program libraries.

To minimize the impact of the replacements, you can update upper-level
libraries by compiling the new source files from the project source directories
at known times using the ACS LOAD and ACS COMPILE or RECOMPILE
commands. Again, individual project members may need to recompile obsolete
units in their sublibraries. However because the updating of parent libraries
is done at known times, the impact on project members is controlled and less
disruptive. An advantage of this method is that maintenance of the source
code directories is synchronized with management of the program libraries. A
disadvantage of this method is that new units are not immediately available to
all members of the project.

Depending on the scope and complexity of your application, you may need to
protect your library structure from regressions caused by updates. To achieve
this protection, you can set up a separate library structure that parallels your
upper-level working libraries. Then, you can build the complete application
and perform regression tests on it in the separate library structure. After the
tests are successful, you update the working libraries as previously discussed:

• By copying the units from the separate libraries into your upper-level
working libraries, while also updating the source code directories

• By updating the source code directories first, and then compiling the units
from the source code directories into the working libraries

Managing Program Development 7–9

7.3 Integration with Other DEC Tools
Like other DEC languages and layered products, DEC Ada is designed to be
used with a variety of Digital software development tools (see Chapter 1). This
section discusses how you can use the following tools with DEC Ada to manage
program development:

• DEC/Code Management System (CMS)

• Language-Sensitive Editor (LSE)

For general information on creating a software environment, see Using
DECset for VMS Systems. This manual describes how to create a development
environment using the DEC Software Engineering Tools (DECset). DECset
includes LSE, SCA, CMS, as well as the Module Management System (MMS),
Test Manager, and the Performance and Coverage Analyzer (PCA).

7.3.1 Setting up Source Code Directories
An effective way to set up and manage source code directories is to use CMS.
The Guide to Code Management System for VMS Systems and Using DECset
for VMS Systems give detailed information on how to use CMS.

You can use CMS libraries in conjunction with DEC Ada program libraries and
sublibraries. You can have a single CMS library for all of your source code, and
use that library in conjunction with a number of DEC Ada program libraries.
Or, you can divide up your source code among several CMS libraries that are
associated with one or more DEC Ada program libraries.

Beginning with Version 3.0, CMS allows you to use search lists to manage
multiple libraries. So, you can construct trees of CMS libraries that parallel
your DEC Ada program libraries and sublibraries. Figure 7–3 shows one such
configuration.

The following search list applies to the library structure in Figure 7–3:

$ CMS SET LIBRARY [PROJ.VMS_CMSLIB], [PROJ.COMMON_CMSLIB]

When searching for library elements, CMS starts with the first library on the
list and stops when it finds the first unit that meets whatever requirements
you have specified (RESERVE element-name, FETCH/GENERATION=2
element-name, and so on). Thus, a search list like the one in this example
causes source code modules in a lower-level CMS library to hide source code
modules with the same name higher-level libraries. This effect is similar
to the panes-of-glass effect you get when you use DEC Ada sublibraries for
compilations, and you can use it for retrieving and modifying source code in

7–10 Managing Program Development

Figure 7–3 Ada Program Library and Sublibrary Structure with CMS
Libraries

[PROJ.VMS_SUBLIB]

STACKS

TEST_STACKS

[PROJ.MAIN_LIB]

DEC Ada predefined units

STACKS
 generic package

ZK−7861−GE

STACKS_ _PUSH.ADA
STACKS_ _CREATE.ADA

STACKS_ _POP.ADA

STACKS_ _FULL.ADA
STACKS_ _EMPTY.ADA

 generic package body

 procedure body

TEST_STACKS.ADA
STACKS.ADA

STACKS_.ADA

[PROJ.COMMON_CMSLIB]

Finished subunits

[PROJ.VMS_CMSLIB]

STACKS.POP

STACKS.EMPTY

STACKS.FULL

 procedure body

 function body

 function body

STACKS.CREATE

STACKS.PUSH

 procedure body

 procedure body

[SMITH.SUBLIB] [JONES.SUBLIB]

the same way that you use DEC Ada sublibraries to test Ada compilations (see
Chapter 2).

7.3.2 Managing Source Code Modifications
LSE, CMS, and the DEC Ada program library manager offer a number of
features that allow you to manage source code modifications. For example,
LSE allows you to retrieve Ada source code from a CMS library, modify it, and
then compile it from within the editor (see the Guide to Language-Sensitive
Editor for VMS Systems for more information on how LSE is integrated with
CMS).

Once you have moved an Ada source code element from a CMS library into
an LSE editing buffer, you can use the LSE COMPILE/REVIEW command
to compile it into your current Ada program library or sublibrary. The LSE

Managing Program Development 7–11

COMPILE/REVIEW command causes the compilation to take place in a
subprocess.

Note that when you use the /REVIEW qualifier for this operation, your process
will wait until the subprocess completes. By not using the /REVIEW qualifier,
you can keep working in the editor, and later use the LSE REVIEW command
to read the diagnostics files after the compilation completes.

An alternative method of compiling from within LSE is to use a command
procedure that causes the compilation to take place in a batch queue. For
example, the command procedure in Example 7–2 sends all Ada compilations
to whatever queue is represented by the logical name ADA$BATCH.

Example 7–2 Command Procedure for Doing LSE Ada Compilations in
Batch Mode

$! Command procedure for compiling Ada source code in an LSE buffer
$! using the ADA$BATCH queue. For this command procedure to succeed,
$! you must have a current program library (use the ACS SET LIBRARY
$! command), and you must have defined the logical name ADA$BATCH.
$!
$! Parameters passed by LSE:
$! P1 = Source file specification
$! P2 = Additional qualifiers (/DIAGNOSTICS, for example)
$!
$ NAME = F$PARSE(P1,,,"NAME")
$ SET NOON
$ DELETE ’NAME’.COM;*
$ PURGE ’’NAME’.LOG"
$ PURGE/NOLOG ’NAME’.DIA
$ SET ON
$ OPEN/WRITE COMFILE ’NAME’.COM
$ IF F$TYPE(ada) .EQS. "" THEN ada = "ada"
$ DEFDIR = F$TRNLNM("SYS$DISK")+F$DIR()
$ WRITE COMFILE "$ SET DEFAULT ’’DEFDIR’"
$ WRITE COMFILE "$ ’’ADA’ /LIBRARY=’’F$TRNLNM("ADA$LIB") ’’P1’ ’’P2’"
$ CLOSE COMFILE
$ SUBMIT/NOPRINT/QUEUE=ADA$BATCH/LOG_FILE=’DEFDIR’’NAME’.LOG -
’NAME’.COM

To use this command procedure from within LSE, enter (or define a key for)
the LSE COMPILE command, giving the batch-job command procedure as an
argument. For example:

LSE Command> COMPILE @ADA_BATCH.COM

7–12 Managing Program Development

Alternatively, you can compile your Ada source code outside of the editor
(preferably as a batch job), append all of the diagnostics files, and review them
all at once during an editing session.

The LSE COMPILE command uses the DCL ADA command to perform its
Ada compilations, which makes it useful for compiling single units, but not for
compiling or recompiling a set of units (execution closure).

An alternative to compiling using LSE is to compile using the ACS LOAD or
COMPILE commands. In both cases, you can obtain diagnostics files for review
within LSE by using the /DIAGNOSTICS qualifier (see Appendix A for more
information on the behavior of this qualifier with these commands).

You can also use the ACS LOAD or COMPILE commands to compile Ada units
from a CMS library.

In the following example, the first command sets up a search list of CMS
libraries. The second command fetches from those libraries the generations of
Ada source code elements that are associated with the class BASELEVEL_4.
The third command loads the Ada source code elements into the current Ada
program library.

$ CMS SET LIBRARY DISK:[PROJ.CMSUBLIB1],[PROJ.CMSLIB]
$ CMS FETCH *.ADA/GENERATION=BASELEVEL_4
$ ACS LOAD *.ADA

Once a set of Ada units exists in your current program library, you can use the
ACS SET SOURCE and COMPILE commands to cause the latest generation of
modified units existing in a CMS library to be compiled again. In the following
example, the first command sets the CMS library. The second command
establishes a source file search list for the ACS COMPILE command. The third
command causes the closure of the unit TEST_STACKS to be compiled from
the source files stored in the CMS library denoted by CMS$LIB.

$ CMS SET LIBRARY DISK:[PROJ.CMSUBLIB1],[PROJ.CMSLIB]
$ ACS SET SOURCE CMS$LIB
$ ACS COMPILE/LOG/CLOSURE TEST_STACKS

Because the ACS COMPILE command assumes the /PRELOAD qualifier by
default, you can compile a modified set of units whose compilation order has
changed in the correct order. However, if you have created new source files to
add new units to your program library, you must add the units to the current
program library either by compiling them with the DCL ADA command or by
loading them with the ACS LOAD command.

Managing Program Development 7–13

If you need to work with a different generation, class, or group for your ACS
LOAD or COMPILE compilation, use the following procedure:

1. Use CMS to fetch or reserve the generation, class, or group you want to
compile from.

2. Put the resulting Ada files in a temporary directory.

3. If you are using the ACS COMPILE command, use the ACS SET SOURCE
command to include the temporary directory in the search list for the ACS
COMPILE command. If you are using the ACS LOAD command, give the
temporary directory specification directly on the command line.

4. If you are compiling the Ada files for the first time, enter the ACS LOAD
command and then enter the ACS COMPILE command. If you are
updating a library with modified units, enter only the ACS COMPILE
command.

5. Clean up the temporary directory.

7.4 Efficient Use of DEC Ada on VMS Systems
The impact of Ada compilations on the performance on VMS systems can be
minimized in the following ways:

• Plan to minimize the size of your compilations by decomposing your
applications and structuring your libraries and sublibraries as shown in
Section 7.1.

• Use a suitable batch queue to serialize compilations. By using a batch
queue, you can have a large working set size (as well as other parameters)
for the batch queue, while minimizing the working set size of each
individual account on the system.

For more information, see DEC Ada Installation Guide for OpenVMS VAX
Systems or DEC Ada Installation Guide for OpenVMS AXP Systems.

7.4.1 Reducing Disk Traffic Times
Disk traffic elapsed times are usually much more seriously affected by the
number of disk-head movements required for reading and writing, rather than
the exact amount of information read or written. This means that you can
reduce disk traffic times if you are careful about how much data you store and
retrieve on a regular basis. The following discusses some way that you can
reduce the amount of data you store thereby reducing disk traffic elapsed time.

• Each time a unit is compiled without error, the current program library
is updated with the new unit and any other products of compilation, such

7–14 Managing Program Development

as the object file and copied source file. DEC Ada is careful not to store
unnecessary information in the program library. In particular, the compiler
prunes as much information as possible from the .ACU files and stores
these files in a compact format.

By default (/COPY_SOURCE), the DEC Ada compiler keeps copies of the
source files for each unit compiled. Copied source files can be used later for
recompilations and debugging.

However, you can reduce the amount of data you store in your program
library if you use the /NOCOPY_SOURCE qualifier with the DCL ADA,
and ACS COMPILE and RECOMPILE commands. If you use this qualifier
and you subsequently compile or debug your program, the source file from
the original library from which you compiled the unit will be used.

Note that if you move your source files after you have compiled them into
a program library using the /NOCOPY_SOURCE qualifier, a subsequent
recompile or invocation of the debugger will not find the original source
files.

• Although the CMS allows you to compile programs directly from sources
in CMS libraries, CPU time and disk traffic generated from doing so is
much higher than going directly through RMS to the source file. For this
reason, using CMS reference copy directories or some equivalent technique
is recommended.

• The actual amount of disk space consumed by a project reflects the size
of the project and the number of copies of the compilation units kept.
Sublibraries and search paths can be used to reduce the amount of disk
space consumed, however, each library in the search path must be searched
in turn until a unit is found.

• DEC Ada performs better if you invoke the program library manager
interactively rather than in the form of one-line DCL commands.

The direct inout-output count for the example showing ACS commands
in the form of one-line DCL commands is almost double that of the
interactive one. Executing ACS interactively takes advantage of caching
within ACS, the Ada compiler, and RMS. If you execute ACS commands
noninteractively, the caching is lost when the image is rundown and
reactivated.

You can also reduce disk input-output if you enter several units with a
single invocation of an ACS command. For example:

$ ACS DIRECTORY HOTEL,RESERVATIONS*

Managing Program Development 7–15

• The DEC Ada and program library manager rely on system caches to
reduce disk input-output traffic. Compiling and recompiling units using
ACS COMPILE and RECOMPILE commands interactively uses the caches
more efficiently.

7.4.2 Reorganizing Library Structures
The DEC Ada library structure is an ISAM file, and as such benefits from
being correctly tuned. The ACS REORGANIZE command does this tuning, and
should be used especially for improving the performance of large libraries that
are frequently updated.

7.5 Protecting Program Libraries
The ACS commands require various kinds of access to program libraries. For
example, to copy units from a library, you need only read access to the library;
but to copy or compile units into a library, you need read and write access to it.

The techniques for controlling access to program libraries are based on those
for controlling access to directories. The following topics are discussed in the
following sections:

• The kind of library access needed for each ACS command

• The user identification code (UIC) based protection for the program library
files required for each kind of library access

• The use of access control lists (ACLs) on program libraries for each kind of
library access

For complete details on file and directory protection, see the OpenVMS VAX
Guide to System Security or the OpenVMS AXP Guide to System Security,
OpenVMS DCL Dictionary, and VMS Access Control List Editor Manual.

7.5.1 Program Library Access Requirements for ACS Commands
The program library manager recognizes three kinds of program library access
(not to be confused with UIC-based protection categories):

• Read (R)—means that the library and units in the library can be opened
for reading

• Write (W)—means that units in the library can be deleted as well as
written

• Delete (D)—means that the library can be deleted (including any units
in the library, the library index file, and the directory associated with the
library)

7–16 Managing Program Development

Table 7–1 lists the kinds of access required by each of the ACS commands.

Table 7–1 Program Library Access Needed to Use ACS Commands

ACS Command
Library
Access Comments

CHECK R

COMPILE RW

COPY FOREIGN RW Read access is needed to the directory from
which the foreign file is copied.

COPY UNIT RW Read access is needed to the program
library from which the unit is copied.

CREATE LIBRARY RW

CREATE SUBLIBRARY RW

DELETE LIBRARY RWD

DELETE SUBLIBRARY RWD

DELETE UNIT RW

DIRECTORY R

ENTER FOREIGN RW Read access is needed to the directory from
which the foreign file is entered.

ENTER UNIT RW Read access is needed to the program
library from which the unit is entered.

EXPORT R

EXTRACT SOURCE R

LINK R

LOAD RW

MERGE RW Read/write access is needed to the parent
library.

MODIFY LIBRARY RW

RECOMPILE RW

REENTER RW Read access is needed to the program
library from which the unit is reentered.

REORGANIZE RW Exclusive access is also needed.

SET LIBRARY R

SET LIBRARY/EXCLUSIVE RW Exclusive access is also needed.

(continued on next page)

Managing Program Development 7–17

Table 7–1 (Cont.) Program Library Access Needed to Use ACS Commands

ACS Command
Library
Access Comments

SET LIBRARY/READ_ONLY R

SET PRAGMA RW

SHOW LIBRARY R

SHOW PROGRAM R

SHOW VERSION R

VERIFY R

VERIFY/REPAIR RW Exclusive access is also needed.

7.5.2 Standard User Identification Code (UIC) Based Program
Library Protection

Because they exist in the VMS environment, the files associated with program
libraries and the units contained in them inherit a default, standard UIC-based
protection when they are created—that is, a protection that is coded for each of
the following four hierarchical protection categories:

System (S)
Owner (O)
Group (G)
World (W)

Each category can be granted any of the following access codes, in any
combination:

Read (R)
Write (W)
Execute (E)
Delete (D)

Note that when a UIC delete access code is associated with a file, it means that
that individual file can be deleted (as opposed to the program library delete
access discussed in Section 7.5.1, which means that an entire program library
and its contents can be deleted).

In the context of the VMS environment of directories and files, a program
library is a directory that contains a library index file (ADALIB.ALB), a library
version control file (ADA$LIB.DAT), and all of the files associated with the
compilation units in the library.

7–18 Managing Program Development

When you create a program library or sublibrary by entering an ACS CREATE
LIBRARY or CREATE SUBLIBRARY command, the following files are created
with the following UIC-based protection:

• The directory associated with the library (if it does not already exist).
This directory file inherits whatever protection is in effect for the next-
higher-level directory, less any delete access for each unspecified protection
category. This inherited protection scheme is consistent with the scheme
used by the DCL CREATE/DIRECTORY command.

• The library index file (ADALIB.ALB) and library version control file
(ADA$LIB.DAT). These files are created with whatever file protection
was most recently specified with the DCL SET PROTECTION/DEFAULT
command.

Each time a compilation unit is added to the library, if any files are created
in the library (VMS directory) for that unit, those files inherit the same
UIC-based protection as the library index file (not the VMS directory file).
In addition, if the library index file allows write access for a given protection
category, delete access is also given for that category.

Table 7–2 shows how the UIC-based protection for each file in a program
library is related to the program library access discussed in Section 7.5.1.
Table 7–2 shows the minimum UIC-based protection needed for each kind of
program library access. If the minimum UIC-based protection requirements
are not met for program library access, then normal library operations may not
complete properly. For example, the ACS DELETE UNIT command requires
read/write (RW) program library access. Because program library write access
also requires UIC delete access, if a file associated with that unit does not
allow delete access, the program library manager will not delete the file.

Table 7–2 Minimum UIC Protection for Each Kind of Library Access

Program
Library
Access (see
Section 7.5.1)

Library Index
File and Library
Version Control
File (UIC
Access)

Other Library
Files (UIC
Access) Directory File (UIC Access)

R R R R

RW RW RWD RW

RWD RWD RWD RWD1

1If the directory file does not have UIC delete access, it will be left empty (the contents but not the
directory file will be deleted).

Managing Program Development 7–19

As shown in Table 7–2, library index file UIC protection must be the same as
the directory file protection. To ensure this, you can use the /PROTECTION
qualifier when you create the library. However, if the directory file already
exists when you enter the ACS CREATE LIBRARY command, its protection
will not changed by this qualifier.

For example:

$ ACS CREATE LIBRARY -
_$ /PROTECTION=(SYSTEM:RWE, OWNER:RWED, GROUP:R, WORLD) -
_$ [JONES.HOTEL.ADALIB]

After this command is executed, the specified protection applies to
the directory file [JONES.HOTEL]ADALIB.DIR, the library index file
[JONES.HOTEL.ADALIB]ADALIB.ALB, and the library version control
file [JONES.HOTEL.ADALIB]ADA$LIB.DAT. Other library files later created
in the program library [JONES.HOTEL.ADALIB] will have protections as
specified in Table 7–2 for each user category.

Sometimes you need to ensure that a program library is never modified
during a program library manager session. You can do this by first invoking
the program library manager interactively, and then entering an ACS SET
LIBRARY/READ_ONLY command. After you enter this command, any ACS
command that requires write or delete library access will fail. For more
information about the /READ_ONLY qualifier to the ACS SET LIBRARY
command, see Appendix A.

7.5.3 Program Library Protection Through Access Control Lists
VMS access control lists (ACLs) offer an alternative method of file protection.
You can use this method in conjunction with the standard UIC-based protection
described in Section 7.5.2 to tune access control where it is needed.

The central mechanism behind ACLs is a rights database that specifies
identifiers and holders of those identifiers, as well as ACLs that relate the
identifiers with the access to be granted or denied to the holders of the
identifiers. By using ACLs, you can match specific users to the specific access
you want to grant or deny.

Each ACL consists of one or more access control list entries (ACEs) that grant
or deny access to a particular user or group of users. There are three kinds of
ACEs:

• Identifier ACE—Controls the kinds of access to be allowed to a particular
user or group of users. An identifier ACE can be a UIC, a general identifier
established by the system manager, or a system-defined identifier (for
example, BATCH, NETWORK, DIALUP, INTERACTIVE, and so on).

7–20 Managing Program Development

• Default protection ACE—Defines the default protection for a directory, so
that the protection can be propagated to the files and subdirectories created
in that directory.

• Security alarm ACE—Provides a security alarm when an object is accessed
in a particular way.

For a complete description of ACLs see the OpenVMS VAX Guide to System
Security or the OpenVMS AXP Guide to System Security.

To allow you to tune access to a program library, the program library manager
checks for any identifier ACEs on the library index file (ADALIB.ALB) in the
directory containing the program library. If there are identifier ACEs defined
on the library index file, the program library manager will grant or deny access
depending on the kind of program library access required by the ACS operation
(see Table 7–1).

As Table 7–2 shows, program library access is always the same as minimum
UIC access required for the library index file. Thus, by controlling access to
the library index file, you can control access to the program library.

For example, by applying an ACE to the library index file that denies all
ACS operations requiring write or delete program library access (such as
COMPILE, DELETE UNIT, ENTER UNIT, and so on), you can "freeze" the
program library for a particular set of users. The following command restricts
all members of the group PROJ to read-only ACS operations:

$ SET ACL DISK:[ADALIB]ADALIB.ALB/ACL=(ident=[PROJ,*], access=READ)

See the OpenVMS VAX Guide to System Security or the OpenVMS AXP Guide
to System Security for a complete description of how access requests are
evaluated in the presence of ACLs.

Although putting an ACL on the library index file provides the desired access
control from the program library manager, it is not sufficient to protect against
users using another utility (like DCL) to access the files in the program library.
To protect against those users, you need to apply the ACL to all files in the
directory associated with the program library, according to the information
given in Table 7–2. Normally, you should not need to do this; keep in mind
that putting an excessive number of ACLs on all files in the program library
will result in performance penalties for both users of the DEC Ada program
library manager and the entire VMS system in which those users are working.

Also, do not assume that specifying ACCESS=NONE for an identifier will
completely prohibit the holders of the identifier from accessing the library.
Users who are in either the SYSTEM or OWNER category are still entitled to
whatever access the UIC-based protection affords that category. Furthermore,

Managing Program Development 7–21

if the users hold privileges, they will be granted the access requested through
the privilege. See the OpenVMS VAX Guide to System Security or the
OpenVMS AXP Guide to System Security for more information on access
request evaluation.

7.6 Accessing Program Libraries from Multiple Systems
For certain development projects, the project program libraries may be set up
on multiple computer systems. In order to allow access to these libraries from
other systems, note the following points:

• Use VAXclusters, whenever possible.

When the program library is on a VAXcluster, the disk containing the
library should be mounted on all nodes requiring access to the library. All
compiler and program library functionality is available on a VAXcluster.

• If you cannot use VAXclusters, consider using VAX Distributed File System
(DFS) on VAX systems.

DFS provides a low-overhead network-based file system over DECnet,
and can be used in either local area network (LAN) or wide-area network
(WAN) configurations. DFS does not support shared-write access to disks
accessed over the network. Access to DFS-mounted disks is performed
with an implicit /EXCLUSIVE qualifier. Futhermore, all accesses to the
program library share a single DECnet link. See Sections 7.7 and 7.8 for
guidelines on configuring DFS-based program libraries.

• DEC Ada supports access using the DECnet File Access Listener (FAL).
FAL allows a library to be on any VMS node accessible via DECnet. All of
the compiler and program library manager functions are available, with
the following exceptions:

– The program library is not supported for /EXCLUSIVE access.

– You cannot create a program library or sublibrary using DECnet FAL,
unless the directory already exists.

Because each file accessed using DECnet FAL will require a separate
DECnet link, this may impose considerably more load upon the network,
and on the system hosting the library, than a DFS-based solution.

7–22 Managing Program Development

7.7 General Guidelines for Network Access
When accessing program libraries over the network, you can use either
DECnet FAL or DFS. The following sections provide some guidelines for
accessing libraries over the network.

Note that if you are using DEC Ada in a cluster environment, the following
sections on accessing program libraries using DFS and FAL do not apply.

7.7.1 Network Protection Mechanisms for Program Libraries
When a project requires network access to a program library, it is necessary to
ensure that the protection mechanisms in place are appropriate.

In some cases, it may make sense to make an entire library world-readable,
and let users access it using default DECNET accounts. For example, a library
containing public utility packages can be protected such that the library is
world-readable. In other cases, project members may require write-access to a
library on a different, non-clustered node. For this type of access, each project
member is granted a default proxy into either their own account or group
account on the node hosting the library. See Section 7.5.1 for information.

Note that the proxies granted must be default proxies, regardless of whether
DFS or FAL is used. See the OpenVMS System Manager’s Manual for more
information on how to create proxy accounts.

7.7.2 Achieving Efficient Network Access to Program Libraries
Pay careful attention to SYSGEN (System Generation Utility) and DECnet
parameters (on both the local and remote nodes) that may affect the
availability of compilation units or files accessed over the network. Your
system manager can help you with this or you can consult the OpenVMS
System Manager’s Manual for more information.

7.7.3 Effect of Network Failures
A network failure during a compilation can have several effects. If the failure
occurs while the compiler is in operation, the compilation can terminate,
leaving your program library in whatever state it was in before the beginning
of the compilation. If the failure occurs during a phase in which the program
library is being updated, your program library may be in an inconsistent state.
You would then have to repair any inconsistencies using the ACS VERIFY
command (see Section 7.10.5 and Appendix A).

In other words, a network failure during a compilation is like a system failure
during a compilation, except that the network failure does not stop your
process from running, and you could receive numerous file-access and Ada
diagnostic messages as a result.

Managing Program Development 7–23

7.8 Accessing Program Libraries Using DFS
The following sections provide some guidelines for specifying program libraries
using DFS.

7.8.1 Configuring a Program Library using DFS
Since DFS does not allow shared-write access to a file, it is generally advisable
to have your working sublibrary on a local disk and any parent libraries and
sublibraries on either a local or DFS-mounted disk. If the working sublibrary
is on a DFS-mounted disk, accessing the sublibrary from multiple processes
(such as an interactive process or a batch stream), may fail.

Consider the configuration decribed in Figure 7–3. In that example, the
sublibrary [SMITH.SUBLIB] should be located on a disk which is local to the
machine that SMITH normally uses; the sublibrary [PROJ.VMS_SUBLIB]
and the library [PROJ.MAIN_LIB] can be on disks which are either local or
DFS-mounted onto that machine.

If DFS is running over a slow or overloaded link, it may be advisible to use
a cache sublibrary as suggested in Figure 7–4. However, if the library is
accessible over a fast link (such as FDDI or moderately loaded ethernet), the
cache library may be unnecessary.

7.9 Accessing Progam Libraries with DECnet FAL
You can have a sublibrary on a different node from its parent library, and you
can enter or copy units from program libraries that reside on different nodes.

The following sections give some guidelines for specifying program libraries
using DECnet FAL. In particular, Section 7.9.2 lists any restrictions that may
apply.

For more information on DECnet, see the DECnet for OpenVMS Guide to
Networking.

7.9.1 Configuring a Library Structure using DECnet FAL
If you plan to configure a system using DECnet FAL, be careful about causing
access links to accumulate. Instead, consider caching those units that are
constant or finished (such as the units in ADA$PREDEFINED) in a local
library to minimize access using DECnet FAL. Figure 7–4 suggests one such
configuration and consists of the following libraries:

7–24 Managing Program Development

Figure 7–4 DECnet Program Library Configuration

CENTRL::DISK:[PROJ.ADALIB]

DEC Ada predefined units

LOCAL::USER:[CACHE.SUBLIB]

 (entered from ADA$PREDEFINED)

Stable units

DEC Ada predefined units

Units under development

 (entered from ADA$PREDEFINED

Copied stable units from CENTRL
 library

 on node LOCAL)

DECnet

LOCAL::USER:[JONES.SUBLIB]

Working sublibrary for parts
 of application

ZK−7863−GE

• A central program library—DISK:[PROJ.ADALIB]—is on node CENTRL.
This library contains the units entered from the ADA$PREDEFINED
library on that node, some finished units, and some units under
development.

• A cache sublibrary—USER:[CACHE.SUBLIB]—is on node LOCAL. The
central program library is the parent of this sublibrary. This cache
sublibrary contains units from the ADA$PREDEFINED library on node
LOCAL and any finished units copied from the central program library.
Units that are too large to copy over the network or that need to be
monitored as they change remain in the central program library.

Managing Program Development 7–25

• A working sublibrary—USER:[JONES.SUBLIB]—is also on node LOCAL.
The cache sublibrary is the parent of this sublibrary. This sublibrary
contains units that are being developed by a programmer on node LOCAL.

Note that in this situation, to make the local sublibrary’s units available to
all of the users of this system, you must merge twice: once from the working
sublibrary to the cache sublibrary, and once from the cache sublibrary to the
central library.

There are other library caching schemes that may be more appropriate to your
application. For example, you might set up a cached library on the local node
that is a snapshot of an independent library on another node. You can then
enter units from the cached library into your working library. Note that you
cannot recompile entered units.

When working with libraries which are accessed using DECnet FAL, be sure
to consider system security. For maximum security, use proxy accounts (see
the DECnet for OpenVMS Guide to Networking and the DECnet for OpenVMS
Networking Manual for more information). For example, the node CENTRL
would allow proxy access to the user JONES from node LOCAL. Proxy access
also improves performance because it causes the system to reuse access links.
Otherwise, if the program library is accessed using DECnet FAL, access links
can accumulate when you perform parent library operations.

7.9.2 Restrictions on Using Program Libraries Accessed by DECnet
FAL

Observe the following restrictions when distributing program libraries which
are accessed using DECnet FAL:

• In the absence of the VAX Distributed File System (DFS), CMS
(Version 3.0 and lower) does not support access using DECnet FAL. Thus,
the program library manager may issue an error if an operation requires
accessing a CMS library using DECnet FAL.

• Directories cannot be created using DECnet FAL. Thus, the ACS CREATE
LIBRARY and CREATE SUBLIBRARY commands can be used to
create program libraries or sublibraries across the network unless the
corresponding directories already exist for those libraries on the remote
node.

• Exclusive access to a compilation library on another node is not permitted
and results in an error. Therefore, ACS SET LIBRARY/EXCLUSIVE for a
program library on a remote node fails with an error.

7–26 Managing Program Development

Because the ACS VERIFY/REPAIR and REORGANIZE commands can
depend on the use of ACS SET LIBRARY/EXCLUSIVE, VERIFY/
REPAIR and REORGANIZE are also not permitted for a compilation
library on another node when they are used in conjunction with SET
LIBRARY/EXCLUSIVE.

• A program library on another node must not be opened with an access
control string. An error results if such an attempt is made.

7.10 Maintaining Program Libraries
Program library maintenance involves the following tasks:

• Making references to program libraries independent of specific devices and
directories

• Copying program libraries

• Backing up program libraries

• Reorganizing program libraries

• Verifying and repairing program libraries

• Recompiling after new releases of DEC Ada

The following sections discuss these tasks in detail and present information on
how to make some of the maintenance activities (copying, backing up, and so
on) efficient.

7.10.1 Making References to Program Libraries Independent of
Specific Devices and Directories
A program library often references units in other program libraries. A
sublibrary, in addition, references its parent library. By making unit references
and parent library references device and directory independent, you can enter
units, change the parent of a sublibrary, back up, and restore program libraries
independent of the device and directory references associated with the units in
those libraries. You can also change the parent of a sublibrary (see Chapter 2).

You can achieve device independence by using concealed-device logical names.
Section 7.10.1.1 discusses concealed-device logical names.

You can achieve device and directory independence, and thus program library
reference independence, by using rooted directory syntax when specifying
parent libraries with the ACS CREATE SUBLIBRARY command or when
specifying units in the ACS ENTER command. Section 7.10.1.2 discusses
rooted directories.

Managing Program Development 7–27

You can make logical name assignments at the system, group, or job level,
as appropriate. The DEC Ada Installation Guide for OpenVMS VAX Systems
and the DEC Ada Installation Guide for OpenVMS AXP Systems instructs
your system manager to perform some standard system-wide logical name
assignments to public devices.

For more information on concealed-device logical names, rooted directories, and
logical names, see the OpenVMS DCL Dictionary and the Guide to OpenVMS
File Applications.

As an alternative to using concealed-device logical names, you can use library
search paths to dynamically create library relationships. See Chapter 3 for
more information.

7.10.1.1 Using Concealed-Device Logical Names
A concealed-device logical name has the following properties:

• Its equivalence name contains a physical device name.

• It prevents the equivalence name from being displayed in the file
specification that results when the logical name is translated; the logical
name is displayed in place of the equivalence name.

To define a logical name as a concealed-device logical name, you must use
the /TRANSLATION_ATTRIBUTES=CONCEALED qualifier with the DCL
DEFINE or ASSIGN commands. You must also use a physical device name,
not a logical device name. For example, the following command assigns the
concealed-device logical name DISK to the physical device DBA3:.

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED DISK DBA3:

After this assignment, the logical name DISK (not the physical device name
DBA3:) is displayed in system messages. Also, utilities like the DEC Ada
program library manager will use DISK and not DBA3: when referencing file
and directory specifications.

For example, a library index file will reference DISK: rather than DBA3: for
entered units. Then if DBA3: is swapped with another device, reassigning the
logical name DISK to the new device will make the entered references correct.

7–28 Managing Program Development

7.10.1.2 Using Rooted Directory Syntax
Rooted directory syntax allows programs and utilities to refer to a device and a
directory tree as a logical device and a top-level directory. A rooted directory is
a concealed-device logical name that defines both a hidden device name and a
hidden root directory. Once a rooted directory has been defined, all subsequent
directory references will refer to the root directory or any of the directories in
the directory tree below the root directory.

To define a rooted directory, you must use the DCL DEFINE or ASSIGN
commands with the /TRANSLATION_ATTRIBUTES=CONCEALED qualifier.
In the following example, the rooted directory BASE is defined as the
directory DBA3:[PROJ.HOTEL.]. Note the trailing period (.) in the directory
specification.

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED BASE DBA3:[PROJ.HOTEL.]

You can then refer to subdirectory DBA3:[PROJ.HOTEL.ADALIB] using the
rooted directory syntax BASE:[ADALIB]. The device (DBA3:) and the directory
structure ([PROJ.HOTEL]) are hidden when you use that syntax. In other
words, the root directory, BASE, behaves as a top-level directory. For example:

$ ACS SET LIBRARY BASE:[ADALIB]

7.10.2 Copying Program Libraries
Note

When copying program libraries, remember that other libraries may
reference them for entered units. To reference the new locations of
copied libraries, you need to use the ACS ENTER UNIT/REPLACE
command, specifying the new library location. If you did not originally
use rooted directories to refer to the entered units, the ACS REENTER
command reenters the units from their original libraries.

The best method for copying a program library from one device or directory to
another is to use the backup utility (see Section 7.10.3).

Another method is to create the new directory and then use the DCL COPY
command. However, note the following restrictions:

• You cannot use this method across DECnet; if you are copying libraries
across DECnet, use the Backup Utility.

• The directory to which you are copying the library must be empty.

Managing Program Development 7–29

• When copying a tree of sublibraries, you can use the DCL COPY command
only to copy the top program library. If you use the DCL COPY command
to copy a sublibrary, the copied sublibrary points to its original parent
library, unless you have used a rooted directory.

• You may run into problems with the file creation dates that the DCL COPY
command assigns to the files it copies.

A third way to copy a program library is to create a new program library using
the ACS CREATE LIBRARY or CREATE SUBLIBRARY command, and then
to use the ACS COPY UNIT and ENTER UNIT commands to copy and enter
units into the new program library. If units have been entered from several
program libraries, this method requires more individual operations than the
backup or DCL COPY command methods. For example:

ACS> CREATE LIBRARY USER:[JONES.NEW.ADALIB]
ACS> SET LIBRARY USER:[JONES.NEW.ADALIB]
ACS> COPY UNIT DISK:[SMITH.LISTS.ADALIB] unit-name[,...]

.

.

.
ACS> ENTER UNIT program-library1 unit-name[,...]
ACS> ENTER UNIT program-library2 unit-name[,...]

.

.

.

7.10.3 Backing Up and Restoring Program Libraries
To back up program libraries, use the backup utility. For example, the
following command copies a library tree from one set of directories to another
set of directories on the same disk and node:

$ BACKUP USER:[JONES.HOTEL...] USER:[JONES.NEW_HOTEL...]

The following command backs up a library from a set of directories on the local
node and transfers the save set across DECnet to the node CENTRL:

$ BACKUP USER:[JONES.HOTEL.ADALIB] -
_$ CENTRL"PROJ PASSWORD"::DISK:[PROJ.JONES]HOTEL_ADALIB.BCK -
_$ /SAVE_SET

The following command restores the saveset on node CENTRL:

$ BACKUP [PROJ.JONES]HOTEL_ADALIB.BCK/SAVE_SET -
_$ [PROJ.JONES.ADALIB]

See the OpenVMS System Manager’s Manual and the VMS Backup Utility
Manual for information on using the Backup Utility.

7–30 Managing Program Development

You can make your backups of library trees easier if you use concealed-device
logical names and rooted directory syntax to make unit and parent library
references directory independent. See Sections 7.10.1.1 and 7.10.1.2 for more
information on concealed-device logical names and rooted directory syntax.

For example, consider the following sublibrary tree:

• The logical name TOP is assigned to the directory DBA3:[HOTEL.]:

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED TOP DBA3:[HOTEL.]

• The sublibrary [JONES.HOTEL.SUBLIB] is created as a sublibrary of
TOP:[ADALIB]:

$ ACS CREATE SUBLIBRARY/PARENT=TOP:[ADALIB] [JONES.HOTEL.ADALIB]

If TOP is backed up and restored to another device or directory, reassignment
of the logical name TOP will make the sublibrary point to the correct location:

$ DEFINE/TRANSLATION_ATTRIBUTES=CONCEALED TOP new-dev-or-dir-spec

You can also use rooted directory syntax to obtain device or directory
independence for entered units. Then, if the new device or directory has
been reassigned properly, you do not have to enter or reenter the units after a
backup or restore operation to a different device or directory.

7.10.4 Reorganizing Program Libraries
Each time you compile or recompile one or more units, your program
library is updated. If your program library is updated frequently, ACS
command performance may degrade. To improve and optimize ACS command
performance, enter the ACS REORGANIZE command. For example:

$ ACS REORGANIZE

By default, as shown in the previous example, the ACS REORGANIZE
command reorganizes your current program library.

In general, you should consider reorganizing each of your program libraries
frequently, especially after doing many compilations or recompilations into the
same library.

7.10.5 Verifying and Repairing Program Libraries
The ACS VERIFY command performs consistency checks on library files and
requires only read access to a program library. The ACS VERIFY/REPAIR
command corrects certain kinds of errors and requires exclusive read/write
access to a program library. Both commands operate on the current program
library by default, or on a specified program library.

Managing Program Development 7–31

When you execute the ACS CHECK, COMPILE, RECOMPILE, or LINK
command, you may encounter the following errors:

• Missing units

• Obsolete units

• Obsolete references to entered units

• Missing copied source files (in the case of the COMPILE and RECOMPILE
commands)

You may occasionally receive other, unexpected, diagnostics with a program
library—for example, messages about missing or corrupted files associated
with units in the library. The COMPILE, RECOMPILE, or LINK commands
may detect these errors; the CHECK command may not. If you suspect that
program library files have been corrupted or are missing, you should enter the
VERIFY command.

The VERIFY command checks the following items:

• The format of the library index file.

• Whether all files cataloged in the library index file exist in the program
library and are accessible. In the case of entered units, the VERIFY
command checks whether the files exist in the library from which they
were entered.

• Whether all files that exist in the program library directory are cataloged
in the library index file and have the correct format.

• Whether the protection code of cataloged files is consistent with that of the
library index file (see Section 7.5.1 for information on protection codes).

Under normal conditions, the VERIFY command issues a success message. For
example:

$ ACS VERIFY

%I, USER:[JONES.HOTEL.ADALIB] verified

If you use the /LOG qualifier, the VERIFY command issues a separate message
for each unit defined in the program library, as well as a final summary
message.

If inconsistencies exist, the VERIFY command issues error messages indicating
the units or files that are inconsistent. The following example shows the kinds
of conditions that the VERIFY command can detect (typically, these conditions
should rarely occur):

7–32 Managing Program Development

$ ACS VERIFY [PROJ.ADALIB]
%E, Inconsistent file protection USER:[PROJ.ADALIB]SQR.OBJ;3
%E, error opening USER:[PROJ.ADALIB]TEST_STACKS.OBJ;21 as
%E, input file not found
%E, USER:[PROJ.ADALIB]ODD.COM;12 is not cataloged

in library USER:[PROJ.ADALIB]
%E, USER:[PROJ.ADALIB]SCREEN_IO.ACU;7 is not cataloged

in library USER:[PROJ.ADALIB]
%I, Units with inaccessible files are obsolete. If repair

(VERIFY/REPAIR) is not possible, then recompilation of
these units is necessary; after entering a VERIFY/REPAIR
command, the CHECK command will show any obsolete units

%E, USER:[PROJ.ADALIB] has uncorrected errors

The messages in the previous example have the following meaning:

• The protection code of file SQR.OBJ;3 is inconsistent with that of the
library index file.

• File TEST_STACKS.OBJ;21 is cataloged in the library index file but is not
in the program library (the file is inaccessible).

• Files ODD.COM;12 and SCREEN_IO.ACU;7 are not cataloged in the
library index file (these files do not belong in the program library directory).

These kinds of errors are not detected by the CHECK command, which you use
to determine whether any units in a closure are missing or obsolete.

You can use the ACS VERIFY/REPAIR command to correct some of the errors
reported by the VERIFY command. The VERIFY/REPAIR command performs
the same checks as the VERIFY command, and takes corrective action on the
specified program library, as follows:

• Identifies any files in the program library directory that are not cataloged
in the library index file. Deletes any uncataloged files with a file type of
.OBJ, .ACU, or .ADC. Deletes any uncataloged files with other file types
only if you have also specified the /CONFIRM qualifier and given an
affirmative response.

• As necessary, changes the file protection on .OBJ, .ACU, and .ADC files to
be consistent with the protection code for the library index file.

• Marks as obsolete any unit whose .OBJ or .ACU file is inaccessible. A later
VERIFY/REPAIR command will reset any such marks if the associated files
are again available.

• Removes references to inaccessible copied source files (.ADC) from the
library index file.

• Deletes any index entry with an illegal format from the library index file.

Managing Program Development 7–33

The VERIFY/REPAIR command does not take corrective action for entered
units.

The VERIFY/REPAIR command requires exclusive read/write access to the
program library to be verified—that is, you must first execute the SET
LIBRARY/EXCLUSIVE command interactively (see Chapter 2) and then enter
the VERIFY/REPAIR command (also interactively).

The following example shows the use of the VERIFY/REPAIR command
with the error conditions reported by the VERIFY command in the previous
example. The /LOG qualifier lists the action taken for each unit or file being
repaired (only units and files that had inconsistencies are shown in the
example).

$ ACS
ACS> SET LIBRARY/EXCLUSIVE [PROJ.ADALIB]
ACS> VERIFY/REPAIR/LOG

.

.

.
%E, Inconsistent file protection USER:[PROJ.ADALIB]SQR.OBJ;3
%W, SQR verified and repaired

.

.

.
%E, error opening USER:[PROJ.ADALIB]TEST_STACKS.OBJ;21 as
-E, input file not found
%W, TEST_STACKS verified and repaired

.

.

.
%E, USER:[PROJ.ADALIB]ODD.COM;12 is not cataloged

in library USER:[PROJ.ADALIB]
%E, USER:[PROJ.ADALIB]SCREEN_IO.ACU;7 is not cataloged

in library USER:[PROJ.ADALIB]
%I, Units with inaccessible files are obsolete. If repair

(VERIFY/REPAIR) is not possible, then recompilation of
these units is necessary; after entering a VERIFY/REPAIR
command, the CHECK command will show any obsolete units

%E, USER:[PROJ.ADALIB] has uncorrected errors

In the previous example, the VERIFY/REPAIR command has taken the
following actions:

• Changed the protection of file SQR.OBJ;3 to be consistent with the
protection of the library index file

• Marked the unit TEST_STACKS as obsolete, because its .OBJ file (TEST_
STACKS.OBJ;21) is inaccessible

7–34 Managing Program Development

• Kept the uncataloged file ODD.COM;12, because its file type is not .OBJ,
.ACU, or .ADC, and because the /CONFIRM qualifier was not used

• Deleted the uncataloged file SCREEN_IO.ACU;7, because its file type
is .ACU

The following steps delete the uncataloged file ODD.COM;12:

ACS> VERIFY/REPAIR/CONFIRM
%E, error opening [PROJ.ADALIB]TEST_STACKS.OBJ as input
-E, file not found
%E, USER:[PROJ.ADALIB]ODD.COM;12 is not cataloged

in library USER:[PROJ.ADALIB]
USER:[PROJ.ADALIB]ODD.COM;12, delete? [N]: y
%I, Units with inaccessible files are obsolete. If repair

(VERIFY/REPAIR) is not possible, then recompilation of
these units is necessary; after entering a VERIFY/REPAIR
command, the CHECK command will show any obsolete units

%W, USER:[PROJ.ADALIB] verified and repaired

There are two ways to make the unit TEST_STACKS current:

• Because TEST_STACKS has been marked obsolete, you could use the
RECOMPILE command. For example:

ACS> RECOMPILE TEST_STACKS

• Alternatively, if a current copy of the missing file, TEST_STACKS.OBJ;21,
is available in another program library, you could use the DCL COPY
or BACKUP command to create a copy of the file in the program library
[PROJ.ADALIB]. For example:

$ COPY [backup-directory]TEST_STACKS.OBJ;21 [PROJ.ADALIB]

After the TEST_STACKS.OBJ file has been copied to [PROJ.ADALIB], the
VERIFY/REPAIR command must be reentered so that TEST_STACKS can be
marked as current.

7.10.6 Recompiling Units After a New Release or Update of DEC Ada
When an update or full release of DEC Ada is installed on your system,
previously compiled units, as well as references to entered units, may be
rendered obsolete. Your system manager should inform you of this condition,
which will, in any case, become evident when you try to use the program
library manager or the compiler with obsolete units.

To make the contents of your program libraries current, you need to perform
the following steps for each of your program libraries. Note that a program
library with entered units needs to be made current after the entered units
are made current in their own libraries. The program library manager issues

Managing Program Development 7–35

an error message if you try to recompile a unit that depends on an obsolete
entered unit.

1. Use the ACS SET LIBRARY command to define the current program
library:

$ ACS SET LIBRARY [JONES.HOTEL.ADALIB]

2. Use the ACS REENTER command to reenter current references to the
DEC Ada predefined units from the current program library:

$ ACS REENTER *

Consult the cover letter and release notes supplied with the release of DEC
Ada that you are using. If new units have been added to the DEC Ada
predefined units and you want to enter them into the current program
library, use the ACS ENTER UNIT command, specifying the appropriate
unit names:

$ ACS ENTER UNIT ADA$PREDEFINED unit-name[,...]

3. Use the ACS RECOMPILE command to make current all units in the
current program library:

$ ACS RECOMPILE *

7.11 Working with Multiple Targets
When working with multiple targets (for example VMS and VAXELN targets),
you need to know which parts of your code are target-specific and which are
target-dependent. You also need to know how big an effect a change in the
target can have. The following sections discuss topics related to program
portability and target dependence.

7.11.1 Determining DEC Ada Program Portability
To determine if your DEC Ada program uses certain potentially nonportable
features, you can enter the ACS SHOW PROGRAM/PORTABILITY command
or you can use the /SHOW=PORTABILITY qualifier with any of the DEC Ada
compilation commands (DCL ADA or ACS COMPILE or RECOMPILE). The
/SHOW=PORTABILITY qualifier (which is the default for all of the compilation
commands) causes the compiler to include a portability summary in the
compilation listing file (the /LIST qualifier must also be specified).

The following sections discuss the factors affecting the portability of a DEC
Ada program, and identify those features that may appear in the portability
summary.

7–36 Managing Program Development

7.11.1.1 Factors Affecting Portability
A program’s portability depends on the set of available implementations that
are appropriate for the program. For example, the Ada Standard does not
specify the range of digits for floating-point types that must be supported by
an implementation. Thus, the following type declaration may or may not be
portable to all relevant implementations:

type REAL is digits 9;

If an implementation can support the requested accuracy and implied range,
then the program should be portable with respect to that implementation. If
the implementation cannot support the requested accuracy, then it will produce
an error during compilation (rather than allowing the program to compile and
then execute with unacceptable results). The use of an implicit underlying
type—in this case, the DEC Ada predefined type LONG_FLOAT (and either a
D_floating or G_floating representation)—is not relevant to whether or not the
program is portable.

The explicit use of a predefined type, such as LONG_FLOAT, also may or may
not be portable. For example:

type REAL is new LONG_FLOAT;

The fact that some other implementation may support a predefined type
LONG_FLOAT (as described in the Ada Standard) does not ensure that
your program is portable to that implementation. In particular, the accuracy
provided by that implementation may be less than the accuracy provided by
DEC Ada—which may or may not be significant to your program.

The DEC Ada portability summary does not list implicit uses of the type
LONG_FLOAT (as in the first example declaration of the type REAL); it does
list explicit uses of the type LONG_FLOAT (as in the second declaration).

The abstraction properties of the Ada language imply that even when a
particular construct is defined by a nonportable construct, uses of that
particular construct are not necessarily also nonportable. For example, an
unchecked conversion from the type INTEGER to the type ADDRESS could be
implemented across a large number of Ada implementations in various ways—
but it is the conversion declaration, not the conversion call, that you should
examine when porting a program that uses the conversion function.

Another example of this concept occurs in the DEC Ada implementation of
the predefined package TEXT_IO. The private part of TEXT_IO’s specification
uses some implementation-defined pragmas, such as the pragma IMPORT_
PROCEDURE. The package body uses even more nonportable constructs, such
as the type ADDRESS, the implementation-defined attribute TYPE_CLASS,

Managing Program Development 7–37

and other DEC Ada-specific features. However, the portability of programs
that use the package TEXT_IO is not compromised.

Another consideration is that pragmas (which, as required by the Ada
Standard, cannot affect the legality of a program) may or may not be relevant
to the correct operation and/or portability of a program. For example, a
program may work correctly only if the pragma SHARED is supported by
an implementation, or only if the pragma PRIORITY is supported with a
certain range of priorities. For this reason, the portability summary shows the
use of many of the language-defined pragmas as well as the use of all of the
implementation-defined pragmas.

7.11.1.2 Features Listed in the Portability Summary
The portability summary lists one or more of the features or constructs shown
in Table 7–3. The summary briefly describes each feature or construct, and
each description is followed by the line numbers where each use of the feature
or construct occurs. Features or constructs that are implementation-specific
are marked with an asterisk (*). For example:
. . .

PORTABILITY SUMMARY

predefined SHORT_INTEGER or SHORT_SHORT_INTEGER
3

predefined LONG_FLOAT or LONG_LONG_FLOAT
4

with SYSTEM 1
predefined ADDRESS 5
predefined NON_ADA_ERROR* 9
attribute ADDRESS 7

where * indicates an implementation-defined feature
. . .

Italicized text is used in Table 7–3 to explain some of the features or constructs;
the text does not appear in the actual portability summary.

Whether or not you specify the /SHOW=PORTABILITY qualifier for a com-
pilation, the use of any of these features is always recorded (without specific
line numbers) in the current program library. You can obtain portability
information at any time with the ACS SHOW PROGRAM/PORTABILITY
command.

7–38 Managing Program Development

Table 7–3 Features or Constructs that May Appear in a Portability Summary

Implementation-Defined Types in the Package STANDARD

predefined SHORT_INTEGER or SHORT_SHORT_INTEGER

predefined LONG_FLOAT or LONG_LONG_FLOAT (that is, explicit rather than
implicit uses of these types, as discussed previously)

predefined LONG_INTEGER

Entities in the Predefined Package SYSTEM

with SYSTEM (that is, use of predefined SYSTEM in a with clause)

predefined NAME (includes type NAME and any of its enumerals)

predefined named number (such as MAX_INT)

predefined PRIORITY

predefined integer types in the package SYSTEM*

predefined floating point types in the package SYSTEM*

predefined ADDRESS (includes type ADDRESS and constant ADDRESS_ZERO)

instantiation of FETCH_FROM_ADDRESS or ASSIGN_TO_ADDRESS*

predefined TYPE_CLASS* (includes type TYPE_CLASS and any of its enumerals)

predefined AST_HANDLER* (includes type AST_HANDLER and constant
NO_AST_HANDLER)

predefined NON_ADA_ERROR*

predefined type, subtype, or special operator for VAX storage (such as UNSIGNED_
LONGWORD)*

predefined conversion for VAX storage (such as TO_BIT_ARRAY_32)*

predefined read or write input-output register*

predefined read or write processor register*

predefined function IMPORT_VALUE*

predefined ALIGNED_WORD*

predefined add, set, or clear interlocked*

predefined INSQ_STATUS or REMQ_STATUS*

predefined insert or remove queue interlocked*

(continued on next page)

Managing Program Development 7–39

Table 7–3 (Cont.) Features or Constructs that May Appear in a Portability
Summary

Predefined Procedure UNCHECKED_DEALLOCATION

with UNCHECKED_DEALLOCATION (that is, use of predefined UNCHECKED_
DEALLOCATION in a with clause)

instantiation of UNCHECKED_DEALLOCATION

Predefined Function UNCHECKED_CONVERSION

with UNCHECKED_CONVERSION (that is, use of predefined UNCHECKED_
CONVERSION in a with clause)

instantiation of UNCHECKED_CONVERSION

Representation Clauses

address representation clause

enumeration representation clause

length SIZE representation clause

length STORAGE_SIZE representation clause

length SMALL representation clause

record representation clause

Attributes

attribute ADDRESS

attribute AST_ENTRY*

attribute BIT*

attribute MACHINE_SIZE*

attribute NULL_PARAMETER*

attribute SIZE

attribute STORAGE_SIZE

attribute TYPE_CLASS*

(continued on next page)

7–40 Managing Program Development

Table 7–3 (Cont.) Features or Constructs that May Appear in a Portability
Summary

Pragmas

unknown pragmas (that is, any pragma not recognized by DEC Ada)

unsupported pragmas (that is, any pragma supported by another Ada
implementation)

pragma AST_ENTRY*

pragma COMMON_OBJECT*

pragma COMPONENT_ALIGNMENT*

pragma EXPORT_EXCEPTION*

pragma EXPORT_FUNCTION*

pragma EXPORT_OBJECT*

pragma EXPORT_PROCEDURE*

pragma EXPORT_VALUED_PROCEDURE*

pragma FLOAT_REPRESENTATION*

pragma IDENT*

pragma IMPORT_EXCEPTION*

pragma IMPORT_FUNCTION*

pragma IMPORT_OBJECT*

pragma IMPORT_PROCEDURE*

pragma IMPORT_VALUED_PROCEDURE*

pragma INTERFACE

pragma INTERFACE_NAME*

pragma INLINE_GENERIC*

pragma LONG_FLOAT*

pragma MAIN_STORAGE*

pragma MEMORY_SIZE

pragma PACK

pragma PRIORITY

pragma PSECT_OBJECT

pragma SHARED

(continued on next page)

Managing Program Development 7–41

Table 7–3 (Cont.) Features or Constructs that May Appear in a Portability
Summary

Pragmas

pragma SHARE_GENERIC*

pragma STORAGE_UNIT

pragma SUPPRESS

pragma SUPPRESS_ALL*

pragma SYNCHRONIZE*

pragma SYSTEM_NAME

pragma TASK_STORAGE*

pragma TIME_SLICE*

pragma TITLE*

pragma VOLATILE*

7.11.2 Setting the System Name
The DEC Ada program library manager, as the interface to the DEC Ada
compiler and linker, is sensitive to differences in targets through the value of
the predefined constant SYSTEM_NAME in the package SYSTEM. On VMS
systems, this constant can have a value of either OpenVMS_AXP, VAXELN, or
VAX_VMS.

The value of SYSTEM.SYSTEM_NAME does not cause the compiled code to
differ. It is used to determine target-related compilation unit dependences,
which can occur in your Ada code in the following cases:

• Use of SYSTEM.SYSTEM_NAME causes either an OpenVMS_AXP, VAX_
VMS or a VAXELN dependence.

• Use of the pragma TIME_SLICE causes a VAX_VMS dependence.

• Use of the pragma AST_ENTRY or the AST_ENTRY attribute causes a
VAX_VMS dependence.

• Use of any of the relative or indexed input-output packages causes a VAX_
VMS dependence.

• Use of the package VAXELN_SERVICES causes a VAXELN dependence.

7–42 Managing Program Development

For example, if a compilation unit uses the pragma AST_ENTRY and the
system name at compile time is VAXELN, you are warned that your unit
depends on SYSTEM.SYSTEM_NAME and that the pragma AST_ENTRY
is ignored for a VAXELN target. Similarly, if a unit uses the AST_ENTRY
attribute and the system name at compile time is VAXELN, you are warned
that your unit depends on SYSTEM.SYSTEM_NAME and that your use of the
AST_ENTRY attribute is illegal.

When you create a program library or sublibrary, the default value of
SYSTEM.SYSTEM_NAME is VAX_VMS on VAX systems or OpenVMS_
AXP on AXP systems. You can use the /SYSTEM_NAME qualifier on the
ACS CREATE LIBRARY or CREATE SUBLIBRARY command to explicitly
determine the value of SYSTEM.SYSTEM_NAME, or you can permanently set
the system name to VAXELN (or set it back to VAX_VMS) by performing one
of the following operations:

• Compiling the predefined Ada pragma SYSTEM_NAME

• Executing the ACS SET PRAGMA command
(ACS SET PRAGMA/SYSTEM_NAME=VAX_VMS,
ACS SET PRAGMA/SYSTEM_NAME=OpenVMS_AXP, or
ACS SET PRAGMA/SYSTEM_NAME=VAXELN)

To determine the current setting for your current program library, use the ACS
SHOW LIBRARY/FULL command; to determine system-name dependences for
individual program units, use the ACS SHOW PROGRAM command.

You can temporarily override the current setting when you link or export
units by using the /SYSTEM_NAME qualifier on the ACS LINK and
EXPORT commands. For example, if you are working in a VMS environment
(SYSTEM.SYSTEM_NAME=VAX_VMS), and the units you have compiled do
not contain any of the VMS-specific features, you can link them for a VAXELN
target with the ACS LINK/SYSTEM_NAME=VAXELN command. However, a
link-time error occurs if a unit depends on the value of SYSTEM.SYSTEM_
NAME and a /SYSTEM_NAME qualifier specifies a different value. See
Chapter 6 for more information on the ACS LINK and EXPORT commands.

When you use the pragma SYSTEM_NAME or the ACS SET PRAGMA
command to change the system name (either with an argument of OpenVMS_
AXP, VAX_VMS or VAXELN), an implicit recompilation of the package
SYSTEM occurs. Those units that depend on the value of SYSTEM.SYSTEM_
NAME are then made obsolete, and must be recompiled in the context of the
new system name. For example, consider the following program (dashed lines
separate the individual compilation units):

Managing Program Development 7–43

procedure TASK_WORK is -- VMS-dependent procedure.

pragma TIME_SLICE(0.4);

task type T;

type TASK_FORCE_TYPE is
array (INTEGER range 1..5) of T;

TASK_FORCE: TASK_FORCE_TYPE;

task body T is separate; -- Task body is a subunit.

begin
. . .

end TASK_WORK;
--
with TASK_WORK;
procedure ALL_WORK is -- Main program, depends on

-- target-dependent TASK_WORK.
begin

. . .
TASK_WORK;
. . .

end ALL_WORK;

with TEXT_IO; use TEXT_IO;
separate (TASK_WORK)

task body T is -- Target-independent subunit depends
-- on target-independent package
-- TEXT_IO and target-dependent
-- ancestor, TASK_WORK.

begin
PUT_LINE ("My work’s just starting...");
. . .
delay 3.0;
. . .
PUT_LINE ("My work’s all done!");

end T;

If you compile these units into a program library for which SYSTEM.SYSTEM_
NAME equals VAX_VMS, and subsequently use the ACS SET PRAGMA
command to set SYSTEM_NAME to VAXELN, then the following effects will
occur:

• Procedure TASK_WORK becomes obsolete because it depends on
SYSTEM.SYSTEM_NAME=VAX_VMS.

• The main program, ALL_WORK, becomes obsolete because it depends on
procedure TASK_WORK.

7–44 Managing Program Development

• The subunit TASK_WORK.T becomes obsolete because it depends on its
ancestor, TASK_WORK.

All three units would have to be recompiled before they could be linked, and
recompilation would result in a warning because the pragma TIME_SLICE is
ignored for VAXELN targets. Chapter 1 discusses unit dependences in more
detail.

Managing Program Development 7–45

8
Debugging DEC Ada Tasks

All of the debugger techniques covered in the OpenVMS Debugger Manual
apply to tasks. However, the debugger provides additional features that allow
you to observe task characteristics, control task states, and monitor events
that are specific to tasks, such as rendezvous. For example:

• The debugger SHOW TASK command allows you to observe task states
and the tasks in your program in detail.

• The debugger SET TASK command allows you to control execution rates
and task ordering by setting task states, priorities, time-slicing values, and
so on.

• The debugger SET BREAK/EVENT and SET TRACE/EVENT commands
allow you to monitor a variety of tasking events and state transitions.

This chapter describes how to use these additional features. You should be
familiar with the tasking information in the DEC Ada Language Reference
Manual and DEC Ada Run-Time Reference Manual for OpenVMS Systems.
(See Appendix C for supplemental information on debugging DEC Ada
programs.

When using these features, remember that use of the debugger may alter
the behavior of a tasking program from run to run. For example, while you
are suspending execution of the currently active task at a breakpoint, the
delivery of an AST (asynchronous system trap) as some input-output completes
may make some other task eligible to run as soon as you allow execution to
continue.

Debugging DEC Ada Tasks 8–1

8.1 A Sample Tasking Program
Example 8–1 demonstrates a number of common errors that you may
encounter when debugging tasking programs. The calls to procedure BREAK
in the example mark points of interest where breakpoints could be set and the
state of each task observed. If you were to run the example under debugger
control, you could enter the following command to set breakpoints at each call
to the procedure BREAK and display the current state of each task:

DBG> SET BREAK %LINE 46 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 71 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 76 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 92 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 100 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 104 DO (SHOW TASK/ALL)
DBG> SET BREAK %LINE 120 DO (SHOW TASK/ALL)

The program creates four tasks:

• An environment task that runs the main program, TASK_EXAMPLE. This
task is created before any library packages are elaborated (in this case,
TEXT_IO). The environment task has the task ID %TASK 1 in the SHOW
TASK displays.

• A task object named FATHER. This task is declared by the main program,
and is designated %TASK 2 in the SHOW TASK displays.

• A single task named CHILD. This task is declared by task FATHER, and is
designated %TASK 3 in the SHOW TASK displays.

• A single task named MOTHER. This task is declared by the main program,
and is designated %TASK 4 in the SHOW TASK displays.

Example 8–1 Procedure TASK_EXAMPLE

1 package TASK_EXAMPLE_PKG is
2 procedure BREAK;
3 end;
4
5 package body TASK_EXAMPLE_PKG is
6 procedure BREAK is
7 begin
8 null;
9 end;
10 end;

(continued on next page)

8–2 Debugging DEC Ada Tasks

Example 8–1 (Cont.) Procedure TASK_EXAMPLE

11
12
13 with TEXT_IO; use TEXT_IO;
14 with TASK_EXAMPLE_PKG; use TASK_EXAMPLE_PKG;
15 procedure TASK_EXAMPLE is 1
16
17 pragma TIME_SLICE(0.0); -- Disable time slicing. 2
18
19 task type FATHER_TYPE is
20 entry START;
21 entry RENDEZVOUS;
22 entry BOGUS; -- Never accepted, caller deadlocks.
23 end FATHER_TYPE;
24
25 FATHER : FATHER_TYPE; 3
26
27 task body FATHER_TYPE is
28 SOME_ERROR : exception;
29
30 task CHILD is 4
31 entry E;
32 end CHILD;
33
34 task body CHILD is
35 begin
36 FATHER_TYPE.BOGUS; -- Deadlocks on call to its parent
37 end CHILD; -- (parent does not have an accept
38 -- statement for entry BOGUS). Whenever
39 -- a task-type name (here, FATHER_TYPE)
40 -- is used within a task body, the
41 -- name designates the task currently
42 -- executing the body.
43 begin -- (of FATHER_TYPE body)
44
45 accept START do
46 BREAK; -- Main program is waiting for this rendezvous to
47 -- complete; CHILD is suspended when it calls the
48 -- entry BOGUS.
49 null;
50 end START;
51

(continued on next page)

Debugging DEC Ada Tasks 8–3

Example 8–1 (Cont.) Procedure TASK_EXAMPLE

52 PUT_LINE("FATHER is now active and"); 5
53 PUT_LINE("is going to rendezvous with main program.");
54
55 for I in 1..2 loop
56 select
57 accept RENDEZVOUS do
58 PUT_LINE("FATHER now in rendezvous with main program");
59 end RENDEZVOUS;
60 or
61 terminate;
62 end select;
63
64 if I = 2 then
65 raise SOME_ERROR;
66 end if;
67 end loop;
68
69 exception
70 when OTHERS =>
71 BREAK; -- CHILD is suspended on entry call to BOGUS.
72 -- Main program is going to delay while FATHER
73 -- terminates.
74 -- MOTHER is ready to begin executing.
75 abort CHILD;
76 BREAK; -- CHILD is now abnormal due to the abort statement.
77
78 raise; -- SOME_ERROR exception terminates FATHER.
79 end FATHER_TYPE;
80
81 begin -- (of TASK_EXAMPLE) 6
82
83 declare
84 task MOTHER is 7
85 entry START;
86 pragma PRIORITY (6);
87 end MOTHER;
88
89 task body MOTHER is
90 begin
91 accept START;
92 BREAK; -- At this point, the main program is waiting for
93 -- its dependents (FATHER and MOTHER) to terminate.
94 -- FATHER is terminated.
95 null;
96 end MOTHER;

(continued on next page)

8–4 Debugging DEC Ada Tasks

Example 8–1 (Cont.) Procedure TASK_EXAMPLE

97 begin 8
98
99
100 BREAK; -- FATHER is suspended at accept start.
101 -- CHILD is suspended in its deadlock.
102 -- MOTHER has activated and ready to begin executing.
103 FATHER.START; 9
104 BREAK; -- FATHER is suspended at its ’select or terminate’
105 -- statement.
106
107
108 FATHER.RENDEZVOUS;
109 FATHER.RENDEZVOUS; 1 0
110 loop 1 1
111 -- This loop causes the main program to busy wait
112 -- for the termination of FATHER, so that FATHER
113 -- can be observed in its terminated state.
114 if FATHER’TERMINATED then
115 exit;
116 end if;
117 delay 1.0;
118 end loop;
119
120 BREAK; -- FATHER has terminated by now with the unhandled
121 -- exception SOME_ERROR. CHILD no longer exists
122 -- because its master (FATHER) has terminated. Task
123 -- MOTHER is ready.
124 MOTHER.START; 1 2
125 -- The main program enters a wait-for-dependents state,
126 -- so that MOTHER can finish executing.
127 end;
128 end TASK_EXAMPLE; 1 3

Key to Example 8–1:

1 After all of the library packages are elaborated (in this case, TEXT_IO),
the main program is automatically called and begins to elaborate its
declarative part (lines 16 through 80).

2 To ensure repeatability from run to run, the example uses no time slicing.
The 0.0 value for the pragma TIME_SLICE documents that the procedure
TASK_EXAMPLE needs to have time slicing disabled (On VAX systems,
time slicing is disabled if the pragma TIME_SLICE is omitted or is
specified with a value of 0.0; On AXP systems, pragma TIME_SLICE (0.0)
must be used to disable time slicing).

Debugging DEC Ada Tasks 8–5

3 Task object FATHER is elaborated, and a task designated %TASK 2 is
created. FATHER has no pragma PRIORITY, and thus assumes a default
priority. FATHER (%TASK 2) is created in a suspended state and is not
activated until the beginning of the statement part of the main program
(line 81), in accordance with Ada rules. The elaboration of the task body
on lines 27 through 79 defines the statements that tasks of type FATHER_
TYPE will execute.

4 Task FATHER declares a single task named CHILD (line 30). A single task
represents both a task object and an anonymous task type. Task CHILD is
not created or activated until FATHER is activated.

5 The only source of ASTs is this series of TEXT_IO.PUT_LINE statements
(input-output completion delivers ASTs).

6 The task FATHER is activated while the main program waits. FATHER
has no pragma PRIORITY and this assumes a default priority of 7. (See
DEC Ada Run-Time Reference Manual for OpenVMS Systems for the
rules concerning default priorities.) FATHER’s activation consists of the
elaboration of lines 27 through 42.

When task FATHER is activated, it waits while its task CHILD is activated
and a task designated %TASK 3 is created. CHILD executes one entry call
on line 36, and then deadlocks because the entry is never accepted.

Note that because time-slicing is disabled and there are no higher priority
runable tasks, FATHER will continue to execute past its activation until it
is blocked at the ACCEPT statement at line 45.

7 A single task, MOTHER, is defined, and a task designated %TASK 4 is
created. The pragma PRIORITY gives MOTHER a priority of 6.

8 The task MOTHER begins its activation and executes line 89. After
MOTHER is activated, the main program (%TASK 1) is eligible to resume
its execution. Because %TASK 1 has the default priority 7, which is higher
than MOTHER’s priority, the main program resumes execution.

9 This is the first rendezvous the main program makes with task FATHER.
After the rendezvous FATHER will suspend at the SELECT with
TERMINATE statement at line 56.

1 0 At the third rendezvous with FATHER, FATHER raises the exception
SOME_ERROR on line 65. The handler on line 70 catches the exception,
aborts the suspended CHILD task, and then reraises the exception;
FATHER then terminates.

1 1 A loop with a delay statement ensures that when control reaches line 120,
FATHER has executed far enough to be terminated.

8–6 Debugging DEC Ada Tasks

1 2 This entry call ensures that MOTHER does not wait forever for its
rendezvous on line 91. MOTHER executes the accept statement (which
involves no other statements), the rendezvous is completed, and MOTHER
is immediately switched off the processor at line 92 because its priority is
only 6.

1 3 After its rendezvous with MOTHER, the main program (%TASK 1)
executes lines 125 through 127. At line 127, the main program must
wait for all its dependent tasks to terminate. When the main program
reaches line 127, the only nonterminated task is MOTHER (MOTHER
cannot terminate until the null statement at line 95 has been executed).
MOTHER finally executes to its completion at line 96. Now that all tasks
are terminated, the main program completes its execution. The main
program then returns and execution resumes with the command-line
interpreter.

8.2 Referring to Tasks in Debugger Commands
You refer to tasks in debugger commands using three kinds of expressions:

• An Ada language expression for a task value (for example, FATHER)

• A task ID (for example, %TASK 2)

• A pseudotask name (for example, %ACTIVE_TASK)

You can mix these expressions in the same debugger command line.

The following sections discuss these expressions in more detail and give
examples of how to use them (the examples are derived from Example 8–1).

Note

The debugger does not support the task-specific attributes
T’CALLABLE, E’COUNT, T’STORAGE_SIZE, and T’TERMINATED.
See Section 8.2.4 for more information.

Debugging DEC Ada Tasks 8–7

8.2.1 Ada Language Expressions for Tasks
A task is an entity that executes in parallel with other tasks. A task is
characterized by a unique task ID (defined in Section 8.2.2), a separate stack,
and a separate register set. You declare a task either by declaring a single task
or by declaring an object of a task type. For example:

-- TASK TYPE declaration.
--
task type FATHER_TYPE is
. . .
end FATHER_TYPE;

task body FATHER_TYPE is
. . .
end FATHER_TYPE;

-- A single task.
--
task MOTHER is
. . .
end MOTHER;

task body MOTHER is
. . .
end MOTHER;

A task object is a data item that contains a task value. A task object is created
when the program elaborates a single task or task object, when you declare
a record or array containing a task component, or when a task allocator is
evaluated. For example:

-- Task object declaration.
--
FATHER : FATHER_TYPE;

-- Task object (T) as a component of a record.
--
type SOME_RECORD_TYPE is

record
A, B: INTEGER;
T : FATHER_TYPE;

end record;

HAS_TASK : SOME_RECORD_TYPE;

-- Task object (POINTER1) via allocator.
--
type A is access FATHER_TYPE;
POINTER1 : A := new FATHER_TYPE;

8–8 Debugging DEC Ada Tasks

A task object is comparable to any other object. You refer to a task object in
debugger commands either by name or by path name. For example:

DBG> EXAMINE FATHER
DBG> EXAMINE FATHER_TYPE$TASK_BODY.CHILD

See OpenVMS Debugger Manual for more information on path names.

When a task object is elaborated, a task is created by the DEC Ada run-time
library, and the task object is assigned its task value. As with other Ada
objects, the value of a task object is undefined before the object is initialized,
and the results of using an uninitialized value are unpredictable.

The task body of a task type or single task is implemented in DEC Ada as a
procedure. This procedure is called by the DEC Ada run-time library when
a task of that type is activated. A task body is treated by the debugger as a
normal Ada procedure, except that it has a specially constructed name.

To specify the task body in a debugger command, use the following syntax to
refer to tasks declared as task types:

task-type-identifier$TASK_BODY

Use the following syntax to refer to single tasks:

task-identifier$TASK_BODY

For example:

DBG> SET BREAK FATHER_TYPE$TASK_BODY

8.2.2 Task ID (%TASK)
A task ID is the value used by the DEC Ada run-time library and debugger to
uniquely identify a task during the entire execution of a program.

A task ID has the following syntax, where n is a positive decimal integer:

%TASK n

You can determine the task ID of a task object by evaluating or examining the
task object. For example:

DBG> EVALUATE FATHER
%TASK 2
DBG> EXAMINE FATHER
TASK_EXAMPLE.FATHER: %TASK 2

Debugging DEC Ada Tasks 8–9

You can also use the SHOW TASK/ALL command to identify the task IDs that
have been assigned to all currently existing tasks. For example:

DBG> SHOW TASK/ALL

task id pri hold state substate task object
* %TASK 1 7 RUN SHARE$ADARTL+130428
%TASK 2 7 SUSP Accept TASK_EXAMPLE.MOTHER+4
%TASK 3 7 SUSP Entry call TASK_EXAMPLE.FATHER_TYPE$TASK_BODY.CHILD+4
%TASK 4 6 READY TASK_EXAMPLE.MOTHER+4

DBG>

You can use task IDs to refer to nonexistent tasks in debugger conditional
statements. For example, if you had already run your program once, and you
discovered that %TASK 2 and 3 were of interest, you could enter the following
commands at the beginning of your next debugging session, before %TASK 2 or
3 was created:

DBG> SET BREAK %LINE 58 WHEN (%ACTIVE_TASK=%TASK 2)
DBG> IF (%CALLER=%TASK 3) THEN (SHOW TASK/FULL)

In other words, you can use a task ID in certain debugger commands before the
task has been created, without the debugger reporting an error (as it would if
you were to use a task object name before the task object came into existence).
A task does not exist until the task object is elaborated, and later becomes
nonexistent sometime after it terminates (when the task’s master terminates).
A nonexistent task never appears in a debugger SHOW TASK display.

Each time a program is run, the same task IDs are assigned to the same tasks
as long as the program statements are executed in the same order. Different
execution orders may result from asynchronous system traps (ASTs) (caused
by delay statement expiration or input-output completion) being delivered in a
different order or from time slicing. Task IDs are never reassigned during the
execution of the program.

The DEC Ada run-time library always assigns %TASK 1 to the environment
task that executes the main program. On VAX systems, it always assigns
%TASK 0 to the null task that executes when there are no other tasks—
including the main program—eligible to execute. The null task is a special task
created by the run-time library; you cannot apply most debugger commands
to the null task. On AXP systems, %TASK 0 is often used for tasks that have
been created but are not yet activated.

Note that on VAX systems, task IDs are assigned at task creation; on AXP
systems, task ID’s are assigned at activation.

8–10 Debugging DEC Ada Tasks

8.2.3 Pseudotask Names
The debugger recognizes a number of significant tasks by pseudotask name:

• %ACTIVE_TASK—refers to the task that will run when a STEP or GO
command is executed

• %VISIBLE_TASK—refers to the task whose task and register set are the
current context for looking up names, calls, and so on

• %NEXT_TASK—refers to the task that will run next, after the active task

• %CALLER_TASK—when an accept statement is being executed, refers to
the task that called the entry associated with the accept statement

More information on these pseudotask names and examples of their use with
various debugger commands are given in the following sections.

8.2.3.1 Active Task (%ACTIVE_TASK)
The active task is the task that runs when a debugger STEP or GO command
is executed. Initially, it is the task that is interrupted when the debugger is
invoked. You can cause a different task to become the active task by using the
debugger SET TASK/ACTIVE command (see Section 8.5).

You can specify the active task in debugger commands using the pseudotask
name %ACTIVE_TASK. For example, the following command places the active
task on HOLD:

DBG> SET TASK/HOLD %ACTIVE_TASK

The following command triggers a breakpoint at line 36 only when line 36 is
executed by the task named CHILD:

DBG> SET BREAK %LINE 36 WHEN (%ACTIVE_TASK=CHILD)

8.2.3.2 Visible Task (%VISIBLE_TASK)
The visible task is the task whose stack and register set are the current context
for looking up names, calls, and so on. In the following example, the value of
the variable KEEP_COUNT in the context of the visible task is returned:

DBG> EXAMINE KEEP_COUNT

Initially, the visible task is the active task, but in a multitasking program, it
may not always be the active task. You can cause a task to become the visible
task by using the debugger SET TASK/VISIBLE command. However, making
a task the visible task does not make it the active task.

Debugging DEC Ada Tasks 8–11

You can specify the visible task in debugger commands with the pseudotask
name %VISIBLE_TASK. For example, the following command obtains the task
ID of the visible task:

DBG> EVALUATE %VISIBLE_TASK

The visible task is the task recognized by many of the debugger commands. In
particular, the SET TASK command and its various qualifiers operate on the
visible task; see Section 8.5.

8.2.3.3 Next Task (%NEXT_TASK)
The next task is the task that will execute when the visible task has finished
executing. You can specify the next task in debugger commands using the
pseudotask name %NEXT_TASK. The ordering of tasks is arbitrary but
consistent within a single run of a program.

The pseudotask name %NEXT_TASK is useful for cycling through the total set
of tasks that currently exist. For example, the following sequence of commands
eventually cycles back to the task you started with:

DBG> SHOW TASK %VISIBLE_TASK; SET TASK/VISIBLE %NEXT_TASK
DBG> SHOW TASK %VISIBLE_TASK; SET TASK/VISIBLE %NEXT_TASK

.

.

.

8.2.3.4 Caller Task (%CALLER_TASK)
The caller task is the task that called the entry associated with an accept
statement, when the sequence of statements in the accept statement is being
executed. You can specify the caller task in debugger commands using the
pseudotask name %CALLER_TASK. This pseudotask name evaluates to the
task ID of the task that called the entry associated with the accept statement.
Otherwise, %CALLER_TASK evaluates to %TASK 0. For example, %CALLER_
TASK evaluates to %TASK 0 if the active task is not currently executing the
accept statement.

For example, the following command sets a breakpoint within an accept
statement of the sample program in Example 8–1:

DBG> SET BREAK %LINE 59

The accept statement in this case is being executed by task FATHER
(%TASK 2) in response to a call of entry RENDEZVOUS by the main program
(%TASK 1). Thus, when an EVALUATE %CALLER_TASK command is entered
at this point, the result is the task ID of the calling task, the main program:

8–12 Debugging DEC Ada Tasks

DBG> EVALUATE %CALLER_TASK
%TASK 1
DBG>

When the rendezvous is the result of an AST entry call, %CALLER_TASK
evaluates to %TASK 0 because the caller is not a task. See the DEC Ada Run-
Time Reference Manual for OpenVMS Systems for information on AST entry
calls.

8.2.4 Debugger Support of Ada Task Attributes
The Ada language defines the following attributes specific to tasks:
T’CALLABLE, E’COUNT, T’STORAGE_SIZE, and T’TERMINATED, where
T is a task type and E is a task entry (see the DEC Ada Language Reference
Manual for more information on these attributes).

The debugger does not support these attributes, so you cannot enter commands
such as EVALUATE CHILD’CALLABLE. However, you can obtain the
information provided by each of these attributes with the debugger SHOW
TASK command. See Section 8.3 for more information on this command.

8.3 Displaying Task Information (SHOW TASK)
You use the debugger SHOW TASK command to display information about one
or more tasks in a multitasking program. The command format is as follows:

SHOW TASK[/qualifier[...]] [task-expression[,...]]

The SHOW TASK command has two kinds of qualifiers: task-selection
qualifiers, which allow you to select tasks satisfying certain criteria; and
information qualifiers, which provide additional information about specified
tasks. Task expressions are defined in Section 8.2.

Note that you can use the pragma GET_TASK_INFO to obtain information
about the currently executing task. See Section C.2 for more information.

The following sections explain how to use the SHOW TASK command and its
qualifiers.

Debugging DEC Ada Tasks 8–13

8.3.1 Displaying Basic Information on All Tasks
The debugger SHOW TASK/ALL command provides basic information on all
the tasks of a program that are currently in existence—namely, tasks that
have been created and whose master has not yet terminated. For example:

DBG> SHOW TASK/ALL
1 2 3 4 5 6
task id pri hold state substate task object

* %TASK 1 7 RUN SHARE$ADARTL+130428
%TASK 2 7 HOLD SUSP Accept TASK_EXAMPLE.MOTHER+4
%TASK 3 7 SUSP Entry call TASK_EXAMPLE.FATHER_TYPE$TASK_BODY.CHILD+4
%TASK 4 6 READY TASK_EXAMPLE.MOTHER

DBG>

The information in each column is as follows:

1 The task ID of the task. An asterisk indicates that the task is the visible
task.

2 The task priority. DEC Ada priorities range from 0 to 15. See the DEC Ada
Run-Time Reference Manual for OpenVMS Systems for more information.

3 Indicates whether the task has been placed on HOLD with a SET TASK
/HOLD command. Placing a task on HOLD restricts the state transitions
it can make once the program is subsequently allowed to execute. A task
placed on HOLD may enter any state except the RUNNING state (however,
you can force it into the RUNNING state by using the SET TASK/ACTIVE
command).

4 Indicates the state of the task when the debugger interrupted program
execution. The four possible states recognized by the debugger are
identified in Table 8–1. Figure 8–1 shows the possible transitions of a
task’s state during program execution. Note from the SHOW TASK display
that the states of Table 8–1 are abbreviated to RUN, READY, SUSP, and
TERM, respectively.

5 Indicates the substate of a task when the debugger interrupted program
execution. The possible task substates refer to Ada-specific task conditions
as identified in Table 8–2. The substate helps indicate the possible
cause of a task’s state. For example, if the current state of the task is
SUSPENDED, then the entry in the substate column indicates the reason.

6 A debugger path name for the task object, or the address of the task object
if the debugger cannot determine its path name.

8–14 Debugging DEC Ada Tasks

If you are debugging in screen mode, the following command causes changes in
the SHOW TASK display (such as switches in task states) to be highlighted in
reverse video:

DBG> DISPLAY/MARK_CHANGE T AT Q2 DO (SHOW TASK/ALL)

Here, T is the display name; Q2 specifies window Q2, which occupies the
second quarter of the screen.

Note that you will receive an error message if you enter the DISPLAY/MARK_
CHANGE command before the program has been elaborated (before typing
GO to get to the beginning of the main program). Also, note that display T is
updated only when the debugger gains control for some reason, such as at a
breakpoint.

Table 8–1 Task States

Task State Meaning

RUNNING Currently running on the processor. This is the active task.

READY Eligible to execute and waiting for the processor to be made
available.

SUSPENDED Suspended—that is, waiting for an event rather than for the
availability of the processor. For example, when a task is created, it
remains in the suspended state until it is activated.

TERMINATED Terminated.

Figure 8–1 Task State Transitions

READY

SUSPENDED

RUNNING TERMINATED

ZK−3086−GE

Debugging DEC Ada Tasks 8–15

Table 8–2 Task Substates

Task Substate Meaning

Abnormal Task has been aborted.

Accept Task is waiting at an accept statement that is not inside a
select statement.

Activating Task is elaborating its declarative part.

Activating tasks Task is waiting for tasks it has created to finish activating.

Completed [abn] Task is completed due to an abort statement, but is not yet
terminated. In Ada, a completed task is one that is waiting
for dependent tasks at its end statement. After the dependent
tasks are terminated, the state changes to terminated.

Completed [exc] Task is completed due to an unhandled exception,1 but is not
yet terminated. In Ada, a completed task is one that is waiting
for dependent tasks at its end statement. After the dependent
tasks are terminated, the state changes to terminated.

Completed Task is completed. No abort statement was issued, and no
unhandled exception1 occurred.

Delay Task is waiting at a delay statement.

Dependents Task is waiting for dependent tasks to terminate.

Dependents [exc] Task is waiting for dependent tasks to allow an unhandled
exception1 to propagate.

Entry call Task is waiting for its entry call to be accepted.

Invalid state There is an error in the DEC Ada run-time library.

I/O or AST Task is waiting for input-output completion or some AST.

Not yet activated Task is waiting to be activated by the task that created it.

Select or delay Task is waiting at a select statement with a delay
alternative.

Select or terminate Task is waiting at a select statement with a terminate
alternative.

Select Task is waiting at a select statement with no else, delay, or
terminate alternative.

Shared resource Task is waiting for an internal shared resource.

Terminated [abn] Task was terminated by an abort statement.

Terminated [exc] Task was terminated because of an unhandled exception.1

1An unhandled exception is one for which there is no handler, or for which there is a handler that
executes a raise statement and propagates the exception to an outer scope.

(continued on next page)

8–16 Debugging DEC Ada Tasks

Table 8–2 (Cont.) Task Substates

Task Substate Meaning

Terminated Task terminated normally.

Timed entry call Task is waiting in a timed entry call.

8.3.2 Selecting Tasks for Display
You can select tasks for display with the debugger SHOW TASK command by
specifying any of the following:

• A task list (a list of task expressions)

• Task selection qualifiers

• Both a task list and task selection qualifiers

If no parameters or task selection qualifiers are given, the SHOW TASK
command displays summary information about the visible task.

The following sections discuss task lists and task selection qualifiers in more
detail.

8.3.2.1 Task List
You specify a task list of one or more tasks with a series of task expressions
separated by commas. For example, the following command selects the active
task, %TASK 3, and task MOTHER for display:

DBG> SHOW TASK %ACTIVE_TASK,%TASK 3,MOTHER

Task expressions are defined in Section 8.2.

8.3.2.2 Task-Selection Qualifiers
You can use the task selection qualifiers listed in Table 8–3 with the debugger
SHOW TASK command to select any tasks that satisfy all of a specified set of
criteria. For example, the following command selects all tasks with priority 6:

DBG> SHOW TASK/PRIORITY=6

The following command selects all tasks that are either running
or suspended:

DBG> SHOW TASK/STATE=(RUNNING,SUSPENDED)

Debugging DEC Ada Tasks 8–17

When two or more task-selection qualifiers are used in the same SHOW
TASK command, only those tasks that satisfy all specified criteria are selected
for display. For example, the following command selects all tasks that are
suspended and not on hold:

DBG> SHOW TASK/STATE=SUSPENDED/NOHOLD

Table 8–3 SHOW TASK Command Qualifiers for Task Selection

Qualifier Meaning

/ALL Selects all tasks that currently exist in the program for
display. When you specify /ALL, you cannot specify a
task list.

/HOLD If you do not specify a task list, selects all tasks that
are on HOLD. If you specify a task list, selects the
tasks in the task list that are on HOLD.

/NOHOLD If you do not specify a task list, selects all tasks that
are not on HOLD. If you specify a task list, selects the
tasks in the task list that are not on HOLD.

/PRIORITY=(n[,...]) If you do not specify a task list, selects all tasks that
have any of the specified priorities, n, where n is a
decimal integer from 0 to 15 inclusive. If you specify
a task list, selects the tasks in the task list that have
any of the priorities specified.

/STATE=(state[,...]) If you do not specify a task list, selects all tasks
that are in any of the specified states (the possible
states are RUNNING, READY, SUSPENDED, or
TERMINATED). If you specify a task list, selects the
tasks in the task list that are in any of the states
specified.

8.3.2.3 Task List and Task Selection Qualifiers
When you specify both a task list and multiple task-selection qualifiers with
the debugger SHOW TASK command, only the tasks that satisfy all specified
criteria are selected for display. For example, the following command selects
those tasks among the visible task, %TASK 3, and MOTHER that are in the
RUNNING or SUSPENDED STATE, and have priority 7:

DBG> SHOW TASK/STATE=(RUN,SUSP)/PRIORITY=7 %VISIBLE_TASK, -
_DBG> %TASK 3,MOTHER

8–18 Debugging DEC Ada Tasks

8.3.3 Obtaining Additional Information
You can use the information-selection qualifiers listed in Table 8–4 with the
debugger SHOW TASK command to obtain specific information about all of
the tasks in your program. You can use the information-selection qualifiers
in conjunction with the task-selection techniques described in Sections 8.3.2.1
through 8.3.2.3.

Table 8–4 SHOW TASK Command Qualifiers for Information Selection

Qualifier Meaning

/CALLS[=n] Performs a SHOW CALLS command for each task
selected for display (see OpenVMS Debugger Manual
for a description of the SHOW CALLS command). You
can use the SHOW CALLS command to obtain the
current PC (program counter) of a task.

/FULL Displays additional information about each task
selected for display. /FULL provides additional
information if used either by itself, or with the /CALLS
or /STATISTICS qualifier.

/STATISTICS Displays tasking statistics for the entire tasking
system. When you specify /STATISTICS, the only
other permissible qualifier is /FULL.

This qualifier is not fully supported on AXP systems.

/TIME_SLICE On VAX systems only.

Displays the current value of the pragma TIME_
SLICE.

The SHOW TASK/FULL command provides detailed information about each
task selected for display. For example:

1 task id pri hold state substate task object
%TASK 2 7 SUSP Accept TASK_EXAMPLE.FATHER

2 Awaiting rendezvous at: accept START
having do part at address 00000A68

Waiting entry callers:
Waiters for entry BOGUS:

%TASK 3, type: CHILD

Debugging DEC Ada Tasks 8–19

3 Task type: FATHER_TYPE
Created at PC: TASK_EXAMPLE.%LINE 27
Parent task: %TASK 1
Start PC: TASK_EXAMPLE.FATHER_TYPE$TASK_BODY

4 Task control block: 5 Stack storage (bytes):
Task value: 1010344 RESERVED_BYTES: 10640
Entries: 3 TOP_GUARD_SIZE: 5120
Size: 1500 STORAGE_SIZE: 30720

6 Stack addresses: Bytes in use: 632
Top address: 000FB000
Base address: 001027FC 7 Total storage: 47980

The following notes are keyed to this example:

1 Identifying information about the task.

2 Rendezvous information. If the task is a caller task, lists the entries for
which it is queued. If the task is to be called, gives information about
the kind of rendezvous that will take place and lists the callers that are
currently queued for any of the task’s entries.

3 Task context information.

4 Task control block information. The task value is the address, in decimal
notation, of the task control block.

5 Stack storage information:

• RESERVED_BYTES gives the storage allocated by the Ada run-time
library for handling stack overflow.

• TOP_GUARD_SIZE gives the storage allocated for guard pages, which
provide protection against storage overflow during task execution.
You can specify the number of bytes to be allocated as guard pages
with the DEC Ada pragmas TASK_STORAGE and MAIN_STORAGE
(VAX only); the number shown by the debugger is the number of bytes
allocated (the pragma value is rounded up to an integral number of
pages, as necessary). See the DEC Ada Language Reference Manual
and DEC Ada Run-Time Reference Manual for OpenVMS Systems for
more information about these pragmas and the top guard storage area.

• STORAGE_SIZE gives the storage allocated for the task activation. You
can specify the number of bytes to be allocated with the T’STORAGE_
SIZE representation clause or in the DEC Ada pragma MAIN_
STORAGE (VAX only); the number shown by the debugger is the
number of bytes allocated (the value specified is rounded up to an
integral number of pages, as necessary). See the DEC Ada Language
Reference Manual and DEC Ada Run-Time Reference Manual for
OpenVMS Systems for more information about this representation

8–20 Debugging DEC Ada Tasks

clause and pragma and about the task activation (working) storage
area.

• ‘‘Bytes in use:’’ gives the amount of the task stack currently in use.

6 Stack addresses of the task stack.

7 The total storage used by the task. Adds together the task control block
size, the number of reserved bytes, the top guard size, and the storage size.

Figure 8–2 shows the task stack for task FATHER.

The SHOW TASK/STATISTICS command reports some statistics about all of
the tasks in your program. The SHOW TASK/STATISTICS/FULL command
reports more of them. For example:

DBG> SHOW TASK/STATISTICS/FULL

task statistics
Entry calls = 4 Accepts = 1 Selects = 2
Tasks activated = 3 Tasks terminated = 0
ASTs delivered = 4 Hibernations = 0
Total schedulings = 15

Due to readying a higher priority task = 1
Due to task activations = 3
Due to suspended entry calls = 4
Due to suspended accepts = 1
Due to suspended selects = 2
Due to waiting for a DELAY = 0
Due to scope exit awaiting dependents = 0
Due to exception awaiting dependents = 0
Due to waiting for I/O to complete = 0
Due to delivery of an AST = 4
Due to task terminations = 0
Due to shared resource lock contention = 0

You can use this statistics information to measure the performance of your
tasking program. The larger the number of total schedulings (also known as
context switches), the more tasking overhead there is.

Debugging DEC Ada Tasks 8–21

Figure 8–2 Diagram of a Task Stack

low address

001EB600:

001F2C38:

001FD2FC:

00077D40:
(490816)

high address

ZK−6742−GE

storage
size

bytes
in use

:top
address

:sp

:base
address

task control block

top guard

reserved bytes

8.4 Examining and Manipulating Tasks
The debugger EXAMINE command (or EXAMINE/TASK command), applied to
a task object, displays the task ID. For example:

DBG> EXAMINE FATHER
TASK_EXAMPLE.FATHER: %TASK 2
DBG>

8–22 Debugging DEC Ada Tasks

You can use the EXAMINE/HEXADECIMAL command (or the
EXAMINE/TASK/HEXADECIMAL command) to determine the 8-digit
hexadecimal task value. (In DEC Ada, the task value is the address of the task
control block of a specified task.) For example:

DBG> EXAMINE/HEXADECIMAL FATHER
TASK_EXAMPLE.FATHER: 0015AD00
DBG>

8.5 Changing Task Characteristics (SET TASK)
You use the debugger SET TASK command to change a task’s characteristics
as you debug your program. The command format is as follows:

SET TASK[/qualifier[...]] [task-expression[,...]]

Table 8–5 defines the SET TASK command qualifiers. Section 8.2 defines task
expressions. Note that if no qualifier is specified, the /VISIBLE qualifier is
assumed by default.

Table 8–5 SET TASK Command Qualifiers

Qualifier Meaning

Task Selection Qualifiers

/ALL Applies the SET TASK command to all tasks. When you specify
/ALL, you cannot specify a task list, nor can you specify the
/ACTIVE, /VISIBLE, or /TIME_SLICE (VAX only) qualifiers.

Attribute Qualifiers

/ABORT Aborts the specified tasks. If no task list is specified, aborts the
visible task. Note that the task is marked for termination but is
not immediately terminated. The effect is identical to executing
the Ada statement abort task-name, and causes the specified
tasks to become abnormal.

/ACTIVE Makes the specified task the active task. Causes a task switch
to the new active task and resets the visible task to be the new
active task. The specified task must be in either the RUNNING
or READY state. You must specify only one task.

(continued on next page)

Debugging DEC Ada Tasks 8–23

Table 8–5 (Cont.) SET TASK Command Qualifiers

Qualifier Meaning

Attribute Qualifiers

/HOLD Places the specified tasks on HOLD. If no task list is specified,
places the visible task on HOLD.

Placing a task on HOLD prevents a task from entering the
RUNNING state. A task placed on HOLD is allowed to make
other state transitions; in particular, it may change from the
SUSPENDED to the READY state.

A task that is already in the RUNNING state (the active task)
can continue to execute as long as it remains in the RUNNING
state, even though it is placed on HOLD. If the task leaves
the RUNNING state for any reason (including expiration of a
time slice, if time slicing is enabled), it may not return to the
RUNNING state until the HOLD is removed. You can force a
task into the RUNNING state with the SET TASK/ACTIVE
command even if the task is on HOLD.

/NOHOLD Removes the specified tasks from HOLD. If no task list is
specified, removes the visible task from HOLD.

/PRIORITY=n Sets the priority of the specified tasks to n, where n is a decimal
integer from 0 to 15, inclusive. If no task list is specified, sets the
priority of the visible task to n. Note that this does not prevent
the task’s priority from later changing in the course of execution,
for example, while executing a rendezvous.

/RESTORE Causes the priority of the specified tasks to be restored to the
value specified in a pragma PRIORITY. If a pragma PRIORITY
was not specified, the default value is used. If no task list is
specified, causes the priority of the visible task to be restored.

/TIME_SLICE=t On VAX systems only.

Sets the duration otherwise specified by the pragma TIME_
SLICE to the value t, where t is a decimal integer or fixed-
point value representing seconds (see Section 8.7.2). The SET
TASK/TIME_SLICE=0.0 command disables time slicing.

/VISIBLE Makes the specified task the visible task. You must specify only
one task.

Most of the qualifiers provide a means of controlling the tasking environment
by directly or indirectly causing task state transitions. In contrast, the
/VISIBLE qualifier is used to direct subsequent debugger commands, such as
EXAMINE, to an individual task. See Section 8.2.3.2 for more information on
the visible task.

8–24 Debugging DEC Ada Tasks

Task switching may be confusing when you are trying to debug a program.
The SET TASK/TIME_SLICE (on VAX system only) and SET TASK/HOLD
commands give you several ways of controlling task switching.

The SET TASK/HOLD/ALL command freezes the state of all tasks (except
the active task). You can use this command in combination with the SET
TASK/ACTIVE command to observe the behavior of one or more specified tasks
in isolation, by executing the active task with the STEP or GO command, then
switching execution to another task with the SET TASK/ACTIVE command.
For example:

DBG> SET TASK/HOLD/ALL
DBG> SET TASK/ACTIVE %TASK 1
DBG> GO

.

.

.
DBG> SET TASK/ACTIVE %TASK 3
DBG> STEP

.

.

.

8.6 Setting Breakpoints and Tracepoints
You can use the debugger SET BREAK and SET TRACE commands with
tasking programs just as you use them with nontasking programs. You can
also take advantage of the following task-related features:

• Task-specific and task-independent debugger eventpoints

• Task body, entry call, and accept statement breakpoints and tracepoints

• The /EVENT=event-name qualifier (which allows you to set a breakpoint or
tracepoint when a task makes a state transition)

The following sections explain how to use these features.

8.6.1 Task-Specific and Task-Independent Debugger Eventpoints
An eventpoint is an event that you can use to return control to the debugger.
An eventpoint is set by a debugger command to instruct the debugger to watch
for the specified event, and is triggered when the debugger observes the event.
Breakpoints, tracepoints, watchpoints, and step commands are eventpoints.

Debugging DEC Ada Tasks 8–25

Task-independent eventpoints can be triggered by the execution of any task in
a program, regardless of which task is active when the eventpoint is set. Task-
independent eventpoints are generally specified by an address expression such
as a line number or a name. All watchpoints are task-independent eventpoints.
For example:

DBG> SET BREAK COUNTER
DBG> SET BREAK/NOSOURCE %LINE 53, CHILD$TASK_BODY
DBG> SET WATCH/AFTER=3 KEEP_COUNT

A task-specific eventpoint can be set only for the task that is active when the
command is entered. A task-specific eventpoint is triggered only when that
same task is active. For example, the STEP/LINE command is a task-specific
eventpoint: other tasks may execute the same Ada source line and not trigger
the event.

The following eventpoints are task specific. Any other eventpoints, including
all those set with the SET WATCH command, are task independent.

STEP/BRANCH
STEP/CALL
STEP/INSTRUCTION[=opcode]
STEP/LINE
STEP/RETURN

SET BREAK/BRANCH
SET BREAK/CALL
SET BREAK/INSTRUCTION[=opcode]
SET BREAK/LINE

SET TRACE/BRANCH
SET TRACE/CALL
SET TRACE/INSTRUCTION[=opcode]
SET TRACE/LINE

For example, the following eventpoints are task specific:

DBG> SET BREAK/INSTRUCTION
DBG> SET TRACE/INSTRUCTION/SILENT DO (EXAMINE KEEP_COUNT)
DBG> STEP/CALL/NOSOURCE

To work around this restriction, you can use a WHEN clause. For example:

DBG> SET BREAK %LINE 9 WHEN (%ACTIVE_TASK=FATHER)

8–26 Debugging DEC Ada Tasks

8.6.2 Task Bodies, Entry Calls, and Accept Statements
You can always use line numbers when setting breakpoints or tracepoints.
However, names, if they exist, are preferable as address expressions because
they are more stable as you modify your program.

As discussed in Section 8.2.1, you can use one of the following two forms when
referring to a task body in a debugger command:

task-type-identifier$TASK_BODY
task-identifier$TASK_BODY

For example, the following command sets a breakpoint on the body of task
CHILD. This breakpoint is triggered just before the elaboration of the task’s
declarative part (also called the task’s activation) :

DBG> SET BREAK CHILD$TASK_BODY
DBG>

Note that CHILD$TASK_BODY is a name for the address of the first
instruction the task will execute. It is meaningful to set a breakpoint on
an instruction, and hence on this name. However, you must not name the task
object (for example, CHILD) in a SET BREAK command. The task-object name
designates the address of a data item (the task value). Just as it is erroneous
to set a breakpoint on an integer object, it is erroneous to set a breakpoint on a
task object.

You can monitor the execution of communicating tasks by setting breakpoints
or tracepoints on entry calls and accept statements. There are several points
in and around an accept statement where you may want to set a breakpoint or
tracepoint. For example, consider the following program segment, which has
two accept statements for the same entry, RENDEZVOUS:

8 task body TWO_ACCEPTS is
9 begin
10 for I in 1..2 loop
11 select
12 accept RENDEZVOUS do
13 PUT_LINE("This is the first accept statement");
14 end RENDEZVOUS;
15 or
16 terminate;
17 end select;
18 end loop;
19 accept RENDEZVOUS do
20 PUT_LINE("This is the second accept statement");
21 end RENDEZVOUS;
22 end TWO_ACCEPTS;

Debugging DEC Ada Tasks 8–27

You can set a breakpoint or tracepoint in the following places in the previous
example:

1. At the start of an accept statement (line 12 or 19). By setting a breakpoint
or tracepoint here, you can monitor when execution reaches the start of the
accept statement, where the accepting task may become suspended before
a rendezvous actually occurs.

2. At the start of the body (sequence of statements) of an accept statement
(line 13 or 20). By setting a breakpoint or tracepoint here, you can monitor
when a rendezvous has been initiated—that is, when the accept statement
actually begins execution.

3. At the end of an accept statement (line 14 or 21). By setting a breakpoint
or tracepoint here, you can monitor when the rendezvous has completed,
and execution is about to switch back to the caller task.

To set a breakpoint or tracepoint in and around an accept statement, you can
specify the associated line number. For example, the following command sets
a breakpoint on the start and also on the body of the first accept statement in
the previous example:

DBG> SET BREAK %LINE 12, %LINE 13

To set a breakpoint or a tracepoint on an accept statement body, you can also
use the entry name (specifying its expanded name to identify the task body
where the entry is declared). For example:

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS

If there is more than one accept statement for an entry, the debugger treats
the entry as an overloaded name. In other words, the debugger issues a
message indicating that the symbol is overloaded, and you must use the SHOW
SYMBOL command to identify the overloaded names that have been assigned
by the debugger. For example:

DBG> SHOW SYMBOL RENDEZVOUS
overloaded symbol TEST.TWO_ACCEPTS$TASK_BODY.RENDEZVOUS
overloaded instance TEST.TWO_ACCEPTS$TASK_BODY.RENDEZVOUS____1
overloaded instance TEST.TWO_ACCEPTS$TASK_BODY.RENDEZVOUS____2

Note that overloaded names have an integer suffix preceded by two
underscores; see OpenVMS Debugger Manual for more information on
overloaded names.

8–28 Debugging DEC Ada Tasks

You can use the EXAMINE/SOURCE command to determine which name is
associated with a particular accept statement. For example:

DBG> EXAMINE/SOURCE TWO_ACCEPTS$TASK_BODY.RENDEZVOUS____1
module TEST_ACCEPTS

12: accept RENDEZVOUS do
DBG> EXAMINE/SOURCE TWO_ACCEPTS$TASK_BODY.RENDEZVOUS____2
module TEST_ACCEPTS

19: accept RENDEZVOUS do

In the following example, when the breakpoint is triggered, the caller task is
evaluated:

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS____2 -
_DBG> DO (EVALUATE %CALLER_TASK)

You can cause a breakpoint to trigger only under some circumstances. For
example, the following command triggers a breakpoint only when the calling
task is %TASK 2:

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS____2 -
_DBG> (WHEN (%CALLER_TASK = %TASK 2))

If the calling task has more than one entry call to the same accept statement,
you can use the SHOW TASK/CALLS command to identify the source line
where the entry call was issued. For example:

DBG> SET BREAK TWO_ACCEPTS$TASK_BODY.RENDEZVOUS____2 -
_DBG> DO (SHOW TASK/CALLS %CALLER_TASK)

8.6.3 Monitoring Ada Task Events
The debugger SET BREAK and SET TRACE commands each have an
/EVENT=event-name qualifier. You can use this qualifier to set breakpoints
or tracepoints that will be triggered by Ada exception and tasking events;
the tasking events are discussed in this section (see OpenVMS Debugger
Manual for more information on the exception events). When a breakpoint
or tracepoint is triggered as a result of an event name qualifier, the debugger
identifies the Ada event that caused it to be triggered and gives additional
information.

The general command syntax for the SET BREAK/EVENT=event-name
command is as follows (see OpenVMS Debugger Manual for more information
on setting breakpoints and tracepoints; see the OpenVMS Debugger Manual
for more information on debugger syntax):

SET BREAK/EVENT=event-name [task-expr[,...]]
SET TRACE/EVENT=event-name [task-expr[,...]]

Debugging DEC Ada Tasks 8–29

The events specified with the /EVENT=event-name qualifier are language
dependent. When you run a program under debugger control, the appropriate
set of events is defined during the initialization of language-specific
parameters. (The SET EVENT_FACILITY command allows you to initialize
the debugger for events pertinent to any language.)

Table 8–6 defines the set of events (event-name keyword values) that apply
to DEC Ada (the exception-related events are included for completeness). You
can obtain a list of these events from the debugger by entering the SHOW
EVENT_FACILITY command, which also identifies the currently set event
facility.

You can abbreviate an event name to the minimum number of characters that
make it unique.

Table 8–6 DEC Ada Event Names

Event Name Description

Exception-Related Events

HANDLED Triggers when an exception is about to be handled
in some Ada exception handler, including an others
handler (see OpenVMS Debugger Manual).

HANDLED_OTHERS Triggers only when an exception is about to be
handled in an others Ada exception handler (see
OpenVMS Debugger Manual).

Task Exception-Related Events

RENDEZVOUS_EXCEPTION Triggers when an exception begins to propagate out
of a rendezvous.

DEPENDENTS_EXCEPTION Triggers when an exception causes a task to
wait for dependent tasks in some scope (includes
unhandled exceptions,1 which, in turn, include
special exceptions internal to the DEC Ada
run-time library; see the DEC Ada Run-Time
Reference Manual for OpenVMS Systems for
more information). Often immediately precedes
a deadlock.

1An unhandled exception is an exception that either has no handler in the current frame, or that
has a handler which executes a raise statement and propagates the exception to an outer scope.

(continued on next page)

8–30 Debugging DEC Ada Tasks

Table 8–6 (Cont.) DEC Ada Event Names

Event Name Description

Task Termination Events

TERMINATED Triggers when a task is terminating, whether
normally, by an abort statement, or by an exception.

EXCEPTION_TERMINATED Triggers when a task is terminating due to an
unhandled exception.1

ABORT_TERMINATED Triggers when a task is terminating due to an abort
statement.

Low-Level Task Scheduling Events

RUN Triggers when a task is about to run.

PREEMPTED Triggers when a task is being preempted from the
RUN state and its state changes to READY. (See
Figure 8–1.)

ACTIVATING Triggers when a task is about to begin its activation
(that is, at the beginning of the elaboration of the
declarative part of its task body).

SUSPENDED Triggers when a task is about to be suspended.

1An unhandled exception is an exception that either has no handler in the current frame, or that
has a handler which executes a raise statement and propagates the exception to an outer scope.

The following examples show the use of the /EVENT=event-name qualifier.

DBG> SET TRACE/EVENT=RUN CHILD,%TASK 2

This command sets tracepoints on the tasks CHILD and %TASK 2. Each
tracepoint is triggered whenever its associated task makes a transition to the
RUN state.

The next command sets a breakpoint that is triggered whenever a task enters
the TERMINATED state. A SHOW TASK/ALL command is entered at each
breakpoint:

DBG> SET BREAK/EVENT=TERMINATED DO (SHOW TASK/ALL)

Breakpoints for the EXCEPTION_TERMINATED and DEPENDENTS_
EXCEPTION events are automatically set for you when you invoke the
debugger with a DEC Ada program (or with a program in a supported language
that is linked with a DEC Ada compilation unit). You can see that these
breakpoints are set when you enter a SHOW BREAK command.

Debugging DEC Ada Tasks 8–31

The EXCEPTION_TERMINATED event triggers when a task is being
terminated because of an exception. That condition usually indicates an
unanticipated program error. In the following example, the SET BREAK
command is shown only for emphasis, as the debugger automatically breaks on
EXCEPTION_TERMINATED events:

DBG> SET BREAK/EVENT=EXCEPTION_TERMINATED
DBG> GO

.

.

.

break on ADA event EXCEPTION_TERMINATED
Task %TASK 2 is terminating because of an exception
%ADA-F-EXCCOP, Exception was copied at a "raise;" or "accept"
-ADA-F-EXCEPTION, Exception SOME_ERROR
-ADA-F-EXCRAIPRI, Exception raised prior to PC = 00000B61

DBG>

The DEPENDENTS_EXCEPTION event often unexpectedly precedes a
deadlock. For example (again, the SET BREAK command is shown only for
emphasis):

DBG> SET BREAK/EVENT=DEPENDENTS_EXCEPTION
DBG> GO

.

.

.

break on ADA event DEPENDENTS_EXCEPTION
Task %TASK 2 may await dependent tasks because of this exception:
%ADA-F-EXCCOP, Exception was copied at a "raise;" or "accept"
-ADA-F-EXCEPTION, Exception SOME_ERROR
-ADA-F-EXCRAIPRI, Exception raised prior to PC = 00000B61

DBG>

The RENDEZVOUS_EXCEPTION event allows you to see an exception before
it leaves a rendezvous (before exception information has been lost due to
copying the exception into the calling task). For example:

DBG> SET BREAK/EVENT=RENDEZVOUS_EXCEPTION
DBG> GO

.

.

.

break on ADA event RENDEZVOUS_EXCEPTION
Exception is propagating out of a rendezvous in task %TASK 2
%ADA-F-CONSTRAINT_ERRO, CONSTRAINT_ERROR
-ADA-I-EXCRAIPRI, Exception raised prior to PC = 00000BA6

8–32 Debugging DEC Ada Tasks

DBG>

You can use the SHOW BREAK and SHOW TRACE commands to identify the
event breakpoints or tracepoints that are currently set.

To cancel breakpoints or tracepoints set with the /EVENT=event-name
qualifier, you use the CANCEL BREAK/EVENT=event-name or CANCEL
TRACE/EVENT=event-name command, respectively.

The CANCEL BREAK/EVENT=event-name (or TRACE) command cancels
a breakpoint (or tracepoint) set by the SET BREAK/EVENT=event-name
(or TRACE) command. To cancel a breakpoint or tracepoint associated
with an event name, you must specify the event qualifier and optional
task expression in the CANCEL command exactly as you did with the SET
command, excluding any WHEN and DO clauses. For example, if you enter
the CANCEL BREAK/EVENT=TERMINATED command without a parameter,
it will not cancel a breakpoint that was set with a parameter; it will cancel
only a breakpoint that was set with the SET BREAK/EVENT=TERMINATED
command, with no parameter specified.

You may want to set certain event breakpoints and tracepoints in a debugger
initialization file for tasking programs (the general use of initialization files
is explained in OpenVMS Debugger Manual). The sample initialization file in
Example 8–2 may be useful in helping you to locate task-related errors.

Example 8–2 Sample Debugger Initialization File for DEC Ada Tasking
Programs

SET OUTPUT VERIFY
SET OUTPUT LOG
!
SET BREAK/EVENT=ACTIVATING
! Break on any task activations
!
SET BREAK/EVENT=HANDLED DO (SHOW CALLS)
! Traceback on any exception handling
!
SET BREAK/EVENT=HANDLED_OTHERS DO (SHOW CALLS)
! Traceback on any ’when others’ handlers
!
SET BREAK/EVENT=DEPENDENTS_EXCEPTION DO (SHOW CALLS)
! Traceback on any exceptions awaiting the termination
! of dependent tasks
!

(continued on next page)

Debugging DEC Ada Tasks 8–33

Example 8–2 (Cont.) Sample Debugger Initialization File for DEC Ada
Tasking Programs

SET BREAK/EVENT=RENDEZVOUS_EXCEPTION
! Break on any rendezvous involving exceptions
!
SET BREAK/EVENT=ABORT_TERMINATED DO (SHOW CALLS)
! Traceback on all task terminations caused by
! abort statements
!
SET BREAK/EVENT=EXCEPTION_TERM DO (SHOW CALLS)
! Traceback on any task terminations caused by
! unhandled exceptions
!
SET BREAK/EVENT=TERMINATED
! Break on any task terminations
!
DEFINE/COMMAND sta="SHOW TASK/ALL"
! Define a shorter command for displaying task statistics
!
DEFINE/COMMAND stf="SHOW TASK/FULL"
! Define a shorter command for displaying full
! information about one or more particular tasks
!
DEFINE/COMMAND noslice="SET TASK/TIME=0.0" !VAX only
! Define a shorter command for disabling time slicing
!
DEFINE/COMMAND slice="SET TASK/TIME=" !VAX only
! Define a shorter command for enabling time slicing

8.7 Additional Task-Debugging Topics
The following sections discuss additional topics related to task debugging:

• Deadlock

• Time slicing (on VAX systems only)

• Using Ctrl/Y

• Automatic stack checking

• Highlighting task state changes

8–34 Debugging DEC Ada Tasks

8.7.1 Debugging Programs with Deadlock
Deadlock is an error condition in which each task in a group of tasks is
suspended and no task in the group can resume execution until some other
task in the group executes. Deadlock is a typical error in tasking programs (in
much the same way that infinite loops are typical errors in programs that use
while statements).

Deadlock is easy to detect: it causes your program to appear to suspend, or
hang, in midexecution. When deadlock occurs in a program that is running
under the control of the debugger, you must first press Ctrl/Y to interrupt the
deadlock. Then, after entering the DCL DEBUG command, you can resume
debugging.

In general, the debugger command SHOW TASK/ALL or
SHOW TASK/STATE=SUSPENDED is useful because it shows which tasks are
suspended in your program and why. The SHOW TASK/FULL command is
useful because it gives detailed task state information, including information
about rendezvous, entry calls, and entry index values. The /EVENT=event-
name qualifier is useful because it allows you to trace or set breakpoints at
or near locations that may lead to deadlock. The SET TASK/PRIORITY and
SET TASK/RESTORE commands are useful because they allow you to see if a
low-priority task that never runs is causing the deadlock.

Table 8–7 lists a number of kinds of deadlock and suggests debugger commands
that are useful in diagnosing the cause of the deadlock. Previous sections of
this chapter describe each of the task debugging commands in detail.

Table 8–7 Kinds of Deadlock and Debugger Commands for Diagnosing Them

Kind of Deadlock Debugger Commands

Self-calling deadlock (a task calls one
of its own entries)

SHOW TASK/ALL,
SHOW TASK/SUSPENDED,
SHOW TASK/FULL

Circular-calling deadlock (a task calls
another task, which calls the first
task)

SHOW TASK/ALL,
SHOW TASK/SUSPENDED,
SHOW TASK/FULL

Dynamic-calling deadlock (a circular
series of entry calls exists, and at
least one of the calls is a timed or
conditional entry call in a loop)

SHOW TASK/ALL,
SHOW TASK/SUSPENDED,
SHOW TASK/FULL

(continued on next page)

Debugging DEC Ada Tasks 8–35

Table 8–7 (Cont.) Kinds of Deadlock and Debugger Commands for Diagnosing
Them

Kind of Deadlock Debugger Commands

Exception-induced deadlock (an
exception prevents a task from
answering one of its entry calls, or
the propagation of an exception must
wait for dependent tasks)

SHOW TASK/ALL,
SHOW TASK/SUSPENDED,
SHOW TASK/FULL,
SET BREAK/EVENT=DEPENDENTS_
EXCEPTION,
SET TRACE/EVENT=DEPENDENTS_
EXCEPTION

Deadlock due to incorrect run-time
calculations for entry indexes, when
conditions, and delay statements
within select statements

SHOW TASK/ALL,
SHOW TASK/STATE=SUSPENDED,
SHOW TASK/FULL,
EXAMINE

Deadlock due to entries being called
in the wrong order

SHOW TASK/ALL,
SHOW TASK/STATE=SUSPENDED,
SHOW TASK/FULL

Deadlock due to busy-waiting on a
variable used as a flag that is to
be set by a lower priority task, and
the lower priority task never runs
because a higher priority task is
always ready to execute

SHOW TASK/ALL,
SHOW TASK/STATE=SUSPENDED,
SHOW TASK/FULL,
SET TASK/PRIORITY,
SET TASK/RESTORE

8.7.2 Debugging Programs that Use Time Slicing
Tasking programs that use time slicing are difficult to debug because time
slicing makes the relative behavior of tasks asynchronous. In other words,
without time slicing, task execution is determined solely by task priority;
task switches are predictable and the behavior of the program is repeatable
from one run to the next. With time slicing, task priorities still govern task
switches, but tasks of the same priority also take turns executing for a specified
period of time. Time slicing thus causes tasks to execute more independently
from each other, and the behavior of a program that uses time slicing may not
be repeatable from one run of the program to the next.

On VAX systems, the debugger SET TASK/TIME_SLICE=t command allows
you to disable time slicing (SET TASK/TIME_SLICE=0.0) or specify a new
value for a pragma TIME_SLICE. Thus, you can use this command to tune
the execution of your tasking programs, or to diagnose problems that may be
masked by the use of time slicing.

8–36 Debugging DEC Ada Tasks

Note that on VAX systems there is an interaction between DEC Ada’s
time slicing and the debugger watchpoint implementation. When you set
watchpoints, the debugger may automatically increase the value of the
pragma TIME_SLICE to 10.0. Slowing down the time-slice rate prevents these
problems from occurring.

For more information on the effect of time slicing on task switching, see the
DEC Ada Run-Time Reference Manual for OpenVMS Systems; for more
information on the pragma TIME_SLICE, see the DEC Ada Language
Reference Manual.

8.7.3 Using Ctrl/Y when Debugging Tasks
You may experience some problems invoking the debugger with the DCL
DEBUG command after interrupting a task debugging session with Ctrl/Y. In
such cases, you should insert the following two lines in the source code at the
beginning of your main program to name the DEC Ada predefined package
CONTROL_C_INTERCEPTION:

with CONTROL_C_INTERCEPTION;
pragma ELABORATE(CONTROL_C_INTERCEPTION);

Then, you should use Ctrl/C instead of Ctrl/Y to interrupt your task debugging
session. See the DEC Ada Run-Time Reference Manual for OpenVMS Systems
for information on this package.

8.7.4 Automatic Stack Checking in the Debugger
In tasking programs, an undetected stack overflow can occur in certain
circumstances, and can lead to unpredictable execution (see the DEC Ada
Run-Time Reference Manual for OpenVMS Systems for more information on
task stack overflow). The debugger automatically performs the following stack
checks to help you detect the source of stack overflow problems:

• If the stack pointer is out of bounds, the debugger displays an error
message.

• A stack check is performed for the active task after a STEP or breakpoint
eventpoint triggers (see Section 8.6.1). (This check is not performed if you
have used the /SILENT qualifier with the STEP or SET BREAKPOINT
command.)

• A stack check is performed for each task whose state is displayed
in a SHOW TASK command. Thus, a SHOW TASK/ALL command
automatically causes the stacks of all tasks to be checked.

Debugging DEC Ada Tasks 8–37

The following examples show the kinds of error messages displayed by the
debugger when a stack check fails. Note that a warning is issued when most of
the stack has been used up, even if the stack has not yet overflowed.

warning: %TASK 2 has used up over 90% of its stack
SP: 0011194C Stack top at: 00111200 Remaining bytes: 1868

error: %TASK 2 has overflowed its stack
SP: 0010E93C Stack top at: 00111200 Remaining bytes: -10436

error: %TASK 2 has underflowed its stack
SP: 7FF363A4 Stack base at: 001189FC Stack top at: 00111200

One of the unpredictable events that can happen after a stack overflows is that
the stack can then underflow. For example, if a task stack overflows and the
stack pointer remains in the top guard area, the VMS operating system will
attempt to signal an ACCVIO condition. However, because the top guard area
is not a writable area of the stack, the VMS operating system cannot write
the signal arguments for the ACCVIO. When this happens, the VMS operating
system cuts back the stack: it causes the frame pointer and stack pointer to
point to the base of the main program stack area, writes the signal arguments,
and then modifies the program counter to force an image exit. If a time-slice
AST or other AST occurs at this instant, execution can resume in a different
task, and for a while, the program may continue to execute, although not
normally (the task whose stack overflowed may use—and overwrite—the main
program stack). The debugger stack checks help you to detect this situation.
If you step into a task whose stack has been cut back by the VMS system, or
if you use SHOW TASK/ALL at that time, the debugger will issue its stack
underflow message.

8–38 Debugging DEC Ada Tasks

A
ACS Command Dictionary

This appendix is a dictionary of all of the ACS commands, plus the DCL ADA
command. The commands are organized alphabetically, with full descriptions
of their format, parameters, and qualifiers, and with examples of their use.
See Chapter 1 for general information on using ACS commands. See Chapter 2
for the conventions on specifying unit names.

In this appendix, qualifiers are categorized according to the DCL qualifier
conventions (see the OpenVMS User’s Manual). In other words, a qualifier
may belong to one of three types:

• A command qualifier has the same effect, regardless of where it appears in
the command string (whether it is appended to the command verb or to a
parameter).

• A positional qualifier has a different effect depending on where it appears
in the command string. A positional qualifier appended to the command
verb affects the entire command string. A positional qualifier appended to
a parameter affects only that parameter.

• A parameter qualifier can be used only with a specified parameter. It
cannot be appended to the command verb.

Qualifiers remain unique when truncated to their first four characters, not
including the NO of the negative form. In command procedures, to guarantee
compatibility with future releases of DEC Ada, you should not use fewer than
four characters.

ACS Command Dictionary A–1

The examples in this appendix, as those throughout the manual, use the
file-name conventions described in Chapter 1. Also, examples of messages
issued by the compiler, program library manager, and so on display only the
severity level and the message text. No facility name or message ID is shown.

A–2 ACS Command Dictionary

($) ADA

($) ADA

Invokes the DEC Ada compiler to compile one or more DEC Ada source files.

Note

The ADA command is a DCL command, not an ACS command.

Format

ADA file-spec[,...]

Command Qualifiers Defaults

/LIBRARY=directory-spec /LIBRARY=ADA$LIB
/LIBRARY=(lib-term[,...])/PATH See text.
/PATH /NOPATH

Positional Qualifiers Defaults

/[NO]ANALYSIS_DATA[=file-spec] /NOANALYSIS_DATA
/[NO]CHECK See text.
/[NO]COPY_SOURCE /COPY_SOURCE
/[NO]DEBUG[=(option[,...])] /DEBUG=ALL
/[NO]DESIGN[=option] /[NO]DESIGN
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS
/[NO]ERROR_LIMIT[=n] /ERROR_LIMIT=30
/[NO]LIST[=file-spec] /NOLIST
/[NO]LOAD[=option] /LOAD=REPLACE
/[NO]MACHINE_CODE /NOMACHINE_CODE
/[NO]NOTE_SOURCE /NOTE_SOURCE
/[NO]OPTIMIZE[=(option[,...])] See text.
/[NO]SHOW[=option] /SHOW=PORTABILITY
/[NO]SMART_RECOMPILATION /SMART_RECOMPILATION
/[NO]SYNTAX_ONLY /NOSYNTAX_ONLY
/[NO]WARNINGS[=(option[,...])] See text.

Prompts

_File:

ACS Command Dictionary A–3

($) ADA

Command Parameters

file-spec[,...]
Specifies one or more DEC Ada source files to be compiled. If you do not
specify a file type, the compiler uses the default file type of .ADA. No wildcard
characters are allowed in the file specifications.

If you specify more than one input file, you must separate the file specifications
with commas (,). You cannot use plus signs (+) to separate file specifications.

Description

The DCL ADA command is one of four DEC Ada compilation commands.
The other three compilation commands are the ACS LOAD, COMPILE, and
RECOMPILE commands.

The ADA command can be used at any time to compile one or more source
files (.ADA). DEC Ada source files are compiled in the order in which they
appear in the command line. If a source file contains more than one DEC Ada
compilation unit, the units are compiled in the order in which they appear in
a source file. The Ada rules governing compilation order are summarized in
Chapter 1.

The ADA command compiles units in the context of the current program
library. Whenever a compilation unit is compiled without error, the current
program library is updated with the object module and other products of
compilation.

See Chapters 2 and 4 for more information on DEC Ada program libraries,
sublibraries, and compilation.

Command Qualifiers

/LIBRARY=directory-spec
/LIBRARY=ADA$LIB (D)
Specifies the program library that is to be the current program library for
the duration for the compilation. The directory specified must be an existing
DEC Ada program library. No wildcard characters are allowed in the directory
specification.

By default, the current program library is the program library last specified in
an ACS SET LIBRARY command. The logical name ADA$LIB is assigned to
the program library specified in an ACS SET LIBRARY command.

A–4 ACS Command Dictionary

($) ADA

/LIBRARY=(lib-term[,..])/PATH

Specifies the library search path that is to be the current path for the
duration of the compilation. For more information on library search paths,
see Chapter 3.

You can specify lib-term as follows:

• The directory specification of a DEC Ada library. For example:
[JONES.HOTEL.ADALIB].

• The default path of a DEC Ada library. To specify the default path, you
enter the name of a DEC Ada library preceded by an at sign(@). For
example: @[JONES.HOTEL.ADALIB].

• A file specification preceded by an at sign (@). For example:
@[JONES.HOTEL]MYPATH.TXT. Note the that file, MYPATH.TXT, must
contain one or more valid lib-terms.

If you do not specify the full file specification, the default file name is PATH
and the default file extension is .TXT.

You must use commas to separate more than one lib-term in a library search
path. If a term in the value of the /LIBRARY qualifier contains that at sign
(@), you must use double quotes (") to surround the term.

/PATH
/NOPATH (D)
Allows you to specify a library search path as the value of the /LIBRARY
qualifier.

If you do not specify the /PATH qualifier, the value of the /LIBRARY qualifier
must be a directory specification of a DEC Ada library or sublibrary. For more
information on library search paths, see Chapter 3.

Positional Qualifiers

/ANALYSIS_DATA[=file-spec]
/NOANALYSIS_DATA (D)
Controls whether a data analysis file containing source code cross-reference
and static analysis information is created. The data analysis file is supported
only for use with Digital layered products, such as the DEC Source Code
Analyzer.

One data analysis file is created for each source file that is compiled. The
default directory for data analysis files is the current default directory. The
default file name is the name of the source file being compiled. The default file
type is .ANA. No wildcard characters are allowed in the file specification.

ACS Command Dictionary A–5

($) ADA

By default, no data analysis file is created.

/CHECK
/NOCHECK
Controls whether all run-time checks are suppressed. The /NOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmas in the source
code.

Explicit use of the /CHECK qualifier overrides any occurrences of the pragmas
SUPPRESS and SUPPRESS_ALL in the source code, without the need to edit
the source code.

By default, run-time checks are suppressed only in cases where a pragma
SUPPRESS or SUPPRESS_ALL appears in the source code.

See the DEC Ada Language Reference Manual for more information on the
pragmas SUPPRESS and SUPPRESS_ALL.

/COPY_SOURCE (D)
/NOCOPY_SOURCE
Controls whether a copied source file is created in the current program library
when a compilation unit is compiled without error. The ACS RECOMPILE
command requires that a copied source file exist in the current program library;
the ACS COMPILE command uses the copied source file if it cannot find an
external source file when it is recompiling an obsolete unit or completing an
incomplete generic instantiation (see Chapter 4). Copied source files may also
be used by the debugger (see Chapter 8 for more information on debugging
tasks; and the OpenVMS Debugger Manual for more information on the
debugger).

By default, a copied source file is created in the current program library when
a unit is compiled without error.

/DEBUG[=(option[,...])] (D)
/NODEBUG
Controls which compiler debugging options are provided. You can debug
DEC Ada programs with the debugger (see Chapter 8 for more information
on debugging Ada tasks; and the OpenVMS Debugger Manual for more
information on the debugger.

You can request the following options:

ALL Provides both SYMBOLS and TRACEBACK.
NONE Provides neither SYMBOLS nor TRACEBACK.

A–6 ACS Command Dictionary

($) ADA

[NO]SYMBOLS Controls whether debugger symbol records are
included in the object file.

[NO]TRACEBACK Controls whether traceback information (a subset of
the debugger symbol information) is included in the
object file.

By default, both debugger symbol records and traceback information are
included in the object file (/DEBUG=ALL, or equivalently: /DEBUG).

/DESIGN[=option]
/NODESIGN (D)
Allows you to process Ada source files as a detailed program design. For each
unit that is design checked without error, the program library is updated
with information about that unit. Design-checked units are considered to be
obsolete in operations that require full compilation and must be recompiled.

You can request the following options:

[NO]COMMENTS Determines whether comments are processed
for program design information. For the
COMMENTS option to have effect, you must
specify the /ANALYSIS_DATA qualifier. See
Guide to Source Code Analyzer for VMS
Systems for more information on using the
Source Code Analyzer (SCA).
If you specify NOCOMMENTS, comments are
ignored.
On AXP systems, the /DESIGN=COMMENTS
qualifier is accepted, but has no effect.

[NO]PLACEHOLDERS Determines whether design checking is
performed. If you specify PLACEHOLDERS,
compilation units are design checked—LSE
placeholders are allowed and some of the
Ada language rules are relaxed so that
you can omit some implementation details.
If you specify NOPLACEHOLDERS, full
compilation is done—the compiler is invoked,
LSE placeholders are not allowed, and Ada
language rules are not relaxed.

ACS Command Dictionary A–7

($) ADA

Note that when you specify this option with
the /SYNTAX_ONLY qualifier, it determines
only whether LSE placeholders are allowed. If
you specify NOPLACEHOLDERS, then only
valid Ada syntax is allowed.

If you specify the /DESIGN qualifier without supplying any options, the effect
is the same as the following default:

/DESIGN=(COMMENTS,PLACEHOLDERS)

If you specify only one of the options with the /DESIGN qualifier, the default
value for the other option is used. For example, /DESIGN=NOCOMMENTS
is equivalent to /DESIGN=(NOCOMMENTS,PLACEHOLDERS). In this
case, both qualifiers specify that the unit is design-checked, but comment
information is not collected. Similarly, /DESIGN=NOPLACEHOLDERS is
equivalent to /DESIGN=(COMMENTS,NOPLACEHOLDERS). In this case,
both qualifiers specify that comment information is collected, but the unit is
not design-checked (that is, in the absence of the /SYNTAX_ONLY qualifier,
units are fully compiled).

/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with Digital layered products, such as the DEC Language-Sensitive
Editor.

One diagnostics file is created for each source file that is compiled. The default
directory for diagnostics files is the current default directory. The default file
name is the name of the source file being compiled. The default file type is
.DIA. No wildcard characters are allowed in the file specification.

By default, no diagnostics file is created.

/ERROR_LIMIT[=n] (D)
/NOERROR_LIMIT
Controls whether execution of the ADA command for a given compilation unit
is terminated upon the occurrence of the nth E-level error within that unit.

Error counts are not accumulated across a sequence of compilation units. If
the /ERROR_LIMIT=n option is specified, each compilation unit may have up
to n � 1 errors without terminating the compilation. When the error limit is
reached within a compilation unit, compilation of that unit is terminated, but
compilation of subsequent units continues.

A–8 ACS Command Dictionary

($) ADA

The /ERROR_LIMIT=0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the ADA command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error within that
unit (equivalent to /ERROR_LIMIT=30).

/LIST[=file-spec]
/NOLIST (D)
Controls whether a listing file is created. One listing file is created for each
source file compiled. The default directory for listing files is the current default
directory. The default file name is the name of the source file being compiled.
The default file type is .LIS. No wildcard characters are allowed in the file
specification.

By default, the ADA command does not create a listing file.

/LOAD[= option]
/NOLOAD
Controls whether the current program library is updated with the successfully
processed units contained in the specified source files. Depending on other
qualifiers specified (or not specified) with the ADA command, processing can
involve full compilation, syntax checking only, and so on. The /NOLOAD
qualifier causes the units in the specified source files to be processed, but
prevents the current program library from being updated. For example, this
effect allows you to obtain a machine code listing for a unit that has already
been compiled into the program library without affecting the library.

You can specify the following option:

[NO]REPLACE Controls whether a unit added to the current program
library replaces an existing unit with the same name.
If you specify the NOREPLACE option, the unit will be
added to the current program library only if no existing
unit has the same name, except if the new unit is the
missing body of an existing specification, or vice versa.

By default, the current program library is updated with the successfully
processed units, and a unit added to the current program library will replace
an existing unit with the same name (/LOAD=REPLACE).

/MACHINE_CODE
/NOMACHINE_CODE (D)
Controls whether generated machine code (approximating assembler notation)
is included in the listing file.

By default, generated machine code is not included in the listing file.

ACS Command Dictionary A–9

($) ADA

/NOTE_SOURCE (D)
/NONOTE_SOURCE
Controls whether the file specification of the source file is noted in the program
library when a unit is compiled without error. The ACS COMPILE command
uses this information to locate revised source files.

By default, the file specification of the source file is noted in the program
library when a unit is compiled without error.

/OPTIMIZE[=(option[,...])]
/NOOPTIMIZE
Controls the level of optimization that is applied in producing the compiled
code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(TIME) in the source code.

DEVELOPMENT Suggested when active development of a program is in
progress. Provides some optimization, but development
considerations and ease of debugging take preference
over optimization. This option overrides pragmas that
establish a dependence on a subprogram or generic
body (the pragmas INLINE and INLINE_GENERIC),
and thus reduces the need for recompilations when
such bodies are modified. This option also disables
generic code sharing.

NONE Provides no optimization. Suppresses inline expansions
of subprograms and generics, including those specified
by the pragmas INLINE and INLINE_GENERIC.
Suppresses occurrences of the pragma SHARE_
GENERIC and disables generic code sharing.

The /NOOPTIMIZE qualifier is equivalent to /OPTIMIZE=NONE.

By default, the ADA command applies full optimization with time as the
primary optimization criterion (like /OPTIMIZE=TIME, but observing uses of
the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you can
use separately or together with the primary options to override the default
behavior for inline expansion (generic and subprogram) and generic code
sharing.

A–10 ACS Command Dictionary

($) ADA

The INLINE secondary option can have the following values (see the DEC Ada
Run-Time Reference Manual for OpenVMS Systems for more information about
inline expansion):

NONE Disables subprogram and generic inline expansion.
This option overrides any occurrences of the
pragmas INLINE or INLINE_GENERIC in the
source code, without your having to edit the source
file. It also disables implicit inline expansion of
subprograms. (Implicit inline expansion means
that the compiler assumes a pragma INLINE for
certain subprograms as an optimization.) A call
to a subprogram or an instance of a generic in
another unit is not expanded inline, regardless of
the /OPTIMIZE options in effect when that unit
was compiled.

NORMAL Provides normal subprogram and generic inline
expansion.
Subprograms to which an explicit pragma INLINE
applies are expanded inline under certain
conditions. In addition, some subprograms are
implicitly expanded inline. The compiler assumes
a pragma INLINE for calls to some small local
subprograms (subprograms that are declared in the
same unit as the unit in which the call occurs).
Instances are compiled separately from the unit in
which the instantiation occurred unless a pragma
INLINE_GENERIC applies to the instance. If
a pragma INLINE_GENERIC applies and the
generic body has been compiled, the generic is
expanded inline at the point of instantiation.

ACS Command Dictionary A–11

($) ADA

SUBPROGRAMS Provides maximal subprogram inline expansion
and normal generic inline expansion.
In addition to the normal subprogram inline
expansion that occurs when INLINE:NORMAL
is specified, this option results in implicit inline
expansion of some small subprograms declared
in other units. The compiler assumes a pragma
INLINE for any subprogram if it improves
execution speed and reduces code size. This option
may establish a dependence on the body of another
unit, as would be the case if a pragma INLINE
were specified explicitly in the source code.
With this option, generic inline expansion occurs in
the same manner as for INLINE:NORMAL.

GENERICS Provides normal subprogram inline expansion and
maximal generic inline expansion.
With this option, subprogram inline expansion oc-
curs in the same manner as for INLINE:NORMAL.
The compiler assumes a pragma INLINE_
GENERIC for every instantiation in the unit
being compiled unless an explicit pragma SHARE_
GENERIC applies. This option may establish a
dependence on the body of another unit, as would
be the case if a pragma INLINE_GENERIC were
specified explicitly in the source code.

MAXIMAL Provides maximal subprogram and generic inline
expansion.
Maximal subprogram inline expansion occurs as for
INLINE:SUBPROGRAMS, and maximal generic
inline expansion occurs as for INLINE:GENERICS.

The SHARE secondary option can have the following values:

NONE Disables generic sharing. This option overrides the
effect of any occurrences of the pragma SHARE_
GENERIC in the source code, without your having
to edit the source file. In addition, instances do not
share code from previous instantiations.

A–12 ACS Command Dictionary

($) ADA

NORMAL Provides normal generic sharing. Normally, the
compiler will not attempt to generate shareable code
for an instance (code that can be shared by subsequent
instantiations) unless an explicit pragma SHARE_
GENERIC applies to that instance. However, an
instance will attempt to share code that resulted from
a previous instantiation to which the pragma SHARE_
GENERIC applied.

MAXIMAL Provides maximal generic sharing. The compiler
assumes that a pragma SHARE_GENERIC applies
to every instance in the unit being compiled unless an
explicit pragma INLINE_GENERIC applies. Thus, an
instance will attempt to share code that resulted from
a previous instantiation or to generate code that can be
shared by subsequent instantiations.
SHARE:MAXIMAL cannot be used in combination with
INLINE:GENERICS or INLINE:MAXIMAL.

By default, if you specify one of the /OPTIMIZE qualifier primary options
on the left (for example, /OPTIMIZE=TIME), it has the same effect
as specifying the secondary-option values to the right (in this case,
/OPTIMIZE=(TIME,INLINE:NORMAL,SHARE:NORMAL)):

TIME /OPTIMIZE=(TIME,INLINE:NORMAL,SHARE:NORMAL)
SPACE /OPTIMIZE=(SPACE,INLINE:NORMAL,SHARE:NORMAL)
DEVELOPMENT /OPTIMIZE=(DEVELOPMENT,INLINE:NONE,

SHARE:NONE)
NONE /OPTIMIZE=(NONE,INLINE:NONE,SHARE:NONE)

See Chapter 4 for more information on the /OPTIMIZE qualifier and its
options.

/SHOW[=option] (D)
/NOSHOW
Controls the listing file options included when a listing file is provided. You
can specify one of the following options:

ALL Provides all listing file options.
[NO]PORTABILITY Controls whether a program portability summary is

included in the listing file (see Chapter 7).

ACS Command Dictionary A–13

($) ADA

NONE Provides none of the listing file options (same as
/NOSHOW).

By default, the ADA command provides a portability summary
(/SHOW=PORTABILITY).

/SMART_RECOMPILATION (D)
/NOSMART_RECOMPILATION
Controls whether smart recompilation information is stored and used to
minimize unnecessary recompilations.

When the /SMART_RECOMPILATION qualifier is in effect, detailed
information about dependences is stored in the program library for each
unit compiled. This information describes the dependences of a unit at a finer
level than the compilation unit level.

If smart recompilation is not in effect, detailed information about dependences
is not stored in the program library. (See Chapter 5 for more information.)

/SYNTAX_ONLY
/NOSYNTAX_ONLY (D)
Controls whether the source file is to be checked only for correct syntax. If you
specify the /SYNTAX_ONLY qualifier, other compiler checks are not performed
(for example, semantic analysis, type checking, and so on).

In the presence of the /LOAD=REPLACE qualifier (the default), the /SYNTAX_
ONLY qualifier updates the current program library with syntax-checked-only
units. The units are considered to be obsolete and must be subsequently
recompiled.

In the presence of the /NOLOAD qualifier, the /SYNTAX_ONLY qualifier
checks the syntax of the specified units but does not update the library.

By default, the compiler performs all compiler checks.

/WARNINGS[=(option[,...])]
/NOWARNINGS
Controls which categories of informational (I-level) and warning (W-level)
messages are displayed and where those messages are displayed. You can
specify any combination of the following message options:

WARNINGS: (destination[,...])
NOWARNINGS

WEAK_WARNINGS: (destination[,...])
NOWEAK_WARNINGS

A–14 ACS Command Dictionary

($) ADA

SUPPLEMENTAL: (destination[,...])
NOSUPPLEMENTAL

COMPILATION_NOTES: (destination[,...])
NOCOMPILATION_NOTES

STATUS: (destination[,...])
NOSTATUS

The possible values of destination are ALL, NONE, or any combination of
TERMINAL (terminal device), LISTING (listing file), and DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows (See
Chapter 4 for more information):

WARNINGS W-level: Indicates a definite problem in a legal
program—for example, an unknown pragma.

WEAK_WARNINGS I-level: Indicates a potential problem in a legal
program—for example, a possible CONSTRAINT_
ERROR at run time. These are the only kind of
I-level messages that are counted in the summary
statistics at the end of a compilation.

SUPPLEMENTAL I-level: Additional information associated with
previous E-level or W-level diagnostics.

COMPILATION_NOTES I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions made
for the pragmas INLINE, INTERFACE, or the
import-subprogram pragmas.

STATUS I-level: End-of-compilation statistics and other
messages.

The defaults are as follows:

/WARNINGS=(WARN:ALL,WEAK:ALL,SUPP:ALL,COMP:NONE,STAT:LIST)

If you specify only some of the message categories with the /WARNINGS
qualifier, the default values for other categories are used.

ACS Command Dictionary A–15

($) ADA

Examples

1. $ ADA RESERVATIONS,RESERVATIONS__CANCEL

Compiles the compilation units contained in the two files
RESERVATIONS.ADA and RESERVATIONS_ _CANCEL.ADA, in the order
given.

2. $ ADA/LIST/SHOW=ALL SCREEN_IO_,SCREEN_IO

Compiles the compilation units contained in the two files SCREEN_IO_.ADA
and SCREEN_IO.ADA, in the order given. The /LIST qualifier creates the
listing files SCREEN_IO_.LIS and SCREEN_IO.LIS in the current default
directory. The /SHOW=ALL qualifier causes all listing file options to be
provided in the listing files.

3. $ ADA/OPT=INLINE:MAX/WARNINGS=COMPILATION_NOTES SCREEN_IO_, SCREEN_IO

Compiles the compilation units contained in the files SCREEN_IO_
.ADA and SCREEN_IO.ADA, in the order given. The /OPTIMIZE
qualifier specifies maximal subprogram and generic inline expansion.
The /WARNINGS=COMPILATION_NOTES qualifier gives information
about how the compiler translated the program, including the decisions
made for inline expansions.

4. $ ADA/NOLOAD/LIST/MACHINE_CODE HOTEL

Compiles the compilation units contained in the file HOTEL.ADA and
generates a machine code listing, but does not update the current program
library.

5. $ ADA/WARNINGS=COMPILATION_NOTES/LIST STACKS, SUM

Compiles the compilation units contained in the files STACKS.ADA and
SUM.ADA, giving information about record layout, parameter-passing
mechanisms, inline expansions, and so on.

6. $ ADA/LIBRARY=([JONES.ADALIB],"@[SMITH.ADALIB]")/PATH HOTEL

Compiles the compilation units contained in the file HOTEL.ADA
using units in [JONES.ADALIB] and in the default path of the
[SMITH.ADALIB]. Suppose the default path of [SMITH.ADALIB] identifies
the following libraries:

[SMITH.ADALIB]
[PROJECT.ADALIB]

A–16 ACS Command Dictionary

($) ADA

In this case, the library search path used during the compilation is as
follows:

[JONES.ADALIB]
[SMITH.ADALIB]
[PROJECT.ADALIB]

ACS Command Dictionary A–17

ATTACH

ATTACH

Enables you to switch control of your terminal from your current process
running the program library manager to another process in your job. See also
the ACS SPAWN command and the OpenVMS DCL Dictionary.

Format

ATTACH process-name

Prompts

_Process:

Command Parameters

process-name
Specifies the name of the process to which the connection is to be made.
Process names can contain from 1 to 15 alphanumeric characters. If a
connection to the specified process cannot be made, an error message is
displayed. You cannot connect to the process if any of the following conditions
apply:

• The process is your current process.

• The process is not part of your current job.

• The process does not exist.

Description

The ACS ATTACH command allows you to connect your input stream to
another process. You can use the ATTACH command to change control from
one subprocess to another subprocess or to the parent process.

When you enter the ATTACH command, the parent or ‘‘source’’ process is put
into a hibernation state, and your input stream is connected to the specified
destination process. You can use the ATTACH command to connect to a
subprocess that is part of a current job left hibernating as a result of an ACS
SPAWN or DCL SPAWN/WAIT command, or of another ACS or DCL ATTACH
command, as long as the connection is valid. (No connection can be made to
the current process, to a process that is not part of the current job, or to a
process that does not exist.)

A–18 ACS Command Dictionary

ATTACH

You can also use the ATTACH command in conjunction with the ACS SPAWN
or DCL SPAWN/WAIT command to return to a parent process without
terminating the created subprocess. See the description of the ACS SPAWN
command for more details.

Example

ACS> ATTACH JONES_1

$

Switches control of the terminal to the process JONES_1.

ACS Command Dictionary A–19

CHECK

CHECK

Forms the execution closure of one or more specified units and checks whether
the set of units in the closure is complete and current. The ACS CHECK
command searches the current program library (and all parent libraries, in the
case of a sublibrary) for all units in the closure.

Format

CHECK unit-name[,...]

Command Qualifiers Defaults

/[NO]LOG /NOLOG
/[NO]OBSOLETE=(option[,...]) /NOOBSOLETE
/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT
/PROCESSING_LEVEL[=option] See text.
/[NO]SMART_RECOMPILATION /SMART_RECOMPILATION
/[NO]STATISTICS /STATISTICS

Prompts

_Unit:

Command Parameters

unit-name[,...]
Specifies one or more units in the current program library whose closure is
to be checked. You must express subunit names using selected component
notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more information on wildcard
characters.)

Description

The ACS CHECK command goes through the following steps:

1. Forms the execution closure of the specified units.

2. Determines whether each unit in the closure is in the program library and
is current. Units entered from other program libraries, as well as those
compiled or copied into the current program library, are checked.

A–20 ACS Command Dictionary

CHECK

3. Identifies any unit in the closure that is not in the program library.

4. Identifies any unit in the closure that is obsolete and must be recompiled.

5. If there are obsolete units in the closure, identifies units that may become
obsolete when the obsolete units are recompiled.

6. If all of the units in the closure are in the program library and are current,
issues an informational message.

Command Qualifiers

/LOG
/NOLOG (D)
Controls whether a list of all the units in the closure is displayed in addition to
a message indicating the result of the CHECK command.

By default, only a message indicating the result of the CHECK command is
displayed.

/OBSOLETE=(option=[,...])
/NOOBSOLETE (D)
Allows you to ask what the effect on a program or a set of units would be if
some specific units were obsolete.

When the execution closure of the units in the parameter list of the command
is performed, the units named with the UNIT, SPECIFICATION, and BODY
keywords are assumed to be obsolete as described below. If one of those units
is not in the execution closure of the units named in the command’s parameter
list, it is not added to the closure.

Unit names are specified with the UNIT, SPECIFICATION and BODY
keywords as follows:

UNIT:(unit_name[,...]) The specifications and bodies of units
specified with the UNIT keyword are
assumed to be obsolete.

SPECIFICATION:(unit_name[,...]) Only the specifications of units specified
with the SPECIFICATION keyword are
assumed to be obsolete.

BODY:(unit_name[,...]) Only the bodies of units specified with
the BODY keyword are assumed to be
obsolete.

You must specify at least one of these keywords with the /OBSOLETE qualifier.
Unit names can contain wildcard characters.

ACS Command Dictionary A–21

CHECK

By default, units are identified as obsolete based on the current state of the
program library.

/OUTPUT=file-spec
Requests that the CHECK command output be written to the file specified
rather than to SYS$OUTPUT. Any diagnostic messages are written to both
SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the CHECK command output is written to SYS$OUTPUT.

/PROCESSING_LEVEL[=option]
Determines the kind of obsolete units identified. Obsolete units are identified
based on the level of processing applied to the unit: syntax-checking, design-
checking, or full compilation. You can request the following options:

SYNTAX Determines whether a unit is obsolete because it
has been syntax-checked only. Because all units
in a program library are at least syntax-checked,
and because syntax-checking does not require any
particular order of compilation, generally accepts all
units as being current.

DESIGN Determines whether a unit is obsolete because it
has been design-checked only. Accepts design-checked
units and fully compiled units as being current, unless
they are otherwise obsolete (for example, they depend
on units that have been syntax-checked only, or they
depend on other obsolete units).

FULL Determines three kinds of obsolete units: units that
are obsolete because they have been syntax checked
only, units that have been design checked, and units
that are obsolete as a result of the compilation of the
units they depend on. Units that depend on obsolete
units are also considered to be obsolete.

By default, all units are fully checked (/PROCESSING_LEVEL=FULL), and all
obsolete units are identified.

/SMART_RECOMPILATION (D)
/NOSMART_RECOMPILATION
Controls whether smart recompilation information, which is stored in the
program library, is used to identify obsolete units.

A–22 ACS Command Dictionary

CHECK

If smart recompilation is not in effect, units are identified as obsolete and in
need of recompilation based on their time of compilation only. (See Chapter 5
for more information.)

/STATISTICS (D)
/NOSTATISTICS
Controls whether statistical information is displayed. Statistical information
includes the number of obsolete and possibly obsolete units, and the total
elasped time for the last compilation of all identified units.

Examples

1. ACS> CHECK SCREEN_IO
%I, All units current, no recompilations required

Shows that all the units in the closure of SCREEN_IO are defined in the
current program library and are current.

2. ACS> CHECK/OBSOLETE=SPECIFICATION:RESERVATIONS RESERVATIONS
%E, Obsolete library units are detected

%I, The following units need to be recompiled:
RESERVATIONS

package specification 4-NOV-1992 14:48:39.75 (00:00:03.82)

%I, The following units may also need to be recompiled:
RESERVATIONS

package body 4-NOV-1992 14:51:20.11 (00:00:14.02)
RESERVATIONS.RESERVE

procedure body 4-NOV-1992 14:49:55.78 (00:00:04.27)
RESERVATIONS.RESERVE.BILL

procedure body 4-NOV-1992 14:50:01.55 (00:00:05.12)
RESERVATIONS.CANCEL

procedure body 4-NOV-1992 14:51:36.25 (00:00:04.24)

1 obsolete unit, 4 possibly obsolete (total 5)
Total elapsed time for last compilation of all 5 units was 0:00:31.47

This command allows you to ask what the effect would be if you modified
the unit RESERVATIONS. In the previous example, the ACS CHECK
command lists the units that need to be recompiled, any units that are
missing, and the total elasped time for the last compilation of the unit
RESERVATIONS.

ACS Command Dictionary A–23

CHECK

3. $ ACS CHECK A, B, C /OBSOLETE=(UNIT:(E, F), BODY:(G, H))

Checks the closure of the set of units A, B and C assuming that E and
F’s specifications and bodies are obsolete, and that G and H’s bodies are
obsolete.

A–24 ACS Command Dictionary

COMPILE

COMPILE

Forms the closure of one or more specified units. Compiles, from external
source files, any unit in the closure (except entered units) that was revised
since that unit was last compiled into the current program library. Recompiles,
from external or copied source files, any unit in the closure that needs to be
made current. Completes any incomplete generic instantiations.

Format

COMPILE unit-name[,...]

Command Qualifiers Defaults

/AFTER=time See text.
/[NO]ANALYSIS_DATA[=file-spec] /NOANALYSIS_DATA
/BATCH_LOG=file-spec See text.
/[NO]CHECK See text.
/CLOSURE See text.
/COMMAND[=file-spec] See text.
/[NO]CONFIRM /NOCONFIRM
/[NO]COPY_SOURCE /COPY_SOURCE
/[NO]DEBUG[=(option[,...])] /DEBUG=ALL
/[NO]DESIGN[=option] /NODESIGN
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS
/[NO]ERROR_LIMIT[=n] /ERROR_LIMIT=30
/[NO]KEEP /KEEP
/[NO]LIST[=file-spec] /NOLIST
/[NO]LOG /NOLOG
/[NO]MACHINE_CODE /NOMACHINE_CODE
/NAME=job-name See text.
/[NO]NOTE_SOURCE /NOTE_SOURCE
/[NO]NOTIFY /NOTIFY
/[NO]OBSOLETE=(option[,...]) /NOOBSOLETE
/[NO]OPTIMIZE[=(option[,...])] See text.
/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT
/[NO]PRELOAD /PRELOAD
/[NO]PRINTER[=queue-name] /NOPRINTER
/QUEUE=queue-name /QUEUE=ADA$BATCH
/[NO]SHOW[=option] /SHOW=PORTABILITY
/[NO]SMART_RECOMPILATION /SMART_RECOMPILATION
/SPECIFICATION_ONLY See text.
/[NO]STATISTICS /STATISTICS
/SUBMIT See text.
/[NO]SYNTAX_ONLY /NOSYNTAX_ONLY
/WAIT See text.

ACS Command Dictionary A–25

COMPILE

/[NO]WARNINGS[=(option[,...])] See text.

Prompts

_Unit:

Command Parameters

unit-name[,...]
Specifies one or more units in the current program library whose closure is to
be processed with the ACS COMPILE command. You must express subunit
names using selected component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more information on wildcard
characters.)

Description

The ACS COMPILE command is useful for compiling and recompiling units as
you revise the source files of an existing Ada program.

The COMPILE command goes through the following steps:

1. Forms the execution closure of the specified units.

2. Looks up the source file for each unit in the closure that has been compiled
or copied (not entered) into the current program library. Unless otherwise
specified with the SET SOURCE command, the source-file-directory search
order is as follows:

a. SYS$DISK:[] (the current default directory)

b. ;0 (the directory that contained the file when it was last compiled),
or node::;0 (if the file specification of the source file being compiled
contains a node name)

The search order takes precedence over the version number or creation
date-time if different versions of a source file exist in two or more
directories. Within any one directory, the version of a particular file
that has the highest number is considered for compilation.

3. Compares the creation date-time of each source file with that of the
version last noted in the program library by the /NOTE_SOURCE compiler
qualifier (the qualifier is used with the DCL ADA and ACS COMPILE and
RECOMPILE commands).

A–26 ACS Command Dictionary

COMPILE

4. Processes revised external source files to account for new compilation units
or unit dependences if the /PRELOAD qualifier (the default) is in effect.

5. Notes for compilation any source file whose creation date-time is later than
that noted in the program library.

6. Identifies any obsolete or incomplete units in the closure.

Note that if the program library manager cannot find external source
files for recompilation, recompilation is done from copied source files.
If a needed copied source file is missing, the file is identified and no
recompilations or completions are done. Copied source files are created
when the /COPY_SOURCE qualifier is in effect during compilation (the
default for the DCL ADA and ACS LOAD and COMPILE commands).

If the closure you are recompiling includes an obsolete entered unit, that
unit is not affected by the COMPILE command; an error diagnostic is
issued and the COMPILE command is not executed. You should recompile
an obsolete entered unit in its own program library and then reenter it into
the current program library before you try to recompile its dependent units
in the current library.

7. Creates a DCL command file. The file contains commands to compile the
appropriate units from external source files and to recompile any obsolete
units from external or copied source files, in the proper order. Entered
units are not considered for compilation or recompilation. If you did not
specify the /COMMAND qualifier, the command file is deleted after the
COMPILE command is terminated, or the batch job finishes. If you did
specify the /COMMAND qualifier, the command file is retained for future
use, and the compiler is not invoked.

8. If you did not specify the /COMMAND qualifier, the DEC Ada compiler is
invoked as follows:

a. By default (COMPILE/WAIT), the command file is executed in a
subprocess. You must wait for the compilation to terminate before
entering another command. When this qualifier is in effect, process
logical names are propagated to the subprocess generated to execute
the command file.

b. If you specify the /SUBMIT qualifier, the command file generated in
step 7 is submitted as a batch job.

Program library manager output originating before the compiler is invoked is
reported to your terminal by default, or to a file specified with the /OUTPUT
qualifier. Compiler diagnostics are reported to the terminal by default, or to
the a log file if the command file is executed in a batch job (by way of the
COMPILE/SUBMIT command).

ACS Command Dictionary A–27

COMPILE

See Chapter 4 for more information on the COMPILE command.

Command Qualifiers

/AFTER=time
Requests that the batch job be held until after a specific time when the
command file is executed in batch mode. If the specified time has already
passed, or if the /AFTER qualifier is not specified, the job is queued for
immediate processing.

You can specify either an absolute time or a combination of absolute and delta
time. See the OpenVMS User’s Manual (or type HELP Specify Date_Time at
the DCL prompt) for complete information on specifying time values.

/ANALYSIS_DATA[=file-spec]
/NOANALYSIS_DATA (D)
Controls whether a data analysis file containing source code cross-reference
and static analysis information is created. The data analysis file is supported
only for use with Digital layered products, such as the DEC Source Code
Analyzer.

One data analysis file is created for each source file that is compiled and for
each unit that is recompiled. The default directory for data analysis files is
the current default directory. The default file name is the name of the source
file being compiled. The default file type is .ANA. No wildcard characters are
allowed in the file specification.

By default, no data analysis file is created.

/BATCH_LOG=file-spec
Provides a file specification for the batch log file when the command file is
executed in batch mode.

If you do not give a directory specification with the file-spec option, the batch
log file is created by default in the current default directory. If you do not
give a file specification with the file-spec option, the default file name is the
job name specified with the /NAME=job-name qualifier. If no job name has
been specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If no job name
has been specified and there is a wildcard character in the first unit specified,
the program library manager uses the default file name ACS_COMPILE.
The default file type is .LOG. No wildcard characters are allowed in the file
specification.

A–28 ACS Command Dictionary

COMPILE

/CHECK
/NOCHECK
Controls whether all run-time checks are suppressed. The /NOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmas in the source
code.

Explicit use of the /CHECK qualifier overrides any occurrences of the pragmas
SUPPRESS and SUPPRESS_ALL in the source code, without the need to edit
the source code.

By default, run-time checks are only suppressed in cases where a pragma
SUPPRESS or SUPPRESS_ALL appears in the source code.

See the DEC Ada Language Reference Manual for more information on the
pragmas SUPPRESS and SUPPRESS_ALL.

/CLOSURE
Causes the /SPECIFICATION_ONLY qualifier to apply to all units in the
closure of units named in the COMPILE command. (Without the /CLOSURE
qualifier, the /SPECIFICATION_ONLY qualifier applies only to the units
named in the command.)

See the description of the /SPECIFICATION_ONLY qualifier in the list of
command qualifiers.

/COMMAND[=file-spec]
Controls whether the compiler is invoked as a result of the COMPILE
command, and determines whether the command file generated to invoke
the compiler is saved. If you specify the /COMMAND qualifier, the program
library manager does not invoke the compiler, and the generated command file
is saved for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the generated
command file. The default directory for the command file is the current default
directory. By default, the program library manager provides a file name
comprising up to the first 39 characters of the first unit name specified. If you
use a wildcard character in the first unit name specified, the compiler uses
the default name ACS_COMPILE. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if you do not specify the file-spec option, the program library
manager deletes the generated command file when the COMPILE command
completes normally or is terminated.

Note that if you want to get the old behaviour (pre-version 3.0 behavior) for
this command, you must also specify the /NOSMART_RECOMPILATION
qualifier.

ACS Command Dictionary A–29

COMPILE

/CONFIRM
/NOCONFIRM (D)
Controls whether the COMPILE command asks you for confirmation before
performing a possibly lengthy operation. If you specify the /CONFIRM
qualifier, the possible responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/COPY_SOURCE (D)
/NOCOPY_SOURCE
Controls whether a copied source file is created in the current program library
when a compilation unit is compiled without error. The ACS RECOMPILE
command requires that a copied source file exist in the current program library;
the ACS COMPILE command uses the copied source file if it cannot find an
external source file when it is recompiling an obsolete unit or completing an
incomplete generic instantiation (see Chapter 4). Copied source files may also
be used by the debugger (see the OpenVMS Debugger Manual).

By default, a copied source file is created in the current program library when
a unit is compiled without error.

/DEBUG[=(option[,...])] (D)
/NODEBUG
Controls which debugger compiler options are provided. You can debug DEC
Ada programs with the debugger (see Chapter 8 for more information on
debugging tasks; see and OpenVMS Debugger Manual for more information on
the debugger).

You can request the following options:

ALL Provides both SYMBOLS and TRACEBACK
NONE Provides neither SYMBOLS nor TRACEBACK
[NO]SYMBOLS Controls whether debugger symbol records are

included in the object file

A–30 ACS Command Dictionary

COMPILE

[NO]TRACEBACK Controls whether traceback information (a subset of
the debugger symbol information) is included in the
object file

By default, both debugger symbol records and traceback information are
included in the object files (/DEBUG=ALL, or equivalently: /DEBUG)

/DESIGN[=option]
/NODESIGN (D)
Controls whether a design-level check is performed when identifying obsolete
units. A unit is not considered obsolete just because it is design-checked only.

Also directs the compiler to process Ada source files as a detailed program
design. For each unit that is design checked without error, the program
library is updated with information about that unit. Design-checked units are
considered to be obsolete in operations that require full compilation and must
be recompiled.

You can request the following options:

[NO]COMMENTS Determines whether comments are processed
for program design information. For the
COMMENTS option to have effect, you must
specify the /ANALYSIS_DATA qualifier
with the ADA command. See Guide to
Source Code Analyzer for VMS Systems for
more information on using the Source Code
Analyzer (SCA).
If you specify NOCOMMENTS, comments are
ignored.
On AXP systems, the /DESIGN=COMMENTS
qualifier is accepted, but has no effect.

ACS Command Dictionary A–31

COMPILE

[NO]PLACEHOLDERS Determines whether design checking is
performed. If you specify PLACEHOLDERS,
compilation units are design checked—LSE
placeholders are allowed and some of the
Ada language rules are relaxed so that
you can omit some implementation details.
If you specify NOPLACEHOLDERS, full
compilation is done—the compiler is invoked,
LSE placeholders are not allowed, and Ada
language rules are not relaxed.

Note that when you specify this option with
the /SYNTAX_ONLY qualifier, it determines
only whether LSE placeholders are allowed. If
you specify NOPLACEHOLDERS, then only
valid Ada syntax is allowed.

If you specify the /DESIGN qualifier without supplying any options, the effect
is the same as the following default:

/DESIGN=(COMMENTS,PLACEHOLDERS)

If you specify only one of the options with the /DESIGN qualifier, the default
value for the other option is used. For example, /DESIGN=NOCOMMENTS
is equivalent to /DESIGN=(NOCOMMENTS,PLACEHOLDERS). In this
case, both qualifiers specify that the unit is design-checked, but comment
information is not collected. Similarly, /DESIGN=NOPLACEHOLDERS is
equivalent to /DESIGN=(COMMENTS,NOPLACEHOLDERS). In this case,
both qualifiers specify that comment information is collected, but the unit is
not design-checked (that is, in the absence of the /SYNTAX_ONLY qualifier,
units are fully compiled).

/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with Digital layered products, such as the DEC Language-Sensitive
Editor.

One diagnostics file is created for each source file that is compiled and for
each unit that is recompiled. The default directory for diagnostics files is the
current default directory. The default file name is the name of the source file
being compiled. The default file type of a diagnostics file is .DIA. No wildcard
characters are allowed in the file specification.

A–32 ACS Command Dictionary

COMPILE

By default, no diagnostics file is created.

/ERROR_LIMIT[=n] (D)
/NOERROR_LIMIT
Controls whether execution of the COMPILE command for a given compilation
unit is terminated upon the occurrence of the nth E-level error within that
unit.

Error counts are not accumulated across a sequence of compilation units. If
the /ERROR_LIMIT=n option is specified, each compilation unit may have up
to n � 1 errors without terminating the compilation. When the error limit is
reached within a compilation unit, compilation of that unit is terminated, but
compilation of subsequent units continues.

The /ERROR_LIMIT=0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the COMPILE command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error within that unit
(equivalent to /ERROR_LIMIT=30).

/KEEP (D)
/NOKEEP
Controls whether the batch log file generated is deleted after it is printed when
the command file is executed in batch mode.

By default, the log file is not deleted.

/LIST[=file-spec]
/NOLIST (D)
Controls whether a listing file is created. One listing file is created for each
compilation unit (not file) compiled or recompiled by the COMPILE command.

The default directory for listing files is the current default directory. The
default file name of a listing file corresponds to the name of its compilation
unit and uses the DEC Ada file-name conventions described in Chapter 1. The
default file type of a listing file is .LIS. No wildcard characters are allowed in
the file specification.

By default, the COMPILE command does not create a listing file.

/LOG
/NOLOG (D)
Controls whether a list of all the units that must be compiled or recompiled is
displayed.

By default, a list of the units that must be compiled or recompiled is not
displayed.

ACS Command Dictionary A–33

COMPILE

/MACHINE_CODE
/NOMACHINE_CODE (D)
Controls whether generated machine code (approximating assembler notation)
is included in the listing file.

By default, generated machine code is not included in the listing file.

/NAME=job-name
Specifies a string to be used as the job name and as the file name for the batch
log file when the command file is executed in batch mode. The job name can
have from 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, the program library
manager creates a job name comprising up to the first 39 characters of the
first unit name specified. If you do not specify the /NAME qualifier, but use
a wildcard character in the first unit name specified, the compiler uses the
default name ACS_COMPILE. In these cases, the job name is also the file
name of the batch log file.

/NOTE_SOURCE (D)
/NONOTE_SOURCE
Controls whether the file specification of the source file is noted in the program
library when a unit is compiled without error. The COMPILE command uses
this information to locate revised source files.

By default, the file specification of the source file is noted in the current
program library when a unit is compiled without error.

/NOTIFY (D)
/NONOTIFY
Controls whether a message is broadcast when the command file is executed in
batch mode. The message is broadcast to any terminal at which you are logged
in, notifying you that your job has been completed or terminated.

By default, a message is broadcast.

/OBSOLETE=(option[,...])
/NOOBSOLETE (D)
Affects the overall set of units that is identified as obsolete.

When the execution closure of the units in the parameter list of the command
is performed, the units named with the UNIT, SPECIFICATION and BODY
keywords are assumed to be obsolete as described below. If one of those units
is not in the execution closure of the units named in the command’s parameter
list, it is not added to the closure.

A–34 ACS Command Dictionary

COMPILE

Unit names are specified with the UNIT, SPECIFICATION, and BODY
keywords as follows:

UNIT:(unit_name[,...]) The specifications and bodies of units
specified with the UNIT keyword are
assumed to be obsolete.

SPECIFICATION:(unit_name[,...]) Only the specificiations of units specified
with the SPECIFICATION keyword are
assumed to be obsolete.

BODY:(unit_name[,...]) Only the bodies of units specified with
the BODY keyword are assumed to be
obsolete.

You must specify at least one of these keywords with the /OBSOLETE qualifier.
Unit names can contain wildcard characters.

When the /SMART_RECOMPILATION qualifier is in effect, dependent units
of the specified units are possibly obsolete and may be recompiled. To force
recompilation of dependent units when smart recompilation is in effect, use the
/OBSOLETE=UNIT:* qualifier. (See Section 5.1.3 for more information.)

By default, units are identified as obsolete based on the current state of the
program library.

/OPTIMIZE[=(option[,...])]
/NOOPTIMIZE
Controls the level of optimization that is applied in producing the compiled
code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(TIME) in the source code.

ACS Command Dictionary A–35

COMPILE

DEVELOPMENT Suggested when active development of a program is in
progress. Provides some optimization, but development
considerations and ease of debugging take preference
over optimization. This option overrides pragmas that
establish a dependence on a subprogram or generic
body (the pragmas INLINE and INLINE_GENERIC),
and thus reduces the need for recompilations when
such bodies are modified. This option also disables
generic code sharing.

NONE Provides no optimization. Suppresses inline expansions
of subprograms and generics, including those specified
by the pragmas INLINE and INLINE_GENERIC.
Suppresses occurrences of the pragma SHARE_
GENERIC and disables generic code sharing.

The /NOOPTIMIZE qualifier is equivalent to /OPTIMIZE=NONE.

By default, the COMPILE command applies full optimization with time as the
primary optimization criterion (like /OPTIMIZE=TIME, but observing uses of
the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you can
use separately or together with the primary options to override the default
behavior for inline expansion (generic and subprogram) and generic code
sharing.

The INLINE secondary option can have the following values (see the DEC Ada
Run-Time Reference Manual for OpenVMS Systems for more information about
inline expansion):

NONE Disables subprogram and generic inline expansion.
This option overrides any occurrences of the
pragmas INLINE or INLINE_GENERIC in the
source code, without your having to edit the source
file. It also disables implicit inline expansion of
subprograms. (Implicit inline expansion means
that the compiler assumes a pragma INLINE for
certain subprograms as an optimization.) A call
to a subprogram or an instance of a generic in
another unit is not expanded inline, regardless of
the /OPTIMIZE options in effect when that unit
was compiled.

A–36 ACS Command Dictionary

COMPILE

NORMAL Provides normal subprogram and generic inline
expansion.
Subprograms to which an explicit pragma INLINE
applies are expanded inline under certain
conditions. In addition, some subprograms are
implicitly expanded inline. The compiler assumes
a pragma INLINE for calls to some small local
subprograms (subprograms that are declared in the
same unit as the unit in which the call occurs).
Instances are compiled separately from the unit in
which the instantiation occurred unless a pragma
INLINE_GENERIC applies to the instance. If
a pragma INLINE_GENERIC applies and the
generic body has been compiled, the generic is
expanded inline at the point of instantiation.

SUBPROGRAMS Provides maximal subprogram inline expansion
and normal generic inline expansion.
In addition to the normal subprogram inline
expansion that occurs when INLINE:NORMAL
is specified, this option results in implicit inline
expansion of some small subprograms declared
in other units. The compiler assumes a pragma
INLINE for any subprogram if it improves
execution speed and reduces code size. This option
may establish a dependence on the body of another
unit, as would be the case if a pragma INLINE
were specified explicitly in the source code.
With this option, generic inline expansion occurs in
the same manner as for INLINE:NORMAL.

ACS Command Dictionary A–37

COMPILE

GENERICS Provides normal subprogram inline expansion and
maximal generic inline expansion.
With this option, subprogram inline expansion oc-
curs in the same manner as for INLINE:NORMAL.
The compiler assumes a pragma INLINE_
GENERIC for every instantiation in the unit
being compiled unless an explicit pragma SHARE_
GENERIC applies. This option may establish a
dependence on the body of another unit, as would
be the case if a pragma INLINE_GENERIC were
specified explicitly in the source code.

MAXIMAL Provides maximal subprogram and generic inline
expansion.
Maximal subprogram inline expansion occurs as for
INLINE:SUBPROGRAMS, and maximal generic
inline expansion occurs as for INLINE:GENERICS.

The SHARE secondary option can have the following values:

NONE Disables generic sharing. This option overrides the
effect of any occurrences of the pragma SHARE_
GENERIC in the source code, without your having
to edit the source file. In addition, instances do not
share code from previous instantiations.

NORMAL Provides normal generic sharing. Normally, the
compiler will not attempt to generate shareable code
for an instance (code that can shared by subsequent
instantiations) unless an explicit pragma SHARE_
GENERIC applies to that instance. However, an
instance will attempt to share code that resulted from
a previous instantiation to which the pragma SHARE_
GENERIC applied.

A–38 ACS Command Dictionary

COMPILE

MAXIMAL Provides maximal generic sharing. The compiler
assumes that a pragma SHARE_GENERIC applies
to every instance in the unit being compiled unless an
explicit pragma INLINE_GENERIC applies. Thus, an
instance will attempt to share code that resulted from
a previous instantiation or to generate code that can be
shared by subsequent instantiations.
SHARE:MAXIMAL cannot be used in combination with
INLINE:GENERICS or INLINE:MAXIMAL.

By default, if you specify one of the /OPTIMIZE qualifier primary options
on the left (for example, /OPTIMIZE=TIME), it has the same effect
as specifying the secondary-option values to the right (in this case,
/OPTIMIZE=(TIME,INLINE:NORMAL,SHARE:NORMAL)):

TIME /OPTIMIZE=(TIME,INLINE:NORMAL,SHARE:NORMAL)
SPACE /OPTIMIZE=(SPACE,INLINE:NORMAL,SHARE:NORMAL)
DEVELOPMENT /OPTIMIZE=(DEVELOPMENT,INLINE:NONE,

SHARE:NONE)
NONE /OPTIMIZE=(NONE,INLINE:NONE,SHARE:NONE)

See Chapter 4 for more information about the /OPTIMIZE qualifier and its
options.

/OUTPUT=file-spec
Requests that any program library manager output generated before
the compiler is invoked be written to the file specified rather than to
SYS$OUTPUT. Any diagnostic messages are written to both SYS$OUTPUT
and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the COMPILE command output is written to SYS$OUTPUT.

/PRELOAD (D)
/NOPRELOAD
Controls whether the COMPILE command processes revised external source
files so that new compilation units or unit dependences introduced in those
files—or any new source files previously processed by the ACS LOAD or DCL
ADA command—are accounted for. Preload processing involves the partial
compilation and syntax checking of the following files:

ACS Command Dictionary A–39

COMPILE

• Any external source file whose creation date-time is later than that noted
in the program library

• Any new units introduced into the closure of units specified by way of
modifications to the known external source files (preload processing does
not include new external source files that are not already accounted for in
the program library)

Preload processing is done immediately, after the creation date-time of each
external source file is checked, and before the usual COMPILE compilations
and recompilations are performed. If you have also specified the /CONFIRM
qualifier, you are prompted for confirmation for each external file to be
preloaded.

By default, the COMPILE command processes revised external source files to
account for new compilation units or unit dependences.

/PRINTER[=queue-name]
/NOPRINTER (D)
Controls whether the batch job log file is queued for printing when the
command file is executed in batch mode.

The /PRINTER qualifier allows you to specify a particular print queue. The
default print queue for the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify the
/NOPRINTER qualifier, the /KEEP qualifier is assumed.

/QUEUE=queue-name
Specifies the batch job queue in which the job is entered when the command
file is executed in batch mode.

By default, if the /QUEUE qualifier is not specified, the program library
manager first checks whether the logical name ADA$BATCH is defined. If it is,
the program library manager enters the job in the queue specified. Otherwise
the job is placed in the default system batch job queue, SYS$BATCH.

/SHOW[=option] (D)
/NOSHOW
Controls the listing file options included when a listing file is provided. You
can specify one of the following options:

ALL Provides all listing file options.
[NO]PORTABILITY Controls whether a program portability summary is

included in the listing file (see Chapter 7).

A–40 ACS Command Dictionary

COMPILE

NONE Provides none of the listing file options (same as
/NOSHOW).

By default, the COMPILE command provides a portability summary
(/SHOW=PORTABILITY).

/SMART_RECOMPILATION (D)
/NOSMART_RECOMPILATION
Controls whether smart recompilation information is stored and used to
minimize unnecessary recompilations.

When the /SMART_RECOMPILATION qualifier is in effect, detailed
information about dependences is stored in the program library for each
unit compiled. This information describes the dependences of a unit at a finer
level than the compilation unit level.

The ACS COMPILE command uses this information to detect when an
unmodified unit in the closure is not affected by changes (if any) in its
referenced units that are compiled or recompiled. The ACS COMPILE
command does not recompile such dependent units and, thus, minimizes
unnecessary recompilations.

Note that the ACS COMPILE command always compiles modified units.

If smart recompilation is not in effect, detailed information about dependences
is not stored in the program library, and units are considered obsolete and
recompiled based on their time of compilation. (See Chapter 5 for more
information.)

/SPECIFICATION_ONLY
Causes only the specifications of the units specified to be considered for
compilation. You can use the /CLOSURE qualifier with the /SPECIFICATION_
ONLY qualifier to force only the specifications in the execution closure of the
specified units to be considered for compilation.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, all of the
specifications, bodies, and subunits in the execution closure of the units
specified are considered for compilation.

/STATISTICS (D)
/NOSTATISTICS
Controls whether statistical information is displayed. Statistical information
includes the number of obsolete and possibly obsolete units, the total elasped
time for the last compilation of all identified units, and the estimated elasped
time savings due to smart recompilation.

ACS Command Dictionary A–41

COMPILE

/SUBMIT
Directs the program library manager to submit the command file generated for
the compiler to a batch queue. You can continue to enter commands in your
current process without waiting for the batch job to complete. The compiler
output is written to a log file.

By default, the program library manager submits the command file generated
for the compiler in a subprocess (by way of the COMPILE/WAIT command).

/SYNTAX_ONLY
/NOSYNTAX_ONLY (D)
Controls whether a syntax-level check is performed when identifying obsolete
units. A unit is not considered obsolete just because it is syntax-checked only.
Because all units in a program library are at least syntax-checked, in effect,
this qualifier selects only units with revised source files for compilation.

This qualifier also directs the compiler to process source files for syntax only.
Other compiler checks are not performed (for example, semantic analysis, type
checking, and so on).

By default, the COMPILE command performs full checking when identifying
obsolete units and the compiler fully compiles units.)

/WAIT
Directs the program library manager to execute the command file generated
in a subprocess. Execution of your current process is suspended until the
subprocess completes. The compiler output is written directly to your terminal.
Note that process logical names are propagated to the subprocess generated to
execute the command file.

By default, the program library manager executes the command file generated
in a subprocess. You must wait for the subprocess to terminate before you can
enter another command.

/WARNINGS[=(option[,...])]
/NOWARNINGS
Controls which categories of informational (I-level) and warning (W-level)
messages are displayed and where those messages are displayed. You can
specify any combination of the following message options:

WARNINGS: (destination[,...])
NOWARNINGS

WEAK_WARNINGS: (destination[,...])
NOWEAK_WARNINGS

A–42 ACS Command Dictionary

COMPILE

SUPPLEMENTAL: (destination[,...])
NOSUPPLEMENTAL

COMPILATION_NOTES: (destination[,...])
NOCOMPILATION_NOTES

STATUS: (destination[,...])
NOSTATUS

The possible values of destination are ALL, NONE, or any combination of
TERMINAL (terminal device), LISTING (listing file), and DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows (see
Chapter 4 for more information):

WARNINGS W-level: Indicates a definite problem in a legal
program—for example, an unknown pragma.

WEAK_WARNINGS I-level: Indicates a potential problem in a legal
program—for example, a possible CONSTRAINT_
ERROR at run time. These are the only kind of
I-level messages that are counted in the summary
statistics at the end of a compilation.

SUPPLEMENTAL I-level: Additional information associated with
preceding E-level or W-level diagnostics.

COMPILATION_NOTES I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions made
for the pragmas INLINE, INTERFACE, or the
import-subprogram pragmas.

STATUS I-level: End of compilation statistics and other
messages.

The defaults are as follows:

/WARNINGS=(WARN:ALL,WEAK:ALL,SUPP:ALL,COMP:NONE,STAT:LIST)

If you specify only some of the message categories with the /WARNINGS
qualifier, the default values for the other categories are used.

ACS Command Dictionary A–43

COMPILE

Examples

1. ACS> COMPILE/SUBMIT/LOG RESERVATIONS
%I, Invoking the DEC Ada compiler

%I, The following syntax-checked units are obsolete:
RESERVATIONS

package body 4-NOV-1992 16:25:34.68 (00:00:14.02)

%I, The following units may also be recompiled:
RESERVATIONS.RESERVE

procedure body 4-NOV-1992 14:49:55.78 (00:00:04.27)
RESERVATIONS.RESERVE.BILL

procedure body 4-NOV-1992 14:50:01.55 (00:00:05.12)
RESERVATIONS.CANCEL

procedure body 4-NOV-1992 14:51:36.25 (00:00:04.24)

1 obsolete unit, 3 possibly obsolete (total 4)
Total elapsed time for last compilation of all 4 units was 0:00:27.65

%I, Job RESERVATIONS (queue CLU_BATCH, entry 388) started on WIDTH_BATCH

Lists all units in the closure of unit RESERVATIONS that need to
be compiled and recompiled, then submits the compiler command file
generated by ACS as a batch job.

2. $ ACS COMPILE MAIN /OBSOLETE=UNIT:*

This combination can be used to force the compilation of the unit MAIN
and of all the units in its closure.

A–44 ACS Command Dictionary

COPY FOREIGN

COPY FOREIGN

Copies a foreign (non-Ada) object file into the current program library. The file
is used as a library body (body of a package, procedure, or function).

Format

COPY FOREIGN file-spec unit-name

Command Qualifiers Defaults

/[NO]LOG /NOLOG
/[NO]REPLACE /NOREPLACE

Prompts

_File:
_Unit:

Command Parameters

file-spec
Specifies the object file containing the foreign body to be copied into the
current program library. The default directory is the current default directory.
The default file type is .OBJ. No wildcard characters are allowed in the file
specification.

unit-name
Specifies the unit whose body is to be copied into the current program library
with the ACS COPY FOREIGN command.

Description

The ACS COPY FOREIGN command copies a foreign (non-Ada) object file
into the current program library. Because the file is used as a library body,
the program library must contain a library specification for the unit, and
the specification must contain the pragma INTERFACE and (if appropriate)
a pragma IMPORT_FUNCTION, IMPORT_PROCEDURE, or IMPORT_
VALUED_PROCEDURE for any procedure or function that the specification
requires.

Once you supply a foreign body for a unit, the program library manager
assumes that the body is current until you supply a new (Ada or foreign)
definition of the body. Compiling the specification of the unit does not cause
the body to become obsolete.

ACS Command Dictionary A–45

COPY FOREIGN

Command Qualifiers

/LOG
/NOLOG (D)
Controls whether the unit name and object-file name are displayed after the
object file is copied.

By default, the unit name or object-file name is not displayed.

/REPLACE
/NOREPLACE (D)
Controls whether the specified file replaces a body that is already defined in
the current program library for the unit name specified.

By default, the specified file does not replace a body that is already defined in
the current program library for the unit name specified.

Example

ACS> COPY FOREIGN USER:[JONES.WORK]SQUARE SQR

Copies the object file SQUARE.OBJ from the directory USER:[JONES.WORK]
into the current program library as the body of unit SQR. The specification of
SQR must already be defined in the current program library.

A–46 ACS Command Dictionary

COPY UNIT

COPY UNIT

Copies one or more units from another program library into the current
program library.

Format

COPY UNIT from-directory-spec unit-name[,...]

Command Qualifiers Defaults

/[NO]CLOSURE /NOCLOSURE
/[NO]CONFIRM /NOCONFIRM
/[NO]ENTERED[=library] /ENTERED
/[NO]LOCAL /LOCAL
/[NO]LOG /NOLOG
/[NO]REPLACE /NOREPLACE

Positional Qualifiers Defaults

/BODY_ONLY See text.
/SPECIFICATION_ONLY See text.

Prompts

_Library:
_Unit:

Command Parameters

from-directory-spec
Specifies the program library or program sublibrary that contains the units to
be copied into the current program library.

unit-name
Specifies one or more units to be copied into the current program library. You
must express subunit names using selected component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more information on wildcard
characters.)

ACS Command Dictionary A–47

COPY UNIT

Description

The ACS COPY UNIT command copies, into the current program library, each
specified unit’s specification and body (if any). If the specified unit is a subunit,
the COPY UNIT command copies the subunit and any nested subunits. If you
specify the /CLOSURE qualifier, the COPY UNIT command copies the closure
of the set of units specified.

For each unit copied, the COPY UNIT command updates the current program
library as follows:

1. Creates local copies of all associated files

2. Updates the library index file of the current program library to account for
the new files, and notes the date and time the unit was last compiled into
its original program library

Copying a unit that was entered into a program library produces a local copy
of that unit.

The COPY UNIT command does not affect the program library from which
a unit is copied. Modifying the unit in the original program library does not
affect the copied unit.

Once a unit is copied to a given program library, it can be used as if it had
been compiled locally.

Command Qualifiers

/CLOSURE
/NOCLOSURE (D)
Controls whether the COPY UNIT command copies the closure of the set of
units specified into the current program library.

By default, only the specification and body of the units specified are copied.

/CONFIRM
/NOCONFIRM (D)
Controls whether the COPY UNIT command displays the name of each unit
before copying, and requests you to confirm whether or not the unit should be
copied. If you specify the /CONFIRM qualifier, the possible responses are as
follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

A–48 ACS Command Dictionary

COPY UNIT

• QUIT or Ctrl/Z indicates that you want to stop processing the command at
that point.

• ALL indicates that you want to continue processing the command without
any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the confirmation prompt is reissued.

By default, no confirmation is requested.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are copied. You can use the library option
to copy units that were entered from a particular library. When you specify
the /NOENTERED qualifier, only units that have been compiled or copied
into the current program library are copied. Note that when you specify the
/ENTERED qualifier, local units are copied unless the /NOLOCAL qualifier is
also in effect (the defaults for these qualifiers are /LOCAL and /ENTERED).

By default, all units specified, including entered units, are copied.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were added to the library
by a compilation or a COPY UNIT command) are copied. Note that when
you specify the /LOCAL qualifier, entered units are copied unless the
/NOENTERED qualifier is also in effect (the defaults for these qualifiers
are /LOCAL and /ENTERED).

By default, all units specified, including local units, are copied.

/LOG
/NOLOG (D)
Controls whether the name of a unit is displayed after it has been copied.

By default, the names of copied units are not displayed.

/REPLACE
/NOREPLACE (D)
Controls whether the unit to be copied replaces a unit of the same name that
is already defined in the current program library.

By default, the unit to be copied does not replace a unit of the same name that
is already defined in the current program library.

ACS Command Dictionary A–49

COPY UNIT

Positional Qualifiers

/BODY_ONLY
Copies only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the COPY UNIT command
string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the command line override the /SPECIFICATION_ONLY
qualifier for those particular parameters. You cannot append both the /BODY_
ONLY qualifier and the /SPECIFICATION_ONLY qualifier to the COPY UNIT
command string or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as well
as the body, is copied.

/SPECIFICATION_ONLY
Copies only the specification of the specified unit.

When you append the /SPECIFICATION_ONLY qualifier to the COPY UNIT
command string, any /BODY_ONLY qualifiers that are appended to parameters
in the command line override the /BODY_ONLY qualifier for those particular
parameters. You cannot append both the /SPECIFICATION_ONLY qualifier
and the /BODY_ONLY qualifier to the COPY UNIT command string or to the
same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as
well as the specification, is copied.

Examples

1. ACS> COPY UNIT [SMITH.WORK.ADALIB] STACKS,SUM

Copies the units STACKS and SUM, located in the program library
[SMITH.WORK.ADALIB], into the current program library.

2. ACS> COPY UNIT/CLOSURE DISK:[SMITH.SHARE.ADALIB] QUEUE_MANAGER

Copies the closure of unit QUEUE_MANAGER from
DISK:[SMITH.SHARE.ADALIB] into the current program library.

3. ACS> COPY UNIT DISK:[PROJ.ADALIB] STACKS*

Copies the specification, body, and all of the subunits of the unit STACKS
from the program library DISK:[PROJ.ADALIB] to the current program
library.

A–50 ACS Command Dictionary

CREATE LIBRARY

CREATE LIBRARY

Creates a new DEC Ada program library. To create a program sublibrary, use
the ACS CREATE SUBLIBRARY command.

Note that you cannot create a program library across DECnet if a correspond-
ing VMS directory does not already exist.

Format

CREATE LIBRARY directory-spec

Command Qualifiers Defaults

/FLOAT_REPRESENTATION=option /FLOAT_REPRESENTATION=VAX_FLOAT
/[NO]LOG /LOG
/LONG_FLOAT=option /LONG_FLOAT=G_FLOAT
/MEMORY_SIZE=n /MEMORY_SIZE=2147483647
/[NO]PREDEFINED /PREDEFINED
/PROTECTION=(code) See text.
/SYSTEM_NAME=system See text.

Prompts

_Library:

Command Parameters

directory-spec
Specifies the program library to be created. The directory specification
must contain a VMS directory name and, optionally, a device name (see
the OpenVMS User’s Manual for VMS directory naming conventions). The
directory may be a subdirectory or a main (top-level) directory. No wildcard
characters are allowed in the directory specification.

The program libraries you create will typically be subdirectories of your main
(top-level) directory. To create a program library as a top-level directory, you
must have the necessary privileges. To create a subdirectory, you must have
write access to the lowest level directory that currently exists.

The directory specified to be a program library may be an existing empty
directory, to allow you to use special ACL (access control list) options for that
directory. See the OpenVMS User’s Manual and the VMS Access Control List
Editor Manual for more information on directory protection and ACL options.

ACS Command Dictionary A–51

CREATE LIBRARY

Description

The ACS CREATE LIBRARY command creates and initializes a new program
library by performing the following steps:

1. Creates the specified VMS directory, unless it already exists. If the
directory already exists before the CREATE LIBRARY command is entered,
the original directory protection attributes are maintained. If the directory
does not exist when the command is entered, the command creates the
specified directory with default protection attributes (see the description of
the /PROTECTION qualifier).

2. Creates a library index file (ADALIB.ALB) and a library version control file
(ADA$LIB.DAT) in the program library.

3. Initializes the program library to the following system characteristics:

FLOAT_REPRESENTATION=VAX_FLOAT
LONG_FLOAT = G_FLOAT
MEMORY_SIZE = 2147483647
SYSTEM_NAME = VAX_VMS or OpenVMS_AXP

You change these characteristics with the ACS SET PRAGMA command
or with the /SYSTEM_NAME qualifier that applies to the ACS CREATE
LIBRARY, CREATE SUBLIBRARY, EXPORT, and LINK commands.

4. If the /PREDEFINED qualifier is specified (the default), enters into the
newly created program library the DEC Ada predefined units (such as
SYSTEM and TEXT_IO) that are located in the ADA$PREDEFINED
program library on your system. This is equivalent to entering an ACS
ENTER UNIT command for those predefined units. You can use the
/NOPREDEFINED qualifier to change this default.

The CREATE LIBRARY command does not define a new program library to be
the current program library. You must use the ACS SET LIBRARY command
to define the current program library.

Command Qualifiers

/FLOAT_REPRESENTATION=VAX_FLOAT (D)
Initializes the program library to a particular value of FLOAT_
REPRESENTATION. The possible values are either VAX_FLOAT or IEEE_
FLOAT (for AXP systems only). The effect of this qualifier is similar to
compiling a pragma FLOAT_REPRESENTATION.

By default, if the /FLOAT_REPRESENTATION qualifier is not specified, the
program library is initialized to VAX_FLOAT.

A–52 ACS Command Dictionary

CREATE LIBRARY

/LOG (D)
/NOLOG
Controls whether the program library directory specification is displayed after
the library has been created.

By default, the program library directory specification is displayed.

/LONG_FLOAT=option
Initializes the program library to a particular value of LONG_FLOAT. The
possible values are D_FLOAT and G_FLOAT. The effect of this qualifier is
equivalent to compiling a pragma LONG_FLOAT.

By default, if the /LONG_FLOAT qualifier is not specified, the program
sublibrary is initialized to the value G_FLOAT.

/MEMORY_SIZE=n
Initializes the memory size of the program library to the value n. The effect of
this qualifier is equivalent to compiling a pragma MEMORY_SIZE.

By default, if the /MEMORY_SIZE qualifier is not specified, the initial memory
size of the program library is 2,147,483,647 bytes.

/PREDEFINED (D)
/NOPREDEFINED
Controls whether the DEC Ada predefined units located in the program library
denoted by the logical name ADA$PREDEFINED are entered into the specified
program library.

By default, the DEC Ada predefined units are entered into the specified
program library.

/PROTECTION=(code)
Defines the file protection to be applied to the program library. File protection
is specified as follows:

/PROTECTION=(SYSTEM:rwed,OWNER:rwed,GROUP:rwed,WORLD:rwed)

Refer to the OpenVMS User’s Manual for complete information on the form
and meaning of file protection codes.

If you want to deny all access to a category, you must specify the category
name without a colon. For example:

/PROTECTION=(OWNER:RWE,GROUP,WORLD)

ACS Command Dictionary A–53

CREATE LIBRARY

If you do not specify a value for each access category, or if you omit the
/PROTECTION qualifier when you create the program library, standard VMS
directory and file protection defaults are applied as follows:

• The directory protection defaults from the next-higher-level directory, less
any delete access.

• Protection for the library index file (ADALIB.ALB) and library version
control file (ADA$LIB.DAT) defaults from the process default protection
(see the DCL SET PROTECTION/DEFAULT command).

See Chapter 7 for more information on program library protection.

/SYSTEM_NAME=system
Determines the target operating system for the program library. On VAX
systems, the possible system values are VAX_VMS and VAXELN. On AXP
systems, the system value is OpenVMS_AXP.

By default, if the /SYSTEM_NAME qualifier is not specified, the initial target
operating system is VAX_VMS on VAX systems and OpenVMS_AXP on AXP
systems.

Examples

1. ACS> CREATE LIBRARY [JONES.HOTEL.ADALIB]
%I, Library USER:[JONES.HOTEL.ADALIB] created

Creates the program library [JONES.HOTEL.ADALIB] on the default
device, USER:.

2. ACS> CREATE LIBRARY/PROTECTION=(S:RWE,O:RWED,G:RW,W) -
_ACS> [PROJ.ADALIB]
%I, Program library USER:[PROJ.ADALIB] created

Creates the program library [PROJ.ADALIB] on the default device,
USER. The /PROTECTION qualifier assigns the specified program library
protection. This protection is applied to the library index file, the library
version control file, and the directory file for the newly created program
library.

A–54 ACS Command Dictionary

CREATE SUBLIBRARY

CREATE SUBLIBRARY

Creates a new DEC Ada program sublibrary and establishes its parent
program library.

Note that you cannot create a program sublibrary across DECnet if the
corresponding VMS directory does not already exist.

Format

CREATE SUBLIBRARY directory-spec

Command Qualifiers Defaults

/FLOAT_REPRESENTATION=option /FLOAT_REPRESENTATION=VAX_FLOAT
/[NO]LOG /LOG
/LONG_FLOAT=option /LONG_FLOAT=G_FLOAT
/MEMORY_SIZE=n /MEMORY_SIZE=2147483647
/PARENT=directory-spec /PARENT=current-program-library
/PROTECTION=(code) See text.
/SYSTEM_NAME=system See text.

Prompts

_Sublibrary:

Command Parameters

directory-spec
Specifies the program sublibrary to be created. The directory specification
must contain a VMS directory name and, optionally, a device name (see the
OpenVMS User’s Manual for VMS directory naming conventions). No wildcard
characters are allowed in the directory specification.

You may use any valid VMS directory specification when creating a program
sublibrary; however, the program sublibraries you create will typically be
subdirectories of your main (top-level) directory.

The specified program sublibrary directory may be, but need not be, a
subdirectory of the parent library directory.

The directory specified to be a program sublibrary may be an existing empty
directory. This allows you to use special ACL (access control list) options for
that directory. In that case, the CREATE SUBLIBRARY command makes the
directory a program library. See the OpenVMS User’s Manual and the VMS

ACS Command Dictionary A–55

CREATE SUBLIBRARY

Access Control List Editor Manual for more information on directory protection
and ACL options.

Description

The ACS CREATE SUBLIBRARY command creates and initializes a new
program sublibrary by performing the following steps:

1. Checks that the parent library exists and is write accessible.

2. Creates the specified VMS directory, unless it already exists. If the
directory already existed before the CREATE SUBLIBRARY command was
entered, the original directory protection attributes are maintained. If the
directory did not exist before the command was entered, the command
creates the specified directory with default protection attributes (see the
description of the /PROTECTION qualifier).

3. Creates a library index file (ADALIB.ALB) and a library version control file
(ADA$LIB.DAT) in the program sublibrary.

4. Initializes the library index file to reference the parent program library as
specified with the /PARENT qualifier. If the /PARENT qualifier is not used,
the parent program library is the current program library.

5. Initializes the program sublibrary to the parent library’s current values
for FLOAT_REPRESENTATION, LONG_FLOAT, MEMORY_SIZE, and
SYSTEM_NAME.

Program sublibraries may be nested several levels deep. However, you should
limit nesting to three or four levels for best performance. Note that the VMS
operating system imposes limits on how deeply directories and subdirectories
can be nested. This limit has an effect only if you use increasingly subordinate
subdirectories for each sublibrary in your sublibrary tree.

The CREATE SUBLIBRARY command does not affect the definition of your
current program library. If you want to define the newly created program
sublibrary to be the current program library, you must use the ACS SET
LIBRARY command.

Command Qualifiers

/FLOAT_REPRESENTATION=VAX_FLOAT (D)
Initializes the program library to a particular value of FLOAT_
REPRESENTATION. The possible values are either VAX_FLOAT or IEEE_
FLOAT (for AXP systems only). The effect of this qualifier is similar to
compiling a pragma FLOAT_REPRESENTATION.

A–56 ACS Command Dictionary

CREATE SUBLIBRARY

By default, if the /FLOAT_REPRESENTATION qualifier is not specified, the
program library is initialized to VAX_FLOAT.

/LOG (D)
/NOLOG
Controls whether the program sublibrary directory specification is displayed
after the sublibrary has been created.

By default, the program sublibrary directory specification is displayed.

/LONG_FLOAT=option
Initializes the program library to a particular value of LONG_FLOAT. The
possible values are D_FLOAT and G_FLOAT.

By default, if the /LONG_FLOAT qualifier is not specified, the program
sublibrary is initialized to the parent library’s current value of LONG_FLOAT.

/MEMORY_SIZE=n
Initializes the memory size of the created program sublibrary.

By default, if the /MEMORY_SIZE qualifier is not specified, the initial
memory size of the program sublibrary is the parent library’s current value of
MEMORY_SIZE.

/PARENT=directory-spec
Specifies the program library or program sublibrary that is the immediate
parent of the program sublibrary to be created.

By default, if the /PARENT qualifier is not specified, the parent is the current
program library as established by the last ACS SET LIBRARY command.

/PROTECTION=(code)
Defines the file protection to be applied to the program sublibrary. File
protection is specified as follows:

/PROTECTION=(SYSTEM:rwed,OWNER:rwed,GROUP:rwed,WORLD:rwed)

Refer to the OpenVMS User’s Manual for complete information on the form
and meaning of file protection codes.

If you want to deny all access to a category, you must specify the category
name without a colon. For example:

/PROTECTION=(OWNER:RWE,GROUP,WORLD)

ACS Command Dictionary A–57

CREATE SUBLIBRARY

If you do not specify a value for each access category, or if you omit the
/PROTECTION qualifier when you create the program library, standard VMS
directory and file protection defaults are applied as follows:

• The directory protection defaults from the next-higher-level directory, less
any delete access.

• Protection for the library index file (ADALIB.ALB) and library version
control file (ADA$LIB.DAT) defaults from the process default protection
(see the DCL SET PROTECTION/DEFAULT command in the OpenVMS
DCL Dictionary).

See Chapter 7 for more information on program library protection.

/SYSTEM_NAME=system
Initializes the target operating system of the program sublibrary. On VAX
systems, the possible system values are VAX_VMS and VAXELN. On AXP
systems, the system value is OpenVMS_AXP.

By default, if the /SYSTEM_NAME qualifier is not specified, the initial target
operating system is the parent library’s current value of SYSTEM_NAME.

Examples

1. ACS> CREATE SUBLIBRARY [JONES.TEMP.SUBLIB]
%I, Sublibrary USER:[JONES.TEMP.SUBLIB] created

Creates the program sublibrary [JONES.TEMP.SUBLIB] on the current
default device. The parent library is the current program library.

2. ACS> CREATE SUBLIBRARY/PARENT=[HOTEL.ADALIB] [JONES.LISTS.SUBLIB]
%I, Sublibrary USER:[JONES.LISTS.SUBLIB] created

Creates the program sublibrary [JONES.LISTS.SUBLIB] on the current
default device. The command defines [HOTEL.ADALIB] to be the parent
library.

A–58 ACS Command Dictionary

DELETE LIBRARY

DELETE LIBRARY

Deletes a DEC Ada program library and all its units. To delete a program
sublibrary, you must use the ACS DELETE SUBLIBRARY command.

Note

A program library does not contain any references to program
sublibraries. When you enter the ACS DELETE LIBRARY command,
you are not warned of the possible existence of any program
sublibraries.

Format

DELETE LIBRARY directory-spec

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]LOG /LOG

Prompts

_Library:

Command Parameters

directory-spec
Specifies the program library directory to be deleted. The directory must be
a DEC Ada program library; that is, it must have been created with the ACS
CREATE LIBRARY command.

Description

The ACS DELETE LIBRARY command performs the following steps:

1. Checks whether the directory specified to be deleted is a DEC Ada program
library (has a valid library index file, ADALIB.ALB). If not, a message is
issued and there is no further action.

ACS Command Dictionary A–59

DELETE LIBRARY

2. If the specified directory is a DEC Ada program library, deletes the files
needed for program library operations. For example, the library index file
(ADALIB.ALB), library version control file (ADA$LIB.DAT), and all object
(.OBJ), compilation unit (.ACU), and copied source (.ADC) files are deleted.

3. If the program library is empty after step 2 and has the appropriate
protection, deletes the directory. If the directory is not empty, it is
preserved and a message is issued. To delete the files and directory in
that case, you must exit from the program library manager and use the
DCL DELETE command.

Note that, when a program library is created, the directory inherits the
protection of its parent directory less any delete access by default. Before
attempting to delete a program library that is delete protected against the
owner, you must change the directory protection of the library with the
DCL SET PROTECTION command. See Chapter 7 for more information
on program library protection.

The DELETE LIBRARY command does not delete any program sublibraries of
the specified program library.

You cannot use the DELETE LIBRARY command to delete a sublibrary.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the DELETE LIBRARY command displays the name of the
program library before deleting it and requests you to confirm whether or not
the program library should be deleted. If you specify the /CONFIRM qualifier,
the possible responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/LOG (D)
/NOLOG
Controls whether the program library directory specification is displayed after
the library has been deleted.

A–60 ACS Command Dictionary

DELETE LIBRARY

By default, the program library directory specification is displayed.

Example

ACS> DELETE LIBRARY/CONFIRM [JONES.TEMP.ADALIB]
USER:[JONES.TEMP.ADALIB], delete library? [N]: Y
%I, Library USER:[JONES.SCRATCH.ADALIB] deleted

Requests confirmation to delete the program library [JONES.TEMP.ADALIB].
After confirmation, the command deletes the library index file, library version
control file, and all object, compilation unit, and copied source files. Because no
other files remain in the program library directory, and the directory protection
allows delete access, the directory is deleted and the name of the deleted
program library is displayed.

ACS Command Dictionary A–61

DELETE SUBLIBRARY

DELETE SUBLIBRARY

Deletes a DEC Ada program sublibrary and all its units. To delete a program
library, you must use the ACS DELETE LIBRARY command.

Note

A program sublibrary does not contain any references to nested pro-
gram sublibraries. When you enter the ACS DELETE SUBLIBRARY
command, you are not warned of the possible existence of any nested
program sublibraries.

Format

DELETE SUBLIBRARY directory-spec

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]LOG /LOG

Prompts

_Sublibrary:

Command Parameters

directory-spec
Specifies the program sublibrary directory to be deleted. The directory must
be a DEC Ada program sublibrary; that is, it must have been created with the
ACS CREATE SUBLIBRARY command.

Description

The ACS DELETE SUBLIBRARY command performs the following steps:

1. Checks whether the directory specified to be deleted is a DEC Ada program
sublibrary. If not, a message is issued and there is no further action.

2. If the specified directory is a DEC Ada program sublibrary, deletes the
files needed for sublibrary operations. For example, the library index file
(ADALIB.ALB), library version control file (ADA$LIB.DAT), and all object
(.OBJ), compilation unit (.ACU), and copied source (.ADC) files are deleted.

A–62 ACS Command Dictionary

DELETE SUBLIBRARY

3. If the program sublibrary is empty after step 2 and has the appropriate
protection, deletes the directory. If the directory is not empty, it is
preserved and a message is issued. To delete the files and directory in
that case, you must exit from the program library manager and use the
DCL DELETE command.

Note that, when a program sublibrary is created, the directory inherits the
protection of its parent directory less any delete access by default (note
that the parent directory may not necessarily be the sublibrary’s parent
library). Before attempting to delete a program sublibrary that is delete
protected against the owner, you must change the directory protection of
the sublibrary with the DCL SET PROTECTION command. See Chapter 7
for more information on sublibrary protection.

The DELETE SUBLIBRARY command does not delete any nested program
sublibraries of the specified program sublibrary.

The DELETE SUBLIBRARY command does not delete a program library.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the DELETE SUBLIBRARY command displays the name of
the program sublibrary before deleting it and requests you to confirm whether
or not the program sublibrary should be deleted. If you specify the /CONFIRM
qualifier, the possible responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/LOG (D)
/NOLOG
Controls whether the program sublibrary directory specification is displayed
after the sublibrary has been deleted.

By default, the program sublibrary directory specification is displayed.

ACS Command Dictionary A–63

DELETE SUBLIBRARY

Example

ACS> DELETE SUBLIBRARY/CONFIRM [JONES.LISTS.SUBLIB]
USER:[JONES.LISTS.SUBLIB], delete sublibrary? [N]: Y
%I, Sublibrary USER:[JONES.LISTS.SUBLIB] deleted

Requests confirmation to delete the sublibrary [JONES.LISTS.SUBLIB].
After confirmation, the command deletes the library index file and all object,
compilation unit, and copied source files in [JONES.LISTS.SUBLIB]; it then
deletes the program sublibrary.

A–64 ACS Command Dictionary

DELETE UNIT

DELETE UNIT

Deletes one or more units from the current program library, including
references to units entered from another program library.

Format

DELETE UNIT unit-name[,...]

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]ENTERED[=library] /ENTERED
/[NO]LOCAL /LOCAL
/[NO]LOG /NOLOG

Positional Qualifiers Defaults

/BODY_ONLY See text.
/SPECIFICATION_ONLY See text.

Prompts

_Unit:

Command Parameters

unit-name[,...]
Specifies one or more units to be deleted from the current program library. You
must express subunit names using selected component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more information on wildcard
characters.)

Description

The ACS DELETE UNIT command deletes, from the current program library,
the specified unit’s specification and body (if any). If you specify a subunit
name, the DELETE UNIT command deletes the subunit and any nested
subunits. The DELETE UNIT command deletes units that have been compiled,
copied, or entered into the current program library.

ACS Command Dictionary A–65

DELETE UNIT

Note

An ACS DELETE UNIT SYSTEM command deletes any unit called
SYSTEM, be it predefined or user defined. Deleting the predefined unit
SYSTEM can have major effects, such as not allowing you to use the
predefined package TEXT_IO. If you accidentally delete the predefined
package SYSTEM, you can restore it by entering the ACS ENTER
UNIT command, and specifying the library denoted by the logical name
ADA$PREDEFINED (see the ACS ENTER UNIT command for more
information on entering units).

For each unit specified, the DELETE UNIT command updates the current
program library as follows:

• Deletes the associated index entries in the library index file

• Deletes any associated files from the current program library

The DELETE UNIT command does not affect any files or index entries in
program libraries other than the current program library.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the DELETE UNIT command displays the unit name of
each unit before deleting it, and requests you to confirm whether or not the
unit should be deleted. If you specify the /CONFIRM qualifier, the possible
responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

• QUIT or Ctrl/Z indicates that you want to stop processing the command at
that point.

• ALL indicates that you want to continue processing the command without
any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

A–66 ACS Command Dictionary

DELETE UNIT

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are deleted. You can use the library option
to delete units that were entered from a particular library. When you specify
the /NOENTERED qualifier, only units that have been compiled or copied
into the current program library are deleted. Note that when you specify the
/ENTERED qualifier, local units are deleted unless the /NOLOCAL qualifier is
also in effect (the defaults for these qualifiers are /LOCAL and /ENTERED).

By default, all units specified, including entered units, are deleted.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were added to the library
by a compilation or a COPY UNIT command) are deleted. Note that when
you specify the /LOCAL qualifier, entered units are deleted unless the
/NOENTERED qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and ENTERED).

By default, all units specified, including local units, are deleted.

/LOG
/NOLOG (D)
Controls whether the name of a unit is displayed after it has been deleted.

By default, the names of deleted units are not displayed.

Positional Qualifiers

/BODY_ONLY
Deletes only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the DELETE UNIT
command string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the command line override the /BODY_ONLY qualifier for those
particular parameters. You cannot append both the /BODY_ONLY qualifier
and the /SPECIFICATION_ONLY qualifier to the DELETE UNIT command
string or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as well
as the body, is deleted.

/SPECIFICATION_ONLY
Deletes only the specification of the specified unit.

ACS Command Dictionary A–67

DELETE UNIT

When you append the /SPECIFICATION_ONLY qualifier to the DELETE UNIT
command string, any /BODY_ONLY qualifiers that are appended to parameters
in the command line override the /SPECIFICATION_ONLY qualifier for those
particular parameters. You cannot append both the /SPECIFICATION_ONLY
qualifier and the /BODY_ONLY qualifier to the DELETE UNIT command
string or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as
well as the specification, is deleted.

Examples

1. ACS> DELETE UNIT/LOG SCREEN_IO
%I, Package specification SCREEN_IO deleted
%I, Package body SCREEN_IO deleted

Deletes from the current program library the specification and body of
SCREEN_IO, and displays the names of the components deleted.

2. ACS> DELETE UNIT/BODY_ONLY/CONFIRM RESERVATIONS
RESERVATIONS, delete? [N]:Y

Deletes the body of RESERVATIONS from the current program library.

3. ACS> DELETE UNIT STACKS*

Deletes the specification, body, and all of the subunits of the unit STACKS.

A–68 ACS Command Dictionary

DIRECTORY

DIRECTORY

Displays information about one or more units in the current program library.

Format

DIRECTORY [unit-name[,...]]

Command Qualifiers Defaults

/BRIEF See text.
/[NO]ENTERED[=library] /ENTERED
/[NO]LOCAL /LOCAL
/FULL See text.
/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT

Positional Qualifiers Defaults

/BODY_ONLY See text.
/SPECIFICATION_ONLY See text.

Prompts

None.

Command Parameters

[unit-name[,...]]
Specifies one or more units in the current program library for which
information is to be shown. You must express subunit names using selected
component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more information on wildcard
characters.)

Description

If you specify a unit name, the ACS DIRECTORY command displays
information about the unit’s specification and body, if the latter exists. If
you specify a subunit name, the DIRECTORY command displays information
about the subunit.

ACS Command Dictionary A–69

DIRECTORY

If you do not specify a unit name, the DIRECTORY command displays
information about all of the units in the current program library, including
entered units.

Units are listed by name in alphabetical order. Subunit names are shown
using selected component notation.

The output of the DIRECTORY command depends on whether you specify the
/BRIEF, /FULL, or no formatting qualifier. If you do not specify a qualifier, the
DIRECTORY command displays (for each unit specified) the unit name, the
kind of unit (for example, procedure body, generic package declaration, and so
on), and the compilation date and time.

Command Qualifiers

/BRIEF
Lists only the names of the units specified.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are displayed. You can use the library option
to display units that were entered from a particular library. When you specify
the /NOENTERED qualifier, only units that have been compiled or copied into
the current program library are displayed. Note that when you specify the
/ENTERED qualifier, local units are displayed unless the /NOLOCAL qualifier
is also in effect (the defaults for these qualifiers are /LOCAL and /ENTERED).

By default, all units, including entered units, are displayed.

/FULL
Lists (for each unit specified) the unit name, kind, compilation date and time,
and the file specifications of the associated files. The file specifications of
entered units are shown preceded with an at character (@).

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were added to the library by
a compilation or a COPY UNIT command) are displayed. Note that when
you specify the /LOCAL qualifier, entered units are displayed unless the
/NOENTERED qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units specified, including local units, are displayed.

A–70 ACS Command Dictionary

DIRECTORY

/OUTPUT=file-spec
Requests that the DIRECTORY command output be written to the file specified
rather than to SYS$OUTPUT. Any diagnostic messages are written to both
SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the DIRECTORY command output is written to SYS$OUTPUT.

Positional Qualifiers

/BODY_ONLY
Displays only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the DIRECTORY command
string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the command line override the /BODY_ONLY qualifier for
those particular parameters. You cannot append both the /BODY_ONLY
qualifier and the /SPECIFICATION_ONLY qualifier to the DIRECTORY
command string or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as well
as the body, is displayed.

/SPECIFICATION_ONLY
Displays only the specification of the specified unit.

When you append the /SPECIFICATION_ONLY qualifier to the DIRECTORY
command string, any /BODY_ONLY qualifiers that are appended to parameters
in the command line override the /SPECIFICATION_ONLY qualifier for those
particular parameters. You cannot append both the /SPECIFICATION_ONLY
qualifier and the /BODY_ONLY qualifier to the DIRECTORY command string
or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as
well as the specification, is displayed.

ACS Command Dictionary A–71

DIRECTORY

Examples

1. ACS> DIRECTORY/NOENTERED/BRIEF *
.
.
.
HOTEL
RESERVATIONS
RESERVATIONS.CANCEL
RESERVATIONS.RESERVE
RESERVATIONS.RESERVE.BILL
.
.
.

Total of 13 units.

Lists the names of all units and subunits that have been compiled or copied
into the current program library.

2. ACS> DIRECTORY SCREEN_IO*
SCREEN_IO

package specification 4-NOV-1992 18:11:47.55
package body 4-NOV-1992 18:12:05.46

SCREEN_IO.INPUT
procedure body 4-NOV-1992 18:12:20.80

SCREEN_IO.INPUT.BUFFER
function body 4-NOV-1992 18:12:56.64

SCREEN_IO.OUTPUT
procedure body 4-NOV-1992 18:13:09.14

Total of 5 units.

Displays the unit name, unit kind, and date-time of the last compilation for
all units in the current program library whose names start with SCREEN_
IO.

3. ACS> DIRECTORY/FULL SCREEN_IO.INPUT*
SCREEN_IO.INPUT

procedure body 4-NOV-1992 18:12:20.80
SCREEN_IO__INPUT.ACU;3
SCREEN_IO__INPUT.OBJ;3
SCREEN_IO__INPUT.ADC;3

@ ADA25$:[RYAN.PROJECT.VAXADA_V30FT3]SCREEN_IO__INPUT.ADA;3

A–72 ACS Command Dictionary

DIRECTORY

SCREEN_IO.INPUT.BUFFER
function body 4-NOV-1992 18:12:56.64

SCREEN_IO__BUFFER.ACU;3
SCREEN_IO__BUFFER.OBJ;3
SCREEN_IO__BUFFER.ADC;3

@ ADA25$:[RYAN.PROJECT.VAXADA_V30FT3]SCREEN_IO__BUFFER.ADA;3

Displays the unit name, unit kind, associated file specifications, and date-
time of the last compilation for all of the units in the current program
library whose names start with SCREEN_IO.INPUT. The file specifications
listed are those for the compilation unit (.ACU), object (.OBJ), copied source
(.ADC), and source (.ADA) files.

4. $ ACS DIRECTORY ASSERT,HOTEL,RESERVATIONS.SEND,SQR
ASSERT

package instantiation 27-OCT-1992 10:07:54.09 <entered>

HOTEL
procedure body 4-NOV-1992 16:07:05.22 <main>

RESERVATIONS.SEND
procedure body 4-NOV-1992 14:10:23.47 <syntax-checked>

SQR
function specification 4-NOV-1992 17:10:39.42
function body 4-NOV-1992 16:47:02.18 <foreign>

ADA_CALLER
procedure body 4-NOV-1992 18:31:40.87 <design-checked>

<main>

Total of 6 units.

Displays the unit name, unit-kind, date-time of last compilation, and unit
type and status for each unit specified. Note that the unit ADA_CALLER
is a main program that has been design-checked.

ACS Command Dictionary A–73

ENTER FOREIGN

ENTER FOREIGN

Enters a reference to an external file into the current program library. The
file is entered as a foreign (non-Ada) library body (the body of a package,
procedure, or function). The file may be an object file, object library, shareable
image library, shareable image, or linker options file.

Format

ENTER FOREIGN file-spec unit-name

Command Qualifiers Defaults

/LIBRARY See text.
/[NO]LOG /NOLOG
/OBJECT See text.
/OPTIONS See text.
/[NO]REPLACE /NOREPLACE
/SHAREABLE See text.

Prompts

_File:
_Unit:

Command Parameters

file-spec
Specifies the file containing the foreign body to be entered into the current
program library. The file may be a object file, object library, shareable image
library, shareable image, or linker options file.

The default directory is the current default directory. The default file type
is .OBJ, unless the /LIBRARY, /OPTIONS, or /SHAREABLE qualifier is used.
No wildcard characters are allowed in the file specification.

If the file is an object file, you can optionally use the /OBJECT qualifier. The
default file type is .OBJ.

If the file is an object library or shareable image library, you must use the
/LIBRARY qualifier. The default file type is .OLB.

If the file is a linker options file, you must use the /OPTIONS qualifier. The
default file type is .OPT.

If the file is a shareable image, you must use the /SHAREABLE qualifier. The
default file type is .EXE.

A–74 ACS Command Dictionary

ENTER FOREIGN

unit-name
Specifies the unit whose body is to be referenced with the ENTER FOREIGN
command.

Description

The ACS ENTER FOREIGN command enters a reference to an external file,
which then serves as a foreign (non-Ada) library body for an Ada compilation
unit.

The program library must contain a library specification for the unit, and
the specification must contain the pragma INTERFACE and (if appropriate)
a pragma IMPORT_FUNCTION, IMPORT_PROCEDURE, or IMPORT_
VALUED_PROCEDURE.

Once you supply a foreign body for a unit, the program library manager
assumes that the body is current until you supply a new (Ada or foreign)
definition of the body. Compiling the specification of the unit does not cause
the body to become obsolete.

Command Qualifiers

/LIBRARY
Indicates that the associated input file is a object library or shareable image
library. The default file type is .OLB.

By default, if you do not specify the /LIBRARY qualifier, the file is assumed to
be an object file with a default file type of .OBJ.

/LOG
/NOLOG (D)
Controls whether the unit name and associated file name are displayed after a
foreign body has been entered.

By default, the unit name and associated file name are not displayed.

/OBJECT
Indicates that the associated input file is an object file. The default file type is
.OBJ.

The /OBJECT qualifier is the default, if you do not specify a /LIBRARY,
/OPTIONS, or /SHAREABLE qualifier.

/OPTIONS
Indicates that the associated input file is a linker options file. The default file
type is .OPT.

ACS Command Dictionary A–75

ENTER FOREIGN

By default, if you do not specify the /OPTIONS qualifier, the file is assumed to
be an object file with a default file type of .OBJ.

/REPLACE
/NOREPLACE (D)
Controls whether the foreign body to be entered replaces a body that is already
defined in the current program library for the unit name specified.

By default, the foreign body to be entered does not replace a body that is
already defined in the current program library for the unit name specified.

/SHAREABLE
Indicates that the associated input file is a shareable image. The default file
type is .EXE.

By default, if you do not specify the /SHAREABLE qualifier, the file is assumed
to be an object file with a default file type of .OBJ.

Example

ACS> ENTER FOREIGN DISK:[SMITH.MATH]SQUARE SQR

Enters the object file SQUARE.OBJ from DISK:[SMITH.MATH] into the
current program library, as the body of unit SQR. The specification of SQR is
(as required) already defined in the program library.

A–76 ACS Command Dictionary

ENTER UNIT

ENTER UNIT

Enters references in the current program library to one or more units located
in another program library.

Format

ENTER UNIT from-directory-spec unit-name [,...]

Command Qualifiers Defaults

/[NO]CLOSURE /NOCLOSURE
/[NO]CONFIRM /NOCONFIRM
/[NO]ENTERED[=library] /ENTERED
/[NO]LOCAL /LOCAL
/[NO]LOG /NOLOG
/[NO]REPLACE /NOREPLACE

Positional Qualifiers Defaults

/BODY_ONLY See text.
/SPECIFICATION_ONLY See text.

Prompts

_Library:
_Unit:

Command Parameters

from-directory-spec
Specifies the program library that contains the units to be referenced.

unit-name[,...]
Specifies one or more units to be entered into the current program library. You
must express subunit names using selected component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more detailed information on
wildcard characters.)

ACS Command Dictionary A–77

ENTER UNIT

Description

The ACS ENTER UNIT command enters into the current progam library each
specified unit’s specification and body (if any). If the specified unit is a subunit,
the ENTER UNIT command enters the subunit and any nested subunits. If
the /CLOSURE qualifier is specified, the ENTER UNIT command enters the
closure of the set of units specified.

For each unit entered, the ENTER UNIT command updates the library index
file of the current program library to refer to the unit and its associated files,
and to include the date and time the unit was last compiled into its original
program library.

An entered unit can be used as if had been compiled locally. In other words, a
unit entered into a program library can be named in a with clause by a unit
that has been compiled into that program library.

The ENTER UNIT command does not affect the program library from which
a unit is entered. However, if an entered unit is subsequently compiled in
its original program library, all references to that unit from other program
libraries are invalidated. You must enter the ACS REENTER command to
make the references current. (You may also need to then recompile any units
that depend on the entered unit.)

The ACS COMPILE and RECOMPILE commands have no effect on entered
units.

Command Qualifiers

/CLOSURE
/NOCLOSURE (D)
Controls whether the ENTER UNIT command enters the closure of the set of
units specified into the current program library.

By default, only the specification and body of the units specified are entered.

/CONFIRM
/NOCONFIRM (D)
Controls whether the ENTER UNIT command displays the name of each unit
before entering that unit into the current program library, and requests that
you confirm whether or not that unit should be entered. If you specify the
/CONFIRM qualifier, the possible responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

A–78 ACS Command Dictionary

ENTER UNIT

• QUIT or Ctrl/Z indicates that you want to stop processing the command at
that point.

• ALL indicates that you want to continue processing the command without
any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are entered. You can use the library option to
enter units that were entered from a particular library. When you specify the
/NOENTERED qualifier, only units that have been compiled or copied into the
other program library are entered. Note that when you specify the /ENTERED
qualifier, local units are entered unless the /NOLOCAL qualifier is also in
effect (the defaults for these qualifiers are /LOCAL and /ENTERED).

By default, all units, including entered units, are entered.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were added to the library by
a compilation or a COPY UNIT command) are entered. Note that when
you specify the /LOCAL qualifier, entered units are entered unless the
/NOENTERED qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units specified, including local units, are entered.

/LOG
/NOLOG (D)
Controls whether the name of a unit is displayed after it has been entered.

By default, the names of entered units are not displayed.

/REPLACE
/NOREPLACE (D)
Controls whether the unit to be entered replaces a unit of the same name that
is already defined in the current program library.

By default, the unit to be entered does not replace a unit of the same name
that is already defined in the current program library.

ACS Command Dictionary A–79

ENTER UNIT

Positional Qualifiers

/BODY_ONLY
Enters only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the ENTER UNIT command
string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the command line override the /BODY_ONLY qualifier for
those particular parameters. You cannot append both the /BODY_ONLY
qualifier and the /SPECIFICATION_ONLY qualifier to the ENTER UNIT
command string or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as well
as the body, is entered.

/SPECIFICATION_ONLY
Enters only the specification of the specified unit.

When you append the /SPECIFICATION_ONLY qualifier to the ENTER UNIT
command string, any /BODY_ONLY qualifiers that are appended to parameters
in the command line override the /SPECIFICATION_ONLY qualifier for those
particular parameters. You cannot append both the /SPECIFICATION_ONLY
qualifier and the /BODY_ONLY qualifier to the ENTER UNIT command string
or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as
well as the specification, is entered.

Examples

1. ACS> ENTER UNIT [PROJ.MAIN_LIB] *

Enters all of the units from the project library into the current program
library.

2. ACS> ENTER UNIT/REPLACE DISK:[SMITH.SHARE.ADALIB] QUEUE_MANAGER

Enters the unit QUEUE_MANAGER into the current program library from
the library DISK:[SMITH.SHARE.ADALIB], replacing any previous index
reference to that unit. If the /REPLACE qualifier had not been used, a
previously existing reference to QUEUE_MANAGER would not have been
replaced.

A–80 ACS Command Dictionary

EXIT

EXIT

Exits from the program library manager and returns control to DCL.

Format

EXIT

Prompts

None.

Command Parameters

None.

Description

The EXIT command allows you to exit from the program library manager when
you are using it interactively. You can also use Ctrl/Z for the same purpose.

Example

ACS> EXIT
$

Exits from the program library manager and returns control to DCL.

ACS Command Dictionary A–81

EXPORT

EXPORT

Creates an object file that contains the object code for all units in the closure of
the list of units specified.

Format

EXPORT unit-name[,...]

Command Qualifiers Defaults

/[NO]LOG /NOLOG
/[NO]MAIN /NOMAIN
/OBJECT=file-spec See text.
/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT
/SYSTEM_NAME=system See text.

Prompts

_Unit:

Command Parameters

unit-name[,...]
Specifies one or more units in the current program library whose closure will
be used to create an object file.

If you specify the /MAIN qualifier:

• You can specify only one unit name.

• The generated object file contains the image transfer address, and thus can
be used as a main program.

• The transfer address of the unit specified is used.

By default (or if you specify the /NOMAIN qualifier):

• You can specify more than one unit name. The unit names may include
percent signs (%) and asterisks (*) as wildcard characters. (See the
OpenVMS User’s Manual for more information on wildcard characters.)

• The generated object file does not contain the image transfer address, and
thus cannot be used as a main program. The exported units can be invoked
by a non-Ada program.

A–82 ACS Command Dictionary

EXPORT

Description

The ACS EXPORT command creates a concatenated object file for all the units
in the closure of the list of units specified. The object file always contains code
to elaborate any library packages that are exported.

Note that any exported units that will be called from a foreign module
must contain the appropriate export pragma in the source code: EXPORT_
FUNCTION, EXPORT_PROCEDURE, EXPORT_VALUED_PROCEDURE,
EXPORT_OBJECT, PSECT_OBJECT, or EXPORT_EXCEPTION (see the DEC
Ada Language Reference Manual and DEC Ada Run-Time Reference Manual
for OpenVMS Systems for exact details).

Object files created by different invocations of the EXPORT command may
include some code that is common—for example, if each closure includes the
predefined unit TEXT_IO. In such cases, you will not be able to link those files
into the same image. Whenever you think that closures may include units in
common, you should specify all the units in a single EXPORT command line.

Command Qualifiers

/LOG
/NOLOG (D)
Controls whether a list of all the units included in the exported object file is
displayed. The display shows the units according to the order of elaboration for
the program.

By default, a list of the units included in the exported object file is not
displayed.

/MAIN
/NOMAIN (D)
Controls whether the generated object file is to contain the image transfer
address (of the first unit specified), and thus is to be a main program.

By default, the generated object file does not contain the image transfer
address, and thus is not to be a main program.

/OBJECT=file-spec
Provides a file specification for the generated object file that is to be exported.
The default directory is the current default directory. The default file type is
.OBJ. No wildcard characters are allowed in the file specification.

By default, if you do not use the /OBJECT qualifier, a file name comprising up
to the first 39 characters of the first unit name is provided.

ACS Command Dictionary A–83

EXPORT

/OUTPUT=file-spec
Requests that the EXPORT command output be written to the file specified
rather than to SYS$OUTPUT. Any diagnostic messages are written to both
SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the file name is ACS. The default file type is .LIS. No
wildcard characters are allowed in the file specification.

By default, the EXPORT command output is written to SYS$OUTPUT.

/SYSTEM_NAME=system
Directs the program library manager to produce elaboration code for execution
on a particular operating system; the possible system values are VAX_VMS
and VAXELN on VAX systems and OpenVMS_AXP on AXP systems. Note
that when the value is VAXELN, the execution of elaboration code by non-Ada
callers is not automatic; your program must take special action at run time
to elaborate library packages. See the VAXELN Ada Programming Guide for
more information.

By default, if the /SYSTEM_NAME qualifier is not specified in the EXPORT
command, the setting of the pragma SYSTEM_NAME for the current program
library determines the target operating system environment.

Examples

1. ACS> EXPORT/MAIN HOTEL/OBJECT=EXP_HOTEL

Creates the object file EXP_HOTEL.OBJ, which contains the code for all of
the units in the execution closure of unit HOTEL, including any package
elaboration code. Because the /MAIN qualifier is specified, the file created
also contains the image transfer address.

2. ACS> EXPORT/SYSTEM_NAME=VAXELN HOTEL/OBJECT=VAXELN_HOTEL

Creates the object file VAXELN_HOTEL, which contains the code for all of
the units in the execution closure of unit HOTEL, including any package
elaboration code. The elaboration code created is for a VAXELN target. See
the VAXELN Ada Programming Guide for information on how to prepare
and run VAXELN Ada programs.

A–84 ACS Command Dictionary

EXTRACT SOURCE

EXTRACT SOURCE

Creates a copy of the copied source files associated with the specified units.
The specified units must be defined in the current program library.

Format

EXTRACT SOURCE unit-name[,...]

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]ENTERED[=library] /ENTERED
/[NO]LOCAL /LOCAL
/[NO]LOG /LOG

Positional Qualifiers Defaults

/BODY_ONLY See text.
/SPECIFICATION_ONLY See text.

Prompts

_Unit:

Command Parameters

unit-name[,...]
Specifies one or more units in the current program library whose copied
source files are to be copied. You must express subunit names using selected
component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for detailed information on
wildcard characters.)

Description

For each unit specified, the ACS EXTRACT SOURCE command creates a copy
of the copied source files associated with the unit’s specification and body. If
a subunit name is specified, the EXTRACT SOURCE command creates a copy
of the subunit’s copied source file. The unit or subunit must be defined in the
current program library.

ACS Command Dictionary A–85

EXTRACT SOURCE

The files are created in the current default directory. If they have less
than or equal to 39 characters, the file names are the same as those of the
corresponding copied source files in the current program library—that is, file
names follow the file-name conventions defined in Chapter 1. If they have
more than 39 characters, the program library manager generates a name. The
file type of the created files is .ADA.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the EXTRACT SOURCE command displays the name of
each unit before creating a copy of the copied source files and requests that you
confirm whether or not the unit should be copied. If you specify the /CONFIRM
qualifier, the possible responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

• QUIT or Ctrl/Z indicates that you want to stop processing the command at
that point.

• ALL indicates that you want to continue processing the command without
any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/ENTERED[=library] (D)
/NOENTERED
Controls whether the source files for entered units are extracted. You can
use the library option to extract units that were entered from a particular
library. When you specify the /NOENTERED qualifier, only the source files
for units that have been compiled or copied into the current program library
are extracted. Note that when you specify the /ENTERED qualifier, local units
are extracted unless the /NOLOCAL qualifier is also in effect (the defaults for
these qualifiers are /LOCAL and /ENTERED).

By default, the source file for all units, including entered units, are
extracted.

A–86 ACS Command Dictionary

EXTRACT SOURCE

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were added to the library by a
compilation or a COPY UNIT command) are extracted. Note that when you
specify the /LOCAL qualifier, the source files for entered units are extracted
unless the /NOENTERED qualifier is also in effect (the defaults for these
qualifiers are /LOCAL and /ENTERED).

By default, the source files for all units specified, including local units, are
extracted.

/LOG (D)
/NOLOG
Controls whether the names of units and extracted files are displayed after
each unit’s files are created.

By default, the names of units and files are displayed.

Positional Qualifiers

/BODY_ONLY
Extracts the source file for only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the EXTRACT SOURCE
command string, any /SPECIFICATION_ONLY qualifiers that are appended
to parameters in the command line override the /BODY_ONLY qualifier
for those particular parameters. You cannot append both the /BODY_ONLY
qualifier and the /SPECIFICATION_ONLY qualifier to the EXTRACT SOURCE
command string or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the source file for the
specification, as well as the body, is extracted.

/SPECIFICATION_ONLY
Extracts the source file for only the specification of the specified unit.

When you append the /SPECIFICATION_ONLY qualifier to the EXTRACT
SOURCE command string, any /BODY_ONLY qualifiers that are appended
to parameters in the command line override the /SPECIFICATION_ONLY
qualifier for those particular parameters. You cannot append both the
/SPECIFICATION_ONLY qualifier and the /BODY_ONLY qualifier to the
EXTRACT SOURCE command string or to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the source file
for the body, as well as the specification, is extracted.

ACS Command Dictionary A–87

EXTRACT SOURCE

Example

ACS> EXTRACT SOURCE TEXT_IO, STARLET

Creates in the current default directory the files TEXT_IO_.ADA, TEXT_
IO.ADA, and STARLET_. These files are copies of the copied source files for,
respectively, the specification and body of the predefined unit TEXT_IO and the
specification of the predefined unit STARLET (TEXT_IO and STARLET were
previously entered into the current program library).

A–88 ACS Command Dictionary

HELP

HELP

Displays information on ACS commands and qualifiers.

Format

HELP [keyword...]

Prompts

None.

Command Parameters

[keyword...]
Specifies zero or more keywords that indicate what information you want.
Information is located in a hierarchical manner, depending on the level of
information required. The levels are as follows:

1. None—Lists the ACS commands and selected topics.

2. Topic—Provides information about the topic.

3. Command—Describes the command, its format, and parameters, and lists
its qualifiers.

4. Command followed by a qualifier—Describes the use of the qualifier. For
example, CHECK/LOG describes the use of the /LOG qualifier.

If you specify an asterisk (*) in place of any keyword, the HELP command
displays all information available at that level.

You can specify percent signs (%) and asterisks (*) in the keywords as
wildcard characters.

Example

ACS> HELP ENTER UNIT/CLOSURE

Displays information about the /CLOSURE qualifier to the ACS ENTER UNIT
command.

ACS Command Dictionary A–89

LINK

LINK

Creates an executable image file for the specified units.

Format

LINK unit-name [file-spec[,...]]

LINK/NOMAIN unit-name[,...] file-spec[,...]

Command Qualifiers Defaults

/AFTER=time See text.
/BATCH_LOG=file-spec See text.
/BRIEF See text.
/COMMAND[=file-spec] See text.
/[NO]CROSS_REFERENCE /NOCROSS_REFERENCE
/[NO]DEBUG[=file-spec] /NODEBUG
/[NO]EXECUTABLE[=file-spec] /EXECUTABLE
/FULL See text.
/[NO]KEEP /KEEP
/[NO]LOG /NOLOG
/[NO]MAIN /MAIN
/[NO]MAP[=file-spec] /NOMAP
/NAME=job-name See text.
/[NO]NOTIFY /NOTIFY
/OBJECT=file-spec See text.
/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT
/[NO]PRINTER[=queue-name] /NOPRINTER
/QUEUE=queue-name /QUEUE=SYS$BATCH
/SUBMIT See text.
/[NO]SYSLIB /SYSLIB
/[NO]SYSSHR /SYSSHR
/SYSTEM_NAME=system See text.
/[NO]TRACEBACK /TRACEBACK
/[NO]USERLIBRARY[=(table[,...])] See text.
/WAIT /WAIT

Parameter Qualifiers Defaults

/INCLUDE=(object-file,...) See text.
/LIBRARY See text.
/OPTIONS See text.
/SELECTIVE_SEARCH See text.
/SHAREABLE See text.

A–90 ACS Command Dictionary

LINK

Prompts

_Unit:
_File:

Command Parameters

unit-name[,...]
By default (or if you specify the /MAIN qualifier):

• You can specify only one unit, whose source code is written in Ada.

• The Ada main program, which must be a procedure or function with no
parameters. If the main program is a function, it must return a value of a
discrete type; the function value is used as the image exit value.

If you specify the /NOMAIN qualifier:

• You can specify one or more units that are to be included in the executable
image. The unit names may include percent signs (%) and asterisks
(*) as wildcard characters. (See the OpenVMS User’s Manual for more
information on wildcard characters.)

• The image transfer address comes from one of the non-Ada files specified.

file-spec[,...]
Specifies a list of object files, object libraries, shareable image libraries,
shareable images, and linker option files that are to be used in linking the
program. The default directory is the current default directory. The default file
type is .OBJ, unless the /LIBRARY, /OPTIONS, or /SHAREABLE qualifier is
used. No wildcard characters are allowed in a file specification.

If the file is an object library or shareable image library, you must use the
/LIBRARY qualifier. The default file type is .OLB.

If the file is a linker options file, you must use the /OPTIONS qualifier. The
default file type is .OPT.

If the file is a shareable image, you must use the /SHAREABLE qualifier. The
default file type is .EXE.

If you specify the /NOMAIN qualifier, the image transfer address will come
from one of the files (not units) specified.

ACS Command Dictionary A–91

LINK

Description

The ACS LINK command goes through the following steps:

1. If LINK/NOMAIN is not specified, checks that only one unit is specified
and that it is an Ada main program.

2. Forms the execution closure of the main program (LINK/MAIN) or of the
specified units (LINK/NOMAIN) and verifies that all units in the closure
are present, current, and complete. If the program library manager detects
an error, the operation is terminated before the linker is invoked.

3. Creates a DCL command file for the linker. The command file is deleted
after the ACS LINK operation is completed or terminated, unless LINK
/COMMAND is specified. If LINK/COMMAND is specified, the command
file is retained for future use, and the linker is not invoked.

4. Creates an object file (to be linked with the program) that elaborates
the library units in proper order at run time. If the /NOMAIN qualifier
is not specified, the object file also contains the image transfer address.
This object file is deleted after the ACS LINK operation is completed
or terminated, unless the /COMMAND qualifier is specified. If the
/COMMAND qualifier is specified, the object file is retained and the linker
is not invoked.

5. Unless the /COMMAND qualifier is specified, invokes the linker as follows:

a. By default (LINK/WAIT), the linker command file generated in step
3 is executed in a subprocess. You must wait for the link operation
to terminate before entering another command. Note that when you
specify the /WAIT qualifier (the default), process logical names are
propagated to the subprocess generated to execute the command file.

b. If you specify the /SUBMIT qualifier, the linker command file is
submitted as a batch job.

ACS output originating before the linker is invoked is reported to your terminal
by default, or to a file specified with the /OUTPUT qualifier. Linker diagnostics
are reported to your terminal, by default, or to a log file if the ACS LINK
command is executed in batch mode (ACS LINK/SUBMIT).

Note that some new qualifiers are available with the linker that are not
supported by the ACS LINK command. You can pass such qualifiers to the
linker by defining a symbol like the following before invoking the ACS LINK
command:

A–92 ACS Command Dictionary

LINK

$ LINK :== LINK/NATIVE_ONLY/SYSEXE

This symbol is then used by the ACS LINK command procedure that invokes
the linker.

See Chapter 6 for more information on the ACS LINK command. The linker is
described in detail in the OpenVMS Linker Utility Manual.

Command Qualifiers

/AFTER=time
Requests that the batch job be held until after a specific time, when the ACS
LINK command is executed in batch mode (LINK/SUBMIT). If the specified
time has already passed, the job is queued for immediate processing.

You can specify either an absolute time or a combination of absolute and delta
time. See the OpenVMS User’s Manual (or access the DCL HELP SPECIFY
topic) for complete information on specifying time values.

/BATCH_LOG=file-spec
Provides a file specification for the batch log file when the ACS LINK command
is executed in batch mode (LINK/SUBMIT).

If you do not give a directory specification with the file-spec option, the batch
log file is created by default in the current default directory. If you do not
give a file specification with the file-spec option, the default file name is the
job name specified with the /NAME=job-name qualifier. If no job name has
been specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If you specified
LINK/NOMAIN and no job name and there is a wildcard character in the
first unit specified, the program library manager uses the default file name
ACS_LINK. The default file type is .LOG.

/BRIEF
Directs the linker to produce a brief image map file. The /BRIEF qualifier
is valid only if you also specify the /MAP qualifier with the ACS LINK
command. The /BRIEF qualifier is incompatible with the /FULL and /CROSS_
REFERENCE qualifiers.

A brief image map file contains only the following sections:

• Object module synopsis

• Image synopsis

• Link run statistics

ACS Command Dictionary A–93

LINK

In contrast, the default image map file contains the previous sections, as well
as the program section synopsis and symbol definition section. See also the
description of the /FULL qualifier.

/COMMAND[=file-spec]
Controls whether the linker is invoked as a result of the ACS LINK command,
and determines whether the command file generated to invoke the linker is
saved. If you specify the /COMMAND qualifier, the program library manager
does not invoke the linker, and the generated command file is saved for you to
invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the generated
command file. The default directory for the command file is the current default
directory. By default, the program library manager provides a file name
comprising up to the first 39 characters of the first unit name specified. If you
specified LINK/NOMAIN and you used a wildcard character in the first unit
name specified, the compiler uses the default name ACS_LINK. The default
file type is .COM. No wildcard characters are allowed in the file specification.

By default, if the /COMMAND qualifier is not specified, the program library
manager deletes the generated command file when the ACS LINK command
completes normally or is terminated.

/CROSS_REFERENCE
/NOCROSS_REFERENCE (D)
Controls whether the image map file contains a symbol cross-reference. The
/CROSS_REFERENCE qualifier is valid only if you also specify the /MAP
qualifier in the ACS LINK command. The /CROSS_REFERENCE qualifier is
incompatible with the /BRIEF qualifier.

When you specify the /CROSS_REFERENCE qualifier, the linker replaces the
symbol definition section of the image map file with the symbol cross-reference
section. The cross-reference section lists, in alphabetical order, the name of
each global symbol, together with the following information about each:

• Its value

• The name of the first module in which it is defined

• The name of each module in which it is referenced

The number of symbols listed in the cross-reference section depends on
whether the linker is generating a full image map or a default image map.
In a full image map, this section includes global symbols from all modules
in the image, including those extracted from all libraries. In a default
image map, this section does not include global symbols from modules

A–94 ACS Command Dictionary

LINK

extracted from the default system libraries SYS$SHARE:IMAGELIB.OLB
and SYS$SHARE:STARLET.OLB.

By default, the image map file does not contain a symbol cross-reference. In
this case, if the linker is generating a default map or a full map, the map
contains the symbol definition section instead of the symbol cross-reference
section.

/DEBUG[=file-spec]
/NODEBUG (D)
Controls whether a debugger symbol table is included in the executable image
file, and whether the debugger is invoked when the program is run.

The /DEBUG qualifier optionally allows you to specify an alternate debugger
or dynamic performance analyzer. The default file type is .OBJ. See the
OpenVMS Debugger Manual for more information.

By default, no debugger symbol table is included in the executable image.

/EXECUTABLE[=file-spec] (D)
/NOEXECUTABLE
Controls whether the linker creates an executable image file and optionally
provides a file specification for the file. The default file type is .EXE. No
wildcard characters are allowed in the file specification.

You can use the /NOEXECUTABLE or /EXECUTABLE=NL: qualifier to test a
set of qualifier options or input object modules without creating an image file.
Using /EXECUTABLE=NL: is recommended, however, because the linker will
not process certain qualifiers when the /NOEXECUTABLE qualifier is in effect.

By default, an executable image file is created with a file name comprising up
to the first 39 characters of the first unit name specified.

/FULL
Directs the linker to produce a full image map file, which is the most complete
image map. The /FULL qualifier is valid only if you also specify the
/MAP qualifier with the ACS LINK command. Also, the /FULL qualifier
is incompatible with the /BRIEF qualifier, but not with the /CROSS_
REFERENCE qualifier.

A full image map file contains the following sections:

• Object module synopsis

• Module relocatable reference synopsis

• Program section synopsis

ACS Command Dictionary A–95

LINK

• Symbol definitions

• Image section synopsis

• Symbols by value

• Module relocatable reference synopsis

In contrast, the default image map file does not contain the image section
synopsis, the symbols by value, or the module relocatable reference synopsis
sections.

Further, unlike the default image map, the full image map includes
information about modules included from the system default libraries
SYS$SHARE:STARLET.OLB and SYS$SHARE:IMAGELIB.OLB. Thus, the
object module synopsis, program section synopsis, and symbols by name
sections of a default image map do not contain information about modules
included from these default libraries, whereas in a full image map they do.

/KEEP (D)
/NOKEEP
Controls whether the batch log file generated is deleted after it is printed when
the ACS LINK command is executed in batch mode (LINK/SUBMIT).

By default, the log file is not deleted.

/LOG
/NOLOG (D)
Controls whether a list of all the units included in the executable image is
displayed. The display shows the units according to the order of elaboration for
the program.

By default, a list of all the units included in the executable image is not
displayed.

/MAIN (D)
/NOMAIN
Controls where the image transfer address is to be found.

The /MAIN qualifier indicates that the DEC Ada unit specified determines the
image transfer address and, hence, is to be a main program.

The /NOMAIN qualifier indicates that the image transfer address will come
from one of the files specified, and not from one of the DEC Ada units specified.

By default (/MAIN), only one DEC Ada unit may be specified, and that unit
must be a DEC Ada main program.

A–96 ACS Command Dictionary

LINK

/MAP[=file-spec]
/NOMAP (D)
Controls whether the linker creates an image map file and optionally provides
a file specification for the file. The default directory for the image map file
is the current directory. The default file name comprises up to the first 39
characters of the first unit name specified. The default file type
is .MAP. No wildcard characters are allowed in the file specification.

By default, no image map file is created.

/NAME=job-name
Specifies a string to be used as the job name and as the file name for the
batch log file when the ACS LINK command is executed in batch mode
(LINK/SUBMIT). The job name can have from 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, the program library
manager creates a job name comprising up to the first 39 characters of the
first unit name specified. If you specify LINK/NOMAIN but do not specify
the /NAME qualifier, and you use a wildcard character in the first unit name
specified, the compiler uses the default name ACS_LINK. In these cases, the
job name is also the file name of the batch log file.

/NOTIFY (D)
/NONOTIFY
Controls whether a message is broadcast when the ACS LINK command is
executed in batch mode (LINK/SUBMIT). The message is broadcast to any
terminal at which you are logged in, notifying you that your job has been
completed or terminated.

By default, a message is broadcast.

/OBJECT=file-spec
Provides a file specification for the object file generated by the ACS LINK
command. The file is retained by the program library manager only when
the /COMMAND qualifier is used—that is, when the result of the ACS LINK
operation is to produce a linker command file for future use, rather than to
invoke the linker immediately.

The generated object file contains the code that directs the elaboration of
library packages in the closure of the units specified. Unless you also specify
the /NOMAIN qualifier, the object file also contains the image transfer address.

The default directory for the generated object file is the current default
directory. The default file type is .OBJ. No wildcard characters are allowed in
the file specification.

ACS Command Dictionary A–97

LINK

By default, if you do not specify the /OBJECT qualifier, the program library
manager provides a file name comprising up to the first 39 characters of the
first unit name specified.

By default, if you do not specify the /COMMAND qualifier, the program library
manager deletes the generated object file when the ACS LINK command
completes normally or is terminated.

/OUTPUT=file-spec
Requests that any ACS output generated before the linker is invoked be
written to the file specified rather than to SYS$OUTPUT. Any diagnostic
messages are written to both SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the ACS LINK command output is written to SYS$OUTPUT.

/PRINTER[=queue-name]
/NOPRINTER (D)
Controls whether the log file is queued for printing when the ACS LINK
command is executed in batch mode (LINK/SUBMIT) and the batch job is
completed.

The /PRINTER qualifier allows you to specify a particular print queue. The
default print queue for the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify /NOPRINTER,
/KEEP is assumed.

/QUEUE=queue-name
Specifies the batch job queue in which the job is entered when the ACS LINK
command is executed in batch mode (LINK/SUBMIT).

By default, if the /QUEUE qualifier is not specified, the job is placed in the
default system batch job queue, SYS$BATCH.

/SUBMIT
Directs the program library manager to submit the command file generated
for the linker to a batch queue. You can continue to enter commands in your
current process without waiting for the batch job to complete. The linker
output is written to a batch log file.

By default, the generated command file is executed in a subprocess
(LINK/WAIT).

A–98 ACS Command Dictionary

LINK

/SYSLIB (D)
/NOSYSLIB
Controls whether the linker automatically searches the default system library
for unresolved references. The default system library consists of the shareable
image library SYS$LIBRARY:IMAGELIB.OLB and the object module library
SYS$LIBRARY:STARLET.OLB.

By default, the default system library is automatically searched.

/SYSSHR (D)
/NOSYSSHR
Controls whether the linker automatically searches the default system share-
able image library SYS$LIBRARY:IMAGELIB.OLB for unresolved references.
If you specify the /NOSYSSHR qualifier, only SYS$LIBRARY:STARLET.OLB is
searched for unresolved references.

By default, the default system shareable image library is searched.

/SYSTEM_NAME=system
Directs the program library manager to produce an image for execution on a
particular operating system.

On VAX systems, the possible system values are VAX_VMS and VAXELN.
If VAX_VMS is specified, VMS versions of the Ada run-time library routines
are used, and VMS-specific initialization code is generated. If VAXELN is
specified, VAXELN versions of the Ada run-time library routines are used, and
VAXELN-specific initialization code is generated. For more information on
VAXELN Ada, see the VAXELN Ada Programming Guide.

On AXP systems, the value of NAME is OpenVMS_AXP.

If the /SYSTEM_NAME qualifier is not specified in the ACS LINK command,
the setting of the pragma SYSTEM_NAME for the current program library
determines the target operating system environment.

/TRACEBACK (D)
/NOTRACEBACK
Controls whether the linker includes traceback information in the executable
image file for run-time error reporting.

By default, traceback information is included in the executable image.

/USERLIBRARY[=(table[,...])]
/NOUSERLIBRARY
Controls whether the linker searches any user-defined default libraries
after it has searched any specified user libraries. When you specify the
/USERLIBRARY qualifier, the linker searches the process, group, and system

ACS Command Dictionary A–99

LINK

logical name tables to find the file specifications of the user-defined libraries.
(The discussion of the linker in the OpenVMS Linker Utility Manual explains
user-defined default libraries.) You can specify the following tables for the
linker to search:

ALL The linker searches the process, group, and system
logical name tables for user-defined library definitions.

GROUP The linker searches the group logical name table for
user-defined library definitions.

NONE The linker does not search any logical name table; this
specification is equivalent to /NOUSERLIBRARY.

PROCESS The linker searches the process logical name table for
user-defined library definitions.

SYSTEM The linker searches the system logical name table for
user-defined library definitions.

By default, the linker assumes /USERLIBRARY=ALL.

/WAIT
Directs the program library manager to execute the command file generated
for the linker in a subprocess. Execution of your current process is suspended
until the subprocess completes. The linker output is written directly to your
terminal. Note that process logical names are propagated to the subprocess
generated to execute the command file.

By default, the program library manager executes the command file generated
for the linker in a subprocess: you must wait for the subprocess to terminate
before you can enter another command.

Parameter Qualifiers

/INCLUDE=(object-file,...)
Indicates that the associated input file is a object module library or shareable
image library with a default file type of .OLB, and that the named elements
from that library should be linked with the main program named in the ACS
LINK command.

/LIBRARY
Indicates that the associated input file is a object module library or shareable
image library to be searched for modules to resolve any undefined symbols in
the input files. The default file type is .OLB.

By default, if you do not specify the /LIBRARY qualifier, the file is assumed to
be an object file with a default file type of .OBJ.

A–100 ACS Command Dictionary

LINK

/OPTIONS
Indicates that the associated input file is a linker options file. The default file
type is .OPT.

By default, if you do not specify the /OPTIONS qualifier, the file is assumed to
be an object file with a default file type of .OBJ.

/SELECTIVE_SEARCH
Omits from the output image symbol table all symbols from the associated
input object module that are not needed to resolve outstanding references. The
binary code in the object module is always included.

/SHAREABLE
Indicates that the associated input file is a shareable image. The default file
type is .EXE.

By default, if you do not specify the /SHAREABLE qualifier, the file is assumed
to be an object file with a default file type of .OBJ.

Examples

1. ACS> LINK HOTEL

Forms the closure of the unit HOTEL, which is a DEC Ada main program,
creates a linker command file and package elaboration file, then invokes
the command file in a spawned subprocess.

2. ACS> LINK/SUBMIT HOTEL NETWORK.OLB/LIBRARY,NET.OPT/OPTIONS
%I, Job HOTEL (queue ALL_BATCH, entry 134) started on FAST_BATCH

Instructs the linker to link the closure of the DEC Ada main program
HOTEL against the user library NETWORK.OLB, and to use the linker
options file NET.OPT. The /SUBMIT qualifier causes the program library
manager to submit the linker command file as a batch job.

3. ACS> LINK/NOMAIN FLUID_VOLUME,COUNTER MONITOR.OBJ

Links the DEC Ada units FLUID_VOLUME and COUNTER with the
foreign object file MONITOR.OBJ. The /NOMAIN qualifier tells the linker
that the image transfer address is in the foreign file.

4. ACS> LINK HOTEL ELN$:RTL/INCLUDE=(KER$MSGDEF)

Links the closure of the DEC Ada main program HOTEL against the
message object file KER$MSGDEF from the VAXELN message library
ELN$:RTL.OLB.

ACS Command Dictionary A–101

LOAD

LOAD

Processes the Ada units contained in one or more source files. Processing
involves determining the compilation order for the units in the files and
invoking the DEC Ada compiler to partially compile the units. The partial
compilation detects syntax errors and updates the current program library
with unit dependence and source-file information.

Loaded units are considered to be obsolete and must be subsequently
recompiled.

Format

LOAD file-spec[,...]

Command Qualifiers Defaults

/AFTER=time See text.
/BATCH_LOG=file-spec See text.
/COMMAND[=file-spec] See text.
/[NO]CONFIRM /NOCONFIRM
/[NO]KEEP /KEEP
/[NO]LOG /NOLOG
/NAME=job-name See text.
/[NO]NOTIFY /NOTIFY
/OUTPUT=file-spec See text.
/[NO]PRINTER[=queue-name] /NOPRINTER
/QUEUE=queue-name See text.
/[NO]SMART_RECOMPILATION /SMART_RECOMPILATION
/SUBMIT See text.
/WAIT /WAIT

Positional Qualifiers Defaults

/BACKUP See text.
/BEFORE[=time] See text.
/BY_OWNER[=uic] See text.
/[NO]COPY_SOURCE /COPY_SOURCE
/CREATED See text.
/[NO]DESIGN[=option] /NODESIGN
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS
/[NO]ERROR_LIMIT[=n] See text.
/EXCLUDE=(file-spec[,...]) See text.
/EXPIRED See text.
/[NO]LIST[=file-spec] /NOLIST
/MODIFIED See text.
/[NO]NOTE_SOURCE /NOTE_SOURCE

A–102 ACS Command Dictionary

LOAD

/[NO]REPLACE /REPLACE
/SINCE See text.
/[NO]WARNINGS[=(option[,...])] See text.

Prompts

_File:

Command Parameters

file-spec[,...]
Specifies one or more DEC Ada source files to be loaded. If you do not specify
a file type, the compiler uses the default file type of .ADA. Wildcard characters
are allowed in the file specifications. (See the OpenVMS User’s Manual for
more information on wildcard characters.)

Description

The ACS LOAD command invokes the DEC Ada compiler to partially compile
the units contained in the specified files in any order. The partial compilation
detects syntax errors and updates the current program library with unit
dependence and source-file information. Units that are loaded into a program
library are considered obsolete and must be subsequently recompiled. See
Chapter 4 for more information on recompilation.

The LOAD command is useful for putting the units in a set of files into a
program library for the first time.

The LOAD command does not check for missing or duplicate compilation
units. (Units that have the same name are considered to be duplicates.) The
LOAD command allows unit bodies to be loaded into the program library in
the absence of their corresponding specifications. Similarly, subunits may
be loaded into the library in the absence of their corresponding parent (or
ancestor) units. Because specifications, bodies, and subunits can be loaded in
any order, the program library can be incomplete after a LOAD command has
been executed. For example, the program library could contain a package body
without a specification or a subunit without its corresponding parent unit.

For each set of files specified, the LOAD command goes through the following
steps:

1. Resolves any wildcards in the list of source files specified. Within any one
directory, the version of a particular file that has the highest number is
considered for compilation.

ACS Command Dictionary A–103

LOAD

2. Creates a DCL command file for the compiler. The file contains commands
to compile the units in the source files. The command file is deleted after
the LOAD command is terminated, unless you specified the /COMMAND
qualifier. If you specified the /COMMAND qualifier, the command file is
retained for future use, and the compiler is not invoked.

3. If you did not specify the /COMMAND qualifier, the DEC Ada compiler is
invoked for syntax-only compilation as follows:

a. By default (LOAD/WAIT), the command file is executed in a subprocess.
You must wait for the compilation to terminate before entering another
command. Note that process logical names are propagated to the
subprocess generated to execute the command file.

b. If you specified the /SUBMIT qualifier, the compiler command file
generated in step 2 is submitted as a batch job.

c. For each unit being compiled, the compiler checks to see if the unit is
of the same name and kind as an existing unit in the current program
library. If a unit has the same name and kind as an existing unit, a
check is performed to see if the two units are identical; that is, to see if
their source files have the same creation date and full file specification.
If the two units are identical, the library is not updated with the new
unit. If the two units are not identical or if the new unit is unique, the
compiler updates the program library with the new unit.

Command Qualifiers

/AFTER=time
Requests that the batch job be held until after a specific time when the LOAD
command is executed in batch mode (the default mode). If the specified time
has already passed, or if the /AFTER qualifier is not specified, the job is queued
for immediate processing.

You can specify either an absolute time or a combination of absolute and delta
time. See the OpenVMS User’s Manual (or type HELP Specify Date_Time at
the DCL prompt) for complete information on specifying time values.

/BATCH_LOG=file-spec
Provides a file specification for the batch log file when the LOAD command is
executed in batch mode (the default mode).

A–104 ACS Command Dictionary

LOAD

If you do not give a directory specification with the file-spec option, the batch
log file is created by default in the current default directory. If you do not
give a file specification with the file-spec option, the default file name is the
job name specified with the /NAME=job-name qualifier. If no job name has
been specified, the program library manager creates a file name comprising up
to the first 39 characters of the first unit name specified. If no job name has
been specified and there is a wildcard character in the first unit specified, the
program library manager uses the default file name ACS_LOAD. The default
file type is .LOG. No wildcard characters are allowed in the file specification.

/COMMAND[=file-spec]
Controls whether the LOAD operations are performed as a result of the LOAD
command, and determines whether the command file generated to perform
the LOAD operations is saved. If you specify the /COMMAND qualifier, the
program library manager does not perform the LOAD operations, and the
generated command file is saved for you to invoke or submit as a batch job.

The file-spec option allows you to enter a file specification for the generated
command file. The default directory for the command file is the current default
directory. By default, the program library manager provides a file name
comprising up to the first 39 characters of the first unit name specified. If
you use a wildcard character in the first unit name specified, the compiler
uses the default name ACS_LOAD. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if you do not specify the file-spec option, the program library
manager deletes the generated command file when the LOAD command
completes normally or is terminated.

/CONFIRM
/NOCONFIRM (D)
Controls whether the LOAD command displays the name of each file before
loading, and requests you to confirm whether or not the file should be
processed. If you specify the /CONFIRM qualifier, the possible responses
are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

• QUIT or Ctrl/Z indicates that you want to stop processing the command at
that point.

• ALL indicates that you want to continue processing the command without
any further prompts.

ACS Command Dictionary A–105

LOAD

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/KEEP (D)
/NOKEEP
Controls whether the batch log file generated is deleted after it is printed when
the LOAD command is executed in batch mode (the default mode).

By default, the log file is not deleted.

/LOG
/NOLOG
Controls whether a list of all the files that will be loaded is displayed.

By default, a list of the files that will be loaded is not displayed.

/NAME=job-name
Specifies a string to be used as the job name and as the file name for the
batch log file when the LOAD command is executed in batch mode (the default
mode). The job name can have from 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, the program library
manager creates a job name comprising up to the first 39 characters of the
first file name specified. If you do not specify the /NAME qualifier, but use a
wildcard character in the first file name specified, the compiler uses the default
name ACS_LOAD. In these cases, the job name is also the file name of the
batch log file.

/NOTIFY (D)
/NONOTIFY
Controls whether a message is broadcast when the NOTIFY command is
executed in batch mode (the default mode). The message is broadcast to any
terminal at which you are logged in, notifying you that your job has been
completed or terminated.

By default, a message is broadcast.

/OUTPUT=file-spec
Requests that any program library manager output generated before
the compiler is invoked be written to the file specified rather than to
SYS$OUTPUT. Any diagnostic messages are written to both SYS$OUTPUT
and the file.

A–106 ACS Command Dictionary

LOAD

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the LOAD command output is written to SYS$OUTPUT.

/PRINTER[=queue-name]
/NOPRINTER (D)
Controls whether the batch job log file is queued for printing when the LOAD
command is executed in batch mode.

The /PRINTER qualifier allows you to specify a particular print queue. The
default print queue for the log file is SYS$PRINT.

By default, the log file is not queued for printing. If you specify the
/NOPRINTER qualifier, the /KEEP qualifier is assumed.

/QUEUE=queue-name
Specifies the batch job queue in which the job is entered when the LOAD
command is executed in batch mode.

By default, if the /QUEUE qualifier is not specified, the program library
manager first checks whether the logical name ADA$BATCH is defined. If it is,
the program library manager enters the job in the queue specified. Otherwise,
the job is placed in the default system batch job queue, SYS$BATCH.

/SMART_RECOMPILATION (D)
/NOSMART_RECOMPILATION
Controls whether smart recompilation information is preserved during the load
operation. This information can be used in subsequent operations to minimize
recompilations.

When the /SMART_RECOMPILATION qualifier is in effect, smart
recompilation information from previous compilations is preserved in the
program library for each unit compiled.

If the /NOSMART_RECOMPILATION qualifier is specified, units are loaded
without preserving smart recompilation information.

/SUBMIT
Directs the program library manager to submit the command file generated for
the compiler to a batch queue. You can continue to enter commands in your
current process without waiting for the batch job to complete. The compiler
output is written to a log file.

By default, the program library manager executes the command file generated
for the compiler in a subprocess (/WAIT).

ACS Command Dictionary A–107

LOAD

/WAIT (D)
Directs the program library manager to execute the command file generated for
the compiler in a subprocess. Execution of your current process is suspended
until the subprocess completes. The compiler output is written directly to your
terminal. Note that process logical names are propagated to the subprocess
generated to execute the command file.

By default, the program library manager executes the command file generated
for the compiler in a subprocess (LOAD/WAIT).

Positional Qualifiers

/BACKUP
Selects files according to the dates of their most recent backups. Modifies the
time value specified with the /BEFORE or /SINCE qualifier.

This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /CREATED, /EXPIRED, and
/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/BEFORE[=time]
Selects only those files dated prior to the specified time. You can specify time
as an absolute time, as a combination of absolute and delta times, or as one of
the following keywords: TODAY (the default), TOMORROW, or YESTERDAY.
See the OpenVMS User’s Manual (or type HELP Specify Date_Time at the
DCL prompt) for complete information on specifying time values.

You can specify one of the following qualifiers with the /BEFORE qualifier to
indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (the default), /EXPIRED, or /MODIFIED.

/BY_OWNER[=uic]
Selects only those files whose owner user identification code (UIC) matches the
specified owner UIC. The default UIC is that of the current process.

/COPY_SOURCE (D)
/NOCOPY_SOURCE
Controls whether a copied source file is created in the current program library
when a compilation unit is loaded without error. The ACS RECOMPILE
command requires that a copied source file exist in the current program library;
the ACS COMPILE command uses the copied source file if it cannot find an
external source file when it is recompiling an obsolete unit or completing an
incomplete generic instantiation (see Chapter 4). Copied source files may also

A–108 ACS Command Dictionary

LOAD

be used by the debugger (see Chapter 8 for information on debugging tasks;
see the OpenVMS Debugger Manual for information on debugger).

By default, a copied source file is created in the current program library when
a unit is loaded without error.

/CREATED
Selects files based on their dates of creation. Modifies the time value specified
with the /BEFORE or /SINCE qualifier.

This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /BACKUP, /EXPIRED, and
/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/DESIGN[=option]
/NODESIGN (D)
Allows you to process Ada source files as a detailed program design.

You can request the following options:

[NO]COMMENTS Determines whether comments are processed
for program design information. This
option can be specified with the ACS LOAD
command, however, it does not have an effect.
On AXP systems, the /DESIGN=COMMENTS
qualifier is accepted, but has no effect.

[NO]PLACEHOLDERS Determines whether LSE placeholders are
allowed. If you specify NOPLACEHOLDERS,
then only valid Ada syntax is allowed.

If you specify the /DESIGN qualifier without supplying any options, the effect
is the same as the following default:

/DESIGN=(COMMENTS,PLACEHOLDERS)

If you specify only one of the options with the /DESIGN qualifier, the default
value for the other option is used. For example, /DESIGN=NOCOMMENTS
is equivalent to /DESIGN=(NOCOMMENTS,PLACEHOLDERS). In this
case, both qualifiers specify that placeholders are allowed. Similarly,
/DESIGN=NOPLACEHOLDERS is equivalent to /DESIGN=(COMMENTS,
NOPLACEHOLDERS). In this case, both qualifiers have no effect.

ACS Command Dictionary A–109

LOAD

/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with Digital layered products, such as the DEC Language-Sensitive
Editor.

One diagnostics file is created for each source file that is compiled. The default
directory for diagnostics files is the current default directory. The default
file name is the name of the source file being compiled. The default file type
of a diagnostics file is .DIA. No wildcard characters are allowed in the file
specification.

By default, no diagnostics file is created.

/ERROR_LIMIT[=n]
/NOERROR_LIMIT
Controls whether execution of the LOAD command for a given compilation unit
is terminated upon the occurrence of the nth E-level error within that unit.

Error counts are not accumulated across a sequence of compilation units. If
the /ERROR_LIMIT=n option is specified, each compilation unit may have up
to n � 1 errors without terminating the compilation. When the error limit is
reached within a compilation unit, compilation of that unit is terminated, but
compilation of subsequent units continues.

The /ERROR_LIMIT=0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the COMPILE command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error within that unit
(equivalent to /ERROR_LIMIT=30).

/EXCLUDE=(file-spec[,...])
Excludes the specified files from the LOAD operation. You can include a
directory but not a device in the file specification. Wildcard characters are
allowed in the file specification. However, you cannot use relative version
numbers to exclude a specific version. If you provide only one file specification,
you can omit the parentheses.

/EXPIRED
Selects files according to their expiration dates. (The expiration date is set
with the DCL SET FILE/EXPIRATION_DATE command.) Modifies the time
value specified with the /BEFORE or /SINCE qualifier.

A–110 ACS Command Dictionary

LOAD

This qualifier is incompatible with the other qualifiers that also allow you
to select files according to time attributes: /BACKUP, /CREATED, and
/MODIFIED. If you specify none of these four time qualifiers, the default is
/CREATED.

/LIST[=file-spec]
/NOLIST (D)
Controls whether a listing file is created. One listing file is created for each
compilation unit (not file) compiled by the LOAD command.

The default directory for listing files is the current default directory. The
default file name of a listing file corresponds to the name of its compilation
unit and uses the DEC Ada file-name conventions described in Chapter 1. The
default file type of a listing file is .LIS. No wildcard characters are allowed in
the file specification.

By default, the LOAD command does not create a listing file.

/MODIFIED
Selects files according to the dates on which they were last modified. Modifies
the time value specified with the /BEFORE or /SINCE qualifier.

This qualifier is incompatible with the other qualifiers that also allow you to
select files according to time attributes: /BACKUP, /CREATED, and /EXPIRED.
If you specify none of these four time qualifiers, the default is /CREATED.

/NOTE_SOURCE (D)
/NONOTE_SOURCE
Controls whether the file specification of the source file is noted in the program
library when a unit is loaded without error. The COMPILE command uses this
information to locate revised source files.

By default, the file specification of the source file is noted in the current
program library when a unit is compiled without error.

/REPLACE (D)
/NOREPLACE
Controls whether the loaded unit replaces a unit with the same name that is
already defined in the current program library. If the /NOREPLACE qualifier
is specified, and a unit already exists in the program library with the same
name as a unit being loaded, a diagnostic message is issued, and the existing
unit is not replaced.

By default, the loaded unit replaces a unit with the same name that is already
defined in the current program library.

ACS Command Dictionary A–111

LOAD

/SINCE
Selects only those files dated after the specified time. You can specify time as
an absolute time, a combination of absolute and delta times, or as one of the
following keywords: TODAY (the default), TOMORROW, or YESTERDAY. See
the OpenVMS User’s Manual (or type HELP Specify Date_Time at the DCL
prompt) for complete information on specifying time values.

You can specify one of the following qualifiers with the /SINCE qualifier to
indicate the time attribute to be used as the basis for selection: /BACKUP,
/CREATED (the default), /EXPIRED, or /MODIFIED.

/WARNINGS[=(option[,...])]
/NOWARNINGS
Controls which categories of informational (I-level) and warning (W-level)
messages are displayed and where those messages are displayed. You can
specify any combination of the following message options:

WARNINGS: (destination[,...])
NOWARNINGS

WEAK_WARNINGS: (destination[,...])
NOWEAK_WARNINGS

SUPPLEMENTAL: (destination[,...])
NOSUPPLEMENTAL

COMPILATION_NOTES: (destination[,...])
NOCOMPILATION_NOTES

STATUS: (destination[,...])
NOSTATUS

The possible values of destination are ALL, NONE, or any combination of
TERMINAL (terminal device), LISTING (listing file), and DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows (see
Chapter 4 for more information):

WARNINGS W-level: Indicates a definite problem in a legal
program—for example, an unknown pragma.

A–112 ACS Command Dictionary

LOAD

WEAK_WARNINGS I-level: Indicates a potential problem in a legal
program—for example, a possible CONSTRAINT_
ERROR at run time. These are the only kind of
I-level messages that are counted in the summary
statistics at the end of a compilation.

SUPPLEMENTAL I-level: Additional information associated with
previous E-level or W-level diagnostics.

COMPILATION_NOTES I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions made
for the pragmas INLINE, INTERFACE, or the
import-subprogram pragmas.

STATUS I-level: End of compilation statistics and other
messages.

The defaults are as follows:

/WARNINGS=(WARN:ALL,WEAK:ALL,SUPP:ALL,COMP:NONE,STAT:LIST)

If you specify only some of the message categories with the /WARNINGS
qualifier, the default values for the other categories are used.

Example

$ ACS LOAD/NOCOPY_SOURCE [JONES.NEW_UNITS]*
.
.
.
$ ACS COMPILE/NOCOPY_SOURCE MAIN
.
.
.
$ ACS LINK MAIN

This series of commands builds the program MAIN from a set of files that have
never been previously compiled. The LOAD command puts syntax-checked,
obsolete units into the current program library.

The COMPILE command recompiles the units from their original source files.
The LINK command creates an executable image for the program MAIN. Note
the use of /NOCOPY_SOURCE qualifiers to control the creation of copied
source files.

ACS Command Dictionary A–113

MERGE

MERGE

Moves one or more units from the current program sublibrary to its immediate
parent program library.

Format

MERGE unit-name[,...]

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]ENTERED[=library] /ENTERED
/[NO]KEEP /NOKEEP
/[NO]LOCAL /LOCAL
/[NO]LOG /NOLOG

Positional Qualifiers Defaults

/BODY_ONLY See text.
/SPECIFICATION_ONLY See text.

Prompts

_Unit:

Command Parameters

unit-name[,...]
Specifies one or more units, in the current program library, that are to be
merged into the next library in the current path. You must express subunit
names using selected component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more information on wildcard
characters.)

A–114 ACS Command Dictionary

MERGE

Description

The ACS MERGE command moves each specified unit’s specification and body
(if any) from the current sublibrary to the parent library. If a subunit name is
specified, the MERGE command moves the subunit into the parent library.

For each unit merged, the MERGE command moves its associated files into the
parent library and updates that library’s index file.

If the parent library already has a version of the unit to be merged, the unit to
be merged must have a more recent external source file.

If you specified the ACS SET LIBRARY/PATH command to set the current
path, the ACS MERGE command moves one or more units from the current
program library to the next library in the current path. In the case of
sublibraries, the next library in the current path is the parent library unless
you explicitly set the path otherwise. For more information on library search
paths, see Chapter 3.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the MERGE command displays the name of each unit before
merging and requests you to confirm whether or not the unit should be merged.
If you specify the /CONFIRM qualifier, the possible responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

• QUIT or Ctrl/Z indicates that you want to stop processing the command at
that point.

• ALL indicates that you want to continue processing the command without
any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are merged. You can use the library option
to merge units that were entered from a particular library. When you specify

ACS Command Dictionary A–115

MERGE

the /NOENTERED qualifier, only the units that have been compiled or copied
into the current program library are merged. Note that when you specify the
/ENTERED qualifier, local units are merged unless the /NOLOCAL qualifier is
also in effect (the defaults for these qualifiers are /LOCAL and /ENTERED).

By default, all units, including entered units, are merged.

/KEEP
/NOKEEP (D)
Controls whether a copy of a unit being merged is retained in the current
program sublibrary after the merge operation.

By default, the unit is deleted from the current program library after the
merge operation.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were added to the library
by a compilation or a COPY UNIT command) are merged. Note that when
you specify the /LOCAL qualifier, entered units are merged unless the
/NOENTERED qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units specified, including local units, are merged.

/LOG
/NOLOG (D)
Controls whether the name of each unit is displayed after it has been merged.

By default, the names of merged units are not displayed.

Positional Qualifiers

/BODY_ONLY
Merges only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the MERGE command string,
any /SPECIFICATION_ONLY qualifiers that are appended to parameters in
the command line override the /BODY_ONLY qualifier for those particular
parameters. You cannot append both the /BODY_ONLY qualifier and the
/SPECIFICATION_ONLY qualifier to the MERGE command string or to the
same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as well
as the body, is merged.

A–116 ACS Command Dictionary

MERGE

/SPECIFICATION_ONLY
Merges only the specification of the specified unit.

When you append the /SPECIFICATION_ONLY qualifier to the MERGE
command string, any /BODY_ONLY qualifiers that are appended to parameters
in the command line override the /SPECIFICATION_ONLY qualifier for those
particular parameters. You cannot append both the /SPECIFICATION_ONLY
qualifier and the /BODY_ONLY qualifier to the MERGE command string or to
the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as
well as the specification, is merged.

Example

ACS> SET LIBRARY [JONES.HOTEL.SUBLIB]
%I, Current program library is USER:[JONES.HOTEL.SUBLIB])
ACS> SHOW LIBRARY/FULL

Program library USER:[JONES.HOTEL.SUBLIB]

Sublibrary
of USER:[HOTEL.ADALIB]

.

.

.
ACS> MERGE RESERVATIONS.CANCEL

Establishes the sublibrary [JONES.HOTEL.SUBLIB] as the current program
sublibrary. The SHOW LIBRARY/FULL command identifies the parent
library [HOTEL.ADALIB]. The MERGE command copies the subunit
RESERVATIONS.CANCEL from the current program sublibrary into the
parent library, replacing any previous version of RESERVATIONS.CANCEL
in the parent library, then deletes the original unit from the current program
sublibrary.

If the copy of the unit in the parent library is newer than the unit in the
sublibrary, the unit is not merged.

ACS Command Dictionary A–117

MODIFY LIBRARY

MODIFY LIBRARY

Modifies the default path of a DEC Ada program library or program sublibrary.

Format

MODIFY LIBRARY/PATH lib-term[,...]

Command Qualifiers Defaults

/[NO]EDIT[=edit-cmd] /NOEDIT
/LIBRARY=directory-spec See text.
/[NO]PATH /NOPATH
/[NO]VERIFY /NOVERIFY

Command Parameters

lib-term[,...]
Specifies the new default library search path for the specified library. For more
information on library search paths, see Chapter 3.

You can specify lib-term as follows:

• The directory specification of a DEC Ada library. For example:
[JONES.HOTEL.ADALIB].

• The default path of a DEC Ada library. To specify the default path, you
enter the name of a DEC Ada library preceded by an at sign(@). For
example: @[JONES.HOTEL.ADALIB].

• A file specification preceded by an at sign (@). For example:
@[JONES.HOTEL]MYPATH.TXT. Note the that file, MYPATH.TXT, must
contain valid library terms.

If you do not specify a full file specification, the default file name is PATH
and the default file extension is .TXT.

You must use commas to separate more than one lib-term in a library search
path.

A–118 ACS Command Dictionary

MODIFY LIBRARY

Description

The ACS MODIFY LIBRARY/PATH command redefines the default library
search path for a given library. If you do not specify a library (you omit the
/LIBRARY=directory-spec qualifier), the default path for the current program
library is redefined.

The ACS MODIFY LIBRARY/PATH command stores the specified library
search path in the given library in its original form. In other words, the search
path is stored exactly as you specified it on the command line or with the
editor. The command also evaluates and verifies the new library search path,
and reports any errors.

If you enter the ACS MODIFY LIBRARY/PATH command interactively (that
is, at the ACS> prompt), the current path is not reevaluated. Thus, if you
modified the default path for the current library, this modification will not take
effect until you reinvoke ACS.

For more information on library search paths, see Chapter 3.

Command Qualifiers

/EDIT[=edit_cmd]
/NOEDIT(D)
Invokes an editor which allows you to edit the default path associated with
the current program library. The current definition of the default path for the
given library is placed in a text file, and the editor specified by edit-cmd is
invoked. If you do not specify an editor with the /EDIT qualifier, callable EDT
is invoked. When you exit from the editor, the default path for the library is
redefined to be the library search path contained in the edited file.

/LIBRARY=directory-spec
Specifies a library whose default library search path is to be modified. By
default, the default path of the current program library is modified.

/PATH
/NOPATH (D)
Specifies that the default library search path for the given library is to be
modified.

/VERIFY(D)
/NOVERIFY
Controls whether the program library manager suppresses the evaluation and
verification of the new default path.

By default, the new default path is evaluated and verified.

ACS Command Dictionary A–119

MODIFY LIBRARY

Example

ACS> MODIFY LIBRARY/PATH/LIBRARY=[MY_LIB] [MY_LIB],[LIB1],[LIB2]

Redefines the default path of the library [MY_LIB] to be as follows:

[MY_LIB]
[LIB1]
[LIB2]

Note that if you enter the ACS MODIFY LIBRARY command interactively, the
current path is not reevaluated. Thus, if you modified the default path for the
current library, this modification will not take effect until you reinvoke ACS.

A–120 ACS Command Dictionary

RECOMPILE

RECOMPILE

Enters an ACS CHECK command for the specified units, then recompiles
(makes current) any obsolete unit that is part of the closure of the set of units
specified. Obsolete entered units must be made current before you can use the
ACS RECOMPILE command (see the Description section).

Note

To be recompiled, units must have previously been compiled with the
/COPY_SOURCE qualifier (this is the default value of this qualifier).

Format

RECOMPILE [unit-name[,...]]

Command Qualifiers Defaults

/AFTER=time See text.
/[NO]ANALYSIS_DATA[=file-spec] /NOANALYSIS_DATA
/BATCH_LOG=file-spec See text.
/[NO]CHECK See text.
/CLOSURE See text.
/COMMAND[=file-spec] See text.
/[NO]CONFIRM /NOCONFIRM
/[NO]COPY_SOURCE /COPY_SOURCE
/[NO]DEBUG[=(option[,...])] /DEBUG=ALL
/[NO]DESIGN[=option] /NODESIGN
/[NO]DIAGNOSTICS[=file-spec] /NODIAGNOSTICS
/[NO]ERROR_LIMIT[=n] /ERROR_LIMIT=30
/[NO]KEEP /KEEP
/[NO]LIST[=file-spec] /NOLIST
/[NO]LOG /NOLOG
/[NO]MACHINE_CODE /NOMACHINE_CODE
/NAME=job-name See text.
/[NO]NOTE_SOURCE /NOTE_SOURCE
/[NO]NOTIFY /NOTIFY
/[NO]OBSOLETE=(option[,...]) /NOOBSOLETE
/[NO]OPTIMIZE[=(option[,...])] See text.
/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT
/[NO]PRINTER[=queue-name] /NOPRINTER
/QUEUE=queue-name /QUEUE=ADA$BATCH
/[NO]SHOW[=option] /SHOW=PORTABILITY
/[NO]SMART_RECOMPILATION /SMART_RECOMPILATION

ACS Command Dictionary A–121

RECOMPILE

/SPECIFICATION_ONLY See text.
/[NO]STATISTICS /STATISTICS
/SUBMIT See text.
/[NO]SYNTAX_ONLY /NOSYNTAX_ONLY
/WAIT /WAIT
/[NO]WARNINGS[=(option[,...])] See text.

Prompts

_Unit:

Command Parameters

[unit-name[,...]]
Specifies one or more units in the current program library whose closure is to
be processed by the ACS RECOMPILE command. You must express subunit
names using selected component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for detailed information on
wildcard characters.)

If you do not specify any units with the ACS RECOMPILE command, the
command uses whatever units were involved with the most recent ACS
CHECK command.

Description

The ACS RECOMPILE command is designed to be used when a unit or a set
of units must be compiled again, but the original source code has not changed.
Thus, the RECOMPILE command is useful for performing the following
operations:

• To make an obsolete unit or set of units current (see Chapter 1 for
definitions of obsolescence and currency).

• To complete incomplete generic instantiations, once the missing or changed
generic body has been compiled into the current program library.

• To recompile units after the value of a global program library characteristic
such as LONG_FLOAT or SYSTEM_NAME has been changed (for example,
after you have used the ACS SET PRAGMA command).

A–122 ACS Command Dictionary

RECOMPILE

• To obtain new versions of some units, compiled with a particular
combination of compilation qualifiers (for example, /OPTIMIZE=SPACE,
/CHECK, and so on). In this case, the units are not obsolete, but the
RECOMPILE command, in combination with the /OBSOLETE qualifier,
can be used to force the recompilation of the entire execution closure of a
set of units.

The RECOMPILE command goes through the following steps:

1. Forms the execution closure of the specified units.

2. Determines whether each unit in the closure is in the program library and
is current. Units entered from other program libraries as well as those
compiled or copied into the current program library are checked.

3. If all units in the closure are in the program library and are current, issues
an informational message and terminates the operation.

4. Identifies any unit in the closure that is missing from the current program
library.

5. Identifies any unit in the closure that is obsolete and must be recompiled.

6. If any units in the closure are obsolete, creates a DCL command file for
the compiler. The file contains commands to compile the copied source file
of each obsolete unit in the proper order. Entered units are not considered
for recompilation. The command file is deleted after the RECOMPILE
command is completed or terminated, unless the /COMMAND qualifier
is specified. If the /COMMAND qualifier is specified, the command file is
retained for future use, and the compiler is not invoked.

7. Unless the /COMMAND qualifier is specified, invokes the DEC Ada
compiler as follows:

a. By default (RECOMPILE/WAIT), the command file is executed in a
subprocess. You must wait for the compilation to terminate before
entering another command. When the /WAIT qualifier is in effect,
process logical names are propagated to the subprocess generated to
execute the command file.

b. If you specify the /SUBMIT qualifier, the compiler command file
generated in step 2 is submitted as a batch job.

Note the use of copied source files in the recompilation. Files external to
the current program library are ignored. If a copied source file needed for
the recompilation is missing (because the /NOCOPY_SOURCE qualifier was
specified in a previous compilation), the program library manager identifies
the missing file, and the recompilation is not attempted. Thus, if you intend

ACS Command Dictionary A–123

RECOMPILE

to use the RECOMPILE command, you should not compile units with the
/NOCOPY_SOURCE qualifier.

If the closure you are recompiling includes an obsolete entered unit, that unit
is not affected by the RECOMPILE command; an error diagnostic is issued and
the RECOMPILE command is not executed. You should recompile an obsolete
entered unit in its own program library and then reenter it into the current
program library before you try to recompile its dependent units in the current
library.

Program library manager output originating before the compiler is invoked
is reported to your terminal by default, or to a file specified with the
/OUTPUT qualifier. Compiler diagnostics are to your terminal, by default,
or to a log file if the command file is executed in batch mode (by way of the
RECOMPILE/SUBMIT command).

See Chapter 4 for more information on the RECOMPILE command.

Command Qualifiers

/AFTER=time
Requests that the batch job be held until after a specific time when the
command file is executed in batch mode. If the specified time has already
passed, or if the /AFTER qualifier is not specified, the job is queued for
immediate processing.

You can specify either an absolute time or a combination of absolute and delta
time. See the OpenVMS User’s Manual (or type HELP Specify Date_Time at
the DCL prompt) for complete information on specifying time values.

/ANALYSIS_DATA[=file-spec]
/NOANALYSIS_DATA (D)
Controls whether a data analysis file containing source code cross-reference
and static analysis information is created. The data analysis file is supported
only for use with Digital layered products, such as the DEC Source Code
Analyzer.

One data analysis file is created for each copied source file that is recompiled.
The default directory for data analysis files is the current default directory.
The default file name is the name of the source file being compiled. The default
file type is .ANA. No wildcard characters are allowed in the file specification.

By default, no data analysis file is created.

/BATCH_LOG=file-spec
Provides a file specification for the batch log file when the command file is
executed in batch mode.

A–124 ACS Command Dictionary

RECOMPILE

If you do not give a directory specification with the file-spec option, the batch
log file is created by default in the current default directory. If you do not
give a file specification with the file-spec option, the default file name is the
job name specified with the /NAME=job-name qualifier. If no job name has
been specified, the program library manager creates a file name comprising
up to the first 39 characters of the first unit name specified. If no job name
has been specified and there is a wildcard character in the first unit specified,
the program library manager uses the default file name ACS_RECOMPILE.
The default file type is .LOG. No wildcard characters are allowed in the file
specification.

/CHECK
/NOCHECK
Controls whether all run-time checks are suppressed. The /NOCHECK
qualifier is equivalent to having all possible SUPPRESS pragmas in the source
code.

Explicit use of the /CHECK qualifier overrides any occurrences of the pragmas
SUPPRESS and SUPPRESS_ALL in the source code, without the need to edit
the source code.

By default, run-time checks are only suppressed in cases where a pragma
SUPPRESS or SUPPRESS_ALL appears in the source code.

See the DEC Ada Language Reference Manual for more information on the
pragmas SUPPRESS and SUPPRESS_ALL.

/CLOSURE
Causes the /SPECIFICATION_ONLY to apply to all units in the closure of
units named in the RECOMPILE command. (Without the /CLOSURE qualifier,
the /SPECIFICATION_ONLY qualifier applies only to the units named in the
command.)

See the description of the /SPECIFICATION_ONLY qualifier in the list of
command qualifiers.

/COMMAND[=file-spec]
Controls whether the compiler is invoked as a result of the RECOMPILE
command, and determines whether the command file generated to invoke the
compiler is saved. If you specify the /COMMAND qualifier, the program library
manager does not invoke the compiler, and the generated command file is
saved for you to invoke or submit as a batch job.

ACS Command Dictionary A–125

RECOMPILE

The file-spec option allows you to enter a file specification for the generated
command file. The default directory for the command file is the current default
directory. By default, the program library manager provides a file name
comprising up to the first 39 characters of the first unit name specified. If you
use a wildcard character in the first unit name specified, the compiler uses the
default name ACS_RECOMPILE. The default file type is .COM. No wildcard
characters are allowed in the file specification.

By default, if you do not specify the /COMMAND qualifier, the program library
manager deletes the generated command file when the RECOMPILE command
completes normally or is terminated.

/CONFIRM
/NOCONFIRM (D)
Controls whether the RECOMPILE command asks you for confirmation
before performing a possibly lengthy operation. If you specify the /CONFIRM
qualifier, the possible responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/COPY_SOURCE (D)
/NOCOPY_SOURCE
Controls whether a copied source file is created in the current program library
when a compilation unit is recompiled without error. The ACS RECOMPILE
command requires that a copied source file exist in the current program library;
the ACS COMPILE command uses the copied source file if it cannot find an
external source file when it is recompiling an obsolete unit or completing an
incomplete generic instantiation (see Chapter 4). Copied source files may also
be used by the debugger (see Chapter 8 for more information on debugging
tasks; see OpenVMS Debugger Manual for more information on the debugger).

The /[NO]COPY_SOURCE qualifier has an effect with the RECOMPILE
command only for those obsolete units in a parent library that are being
recompiled into the current sublibrary to make them current. In this case, by
default, a copied source file is created in the current program library when a
unit is recompiled without error.

A–126 ACS Command Dictionary

RECOMPILE

/DEBUG[=(option[,...])] (D)
/NODEBUG
Controls which debugger compiler options are provided. You can debug DEC
Ada programs with the debugger (see Chapter 8 for more information on
debugging tasks; see the OpenVMS Debugger Manual for more information on
the debugger).

You can request the following options:

ALL Provides both SYMBOLS and TRACEBACK
NONE Provides neither SYMBOLS nor TRACEBACK
[NO]SYMBOLS Controls whether debugger symbol records are

included in the object file
[NO]TRACEBACK Controls whether traceback information (a subset of

the debugger symbol information) is included in the
object file

By default, both debugger symbol records and traceback information are
included in the object files (/DEBUG=ALL, or equivalently: /DEBUG).

/DESIGN[=option]
/NODESIGN (D)
Controls whether a design-level check is performed when identifying obsolete
units. A unit is not considered obsolete just because it is design-checked only.

Also directs the compiler to process Ada source files as a detailed program
design. For each unit that is design checked without error, the program
library is updated with information about that unit. Design-checked units are
considered to be obsolete in operations that require full compilation and must
be recompiled.

You can request the following options:

ACS Command Dictionary A–127

RECOMPILE

[NO]COMMENTS Determines whether comments are processed
for program design information. For the
COMMENTS option to have effect, you must
specify the /ANALYSIS_DATA qualifier
with the ADA command. See Guide to
Source Code Analyzer for VMS Systems for
more information on using the Source Code
Analyzer (SCA).
If you specify NOCOMMENTS, comments are
ignored.
On AXP systems, the /DESIGN=COMMENTS
qualifier is accepted, but has no effect.

[NO]PLACEHOLDERS Determines whether design checking is
performed. If you specify PLACEHOLDERS,
compilation units are design checked—LSE
placeholders are allowed and some of the
Ada language rules are relaxed so that
you can omit some implementation details.
If you specify NOPLACEHOLDERS, full
compilation is done—the compiler is invoked,
LSE placeholders are not allowed, and Ada
language rules are not relaxed.
Note that when you specify this option with
the /SYNTAX_ONLY qualifier, it determines
only whether LSE placeholders are allowed. If
you specify NOPLACEHOLDERS, then only
valid Ada syntax is allowed.

If you specify the /DESIGN qualifier without supplying any options, the effect
is the same as the following default:

/DESIGN=(COMMENTS,PLACEHOLDERS)

If you specify only one of the options with the /DESIGN qualifier, the default
value for the other option is used. For example, /DESIGN=NOCOMMENTS
is equivalent to /DESIGN=(NOCOMMENTS,PLACEHOLDERS). In this
case, both qualifiers specify that the unit is design-checked, but comment
information is not collected. Similarly, /DESIGN=NOPLACEHOLDERS is
equivalent to /DESIGN=(COMMENTS,NOPLACEHOLDERS). In this case,
both qualifiers specify that comment information is collected, but the unit is
not design-checked (that is, in the absence of the /SYNTAX_ONLY qualifier,
units are fully compiled).

A–128 ACS Command Dictionary

RECOMPILE

/DIAGNOSTICS[=file-spec]
/NODIAGNOSTICS (D)
Controls whether a diagnostics file containing compiler messages and
diagnostic information is created. The diagnostics file is supported only
for use with Digital layered products, such as the DEC Language-Sensitive
Editor.

By default, a diagnostics file is created from the copied source file for each unit
that is recompiled.

/ERROR_LIMIT[=n]
/NOERROR_LIMIT
Controls whether execution of the RECOMPILE command for a given
compilation unit is terminated upon the occurrence of the nth E-level error
within that unit.

Error counts are not accumulated across a sequence of compilation units. If
the /ERROR_LIMIT=n option is specified, each compilation unit may have up
to n � 1 errors without terminating the compilation. When the error limit is
reached within a compilation unit, compilation of that unit is terminated, but
compilation of subsequent units continues.

The /ERROR_LIMIT=0 option is equivalent to ERROR_LIMIT=1.

By default, execution of the RECOMPILE command is terminated for a given
compilation unit upon the occurrence of the 30th E-level error within that
compilation unit (equivalent to /ERROR_LIMIT=30).

/KEEP (D)
/NOKEEP
Controls whether the batch log file generated is deleted after it is printed when
the command file is executed in batch mode.

By default, the log file is not deleted.

/LIST[=file-spec]
/NOLIST (D)
Controls whether a listing file is created. One listing file is created for each
compilation unit (not file) recompiled by the RECOMPILE command. The
default directory for listing files is the current default directory. The default
file name of a listing file corresponds to the name of its compilation unit and
uses the DEC Ada file-name conventions described in Chapter 1.

The default file type of a listing file is .LIS. No wildcard characters are allowed
in the file specification.

By default, the RECOMPILE command does not create a listing file.

ACS Command Dictionary A–129

RECOMPILE

/LOG
/NOLOG (D)
Controls whether a list of all the units that must be recompiled is displayed.

By default, a list of the units that must be recompiled is not displayed.

/MACHINE_CODE
/NOMACHINE_CODE (D)
Controls whether generated machine code (approximating assembler notation)
is included in the listing file.

By default, generated machine code is not included in the listing file.

/NAME=job-name
Specifies a string to be used as the job name and as the file name for the batch
log file when the command file is executed in batch mode. The job name can
have from 1 to 39 characters.

By default, if you do not specify the /NAME qualifier, the program library
manager creates a job name comprising up to the first 39 characters of the
first unit name specified. If you do not specify the /NAME qualifier, but use
a wildcard character in the first unit name specified, the compiler uses the
default name ACS_RECOMPILE. In these cases, the job name is also the file
name of the batch log file.

/NOTE_SOURCE (D)
/NONOTE_SOURCE
Controls whether the file specification of the source file is noted in the program
library when a unit is recompiled without error. The COMPILE command uses
this information to locate revised source files.

The /[NO]NOTE_SOURCE qualifier has no effect with the RECOMPILE
command.

/NOTIFY (D)
/NONOTIFY
Controls whether a message is broadcast when the RECOMPILE command
is executed in batch mode. The message is broadcast to any terminal at
which you are logged in, notifying you that your job has been completed or
terminated.

By default, a message is broadcast.

/OBSOLETE=(option[,...])
/NOOBSOLETE (D)
Affects the overall set of units that is identified as obsolete.

A–130 ACS Command Dictionary

RECOMPILE

When the execution closure of the units in the parameter list of the command
is performed, the units named with the UNIT, SPECIFICATION, and BODY
keywords are assumed to be obsolete as described below. If one of those units
is not in the execution closure of the units named in the command’s parameter
list, it is not added to the closure.

Unit names are specified with the UNIT, SPECIFICATION, and BODY
keywords as follows:

UNIT:(unit_name[,...]) The specifications and bodies of units
specified with the UNIT keyword are
assumed to be obsolete.

SPECIFICATION:(unit_name[,...]) Only the specifications of units specified
with the SPECIFICATION keyword are
assumed to be obsolete.

BODY:(unit_name[,...]) Only the bodies of units specified with
the BODY keyword are assumed to be
obsolete.

You must specify at least one of these keywords. Unit names can contain
wildcard characters.

When the /SMART_RECOMPILATION qualifier is in effect, dependent units
of the specified unit may or may not be recompiled. To force recompilation
of dependent units when smart recompilation is in effect, use the
/OBSOLETE=UNIT:* qualifier. (See Section 5.1.3 for more information.)

By default, units are identified as obsolete based on the current state of the
program library.

/OPTIMIZE[=(option[,...])]
/NOOPTIMIZE
Controls the level of optimization that is applied in producing the compiled
code. You can specify one of the following primary options:

TIME Provides full optimization with time as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(SPACE) in the source code.

SPACE Provides full optimization with space as the primary
optimization criterion. Overrides any occurrences of the
pragma OPTIMIZE(TIME) in the source code.

ACS Command Dictionary A–131

RECOMPILE

DEVELOPMENT Suggested when active development of a program is in
progress. Provides some optimization, but development
considerations and ease of debugging take preference
over optimization. This option overrides pragmas that
establish a dependence on a subprogram or generic
body (the pragmas INLINE and INLINE_GENERIC),
and thus reduces the need for recompilations when
such bodies are modified. This option also disables
generic code sharing.

NONE Provides no optimization. Suppresses inline expansions
of subprograms and generics, including those specified
by the pragmas INLINE and INLINE_GENERIC.
Suppresses occurrences of the pragma SHARE_
GENERIC and disables generic code sharing.

The /NOOPTIMIZE qualifier is equivalent to /OPTIMIZE=NONE.

By default, the RECOMPILE command applies full optimization with time as
the primary optimization criterion (like /OPTIMIZE=TIME, but observing uses
of the pragma OPTIMIZE).

The /OPTIMIZE qualifier also has a set of secondary options that you can
use separately or together with the primary options to override the default
behavior for inline expansion (generic and subprogram) and generic code
sharing.

The INLINE secondary option can have the following values (see the DEC Ada
Run-Time Reference Manual for OpenVMS Systems for more information about
inline expansion):

NONE Disables subprogram and generic inline expansion.
This option overrides any occurrences of the
pragmas INLINE or INLINE_GENERIC in the
source code, without your having to edit the source
file. It also disables implicit inline expansion of
subprograms. (Implicit inline expansion means
that the compiler assumes a pragma INLINE for
certain subprograms as an optimization.) A call
to a subprogram or an instance of a generic in
another unit is not expanded inline, regardless of
the /OPTIMIZE options in effect when that unit
was compiled.

A–132 ACS Command Dictionary

RECOMPILE

NORMAL Provides normal subprogram and generic inline
expansion.
Subprograms to which an explicit pragma INLINE
applies are expanded inline under certain
conditions. In addition, some subprograms are
implicitly expanded inline. The compiler assumes
a pragma INLINE for calls to some small local
subprograms (subprograms that are declared in the
same unit as the unit in which the call occurs).
Instances are compiled separately from the unit in
which the instantiation occurred unless a pragma
INLINE_GENERIC applies to the instance. If
a pragma INLINE_GENERIC applies and the
generic body has been compiled, the generic is
expanded inline at the point of instantiation.

SUBPROGRAMS Provides maximal subprogram inline expansion
and normal generic inline expansion.
In addition to the normal subprogram inline
expansion that occurs when INLINE:NORMAL
is specified, this option results in implicit inline
expansion of some small subprograms declared
in other units. The compiler assumes a pragma
INLINE for any subprogram if it improves
execution speed and reduces code size. This option
may establish a dependence on the body of another
unit, as would be the case if a pragma INLINE
were specified explicitly in the source code.
With this option, generic inline expansion occurs in
the same manner as for INLINE:NORMAL.

ACS Command Dictionary A–133

RECOMPILE

GENERICS Provides normal subprogram inline expansion and
maximal generic inline expansion.
With this option, subprogram inline expansion oc-
curs in the same manner as for INLINE:NORMAL.
The compiler assumes a pragma INLINE_
GENERIC for every instantiation in the unit
being compiled unless an explicit pragma SHARE_
GENERIC applies. This option may establish a
dependence on the body of another unit, as would
be the case if a pragma INLINE_GENERIC were
specified explicitly in the source code.

MAXIMAL Provides maximal subprogram and generic inline
expansion.
Maximal subprogram inline expansion occurs as for
INLINE:SUBPROGRAMS, and maximal generic
inline expansion occurs as for INLINE:GENERICS.

The SHARE secondary option can have the following values:

NONE Disables generic sharing. This option overrides the
effect of any occurrences of the pragma SHARE_
GENERIC in the source code, without your having
to edit the source file. In addition, instances do not
share code from previous instantiations.

NORMAL Provides normal generic sharing. Normally, the
compiler will not attempt to generate shareable code
for an instance (code that can be shared by subsequent
instantiations) unless an explicit pragma SHARE_
GENERIC applies to that instance. However, an
instance will attempt to share code that resulted from
a previous instantiation to which the pragma SHARE_
GENERIC applied.

A–134 ACS Command Dictionary

RECOMPILE

MAXIMAL Provides maximal generic sharing. The compiler
assumes that a pragma SHARE_GENERIC applies
to every instance in the unit being compiled unless an
explicit pragma INLINE_GENERIC applies. Thus, an
instance will attempt to share code that resulted from
a previous instantiation or to generate code that can be
shared by subsequent instantiations.
SHARE:MAXIMAL cannot be used in combination with
INLINE:GENERICS or INLINE:MAXIMAL.

By default, if you specify one of the /OPTIMIZE qualifier primary options
on the left (for example, /OPTIMIZE=TIME), it has the same effect
as specifying the secondary-option values to the right (in this case,
/OPTIMIZE=(TIME,INLINE:NORMAL,SHARE:NORMAL)):

TIME /OPTIMIZE=(TIME,INLINE:NORMAL,SHARE:NORMAL)
SPACE /OPTIMIZE=(SPACE,INLINE:NORMAL,SHARE:NORMAL)
DEVELOPMENT /OPTIMIZE=(DEVELOPMENT,INLINE:NONE,

SHARE:NONE)
NONE /OPTIMIZE=(NONE,INLINE:NONE,SHARE:NONE)

See Chapter 4 for more information about the /OPTIMIZE qualifier and its
options.

/OUTPUT=file-spec
Requests that any program library manager output generated before
the compiler is invoked be written to the file specified rather than to
SYS$OUTPUT. Any diagnostic messages are written to both SYS$OUTPUT
and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the RECOMPILE command output is written to SYS$OUTPUT.

/PRINTER[=queue-name]
/NOPRINTER (D)
Controls whether the batch job log file is queued for printing when the
command file is executed in batch mode.

The /PRINTER qualifier allows you to specify a particular print queue. The
default print queue for the log file is SYS$PRINT.

ACS Command Dictionary A–135

RECOMPILE

By default, the log file is not queued for printing. If you specify the
/NOPRINTER qualifier, the /KEEP qualifier is assumed.

/QUEUE=queue-name
Specifies the batch job queue in which the job is entered when the command
file is executed in batch mode.

By default, if the /QUEUE qualifier is not specified, the program library
manager first checks whether the logical name ADA$BATCH is defined. If it is,
the program library manager enters the job in the queue specified. Otherwise,
the job is placed in the default system batch job queue, SYS$BATCH.

/SHOW[=option] (D)
/NOSHOW
Controls the listing file options included when a listing file is provided. You
can specify one of the following options:

ALL Provides all listing file options.
[NO]PORTABILITY Controls whether a program portability summary is

included in the listing file (see Chapter 7).
NONE Provides none of the listing file options (same as

/NOSHOW).

By default, the RECOMPILE command provides a portability summary
(/SHOW=PORTABILITY).

/SMART_RECOMPILATION (D)
/NOSMART_RECOMPILATION
Controls whether smart recompilation information is stored and used to
identify obsolete units.

When the /SMART_RECOMPILATION qualifier is in effect, detailed
information about dependences is stored in the program library for each
unit compiled. This information describes the dependences of a unit at a finer
level than the compilation unit level.

The ACS RECOMPILE command uses this information to detect when a unit
in the closure is not affected by changes (if any) in its referenced units that
are recompiled. The ACS RECOMPILE command does not recompile such
dependent units and thus minimizes unnecessary recompilations.

If smart recompilation is not in effect, detailed information about dependences
is not stored in the program library, and units are considered obsolete and
recompiled based on their time of compilation. (See Chapter 5 for more
information.)

A–136 ACS Command Dictionary

RECOMPILE

/SPECIFICATION_ONLY
Causes only the specifications of the units specified to be considered
for recompilation. You can use the /CLOSURE qualifier with the
/SPECIFICATION_ONLY qualifier to force only the specifications in the
execution closure of the specified units to be considered for recompilation.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, all of the
specifications, bodies, and subunits in the execution closure of the units
specified are considered for compilation.

/STATISTICS (D)
/NOSTATISTICS
Controls whether statistical information is displayed during recompilation.
Statistical information includes the number of obsolete and possibly obsolete
units, the total elasped time for the last compilation of the identified units, and
the estimated elasped time savings due to smart recompilation.

/SUBMIT
Directs the program library manager to submit the command file generated for
the compiler to a batch queue. You can continue to enter commands in your
current process without waiting for the batch job to complete. The compiler
output is written to a log file.

By default, the program library manager executes the command file for the
compiler in a subprocess (by way of the RECOMPILE/WAIT command).

/SYNTAX_ONLY
/NOSYNTAX_ONLY (D)
Controls whether a syntax-level check is performed when identifying obsolete
units. A unit is not considered obsolete just because it is syntax-checked only.
Because all units in a program library are at least syntax-checked, in effect,
this qualifier generally identifies all units as current.

The /SYNTAX_ONLY qualifier also directs the compiler to process source
files for syntax only. Other compiler checks are not performed (for example,
semantic analysis, type checking, and so on).

By default, the RECOMPILE command performs full checking when identifying
obsolete units (and the compiler fully compiles units).

/WAIT
Directs the program library manager to execute the command file generated for
the compiler in a subprocess. Execution of your current process is suspended
until the subprocess completes. The compiler output is written directly to your
terminal. Note that process logical names are propagated to the subprocess
generated to execute the command file.

ACS Command Dictionary A–137

RECOMPILE

By default, the program library manager executes the command file generated
for the compiler to a subprocess: you must wait for the subprocess to terminate
before you can enter another command.

/WARNINGS[=(option[,...])]
/NOWARNINGS
Controls which categories of informational (I-level) and warning (W-level)
messages are displayed and where those messages are displayed. You can
specify any combination of the following message options:

WARNINGS: (destination[,...])
NOWARNINGS

WEAK_WARNINGS: (destination[,...])
NOWEAK_WARNINGS

SUPPLEMENTAL: (destination[,...])
NOSUPPLEMENTAL

COMPILATION_NOTES: (destination[,...])
NOCOMPILATION_NOTES

STATUS: (destination[,...])
NOSTATUS

The possible values of destination are ALL, NONE, or any combination of
TERMINAL (terminal device), LISTING (listing file), and DIAGNOSTICS
(diagnostics file). The message categories are summarized as follows (see
Chapter 4 for more information):

WARNINGS W-level: Indicates a definite problem in a legal
program—for example, an unknown pragma.

WEAK_WARNINGS I-level: Indicates a potential problem in a legal
program—for example, a possible CONSTRAINT_
ERROR at run time. These are the only kind of
I-level messages that are counted in the summary
statistics at the end of a compilation.

SUPPLEMENTAL I-level: Additional information associated with
previous E-level or W-level diagnostics.

A–138 ACS Command Dictionary

RECOMPILE

COMPILATION_NOTES I-level: Information about how the compiler
translated a program, such as record layout,
parameter-passing mechanisms, or decisions made
for the pragmas INLINE, INTERFACE, or the
import-subprogram pragmas.

STATUS I-level: End of compilation statistics and other
messages.

The defaults are as follows:

/WARNINGS=(WARN:ALL,WEAK:ALL,SUPP:ALL,COMP:NONE,STAT:LIST)

If you specify only some of the message categories with the /WARNINGS
qualifier, the default values for the other categories are used.

Examples

1. ACS> RECOMPILE/SUBMIT/LOG HOTEL
%I, The following syntax-checked units are obsolete:
RESERVATIONS

package specification 4-NOV-1992 20:00:45.97
HOTEL

procedure body 4-NOV-1992 20:05:16.26

2 obsolete units

%I, Job HOTEL (queue ALL_BATCH, entry 448) started on FAST_BATCH

Lists all of the units in the closure of unit HOTEL that need to be
recompiled, then submits the compiler command file generated by the
program library manager as a batch job.

2. ACS> RECOMPILE/CLOSURE/NOCHECK/COMMAND HOTEL

Creates and retains the compiler command file generated by the
program library manager. The command file has the file name and
type HOTEL.COM, by default.

ACS Command Dictionary A–139

REENTER

REENTER

Enters current references to units that were entered into the current program
library and subsequently compiled in their original libraries.

Format

REENTER unit-name[,...]

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/ENTERED=library See text.
/[NO]LOCAL /LOCAL
/[NO]LOG /NOLOG

Positional Qualifiers Defaults

/BODY_ONLY See text.
/[NO]DATE_CHECK /DATE_CHECK
/SPECIFICATION_ONLY See text.

Prompts

_Unit:

Command Parameters

unit-name[,...]
Specifies one or more units to be reentered into the current program library.
You must express subunit names using selected component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more information on wildcard
characters.)

Description

The ACS REENTER command, like the ACS ENTER UNIT command, operates
on a specified unit’s specification plus its body and subunits, if any. For
each unit specified, the REENTER command looks up the unit in its original
program library and enters the current definition of the unit into the current
program library. By default, if a specified unit’s definition is current, it is not
reentered.

A–140 ACS Command Dictionary

REENTER

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the REENTER command displays the unit name of each unit
before reentering and requests you to confirm whether or not the unit should
be reentered. If you specify the /CONFIRM qualifier, the possible responses
are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

• QUIT or Ctrl/Z indicates that you want to stop processing the command at
that point.

• ALL indicates that you want to continue processing the command without
any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

/ENTERED=library
Controls whether entered units are selected for reentering. You can use the
library option to reenter units that were entered from a particular library.
When you specify the /NOENTERED qualifier, only units that have been
compiled or copied into the current program library are reentered. Note that
when you specify the /ENTERED qualifier, local units are selected unless
the /NOLOCAL qualifier is also in effect (the defaults for these qualifiers are
/LOCAL and /ENTERED).

By default, all units specified are reentered from all of the libraries from which
they were originally entered.

/LOG
/NOLOG (D)
Controls whether the name of a unit is displayed after it has been reentered.

By default, the names of reentered units are not displayed.

ACS Command Dictionary A–141

REENTER

Positional Qualifiers

/BODY_ONLY
Reenters only the body of the specified unit.

When you append the /BODY_ONLY qualifier to the REENTER command
string, any /SPECIFICATION_ONLY qualifiers that are appended to
parameters in the command line override the /BODY_ONLY qualifier for those
particular parameters. You cannot append both the /BODY_ONLY qualifier
and the /SPECIFICATION_ONLY qualifier to the REENTER command string
or to the same unit name parameter.

By default, if the /BODY_ONLY qualifier is omitted, the specification, as well
as the body, is reentered.

/DATE_CHECK (D)
/NODATE_CHECK
Controls whether the REENTER command compares the compilation date-
time in the current program library and original library as the criterion
for reentering a unit. If you specify the /NODATE_CHECK qualifier, the
REENTER command will unconditionally reenter each unit specified in the
command.

By default, the REENTER command compares the compilation date-time and
reenters only those references that were obsolete.

/SPECIFICATION_ONLY
Reenters only the specification of the specified unit.

When you append the /SPECIFICATION_ONLY qualifier to the REENTER
command string, any /BODY_ONLY qualifiers that are appended to parameters
in the command line override the /SPECIFICATION_ONLY qualifier for those
particular parameters. You cannot append both the /SPECIFICATION_ONLY
qualifier and the /BODY_ONLY qualifier to the REENTER command string or
to the same unit name parameter.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the body, as
well as the specification, is reentered.

Examples

1. ACS> REENTER/LOG *
%I, QUEUE_MANAGER entered

Reenters every unit in the current program library that needs to be
reentered, in this case the unit QUEUE_MANAGER.

A–142 ACS Command Dictionary

REENTER

2. ACS> REENTER/NODATE_CHECK STACKS

Unconditionally reenters the unit STACKS into the current program
library, even if references to STACKS are current.

ACS Command Dictionary A–143

REORGANIZE

REORGANIZE

Optimizes the organization of the current DEC Ada program library (or the
specified library).

Note

You can use this command only on a library to which you have exclusive
access.

Format

REORGANIZE [directory-spec]

Command Qualifiers Defaults

/[NO]LOG /LOG
/OUTPUT=file-spec See text.

Prompts

None.

Command Parameters

[directory-spec]
Specifies the DEC Ada program library to be reorganized. No wildcard
characters are allowed in the directory specification.

If you do not specify a program library, the ACS REORGANIZE command
reorganizes the current program library.

Description

The ACS REORGANIZE command optimizes the organization of the current
program library or the specified library. You can use this command to improve
the performance of any library; it is especially useful for improving the
performance of libraries that have have been updated frequently.

To use the REORGANIZE command, you must have exclusive read-write
access to the program library you are reorganizing. If another user is
accessing the library when you enter the REORGANIZE command, the
command will fail. One way to obtain exclusive access is to use the ACS SET
LIBRARY/EXCLUSIVE command (note that this command will also fail if

A–144 ACS Command Dictionary

REORGANIZE

you cannot gain exclusive access when you enter it). You must enter the SET
LIBRARY/EXCLUSIVE command interactively for it to have an effect.

Note that the SET LIBRARY/EXCLUSIVE command is not permitted for
libraries across DECnet.

Command Qualifiers

/LOG (D)
/NOLOG
Controls whether a successful library reorganization is reported.

By default, a successful library reorganization is reported.

/OUTPUT=file-spec
Requests that the REORGANIZE command output be written to the file
specified rather than to SYS$OUTPUT. Any diagnostic messages are written to
both SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the REORGANIZE command output is written to SYS$OUTPUT.

Example

ACS> REORGANIZE
%I, USER:[JONES.HOTEL.ADALIB] reorganized

Reorganizes the current program library (the library defined by the last ACS
SET LIBRARY command). To determine when a library was last reorganized,
enter the ACS SHOW LIBRARY/FULL command for that library.

ACS Command Dictionary A–145

SET LIBRARY

SET LIBRARY

Defines a DEC Ada program library or program sublibrary as the current
program library.

Format

SET LIBRARY directory-spec (Default)

SET LIBRARY/PATH lib-term[,...]

Command Qualifiers Defaults

/[NO]EXCLUSIVE /NOEXCLUSIVE
/[NO]LOG /LOG
/[NO]READ_ONLY /NOREAD_ONLY
/[NO]VERIFY /VERIFY

Prompts

_Library:
_Path:

Command Parameters

directory-spec
You use this command parameter when you do not also specify the /PATH
qualifier.

This parameter specifies the program library or program sublibrary that
defines the current program library. The directory you specify must be a valid
DEC Ada program library or program sublibrary, previously created with the
CREATE LIBRARY or CREATE SUBLIBRARY command, respectively.

lib-term
You use this command parameter when you specify the /PATH qualifier.

This parameter specifies one or more valid library terms (lib-term) that are to
be defined as the current path. You can specify lib-term as follows:

• The directory specification of DEC Ada library or sublibrary.

• The default path of a DEC Ada library. To specify the default path, you
enter the name of a DEC Ada library preceded by an at sign(@).

• A file specification preceded by an at sign (@).

For more information on library search paths, Chapter 3.

A–146 ACS Command Dictionary

SET LIBRARY

Description

The ACS SET LIBRARY command defines the current program library. DEC
Ada units are compiled in the context of the current program library. The
current program library is the target library for compiler output and for ACS
commands in general.

The SET LIBRARY command performs the following steps:

1. Verifies that the specified directory is a valid DEC Ada program library or
sublibrary. If the directory is invalid, an error message is issued.

2. Assigns the directory specification to the process logical name ADA$LIB.
The program library manager and the compiler use that logical name to
maintain the current program library context when performing various
operations.

This assignment takes place even if the specified directory is invalid. If
you specify an invalid library, the SET LIBRARY command sets the library
to whatever you specified (to prevent you from incorrectly modifying the
wrong library).

You use the second form (ACS SET LIBRARY/PATH) to explicitly specify the
current path. When you use this form, the first library in the specified path is
defined as the current program library. For more information on libraries and
library search paths, see Chapters 2 and 3.

The SET LIBRARY command does not affect the definition of the current
default directory. The DCL SET DEFAULT command does not affect the
definition of the current program library.

The /EXCLUSIVE and /READ_ONLY qualifiers are used for temporarily
controlling access to program libraries in a shared library environment.

When using the SET LIBRARY command with the /EXCLUSIVE or /READ_
ONLY qualifier values, you need to enter the command interactively (not as a
DCL one-line command). For example:

ACS> SET LIBRARY/EXCLUSIVE [JONES.HOTEL.ADALIB]

When you use the /EXCLUSIVE or /READ_ONLY qualifier, the qualifier
remains in effect until you exit from the program library manager or until
another SET LIBRARY command is executed.

ACS Command Dictionary A–147

SET LIBRARY

Command Qualifiers

/EXCLUSIVE
/NOEXCLUSIVE (D)
Controls whether the specified program library is opened for exclusive or
shared (/NOEXCLUSIVE) access when the SET LIBRARY command is
executed. Exclusive access to a compilation library over DECnet is not
permitted.

If you execute a SET LIBRARY command without the /EXCLUSIVE qualifier
or with the /NOEXCLUSIVE qualifier, then other processes are not denied
access to the specified program library.

If you try to execute a SET LIBRARY/EXCLUSIVE command while the
specified program library is being accessed by another process, the command
will fail.

After executing a SET LIBRARY/EXCLUSIVE command, you have exclusive
access to the specified program library until you exit from the program
library manager or until another SET LIBRARY command is executed. Other
processes are denied access to the program library until you exit from the
program library manager or another SET LIBRARY command is executed.

By default, the SET LIBRARY command provides for shared (/NOEXCLUSIVE)
access to the specified program library.

/PATH
/NOPATH (D)
Allows you to define a current path that differs from the default path
associated with the current program library.

You use this qualifier to specify the second form of the ACS SET LIBRARY
command. See the description section of this command for more information.

/LOG (D)
/NOLOG
Controls whether the directory specification of the current program library
being defined is displayed.

By default, the directory specification is displayed.

/READ_ONLY
/NOREAD_ONLY (D)
Controls whether the program library access is restricted to read-only access.

A–148 ACS Command Dictionary

SET LIBRARY

When you execute the SET LIBRARY/READ_ONLY command, the program
library is opened only for reading for the duration of the ACS session.
Therefore, you can only perform operations that do not modify the library:
for example, ACS CHECK, DIRECTORY, EXPORT, EXTRACT SOURCE,
LINK, SHOW LIBRARY, or SHOW PROGRAM. You can also copy and enter
units from (not to) the library.

When you execute the SET LIBRARY/NOREAD_ONLY command, the program
library is opened for reading, as well, but any subsequent command can try to
open the library for a different kind of access.

By default, the /NOREAD_ONLY qualifier is in effect.

/VERIFY (D)
/NOVERIFY
Controls whether the current path is evaluated and verified when an ACS SET
LIBRARY command is entered.

By default, the current path is evaluated and verified each time you enter an
ACS SET LIBRARY command.

Examples

1. ACS> SET LIBRARY [JONES.HOTEL.ADALIB]
%I, Current program library is USER:[JONES.HOTEL.ADALIB]

Defines the program library [JONES.HOTEL.ADALIB], on the default
device, as the current program library. The library is opened for both read
and write access.

2. ACS> SET LIBRARY/PATH [JONES.HOTEL.ADALIB],@[SMITH.ADALIB]

Defines the program library [JONES.HOTEL.ADALIB] and establishes the
current path. Suppose the default path of [SMITH.ADALIB] is as follows:

[SMITH.ADALIB]
[PROJECT.ADALIB]

In this case, the current path evaluates to the following:

[JONES.ADALIB]
[SMITH.ADALIB]
[PROJECT.ADALIB]

ACS Command Dictionary A–149

SET LIBRARY

3. ACS> SET LIBRARY/READ_ONLY DISK:[SMITH.SHARE.ADALIB]
%I, Current program library is DISK:[SMITH.SHARE.ADALIB]

Defines the program library DISK:[SMITH.SHARE.ADALIB] as the current
program library, with READ_ONLY access to the library.

A–150 ACS Command Dictionary

SET PRAGMA

SET PRAGMA

Redefines specified values of the program library characteristics FLOAT_
REPRESENTATION, LONG_FLOAT, MEMORY_SIZE, and SYSTEM_NAME.

Note that use of this command may make units obsolete that depend on the
previous value of a characteristic.

Format

SET PRAGMA

Command Qualifiers Defaults

/FLOAT_REPRESENTATION=option /FLOAT_REPRESENTATION=VAX_FLOAT
/LONG_FLOAT=option See text.
/MEMORY_SIZE=n See text.
/SYSTEM_NAME=system See text.

Prompts

None.

Command Parameters

None.

Description

By default, a program library or sublibrary is created with the following system
characteristics:

• FLOAT_REPRESENTATION=VAX_FLOAT

• LONG_FLOAT = G_FLOAT

• MEMORY_SIZE = 2147483647

• SYSTEM_NAME = VAX_VMS or OpenVMS_AXP

These may be changed by compiling a unit that contains the pragmas FLOAT_
REPRESENTATION, LONG_FLOAT, MEMORY_SIZE, or SYSTEM_NAME.

The ACS SET PRAGMA command allows you to change the current program
library’s characteristics without having to compile a unit consisting of one of
those pragmas.

ACS Command Dictionary A–151

SET PRAGMA

The SET PRAGMA command may make units that depend on these
characteristics obsolete. You can use the ACS RECOMPILE command to
make obsolete units current.

Command Qualifiers

/FLOAT_REPRESENTATION=VAX_FLOAT (D)
Redefines the value of the program library characteristic FLOAT_
REPRESENTATION. The possible values are either VAX_FLOAT or IEEE_
FLOAT (for AXP systems only).

By default, the current value of FLOAT_REPRESENTATION is unchanged.

/LONG_FLOAT=option
Redefines the value of the program library characteristic LONG_FLOAT. The
possible values are D_FLOAT and G_FLOAT.

By default, the current value of LONG_FLOAT is unchanged.

/MEMORY_SIZE=n
Redefines the value of the program library characteristic MEMORY_SIZE
to n.

By default, the current value of MEMORY_SIZE is unchanged.

/SYSTEM_NAME=system
Redefines the value of the program library characteristic SYSTEM_NAME to a
particular target operating system. The possible system values are VAX_VMS
and VAXELN.

By default, the current value of SYSTEM_NAME is unchanged.

Example

ACS> SET PRAGMA/LONG_FLOAT=D_FLOAT

Redefines the current program library characteristic LONG_FLOAT to the
value D_FLOAT.

A–152 ACS Command Dictionary

SET SOURCE

SET SOURCE

Defines a source-file-directory search list for the ACS COMPILE command.

Format

SET SOURCE directory-spec[,...]

Prompts

_Search list:

Command Parameters

directory-spec[,...]
Specifies one or more directories where the ACS COMPILE command should
search for source files.

Description

The ACS COMPILE command searches the directories in the order specified in
the ACS SET SOURCE command.

The search order takes precedence over the version number or revision date-
time if different versions of a source file exist in two or more directories.
Within any one directory, the version of a particular file that has the highest
number is considered for compilation.

The search list specified by SET SOURCE remains in effect until another SET
SOURCE command is executed, or until the process logs out.

If no SET SOURCE command is executed, the default search order is as
follows:

1. SYS$DISK:[] (the current default directory)

2. ;0 (the directory that contained the file when it was last compiled), or
node::;0 (if the file specification of the source file being compiled contains a
node name)

ACS Command Dictionary A–153

SET SOURCE

Examples

1. ACS> SET SOURCE SYS$DISK:[],USER:[JONES.HOTEL],;0

Defines the source-file search list to be: first, the current default directory
(SYS$DISK:[]); second, the directory USER:[JONES.HOTEL]; third, the
directory where the particular source file was last compiled (;0).

2. ACS> SET SOURCE SYS$DISK:[],CMS$LIB

Defines the source-file search list to be: first, the current default directory
(SYS$DISK:[]); second the current CMS library, as defined by the most
recent CMS SET LIBRARY command, which defines the logical name
CMS$LIB.

A–154 ACS Command Dictionary

SHOW LIBRARY

SHOW LIBRARY

Displays information about one or more DEC Ada program libraries, including
directory specifications, library characteristics, and units defined in each
library.

Format

SHOW LIBRARY [directory-spec[,...]]

Command Qualifiers Defaults

/BODY_ONLY See text.
/BRIEF See text.
/[NO]ENTERED[=library] /ENTERED
/FULL See text.
/[NO]LOCAL /LOCAL
/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT
/SPECIFICATION_ONLY See text.
/UNITS See text.

Prompts

None.

Command Parameters

[directory-spec[,...]]
Specifies one or more DEC Ada program libraries for display. No wildcard
characters are allowed in the directory specifications.

If you do not specify a program library, the SHOW LIBRARY command
displays information about the current program library.

Description

The ACS SHOW LIBRARY command displays various information about one
or more specified program libraries, including the full directory specifications,
library characteristics, and units defined in each program library.

The output of the SHOW LIBRARY command depends on whether the /UNITS
qualifier is used and, in addition, whether the /BRIEF or /FULL formatting
qualifier is used.

If you do not specify a qualifier, the SHOW LIBRARY command displays the
directory specifications of the program libraries specified.

ACS Command Dictionary A–155

SHOW LIBRARY

Command Qualifiers

/BODY_ONLY
Displays only the bodies of the specified units when you use the /UNITS
qualifier.

You cannot append both the /BODY_ONLY qualifier and the /SPECIFICATION_
ONLY qualifier to the SHOW LIBRARY/UNITS command string.

By default, if the /BODY_ONLY qualifier is omitted, the specifications, as well
as the bodies, are displayed.

/BRIEF
Displays the program library directory specifications.

If used with the /UNITS qualifier, also lists the names of all units contained in
each program library.

/ENTERED[=library] (D)
/NOENTERED
Controls whether entered units are displayed when you use the /UNITS
qualifier. You can use the library option to display units that were entered
from a particular library. When you specify the /NOENTERED qualifier, only
units that have been compiled or copied into the current program library are
displayed. Note that when you specify the /ENTERED qualifier, local units
are displayed unless the /NOLOCAL qualifier is also in effect (the defaults for
these qualifiers are /LOCAL and /ENTERED).

By default, all units, as well as entered units are displayed when you use the
/UNITS qualifier.

/FULL
Displays, for each program library specified, the directory specifications,
unevaluated and evaluated forms of the current and default paths, and the
values of the program library characteristics FLOAT_REPRESENTATION,
LONG_FLOAT, MEMORY_SIZE, and SYSTEM_NAME. For more information
on paths, see Chapter 3.

If used with the /UNITS qualifier, also displays, for each program library
specified, each unit’s name, kind, compilation date-time, and the file
specifications of the files associated with each unit.

/LOCAL (D)
/NOLOCAL
Controls whether local units (those units that were added to the library by
a compilation or a COPY UNIT command) are displayed when you use the

A–156 ACS Command Dictionary

SHOW LIBRARY

/UNITS qualifier. Note that when you specify the /LOCAL qualifier, entered
units are displayed unless the /NOENTERED qualifier is also in effect (the
defaults for these qualifiers are /LOCAL and /ENTERED).

By default, all units specified, including local units, are displayed.

/OUTPUT=file-spec
Requests that the SHOW LIBRARY command output be written to the file
specified rather than to SYS$OUTPUT. Any diagnostic messages are written to
both SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the SHOW LIBRARY command output is written to SYS$OUTPUT.

/SPECIFICATION_ONLY
Displays only the specifications of the specified units when you use the /UNITS
qualifier.

You cannot append both the /SPECIFICATION_ONLY qualifier and the
/BODY_ONLY qualifier to the SHOW LIBRARY/UNITS command string.

By default, if the /SPECIFICATION_ONLY qualifier is omitted, the bodies, as
well as the specifications, are displayed.

/UNITS
Lists each unit that is defined in the specified program libraries. The level of
information displayed depends on whether the /BRIEF or /FULL qualifier is
also used. The unit information displayed is identical to that displayed by the
DIRECTORY command.

Examples

1. ACS> SHOW LIBRARY
%I, Current program library is USER:[JONES.HOTEL.ADALIB]

Identifies the current program library.

ACS Command Dictionary A–157

SHOW LIBRARY

2. ACS> SHOW LIBRARY/FULL
Current program library DISK:[LIB2]

Current path in its original form:

DISK:[LIB2]
@DISK:[LIB1]

Current path evaluates to:

DISK:[LIB2]
DISK:[LIB1]
DISK:[LIB0]

Program library DISK:[LIB2]

Created: 4-NOV-1992 16:33:30.74, by DEC Ada V3.0
Last reorganized: 4-NOV-1992 19:47:36.13

Default path in its original form:
DISK:[LIB2]
@DISK:[LIB1]

which evaluates to:

DISK:[LIB2]
DISK:[LIB1]
DISK:[LIB0]

Pragmas that affect STANDARD and SYSTEM:

pragma FLOAT_REPRESENTATION(VAX_FLOAT)
pragma LONG_FLOAT(G_FLOAT)
pragma MEMORY_SIZE(2147483647)
pragma SYSTEM_NAME(VAX_VMS)

Identifies DISK:[LIB2] as the current program library with a current
path of DISK:[LIB2],@DISK:[LIB1]. This path evaluates to DISK:[LIB2],
DISK:[LIB1], DISK:[LIB0]. This example also shows the pragmas that
affect STANDARD and SYSTEM.

A–158 ACS Command Dictionary

SHOW PROGRAM

SHOW PROGRAM

Displays information about the execution closure of one or more units in the
current program library.

Format

SHOW PROGRAM unit-name[,...]

Command Qualifiers Defaults

/BRIEF See text.
/FULL See text.
/OUTPUT=file-spec /OUTPUT=SYS$OUTPUT
/[NO]OBSOLETE=(option[,...]) /NOOBSOLETE
/[NO]PORTABILITY /NOPORTABILITY
/PROCESSING_LEVEL[=option] See text.
/[NO]SMART_RECOMPILATION /SMART_RECOMPILATION

Prompts

_Unit:

Command Parameters

unit-name[,...]
Specifies one or more units, in the current program library, about whose
execution closure various information is to be shown. You must express
subunit names using selected component notation as follows:

ancestor-unit-name{.parent-unit-name}.subunit-name

The unit names may include percent signs (%) and asterisks (*) as wildcard
characters. (See the OpenVMS User’s Manual for more information on wildcard
characters.)

Description

The ACS SHOW PROGRAM command displays information about all of the
units in the execution closure of the specified units.

Units are listed by name in alphabetical order. Subunit names are shown
using selected component notation.

The output of the SHOW PROGRAM command depends on whether the
/BRIEF, /FULL, or no formatting qualifier is used.

ACS Command Dictionary A–159

SHOW PROGRAM

If you do not specify a qualifier, the SHOW PROGRAM command displays a
level of information that is part way between that displayed with the /BRIEF
and /FULL qualifiers.

If you do not specify a qualifier, the SHOW PROGRAM command displays the
information provided by the /BRIEF qualifier plus the following information for
each unit in the closure:

• The with list of that unit

• The duration specified with the pragma TIME_SLICE

• The names of units mentioned in one or more ELABORATE pragmas for
that unit

• The names of units that the unit has established a dependence on as a
result of subprogram inline expansion

• The names of units that the unit has established a dependence on as a
result of generic inline expansion

Command Qualifiers

/BRIEF
Displays the following information:

• The directory specification of the current program library.

• The values of the program library characteristics FLOAT_
REPRESENTATION, LONG_FLOAT, MEMORY_SIZE, and SYSTEM_
NAME.

• For each unit in the closure of the specified units: the unit name; the
kind of unit (for example, procedure body); the date and time of the last
compilation; and the file specification of the source file, or (if the unit was
entered into the current program library) the directory specification of the
other library.

/FULL
Displays the information provided by the SHOW PROGRAM command when
used with no qualifier plus, for each unit in the closure, the file specifications
of the associated files.

/OUTPUT=file-spec
Requests that the SHOW PROGRAM command output be written to the file
specified rather than to SYS$OUTPUT. Any diagnostic messages are written to
both SYS$OUTPUT and the file.

A–160 ACS Command Dictionary

SHOW PROGRAM

The default directory is the current default directory. The default file type is
.LIS. If you specify a file type but omit the file name, the default file name is
ACS. No wildcard characters are allowed in the file specification.

By default, the SHOW PROGRAM command output is written to
SYS$OUTPUT.

/OBSOLETE=(option[,...])
/NOOBSOLETE (D)
Allows you to ask what the effect on a program or a set of units would be if
some specific units were obsolete.

When the execution closure of the units in the parameter list of the command
is performed, the units named with the UNIT,SPECIFICATION, and BODY
keywords are assumed to be obsolete as described below. If one of those units
is not in the execution closure of the units named in the command’s parameter
list, it is not added to the closure.

Unit names are specified with the UNIT, SPECIFICATION, and BODY
keywords as follows:

UNIT:(unit_name[,...]) The specifications and bodies of units
specified with the UNIT keyword are
assumed to be obsolete.

SPECIFICATION:(unit_name[,...]) Only the specifications specified by the
SPECIFICATION keyword are assumed
to be obsolete.

BODY:(unit_name[,...]) Only the bodies of units specified with
the BODY keyword are assumed to be
obsolete.

You must specify at least one of these keywords. Unit names can contain
wildcard characters.

By default, units are identified as obsolete based on the current state of the
program library.

/PORTABILITY
/NOPORTABILITY (D)
Lists, for the closure of the specified units, a portability summary indicating
use of potentially nonportable features. For example:

• Pragmas

• VMS predefined floating-point types

• Enumeration representation clauses

ACS Command Dictionary A–161

SHOW PROGRAM

Implementation-defined features are flagged with an asterisk (*).

See Chapter 4 for a discussion of portability.

/PROCESSING_LEVEL[=option]
Determines the kind of obsolete units identified. Obsolete units are identified
based on the level of processing applied to the unit: syntax checking, design
checking, or full compilation. You can request the following options:

SYNTAX Determines whether a unit is obsolete because it
has been syntax-checked only. Because all units
in a program library are at least syntax-checked,
and because syntax-checking does not require any
particular order of compilation, generally accepts all
units as being current.

DESIGN Determines whether a unit is obsolete because it
has been design-checked only. Accepts design-checked
units and fully compiled units as being current, unless
they are otherwise obsolete (for example, they depend
on units that have been syntax-checked only, or they
depend on other obsolete units).

FULL Determines three kinds of obsolete units: units that
are obsolete because they have been syntax-checked
only, units that have been design-checked, and units
that are obsolete as a result of the compilation of the
units they depend on. Units that depend on obsolete
units are also considered to be obsolete.

By default, all units are fully checked (/PROCESSING_LEVEL=FULL), and all
obsolete units are identified.

/SMART_RECOMPILATION (D)
/NOSMART_RECOMPILATION
Controls whether smart recompilation information, which is stored in the
program library, is used to identify obsolete units.

If smart recompilation is not in effect, units are identified as obsolete and in
need of recompilation based on their time of compilation only. (See Chapter 5
for more information.)

A–162 ACS Command Dictionary

SHOW PROGRAM

Example

ACS> SHOW PROGRAM/PORTABILITY ADA_CALLER

ADA_CALLER
ADA_CALLER
4-NOV-1992 08:57:12.48

Program library USER:[TEST]

Created: 1-NOV-1992 10:03:53.93, by DEC Ada V3.0
Last reorganized: <No reorganization date>

Default path in its original form:

USER:[TEST]

Default path evaluates to:

USER:[TEST]

Pragmas that affect STANDARD and SYSTEM:

pragma FLOAT_REPRESENTATION(VAX_FLOAT)
pragma LONG_FLOAT(G_FLOAT)
pragma MEMORY_SIZE(2147483647)
pragma SYSTEM_NAME(VAX_VMS)

The closure of the specified units is:

ADA_CALLER
Procedure body

Compiled: 4-NOV-1992 08:56:42.94
Source file: 31-JUL-1992 16:23:43.39 USER:[TEST]ADA_CALLER.ADA;1
With list: SQR
INTEGER_TEXT_IO

INTEGER_TEXT_IO
Package instantiation

Compiled: 2-NOV-1992 01:47:11.30
Entered from: ADA$PREDEFINED_ROOT:[ADALIB]
With list: TEXT_IO
Inline_Generic: TEXT_IO

IO_EXCEPTIONS
Package specification

Compiled: 2-NOV-1992 01:45:42.02
Entered from: ADA$PREDEFINED_ROOT:[ADALIB]

SQR
Function specification

Compiled: 4-NOV-1992 08:51:26.95
Source file: 7-NOV-1988 17:06:41.30 USER:[TEST]SQR_.ADA;2

Foreign function body
Object file: 4-NOV-1992 08:51:26.95 SQR.OBJ;1

ACS Command Dictionary A–163

SHOW PROGRAM

SYSTEM
Builtin package

TEXT_IO
Package specification

Compiled: 2-NOV-1992 01:46:43.02
Entered from: ADA$PREDEFINED_ROOT:[ADALIB]
With list: IO_EXCEPTIONS

Package body
Compiled: 2-NOV-1992 01:46:56.16
Entered from: ADA$PREDEFINED_ROOT:[ADALIB]
With list: SYSTEM

PORTABILITY SUMMARY

predefined SHORT_INTEGER or SHORT_SHORT_INTEGER or SHORT_SHORT_SHORT_INTEGER
SYSTEM spec

with SYSTEM TEXT_IO body

predefined floating types in package SYSTEM*
TEXT_IO body

enumeration representation clause
SYSTEM spec TEXT_IO spec

length SIZE representation clause
SYSTEM spec

record representation clause
SYSTEM spec

pragma IMPORT_EXCEPTION*
IO_EXCEPTIONS spec

pragma IMPORT_FUNCTION* SQR spec TEXT_IO spec

pragma IMPORT_PROCEDURE*
TEXT_IO

pragma INTERFACE SQR spec TEXT_IO

pragma INLINE_GENERIC* TEXT_IO spec

pragma PACK SYSTEM spec

where * indicates an implementation-defined feature

Displays information about the closure of the unit ADA_CALLER, which also
includes the unit SQR and a number of DEC Ada predefined units.

The /PORTABILITY qualifier produces a portability summary for the units
displayed. The unit display and portability summary indicate that the body of
SQR was copied into the current program library, USER:[PROJ.ADALIB], as a
foreign body (file SQR.OBJ).

A–164 ACS Command Dictionary

SHOW SOURCE

SHOW SOURCE

Displays the source-file-directory search list used by the ACS COMPILE
command.

Format

SHOW SOURCE

Prompts

None.

Command Parameters

None.

Description

The ACS SHOW SOURCE command displays the directory list specified in the
last ACS SET SOURCE command. See the description of the SET SOURCE
command.

Example

ACS> SHOW SOURCE
%I, Current source search list (ADA$SOURCE) is

USER:[JONES.HOTEL]
DISK:[SMITH.SHARE]

Shows that the directories to be searched by the ACS COMPILE command for
external source files are first the directory USER:[JONES.HOTEL] and then
the directory DISK:[SMITH.SHARE].

ACS Command Dictionary A–165

SHOW VERSION

SHOW VERSION

Displays the version of DEC Ada that is installed on your system.

Format

SHOW VERSION

Prompts

None.

Command Parameters

None.

Description

The ACS SHOW VERSION command displays a string that gives the version
number of DEC Ada (compiler and program library manager) that is installed
on your system.

Example

ACS> SHOW VERSION
DEC Ada V3.0-0

Shows that Version 3.0 of DEC Ada is currently running on the user’s system.

A–166 ACS Command Dictionary

SPAWN

SPAWN

Creates a subprocess of the current process and suspends execution of the
current process.

Format

SPAWN [DCL-command]

Prompts

None.

Command Parameters

[DCL-command]
Specifies an optional DCL command.

Description

The ACS SPAWN command creates a subprocess of the current process and
suspends execution of the current process.

If you specify a DCL command, that command is executed in a subprocess,
and control is returned to the program library manager after the command is
executed.

If you do not specify a DCL command, an interactive subprocess is created
allowing you to execute a whole series of DCL commands interactively. You
can return to the program library manager by logging out of the subprocess (by
entering a DCL LOGOUT command) or entering a DCL ATTACH command.
See the description of the DCL ATTACH command in the OpenVMS DCL
Dictionary.

ACS Command Dictionary A–167

SPAWN

Example

ACS> SPAWN MAIL ! from process JONES
MAIL>
.
.
.
MAIL> ATTACH JONES
%I, Control returned to process JONES
ACS>
.
.
.
ACS> ATTACH JONES_1
MAIL>

The ACS SPAWN MAIL command, entered from process JONES, invokes
the VMS Mail Utility in a subprocess named JONES_1. The DCL ATTACH
command entered from MAIL (subprocess JONES_1) returns control back to
process JONES. The ACS ATTACH command entered interactively from the
program library manager (process JONES) switches control back to subprocess
JONES_1.

A–168 ACS Command Dictionary

VERIFY

VERIFY

Performs a series of consistency checks on the current program library (or the
specified library) to determine whether the library structure and library files
are in valid form. The ACS VERIFY command optionally corrects some of the
inconsistencies detected.

Format

VERIFY [directory-spec]

Command Qualifiers Defaults

/[NO]CONFIRM /NOCONFIRM
/[NO]LOG /NOLOG
/OUTPUT=file-spec See text.
/[NO]REPAIR /NOREPAIR

Prompts

None.

Command Parameters

directory-spec
Specifies the DEC Ada program library to be verified. No wildcard characters
are allowed in the directory specification.

If you do not specify a program library, the ACS VERIFY command verifies the
current program library.

Description

The ACS VERIFY command checks the following items (unless otherwise
stated, only files in the specified program library are checked):

• The format of the library index file.

• Whether all files cataloged in the library index file exist in the program
library and are accessible—that is, all object (.OBJ), compilation unit
(.ACU), and copied source (.ADC) files. In the case of entered units, the
VERIFY command checks whether the files exist in the library from which
they were entered.

• Whether all .OBJ, .ACU, and .ADC files that exist in the program library
directory are cataloged in the library index file.

ACS Command Dictionary A–169

VERIFY

• Whether temporary files used by the REORGANIZE command are in the
program library.

• The format of the compilation unit files (.ACU).

• Whether the protection code of cataloged .OBJ, .ACU, and .ADC files is
consistent with that of the library index file (see Chapter 7).

If inconsistencies are found, the VERIFY command issues error messages
indicating the units or files that are erroneous.

The kinds of inconsistencies detected by the VERIFY command are typically
not detected by the ACS CHECK command, which is used to determine
whether any units in a closure are missing or obsolete.

You can use the /REPAIR qualifier to correct some of the inconsistencies
reported by the VERIFY command. When the /REPAIR qualifier is used, the
VERIFY command performs the same checks as when the qualifier is not
used, but corrective action is taken only on the specified program library or,
by default, on the current program library. No corrective action is taken for
entered units.

Command Qualifiers

/CONFIRM
/NOCONFIRM (D)
Controls whether the VERIFY/REPAIR command asks for confirmation before
deleting unit index entries from the library index file, or deleting uncataloged
files from the program library directory. If you specify the /CONFIRM qualifier,
the possible responses are as follows:

• Affirmative responses are YES, TRUE, and 1.

• Negative responses are NO, FALSE, 0, and the RETURN key.

• QUIT or Ctrl/Z indicates that you want to stop processing the command at
that point.

• ALL indicates that you want to continue processing the command without
any further prompts.

You can use any combination of upper- and lowercase letters for word
responses. Word responses can be abbreviated to one or more letters (for
example, Y, YE, or YES). If you type a response other than one of those in the
list, the prompt is reissued.

By default, no confirmation is requested.

A–170 ACS Command Dictionary

VERIFY

/LOG
/NOLOG (D)
Controls whether the name of a unit or the specification of a file is displayed
as that unit or file is verified.

By default, the names of units or files being verified are not displayed.

/OUTPUT=file-spec
Requests that the VERIFY command output be written to the file specified
rather than to SYS$OUTPUT. Any diagnostic messages are written to both
SYS$OUTPUT and the file.

The default directory is the current default directory. If you specify a file type
but omit the file name, the default file name is ACS. The default file type is
.LIS. No wildcard characters are allowed in the file specification.

By default, the VERIFY command output is written to SYS$OUTPUT.

/REPAIR
/NOREPAIR (D)
Controls whether the VERIFY command repairs some of the inconsistencies
that it has detected.

To use the /REPAIR qualifier, you must have exclusive read-write access to
the program library you are repairing. If another user is accessing the library
when you enter the VERIFY/REPAIR command, the command will fail. One
way to obtain exclusive access is to use the ACS SET LIBRARY/EXCLUSIVE
command (note that this command will also fail if you cannot gain exclusive
access when you enter it). You must enter the SET LIBRARY/EXCLUSIVE
command interactively for it to have an effect.

Note that the SET LIBRARY/EXCLUSIVE command is not permitted for
program libraries over DECnet.

The VERIFY/REPAIR command takes the following actions:

• Identifies any files in the program library directory that are not cataloged
in the library index file. Deletes any uncataloged files with a file type
of .OBJ, .ACU, or .ADC. Deletes any temporary files remaining from an
interrupted ACS REORGANIZE command. Deletes any other uncataloged
files if you have also specified the /CONFIRM qualifier and given an
affirmative response.

• As necessary, changes the file protection on .OBJ, .ACU, and .ADC files to
be consistent with the protection code for the library index file.

ACS Command Dictionary A–171

VERIFY

• Marks as obsolete any unit whose .OBJ or .ACU file is inaccessible. A later
VERIFY/REPAIR command will reset any such marks if the associated files
are again available.

• Removes references to inaccessible copied source files (.ADC) from the
library index file.

• Deletes any index entry with an illegal format from the library index file.

By default, the VERIFY command only checks for inconsistencies and takes no
corrective action.

Examples

1. ACS> VERIFY
%I, USER:[JONES.HOTEL.ADALIB] verified

Checks the current program library. No inconsistencies have been detected.

2. ACS> SET LIBRARY/EXCLUSIVE [PROJ.ADALIB]
%I, Current program library is USER:[PROJ.ADALIB]
ACS> VERIFY/REPAIR/LOG
.
.
.
%I, STARLET verified
%I, STR verified
%E, Inconsistent file protection [PROJ.ADALIB]SQR.OBJ;1
%W, SQR verified and repaired
.
.
.
%E, Error opening [PROJ.ADALIB]TEST_STACKS.OBJ;2 as input
-E, file not found
%W, TEST_STACKS verified and repaired
.
.
.
%I, Units with inaccessible files are obsolete. If repair

(VERIFY/REPAIR) is not possible, then recompilation of
these units is necessary; after entering a VERIFY/REPAIR
command, the CHECK command will show any obsolete units

%W, USER:[PROJ.ADALIB] verified and repaired
ACS> RECOMPILE TEST_STACKS

Defines the program library [PROJ.ADALIB] as the current program
library, with exclusive read-write access. This step is necessary before
using the VERIFY/REPAIR command.

A–172 ACS Command Dictionary

VERIFY

The VERIFY/REPAIR command then notes that the protection of file
SQR.OBJ is inconsistent with that of the library index file and changes
the protection to make it consistent; marks the unit TEST_STACKS as
obsolete, because its .OBJ file (TEST_STACKS.OBJ;2) is inaccessible; and
issues a summary message that the program library has been verified and
repaired.

The RECOMPILE command then makes the obsolete unit, TEST_STACKS,
current.

ACS Command Dictionary A–173

B
Comparison of DEC Ada Commands for

ULTRIX and VMS Systems

DEC Ada provides a comparable set of compilation and program library
manager commands for ULTRIX and VMS systems. The behavior of these
commands is similar, however, the spelling and action of each individual
command is operating system specific. Table B–1 lists the DEC Ada commands
on ULTRIX and VMS systems.

For more information on DEC Ada commands for ULTRIX systems, see
Developing Ada Programs on ULTRIX Systems.

Table B–1 Comparison of DEC Ada Commands on ULTRIX and VMS Systems

ULTRIX Systems VMS Systems

acat ACS EXTRACT SOURCE

acp ACS COPY UNIT

acp -d ACS MERGE

ada ADA1

ada -y ACS LOAD

aimport ACS COPY FOREIGN
ACS ENTER FOREIGN

ald ACS LINK

ald -r ACS EXPORT

als ACS DIRECTORY

amake ACS COMPILE

amake -L ACS LINK

1This is a DCL and not DEC Ada command.

(continued on next page)

Comparison of DEC Ada Commands for ULTRIX and VMS Systems B–1

Table B–1 (Cont.) Comparison of DEC Ada Commands on ULTRIX and VMS
Systems

ULTRIX Systems VMS Systems

amake -nu ACS CHECK

amklib ACS CREATE LIBRARY

amklib -p ACS CREATE SUBLIBRARY

aprintlib ACS SHOW LIBRARY

areport ACS SHOW PROGRAM

arm ACS DELETE UNIT

armlib ACS DELETE LIBRARY,
ACS DELETE SUBLIBRARY

axargs N/A

man2 with appropriate DEC Ada command ACS HELP

printenv ADASRC3 ACS SHOW SOURCE

setenv ADALIB3 ACS SET LIBRARY

setenv ADASRC3 ACS SET SOURCE

setenv ADASRC3","; amake ACS RECOMPILE

N/A ACS ATTACH

N/A4 ACS ENTER UNIT

N/A ACS EXIT

N/A4 ACS REENTER

N/A ACS REORGANIZE

N/A5 ACS SET PRAGMA

N/A ACS SHOW VERSION

N/A ACS SPAWN

2This is an ULTRIX command, not a DEC Ada command.
3On ULTRIX systems, to establish a program library context, you define the ADALIB environment
variable to be the desired program library context. Alternatively, you can use the -A context
option with the appropriate DEC Ada command. Note that the setenv command is a C shell and
not a DEC Ada command.
4On VMS systems, several features (such as the ACS ENTER UNIT and REENTER commands,
sublibraries, and library search paths) are provided which help you work with multiple program
libraries. On ULTRIX systems, you use program library contexts when working with multiple
program libraries. Program library contexts are very similar to library search paths. For more
information on library search paths, see Chapter 3 of this manual.
5To get the same effect as the ACS SET PRAGMA command, you must compile a source file
containing the desired pragma.

(continued on next page)

B–2 Comparison of DEC Ada Commands for ULTRIX and VMS Systems

Table B–1 (Cont.) Comparison of DEC Ada Commands on ULTRIX and VMS
Systems

ULTRIX Systems VMS Systems

N/A ACS VERIFY

Comparison of DEC Ada Commands for ULTRIX and VMS Systems B–3

C
Supplemental Information for Debugging

Ada Programs

This appendix provides a sample debugging session and describes the DEC
Ada predefined package GET_TASK_INFO, which can be used when debugging
DEC Ada tasks. For more information on using the debugger, see the
OpenVMS Debugger Manual.

C.1 Sample Debugging Session
The following shows a sample debugging session with a DEC Ada program,
ADD_INTEGERS, that contains a logic error. Line numbers have been added
to facilitate the discussion.

1 with TEXT_IO; use TEXT_IO;
2 with INTEGER_TEXT_IO; use INTEGER_TEXT_IO;
3 procedure ADD_INTEGERS is
4 HIGHEST,TOTAL: INTEGER;
5 begin
6 TOTAL := 0;
7 loop
8 PUT("Type a number greater than 0, or 0 to quit: ");
9 GET(HIGHEST);
10 if HIGHEST <= 0 then
11 exit;
12 else
13 for I in 1..HIGHEST loop
14 TOTAL := TOTAL + I;
15 end loop;
16 end if;
17 PUT("The sum of integers from 1 through ");
18 PUT(HIGHEST);
19 PUT(" is ");
20 PUT(TOTAL);
21 NEW_LINE;
22 end loop;
23 end ADD_INTEGERS;

Supplemental Information for Debugging Ada Programs C–1

This program prompts for a number and prints the sum of the integers from
1 through the number entered. The problem in the program occurs because
the variable TOTAL is not reinitialized when a new number is entered; the
statement assigning the value 0 to TOTAL occurs before the loop instead of
within it.

Initially, you might compile, link, and run the program as follows:

$ ADA ADD_INTEGERS
$ ACS LINK ADD_INTEGERS
$ RUN ADD_INTEGERS
Type a number greater than 0, or 0 to quit: 5
The sum of integers from 1 through 5 is 15
Type a number greater than 0, or 0 to quit: 4
The sum of integers from 1 through 4 is 25
Type a number greater than 0, or 0 to quit: 0
$

The program returns a correct sum for the first number you enter, but the sum
for the second number is obviously too high.

To debug the program, you must compile and link with the debugger. If you
want a listing with line numbers to refer to during the debugging session,
include the /LIST qualifier with the ADA command, and then print the listing
file that results. For example:

$ ADA/DEBUG/LIST/NOOPTIMIZE ADD_INTEGERS
$ ACS LINK/DEBUG ADD_INTEGERS
$ PRINT ADD_INTEGERS.LIS

You are now ready to begin a debugging session. The terminal session is keyed
to the numbered notes that follow.

$ RUN ADD_INTEGERS

OpenVMS DEBUG Version V5.5

%I, language is ADA, module set to ADD_INTEGERS
%I, type GO to get to start of main program 1
DBG> SET BREAK %LINE 7 2
DBG> GO 3
break at routine ADD_INTEGERS

3: procedure ADD_INTEGERS is
DBG> GO
break at ADD_INTEGERS.LOOP$7.%LINE 8 4

8: PUT("Type a number greater than 0, or 0 to quit: ");
DBG> EXAMINE TOTAL
ADD_INTEGERS.TOTAL: 0 5

C–2 Supplemental Information for Debugging Ada Programs

DBG> GO
Type a number greater than 0, or 0 to quit: 5
The sum of integers from 1 through 5 is 15 6
break at ADD_INTEGERS.LOOP$7.%LINE 8

8: PUT("Type a number greater than 0, or 0 to quit: "); 7
DBG> EXAMINE TOTAL
ADD_INTEGERS.TOTAL: 15 8
DBG> DEPOSIT TOTAL := 0 9
DBG> GO
Type a number greater than 0, or 0 to quit: 4
The sum of integers from 1 through 4 is 10 1 0
break at ADD_INTEGERS.LOOP$7.%LINE 8

8: PUT("Type a number greater than 0, or 0 to quit: ");
DBG> GO
Type a number greater than 0, or 0 to quit: 0 1 1
%I, is ’%SYSTEM-S-NORMAL, normal successful completion’
DBG> EXIT 1 2
$

The actions in the previous example are keyed to the following notes:

1 When you enter the RUN command, the debugger displays an
informational message and the DBG> prompt. You are now in the
default noscreen mode. The lines of source code are displayed as they are
executed, by default.

2 You decide that the problem may lie with the initialization of the variable
TOTAL. You can test this hypothesis by examining the value of TOTAL
each time you enter a new number. To stop the program at the point at
which you can do this, you set a breakpoint at the line that begins the loop
(%LINE 7).

3 The first GO command executes the program’s elaboration code, and breaks
at the main program; the next GO command starts program execution.

4 When the loop statement is reached, the debugger interrupts program
execution and displays the source line at which the breakpoint was set.
Note that the debugger interrupts execution only at executable lines; thus,
the break occurs at the first line inside the loop, not at the loop statement.

5 Use the EXAMINE command to determine the current value of the variable
TOTAL. Its value is 0, as expected at this point.

6 The GO command resumes program execution. The program now prompts
you for a number. You type 5. The program’s response is correct.

7 The debugger again reaches the breakpoint at the first executable line
inside the loop and displays the source line.

Supplemental Information for Debugging Ada Programs C–3

8 You examine the variable TOTAL with the EXAMINE command. Its value
is 15, not 0 as it should be. This indicates that the assignment statement
that initializes TOTAL is misplaced.

9 The DEPOSIT command replaces the contents of TOTAL with 0, which
allows the program to return a correct result the next time through the
loop.

1 0 The GO command resumes program execution. The result is correct.

1 1 When you enter a 0 in response to the prompt, the program exits, causing
the debugger to display a message that indicates the termination status.

1 2 The EXIT command terminates the debugging session.

You can now correct the program so that it reinitializes the variable TOTAL
correctly.

C.2 Using the Package GET_TASK_INFO
The package GET_TASK_INFO provides an interface that allows you to obtain
information about the currently executing task. This package may provide a
useful way of obtaining information in situations where using the debugger is
impractical.

Table C–1 shows the functions that you can call to the package GET_TASK_
INFO.

Table C–1 GET_TASK_INFO Functions

Function Description

GET_CURRENT_TASK_ID Returns the current task’s TASK
ID.

GET_CURRENT_TASK_PARENT_ID Returns the TASK ID of the parent
of current task. If the task has no
parent, then zero is returned.

GET_CURRENT_TASK_CREATED_AT_PC Returns the PC where the current
task was created.

GET_CURRENT_TASK_STACK_TOP Returns the top of the current
task’s stack. When this function
is called from a main task with
an extendable stack, this function
returns zero.

(continued on next page)

C–4 Supplemental Information for Debugging Ada Programs

Table C–1 (Cont.) GET_TASK_INFO Functions

Function Description

GET_CURRENT_TASK_STACK_BASE Returns the base of the current
task’s stack. When this function
is called from a main task with
an extendable stack, this function
returns zero.

GET_CURRENT_TASK_TYPE_NAME Returns the current task’s type
name.

For more information, see the package specification for GET_TASK_INFO.

Supplemental Information for Debugging Ada Programs C–5

D
Program Design Language Support

DEC Ada includes support for processing Ada source code as a detailed
program design. This capability allows you to use DEC Ada as a Program
Design Language (PDL) processor, when used with the Language-Sensitive
Editor (LSE) and Source Code Analyzer (SCA).

See the Guide to Language-Sensitive Editor for VMS Systems for more
information on working with LSE; see Guide to Source Code Analyzer for VMS
Systems for more information working with SCA.

D.1 Program Design Support
DEC Ada provides several qualifiers that allow you to use DEC Ada as a
program design processor. To process Ada source code as a detailed program
design, use the /DESIGN qualifier with the DCL ADA, ACS COMPILE, LOAD,
and RECOMPILE commands. An additional qualifier, /PROCESSING_LEVEL,
can be used with the ACS CHECK or ACS SHOW PROGRAM command to
determine the kind of obsolete units identified. The /ANALYSIS_DATA and
/DESIGN qualifiers with the DCL ADA, ACS COMPILE and RECOMPILE
commands allow you to include design information in comments in the SCA
analysis data file.

Used with LSE and SCA, these qualifiers provide an integrated software
development environment that includes the low-level design phase of the
software development life cycle. In other words, you can use DEC Ada as your
Program Design Language (PDL) processor.

In the VMS environment, you create detailed designs as follows:

• Use DEC Ada or another DEC programming language

• Embed design information in comments

• Write algorithms with pseudocode and regular placeholders

Note that you cannot link or run detailed designs.

Program Design Language Support D–1

With LSE, you can use pseudocode placeholders to express design information.
DEC Ada accepts the special 8-bit double angle brackets, « and », or 7-bit
combined angle bracket and vertical bar characters, <| and |>, to delimit
pseudocode placeholders.

Note

The 8-bit characters may appear as other characters (for example, + or
;) with output devices that do not support them.

The 8-bit characters are the default characters used and recognized by
the LSE. To use the 7-bit pseudocode placeholder delimiters, you must
define them in a LSE environment file.

You can express other design information in tagged comments. In addition,
you can convert pseudocode placeholders into comments and store the design
information in SCA libraries.

If you specify the /DESIGN=PLACEHOLDERS qualifier with the DCL ADA
command, your program is design checked. Design checking means that your
program is checked for internal consistency, and pseudocode and regular
placeholders are accepted (in well-defined contexts) as valid program syntax.
Design checking differs from full compilation in that it also relaxes some of the
Ada language rules so that you can omit some implementation details.

If you specify the COMMENTS option, and also specify the /ANALYSIS_DATA
qualifier, comments are processed for program design information. You can use
the resulting analysis data file with SCA.

The following is a very brief example of using pseudocode placeholders and
comment tags to express the design of a procedure. The comment block
has several tags, including PACKAGE DESCRIPTION, FUNCTIONAL
DESCRIPTION and FORMAL PARAMETERS. The PACKAGE DESCRIPTION
and FUNCTIONAL DESCRIPTION tags are text tags, so they contain ordinary
text. The FORMAL PARAMETERS tag is a structured tag, so it contains a
subtag; namely, the name of the parameter, and the text associated with the
subtag.

Note that the package specification defines several subprograms, but
that the package body defines the body of only one of those subprograms.
Implementation details such as subprogram bodies may be omitted during a
design check.

D–2 Program Design Language Support

The body of the procedure contains pseudocode, which is a mixture of pure
code and pseudocode placeholders. The parts that are real code, such as the
if statement in the following example, must conform to the regular syntax
of the language. The pseudocode placeholders may contain arbitrary text
(except for a closing pseudocode delimiter), but must be written on a single
line. Great flexibility is available through appropriate mixtures of real code
and pseudocode placeholders, as shown in the following example:

package PAYROLL is
-- ++
--
-- PACKAGE DESCRIPTION:
--
-- Contains various payroll tasks.
--
-- KEYWORDS:
--
-- {tbs}
--
-- --

procedure ADD_EMPLOYEE ([formal_part]);
procedure DELETE_EMPLOYEE ([formal_part]);
procedure PRINT_EMPLOYEE ([formal_part]);
procedure READ_EMPLOYEE ([formal_part]);
procedure PRINT_PAYCHECK ([formal_part]);
-- ++
--
-- FUNCTIONAL DESCRIPTION:
--
-- Compute the amount of an employee’s salary and print
-- a paycheck.
--
-- FORMAL PARAMETERS:
--
-- NAME:
-- employee’s name
--
-- --
procedure PAYCHECK (NAME : in STRING);
[basic_declarative_item]...

end PAYROLL;

Program Design Language Support D–3

package body PAYROLL is
-- ++
--
-- DESIGN:
--
-- {tbs}
--
-- --

procedure PAYCHECK (NAME : in STRING) is
-- ++
--
-- FUNCTIONAL DESCRIPTION:
--
-- Compute the amount of an employee’s salary and print
-- a paycheck.
--
-- --

NORMAL_PAY, OVER_PAY, WEEKLY_PAY : {subtype_indication};
[basic_declarative_item]...

begin
«Fetch the employee’s record»

-- Compute paychecks differently for salaried and
-- hourly employees
--
if «employee is salaried» then

«Use a fixed weekly salary from employee’s record.»
else

«Find number of regular and overtime hours worked.»
«Compute weekly pay.»

end if;
«Print the paycheck.»

end PAYCHECK;
end PAYROLL;

D.2 Program Processing
DEC Ada provides three levels of program processing:

• Syntax checking

Ada compilation units are checked only for correct syntax. For each unit
that is syntax checked without error, the program library is updated
with information about that unit. However, units added to the program
library are considered to be obsolete with respect to design-checked or fully
compiled units and must subsequently be fully compiled.

Units are syntax checked when you enter the ACS LOAD command. Units
are also syntax-checked when you specify the /SYNTAX_ONLY qualifier
with the DCL ADA, ACS COMPILE or RECOMPILE commands.

D–4 Program Design Language Support

• Design checking

Ada compilation units are syntax checked and design checked. Design
checking means that your program is checked for internal consistency, and
pseudocode and regular placeholders are accepted (in well-defined contexts)
as valid program syntax. Design checking differs from full compilation in
that it also relaxes some of the Ada language rules so that you can omit
some implementation details.

For each unit that is design checked without error, the program library
is updated with information about that unit. Design-checked units are
considered to be obsolete in operations that require full compilation (for
example, the ACS LINK command). They must subsequently be fully
compiled before you can perform those operations.

Units are design checked when you use the /DESIGN=PLACEHOLDERS
qualifier with the DCL ADA, ACS COMPILE or RECOMPILE commands.

• Full compilation

Ada compilation units are syntax checked and other compiler checks are
performed in strict observance of Ada language rules. LSE placeholders
are not allowed.

For each unit that is compiled without error, the program library is
updated with the object module and other products of compilation.

Units are fully compiled when you use the default versions of the DCL
ADA, ACS COMPILE and RECOMPILE commands (the default versions
assume the /NOSYNTAX_ONLY and /NODESIGN qualifiers are in effect).

During design checking, the following allowances are made:

• A unit may include any kind of valid LSE placeholder, including pseudocode
placeholders. Placeholders are interpreted liberally as representing any
construct required at that position by the language rules. A placeholder
can be used as an expression; in that case, its type is allowed to match
against any type.

• The unit may depend on another unit that was design checked or compiled.
A unit that is fully compiled (that is, compiled with the /NODESIGN or
the /DESIGN=NOPLACEHOLDERS qualifier in effect) is not allowed to
depend on another unit that was design checked.

• Certain omissions are allowed during design checking. In general, these
omissions are cases where the body of a program construct is omitted or
not fully specified. For example:

– Incomplete type declarations need not have full type declarations.

Program Design Language Support D–5

– Private type declarations need not have full type declarations.

– Subprogram specifications need not have bodies.

– Package specifications need not have bodies.

– Task declarations need not have bodies.

– Task entries need not have corresponding accept statements.

– Deferred constants need not have full declarations.

In addition, design checking relaxes the processing of Ada source code, as
follows:

• No object code is produced.

• Full type declarations are not fully analyzed, so that types are not laid out,
all of the values of a type are not accounted for in a case statement, and so
on.

• The rules governing visibility, overloading, and conformance checking are
relaxed.

D.3 Restrictions on Placeholders
During design checking, placeholders that appear in the Ada template
definitions supplied with LSE are generally accepted. However, note the
following restrictions:

• To be visible, a declaration must have a valid Ada name, not a placeholder
name. You may declare an entity with a placeholder name, but other
entities or expressions cannot refer to that declaration. Some specific
restrictions result from this rule. For example, a placeholder cannot be
used as:

– The name of a library unit or subunit

– The parent name in a separate clause

– The name of a package body or task body

– The name of a stub

– The name in a named association

– A label

D–6 Program Design Language Support

• The following placeholders that result from the expansion of LSE templates
are allowed in your source code during design processing. However, you
cannot replace them with pseudocode placeholders, and they are not
reported to SCA as placeholders.

– [constant] (in object declarations)

– [constraint]

– [context_clause]

– [limited] (in private type declarations)

– [mode] (of subprogram and entry formal parameters)

– [reverse] (in a ’for’ loop)

– [type] (in a task type declaration)

– [use_clause]

– [with_clause]

• A type declaration with a placeholder as the type definition cannot have a
discriminant part, regardless of whether or not the discriminant itself has
any placeholders.

• A type mark in a qualified expression cannot be a placeholder.

• A placeholder cannot be used as a variant list in a variant record
declaration; also, a placeholder cannot be used as an alternative in a case
statement or as an alternative in a select statement.

• A placeholder cannot be used within a character literal. For example, a
declaration of the following form is not allowed:

type T is (’{graphic_character}’,[enumeration_literal],...)

• A placeholder is not allowed as an operator name in an expression.

• Enumeration representation clauses of the following form are not
supported:

for ENUM_TYPE use {aggregate};

However, once the {aggregate} placeholder is expanded, the representation
clause is accepted.

• A placeholder representing a generic formal parameter is only supported if
the parameter is the last parameter in the parameter list.

• A placeholder cannot be used as an attribute designator.

Program Design Language Support D–7

• Pragmas containing placeholders can be specified, but have no effect.

D.4 Name Resolution
In general, using placeholders does not change the way that name resolution
works for DEC Ada. For example, any nonplaceholder name that is used as
a reference must resolve against a previous declaration of the same name;
any subprogram call that has a nonplaceholder name must match exactly one
previously declared subprogram of a matching name and signature; and so on.

Some variations from the typical Ada resolution are described in this section.

If a type is defined with a placeholder type indication, as in the following
example, then all predefined operators — numeric, logical, and catenation —
are defined for that type:

type T1 is {type_mark};
type T2 is new {type_mark};

You can use objects declared to be of the types T1 and T2 in expressions with
any of the predefined operators.

If an object is declared to have a placeholder subtype indication (for example,
X: «some type»;), the declaration is interpreted to mean that the object might
be of any type. An object that is itself a placeholder (for example, an actual
parameter in a subprogram call, as in F(«place»);) is similarly interpreted as
possibly being of any type.

Most subprogram calls allow placeholders in the parameter list as long as there
is enough information to resolve the call from either the other parameters,
the result types, or the number of parameters. If there are multiple possible
resolutions of a subprogram call, it will not resolve. For example, consider the
following declarations:

type T1 is {type_mark};
function F (A, B: INTEGER) return INTEGER;
function F (A, B: T1) return T1;

The following statements will not resolve:

«place» := F(«place», «place»);
«place» := F(1, 2);

However, calls to the predefined operators are interpreted more liberally. The
following statement is allowed:

«value 1» := «expression 1» + «expression 2»;

D–8 Program Design Language Support

In this case, there are multiple plus (+) operators available, all of which match
the expressions’ context. For the predefined operators, the resolution rules
have been relaxed during design checking—if the parameters are placeholders
or have placeholder type indications, then multiple possible matches of the
operator are allowed. This relaxation of the resolution rules applies only to the
predefined operators.

If analysis data reporting is requested for this example, no call to plus
operators (+) is reported to SCA, as the context cannot be used to determine
which plus operator should apply.

Two subprograms are considered to have the same signature if they have the
same number of parameters with the same subtype indications. A placeholder
subtype indication matches other placeholder subtype indications, regardless
of the spelling. For example, the following program would be in error, as the
three procedure specifications for the name P1 cannot be distinguished based
on the number and type of their parameters; each has one parameter of an
unspecified type:

procedure P is
procedure P1 ({identifier}... : {type_mark});
procedure P1 ([formal_part]);
procedure P1 ({identifier}... : «type»);

begin
{statement};

end P;

Because the spelling of the type placeholder indications in the signature is not
compared, the following association is allowed:

procedure P2 ({identifier}... : {type_mark});
procedure P2 ({identifier}... : «subtype indication») is
begin

null;
end;

In general, placeholder spelling is not considered to matter during design
checking. There are, however, two exceptions, both involving conformance
checking. If a placeholder is used as the name of a parameter in a subprogram,
then the spelling of the parameter name must match in both the specification
and body, as it does for P2’s parameter in the previous example.

In addition, if a placeholder is used as the name of a declared item, such as a
subprogram, which has a name after the ’end’ literal, then the spelling of the
names at the start and end must match. For example, the following is allowed:

Program Design Language Support D–9

procedure {procedure_identifier} is
begin

null;
end [procedure_identifier];

D.5 Design Qualifiers
To process an input file as a detailed program design, use the DCL ADA
command with one of the following qualifiers:

[NO]COMMENTS Determines whether comments are processed for program
design information. For the COMMENTS option to have
effect, you must specify the /ANALYSIS_DATA qualifier
with the ADA command. See Guide to Source Code Analyzer
for VMS Systems for more information on using the Source
Code Analyzer (SCA).

If you specify NOCOMMENTS, comments are ignored.

On AXP systems, the /DESIGN=COMMENTS qualifier is
accepted, but has no effect.

[NO]PLACEHOLDERS Determines whether design checking is performed. If
you specify PLACEHOLDERS, compilation units are
design checked—LSE placeholders are allowed and
some of the Ada language rules are relaxed so that you
can omit some implementation details. If you specify
NOPLACEHOLDERS, full compilation is done—the
compiler is invoked, LSE placeholders are not allowed,
and Ada language rules are not relaxed.

Note that when you specify this option with the /SYNTAX_
ONLY qualifier, it determines only whether LSE placehold-
ers are allowed. If you specify NOPLACEHOLDERS, then
only valid Ada syntax is allowed.

If you specify the /DESIGN qualifier without supplying any options, the effect
is the same as the following default:

/DESIGN=(COMMENTS,PLACEHOLDERS)

If you specify only one of the options with the /DESIGN qualifier, the default
value for the other option is used. For example, /DESIGN=NOCOMMENTS
is equivalent to /DESIGN=(NOCOMMENTS,PLACEHOLDERS). In this
case, both qualifiers specify that the unit is design-checked, but comment
information is not collected. Similarly, /DESIGN=NOPLACEHOLDERS is
equivalent to /DESIGN=(COMMENTS,NOPLACEHOLDERS). In this case,
both qualifiers specify that comment information is collected, but the unit is
not design-checked (that is, in the absence of the /SYNTAX_ONLY qualifier,
units are fully compiled).

D–10 Program Design Language Support

Regardless of whether you used the DCL ADA, ACS COMPILE or
RECOMPILE command, for each unit that is design checked without error, the
program library is updated with information about that unit. Design-checked
units are considered to be obsolete in operations that require full compilation.
For example, before you link using the ACS LINK command, units must
subsequently be recompiled.

When the ACS LOAD command is used in combination with the /SYNTAX_
ONLY qualifier, for each unit that is accepted, the program library is updated
with information about that unit. Units are syntax checked only, and must be
recompiled before you can perform other operations on them.

To enable both design checking and comment processing, include both option
parameters on the command line. For example:

$ ADA/DESIGN=(PLACEHOLDERS,COMMENTS)/ANALYSIS_DATA HOTEL

By default, the DCL ADA, ACS COMPILE and RECOMPILE commands fully
compile or recompile the appropriate input file or units. Also, the ACS LOAD
command processes the input file as valid Ada source code.

The following lists several qualifier combinations are useful:

• ADA/DESIGN=(PLACEHOLDERS,NOCOMMENTS)

Useful if you want to check your program for design-level consistency.

• ADA/DESIGN=(NOPLACEHOLDERS,COMMENTS)/ANALYSIS_DATA

Useful if you want to fully compile your program, but also get SCA
information for static analysis, call trees, and report writing.

• ADA/DESIGN/LOAD

Useful if you want to load files into your program library and also allow
placeholders.

D.6 Processing Level Qualifiers
To specify the processing level, use the /PROCESSING_LEVEL qualifier with
the ACS CHECK and ACS SHOW PROGRAM commands.

For the ACS CHECK command, these qualifiers determine the kind of
obsolete units identified; for the ACS SHOW PROGRAM command, they
identify obsolete units in the execution closure of the specified units. For both
commands, obsolete units are identified based on the level of processing applied
to the unit—syntax checking, design checking, or full compilation. You can
request the following qualifiers:

Program Design Language Support D–11

SYNTAX Determines whether a unit is obsolete because it has been
syntax-checked only. Because all units in a program library
are at least syntax-checked, and because syntax-checking
does not require any particular order of compilation,
generally accepts all units as being current.

DESIGN Determines whether a unit is obsolete because it has been
design-checked only. Accepts design-checked units and fully
compiled units as being current, unless they are otherwise
obsolete (for example, they depend on units that have been
syntax-checked only, or they depend on other obsolete units).

FULL Determines three kinds of obsolete units: units that are
obsolete because they have been syntax checked only, units
that have been design checked, and units that are obsolete
as a result of the compilation of the units they depend on.
Units that depend on obsolete units are also considered to
be obsolete.

By default, all units are fully checked (/PROCESSING_LEVEL=FULL), and all
obsolete units are identified.

D–12 Program Design Language Support

E
Diagnostic Messages

This appendix presents information about DEC Ada diagnostic messages,
which are generated by the compiler, program library manager, and Ada
run-time library. Section E.1 provides information on how diagnostic messages
are formatted. Section E.4 lists the Ada run-time diagnostic messages.

Note that the compiler and program library manager messages are intended to
be self-explanatory and are not listed in this appendix.

Note

The DCL ADA and ACS command examples in this manual that
involve diagnostic messages show only the severity part of the message
code. They do not show the facility or the IDENT parts of the message
code. To obtain this effect, use the following DCL SET MESSAGE
command:

$ SET MESSAGE/NOFACILITY/NOIDENTIFICATION/SEVERITY/TEXT

To display or suppress various parts of diagnostic messages (including
parts of the code) at the terminal or in a listing, enter other variants of
the DCL SET MESSAGE command (see the OpenVMS DCL Dictionary
or OpenVMS User’s Manual).

E.1 Diagnostic Message Format
The general format of a DEC Ada diagnostic message is as follows:

%Facility_code-Severity_code-Ident-Message_text

Diagnostic Messages E–1

Facility_code
Is a three- or four-letter code that identifies a DEC Ada message from the
compiler (ADAC), program library manager (ACS), or run-time library (ADA).

Severity_code
Is a letter (F, E, W, or I) that indicates the severity of the message. The
meaning of these severity codes is discussed in Section E.2.

Ident
Is a name that uniquely identifies the message.

Message_text
Is a description of the event that has taken place. Italicized items in the
message text in this appendix indicate items that are replaced with specific
information when the message is generated.

E.2 Diagnostic Messages and Their Severity
A DEC Ada compiler diagnostic message contains one of the following four
codes, which indicate the severity level:

%F, message-text
%E, message-text
%W, message-text
%I, message-text

• F indicates a fatal error. The program library is not updated for the
compilation unit in which the fatal error occurred. An F-level message
indicates that the compiler is unable to perform the intended compilation.
For example, the file to be compiled does not exist, or the library cannot
be accessed. If an error is so serious that the compiler cannot continue,
the entire compilation (not limited to the current compilation unit) is
terminated with an F-level message that indicates the last line analyzed in
the attempted compilation.

• E indicates a user error that makes the program illegal. The program
library is not updated for the compilation unit in which the error occurred.
E-level messages are often supplemented with informational (I-level)
messages that give additional information about the error.

When the DEC Ada compiler finds a syntax error, it attempts to correct
it so that it can continue analyzing the rest of the program, if possible.
A syntax error makes the program illegal, even if the temporary repair
results in no further problems being uncovered.

E–2 Diagnostic Messages

The compiler performs several kinds of local repairs. For example, it may
add or delete a delimiter or reserved keyword. If local repair is considered
inappropriate, the compiler may ignore the innermost declaration or
statement. When a syntactically correct program results from these
actions, processing continues with semantic analysis to provide as much
useful diagnostic information as possible.

• W indicates a definite problem in a legal program—for example, an
unknown pragma. The program library is updated for the compilation unit
in which the warning occurred. A W-level error will not prevent the unit
from linking and executing, but the behavior of the program may not be
what you expect.

• I indicates an informational message. Section E.3 describes the different
kinds of informational messages and how you can control their display. An
I-level message does not report an illegal construct as such. Frequently,
however, the message contains supplementary information about a
preceding or otherwise related E-level error. In addition, I-level
messages are used to note places where some kind of exception (such
as CONSTRAINT_ERROR) is likely to occur during execution, or to report
that the compilation was successful and the program library has been
updated.

When the compiler finishes or terminates a compilation, it exits with a status
value that indicates the severity of the most severe error during execution.
The status values and their severity are as follows:

Value Severity

0 Warning

1 Success

2 Error

3 Informational

4 Fatal error

In DEC Ada, weak warnings fall under the category of informational, so keep
the following points in mind:

• If the most severe error during execution of the image was a weak warning,
then the compiler exits with a status that has a severity of informational
(value 3).

• If no errors, warnings, or weak warnings are detected, the compiler exits
with a status that has a severity of success (status value 1).

Diagnostic Messages E–3

If you are running the compiler from a command procedure (batch), and need
to check for weak warnings, such as one indicating that CONSTRAINT_
ERROR will be raised at run time, you can include the following statement in
your procedure:

$ IF $SEVERITY .EQ. 3 THEN . . .

E.3 Informational Messages and the /[NO]WARNINGS
Qualifier

There are four kinds of informational (I-level) messages:

• WEAK_WARNINGS indicate potential problems in a legal program—for
example, a possible run-time error. Weak warnings are the only kind of
informational diagnostics that are counted in the summary statistics given
at the end of a compilation. The following is an example of a WEAK_
WARNINGS message:

%I, CONSTRAINT_ERROR will be raised here if executed

• SUPPLEMENTAL messages are associated with a W-level or E-level
diagnostic. Such messages provide additional information about a
diagnostic or indicate that some checks were not performed due to prior
errors. For example:

%I, Result type of expression is unknown due to prior error

• COMPILATION_NOTES provide information about how the compiler
translated a program. They do not warn you of a possible problem, nor are
they related to a W-level or E-level diagnostic. For example:

%I, Component allocated at ...

%I, Selected passing mechanism is ...

%I, Parent type chosen is ...

%I, Call of function X at line 2 is expanded inline ...

• STATUS diagnostics include some end-of-compilation statistics and other
status messages. For example:

%I, Procedure body HOTEL added to program library

You can use the /WARNINGS=option qualifier on any of the DEC Ada
compilation commands to control the display of I-level and W-level messages.
The option specified with the /WARNINGS qualifier consists of a destination
code for each kind of message. The possible code values are ALL, NONE, or
any combination of TERMINAL (terminal device), LISTING (listing file), or
DIAGNOSTICS (diagnostics file). See the compilation command descriptions

E–4 Diagnostic Messages

(DCL ADA and ACS LOAD, COMPILE, and RECOMPILE) in Appendix A for
the exact syntax. The defaults are as follows:

/WARNINGS=(NOCOMPILATION_NOTES, STATUS=LIST, SUPPLEMENTAL=ALL,
WARNINGS=ALL, WEAK_WARNINGS=ALL)

For example, the following command specifies that weak warning and
supplemental messages be sent to the terminal and to the listing file, and that
other diagnostics be directed to their default destination:

$ ADA/LIST/WARN=(WEAK:(TERM,LIST),SUPP:(TERM,LIST)) SCREEN_IO.ADA

E.4 Run-Time Diagnostic Messages

ALICOLILL, Requested alignment for a collection is illegal
Fatal. The DEC Ada run-time library was asked to allocate a collection
on a storage boundary that is not supported by the dynamic memory
allocation routines (LIB$GET_VM).

The most likely cause of this error is an erroneous value specified on an
alignment clause.
User Action. Check the value specified for the alignment clause. See also
PROGRAM_ERROR.

ALREADY_OPEN, File is already open
Fatal. See also STATUS_ERROR.

AMBKEYFORM, Ambiguous keyword in FORM parameter
Informational. A keyword in the FORM parameter of a CREATE
or OPEN operation has not been specified with enough characters to
distinguish it from another keyword acceptable in this context. Note that
VAXELN Ada accepts FORM parameter values that are different from
VMS RMS File Definition Language (FDL) statements.
User Action. Replace the keyword, specifying enough characters to make
it unique.

Diagnostic Messages E–5

ASTDELTER, An AST was delivered, but the task is terminated
Fatal. In DEC Ada, asynchronous system traps (ASTs) are handled by
using the AST_ENTRY pragma and attribute to transform the delivery of
an AST into a special kind of entry call. In this case, the task entry to
which the AST was delivered belongs to a terminated task.

Note that this situation cannot be detected in all cases. In particular, it
cannot be detected if the immediate master upon which the task depends
has also terminated.

This error raises an exception declared by the DEC Ada run-time library.
Because there is no reasonable exception handler for this case, the
exception is allowed to propagate so that it can produce a traceback, or so
that you can diagnose the error if you are executing the program under the
control of the debugger.
User Action. Determine why a task that was to receive an AST entry
call was terminated when the AST was delivered. See also PROGRAM_
ERROR.

ASTNOTCAL, The task named in an AST_ENTRY attribute is not callable
Fatal. The AST_ENTRY attribute was invoked for an entry in a task that
is completed and therefore cannot receive the AST.
User Action. Keep the task from becoming completed or do not use
the AST_ENTRY attribute on an entry of a completed task. See also
PROGRAM_ERROR.

ASTPKTQUO, The AST packet pool has been exhausted
Fatal. The pool of space from which the DEC Ada run-time library
allocates AST packets for the AST_ENTRY attribute has been exhausted.
The ASTs being delivered are not accepted quickly enough by the task
entries that have been designated to handle them.
User Action. Make tasks receiving AST entry calls accept the entries
more rapidly, perhaps by raising the priority of such tasks. You can
also increase the pool of space from which AST packets are allocated
by calling the DEC Ada run-time library routine SYSTEM_RUNTIME_
TUNING.EXPAND_AST_PACKET_POOL. See also PROGRAM_ERROR.

E–6 Diagnostic Messages

ATTUNWREN, An attempt was made to unwind a rendezvous in progress
Fatal. The condition handler that was established by the DEC Ada
run-time library to monitor exceptions propagating from a rendezvous
between tasks has been called with the SS$_UNWIND condition, but the
rendezvous is still in progress.

The DEC Ada run-time library cannot signal this error because signaling
during an unwind is forbidden by the VMS operating system. The program
is forced to exit after displaying this error message.
User Action. The most likely cause of this error is an error in a call to
the VMS SYS$UNWIND system service during the rendezvous. Check
any non-Ada code called by the accepting task to determine if one of its
handlers is requesting too deep an unwind. See also PROGRAM_ERROR.

ATTUNWTAS, Attempting to unwind the first stack frame of a task
Fatal. The first frame of a task is created by the DEC Ada run-time
library and is not normally unwound (that is, it is never removed from the
stack using the VMS SYS$UNWIND system service). This error condition
is raised if the SYS$UNWIND system service is called to unwind this
frame.

The DEC Ada run-time library cannot signal this error because signaling
during an unwind is forbidden by the VMS operating system. The program
is forced to exit after displaying the error message.
User Action. The most likely cause of this error is an error in a call to the
VMS SYS$UNWIND system service. Check any non-Ada code called by the
task to determine if one of its handlers is requesting too deep an unwind.
See also PROGRAM_ERROR.

CONSTRAINT_ERRO, CONSTRAINT_ERROR
Fatal. This predefined exception is raised upon an attempt to violate a
range constraint, an index constraint, or a discriminant constraint; upon
an attempt to use a record component that does not exist for the current
discriminant values; or upon an attempt to use a selected component, an
indexed component, a slice, or an attribute of an object designated by an
access value, if the object does not exist because the access value is null.

In response to Ada interpretation AI-00387, DEC Ada also raises this
exception for integer overflow, floating-point overflow, and integer and
floating-point division by zero. This exception is not raised by floating-
point underflow (floating-point underflow is not defined as an exception in
DEC Ada); underflow can be handled as an imported condition.

Diagnostic Messages E–7

DATA_ERROR, DATA_ERROR
Fatal. This predefined exception is raised by a TEXT_IO GET procedure if
the input character sequence fails to satisfy the required syntax, or if the
value input does not belong to the range of the required type or subtype.
This exception may also be raised in any input operation (using any of the
input-output packages) that would result in overflowing the item being
written to.

DEVICE_ERROR, DEVICE_ERROR
Fatal. This predefined exception is never raised by DEC Ada. See also
USE_ERROR.

DURNOTRAN, Computed duration is not in the range of the type DURATION
Fatal. See also TIME_ERROR.

END_ERROR, END_ERROR
Fatal. This predefined exception is raised by an attempt to skip (read
past) the end of a file.

ERRONEOUS, Program is erroneous
Fatal. An inconsistency was detected at run time that indicates that the
program is erroneous. Appended messages give more information about
the error.
User Action. Follow the recommendations given by the appended
messages.

EXCCOP, Exception was copied at a raise or accept statement
Fatal. This is the first in a series of exception messages that are issued
when an exception (signal argument list) has been copied. Exception
copying occurs at a raise statement without an exception name, or when an
exception is propagating out of a rendezvous into the calling task.

DEC Ada ignores this first message when matching the exception to a
choice in an exception handler. The purpose of this message is to prevent
non-Ada condition handlers from mishandling the copied exception.

E–8 Diagnostic Messages

EXCCOPLOS, Exception was copied at a raise or accept statement, but some
details were lost
Fatal. This is the first message in a series of exception messages that are
issued when an exception (signal argument list) has been copied and some
detailed information has been lost. Exception copying occurs at a raise
statement without an exception name, or when an exception is propagating
out of a rendezvous into the calling task. The lost information in the
exception messages was replaced by zeros (that is, some FAO arguments
were zeroed) to avoid copying a pointer into a stack that no longer exists.

DEC Ada ignores this first message when matching the exception to a
choice in an exception handler. The purpose of this message is to prevent
non-Ada condition handlers from mishandling the copied exception.

EXCDUREXC, An exception occurred in the DEC Ada run-time library while
handling an exception
Fatal. An exception was propagated out of the first frame of a task or the
main program while the task or main program was already in the process
of terminating because of a prior exception.

Because there is no reasonable exception handler for this case, the
exception is allowed to propagate so that it can produce a traceback, or so
that you can diagnose the error if you are executing the program under the
control of the debugger.
User Action. The most likely cause of this error is that the stack has
overflowed and the overflow was not detected. Use the debugger to
determine what caused the original exception that caused the task or main
program to become terminated. Eliminating this exception is likely to also
eliminate the exception during exception handling. Also, try enabling Ada
checks to detect the error sooner. See also PROGRAM_ERROR.

EXCEPTION, Exception ident
Fatal. An exception that was declared in an exception declaration located
somewhere in the Ada program was raised.

EXISTENCE_ERROR, The element does not exist
Fatal. This predefined exception is raised when the element to be read
cannot be found in a relative or indexed file during the execution of a
READ or READ_EXISTING procedure.

Diagnostic Messages E–9

FAC_MODE_MISMAT, The file access does not allow the new mode
Informational. The file access attributes specified for the file do not
match the mode desired for the file in a CREATE, OPEN, or RESET
operation. See also USE_ERROR.

FAIMODTIM, Unable to modify time-slice setting
Fatal. An error occurred when the DEC Ada run-time library was calling
a system service to set up time slicing. The most likely cause is that the
system AST quota has been exceeded. Appended messages give more
information on the error.
User Action. Observe the appended message to determine why the system
service failed. See also PROGRAM_ERROR.

FAISETTIM, Unable to request another time-slice AST
Fatal. The error occurred when the DEC Ada run-time library called the
VMS SYS$SETIMR system service to schedule the next time-slice AST. An
appended message gives the reason for the error. See also PROGRAM_
ERROR.
User Action. Examine the appended message to determine why the VMS
SYS$SETIMR system service failed. If it failed because of an exceeded
quota (SS$_EXQUOTA), then the most likely cause of this error is that the
value of your process’s AST queue limit (ASTLM) parameter was exceeded.
Determine if your program has generated many ASTs while AST delivery
has been disabled by a call to the VMS SYS$SETAST system service.
If there are no such program errors, then ask your system manager to
increase the value of your ASTLM parameter (a UAF parameter). Then
try your program again. See the description of SYS$SETIMR in the VMS
System Services Reference Manual for additional situations that can cause
a status of SS$_EXQUOTA to be returned.

FATINTERR, Fatal internal error in the DEC Ada run-time library
Fatal.
User Action. Submit a Software Performance Report (SPR) to Digital,
including a machine-readable copy of your program, data, and a sample
execution showing the problem.

INSSPAALL, Insufficient space to allocate from a collection
Fatal. An explicit (or implicit) allocator cannot allocate from a collection.
See also STORAGE_ERROR.

E–10 Diagnostic Messages

INSSPACOL, Insufficient space to create a collection
Fatal. See also STORAGE_ERROR.

INSSPATAS, Insufficient space to create a task
Fatal. See also STORAGE_ERROR.

INTDATCOR, Internal data in the DEC Ada run-time library is corrupted
Fatal. The data corruption may have been caused by a DEC Ada error or
by your program.
User Action. If you cannot determine the source of the error, please
submit a Software Performance Report (SPR) to Digital, including a
machine-readable copy of your program, data, and a sample execution
showing the problem. See also PROGRAM_ERROR.

INVVALFORM, Invalid attribute value in FORM parameter
Informational. The FORM parameter of a CREATE or OPEN operation
contains an attribute value that is not legal for the attribute’s keyword.
Note that VAXELN Ada accepts FORM parameter values that are different
from VMS RMS File Definition Language (FDL) statements.
User Action. Either the keyword or its attribute’s value is incorrect.
Replace the invalid attribute value with a legal value, or replace the
attribute’s keyword with one for which the attribute’s value is legal.

KEYSIZERR, Size of the key is not a multiple of 8 bits
Fatal. A read operation from an indexed file has specified a key that is not
a multiple of 8 bits. See also KEY_ERROR.

KEY_ERROR, Key is inappropriate for the file
Fatal. This predefined exception is raised in an indexed file if the key has
been changed or duplicated and changes or duplicates are not permitted.
This exception is also raised if a read operation from an indexed file has
specified a key that is not a multiple of 8 bits.

KEY_MISMATCH, The file key does not match the key value specified in the
FORM parameter
Informational. The OPEN operation has detected that the key
specification asserted in the FORM string does not match the key
specification of the file being opened. See also USE_ERROR.

Diagnostic Messages E–11

LAYOUT_ERROR, LAYOUT_ERROR
Fatal. This predefined exception is raised by the TEXT_IO COL, LINE, or
PAGE operations if the value returned exceeds COUNT’LAST; on output by
an attempt to set column or line numbers in excess of specified maximum
line or page lengths, respectively (excluding the unbounded cases); by an
attempt to write too many characters to a string with a PUT procedure;
and in item operations of the mixed input-output packages when a GET_
ITEM or PUT_ITEM operation results in reading or writing beyond the file
buffer.

LINEXCMRS, Line will exceed external file’s maximum record size
Informational. The TEXT_IO operation will overflow the maximum
record size of the external file. See also USE_ERROR.

LOCK_ERROR, The element is locked
Fatal. This predefined exception is raised by a READ or READ_EXISTING
procedure if the result is a locked record error in a relative or indexed file.

MAXLINEXC, Maximum line length exceeded
Informational. The line length specified by the TEXT_IO.SET_LINE_
LENGTH procedure exceeds the maximum record size of the file. See also
USE_ERROR.

MISKEYFORM, Missing or unrecognized keyword in FORM parameter
Informational. The FORM parameter of a CREATE or OPEN procedure
contains an illegal keyword value. Note that VAXELN Ada accepts FORM
parameter values that are different from VMS RMS File Definition
Language (FDL) statements.
User Action. Supply the missing keyword or correct the illegal keyword.

MODE_ERROR, MODE_ERROR
Fatal. This predefined exception is raised by an attempt to read from, or
test for the end of, a file whose current mode is OUT_FILE, and also by
an attempt to write to a file whose current mode is IN_FILE. In the case
of TEXT_IO operations, the exception MODE_ERROR is also raised by
specifying a file whose current mode is OUT_FILE in a call of SET_INPUT,
SKIP_LINE, END_OF_LINE, SKIP_PAGE, or END_OF_PAGE; and by
specifying a file whose current mode is IN_FILE in a call of SET_OUTPUT,
SET_LINE_LENGTH, SET_PAGE_LENGTH, LINE_LENGTH, PAGE_
LENGTH, NEW_LINE, or NEW_PAGE.

E–12 Diagnostic Messages

MRN_MISMATCH, The file maximum record number does not match the
maximum record number specified in the FORM parameter
Informational. The OPEN operation has detected that the maximum
record number asserted in the FORM parameter does not match the
maximum record number of the file being opened. See also USE_ERROR.

MRS_MISMATCH, The file maximum record size does not match the
maximum record size specified in the FORM parameter
Informational. The OPEN operation has detected that the maximum
record size asserted in the FORM parameter does not match the maximum
record size of the file being opened. See also USE_ERROR.

NAME_ERROR, NAME_ERROR
Fatal. This predefined exception is raised by a call of a CREATE or OPEN
procedure if the string given for the parameter NAME does not identify an
external file. For example, this exception is raised if the string is improper,
or, alternatively, if either none or more than one external file corresponds
to the string.

NON_ADA_ERROR, NON_ADA_ERROR
Fatal. This exception is declared in the package SYSTEM. When used as a
choice in an Ada exception part, NON_ADA_ERROR matches itself or any
VMS (that is, non-Ada) exception that is not treated as being equivalent to
an Ada predefined exception. It allows the treatment of non-Ada conditions
as a special subclass of Ada exceptions.

NOTASTLEV, Name cannot be called at AST level
Fatal.
User Action. Modify your program so that the specified operation is no
longer called from an AST service routine. See also PROGRAM_ERROR.

NOT_OPEN, File is not open
Fatal. See also STATUS_ERROR.

NUMERIC_ERROR, NUMERIC_ERROR
Fatal. In response to Ada interpretation AI-00387, DEC Ada raises
NUMERIC_ERROR only when it is explicitly raised with a raise statement.
Wherever the Ada language standard requires that NUMERIC_ERROR be
raised, CONSTRAINT_ERROR is raised instead.

Diagnostic Messages E–13

ORG_MISMATCH, The file organization does not match the organization
specified in the FORM parameter
Informational. The OPEN operation has detected that the VMS RMS
organization asserted in the FORM parameter does not match the
organization of the file being opened. See also USE_ERROR.

PACNUMILL, Illegal number of AST packets was requested
Fatal. The number of AST packets requested by the SYSTEM_RUNTIME_
TUNING.EXPAND_AST_PACKET_POOL procedure is either less than zero
or, when added to the number of existing AST packets, exceeds the number
of AST packets allowed by the DEC Ada run-time library.
User Action. Modify your program to pass a correct value to the
SYSTEM_RUNTIME_TUNING.EXPAND_AST_PACKET_POOL procedure.
If you need more than the current limit of AST packets then make tasks
receiving AST entry calls accept them more rapidly, perhaps by raising the
priority of such tasks. See also PROGRAM_ERROR.

PROGRAM_ERROR, PROGRAM_ERROR
Fatal. This predefined exception is raised upon an attempt to call a
subprogram, to activate a task, or to elaborate a generic instantiation,
if the body of the corresponding unit has not yet been elaborated. This
exception is also raised if the end of a function is reached; or during
the execution of a selective wait that has no else part, if this execution
determines that all alternatives are closed. Finally, this exception may be
raised upon an attempt to execute an action that is erroneous.

Additional messages are sometimes appended to this exception to further
identify the reason why it was raised.

RAT_MISMATCH, The file record attribute does not match the record
attribute specified in the FORM parameter
Informational. The OPEN operation has detected that the record
attribute asserted in the FORM parameter does not match the record
attribute of the file being opened. See also USE_ERROR.

RECNOTPOS, Program is erroneous, error recovery by exception handling is
not possible
Fatal. An error that cannot be corrected by an Ada exception handler
has been detected at run time. Either there is no appropriate handler or
the error condition would remain after the exception was handled. The
program is presumed to be erroneous.

E–14 Diagnostic Messages

Typically, the cause of such an error is that the program has become
corrupted because it suppresses Ada checking, it misuses the AST_ENTRY
attribute, or because it improperly uses imported non-Ada subprograms
(such as system services).

Appended messages give more information about the error.
User Action. Determine from the appended messages what the program
did to cause the DEC Ada run-time library to fail. Also, try enabling
checking in the Ada program, and carefully investigate the use of imported
subprograms and the AST_ENTRY attribute. See also PROGRAM_ERROR.

RFM_MISMATCH, The file record format does not match the record format
specified in the FORM parameter
Informational. The OPEN operation has detected that the record format
asserted in the FORM parameter does not match the record format of the
file being opened. See also USE_ERROR.

SELALTCLS, All select alternatives are closed and there is no else part
Fatal. See also PROGRAM_ERROR.

SIGVECIMP, Signal vector is improperly formatted—one or more FAO
arguments are missing
Fatal. While copying an exception, the DEC Ada run-time library has
detected that the signal arguments are improperly formatted. Most likely
an FAO argument count is incorrect.

If you cannot determine the source of the error, submit a Software
Performance Report (SPR) to Digital, including a machine-readable copy of
your program, data, and a sample execution showing the problem.

SIZCOLCRE, Attempting to get the size of a collection before its creation
Fatal. This error can occur when you use the ’STORAGE_SIZE attribute
to obtain the size of a collection for an access type whose designated type
is an incomplete type, and the corresponding full type declaration is not in
the same compilation unit.
User Action. Try obtaining the collection size after the full type
declaration has been elaborated. See also PROGRAM_ERROR.

STAOVF, Attempted stack overflow was detected
Fatal. See also STORAGE_ERROR.

Diagnostic Messages E–15

STATUS_ERROR, STATUS_ERROR
Fatal. This predefined exception is raised by an attempt to operate upon a
file that is not open, and by an attempt to open a file that is already open.

STORAGE_ERROR, STORAGE_ERROR
Fatal. This predefined exception is raised in any of the following
situations: when the dynamic storage allocated to a task is exceeded;
during the evaluation of an allocator, if the space available for the
collection of allocated objects is exhausted; or during the elaboration of a
declarative item, or the execution of a subprogram call, if storage is not
sufficient.

Appended messages give more information about the error.
User Action. Typically, two situations raise this exception: the program
has no more free virtual pages for any allocations, or an attempt was made
to exceed the amount of storage specified in a length clause (in other words,
the value specified for T’STORAGE_SIZE was exceeded).

In the first situation, see if the program has an error that causes a
large number of allocators to be evaluated; for example, an infinite
loop containing allocator evaluations. If the program has no error, ask
your system manager to consider increasing the value of the SYSGEN
VIRTUALPAGECNT parameter (maximum number of virtual pages
parameter) on your system.

In the second situation, consider changing the value of a task or access
type length clause STORAGE_SIZE attribute designator.

Use the appended message to further determine the reason for the
exception.

STOSIZILL, Requested value of STORAGE_SIZE for a collection is illegal
Fatal. Typically, this error can occur if the program specifies an illegal
value for a length clause STORAGE_SIZE attribute designator, and
compiler checks have been suppressed so that the illegal value is not
detected at compile time.
User Action. Check the STORAGE_SIZE value for the appropriate access
type. Try recompiling the program (or compilation unit) with checking
enabled. See also PROGRAM_ERROR.

SUBNOTELA, The body of the called subprogram has not yet been elaborated
Fatal. See also PROGRAM_ERROR.

E–16 Diagnostic Messages

SYNERRFORM, Syntax error in FORM parameter
Informational. The FORM parameter of a CREATE or OPEN procedure
cannot be parsed because it contains a syntax error. Note that VAXELN
Ada accepts FORM parameter values that are different from VMS RMS
File Definition Language (FDL) statements.
User Action. Correct the syntax error in the FORM parameter.

TASCOMACT, A task completed during its activation
Fatal. See also TASKING_ERROR.

TASKING_ERROR, TASKING_ERROR
Fatal. This predefined exception is raised when exceptions arise during
intertask communication.

Appended messages give more information about the error.

TASNOTCAL, The task named on an entry call is not callable
Fatal. See also TASKING_ERROR.

TASNOTELA, A task’s body was not elaborated before its activation
Fatal. See also TASKING_ERROR.

TASSTOSMA, Requested STORAGE_SIZE for a task is illegal
Fatal.
User Action. Typically, this error can occur if the program specifies an
illegal value for a length clause STORAGE_SIZE attribute designator,
and compiler checks have been suppressed so that the illegal value is not
detected at compile time.

Check the STORAGE_SIZE value for the appropriate task type. Try
recompiling the program (or compilation unit) with checking enabled. See
also PROGRAM_ERROR.

TASTERAST, A task is terminating with an AST pending
Fatal. A task that should have waited for an AST to be delivered is
terminating. This situation is erroneous because the task’s stack must not
be deallocated (as it would be at task termination) while a system service
is possibly accessing the stack.
User Action. Determine why the task that was to wait for an AST is
terminating. Use the debugger to determine if the task is being terminated
because of an exception. See also PROGRAM_ERROR.

Diagnostic Messages E–17

TIMERFAIL, Insufficient quota for call to SYS$SETIMR at delay statement
Fatal. A status of SS$_EXQUOTA was returned by the VMS
SYS$SETIMR system service when it was called by the DEC Ada run-time
library as part of its implementation of a delay statement.
User Action. The most likely cause of this error is that the value of your
process’s AST queue limit (ASTLM) parameter was exceeded. Determine
if your program has generated many ASTs while AST delivery has been
disabled by a call to the VMS SYS$SETAST system service. If there are no
such program errors, then ask your system manager to increase the value
of your ASTLM parameter (a UAF parameter). Then try your program
again. See the description of SYS$SETIMR in the VMS System Services
Reference Manual for additional situations that can cause a status of
SS$_EXQUOTA to be returned. See also PROGRAM_ERROR.

TIME_ERROR, TIME_ERROR
Fatal. This predefined exception can be raised by the TIME_OF, "+", and
"-" operations in the predefined package CALENDAR.

TIMPARNOT, TIME_OF parameters do not form a proper date
Fatal. See also TIME_ERROR.

TOOMANENT, Task type has too many entries
Fatal. The total number of entries (including members in entry families)
for some task type exceeds the value of the constant MAX_INT declared in
the package SYSTEM.
User Action. Reduce the total number of entries, including entry family
members. Perhaps move some of the entries to a different task type. See
also PROGRAM_ERROR.

UNLCKNOTOWN, A task tried to unlock the global lock without first locking
it
Fatal. A task routine in package SYNCHRONIZE_NONREENTRANT_
ACCESS tried to unlock the global lock without having first locked it.
User Action. Check the source code for the task to determine why it is
trying to unlock the global lock when it does not have it locked. See also
PROGRAM_ERROR.

UNSUPPORTED, The input-output package does not support the intended
operation
Informational. For example, some input-output packages support only
certain RMS file organizations. See also USE_ERROR.

E–18 Diagnostic Messages

USE_ERROR, USE_ERROR
Fatal. This predefined exception is raised when an attempted operation is
not possible for reasons that depend on characteristics of the external file.
For example, this exception can be raised by a CREATE procedure, if the
given mode is OUT_FILE, but the form parameter specifies an input only
device.

YEANOTRAN, Computed year is not in the range of subtype YEAR_NUMBER
Fatal. The subtype YEAR_NUMBER is declared in the package
CALENDAR. See also CONSTRAINT_ERROR, PROGRAM_ERROR,
and TIME_ERROR.

ZONECORR, The "zone" used to implement the collection for the object being
allocated or deallocated has been corrupted
Fatal. The DEC Ada run-time library implements collections using the
VMS Run-Time Library LIB$ memory allocation operations. In particular,
Ada collections are implemented as zones. This error code is returned
when LIB$GET_VM or LIB$FREE_VM fails because the zone from which
the object is being allocated or deallocated has been corrupted.
User Action. Make sure that your program is not corrupting the zone.
For example, be sure that your program is not calling an instantiation
of the generic procedure UNCHECKED_DEALLOCATION to deallocate
an object that has already been deallocated. One way this can happen is
when two access variables designate the same object, and an instantiation
of UNCHECKED_DEALLOCATION is called twice, once for each access
variable. Also, if your program is written in more than one language,
make sure your program is not allocating an object in one language and
deallocating it in another. In addition, ensure that your program has not
disabled array indexing checks; writing at random memory addresses can
also cause the heap to become corrupted. See also PROGRAM_ERROR.

Diagnostic Messages E–19

F
Reporting Problems

If an error occurs while you are using DEC Ada and you believe that the error
is caused by a problem with DEC Ada, take one of the following actions:

• If you purchased DEC Ada within the past 90 days and you think
the problem is caused by a software error, you can submit a Software
Performance Report (SPR).

• If you have a Basic or DECsupport Software Agreement, you should call
your Customer Support Center. With these services, you receive telephone
support that provides high-level advisory and remedial assistance. For
more information, contact your local Digital representative.

• If you have a Self-Maintenance Software Agreement, you can submit a
Software Performance Report (SPR).

If you find an error in the DEC Ada documentation, you should fill out and
submit the Reader’s Comments form at the back of the document in which the
error was found. Specify the section and page number where the error was
found.

When you prepare to submit an SPR, please do the following:

1. Describe as accurately as possible the state of the system and the
circumstance when the problem occurred. Include in the description the
version number of DEC Ada being used. Demonstrate the problem with
specific examples.

2. Reduce the problem to as small a size as possible.

3. Remember to include listings of any command files, relevant data files, and
so on.

4. Provide a listing of the program.

Reporting Problems F–1

5. If the program is longer than 50 lines, submit a copy of the program
on machine-readable media (floppy diskette or magnetic tape). If
necessary, also submit a copy of the program library used to build the
application. Use the VMS Backup Utility to copy the program library to
the machine-readable media.

6. Report only one problem per SPR. This will facilitate a more rapid
response.

7. Mail the SPR package to Digital.

Experience shows that many SPRs do not contain sufficient information to
duplicate or identify the problem. Complete and concise information will help
Digital give accurate and timely service to software problems.

F–2 Reporting Problems

Index

A
/ABORT qualifier

SET TASK command (debugger), 8–23
ABORT_TERMINATED debugger event

name, 8–31
accept statements

setting breakpoints and tracepoints on,
8–27

Access control list entries
see ACEs

Access control lists
see ACLs

Access control string
using DECnet FAL with program

libraries, 7–27
Accessing program libraries from multiple

systems, 7–22
Accessing program libraries using DFS,

7–24
Access types

resolving when smart recompilation is in
effect, 5–10

ACEs, 7–20
ACLs

protecting program libraries and
sublibraries with, A–55

protecting program libraries with, 7–20,
A–51

ACS
see Program library manager, ACS

commands

ACS$ symbol prefix, 1–17
ACS commands

and sublibraries, 2–27
conventions for spelling compilation unit

names in, 2–10
defining synonyms for, 1–17
dictionary of, A–1
entering, 1–16
example of passing DCL parameters to,

1–16
general properties of, 2–11
interrupting, 1–17
kinds of program library access required

by, 7–16
limits on length of, 1–16
limits on unit identifiers in, 2–11
overview of, 1–12
parameters for, 1–20
specifying units in, 2–10
wildcards for unit names in, 2–10

ACTIVATING debugger event name, 8–31
/ACTIVE qualifier

SET TASK command (debugger), 8–11,
8–14, 8–23

%ACTIVE_TASK debugger pseudotask name,
8–11

ADA$BATCH logical name
default batch queue for ACS COMPILE

and RECOMPILE, 4–18, A–40,
A–136

default batch queue for ACS LOAD,
A–107

Index–1

ADA$LIB.DAT, A–52, A–54, A–56, A–58
ADA$LIB logical name, A–4, A–147

definition of, 2–5
value of in subprocess, 4–19

ADA$PREDEFINED logical name
and ACS CREATE LIBRARY command,

A–52
automatic entering of units in, A–53
definition of, 2–21
updating references after new release or

update of DEC Ada, 7–36
ADA$SOURCE logical name

source file search list for ACS COMPILE,
4–16

ADA command (DCL), 1–8, 1–11, 1–14, A–3
to A–17

comparison with other compilation
commands, 4–1, 4–14

default file type for, A–4
default qualifiers for, 1–10, A–3
determining program portability with,

7–36, A–13
generating data analysis files with, A–5
optimizing code with, 4–16
required parameters for, A–3
wildcards allowed with, A–4

ADALIB.ALB, A–52, A–54, A–56, A–58,
A–59, A–62

ADA symbol
definition of, 4–19

/AFTER qualifier
COMPILE command (ACS), A–28
LINK command (ACS), A–93
LOAD command (ACS), A–104
RECOMPILE command (ACS), A–124

ALL keyword
/DEBUG qualifier (ADA), A–6
/DEBUG qualifier (COMPILE), A–30
/DEBUG qualifier (RECOMPILE), A–127
/SHOW qualifier (ADA), A–13, A–16
/SHOW qualifier (COMPILE), A–40
/SHOW qualifier (RECOMPILE), A–136
/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–112

ALL keyword (cont’d)
/WARNINGS qualifier (RECOMPILE),

A–138
/ALL qualifier

SET TASK command (debugger), 8–23
SHOW TASK command (debugger), 8–10,

8–14, 8–18
/ANALYSIS_DATA qualifier

ADA command (DCL), A–5
COMPILE command (ACS), A–28
RECOMPILE command (ACS), A–124
wildcards allowed with, A–5, A–28,

A–124
Ancestor unit, 1–21
ASSIGN command (DCL)

defining a rooted directory with, 7–29
defining concealed-device logical names

with, 7–28
AST_ENTRY attribute

dependences caused by, 7–42
AST_ENTRY pragma

dependences caused by, 7–42
ATTACH command (ACS), 1–15, A–18 to

A–19
example of, A–19, A–168

Attributes
and portability, 7–40
debugger support for, 8–13

B
Backing up

program libraries and sublibraries, 7–30
BACKUP command (DCL), 1–18

using during program library repair,
7–35

/BACKUP qualifier
LOAD command (ACS), A–108

Batch mode
and ACS COMPILE, A–27, A–28, A–33,

A–34, A–40, A–42
and ACS LINK, A–92, A–93, A–96, A–97,

A–98, A–101
and ACS LOAD, A–104, A–106, A–107,

A–108
and ACS NOTIFY, A–106

Index–2

Batch mode (cont’d)
and ACS RECOMPILE, A–123, A–124,

A–129, A–130, A–135, A–136
compiling in, 4–18
dedicating an Ada compilation queue for,

4–19
linking in, 6–10
log file created for, A–106, A–107

/BATCH_LOG qualifier
COMPILE command (ACS), 4–20, A–28
LINK command (ACS), A–93
LOAD command (ACS), A–104
RECOMPILE command (ACS), 4–20,

A–124
wildcards allowed with, A–28, A–105,

A–125
/BEFORE qualifier

LOAD command (ACS), A–108
Bodies, 1–18, 1–24

see also Library bodies
/BODY_ONLY qualifier

COPY UNIT command (ACS), A–50
DELETE UNIT command (ACS), 2–11,

2–26, A–67
DIRECTORY command (ACS), A–71
ENTER UNIT command (ACS), A–80
EXTRACT SOURCE command (ACS),

A–87
MERGE command (ACS), A–116
REENTER command (ACS), A–142
SHOW LIBRARY command (ACS), A–156

Breakpoints (debugger)
automatically set, 8–31
setting on and within accept statements,

8–27
setting on and within task accept

statements, 8–12
setting on task accept statements, 8–27
setting on task bodies, entry calls, 8–27
setting on tasks, 8–25

/BRIEF qualifier
DIRECTORY command (ACS), 2–12,

A–70, A–72
LINK command (ACS), 6–9, A–93, A–94,

A–95

/BRIEF qualifier (cont’d)
SHOW LIBRARY command (ACS),

A–155, A–156, A–157
SHOW PROGRAM command (ACS),

A–159, A–160
/BY_OWNER qualifier

LOAD command (ACS), A–108

C
%CALLER_TASK debugger pseudotask

name, 8–11, 8–12
/CALLS qualifier

SHOW TASK command (debugger), 8–19,
8–29

CANCEL BREAK command (debugger),
8–33

CHECK command (ACS), 1–13, 1–24, A–20
to A–24, A–149, A–170

and generics, 2–17
and read-only program libraries, 2–7
checking program completeness and

currency with, 2–16
default qualifiers for, A–20
library errors detected by, 7–32
program library access required by, 7–17

/CHECK qualifier
ADA command (DCL), A–6
COMPILE command (ACS), A–29
RECOMPILE command (ACS), A–125

Closure, 1–24, 4–8
compilation, 1–24
copying a unit’s, 2–19
definition of, 1–24
example of compilation unit, 1–25
execution, 1–24
formed for linking, 6–1

/CLOSURE qualifier
COMPILE command (ACS), A–29
COPY UNIT command (ACS), 1–24,

2–11, 2–19, 2–27, A–48, A–50
ENTER UNIT command (ACS), 1–24,

2–27, A–78
RECOMPILE command (ACS), A–125,

A–139

Index–3

CMS, 1–1
invoking from ACS commands, 7–11 to

7–14
managing program development, 7–10
using in conjunction with DEC Ada

program libraries, 7–10
using using DECnet FAL, 7–26

CMS$LIB logical name
example of using with ACS SET SOURCE,

A–154
Code Management System

see CMS
Command file

compiler, A–27, A–29, A–104, A–105,
A–123, A–125

linker, 6–1, 6–11, A–92, A–94
saving the linker, 6–11
use of compilation in subprocess, 4–19,

A–42, A–108, A–137
use of linker in processing environment,

6–10
use of linker in subprocess, A–100

Command procedures
and ACS command qualifiers, A–1

Command qualifier
definition of, A–1

/COMMAND qualifier
COMPILE command (ACS), A–27, A–29
LINK command (ACS), 6–9, 6–11, A–92,

A–94, A–97
LOAD command (ACS), A–104, A–105
RECOMPILE command (ACS), A–123,

A–125, A–139
wildcards allowed with, A–29, A–94,

A–105, A–126
Commands

specifying library search paths in, 3–12
Compilation

ACS commands for, 1–14
affecting which units are obsolete, A–34
as source of obsolete units, 1–19
choosing optimization options for, 4–16
comparison of commands for, 4–1
directing output from, 4–19
effect of network failures on, 7–23

Compilation (cont’d)
effect of pragma INLINE on, 1–23
effect of unit dependences on, 1–19, 1–22
effect of warnings or errors during, 4–20,

A–8, A–33, A–110, A–129
efficient, 4–18
executing in batch mode, 4–18
forcing for a set of units, 4–14
location of batch log file produced by,

4–20
of generic bodies, 1–23
order-of-compilation rules for, 1–22
organization of files for efficient, 1–20
placing pragmas that apply to a whole,

1–22
prerequisites, 1–8
processing and output options for, 4–17
products of, 4–1
results of successful, 1–23
separate, 1–18
setting limits on errors during, 4–20
to prepare for debugging, 1–10

Compilation unit files
checking consistency of protection for,

A–170
checking existence and accessibility of,

A–169
checking format of, A–170
effect of program library deletion on,

A–60
effect of sublibrary deletion on, A–62
repair of, 7–33

Compilation units, 1–18
see also Program libraries
Ada rules for naming, 1–21
checking currency and completeness of,

2–16, A–20
compilation closure of, 1–24
complete set of, 1–23, 1–24
conventions for naming, 1–20
copying, 2–18, A–47
current and obsolete, 1–19
DEC Ada predefined, 2–21
deleting, 2–25, A–65

Index–4

Compilation units (cont’d)
dependences affected by context clauses,

1–19
dependences affected by

SYSTEM.SYSTEM_NAME,
1–19

dependences among, 1–19, 1–24
determining the impact of a change to,

5–5
difference from source files, 1–20
displaying dependence and portability

information on, 2–12, A–13, A–40,
A–136, A–160, A–161

displaying information about, 1–9, A–69,
A–159

effect of dependences on compiling, 1–22
effect of new release or update of DEC

Ada on, 7–35
entering, 2–20, A–77
execution closure of, 1–24
forcing compilation of, 4–14, A–29
forcing recompilation of, 4–14, A–125
making current, 4–6
merging from sublibraries to parent

libraries, 2–30
merging from the current library to next

library in the path, A–114
modifying and testing in a sublibrary,

2–30
obsolete, 1–20, 1–23, 2–21, 6–1, 7–43,

7–44
organizing into files, 4–5
replacing copied, 2–19, A–49
replacing entered, A–79, A–140
sharing among program libraries, 2–18
source file naming conventions for, 1–21
specifying in ACS commands, 2–10
target-related dependences among, 7–42,

7–43
testing in sublibraries, 2–32
types of, 1–18

COMPILATION_NOTES keyword
/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–113

COMPILATION_NOTES keyword (cont’d)
/WARNINGS qualifier (RECOMPILE),

A–139
COMPILE command

optimizing code with, 4–16
COMPILE command (ACS), 1–11, 1–15,

1–20, 1–24, A–25 to A–44
comparison with other compilation

commands, 4–1, 4–14
compiling a modified program with, 4–13
completing generic instantiations with,

4–9
default batch queue for, 4–18, A–40
default mode for, A–27
default qualifiers for, 1–11, A–25
default search file search order for, A–26
default source file search order for, 4–15,

A–153
determing source file search list for,

A–165
determining program portability with,

7–36, A–40
determining source file search list for,

4–16
differences against ACS RECOMPILE

command, 4–7
directing output from, 4–19, A–39
effect of ADA$SOURCE logical name on,

4–16
effect of SET SOURCE on, 4–16, A–153
executing in a subprocess, 4–18, A–27,

A–42
generating data analysis files with, A–28
how it finds modified source files, A–26
how it obtains source file information,

A–26
library errors detected by, 7–32
loading units with, A–39
parameters for, A–26
program library access required by, 7–17
retaining command file from, A–29
source file search list for, 4–16, A–26
specifying default batch log file for, 4–20,

A–28
steps performed by, A–26

Index–5

COMPILE command (ACS) (cont’d)
wildcards allowed with, A–26

Compiler
exit status of, E–3
sensitivity to target differences, 7–42
severity of diagnostic messages from, E–2

Compiler listing
obtaining, A–9, A–13, A–15, A–33, A–40,

A–43, A–111, A–112, A–129, A–136,
A–138

obtaining machine code and PSECT map
in, A–9, A–34, A–130

Compiling
see also ADA command, COMPILE

command, Compilation, Compiler
a DEC Ada program, 1–8, 4–1
a modified program, 1–11, 4–13
basic concepts behind, 1–18
terminology related to, 1–18
units into a program library, 4–4
with difference optimizations, 4–16

Completeness
checking compilation unit, 2–16, A–20
of a set of compilation units, 1–23, 1–24

Completing generic instantiations, 4–9
see also Incomplete generic instantiations

Concealed-device logical names, 7–28
see also Rooted directories
using to back up program libraries and

sublibraries, 7–27
Configuring

program libraries using library search
paths, 3–8

Configuring program libraries using DFS,
7–24

/CONFIRM qualifier, 2–11
COMPILE command (ACS), A–30
COPY UNIT command (ACS), A–48
DELETE LIBRARY command (ACS),

A–60
DELETE SUBLIBRARY command (ACS),

A–63
DELETE UNIT command (ACS), A–66
ENTER UNIT command (ACS), A–78

/CONFIRM qualifier (cont’d)
EXTRACT SOURCE command (ACS),

A–86
LOAD command (ACS), A–105
MERGE command (ACS), A–115
RECOMPILE command (ACS), A–126
REENTER command (ACS), A–141
VERIFY command (ACS), 7–33, A–170

CONTROL_C_INTERCEPTION package,
8–37

Conventions
for ACS and ADA command qualifiers,

A–1
for compilation defaults, symbols, and

logical names, 4–19
for linker defaults, symbols, and logical

names, 6–10
Copied source files

and COMPILE command, A–25, A–27
and recompilation, 4–2, 4–3
and RECOMPILE command, A–6, A–30,

A–108
as products of compilation, A–6, A–30,

A–108
as products of recompilation, A–126
checking consistency of protection for,

A–170
checking existence and accessibility of,

A–169
checking format of, A–170
definition of, 4–1
effect of program library deletion on,

A–60
effect of sublibrary deletion on, A–62
importance in recompilation, A–123,

A–124
obtaining copies of, A–85
repair of, 7–33

COPY command (DCL)
copying sublibraries with, 7–30
using during program library repair,

7–35

Index–6

COPY FOREIGN command (ACS), 1–13,
2–24, 6–3, A–45 to A–46

default qualifiers for, A–45
program library access required by, 7–17
wildcards allowed with, A–45

Copying
foreign object files, 2–24, A–45
program libraries and sublibraries, 7–29
sublibraries, 7–30
units, 2–18, 2–19, A–47

COPY UNIT command (ACS), 1–13, 1–24,
2–18, A–47 to A–50

copying entered units with, A–49
copying program libraries with, 7–30
default qualifiers for, A–47
program library access required by, 7–17
when to use, 2–19
wildcards allowed with, A–47

/COPY_SOURCE qualifier
ADA command (DCL), A–6
COMPILE command (ACS), A–30
LOAD command (ACS), A–108
RECOMPILE command (ACS), A–126

CREATE command (DCL), 1–5
/CREATED qualifier

LOAD command (ACS), A–109
CREATE LIBRARY command (ACS), 1–6,

1–13, 2–3, A–51 to A–54
changing the value of SYSTEM.SYSTEM_

NAME with, 7–43
default qualifiers for, A–51
differences from ACS CREATE

SUBLIBRARY, 2–4
program library access required by, 7–17
using across DECnet, 7–26, A–51
wildcards allowed with, A–51

CREATE SUBLIBRARY command (ACS),
1–13, 2–3, A–55 to A–58

changing the value of SYSTEM.SYSTEM_
NAME with, 7–43

creating nested sublibrary structures,
2–28

default qualifiers for, A–55
differences from ACS CREATE LIBRARY,

2–4

CREATE SUBLIBRARY command (ACS)
(cont’d)

program library access required by, 7–17
using across DECnet, 7–26, A–55
wildcards allowed with, A–55

Creating
program library, 1–6
source file, 1–6
working directory, 1–5

/CROSS_REFERENCE qualifier
LINK command (ACS), 6–9, A–94

Ctrl/C
interrupting ACS commands with, 1–17

Ctrl/Y
interrupting ACS commands with, 1–17
interrupting tasks in debugger, 8–37

Ctrl/Z
exiting from the program library manager

with, 1–17, A–81
responding to /CONFIRM qualifier with,

A–49, A–66, A–79, A–86, A–105,
A–115, A–141, A–170

Currency, 1–19, 1–23
see also Compilation units, Obsolete units
checking compilation unit, 2–16, A–20
of entered units, 2–21

Current default directory
defining, 1–5

Current library search paths
see current paths

Current paths
defining, 3–3
definition of, 3–2
establishing, A–147
identifying, 3–5
specifying, A–5
understanding, 3–2

Current program library
default, A–4
defining, 1–7, 2–5, A–146
merging modified units from, A–114
process logical name for (ADA$LIB), 2–5,

A–4, A–147
redefining the default path for the, A–118

Index–7

Current program library (cont’d)
specifying only for the duration of a

compilation, A–4

D
Data analysis files

default directory for, A–5
generating, A–5, A–28, A–124

/DATE_CHECK qualifier
REENTER command (ACS), A–142

DCL commands
entering ACS commands in the form of,

1–16
used in DEC Ada program development,

1–5
using with program libraries, 1–18

Debugger, 1–1
See also Debugging
automatic stack checking with, 8–37
changing task characteristics with, 8–23
debugging task switching with, 8–25
debugging time-slicing programs with,

8–36
displaying task information with, 8–13
event names for tasks, 8–29
examining and manipulating tasks with,

8–22
exiting from, 1–10
initialization file for, 8–33
obtaining help on, 1–10
obtaining task state information with,

8–14
task-related eventpoints, 8–25

Debugging, 1–10
see also Debugger
effect of inline expansion on, 4–16
example, C–1
sample session of task, 8–2
tasking programs, 8–1

/DEBUG qualifier
ADA command (DCL), 1–10, A–6
COMPILE command (ACS), 1–11, A–30
creation of debugger symbol table records

with, A–7, A–30, A–95, A–127

/DEBUG qualifier (cont’d)
effect on linker traceback information,

A–7, A–31, A–127
LINK command (ACS), 6–9, A–95
RECOMPILE command (ACS), A–127

DEC Ada
see also Program development

environment
accounting for differences from VAXELN

Ada, 7–42
effect of new release or update on program

libraries or sublibraries, 7–35
getting started with, 1–2, 1–3
integration with other DEC tools, 7–10
new and changed features for Version 3.0,

xxi
predefined units, 2–21
problem reporting for, F–1
using efficiently on VMS systems, 7–14

DEC Ada commands
comparison of commands between VMS

and ULTRIX systems, B–1
DEC/Code Management System

see CMS
DEC Information Architecture, 1–1
DEC Language-Sensitive Editor

see LSE
DECnet

limits on using with program libraries,
2–3, 2–9, 7–26, A–55, A–148

limits on using with sublibraries, A–51
network failures, 7–23
system security, 7–26

DECnet FAL
see DECnet, 2–9

DECnet parameters
effect on program library access, 7–23

Decomposing programs, 7–1
DEC Performance and Coverage Analyzer

see PCA
DEC Source Code Analyzer

see SCA

Index–8

DEC/Test Manager, 1–1
Default library search path

see default paths, 3–2
Default paths

definition of, 3–2
identifying, 3–5
modifying, 3–7
specifying, 3–13
understanding, 3–2

Defaults
see also individual commands and

qualifiers by name
batch log file, A–106, A–107
compilation error limit, A–110, A–129
compilation mode, A–107, A–108
compilation unit replacement, A–111
compiler batch job, A–107
compiler command file, A–105
compiler listing file, A–111
compiler output, A–106, A–107
confirmation, A–106
conventions for compilation, 4–19
conventions for linker, 6–10
copied source file, A–109, A–126
diagnostics file, A–110
program library, A–111
/WARNINGS qualifier (LOAD), A–113

DEFINE command (DCL)
defining a rooted directory with, 7–29
defining concealed-device logical names

with, 7–28
Defining

current paths, 3–3
program libraries, 2–5

DELETE LIBRARY command (ACS), 1–13,
2–9, A–59 to A–61

and sublibraries, A–59, A–60
default qualifiers for, A–59
program library access required by, 7–17
steps performed by, A–59

DELETE SUBLIBRARY command (ACS),
1–13, 2–9, A–62 to A–64

and nested sublibraries, A–62, A–63
and program libraries, A–62, A–63
default qualifiers for, A–62

DELETE SUBLIBRARY command (ACS)
(cont’d)

program library access required by, 7–17
steps performed by, A–62

DELETE UNIT command (ACS), 1–13,
2–25, A–65 to A–68

default qualifiers for, A–65
deleting entered units with, A–67
program library access required by, 7–17
wildcards allowed with, A–65

Deleting
libraries, 2–9, A–59
nested sublibraries, A–62, A–63
sublibraries, 2–9, A–62
units, 2–25, A–65

Dependences
see also Compilation, Compilation units,

Obsolete units, Incomplete generic
instantiations

checking for generic unit, 2–17
compilation unit, 1–19, A–160
created by generic units, 4–10
understanding inter-unit and smart

recompilation, 5–8
DEPENDENTS_EXCEPTION debugger

event name, 8–30
Design checking, D–5
/DESIGN qualifier

ADA command (ACS), A–7
COMPILE command (ACS), A–31
LOAD command (ACS), A–109
RECOMPILE command (ACS), A–127

Determining the impact of a change, 5–5
Development environment

optimizing for smart recompilation, 5–7
DEVELOPMENT keyword

/OPTIMIZE qualifier (ADA), 4–16, A–10
/OPTIMIZE qualifier (COMPILE), 4–16,

A–36
/OPTIMIZE qualifier (RECOMPILE),

4–16, A–132
Devices

concealed logical names for, 7–28

Index–9

DFS
accessing program libraries, 7–24
configuring program libraries using, 7–24

Diagnostic messages, E–1
ACS VERIFY command, 7–32
compilation notes, A–15, A–43, A–113,

A–139, E–4
compiler, E–1
compiler informational, E–4
fatal, E–2
format, E–1
in compiler listing, A–15, A–43, A–112,

A–138
informational, E–3
linker, 6–9
output device for, 4–19
severity, E–2
severity of compiler, E–2
status, A–15, A–43, A–113, A–139, E–4
supplemental, A–15, A–43, A–113,

A–138, E–4
suppressing, E–1
user, E–2
warning, A–15, A–43, A–112, A–138, E–3
weak warnings, A–15, A–43, A–113,

A–138, E–4
Diagnostics files

as product of compilation, A–8, A–15,
A–32, A–43, A–110, A–112, A–129,
A–138

DIAGNOSTICS keyword
/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–112
/WARNINGS qualifier (RECOMPILE),

A–138
/DIAGNOSTICS qualifier

ADA command (DCL), A–8
COMPILE command (ACS), A–32
LOAD command (ACS), A–110
RECOMPILE command (ACS), A–129
wildcards allowed with, A–8, A–32,

A–110

Directories
see also individual types of directories by

name
rooted, 7–29

DIRECTORY command (ACS), 1–9, 1–13,
A–69 to A–73, A–149

and read-only program libraries, 2–7
default qualifier for, A–69
displaying general information with,

2–11, A–70
identifying entered units with, 2–21,

A–70
program library access required by, 7–17
wildcards allowed with, A–69

Directory files
default protection of program library,

A–52, A–54
default protection of sublibrary, A–56,

A–58
protecting, 7–20, A–51, A–55

Directory structure, 5–1, 5–14
Disk Traffic

reducing, 7–14
DISPLAY command (debugger)

debugging tasks with, 8–15
Displaying

compilation unit information, 1–9, 2–11
dependence and portability information,

2–12
informational and warning messages,

A–112
Distributed programming, 7–24
Documentation reading path, xiii

E
EDIT command (DCL), 1–6
Editing

Ada source files, 1–6
Editors

DECTPU, 1–6
EDT, 1–6
EVE, 1–6
for editing DEC Ada source files, 1–6
LSE, 1–6

Index–10

/EDIT qualifier
MODIFY LIBRARY command (ACS),

3–7, A–119
EDT

default Ada source file editor, 1–6
Efficient coding

for smart recompilation, 5–11
ELABORATE pragma

obtaining information on, A–160
Elaboration

code for, A–84, A–97
displaying order of in executable image,

A–96
displaying order of in exported object file,

A–83
linker file for package, 6–11

/ENTERED qualifier
COPY UNIT command (ACS), A–49
DELETE UNIT command (ACS), A–67
DIRECTORY command (ACS), A–70
ENTER_UNIT command (ACS), A–79
EXTRACT SOURCE command (ACS),

A–86
MERGE command (ACS), A–115
REENTER command (ACS), A–141
SHOW LIBRARY command (ACS), A–156

Entered units
and rooted directories, 7–31
checking, A–20
copying, A–49
creating, A–77
deleting, A–65, A–67
effect of ACS COMPILE on, A–25, A–26,

A–27, A–78
effect of ACS RECOMPILE on, A–78,

A–121, A–123, A–124
effect on copying program libraries and

sublibraries, 7–29
entering, A–79
extracting source for, A–86
foreign, A–74
identifying, 2–21, A–70, A–156
library of DEC Ada predefined, 2–21
making current after new release or

update of DEC Ada, 7–35

Entered units (cont’d)
merging, A–115
obsolete, 2–21, A–78, A–121
obtaining device independence for, 7–31
predefined, A–53
reentering, A–141
repair of, 7–34, A–169, A–170
replacing, A–79, A–140

ENTER FOREIGN command (ACS), 1–13,
2–24, 6–3, A–74 to A–76

default qualifiers for, A–74
program library access required by, 7–17
wildcards allowed with, A–74

Entering
ACS Commands, 1–16
foreign files, 2–24
units, 2–18, 2–20

ENTER UNIT command (ACS), 1–13, 1–24,
2–18, 2–20, 2–22, A–77 to A–80

and copying program libraries, 7–30
default qualifiers for, A–77
entering entered units with, A–79
program library access required by, 7–17
reentering obsolete units with, 2–21
using after new release or update of DEC

Ada, 7–36
when to use, 2–21
wildcards allowed with, A–20, A–77

Environment task
debugger ID for, 8–2, 8–10
definition of, 8–2

Errors
compiler limits on, 4–20, A–8, A–33,

A–110, A–129
effect of compilation on program library,

4–1
reporting DEC Ada, F–1
reporting run-time, A–99

/ERROR_LIMIT qualifier
ADA command (DCL), 4–20, A–8
COMPILE command (ACS), 4–20, A–33
default value for, 4–20, A–9, A–33,

A–110, A–129
LOAD command (ACS), 4–20, A–110
RECOMPILE command (ACS), 4–20,

A–129

Index–11

EVALUATE command (debugger)
and tasks, 8–9

Evaluation
of library search paths, 3–3, 3–11

Event names (debugger)
see also individual event names by name
ABORT_TERMINATED, 8–31
ACTIVATING, 8–31
DEPENDENTS_EXCEPTION, 8–30
EXCEPTION_TERMINATED, 8–31
for Ada tasks, 8–29
HANDLED, 8–30
HANDLED_OTHERS, 8–30
PREEMPTED, 8–31
RENDEZVOUS_EXCEPTION, 8–30
RUN, 8–31
summary of, 8–30
SUSPENDED, 8–31
TERMINATED, 8–31

Eventpoints (debugger), 8–25
see also Tasks, Debugger
task-independent, 8–26
task-specific, 8–26

/EVENT qualifier
CANCEL BREAK command (debugger),

8–33
examples of, 8–31
SET BREAK command (debugger), 8–29
SET TRACE command (debugger), 8–29

EXAMINE command (debugger)
and tasks, 8–9, 8–22, 8–29

EXCEPTION_TERMINATED debugger event
name, 8–31

/EXCLUDE qualifier
LOAD command (ACS), A–110

/EXCLUSIVE qualifier
accessing program libraries using DECnet

FAL, 7–26
and ACS REORGANIZE, A–145
and ACS VERIFY/REPAIR, A–171
program library access required by, 7–17
SET LIBRARY command (ACS), 2–7,

2–8, A–148
using across DECnet, A–148

Executable image
as result of linking, 6–2, A–90, A–95
contents of, A–91, A–95, A–96, A–99
default specification for, 6–2
default specification for Ada, 6–2
location of after linking an Ada program,

1–10
/EXECUTABLE qualifier

LINK command (ACS), A–95
wildcards allowed with, A–95

Executing
an Ada program, 1–10
compilations in a batch mode, 4–18
compilations in a subprocess, 4–18
under control of the debugger, 1–10
without debugger control, 1–11

Execution
ACS commands for, 1–14

Execution closure
identifying obsolete units in, A–162

.EXE file
see Executable image

EXIT command (ACS), 1–15, 1–17, A–81
EXIT command (debugger), 1–10
Exiting

ACS commands, 1–17
Exit status

compiler, E–3
/EXPIRED qualifier

LOAD command (ACS), A–110
EXPORT command (ACS), 1–13, 1–24, 6–3,

A–82 to A–84, A–149
and mixed-language linking, 6–7
and read-only program libraries, 2–7
changing the value of SYSTEM.SYSTEM_

NAME with, 7–43, A–84
default object file specification from, 6–8,

A–83
default qualifiers for, 6–8, A–82
linking common code with, 6–8
program library access required by, 7–17
result of, 6–7, A–83

Exported units
creating object file for, A–82
required pragmas for, 6–8, A–83

Index–12

Exporting
Ada object files, 6–7
a main program, A–82, A–83
compilation units, 6–7, A–82
library packages, 6–7, A–83, A–84
the same unit more than once, 6–8

Export pragmas, A–83
External source files

definition of, 4–1
EXTRACT SOURCE command (ACS), 1–13,

A–85 to A–88, A–149
and read-only program libraries, 2–7
default qualifiers for, A–85
extracting entered units with, A–86
program library access required by, 7–17
wildcards allowed with, A–85

F
Files

conventions for naming Ada source, 1–20
creating source, 1–6
detecting inaccessible program library or

sublibrary, 7–31, A–169
displaying those associated with

compilation units, A–69
linking Ada units with foreign, 6–6, A–91
naming conventions for Ada source, 1–21

Floating-point types
default representation of LONG_FLOAT,

A–52, A–53, A–56, A–57, A–151,
A–152, A–156, A–160

displaying portability information on,
A–161

/FLOAT_REPRESENTATION qualifier
CREATE LIBRARY command (ACS),

A–52
CREATE SUBLIBRARY command (ACS),

A–56
SET PRAGMA command (ACS), A–152

Forcing recompilation
when smart recompilation is in effect,

5–6

Foreign (non-Ada) code
introducing into a library, 2–24

Fragments, 5–8
Full compilation, D–5
/FULL qualifier

DIRECTORY command (ACS), A–70
LINK command (ACS), 6–9, A–95
SHOW LIBRARY command (ACS), 2–28,

3–5, A–156
SHOW PROGRAM command (ACS),

A–160
SHOW TASK command (debugger), 8–19

G
Generic bodies

effect of compiling, 1–19, 1–23, 2–17
Generic code sharing

controlling, A–12, A–38, A–134
disabling, A–12, A–38, A–134
maximizing, 4–17, A–13, A–39, A–135

Generic expansiion
with smart recompilation in effect, 5–10

Generic instantiations, 1–18
and compilation unit dependences, 4–10
as obsolete units, 1–19
disabling code sharing for, A–12, A–38,

A–134
incomplete, 1–19, 1–23
sharing code generated for, 4–17, A–12,

A–38, A–134
source file naming conventions for, 1–21

Generic units, 1–18
dependences created, 4–10
forming completions of, 4–9

Getting started
with DEC Ada for experienced

programmers, 1–2
with DEC Ada for novice users, 1–3

Global symbols
cross-reference information on in image

map file, A–94

Index–13

Guidelines for network access to program
libraries, 7–23

H
HANDLED debugger event name, 8–30
HANDLED_OTHERS debugger event name,

8–30
HELP

debugger, 1–10
program library manager, 1–12

HELP command (ACS), 1–15, A–89
wildcards allowed with, A–89

/HOLD qualifier
SET TASK command (debugger), 8–14,

8–24
SHOW TASK command (debugger), 8–18

I
Identifiers, 5–9

limits on compilation unit, 2–11
Identifying

current and default paths, 3–5
IMAGELIB.OLB, 6–7, A–95, A–96, A–99
/INCLUDE qualifier

LINK command (ACS), 6–7, A–100
Incomplete generic instantiations, 1–23

as obsolete units, 1–19
checking for, 2–17
completing, 4–2, 4–3, 4–9, A–25, A–27,

A–122
reasons for, 4–9

Incomplete units
effect on linking, 6–1

Independence, 5–8
Informational messages

see Diagnostic messages
Initialization code

target-specific, A–99
Initialization file

for debugging tasking programs, 8–33
Inline expansion

controlling generic, A–11, A–36, A–132

Inline expansion (cont’d)
controlling subprogram, A–11, A–36,

A–132
controlling with compiler qualifiers,

A–10, A–36, A–132
diasabling, A–11, A–36, A–132
effect on debugging, 4–16
maximizing, 4–16
maximizing generic, 4–17, A–12, A–38,

A–134
maximizing subprogram, 4–17, A–12,

A–37, A–38, A–133, A–134
obtaining information on generic, A–160
obtaining information on subprogram,

A–160
INLINE keyword

/OPTIMIZE qualifier (ADA), 4–16, A–11
/OPTIMIZE qualifier (COMPILE), 4–16,

A–36
/OPTIMIZE qualifier (RECOMPILE),

4–16, A–132
INLINE pragma

effect of /[NO]OPTIMIZE qualifier on,
4–16, A–10, A–11, A–12, A–36, A–37,
A–132, A–133

effect on compilation, 1–23
effect on compilation unit dependences,

1–19
INLINE_GENERIC pragma

effect of /[NO]OPTIMIZE qualifier on,
4–16, A–10, A–11, A–12, A–13, A–36,
A–37, A–38, A–39, A–132, A–133,
A–134, A–135

effect on compilation, 1–23
effect on compilation unit dependences,

1–19
Inlining

with smart recompilation in effect, 5–10
Input-output packages

dependences caused by, 7–42
Instantiations

see Generic instantiations
Inter-dependence, 5–8

Index–14

K
/KEEP qualifier

COMPILE command (ACS), A–33
LINK command (ACS), A–96
LOAD command (ACS), A–106
MERGE command (ACS), A–116
RECOMPILE command (ACS), A–129

L
Language expressions

as debugger task expressions, 8–7, 8–8
Language-Sensitive Editor

see LSE
see program design language

Libraries
see Program libraries, Sublibraries, SCA

libraries
Library bodies

Ada rules for naming, 1–21
and execution closure, 1–24
and unit dependences, 1–19, 1–24
copying or entering foreign, 6–3
creating for non-Ada code, 6–4, A–45,

A–74
effects of compilation order on, 1–23
obsolete, 1–19
order-of-compilation rules for, 1–22
source file naming conventions for, 1–21

Library index file
and concealed-device logical names, 7–28
as source of protection information,

A–170
checking format of, 7–32, A–169
creating, A–52, A–56
default protection for, A–54, A–58
detecting uncataloged files in, 7–31,

A–169
effect of copying units on, A–48
effect of deleting units on, A–66
effect of library deletion on, A–59, A–62
effect of library merge on, A–115
relationship to entered units, A–78

Library index file (cont’d)
repair of, 7–33, A–171

Library manager
see Program library manager

Library packages
elaboration code for, 6–7, A–83, A–84,

A–97
foreign bodies for, A–45, A–74
object files for, 6–1

/LIBRARY qualifier
ADA command (DCL), A–4, A–5
ENTER FOREIGN command (ACS),

2–24, A–75
LINK command (ACS), 6–6, A–100
MODIFY LIBRARY command (ACS),

3–7, A–119
wildcards allowed with, A–4

Library search paths, 3–1
see also current paths, default paths
configuring and reconfiguring program

libraries, 3–8
definition of, 3–1
evaluation of, 3–3
in commands, 3–12
in default paths, 3–13
in files, 3–13
specifying, 3–3, 3–11
storing, 3–13
understanding how they are evaluated,

3–11
Library specifications, 1–22

Ada rules for naming, 1–21
and obsolete units, 1–19
dependences on, 1–19, 1–24
displaying information about, A–69
effect of copying units on, A–48
effect of deleting units on, A–65
effect of entering units on, A–78
effect of merging on, A–115
effect of reentering units on, A–140
extracting source code for, A–85
order-of-compilation rules for, 1–22
organizing source files for, 1–20
source file naming conventions for, 1–21

Index–15

Library units
Ada rules for naming, 1–21
dependences among, 1–19

Library version control file
creating, A–52, A–56
default protection for, A–54, A–58

LINK command (ACS), 1–9, 1–15, 1–24,
6–1, 6–2, A–90 to A–101, A–149

and mixed-language programs, 6–6
and read-only program libraries, 2–7
changing the value of SYSTEM.SYSTEM_

NAME with, 7–43, A–99
default qualifiers for, A–90
defaults, symbols, and logical names,

6–10
effect of, 6–2, A–90
example of linking Ada units and foreign

files with, 6–7
library errors detected by, 7–32
parameter for, 6–2, A–91
processing and output options for, 6–9
program library access required by, 7–17
steps performed by, 6–1, A–92
wildcards allowed with, A–82, A–91

LINK command (DCL), 1–9
and mixed-language programming, 6–3
and the ACS EXPORT command, 6–7

Linker, 1–1
directing diagnostic messages from, 6–9,

A–98
functions of, 6–1
invoking, 6–1, A–92
retaining command file for, A–94
saving command file for, 6–11

Linker options files, 6–2, 6–5, 6–7
Linking, 1–9, 6–1

see also LINK command, Linker
ACS commands for, 1–14
a foreign main program with Ada units,

6–6
against SYS$LIBRARY:IMAGELIB.OLB,

6–7, A–99
against SYS$LIBRARY:STARLET.OLB,

6–7, A–99

Linking (cont’d)
against user-defined default libraries,

A–99
an Ada main program with foreign files,

6–6
a program that will be debugged, A–95
basic concepts behind, 1–18, 1–19, 1–24
conventions, 6–10
DEC Ada units, 6–2
default system libraries during, 6–7,

A–99
default user-defined libraries, 6–7
effect of incomplete units on, 1–23
effect of obsolete units on, 1–19
example of exported units for, 6–8
executing in a subprocess, 6–10
executing in batch mode, 6–10
exported Ada units, 6–8
in a subprocess, A–100
in a target-specific environment, 7–43
in batch mode, A–98
mixed-language programs, 6–2, 6–7
non-Ada object modules, 6–2
object libraries, 6–2, 6–6, A–100
object library modules, 6–7
omitting the output symbol table, A–101
options files, A–101
preparing for mixed-language, 2–24
shareable image libraries, 6–2, 6–6,

A–100
shareable image library modules, 6–7
shareable images, 6–7, A–101
terminology related to, 1–18, 1–19, 1–23,

1–24
to prepare for debugging, 1–10

LINK symbol
definition of, 6–10

LISTING keyword
/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–112
/WARNINGS qualifier (RECOMPILE),

A–138

Index–16

/LIST qualifier
ADA command (DCL), A–9
COMPILE command (ACS), A–33, A–111
RECOMPILE command (ACS), A–129
wildcards allowed with, A–9, A–33,

A–111, A–129
LOAD command (ACS), 1–8, 1–15, A–102 to

A–113
comparision with the DCL Ada command,

4–4
comparison with other compilation

commands, 4–1
default batch queue for, A–107
default mode for, A–104
directing output from, A–106
executing in a subprocess, 4–18, A–104,

A–108
program library access required by, 7–17
retaining command file from, A–105

Loading units in a subprocess, 4–18
/LOAD qualifier

ADA command (DCL), A–9
using with the /SYNTAX_ONLY qualifier,

A–14
/LOCAL qualifier

COPY UNIT command (ACS), A–49
DELETE UNIT command (ACS), A–67
DIRECTORY command (ACS), A–70
ENTER UNIT command (ACS), A–79
EXTRACT SOURCE command (ACS),

A–87
MERGE command (ACS), A–116
SHOW LIBRARY command (ACS), A–156

Log file
see also Batch mode, /BATCH_LOG

qualifier, /LOG qualifier
location of batch mode during compilation,

4–20, A–28, A–105
location of batch mode during linking,

A–93
location of batch mode during

recompilation, A–125
Logical names

ADA$BATCH, 4–18, A–40, A–107, A–136
ADA$LIB, 4–19, A–4, A–147

Logical names (cont’d)
ADA$PREDEFINED, 2–21, A–52, A–53
ADA$SOURCE, 4–16
concealed device, 7–27
concealed-device, 7–28
conventions for compilation, 4–19
conventions for linker, 6–10
rooted directory, 7–29
SYS$BATCH, 4–18, A–40, A–98, A–107,

A–136
SYS$DISK, 6–2, A–26, A–153
SYS$OUTPUT, 4–19, A–22, A–39, A–71,

A–84, A–98, A–106, A–135, A–145,
A–157, A–160, A–171

/LOG qualifier, 2–11
CHECK command (ACS), A–21
COMPILE command (ACS), A–33
COPY FOREIGN command (ACS), A–46
COPY UNIT command (ACS), A–49
CREATE LIBRARY command (ACS),

A–53
CREATE SUBLIBRARY command (ACS),

A–57
DELETE LIBRARY command (ACS),

A–60
DELETE SUBLIBRARY command (ACS),

A–63
DELETE UNIT command (ACS), A–67
ENTER FOREIGN command (ACS),

A–75
ENTER UNIT command (ACS), A–79
EXPORT command (ACS), A–83
EXTRACT SOURCE command (ACS),

A–87
LINK command (ACS), A–96
LOAD command (ACS), A–106
MERGE command (ACS), A–116
RECOMPILE command (ACS), 4–8,

A–130
REENTER command (ACS), A–141
SET LIBRARY command (ACS), A–148
VERIFY command (ACS), 7–32, A–171

LONG_FLOAT pragma, A–151

Index–17

/LONG_FLOAT qualifier
CREATE LIBRARY command (ACS),

A–53
CREATE SUBLIBRARY command (ACS),

A–57
SET PRAGMA command (ACS), A–152

LSE, 1–1
see program design language
as Ada source file editor, 1–6
managing program development, 7–10

M
/MACHINE_CODE qualifier

ADA command (DCL), A–9
COMPILE command (ACS), A–34
RECOMPILE command (ACS), A–130

Main program, 1–18, 6–6
exporting, A–82, A–83
linking, A–91, A–96

/MAIN qualifier
EXPORT command (ACS), 6–8, A–83
LINK command (ACS), 6–6, A–96

Managing source code modifications, 7–11
Map file

as product of linking, A–93, A–94, A–95,
A–97

/MAP qualifier
LINK command (ACS), 6–9, A–97
wildcards allowed with, A–97

/MARK_CHANGE qualifier
DISPLAY command (debugger), 8–15

Maximal inline expansion, 4–16
Memory

controlling size of program library, A–53,
A–151, A–152

controlling size of sublibrary, A–57,
A–151, A–152

default size of program library, A–52,
A–151

default size of sublibrary, A–56, A–151
determining size of program library or

sublibrary, A–156, A–160

MEMORY_SIZE pragma, A–151
/MEMORY_SIZE qualifier

CREATE LIBRARY command (ACS),
A–53

CREATE SUBLIBRARY command (ACS),
A–57

SET PRAGMA command (ACS), A–152
MERGE command (ACS), 1–13, 2–30, 7–8,

A–114 to A–117
default qualifiers for, A–114
merging entered units with, A–115
program library access required by, 7–17
wildcards allowed with, A–114

Merging library units, A–114
Merging sublibrary and parent library units,

2–30
Messages

see Diagnostic messages
Mixed-language linking, 6–2

example of, 6–4
Mixed-language programming, 2–24
/MODIFIED qualifier

LOAD command (ACS), A–111
Modifying

default paths, 3–7
MODIFY LIBRARY command (ACS), 1–14,

A–118 to A–120
default qualifiers for, A–118
program library access required by, 7–17
required parameters for, A–118

Multiple targets
working with, 7–36

N
/NAME qualifier

COMPILE command (ACS), A–34
LINK command (ACS), A–97
LOAD command (ACS), A–106
RECOMPILE command (ACS), A–130

Names
conventions for Ada source file, 1–20
conventions for compilation unit, 1–20
debugger for single tasks, 8–9
debugger for task bodies, 8–9

Index–18

Names (cont’d)
debugger pseudotask, 8–7, 8–11
task event, 8–29

Nested sublibraries
see sublibraries

Network failures
effect on program libraries or compilation,

7–23
Network protection mechanisms

and program libraries, 7–23
%NEXT_TASK debugger pseudotask name,

8–11, 8–12
/NOCOPY_SOURCE qualifier

ADA command (DCL), A–6
COMPILE command (ACS), A–30
LOAD command (ACS), A–108
RECOMPILE command (ACS), A–126

/NODATE_CHECK qualifier
see also /DATE_CHECK qualifier
REENTER command (ACS), A–142

/NODEBUG qualifier
see also /DEBUG qualifier
RUN command (DCL), 1–11

/NOEDIT qualifier
MODIFY LIBRARY command (ACS),

A–119
/NOHOLD qualifier

SET TASK command (debugger), 8–24
SHOW TASK command (debugger), 8–18

/NOMAIN qualifier
see also /MAIN qualifier
EXPORT command (ACS), 6–8, A–82,

A–83
LINK command (ACS), 6–6, A–91, A–92,

A–96
NONE keyword

/DEBUG qualifier (ADA), A–6
/DEBUG qualifier (COMPILE), A–30
/DEBUG qualifier (RECOMPILE), A–127
default values of /OPTIMIZE options for,

A–13, A–39, A–135
/OPTIMIZE qualifier (ADA), A–10
/OPTIMIZE qualifier (COMPILE), A–36
/OPTIMIZE qualifier (RECOMPILE),

A–132

NONE keyword (cont’d)
/SHOW qualifier (ADA), A–14
/SHOW qualifier (RECOMPILE), A–136
/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–112
/WARNINGS qualifier (RECOMPILE),

A–138
/NONOTE_SOURCE qualifier

ADA command (DCL), A–10
COMPILE command (ACS), A–34
LOAD command (ACS), A–111
RECOMPILE command (ACS), A–130

/NOSYSLIB qualifier
LINK command (ACS), 6–7

/NOSYSSHR qualifier
LINK command (ACS), 6–7

/NOTE_SOURCE qualifier
ADA command (DCL), A–10
COMPILE command (ACS), A–34
LOAD command (ACS), A–111
RECOMPILE command (ACS), A–130

/NOTIFY qualifier
COMPILE command (ACS), A–34
LINK command (ACS), A–97
NOTIFY command (ACS), A–106
RECOMPILE command (ACS), A–130

/NOVERIFY qualifier
MODIFY LIBRARY command (ACS),

A–119
SET LIBRARY command (ACS), A–149

/[NO]VERIFY qualifier
MODIFY LIBRARY command (ACS), 3–8

Null task
debugger ID for, 8–10

O
Object files

controlling debugger symbol records in,
A–7, A–30, A–127

controlling traceback information in, A–7,
A–31, A–127

copying foreign into the current program
library, A–45

Index–19

Object files (cont’d)
default file type during linking, 6–6
entering, A–74, A–75
entering foreign into the current program

library, A–74
exporting Ada, A–82
linking, A–91
naming during linking, A–97
package elaboration, 6–1, 6–11
repair of, 7–33

Object libraries
see also object module libraries
default file type during linking, 6–6
entering into the current program library,

A–74, A–75
linking with Ada units, 6–2, A–91, A–100

Object module libraries
default during linking, 6–7, A–99
obtaining information about, A–96

Object modules
linking non-Ada with Ada units, 6–2
obtaining information about, A–93, A–95

/OBJECT qualifier
ENTER FOREIGN command (ACS),

2–24, A–75
EXPORT command (ACS), 6–8, A–83
LINK command (ACS), 6–11, A–97
wildcards allowed with, A–83, A–97

/OBSOLETE qualifier, 4–15
CHECK command (ACS), A–21
COMPILE command (ACS), A–34
RECOMPILE command (ACS), A–130
SHOW PROGRAM command (ACS),

A–161
Obsolete units, 1–19, 1–20, 1–23, 7–43,

7–44, A–151, A–152
see also incomplete generic instantiations
affecting which units are obsolete during

compilation, A–34
and foreign units, A–45, A–75
and generic completions, 4–10
asking the effect of on a program, A–161
created by new release or update of DEC

Ada, 7–35
effect on linking, 6–1

Obsolete units (cont’d)
entered, 2–21, A–27, A–78, A–124, A–142
identifying, A–21
identifying in the execution closure,

A–162
recompiling, 4–2, 4–3, 4–6, A–27, A–121,

A–122
using smart recompilation to recompile,

5–3
verifying, A–172

.OLB file
see Object module libraries, Shareable

images, Shareable image libraries
.OPT file

see Options files
Optimization options, 4–16
OPTIMIZE pragma

effect of compiler qualifiers on, A–10,
A–35, A–36, A–131, A–132

effect of /[NO]OPTIMIZE qualifier on,
4–16

/OPTIMIZE qualifier
ADA command (DCL), 4–16, A–10
COMPILE command (ACS), 4–16, A–35
effect on recompilation, 1–23
RECOMPILE command (ACS), 4–16,

A–131
Options files

default file type for, 6–7
entering, A–74, A–75
entering into the current program library,

A–74
linking with Ada units, 6–2, 6–7, A–91,

A–101
simplifying mixed-language linking with,

6–5
/OPTIONS qualifier

ENTER FOREIGN command (ACS),
2–24, A–75

LINK command (ACS), 6–7, A–101
Order of compilation

example of suitable, 1–8
for files specified with the ADA command,

A–4

Index–20

Output
see also /OUTPUT qualifier, /LOG

qualifier, SYS$OUTPUT logical name
directing linker, 6–9
directing program library manager and

compiler, 4–19
options during linking, 6–9
options for controlling compilation, 4–17

/OUTPUT qualifier
CHECK command (ACS), A–22
COMPILE command (ACS), 4–19, A–39
DIRECTORY command (ACS), A–71
EXPORT command (ACS), A–84
LINK command (ACS), 6–9, A–98
LOAD command (ACS), A–106
RECOMPILE command (ACS), 4–19,

A–135
REORGANIZE command (ACS), A–145
SHOW LIBRARY command (ACS), A–157
SHOW PROGRAM command (ACS),

A–160
VERIFY command (ACS), A–171
wildcards allowed with, A–22, A–39,

A–71, A–84, A–98, A–107, A–135,
A–145, A–157, A–161, A–171

Overloading resolution, 5–9

P
Packages, 1–18

elaboration of for linker, 6–11, A–97
saving the elaboration file for linking,

6–11
Parameter qualifier

definition of, A–1
Parent libraries

identifying, 2–28
merging modified units into, 2–30
specifying, A–57

/PARENT qualifier
CREATE SUBLIBRARY command (ACS),

2–3, A–57
Parent units, 1–21

Path names (debugger)
displaying task, 8–14

/PATH qualifier
ADA command (DCL), A–5
MODIFY LIBRARY command (ACS),

3–7, A–119
SET LIBRARY command (ACS), 3–4,

A–148
PCA, 1–1
Performance and Coverage Analyzer

see PCA
Portability

determining for an Ada program, 1–9,
7–36, A–13, A–40, A–136, A–161

factors affecting, 7–37
features listed in DEC Ada summaries of,

7–38
PORTABILITY keyword

/SHOW qualifier (ADA), A–13
/SHOW qualifier (COMPILE), A–40,

A–41
/SHOW qualifier (RECOMPILE), A–136

/PORTABILITY qualifier
SHOW PROGRAM command (ACS), 1–9,

2–14, A–161
Positional qualifier

definition of, A–1
Pragmas

see also individual pragmas by name
and portability, 7–41, A–161
export, A–83
obtaining information about, A–15, A–43,

A–113, A–139
placement of when they affect a whole

compilation, 1–22
redefining values of with the program

library manager, A–151
required for copied foreign units, A–45
required for entered foreign units, A–75

Predefined libraries
see ADA$PREDEFINED logical name,

ADA$SCA_PREDEFINED logical
name

Index–21

/PREDEFINED qualifier
CREATE LIBRARY command (ACS),

A–53
Predefined subprograms

and portability, 7–40
Predefined types

and portability, 7–39
Predefined units

and library creation, A–52, A–53
and portability, 7–39
updating references after new release or

update of DEC Ada, 7–36
PREEMPTED debugger event name, 8–31
/PRELOAD qualifier, 4–14

COMPILE command (ACS), A–39
/PRINTER qualifier

COMPILE command (ACS), A–40
LINK command (ACS), A–98
LOAD command (ACS), A–107
RECOMPILE command (ACS), A–135

Priority
task, 8–14

/PRIORITY qualifier
SET TASK command (debugger), 8–24
SHOW TASK command (debugger), 8–18

Problem reporting, F–1
Processing

options during linking, 6–9
options for compilation, 4–17

/PROCESSING_LEVEL qualifier
CHECK command (ACS), A–22
SHOW PROGRAM command (ACS),

A–162
Professional Development option, 5–1

see also directory structure, program
library file-block caching, smart
recompilation

overview of smart recompilation, 5–2
using directory structure feature, 5–14
using program library file-block caching,

5–13
Program design language, D–1

DEC Ada commands used, D–1
design qualifiers, D–10
levels of program processing, D–4

Program design language (cont’d)
name resolution, D–8
placeholders, D–7
processing level qualifiers, D–11
restrictions on placeholders, D–6

Program design language support
see program design language

Program development
see also Compiling, Debugging, Editing,

Linking, RUN command
ACS commands for, 1–14
basic concepts behind, 1–18
best /OPTIMIZE option for, 4–16
compilation, 1–8
decomposed stack example, 7–5
decomposing Ada programs during, 7–1
distributed, 7–24
execution, 1–10
linking, 1–9
managing, 7–1
managing source code during, 7–11
modular, 1–18
setting up efficient program library

structure, 7–6
source code directories for, 7–10
terminology related to, 1–18
tool integration, 7–10

Program development environment, 1–1
see also CMS, Debugger, DEC/Test

Manager, Linker, LSE, PCA, SCA
Program libraries, 2–1, 2–2

see also ACS commands, Program library
manager, Sublibraries

accessing from multiple systems, 7–22
accessing using DFS, 7–24
access required by ACS commands, 7–16
ACL protection, 7–16
ACS commands for managing, 1–12
backing up and restoring, 7–30
compiling units into, 4–4
configuring and reconfiguring using

library search paths, 3–8
configuring using DECnet FAL, 7–24
configuring using DFS, 7–24
contents of, A–69, A–156, A–157

Index–22

Program libraries (cont’d)
controlling access, 2–6
copying, 7–29
creating, 1–6, 2–3, A–51
currency of, 1–23, A–20
DECnet access to, 7–24, A–51, A–148
DECnet FAL access to, 7–27
default protection for, 2–4
default protection of directory files for,

A–52, A–54
defining a current, 1–7, 2–5, A–146
definition of, 1–6
deleting, 2–9, A–59
deleting units from, 2–25, A–65
dependence portability information, 2–12
displaying unit information, 2–11
distributed, 7–24
effect of compilation on, 1–8, A–4
effect of network failures on, 7–23
efficient DECnet access to, 7–23
efficient structure for, 7–6
entering units into, 2–20
evaluating and verifying the current path

of, A–119
example directory structure for, 1–7
general guidelines for network access,

7–23
identifying, 2–5
introducing non-Ada code into, 2–24,

A–45, A–74
limiting access to, 2–8, A–147, A–148
maintaining, 7–27
making current after new release or

update of DEC Ada, 7–35
making independent references to, 7–27
merging modified units into, A–114
modifying the path of, A–119
names of units in, 1–21
Network protection mechanisms for, 7–23
obtaining copies of copied source files

from, A–85
obtaining library information, 2–5
predefined DEC Ada

(ADA$PREDEFINED), 2–21
protecting, 2–9, 7–16, 7–18, 7–20, A–53

Program libraries (cont’d)
redefining the default path, A–118
regression protection, 7–9
reorganizing, 7–16, 7–31, A–144
restrictions on using across DECnet,

7–26, A–51, A–148
sharing, 2–6
sharing compilation units among, 2–18,

A–47, A–77
structure of, 2–1
updating, 1–23, 4–1, A–4, A–14, A–48,

A–66
using DCL commands with, 1–18
using units from other libraries, 2–18
value of SYSTEM.SYSTEM_NAME for,

7–43, A–52, A–151
verifying and repairing inconsistencies in,

7–31, A–169, A–170, A–171
when exclusive access is required for,

7–34
working with read-only, 2–7

Program library file-block caching, 5–1,
5–13

Program library manager, 1–1, 1–19, 1–20,
1–22

and concealed-device logical names, 7–28
as interface to linker, 1–9
as interface to the linker, 6–1, 6–2
entering ACS commands, 1–16
exiting from, 1–17
file naming conventions for, 1–21
interactive commands for, 1–15
invoking interactively, 1–16
online HELP for, 1–12
overview of, 1–12
sensitivity to target differences, 7–42
use of ACS commands, 1–12

Programs
efficient coding for smart recompilation,

5–11
Program sublibraries

see Sublibraries
Program units, 1–18

see also Compilation units

Index–23

Protection
checking consistency of library and

sublibrary file, 7–32
detecting inconsistent file, 7–31, A–170
library index file, A–54, A–58
library version control file, A–54, A–58
program library, 2–9, A–53
program library directory file, A–52,

A–54
repairing inconsistent file, A–171
required for ACS command access, 7–16
sublibrary, A–55, A–57
sublibrary directory file, A–56
UIC-based program library, 7–18

/PROTECTION qualifier
CREATE LIBRARY command (ACS),

2–4, 2–9, A–53
CREATE SUBLIBRARY command (ACS),

2–4, A–57
Pseudotask names (debugger), 8–7, 8–11

%ACTIVE_TASK, 8–11
%CALLER_TASK, 8–12
%NEXT_TASK, 8–12
%VISIBLE_TASK, 8–11

Q
Qualifiers

see also Command qualifiers, Positional
qualifiers, Parameter qualifiers,
individual qualifiers by name

conventions for placement of, A–1
types of, A–1

/QUEUE qualifier
COMPILE command (ACS), A–40
LINK command (ACS), A–98
QUEUE command (ACS), A–107
RECOMPILE command (ACS), A–136

R
READY task state, 8–15
/READ_ONLY qualifier

program library access required by, 7–18

/READ_ONLY qualifier (cont’d)
SET LIBRARY command (ACS), 2–6,

2–7, A–148
Recompilation, 1–20, A–121

and COMPILE command, A–27
and copied source files, A–124
and generic completions, 4–10
forcing, 4–14
forcing for a whole program, A–125
forcing when smart recompilation is in

effect, 5–6
implicit, 7–43

RECOMPILE command (ACS), 1–11, 1–15,
1–20, 1–24, A–121 to A–139

and copied source files, A–121, A–124,
A–126

comparison with other compilation
commands, 4–1

completing generic instantiations with,
4–9

default batch queue for, 4–18, A–136
default mode for, A–123
default qualifiers for, A–121
determining program portability with,

7–36, A–136
differences against ACS COMPILE

command, 4–7
directing output from, 4–19, A–135
executing in a subprocess, 4–18
forcing the recompilation of a set of units

with, 4–14, A–125
generating data analysis files with,

A–124
library errors detected by, 7–32
making obsolete units current with, 4–6
optimizing code with, 4–16
parameters for, A–122
program library access required by, 7–17
retaining command file from, A–125
specifying default batch log file for, 4–20,

A–124
steps performed by, A–123
wildcards allowed with, A–122

Index–24

Recompiling
a complete set of units, 4–14
a DEC Ada program, 4–1
after a new release or update of DEC Ada,

7–35
an entire program, 4–9
entered units, A–123
generic units, 4–9
obsolete units, 4–6
obsolete units using smart recompilation,

5–3
Reconfiguring

program libraries using library search
paths, 3–8

REENTER command (ACS), 1–14, 2–21,
2–22, 7–29, A–140 to A–143

copying entered units with, A–141
default qualifiers for, A–140
program library access required by, 7–17
wildcards allowed with, A–140

Reentering
see also Entered units, Entering
units, 2–21

REEORGANIZE command (ACS), A–144 to
A–145

Regression protection, 7–9
RENDEZVOUS_EXCEPTION debugger

event name, 8–30
REORGANIZE command (ACS), 1–14

interaction with ACS VERIFY command,
A–170

program library access required by, 7–17
Reorganizing library structures, 7–16
/REPAIR qualifier

accessing program libraries using DECnet
FAL, 7–27

correcting program library or sublibrary
errors with, 7–33, A–170

corrective action taken by, 7–33, A–171
exclusive access required for, 7–34,

A–171
program library access required by, 7–18
VERIFY command (ACS), 7–31, A–171

/REPLACE qualifier
COPY FOREIGN command (ACS), A–46
COPY UNIT command (ACS), 2–19, A–49
ENTER FOREIGN command (ACS),

A–76
ENTER UNIT command (ACS), 2–21,

2–22, 7–29, A–79
LOAD command (ACS), A–111

Representation clauses
and portability, 7–40

Resolving access types, 5–10
/RESTORE qualifier

SET TASK command (debugger), 8–24
Rooted directories, 7–29

see also Concealed-device logical names
and entered units, 7–31
and sublibrary trees, 7–27

RUN command (DCL), 1–10, 1–14
default file type for, 1–10
overriding debugger when executing,

1–11
RUN debugger event name, 8–31
RUNNING task state, 8–15
Run-Time Diagnostic Messages, E–5

S
SCA, 1–1

see program design language
integration with LSE, 1–6

Search lists
ADA$SOURCE logical name for

COMPILE, 4–16
creating for ACS COMPILE, 4–15, A–153
default order for ACS COMPILE, A–153
displaying ACS COMPILE, A–165

/SELECTIVE_SEARCH qualifier
LINK command (ACS), A–101

Separate compilation, 1–18
SET BREAK command (debugger), 8–29

see also Event names
and tasks, 8–25
event names for, 8–29

Index–25

SET DEFAULT command (DCL), 1–5
SET EVENT_FACILITY command

(debugger), 8–30
SET LIBRARY command (ACS), 1–7, 1–14,

2–4, 2–5, 2–7, 2–8, A–146 to A–150
default qualifiers for, A–146
program library access required by, 7–17

SET MESSAGE command (DCL), E–1
SET PRAGMA command (ACS), 1–14, 7–43,

A–151 to A–152
default qualifiers for, A–151
program library access required by, 7–18

SET PROTECTION command (DCL), 1–18,
2–9

SET SOURCE command (ACS), 1–15,
A–153 to A–154

effect on ACS COMPILE, 4–15, A–153
specifying CMS$LIB logical name with,

A–154
SET TASK command (debugger), 8–11,

8–12, 8–14, 8–23, 8–36
qualifiers for, 8–23

Setting compiler error limits, 4–20
Setting up an efficient program library

structure, 7–6
Setting up source code directories, 7–7
SET TRACE command (debugger)

see also Event names
and tasks, 8–25
event names for, 8–29

Shareable image libraries
default during linking, A–99
default file type during linking, 6–6
entering into the current program library,

A–74, A–75
linking with Ada units, 6–2, A–91, A–100

Shareable images
creating with ACS LINK command, 6–9
default during linking, 6–7
default file type for, 6–7
entering into the current program library,

A–74, A–76
linking with Ada units, 6–7, A–91, A–101

/SHAREABLE qualifier
ENTER FOREIGN command (ACS),

2–24, A–76
LINK command (ACS), 6–7, A–101

SHARE keyword
/OPTIMIZE qualifier (ADA), 4–17
/OPTIMIZE qualifier (COMPILE), 4–17
/OPTIMIZE qualifier (RECOMPILE),

4–17
SHARE_GENERIC pragma

effect of /[NO]OPTIMIZE qualifier on,
4–16, A–10, A–12, A–13, A–36, A–38,
A–39, A–132, A–134, A–135

Sharing units, 2–18
SHOW BREAK command (debugger)

to identify set task events, 8–33
SHOW EVENT_FACILITY command

(debugger), 8–30
SHOW LIBRARY (ACS)

example, 3–6
SHOW LIBRARY command (ACS), 1–7,

1–14, 2–5, A–149, A–155 to A–158
and read-only program libraries, 2–7
default qualifiers for, A–155
determining the value of SYSTEM_NAME

with, 7–43, A–156
displaying library contents with, A–157
example, 2–5
identifying entered units with, A–156
identifying parent libraries with, 2–28
program library access required by, 7–18
wildcards allowed with, A–155

SHOW PROGRAM command (ACS), 1–14,
1–24, 2–12, A–149, A–159 to A–164

and read-only program libraries, 2–7
asking the effect on a program if some

units are obsolete, A–161
default qualifiers for, A–159
determining target dependences with,

7–43
displaying dependence information with,

A–160
identifying entered units with, A–160
identifying obsolete units in the execution

closure, A–162

Index–26

SHOW PROGRAM command (ACS) (cont’d)
obtaining portability information with,

7–38, A–161
program library access required by, 7–18
wildcards allowed with, A–159

/SHOW qualifier
ADA command (DCL), A–13
COMPILE command (ACS), A–40
determining program portability with,

7–36
obtaining portability information with,

7–38
RECOMPILE command (ACS), A–136

SHOW SOURCE command (ACS), 1–15,
A–165

determining ACS COMPILE search list
with, 4–16

SHOW SYMBOL command (debugger)
debugging overloaded task accept

statements with, 8–28
SHOW TASK command (debugger), 8–10,

8–13, 8–14, 8–17
debugging overloaded task entry calls

with, 8–29
highlighting state changes with, 8–15
information-selection qualifiers for, 8–19
mixing task list and task selection

qualifiers with, 8–18
task selection qualifiers for, 8–18

SHOW TRACE command (debugger)
to identify set task events, 8–33

SHOW VERSION command (ACS), 1–14,
A–166

and read-only program libraries, 2–7
program library access required by, 7–18

/SILENT qualifier
effect on automatic stack checking, 8–37

/SINCE qualifier
LOAD command (ACS), A–112

Smart recompilation, 5–2
see also Recompilation, /SMART_

RECOMPILATION
coding programs efficiently for, 5–11
effect on inlining and generic expansion,

5–10

Smart recompilation (cont’d)
effect when pragmas and representation

clauses change, 5–11
effect when the pragma ELABORATE

changes, 5–11
effect when the Pragma INTERFACE

and related import-export pragmas
change, 5–11

effect when with and use clauses change,
5–10

forcing recompilation, 5–6
fragments, inter-dependence, and

independence, 5–8
optimizing the development environment

for, 5–7
searching for identifiers and overloading

resolution, 5–9
understanding inter-unit dependences,

5–8
using to recompile obsolete units, 5–3

/SMART_RECOMPILATION
CHECK command (ACS), A–22
COMPILE command (ACS), A–41
LOAD command (ACS), A–107
RECOMPILE command (ACS), A–136
SHOW PROGRAM command (ACS),

A–162
/SMART_RECOMPILATION qualifier

see also Smart recompilation
ADA command (DCL), A–14

Software Performance Report (SPR), F–1
/SOURCE

EXAMINE command (debugger), 8–29
Source code

editing, 1–6
extracting from program libraries or

sublibraries, A–85
Source Code Analyzer

see program design language
see SCA

Source files
ACS COMPILE search lists for, 4–15,

4–16, A–153
and ACS COMPILE command, A–25,

A–34, A–111, A–130

Index–27

Source files (cont’d)
and compilation, 4–2, A–4
determining ACS COMPILE search lists

for, 4–16, A–165
obtaining program library information

about, A–70
SPACE keyword

default values of /OPTIMIZE options for,
A–13, A–39, A–135

/OPTIMIZE qualifier (ADA), A–10
/OPTIMIZE qualifier (COMPILE), A–35
/OPTIMIZE qualifier (RECOMPILE),

A–131
SPAWN command (ACS), 1–15, A–167 to

A–168
Specifications

see also Library specifications
Ada, 1–18, 1–24

/SPECIFICATION_ONLY qualifier
and /CLOSURE qualifier, A–29, A–125
COMPILE command (ACS), A–41
COPY UNIT command (ACS), A–50
DELETE UNIT command (ACS), A–67
DIRECTORY command (ACS), A–71
ENTER UNIT command (ACS), A–80
EXTRACT SOURCE command (ACS),

A–87
MERGE command (ACS), A–117
RECOMPILE command (ACS), A–137
REENTER command (ACS), A–142
SHOW LIBRARY command (ACS), A–157

Specifying
library search paths, 3–3, 3–11
library search paths in commands, 3–12
library search paths in default paths,

3–13
SPR

requirements for submitting, F–1
Stack checking

automatic debugger, 8–37
STARLET.OLB, 6–7, A–95, A–96, A–99
/STATE qualifier

SHOW TASK command (debugger), 8–18

/STATISTICS qualifier
CHECK command (ACS), A–23
COMPILE command (ACS), A–41
RECOMPILE command (ACS), A–137
SHOW TASK command (debugger), 8–19

STATUS keyword
/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–113
/WARNINGS qualifier (RECOMPILE),

A–139
STATUS messages, E–4
Storing

library search paths, 3–13
Sublibraries, 2–1

see also Program libraries
ACS commands for, 2–27
backing up and restoring, 7–30
changing the parent, 2–29
copying, 7–29
creating, 2–3, A–55
default protection of directory files for,

A–56, A–58
defining a parent library for, 2–3, A–57
definition of, 2–26
deleting, A–62
distributed, 7–24
identifying the parent library of, 2–28
library index file, A–56, A–58
library version control file, A–56, A–58
maintaining, 7–27
making current after new release or

update of DEC Ada on, 7–35
merging modified units from, 2–30
modifying and testing units in, 2–30
nested, 2–28, A–56, A–62, A–63
protecting, 7–16, 7–18, 7–20, A–55, A–57
reorganizing, 7–31
restrictions on using across DECnet,

7–26, A–148
structure of, 2–1
testing units in, 2–32
updating, 1–23
value of SYSTEM.SYSTEM_NAME for,

7–43, A–56, A–58, A–151

Index–28

Sublibraries (cont’d)
verifying and repairing inconsistencies in,

7–31, A–169, A–170
working with, 2–26

SUBMIT command (DCL), 6–11
/SUBMIT qualifier, 4–18

COMPILE command (ACS), A–42
LINK command (ACS), 6–9, 6–10, A–98
LOAD command (ACS), A–107
RECOMPILE command (ACS), A–137

Subprocess
and compilation information, 4–19
and linker information, 6–10
attaching to program library manager

from, A–18
executing ACS COMPILE in, 4–18, A–27,

A–42
executing ACS LOAD in, 4–18, A–104,

A–108
executing ACS RECOMPILE in, 4–18,

A–123, A–137
linking in, 6–10, A–92, A–98, A–100
spawning from the program library

manager, A–167
Subprocess mode

and ACS COMPILE, A–42
Subprograms, 1–18
Subunits, 1–19

Ada rules for naming, 1–21
and execution closure, 1–24
compilation unit dependences among,

1–19
copying, A–48
deleting, A–65
effects of compilation order on, 1–23
entering, A–78
obsolete, 1–19
order-of-compilation rules for, 1–22
reentering, A–140
source file naming conventions for, 1–21

SUPPLEMENTAL keyword
/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–113
/WARNINGS qualifier (RECOMPILE),

A–138

SUPPLEMENTAL messages, E–4
SUPPRESS pragma

and /[NO]CHECK compilation qualifier,
A–6, A–29, A–125

SUPPRESS_ALL pragma
and /[NO]CHECK compilation qualifier,

A–6, A–29, A–125
SUSPENDED debugger event name, 8–31
SUSPENDED task state, 8–15
Symbolic Debugger

see Debugger
Symbols

ADA, 4–19
conventions for compilation, 4–19
conventions for linker, 6–10
creating for debugger, A–7, A–30, A–95,

A–127
LINK, 6–10
obtaining information on linker, A–96
obtaining linker cross-reference for, A–94
resolving undefined linker, A–100

SYMBOLS keyword
/DEBUG qualifier (ADA), A–7
/DEBUG qualifier (COMPILE), A–30
/DEBUG qualifier (RECOMPILE), A–127

Symbol table
omitting during the link with Ada units,

A–101
Syntax checking, D–4
/SYNTAX_ONLY qualifier

ADA command (DCL), A–14
COMPILE command (ACS), A–42
RECOMPILE command (ACS), A–137

SYS$BATCH
default system batch queue, A–136

SYS$BATCH logical name
default batch queue for ACS COMPILE

and RECOMPILE, 4–18
default system batch queue, A–40, A–98,

A–107
SYS$DISK logical name

and COMPILE search order, A–26,
A–153

involvement in linking, 6–2

Index–29

SYS$LIBRARY logical name, 6–7
SYS$OUTPUT logical name

default for compilation output, 4–19,
A–39, A–106, A–135

default for linker output, A–98
default for program library manager

output, A–22, A–71, A–84, A–145,
A–157, A–160, A–171

SYSGEN parameters
effect on program library access, 7–23

/SYSLIB qualifier
LINK command (ACS), A–99

/SYSSHR qualifier
LINK command (ACS), A–99

SYSTEM (predefined package)
and portability, 7–39
implicit recompilation of, 7–43
restoring after accidental deletion, A–66

System libraries
default during linking, 6–7, A–99

System name
see SYSTEM_NAME constant

SYSTEM_NAME constant (in package
SYSTEM), 7–42

default value of, 7–43, A–52, A–56,
A–151

dependences caused by, 7–42
determining value of, 7–43, A–156
effect on ACS EXPORT, 6–9, A–84
effect on compilation unit dependences,

1–19
establishing value of, A–54, A–58
permanently setting the value of, 7–43,

A–151
temporarily setting the value of, 7–43,

A–84, A–99
SYSTEM_NAME pragma, 7–43, A–84,

A–99, A–151
/SYSTEM_NAME qualifier

CREATE LIBRARY command (ACS),
A–54

CREATE SUBLIBRARY (ACS), A–58
EXPORT command (ACS), 6–9, A–84
LINK command (ACS), A–99
SET PRAGMA command (ACS), A–152

T
Target systems

see also SYSTEM_NAME constant
working with more than one, 7–36

Task bodies
debugger names for, 8–9
implementation of, 8–9
treatment of by debugger, 8–9

%TASK debugger task ID, 8–9
Task IDs

see also %TASK debugger task ID
debugger, 8–2, 8–7, 8–9

Task list
debugger, 8–17

Task objects
definition of, 8–8
treatment of by debugger, 8–9

/TASK qualifier
EXAMINE command (debugger), 8–22

Tasks
see also Environment task, Null task,

Task bodies, Task objects
as program units, 1–18
caller, 8–12
changing characteristics of in debugger,

8–23
cycling through during debugging, 8–12
debugger eventpoints for, 8–25
debugger expressions for, 8–7
debugger names for single, 8–9
debugger states for, 8–15
debugger substates for, 8–16
debugger support of Ada attributes for,

8–13
debugging, 8–1

see also Pseudotask names, Task IDs
debugging nonexistent, 8–10
debugging time-sliced, 8–36
definition of, 8–8
determining debugger task IDs for, 8–10
displaying information about in the

debugger, 8–13, 8–14
effect on watchpoints, 8–37

Index–30

Tasks (cont’d)
examining and manipulating with

debugger, 8–22
initialization file for debugging, 8–33
monitoring using the debugger, 8–29
next, 8–12
obtaining state information from

debugger, 8–14
sample program for debugging, 8–2
selecting for display during debugging,

8–17
selection qualifiers for debugging, 8–17
separation compilation of, 1–19
setting breakpoints and tracepoints on,

8–27
specifying list of to debugger, 8–17
stack checking using debugger, 8–37
visible, 8–11

Task selection qualifiers
debugger, 8–17

Task states, 8–15
Task substates, 8–16
Task switching

debugging, 8–25
$TASK_BODY debugger suffix, 8–9, 8–27
TERMINAL keyword

/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–112
/WARNINGS qualifier (RECOMPILE),

A–138
TERMINATED debugger event name, 8–31
TERMINATED task state, 8–15
TIME keyword

default values of /OPTIMIZE options for,
A–13, A–39, A–135

/OPTIMIZE qualifier (ADA), A–10
/OPTIMIZE qualifier (COMPILE), A–35
/OPTIMIZE qualifier (RECOMPILE),

A–131
Time slicing

debugging programs involving, 8–36
TIME_SLICE pragma

dependences caused by, 7–42
effect on debugging tasking programs,

8–36

TIME_SLICE pragma (cont’d)
obtaining information on, A–160
setting new value of with debugger, 8–36
target dependences of, 7–45

/TIME_SLICE qualifier
SET TASK command (debugger), 8–24,

8–36
SHOW TASK command (debugger), 8–19

TRACEBACK keyword
/DEBUG qualifier (ADA), A–7
/DEBUG qualifier (COMPILE), A–31
/DEBUG qualifier (RECOMPILE), A–127

/TRACEBACK qualifier
LINK command (ACS), 6–9, A–99

Tracepoints (debugger)
setting on task bodies, entry calls, accept

statetments, 8–27
setting on tasks, 8–25

U
UNCHECKED_CONVERSION (predefined

function), 7–40
UNCHECKED_DEALLOCATION (predefined

procedure), 7–40
Understanding

current and default paths, 3–2
how library search paths are evaluated,

3–11
Understanding inter-unit dependences, 5–8
Units

see also compilation units, library units,
program units, obsolete units,
subunits

/UNITS qualifier
SHOW LIBRARY command (ACS), A–157

use clauses, 5–10
/USERLIBRARY qualifier

LINK command (ACS), 6–7, A–99

Index–31

V
VAXELN Ada

accounting for differences from DEC Ada,
7–42

VAXELN_SERVICES package
dependences caused by, 7–42

VERIFY command (ACS), 1–14, 7–31,
A–169 to B–1

and read-only program libraries, 2–7
default qualifiers for, A–169
exclusive access required for, 7–34
library error conditions checked by, 7–32
program library access required by, 7–18
repairing program libraries after network

failure with, 7–23
wildcards allowed with, A–169

/VERIFY qualifier
MODIFY LIBRARY command (ACS),

A–119
SET LIBRARY command (ACS), A–149

/VISIBLE
SET TASK command (debugger), 8–11

/VISIBLE qualifier
SET TASK command (debugger), 8–24

%VISIBLE_TASK debugger pseudotask
name, 8–11

VMS systems
using DEC Ada efficiently, 7–14

W
/WAIT qualifier

COMPILE command (ACS), 4–18, A–42
LINK command (ACS), 6–9, 6–10, A–100
LOAD command (ACS), A–108
RECOMPILE command (ACS), 4–18,

A–137
WARNINGS keyword

/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–112
/WARNINGS qualifier (RECOMPILE),

A–138

/WARNINGS qualifier
ADA command (DCL), A–14
compilation commands, E–4
COMPILE command (ACS), A–42
controlling informational and warning

messages with, E–4
defaults for (ADA), A–15
defaults for (COMPILE), A–43
defaults for (LOAD), A–113
defaults for (RECOMPILE), A–139
LOAD command (ACS), A–112
possible code values for, E–4
RECOMPILE command (ACS), A–138

Watchpoints (debugger)
in tasking programs, 8–26, 8–37

WEAK_WARNINGS keyword
/WARNINGS qualifier (ADA), A–15
/WARNINGS qualifier (COMPILE), A–43
/WARNINGS qualifier (LOAD), A–113
/WARNINGS qualifier (RECOMPILE),

A–138
WEAK_WARNINGS messages, E–4
Wildcards

in ACS commands, 2–10
with clauses, 5–10
with clauses

and closure of a set of compilation units,
1–24

and obsolete units, 1–19
and order of compilation, 1–22

Working directory
creating a, 1–5
definition of, 1–5

Index–32

	DEC Ada Developing Ada Programs on OpenVMS Systems
	Contents
	Preface
	1 Introduction to the DEC Ada Program Development Environment
	1.1 Getting Started with DEC Ada for the Experienced Programmer
	1.2 Getting Started with DEC Ada for the Novice User
	1.3 Using the DEC Ada Program Library Manager
	1.4 Concepts and Terminology

	2 Working with DEC Ada Program Libraries and Sublibraries
	2.1 Program Library and Sublibrary Operations
	2.2 Unit Operations
	2.3 Using Program Sublibraries

	3 Working with DEC Ada Library Search Paths
	3.1 Understanding Current and Default Library Search Paths
	3.2 Defining the Current Path
	3.3 Identifying the Current and Default Paths
	3.4 Modifying the Default Path
	3.5 Configuring and Reconfiguring Program Libraries Using Library Search Paths
	3.6 Specifying Library Search Paths

	Compiling and Recompiling DEC Ada Programs
	4.1 Compiling Units into a Program Library
	4.2 Recompiling Obsolete Units
	4.3 Completing Incomplete Generic Instantiations
	4.4 Compiling a Modified Program
	4.5 Forcing the Recompilation of a Set of Units
	4.6 Using Search Lists for External Source Files
	4.7 Choosing Optimization Options
	4.8 Processing and Output Options

	5 Using the Professional Development Option
	5.1 Overview of Smart Recompilation
	5.2 Overview of Program Library File-Block Caching
	5.3 Overview of the Directory Structure Feature

	6 Linking Programs
	6.1 Linking Programs Having Only DEC Ada Units
	6.2 Linking Mixed-Language Programs
	6.3 Processing and Output Options

	7 Managing Program Development
	7.1 Decomposing Your Program for Efficient Development
	7.2 Setting up an Efficient Program Library Structure
	7.3 Integration with Other DEC Tools
	7.4 Efficient Use of DEC Ada on VMS Systems
	7.5 Protecting Program Libraries
	7.6 Accessing Program Libraries from Multiple Systems
	7.7 General Guidelines for Network Access
	7.8 Accessing Program Libraries Using DFS
	7.9 Accessing Progam Libraries with DECnet FAL
	7.10 Maintaining Program Libraries
	7.11 Working with Multiple Targets

	8 Debugging DEC Ada Tasks
	8.1 A Sample Tasking Program
	8.2 Referring to Tasks in Debugger Commands
	8.3 Displaying Task Information (SHOW TASK)
	8.4 Examining and Manipulating Tasks
	8.5 Changing Task Characteristics (SET TASK)
	8.6 Setting Breakpoints and Tracepoints
	8.7 Additional Task-Debugging Topics

	A ACS Command Dictionary
	($) ADA
	ATTACH
	CHECK
	COMPILE
	COPY FOREIGN
	COPY UNIT
	CREATE LIBRARY
	CREATE SUBLIBRARY
	DELETE LIBRARY
	DELETE SUBLIBRARY
	DELETE UNIT
	DIRECTORY
	ENTER FOREIGN
	ENTER UNIT
	EXIT
	EXPORT
	EXTRACT SOURCE
	HELP
	LINK
	LOAD
	MERGE
	MODIFY LIBRARY
	RECOMPILE
	REENTER
	REORGANIZE
	SET LIBRARY
	SET PRAGMA
	SET SOURCE
	SHOW LIBRARY
	SHOW PROGRAM
	SHOW SOURCE
	SHOW VERSION
	SPAWN
	VERIFY

	B Comparison of DEC Ada Commands for ULTRIX and VMS Systems
	C Supplemental Information for Debugging Ada Programs
	C.1 Sample Debugging Session
	C.2 Using the Package GET_TASK_INFO

	D Program Design Language Support
	D.1 Program Design Support
	D.2 Program Processing
	D.3 Restrictions on Placeholders
	D.4 Name Resolution
	D.5 Design Qualifiers
	D.6 Processing Level Qualifiers

	E Diagnostic Messages
	E.1 Diagnostic Message Format
	E.2 Diagnostic Messages and Their Severity
	E.3 Informational Messages and the /[NO]WARNINGS Qualifier
	E.4 Run-Time Diagnostic Messages

	F Reporting Problems
	Index

