
DEC Ada
Language Reference Manual
Order Number: AA–PYZAB–TK

June 1995

This manual represents the Digital-supplemented text of ANSI/MIL-
STD-1815A-1983, Reference Manual for the Ada Programming Language.
Textual insertions describe the Digital interpretation of implementation-
dependent language features, as well as allowed implementation-specific
additions to the language (pragmas, attributes, input-output features, and
so on).

Revision/Update Information: This manual supersedes the DEC Ada
Language Reference Manual (Order No.
AA–PYZAA–TK).

Operating System and Version: OpenVMS VAX Version 5.5-2 or higher
OpenVMS Alpha Version 6.1 or higher
Digital UNIX Alpha Version 3.0 or higher

Software Version: DEC Ada Version 3.2 for OpenVMS VAX
Systems
DEC Ada Version 3.2 for OpenVMS Alpha
Systems
DEC Ada Version 3.2 for Digital UNIX
Alpha Systems

If you have any comments on this or any other
DEC Ada document, please send them to the
following Internet address:

ada_docs@zko.mts.dec.com

Digital Equipment Corporation
Maynard, Massachusetts

August 1991
Revised, November 1993
Revised, June 1995

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

Possession, use, or copying of the software described in this publication is authorized only
pursuant to a valid written license from Digital or an authorized sublicensor.

© Digital Equipment Corporation 1991, 1993, 1995. All Rights Reserved.

Copyright 1995 Digital Equipment Corporation (insertions).

Copyright 1980, 1982, 1983 owned by the United States Government as represented by the
Under Secretary of Defense, Research and Engineering. All rights reserved. Provided that
notice of copyright is included on the first page, this document may be copied in its entirety
without alteration or as altered by (1) adding text that is clearly marked as an insertion;
(2) shading or highlighting existing text; (3) deleting examples. Permission to publish other
excerpts should be obtained from the Ada Joint Program Office, OUSDRE(R&AT), the Pentagon,
Washington, D.C. 20301, U.S.A.

The postpaid Reader’s Comments forms at the end of this document request your critical
evaluation to assist in preparing future documentation.

The following are trademarks of Digital Equipment Corporation: Alpha, DEC, DEC Ada,
DECnet, Digital, OpenVMS, VAX, VAX Ada, VAX DOCUMENT, VAXcluster, VMS, VMScluster,
XD Ada, and the DIGITAL logo.

The following are third-party trademarks:

IEEE is a registered trademark of the Institute of Electrical and Electronics Engineers, Inc.

OSF and OSF/1 are registered trademarks of the Open Software Foundation, Inc.

UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Ltd.

All other trademarks and registered trademarks are the property of their respective holders.

ZK5581

This document is available on CD-ROM.

This document was prepared using VAX DOCUMENT Version 2.1.

Contents

Preface . xiii

1 Introduction

1.1 Scope of the Standard . 1–1
1.1.1 Extent of the Standard . 1–1
1.1.2 Conformity of an Implementation With the Standard 1–3
1.2 Structure of the Standard . 1–3
1.3 Design Goals and Sources . 1–4
1.4 Language Summary . 1–5
1.4a DEC Ada . 1–9
1.5 Method of Description and Syntax Notation 1–9
1.6 Classification of Errors . 1–11

2 Lexical Elements

2.1 Character Set . 2–1
2.2 Lexical Elements, Separators, and Delimiters 2–4
2.3 Identifiers . 2–6
2.4 Numeric Literals . 2–6
2.4.1 Decimal Literals . 2–7
2.4.2 Based Literals . 2–7
2.5 Character Literals . 2–8
2.6 String Literals . 2–9
2.7 Comments . 2–10
2.8 Pragmas . 2–10
2.9 Reserved Words . 2–13
2.10 Allowable Replacements of Characters . 2–14

iii

3 Declarations and Types

3.1 Declarations . 3–1
3.2 Objects and Named Numbers . 3–3
3.2.1 Object Declarations . 3–4
3.2.2 Number Declarations . 3–7
3.3 Types and Subtypes . 3–7
3.3.1 Type Declarations . 3–9
3.3.2 Subtype Declarations . 3–10
3.3.3 Classification of Operations . 3–12
3.4 Derived Types . 3–13
3.5 Scalar Types . 3–16
3.5.1 Enumeration Types . 3–17
3.5.2 Character Types . 3–19
3.5.3 Boolean Types . 3–19
3.5.4 Integer Types . 3–19
3.5.5 Operations of Discrete Types . 3–22
3.5.6 Real Types . 3–25
3.5.7 Floating Point Types . 3–26
3.5.7a Pragma Float_Representation . 3–30
3.5.7b Pragma Long_Float (OpenVMS Systems Only) 3–32
3.5.8 Operations of Floating Point Types . 3–33
3.5.9 Fixed Point Types . 3–36
3.5.10 Operations of Fixed Point Types . 3–39
3.6 Array Types . 3–41
3.6.1 Index Constraints and Discrete Ranges 3–44
3.6.2 Operations of Array Types . 3–46
3.6.3 The Type String . 3–48
3.7 Record Types . 3–48
3.7.1 Discriminants . 3–50
3.7.2 Discriminant Constraints . 3–52
3.7.3 Variant Parts . 3–55
3.7.4 Operations of Record Types . 3–56
3.8 Access Types . 3–57
3.8.1 Incomplete Type Declarations . 3–59
3.8.2 Operations of Access Types . 3–61
3.9 Declarative Parts . 3–62

iv

4 Names and Expressions

4.1 Names . 4–1
4.1.1 Indexed Components . 4–2
4.1.2 Slices . 4–3
4.1.3 Selected Components . 4–4
4.1.4 Attributes . 4–7
4.2 Literals . 4–9
4.3 Aggregates . 4–10
4.3.1 Record Aggregates . 4–11
4.3.2 Array Aggregates . 4–12
4.4 Expressions . 4–15
4.5 Operators and Expression Evaluation . 4–16
4.5.1 Logical Operators and Short-circuit Control Forms 4–18
4.5.2 Relational Operators and Membership Tests 4–19
4.5.3 Binary Adding Operators . 4–22
4.5.4 Unary Adding Operators . 4–23
4.5.5 Multiplying Operators . 4–23
4.5.6 Highest Precedence Operators . 4–27
4.5.7 Accuracy of Operations with Real Operands 4–28
4.6 Type Conversions . 4–30
4.7 Qualified Expressions . 4–33
4.8 Allocators . 4–34
4.9 Static Expressions and Static Subtypes . 4–37
4.10 Universal Expressions . 4–39

5 Statements

5.1 Simple and Compound Statements—Sequences of Statements . . 5–1
5.2 Assignment Statement . 5–3
5.2.1 Array Assignments . 5–4
5.3 If Statements . 5–5
5.4 Case Statements . 5–6
5.5 Loop Statements . 5–8
5.6 Block Statements . 5–10
5.7 Exit Statements . 5–11
5.8 Return Statements . 5–12
5.9 Goto Statements . 5–13

v

6 Subprograms

6.1 Subprogram Declarations . 6–1
6.2 Formal Parameter Modes . 6–3
6.3 Subprogram Bodies . 6–5
6.3.1 Conformance Rules . 6–7
6.3.2 Inline Expansion of Subprograms . 6–8
6.4 Subprogram Calls . 6–9
6.4.1 Parameter Associations . 6–11
6.4.2 Default Parameters . 6–12
6.5 Function Subprograms . 6–13
6.6 Parameter and Result Type Profile—Overloading of

Subprograms . 6–14
6.7 Overloading of Operators . 6–15

7 Packages

7.1 Package Structure . 7–1
7.2 Package Specifications and Declarations 7–2
7.3 Package Bodies . 7–3
7.4 Private Type and Deferred Constant Declarations 7–5
7.4.1 Private Types . 7–6
7.4.2 Operations of a Private Type . 7–7
7.4.3 Deferred Constants . 7–10
7.4.4 Limited Types . 7–11
7.5 Example of a Table Management Package 7–13
7.6 Example of a Text Handling Package . 7–15

8 Visibility Rules

8.1 Declarative Region . 8–1
8.2 Scope of Declarations . 8–3
8.3 Visibility . 8–4
8.4 Use Clauses . 8–8
8.5 Renaming Declarations . 8–10
8.6 The Package Standard . 8–13
8.7 The Context of Overload Resolution . 8–14

vi

9 Tasks

9.1 Task Specifications and Task Bodies . 9–2
9.2 Task Types and Task Objects . 9–4
9.3 Task Execution—Task Activation . 9–6
9.4 Task Dependence—Termination of Tasks 9–8
9.5 Entries, Entry Calls, and Accept Statements 9–10
9.6 Delay Statements, Duration, and Time . 9–14
9.7 Select Statements . 9–17
9.7.1 Selective Waits . 9–17
9.7.2 Conditional Entry Calls . 9–19
9.7.3 Timed Entry Calls . 9–20
9.8 Priorities . 9–21
9.8a Pragma Time_Slice (OpenVMS and Digital UNIX Systems

Only) . 9–23
9.8b Pragma Passive (OpenVMS Alpha and Digital UNIX Only) 9–24
9.9 Task and Entry Attributes . 9–25
9.10 Abort Statements . 9–26
9.11 Shared Variables . 9–28
9.12 Example of Tasking . 9–31
9.12a Task Entries and OpenVMS Asynchronous System Traps

(OpenVMS Systems Only) . 9–33

10 Program Structure and Compilation Issues

10.1 Compilation Units—Library Units . 10–1
10.1.1 Context Clauses—With Clauses . 10–4
10.1.2 Examples of Compilation Units . 10–6
10.2 Subunits of Compilation Units . 10–8
10.2.1 Examples of Subunits . 10–9
10.3 Order of Compilation . 10–12
10.4 The Program Library . 10–15
10.5 Elaboration of Library Units . 10–15
10.6 Program Optimization . 10–17

11 Exceptions

11.1 Exception Declarations . 11–1
11.2 Exception Handlers . 11–5
11.3 Raise Statements . 11–6
11.4 Exception Handling . 11–7
11.4.1 Exceptions Raised During the Execution of Statements 11–7

vii

11.4.2 Exceptions Raised During the Elaboration of
Declarations . 11–11

11.5 Exceptions Raised During Task Communication 11–12
11.6 Exceptions and Optimization . 11–13
11.7 Suppressing Checks . 11–15

12 Generic Units

12.1 Generic Declarations . 12–1
12.1.1 Generic Formal Objects . 12–4
12.1.2 Generic Formal Types . 12–5
12.1.3 Generic Formal Subprograms . 12–7
12.1a Pragma INLINE_GENERIC . 12–8
12.1b Pragma SHARE_GENERIC . 12–9
12.2 Generic Bodies . 12–10
12.3 Generic Instantiation . 12–12
12.3.1 Matching Rules for Formal Objects . 12–15
12.3.2 Matching Rules for Formal Private Types 12–16
12.3.3 Matching Rules for Formal Scalar Types 12–17
12.3.4 Matching Rules for Formal Array Types 12–17
12.3.5 Matching Rules for Formal Access Types 12–18
12.3.6 Matching Rules for Formal Subprograms 12–19
12.4 Example of a Generic Package . 12–21

13 Representation Clauses and Implementation-Dependent
Features

13.1 Representation Clauses . 13–1
13.1a The Pragma Component_Alignment . 13–5
13.2 Length Clauses . 13–7
13.2a The Pragma Task_Storage . 13–11
13.2b The Pragma Main_Storage (OpenVMS VAX Systems Only) 13–12
13.3 Enumeration Representation Clauses . 13–14
13.4 Record Representation Clauses . 13–15
13.5 Address Clauses . 13–19
13.5.1 Interrupts . 13–22
13.6 Change of Representation . 13–23
13.7 The Package System . 13–24
13.7.1 System-Dependent Named Numbers 13–27
13.7.2 Representation Attributes . 13–28
13.7.3 Representation Attributes of Real Types 13–33
13.7a General DEC Ada Additions to the Package System 13–35
13.7a.1 Address Type Declarations . 13–36

viii

13.7a.2 Enumeration Type for Identifying Type Classes 13–38
13.7a.3 Non-Ada Exception . 13–39
13.7a.4 Hardware-Oriented Types and Functions 13–41
13.7a.5 Convenient Unsigned Longword Declarations 13–43
13.7a.6 Global Symbol Values . 13–43
13.7b System-Specific DEC Ada Additions to the Package System 13–45
13.7b.1 VAX Floating Point Types (OpenVMS Systems Only) 13–45
13.7b.2 IEEE Floating Point Types (OpenVMS Alpha and Digital

UNIX Systems Only) . 13–45
13.7b.3 OpenVMS Asynchronous-System-Trap-Related Declarations

(OpenVMS Systems Only) . 13–46
13.7b.4 VAX Processor and Device Register Operations (OpenVMS

VAX Systems Only) . 13–47
13.7b.5 Interlocked-Instruction Procedures (OpenVMS and Digital

UNIX Systems Only) . 13–48
13.7b.6 Atomic Procedures (Alpha Systems Only) 13–49
13.7b.7 Interlocked-Queue-Instruction Procedures (OpenVMS

Systems Only) . 13–51
13.8 Machine Code Insertions . 13–53
13.9 Interface to Other Languages . 13–54
13.9a DEC Ada Import and Export Pragmas . 13–57
13.9a.1 Importing and Exporting Subprograms 13–60
13.9a.1.1 Importing Subprograms . 13–60
13.9a.1.2 Attribute for Optional Parameters 13–66
13.9a.1.3 Exporting Subprograms . 13–68
13.9a.1.4 Controlling the Passing Mechanisms for Parameters and

Function Results . 13–73
13.9a.2 Importing and Exporting Objects . 13–76
13.9a.2.1 Importing Objects . 13–77
13.9a.2.2 Exporting Objects . 13–78
13.9a.2.3 Importing and Exporting Objects with the Pragma

Common_Object . 13–80
13.9a.3 Importing and Exporting Exceptions (OpenVMS Systems

Only) . 13–83
13.9a.3.1 Importing Exceptions (OpenVMS Systems Only) 13–83
13.9a.3.2 Exporting Exceptions (OpenVMS Systems Only) 13–85
13.9b The Pragma Interface_Name . 13–86
13.10 Unchecked Programming . 13–88
13.10.1 Unchecked Storage Deallocation . 13–89
13.10.2 Unchecked Type Conversions . 13–90

ix

14 Input-Output

14.1 External Files and File Objects . 14–2
14.1a File Elements . 14–6
14.1b Specification of the FORM Parameter in DEC Ada 14–7
14.1b.1 The FORM Parameter on OpenVMS Systems 14–7
14.1b.2 The FORM Parameter on Digital UNIX Systems 14–8
14.2 Sequential and Direct Files . 14–11
14.2.1 File Management . 14–12
14.2.2 Sequential Input-Output . 14–16
14.2.3 Specification of the Package Sequential_IO 14–17
14.2.4 Direct Input-Output . 14–18
14.2.5 Specification of the Package Direct_IO 14–20
14.2a Relative and Indexed Files (OpenVMS Systems Only) 14–22
14.2a.1 File Management (OpenVMS Systems Only) 14–24
14.2a.2 Relative Input-Output (OpenVMS Systems Only) 14–25
14.2a.3 Specification of the Package Relative_IO (OpenVMS Systems

Only) . 14–28
14.2a.4 Indexed Input-Output (OpenVMS Systems Only) 14–30
14.2a.5 Specification of the Package Indexed_IO (OpenVMS Systems

Only) . 14–32
14.2b Mixed-Type Input-Output . 14–34
14.2b.1 File Management . 14–35
14.2b.2 Item Input-Output . 14–36
14.2b.3 Sequential Mixed Input-Output . 14–39
14.2b.4 Specification of the Package Sequential_Mixed_IO 14–40
14.2b.5 Direct Mixed Input-Output . 14–42
14.2b.6 Specification of the Package Direct_Mixed_IO 14–43
14.2b.7 Relative Mixed Input-Output (OpenVMS Systems Only) 14–45
14.2b.8 Specification of the Package Relative_Mixed_IO (OpenVMS

Systems Only) . 14–48
14.2b.9 Indexed Mixed Input-Output (OpenVMS Systems Only) 14–50
14.2b.10 Specification of the Package Indexed_Mixed_IO

(OpenVMS Systems Only) . 14–53
14.3 Text Input-Output . 14–55
14.3.1 File Management . 14–58
14.3.2 Default Input and Output Files . 14–58
14.3.3 Specification of Line and Page Lengths 14–59
14.3.4 Operations on Columns, Lines, and Pages 14–61
14.3.5 Get and Put Procedures . 14–65
14.3.6 Input-Output of Characters and Strings 14–68
14.3.7 Input-Output for Integer Types . 14–69
14.3.8 Input-Output for Real Types . 14–72

x

14.3.9 Input-Output for Enumeration Types 14–75
14.3.10 Specification of the Package Text_IO 14–77
14.4 Exceptions in Input-Output . 14–82
14.5 Specification of the Package IO_Exceptions 14–85
14.5a Specification of the Package Aux_IO_Exceptions (OpenVMS

Systems Only) . 14–85
14.6 Low Level Input-Output . 14–85
14.7 Example of Input-Output . 14–86
14.7a Example of Additional DEC Ada Input-Output 14–87

A Predefined Language Attributes

B Predefined Language Pragmas

C Predefined Language Environment

D Glossary

E Syntax Summary

F Implementation-Dependent Characteristics

F.1 Implementation-Dependent Pragmas . F–1
F.2 Implementation-Dependent Attributes . F–3
F.3 Specification of the Package System . F–3
F.4 Restrictions on Representation Clauses . F–12
F.5 Restrictions on Unchecked Type Conversions F–13
F.6 Conventions for Implementation-Generated Names

Denoting Implementation-Dependent Components in Record
Representation Clauses . F–13

F.7 Interpretation of Expressions Appearing in Address Clauses F–13
F.8 Implementation-Dependent Characteristics of Input-Output

Packages . F–14
F.8.1 DEC Ada Input-Output Packages on OpenVMS Systems . . . F–15
F.8.1.1 Interpretation of the FORM Parameter on OpenVMS

Systems . F–15
F.8.1.2 Input-Output Exceptions on OpenVMS Systems F–16

xi

F.8.2 Input-Output Packages on Digital UNIX Systems F–17
F.8.2.1 Interpretation of the FORM Parameter on Digital UNIX

Systems . F–18
F.8.2.2 Input-Output Exceptions on Digital UNIX Systems F–21
F.9 Other Implementation Characteristics . F–21
F.9.1 Definition of a Main Program . F–22
F.9.2 Values of Integer Attributes . F–23
F.9.3 Values of Floating Point Attributes . F–23
F.9.3.1 F_floating Characteristics . F–24
F.9.3.2 D_floating Characteristics . F–25
F.9.3.3 G_floating Characteristics . F–26
F.9.3.4 H_floating Characteristics . F–27
F.9.3.5 IEEE Single Float Characteristics F–28
F.9.3.6 IEEE Double Float Characteristics F–29
F.9.4 Attributes of Type DURATION . F–29
F.9.5 Implementation Limits . F–30

G Ada Language Interpretations

Index

Postscript : Submission of Comments

Figures

1 Documentation Reading Path for Related Documents xiv
2 Documentation Reading Path for DEC Ada

Documentation . xv

xii

Preface

The entire text of the Reference Manual for the Ada Programming Language
(ANSI/MIL-STD-1815A-1983, ISO/8652-1987) is reprinted in this manual. In
addition, this manual contains DEC Ada implementation information and
Digital-supplied supplementary examples and text. The Digital-supplied
information covers DEC Ada implementations across a number of systems.
Information common to all systems is identified as DEC Ada information.
System-specific information is identified with the name of the system to which
it applies.

DEC Ada information appears in chapters 1, 2, 3, 4, 6, 9, 10, 11, 12, 13, and 14,
Annexes A, B, and C, and Appendices D and F. Appendix G, added by Digital,
lists further interpretations of the standard Ada language that have been made
between the publication of the standard and the publication of this manual.
Footnotes referring to that appendix appear throughout this manual.

Intended Audience
This manual is intended for all programmers who are designing or
implementing applications using Ada. Readers should understand the
concepts of programming in Ada and should have some familiarity with the
system on which their Ada compiler is running.

Documentation Reading Path
Figures 1 and 2 show the relationship of the Ada documentation set to other
documentation that may be helpful.

xiii

Figure 1 Documentation Reading Path for Related Documents

For introductory or
tutorial Ada language

information

For more information

For more information
on various layered

products

Individual
Layered
Product

Documentation

Operating System

Other Layered Products

Ada Language

on your operating system
Operating
 System

Documentation

Commercial
Ada

Textbooks

ZK−6003A−GE

xiv

Figure 2 Documentation Reading Path for DEC Ada Documentation

Developing and
compiling

Designing and imple−
menting applications

Installing

DEC Ada

* Operating System−Specific Manual

ZK−5349A−1−GE

DEC Ada

*

Developing
Ada

Programs

*

DEC Ada

DEC Ada

Language
Reference

Manual

*

DEC Ada

Implementation and
run−time details Run−Time

Reference
Manual

Installation
Guide

xv

Document Structure
This manual has the following structure:

• Chapter 1 contains a description of the Ada language standard, a language
overview, a characterization of DEC Ada, and a description of the syntax
notation.

• Chapter 2 provides detailed information on the lexical elements, and notes
the DEC Ada implementation of the Latin-1 character set.

• Chapter 3 describes Ada types and the rules for declaring constants,
variables, and named numbers. It gives the additional DEC Ada integer
and floating point types, and describes the DEC Ada pragmas FLOAT_
REPRESENTATION and LONG_FLOAT.

• Chapter 4 gives the rules for names and expressions.

• Chapter 5 gives the general rules that apply to all Ada statements, as well
as the syntax and semantics of most of those statements.

• Chapter 6 gives the rules relating to subprograms, and notes the DEC Ada
implementation of the pragma INLINE.

• Chapter 7 gives the rules relating to packages.

• Chapter 8 gives the rules defining the scope of declarations, as well as the
rules defining the visibility of identifiers at various points in the text of a
program.

• Chapter 9 explains Ada tasks. It also notes the DEC Ada implementation
of the pragma SHARED and describes the DEC Ada pragmas TIME_
SLICE and VOLATILE, as well as the DEC Ada pragma and attribute
AST_ENTRY.

• Chapter 10 explains the overall structure of programs and the facilities for
separate compilation.

• Chapter 11 defines the facilities for dealing with errors or exceptions that
arise during program execution. It notes the DEC Ada treatment of the
pragma SUPPRESS and presents the DEC Ada pragma SUPPRESS_ALL.

• Chapter 12 explains the use of generic units and the process of
instantiation. It also presents the DEC Ada pragmas INLINE_GENERIC
and SHARE_GENERIC.

xvi

• Chapter 13 describes representation clauses and certain DEC Ada features
for systems programming. It describes the DEC Ada interpretations of
the pragma PACK, the attributes SIZE, STORAGE_SIZE, and SMALL,
and presents the DEC Ada pragmas COMPONENT_ALIGNMENT, MAIN_
STORAGE, and TASK_STORAGE.

Chapter 13 also gives the DEC Ada additions to the package SYSTEM,
the DEC Ada interpretations of the representation attributes ADDRESS
and SIZE, and describes the DEC Ada representation attributes BIT and
MACHINE_SIZE.

Finally, chapter 13 presents the DEC Ada interpretation of the pragma
INTERFACE and describes the DEC Ada pragmas IMPORT_FUNCTION,
IMPORT_PROCEDURE, IMPORT_VALUED_PROCEDURE, INTERFACE_
NAME, EXPORT_FUNCTION, EXPORT_PROCEDURE, EXPORT_
VALUED_PROCEDURE, COMMON_OBJECT, IMPORT_OBJECT,
EXPORT_OBJECT, PSECT_OBJECT, IMPORT_EXCEPTION, and
EXPORT_EXCEPTION.

• Chapter 14 gives detailed information on the standard input-output
packages (SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO). It also presents
the DEC Ada input-output packages (RELATIVE_IO, INDEXED_IO,
SEQUENTIAL_MIXED_IO, RELATIVE_MIXED_IO, INDEXED_
MIXED_IO, and DIRECT_MIXED_IO) and the DEC Ada package AUX_
IO_EXCEPTIONS.

• Annex A summarizes the language attributes.

• Annex B summarizes all pragmas and defines the standard pragmas LIST,
OPTIMIZE, and PAGE. It also defines the DEC Ada pragmas IDENT and
TITLE.

• Annex C presents the specification of the package STANDARD.

• Appendix D is a glossary of Ada terms. It is not part of the standard
definition of the Ada language.

• Appendix E contains a syntax summary of the Ada language. It is not part
of the standard definition of the Ada language.

• Appendix F lists the DEC Ada implementation-dependent characteristics.
It is not part of the standard definition of the Ada language.

• Appendix G presents summaries of Ada language interpretations made or
recommended between the publication of the Reference Manual for the Ada
Programming Language and the publication of this edition of the DEC Ada
Language Reference Manual. It is not part of the standard definition of the
Ada language.

xvii

Conventions
This manual uses the conventions described in section 1.5. The Ada language
syntax is described using a simple variant of Backus-Naur-Form.

Colored print distinguishes DEC Ada insertions in hardcopy versions of this
manual; shading distinguishes DEC Ada insertions in online versions.

DEC Ada is available on a number of systems. The following abbreviated
terms are used to refer to those systems throughout this manual.

System
abbreviation Specific systems it refers to

OpenVMS VMS
OpenVMS VAX
OpenVMS Alpha

Alpha OpenVMS Alpha
Digital UNIX® Alpha

Digital UNIX Digital UNIX Alpha

xviii

1
Introduction

1 Ada is a programming language designed in accordance with requirements
defined by the United States Department of Defense: the so-called Steelman
requirements. Overall, these requirements call for a language with
considerable expressive power covering a wide application domain. As a result,
the language includes facilities offered by classical languages such as Pascal as
well as facilities often found only in specialized languages. Thus the language
is a modern algorithmic language with the usual control structures, and
with the ability to define types and subprograms. It also serves the need for
modularity, whereby data, types, and subprograms can be packaged. It treats
modularity in the physical sense as well, with a facility to support separate
compilation.

2 In addition to these aspects, the language covers real-time programming,
with facilities to model parallel tasks and to handle exceptions. It also covers
systems programming; this requires precise control over the representation of
data and access to system-dependent properties. Finally, both application-level
and machine-level input-output are defined.

1.1 Scope of the Standard
1 This standard specifies the form and meaning of program units written in Ada.

Its purpose is to promote the portability of Ada programs to a variety of data
processing systems.

1.1.1 Extent of the Standard
1 This standard specifies:

2 (a) The form of a program unit written in Ada.

3 (b) The effect of translating and executing such a program unit.

4 (c) The manner in which program units may be combined to form Ada
programs.

1–1 Extent of the Standard 1.1.1

5 (d) The predefined program units that a conforming implementation must
supply.

6 (e) The permissible variations within the standard, and the manner in
which they must be specified.

7 (f) Those violations of the standard that a conforming implementation is
required to detect, and the effect of attempting to translate or execute
a program unit containing such violations.

8 (g) Those violations of the standard that a conforming implementation is
not required to detect.

9 This standard does not specify:

10 (h) The means whereby a program unit written in Ada is transformed
into object code executable by a processor.

11 (i) The means whereby translation or execution of program units is
invoked and the executing units are controlled.

12 (j) The size or speed of the object code, or the relative execution speed of
different language constructs.

13 (k) The form or contents of any listings produced by implementations; in
particular, the form or contents of error or warning messages.

14 (l) The effect of executing a program unit that contains any violation that
a conforming implementation is not required to detect.

15 (m) The size of a program or program unit that will exceed the capacity of
a particular conforming implementation.

16 Where this standard specifies that a program unit written in Ada has an exact
effect, this effect is the operational meaning of the program unit and must be
produced by all conforming implementations. Where this standard specifies
permissible variations in the effects of constituents of a program unit written
in Ada, the operational meaning of the program unit as a whole is understood
to be the range of possible effects that result from all these variations, and a
conforming implementation is allowed to produce any of these possible effects.
Examples of permissible variations are:

17 • The represented values of fixed or floating numeric quantities, and the
results of operations upon them.

18 • The order of execution of statements in different parallel tasks, in the
absence of explicit synchronization.

1.1.1 Extent of the Standard 1–2

1.1.2 Conformity of an Implementation With the Standard
1 A conforming implementation is one that:1

2 (a) Correctly translates and executes legal program units written in Ada,
provided that they are not so large as to exceed the capacity of the
implementation.

3 (b) Rejects all program units that are so large as to exceed the capacity of
the implementation.

4 (c) Rejects all program units that contain errors whose detection is
required by the standard.

5 (d) Supplies all predefined program units required by the standard.

6 (e) Contains no variations except where the standard permits.

7 (f) Specifies all such permitted variations in the manner prescribed by
the standard.

1.2 Structure of the Standard
1 This reference manual contains fourteen chapters, three annexes, three

appendices, and an index.

This manual adds a fourth appendix, Appendix G, which summarizes Ada
interpretations made or recommended between the publication of the Reference
Manual for the Ada Programming Language and the publication of this edition
of the DEC Ada Language Reference Manual.

2 Each chapter is divided into sections that have a common structure. Each
section introduces its subject, gives any necessary syntax rules, and describes
the semantics of the corresponding language constructs. Examples and notes,
and then references, may appear at the end of a section.

3 Examples are meant to illustrate the possible forms of the constructs described.
Notes are meant to emphasize consequences of the rules described in the
section or elsewhere. References are meant to attract the attention of readers
to a term or phrase having a technical meaning defined in another section.

4 The standard definition of the Ada programming language consists of the
fourteen chapters and the three annexes, subject to the following restriction:
the material in each of the items listed below is informative, and not part of
the standard definition of the Ada programming language:

5 • Section 1.3 Design goals and sources

1 See also Appendix G, AI-00325.

1–3 Structure of the Standard 1.2

6 • Section 1.4 Language summary

7 • The examples, notes, and references given at the end of each section

8 • Each section whose title starts with the word ‘‘Example’’ or ‘‘Examples’’

1.3 Design Goals and Sources
1 Ada was designed with three overriding concerns: program reliability and

maintenance, programming as a human activity, and efficiency.

2 The need for languages that promote reliability and simplify maintenance is
well established. Hence emphasis was placed on program readability over
ease of writing. For example, the rules of the language require that program
variables be explicitly declared and that their type be specified. Since the type
of a variable is invariant, compilers can ensure that operations on variables are
compatible with the properties intended for objects of the type. Furthermore,
error-prone notations have been avoided, and the syntax of the language avoids
the use of encoded forms in favor of more English-like constructs. Finally, the
language offers support for separate compilation of program units in a way
that facilitates program development and maintenance, and which provides the
same degree of checking between units as within a unit.

3 Concern for the human programmer was also stressed during the design.
Above all, an attempt was made to keep the language as small as possible,
given the ambitious nature of the application domain. We have attempted to
cover this domain with a small number of underlying concepts integrated in a
consistent and systematic way. Nevertheless we have tried to avoid the pitfalls
of excessive involution, and in the constant search for simpler designs we have
tried to provide language constructs that correspond intuitively to what the
users will normally expect.

4 Like many other human activities, the development of programs is becoming
ever more decentralized and distributed. Consequently, the ability to assemble
a program from independently produced software components has been a
central idea in this design. The concepts of packages, of private types, and of
generic units are directly related to this idea, which has ramifications in many
other aspects of the language.

5 No language can avoid the problem of efficiency. Languages that require over-
elaborate compilers, or that lead to the inefficient use of storage or execution
time, force these inefficiencies on all machines and on all programs. Every
construct of the language was examined in the light of present implementation
techniques. Any proposed construct whose implementation was unclear or that
required excessive machine resources was rejected.

1.3 Design Goals and Sources 1–4

6 None of the above design goals was considered as achievable after the fact.
The design goals drove the entire design process from the beginning.

7 A perpetual difficulty in language design is that one must both identify the
capabilities required by the application domain and design language features
that provide these capabilities. The difficulty existed in this design, although
to a lesser degree than usual because of the Steelman requirements. These
requirements often simplified the design process by allowing it to concentrate
on the design of a given system providing a well defined set of capabilities,
rather than on the definition of the capabilities themselves.

8 Another significant simplification of the design work resulted from earlier
experience acquired by several successful Pascal derivatives developed with
similar goals. These are the languages Euclid, Lis, Mesa, Modula, and Sue.
Many of the key ideas and syntactic forms developed in these languages have
counterparts in Ada. Several existing languages such as Algol 68 and Simula,
and also recent research languages such as Alphard and Clu, influenced this
language in several respects, although to a lesser degree than did the Pascal
family.

9 Finally, the evaluation reports received on an earlier formulation (the Green
language), and on alternative proposals (the Red, Blue, and Yellow languages),
the language reviews that took place at different stages of this project, and
the thousands of comments received from fifteen different countries during the
preliminary stages of the Ada design and during the ANSI canvass, all had a
significant impact on the standard definition of the language.

1.4 Language Summary
1 An Ada program is composed of one or more program units. These program

units can be compiled separately. Program units may be subprograms (which
define executable algorithms), package units (which define collections of
entities), task units (which define parallel computations), or generic units
(which define parameterized forms of packages and subprograms). Each unit
normally consists of two parts: a specification, containing the information
that must be visible to other units, and a body, containing the implementation
details, which need not be visible to other units.

2 This distinction of the specification and body, and the ability to compile units
separately, allows a program to be designed, written, and tested as a set of
largely independent software components.

1–5 Language Summary 1.4

3 An Ada program will normally make use of a library of program units of
general utility. The language provides means whereby individual organizations
can construct their own libraries. The text of a separately compiled program
unit must name the library units it requires.

4 Program Units
5 A subprogram is the basic unit for expressing an algorithm. There are two

kinds of subprograms: procedures and functions. A procedure is the means of
invoking a series of actions. For example, it may read data, update variables,
or produce some output. It may have parameters, to provide a controlled
means of passing information between the procedure and the point of call.

6 A function is the means of invoking the computation of a value. It is similar to
a procedure, but in addition will return a result.

7 A package is the basic unit for defining a collection of logically related entities.
For example, a package can be used to define a common pool of data and types,
a collection of related subprograms, or a set of type declarations and associated
operations. Portions of a package can be hidden from the user, thus allowing
access only to the logical properties expressed by the package specification.

8 A task unit is the basic unit for defining a task whose sequence of actions
may be executed in parallel with those of other tasks. Such tasks may be
implemented on multicomputers, multiprocessors, or with interleaved execution
on a single processor. A task unit may define either a single executing task or
a task type permitting the creation of any number of similar tasks.

9 Declarations and Statements
10 The body of a program unit generally contains two parts: a declarative

part, which defines the logical entities to be used in the program unit, and
a sequence of statements, which defines the execution of the program unit.

11 The declarative part associates names with declared entities. For example, a
name may denote a type, a constant, a variable, or an exception. A declarative
part also introduces the names and parameters of other nested subprograms,
packages, task units, and generic units to be used in the program unit.

12 The sequence of statements describes a sequence of actions that are to be
performed. The statements are executed in succession (unless an exit, return,
or goto statement, or the raising of an exception, causes execution to continue
from another place).

13 An assignment statement changes the value of a variable. A procedure call
invokes execution of a procedure after associating any actual parameters
provided at the call with the corresponding formal parameters.

1.4 Language Summary 1–6

14 Case statements and if statements allow the selection of an enclosed sequence
of statements based on the value of an expression or on the value of a
condition.

15 The loop statement provides the basic iterative mechanism in the language.
A loop statement specifies that a sequence of statements is to be executed
repeatedly as directed by an iteration scheme, or until an exit statement is
encountered.

16 A block statement comprises a sequence of statements preceded by the
declaration of local entities used by the statements.

17 Certain statements are only applicable to tasks. A delay statement delays the
execution of a task for a specified duration. An entry call statement is written
as a procedure call statement; it specifies that the task issuing the call is ready
for a rendezvous with another task that has this entry. The called task is ready
to accept the entry call when its execution reaches a corresponding accept
statement, which specifies the actions then to be performed. After completion
of the rendezvous, both the calling task and the task having the entry may
continue their execution in parallel. One form of the select statement allows
a selective wait for one of several alternative rendezvous. Other forms of the
select statement allow conditional or timed entry calls.

18 Execution of a program unit may encounter error situations in which normal
program execution cannot continue. For example, an arithmetic computation
may exceed the maximum allowed value of a number, or an attempt may be
made to access an array component by using an incorrect index value. To deal
with such error situations, the statements of a program unit can be textually
followed by exception handlers that specify the actions to be taken when the
error situation arises. Exceptions can be raised explicitly by a raise statement.

19 Data Types
20 Every object in the language has a type, which characterizes a set of values

and a set of applicable operations. The main classes of types are scalar types
(comprising enumeration and numeric types), composite types, access types,
and private types.

21 An enumeration type defines an ordered set of distinct enumeration literals, for
example a list of states or an alphabet of characters. The enumeration types
BOOLEAN and CHARACTER are predefined.

22 Numeric types provide a means of performing exact or approximate numerical
computations. Exact computations use integer types, which denote sets of
consecutive integers. Approximate computations use either fixed point types,
with absolute bounds on the error, or floating point types, with relative bounds

1–7 Language Summary 1.4

on the error. The numeric types INTEGER, FLOAT, and DURATION are
predefined.

23 Composite types allow definitions of structured objects with related
components. The composite types in the language provide for arrays and
records. An array is an object with indexed components of the same type. A
record is an object with named components of possibly different types. The
array type STRING is predefined.

24 A record may have special components called discriminants. Alternative record
structures that depend on the values of discriminants can be defined within a
record type.

25 Access types allow the construction of linked data structures created by the
evaluation of allocators. They allow several variables of an access type to
designate the same object, and components of one object to designate the same
or other objects. Both the elements in such a linked data structure and their
relation to other elements can be altered during program execution.

26 Private types can be defined in a package that conceals structural details that
are externally irrelevant. Only the logically necessary properties (including
any discriminants) are made visible to the users of such types.

27 The concept of a type is refined by the concept of a subtype, whereby a user
can constrain the set of allowed values of a type. Subtypes can be used to
define subranges of scalar types, arrays with a limited set of index values, and
records and private types with particular discriminant values.

28 Other Facilities
29 Representation clauses can be used to specify the mapping between types and

features of an underlying machine. For example, the user can specify that
objects of a given type must be represented with a given number of bits, or
that the components of a record are to be represented using a given storage
layout. Other features allow the controlled use of low level, nonportable, or
implementation-dependent aspects, including the direct insertion of machine
code.

30 Input-output is defined in the language by means of predefined library
packages. Facilities are provided for input-output of values of user-defined
as well as of predefined types. Standard means of representing values in
display form are also provided.

31 Finally, the language provides a powerful means of parameterization of
program units, called generic program units. The generic parameters can
be types and subprograms (as well as objects) and so allow general algorithms
to be applied to all types of a given class.

1.4 Language Summary 1–8

1.4a DEC Ada
All of the language elements specified by the ANSI or ISO standard definition
for the Ada language are provided by DEC Ada. In addition, DEC Ada
implements certain options and makes certain interpretations, as permitted by
the standard. Material has been inserted throughout this manual to describe
and explain these permitted options and interpretations. The term DEC Ada
and colored print (hard copy) or shading (online) are used to distinguish the
DEC Ada material.

1.5 Method of Description and Syntax Notation
1 The form of Ada program units is described by means of a context-free syntax

together with context-dependent requirements expressed by narrative rules.

2 The meaning of Ada program units is described by means of narrative rules
defining both the effects of each construct and the composition rules for
constructs. This narrative employs technical terms whose precise definition
is given in the text (references to the section containing the definition of a
technical term appear at the end of each section that uses the term).

3 All other terms are in the English language and bear their natural meaning,
as defined in Webster’s Third New International Dictionary of the English
Language.

4 The context-free syntax of the language is described using a simple variant of
Backus-Naur-Form. In particular,

5 (a) Lower case words, some containing embedded underlines, are used to
denote syntactic categories, for example:

adding_operator

6 Whenever the name of a syntactic category is used apart from the
syntax rules themselves, spaces take the place of the underlines (thus:
adding operator).

7 (b) Boldface words are used to denote reserved words, for example:

array

8 (c) Square brackets enclose optional items. Thus the two following rules
are equivalent.

1–9 Method of Description and Syntax Notation 1.5

return_statement ::= return [expression];
return_statement ::= return; | return expression;

9 (d) Braces enclose a repeated item. The item may appear zero or more
times; the repetitions occur from left to right as with an equivalent
left-recursive rule. Thus the two following rules are equivalent.

term ::= factor {multiplying_operator factor}
term ::= factor | term multiplying_operator factor

10 (e) A vertical bar separates alternative items unless it occurs immediately
after an opening brace, in which case it stands for itself:

letter_or_digit ::= letter | digit
component_association ::=

[choice {| choice} =>] expression

11 (f) If the name of any syntactic category starts with an italicized part,
it is equivalent to the category name without the italicized part.
The italicized part is intended to convey some semantic information.
For example type_name and task_name are both equivalent to name
alone.

Note:
12 The syntax rules describing structured constructs are presented in a form that

corresponds to the recommended paragraphing. For example, an if statement
is defined as

if_statement ::=
if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

13 Different lines are used for parts of a syntax rule if the corresponding
parts of the construct described by the rule are intended to be on different
lines. Indentation in the rule is a recommendation for indentation of the
corresponding part of the construct. It is recommended that all indentations
be by multiples of a basic step of indentation (the number of spaces for the
basic step is not defined). The preferred places for other line breaks are after
semicolons. On the other hand, if a complete construct can fit on one line, this
is also allowed in the recommended paragraphing.

1.5 Method of Description and Syntax Notation 1–10

1.6 Classification of Errors
1 The language definition classifies errors into several different categories:

2 (a) Errors that must be detected at compilation time by every Ada
compiler.

3 These errors correspond to any violation of a rule given in this
reference manual, other than the violations that correspond to (b)
or (c) below. In particular, violation of any rule that uses the terms
must, allowed, legal, or illegal belongs to this category. Any program
that contains such an error is not a legal Ada program; on the other
hand, the fact that a program is legal does not mean, per se, that the
program is free from other forms of error.

4 (b) Errors that must be detected at run time by the execution of an Ada
program.

5 The corresponding error situations are associated with the names of
the predefined exceptions. Every Ada compiler is required to generate
code that raises the corresponding exception if such an error situation
arises during program execution. If an exception is certain to be
raised in every execution of a program, then compilers are allowed
(although not required) to report this fact at compilation time.

6 (c) Erroneous execution.

7 The language rules specify certain rules to be obeyed by Ada
programs, although there is no requirement on Ada compilers
to provide either a compilation-time or a run-time detection of the
violation of such rules. The errors of this category are indicated by the
use of the word erroneous to qualify the execution of the corresponding
constructs. The effect of erroneous execution is unpredictable.

8 (d) Incorrect order dependences.

9 Whenever the reference manual specifies that different parts of a
given construct are to be executed in some order that is not defined
by the language, this means that the implementation is allowed
to execute these parts in any given order, following the rules that
result from that given order, but not in parallel. Furthermore, the
construct is incorrect if execution of these parts in a different order
would have a different effect. Compilers are not required to provide
either compilation-time or run-time detection of incorrect order
dependences. The foregoing is expressed in terms of the process that
is called execution; it applies equally to the processes that are called
evaluation and elaboration.

1–11 Classification of Errors 1.6

10 If a compiler is able to recognize at compilation time that a construct is
erroneous or contains an incorrect order dependence, then the compiler is
allowed to generate, in place of the code otherwise generated for the construct,
code that raises the predefined exception PROGRAM_ERROR. Similarly,
compilers are allowed to generate code that checks at run time for erroneous
constructs, for incorrect order dependences, or for both. The predefined
exception PROGRAM_ERROR is raised if such a check fails.

1.6 Classification of Errors 1–12

2
Lexical Elements

1 The text of a program consists of the texts of one or more compilations. The
text of a compilation is a sequence of lexical elements, each composed of
characters; the rules of composition are given in this chapter. Pragmas, which
provide certain information for the compiler, are also described in this chapter.

2 References: character 2.1, compilation 10.1, lexical element 2.2, pragma 2.8

2.1 Character Set
1 The only characters allowed in the text of a program are the graphic characters

and format effectors. Each graphic character corresponds to a unique code of
the ISO seven-bit coded character set (ISO standard 646), and is represented
(visually) by a graphical symbol. Some graphic characters are represented
by different graphical symbols in alternative national representations of the
ISO character set. The description of the language definition in this standard
reference manual uses the ASCII graphical symbols, the ANSI graphical
representation of the ISO character set.1

2 graphic_character ::= basic_graphic_character
| lower_case_letter | other_special_character

basic_graphic_character ::=
upper_case_letter | digit

| special_character | space_character

basic_character ::=
basic_graphic_character | format_effector

3 The basic character set is sufficient for writing any program. The characters
included in each of the categories of basic graphic characters are defined as
follows:

4 (a) upper case letters A B C D E F G H I J K L M N O P Q R S T U V W
X Y Z

5 (b) digits 0 1 2 3 4 5 6 7 8 9

1 See also Appendix G, AI-00339 and AI-00866.

2–1 Character Set 2.1

6 (c) special characters " # & ’ () * + , – . / : ; < => _ |

7 (d) the space character

8 Format effectors are the ISO (and ASCII) characters called horizontal
tabulation, vertical tabulation, carriage return, line feed, and form feed.

9 The characters included in each of the remaining categories of graphic
characters are defined as follows:

10 (e) lower case letters a b c d e f g h i j k l m n o p q r s t u v w x y z

11 (f) other special characters ! $ % ? @ [\] ^ ` { } ~

12 Allowable replacements for the special characters vertical bar (|), sharp (#),
and quotation (") are defined in section 2.10.

In DEC Ada on OpenVMS and Digital UNIX systems, each graphic character
corresponds to a unique code of the ISO eight-bit coded character set (ISO
standard 8859/1, commonly known as Latin-1).2

The characters included in each of the categories of basic graphic characters
are the ISO seven-bit characters plus the following additional characters. The
effect is to allow the use of the additional upper and lower case characters in
forming identifiers, and to allow the use of all the additional graphic characters
in forming character literals and string literals.

(a) upper case letters À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö Ø
Ù Ú Û Ü Ý Þ

(b) lower case letters ß à á â ã ä å æ ç è é ê ë ì í î ï ð ñ ò ó ô õ ö ø ù ú û ü
ý þ ÿ

(c) the nonbreaking space character and the soft hyphen

(d) other special characters ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ ® ¯ ° ± ² ³ ´ µ ¶ · ¸ ¹ º » ¼
½ ¾ ¿ � �

Notes:
13 The ISO character that corresponds to the sharp graphical symbol in the ASCII

representation appears as a pound sterling symbol in the French, German, and
United Kingdom standard national representations. In any case, the font
design of graphical symbols (for example, whether they are in italic or bold
typeface) is not part of the ISO standard.

2 See also Appendix G, AI-00866.

2.1 Character Set 2–2

14 The meanings of the acronyms used in this section are as follows: ANSI
stands for American National Standards Institute, ASCII stands for American
Standard Code for Information Interchange, and ISO stands for International
Organization for Standardization.

15 The following names are used when referring to special characters and other
special characters:

16 symbol name symbol name

" quotation > greater than

sharp _ underline

& ampersand | vertical bar

’ apostrophe ! exclamation mark

(left parenthesis $ dollar

) right parenthesis % percent

* star, multiply ? question mark

+ plus @ commercial at

, comma [left square bracket

- hyphen, minus \ back-slash

. dot, point, period] right square bracket

/ slash, divide ^ circumflex

: colon ` grave accent

; semicolon { left brace

< less than } right brace

= equal ~ tilde

The following names are used when referring to the Latin-1 special characters:

symbol name symbol name

¡ inverted exclamation mark ² superscript two

¢ cent ³ superscript three

£ pound ´ acute accent

¤ currency µ micro

¥ yen ¶ pilcrow

2–3 Character Set 2.1

symbol name symbol name

¦ broken bar · middle dot

§ paragraph ¸ cedilla

¨ diaresis ¹ superscript one

© copyright º masculine ordinal

ª feminine ordinal » left angle quotation

« right angle quotation ¼ one fourth

¬ not ½ one half

® registered trademark ¾ three quarters

¯ macron ¿ inverted question mark

° degree � times

± plus or minus � divide

2.2 Lexical Elements, Separators, and Delimiters
1 The text of a program consists of the texts of one or more compilations. The

text of each compilation is a sequence of separate lexical elements. Each lexical
element is either a delimiter, an identifier (which may be a reserved word), a
numeric literal, a character literal, a string literal, or a comment. The effect
of a program depends only on the particular sequences of lexical elements that
form its compilations, excluding the comments, if any.

2 In some cases an explicit separator is required to separate adjacent lexical
elements (namely, when without separation, interpretation as a single lexical
element is possible). A separator is any of a space character, a format effector,
or the end of a line. A space character is a separator except within a comment,
a string literal, or a space character literal. Format effectors other than
horizontal tabulation are always separators. Horizontal tabulation is a
separator except within a comment.

3 The end of a line is always a separator. The language does not define what
causes the end of a line. However if, for a given implementation, the end of
a line is signified by one or more characters, then these characters must be
format effectors other than horizontal tabulation. In any case, a sequence of
one or more format effectors other than horizontal tabulation must cause at
least one end of line.

2.2 Lexical Elements, Separators, and Delimiters 2–4

4 One or more separators are allowed between any two adjacent lexical elements,
before the first of each compilation, or after the last. At least one separator is
required between an identifier or a numeric literal and an adjacent identifier
or numeric literal.

5 A delimiter is either one of the following special characters (in the basic
character set)

& ’ () * + , – . / : ; < => |

6 or one of the following compound delimiters each composed of two adjacent
special characters

=> .. ** := /= >= <= << >> <>

7 Each of the special characters listed for single character delimiters is a
single delimiter except if this character is used as a character of a compound
delimiter, or as a character of a comment, string literal, character literal, or
numeric literal.

8 The remaining forms of lexical element are described in other sections of this
chapter.

Notes:
9 Each lexical element must fit on one line, since the end of a line is a separator.

The quotation, sharp, and underline characters, likewise two adjacent hyphens,
are not delimiters, but may form part of other lexical elements.

10 The following names are used when referring to compound delimiters:

delimiter name

=> arrow

.. double dot

** double star, exponentiate

:= assignment (pronounced: ‘‘becomes’’)

/= inequality (pronounced: ‘‘not equal’’)

>= greater than or equal

<= less than or equal

<< left label bracket

>> right label bracket

<> box

2–5 Lexical Elements, Separators, and Delimiters 2.2

11 References: character literal 2.5, comment 2.7, compilation 10.1, format effector
2.1, identifier 2.3, numeric literal 2.4, reserved word 2.9, space character 2.1, special
character 2.1, string literal 2.6

2.3 Identifiers
1 Identifiers are used as names and also as reserved words.

2 identifier ::=
letter {[underline] letter_or_digit}

letter_or_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

3 All characters of an identifier are significant, including any underline character
inserted between a letter or digit and an adjacent letter or digit. Identifiers
differing only in the use of corresponding upper and lower case letters are
considered as the same.

4 Examples:
COUNT X get_symbol Ethelyn Marion

SNOBOL_4 X1 PageCount STORE_NEXT_ITEM

Note:
5 No space is allowed within an identifier since a space is a separator.

6 References: digit 2.1, lower case letter 2.1, name 4.1, reserved word 2.9, separator
2.2, space character 2.1, upper case letter 2.1

2.4 Numeric Literals
1 There are two classes of numeric literals: real literals and integer literals.

A real literal is a numeric literal that includes a point; an integer literal is
a numeric literal without a point. Real literals are the literals of the type
universal_real. Integer literals are the literals of the type universal_integer.

2 numeric_literal ::= decimal_literal | based_literal

3 References: literal 4.2, universal_integer type 3.5.4, universal_real type 3.5.6

2.4.1 Decimal Literals 2–6

2.4.1 Decimal Literals
1 A decimal literal is a numeric literal expressed in the conventional decimal

notation (that is, the base is implicitly ten).

2 decimal_literal ::= integer [.integer] [exponent]

integer ::= digit {[underline] digit}

exponent ::= E [+] integer | E - integer

3 An underline character inserted between adjacent digits of a decimal literal
does not affect the value of this numeric literal. The letter E of the exponent,
if any, can be written either in lower case or in upper case, with the same
meaning.

4 An exponent indicates the power of ten by which the value of the decimal
literal without the exponent is to be multiplied to obtain the value of the
decimal literal with the exponent. An exponent for an integer literal must not
have a minus sign.

5 Examples:
12 0 1E6 123_456 -- integer literals

12.0 0.0 0.456 3.14159_26 -- real literals

1.34E-12 1.0E+6 -- real literals with exponent

Notes:
6 Leading zeros are allowed. No space is allowed in a numeric literal, not even

between constituents of the exponent, since a space is a separator. A zero
exponent is allowed for an integer literal.

7 References: digit 2.1, lower case letter 2.1, numeric literal 2.4, separator 2.2, space
character 2.1, upper case letter 2.1

2.4.2 Based Literals
1 A based literal is a numeric literal expressed in a form that specifies the base

explicitly. The base must be at least two and at most sixteen.

2 based_literal ::=
base # based_integer [.based_integer] # [exponent]

base ::= integer

based_integer ::=
extended_digit {[underline] extended_digit}

extended_digit ::= digit | letter

2–7 Based Literals 2.4.2

3 An underline character inserted between adjacent digits of a based literal does
not affect the value of this numeric literal. The base and the exponent, if any,
are in decimal notation. The only letters allowed as extended digits are the
letters A through F for the digits ten through fifteen. A letter in a based literal
(either an extended digit or the letter E of an exponent) can be written either
in lower case or in upper case, with the same meaning.

4 The conventional meaning of based notation is assumed; in particular the
value of each extended digit of a based literal must be less than the base. An
exponent indicates the power of the base by which the value of the based literal
without the exponent is to be multiplied to obtain the value of the based literal
with the exponent.3

5 Examples:
2#1111_1111# 16#FF# 016#0FF# -- integer literals

-- of value 255

16#E#E1 2#1110_0000# -- integer literals
-- of value 224

16#F.FF#E+2 2#1.1111_1111_111#E11 -- real literals
-- of value 4095.0

6 References: digit 2.1, exponent 2.4.1, letter 2.3, lower case letter 2.1, numeric literal
2.4, upper case letter 2.1

2.5 Character Literals
1 A character literal is formed by enclosing one of the 95 graphic characters

(including the space) between two apostrophe characters. A character literal
has a value that belongs to a character type.4

2 character_literal ::= ’graphic_character’

By implementing characters as the ISO Latin-1 character set, DEC Ada also
allows the additional 96 characters afforded by the eight-bit representation
(see 2.1).5

3 Examples:
’A’ ’*’ ’’’ ’ ’

4 References: character type 3.5.2, graphic character 2.1, literal 4.2, space character
2.1

3 See also Appendix G, AI-00008.
4 See also Appendix G, AI-00866.
5 See also Appendix G, AI-00866.

2.5 Character Literals 2–8

2.6 String Literals
1 A string literal is formed by a sequence of graphic characters (possibly none)

enclosed between two quotation characters used as string brackets.

2 string_literal ::= "{graphic_character}"

3 A string literal has a value that is a sequence of character values corresponding
to the graphic characters of the string literal apart from the quotation
character itself. If a quotation character value is to be represented in the
sequence of character values, then a pair of adjacent quotation characters must
be written at the corresponding place within the string literal. (This means
that a string literal that includes two adjacent quotation characters is never
interpreted as two adjacent string literals.)

4 The length of a string literal is the number of character values in the sequence
represented. (Each doubled quotation character is counted as a single
character.)

5 Examples:
"Message of the day:"

"" -- an empty string literal
" " "A" """" -- three string literals of length 1

"Characters such as $, %, and } are allowed in string literals"

Note:
6 A string literal must fit on one line since it is a lexical element (see 2.2).

Longer sequences of graphic character values can be obtained by catenation of
string literals. Similarly catenation of constants declared in the package ASCII
can be used to obtain sequences of character values that include nongraphic
character values (the so-called control characters). Examples of such uses of
catenation are given below:

"FIRST PART OF A SEQUENCE OF CHARACTERS " &
"THAT CONTINUES ON THE NEXT LINE"

"sequence that includes the" & ASCII.ACK & "control character"

7 References: ascii predefined package C, catenation operation 4.5.3, character value
3.5.2, constant 3.2.1, declaration 3.1, end of a line 2.2, graphic character 2.1, lexical
element 2.2

2–9 String Literals 2.6

2.7 Comments
1 A comment starts with two adjacent hyphens and extends up to the end of

the line. A comment can appear on any line of a program. The presence or
absence of comments has no influence on whether a program is legal or illegal.
Furthermore, comments do not influence the effect of a program; their sole
purpose is the enlightenment of the human reader.6

2 Examples:
-- the last sentence above echoes the Algol 68 report

end; -- processing of LINE is complete

-- a long comment may be split onto
-- two or more consecutive lines

---------------- the first two hyphens start the comment

Note:
3 Horizontal tabulation can be used in comments, after the double hyphen, and

is equivalent to one or more spaces (see 2.2).

In DEC Ada, the set of characters allowed in a comment includes the graphic
characters (see 2.1), the escape character, and the horizontal tabulation
character.7

4 References: end of a line 2.2, illegal 1.6, legal 1.6, space character 2.1

2.8 Pragmas
1 A pragma is used to convey information to the compiler. A pragma starts with

the reserved word pragma followed by an identifier that is the name of the
pragma.

2 pragma ::=
pragma identifier [(argument_association

{, argument_association})];

argument_association ::=
[argument_identifier =>] name

| [argument_identifier =>] expression

6 See also Appendix G, AI-00339 and AI-00866.
7 See also Appendix G, AI-00339 and AI-00866.

2.8 Pragmas 2–10

3 Pragmas are only allowed at the following places in a program:

4 • After a semicolon delimiter, but not within a formal part or
discriminant part.8

5 • At any place where the syntax rules allow a construct defined by a
syntactic category whose name ends with ‘‘declaration’’, ‘‘statement’’,
‘‘clause’’, or ‘‘alternative’’, or one of the syntactic categories variant and
exception handler; but not in place of such a construct. Also at any
place where a compilation unit would be allowed.

6 Additional restrictions exist for the placement of specific pragmas.

7 Some pragmas have arguments. Argument associations can be either positional
or named as for parameter associations of subprogram calls (see 6.4). Named
associations are, however, only possible if the argument identifiers are defined.
A name given in an argument must be either a name visible at the place of the
pragma or an identifier specific to the pragma.

8 The pragmas defined by the language are described in Annex B: they must
be supported by every implementation. In addition, an implementation may
provide implementation-defined pragmas, which must then be described
in Appendix F. An implementation is not allowed to define pragmas whose
presence or absence influences the legality of the text outside such pragmas.
Consequently, the legality of a program does not depend on the presence or
absence of implementation-defined pragmas.9

9 A pragma that is not language-defined has no effect if its identifier is not
recognized by the (current) implementation. Furthermore, a pragma (whether
language-defined or implementation-defined) has no effect if its placement or
its arguments do not correspond to what is allowed for the pragma. The region
of text over which a pragma has an effect depends on the pragma.10

10 Examples:
pragma LIST(OFF);
pragma OPTIMIZE(TIME);
pragma INLINE(SETMASK);
pragma SUPPRESS(RANGE_CHECK, ON => INDEX);

8 See also Appendix G, AI-00388 and AI-00511.
9 See also Appendix G, AI-00425 and AI-00511.
10 See also Appendix G, AI-00186, AI-00242, AI-00306, AI-00322, and AI-00371.

2–11 Pragmas 2.8

Note:
11 It is recommended (but not required) that implementations issue warnings for

pragmas that are not recognized and therefore ignored.

12 References: compilation unit 10.1, delimiter 2.2, discriminant part 3.7.1, exception
handler 11.2, expression 4.4, formal part 6.1, identifier 2.3, implementation-defined
pragma F, language-defined pragma B, legal 1.6, name 4.1, reserved word 2.9,
statement 5, static expression 4.9, variant 3.7.3, visibility 8.3

13 Categories ending with ‘‘declaration’’ comprise: basic declaration 3.1, component
declaration 3.7, entry declaration 9.5, generic parameter declaration 12.1

14 Categories ending with ‘‘clause’’ comprise: alignment clause 13.4, component
clause 13.4, context clause 10.1.1, representation clause 13.1, use clause 8.4, with
clause 10.1.1

15 Categories ending with ‘‘alternative’’ comprise: accept alternative 9.7.1, case
statement alternative 5.4, delay alternative 9.7.1, select alternative 9.7.1, selective
wait alternative 9.7.1, terminate alternative 9.7.1

2.8 Pragmas 2–12

2.9 Reserved Words
1 The identifiers listed below are called reserved words and are reserved for

special significance in the language. For readability of this manual, the
reserved words appear in lower case boldface.

2

abort declare generic of select

abs delay goto or separate

accept delta others subtype

access digits if out

all do in task

and is package terminate

array pragma then

at else private type

elsif limited procedure

end loop

begin entry raise use

body exception range

exit mod record when

rem while

new renames with

case for not return

constant function null reverse xor

3 A reserved word must not be used as a declared identifier.

Notes:
4 Reserved words differing only in the use of corresponding upper and lower case

letters are considered as the same (see 2.3). In some attributes the identifier
that appears after the apostrophe is identical to some reserved word.

5 References: attribute 4.1.4, declaration 3.1, identifier 2.3, lower case letter 2.1, upper
case letter 2.1

2–13 Reserved Words 2.9

2.10 Allowable Replacements of Characters
1 The following replacements are allowed for the vertical bar, sharp, and

quotation basic characters:

2 • A vertical bar character (|) can be replaced by an exclamation mark
(!) where used as a delimiter.

3 • The sharp characters (#) of a based literal can be replaced by colons
(:) provided that the replacement is done for both occurrences.

4 • The quotation characters (") used as string brackets at both ends of a
string literal can be replaced by percent characters (%) provided that
the enclosed sequence of characters contains no quotation character,
and provided that both string brackets are replaced. Any percent
character within the sequence of characters must then be doubled and
each such doubled percent character is interpreted as a single percent
character value.

In DEC Ada, the broken bar is not allowed as a replacement for the vertical
bar.

5 These replacements do not change the meaning of the program.11

Notes:
6 It is recommended that use of the replacements for the vertical bar, sharp, and

quotation characters be restricted to cases where the corresponding graphical
symbols are not available. Note that the vertical bar appears as a broken bar
on some equipment; replacement is not recommended in this case.

7 The rules given for identifiers and numeric literals are such that lower case
and upper case letters can be used indifferently; these lexical elements can
thus be written using only characters of the basic character set. If a string
literal of the predefined type STRING contains characters that are not in the
basic character set, the same sequence of character values can be obtained by
catenating string literals that contain only characters of the basic character set
with suitable character constants declared in the predefined package ASCII.
Thus the string literal "AB$CD" could be replaced by "AB" & ASCII.DOLLAR
& "CD". Similarly, the string literal "ABcd" with lower case letters could be
replaced by "AB" & ASCII.LC_C & ASCII.LC_D.

8 References: ascii predefined package C, based literal 2.4.2, basic character 2.1,
catenation operation 4.5.3, character value 3.5.2, delimiter 2.2, graphic character 2.1,
graphical symbol 2.1, identifier 2.3, lexical element 2.2, lower case letter 2.1, numeric
literal 2.4, string bracket 2.6, string literal 2.6, upper case letter 2.1

11 See also Appendix G, AI-00350.

2.10 Allowable Replacements of Characters 2–14

3
Declarations and Types

1 This chapter describes the types in the language and the rules for declaring
constants, variables, and named numbers.

3.1 Declarations
1 The language defines several kinds of entities that are declared, either

explicitly or implicitly, by declarations. Such an entity can be a numeric
literal, an object, a discriminant, a record component, a loop parameter, an
exception, a type, a subtype, a subprogram, a package, a task unit, a generic
unit, a single entry, an entry family, a formal parameter (of a subprogram,
entry, or generic subprogram), a generic formal parameter, a named block or
loop, a labeled statement, or an operation (in particular, an attribute or an
enumeration literal; see 3.3.3).

2 There are several forms of declaration. A basic declaration is a form of
declaration defined as follows.

3 basic_declaration ::=
object_declaration | number_declaration

| type_declaration | subtype_declaration
| subprogram_declaration | package_declaration
| task_declaration | generic_declaration
| exception_declaration | generic_instantiation
| renaming_declaration | deferred_constant_declaration

4 Certain forms of declaration always occur (explicitly) as part of a basic
declaration; these forms are discriminant specifications, component
declarations, entry declarations, parameter specifications, generic parameter
declarations, and enumeration literal specifications. A loop parameter
specification is a form of declaration that occurs only in certain forms of loop
statement.

5 The remaining forms of declaration are implicit: the name of a block, the name
of a loop, and a statement label are implicitly declared. Certain operations are
implicitly declared (see 3.3.3).

3–1 Declarations 3.1

6 For each form of declaration the language rules define a certain region of
text called the scope of the declaration (see 8.2). Several forms of declaration
associate an identifier with a declared entity. Within its scope, and only
there, there are places where it is possible to use the identifier to refer to the
associated declared entity; these places are defined by the visibility rules (see
8.3). At such places the identifier is said to be a name of the entity (its simple
name); the name is said to denote the associated entity.

7 Certain forms of enumeration literal specification associate a character literal
with the corresponding declared entity. Certain forms of declaration associate
an operator symbol or some other notation with an explicitly or implicitly
declared operation.

8 The process by which a declaration achieves its effect is called the elaboration
of the declaration; this process happens during program execution.

9 After its elaboration, a declaration is said to be elaborated. Prior to the
completion of its elaboration (including before the elaboration), the declaration
is not yet elaborated. The elaboration of any declaration has always at
least the effect of achieving this change of state (from not yet elaborated to
elaborated). The phrase ‘‘the elaboration has no other effect’’ is used in this
manual whenever this change of state is the only effect of elaboration for some
form of declaration. An elaboration process is also defined for declarative parts,
declarative items, and compilation units (see 3.9 and 10.5).

10 Object, number, type, and subtype declarations are described here. The
remaining basic declarations are described in later chapters.

Note:
11 The syntax rules use the term identifier for the first occurrence of an identifier

in some form of declaration; the term simple name is used for any occurrence
of an identifier that already denotes some declared entity.

12 References: attribute 4.1.4, block name 5.6, block statement 5.6, character literal 2.5,
component declaration 3.7, declarative item 3.9, declarative part 3.9, deferred constant
declaration 7.4, discriminant specification 3.7.1, elaboration 3.9, entry declaration 9.5,
enumeration literal specification 3.5.1, exception declaration 11.1, generic declaration
12.1, generic instantiation 12.3, generic parameter declaration 12.1, identifier 2.3,
label 5.1, loop name 5.5, loop parameter specification 5.5, loop statement 5.5, name
4.1, number declaration 3.2.2, numeric literal 2.4, object declaration 3.2.1, operation
3.3, operator symbol 6.1, package declaration 7.1, parameter specification 6.1, record
component 3.7, renaming declaration 8.5, representation clause 13.1, scope 8.2, simple
name 4.1, subprogram body 6.3, subprogram declaration 6.1, subtype declaration 3.3.2,
task declaration 9.1, type declaration 3.3.1, visibility 8.3

3.1 Declarations 3–2

3.2 Objects and Named Numbers
1 An object is an entity that contains (has) a value of a given type. An object is

one of the following:

2 • an object declared by an object declaration or by a single task
declaration,

3 • a formal parameter of a subprogram, entry, or generic subprogram,

4 • a generic formal object,

5 • a loop parameter,

6 • an object designated by a value of an access type,

7 • a component or a slice of another object.

8 A number declaration is a special form of object declaration that associates an
identifier with a value of type universal_integer or universal_real. 1

9 object_declaration ::=
identifier_list : [constant] subtype_indication

[:= expression];
| identifier_list : [constant] constrained_array_definition

[:= expression];

number_declaration ::=
identifier_list : constant := universal_static_expression;

identifier_list ::= identifier {, identifier}

10 An object declaration is called a single object declaration if its identifier list
has a single identifier; it is called a multiple object declaration if the identifier
list has two or more identifiers. A multiple object declaration is equivalent to a
sequence of the corresponding number of single object declarations. For each
identifier of the list, the equivalent sequence has a single object declaration
formed by this identifier, followed by a colon and by whatever appears at the
right of the colon in the multiple object declaration; the equivalent sequence is
in the same order as the identifier list.

11 A similar equivalence applies also for the identifier lists of number
declarations, component declarations, discriminant specifications, parameter
specifications, generic parameter declarations, exception declarations, and
deferred constant declarations.

12 In the remainder of this reference manual, explanations are given for
declarations with a single identifier; the corresponding explanations for
declarations with several identifiers follow from the equivalence stated above.

1 See also Appendix G, AI-00263.

3–3 Objects and Named Numbers 3.2

13 Example:
-- the multiple object declaration

JOHN, PAUL : PERSON_NAME := new PERSON(SEX => M); -- see 3.8.1

-- is equivalent to the two single object declarations
-- in the order given

JOHN : PERSON_NAME := new PERSON(SEX => M);
PAUL : PERSON_NAME := new PERSON(SEX => M);

14 References: access type 3.8, constrained array definition 3.6, component 3.3,
declaration 3.1, deferred constant declaration 7.4, designate 3.8, discriminant
specification 3.7.1, entry 9.5, exception declaration 11.1, expression 4.4, formal
parameter 6.1, generic formal object 12.1.1, generic parameter declaration 12.1, generic
unit 12, generic subprogram 12.1, identifier 2.3, loop parameter 5.5, numeric type
3.5, parameter specification 6.1, scope 8.2, simple name 4.1, single task declaration
9.1, slice 4.1.2, static expression 4.9, subprogram 6, subtype indication 3.3.2, type 3.3,
universal_integer type 3.5.4, universal_real type 3.5.6

3.2.1 Object Declarations
1 An object declaration declares an object whose type is given either by a subtype

indication or by a constrained array definition. If the object declaration
includes the assignment compound delimiter followed by an expression, the
expression specifies an initial value for the declared object; the type of the
expression must be that of the object.

2 The declared object is a constant if the reserved word constant appears in the
object declaration; the declaration must then include an explicit initialization.
The value of a constant cannot be modified after initialization. Formal
parameters of mode in of subprograms and entries, and generic formal
parameters of mode in, are also constants; a loop parameter is a constant
within the corresponding loop; a subcomponent or slice of a constant is a
constant.

3 An object that is not a constant is called a variable (in particular, the object
declared by an object declaration that does not include the reserved word
constant is a variable). The only ways to change the value of a variable are
either directly by an assignment, or indirectly when the variable is updated
(see 6.2) by a procedure or entry call statement (this action can be performed
either on the variable itself, on a subcomponent of the variable, or on another
variable that has the given variable as subcomponent).

4 The elaboration of an object declaration proceeds as follows:

5 (a) The subtype indication or the constrained array definition is first
elaborated. This establishes the subtype of the object.

3.2.1 Object Declarations 3–4

6 (b) If the object declaration includes an explicit initialization, the initial
value is obtained by evaluating the corresponding expression.
Otherwise any implicit initial values for the object or for its
subcomponents are evaluated.

7 (c) The object is created.

8 (d) Any initial value (whether explicit or implicit) is assigned to the object
or to the corresponding subcomponent.

9 Implicit initial values are defined for objects declared by object declarations,
and for components of such objects, in the following cases:

10 • If the type of an object is an access type, the implicit initial value is the
null value of the access type.

11 • If the type of an object is a task type, the implicit initial (and only)
value designates a corresponding task.

12 • If the type of an object is a type with discriminants and the subtype of
the object is constrained, the implicit initial (and only) value of each
discriminant is defined by the subtype of the object.

13 • If the type of an object is a composite type, the implicit initial value
of each component that has a default expression is obtained by
evaluation of this expression, unless the component is a discriminant of
a constrained object (the previous case).

14 In the case of a component that is itself a composite object and whose value
is defined neither by an explicit initialization nor by a default expression, any
implicit initial values for components of the composite object are defined by the
same rules as for a declared object.

15 The steps (a) to (d) are performed in the order indicated. For step (b), if
the default expression for a discriminant is evaluated, then this evaluation is
performed before that of default expressions for subcomponents that depend
on discriminants, and also before that of default expressions that include
the name of the discriminant. Apart from the previous rule, the evaluation
of default expressions is performed in some order that is not defined by the
language.

16 The initialization of an object (the declared object or one of its subcomponents)
checks that the initial value belongs to the subtype of the object; for an array
object declared by an object declaration, an implicit subtype conversion is first
applied as for an assignment statement, unless the object is a constant whose

3–5 Object Declarations 3.2.1

subtype is an unconstrained array type. The exception CONSTRAINT_ERROR
is raised if this check fails. 2

17 The value of a scalar variable is undefined after elaboration of the
corresponding object declaration unless an initial value is assigned to the
variable by an initialization (explicitly or implicitly).

18 If the operand of a type conversion or qualified expression is a variable that
has scalar subcomponents with undefined values, then the values of the
corresponding subcomponents of the result are undefined. The execution
of a program is erroneous if it attempts to evaluate a scalar variable with
an undefined value. Similarly, the execution of a program is erroneous if
it attempts to apply a predefined operator to a variable that has a scalar
subcomponent with an undefined value. 3

19 Examples of variable declarations:
COUNT, SUM : INTEGER;
SIZE : INTEGER range 0 .. 10_000 := 0;
SORTED : BOOLEAN := FALSE;
COLOR_TABLE : array(1 .. N) of COLOR;
OPTION : BIT_VECTOR(1 .. 10) := (others => TRUE);

20 Examples of constant declarations:
LIMIT : constant INTEGER := 10_000;
LOW_LIMIT : constant INTEGER := LIMIT/10;
TOLERANCE : constant REAL := DISPERSION(1.15);

Note:
21 The expression initializing a constant object need not be a static expression

(see 4.9). In the above examples, LIMIT and LOW_LIMIT are initialized with
static expressions, but TOLERANCE is not if DISPERSION is a user-defined
function.

22 References: access type 3.8, assignment 5.2, assignment compound delimiter 5.2,
component 3.3, composite type 3.3, constrained array definition 3.6, constrained
subtype 3.3, constraint_error exception 11.1, conversion 4.6, declaration 3.1, default
expression for a discriminant 3.7, default initial value for an access type 3.8, depend
on a discriminant 3.7.1, designate 3.8, discriminant 3.3, elaboration 3.9, entry 9.5,
evaluation 4.5, expression 4.4, formal parameter 6.1, generic formal parameter 12.1
12.3, generic unit 12, in some order 1.6, limited type 7.4.4, mode in 6.1, package 7,
predefined operator 4.5, primary 4.4, private type 7.4, qualified expression 4.7, reserved
word 2.9, scalar type 3.5, slice 4.1.2, subcomponent 3.3, subprogram 6, subtype 3.3,
subtype indication 3.3.2, task 9, task type 9.2, type 3.3, visible part 7.2

2 See also Appendix G, AI-00308.
3 See also Appendix G,AI-00155, AI-00356, AI-00374, and AI-00426.

3.2.1 Object Declarations 3–6

3.2.2 Number Declarations
1 A number declaration is a special form of constant declaration. The type of

the static expression given for the initialization of a number declaration must
be either the type universal_integer or the type universal_real. The constant
declared by a number declaration is called a named number and has the type
of the static expression.

Note:
2 The rules concerning expressions of a universal type are explained in section

4.10. It is a consequence of these rules that if every primary contained in the
expression is of the type universal_integer, then the named number is also of
this type. Similarly, if every primary is of the type universal_real, then the
named number is also of this type.

3 Examples of number declarations:
PI : constant := 3.14159_26536; -- a real number
TWO_PI : constant := 2.0*PI; -- a real number
MAX : constant := 500; -- an integer number
POWER_16 : constant := 2**16; -- the integer 65_536
ONE, UN, EINS : constant := 1; -- three different

-- names for 1

4 References: identifier 2.3, primary 4.4, static expression 4.9, type 3.3, universal_
integer type 3.5.4, universal_real type 3.5.6, universal type 4.10

3.3 Types and Subtypes
1 A type is characterized by a set of values and a set of operations.

2 There exist several classes of types. Scalar types are integer types, real types,
and types defined by enumeration of their values; values of these types have no
components. Array and record types are composite; a value of a composite type
consists of component values. An access type is a type whose values provide
access to objects. Private types are types for which the set of possible values
is well defined, but not directly available to the users of such types. Finally,
there are task types. (Private types are described in chapter 7, task types are
described in chapter 9, the other classes of types are described in this chapter.)

3 Certain record and private types have special components called discriminants
whose values distinguish alternative forms of values of one of these types. If
a private type has discriminants, they are known to users of the type. Hence
a private type is only known by its name, its discriminants if any, and by the
corresponding set of operations.

3–7 Types and Subtypes 3.3

4 The set of possible values for an object of a given type can be subjected to a
condition that is called a constraint (the case where the constraint imposes no
restriction is also included); a value is said to satisfy a constraint if it satisfies
the corresponding condition. A subtype is a type together with a constraint; a
value is said to belong to a subtype of a given type if it belongs to the type and
satisfies the constraint; the given type is called the base type of the subtype.
A type is a subtype of itself; such a subtype is said to be unconstrained: it
corresponds to a condition that imposes no restriction. The base type of a type
is the type itself.

5 The set of operations defined for a subtype of a given type includes the
operations that are defined for the type; however the assignment operation to a
variable having a given subtype only assigns values that belong to the subtype.
Additional operations, such as qualification (in a qualified expression), are
implicitly defined by a subtype declaration.

6 Certain types have default initial values defined for objects of the type;
certain other types have default expressions defined for some or all of their
components. Certain operations of types and subtypes are called attributes;
these operations are denoted by the form of name described in section 4.1.4.

7 The term subcomponent is used in this manual in place of the term component
to indicate either a component, or a component of another component or
subcomponent. Where other subcomponents are excluded, the term component
is used instead.

8 A given type must not have a subcomponent whose type is the given type itself.

9 The name of a class of types is used in this manual as a qualifier for objects
and values that have a type of the class considered. For example, the term
‘‘array object’’ is used for an object whose type is an array type; similarly, the
term ‘‘access value’’ is used for a value of an access type.

Note:
10 The set of values of a subtype is a subset of the values of the base type. This

subset need not be a proper subset; it can be an empty subset.

11 References: access type 3.8, array type 3.6, assignment 5.2, attribute 4.1.4,
component of an array 3.6, component of a record 3.7, discriminant constraint 3.7.2,
enumeration type 3.5.1, integer type 3.5.4, object 3.2.1, private type 7.4, qualified
expression 4.7, real type 3.5.6, record type 3.7, subtype declaration 3.3.2, task type 9.1,
type declaration 3.3.1

3.3 Types and Subtypes 3–8

3.3.1 Type Declarations
1 A type declaration declares a type.

2 type_declaration ::= full_type_declaration
| incomplete_type_declaration | private_type_declaration

full_type_declaration ::=
type identifier [discriminant_part] is type_definition;

type_definition ::=
enumeration_type_definition | integer_type_definition

| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition

3 The elaboration of a full type declaration consists of the elaboration of the
discriminant part, if any (except in the case of the full type declaration for
an incomplete or private type declaration), and of the elaboration of the type
definition.

4 The types created by the elaboration of distinct type definitions are distinct
types. Moreover, the elaboration of the type definition for a numeric or derived
type creates both a base type and a subtype of the base type; the same holds for
a constrained array definition (one of the two forms of array type definition).

5 The simple name declared by a full type declaration denotes the declared
type, unless the type declaration declares both a base type and a subtype of
the base type, in which case the simple name denotes the subtype, and the
base type is anonymous. A type is said to be anonymous if it has no simple
name. For explanatory purposes, this reference manual sometimes refers
to an anonymous type by a pseudo-name, written in italics, and uses such
pseudo-names at places where the syntax normally requires an identifier.

6 Examples of type definitions:
(WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK)
range 1 .. 72
array(1 .. 10) of INTEGER

7 Examples of type declarations:
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type COLUMN is range 1 .. 72;
type TABLE is array(1 .. 10) of INTEGER;

3–9 Type Declarations 3.3.1

Notes:
8 Two type definitions always define two distinct types, even if they are textually

identical. Thus, the array type definitions given in the declarations of A and B
below define distinct types.

A : array(1 .. 10) of BOOLEAN;
B : array(1 .. 10) of BOOLEAN;

9 If A and B are declared by a multiple object declaration as below, their types
are nevertheless different, since the multiple object declaration is equivalent to
the above two single object declarations.

A, B : array(1 .. 10) of BOOLEAN;

10 Incomplete type declarations are used for the definition of recursive and
mutually dependent types (see 3.8.1). Private type declarations are used in
package specifications and in generic parameter declarations (see 7.4 and 12.1).

11 References: access type definition 3.8, array type definition 3.6, base type 3.3,
constrained array definition 3.6, constrained subtype 3.3, declaration 3.1, derived type
3.4, derived type definition 3.4, discriminant part 3.7.1, elaboration 3.9, enumeration
type definition 3.5.1, identifier 2.3, incomplete type declaration 3.8.1, integer type
definition 3.5.4, multiple object declaration 3.2, numeric type 3.5, private type
declaration 7.4, real type definition 3.5.6, reserved word 2.9, type 3.3

3.3.2 Subtype Declarations
1 A subtype declaration declares a subtype.

2 subtype_declaration ::=
subtype identifier is subtype_indication;

subtype_indication ::= type_mark [constraint]

type_mark ::= type_name | subtype_name

constraint ::=
range_constraint | floating_point_constraint

| fixed_point_constraint | index_constraint
| discriminant_constraint

3 A type mark denotes a type or a subtype. If a type mark is the name of a type,
the type mark denotes this type and also the corresponding unconstrained
subtype. The base type of a type mark is, by definition, the base type of the
type or subtype denoted by the type mark.

4 A subtype indication defines a subtype of the base type of the type mark.

3.3.2 Subtype Declarations 3–10

5 If an index constraint appears after a type mark in a subtype indication,
the type mark must not already impose an index constraint. Likewise for a
discriminant constraint, the type mark must not already impose a discriminant
constraint.

6 The elaboration of a subtype declaration consists of the elaboration of the
subtype indication. The elaboration of a subtype indication creates a subtype.
If the subtype indication does not include a constraint, the subtype is the same
as that denoted by the type mark. The elaboration of a subtype indication that
includes a constraint proceeds as follows: 4

7 (a) The constraint is first elaborated.

8 (b) A check is then made that the constraint is compatible with the type
or subtype denoted by the type mark.

9 The condition imposed by a constraint is the condition obtained after
elaboration of the constraint. (The rules of constraint elaboration are such
that the expressions and ranges of constraints are evaluated by the elaboration
of these constraints.) The rules defining compatibility are given for each
form of constraint in the appropriate section. These rules are such that if a
constraint is compatible with a subtype, then the condition imposed by the
constraint cannot contradict any condition already imposed by the subtype
on its values. The exception CONSTRAINT_ERROR is raised if any check of
compatibility fails.

10 Examples of subtype declarations:
subtype RAINBOW is COLOR range RED .. BLUE; -- see 3.3.1
subtype RED_BLUE is RAINBOW;
subtype INT is INTEGER;
subtype SMALL_INT is INTEGER range -10 .. 10;
subtype UP_TO_K is COLUMN range 1 .. K; -- see 3.3.1
subtype SQUARE is MATRIX(1 .. 10, 1 .. 10); -- see 3.6
subtype MALE is PERSON(SEX => M); -- see 3.8

Note:
11 A subtype declaration does not define a new type.

12 References: base type 3.3, compatibility of discriminant constraints 3.7.2,
compatibility of fixed point constraints 3.5.9, compatibility of floating point constraints
3.5.7, compatibility of index constraints 3.6.1, compatibility of range constraints
3.5, constraint_error exception 11.1, declaration 3.1, discriminant 3.3, discriminant
constraint 3.7.2, elaboration 3.9, evaluation 4.5, expression 4.4, floating point constraint
3.5.7, fixed point constraint 3.5.9, index constraint 3.6.1, range constraint 3.5, reserved
word 2.9, subtype 3.3, type 3.3, type name 3.3.1, unconstrained subtype 3.3

4 See also Appendix G, AI-00449.

3–11 Subtype Declarations 3.3.2

3.3.3 Classification of Operations
1 The set of operations of a type includes the explicitly declared subprograms

that have a parameter or result of the type; such subprograms are necessarily
declared after the type declaration. 5

2 The remaining operations are each implicitly declared for a given type
declaration, immediately after the type definition. These implicitly declared
operations comprise the basic operations, the predefined operators (see
4.5), and enumeration literals. In the case of a derived type declaration,
the implicitly declared operations include any derived subprograms. The
operations implicitly declared for a given type declaration occur after the
type declaration and before the next explicit declaration, if any. The implicit
declarations of derived subprograms occur last.

3 A basic operation is an operation that is inherent in one of the following:

4 • An assignment (in assignment statements and initializations), an
allocator, a membership test, or a short-circuit control form.

5 • A selected component, an indexed component, or a slice.

6 • A qualification (in qualified expressions), an explicit type conversion,
or an implicit type conversion of a value of type universal_integer or
universal_real to the corresponding value of another numeric type.

7 • A numeric literal (for a universal type), the literal null (for an access
type), a string literal, an aggregate, or an attribute.

8 For every type or subtype T, the following attribute is defined:

9 T’BASE The base type of T. This attribute is allowed only as the
prefix of the name of another attribute: for example,
T’BASE’FIRST.

Note:
10 Each literal is an operation whose evaluation yields the corresponding value

(see 4.2). Likewise, an aggregate is an operation whose evaluation yields a
value of a composite type (see 4.3). Some operations of a type operate on values
of the type, for example, predefined operators and certain subprograms and
attributes. The evaluation of some operations of a type returns a value of the
type, for example, literals and certain functions, attributes, and predefined
operators. Assignment is an operation that operates on an object and a value.
The evaluation of the operation corresponding to a selected component, an
indexed component, or a slice, yields the object or value denoted by this form of
name.

5 See also Appendix G, AI-00330.

3.3.3 Classification of Operations 3–12

11 References: aggregate 4.3, allocator 4.8, assignment 5.2, attribute 4.1.4, character
literal 2.5, composite type 3.3, conversion 4.6, derived subprogram 3.4, enumeration
literal 3.5.1, formal parameter 6.1, function 6.5, indexed component 4.1.1, initial
value 3.2.1, literal 4.2, membership test 4.5 4.5.2, null literal 3.8, numeric literal 2.4,
numeric type 3.5, object 3.2.1, 6.1, predefined operator 4.5, qualified expression 4.7,
selected component 4.1.3, short-circuit control form 4.5 4.5.1, slice 4.1.2, string literal
2.6, subprogram 6, subtype 3.3, type 3.3, type declaration 3.3.1, universal_integer type
3.5.4, universal_real type 3.5.6, universal type 4.10

3.4 Derived Types
1 A derived type definition defines a new (base) type whose characteristics are

derived from those of a parent type; the new type is called a derived type. A
derived type definition further defines a derived subtype, which is a subtype of
the derived type.

2 derived_type_definition ::= new subtype_indication

3 The subtype indication that occurs after the reserved word new defines the
parent subtype. The parent type is the base type of the parent subtype. If a
constraint exists for the parent subtype, a similar constraint exists for the
derived subtype; the only difference is that for a range constraint, and likewise
for a floating or fixed point constraint that includes a range constraint, the
value of each bound is replaced by the corresponding value of the derived type.
The characteristics of the derived type are defined as follows:

4 • The derived type belongs to the same class of types as the parent type.
The set of possible values for the derived type is a copy of the set of
possible values for the parent type. If the parent type is composite,
then the same components exist for the derived type, and the subtype
of corresponding components is the same.

5 • For each basic operation of the parent type, there is a corresponding
basic operation of the derived type. Explicit type conversion of a value
of the parent type into the corresponding value of the derived type is
allowed and vice versa as explained in section 4.6.

6 • For each enumeration literal or predefined operator of the parent type
there is a corresponding operation for the derived type.

7 • If the parent type is a task type, then for each entry of the parent type
there is a corresponding entry for the derived type.

8 • If a default expression exists for a component of an object having
the parent type, then the same default expression is used for the
corresponding component of an object having the derived type.

3–13 Derived Types 3.4

9 • If the parent type is an access type, then the parent and the derived
type share the same collection; there is a null access value for the
derived type and it is the default initial value of that type.

10 • If an explicit representation clause exists for the parent type and if
this clause appears before the derived type definition, then there is a
corresponding representation clause (an implicit one) for the derived
type. 6

11 • Certain subprograms that are operations of the parent type are said
to be derivable. For each derivable subprogram of the parent type,
there is a corresponding derived subprogram for the derived type.
Two kinds of derivable subprograms exist. First, if the parent type
is declared immediately within the visible part of a package, then
a subprogram that is itself explicitly declared immediately within
the visible part becomes derivable after the end of the visible part,
if it is an operation of the parent type. (The explicit declaration is
by a subprogram declaration, a renaming declaration, or a generic
instantiation.) Second, if the parent type is itself a derived type,
then any subprogram that has been derived by this parent type is
further derivable, unless the parent type is declared in the visible part
of a package and the derived subprogram is hidden by a derivable
subprogram of the first kind. 7

12 Each operation of the derived type is implicitly declared at the place of the
derived type declaration. The implicit declarations of any derived subprograms
occur last.

13 The specification of a derived subprogram is obtained implicitly by systematic
replacement of the parent type by the derived type in the specification of the
derivable subprogram. Any subtype of the parent type is likewise replaced by a
subtype of the derived type with a similar constraint (as for the transformation
of a constraint of the parent subtype into the corresponding constraint of the
derived subtype). Finally, any expression of the parent type is made to be the
operand of a type conversion that yields a result of the derived type.

14 Calling a derived subprogram is equivalent to calling the corresponding
subprogram of the parent type, in which each actual parameter that is of the
derived type is replaced by a type conversion of this actual parameter to the
parent type (this means that a conversion to the parent type happens before
the call for the modes in and in out; a reverse conversion to the derived type
happens after the call for the modes in out and out, see 6.4.1). In addition, if

6 See also Appendix G, AI-00138 and AI-00292.
7 See also Appendix G, AI-00367 and AI-00398.

3.4 Derived Types 3–14

the result of a called function is of the parent type, this result is converted to
the derived type.

15 If a derived or private type is declared immediately within the visible part of
a package, then, within this visible part, this type must not be used as the
parent type of a derived type definition. (For private types, see also section
7.4.1.)

16 For the elaboration of a derived type definition, the subtype indication is first
elaborated, the derived type is then created, and finally, the derived subtype is
created.

17 Examples:
type LOCAL_COORDINATE is new COORDINATE; -- two different types
type MIDWEEK is new DAY range TUE .. THU; -- see 3.5.1
type COUNTER is new POSITIVE; -- same range as

-- POSITIVE

type SPECIAL_KEY is new KEY_MANAGER.KEY; -- see 7.4.2
-- the derived subprograms have the following specifications:

-- procedure GET_KEY(K : out SPECIAL_KEY);
-- function "<"(X,Y : SPECIAL_KEY) return BOOLEAN;

Notes:
18 The rules of derivation of basic operations and enumeration literals imply that

the notation for any literal or aggregate of the derived type is the same as
for the parent type; such literals and aggregates are said to be overloaded.
Similarly, it follows that the notation for denoting a component, a discriminant,
an entry, a slice, or an attribute is the same for the derived type as for the
parent type.

19 Hiding of a derived subprogram is allowed even within the same declarative
region (see 8.3). A derived subprogram hides a predefined operator that has
the same parameter and result type profile (see 6.6).

20 A generic subprogram declaration is not derivable since it declares a generic
unit rather than a subprogram. On the other hand, an instantiation of a
generic subprogram is a (nongeneric) subprogram, which is derivable if it
satisfies the requirements for derivability of subprograms.

21 If the parent type is a boolean type, the predefined relational operators of the
derived type deliver a result of the predefined type BOOLEAN (see 4.5.2).

22 If a representation clause is given for the parent type but appears after the
derived type declaration, then no corresponding representation clause applies

3–15 Derived Types 3.4

to the derived type; hence an explicit representation clause for such a derived
type is allowed. 8

23 For a derived subprogram, if a parameter belongs to the derived type, the
subtype of this parameter need not have any value in common with the derived
subtype.

24 References: access value 3.8, actual parameter 6.4.1, aggregate 4.3, attribute 4.1.4,
base type 3.3, basic operation 3.3.3, boolean type 3.5.3, bound of a range 3.5, class of
type 3.3, collection 3.8, component 3.3, composite type 3.3, constraint 3.3, conversion
4.6, declaration 3.1, declarative region 8.1, default expression 3.2.1, default initial value
for an access type 3.8, discriminant 3.3, elaboration 3.9, entry 9.5, enumeration literal
3.5.1, floating point constraint 3.5.7, fixed point constraint 3.5.9, formal parameter 6.1,
function call 6.4, generic declaration 12.1, immediately within 8.1, implicit declaration
3.1, literal 4.2, mode 6.1, overloading 6.6 8.7, package 7, package specification 7.1,
parameter association 6.4, predefined operator 4.5, private type 7.4, procedure 6,
procedure call statement 6.4, range constraint 3.5, representation clause 13.1, reserved
word 2.9, slice 4.1.2, subprogram 6, subprogram specification 6.1, subtype indication
3.3.2, subtype 3.3, type 3.3, type definition 3.3.1, visible part 7.2

3.5 Scalar Types
1 Scalar types comprise enumeration types, integer types, and real types.

Enumeration types and integer types are called discrete types; each value of a
discrete type has a position number which is an integer value. Integer types
and real types are called numeric types. All scalar types are ordered, that is,
all relational operators are predefined for their values.

2 range_constraint ::= range range

range ::= range_attribute
| simple_expression .. simple_expression

3 A range specifies a subset of values of a scalar type. The range L .. R specifies
the values from L to R inclusive if the relation L <= R is true. The values L
and R are called the lower bound and upper bound of the range, respectively.
A value V is said to satisfy a range constraint if it belongs to the range; the
value V is said to belong to the range if the relations L <= V and V <= R are
both TRUE. A null range is a range for which the relation R < L is TRUE; no
value belongs to a null range. The operators <= and < in the above definitions
are the predefined operators of the scalar type.

8 See also Appendix G, AI-00138.

3.5 Scalar Types 3–16

4 If a range constraint is used in a subtype indication, either directly or as
part of a floating or fixed point constraint, the type of the simple expressions
(likewise, of the bounds of a range attribute) must be the same as the base type
of the type mark of the subtype indication. A range constraint is compatible
with a subtype if each bound of the range belongs to the subtype, or if the
range constraint defines a null range; otherwise the range constraint is not
compatible with the subtype.

5 The elaboration of a range constraint consists of the evaluation of the range.
The evaluation of a range defines its lower bound and its upper bound. If
simple expressions are given to specify the bounds, the evaluation of the range
evaluates these simple expressions in some order that is not defined by the
language.

6 Attributes:
7 For any scalar type T or for any subtype T of a scalar type, the following

attributes are defined:

8 T’FIRST Yields the lower bound of T. The value of this attribute
has the same type as T.

9 T’LAST Yields the upper bound of T. The value of this attribute
has the same type as T.

Note:
10 Indexing and iteration rules use values of discrete types.

11 References: attribute 4.1.4, constraint 3.3, enumeration type 3.5.1, erroneous 1.6,
evaluation 4.5, fixed point constraint 3.5.9, floating point constraint 3.5.7, index 3.6,
integer type 3.5.4, loop statement 5.5, range attribute 3.6.2, real type 3.5.6, relational
operator 4.5 4.5.2, satisfy a constraint 3.3, simple expression 4.4, subtype indication
3.3.2, type mark 3.3.2

3.5.1 Enumeration Types
1 An enumeration type definition defines an enumeration type.

2 enumeration_type_definition ::=
(enumeration_literal_specification

{, enumeration_literal_specification})

enumeration_literal_specification ::= enumeration_literal

enumeration_literal ::= identifier | character_literal

3–17 Enumeration Types 3.5.1

3 The identifiers and character literals listed by an enumeration type definition
must be distinct. Each enumeration literal specification is the declaration of
the corresponding enumeration literal: this declaration is equivalent to the
declaration of a parameterless function, the designator being the enumeration
literal, and the result type being the enumeration type. The elaboration of
an enumeration type definition creates an enumeration type; this elaboration
includes that of every enumeration literal specification. 9

4 Each enumeration literal yields a different enumeration value. The predefined
order relations between enumeration values follow the order of corresponding
position numbers. The position number of the value of the first listed
enumeration literal is zero; the position number for each other enumeration
literal is one more than for its predecessor in the list.

5 If the same identifier or character literal is specified in more than one
enumeration type definition, the corresponding literals are said to be
overloaded. At any place where an overloaded enumeration literal occurs in
the text of a program, the type of the enumeration literal must be determinable
from the context (see 8.7).

6 Examples:
type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type SUIT is (CLUBS, DIAMONDS, HEARTS, SPADES);
type GENDER is (M, F);
type LEVEL is (LOW, MEDIUM, URGENT);
type COLOR is (WHITE, RED, YELLOW, GREEN, BLUE, BROWN, BLACK);
type LIGHT is (RED, AMBER, GREEN); -- RED and GREEN are

-- overloaded

type HEXA is (’A’, ’B’, ’C’, ’D’, ’E’, ’F’);
type MIXED is (’A’, ’B’, ’*’, B, NONE, ’?’, ’%’);

subtype WEEKDAY is DAY range MON .. FRI;
subtype MAJOR is SUIT range HEARTS .. SPADES;
subtype RAINBOW is COLOR range RED .. BLUE; -- the color RED,

-- not the light

Note:
7 If an enumeration literal occurs in a context that does not otherwise suffice

to determine the type of the literal, then qualification by the name of the
enumeration type is one way to resolve the ambiguity (see 8.7).

8 References: character literal 2.5, declaration 3.1, designator 6.1, elaboration 3.9, 6.1,
function 6.5, identifier 2.3, name 4.1, overloading 6.6 8.7, position number 3.5, qualified
expression 4.7, relational operator 4.5 4.5.2, type 3.3, type definition 3.3.1

9 See also Appendix G, AI-00330 and AI-00430.

3.5.1 Enumeration Types 3–18

3.5.2 Character Types
1 An enumeration type is said to be a character type if at least one of its

enumeration literals is a character literal. The predefined type CHARACTER
is a character type whose values are the 128 characters of the ASCII character
set. Each of the 95 graphic characters of this character set is denoted by the
corresponding character literal.

2 Example:
type ROMAN_DIGIT is (’I’, ’V’, ’X’, ’L’, ’C’, ’D’, ’M’);

Notes:
3 The predefined package ASCII includes the declaration of constants denoting

control characters and of constants denoting graphic characters that are not in
the basic character set.

4 A conventional character set such as EBCDIC can be declared as a character
type; the internal codes of the characters can be specified by an enumeration
representation clause as explained in section 13.3.

5 References: ascii predefined package C, basic character 2.1, character literal 2.5,
constant 3.2.1, declaration 3.1, enumeration type 3.5.1, graphic character 2.1, identifier
2.3, literal 4.2, predefined type C, type 3.3

3.5.3 Boolean Types
1 There is a predefined enumeration type named BOOLEAN. It contains the

two literals FALSE and TRUE ordered with the relation FALSE < TRUE. A
boolean type is either the type BOOLEAN or a type that is derived, directly or
indirectly, from a boolean type.

2 References: derived type 3.4, enumeration literal 3.5.1, enumeration type 3.5.1,
relational operator 4.5 4.5.2, type 3.3

3.5.4 Integer Types
1 An integer type definition defines an integer type whose set of values includes

at least those of the specified range.

2 integer_type_definition ::= range_constraint

3 If a range constraint is used as an integer type definition, each bound of the
range must be defined by a static expression of some integer type, but the two
bounds need not have the same integer type.
(Negative bounds are allowed.) 10

10 See also Appendix G, AI-00240.

3–19 Integer Types 3.5.4

4 A type declaration of the form: 11

type T is range L .. R;

5 is, by definition, equivalent to the following declarations:

type integer_type is new predefined_integer_type;
subtype T is integer_type

range integer_type(L) .. integer_type(R);

6 where integer_type is an anonymous type, and where the predefined integer
type is implicitly selected by the implementation, so as to contain the values L
to R inclusive. The integer type declaration is illegal if none of the predefined
integer types satisfies this requirement, excepting universal_integer. The
elaboration of the declaration of an integer type consists of the elaboration of
the equivalent type and subtype declarations.

7 The predefined integer types include the type INTEGER. An implementation
may also have predefined types such as SHORT_INTEGER and LONG_
INTEGER, which have (substantially) shorter and longer ranges, respectively,
than INTEGER. The range of each of these types must be symmetric
about zero, excepting an extra negative value which may exist in some
implementations. The base type of each of these types is the type itself.

DEC Ada provides the following predefined integer types. Additional integer
types are declared in the package SYSTEM. See section 13.7a.4 for more
information.

Predefined type Range of values
DEC Ada systems
on which it applies

LONG_INTEGER –231 .. 231–1
(or –2,147,483,648 .. 2,147,483,647)

–263 .. 263–1

OpenVMS VAX

Alpha

INTEGER –231 .. 231–1
(or –2,147,483,648 .. 2,147,483,647)

All

SHORT_INTEGER –215 .. 215–1
(or –32,768 .. 32,767)

All

SHORT_SHORT_INTEGER –27 .. 27–1
(or –128 .. 127)

All

8 Integer literals are the literals of an anonymous predefined integer type that is
called universal_integer in this reference manual. Other integer types have no
literals. However, for each integer type there exists an implicit conversion that

11 See also Appendix G, AI-00023.

3.5.4 Integer Types 3–20

converts a universal_integer value into the corresponding value (if any) of the
integer type. The circumstances under which these implicit conversions are
invoked are described in section 4.6.

9 The position number of an integer value is the corresponding value of the type
universal_integer.

10 The same arithmetic operators are predefined for all integer types (see 4.5).
The exception NUMERIC_ERROR is raised by the execution of an operation
(in particular an implicit conversion) that cannot deliver the correct result
(that is, if the value corresponding to the mathematical result is not a value
of the integer type). However, an implementation is not required to raise the
exception NUMERIC_ERROR if the operation is part of a larger expression
whose result can be computed correctly, as described in section 11.6. 12

11 Examples:
type PAGE_NUM is range 1 .. 2_000;
type LINE_SIZE is range 1 .. MAX_LINE_SIZE;

subtype SMALL_INT is INTEGER range -10 .. 10;
subtype COLUMN_PTR is LINE_SIZE range 1 .. 10;
subtype BUFFER_SIZE is INTEGER range 0 .. MAX;

Notes:
12 The name declared by an integer type declaration is a subtype name. On the

other hand, the predefined operators of an integer type deliver results whose
range is defined by the parent predefined type; such a result need not belong
to the declared subtype, in which case an attempt to assign the result to a
variable of the integer subtype raises the exception CONSTRAINT_ERROR.

13 The smallest (most negative) value supported by the predefined integer types
of an implementation is the named number SYSTEM.MIN_INT and the largest
(most positive) value is SYSTEM.MAX_INT (see 13.7).

14 References: anonymous type 3.3.1, belong to a subtype 3.3, bound of a range 3.5,
constraint_error exception 11.1, conversion 4.6, identifier 2.3, integer literal 2.4, literal
4.2, numeric_error exception 11.1, parent type 3.4, predefined operator 4.5, range
constraint 3.5, static expression 4.9, subtype declaration 3.3.2, system predefined
package 13.7, type 3.3, type declaration 3.3.1, type definition 3.3.1, universal type 4.10

12 See also Appendix G, AI-00267 and AI-00387.

3–21 Operations of Discrete Types 3.5.5

3.5.5 Operations of Discrete Types
1 The basic operations of a discrete type include the operations involved in

assignment, the membership tests, and qualification; for a boolean type they
include the short-circuit control forms; for an integer type they include the
explicit conversion of values of other numeric types to the integer type, and the
implicit conversion of values of the type universal_integer to the type.

2 Finally, for every discrete type or subtype T, the basic operations include the
attributes listed below. In this presentation, T is referred to as being a subtype
(the subtype T) for any property that depends on constraints imposed by T;
other properties are stated in terms of the base type of T.

3 The first group of attributes yield characteristics of the subtype T. This group
includes the attribute BASE (see 3.3.2), the attributes FIRST and LAST (see
3.5), the representation attribute SIZE (see 13.7.2), and the attribute WIDTH
defined as follows:

4 T’WIDTH Yields the maximum image length over all values of
the subtype T (the image is the sequence of characters
returned by the attribute IMAGE, see below). Yields zero
for a null range. The value of this attribute is of the type
universal_integer.

5 All attributes of the second group are functions with a single parameter. The
corresponding actual parameter is indicated below by X.

6 T’POS This attribute is a function. The parameter X must be
a value of the base type of T. The result type is the type
universal_integer. The result is the position number of
the value of the parameter.

7 T’VAL This attribute is a special function with a single
parameter which can be of any integer type. The
result type is the base type of T. The result is the
value whose position number is the universal_
integer value corresponding to X. The exception
CONSTRAINT_ERROR is raised if the universal_
integer value corresponding to X is not in the range
T’POS(T’BASE’FIRST) .. T’POS(T’BASE’LAST).

8 T’SUCC This attribute is a function. The parameter X must
be a value of the base type of T. The result type is
the base type of T. The result is the value whose
position number is one greater than that of X. The
exception CONSTRAINT_ERROR is raised if X equals
T’BASE’LAST.

3.5.5 Operations of Discrete Types 3–22

9 T’PRED This attribute is a function. The parameter X must be
a value of the base type of T. The result type is the base
type of T. The result is the value whose position number
is one less than that of X. The exception CONSTRAINT_
ERROR is raised if X equals T’BASE’FIRST.

10 T’IMAGE This attribute is a function. The parameter X must
be a value of the base type of T. The result type is the
predefined type STRING. The result is the image of the
value of X, that is, a sequence of characters representing
the value in display form. The image of an integer value
is the corresponding decimal literal; without underlines,
leading zeros, exponent, or trailing spaces; but with a
single leading character that is either a minus sign or a
space. The lower bound of the image is one. 13

11 The image of an enumeration value is either the
corresponding identifier in upper case or the correspond-
ing character literal (including the two apostrophes);
neither leading nor trailing spaces are included. The
image of a character C, other than a graphic character,
is implementation-defined; the only requirement
is that the image must be such that C equals
CHARACTER’VALUE(CHARACTER’IMAGE(C)).14

In DEC Ada, the image of a character C that is not a
graphic character is defined as a string of two or three
upper case letters without enclosing quotation marks
or apostrophes. The upper case letters used are those
shown in italics as the literals of the predefined type
CHARACTER in Annex C (package STANDARD).

12 T’VALUE This attribute is a function. The parameter X must be a
value of the predefined type STRING. The result type is
the base type of T. Any leading and any trailing spaces
of the sequence of characters that corresponds to the
parameter are ignored.

13 See also Appendix G, AI-00234.
14 See also Appendix G, AI-00239.

3–23 Operations of Discrete Types 3.5.5

13 For an enumeration type, if the sequence of characters
has the syntax of an enumeration literal and if this
literal exists for the base type of T, the result is the
corresponding enumeration value. For an integer type, if
the sequence of characters has the syntax of an integer
literal, with an optional single leading character that
is a plus or minus sign, and if there is a corresponding
value in the base type of T, the result is this value. In
any other case, the exception CONSTRAINT_ERROR is
raised.

14 In addition, the attributes A’SIZE and A’ADDRESS are defined for an object
A of a discrete type (see 13.7.2).

15 Besides the basic operations, the operations of a discrete type include the
predefined relational operators. For enumeration types, operations include
enumeration literals. For boolean types, operations include the predefined
unary logical negation operator not, and the predefined logical operators. For
integer types, operations include the predefined arithmetic operators: these are
the binary and unary adding operators – and +, all multiplying operators, the
unary operator abs, and the exponentiating operator.

16 The operations of a subtype are the corresponding operations of its base type
except for the following: assignment, membership tests, qualification, explicit
type conversions, and the attributes of the first group; the effect of each of
these operations depends on the subtype (assignments, membership tests,
qualifications, and conversions involve a subtype check; attributes of the first
group yield a characteristic of the subtype).

Notes:
17 For a subtype of a discrete type, the results delivered by the attributes SUCC,

PRED, VAL, and VALUE need not belong to the subtype; similarly, the actual
parameters of the attributes POS, SUCC, PRED, and IMAGE need not belong
to the subtype. The following relations are satisfied (in the absence of an
exception) by these attributes:

T’POS(T’SUCC(X)) = T’POS(X) + 1
T’POS(T’PRED(X)) = T’POS(X) - 1

T’VAL(T’POS(X)) = X
T’POS(T’VAL(N)) = N

3.5.5 Operations of Discrete Types 3–24

18 Examples:
-- For the types and subtypes declared
-- in section 3.5.1 we have:

-- COLOR’FIRST = WHITE, COLOR’LAST = BLACK
-- RAINBOW’FIRST = RED, RAINBOW’LAST = BLUE

-- COLOR’SUCC(BLUE) = RAINBOW’SUCC(BLUE) = BROWN
-- COLOR’POS(BLUE) = RAINBOW’POS(BLUE) = 4
-- COLOR’VAL(0) = RAINBOW’VAL(0) = WHITE

19 References: abs operator 4.5 4.5.6, assignment 5.2, attribute 4.1.4, base type 3.3,
basic operation 3.3.3, binary adding operator 4.5 4.5.3, boolean type 3.5.3, bound
of a range 3.5, character literal 2.5, constraint 3.3, constraint_error exception 11.1,
conversion 4.6, discrete type 3.5, enumeration literal 3.5.1, exponentiating operator
4.5 4.5.6, function 6.5, graphic character 2.1, identifier 2.3, integer type 3.5.4, logical
operator 4.5 4.5.1, membership test 4.5 4.5.2, multiplying operator 4.5 4.5.5, not
operator 4.5 4.5.6, numeric literal 2.4, numeric type 3.5, object 3.2, operation 3.3,
position number 3.5, predefined operator 4.5, predefined type C, qualified expression
4.7, relational operator 4.5 4.5.2, short-circuit control form 4.5 4.5.1, string type 3.6.3,
subtype 3.3, type 3.3, unary adding operator 4.5 4.5.4, universal_integer type 3.5.4,
universal type 4.10

character 2.1, character type 3.5.2, standard predefined package 8.6 C

3.5.6 Real Types
1 Real types provide approximations to the real numbers, with relative bounds

on errors for floating point types, and with absolute bounds for fixed point
types.

2 real_type_definition ::=
floating_point_constraint | fixed_point_constraint

3 A set of numbers called model numbers is associated with each real type. Error
bounds on the predefined operations are given in terms of the model numbers.
An implementation of the type must include at least these model numbers and
represent them exactly.

4 An implementation-dependent set of numbers, called the safe numbers, is
also associated with each real type. The set of safe numbers of a real type
must include at least the set of model numbers of the type. The range of safe
numbers is allowed to be larger than the range of model numbers, but error
bounds on the predefined operations for safe numbers are given by the same
rules as for model numbers. Safe numbers therefore provide guaranteed error
bounds for operations on an implementation-dependent range of numbers; in
contrast, the range of model numbers depends only on the real type definition
and is therefore independent of the implementation.

3–25 Real Types 3.5.6

5 Real literals are the literals of an anonymous predefined real type that is
called universal_real in this reference manual. Other real types have no
literals. However, for each real type, there exists an implicit conversion that
converts a universal_real value into a value of the real type. The conditions
under which these implicit conversions are invoked are described in section 4.6.
If the universal_real value is a safe number, the implicit conversion delivers
the corresponding value; if it belongs to the range of safe numbers but is not
a safe number, then the converted value can be any value within the range
defined by the safe numbers next above and below the universal_real value.

6 The execution of an operation that yields a value of a real type may raise
the exception NUMERIC_ERROR, as explained in section 4.5.7, if it cannot
deliver a correct result (that is, if the value corresponding to one of the
possible mathematical results does not belong to the range of safe numbers);
in particular, this exception can be raised by an implicit conversion. However,
an implementation is not required to raise the exception NUMERIC_ERROR
if the operation is part of a larger expression whose result can be computed
correctly (see 11.6). 15

7 The elaboration of a real type definition includes the elaboration of the floating
or fixed point constraint and creates a real type.

Note:
8 An algorithm written to rely only upon the minimum numerical properties

guaranteed by the type definition for model numbers will be portable without
further precautions.

9 References: conversion 4.6, elaboration 3.9, fixed point constraint 3.5.9, floating point
constraint 3.5.7, literal 4.2, numeric_error exception 11.1, predefined operation 3.3.3,
real literal 2.4, type 3.3, type definition 3.3.1, universal type 4.10

3.5.7 Floating Point Types
1 For floating point types, the error bound is specified as a relative precision by

giving the required minimum number of significant decimal digits.

2 floating_point_constraint ::=
floating_accuracy_definition [range_constraint]

floating_accuracy_definition ::=
digits static_simple_expression

15 See also Appendix G, AI-00387.

3.5.7 Floating Point Types 3–26

3 The minimum number of significant decimal digits is specified by the value
of the static simple expression of the floating accuracy definition. This value
must belong to some integer type and must be positive (nonzero); it is denoted
by D in the remainder of this section. If the floating point constraint is used
as a real type definition and includes a range constraint, then each bound of
the range must be defined by a static expression of some real type, but the two
bounds need not have the same real type.

4 For a given radix, the following canonical form is defined for any floating point
model number other than zero:

sign * mantissa * (radix ** exponent)

5 In this form: sign is either +1 or –1; mantissa is expressed in a number base
given by radix; and exponent is an integer number (possibly negative) such that
the integer part of mantissa is zero and the first digit of its fractional part is
not a zero.

6 The specified number D is the minimum number of decimal digits required
after the point in the decimal mantissa (that is, if radix is ten). The value of
D in turn determines a corresponding number B that is the minimum number
of binary digits required after the point in the binary mantissa (that is, if
radix is two). The number B associated with D is the smallest value such that
the relative precision of the binary form is no less than that specified for the
decimal form. (The number B is the integer next above
(D*log(10)/log(2)) + 1.) 16

7 The model numbers defined by a floating accuracy definition comprise zero
and all numbers whose binary canonical form has exactly B digits after
the point in the mantissa and an exponent in the range –4*B .. +4*B. The
guaranteed minimum accuracy of operations of a floating point type is defined
in terms of the model numbers of the floating point constraint that forms the
corresponding real type definition (see 4.5.7).

8 The predefined floating point types include the type FLOAT. An implemen-
tation may also have predefined types such as SHORT_FLOAT and LONG_
FLOAT, which have (substantially) less and more accuracy, respectively, than
FLOAT. The base type of each predefined floating point type is the type itself.
The model numbers of each predefined floating point type are defined in terms
of the number D of decimal digits returned by the attribute DIGITS (see 3.5.8).

16 See also Appendix G, AI-00205.

3–27 Floating Point Types 3.5.7

DEC Ada provides the following floating point types in the package
STANDARD. Additional floating point types are declared in the package
SYSTEM (see 13.7b.1 and 13.7b.2).

Predefined type
DEC Ada systems
on which it applies Default representation1

Size
(bits)

Digits of
precision

FLOAT OpenVMS

Digital UNIX

F_floating

IEEE single float

32

32

6

6

LONG_FLOAT OpenVMS

Digital UNIX

G_floating

IEEE double float

64

64

15

15

LONG_LONG_FLOAT OpenVMS VAX

OpenVMS Alpha

Digital UNIX

H_floating

G_floating

IEEE double float

128

64

64

33

15

15

1On some systems, the pragmas FLOAT_REPRESENTATION and LONG_FLOAT can be used to
change the representation (see 3.5.7a and 3.5.7b).

The predefined attributes that yield the characteristics of each floating point
type are described in section 3.5.8. Values of these attributes for the DEC Ada
floating point data representations are listed in Appendix F. The DEC Ada run-
time reference manuals also give information on the internal representation of
the DEC Ada floating point types.

9 For each predefined floating point type (consequently also for each type derived
therefrom), a set of safe numbers is defined as follows. The safe numbers have
the same number B of mantissa digits as the model numbers of the type and
have an exponent in the range –E .. +E where E is implementation-defined and
at least equal to the 4*B of model numbers. (Consequently, the safe numbers
include the model numbers.) The rules defining the accuracy of operations
with model and safe numbers are given in section 4.5.7. The safe numbers of a
subtype are those of its base type. 17

10 A floating point type declaration of one of the two forms (that is, with or
without the optional range constraint indicated by the square brackets): 18

type T is digits D [range L .. R];

11 is, by definition, equivalent to the following declarations:

type floating_point_type is new predefined_floating_point_type;
subtype T is floating_point_type digits D

[range floating_point_type(L) .. floating_point_type(R)];

17 See also Appendix G, AI-00217 and AI-00314.
18 See also Appendix G, AI-00023.

3.5.7 Floating Point Types 3–28

12 where floating_point_type is an anonymous type, and where the predefined
floating point type is implicitly selected by the implementation so that its
model numbers include the model numbers defined by D; furthermore, if a
range L .. R is supplied, then both L and R must belong to the range of safe
numbers. The floating point declaration is illegal if none of the predefined
floating point types satisfies these requirements, excepting universal_real.
The maximum number of digits that can be specified in a floating accuracy
definition is given by the system-dependent named number SYSTEM.MAX_
DIGITS (see 13.7.1).

The predefined attributes that yield the safe number characteristics of each
floating point type are described in section 3.5.8. Values of these attributes for
the DEC Ada floating point representations are listed in Appendix F.

13 The elaboration of a floating point type declaration consists of the elaboration
of the equivalent type and subtype declarations.

14 If a floating point constraint follows a type mark in a subtype indication, the
type mark must denote a floating point type or subtype. The floating point
constraint is compatible with the type mark only if the number D specified in
the floating accuracy definition is not greater than the corresponding number D
for the type or subtype denoted by the type mark. Furthermore, if the floating
point constraint includes a range constraint, the floating point constraint is
compatible with the type mark only if the range constraint is, itself, compatible
with the type mark.

15 The elaboration of such a subtype indication includes the elaboration of the
range constraint, if there is one; it creates a floating point subtype whose
model numbers are defined by the corresponding floating accuracy definition.
A value of a floating point type belongs to a floating point subtype if and only
if it belongs to the range defined by the subtype.

16 The same arithmetic operators are predefined for all floating point types
(see 4.5).

Notes:
17 A range constraint is allowed in a floating point subtype indication, either

directly after the type mark, or as part of a floating point constraint. In either
case the bounds of the range must belong to the base type of the type mark
(see 3.5). The imposition of a floating point constraint on a type mark in a
subtype indication cannot reduce the allowed range of values unless it includes
a range constraint (the range of model numbers that correspond to the specified
number of digits can be smaller than the range of numbers of the type mark).

3–29 Floating Point Types 3.5.7

A value that belongs to a floating point subtype need not be a model number of
the subtype. 19

18 Examples:
type COEFFICIENT is digits 10 range -1.0 .. 1.0;

type REAL is digits 8;
type MASS is digits 7 range 0.0 .. 1.0E35;

subtype SHORT_COEFF is COEFFICIENT digits 5; -- a subtype with
-- less accuracy

subtype PROBABILITY is REAL range 0.0 .. 1.0; -- a subtype with
-- a smaller range

Notes on the examples:
19 The implemented accuracy for COEFFICIENT is that of a predefined type

having at least 10 digits of precision. Consequently the specification of 5
digits of precision for the subtype SHORT_COEFF is allowed. The largest
model number for the type MASS is approximately 1.27E30 and hence less
than the specified upper bound (1.0E35). Consequently the declaration of this
type is legal only if this upper bound is in the range of the safe numbers of a
predefined floating point type having at least 7 digits of precision.

20 References: anonymous type 3.3.1, arithmetic operator 3.5.5 4.5, based literal 2.4.2,
belong to a subtype 3.3, bound of a range 3.5, compatible 3.3.2, derived type 3.4,
digit 2.1, elaboration 3.1 3.9, error bound 3.5.6, exponent 2.4.1 integer type 3.5.4,
model number 3.5.6, operation 3.3, predefined operator 4.5, predefined type C, range
constraint 3.5, real type 3.5.6, real type definition 3.5.6, safe number 3.5.6, simple
expression 4.4, static expression 4.9, subtype declaration 3.3.2, subtype indication
3.3.2, subtype 3.3, type 3.3, type declaration 3.3.1, type mark 3.3.2

float_representation pragma 3.5.7a, long_float pragma 3.5.7b

3.5.7a Pragma Float_Representation
On OpenVMS and Digital UNIX systems, DEC Ada provides the pragma
FLOAT_REPRESENTATION to allow control over the internal representation
chosen for the predefined floating point types declared in the packages
STANDARD and SYSTEM. The form of this pragma is as follows:

pragma FLOAT_REPRESENTATION(VAX_FLOAT | -- on OpenVMS systems
IEEE_FLOAT); -- on Alpha systems

19 See also Appendix G, AI-00375.

3.5.7a Pragma Float_Representation 3–30

This pragma is only allowed at the start of a compilation before the first
compilation unit (if any). It controls the representation of floating point types
as follows:

• If the value VAX_FLOAT is specified, then floating point types are
represented with the VAX hardware types F_floating, D_floating, G_
floating, and H_floating. The type H_floating is available on OpenVMS
VAX systems only.

If the value is VAX_FLOAT, the default representation of the predefined
type STANDARD.LONG_FLOAT is G_floating. The representation can be
changed with the pragma LONG_FLOAT (see 3.5.7b).

• If the value IEEE_FLOAT is specified, then floating point types are
represented with the IEEE single and double floating types.

On OpenVMS VAX systems, the only value allowed is VAX_FLOAT.

On OpenVMS Alpha systems, the values allowed are VAX_FLOAT and IEEE_
FLOAT. Note that the predefined library is compiled with VAX_FLOAT, and
VAX_FLOAT is required for interface to system routine calls. An explicit type
conversion may be necessary in order to use the predefined library.

On Digital UNIX systems, the only value allowed is IEEE_FLOAT.

The following table summarizes by platform the allowable and default values
(chosen whenever a program library is reinitialized):

Platform Allowable Values Default

OpenVMS VAX VAX_FLOAT VAX_FLOAT

OpenVMS Alpha VAX_FLOAT
IEEE_FLOAT

VAX_FLOAT

Digital UNIX IEEE_FLOAT IEEE_FLOAT

Use of the pragma FLOAT_REPRESENTATION is interpreted as an implicit
recompilation of the predefined STANDARD environment. Therefore, if the
value of the pragma FLOAT_REPRESENTATION changes, all units that
depend on the value must be recompiled.

See section 3.5.7 for more information about the floating point types predefined
by DEC Ada.

3–31 Pragma Float_Representation 3.5.7a

Notes:
All representation choices also depend on the range of values to be represented.
See the DEC Ada Run-Time Reference Manual for OpenVMS Systems or
DEC Ada Run-Time Reference Manual for DEC OSF/1 Systems for more
information.

References: allow 1.6, compilation unit 10.1, d_floating representation 3.5.7,
f_floating representation 3.5.7, floating point type declaration 3.5.7, g_floating
representation 3.5.7, h_floating representation 3.5.7, ieee single floating representation
3.5.7, ieee double floating representation 3.5.7, long_float type 3.5.7, order of
compilation 10.3, pragma 2.8, program library 10.1, standard package 8.6 Appendix C,
system package Appendix F

3.5.7b Pragma Long_Float (OpenVMS Systems Only)
On OpenVMS systems, DEC Ada provides the pragma LONG_FLOAT to allow
control over the internal representation chosen for the predefined type LONG_
FLOAT and for floating point type declarations with digits specified in the
range 7 .. 15. The form of this pragma is as follows:

pragma LONG_FLOAT(D_FLOAT | G_FLOAT);

This pragma is only allowed at the start of a compilation before the first
compilation unit (if any). For this pragma to have an effect, the pragma
FLOAT_REPRESENTATION must also have a value of VAX_FLOAT (see
3.5.7a).

If the value D_FLOAT is specified and the range is adequate, then a D_floating
representation is used for the predefined type LONG_FLOAT and for
floating point types declared with digits in the range 7 .. 9. Similarly, if
the value G_FLOAT is specified and the range is adequate, then a G_floating
representation is used for the predefined type LONG_FLOAT and for floating
point types declared with digits in the range 7 .. 15. F_floating and H_floating
representations are used for floating point types with digits in other ranges as
follows:

Pragma argument Digits specified Representation

D_FLOAT 1 .. 6 F_floating

7 .. 9 D_floating

10 .. 15 G_floating1

10 .. 33 H_floating2

1On Alpha systems.
2On VAX systems.

3.5.7b Pragma Long_Float (OpenVMS Systems Only) 3–32

Pragma argument Digits specified Representation

G_FLOAT 1 .. 6 F_floating

7 .. 15 G_floating

16 .. 33 H_floating2

2On VAX systems.

Use of the pragma LONG_FLOAT is interpreted as an implicit recompilation of
the predefined STANDARD environment. Therefore, if the value of the pragma
LONG_FLOAT changes, all units that depend on the value must be recompiled.
Whenever a program library is reinitialized, the G_floating representation is
established by default.

Notes:
When the value of the pragma FLOAT_REPRESENTATION is VAX_FLOAT
(see 3.5.7a), the choice of floating point representation is not affected by the
pragma LONG_FLOAT in the following cases:

Digits
specified Representation DEC Ada systems on which it applies

1 .. 6 F_floating All OpenVMS

10 .. 15 G_floating OpenVMS Alpha

16 .. 33 H_floating OpenVMS VAX

All representation choices also depend on the range of values to be represented.
See the DEC Ada Run-Time Reference Manual for OpenVMS Systems for more
information.

References: allow 1.6, compilation unit 10.1, d_float type 3.5.7, d_floating
representation 3.5.7, f_float type 3.5.7, f_floating representation 3.5.7, floating point
type declaration 3.5.7, float_representation pragma 3.5.7a, g_float type 3.5.7, g_floating
representation 3.5.7, h_float type 3.5.7, h_floating representation 3.5.7, long_float type
3.5.7, order of compilation 10.3, pragma 2.8, program library 10.1, range 3.5, standard
package 8.6 Appendix C

3.5.8 Operations of Floating Point Types
1 The basic operations of a floating point type include the operations involved in

assignment, membership tests, qualification, the explicit conversion of values
of other numeric types to the floating point type, and the implicit conversion of
values of the type universal_real to the type.

3–33 Operations of Floating Point Types 3.5.8

2 In addition, for every floating point type or subtype T, the basic operations
include the attributes listed below. In this presentation, T is referred to as
being a subtype (the subtype T) for any property that depends on constraints
imposed by T; other properties are stated in terms of the base type of T.

Appendix F gives values for these attributes for each of the DEC Ada floating
point representations.

3 The first group of attributes yield characteristics of the subtype T. The
attributes of this group are the attribute BASE (see 3.3.2), the attributes
FIRST and LAST (see 3.5), the representation attribute SIZE (see 13.7.2), and
the following attributes:

4 T’DIGITS Yields the number of decimal digits in the decimal
mantissa of model numbers of the subtype T. (This
attribute yields the number D of section 3.5.7.) The value
of this attribute is of the type universal_integer.

5 T’MANTISSA Yields the number of binary digits in the binary mantissa
of model numbers of the subtype T. (This attribute
yields the number B of section 3.5.7.) The value of this
attribute is of the type universal_integer.

6 T’EPSILON Yields the absolute value of the difference between the
model number 1.0 and the next model number above, for
the subtype T. The value of this attribute is of the type
universal_real.

7 T’EMAX Yields the largest exponent value in the binary canonical
form of model numbers of the subtype T. (This attribute
yields the product 4*B of section 3.5.7.) The value of this
attribute is of the type universal_integer.

8 T’SMALL Yields the smallest positive (nonzero) model number of
the subtype T. The value of this attribute is of the type
universal_real.

9 T’LARGE Yields the largest positive model number of the subtype
T. The value of this attribute is of the type universal_
real.

10 The attributes of the second group include the following attributes which yield
characteristics of the safe numbers:

11 T’SAFE_EMAX Yields the largest exponent value in the binary canonical
form of safe numbers of the base type of T. (This attribute
yields the number E of section 3.5.7.) The value of this
attribute is of the type universal_integer.

3.5.8 Operations of Floating Point Types 3–34

12 T’SAFE_SMALL Yields the smallest positive (nonzero) safe number of the
base type of T. The value of this attribute is of the type
universal_real.

13 T’SAFE_LARGE Yields the largest positive safe number of the base type
of T. The value of this attribute is of the type universal_
real.

14 In addition, the attributes A’SIZE and A’ADDRESS are defined for an object
A of a floating point type (see 13.7.2). Finally, for each floating point type
there are machine-dependent attributes that are not related to model numbers
and safe numbers. They correspond to the attribute designators MACHINE_
RADIX, MACHINE_MANTISSA, MACHINE_EMAX, MACHINE_EMIN,
MACHINE_ROUNDS, and MACHINE_OVERFLOWS (see 13.7.3).

Appendix F gives values for all of the machine-dependent attributes for each of
the DEC Ada floating point representations.

15 Besides the basic operations, the operations of a floating point type include the
relational operators, and the following predefined arithmetic operators: the
binary and unary adding operators – and +, the multiplying operators * and /,
the unary operator abs, and the exponentiating operator.

16 The operations of a subtype are the corresponding operations of the type
except for the following: assignment, membership tests, qualification, explicit
conversion, and the attributes of the first group; the effects of these operations
are redefined in terms of the subtype. 20

Notes:
17 The attributes EMAX, SMALL, LARGE, and EPSILON are provided for

convenience. They are all related to MANTISSA by the following formulas:

T’EMAX = 4*T’MANTISSA
T’EPSILON = 2.0**(1 - T’MANTISSA)
T’SMALL = 2.0**(-T’EMAX - 1)
T’LARGE = 2.0**T’EMAX * (1.0 - 2.0**(-T’MANTISSA))

18 The attribute MANTISSA, giving the number of binary digits in the
mantissa, is itself related to DIGITS. The following relations hold between
the characteristics of the model numbers and those of the safe numbers:

T’BASE’EMAX <= T’SAFE_EMAX
T’BASE’SMALL >= T’SAFE_SMALL
T’BASE’LARGE <= T’SAFE_LARGE

20 See also Appendix G, AI-00407.

3–35 Operations of Floating Point Types 3.5.8

19 The attributes T’FIRST and T’LAST need not yield model or safe numbers. If
a certain number of digits is specified in the declaration of a type or subtype T,
the attribute T’DIGITS yields this number.

20 References: abs operator 4.5 4.5.6, arithmetic operator 3.5.5 4.5, assignment 5.2,
attribute 4.1.4, base type 3.3, basic operation 3.3.3, binary adding operator 4.5 4.5.3,
bound of a range 3.5, constraint 3.3, conversion 4.6, digit 2.1, exponentiating operator
4.5 4.5.6, floating point type 3.5.7, membership test 4.5 4.5.2, model number 3.5.6,
multiplying operator 4.5 4.5.5, numeric type 3.5, object 3.2, operation 3.3, predefined
operator 4.5, qualified expression 4.7, relational operator 4.5 4.5.2, safe number 3.5.6,
subtype 3.3, type 3.3, unary adding operator 4.5 4.5.4, universal type 4.10, universal_
integer type 3.5.4, universal_real type 3.5.6

floating point representation 3.5.7

3.5.9 Fixed Point Types
1 For fixed point types, the error bound is specified as an absolute value, called

the delta of the fixed point type.

2 fixed_point_constraint ::=
fixed_accuracy_definition [range_constraint]

fixed_accuracy_definition ::= delta static_simple_expression

3 The delta is specified by the value of the static simple expression of the fixed
accuracy definition. This value must belong to some real type and must be
positive (nonzero). If the fixed point constraint is used as a real type definition,
then it must include a range constraint; each bound of the specified range must
be defined by a static expression of some real type but the two bounds need
not have the same real type. If the fixed point constraint is used in a subtype
indication, the range constraint is optional.

4 A canonical form is defined for any fixed point model number other than zero.
In this form: sign is either +1 or –1; mantissa is a positive (nonzero) integer;
and any model number is a multiple of a certain positive real number called
small, as follows:

sign * mantissa * small

5 For the model numbers defined by a fixed point constraint, the number small
is chosen as the largest power of two that is not greater than the delta of the
fixed accuracy definition. Alternatively, it is possible to specify the value of
small by a length clause (see 13.2), in which case model numbers are multiples
of the specified value. The guaranteed minimum accuracy of operations of a
fixed point type is defined in terms of the model numbers of the fixed point
constraint that forms the corresponding real type definition (see 4.5.7).

3.5.9 Fixed Point Types 3–36

6 For a fixed point constraint that includes a range constraint, the model
numbers comprise zero and all multiples of small whose mantissa can be
expressed using exactly B binary digits, where the value of B is chosen as the
smallest integer number for which each bound of the specified range is either a
model number or lies at most small distant from a model number. For a fixed
point constraint that does not include a range constraint (this is only allowed
after a type mark, in a subtype indication), the model numbers are defined
by the delta of the fixed accuracy definition and by the range of the subtype
denoted by the type mark. 21

7 An implementation must have at least one anonymous predefined fixed point
type. The base type of each such fixed point type is the type itself. The model
numbers of each predefined fixed point type comprise zero and all numbers
for which mantissa (in the canonical form) has the number of binary digits
returned by the attribute MANTISSA, and for which the number small has the
value returned by the attribute SMALL.

To implement fixed point numbers, DEC Ada uses a set of anonymous
predefined fixed point types of the form:

type fixed_point_type is delta S range -L .. U;

where S is a value in the range 2.0�62 .. 2.031, L = 2.031*S, and
U = (2.031

� 1)*S. Each fixed point type has a size determined by its delta and
range, rounded up to an 8-, 16-, or 32-bit boundary. The size may be changed
by a representation clause (see 13.1).

8 A fixed point type declaration of the form: 22

type T is delta D range L .. R;

9 is, by definition, equivalent to the following declarations: 23

type fixed_point_type is new predefined_fixed_point_type;
subtype T is fixed_point_type

range fixed_point_type(L) .. fixed_point_type(R);

10 In these declarations, fixed_point_type is an anonymous type, and the
predefined fixed point type is implicitly selected by the implementation so
that its model numbers include the model numbers defined by the fixed point
constraint (that is, by D, L, and R, and possibly by a length clause specifying
small). 24

21 See also Appendix G, AI-00143.
22 See also Appendix G, AI-00023.
23 See also Appendix G, AI-00144 and AI-00471.
24 See also Appendix G, AI-00343.

3–37 Fixed Point Types 3.5.9

11 The fixed point declaration is illegal if no predefined type satisfies these
requirements. The safe numbers of a fixed point type are the model numbers
of its base type. 25

12 The elaboration of a fixed point type declaration consists of the elaboration of
the equivalent type and subtype declarations.

13 If the fixed point constraint follows a type mark in a subtype indication,
the type mark must denote a fixed point type or subtype. The fixed point
constraint is compatible with the type mark only if the delta specified by the
fixed accuracy definition is not smaller than the delta for the type or subtype
denoted by the type mark. Furthermore, if the fixed point constraint includes
a range constraint, the fixed point constraint is compatible with the type mark
only if the range constraint is, itself, compatible with the type mark.

14 The elaboration of such a subtype indication includes the elaboration of the
range constraint, if there is one; it creates a fixed point subtype whose model
numbers are defined by the corresponding fixed point constraint and also by
the length clause specifying small, if there is one. A value of a fixed point type
belongs to a fixed point subtype if and only if it belongs to the range defined by
the subtype. 26

15 The same arithmetic operators are predefined for all fixed point types
(see 4.5). Multiplication and division of fixed point values deliver results of
an anonymous predefined fixed point type that is called universal_fixed in this
reference manual; the accuracy of this type is arbitrarily fine. The values of
this type must be converted explicitly to some numeric type.

Notes:
16 If S is a subtype of a fixed point type or subtype T, then the set of model

numbers of S is a subset of those of T. If a length clause has been given for
T, then both S and T have the same value for small. Otherwise, since small
is a power of two, the small of S is equal to the small of T multiplied by a
nonnegative power of two. 27

17 A range constraint is allowed in a fixed point subtype indication, either directly
after the type mark, or as part of a fixed point constraint. In either case the
bounds of the range must belong to the base type of the type mark (see 3.5).

25 See also Appendix G, AI-00508.
26 See also Appendix G, AI-00145 and AI-00146.
27 See also Appendix G, AI-00146.

3.5.9 Fixed Point Types 3–38

18 Examples:
type VOLT is delta 0.125 range 0.0 .. 255.0;
subtype ROUGH_VOLTAGE is VOLT delta 1.0; -- same range as VOLT

-- A pure fraction which requires all the available space
-- in a word on a two’s complement machine can be declared
-- as the type FRACTION:

DEL : constant := 1.0/2**(WORD_LENGTH - 1);
type FRACTION is delta DEL range
-1.0 .. 1.0 - DEL;28

19 References: anonymous type 3.3.1, arithmetic operator 3.5.5 4.5, base type 3.3,
belong to a subtype 3.3, bound of a range 3.5, compatible 3.3.2, conversion 4.6,
elaboration 3.9, error bound 3.5.6, length clause 13.2, model number 3.5.6, numeric
type 3.5, operation 3.3, predefined operator 4.5, range constraint 3.5, real type 3.5.6,
real type definition 3.5.6, safe number 3.5.6, simple expression 4.4, static expression
4.9, subtype 3.3, subtype declaration 3.3.2, subtype indication 3.3.2, type 3.3, type
declaration 3.3.1, type mark 3.3.2

3.5.10 Operations of Fixed Point Types
1 The basic operations of a fixed point type include the operations involved in

assignment, membership tests, qualification, the explicit conversion of values
of other numeric types to the fixed point type, and the implicit conversion of
values of the type universal_real to the type.

2 In addition, for every fixed point type or subtype T the basic operations include
the attributes listed below. In this presentation T is referred to as being a
subtype (the subtype T) for any property that depends on constraints imposed
by T; other properties are stated in terms of the base type of T.

3 The first group of attributes yield characteristics of the subtype T. The
attributes of this group are the attributes BASE (see 3.3.2), the attributes
FIRST and LAST (see 3.5), the representation attribute SIZE (see 13.7.2) and
the following attributes:

4 T’DELTA Yields the value of the delta specified in the fixed
accuracy definition for the subtype T. The value of this
attribute is of the type universal_real.

5 T’MANTISSA Yields the number of binary digits in the mantissa
of model numbers of the subtype T. (This attribute
yields the number B of section 3.5.9.) The value of this
attribute is of the type universal_integer.

28 See also Appendix G, AI-00147.

3–39 Operations of Fixed Point Types 3.5.10

6 T’SMALL Yields the smallest positive (nonzero) model number of
the subtype T. The value of this attribute is of the type
universal_real.

7 T’LARGE Yields the largest positive model number of the subtype
T. The value of this attribute is of the type universal_
real.

8 T’FORE Yields the minimum number of characters needed for the
integer part of the decimal representation of any value of
the subtype T, assuming that the representation does not
include an exponent, but includes a one-character prefix
that is either a minus sign or a space. (This minimum
number does not include superfluous zeros or underlines,
and is at least two.) The value of this attribute is of the
type universal_integer. 29

9 T’AFT Yields the number of decimal digits needed after the
point to accommodate the precision of the subtype
T, unless the delta of the subtype T is greater than
0.1, in which case the attribute yields the value one.
(T’AFT is the smallest positive integer N for which
(10**N)*T’DELTA is greater than or equal to one.) The
value of this attribute is of the type universal_integer.

10 The attributes of the second group include the following attributes which yield
characteristics of the safe numbers:

11 T’SAFE_SMALL Yields the smallest positive (nonzero) safe number of the
base type of T. The value of this attribute is of the type
universal_real.

12 T’SAFE_LARGE Yields the largest positive safe number of the base type
of T. The value of this attribute is of the type universal_
real.

13 In addition, the attributes A’SIZE and A’ADDRESS are defined for an object
A of a fixed point type (see 13.7.2). Finally, for each fixed point type or subtype
T, there are the machine-dependent attributes T’MACHINE_ROUNDS and
T’MACHINE_OVERFLOWS (see 13.7.3).

14 Besides the basic operations, the operations of a fixed point type include the
relational operators, and the following predefined arithmetic operators: the
binary and unary adding operators – and +, the multiplying operators * and /,
and the operator abs.

29 See also Appendix G, AI-00179 and Section AI-00467.

3.5.10 Operations of Fixed Point Types 3–40

15 The operations of a subtype are the corresponding operations of the type
except for the following: assignment, membership tests, qualification, explicit
conversion, and the attributes of the first group; the effects of these operations
are redefined in terms of the subtype. 30

Notes:
16 The value of the attribute T’FORE depends only on the range of the subtype

T. The value of the attribute T’AFT depends only on the value of T’DELTA.
The following relations exist between attributes of a fixed point type:

T’LARGE = (2**T’MANTISSA - 1) * T’SMALL
T’SAFE_LARGE = T’BASE’LARGE
T’SAFE_SMALL = T’BASE’SMALL

17 References: abs operator 4.5 4.5.6, arithmetic operator 3.5.5 4.5, assignment 5.2,
base type 3.3, basic operation 3.3.3, binary adding operator 4.5 4.5.3, bound of a range
3.5, conversion 4.6, delta 3.5.9, fixed point type 3.5.9, membership test 4.5 4.5.2, model
number 3.5.6, multiplying operator 4.5 4.5.5, numeric type 3.5, object 3.2, operation
3.3, qualified expression 4.7, relational operator 4.5 4.5.2, safe number 3.5.6, subtype
3.3, unary adding operator 4.5 4.5.4, universal_integer type 3.5.4, universal_real type
3.5.6

3.6 Array Types
1 An array object is a composite object consisting of components that have the

same subtype. The name for a component of an array uses one or more index
values belonging to specified discrete types. The value of an array object is a
composite value consisting of the values of its components.

2 array_type_definition ::=
unconstrained_array_definition

| constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition

{, index_subtype_definition}) of
component_subtype_indication

constrained_array_definition ::=
array index_constraint of component_subtype_indication

index_subtype_definition ::= type_mark range <>

index_constraint ::= (discrete_range {, discrete_range})

discrete_range ::= discrete_subtype_indication | range

30 See also Appendix G, AI-00407.

3–41 Array Types 3.6

3 An array object is characterized by the number of indices (the dimensionality
of the array), the type and position of each index, the lower and upper bounds
for each index, and the type and possible constraint of the components. The
order of the indices is significant.

4 A one-dimensional array has a distinct component for each possible index
value. A multidimensional array has a distinct component for each possible
sequence of index values that can be formed by selecting one value for each
index position (in the given order). The possible values for a given index are all
the values between the lower and upper bounds, inclusive; this range of values
is called the index range.

5 An unconstrained array definition defines an array type. For each object that
has the array type, the number of indices, the type and position of each index,
and the subtype of the components are as in the type definition; the values of
the lower and upper bounds for each index belong to the corresponding index
subtype, except for null arrays as explained in section 3.6.1. The index subtype
for a given index position is, by definition, the subtype denoted by the type
mark of the corresponding index subtype definition. The compound delimiter
<> (called a box) of an index subtype definition stands for an undefined range
(different objects of the type need not have the same bounds). The elaboration
of an unconstrained array definition creates an array type; this elaboration
includes that of the component subtype indication.

6 A constrained array definition defines both an array type and a subtype of this
type:

7 • The array type is an implicitly declared anonymous type; this type
is defined by an (implicit) unconstrained array definition, in which
the component subtype indication is that of the constrained array
definition, and in which the type mark of each index subtype definition
denotes the subtype defined by the corresponding discrete range.

8 • The array subtype is the subtype obtained by imposition of the index
constraint on the array type.

9 If a constrained array definition is given for a type declaration, the simple
name declared by this declaration denotes the array subtype.

10 The elaboration of a constrained array definition creates the corresponding
array type and array subtype. For this elaboration, the index constraint and
the component subtype indication are elaborated. The evaluation of each
discrete range of the index constraint and the elaboration of the component
subtype indication are performed in some order that is not defined by the
language.

3.6 Array Types 3–42

11 Examples of type declarations with unconstrained array definitions:
type VECTOR is array(INTEGER range <>) of REAL;
type MATRIX is array(INTEGER range <>,

INTEGER range <>) of REAL;
type BIT_VECTOR is array(INTEGER range <>) of BOOLEAN;
type ROMAN is array(POSITIVE range <>) of ROMAN_DIGIT;

12 Examples of type declarations with constrained array definitions:
type TABLE is array(1 .. 10) of INTEGER;
type SCHEDULE is array(DAY) of BOOLEAN;
type LINE is array(1 .. MAX_LINE_SIZE) of CHARACTER;

13 Examples of object declarations with constrained array definitions:
GRID : array(1 .. 80, 1 .. 100) of BOOLEAN;
MIX : array(COLOR range RED .. GREEN) of BOOLEAN;
PAGE : array(1 .. 50) of LINE; -- an array of arrays

Note:
14 For a one-dimensional array, the rule given means that a type declaration with

a constrained array definition such as

type T is array(POSITIVE range MIN .. MAX) of COMPONENT;

15 is equivalent (in the absence of an incorrect order dependence) to the succession
of declarations

subtype index_subtype is POSITIVE range MIN .. MAX;
type array_type is array(index_subtype range <>) of COMPONENT;
subtype T is array_type(index_subtype);

16 where index_subtype and array_type are both anonymous. Consequently, T is
the name of a subtype and all objects declared with this type mark are arrays
that have the same bounds. Similar transformations apply to multidimensional
arrays.

17 A similar transformation applies to an object whose declaration includes a
constrained array definition. A consequence of this is that no two such objects
have the same type.

18 References: anonymous type 3.3.1, bound of a range 3.5, component 3.3, constraint
3.3, discrete type 3.5, elaboration 3.1 3.9, in some order 1.6, name 4.1, object 3.2,
range 3.5, subtype 3.3, subtype indication 3.3.2, type 3.3, type declaration 3.3.1, type
definition 3.3.1, type mark 3.3.2

3–43 Index Constraints and Discrete Ranges 3.6.1

3.6.1 Index Constraints and Discrete Ranges
1 An index constraint determines the range of possible values for every index of

an array type, and thereby the corresponding array bounds.

2 For a discrete range used in a constrained array definition and defined by a
range, an implicit conversion to the predefined type INTEGER is assumed if
each bound is either a numeric literal, a named number, or an attribute, and
the type of both bounds (prior to the implicit conversion) is the type universal_
integer. Otherwise, both bounds must be of the same discrete type, other than
universal_integer; this type must be determinable independently of the context,
but using the fact that the type must be discrete and that both bounds must
have the same type. These rules apply also to a discrete range used in an
iteration rule (see 5.5) or in the declaration of a family of entries (see 9.5). 31

3 If an index constraint follows a type mark in a subtype indication, then the
type or subtype denoted by the type mark must not already impose an index
constraint. The type mark must denote either an unconstrained array type or
an access type whose designated type is such an array type. In either case,
the index constraint must provide a discrete range for each index of the array
type and the type of each discrete range must be the same as that of the
corresponding index.

4 An index constraint is compatible with the type denoted by the type mark if
and only if the constraint defined by each discrete range is compatible with the
corresponding index subtype. If any of the discrete ranges defines a null range,
any array thus constrained is a null array, having no components. An array
value satisfies an index constraint if at each index position the array value
and the index constraint have the same index bounds. (Note, however, that
assignment and certain other operations on arrays involve an implicit subtype
conversion.) 32

5 The bounds of each array object are determined as follows:

6 • For a variable declared by an object declaration, the subtype indication
of the corresponding object declaration must define a constrained
array subtype (and, thereby, the bounds). The same requirement
exists for the subtype indication of a component declaration, if the
type of the record component is an array type; and for the component
subtype indication of an array type definition, if the type of the array
components is itself an array type.

31 See also Appendix G, AI-00148.
32 See also Appendix G, AI-00282.

3.6.1 Index Constraints and Discrete Ranges 3–44

7 • For a constant declared by an object declaration, the bounds of the
constant are defined by the initial value if the subtype of the constant
is unconstrained; they are otherwise defined by this subtype (in
the latter case, the initial value is the result of an implicit subtype
conversion). The same rule applies to a generic formal parameter of
mode in.

8 • For an array object designated by an access value, the bounds must be
defined by the allocator that creates the array object. (The allocated
object is constrained with the corresponding values of the bounds.)

9 • For a formal parameter of a subprogram or entry, the bounds are
obtained from the corresponding actual parameter. (The formal
parameter is constrained with the corresponding values of the bounds.)

10 • For a renaming declaration and for a generic formal parameter of
mode in out, the bounds are those of the renamed object or of the
corresponding generic actual parameter.

11 For the elaboration of an index constraint, the discrete ranges are evaluated in
some order that is not defined by the language.

12 Examples of array declarations including an index constraint:
BOARD : MATRIX(1 .. 8, 1 .. 8); -- see 3.6
RECTANGLE : MATRIX(1 .. 20, 1 .. 30);
INVERSE : MATRIX(1 .. N, 1 .. N); -- N need not be static

FILTER : BIT_VECTOR(0 .. 31);

13 Example of array declaration with a constrained array subtype:
MY_SCHEDULE : SCHEDULE; -- all arrays of type SCHEDULE

-- have the same bounds

14 Example of record type with a component that is an array:
type VAR_LINE(LENGTH : INTEGER) is

record
IMAGE : STRING(1 .. LENGTH);

end record;

NULL_LINE : VAR_LINE(0); -- NULL_LINE.IMAGE is a null array

Notes:
15 The elaboration of a subtype indication consisting of a type mark followed by

an index constraint checks the compatibility of the index constraint with the
type mark (see 3.3.2).

16 All components of an array have the same subtype. In particular, for an array
of components that are one-dimensional arrays, this means that all components
have the same bounds and hence the same length.

3–45 Index Constraints and Discrete Ranges 3.6.1

17 References: access type 3.8, access type definition 3.8, access value 3.8, actual
parameter 6.4.1, allocator 4.8, array bound 3.6, array component 3.6, array type 3.6,
array type definition 3.6, bound of a range 3.5, compatible 3.3.2, component declaration
3.7, constant 3.2.1, constrained array definition 3.6, constrained array subtype 3.6,
conversion 4.6, designate 3.8, designated type 3.8, discrete range 3.6, entry 9.5, entry
family declaration 9.5, expression 4.4, formal parameter 6.1, function 6.5, generic
actual parameter 12.3, generic formal parameter 12.1 12.3, generic parameter 12.1,
index 3.6, index constraint 3.6.1, index subtype 3.6, initial value 3.2.1, integer literal
2.4, integer type 3.5.4, iteration rule 5.5, mode 12.1.1, name 4.1, null range 3.5,
object 3.2, object declaration 3.2.1, predefined type C, range 3.5, record component
3.7, renaming declaration 8.5, result subtype 6.1, satisfy 3.3, subprogram 6, subtype
conversion 4.6, subtype indication 3.3.2, type mark 3.3.2, unconstrained array type 3.6,
unconstrained subtype 3.3, universal type 4.10, universal_integer type 3.5.4,
variable 3.2.1

3.6.2 Operations of Array Types
1 The basic operations of an array type include the operations involved in

assignment and aggregates (unless the array type is limited), membership
tests, indexed components, qualification, and explicit conversion; for one-
dimensional arrays the basic operations also include the operations involved in
slices, and also string literals if the component type is a character type.

2 If A is an array object, an array value, or a constrained array subtype, the
basic operations also include the attributes listed below. These attributes
are not allowed for an unconstrained array type. The argument N used in
the attribute designators for the N-th dimension of an array must be a static
expression of type universal_integer. The value of N must be positive (nonzero)
and no greater than the dimensionality of the array.

3 A’FIRST Yields the lower bound of the first index range. The
value of this attribute has the same type as this
lower bound.

4 A’FIRST(N) Yields the lower bound of the N-th index range. The
value of this attribute has the same type as this
lower bound.

5 A’LAST Yields the upper bound of the first index range. The
value of this attribute has the same type as this
upper bound.

6 A’LAST(N) Yields the upper bound of the N-th index range.
The value of this attribute has the same type as this
upper bound.

7 A’RANGE Yields the first index range, that is, the range
A’FIRST .. A’LAST.

3.6.2 Operations of Array Types 3–46

8 A’RANGE(N) Yields the N-th index range, that is, the range
A’FIRST(N) .. A’LAST(N).

9 A’LENGTH Yields the number of values of the first index range
(zero for a null range). The value of this attribute is
of the type universal_integer.

10 A’LENGTH(N) Yields the number of values of the N-th index range
(zero for a null range). The value of this attribute is
of the type universal_integer.

11 In addition, the attribute T’BASE is defined for an array type or subtype T
(see 3.3.3); the attribute T’SIZE is defined for an array type or subtype T, and
the attributes A’SIZE and A’ADDRESS are defined for an array object A
(see 13.7.2).

12 Besides the basic operations, the operations of an array type include the
predefined comparison for equality and inequality, unless the array type
is limited. For one-dimensional arrays, the operations include catenation,
unless the array type is limited; if the component type is a discrete type, the
operations also include all predefined relational operators; if the component
type is a boolean type, then the operations also include the unary logical
negation operator not, and the logical operators.

13 Examples using arrays declared in the examples of section 3.6.1:
-- FILTER’FIRST = 0
-- FILTER’LAST = 31
-- FILTER’LENGTH = 32
-- RECTANGLE’LAST(1) = 20
-- RECTANGLE’LAST(2) = 30

Notes:
14 The attributes A’FIRST and A’FIRST(1) yield the same value. A similar

relation exists for the attributes A’LAST, A’RANGE, and A’LENGTH. The
following relations are satisfied (except for a null array) by the above attributes
if the index type is an integer type:

A’LENGTH = A’LAST - A’FIRST + 1
A’LENGTH(N) = A’LAST(N) - A’FIRST(N) + 1

15 An array type is limited if its component type is limited (see 7.4.4).

16 References: aggregate 4.3, array type 3.6, assignment 5.2, attribute 4.1.4, basic
operation 3.3.3, bound of a range 3.5, catenation operator 4.5 4.5.3, character type
3.5.2, constrained array subtype 3.6, conversion 4.6, designator 6.1, dimension 3.6,
index 3.6, indexed component 4.1.1, limited type 7.4.4, logical operator 4.5 4.5.1,
membership test 4.5 4.5.2, not operator 4.5 4.5.6, null range 3.5, object 3.2, operation
3.3, predefined operator 4.5, qualified expression 4.7, relational operator 4.5 4.5.2, slice

3–47 Operations of Array Types 3.6.2

4.1.2, static expression 4.9, string literal 2.6, subcomponent 3.3, type 3.3, unconstrained
array type 3.6, universal type 4.10, universal_integer type 3.5.4

3.6.3 The Type String
1 The values of the predefined type STRING are one-dimensional arrays of the

predefined type CHARACTER, indexed by values of the predefined subtype
POSITIVE:

subtype POSITIVE is INTEGER range 1 .. INTEGER’LAST;
type STRING is array(POSITIVE range <>) of CHARACTER;

2 Examples:
STARS : STRING(1 .. 120) := (1 .. 120 => ’*’);
QUESTION : constant STRING := "HOW MANY CHARACTERS?";
-- QUESTION’FIRST = 1,
-- QUESTION’LAST = 20 (the number of characters)

ASK_TWICE : constant STRING := QUESTION & QUESTION;
NINETY_SIX : constant ROMAN := "XCVI"; -- see 3.6

Notes:
3 String literals (see 2.6 and 4.2) are basic operations applicable to the type

STRING and to any other one-dimensional array type whose component type
is a character type. The catenation operator is a predefined operator for the
type STRING and for one-dimensional array types; it is represented as &. The
relational operators <, <=,>, and >= are defined for values of these types, and
correspond to lexicographic order (see 4.5.2).

4 References: aggregate 4.3, array 3.6, catenation operator 4.5 4.5.3, character type
3.5.2, component type (of an array) 3.6, dimension 3.6, index 3.6, lexicographic order
4.5.2, positional aggregate 4.3, predefined operator 4.5, predefined type C, relational
operator 4.5 4.5.2, string literal 2.6, subtype 3.3, type 3.3

3.7 Record Types
1 A record object is a composite object consisting of named components. The

value of a record object is a composite value consisting of the values of its
components.

2 record_type_definition ::=
record

component_list
end record

component_list ::=
component_declaration {component_declaration}

| {component_declaration} variant_part
| null;

3.7 Record Types 3–48

component_declaration ::=
identifier_list : component_subtype_definition

[:= expression];

component_subtype_definition ::= subtype_indication

3 Each component declaration declares a component of the record type. Besides
components declared by component declarations, the components of a record
type include any components declared by discriminant specifications of the
record type declaration. The identifiers of all components of a record type must
be distinct. The use of a name that denotes a record component other than a
discriminant is not allowed within the record type definition that declares the
component.

4 A component declaration with several identifiers is equivalent to a sequence
of single component declarations, as explained in section 3.2. Each single
component declaration declares a record component whose subtype is specified
by the component subtype definition.

5 If a component declaration includes the assignment compound delimiter
followed by an expression, the expression is the default expression of the
record component; the default expression must be of the type of the component.
Default expressions are not allowed for components that are of a limited type.

6 If a record type does not have a discriminant part, the same components are
present in all values of the type. If the component list of a record type is
defined by the reserved word null and there is no discriminant part, then the
record type has no components and all records of the type are null records.

7 The elaboration of a record type definition creates a record type; it consists of
the elaboration of any corresponding (single) component declarations, in the
order in which they appear, including any component declaration in a variant
part. The elaboration of a component declaration consists of the elaboration of
the component subtype definition.

8 For the elaboration of a component subtype definition, if the constraint does
not depend on a discriminant (see 3.7.1), then the subtype indication is
elaborated. If, on the other hand, the constraint depends on a discriminant,
then the elaboration consists of the evaluation of any included expression that
is not a discriminant. 33

33 See also Appendix G, AI-00358.

3–49 Record Types 3.7

9 Examples of record type declarations:
type DATE is

record
DAY : INTEGER range 1 .. 31;
MONTH : MONTH_NAME;
YEAR : INTEGER range 0 .. 4000;

end record;

type COMPLEX is
record

RE : REAL := 0.0;
IM : REAL := 0.0;

end record;

10 Examples of record variables:
TOMORROW, YESTERDAY : DATE;
A, B, C : COMPLEX;

- both components of A, B, and C
-- are implicitly initialized to zero

Notes:
11 The default expression of a record component is implicitly evaluated by the

elaboration of the declaration of a record object, in the absence of an explicit
initialization (see 3.2.1). If a component declaration has several identifiers, the
expression is evaluated once for each such component of the object (since the
declaration is equivalent to a sequence of single component declarations).

12 Unlike the components of an array, the components of a record need not be of
the same type.

13 References: assignment compound delimiter 2.2, component 3.3, composite value
3.3, constraint 3.3, declaration 3.1, depend on a discriminant 3.7.1, discriminant 3.3,
discriminant part 3.7 3.7.1, elaboration 3.9, expression 4.4, identifier 2.3, identifier list
3.2, limited type 7.4.4, name 4.1, object 3.2, subtype 3.3, type 3.3, type mark 3.3.2,
variant part 3.7.3

3.7.1 Discriminants
1 A discriminant part specifies the discriminants of a type. A discriminant of

a record is a component of the record. The type of a discriminant must be
discrete.

2 discriminant_part ::=
(discriminant_specification {; discriminant_specification})

discriminant_specification ::=
identifier_list : type_mark [:= expression]

3.7.1 Discriminants 3–50

3 A discriminant part is only allowed in the type declaration for a record type, in
a private type declaration or an incomplete type declaration (the corresponding
full declaration must then declare a record type), and in the generic parameter
declaration for a formal private type.

4 A discriminant specification with several identifiers is equivalent to a sequence
of single discriminant specifications, as explained in section 3.2. Each
single discriminant specification declares a discriminant. If a discriminant
specification includes the assignment compound delimiter followed by an
expression, the expression is the default expression of the discriminant;
the default expression must be of the type of the discriminant. Default
expressions must be provided either for all or for none of the discriminants of a
discriminant part.

5 The use of the name of a discriminant is not allowed in default expressions of
a discriminant part if the specification of the discriminant is itself given in the
discriminant part.

6 Within a record type definition the only allowed uses of the name of a
discriminant of the record type are: in the default expressions for record
components; in a variant part as the discriminant name; and in a component
subtype definition, either as a bound in an index constraint, or to specify a
discriminant value in a discriminant constraint. A discriminant name used
in these component subtype definitions must appear by itself, not as part of a
larger expression. Such component subtype definitions and such constraints
are said to depend on a discriminant.

7 A component is said to depend on a discriminant if it is a record component
declared in a variant part, or a record component whose component subtype
definition depends on a discriminant, or finally, one of the subcomponents of a
component that itself depends on a discriminant.

8 Each record value includes a value for each discriminant specified for the
record type; it also includes a value for each record component that does not
depend on a discriminant. The values of the discriminants determine which
other component values are in the record value.

9 Direct assignment to a discriminant of an object is not allowed; furthermore
a discriminant is not allowed as an actual parameter of mode in out or out,
or as a generic actual parameter of mode in out. The only allowed way to
change the value of a discriminant of a variable is to assign a (complete) value
to the variable itself. Similarly, an assignment to the variable itself is the
only allowed way to change the constraint of one of its components, if the
component subtype definition depends on a discriminant of the variable.

10 The elaboration of a discriminant part has no other effect.

3–51 Discriminants 3.7.1

11 Examples:
type BUFFER(SIZE : BUFFER_SIZE := 100) is -- see 3.5.4

record
POS : BUFFER_SIZE := 0;
VALUE : STRING(1 .. SIZE);

end record;

type SQUARE(SIDE : INTEGER) is
record

MAT : MATRIX(1 .. SIDE, 1 .. SIDE); -- see 3.6
end record;

type DOUBLE_SQUARE(NUMBER : INTEGER) is
record

LEFT : SQUARE(NUMBER);
RIGHT : SQUARE(NUMBER);

end record;

type ITEM(NUMBER : POSITIVE) is
record

CONTENT : INTEGER;
-- no component depends on the discriminant

end record;

12 References: assignment 5.2, assignment compound delimiter 2.2, bound of a range
3.5, component 3.3, component declaration 3.7, component of a record 3.7, declaration
3.1, discrete type 3.5, discriminant 3.3, discriminant constraint 3.7.2, elaboration 3.9,
expression 4.4, generic formal type 12.1, generic parameter declaration 12.1, identifier
2.3, identifier list 3.2, incomplete type declaration 3.8.1, index constraint 3.6.1, name
4.1, object 3.2, private type 7.4, private type declaration 7.4, record type 3.7, scope 8.2,
simple name 4.1, subcomponent 3.3, subtype indication 3.3.2, type declaration 3.3.1,
type mark 3.3.2, variant part 3.7.3

3.7.2 Discriminant Constraints
1 A discriminant constraint is only allowed in a subtype indication, after a type

mark. This type mark must denote either a type with discriminants, or an
access type whose designated type is a type with discriminants. A discriminant
constraint specifies the values of these discriminants.

2 discriminant_constraint ::=
(discriminant_association {, discriminant_association})

discriminant_association ::=
[discriminant_simple_name

{| discriminant_simple_name} =>] expression

3 Each discriminant association associates an expression with one or more
discriminants. A discriminant association is said to be named if the
discriminants are specified explicitly by their names; it is otherwise said
to be positional. For a positional association, the (single) discriminant is
implicitly specified by position, in textual order. Named associations can be

3.7.2 Discriminant Constraints 3–52

given in any order, but if both positional and named associations are used in
the same discriminant constraint, then positional associations must occur first,
at their normal position. Hence once a named association is used, the rest of
the discriminant constraint must use only named associations.

4 For a named discriminant association, the discriminant names must denote
discriminants of the type for which the discriminant constraint is given. A
discriminant association with more than one discriminant name is only allowed
if the named discriminants are all of the same type. Furthermore, for each
discriminant association (whether named or positional), the expression and the
associated discriminants must have the same type. A discriminant constraint
must provide exactly one value for each discriminant of the type.

5 A discriminant constraint is compatible with the type denoted by a type
mark, if and only if each discriminant value belongs to the subtype of
the corresponding discriminant. In addition, for each subcomponent
whose component subtype specification depends on a discriminant, the
discriminant value is substituted for the discriminant in this component
subtype specification and the compatibility of the resulting subtype indication
is checked. 34

6 A composite value satisfies a discriminant constraint if and only if each
discriminant of the composite value has the value imposed by the discriminant
constraint.

7 The initial values of the discriminants of an object of a type with discriminants
are determined as follows:

8 • For a variable declared by an object declaration, the subtype indication
of the corresponding object declaration must impose a discriminant
constraint unless default expressions exist for the discriminants; the
discriminant values are defined either by the constraint or, in its
absence, by the default expressions. The same requirement exists for
the subtype indication of a component declaration, if the type of the
record component has discriminants; and for the component subtype
indication of an array type, if the type of the array components is a
type with discriminants. 35

9 • For a constant declared by an object declaration, the values of the
discriminants are those of the initial value if the subtype of the
constant is unconstrained; they are otherwise defined by this subtype
(in the latter case, an exception is raised if the initial value does not

34 See also Appendix G, AI-00007, AI-00319, and AI-00358.
35 See also Appendix G, AI-00014.

3–53 Discriminant Constraints 3.7.2

belong to this subtype). The same rule applies to a generic parameter
of mode in.

10 • For an object designated by an access value, the discriminant values
must be defined by the allocator that creates the object. (The allocated
object is constrained with the corresponding discriminant values.)

11 • For a formal parameter of a subprogram or entry, the discriminants of
the formal parameter are initialized with those of the corresponding
actual parameter. (The formal parameter is constrained if the
corresponding actual parameter is constrained, and in any case if the
mode is in or if the subtype of the formal parameter is constrained.)

12 • For a renaming declaration and for a generic formal parameter of mode
in out, the discriminants are those of the renamed object or of the
corresponding generic actual parameter.

13 For the elaboration of a discriminant constraint, the expressions given in the
discriminant associations are evaluated in some order that is not defined by
the language; the expression of a named association is evaluated once for each
named discriminant.

14 Examples using types declared in the previous section:
LARGE : BUFFER(200); -- constrained, always 200 characters

-- (explicit discriminant value)

MESSAGE : BUFFER; -- unconstrained, initially 100
-- characters (default discriminant
-- value)

BASIS : SQUARE(5); -- constrained, always 5 by 5

ILLEGAL : SQUARE; -- illegal, a SQUARE must be
-- constrained

Note:
15 The above rules and the rules defining the elaboration of an object declaration

(see 3.2) ensure that discriminants always have a value. In particular, if a
discriminant constraint is imposed on an object declaration, each discriminant
is initialized with the value specified by the constraint. Similarly, if the
subtype of a component has a discriminant constraint, the discriminants of the
component are correspondingly initialized.

16 References: access type 3.8, access type definition 3.8, access value 3.8, actual
parameter 6.4.1, allocator 4.8, array type definition 3.6, bound of a range 3.5,
compatible 3.3.2, component 3.3, component declaration 3.7, component subtype
indication 3.7, composite value 3.3, constant 3.2.1, constrained subtype 3.3, constraint
3.3, declaration 3.1, default expression for a discriminant 3.7, depend on a discriminant
3.7.1, designate 3.8, designated type 3.8, discriminant 3.3, elaboration 3.9, entry 9.5,

3.7.2 Discriminant Constraints 3–54

evaluation 4.5, expression 4.4, formal parameter 6.1, generic actual parameter 12.3,
generic formal parameter 12.1 12.3, mode in 6.1, mode in out 6.1, name 4.1, object 3.2,
object declaration 3.2.1, renaming declaration 8.5, reserved word 2.9, satisfy 3.3, simple
name 4.1, subcomponent 3.3, subprogram 6, subtype 3.3, subtype indication 3.3.2, type
3.3, type mark 3.3.2, variable 3.2.1

3.7.3 Variant Parts
1 A record type with a variant part specifies alternative lists of components.

Each variant defines the components for the corresponding value or values of
the discriminant.

2 variant_part ::=
case discriminant_simple_name is

variant
{variant}

end case;

variant ::=
when choice {| choice} =>

component_list

choice ::= simple_expression
| discrete_range | others | component_simple_name

3 Each variant starts with a list of choices which must be of the same type as the
discriminant of the variant part. The type of the discriminant of a variant part
must not be a generic formal type. If the subtype of the discriminant is static,
then each value of this subtype must be represented once and only once in the
set of choices of the variant part, and no other value is allowed. Otherwise,
each value of the (base) type of the discriminant must be represented once and
only once in the set of choices.

4 The simple expressions and discrete ranges given as choices in a variant part
must be static. A choice defined by a discrete range stands for all values in the
corresponding range (none if a null range). The choice others is only allowed
for the last variant and as its only choice; it stands for all values (possibly
none) not given in the choices of previous variants. A component simple name
is not allowed as a choice of a variant (although it is part of the syntax of
choice).

5 A record value contains the values of the components of a given variant if and
only if the discriminant value is equal to one of the values specified by the
choices of the variant. This rule applies in turn to any further variant that is,
itself, included in the component list of the given variant. If the component list
of a variant is specified by null, the variant has no components.

3–55 Variant Parts 3.7.3

6 Example of record type with a variant part:
type DEVICE is (PRINTER, DISK, DRUM);
type STATE is (OPEN, CLOSED);

type PERIPHERAL(UNIT : DEVICE := DISK) is
record

STATUS : STATE;
case UNIT is

when PRINTER =>
LINE_COUNT : INTEGER range 1 .. PAGE_SIZE;

when others =>
CYLINDER : CYLINDER_INDEX;
TRACK : TRACK_NUMBER;

end case;
end record;

7 Examples of record subtypes:
subtype DRUM_UNIT is PERIPHERAL(DRUM);
subtype DISK_UNIT is PERIPHERAL(DISK);

8 Examples of constrained record variables:
WRITER : PERIPHERAL(UNIT => PRINTER);
ARCHIVE : DISK_UNIT;

Note:
9 Choices with discrete values are also used in case statements and in array

aggregates. Choices with component simple names are used in record
aggregates.

10 References: array aggregate 4.3.2, base type 3.3, component 3.3, component list 3.7,
discrete range 3.6, discriminant 3.3, generic formal type 12.1.2, null range 3.5, record
aggregate 4.3.1, range 3.5, record type 3.7, simple expression 4.4, simple name 4.1,
static discrete range 4.9, static expression 4.9, static subtype 4.9, subtype 3.3

3.7.4 Operations of Record Types
1 The basic operations of a record type include the operations involved in

assignment and aggregates (unless the type is limited), membership tests,
selection of record components, qualification, and type conversion (for derived
types).

2 For any object A of a type with discriminants, the basic operations also include
the following attribute:

3 A’CONSTRAINED Yields the value TRUE if a discriminant constraint
applies to the object A, or if the object is a constant
(including a formal parameter or generic formal
parameter of mode in); yields the value FALSE
otherwise. If A is a generic formal parameter of
mode in out, or if A is a formal parameter of mode

3.7.4 Operations of Record Types 3–56

in out or out and the type mark given in the
corresponding parameter specification denotes an
unconstrained type with discriminants, then the
value of this attribute is obtained from that of the
corresponding actual parameter. The value of this
attribute is of the predefined type BOOLEAN.

4 In addition, the attributes T’BASE and T’SIZE are defined for a record type
or subtype T (see 3.3.3); the attributes A’SIZE and A’ADDRESS are defined
for a record object A (see 13.7.2).

5 Besides the basic operations, the operations of a record type include the
predefined comparison for equality and inequality, unless the type is limited.

Note:
6 A record type is limited if the type of any of its components is limited (see

7.4.4).

7 References: actual parameter 6.4.1, aggregate 4.3, assignment 5.2, attribute 4.1.4,
basic operation 3.3.3, boolean type 3.5.3, constant 3.2.1, conversion 4.6, derived
type 3.4, discriminant 3.3, discriminant constraint 3.7.2, formal parameter 6.1,
generic actual parameter 12.3, generic formal parameter 12.1 12.3, limited type 7.4.4,
membership test 4.5 4.5.2, mode 6.1, object 3.2.1, operation 3.3, predefined operator
4.5, predefined type C, qualified expression 4.7, record type 3.7, relational operator 4.5
4.5.2, selected component 4.1.3, subcomponent 3.3, subtype 3.3, type 3.3

3.8 Access Types
1 An object declared by an object declaration is created by the elaboration of

the object declaration and is denoted by a simple name or by some other form
of name. In contrast, there are objects that are created by the evaluation of
allocators (see 4.8) and that have no simple name. Access to such an object is
achieved by an access value returned by an allocator; the access value is said
to designate the object.

2 access_type_definition ::= access subtype_indication

3 For each access type, there is a literal null which has a null access value
designating no object at all. The null value of an access type is the default
initial value of the type. Other values of an access type are obtained by
evaluation of a special operation of the type, called an allocator. Each such
access value designates an object of the subtype defined by the subtype
indication of the access type definition; this subtype is called the designated
subtype; the base type of this subtype is called the designated type. The
objects designated by the values of an access type form a collection implicitly
associated with the type.

3–57 Access Types 3.8

4 The elaboration of an access type definition consists of the elaboration of the
subtype indication and creates an access type.

5 If an access object is constant, the contained access value cannot be changed
and always designates the same object. On the other hand, the value of the
designated object need not remain the same (assignment to the designated
object is allowed unless the designated type is limited).

6 The only forms of constraint that are allowed after the name of an access type
in a subtype indication are index constraints and discriminant constraints.
(See sections 3.6.1 and 3.7.2 for the rules applicable to these subtype
indications.) An access value belongs to a corresponding subtype of an
access type either if the access value is the null value or if the value of the
designated object satisfies the constraint. 36

7 Examples:
type FRAME is access MATRIX; -- see 3.6

type BUFFER_NAME is access BUFFER; -- see 3.7.1

Notes:
8 An access value delivered by an allocator can be assigned to several access

objects. Hence it is possible for an object created by an allocator to be
designated by more than one variable or constant of the access type. An
access value can only designate an object created by an allocator; in particular,
it cannot designate an object declared by an object declaration.

9 If the type of the objects designated by the access values is an array type or
a type with discriminants, these objects are constrained with either the array
bounds or the discriminant values supplied implicitly or explicitly for the
corresponding allocators (see 4.8).

10 Access values are called pointers or references in some other languages.

11 References: allocator 4.8, array type 3.6, assignment 5.2, belong to a subtype 3.3,
constant 3.2.1, constraint 3.3, discriminant constraint 3.7.2, elaboration 3.9, index
constraint 3.6.1, index specification 3.6, limited type 7.4.4, literal 4.2, name 4.1,
object 3.2.1, object declaration 3.2.1, reserved word 2.9, satisfy 3.3, simple name 4.1,
subcomponent 3.3, subtype 3.3, subtype indication 3.3.2, type 3.3, variable 3.2.1

36 See also Appendix G, AI-00324.

3.8 Access Types 3–58

3.8.1 Incomplete Type Declarations
1 There are no particular limitations on the designated type of an access type.

In particular, the type of a component of the designated type can be another
access type, or even the same access type. This permits mutually dependent
and recursive access types. Their declarations require a prior incomplete (or
private) type declaration for one or more types.

2 incomplete_type_declaration ::=
type identifier [discriminant_part];

3 For each incomplete type declaration, there must be a corresponding
declaration of a type with the same identifier. The corresponding declaration
must be either a full type declaration or the declaration of a task type. In the
rest of this section, explanations are given in terms of full type declarations;
the same rules apply also to declarations of task types. If the incomplete type
declaration occurs immediately within either a declarative part or the visible
part of a package specification, then the full type declaration must occur later
and immediately within this declarative part or visible part. If the incomplete
type declaration occurs immediately within the private part of a package, then
the full type declaration must occur later and immediately within either the
private part itself, or the declarative part of the corresponding package body.

4 A discriminant part must be given in the full type declaration if and only if
one is given in the incomplete type declaration; if discriminant parts are given,
then they must conform (see 6.3.1 for the conformance rules). Prior to the end
of the full type declaration, the only allowed use of a name that denotes a type
declared by an incomplete type declaration is as the type mark in the subtype
indication of an access type definition; the only form of constraint allowed in
this subtype indication is a discriminant constraint. 37

5 The elaboration of an incomplete type declaration creates a type. If the
incomplete type declaration has a discriminant part, this elaboration includes
that of the discriminant part: in such a case, the discriminant part of the full
type declaration is not elaborated.

37 See also Appendix G, AI-00007, AI-00231, and AI-00319.

3–59 Incomplete Type Declarations 3.8.1

6 Example of a recursive type:
type CELL; -- incomplete type declaration
type LINK is access CELL;

type CELL is
record

VALUE : INTEGER;
SUCC : LINK;
PRED : LINK;

end record;

HEAD : LINK := new CELL’(0, null, null);
NEXT : LINK := HEAD.SUCC;

7 Examples of mutually dependent access types:
type PERSON(SEX : GENDER); -- incomplete type declaration
type CAR; -- incomplete type declaration

type PERSON_NAME is access PERSON;
type CAR_NAME is access CAR;

type CAR is
record

NUMBER : INTEGER;
OWNER : PERSON_NAME;

end record;

type PERSON(SEX : GENDER) is
record

NAME : STRING(1 .. 20);
BIRTH : DATE;
AGE : INTEGER range 0 .. 130;
VEHICLE : CAR_NAME;
case SEX is

when M => WIFE : PERSON_NAME(SEX => F);
when F => HUSBAND : PERSON_NAME(SEX => M);

end case;
end record;

MY_CAR, YOUR_CAR, NEXT_CAR : CAR_NAME; -- implicitly
-- initialized
-- with null value

8 References: access type 3.8, access type definition 3.8, component 3.3, conform
6.3.1, constraint 3.3, declaration 3.1, declarative item 3.9, designate 3.8, discriminant
constraint 3.7.2, discriminant part 3.7.1, elaboration 3.9, identifier 2.3, name 4.1,
subtype indication 3.3.2, type 3.3, type mark 3.3.2

3.8.1 Incomplete Type Declarations 3–60

3.8.2 Operations of Access Types
1 The basic operations of an access type include the operations involved in

assignment, allocators for the access type, membership tests, qualification,
explicit conversion, and the literal null. If the designated type is a type with
discriminants, the basic operations include the selection of the corresponding
discriminants; if the designated type is a record type, they include the
selection of the corresponding components; if the designated type is an
array type, they include the formation of indexed components and slices; if
the designated type is a task type, they include selection of entries and entry
families. Furthermore, the basic operations include the formation of a selected
component with the reserved word all (see 4.1.3).

2 If the designated type is an array type, the basic operations include the
attributes that have the attribute designators FIRST, LAST, RANGE, and
LENGTH (likewise, the attribute designators of the N-th dimension). The
prefix of each of these attributes must be a value of the access type. These
attributes yield the corresponding characteristics of the designated object
(see 3.6.2).

3 If the designated type is a task type, the basic operations include the attributes
that have the attribute designators TERMINATED and CALLABLE (see 9.9).
The prefix of each of these attributes must be a value of the access type.
These attributes yield the corresponding characteristics of the designated task
objects.

4 In addition, the attribute T’BASE (see 3.3.3) and the representation attributes
T’SIZE and T’STORAGE_SIZE (see 13.7.2) are defined for an access type or
subtype T; the attributes A’SIZE and A’ADDRESS are defined for an access
object A (see 13.7.2).

5 Besides the basic operations, the operations of an access type include the
predefined comparison for equality and inequality.

6 References: access type 3.8, allocator 4.8, array type 3.6, assignment 5.2, attribute
4.1.4, attribute designator 4.1.4, base type 3.3, basic operation 3.3.3, collection 3.8,
constrained array subtype 3.6, conversion 4.6, designate 3.8, designated subtype 3.8,
designated type 3.8, discriminant 3.3, indexed component 4.1.1, literal 4.2, membership
test 4.5 4.5.2, object 3.2.1, operation 3.3, private type 7.4, qualified expression 4.7,
record type 3.7, selected component 4.1.3, slice 4.1.2, subtype 3.3, task type 9.1,
type 3.3

3–61 Operations of Access Types 3.8.2

3.9 Declarative Parts
1 A declarative part contains declarative items (possibly none).

2 declarative_part ::=
{basic_declarative_item} {later_declarative_item}

basic_declarative_item ::= basic_declaration
| representation_clause | use_clause

later_declarative_item ::= body
| subprogram_declaration | package_declaration
| task_declaration | generic_declaration
| use_clause | generic_instantiation

body ::= proper_body | body_stub

proper_body ::= subprogram_body | package_body | task_body

3 The elaboration of a declarative part consists of the elaboration of the
declarative items, if any, in the order in which they are given in the declarative
part. After its elaboration, a declarative item is said to be elaborated. Prior
to the completion of its elaboration (including before the elaboration), the
declarative item is not yet elaborated.

4 For several forms of declarative item, the language rules (in particular scope
and visibility rules) are such that it is either impossible or illegal to use
an entity before the elaboration of the declarative item that declares this
entity. For example, it is not possible to use the name of a type for an object
declaration if the corresponding type declaration is not yet elaborated. In the
case of bodies, the following checks are performed:

5 • For a subprogram call, a check is made that the body of the subprogram
is already elaborated. 38

6 • For the activation of a task, a check is made that the body of the
corresponding task unit is already elaborated. 39

7 • For the instantiation of a generic unit that has a body, a check is made
that this body is already elaborated.

8 The exception PROGRAM_ERROR is raised if any of these checks fails. 40

38 See also Appendix G, AI-00180 and AI-00406.
39 See also Appendix G, AI-00149.
40 See also Appendix G, AI-00430.

3.9 Declarative Parts 3–62

9 If a subprogram declaration, a package declaration, a task declaration, or a
generic declaration is a declarative item of a given declarative part, then the
body (if there is one) of the program unit declared by the declarative item must
itself be a declarative item of this declarative part (and must appear later).
If the body is a body stub, then a separately compiled subunit containing the
corresponding proper body is required for the program unit (see 10.2).

10 References: activation 9.3, instantiation 12.3, program_error exception 11.1, scope
8.2, subprogram call 6.4, type 3.3, visibility 8.3

11 Elaboration of declarations: 3.1, component declaration 3.7, deferred constant
declaration 7.4.3, discriminant specification 3.7.1, entry declaration 9.5, enumeration
literal specification 3.5.1, generic declaration 12.1, generic instantiation 12.3,
incomplete type declaration 3.8.1, loop parameter specification 5.5, number declaration
3.2.2, object declaration 3.2.1, package declaration 7.2, parameter specification 6.1,
private type declaration 7.4.1, renaming declaration 8.5, subprogram declaration 6.1,
subtype declaration 3.3.2, task declaration 9.1, type declaration 3.3.1

12 Elaboration of type definitions: 3.3.1, access type definition 3.8, array type
definition 3.6, derived type definition 3.4, enumeration type definition 3.5.1, integer
type definition 3.5.4, real type definition 3.5.6, record type definition 3.7

13 Elaboration of other constructs: context clause 10.1, body stub 10.2, compilation
unit 10.1, discriminant part 3.7.1, generic body 12.2, generic formal parameter 12.1
12.3, library unit 10.5, package body 7.1, representation clause 13.1, subprogram body
6.3, subunit 10.2, task body 9.1, task object 9.2, task specification 9.1, use clause 8.4,
with clause 10.1.1

3–63 Declarative Parts 3.9

4
Names and Expressions

1 The rules applicable to the different forms of name and expression, and to
their evaluation, are given in this chapter.

4.1 Names
1 Names can denote declared entities, whether declared explicitly or implicitly

(see 3.1). Names can also denote objects designated by access values;
subcomponents and slices of objects and values; single entries, entry families,
and entries in families of entries. Finally, names can denote attributes of any
of the foregoing.

2 name ::= simple_name
| character_literal | operator_symbol
| indexed_component | slice
| selected_component | attribute

simple_name ::= identifier

prefix ::= name | function_call

3 A simple name for an entity is either the identifier associated with the
entity by its declaration, or another identifier associated with the entity by a
renaming declaration.

4 Certain forms of name (indexed and selected components, slices, and attributes)
include a prefix that is either a name or a function call. If the type of a prefix
is an access type, then the prefix must not be a name that denotes a formal
parameter of mode out or a subcomponent thereof.

5 If the prefix of a name is a function call, then the name denotes a component,
a slice, an attribute, an entry, or an entry family, either of the result of the
function call, or (if the result is an access value) of the object designated by the
result.

6 A prefix is said to be appropriate for a type in either of the following cases:

7 • The type of the prefix is the type considered.

4–1 Names 4.1

8 • The type of the prefix is an access type whose designated type is the
type considered.

9 The evaluation of a name determines the entity denoted by the name. This
evaluation has no other effect for a name that is a simple name, a character
literal, or an operator symbol.

10 The evaluation of a name that has a prefix includes the evaluation of the
prefix, that is, of the corresponding name or function call. If the type of the
prefix is an access type, the evaluation of the prefix includes the determination
of the object designated by the corresponding access value; the exception
CONSTRAINT_ERROR is raised if the value of the prefix is a null access
value, except in the case of the prefix of a representation attribute (see 13.7.2).

11 Examples of simple names:
PI -- the simple name of a number (see 3.2.2)
LIMIT -- the simple name of a constant (see 3.2.1)
COUNT -- the simple name of a scalar variable (see 3.2.1)
BOARD -- the simple name of an array variable (see 3.6.1)
MATRIX -- the simple name of a type (see 3.6)
RANDOM -- the simple name of a function (see 6.1)
ERROR -- the simple name of an exception (see 11.1)

12 References: access type 3.8, access value 3.8, attribute 4.1.4, belong to a type 3.3,
character literal 2.5, component 3.3, constraint_error exception 11.1, declaration 3.1,
designate 3.8, designated type 3.8, entity 3.1, entry 9.5, entry family 9.5, evaluation
4.5, formal parameter 6.1, function call 6.4, identifier 2.3, indexed component 4.1.1,
mode 6.1, null access value 3.8, object 3.2.1, operator symbol 6.1, raising of exceptions
11, renaming declarations 8.5, selected component 4.1.3, slice 4.1.2, subcomponent 3.3,
type 3.3

4.1.1 Indexed Components
1 An indexed component denotes either a component of an array or an entry in a

family of entries.

2 indexed_component ::= prefix(expression {, expression})

3 In the case of a component of an array, the prefix must be appropriate for an
array type. The expressions specify the index values for the component; there
must be one such expression for each index position of the array type. In the
case of an entry in a family of entries, the prefix must be a name that denotes
an entry family of a task object, and the expression (there must be exactly one)
specifies the index value for the individual entry.

4.1.1 Indexed Components 4–2

4 Each expression must be of the type of the corresponding index. For the
evaluation of an indexed component, the prefix and the expressions are
evaluated in some order that is not defined by the language. The exception
CONSTRAINT_ERROR is raised if an index value does not belong to the range
of the corresponding index of the prefixing array or entry family.

5 Examples of indexed components:
MY_SCHEDULE(SAT) -- a component of a (see 3.6.1)

-- one-dimensional array

PAGE(10) -- a component of a (see 3.6)
-- one-dimensional array

BOARD(M, J + 1) -- a component of a (see 3.6.1)
-- two-dimensional array

PAGE(10)(20) -- a component of a component (see 3.6)
REQUEST(MEDIUM) -- an entry in a family of entries (see 9.5)
NEXT_FRAME(L)(M, N) -- a component of a function call (see 6.1)

Notes on the examples:
6 Distinct notations are used for components of multidimensional arrays (such

as BOARD) and arrays of arrays (such as PAGE). The components of an array
of arrays are arrays and can therefore be indexed. Thus PAGE(10)(20) denotes
the 20th component of PAGE(10). In the last example NEXT_FRAME(L) is a
function call returning an access value which designates a two-dimensional
array.

7 References: appropriate for a type 4.1, array type 3.6, component 3.3, component of
an array 3.6, constraint_error exception 11.1, dimension 3.6, entry 9.5, entry family
9.5, evaluation 4.5, expression 4.4, function call 6.4, in some order 1.6, index 3.6, name
4.1, prefix 4.1, raising of exceptions 11, returned value 5.8 6.5, task object 9.2

4.1.2 Slices
1 A slice denotes a one-dimensional array formed by a sequence of consecutive

components of a one-dimensional array. A slice of a variable is a variable; a
slice of a constant is a constant; a slice of a value is a value.

2 slice ::= prefix(discrete_range)

3 The prefix of a slice must be appropriate for a one-dimensional array type. The
type of the slice is the base type of this array type. The bounds of the discrete
range define those of the slice and must be of the type of the index; the slice is
a null slice denoting a null array if the discrete range is a null range.

4–3 Slices 4.1.2

4 For the evaluation of a name that is a slice, the prefix and the discrete range
are evaluated in some order that is not defined by the language. The exception
CONSTRAINT_ERROR is raised by the evaluation of a slice, other than a null
slice, if any of the bounds of the discrete range does not belong to the index
range of the prefixing array. (The bounds of a null slice need not belong to the
subtype of the index.)

5 Examples of slices:
STARS(1 .. 15) -- a slice of (see 3.6.3)

-- 15 characters

PAGE(10 .. 10 + SIZE) -- a slice of (see 3.6 and 3.2.1)
-- 1 + SIZE
-- components

PAGE(L)(A .. B) -- a slice of (see 3.6)
-- the array PAGE(L)

STARS(1 .. 0) -- a null slice (see 3.6.3)
MY_SCHEDULE(WEEKDAY) -- bounds given (see 3.6 and 3.5.1)

-- by subtype

STARS(5 .. 15)(K) -- same as STARS(K) (see 3.6.3)
-- provided that K
-- is in 5 .. 15

Notes:
6 For a one-dimensional array A, the name A(N .. N) is a slice of one component;

its type is the base type of A. On the other hand, A(N) is a component of the
array A and has the corresponding component type.

7 References: appropriate for a type 4.1, array 3.6, array type 3.6, array value 3.8,
base type 3.3, belong to a subtype 3.3, bound of a discrete range 3.6.1, component 3.3,
component type 3.3, constant 3.2.1, constraint 3.3, constraint_error exception 11.1,
dimension 3.6, discrete range 3.6, evaluation 4.5, index 3.6, index range 3.6, name 4.1,
null array 3.6.1, null range 3.5, prefix 4.1, raising of exceptions 11, type 3.3, variable
3.2.1

4.1.3 Selected Components
1 Selected components are used to denote record components, entries, entry

families, and objects designated by access values; they are also used as
expanded names as described below.

2 selected_component ::= prefix.selector

selector ::= simple_name
| character_literal | operator_symbol | all

4.1.3 Selected Components 4–4

3 The following four forms of selected components are used to denote a
discriminant, a record component, an entry, or an object designated by an
access value:

4 (a) A discriminant:

5 The selector must be a simple name denoting a discriminant of an
object or value. The prefix must be appropriate for the type of this
object or value.

6 (b) A component of a record:

7 The selector must be a simple name denoting a component of a record
object or value. The prefix must be appropriate for the type of this
object or value.

8 For a component of a variant, a check is made that the values of
the discriminants are such that the record has this component. The
exception CONSTRAINT_ERROR is raised if this check fails.

9 (c) A single entry or an entry family of a task:

10 The selector must be a simple name denoting a single entry or an
entry family of a task. The prefix must be appropriate for the type of
this task.

11 (d) An object designated by an access value:

12 The selector must be the reserved word all. The value of the prefix
must belong to an access type.

13 A selected component of one of the remaining two forms is called an expanded
name. In each case the selector must be either a simple name, a character
literal, or an operator symbol. A function call is not allowed as the prefix of an
expanded name. An expanded name can denote:

14 (e) An entity declared in the visible part of a package:

15 The prefix must denote the package. The selector must be the simple
name, character literal, or operator symbol of the entity.1

16 (f) An entity whose declaration occurs immediately within a named
construct:

1 See also Appendix G, AI-00016, AI-00187, AI-00412, and AI-00468.

4–5 Selected Components 4.1.3

17 The prefix must denote a construct that is either a program unit, a
block statement, a loop statement, or an accept statement. In the case
of an accept statement, the prefix must be either the simple name of
the entry or entry family, or an expanded name ending with such a
simple name (that is, no index is allowed). The selector must be the
simple name, character literal, or operator symbol of an entity whose
declaration occurs immediately within the construct.

18 This form of expanded name is only allowed within the construct
itself (including the body and any subunits, in the case of a program
unit). A name declared by a renaming declaration is not allowed
as the prefix. If the prefix is the name of a subprogram or accept
statement and if there is more than one visible enclosing subprogram
or accept statement of this name, the expanded name is ambiguous,
independently of the selector.2

19 If, according to the visibility rules, there is at least one possible interpretation
of the prefix of a selected component as the name of an enclosing subprogram
or accept statement, then the only interpretations considered are those of rule
(f), as expanded names (no interpretations of the prefix as a function call are
then considered).

20 The evaluation of a name that is a selected component includes the evaluation
of the prefix.

21 Examples of selected components:
TOMORROW.MONTH -- a record component (see 3.7)
NEXT_CAR.OWNER -- a record component (see 3.8.1)
NEXT_CAR.OWNER.AGE -- a record component (see 3.8.1)

WRITER.UNIT -- a record component
-- (a discriminant) (see 3.7.3)

MIN_CELL(H).VALUE -- a record component
-- of the result of
-- the function call
-- MIN_CELL(H) (see 6.1 and 3.8.1)

CONTROL.SEIZE -- an entry of the
-- task CONTROL (see 9.1 and 9.2)

POOL(K).WRITE -- an entry of the
-- task POOL(K) (see 9.1 and 9.2)

NEXT_CAR.ALL -- the object designated
-- by the access variable
-- NEXT_CAR (see 3.8.1)

2 See also Appendix G, AI-00016 and AI-00412.

4.1.3 Selected Components 4–6

22 Examples of expanded names:
TABLE_MANAGER.INSERT -- a procedure of the

-- visible part of
-- a package (see 7.5)

KEY_MANAGER."<" -- an operator of the
-- visible part of (see 7.4.2)
-- a package

DOT_PRODUCT.SUM -- a variable declared
-- in a procedure body (see 6.5)

BUFFER.POOL -- a variable declared
-- in a task unit (see 9.12)

BUFFER.READ -- an entry of a task unit (see 9.12)

SWAP.TEMP -- a variable declared in
-- a block statement (see 5.6)

STANDARD.BOOLEAN -- the name of a
-- predefined type (see 8.6 and C)

Note:
23 For a record with components that are other records, the above rules imply that

the simple name must be given at each level for the name of a subcomponent.
For example, the name NEXT_CAR.OWNER.BIRTH.MONTH cannot be
shortened (NEXT_CAR.OWNER.MONTH is not allowed).

24 References: accept statement 9.5, access type 3.8, access value 3.8, appropriate
for a type 4.1, block statement 5.6, body of a program unit 3.9, character literal 2.5,
component of a record 3.7, constraint_error exception 11.1, declaration 3.1, designate
3.8, discriminant 3.3, entity 3.1, entry 9.5, entry family 9.5, function call 6.4, index 3.6,
loop statement 5.5, object 3.2.1, occur immediately within 8.1, operator 4.5, operator
symbol 6.1, overloading 8.3, package 7, predefined type C, prefix 4.1, procedure
body 6.3, program unit 6, raising of exceptions 11, record 3.7, record component 3.7,
renaming declaration 8.5, reserved word 2.9, simple name 4.1, subprogram 6, subunit
10.2, task 9, task object 9.2, task unit 9, variable 3.7.3, variant 3.7.3, visibility 8.3,
visible part 3.7.3

4.1.4 Attributes
1 An attribute denotes a basic operation of an entity given by a prefix.

2 attribute ::= prefix’attribute_designator

attribute_designator ::=
simple_name [(universal_static_expression)]

4–7 Attributes 4.1.4

3 The applicable attribute designators depend on the prefix. An attribute can be
a basic operation delivering a value; alternatively it can be a function, a type,
or a range. The meaning of the prefix of an attribute must be determinable
independently of the attribute designator and independently of the fact that it
is the prefix of an attribute.3

4 The attributes defined by the language are summarized in Annex A. In
addition, an implementation may provide implementation-defined attributes;
their description must be given in Appendix F. The attribute designator of
any implementation-defined attribute must not be the same as that of any
language-defined attribute.

5 The evaluation of a name that is an attribute consists of the evaluation of the
prefix.

Notes:
6 The attribute designators DIGITS, DELTA, and RANGE have the same

identifier as a reserved word. However, no confusion is possible since an
attribute designator is always preceded by an apostrophe. The only predefined
attribute designators that have a universal expression are those for certain
operations of array types (see 3.6.2).

7 Examples of attributes:
COLOR’FIRST -- minimum value of

-- the enumeration
-- type COLOR (see 3.3.1 and 3.5)

RAINBOW’BASE’FIRST -- same as COLOR’FIRST (see 3.3.2 and 3.3.3)

REAL’DIGITS -- precision of the
-- type REAL (see 3.5.7 and 3.5.8)

BOARD’LAST(2) -- upper bound of the
-- second dimension of
-- BOARD (see 3.6.1 and 3.6.2)

BOARD’RANGE(1) -- index range of the
-- first dimension of
-- BOARD (see 3.6.1 and 3.6.2)

POOL(K)’TERMINATED -- TRUE if task POOL(K)
-- is terminated (see 9.2 and 9.9)

DATE’SIZE -- number of bits for
-- records of type DATE (see 3.7 and 13.7.2)

MESSAGE’ADDRESS -- address of the record
-- variable MESSAGE (see 3.7.2 and 13.7.2)

3 See also Appendix G, AI-00015.

4.1.4 Attributes 4–8

8 References: appropriate for a type 4.1, basic operation 3.3.3, declared entity 3.1,
name 4.1, prefix 4.1, reserved word 2.9, simple name 4.1, static expression 4.9, type
3.3, universal expression 4.10

4.2 Literals
1 A literal is either a numeric literal, an enumeration literal, the literal null, or

a string literal. The evaluation of a literal yields the corresponding value.

2 Numeric literals are the literals of the types universal_integer and universal_
real. Enumeration literals include character literals and yield values of the
corresponding enumeration types. The literal null yields a null access value
which designates no objects at all.

3 A string literal is a basic operation that combines a sequence of characters
into a value of a one-dimensional array of a character type; the bounds of this
array are determined according to the rules for positional array aggregates (see
4.3.2). For a null string literal, the upper bound is the predecessor, as given by
the PRED attribute, of the lower bound. The evaluation of a null string literal
raises the exception CONSTRAINT_ERROR if the lower bound does not have a
predecessor (see 3.5.5).

4 The type of a string literal and likewise the type of the literal null must be
determinable solely from the context in which this literal appears, excluding
the literal itself, but using the fact that the literal null is a value of an access
type, and similarly that a string literal is a value of a one-dimensional array
type whose component type is a character type.

5 The character literals corresponding to the graphic characters contained within
a string literal must be visible at the place of the string literal (although these
characters themselves are not used to determine the type of the string literal).

6 Examples:
3.14159_26536 -- a real literal
1_345 -- an integer literal
CLUBS -- an enumeration literal
’A’ -- a character literal
"SOME TEXT" -- a string literal

7 References: access type 3.8, aggregate 4.3, array 3.6, array bound 3.6, array
type 3.6, character literal 2.5, character type 3.5.2, component type 3.3, constraint_
error exception 11.1, designate 3.8, dimension 3.6, enumeration literal 3.5.1, graphic
character 2.1, integer literal 2.4, null access value 3.8, null literal 3.8, numeric literal
2.4, object 3.2.1, real literal 2.4, string literal 2.6, type 3.3, universal_integer type 3.5.4,
universal_real type 3.5.6, visibility 8.3

4–9 Literals 4.2

4.3 Aggregates
1 An aggregate is a basic operation that combines component values into a

composite value of a record or array type.

2 aggregate ::=
(component_association {, component_association})

component_association ::=
[choice {| choice} =>] expression

3 Each component association associates an expression with components
(possibly none). A component association is said to be named if the components
are specified explicitly by choices; it is otherwise said to be positional. For
a positional association, the (single) component is implicitly specified by
position, in the order of the corresponding component declarations for record
components, in index order for array components.

4 Named associations can be given in any order (except for the choice others),
but if both positional and named associations are used in the same aggregate,
then positional associations must occur first, at their normal position. Hence
once a named association is used, the rest of the aggregate must use only
named associations. Aggregates containing a single component association
must always be given in named notation. Specific rules concerning component
associations exist for record aggregates and array aggregates.

5 Choices in component associations have the same syntax as in variant parts
(see 3.7.3). A choice that is a component simple name is only allowed in a
record aggregate. For a component association, a choice that is a simple
expression or a discrete range is only allowed in an array aggregate; a choice
that is a simple expression specifies the component at the corresponding index
value; similarly a discrete range specifies the components at the index values
in the range. The choice others is only allowed in a component association
if the association appears last and has this single choice; it specifies all
remaining components, if any.

6 Each component of the value defined by an aggregate must be represented once
and only once in the aggregate. Hence each aggregate must be complete and a
given component is not allowed to be specified by more than one choice.4

7 The type of an aggregate must be determinable solely from the context in
which the aggregate appears, excluding the aggregate itself, but using the fact
that this type must be composite and not limited. The type of an aggregate in
turn determines the required type for each of its components.

4 See also Appendix G, AI-00169 and AI-00293.

4.3 Aggregates 4–10

Notes:
8 The above rule implies that the determination of the type of an aggregate

cannot use any information from within the aggregate. In particular, this
determination cannot use the type of the expression of a component association,
or the form or the type of a choice. An aggregate can always be distinguished
from an expression enclosed by parentheses: this is a consequence of the fact
that named notation is required for an aggregate with a single component.

9 References: array aggregate 4.3.2, array type 3.6, basic operation 3.3.3, choice 3.7.3,
component 3.3, composite type 3.3, composite value 3.3, discrete range 3.6, expression
4.4, index 3.6, limited type 7.4.4, primary 4.4, record aggregate 4.3.1, record type 3.7,
simple expression 4.4, simple name 4.1, type 3.3, variant part 3.7.3

4.3.1 Record Aggregates
1 If the type of an aggregate is a record type, the component names given as

choices must denote components (including discriminants) of the record type. If
the choice others is given as a choice of a record aggregate, it must represent
at least one component. A component association with the choice others or
with more than one choice is only allowed if the represented components are
all of the same type. The expression of a component association must have the
type of the associated record components.5

2 The value specified for a discriminant that governs a variant part must be
given by a static expression (note that this value determines which dependent
components must appear in the record value).

3 For the evaluation of a record aggregate, the expressions given in the
component associations are evaluated in some order that is not defined by
the language. The expression of a named association is evaluated once for each
associated component. A check is made that the value of each subcomponent
of the aggregate belongs to the subtype of this subcomponent. The exception
CONSTRAINT_ERROR is raised if this check fails.

4 Example of a record aggregate with positional associations:
(4, JULY, 1776) -- see 3.7

5 Examples of record aggregates with named associations:
(DAY => 4, MONTH => JULY, YEAR => 1776)
(MONTH => JULY, DAY => 4, YEAR => 1776)

(DISK, CLOSED, TRACK => 5, CYLINDER => 12) -- see 3.7.3
(UNIT => DISK, STATUS => CLOSED, CYLINDER => 9, TRACK => 1)

5 See also Appendix G, AI-00244.

4–11 Record Aggregates 4.3.1

6 Example of component association with several choices:
(VALUE => 0, SUCC|PRED => new CELL’(0, null, null)) -- see 3.8.1
-- The allocator is evaluated twice:
-- SUCC and PRED designate different cells

Note:
7 For an aggregate with positional associations, discriminant values appear first

since the discriminant part is given first in the record type declaration; they
must be in the same order as in the discriminant part.

8 References: aggregate 4.3, allocator 4.8, choice 3.7.3, component association 4.3,
component name 3.7, constraint 3.3, constraint_error exception 11.1, depend on a
discriminant 3.7.1, discriminant 3.3, discriminant part 3.7.1, evaluate 4.5, expression
4.4, in some order 1.6, program 10, raising of exceptions 11, record component 3.7,
record type 3.7, satisfy 3.3, static expression 4.9, subcomponent 3.3, subtype 3.3.2, type
3.3, variant part 3.7.3

4.3.2 Array Aggregates
1 If the type of an aggregate is a one-dimensional array type, then each choice

must specify values of the index type, and the expression of each component
association must be of the component type.

2 If the type of an aggregate is a multidimensional array type, an
n-dimensional aggregate is written as a one-dimensional aggregate, in which
the expression specified for each component association is itself written as
an (n � 1)-dimensional aggregate which is called a subaggregate; the index
subtype of the one-dimensional aggregate is given by the first index position
of the array type. The same rule is used to write a subaggregate if it is again
multidimensional, using successive index positions. A string literal is allowed
in a multidimensional aggregate at the place of a one-dimensional array of
a character type. In what follows, the rules concerning array aggregates are
formulated in terms of one-dimensional aggregates.

3 Apart from a final component association with the single choice others, the
rest (if any) of the component associations of an array aggregate must be
either all positional or all named. A named association of an array aggregate
is only allowed to have a choice that is not static, or likewise a choice that is
a null range, if the aggregate includes a single component association and this
component association has a single choice. An others choice is static if the
applicable index constraint is static.6

6 See also Appendix G, AI-00190 and AI-00310.

4.3.2 Array Aggregates 4–12

4 The bounds of an array aggregate that has an others choice are determined
by the applicable index constraint. An others choice is only allowed if the
aggregate appears in one of the following contexts (which defines the applicable
index constraint):

5 (a) The aggregate is an actual parameter, a generic actual parameter,
the result expression of a function, or the expression that follows
an assignment compound delimiter. Moreover, the subtype of the
corresponding formal parameter, generic formal parameter, function
result, or object is a constrained array subtype.

6 For an aggregate that appears in such a context and contains an
association with an others choice, named associations are allowed for
other associations only in the case of a (nongeneric) actual parameter
or function result. If the aggregate is a multidimensional array, this
restriction also applies to each of its subaggregates.

7 (b) The aggregate is the operand of a qualified expression whose type
mark denotes a constrained array subtype.

8 (c) The aggregate is the expression of the component association of an
enclosing (array or record) aggregate. Moreover, if this enclosing
aggregate is a multidimensional array aggregate then it is itself in
one of these three contexts.7

9 The bounds of an array aggregate that does not have an others choice are
determined as follows. For an aggregate that has named associations, the
bounds are determined by the smallest and largest choices given. For a
positional aggregate, the lower bound is determined by the applicable index
constraint if the aggregate appears in one of the contexts (a) through (c);
otherwise, the lower bound is given by S’FIRST where S is the index subtype;
in either case, the upper bound is determined by the number of components.

10 The evaluation of an array aggregate that is not a subaggregate proceeds in
two steps. First, the choices of this aggregate and of its subaggregates, if any,
are evaluated in some order that is not defined by the language. Second, the
expressions of the component associations of the array aggregate are evaluated
in some order that is not defined by the language; the expression of a named
association is evaluated once for each associated component. The evaluation of
a subaggregate consists of this second step (the first step is omitted since the
choices have already been evaluated).

7 See also Appendix G, AI-00177.

4–13 Array Aggregates 4.3.2

11 For the evaluation of an aggregate that is not a null array, a check is made that
the index values defined by choices belong to the corresponding index subtypes,
and also that the value of each subcomponent of the aggregate belongs to
the subtype of this subcomponent. For an n-dimensional multidimensional
aggregate, a check is made that all (n � 1)-dimensional subaggregates have
the same bounds. The exception CONSTRAINT_ERROR is raised if any of
these checks fails.8

Note:
12 The allowed contexts for an array aggregate including an others choice are

such that the bounds of such an aggregate are always known from the context.

13 Examples of array aggregates with positional associations:
(7, 9, 5, 1, 3, 2, 4, 8, 6, 0)
TABLE’(5, 8, 4, 1, others => 0) -- see 3.6

14 Examples of array aggregates with named associations:
(1 .. 5 => (1 .. 8 => 0.0)) -- two-dimensional
(1 .. N => new CELL) -- N new cells,

-- in particular for N = 0

TABLE’(2 | 4 | 10 => 1, others => 0)
SCHEDULE’(MON .. FRI => TRUE, others => FALSE) -- see 3.6
SCHEDULE’(WED | SUN => FALSE, others => TRUE)

15 Examples of two-dimensional array aggregates:
-- Three aggregates for the same value of type MATRIX (see 3.6):

((1.1, 1.2, 1.3), (2.1, 2.2, 2.3))
(1 => (1.1, 1.2, 1.3), 2 => (2.1, 2.2, 2.3))
(1 => (1 => 1.1, 2 => 1.2, 3 => 1.3),

2 => (1 => 2.1, 2 => 2.2, 3 => 2.3))

16 Examples of aggregates as initial values:
A : TABLE := (7, 9, 5, 1, 3, 2, 4, 8, 6, 0); -- A(1)=7, A(10)=0
B : TABLE := TABLE’(2 | 4 | 10 => 1,

others => 0); -- B(1)=0, B(10)=1
C : constant MATRIX :=

(1 .. 5 => (1 .. 8 => 0.0)); -- C’FIRST(1)=1,
-- C’LAST(2)=8

D : BIT_VECTOR(M .. N) := (M .. N => TRUE); -- see 3.6
E : BIT_VECTOR(M .. N) := (others => TRUE);
F : STRING(1 .. 1) := (1 => ’F’); -- a one component aggregate:

-- same as "F"

8 See also Appendix G, AI-00018, AI-00019, AI-00265, and AI-00313.

4.3.2 Array Aggregates 4–14

17 References: actual parameter 6.4.1, aggregate 4.3, array type 3.6, assignment
compound delimiter 5.2, choice 3.7.3, component 3.3, component association 4.3,
component type 3.3, constrained array subtype 3.6, constraint 3.3, constraint_error
exception 11.1, dimension 3.6, evaluate 4.5, expression 4.4, formal parameter 6.1,
function 6.5, in some order 1.6, index constraint 3.6.1, index range 3.6, index subtype
3.6, index type 3.6, named component association 4.3, null array 3.6.1, object 3.2,
positional component association 4.3, qualified expression 4.7, raising of exceptions 11,
static expression 4.9, subcomponent 3.3, type 3.3

4.4 Expressions
1 An expression is a formula that defines the computation of a value.

2 expression ::=
relation {and relation} | relation {and then relation}

| relation {or relation} | relation {or else relation}
| relation {xor relation}

relation ::=
simple_expression [relational_operator simple_expression]

| simple_expression [not] in range
| simple_expression [not] in type_mark

simple_expression ::=
[unary_adding_operator] term {binary_adding_operator term}

term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
numeric_literal | null | aggregate | string_literal

| name | allocator | function_call | type_conversion
| qualified_expression | (expression)

3 Each primary has a value and a type. The only names allowed as primaries are
named numbers; attributes that yield values; and names denoting objects (the
value of such a primary is the value of the object) or denoting values. Names
that denote formal parameters of mode out are not allowed as primaries;
names of their subcomponents are only allowed in the case of discriminants.

4 The type of an expression depends only on the type of its constituents and
on the operators applied; for an overloaded constituent or operator, the
determination of the constituent type, or the identification of the appropriate
operator, depends on the context. For each predefined operator, the operand
and result types are given in section 4.5.

4–15 Expressions 4.4

5 Examples of primaries:
4.0 -- real literal
PI -- named number
(1 .. 10 => 0) -- array aggregate
SUM -- variable
INTEGER’LAST -- attribute
SINE(X) -- function call
COLOR’(BLUE) -- qualified expression
REAL(M*N) -- conversion
(LINE_COUNT + 10) -- parenthesized expression

6 Examples of expressions:
VOLUME -- primary
not DESTROYED -- factor
2*LINE_COUNT -- term
-4.0 -- simple expression
-4.0 + A -- simple expression
B**2 - 4.0*A*C -- simple expression
PASSWORD(1 .. 3) = "BWV" -- relation
COUNT in SMALL_INT -- relation
COUNT not in SMALL_INT -- relation
INDEX = 0 or ITEM_HIT -- expression
(COLD and SUNNY) or WARM -- expression

-- (parentheses are required)
A**(B**C) -- expression

-- (parentheses are required)

7 References: aggregate 4.3, allocator 4.8, array aggregate 4.3.2, attribute 4.1.4, binary
adding operator 4.5 4.5.3, context of overload resolution 8.7, exponentiating operator
4.5 4.5.6, function call 6.4, multiplying operator 4.5 4.5.5, name 4.1, named number 3.2,
null literal 3.8, numeric literal 2.4, object 3.2, operator 4.5, overloading 8.3, overloading
an operator 6.7, qualified expression 4.7, range 3.5, real literal 2.4, relation 4.5.1,
relational operator 4.5 4.5.2, result type 6.1, string literal 2.6, type 3.3, type conversion
4.6, type mark 3.3.2, unary adding operator 4.5 4.5.4, variable 3.2.1

4.5 Operators and Expression Evaluation
1 The language defines the following six classes of operators. The corresponding

operator symbols (except /=), and only those, can be used as designators in
declarations of functions for user-defined operators. They are given in the
order of increasing precedence.

2 logical_operator ::= and | or | xor

relational_operator ::= = | /= | < | <= |> | >=

binary_adding_operator ::= + | - | &

unary_adding_operator ::= + | -

multiplying_operator ::= * | / | mod | rem

4.5 Operators and Expression Evaluation 4–16

highest_precedence_operator ::= ** | abs | not

3 The short-circuit control forms and then and or else have the same
precedence as logical operators. The membership tests in and not in have the
same precedence as relational operators.

4 For a term, simple expression, relation, or expression, operators of higher
precedence are associated with their operands before operators of lower
precedence. In this case, for a sequence of operators of the same precedence
level, the operators are associated in textual order from left to right;
parentheses can be used to impose specific associations.

5 The operands of a factor, of a term, of a simple expression, or of a relation, and
the operands of an expression that does not contain a short-circuit control form,
are evaluated in some order that is not defined by the language (but before
application of the corresponding operator). The right operand of a short-circuit
control form is evaluated if and only if the left operand has a certain value
(see 4.5.1).

6 For each form of type declaration, certain of the above operators are predefined,
that is, they are implicitly declared by the type declaration. For each such
implicit operator declaration, the names of the parameters are LEFT and
RIGHT for binary operators; the single parameter is called RIGHT for unary
adding operators and for the unary operators abs and not. The effect of the
predefined operators is explained in subsections 4.5.1 through 4.5.7.

7 The predefined operations on integer types either yield the mathematically
correct result or raise the exception NUMERIC_ERROR. A predefined
operation that delivers a result of an integer type (other than universal_
integer) can only raise the exception NUMERIC_ERROR if the mathematical
result is not a value of the type. The predefined operations on real types yield
results whose accuracy is defined in section 4.5.7. A predefined operation that
delivers a result of a real type (other than universal_real) can only raise the
exception NUMERIC_ERROR if the result is not within the range of the safe
numbers of the type, as explained in section 4.5.7.9

8 Examples of precedence:
not SUNNY or WARM -- same as (not SUNNY) or WARM
X > 4.0 and Y > 0.0 -- same as (X > 4.0) and (Y > 0.0)

-4.0*A**2 -- same as -(4.0 * (A**2))
abs(1 + A) + B -- same as (abs (1 + A)) + B
Y**(-3) -- parentheses are necessary
A / B * C -- same as (A/B)*C
A + (B + C) -- evaluate B + C before adding it to A

9 See also Appendix G, AI-00387.

4–17 Operators and Expression Evaluation 4.5

9 References: designator 6.1, expression 4.4, factor 4.4, implicit declaration 3.1, in
some order 1.6, integer type 3.5.4, membership test 4.5.2, name 4.1, numeric_error
exception 11.1, overloading 6.6 8.7, raising of an exception 11, range 3.5, real type
3.5.6, relation 4.4, safe number 3.5.6, short-circuit control form 4.5 4.5.1, simple
expression 4.4, term 4.4, type 3.3, type declaration 3.3.1, universal_integer type 3.5.4,
universal_real type 3.5.6

4.5.1 Logical Operators and Short-circuit Control Forms
1 The following logical operators are predefined for any boolean type and any

one-dimensional array type whose components are of a boolean type; in either
case the two operands have the same type.

2 Operator Operation Operand type Result type

and conjunction any boolean type same boolean type

array of boolean
components

same array type

or inclusive
disjunction

any boolean type same boolean type

array of boolean
components

same array type

xor exclusive
disjunction

any boolean type same boolean type

array of boolean
components

same array type

3 The operations on arrays are performed on a component-by-component basis
on matching components, if any (as for equality, see 4.5.2). The bounds of the
resulting array are those of the left operand. A check is made that for each
component of the left operand there is a matching component of the right
operand, and vice versa. The exception CONSTRAINT_ERROR is raised if this
check fails.10

4 The short-circuit control forms and then and or else are defined for two
operands of a boolean type and deliver a result of the same type. The left
operand of a short-circuit control form is always evaluated first. If the left
operand of an expression with the control form and then evaluates to FALSE,
the right operand is not evaluated and the value of the expression is FALSE.
If the left operand of an expression with the control form or else evaluates to
TRUE, the right operand is not evaluated and the value of the expression is

10 See also Appendix G, AI-00426 and AI-00431.

4.5.1 Logical Operators and Short-circuit Control Forms 4–18

TRUE. If both operands are evaluated, and then delivers the same result as
and, and or else delivers the same result as or.

Note:
5 The conventional meaning of the logical operators is given by the following

truth table:

6 A B A and B A or B A xor B

TRUE TRUE TRUE TRUE FALSE

TRUE FALSE FALSE TRUE TRUE

FALSE TRUE FALSE TRUE TRUE

FALSE FALSE FALSE FALSE FALSE

7 Examples of logical operators:
SUNNY or WARM
FILTER(1 .. 10) and FILTER(15 .. 24) -- see 3.6.1

8 Examples of short-circuit control forms:
NEXT_CAR.OWNER /= null

and then NEXT_CAR.OWNER.AGE > 25 -- see 3.8.1

N = 0 or else A(N) = HIT_VALUE

9 References: array type 3.6, boolean type 3.5.3, bound of an index range 3.6.1,
component of an array 3.6, constraint_error exception 11.1, dimension 3.6, false
boolean value 3.5.3, index subtype 3.6, matching components of arrays 4.5.2, null array
3.6.1, operation 3.3, operator 4.5, predefined operator 4.5, raising of exceptions 11, true
boolean value 3.5.3, type 3.3

4.5.2 Relational Operators and Membership Tests
1 The equality and inequality operators are predefined for any type that is not

limited. The other relational operators are the ordering operators < (less than),
<= (less than or equal), > (greater than), and >= (greater than or equal). The
ordering operators are predefined for any scalar type, and for any discrete
array type, that is, a one-dimensional array type whose components are of a
discrete type. The operands of each predefined relational operator have the
same type. The result type is the predefined type BOOLEAN.

2 The relational operators have their conventional meaning: the result is
equal to TRUE if the corresponding relation is satisfied; the result is FALSE
otherwise. The inequality operator gives the complementary result to the
equality operator: FALSE if equal, TRUE if not equal.

4–19 Relational Operators and Membership Tests 4.5.2

3 Operator Operation Operand type Result type

= /= equality and
inequality

any type BOOLEAN

< <= > >= test for
ordering

any scalar type BOOLEAN

discrete array type BOOLEAN

4 Equality for the discrete types is equality of the values. For real operands
whose values are nearly equal, the results of the predefined relational operators
are given in section 4.5.7. Two access values are equal either if they designate
the same object, or if both are equal to the null value of the access type.

5 For two array values or two record values of the same type, the left operand is
equal to the right operand if and only if for each component of the left operand
there is a matching component of the right operand and vice versa; and the
values of matching components are equal, as given by the predefined equality
operator for the component type. In particular, two null arrays of the same
type are always equal; two null records of the same type are always equal.

6 For comparing two records of the same type, matching components are those
which have the same component identifier.

7 For comparing two one-dimensional arrays of the same type, matching
components are those (if any) whose index values match in the following
sense: the lower bounds of the index ranges are defined to match, and the
successors of matching indices are defined to match. For comparing two
multidimensional arrays, matching components are those whose index values
match in successive index positions.

8 If equality is explicitly defined for a limited type, it does not extend to
composite types having subcomponents of the limited type (explicit definition of
equality is allowed for such composite types).

9 The ordering operators <, <=, >, and >= that are defined for discrete array
types correspond to lexicographic order using the predefined order relation
of the component type. A null array is lexicographically less than any array
having at least one component. In the case of nonnull arrays, the left operand
is lexicographically less than the right operand if the first component of
the left operand is less than that of the right; otherwise the left operand is
lexicographically less than the right operand only if their first components are
equal and the tail of the left operand is lexicographically less than that of the
right (the tail consists of the remaining components beyond the first and can
be null).

4.5.2 Relational Operators and Membership Tests 4–20

10 The membership tests in and not in are predefined for all types. The result
type is the predefined type BOOLEAN. For a membership test with a range,
the simple expression and the bounds of the range must be of the same scalar
type; for a membership test with a type mark, the type of the simple expression
must be the base type of the type mark. The evaluation of the membership
test in yields the result TRUE if the value of the simple expression is within
the given range, or if this value belongs to the subtype denoted by the given
type mark; otherwise this evaluation yields the result FALSE (for a value of
a real type, see 4.5.7). The membership test not in gives the complementary
result to the membership test in.

11 Examples:
X /= Y

"" < "A" and "A" < "AA" -- TRUE
"AA" < "B" and "A" < "A " -- TRUE

MY_CAR = null -- true if MY_CAR has been set
-- to null (see 3.8.1)

MY_CAR = YOUR_CAR -- true if we both share
-- the same car

MY_CAR._ALL = YOUR_CAR._ALL -- true if the two cars
-- are identical

N not in 1 .. 10 -- range membership test
TODAY in MON .. FRI -- range membership test
TODAY in WEEKDAY -- subtype membership test (see 3.5.1)
ARCHIVE in DISK_UNIT -- subtype membership test (see 3.7.3)

Notes:
12 No exception is ever raised by a predefined relational operator or by a

membership test, but an exception can be raised by the evaluation of the
operands.

13 If a record type has components that depend on discriminants, two values
of this type have matching components if and only if their discriminants are
equal. Two nonnull arrays have matching components if and only if the value
of the attribute LENGTH(N) for each index position N is the same for both.

14 References: access value 3.8, array type 3.6, base type 3.3, belong to a subtype
3.3, boolean predefined type 3.5.3, bound of a range 3.5, component 3.3, component
identifier 3.7, component type 3.3, composite type 3.3, designate 3.8, dimension 3.6,
discrete type 3.5, evaluation 4.5, exception 11, index 3.6, index range 3.6, limited type
7.4.4, null access value 3.8, null array 3.6.1, null record 3.7, object 3.2.1, operation 3.3,
operator 4.5, predefined operator 4.5, raising of exceptions 11, range 3.5, record type
3.7, scalar type 3.5, simple expression 4.4, subcomponent 3.3, successor 3.5.5, type 3.3,
type mark 3.3.2

4–21 Relational Operators and Membership Tests 4.5.2

4.5.3 Binary Adding Operators
1 The binary adding operators + and – are predefined for any numeric type and

have their conventional meaning. The catenation operators & are predefined
for any one-dimensional array type that is not limited.

2 Operator Operation
Left operand
type

Right operand
type Result type

+ addition any numeric
type

same numeric
type

same numeric
type

– subtraction any numeric
type

same numeric
type

same numeric
type

& catenation any array type same array type same array
type

any array type the component
type

same array
type

the component
type

any array type same array
type

the component
type

the component
type

any array
type

3 For real types, the accuracy of the result is determined by the operand type
(see 4.5.7).

4 If both operands are one-dimensional arrays, the result of the catenation is a
one-dimensional array whose length is the sum of the lengths of its operands,
and whose components comprise the components of the left operand followed
by the components of the right operand. The lower bound of this result is the
lower bound of the left operand, unless the left operand is a null array, in
which case the result of the catenation is the right operand.

5 If either operand is of the component type of an array type, the result of the
catenation is given by the above rules, using in place of this operand an array
having this operand as its only component and having the lower bound of the
index subtype of the array type as its lower bound.

6 The exception CONSTRAINT_ERROR is raised by catenation if the upper
bound of the result exceeds the range of the index subtype, unless the result is
a null array. This exception is also raised if any operand is of the component
type but has a value that does not belong to the component subtype.

4.5.3 Binary Adding Operators 4–22

7 Examples:
Z + 0.1 -- Z must be of a real type

"A" & "BCD" -- catenation of two string literals

’A’ & "BCD" -- catenation of a character literal
-- and a string literal

’A’ & ’A’ -- catenation of two character literals

8 References: array type 3.6, character literal 2.5, component type 3.3, constraint_
error exception 11.1, dimension 3.6, index subtype 3.6, length of an array 3.6.2, limited
type 7.4.4, null array 3.6.1, numeric type 3.5, operation 3.3, operator 4.5, predefined
operator 4.5, raising of exceptions 11, range of an index subtype 3.6.1, real type 3.5.6,
string literal 2.6, type 3.3

4.5.4 Unary Adding Operators
1 The unary adding operators + and – are predefined for any numeric type and

have their conventional meaning. For each of these operators, the operand and
the result have the same type.

2 Operator Operation Operand type Result type

+ identity any numeric type same numeric type

– negation any numeric type same numeric type

3 References: numeric type 3.5, operation 3.3, operator 4.5, predefined operator 4.5,
type 3.3

4.5.5 Multiplying Operators
1 The operators * and / are predefined for any integer and any floating point

type and have their conventional meaning; the operators mod and rem are
predefined for any integer type. For each of these operators, the operands and
the result have the same base type. For floating point types, the accuracy of
the result is determined by the operand type (see 4.5.7).

2 Operator Operation Operand type Result type

* multiplication any integer type same integer
type

any floating
point type

same floating
point type

/ integer division any integer type same integer
type

4–23 Multiplying Operators 4.5.5

2 Operator Operation Operand type Result type

floating division any floating
point type

same floating
point type

mod modulus any integer type same integer
type

rem remainder any integer type same integer
type

3 Integer division and remainder are defined by the relation

A = (A/B)*B + (A rem B)

4 where (A rem B) has the sign of A and an absolute value less than the absolute
value of B. Integer division satisfies the identity

(-A)/B = -(A/B) = A/(-B)

5 The result of the modulus operation is such that (A mod B) has the sign of B
and an absolute value less than the absolute value of B; in addition, for some
integer value N, this result must satisfy the relation

A = B*N + (A mod B)

6 For each fixed point type, the following multiplication and division operators,
with an operand of the predefined type INTEGER, are predefined.

7 Operator Operation
Left operand
type

Right operand
type Result type

* multiplication any fixed
point type

INTEGER same as
left

INTEGER any fixed
point type

same as
right

/ division any fixed
point type

INTEGER same as
left

8 Integer multiplication of fixed point values is equivalent to repeated addition.
Division of a fixed point value by an integer does not involve a change in type
but is approximate (see 4.5.7).11

11 See also Appendix G, AI-00475.

4.5.5 Multiplying Operators 4–24

9 Finally, the following multiplication and division operators are declared in the
predefined package STANDARD. These two special operators apply to operands
of all fixed point types (it is a consequence of other rules that they cannot be
renamed or given as generic actual parameters).

10 Operator Operation

Left
operand
type1

Right
operand
type1 Result type

* multiplication any fixed
point type

any fixed
point type

universal_fixed

/ division any fixed
point type

any fixed
point type

universal_fixed

1See also Appendix G, AI-00020 and AI-00376.

11 Multiplication of operands of the same or of different fixed point types is exact
and delivers a result of the anonymous predefined fixed point type universal_
fixed whose delta is arbitrarily small. The result of any such multiplication
must always be explicitly converted to some numeric type. This ensures
explicit control of the accuracy of the computation. The same considerations
apply to division of a fixed point value by another fixed point value. No other
operators are defined for the type universal_fixed.12

12 The exception NUMERIC_ERROR is raised by integer division, rem, and mod
if the right operand is zero.13

13 Examples:
I : INTEGER := 1;
J : INTEGER := 2;
K : INTEGER := 3;

X : REAL digits 6 := 1.0; -- see 3.5.7
Y : REAL digits 6 := 2.0;

12 See also Appendix G, AI-00235.
13 See also Appendix G, AI-00387.

4–25 Multiplying Operators 4.5.5

F : FRACTION delta 0.0001 := 0.1; -- see 3.5.9
G : FRACTION delta 0.0001 := 0.1;

Expression Value Result type

I*J 2 same as I and J, that is, INTEGER

K/J 1 same as K and J, that is, INTEGER

K mod J 1 same as K and J, that is, INTEGER

X/Y 0.5 same as X and Y, that is, REAL

F/2 0.05 same as F, that is, FRACTION

3*F 0.3 same as F, that is, FRACTION

F*G 0.01 universal_fixed, conversion needed

FRACTION(F*G) 0.01 FRACTION, as stated by the conversion

REAL(J)*Y 4.0 REAL, the type of both operands after conversion of J

Notes:
14 For positive A and B, A/B is the quotient and A rem B is the remainder when

A is divided by B. The following relations are satisfied by the rem operator:

A rem (-B) = A rem B
(-A) rem B = -(A rem B)

15 For any integer K, the following identity holds:

A mod B = (A + K*B) mod B

16 The relations between integer division, remainder, and modulus are illustrated
by the following table:

A B A/B A rem B A mod B

10 5 2 0 0

11 5 2 1 1

12 5 2 2 2

13 5 2 3 3

14 5 2 4 4

10 –5 –2 0 0

11 –5 –2 1 –4

12 –5 –2 2 –3

4.5.5 Multiplying Operators 4–26

A B A/B A rem B A mod B

13 –5 –2 3 –2

14 –5 –2 4 –1

–10 5 –2 0 0

–11 5 –2 –1 4

–12 5 –2 –2 3

–13 5 –2 –3 2

–14 5 –2 –4 1

–10 –5 2 0 0

–11 –5 2 –1 –1

–12 –5 2 –2 –2

–13 –5 2 –3 –3

–14 –5 2 –4 –4

17 References: actual parameter 6.4.1, base type 3.3, declaration 3.1, delta of a fixed
point type 3.5.9, fixed point type 3.5.9, floating point type 3.5.7, generic formal
subprogram 12.1, integer type 3.5.4, numeric type 3.5, numeric_error exception 11.1,
predefined operator 4.5, raising of exceptions 11, renaming declaration 8.5, standard
predefined package 8.6, type conversion 4.6

4.5.6 Highest Precedence Operators
1 The highest precedence unary operator abs is predefined for any numeric type.

The highest precedence unary operator not is predefined for any boolean type
and any one-dimensional array type whose components have a boolean type.

2 Operator Operation Operand type Result type

abs absolute value any numeric type same numeric type

not logical negation any boolean type same boolean type

array of boolean
components

same array type

3 The operator not that applies to a one-dimensional array of boolean
components yields a one-dimensional boolean array with the same bounds; each
component of the result is obtained by logical negation of the corresponding
component of the operand (that is, the component that has the same index
value).

4–27 Highest Precedence Operators 4.5.6

4 The highest precedence exponentiating operator ** is predefined for each
integer type and for each floating point type. In either case the right operand,
called the exponent, is of the predefined type INTEGER.

5 Operator Operation
Left operand
type

Right operand
type Result type

** exponentiation any integer
type

INTEGER same as
left

any floating
point type

INTEGER same as
left

6 Exponentiation with a positive exponent is equivalent to repeated
multiplication of the left operand by itself, as indicated by the exponent
and from left to right. For an operand of a floating point type, the exponent
can be negative, in which case the value is the reciprocal of the value with the
positive exponent. Exponentiation by a zero exponent delivers the value one.
Exponentiation of a value of a floating point type is approximate (see 4.5.7).
Exponentiation of an integer raises the exception CONSTRAINT_ERROR for a
negative exponent.14

7 References: array type 3.6, boolean type 3.5.3, bound of an array 3.6.1, component
of an array 3.6, constraint_error exception 11.1, dimensionality 3.6, floating point type
3.5.9, index 3.6, integer type 3.5.4, multiplication operation 4.5.5, predefined operator
4.5, raising of exceptions 11

4.5.7 Accuracy of Operations with Real Operands
1 A real subtype specifies a set of model numbers.15 Both the accuracy required

from any basic or predefined operation giving a real result, and the result of
any predefined relation between real operands are defined in terms of these
model numbers.

2 A model interval of a subtype is any interval whose bounds are model numbers
of the subtype. The model interval associated with a value that belongs to
a real subtype is the smallest model interval (of the subtype) that includes
the value. (The model interval associated with a model number of a subtype
consists of that number only.)

3 For any basic operation or predefined operator that yields a result of a real
subtype, the required bounds on the result are given by a model interval
defined as follows:

14 See also Appendix G, AI-00137.
15 See also Appendix G, AI-00407.

4.5.7 Accuracy of Operations with Real Operands 4–28

4 • The result model interval is the smallest model interval (of the result
subtype) that includes the minimum and the maximum of all the
values obtained by applying the (exact) mathematical operation, when
each operand is given any value of the model interval (of the operand
subtype) defined for the operand.16

5 • The model interval of an operand that is itself the result of an
operation, other than an implicit conversion, is the result model
interval of this operation.

6 • The model interval of an operand whose value is obtained by implicit
conversion of a universal expression is the model interval associated
with this value within the operand subtype.

7 The result model interval is undefined if the absolute value of one of the
above mathematical results exceeds the largest safe number of the result type.
Whenever the result model interval is undefined, it is highly desirable that the
exception NUMERIC_ERROR be raised if the implementation cannot produce
an actual result that is in the range of safe numbers. This is, however, not
required by the language rules, in recognition of the fact that certain target
machines do not permit easy detection of overflow situations. The value of
the attribute MACHINE_OVERFLOWS indicates whether the target machine
raises the exception NUMERIC_ERROR in overflow situations (see 13.7.3).17

8 The safe numbers of a real type are defined (see 3.5.6) as a superset of the
model numbers, for which error bounds follow the same rules as for model
numbers. Any definition given in this section in terms of model intervals can
therefore be extended to safe intervals of safe numbers. A consequence of
this extension is that an implementation is not allowed to raise the exception
NUMERIC_ERROR when the result interval is a safe interval.

9 For the result of exponentiation, the model interval defining the bounds
on the result is obtained by applying the above rules to the sequence of
multiplications defined by the exponent, and to the final division in the case of
a negative exponent.

10 For the result of a relation between two real operands, consider for each
operand the model interval (of the operand subtype) defined for the operand;
the result can be any value obtained by applying the mathematical comparison
to values arbitrarily chosen in the corresponding operand model intervals. If
either or both of the operand model intervals is undefined (and if neither of the
operand evaluations raises an exception) then the result of the comparison is
allowed to be any possible value (that is, either TRUE or FALSE).

16 See also Appendix G, AI-00516.
17 See also Appendix G, AI-00387.

4–29 Accuracy of Operations with Real Operands 4.5.7

11 The result of a membership test is defined in terms of comparisons of the
operand value with the lower and upper bounds of the given range or type
mark (the usual rules apply to these comparisons).

Note:
12 For a floating point type the numbers 15.0, 3.0, and 5.0 are always model

numbers. Hence X/Y where X equals 15.0 and Y equals 3.0 yields exactly 5.0
according to the above rules. In the general case, division does not yield model
numbers and in consequence one cannot assume that (1.0/X)*X = 1.0.

13 References: attribute 4.1.4, basic operation 3.3.3, bound of a range 3.5, error bound
3.5.6, exponentiation operation 4.5.6, false boolean value 3.5.3, floating point type
3.5.9, machine_overflows attribute 13.7.1, membership test 4.5.2, model number 3.5.6,
multiplication operation 4.5.5, numeric_error exception 11.1, predefined operation 3.3.3,
raising of exceptions 11, range 3.5, real type 3.5.6, relation 4.4, relational operator
4.5.2 4.5, safe number 3.5.6, subtype 3.3, true boolean value 3.5.3, type conversion 4.6,
type mark 3.3.2, universal expression 4.10

4.6 Type Conversions
1 The evaluation of an explicit type conversion evaluates the expression given

as the operand, and converts the resulting value to a specified target type.
Explicit type conversions are allowed between closely related types as defined
below.

2 type_conversion ::= type_mark(expression)

3 The target type of a type conversion is the base type of the type mark. The
type of the operand of a type conversion must be determinable independently of
the context (in particular, independently of the target type). Furthermore, the
operand of a type conversion is not allowed to be a literal null, an allocator, an
aggregate, or a string literal; an expression enclosed by parentheses is allowed
as the operand of a type conversion only if the expression alone is allowed.

4 A conversion to a subtype consists of a conversion to the target type followed by
a check that the result of the conversion belongs to the subtype. A conversion
of an operand of a given type to the type itself is allowed.

5 The other allowed explicit type conversions correspond to the following three
cases:

6 (a) Numeric types

7 The operand can be of any numeric type; the value of the operand is
converted to the target type which must also be a numeric type. For
conversions involving real types, the result is within the accuracy of
the specified subtype (see 4.5.7). The conversion of a real value to an

4.6 Type Conversions 4–30

integer type rounds to the nearest integer; if the operand is halfway
between two integers (within the accuracy of the real subtype)
rounding may be either up or down.

8 (b) Derived types

9 The conversion is allowed if one of the target type and the operand
type is derived from the other, directly or indirectly, or if there exists
a third type from which both types are derived, directly or indirectly.

10 (c) Array types

11 The conversion is allowed if the operand type and the target type are
array types that satisfy the following conditions: both types must
have the same dimensionality; for each index position the index
types must either be the same or be convertible to each other; the
component types must be the same; finally, if the component type is
a type with discriminants or an access type, the component subtypes
must be either both constrained or both unconstrained. If the type
mark denotes an unconstrained array type, then, for each index
position, the bounds of the result are obtained by converting the
bounds of the operand to the corresponding index type of the target
type. If the type mark denotes a constrained array subtype, then the
bounds of the result are those imposed by the type mark. In either
case, the value of each component of the result is that of the matching
component of the operand (see 4.5.2).

12 In the case of conversions of numeric types and derived types, the exception
CONSTRAINT_ERROR is raised by the evaluation of a type conversion if the
result of the conversion fails to satisfy a constraint imposed by the type mark.

13 In the case of array types, a check is made that any constraint on the
component subtype is the same for the operand array type as for the target
array type. If the type mark denotes an unconstrained array type and if the
operand is not a null array, then, for each index position, a check is made
that the bounds of the result belong to the corresponding index subtype of the
target type. If the type mark denotes a constrained array subtype, a check is
made that for each component of the operand there is a matching component
of the target subtype, and vice versa. The exception CONSTRAINT_ERROR is
raised if any of these checks fails.18

14 If a conversion is allowed from one type to another, the reverse conversion is
also allowed. This reverse conversion is used where an actual parameter of
mode in out or out has the form of a type conversion of a (variable) name as
explained in section 6.4.1.

18 See also Appendix G, AI-00313.

4–31 Type Conversions 4.6

15 Apart from the explicit type conversions, the only allowed form of type
conversion is the implicit conversion of a value of the type universal_integer
or universal_real into another numeric type. An implicit conversion of an
operand of type universal_integer to another integer type, or of an operand of
type universal_real to another real type, can only be applied if the operand is
either a numeric literal, a named number, or an attribute; such an operand is
called a convertible universal operand in this section. An implicit conversion of
a convertible universal operand is applied if and only if the innermost complete
context (see 8.7) determines a unique (numeric) target type for the implicit
conversion, and there is no legal interpretation of this context without this
conversion.

Notes:
15 The rules for implicit conversions imply that no implicit conversion is ever

applied to the operand of an explicit type conversion. Similarly, implicit
conversions are not applied if both operands of a predefined relational operator
are convertible universal operands.

16 The language allows implicit subtype conversions in the case of array types
(see 5.2.1). An explicit type conversion can have the effect of a change of
representation (in particular see 13.6). Explicit conversions are also used for
actual parameters (see 6.4).

17 Examples of numeric type conversion:
REAL(2*J) -- value is converted to floating point
INTEGER(1.6) -- value is 2
INTEGER(-0.4) -- value is 0

18 Example of conversion between derived types:
type A_FORM is new B_FORM;

X : A_FORM;
Y : B_FORM;

X := A_FORM(Y);
Y := B_FORM(X); -- the reverse conversion

19 Examples of conversions between array types:
type SEQUENCE is array (INTEGER range <>) of INTEGER;
subtype DOZEN is SEQUENCE(1 .. 12);
LEDGER : array(1 .. 100) of INTEGER;

SEQUENCE(LEDGER) -- bounds are those of LEDGER
SEQUENCE(LEDGER(31 .. 42)) -- bounds are 31 and 42
DOZEN(LEDGER(31 .. 42)) -- bounds are those of DOZEN

4.6 Type Conversions 4–32

20 Examples of implicit conversions:
X : INTEGER := 2;

X + 1 + 2 -- implicit conversion of
-- each integer literal

1 + 2 + X -- implicit conversion of
-- each integer literal

X + (1 + 2) -- implicit conversion of
-- each integer literal

2 = (1 + 1) -- no implicit conversion:
-- the type is universal_integer

A’LENGTH = B’LENGTH -- no implicit conversion:
-- the type is universal_integer

C : constant := 3 + 2; -- no implicit conversion:
-- the type is universal_integer

X = 3 and 1 = 2 -- implicit conversion of 3,
-- but not of 1 and 2

21 References: actual parameter 6.4.1, array type 3.6, attribute 4.1.4, base type 3.3,
belong to a subtype 3.3, component 3.3, constrained array subtype 3.6, constraint_
error exception 11.1, derived type 3.4, dimension 3.6, expression 4.4, floating point
type 3.5.7, index 3.6, index subtype 3.6, index type 3.6, integer type 3.5.4, matching
component 4.5.2, mode 6.1, name 4.1, named number 3.2, null array 3.6.1, numeric
literal 2.4, numeric type 3.5, raising of exceptions 11, real type 3.5.6, representation
13.1, statement 5, subtype 3.3, type 3.3, type mark 3.3.2, unconstrained array type 3.6,
universal_integer type 3.5.4, universal_real type 3.5.6, variable 3.2.1

4.7 Qualified Expressions
1 A qualified expression is used to state explicitly the type, and possibly the

subtype, of an operand that is the given expression or aggregate.

2 qualified_expression ::=
type_mark’(expression) | type_mark’aggregate

3 The operand must have the same type as the base type of the type mark. The
value of a qualified expression is the value of the operand. The evaluation of a
qualified expression evaluates the operand and checks that its value belongs to
the subtype denoted by the type mark. The exception CONSTRAINT_ERROR
is raised if this check fails.

4–33 Qualified Expressions 4.7

4 Examples:
type MASK is (FIX, DEC, EXP, SIGNIF);
type CODE is (FIX, CLA, DEC, TNZ, SUB);

PRINT (MASK’(DEC)); -- DEC is of type MASK
PRINT (CODE’(DEC)); -- DEC is of type CODE

for J in CODE’(FIX) .. CODE’(DEC) loop ... -- qualification
-- needed for
-- either FIX
-- or DEC

for J in CODE range FIX .. DEC loop ... -- qualification
-- unnecessary

for J in CODE’(FIX) .. DEC loop ... -- qualification
-- unnecessary
-- for DEC

DOZEN’(1 | 3 | 5 | 7 => 2, others => 0) -- see 4.6

Notes:
5 Whenever the type of an enumeration literal or aggregate is not known from

the context, a qualified expression can be used to state the type explicitly. For
example, an overloaded enumeration literal must be qualified in the following
cases: when given as a parameter in a subprogram call to an overloaded
subprogram that cannot otherwise be identified on the basis of remaining
parameter or result types, in a relational expression where both operands are
overloaded enumeration literals, or in an array or loop parameter range where
both bounds are overloaded enumeration literals. Explicit qualification is also
used to specify which one of a set of overloaded parameterless functions is
meant, or to constrain a value to a given subtype.

6 References: aggregate 4.3, array 3.6, base type 3.3, bound of a range 3.5, constraint_
error exception 11.1, context of overload resolution 8.7, enumeration literal 3.5.1,
expression 4.4, function 6.5, loop parameter 5.5, overloading 8.5, raising of exceptions
11, range 3.3, relation 4.4, subprogram 6, subprogram call 6.4, subtype 3.3, type 3.3,
type mark 3.3.2

4.8 Allocators
1 The evaluation of an allocator creates an object and yields an access value that

designates the object.

2 allocator ::=
new subtype_indication | new qualified_expression

4.8 Allocators 4–34

3 The type of the object created by an allocator is the base type of the type
mark given in either the subtype indication or the qualified expression. For an
allocator with a qualified expression, this expression defines the initial value
of the created object. The type of the access value returned by an allocator
must be determinable solely from the context, but using the fact that the value
returned is of an access type having the named designated type.

4 The only allowed forms of constraint in the subtype indication of an allocator
are index and discriminant constraints. If an allocator includes a subtype
indication and if the type of the object created is an array type or a type with
discriminants that do not have default expressions, then the subtype indication
must either denote a constrained subtype, or include an explicit index or
discriminant constraint.

5 If the type of the created object is an array type or a type with discriminants,
then the created object is always constrained. If the allocator includes a
subtype indication, the created object is constrained either by the subtype or by
the default discriminant values. If the allocator includes a qualified expression,
the created object is constrained by the bounds or discriminants of the initial
value. For other types, the subtype of the created object is the subtype defined
by the subtype indication of the access type definition.19

6 For the evaluation of an allocator, the elaboration of the subtype indication or
the evaluation of the qualified expression is performed first. The new object
is then created. Initializations are then performed as for a declared object
(see 3.2.1); the initialization is considered explicit in the case of a qualified
expression; any initializations are implicit in the case of a subtype indication.
Finally, an access value that designates the created object is returned.

7 An implementation must guarantee that any object created by the evaluation
of an allocator remains allocated for as long as this object or one of its
subcomponents is accessible directly or indirectly, that is, as long as it can be
denoted by some name. Moreover, if an object or one of its subcomponents
belongs to a task type, it is considered to be accessible as long as the task is
not terminated. An implementation may (but need not) reclaim the storage
occupied by an object created by an allocator, once this object has become
inaccessible.20

In DEC Ada, storage is reclaimed only upon leaving the innermost block
statement, subprogram body, or task body that encloses the access type
declaration. In other words, storage for an inaccessible object of an access type
is not reclaimed until the collection allocated for the access type is reclaimed

19 See also Appendix G, AI-00150, AI-00331, and AI-00397.
20 See also Appendix G, AI-00356.

4–35 Allocators 4.8

(see also 13.2). For more detailed information on DEC Ada storage allocation
and deallocation, see the DEC Ada run-time reference manuals.

8 When an application needs closer control over storage allocation for objects
designated by values of an access type, such control may be achieved by one or
more of the following means:

9 (a) The total amount of storage available for the collection of objects of an
access type can be set by means of a length clause (see 13.2).

10 (b) The pragma CONTROLLED informs the implementation that
automatic storage reclamation must not be performed for objects
designated by values of the access type, except upon leaving the
innermost block statement, subprogram body, or task body that
encloses the access type declaration, or after leaving the main
program.

pragma CONTROLLED (access_type_simple_name);

11 A pragma CONTROLLED for a given access type is allowed at the
same places as a representation clause for the type (see 13.1). This
pragma is not allowed for a derived type.21

12 (c) The explicit deallocation of the object designated by an access value
can be achieved by calling a procedure obtained by instantiation
of the predefined generic library procedure UNCHECKED_
DEALLOCATION (see 13.10.1).

13 The exception STORAGE_ERROR is raised by an allocator if there is not
enough storage. Note also that the exception CONSTRAINT_ERROR can be
raised by the evaluation of the qualified expression, by the elaboration of the
subtype indication, or by the initialization.22

14 Examples for access types declared in section 3.8:
new CELL’(0, null, null) -- initialized explicitly

new CELL’(VALUE => 0,
SUCC => null,
PRED => null) -- initialized explicitly

new CELL -- not initialized

new MATRIX(1 .. 10, 1 .. 20) -- the bounds only
-- are given

new MATRIX’(1 .. 10 => (1 .. 20 => 0.0)) -- initialized
-- explicitly

21 See also Appendix G, AI-00294.
22 See also Appendix G, AI-00397.

4.8 Allocators 4–36

new BUFFER(100) -- the discriminant
-- only is given

new BUFFER’(SIZE => 80,
POS => 0,
VALUE => (1 .. 80 => ’A’)) -- initialized

-- explicitly

15 References: access type 3.8, access type definition 3.8, access value 3.8, array type
3.6, block statement 5.6, bound of an array 3.6.1, collection 3.8, constrained subtype
3.3, constraint 3.3, constraint_error exception 11.1, context of overload resolution
8.7, derived type 3.4, designate 3.8, discriminant 3.3, discriminant constraint 3.7.2,
elaboration 3.9, evaluation of a qualified expression 4.7, generic procedure 12.1,
index constraint 3.6.1, initial value 3.2.1, initialization 3.2.1, instantiation 12.3,
length clause 13.2, library unit 10.1, main program 10.1, name 4.1, object 3.2.1,
object declaration 3.2.1, pragma 2.8, procedure 6, qualified expression 4.7, raising of
exceptions 11, representation clause 13.1, simple name 4.1, storage_error exception
11.1, subcomponent 3.3, subprogram body 6.3, subtype 3.3, subtype indication 3.3.2,
task body 9.1, task type 9.2, terminated task 9.4, type 3.3, type declaration 3.3.1, type
mark 3.3.2 type with discriminants 3.3

4.9 Static Expressions and Static Subtypes
1 Certain expressions of a scalar type are said to be static. Similarly, certain

discrete ranges are said to be static, and the type marks of certain scalar
subtypes are said to denote static subtypes.

2 An expression of a scalar type is said to be static if and only if every primary
is one of those listed in (a) through (h) below, every operator denotes a
predefined operator, and the evaluation of the expression delivers a value (that
is, it does not raise an exception):23

3 (a) An enumeration literal (including a character literal).

4 (b) A numeric literal.

5 (c) A named number.

6 (d) A constant explicitly declared by a constant declaration with a static
subtype, and initialized with a static expression.24

7 (e) A function call whose function name is an operator symbol that
denotes a predefined operator, including a function name that is
an expanded name; each actual parameter must also be a static
expression.

23 See also Appendix G, AI-00128, AI-00190, and AI-00219.
24 See also Appendix G, AI-00001 and AI-00163.

4–37 Static Expressions and Static Subtypes 4.9

8 (f) A language-defined attribute of a static subtype; for an attribute that
is a function, the actual parameter must also be a static expression.

9 (g) A qualified expression whose type mark denotes a static subtype and
whose operand is a static expression.

10 (h) A static expression enclosed in parentheses.

11 A static range is a range whose bounds are static expressions. A static range
constraint is a range constraint whose range is static. A static subtype is
either a scalar base type, other than a generic formal type; or a scalar subtype
formed by imposing on a static subtype either a static range constraint, or
a floating or fixed point constraint whose range constraint, if any, is static.
A static discrete range is either a static subtype or a static range. A static
index constraint is an index constraint for which each index subtype of the
corresponding array type is static, and in which each discrete range is static.
A static discriminant constraint is a discriminant constraint for which the
subtype of each discriminant is static, and in which each expression is static.25

Notes:
12 The accuracy of the evaluation of a static expression having a real type is

defined by the rules given in section 4.5.7. If the result is not a model number
(or a safe number) of the type, the value obtained by this evaluation at
compilation time need not be the same as the value that would be obtained
by an evaluation at run time.

13 Array attributes are not static: in particular, the RANGE attribute is not
static.

14 References: actual parameter 6.4.1, attribute 4.1.4, base type 3.3, bound of a range
3.5, character literal 2.5, constant 3.2.1, constant declaration 3.2.1, discrete range 3.6,
discrete type 3.5, enumeration literal 3.5.1, exception 11, expression 4.4, function 6.5,
generic actual parameter 12.3, generic formal type 12.1.2, implicit declaration 3.1,
initialize 3.2.1, model number 3.5.6, named number 3.2, numeric literal 2.4, predefined
operator 4.5, qualified expression 4.7, raising of exceptions 11, range constraint 3.5,
safe number 3.5.6, scalar type 3.5, subtype 3.3, type mark 3.3.2

25 See also Appendix G, AI-00023, AI-00251, and AI-00409.

4.10 Universal Expressions 4–38

4.10 Universal Expressions
1 A universal_expression is either an expression that delivers a result of type

universal_integer or one that delivers a result of type universal_real.

2 The same operations are predefined for the type universal_integer as for any
integer type. The same operations are predefined for the type universal_real as
for any floating point type. In addition, these operations include the following
multiplication and division operators:

3 Operator Operation
Left operand
type

Right operand
type Result type

* multiplication universal_real universal_
integer

universal_real

universal_
integer

universal_real universal_real

/ division universal_real universal_
integer

universal_real

4 The accuracy of the evaluation of a universal expression of type universal_
real is at least as good as that of the most accurate predefined floating
point type supported by the implementation, apart from universal_real
itself. Furthermore, if a universal expression is a static expression, then the
evaluation must be exact.26

5 For the evaluation of an operation of a nonstatic universal expression, an
implementation is allowed to raise the exception NUMERIC_ERROR only
if the result of the operation is a real value whose absolute value exceeds
the largest safe number of the most accurate predefined floating point type
(excluding universal_real), or an integer value greater than SYSTEM.MAX_
INT or less than SYSTEM.MIN_INT.27

Note:
6 It is a consequence of the above rules that the type of a universal expression

is universal_integer if every primary contained in the expression is of this type
(excluding actual parameters of attributes that are functions, and excluding
right operands of exponentiation operators) and that otherwise the type is
universal_real.

26 See also Appendix G, AI-00103, AI-00209, and AI-00405.
27 See also Appendix G, AI-00181 and AI-00387.

4–39 Universal Expressions 4.10

7 Examples:
1 + 1 -- 2
abs(-10)*3 -- 30

KILO : constant := 1000;
MEGA : constant := KILO*KILO; -- 1_000_000
LONG : constant := FLOAT’DIGITS*2;

HALF_PI : constant := PI/2; -- see 3.2.2
DEG_TO_RAD : constant := HALF_PI/90;
RAD_TO_DEG : constant := 1.0/DEG_TO_RAD;

-- equivalent to
-- 1.0/((3.14159_26536/2)/90)

8 References: actual parameter 6.4.1, attribute 4.1.4, evaluation of an expression
4.5, floating point type 3.5.9, function 6.5, integer type 3.5.4, multiplying operator
4.5 4.5.5, predefined operation 3.3.3, primary 4.4, real type 3.5.6, safe number 3.5.6,
system.max_int 13.7, system.min_int 13.7, type 3.3, universal_integer type 3.5.4,
universal_real type 3.5.6

4.10 Universal Expressions 4–40

5
Statements

1 A statement defines an action to be performed; the process by which a
statement achieves its action is called execution of the statement.

2 This chapter describes the general rules applicable to all statements. Some
specific statements are discussed in later chapters. Procedure call statements
are described in chapter 6 on subprograms. Entry call, delay, accept, select,
and abort statements are described in chapter 9 on tasks. Raise statements
are described in chapter 11 on exceptions, and code statements in chapter 13.
The remaining forms of statements are presented in this chapter.

3 References: abort statement 9.10, accept statement 9.5, code statement 13.8, delay
statement 9.6, entry call statement 9.5, procedure call statement 6.4, raise statement
11.3, select statement 9.7

5.1 Simple and Compound Statements—Sequences of
Statements

1 A statement is either simple or compound. A simple statement encloses no
other statement. A compound statement can enclose simple statements and
other compound statements.

2 sequence_of_statements ::= statement {statement}

statement ::=
{label} simple_statement | {label} compound_statement

simple_statement ::= null_statement
| assignment_statement | procedure_call_statement
| exit_statement | return_statement
| goto_statement | entry_call_statement
| delay_statement | abort_statement
| raise_statement | code_statement

compound_statement ::=
if_statement | case_statement

| loop_statement | block_statement
| accept_statement | select_statement

5–1 Simple and Compound Statements—Sequences of Statements 5.1

label ::= <<label_simple_name>>

null_statement ::= null;

3 A statement is said to be labeled by the label name of any label of the
statement. A label name, and similarly a loop or block name, is implicitly
declared at the end of the declarative part of the innermost block statement,
subprogram body, package body, task body, or generic body that encloses the
labeled statement, the named loop statement, or the named block statement,
as the case may be. For a block statement without a declarative part, an
implicit declarative part (and preceding declare) is assumed.

4 The implicit declarations for different label names, loop names, and block
names occur in the same order as the beginnings of the corresponding labeled
statements, loop statements, and block statements. Distinct identifiers must
be used for all label, loop, and block names that are implicitly declared within
the body of a program unit, including within block statements enclosed by this
body, but excluding within other enclosed program units (a program unit is
either a subprogram, a package, a task unit, or a generic unit).

5 Execution of a null statement has no other effect than to pass to the next
action.

6 The execution of a sequence of statements consists of the execution of the
individual statements in succession until the sequence is completed, or a
transfer of control takes place. A transfer of control is caused either by the
execution of an exit, return, or goto statement; by the selection of a terminate
alternative; by the raising of an exception; or (indirectly) by the execution of an
abort statement.

7 Examples of labeled statements:
<<HERE>> <<ICI>> <<AQUI>> <<HIER>> null;

<<AFTER>> X := 1;

Note:
8 The scope of a declaration starts at the place of the declaration itself (see 8.2).

In the case of a label, loop, or block name, it follows from this rule that the
scope of the implicit declaration starts before the first explicit occurrence of the
corresponding name, since this occurrence is either in a statement label, a loop
statement, a block statement, or a goto statement. An implicit declaration in a
block statement may hide a declaration given in an outer program unit or block
statement (according to the usual rules of hiding explained in section 8.3).

5.1 Simple and Compound Statements—Sequences of Statements 5–2

9 References: abort statement 9.10, accept statement 9.5, assignment statement
5.2, block name 5.6, block statement 5.6, case statement 5.4, code statement 13.8,
declaration 3.1, declarative part 3.9, delay statement 9.6, entry call statement 9.5,
exception 11, exit statement 5.7, generic body 12.1, generic unit 12, goto statement 5.9,
hiding 8.3, identifier 2.3, if statement 5.3, implicit declaration 3.1, loop name 5.5, loop
statement 5.5, package 7, package body 7.1, procedure call statement 6.4, program unit
6, raise statement 11.3, raising of exceptions 11, return statement 5.8, scope 8.2, select
statement 9.7, simple name 4.1, subprogram 6, subprogram body 6.3, task 9, task body
9.1, task unit 9.1, terminate alternative 9.7.1, terminated task 9.4

5.2 Assignment Statement
1 An assignment statement replaces the current value of a variable with a new

value specified by an expression. The named variable and the right-hand side
expression must be of the same type; this type must not be a limited type.

2 assignment_statement ::=
variable_name := expression;

3 For the execution of an assignment statement, the variable name and the
expression are first evaluated, in some order that is not defined by the
language. A check is then made that the value of the expression belongs to the
subtype of the variable, except in the case of a variable that is an array (the
assignment then involves a subtype conversion as described in section 5.2.1).
Finally, the value of the expression becomes the new value of the variable.1

4 The exception CONSTRAINT_ERROR is raised if the above-mentioned
subtype check fails; in such a case the current value of the variable is left
unchanged. If the variable is a subcomponent that depends on discriminants
of an unconstrained record variable, then the execution of the assignment
is erroneous if the value of any of these discriminants is changed by this
execution.

5 Examples:
VALUE := MAX_VALUE - 1;
SHADE := BLUE;

NEXT_FRAME(F)(M, N) := 2.5; -- see 4.1.1
U := DOT_PRODUCT(V, W); -- see 6.5

WRITER := (STATUS => OPEN,
UNIT => PRINTER,
LINE_COUNT => 60); -- see 3.7.3

NEXT_CAR.ALL := (72074, null); -- see 3.8.1

1 See also Appendix G, AI-00407.

5–3 Assignment Statement 5.2

6 Examples of constraint checks:
I, J : INTEGER range 1 .. 10;
K : INTEGER range 1 .. 20;
...

I := J; -- identical ranges
K := J; -- compatible ranges
J := K; -- will raise the exception CONSTRAINT_ERROR if K > 10

Notes:
7 The values of the discriminants of an object designated by an access value

cannot be changed (not even by assigning a complete value to the object itself)
since such objects, created by allocators, are always constrained (see 4.8);
however, subcomponents of such objects may be unconstrained.

8 If the right-hand side expression is either a numeric literal or named number,
or an attribute that yields a result of type universal_integer or universal_real,
then an implicit type conversion is performed, as described in section 4.6.

9 The determination of the type of the variable of an assignment statement may
require consideration of the expression if the variable name can be interpreted
as the name of a variable designated by the access value returned by a function
call, and similarly, as a component or slice of such a variable (see section 8.7
for the context of overload resolution).

10 References: access type 3.8, allocator 4.8, array 3.6, array assignment 5.2.1,
component 3.6 3.7, constraint_error exception 11.1, designate 3.8, discriminant
3.7.1, erroneous 1.6, evaluation 4.5, expression 4.4, function call 6.4, implicit type
conversion 4.6, name 4.1, numeric literal 2.4, object 3.2, overloading 6.6 8.7, slice 4.1.2,
subcomponent 3.3, subtype 3.3, subtype conversion 4.6, type 3.3, universal_integer type
3.5.4, universal_real type 3.5.6, variable 3.2.1

5.2.1 Array Assignments
1 If the variable of an assignment statement is an array variable (including a

slice variable), the value of the expression is implicitly converted to the subtype
of the array variable; the result of this subtype conversion becomes the new
value of the array variable.

2 This means that the new value of each component of the array variable is
specified by the matching component in the array value obtained by evaluation
of the expression (see 4.5.2 for the definition of matching components). The
subtype conversion checks that for each component of the array variable there
is a matching component in the array value, and vice versa. The exception
CONSTRAINT_ERROR is raised if this check fails; in such a case the value of
each component of the array variable is left unchanged.

5.2.1 Array Assignments 5–4

3 Examples:
A : STRING(1 .. 31);
B : STRING(3 .. 33);
...

A := B; -- same number of components

A(1 .. 9) := "tar sauce";
A(4 .. 12) := A(1 .. 9); -- A(1 .. 12) = "tartar sauce"

Notes:
4 Array assignment is defined even in the case of overlapping slices, because

the expression on the right-hand side is evaluated before performing any
component assignment. In the above example, an implementation yielding
A(1 .. 12) = "tartartartar" would be incorrect.

5 The implicit subtype conversion described above for assignment to an array
variable is performed only for the value of the right-hand side expression as a
whole; it is not performed for subcomponents that are array values.

6 References: array 3.6, assignment 5.2, constraint_error exception 11.1, matching
array components 4.5.2, slice 4.1.2, subtype conversion 4.6, type 3.3, variable 3.2.1

5.3 If Statements
1 An if statement selects for execution one or none of the enclosed sequences

of statements, depending on the (truth) value of one or more corresponding
conditions.

2 if_statement ::=
if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

condition ::= boolean_expression

3 An expression specifying a condition must be of a boolean type.

4 For the execution of an if statement, the condition specified after if, and any
conditions specified after elsif, are evaluated in succession (treating a final
else as elsif TRUE then), until one evaluates to TRUE or all conditions
are evaluated and yield FALSE. If one condition evaluates to TRUE, then
the corresponding sequence of statements is executed; otherwise none of the
sequences of statements is executed.

5–5 If Statements 5.3

5 Examples:
if MONTH = DECEMBER and DAY = 31 then

MONTH := JANUARY;
DAY := 1;
YEAR := YEAR + 1;

end if;

if LINE_TOO_SHORT then
raise LAYOUT_ERROR;

elsif LINE_FULL then
NEW_LINE;
PUT(ITEM);

else
PUT(ITEM);

end if;

if MY_CAR.OWNER.VEHICLE /= MY_CAR then -- see 3.8
REPORT ("Incorrect data");

end if;

6 References: boolean type 3.5.3, evaluation 4.5, expression 4.4, sequence of
statements 5.1

5.4 Case Statements
1 A case statement selects for execution one of a number of alternative sequences

of statements; the chosen alternative is defined by the value of an expression.

2 case_statement ::=
case expression is

case_statement_alternative
{case_statement_alternative}

end case;

case_statement_alternative ::=
when choice {| choice } =>

sequence_of_statements

3 The expression must be of a discrete type which must be determinable
independently of the context in which the expression occurs, but using the
fact that the expression must be of a discrete type. Moreover, the type of this
expression must not be a generic formal type. Each choice in a case statement
alternative must be of the same type as the expression; the list of choices
specifies for which values of the expression the alternative is chosen.2

2 See also Appendix G, AI-00151.

5.4 Case Statements 5–6

4 If the expression is the name of an object whose subtype is static, then each
value of this subtype must be represented once and only once in the set of
choices of the case statement, and no other value is allowed; this rule is
likewise applied if the expression is a qualified expression or type conversion
whose type mark denotes a static subtype. Otherwise, for other forms of
expression, each value of the (base) type of the expression must be represented
once and only once in the set of choices, and no other value is allowed.

5 The simple expressions and discrete ranges given as choices in a case
statement must be static. A choice defined by a discrete range stands for all
values in the corresponding range (none if a null range). The choice others
is only allowed for the last alternative and as its only choice; it stands for
all values (possibly none) not given in the choices of previous alternatives.
A component simple name is not allowed as a choice of a case statement
alternative.

6 The execution of a case statement consists of the evaluation of the expression
followed by the execution of the chosen sequence of statements.3

7 Examples:
case SENSOR is

when ELEVATION => RECORD_ELEVATION(SENSOR_VALUE);
when AZIMUTH => RECORD_AZIMUTH (SENSOR_VALUE);
when DISTANCE => RECORD_DISTANCE (SENSOR_VALUE);
when others => null;

end case;

case TODAY is
when MON => COMPUTE_INITIAL_BALANCE;
when FRI => COMPUTE_CLOSING_BALANCE;
when TUE .. THU => GENERATE_REPORT(TODAY);
when SAT .. SUN => null;

end case;

case BIN_NUMBER(COUNT) is
when 1 => UPDATE_BIN(1);
when 2 => UPDATE_BIN(2);
when 3 | 4 =>

EMPTY_BIN(1);
EMPTY_BIN(2);

when others => raise ERROR;
end case;

3 See also Appendix G, AI-00267.

5–7 Case Statements 5.4

Notes:
8 The execution of a case statement chooses one and only one alternative,

since the choices are exhaustive and mutually exclusive. Qualification of the
expression of a case statement by a static subtype can often be used to limit
the number of choices that need be given explicitly.

9 An others choice is required in a case statement if the type of the expression is
the type universal_integer (for example, if the expression is an integer literal),
since this is the only way to cover all values of the type universal_integer.

10 References: base type 3.3, choice 3.7.3, context of overload resolution 8.7, discrete
type 3.5, expression 4.4, function call 6.4, generic formal type 12.1, conversion 4.6,
discrete type 3.5, enumeration literal 3.5.1, expression 4.4, name 4.1, object 3.2.1,
overloading 6.6 8.7, qualified expression 4.7, sequence of statements 5.1, static discrete
range 4.9, static subtype 4.9, subtype 3.3, type 3.3, type conversion 4.6, type
mark 3.3.2

5.5 Loop Statements
1 A loop statement includes a sequence of statements that is to be executed

repeatedly, zero or more times.

2 loop_statement ::=
[loop_simple_name:]

[iteration_scheme] loop
sequence_of_statements

end loop [loop_simple_name];

iteration_scheme ::= while condition
| for loop_parameter_specification

loop_parameter_specification ::=
identifier in [reverse] discrete_range

3 If a loop statement has a loop simple name, this simple name must be given
both at the beginning and at the end.

4 A loop statement without an iteration scheme specifies repeated execution of
the sequence of statements. Execution of the loop statement is complete when
the loop is left as a consequence of the execution of an exit statement, or as a
consequence of some other transfer of control (see 5.1).

5 For a loop statement with a while iteration scheme, the condition is evaluated
before each execution of the sequence of statements; if the value of the
condition is TRUE, the sequence of statements is executed, if FALSE the
execution of the loop statement is complete.

5.5 Loop Statements 5–8

6 For a loop statement with a for iteration scheme, the loop parameter
specification is the declaration of the loop parameter with the given identifier.
The loop parameter is an object whose type is the base type of the discrete
range (see 3.6.1). Within the sequence of statements, the loop parameter is
a constant. Hence a loop parameter is not allowed as the (left-hand side)
variable of an assignment statement. Similarly the loop parameter must not
be given as an out or in out parameter of a procedure or entry call statement,
or as an in out parameter of a generic instantiation.4

7 For the execution of a loop statement with a for iteration scheme, the loop
parameter specification is first elaborated. This elaboration creates the loop
parameter and evaluates the discrete range.

8 If the discrete range is a null range, the execution of the loop statement is
complete. Otherwise, the sequence of statements is executed once for each
value of the discrete range (subject to the loop not being left as a consequence
of the execution of an exit statement or as a consequence of some other
transfer of control). Prior to each such iteration, the corresponding value of the
discrete range is assigned to the loop parameter. These values are assigned in
increasing order unless the reserved word reverse is present, in which case
the values are assigned in decreasing order.

9 Example of a loop statement without an iteration scheme:
loop

GET(CURRENT_CHARACTER);
exit when CURRENT_CHARACTER = ’*’;

end loop;

10 Example of a loop statement with a while iteration scheme:
while BID(N).PRICE < CUT_OFF.PRICE loop

RECORD_BID(BID(N).PRICE);
N := N + 1;

end loop;

11 Example of a loop statement with a for iteration scheme:
for J in BUFFER’RANGE loop -- legal even with a null range

if BUFFER(J) /= SPACE then
PUT(BUFFER(J));

end if;
end loop;

4 See also Appendix G, AI-00006.

5–9 Loop Statements 5.5

12 Example of a loop statement with a loop simple name:
SUMMATION:

while NEXT /= HEAD loop -- see 3.8
SUM := SUM + NEXT.VALUE;
NEXT := NEXT.SUCC;

end loop SUMMATION;

Notes:
13 The scope of a loop parameter extends from the loop parameter specification

to the end of the loop statement, and the visibility rules are such that a loop
parameter is only visible within the sequence of statements of the loop.

14 The discrete range of a for loop is evaluated just once. Use of the reserved
word reverse does not alter the discrete range, so that the following iteration
schemes are not equivalent; the first has a null range.

for J in reverse 1 .. 0
for J in 0 .. 1

15 Loop names are also used in exit statements, and in expanded names (in a
prefix of the loop parameter).

16 References: actual parameter 6.4.1, assignment statement 5.2, base type 3.3,
bound of a range 3.5, condition 5.3, constant 3.2.1, context of overload resolution
8.7, conversion 4.6, declaration 3.1, discrete range 3.6.1, elaboration 3.1, entry call
statement 9.5, evaluation 4.5, exit statement 5.7, expanded name 4.1.3, false boolean
value 3.5.3, generic actual parameter 12.3, generic instantiation 12.3, goto statement
5.9, identifier 2.3, integer type 3.5.4, null range 3.5, object 3.2.1, prefix 4.1, procedure
call 6.4, raising of exceptions 11, reserved word 2.9, return statement 5.8, scope 8.2,
sequence of statements 5.1, simple name 4.1, terminate alternative 9.7.1, true boolean
value 3.5.3 3.5.4, visibility 8.3

5.6 Block Statements
1 A block statement encloses a sequence of statements optionally preceded by a

declarative part and optionally followed by exception handlers.

2 block_statement ::=
[block_simple_name:]

[declare
declarative_part]

begin
sequence_of_statements

[exception
exception_handler
{exception_handler}]

end [block_simple_name];

5.6 Block Statements 5–10

3 If a block statement has a block simple name, this simple name must be given
both at the beginning and at the end.

4 The execution of a block statement consists of the elaboration of its declarative
part (if any) followed by the execution of the sequence of statements. If the
block statement has exception handlers, these service corresponding exceptions
that are raised during the execution of the sequence of statements (see 11.2).

5 Example:
SWAP:

declare
TEMP : INTEGER;

begin
TEMP := V; V := U; U := TEMP;

end SWAP;

Notes:
6 If task objects are declared within a block statement whose execution is

completed, the block statement is not left until all its dependent tasks are
terminated (see 9.4). This rule applies also to a completion caused by an exit,
return, or goto statement; or by the raising of an exception.

7 Within a block statement, the block name can be used in expanded names
denoting local entities such as SWAP.TEMP in the above example (see 4.1.3(f)).

8 References: declarative part 3.9, dependent task 9.4, exception handler 11.2, exit
statement 5.7, expanded name 4.1.3, goto statement 5.9, raising of exceptions 11,
return statement 5.8, sequence of statements 5.1, simple name 4.1, task object 9.2

5.7 Exit Statements
1 An exit statement is used to complete the execution of an enclosing loop

statement (called the loop in what follows); the completion is conditional if the
exit statement includes a condition.

2 exit_statement ::=

exit [loop_name] [when condition];5

3 An exit statement with a loop name is only allowed within the named loop,
and applies to that loop; an exit statement without a loop name is only allowed
within a loop, and applies to the innermost enclosing loop (whether named or
not). Furthermore, an exit statement that applies to a given loop must not
appear within a subprogram body, package body, task body, generic body, or
accept statement, if this construct is itself enclosed by the given loop.

5 See also Appendix G, AI-00210.

5–11 Exit Statements 5.7

4 For the execution of an exit statement, the condition, if present, is first
evaluated. Exit from the loop then takes place if the value is TRUE or if there
is no condition.

5 Examples:
for N in 1 .. MAX_NUM_ITEMS loop

GET_NEW_ITEM(NEW_ITEM);
MERGE_ITEM(NEW_ITEM, STORAGE_FILE);
exit when NEW_ITEM = TERMINAL_ITEM;

end loop;

MAIN_CYCLE:
loop

-- initial statements
exit MAIN_CYCLE when FOUND;
-- final statements

end loop MAIN_CYCLE;

Note:
6 Several nested loops can be exited by an exit statement that names the outer

loop.

7 References: accept statement 9.5, condition 5.3, evaluation 4.5, generic body 12.1,
loop name 5.5, loop statement 5.5, package body 7.1, subprogram body 6.3, true boolean
value 3.5.3

5.8 Return Statements
1 A return statement is used to complete the execution of the innermost

enclosing function, procedure, or accept statement.

2 return_statement ::= return [expression];

3 A return statement is only allowed within the body of a subprogram or generic
subprogram, or within an accept statement, and applies to the innermost
(enclosing) such construct; a return statement is not allowed within the body
of a task unit, package, or generic package enclosed by this construct (on
the other hand, it is allowed within a compound statement enclosed by this
construct and, in particular, in a block statement).

4 A return statement for an accept statement or for the body of a procedure or
generic procedure must not include an expression. A return statement for the
body of a function or generic function must include an expression.

5 The value of the expression defines the result returned by the function. The
type of this expression must be the base type of the type mark given after the
reserved word return in the specification of the function or generic function
(this type mark defines the result subtype).

5.8 Return Statements 5–12

6 For the execution of a return statement, the expression (if any) is first
evaluated and a check is made that the value belongs to the result subtype.
The execution of the return statement is thereby completed if the check
succeeds; so also is the execution of the subprogram or of the accept statement.
The exception CONSTRAINT_ERROR is raised at the place of the return
statement if the check fails.

7 Examples:
return; -- in a procedure
return KEY_VALUE(LAST_INDEX); -- in a function

Note:
8 If the expression is either a numeric literal or named number, or an attribute

that yields a result of type universal_integer or universal_real, then an implicit
conversion of the result is performed as described in section 4.6.

9 References: accept statement 9.5, attribute A, block statement 5.6, constraint_error
exception 11.1, expression 4.4, function body 6.3, function call 6.4, generic body 12.1,
implicit type conversion 4.6, named number 3.2, numeric literal 2.4, package body
7.1, procedure body 6.3, reserved word 2.9, result subtype 6.1, subprogram body 6.3,
subprogram specification 6.1, subtype 3.3, task body 9.1, type mark 3.3.2, universal_
integer type 3.5.4, universal_real type 3.5.6

5.9 Goto Statements
1 A goto statement specifies an explicit transfer of control from this statement to

a target statement named by a label.

2 goto_statement ::= goto label_name;

3 The innermost sequence of statements that encloses the target statement
must also enclose the goto statement (note that the goto statement can
be a statement of an inner sequence). Furthermore, if a goto statement is
enclosed by an accept statement or the body of a program unit, then the target
statement must not be outside this enclosing construct; conversely, it follows
from the previous rule that if the target statement is enclosed by such a
construct, then the goto statement cannot be outside.

4 The execution of a goto statement transfers control to the named target
statement.

Note:
5 The above rules allow transfer of control to a statement of an enclosing

sequence of statements but not the reverse. Similarly, they prohibit transfers
of control such as between alternatives of a case statement, if statement, or
select statement; between exception handlers; or from an exception handler of
a frame back to the sequence of statements of this frame.

5–13 Goto Statements 5.9

6 Example:
<<COMPARE>>

if A(I) < ELEMENT then
if LEFT(I) /= 0 then

I := LEFT(I);
goto COMPARE;

end if;
-- some statements

end if;

7 References: accept statement 9.5, block statement 5.6, case statement 5.4, compound
statement 5.1, exception handler 11.2, frame 11.2, generic body 12.1, if statement
5.3, label 5.1, package body 7.1, program unit 6, select statement 9.7, sequence of
statements 5.1, statement 5.1, subprogram body 6.3, task body 9.1, transfer of
control 5.1

5.9 Goto Statements 5–14

6
Subprograms

1 Subprograms are one of the four forms of program unit, of which programs can
be composed. The other forms are packages, task units, and generic units.

2 A subprogram is a program unit whose execution is invoked by a subprogram
call. There are two forms of subprogram: procedures and functions. A
procedure call is a statement; a function call is an expression and returns a
value. The definition of a subprogram can be given in two parts: a subprogram
declaration defining its calling conventions, and a subprogram body defining
its execution.

3 References: function 6.5, function call 6.4, generic unit 12, package 7, procedure 6.1,
procedure call 6.4, subprogram body 6.3, subprogram call 6.4, subprogram declaration
6.1, task unit 9

6.1 Subprogram Declarations
1 A subprogram declaration declares a procedure or a function, as indicated by

the initial reserved word.

2 subprogram_declaration ::= subprogram_specification;

subprogram_specification ::=
procedure identifier [formal_part]

| function designator [formal_part] return type_mark

designator ::= identifier | operator_symbol

operator_symbol ::= string_literal

formal_part ::=
(parameter_specification {; parameter_specification})

parameter_specification ::=
identifier_list : mode type_mark [:= expression]

mode ::= [in] | in out | out

6–1 Subprogram Declarations 6.1

3 The specification of a procedure specifies its identifier and its formal
parameters (if any). The specification of a function specifies its designator,
its formal parameters (if any) and the subtype of the returned value (the result
subtype). A designator that is an operator symbol is used for the overloading
of an operator. The sequence of characters represented by an operator symbol
must be an operator belonging to one of the six classes of overloadable
operators defined in section 4.5 (extra spaces are not allowed and the case of
letters is not significant).

4 A parameter specification with several identifiers is equivalent to a sequence
of single parameter specifications, as explained in section 3.2. Each single
parameter specification declares a formal parameter. If no mode is explicitly
given, the mode in is assumed. If a parameter specification ends with an
expression, the expression is the default expression of the formal parameter. A
default expression is only allowed in a parameter specification if the mode is in
(whether this mode is indicated explicitly or implicitly). The type of a default
expression must be that of the corresponding formal parameter.

5 The use of a name that denotes a formal parameter is not allowed in default
expressions of a formal part if the specification of the parameter is itself given
in this formal part.

6 The elaboration of a subprogram declaration elaborates the corresponding
formal part. The elaboration of a formal part has no other effect.

7 Examples of subprogram declarations:
procedure TRAVERSE_TREE;
procedure INCREMENT(X : in out INTEGER);
procedure RIGHT_INDENT(MARGIN : out LINE_SIZE); -- see 3.5.4
procedure SWITCH(FROM, TO : in out LINK); -- see 3.8.1

function RANDOM return PROBABILITY; -- see 3.5.7

function MIN_CELL(X : LINK) return CELL; -- see 3.8.1
function NEXT_FRAME(K : POSITIVE) return FRAME; -- see 3.8
function DOT_PRODUCT(LEFT,RIGHT: VECTOR) return REAL; -- see 3.6

function "*"(LEFT,RIGHT : MATRIX) return MATRIX; -- see 3.6

8 Examples of in parameters with default expressions:
procedure PRINT_HEADER(PAGES : in NATURAL;

HEADER : in LINE
:= (1 .. LINE’LAST => ’ ’); -- see 3.6

CENTER : in BOOLEAN
:= TRUE);

6.1 Subprogram Declarations 6–2

Notes:
9 The evaluation of default expressions is caused by certain subprogram calls,

as described in section 6.4.2 (default expressions are not evaluated during the
elaboration of the subprogram declaration).

10 All subprograms can be called recursively and are reentrant.

11 References: declaration 3.1, elaboration 3.9, evaluation 4.5, expression 4.4, formal
parameter 6.2, function 6.5, identifier 2.3, identifier list 3.2, mode 6.2, name 4.1,
elaboration has no other effect 3.9, operator 4.5, overloading 6.6 8.7, procedure 6,
string literal 2.6, subprogram call 6.4, type mark 3.3.2

6.2 Formal Parameter Modes
1 The value of an object is said to be read when this value is evaluated; it is also

said to be read when one of its subcomponents is read. The value of a variable
is said to be updated when an assignment is performed to the variable, and
also (indirectly) when the variable is used as actual parameter of a subprogram
call or entry call statement that updates its value; it is also said to be updated
when one of its subcomponents is updated.

2 A formal parameter of a subprogram has one of the three following modes:
3

in The formal parameter is a constant and permits only reading of the value
of the associated actual parameter.

4

in out The formal parameter is a variable and permits both reading and updating
of the value of the associated actual parameter.

5

out The formal parameter is a variable and permits updating of the value of
the associated actual parameter.

The value of a scalar parameter that is not updated by the call is undefined
upon return; the same holds for the value of a scalar subcomponent, other
than a discriminant. Reading the bounds and discriminants of the formal
parameter and of its subcomponents is allowed, but no other reading.

6 For a scalar parameter, the above effects are achieved by copy: at the start
of each call, if the mode is in or in out, the value of the actual parameter
is copied into the associated formal parameter; then after normal completion
of the subprogram body, if the mode is in out or out, the value of the
formal parameter is copied back into the associated actual parameter. For a
parameter whose type is an access type, copy-in is used for all three modes,
and copy-back for the modes in out and out.

6–3 Formal Parameter Modes 6.2

7 For a parameter whose type is an array, record, or task type, an
implementation may likewise achieve the above effects by copy, as for scalar
types. In addition, if copy is used for a parameter of mode out, then copy-in
is required at least for the bounds and discriminants of the actual parameter
and of its subcomponents, and also for each subcomponent whose type is
an access type. Alternatively, an implementation may achieve these effects
by reference, that is, by arranging that every use of the formal parameter
(to read or to update its value) be treated as a use of the associated actual
parameter, throughout the execution of the subprogram call. The language
does not define which of these two mechanisms is to be adopted for parameter
passing, nor whether different calls to the same subprogram are to use the
same mechanism. The execution of a program is erroneous if its effect depends
on which mechanism is selected by the implementation.

The DEC Ada run-time reference manuals describe the parameter passing
mechanisms used by DEC Ada on OpenVMS and Digital UNIX systems.

8 For a parameter whose type is a private type, the above effects are achieved
according to the rule that applies to the corresponding full type declaration.

9 Within the body of a subprogram, a formal parameter is subject to any
constraint resulting from the type mark given in its parameter specification.
For a formal parameter of an unconstrained array type, the bounds are
obtained from the actual parameter, and the formal parameter is constrained
by these bounds (see 3.6.1). For a formal parameter whose declaration specifies
an unconstrained (private or record) type with discriminants, the discriminants
of the formal parameter are initialized with the values of the corresponding
discriminants of the actual parameter; the formal parameter is unconstrained
if and only if the mode is in out or out and the variable name given for the
actual parameter denotes an unconstrained variable (see 3.7.1 and 6.4.1).

10 If the actual parameter of a subprogram call is a subcomponent that depends
on discriminants of an unconstrained record variable, then the execution of
the call is erroneous if the value of any of the discriminants of the variable is
changed by this execution; this rule does not apply if the mode is in and the
type of the subcomponent is a scalar type or an access type.

Notes:
11 For parameters of array and record types, the parameter passing rules have

these consequences:

12 • If the execution of a subprogram is abandoned as a result of an
exception, the final value of an actual parameter of such a type can
be either its value before the call or a value assigned to the formal
parameter during the execution of the subprogram.

6.2 Formal Parameter Modes 6–4

13 • If no actual parameter of such a type is accessible by more than
one path, then the effect of a subprogram call (unless abandoned)
is the same whether or not the implementation uses copying for
parameter passing. If, however, there are multiple access paths to
such a parameter (for example, if a global variable, or another formal
parameter, refers to the same actual parameter), then the value of the
formal is undefined after updating the actual other than by updating
the formal. A program using such an undefined value is erroneous.

14 The same parameter modes are defined for formal parameters of entries
(see 9.5) with the same meaning as for subprograms. Different parameter
modes are defined for generic formal parameters (see 12.1.1).

15 For all modes, if an actual parameter designates a task, the associated formal
parameter designates the same task; the same holds for a subcomponent of an
actual parameter and the corresponding subcomponent of the associated formal
parameter.

16 References: access type 3.8, actual parameter 6.4.1, array type 3.6, assignment 5.2,
bound of an array 3.6.1, constraint 3.3, depend on a discriminant 3.7.1, discriminant
3.7.1, entry call statement 9.5, erroneous 1.6, evaluation 4.5, exception 11, expression
4.4, formal parameter 6.1, generic formal parameter 12.1, global 8.1, mode 6.1, null
access value 3.8, object 3.2, parameter specification 6.1, private type 7.4, record
type 3.7, scalar type 3.5, subcomponent 3.3, subprogram body 6.3, subprogram call
statement 6.4, task 9, task type 9.2, type mark 3.3.2, unconstrained array type 3.6,
unconstrained type with discriminants 3.7.1, unconstrained variable 3.2.1,
variable 3.2.1

6.3 Subprogram Bodies
1 A subprogram body specifies the execution of a subprogram.

2 subprogram_body ::=
subprogram_specification is

[declarative_part]
begin

sequence_of_statements
[exception

exception_handler
{exception_handler}]

end [designator];

3 The declaration of a subprogram is optional. In the absence of such a
declaration, the subprogram specification of the subprogram body (or body
stub) acts as the declaration. For each subprogram declaration, there must be
a corresponding body (except for a subprogram written in another language,
as explained in section 13.9). If both a declaration and a body are given,

6–5 Subprogram Bodies 6.3

the subprogram specification of the body must conform to the subprogram
specification of the declaration (see section 6.3.1 for conformance rules).

4 If a designator appears at the end of a subprogram body, it must repeat the
designator of the subprogram specification.

5 The elaboration of a subprogram body has no other effect than to establish that
the body can from then on be used for the execution of calls of the subprogram.

6 The execution of a subprogram body is invoked by a subprogram call
(see 6.4). For this execution, after establishing the association between
formal parameters and actual parameters, the declarative part of the body is
elaborated, and the sequence of statements of the body is then executed. Upon
completion of the body, return is made to the caller (and any necessary copying
back of formal to actual parameters occurs (see 6.2)). The optional exception
handlers at the end of a subprogram body handle exceptions raised during the
execution of the sequence of statements of the subprogram body (see 11.4).

Note:
7 It follows from the visibility rules that if a subprogram declared in a package

is to be visible outside the package, a subprogram specification must be given
in the visible part of the package. The same rules dictate that a subprogram
declaration must be given if a call of the subprogram occurs textually before the
subprogram body (the declaration must then occur earlier than the call in the
program text). The rules given in sections 3.9 and 7.1 imply that a subprogram
declaration and the corresponding body must both occur immediately within
the same declarative region.

8 Example of subprogram body:
procedure PUSH(E : in ELEMENT_TYPE; S : in out STACK) is
begin

if S.INDEX = S.SIZE then
raise STACK_OVERFLOW;

else
S.INDEX := S.INDEX + 1;
S.SPACE(S.INDEX) := E;

end if;
end PUSH;

9 References: actual parameter 6.4.1, body stub 10.2, conform 6.3.1, declaration 3.1,
declarative part 3.9, declarative region 8.1, designator 6.1, elaboration 3.9, elaboration
has no other effect 3.1, exception 11, exception handler 11.2, formal parameter 6.1,
occur immediately within 8.1, package 7, sequence of statements 5.1, subprogram
6, subprogram call 6.4, subprogram declaration 6.1, subprogram specification 6.1,
visibility 8.3, visible part 7.2

6.3 Subprogram Bodies 6–6

6.3.1 Conformance Rules
1 Whenever the language rules require or allow the specification of a given

subprogram to be provided in more than one place, the following variations are
allowed at each place:

2 • A numeric literal can be replaced by a different numeric literal if and
only if both have the same value.

3 • A simple name can be replaced by an expanded name in which this
simple name is the selector, if and only if at both places the meaning of
the simple name is given by the same declaration.

4 • A string literal given as an operator symbol can be replaced by a dif-
ferent string literal if and only if both represent the same operator.1

5 Two subprogram specifications are said to conform if, apart from comments
and the above allowed variations, both specifications are formed by the same
sequence of lexical elements, and corresponding lexical elements are given the
same meaning by the visibility and overloading rules.2

6 Conformance is likewise defined for formal parts, discriminant parts, and type
marks (for deferred constants and for actual parameters that have the form of
a type conversion (see 6.4.1)).

Notes:
7 A simple name can be replaced by an expanded name even if the simple name

is itself the prefix of a selected component. For example, Q.R can be replaced
by P.Q.R if Q is declared immediately within P.

8 The following specifications do not conform since they are not formed by the
same sequence of lexical elements:

procedure P(X,Y : INTEGER)
procedure P(X : INTEGER; Y : INTEGER)
procedure P(X,Y : in INTEGER)

9 References: actual parameter 6.4 6.4.1, allow 1.6, comment 2.7, declaration 3.1,
deferred constant 7.4.3, direct visibility 8.3, discriminant part 3.7.1, expanded name
4.1.3, formal part 6.1, lexical element 2, name 4.1, numeric literal 2.4, operator symbol
6.1, overloading 6.6 8.7, prefix 4.1, selected component 4.1.3, selector 4.1.3, simple
name 4.1, subprogram specification 6.1, type conversion 4.6, visibility 8.3

1 See also Appendix G, AI-00493.
2 See also Appendix G, AI-00350.

6–7 Conformance Rules 6.3.1

6.3.2 Inline Expansion of Subprograms
1 The pragma INLINE is used to indicate that inline expansion of the

subprogram body is desired for every call of each of the named subprograms.
The form of this pragma is as follows:

2 pragma INLINE (name {, name});

Each name is either the name of a subprogram or the name of a generic
subprogram. The pragma INLINE is only allowed at the place of a declarative
item in a declarative part or package specification, or after a library unit in a
compilation, but before any subsequent compilation unit.

3 If the pragma appears at the place of a declarative item, each name must
denote a subprogram or a generic subprogram declared by an earlier
declarative item of the same declarative part or package specification. If
several (overloaded) subprograms satisfy this requirement, the pragma applies
to all of them. If the pragma appears after a given library unit, the only
name allowed is the name of this unit. If the name of a generic subprogram
is mentioned in the pragma, this indicates that inline expansion is desired for
calls of all subprograms obtained by instantiation of the named generic unit.3

In DEC Ada, the subprogram name must be an identifier or a string literal
that denotes an operator symbol.

Also, if the name specified by a pragma INLINE is declared by a renaming
declaration, the pragma INLINE applies to the subprogram only if the
declaration of the subprogram that has been renamed, the renaming
declaration, and the pragma all occur in the same declarative part or package
specification. The pragma is ignored if these conditions are not satisfied.

4 The meaning of a subprogram is not changed by the pragma INLINE. For each
call of the named subprograms, an implementation is free to follow or to ignore
the recommendation expressed by the pragma. (Note, in particular, that the
recommendation cannot generally be followed for a recursive subprogram.)

In DEC Ada, a call of a subprogram for which the pragma INLINE has been
specified is expanded inline provided that certain conditions are satisfied.
These conditions are given in the DEC Ada run-time reference manuals. The
same criteria apply to subprograms that result from instantiation of a generic
declaration for which a pragma INLINE was specified.

3 See also Appendix G, AI-00200 and AI-00242.

6.3.2 Inline Expansion of Subprograms 6–8

Notes:
The meaning of the subprogram name is determined as for any name
(see 8.3), except that the name can denote more than one subprogram. In the
following declaration, the pragma INLINE applies to the first two procedures.
It does not apply to the third because the declaration is not visible at the place
of the pragma:

procedure P (B: BOOLEAN);
procedure P (I: INTEGER);
pragma INLINE (P);
procedure P (F: FLOAT);

If a pragma INLINE and a pragma INTERFACE are used together, the pragma
INLINE is ignored regardless of the order in which the two pragmas appear.

Example of renaming:
package CHOOSE_R is

procedure P (X: INTEGER);
procedure P (X: FLOAT);

private
procedure R (X: FLOAT) renames P;
pragma INLINE(R); -- second procedure P will be expanded

-- inline when procedure R is called
end CHOOSE_R;

5 References: allow 1.6, compilation 10.1, compilation unit 10.1, declarative item 3.9,
declarative part 3.9, generic subprogram 12.1, generic unit 12 12.1, instantiation 12.3,
library unit 10.1, name 4.1, overloading 6.6 8.7, package specification 7.1, pragma 2.8,
subprogram 6, subprogram body 6.3, subprogram call 6.4

identifier 2.3, operator symbol 6.1, renaming declaration 8.5, string literal 2.6

6.4 Subprogram Calls
1 A subprogram call is either a procedure call statement or a function call; it

invokes the execution of the corresponding subprogram body. The call specifies
the association of the actual parameters, if any, with formal parameters of the
subprogram.

2 procedure_call_statement ::=
procedure_name [actual_parameter_part];

function_call ::=
function_name [actual_parameter_part]

actual_parameter_part ::=
(parameter_association {, parameter_association})

parameter_association ::=
[formal_parameter =>] actual_parameter

6–9 Subprogram Calls 6.4

formal_parameter ::= parameter_simple_name

actual_parameter ::=
expression | variable_name | type_mark(variable_name)

3 Each parameter association associates an actual parameter with a
corresponding formal parameter. A parameter association is said to be
named if the formal parameter is named explicitly; it is otherwise said to be
positional. For a positional association, the actual parameter corresponds to
the formal parameter with the same position in the formal part.

4 Named associations can be given in any order, but if both positional and named
associations are used in the same call, positional associations must occur first,
at their normal position. Hence once a named association is used, the rest of
the call must use only named associations.

5 For each formal parameter of a subprogram, a subprogram call must specify
exactly one corresponding actual parameter. This actual parameter is specified
either explicitly, by a parameter association, or, in the absence of such an
association, by a default expression (see 6.4.2).

6 The parameter associations of a subprogram call are evaluated in some order
that is not defined by the language. Similarly, the language rules do not define
in which order the values of in out or out parameters are copied back into the
corresponding actual parameters (when this is done).

7 Examples of procedure calls:
TRAVERSE_TREE; -- see 6.1
TABLE_MANAGER.INSERT(E); -- see 7.5
PRINT_HEADER(128, TITLE, TRUE); -- see 6.1

SWITCH(FROM => X, TO => NEXT); -- see 6.1

PRINT_HEADER(128,
HEADER => TITLE,
CENTER => TRUE); -- see 6.1

PRINT_HEADER(HEADER => TITLE,
CENTER => TRUE,
PAGES => 128); -- see 6.1

8 Examples of function calls:
DOT_PRODUCT(U, V) -- see 6.1 and 6.5
CLOCK -- see 9.6

9 References: default expression for a formal parameter 6.1, erroneous 1.6, expression
4.4, formal parameter 6.1, formal part 6.1, name 4.1, simple name 4.1, subprogram 6,
type mark 3.3.2, variable 3.2.1

6.4 Subprogram Calls 6–10

6.4.1 Parameter Associations
1 Each actual parameter must have the same type as the corresponding formal

parameter.

2 An actual parameter associated with a formal parameter of mode in must be
an expression; it is evaluated before the call.

3 An actual parameter associated with a formal parameter of mode in out or
out must be either the name of a variable, or of the form of a type conversion
whose argument is the name of a variable. In either case, for the mode in out,
the variable must not be a formal parameter of mode out or a subcomponent
thereof. For an actual parameter that has the form of a type conversion, the
type mark must conform (see 6.3.1) to the type mark of the formal parameter;
the allowed operand and target types are the same as for type conversions
(see 4.6).4

4 The variable name given for an actual parameter of mode in out or out is
evaluated before the call. If the actual parameter has the form of a type
conversion, then before the call, for a parameter of mode in out, the variable
is converted to the specified type; after (normal) completion of the subprogram
body, for a parameter of mode in out or out, the formal parameter is converted
back to the type of the variable. (The type specified in the conversion must be
that of the formal parameter.)5

5 The following constraint checks are performed for parameters of scalar and
access types:

6 • Before the call: for a parameter of mode in or in out, it is checked that
the value of the actual parameter belongs to the subtype of the formal
parameter.

7 • After (normal) completion of the subprogram body: for a parameter
of mode in out or out, it is checked that the value of the formal
parameter belongs to the subtype of the actual variable. In the case of
a type conversion, the value of the formal parameter is converted back
and the check applies to the result of the conversion.

8 In each of the above cases, the execution of the program is erroneous if the
checked value is undefined.

9 For other types, for all modes, a check is made before the call as for scalar and
access types; no check is made upon return.6

4 See also Appendix G, AI-00245.
5 See also Appendix G, AI-00024.
6 See also Appendix G, AI-00025 and AI-00396.

6–11 Parameter Associations 6.4.1

10 The exception CONSTRAINT_ERROR is raised at the place of the subprogram
call if either of these checks fails.

Note:
11 For array types and for types with discriminants, the check before the call is

sufficient (a check upon return would be redundant) if the type mark of the
formal parameter denotes a constrained subtype, since neither array bounds
nor discriminants can then vary.

12 If this type mark denotes an unconstrained array type, the formal parameter
is constrained with the bounds of the corresponding actual parameter and no
check (neither before the call nor upon return) is needed (see 3.6.1). Similarly,
no check is needed if the type mark denotes an unconstrained type with
discriminants, since the formal parameter is then constrained exactly as the
corresponding actual parameter (see 3.7.1).

13 References: actual parameter 6.4, array bound 3.6, array type 3.6, call of a
subprogram 6.4, conform 6.3.1, constrained subtype 3.3, constraint 3.3, constraint_error
exception 11.1, discriminant 3.7.1, erroneous 1.6, evaluation 4.5, evaluation of a name
4.1, expression 4.4, formal parameter 6.1, mode 6.1, name 4.1, parameter association
6.4, subtype 3.3, type 3.3, type conversion 4.6, type mark 3.3.2, unconstrained array
type 3.6, unconstrained type with discriminants 3.7.1, undefined value 3.2.1,
variable 3.2.1

6.4.2 Default Parameters
1 If a parameter specification includes a default expression for a parameter of

mode in, then corresponding subprogram calls need not include a parameter
association for the parameter. If a parameter association is thus omitted from
a call, then the rest of the call, following any initial positional associations,
must use only named associations.

2 For any omitted parameter association, the default expression is evaluated
before the call and the resulting value is used as an implicit actual parameter.

3 Examples of procedures with default values:
procedure ACTIVATE(PROCESS : in PROCESS_NAME;

AFTER : in PROCESS_NAME := NO_PROCESS;
WAIT : in DURATION := 0.0;
PRIOR : in BOOLEAN := FALSE);

procedure PAIR(LEFT, RIGHT : PERSON_NAME := new PERSON);

6.4.2 Default Parameters 6–12

4 Examples of their calls:
ACTIVATE(X);
ACTIVATE(X, AFTER => Y);
ACTIVATE(X, WAIT => 60.0, PRIOR => TRUE);
ACTIVATE(X, Y, 10.0, FALSE);

PAIR;
PAIR(LEFT => new PERSON, RIGHT => new PERSON);

Note:
5 If a default expression is used for two or more parameters in a multiple

parameter specification, the default expression is evaluated once for each
omitted parameter. Hence in the above examples, the two calls of PAIR are
equivalent.

6 References: actual parameter 6.4.1, default expression for a formal parameter 6.1,
evaluation 4.5, formal parameter 6.1, mode 6.1, named parameter association 6.4,
parameter association 6.4, parameter specification 6.1, positional parameter association
6.4, subprogram call 6.4

6.5 Function Subprograms
1 A function is a subprogram that returns a value (the result of the function

call). The specification of a function starts with the reserved word function,
and the parameters, if any, must have the mode in (whether this mode
is specified explicitly or implicitly). The statements of the function body
(excluding statements of program units that are inner to the function body)
must include one or more return statements specifying the returned value.

2 The exception PROGRAM_ERROR is raised if a function body is left otherwise
than by a return statement. This does not apply if the execution of the function
is abandoned as a result of an exception.

3 Example:
function DOT_PRODUCT(LEFT, RIGHT : VECTOR) return REAL is

SUM : REAL := 0.0;
begin

CHECK(LEFT’FIRST = RIGHT’FIRST and LEFT’LAST = RIGHT’LAST);
for J in LEFT’RANGE loop

SUM := SUM + LEFT(J)*RIGHT(J);
end loop;
return SUM;

end DOT_PRODUCT;

4 References: exception 11, formal parameter 6.1, function 6.1, function body 6.3,
function call 6.4, function specification 6.1, mode 6.1, program_error exception 11.1,
raising of exceptions 11, return statement 5.8, statement 5

6–13 Function Subprograms 6.5

6.6 Parameter and Result Type Profile—Overloading of
Subprograms

1 Two formal parts are said to have the same parameter type profile if and only
if they have the same number of parameters, and at each parameter position
corresponding parameters have the same base type. A subprogram or entry
has the same parameter and result type profile as another subprogram or entry
if and only if both have the same parameter type profile, and either both are
functions with the same result base type, or neither of the two is a function.

2 The same subprogram identifier or operator symbol can be used in several
subprogram specifications. The identifier or operator symbol is then said to be
overloaded; the subprograms that have this identifier or operator symbol are
also said to be overloaded and to overload each other. As explained in section
8.3, if two subprograms overload each other, one of them can hide the other
only if both subprograms have the same parameter and result type profile (see
section 8.3 for the other requirements that must be met for hiding).

3 A call to an overloaded subprogram is ambiguous (and therefore illegal) if the
name of the subprogram, the number of parameter associations, the types
and the order of the actual parameters, the names of the formal parameters
(if named associations are used), and the result type (for functions) are not
sufficient to determine exactly one (overloaded) subprogram specification.

4 Examples of overloaded subprograms:
procedure PUT(X : INTEGER);
procedure PUT(X : STRING);

procedure SET(TINT : COLOR);
procedure SET(SIGNAL : LIGHT);

5 Examples of calls:
PUT(28);
PUT("no possible ambiguity here");

SET(TINT => RED);
SET(SIGNAL => RED);
SET(COLOR’(RED));

-- SET(RED) would be ambiguous since RED may
-- denote a value either of type COLOR or of type LIGHT

6.6 Parameter and Result Type Profile—Overloading of Subprograms 6–14

Notes:
6 The notion of parameter and result type profile does not include parameter

names, parameter modes, parameter subtypes, default expressions and their
presence or absence.

7 Ambiguities may (but need not) arise when actual parameters of the call of an
overloaded subprogram are themselves overloaded function calls, literals, or
aggregates. Ambiguities may also (but need not) arise when several overloaded
subprograms belonging to different packages are visible. These ambiguities
can usually be resolved in several ways: qualified expressions can be used
for some or all actual parameters, and for the result, if any; the name of the
subprogram can be expressed more explicitly as an expanded name; finally, the
subprogram can be renamed.

8 References: actual parameter 6.4.1, aggregate 4.3, base type 3.3, default expression
for a formal parameter 6.1, entry 9.5, formal parameter 6.1, function 6.5, function
call 6.4, hiding 8.3, identifier 2.3, illegal 1.6, literal 4.2, mode 6.1, named parameter
association 6.4, operator symbol 6.1, overloading 8.7, package 7, parameter of a
subprogram 6.2, qualified expression 4.7, renaming declaration 8.5, result subtype 6.1,
subprogram 6, subprogram specification 6.1, subtype 3.3, type 3.3

6.7 Overloading of Operators
1 The declaration of a function whose designator is an operator symbol is used to

overload an operator. The sequence of characters of the operator symbol must
be either a logical, a relational, a binary adding, a unary adding, a multiplying,
or a highest precedence operator (see 4.5). Neither membership tests nor the
short-circuit control forms are allowed as function designators.

2 The subprogram specification of a unary operator must have a single
parameter. The subprogram specification of a binary operator must have
two parameters; for each use of this operator, the first parameter takes the left
operand as actual parameter, the second parameter takes the right operand.
Similarly, a generic function instantiation whose designator is an operator
symbol is only allowed if the specification of the generic function has the
corresponding number of parameters. Default expressions are not allowed
for the parameters of an operator (whether the operator is declared with an
explicit subprogram specification or by a generic instantiation).

3 For each of the operators ‘‘+’’ and ‘‘–’’, overloading is allowed both as a unary
and as a binary operator.

6–15 Overloading of Operators 6.7

4 The explicit declaration of a function that overloads the equality operator ‘‘=’’,
other than by a renaming declaration, is only allowed if both parameters are of
the same limited type. An overloading of equality must deliver a result of the
predefined type BOOLEAN; it also implicitly overloads the inequality operator
‘‘/=’’ so that this still gives the complementary result to the equality operator.
Explicit overloading of the inequality operator is not allowed.

5 A renaming declaration whose designator is the equality operator is only
allowed to rename another equality operator. (For example, such a renaming
declaration can be used when equality is visible by selection but not directly
visible.)

Note:
6 Overloading of relational operators does not affect basic comparisons such as

testing for membership in a range or the choices in a case statement.

7 Examples:
function "+" (LEFT, RIGHT : MATRIX) return MATRIX;
function "+" (LEFT, RIGHT : VECTOR) return VECTOR;

-- assuming that A, B, and C are of the type VECTOR
-- the three following assignments are equivalent

A := B + C;

A := "+"(B, C);
A := "+"(LEFT => B, RIGHT => C);

8 References: allow 1.6, actual parameter 6.4.1, binary adding operator 4.5 4.5.3,
boolean predefined type 3.5.3, character 2.1, complementary result 4.5.2, declaration
3.1, default expression for a formal parameter 6.1, designator 6.1, directly visible
8.3, equality operator 4.5, formal parameter 6.1, function declaration 6.1, highest
precedence operator 4.5 4.5.6, implicit declaration 3.1, inequality operator 4.5.2, limited
type 7.4.4, logical operator 4.5 4.5.1, membership test 4.5 4.5.2, multiplying operator
4.5 4.5.5, operator 4.5, operator symbol 6.1, overloading 6.6 8.7, relational operator 4.5
4.5.2, short-circuit control form 4.5 4.5.1, type definition 3.3.1, unary adding operator
4.5 4.5.4, visible by selection 8.3

6.7 Overloading of Operators 6–16

7
Packages

1 Packages are one of the four forms of program unit, of which programs can be
composed. The other forms are subprograms, task units, and generic units.

2 Packages allow the specification of groups of logically related entities. In their
simplest form packages specify pools of common object and type declarations.
More generally, packages can be used to specify groups of related entities
including also subprograms that can be called from outside the package, while
their inner workings remain concealed and protected from outside users.

3 References: generic unit 12, program unit 6, subprogram 6, task unit 9, type
declaration 3.3.1

7.1 Package Structure
1 A package is generally provided in two parts: a package specification and a

package body. Every package has a package specification, but not all packages
have a package body.

2 package_declaration ::= package_specification;

package_specification ::=
package identifier is
{basic_declarative_item}

[private
{basic_declarative_item}]

end [package_simple_name]

package_body ::=
package body package_simple_name is

[declarative_part]
[begin

sequence_of_statements
[exception

exception_handler
{exception_handler}]]

end [package_simple_name];

7–1 Package Structure 7.1

3 The simple name at the start of a package body must repeat the package
identifier. Similarly if a simple name appears at the end of the package
specification or body, it must repeat the package identifier.

4 If a subprogram declaration, a package declaration, a task declaration, or a
generic declaration is a declarative item of a given package specification, then
the body (if there is one) of the program unit declared by the declarative item
must itself be a declarative item of the declarative part of the body of the given
package.

Notes:
5 A simple form of package, specifying a pool of objects and types, does not

require a package body. One of the possible uses of the sequence of statements
of a package body is to initialize such objects. For each subprogram declaration
there must be a corresponding body (except for a subprogram written in
another language, as explained in section 13.9). If the body of a program
unit is a body stub, then a separately compiled subunit containing the
corresponding proper body is required for the program unit (see 10.2). A body
is not a basic declarative item and so cannot appear in a package specification.

6 A package declaration is either a library package (see 10.2) or a declarative
item declared within another program unit.

7 References: basic declarative item 3.9, body stub 10.2, declarative item 3.9,
declarative part 3.9, exception handler 11.2, generic body 12.2, generic declaration
12.1, identifier 2.3, library unit 10.1, object 3.2, package body 7.3, program unit 6,
proper body 3.9, sequence of statements 5.1, simple name 4.1, subprogram body 6.3,
subprogram declaration 6.1, subunit 10.2, task body 9.1, task declaration 9.1, type 3.3

7.2 Package Specifications and Declarations
1 The first list of declarative items of a package specification is called the visible

part of the package. The optional list of declarative items after the reserved
word private is called the private part of the package.

2 An entity declared in the private part of a package is not visible outside the
package itself (a name denoting such an entity is only possible within the
package). In contrast, expanded names denoting entities declared in the visible
part can be used even outside the package; furthermore, direct visibility of
such entities can be achieved by means of use clauses (see 4.1.3 and 8.4).

3 The elaboration of a package declaration consists of the elaboration of its basic
declarative items in the given order.

7.2 Package Specifications and Declarations 7–2

Notes:
4 The visible part of a package contains all the information that another program

unit is able to know about the package. A package consisting of only a package
specification (that is, without a package body) can be used to represent a group
of common constants or variables, or a common pool of objects and types, as in
the examples below.

5 Example of a package describing a group of common variables:
package PLOTTING_DATA is

PEN_UP : BOOLEAN;

CONVERSION_FACTOR,
X_OFFSET, Y_OFFSET,
X_MIN, Y_MIN,
X_MAX, Y_MAX: REAL; -- see 3.5.7

X_VALUE : array (1 .. 500) of REAL;
Y_VALUE : array (1 .. 500) of REAL;

end PLOTTING_DATA;

6 Example of a package describing a common pool of objects and types:
package WORK_DATA is

type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);
type HOURS_SPENT is delta 0.25 range 0.0 .. 24.0;
type TIME_TABLE is array (DAY) of HOURS_SPENT;

WORK_HOURS : TIME_TABLE;
NORMAL_HOURS : constant TIME_TABLE := (MON .. THU => 8.25,

FRI => 7.0,
SAT | SUN => 0.0);

end WORK_DATA;

7 References: basic declarative item 3.9, constant 3.2.1, declarative item 3.9, direct
visibility 8.3, elaboration 3.9, expanded name 4.1.3, name 4.1, number declaration
3.2.2, object declaration 3.2.1, package 7, package declaration 7.1, package identifier
7.1, package specification 7.1, scope 8.2, simple name 4.1, type declaration 3.3.1, use
clause 8.4, variable 3.2.1

7.3 Package Bodies
1 In contrast to the entities declared in the visible part of a package specification,

the entities declared in the package body are only visible within the package
body itself. As a consequence, a package with a package body can be used
for the construction of a group of related subprograms (a package in the
usual sense), in which the logical operations available to the users are clearly
isolated from the internal entities.

7–3 Package Bodies 7.3

2 For the elaboration of a package body, its declarative part is first elaborated,
and its sequence of statements (if any) is then executed. The optional exception
handlers at the end of a package body service exceptions raised during the
execution of the sequence of statements of the package body.

Notes:
3 A variable declared in the body of a package is only visible within this body

and, consequently, its value can only be changed within the package body. In
the absence of local tasks, the value of such a variable remains unchanged
between calls issued from outside the package to subprograms declared in the
visible part. The properties of such a variable are similar to those of an ‘‘own’’
variable of Algol 60.

4 The elaboration of the body of a subprogram declared in the visible part of
a package is caused by the elaboration of the body of the package. Hence
a call of such a subprogram by an outside program unit raises the exception
PROGRAM_ERROR if the call takes place before the elaboration of the package
body (see 3.9).

5 Example of a package:
package RATIONAL_NUMBERS is

type RATIONAL is
record

NUMERATOR : INTEGER;
DENOMINATOR : POSITIVE;

end record;

function EQUAL(X,Y : RATIONAL) return BOOLEAN;

function "/" (X,Y : INTEGER) return RATIONAL;
-- to construct a rational number

function "+" (X,Y : RATIONAL) return RATIONAL;
function "-" (X,Y : RATIONAL) return RATIONAL;
function "*" (X,Y : RATIONAL) return RATIONAL;
function "/" (X,Y : RATIONAL) return RATIONAL;

end;

package body RATIONAL_NUMBERS is

procedure SAME_DENOMINATOR (X,Y : in out RATIONAL) is
begin

-- reduces X and Y to the same denominator:
...

end;

7.3 Package Bodies 7–4

function EQUAL(X,Y : RATIONAL) return BOOLEAN is
U,V : RATIONAL;

begin
U := X;
V := Y;
SAME_DENOMINATOR (U,V);
return U.NUMERATOR = V.NUMERATOR;

end EQUAL;

function "/" (X,Y : INTEGER) return RATIONAL is
begin

if Y > 0 then
return (NUMERATOR => X, DENOMINATOR => Y);

else
return (NUMERATOR => -X, DENOMINATOR => -Y);

end if;
end "/";

function "+" (X,Y : RATIONAL) return RATIONAL is ... end "+";
function "-" (X,Y : RATIONAL) return RATIONAL is ... end "-";
function "*" (X,Y : RATIONAL) return RATIONAL is ... end "*";
function "/" (X,Y : RATIONAL) return RATIONAL is ... end "/";

end RATIONAL_NUMBERS;

6 References: declaration 3.1, declarative part 3.9, elaboration 3.1 3.9, exception 11,
exception handler 11.2, name 4.1, package specification 7.1, program unit 6, program_
error exception 11.1, sequence of statements 5.1, subprogram 6, variable 3.2.1, visible
part 7.2

7.4 Private Type and Deferred Constant Declarations
1 The declaration of a type as a private type in the visible part of a package

serves to separate the characteristics that can be used directly by outside
program units (that is, the logical properties) from other characteristics whose
direct use is confined to the package (the details of the definition of the type
itself). Deferred constant declarations declare constants of private types.

2 private_type_declaration ::=
type identifier [discriminant_part] is [limited] private;

deferred_constant_declaration ::=
identifier_list : constant type_mark;

3 A private type declaration is only allowed as a declarative item of the visible
part of a package, or as the generic parameter declaration for a generic formal
type in a generic formal part.

7–5 Private Type and Deferred Constant Declarations 7.4

4 The type mark of a deferred constant declaration must denote a private type or
a subtype of a private type; a deferred constant declaration and the declaration
of the corresponding private type must both be declarative items of the visible
part of the same package. A deferred constant declaration with several
identifiers is equivalent to a sequence of single deferred constant declarations
as explained in section 3.2.

5 Examples of private type declarations:
type KEY is private;
type FILE_NAME is limited private;

6 Example of deferred constant declaration:
NULL_KEY : constant KEY;

7 References: constant 3.2.1, declaration 3.1, declarative item 3.9, deferred constant
7.4.3, discriminant part 3.7.1, generic formal part 12.1, generic formal type 12.1,
generic parameter declaration 12.1, identifier 2.3, identifier list 3.2, limited type 7.4.4,
package 7, private type 7.4.1, program unit 6, subtype 3.3, type 3.3, type mark 3.3.2,
visible part 7.2

7.4.1 Private Types
1 If a private type declaration is given in the visible part of a package, then

a corresponding declaration of a type with the same identifier must appear
as a declarative item of the private part of the package. The corresponding
declaration must be either a full type declaration or the declaration of a task
type. In the rest of this section explanations are given in terms of full type
declarations; the same rules apply also to declarations of task types.

2 A private type declaration and the corresponding full type declaration define a
single type. The private type declaration, together with the visible part, define
the operations that are available to outside program units (see section 7.4.2
on the operations that are available for private types). On the other hand, the
full type declaration defines other operations whose direct use is only possible
within the package itself.

3 If the private type declaration includes a discriminant part, the full declaration
must include a discriminant part that conforms (see 6.3.1 for the conformance
rules) and its type definition must be a record type definition. Conversely, if the
private type declaration does not include a discriminant part, the type declared
by the full type declaration (the full type) must not be an unconstrained type
with discriminants. The full type must not be an unconstrained array type. A
limited type (in particular a task type) is allowed for the full type only if the
reserved word limited appears in the private type declaration (see 7.4.4).1

1 See also Appendix G, AI-00232.

7.4.1 Private Types 7–6

4 Within the specification of the package that declares a private type and before
the end of the corresponding full type declaration, a restriction applies to the
use of a name that denotes the private type or a subtype of the private type
and, likewise, to the use of a name that denotes any type or subtype that has
a subcomponent of the private type. The only allowed occurrences of such a
name are in a deferred constant declaration, a type or subtype declaration, a
subprogram specification, or an entry declaration; moreover, occurrences within
derived type definitions or within simple expressions are not allowed.2

5 The elaboration of a private type declaration creates a private type. If the
private type declaration has a discriminant part, this elaboration includes
that of the discriminant part. The elaboration of the full type declaration
consists of the elaboration of the type definition; the discriminant part, if any,
is not elaborated (since the conforming discriminant part of the private type
declaration has already been elaborated).

Notes:
6 It follows from the given rules that neither the declaration of a variable of

a private type, nor the creation by an allocator of an object of the private
type are allowed before the full declaration of the type. Similarly before the
full declaration, the name of the private type cannot be used in a generic
instantiation or in a representation clause.

7 References: allocator 4.8, array type 3.6, conform 6.3.1, declarative item 3.9, deferred
constant declaration 7.4.3, derived type 3.4, discriminant part 3.7.1, elaboration 3.9,
entry declaration 9.5, expression 4.4, full type declaration 3.3.1, generic instantiation
12.3, identifier 2.3, incomplete type declaration 3.8.1, limited type 7.4.4, name 4.1,
operation 3.3, package 7, package specification 7.1, private part 7.2, private type
7.4, private type declaration 7.4, record type definition 3.7, representation clause
13.1, reserved word 2.9, subcomponent 3.3, subprogram specification 6.1, subtype
3.3, subtype declaration 3.3.2, type 3.3, type declaration 3.3.1, type definition 3.3.1,
unconstrained array type 3.6, variable 3.2.1, visible part 7.2

7.4.2 Operations of a Private Type
1 The operations that are implicitly declared by a private type declaration

include basic operations. These are the operations involved in assignment
(unless the reserved word limited appears in the declaration), membership
tests, selected components for the selection of any discriminant, qualification,
and explicit conversions.

2 See also Appendix G, AI-00039, AI-00153, and AI-00384.

7–7 Operations of a Private Type 7.4.2

2 For a private type T, the basic operations also include the attributes T’BASE
(see 3.3.3) and T’SIZE (see 13.7.2). For an object A of a private type, the
basic operations include the attribute A’CONSTRAINED if the private type
has discriminants (see 3.7.4), and in any case, the attributes A’SIZE and
A’ADDRESS (see 13.7.2).

3 Finally, the operations implicitly declared by a private type declaration include
the predefined comparison for equality and inequality unless the reserved word
limited appears in the private type declaration.

4 The above operations, together with subprograms that have a parameter
or result of the private type and that are declared in the visible part of the
package, are the only operations from the package that are available outside
the package for the private type.

5 Within the package that declares the private type, the additional operations
implicitly declared by the full type declaration are also available. However,
the redefinition of these implicitly declared operations is allowed within the
same declarative region, including between the private type declaration and
the corresponding full declaration. An explicitly declared subprogram hides
an implicitly declared operation that has the same parameter and result type
profile (this is only possible if the implicitly declared operation is a derived
subprogram or a predefined operator).

6 If a composite type has subcomponents of a private type and is declared
outside the package that declares the private type, then the operations that
are implicitly declared by the declaration of the composite type include all
operations that only depend on the characteristics that result from the private
type declaration alone. (For example the operator < is not included for a
one-dimensional array type.)

7 If the composite type is itself declared within the package that declares the
private type (including within an inner package or generic package), then
additional operations that depend on the characteristics of the full type are
implicitly declared, as required by the rules applicable to the composite type
(for example the operator < is declared for a one-dimensional array type if the
full type is discrete). These additional operations are implicitly declared at the
earliest place within the immediate scope of the composite type and after the
full type declaration.3

8 The same rules apply to the operations that are implicitly declared for an
access type whose designated type is a private type or a type declared by an
incomplete type declaration.4

3 See also Appendix G, AI-00139 and AI-00154.
4 See also Appendix G, AI-00154.

7.4.2 Operations of a Private Type 7–8

9 For every private type or subtype T the following attribute is defined:5

10 T’CONSTRAINED Yields the value FALSE if T denotes an unconstrained
nonformal private type with discriminants; also
yields the value FALSE if T denotes a generic formal
private type, and the associated actual subtype is
either an unconstrained type with discriminants
or an unconstrained array type; yields the value
TRUE otherwise. The value of this attribute is of the
predefined type BOOLEAN.

Note:
11 A private type declaration and the corresponding full type declaration define

two different views of one and the same type. Outside of the defining package
the characteristics of the type are those defined by the visible part. Within
these outside program units the type is just a private type and any language
rule that applies only to another class of types does not apply. The fact that the
full declaration might implement the private type with a type of a particular
class (for example, as an array type) is only relevant within the package itself.

12 The consequences of this actual implementation are, however, valid
everywhere. For example: any default initialization of components takes
place; the attribute SIZE provides the size of the full type; task dependence
rules still apply to components that are task objects.

13 Example:
package KEY_MANAGER is

type KEY is private;
NULL_KEY : constant KEY;
procedure GET_KEY(K : out KEY);
function "<" (X, Y : KEY) return BOOLEAN;

private
type KEY is new NATURAL;
NULL_KEY : constant KEY := 0;

end;

package body KEY_MANAGER is
LAST_KEY : KEY := 0;
procedure GET_KEY(K : out KEY) is
begin

LAST_KEY := LAST_KEY + 1;
K := LAST_KEY;

end GET_KEY;

5 See also Appendix G, AI-00026.

7–9 Operations of a Private Type 7.4.2

function "<" (X, Y : KEY) return BOOLEAN is
begin

return INTEGER(X) < INTEGER(Y);
end "<";

end KEY_MANAGER;

Notes on the example:
14 Outside of the package KEY_MANAGER, the operations available for objects

of type KEY include assignment, the comparison for equality or inequality, the
procedure GET_KEY and the operator ‘‘<’’; they do not include other relational
operators such as ‘‘>=’’, or arithmetic operators.

15 The explicitly declared operator ‘‘<’’ hides the predefined operator ‘‘<’’ implicitly
declared by the full type declaration. Within the body of the function, an
explicit conversion of X and Y to the type INTEGER is necessary to invoke
the ‘‘<’’ operator of this type. Alternatively, the result of the function could be
written as not (X >= Y), since the operator ‘‘>=’’ is not redefined.

16 The value of the variable LAST_KEY, declared in the package body, remains
unchanged between calls of the procedure GET_KEY. (See also the Notes of
section 7.3.)

17 References: assignment 5.2, attribute 4.1.4, basic operation 3.3.3, component 3.3,
composite type 3.3, conversion 4.6, declaration 3.1, declarative region 8.1, derived
subprogram 3.4, derived type 3.4, dimension 3.6, discriminant 3.3, equality 4.5.2,
full type 7.4.1, full type declaration 3.3.1, hiding 8.3, immediate scope 8.2, implicit
declaration 3.1, incomplete type declaration 3.8.1, membership test 4.5, operation 3.3,
package 7, parameter of a subprogram 6.2, predefined function 8.6, predefined operator
4.5, private type 7.4, private type declaration 7.4, program unit 6, qualification 4.7,
relational operator 4.5, selected component 4.1.3, subprogram 6, task dependence 9.4,
visible part 7.2

7.4.3 Deferred Constants
1 If a deferred constant declaration is given in the visible part of a package

then a constant declaration (that is, an object declaration declaring a constant
object, with an explicit initialization) with the same identifier must appear as
a declarative item of the private part of the package. This object declaration is
called the full declaration of the deferred constant. The type mark given in the
full declaration must conform to that given in the deferred constant declaration
(see 6.3.1). Multiple or single declarations are allowed for the deferred and the
full declarations, provided that the equivalent single declarations conform.

2 Within the specification of the package that declares a deferred constant
and before the end of the corresponding full declaration, the use of a name
that denotes the deferred constant is only allowed in the default expression
for a record component or for a formal parameter (not for a generic formal
parameter).

7.4.3 Deferred Constants 7–10

3 The elaboration of a deferred constant declaration has no other effect.

4 The execution of a program is erroneous if it attempts to use the value of a
deferred constant before the elaboration of the corresponding full declaration.6

Note:
5 The full declaration for a deferred constant that has a given private type

must not appear before the corresponding full type declaration. This is a
consequence of the rules defining the allowed uses of a name that denotes a
private type (see 7.4.1).

6 References: conform 6.3.1, constant declaration 3.2.1, declarative item 3.9, default
expression for a discriminant 3.7.1, deferred constant 7.4, deferred constant declaration
7.4, elaboration has no other effect 3.1, formal parameter 6.1, generic formal parameter
12.1 12.3, identifier 2.3, object declaration 3.2.1, package 7, package specification 7.1,
private part 7.2, record component 3.7, type mark 3.3.2, visible part 7.2

7.4.4 Limited Types
1 A limited type is a type for which neither assignment nor the predefined

comparison for equality and inequality is implicitly declared.

2 A private type declaration that includes the reserved word limited declares a
limited type. A task type is a limited type. A type derived from a limited type
is itself a limited type. Finally, a composite type is limited if the type of any of
its subcomponents is limited.

3 The operations available for a private type that is limited are as given in
section 7.4.2 for private types except for the absence of assignment and of a
predefined comparison for equality and inequality.

4 For a formal parameter whose type is limited and whose declaration occurs
in an explicit subprogram declaration, the mode out is only allowed if this
type is private and the subprogram declaration occurs within the visible part
of the package that declares the private type. The same holds for formal
parameters of entry declarations and of generic procedure declarations. The
corresponding full type must not be limited if the mode out is used for any
such formal parameter. Otherwise, the corresponding full type is allowed (but
not required) to be a limited type (in particular, it is allowed to be a task type).
If the full type corresponding to a limited private type is not itself limited, then
assignment for the type is available within the package, but not outside.7

5 The following are consequences of the rules for limited types:

6 See also Appendix G, AI-00155.
7 See also Appendix G, AI-00260.

7–11 Limited Types 7.4.4

6 • An explicit initialization is not allowed in an object declaration if the
type of the object is limited.

7 • A default expression is not allowed in a component declaration if the
type of the record component is limited.

8 • An explicit initial value is not allowed in an allocator if the designated
type is limited.

9 • A generic formal parameter of mode in must not be of a limited type.

Notes:
10 The above rules do not exclude a default expression for a formal parameter

of a limited type; they do not exclude a deferred constant of a limited type if
the full type is not limited. An explicit declaration of an equality operator is
allowed for a limited type (see 6.7).

11 Aggregates are not available for a limited composite type (see 3.6.2 and 3.7.4).
Catenation is not available for a limited array type (see 3.6.2).

12 Example:
package I_O_PACKAGE is

type FILE_NAME is limited private;

procedure OPEN (F : in out FILE_NAME);
procedure CLOSE(F : in out FILE_NAME);
procedure READ (F : in FILE_NAME; ITEM : out INTEGER);
procedure WRITE(F : in FILE_NAME; ITEM : in INTEGER);

private
type FILE_NAME is

record
INTERNAL_NAME : INTEGER := 0;

end record;
end I_O_PACKAGE;

package body I_O_PACKAGE is
LIMIT : constant := 200;
type FILE_DESCRIPTOR is record ... end record;
DIRECTORY : array (1 .. LIMIT) of FILE_DESCRIPTOR;
...
procedure OPEN (F : in out FILE_NAME) is ... end;
procedure CLOSE(F : in out FILE_NAME) is ... end;
procedure READ (F : in FILE_NAME;

ITEM : out INTEGER) is ... end;
procedure WRITE(F : in FILE_NAME;

ITEM : in INTEGER) is ... end;
begin

...
end I_O_PACKAGE;

7.4.4 Limited Types 7–12

Notes on the example:
13 In the example above, an outside subprogram making use of I_O_PACKAGE

may obtain a file name by calling OPEN and later use it in calls to READ
and WRITE. Thus, outside the package, a file name obtained from OPEN acts
as a kind of password; its internal properties (such as containing a numeric
value) are not known and no other operations (such as addition or comparison
of internal names) can be performed on a file name.

14 This example is characteristic of any case where complete control over the
operations of a type is desired. Such packages serve a dual purpose. They
prevent a user from making use of the internal structure of the type. They also
implement the notion of an encapsulated data type where the only operations
on the type are those given in the package specification.

15 References: aggregate 4.3, allocator 4.8, assignment 5.2, catenation operator 4.5,
component declaration 3.7, component type 3.3, composite type 3.3, default expression
for a discriminant 3.7, deferred constant 7.4.3, derived type 3.4, designate 3.8,
discriminant specification 3.7.1, equality 4.5.2, formal parameter 6.1, full type 7.4.1,
full type declaration 3.3.1, generic formal parameter 12.1 12.3, implicit declaration 3.1,
initial value 3.2.1, mode 12.1.1, object 3.2, operation 3.3, package 7, predefined operator
4.5, private type 7.4, private type declaration 7.4, record component 3.7, record type
3.7, relational operator 4.5, subcomponent 3.3, subprogram 6, task type 9.1 9.2,
type 3.3

7.5 Example of a Table Management Package
1 The following example illustrates the use of packages in providing high level

procedures with a simple interface to the user.

2 The problem is to define a table management package for inserting and
retrieving items. The items are inserted into the table as they are supplied.
Each inserted item has an order number. The items are retrieved according to
their order number, where the item with the lowest order number is retrieved
first.

3 From the user’s point of view, the package is quite simple. There is a type
called ITEM designating table items, a procedure INSERT for inserting items,
and a procedure RETRIEVE for obtaining the item with the lowest order
number. There is a special item NULL_ITEM that is returned when the table
is empty, and an exception TABLE_FULL which is raised by INSERT if the
table is already full.

7–13 Example of a Table Management Package 7.5

4 A sketch of such a package is given below. Only the specification of the package
is exposed to the user.

5 package TABLE_MANAGER is

type ITEM is
record

ORDER_NUM : INTEGER;
ITEM_CODE : INTEGER;
QUANTITY : INTEGER;
ITEM_TYPE : CHARACTER;

end record;

NULL_ITEM : constant ITEM :=
(ORDER_NUM | ITEM_CODE | QUANTITY => 0, ITEM_TYPE => ’ ’);

procedure INSERT (NEW_ITEM : in ITEM);
procedure RETRIEVE(FIRST_ITEM : out ITEM);

TABLE_FULL : exception; -- raised by INSERT when table full
end;

6 The details of implementing such packages can be quite complex; in this case
they involve a two-way linked table of internal items. A local housekeeping
procedure EXCHANGE is used to move an internal item between the busy and
the free lists. The initial table linkages are established by the initialization
part. The package body need not be shown to the users of the package.

7 package body TABLE_MANAGER is
SIZE : constant := 2000;
subtype INDEX is INTEGER range 0 .. SIZE;

type INTERNAL_ITEM is
record

CONTENT : ITEM;
SUCC : INDEX;
PRED : INDEX;

end record;

TABLE : array (INDEX) of INTERNAL_ITEM;
FIRST_BUSY_ITEM : INDEX := 0;
FIRST_FREE_ITEM : INDEX := 1;

function FREE_LIST_EMPTY return BOOLEAN is ... end;
function BUSY_LIST_EMPTY return BOOLEAN is ... end;
procedure EXCHANGE (FROM : in INDEX;

TO : in INDEX) is ... end;

7.5 Example of a Table Management Package 7–14

procedure INSERT (NEW_ITEM : in ITEM) is
begin

if FREE_LIST_EMPTY then
raise TABLE_FULL;

end if;
-- remaining code for INSERT

end INSERT;

procedure RETRIEVE (FIRST_ITEM : out ITEM) is ... end;

begin
-- initialization of the table linkages

end TABLE_MANAGER;

7.6 Example of a Text Handling Package
1 This example illustrates a simple text handling package. The users only have

access to the visible part; the implementation is hidden from them in the
private part and the package body (not shown).

2 From a user’s point of view, a TEXT is a variable-length string. Each text
object has a maximum length, which must be given when the object is
declared, and a current value, which is a string of some length between
zero and the maximum. The maximum possible length of a text object is an
implementation-defined constant.

3 The package defines first the necessary types, then functions that return some
characteristics of objects of the type, then the conversion functions between
texts and the predefined CHARACTER and STRING types, and finally some of
the standard operations on varying strings. Most operations are overloaded on
strings and characters as well as on the type TEXT, in order to minimize the
number of explicit conversions the user has to write.

4 package TEXT_HANDLER is
MAXIMUM : constant := SOME_VALUE; -- implementation-defined
subtype INDEX is INTEGER range 0 .. MAXIMUM;

type TEXT(MAXIMUM_LENGTH : INDEX) is limited private;

function LENGTH (T : TEXT) return INDEX;
function VALUE (T : TEXT) return STRING;
function EMPTY (T : TEXT) return BOOLEAN;

function TO_TEXT (S : STRING;
MAX : INDEX) return TEXT;
-- maximum length MAX

function TO_TEXT (C : CHARACTER;
MAX : INDEX) return TEXT;

function TO_TEXT (S : STRING) return TEXT;
-- maximum length S’LENGTH

function TO_TEXT (C : CHARACTER) return TEXT;

7–15 Example of a Text Handling Package 7.6

function "&" (LEFT : TEXT;
RIGHT : TEXT) return TEXT;

function "&" (LEFT : TEXT;
RIGHT : STRING) return TEXT;

function "&" (LEFT : STRING;
RIGHT : TEXT) return TEXT;

function "&" (LEFT : TEXT;
RIGHT : CHARACTER) return TEXT;

function "&" (LEFT : CHARACTER;
RIGHT : TEXT) return TEXT;

function "=" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN;
function "<" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN;
function "<=" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN;
function ">" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN;
function ">=" (LEFT : TEXT; RIGHT : TEXT) return BOOLEAN;

procedure SET (OBJECT : in out TEXT; VALUE : in TEXT);
procedure SET (OBJECT : in out TEXT; VALUE : in STRING);
procedure SET (OBJECT : in out TEXT; VALUE : in CHARACTER);

procedure APPEND (TAIL : in TEXT; TO : in out TEXT);
procedure APPEND (TAIL : in STRING; TO : in out TEXT);
procedure APPEND (TAIL : in CHARACTER; TO : in out TEXT);

procedure AMEND (OBJECT : in out TEXT; BY : in TEXT;
POSITION : in INDEX);

procedure AMEND (OBJECT : in out TEXT; BY : in STRING;
POSITION : in INDEX);

procedure AMEND (OBJECT : in out TEXT; BY : in CHARACTER;
POSITION : in INDEX);

-- amend replaces part of the object by the given
-- text, string, or character
-- starting at the given position in the object

function LOCATE (FRAGMENT : TEXT;
WITHIN : TEXT) return INDEX;

function LOCATE (FRAGMENT : STRING;
WITHIN : TEXT) return INDEX;

function LOCATE (FRAGMENT : CHARACTER;
WITHIN : TEXT) return INDEX;

-- all return 0 if the fragment is not located

private
type TEXT(MAXIMUM_LENGTH : INDEX) is

record
POS : INDEX := 0;
VALUE : STRING(1 .. MAXIMUM_LENGTH);

end record;
end TEXT_HANDLER;

7.6 Example of a Text Handling Package 7–16

5 Example of use of the text handling package:
6 A program opens an output file, whose name is supplied by the string NAME.

This string has the form

[DEVICE :] [FILENAME [.EXTENSION]]

7 There are standard defaults for device, filename, and extension. The user-
supplied name is passed to EXPAND_FILE_NAME as a parameter, and the
result is the expanded version, with any necessary defaults added.

8 function EXPAND_FILE_NAME (NAME : STRING) return STRING is
use TEXT_HANDLER;

DEFAULT_DEVICE : constant STRING := "SY:";
DEFAULT_FILE_NAME : constant STRING := "RESULTS";
DEFAULT_EXTENSION : constant STRING := ".DAT";

MAXIMUM_FILE_NAME_LENGTH :
constant INDEX := SOME_APPROPRIATE_VALUE;

FILE_NAME : TEXT(MAXIMUM_FILE_NAME_LENGTH);

begin

SET(FILE_NAME, NAME);

if EMPTY(FILE_NAME) then
SET(FILE_NAME, DEFAULT_FILE_NAME);

end if;

if LOCATE(’:’, FILE_NAME) = 0 then
SET(FILE_NAME, DEFAULT_DEVICE & FILE_NAME);

end if;

if LOCATE(’.’, FILE_NAME) = 0 then
APPEND(DEFAULT_EXTENSION, TO => FILE_NAME);

end if;

return VALUE(FILE_NAME);

end EXPAND_FILE_NAME;

7–17 Example of a Text Handling Package 7.6

8
Visibility Rules

1 The rules defining the scope of declarations and the rules defining which
identifiers are visible at various points in the text of the program are described
in this chapter. The formulation of these rules uses the notion of a declarative
region.

2 References: declaration 3.1, declarative region 8.1, identifier 2.3, scope 8.2,
visibility 8.3

8.1 Declarative Region
1 A declarative region is a portion of the program text. A single declarative

region is formed by the text of each of the following:

2 • A subprogram declaration, a package declaration, a task declaration,
or a generic declaration, together with the corresponding body, if any.
If the body is a body stub, the declarative region also includes the
corresponding subunit. If the program unit has subunits, they are also
included.

3 • An entry declaration together with the corresponding accept
statements.

4 • A record type declaration, together with a corresponding private or
incomplete type declaration if any, and together with a corresponding
record representation clause if any.

5 • A renaming declaration that includes a formal part, or a generic
parameter declaration that includes either a formal part or a
discriminant part.

6 • A block statement or a loop statement.

7 In each of the above cases, the declarative region is said to be associated with
the corresponding declaration or statement. A declaration is said to occur
immediately within a declarative region if this region is the innermost region
that encloses the declaration, not counting the declarative region (if any)
associated with the declaration itself.

8–1 Declarative Region 8.1

8 A declaration that occurs immediately within a declarative region is said to
be local to the region. Declarations in outer (enclosing) regions are said to be
global to an inner (enclosed) declarative region. A local entity is one declared
by a local declaration; a global entity is one declared by a global declaration.

9 Some of the above forms of declarative region include several disjoint parts
(for example, other declarative items can be between the declaration of a
package and its body). Each declarative region is nevertheless considered as a
(logically) continuous portion of the program text. Hence if any rule defines a
portion of text as the text that extends from some specific point of a declarative
region to the end of this region, then this portion is the corresponding subset of
the declarative region (for example it does not include intermediate declarative
items between the two parts of a package).

Notes:
10 As defined in section 3.1, the term declaration includes basic declarations,

implicit declarations, and those declarations that are part of basic declarations,
for example, discriminant and parameter specifications. It follows from the
definition of a declarative region that a discriminant specification occurs
immediately within the region associated with the enclosing record type
declaration. Similarly, a parameter specification occurs immediately within the
region associated with the enclosing subprogram body or accept statement.

11 The package STANDARD forms a declarative region which encloses all
library units: the implicit declaration of each library unit is assumed to occur
immediately within this package (see sections 8.6 and 10.1.1).

12 Declarative regions can be nested within other declarative regions. For
example, subprograms, packages, task units, generic units, and block
statements can be nested within each other, and can contain record type
declarations, loop statements, and accept statements.

13 References: accept statement 9.5, basic declaration 3.1, block statement 5.6,
body stub 10.2, declaration 3.1, discriminant part 3.7.1, discriminant specification
3.7.1, entry declaration 9.5, formal part 6.1, generic body 12.2, generic declaration
12.1, generic parameter declaration 12.1, implicit declaration 3.1, incomplete type
declaration 3.8.1, library unit 10.1, loop statement 5.5, package 7, package body 7.1,
package declaration 7.1, parameter specification 6.1, private type declaration 7.4,
record representation clause 13.4, record type 3.7, renaming declaration 8.5, standard
package 8.6, subprogram body 6.3, subprogram declaration 6.1, subunit 10.2, task body
9.1, task declaration 9.1, task unit 9

8.1 Declarative Region 8–2

8.2 Scope of Declarations
1 For each form of declaration, the language rules define a certain portion of the

program text called the scope of the declaration. The scope of a declaration is
also called the scope of any entity declared by the declaration. Furthermore, if
the declaration associates some notation with a declared entity, this portion of
the text is also called the scope of this notation (either an identifier, a character
literal, an operator symbol, or the notation for a basic operation). Within the
scope of an entity, and only there, there are places where it is legal to use the
associated notation in order to refer to the declared entity. These places are
defined by the rules of visibility and overloading.

2 The scope of a declaration that occurs immediately within a declarative region
extends from the beginning of the declaration to the end of the declarative
region; this part of the scope of a declaration is called the immediate scope.
Furthermore, for any of the declarations listed below, the scope of the
declaration extends beyond the immediate scope:

3 (a) A declaration that occurs immediately within the visible part of a
package declaration.

4 (b) An entry declaration.

5 (c) A component declaration.

6 (d) A discriminant specification.

7 (e) A parameter specification.

8 (f) A generic parameter declaration.

9 In each of these cases, the given declaration occurs immediately within some
enclosing declaration, and the scope of the given declaration extends to the end
of the scope of the enclosing declaration.

10 In the absence of a subprogram declaration, the subprogram specification given
in the subprogram body or in the body stub acts as the declaration and rule
(e) applies also in such a case.

Note:
11 The above scope rules apply to all forms of declaration defined by section 3.1;

in particular, they apply also to implicit declarations. Rule (a) applies to a
package declaration and thus not to the package specification of a generic
declaration. For nested declarations, the rules (a) through (f) apply at each
level. For example, if a task unit is declared in the visible part of a package,
the scope of an entry of the task unit extends to the end of the scope of the
task unit, that is, to the end of the scope of the enclosing package. The scope
of a use clause is defined in section 8.4.

8–3 Scope of Declarations 8.2

12 References: basic operation 3.3.3, body stub 10.2, character literal 2.5, component
declaration 3.7, declaration 3.1, declarative region 8.1, discriminant specification
3.7.1, entry declaration 9.5, extends 8.1, generic declaration 12.1, generic parameter
declaration 12.1, identifier 2.3, implicit declaration 3.1, occur immediately within 8.1,
operator symbol 6.1, overloading 6.6 8.7, package declaration 7.1, package specification
7.1, parameter specification 6.1, record type 3.7, renaming declaration 8.5, subprogram
body 6.3, subprogram declaration 6.1, task declaration 9.1, task unit 9, type declaration
3.3.1, use clause 8.4, visibility 8.3, visible part 7.2

8.3 Visibility
1 The meaning of the occurrence of an identifier at a given place in the text is

defined by the visibility rules and also, in the case of overloaded declarations,
by the overloading rules. The identifiers considered in this chapter include
any identifier other than a reserved word, an attribute designator, a pragma
identifier, the identifier of a pragma argument, or an identifier given as a
pragma argument. The places considered in this chapter are those where a
lexical element (such as an identifier) occurs. The overloaded declarations
considered in this chapter are those for subprograms, enumeration literals, and
single entries.

2 For each identifier and at each place in the text, the visibility rules determine
a set of declarations (with this identifier) that define possible meanings of an
occurrence of the identifier. A declaration is said to be visible at a given place
in the text when, according to the visibility rules, the declaration defines a
possible meaning of this occurrence. Two cases arise.

3 • The visibility rules determine at most one possible meaning. In such
a case the visibility rules are sufficient to determine the declaration
defining the meaning of the occurrence of the identifier, or in the
absence of such a declaration, to determine that the occurrence is not
legal at the given point.

4 • The visibility rules determine more than one possible meaning. In such
a case the occurrence of the identifier is legal at this point if and only
if exactly one visible declaration is acceptable for the overloading rules
in the given context (see section 6.6 for the rules of overloading and
section 8.7 for the context used for overload resolution).

5 A declaration is only visible within a certain part of its scope; this part starts
at the end of the declaration except in a package specification, in which case
it starts at the reserved word is given after the identifier of the package
specification. (This rule applies, in particular, for implicit declarations.)

6 Visibility is either by selection or direct. A declaration is visible by selection at
places that are defined as follows.

8.3 Visibility 8–4

7 (a) For a declaration given in the visible part of a package declaration:
at the place of the selector after the dot of an expanded name whose
prefix denotes the package.

8 (b) For an entry declaration of a given task type: at the place of
the selector after the dot of a selected component whose prefix is
appropriate for the task type.

9 (c) For a component declaration of a given record type declaration: at the
place of the selector after the dot of a selected component whose prefix
is appropriate for the type; also at the place of a component simple
name (before the compound delimiter =>) in a named component
association of an aggregate of the type.

10 (d) For a discriminant specification of a given type declaration: at the
same places as for a component declaration; also at the place of a
discriminant simple name (before the compound delimiter =>) in a
named discriminant association of a discriminant constraint for the
type.

11 (e) For a parameter specification of a given subprogram specification
or entry declaration: at the place of the formal parameter (before
the compound delimiter =>) in a named parameter association of a
corresponding subprogram or entry call.

12 (f) For a generic parameter declaration of a given generic unit: at
the place of the generic formal parameter (before the compound
delimiter =>) in a named generic association of a corresponding
generic instantiation.

13 Finally, within the declarative region associated with a construct other than
a record type declaration, any declaration that occurs immediately within the
region is visible by selection at the place of the selector after the dot of an
expanded name whose prefix denotes the construct.

14 Where it is not visible by selection, a visible declaration is said to be directly
visible. A declaration is directly visible within a certain part of its immediate
scope; this part extends to the end of the immediate scope of the declaration,
but excludes places where the declaration is hidden as explained below. In
addition, a declaration occurring immediately within the visible part of a
package can be made directly visible by means of a use clause according to the
rules described in section 8.4. (See also section 8.6 for the visibility of library
units.)

8–5 Visibility 8.3

15 A declaration is said to be hidden within (part of) an inner declarative region if
the inner region contains a homograph of this declaration; the outer declaration
is then hidden within the immediate scope of the inner homograph. Each of
two declarations is said to be a homograph of the other if both declarations
have the same identifier and overloading is allowed for at most one of the
two. If overloading is allowed for both declarations, then each of the two is a
homograph of the other if they have the same identifier, operator symbol, or
character literal, as well as the same parameter and result type profile (see
6.6).1

16 Within the specification of a subprogram, every declaration with the same
designator as the subprogram is hidden; the same holds within a generic
instantiation that declares a subprogram, and within an entry declaration
or the formal part of an accept statement; where hidden in this manner, a
declaration is visible neither by selection nor directly.2

17 Two declarations that occur immediately within the same declarative region
must not be homographs, unless either or both of the following requirements
are met: (a) exactly one of them is the implicit declaration of a predefined
operation; (b) exactly one of them is the implicit declaration of a derived
subprogram. In such cases, a predefined operation is always hidden by
the other homograph; a derived subprogram hides a predefined operation,
but is hidden by any other homograph. Where hidden in this manner, an
implicit declaration is hidden within the entire scope of the other declaration
(regardless of which declaration occurs first); the implicit declaration is visible
neither by selection nor directly.3

18 Whenever a declaration with a certain identifier is visible from a given point,
the identifier and the declared entity (if any) are also said to be visible from
that point. Direct visibility and visibility by selection are likewise defined for
character literals and operator symbols. An operator is directly visible if and
only if the corresponding operator declaration is directly visible. Finally, the
notation associated with a basic operation is directly visible within the entire
scope of this operation.4

1 See also Appendix G, AI-00286.
2 See also Appendix G, AI-00370.
3 See also Appendix G, AI-00002, AI-00012, and AI-00330.
4 See also Appendix G, AI-00027.

8.3 Visibility 8–6

19 Example:
procedure P is

A, B : BOOLEAN;

procedure Q is
C : BOOLEAN;
B : BOOLEAN; -- an inner homograph of B

begin
...
B := A; -- means Q.B := P.A;
C := P.B; -- means Q.C := P.B;

end;
begin

...
A := B; -- means P.A := P.B;

end;

Note on the visibility of library units:
20 The visibility of library units is determined by with clauses (see 10.1.1) and by

the fact that library units are implicitly declared in the package STANDARD
(see 8.6).

Note on homographs:
21 The same identifier may occur in different declarations and may thus be

associated with different entities, even if the scopes of these declarations
overlap. Overlap of the scopes of declarations with the same identifier can
result from overloading of subprograms and of enumeration literals. Such
overlaps can also occur for entities declared in package visible parts and for
entries, record components, and parameters, where there is overlap of the
scopes of the enclosing package declarations, task declarations, record type
declarations, subprogram declarations, renaming declarations, or generic
declarations. Finally overlapping scopes can result from nesting.

Note on immediate scope, hiding, and visibility:
22 The rules defining immediate scope, hiding, and visibility imply that a

reference to an identifier within its own declaration is illegal (except for
packages and generic packages). The identifier hides outer homographs within
its immediate scope, that is, from the start of the declaration; on the other
hand, the identifier is visible only after the end of the declaration. For this
reason, all but the last of the following declarations are illegal:

K : INTEGER := K * K; -- illegal
T : T; -- illegal
procedure P(X : P); -- illegal

procedure Q(X : REAL := Q); -- illegal, even if there is
-- a function named Q

8–7 Visibility 8.3

procedure R(R : REAL); -- an inner declaration
-- is legal (although
-- confusing)

23 References: accept statement 9.5, aggregate 4.3, appropriate for a type 4.1, argument
2.8, basic operation 3.3.3, character literal 2.5, component association 4.3, component
declaration 3.7, compound delimiter 2.2, declaration 3.1, declarative region 8.1,
designate 3.8, discriminant constraint 3.7.2, discriminant specification 3.7.1, entry
call 9.5, entry declaration 9.5, entry family 9.5, enumeration literal specification
3.5.1, expanded name 4.1.3, extends 8.1, formal parameter 6.1, generic association
12.3, generic formal parameter 12.1, generic instantiation 12.3, generic package 12.1,
generic parameter declaration 12.1, generic unit 12, identifier 2.3, immediate scope
8.2, implicit declaration 3.1, lexical element 2.2, library unit 10.1, object 3.2, occur
immediately within 8.1, operator 4.5, operator symbol 6.1, overloading 6.6 8.7, package
7, parameter 6.2, parameter association 6.4, parameter specification 6.1, pragma 2.8,
program unit 6, record type 3.7, reserved word 2.9, scope 8.2, selected component
4.1.3, selector 4.1.3, simple name 4.1, subprogram 6, subprogram call 6.4, subprogram
declaration 6.1, subprogram specification 6.1, task type 9.1, task unit 9, type 3.3, type
declaration 3.3.1, use clause 8.4, visible part 7.2

8.4 Use Clauses
1 A use clause achieves direct visibility of declarations that appear in the visible

parts of named packages.

2 use_clause ::= use package_name {, package_name};

3 For each use clause, there is a certain region of text called the scope of the use
clause. This region starts immediately after the use clause. If a use clause is
a declarative item of some declarative region, the scope of the clause extends
to the end of the declarative region. If a use clause occurs within a context
clause of a compilation unit, the scope of the use clause extends to the end of
the declarative region associated with the compilation unit.

4 In order to define which declarations are made directly visible at a given place
by use clauses, consider the set of packages named by all use clauses whose
scopes enclose this place, omitting from this set any packages that enclose
this place. A declaration that can be made directly visible by a use clause
(a potentially visible declaration) is any declaration that occurs immediately
within the visible part of a package of the set. A potentially visible declaration
is actually made directly visible except in the following two cases:

5 • A potentially visible declaration is not made directly visible if the
place considered is within the immediate scope of a homograph of the
declaration.5

5 See also Appendix G, AI-00286.

8.4 Use Clauses 8–8

6 • Potentially visible declarations that have the same identifier
are not made directly visible unless each of them is either an
enumeration literal specification or the declaration of a subprogram
(by a subprogram declaration, a renaming declaration, a generic
instantiation, or an implicit declaration).

7 The elaboration of a use clause has no other effect.

Note:
8 The above rules guarantee that a declaration that is made directly visible by

a use clause cannot hide an otherwise directly visible declaration. The above
rules are formulated in terms of the set of packages named by use clauses.

9 Consequently, the following lines of text all have the same effect (assuming
only one package P).

use P;
use P; use P, P;

10 Example of conflicting names in two packages:
procedure R is

package TRAFFIC is
type COLOR is (RED, AMBER, GREEN);
...

end TRAFFIC;

package WATER_COLORS is
type COLOR is (WHITE, RED, YELLOW, GREEN,

BLUE, BROWN, BLACK);
...

end WATER_COLORS;

use TRAFFIC; -- COLOR, RED, AMBER, and GREEN
-- are directly visible

use WATER_COLORS; -- two homographs of GREEN
-- are directly visible but
-- COLOR is no longer directly visible

subtype LIGHT is TRAFFIC.COLOR; -- Subtypes are used
subtype SHADE is WATER_COLORS.COLOR; -- to resolve the

-- conflicting
-- type name COLOR

SIGNAL : LIGHT;
PAINT : SHADE;

begin
SIGNAL := GREEN; -- that of TRAFFIC
PAINT := GREEN; -- that of WATER_COLORS

end R;

8–9 Use Clauses 8.4

11 Example of name identification with a use clause:
package D is

T, U, V : BOOLEAN;
end D;

procedure P is
package E is

B, W, V : INTEGER;
end E;

procedure Q is
T, X : REAL;
use D, E;

begin
-- the name T means Q.T, not D.T
-- the name U means D.U
-- the name B means E.B
-- the name W means E.W
-- the name X means Q.X
-- the name V is illegal : either
-- D.V or E.V must be used
...

end Q;
begin

...
end P;

12 References: compilation unit 10.1, context clause 10.1, declaration 3.1, declarative
item 3.9, declarative region 8.1, direct visibility 8.3, elaboration 3.1 3.9, elaboration
has no other effect 3.1, enumeration literal specification 3.5.1, extends 8.1, hiding 8.3,
homograph 8.3, identifier 2.3, immediate scope 8.2, name 4.1, occur immediately within
8.1, package 7, scope 8.2, subprogram declaration 6.1, visible part 7.2

8.5 Renaming Declarations
1 A renaming declaration declares another name for an entity.

2 renaming_declaration ::=
identifier : type_mark renames object_name;

| identifier : exception renames exception_name;
| package identifier renames package_name;
| subprogram_specification renames subprogram_or_entry_name;

3 The elaboration of a renaming declaration evaluates the name that follows
the reserved word renames and thereby determines the entity denoted by
this name (the renamed entity). At any point where a renaming declaration
is visible, the identifier, or operator symbol of this declaration denotes the
renamed entity.

8.5 Renaming Declarations 8–10

4 The first form of renaming declaration is used for the renaming of objects.
The renamed entity must be an object of the base type of the type mark. The
properties of the renamed object are not affected by the renaming declaration.
In particular, its value and whether or not it is a constant are unaffected;
similarly, the constraints that apply to an object are not affected by renaming
(any constraint implied by the type mark of the renaming declaration is
ignored). The renaming declaration is legal only if exactly one object has this
type and can be denoted by the object name.6

5 The following restrictions apply to the renaming of a subcomponent that
depends on discriminants of a variable. The renaming is not allowed if the
subtype of the variable, as defined in a corresponding object declaration,
component declaration, or component subtype indication, is an unconstrained
type; or if the variable is a generic formal object (of mode in out). Similarly
if the variable is a formal parameter, the renaming is not allowed if the type
mark given in the parameter specification denotes an unconstrained type
whose discriminants have default expressions.7

6 The second form of renaming declaration is used for the renaming of
exceptions; the third form, for the renaming of packages.

7 The last form of renaming declaration is used for the renaming of subprograms
and entries. The renamed subprogram or entry and the subprogram
specification given in the renaming declaration must have the same parameter
and result type profile (see 6.6). The renaming declaration is legal only if
exactly one visible subprogram or entry satisfies the above requirements and
can be denoted by the given subprogram or entry name. In addition, parameter
modes must be identical for formal parameters that are at the same parameter
position.

8 The subtypes of the parameters and result (if any) of a renamed subprogram
or entry are not affected by renaming. These subtypes are those given in the
original subprogram declaration, generic instantiation, or entry declaration
(not those of the renaming declaration); even for calls that use the new name.
On the other hand, a renaming declaration can introduce parameter names
and default expressions that differ from those of the renamed subprogram;
named associations of calls with the new subprogram name must use the
new parameter name; calls with the old subprogram name must use the old
parameter names.8

6 See also Appendix G, AI-00001.
7 See also Appendix G, AI-00170 and AI-00502.
8 See also Appendix G, AI-00245.

8–11 Renaming Declarations 8.5

9 A procedure can only be renamed as a procedure. Either of a function or
operator can be renamed as either of a function or operator; for renaming as
an operator, the subprogram specification given in the renaming declaration is
subject to the rules given in section 6.7 for operator declarations. Enumeration
literals can be renamed as functions; similarly, attributes defined as functions
(such as SUCC and PRED) can be renamed as functions. An entry can only be
renamed as a procedure; the new name is only allowed to appear in contexts
that allow a procedure name. An entry of a family can be renamed, but an
entry family cannot be renamed as a whole.

10 Examples:
declare

L : PERSON renames LEFTMOST_PERSON; -- see 3.8.1
begin

L.AGE := L.AGE + 1;
end;

FULL : exception renames TABLE_MANAGER.TABLE_FULL; -- see 7.5

package TM renames TABLE_MANAGER;

function REAL_PLUS(LEFT, RIGHT : REAL)
return REAL renames "+";

function INT_PLUS (LEFT, RIGHT : INTEGER)
return INTEGER renames "+";

function ROUGE return COLOR renames RED; -- see 3.5.1
function ROT return COLOR renames RED;
function ROSSO return COLOR renames ROUGE;

function NEXT(X : COLOR) return COLOR renames COLOR’SUCC;
-- see 3.5.5

11 Example of a renaming declaration with new parameter names:
function "*" (X,Y : VECTOR) return REAL renames DOT_PRODUCT;

-- see 6.1

12 Example of a renaming declaration with a new default expression:
function MINIMUM(L : LINK := HEAD) return CELL renames MIN_CELL;

-- see 6.1

Notes:
13 Renaming may be used to resolve name conflicts and to act as a shorthand.

Renaming with a different identifier or operator symbol does not hide the old
name; the new name and the old name need not be visible at the same points.
The attributes POS and VAL cannot be renamed since the corresponding
specifications cannot be written; the same holds for the predefined multiplying
operators with a universal_fixed result.

8.5 Renaming Declarations 8–12

14 Calls with the new name of a renamed entry are procedure call statements and
are not allowed at places where the syntax requires an entry call statement
in conditional and timed entry calls; similarly, the COUNT attribute is not
available for the new name.

15 A task object that is declared by an object declaration can be renamed as an
object. However, a single task cannot be renamed since the corresponding task
type is anonymous. For similar reasons, an object of an anonymous array type
cannot be renamed. No syntactic form exists for renaming a generic unit.

16 A subtype can be used to achieve the effect of renaming a type (including a
task type) as in

subtype MODE is TEXT_IO.FILE_MODE;

17 References: allow 1.6, attribute 4.1.4, base type 3.3, conditional entry call 9.7.2,
constant 3.2.1, constrained subtype 3.3, constraint 3.3, declaration 3.1, default
expression 6.1, depend on a discriminant 3.7.1, discriminant 3.7.1, elaboration 3.1
3.9, entry 9.5, entry call 9.5, entry call statement 9.5, entry declaration 9.5, entry
family 9.5, enumeration literal 3.5.1, evaluation of a name 4.1, exception 11, formal
parameter 6.1, function 6.5, identifier 2.3, legal 1.6, mode 6.1, name 4.1, object 3.2,
object declaration 3.2, operator 6.7, operator declaration 6.7, operator symbol 6.1,
package 7, parameter 6.2, parameter specification 6.1, procedure 6.1, procedure call
statement 6.4, reserved word 2.9, subcomponent 3.3, subprogram 6, subprogram call
6.4, subprogram declaration 6.1, subprogram specification 6.1, subtype 3.3.2, task
object 9.2, timed entry call 9.7.3, type 3.3, type mark 3.3.2, variable 3.2.1, visibility 8.3

8.6 The Package Standard
1 The predefined types (for example the types BOOLEAN, CHARACTER and

INTEGER) are the types that are declared in a predefined package called
STANDARD; this package also includes the declarations of their predefined
operations. The package STANDARD is described in Annex C. Apart from the
predefined numeric types, the specification of the package STANDARD must be
the same for all implementations of the language.

2 The package STANDARD forms a declarative region which encloses every
library unit and consequently the main program; the declaration of every
library unit is assumed to occur immediately within this package. The implicit
declarations of library units are assumed to be ordered in such a way that the
scope of a given library unit includes any compilation unit that mentions the
given library unit in a with clause. However, the only library units that are
visible within a given compilation unit are as follows: they include the library
units named by all with clauses that apply to the given unit, and moreover, if

8–13 The Package Standard 8.6

the given unit is a secondary unit of some library unit, they include this library
unit.9

Notes:
3 If all block statements of a program are named, then the name of each program

unit can always be written as an expanded name starting with STANDARD
(unless this package is itself hidden).

4 If a type is declared in the visible part of a library package, then it is a
consequence of the visibility rules that a basic operation (such as assignment)
for this type is directly visible at places where the type itself is not visible
(whether by selection or directly). However this operation can only be applied
to operands that are visible and the declaration of these operands requires the
visibility of either the type or one of its subtypes.

5 References: applicable with clause 10.1.1, block name 5.6, block statement 5.6,
declaration 3.1, declarative region 8.1, expanded name 4.1.3, hiding 8.3, identifier 2.3,
implicit declaration 3.1, library unit 10.1, loop statement 5.5, main program 10.1, must
1.6, name 4.1, occur immediately within 8.1, operator 6.7, package 7, program unit 6,
secondary unit 10.1, subtype 3.3, type 3.3, visibility 8.3, with clause 10.1.1

8.7 The Context of Overload Resolution
1 Overloading is defined for subprograms, enumeration literals, operators, and

single entries, and also for the operations that are inherent in several basic
operations such as assignment, membership tests, allocators, the literal null,
aggregates, and string literals.

2 For overloaded entities, overload resolution determines the actual meaning
that an occurrence of an identifier has, whenever the visibility rules have
determined that more than one meaning is acceptable at the place of this
occurrence; overload resolution likewise determines the actual meaning of an
occurrence of an operator or some basic operation.

3 At such a place all visible declarations are considered. The occurrence is only
legal if there is exactly one interpretation of each constituent of the innermost
complete context; a complete context is one of the following:10

4 • A declaration.

5 • A statement.

6 • A representation clause.

9 See also Appendix G, AI-00192.
10 See also Appendix G, AI-00120.

8.7 The Context of Overload Resolution 8–14

7 When considering possible interpretations of a complete context, the only rules
considered are the syntax rules, the scope and visibility rules, and the rules of
the form described below.11

8 (a) Any rule that requires a name or expression to have a certain type, or
to have the same type as another name or expression.12

9 (b) Any rule that requires the type of a name or expression to be a type
of a certain class; similarly, any rule that requires a certain type to be
a discrete, integer, real, universal, character, boolean, or nonlimited
type.

10 (c) Any rule that requires a prefix to be appropriate for a certain type.

11 (d) Any rule that specifies a certain type as the result type of a basic
operation, and any rule that specifies that this type is of a certain
class.

12 (e) The rules that require the type of an aggregate or string literal to
be determinable solely from the enclosing complete context (see 4.3
and 4.2). Similarly, the rules that require the type of the prefix of an
attribute, the type of the expression of a case statement, or the type of
the operand of a type conversion, to be determinable independently of
the context (see 4.1.4, 5.4, 4.6, and 6.4.1).

13 (f) The rules given in section 6.6, for the resolution of overloaded
subprogram calls; in section 4.6, for the implicit conversions of
universal expressions; in section 3.6.1, for the interpretation of
discrete ranges with bounds having a universal type; and in section
4.1.3, for the interpretation of an expanded name whose prefix denotes
a subprogram or an accept statement.13

14 Subprogram names used as pragma arguments follow a different rule: the
pragma can apply to several overloaded subprograms, as explained in section
6.3.2 for the pragma INLINE, in section 11.7 for the pragma SUPPRESS, and
in section 13.9 for the pragma INTERFACE.

15 Similarly, the simple names given in context clauses (see 10.1.1) and in address
clauses (see 13.5) follow different rules.

11 See also Appendix G, AI-00157.
12 See also Appendix G, AI-00193.
13 See also Appendix G, AI-00287.

8–15 The Context of Overload Resolution 8.7

Notes:
16 If there is only one possible interpretation, the identifier denotes the

corresponding entity. However, this does not mean that the occurrence is
necessarily legal since other requirements exist which are not considered for
overload resolution; for example, the fact that an expression is static, the
parameter modes, whether an object is constant, conformance rules, forcing
occurrences for a representation clause, order of elaboration, and so on.

17 Similarly, subtypes are not considered for overload resolution (the violation of
a constraint does not make a program illegal but raises an exception during
program execution).

18 Rules that require certain constructs to have the same parameter and result
type profile fall under the category (a); the same holds for rules that require
conformance of two constructs since conformance requires that corresponding
names be given the same meaning by the visibility and overloading rules.

19 A loop parameter specification is a declaration, and hence a complete context.

20 References: aggregate 4.3, allocator 4.8, assignment 5.2, basic operation 3.3.3, case
statement 5.4, class of type 3.3, declaration 3.1, entry 9.5, enumeration literal 3.5.1,
exception 11, expression 4.4, formal part 6.1, identifier 2.3, legal 1.6, literal 4.2, loop
parameter specification 5.5, membership test 4.5.2, name 4.1, null literal 3.8, operation
3.3.3, operator 4.5, overloading 6.6, pragma 2.8, representation clause 13.1, statement
5, static expression 4.9, static subtype 4.9, subprogram 6, subtype 3.3, type conversion
4.6, visibility 8.3

21 Rule of the form (a): address clause 13.5, assignment 5.2, choice 3.7.3 4.3.2 5.4,
component association 4.3.1 4.3.2, conformance rules 9.5, default expression 3.7 3.7.1
6.1 12.1.1, delay statement 9.6, discrete range 3.6.1 5.5 9.5, discriminant constraint
3.7.2, enumeration representation clause 13.3, generic parameter association 12.3.1,
index constraint 3.6.1, index expression 4.1.1 4.1.2 9.5, initial value 3.2.1, membership
test 4.5.2, parameter association 6.4.1, parameter and result type profile 8.5 12.3.6,
qualified expression 4.7, range constraint 3.5, renaming of an object 8.5, result
expression 5.8

22 Rules of the form (b): abort statement 9.10, assignment 5.2, case expression 5.4,
condition 5.3 5.5 5.7 9.7.1, discrete range 3.6.1 5.5 9.5, fixed point type declaration
3.5.9, floating point type declaration 3.5.7, integer type declaration 3.5.4, length clause
13.2, membership test 4.4, number declaration 3.2.2, record representation clause 13.4,
selected component 4.1.3, short-circuit control form 4.4, val attribute 3.5.5

23 Rules of the form (c): indexed component 4.1.1, selected component 4.1.3, slice 4.1.2

24 Rules of the form (d): aggregate 4.3, allocator 4.8, membership test 4.4, null literal
4.2, numeric literal 2.4, short-circuit control form 4.4, string literal 4.2

8.7 The Context of Overload Resolution 8–16

9
Tasks

1 The execution of a program that does not contain a task is defined in terms of
a sequential execution of its actions, according to the rules described in other
chapters of this manual. These actions can be considered to be executed by a
single logical processor.

2 Tasks are entities whose executions proceed in parallel in the following sense.
Each task can be considered to be executed by a logical processor of its own.
Different tasks (different logical processors) proceed independently, except at
points where they synchronize.

3 Some tasks have entries. An entry of a task can be called by other tasks. A
task accepts a call of one of its entries by executing an accept statement for
the entry. Synchronization is achieved by rendezvous between a task issuing
an entry call and a task accepting the call. Some entries have parameters;
entry calls and accept statements for such entries are the principal means of
communicating values between tasks.

4 The properties of each task are defined by a corresponding task unit which
consists of a task specification and a task body. Task units are one of the four
forms of program unit of which programs can be composed. The other forms
are subprograms, packages and generic units. The properties of task units,
tasks, and entries, and the statements that affect the interaction between
tasks (that is, entry call statements, accept statements, delay statements,
select statements, and abort statements) are described in this chapter.

Note:
5 Parallel tasks (parallel logical processors) may be implemented on multicom-

puters, multiprocessors, or with interleaved execution on a single physical
processor. On the other hand, whenever an implementation can detect that
the same effect can be guaranteed if parts of the actions of a given task are
executed by different physical processors acting in parallel, it may choose to
execute them in this way; in such a case, several physical processors implement
a single logical processor.

9–1

6 References : abort statement 9.10, accept statement 9.5, delay statement 9.6, entry
9.5, entry call statement 9.5, generic unit 12, package 7, parameter in an entry call
9.5, program unit 6, rendezvous 9.5, select statement 9.7, subprogram 6, task body 9.1,
task specification 9.1

9.1 Task Specifications and Task Bodies
1 A task unit consists of a task specification and a task body. A task specification

that starts with the reserved words task type declares a task type. The value
of an object of a task type designates a task having the entries, if any, that are
declared in the task specification; these entries are also called entries of this
object. The execution of the task is defined by the corresponding task body.

2 A task specification without the reserved word type defines a single task. A
task declaration with this form of specification is equivalent to the declaration
of an anonymous task type immediately followed by the declaration of an
object of the task type, and the task unit identifier names the object. In
the remainder of this chapter, explanations are given in terms of task type
declarations; the corresponding explanations for single task declarations follow
from the stated equivalence.

3 task_declaration ::= task_specification;

task_specification ::=
task [type] identifier [is

{entry_declaration}
{representation_clause}

end [task_simple_name]]

task_body ::=
task body task_simple_name is

[declarative_part]
begin

sequence_of_statements
[exception

exception_handler
{exception_handler}]

end [task_simple_name];

4 The simple name at the start of a task body must repeat the task unit
identifier. Similarly if a simple name appears at the end of the task
specification or body, it must repeat the task unit identifier. Within a task
body, the name of the corresponding task unit can also be used to refer to the
task object that designates the task currently executing the body; furthermore,
the use of this name as a type mark is not allowed within the task unit itself.

9.1 Task Specifications and Task Bodies 9–2

5 For the elaboration of a task specification, entry declarations and
representation clauses, if any, are elaborated in the order given. Such
representation clauses only apply to the entries declared in the task
specification (see 13.5).

6 The elaboration of a task body has no other effect than to establish that the
body can from then on be used for the execution of tasks designated by objects
of the corresponding task type.

7 The execution of a task body is invoked by the activation of a task object of
the corresponding type (see 9.3). The optional exception handlers at the end of
a task body handle exceptions raised during the execution of the sequence of
statements of the task body (see 11.4).

8 Examples of specifications of task types:
task type RESOURCE is

entry SEIZE;
entry RELEASE;

end RESOURCE;

task type KEYBOARD_DRIVER is
entry READ (C : out CHARACTER);
entry WRITE(C : in CHARACTER);

end KEYBOARD_DRIVER;

9 Examples of specifications of single tasks:
task PRODUCER_CONSUMER is

entry READ (V : out ITEM);
entry WRITE(E : in ITEM);

end;

task CONTROLLER is
entry REQUEST(LEVEL)(D : ITEM); -- a family of entries

end CONTROLLER;
task USER; -- has no entries

10 Example of task specification and corresponding body:
task PROTECTED_ARRAY is

-- INDEX and ITEM are global types
entry READ (N : in INDEX; V : out ITEM);
entry WRITE(N : in INDEX; E : in ITEM);

end;

9–3 Task Specifications and Task Bodies 9.1

task body PROTECTED_ARRAY is
TABLE : array(INDEX) of ITEM := (INDEX => NULL_ITEM);

begin
loop

select
accept READ (N : in INDEX; V : out ITEM) do

V := TABLE(N);
end READ;

or
accept WRITE(N : in INDEX; E : in ITEM) do

TABLE(N) := E;
end WRITE;

end select;
end loop;

end PROTECTED_ARRAY;

Note:
11 A task specification specifies the interface of tasks of the task type with other

tasks of the same or of different types, and also with the main program.

12 References : declaration 3.1, declarative part 3.9, elaboration 3.9, entry 9.5, entry
declaration 9.5, exception handler 11.2, identifier 2.3, main program 10.1, object 3.2,
object declaration 3.2.1, representation clause 13.1, reserved word 2.9, sequence of
statements 5.1, simple name 4.1, type 3.3, type declaration 3.3.1

9.2 Task Types and Task Objects
1 A task type is a limited type (see 7.4.4). Hence neither assignment nor the

predefined comparison for equality and inequality are defined for objects of
task types; moreover, the mode out is not allowed for a formal parameter
whose type is a task type.

2 A task object is an object whose type is a task type. The value of a task object
designates a task that has the entries of the corresponding task type, and
whose execution is specified by the corresponding task body. If a task object is
the object, or a subcomponent of the object, declared by an object declaration,
then the value of the task object is defined by the elaboration of the object
declaration. If a task object is the object, or a subcomponent of the object,
created by the evaluation of an allocator, then the value of the task object is
defined by the evaluation of the allocator. For all parameter modes, if an actual
parameter designates a task, the associated formal parameter designates the
same task; the same holds for a subcomponent of an actual parameter and the
corresponding subcomponent of the associated formal parameter; finally, the
same holds for generic parameters.

9.2 Task Types and Task Objects 9–4

3 Examples:
CONTROL : RESOURCE;
TELETYPE : KEYBOARD_DRIVER;
POOL : array(1 .. 10) of KEYBOARD_DRIVER;
-- see also examples of declarations of single tasks in 9.1

4 Example of access type designating task objects:
type KEYBOARD is access KEYBOARD_DRIVER;

TERMINAL : KEYBOARD := new KEYBOARD_DRIVER;

Notes:
5 Since a task type is a limited type, it can appear as the definition of a limited

private type in a private part, and as a generic actual parameter associated
with a formal parameter whose type is a limited type. On the other hand, the
type of a generic formal parameter of mode in must not be a limited type and
hence cannot be a task type.

6 Task objects behave as constants (a task object always designates the same
task) since their values are implicitly defined either at declaration or allocation,
or by a parameter association, and since no assignment is available. However
the reserved word constant is not allowed in the declaration of a task object
since this would require an explicit initialization. A task object that is a formal
parameter of mode in is a constant (as is any formal parameter of this mode).

7 If an application needs to store and exchange task identities, it can do so by
defining an access type designating the corresponding task objects and by using
access values for identification purposes (see above example). Assignment is
available for such an access type as for any access type.

8 Subtype declarations are allowed for task types as for other types, but there
are no constraints applicable to task types.

9 References : access type 3.8, actual parameter 6.4.1, allocator 4.8, assignment 5.2,
component declaration 3.7, composite type 3.3, constant 3.2.1, constant declaration
3.2.1, constraint 3.3, designate 3.8 9.1, elaboration 3.9, entry 9.5, equality operator
4.5.2, formal parameter 6.2, formal parameter mode 6.2, generic actual parameter 12.3,
generic association 12.3, generic formal parameter 12.1, generic formal parameter mode
12.1.1, generic unit 12, inequality operator 4.5.2, initialization 3.2.1, limited type 7.4.4,
object 3.2, object declaration 3.2.1, parameter association 6.4, private part 7.2, private
type 7.4, reserved word 2.9, subcomponent 3.3, subprogram 6, subtype declaration
3.3.2, task body 9.1, type 3.3

9–5 Task Types and Task Objects 9.2

9.3 Task Execution—Task Activation
1 A task body defines the execution of any task that is designated by a task

object of the corresponding task type. The initial part of this execution is
called the activation of the task object, and also that of the designated task; it
consists of the elaboration of the declarative part, if any, of the task body. The
execution of different tasks, in particular their activation, proceeds in parallel.

2 If an object declaration that declares a task object occurs immediately within
a declarative part, then the activation of the task object starts after the
elaboration of the declarative part (that is, after passing the reserved word
begin following the declarative part); similarly if such a declaration occurs
immediately within a package specification, the activation starts after the
elaboration of the declarative part of the package body. The same holds for
the activation of a task object that is a subcomponent of an object declared
immediately within a declarative part or package specification. The first
statement following the declarative part is executed only after conclusion of the
activation of these task objects.

3 Should an exception be raised by the activation of one of these tasks, that
task becomes a completed task (see 9.4); other tasks are not directly affected.
Should one of these tasks thus become completed during its activation, the
exception TASKING_ERROR is raised upon conclusion of the activation of
all of these tasks (whether successfully or not); the exception is raised at a
place that is immediately before the first statement following the declarative
part (immediately after the reserved word begin). Should several of these
tasks thus become completed during their activation, the exception TASKING_
ERROR is raised only once.1

4 Should an exception be raised by the elaboration of a declarative part or
package specification, then any task that is created (directly or indirectly)
by this elaboration and that is not yet activated becomes terminated and is
therefore never activated (see section 9.4 for the definition of a terminated
task).2

5 For the above rules, in any package body without statements, a null statement
is assumed. For any package without a package body, an implicit package body
containing a single null statement is assumed. If a package without a package
body is declared immediately within some program unit or block statement, the
implicit package body occurs at the end of the declarative part of the program
unit or block statement; if there are several such packages, the order of the
implicit package bodies is undefined.3

1 See also Appendix G, AI-00268.
2 See also Appendix G, AI-00198.
3 See also Appendix G, AI-00237.

9.3 Task Execution—Task Activation 9–6

6 A task object that is the object, or a subcomponent of the object, created by
the evaluation of an allocator is activated by this evaluation. The activation
starts after any initialization for the object created by the allocator; if several
subcomponents are task objects, they are activated in parallel. The access
value designating such an object is returned by the allocator only after the
conclusion of these activations.

7 Should an exception be raised by the activation of one of these tasks, that
task becomes a completed task; other tasks are not directly affected. Should
one of these tasks thus become completed during its activation, the exception
TASKING_ERROR is raised upon conclusion of the activation of all of these
tasks (whether successfully or not); the exception is raised at the place where
the allocator is evaluated. Should several of these tasks thus become completed
during their activation, the exception TASKING_ERROR is raised only once.

8 Should an exception be raised by the initialization of the object created by
an allocator (hence before the start of any activation), any task designated
by a subcomponent of this object becomes terminated and is therefore never
activated.4

9 Example:
procedure P is

A, B : RESOURCE; -- elaborate the task objects A, B
C : RESOURCE; -- elaborate the task object C

begin
-- the tasks A, B, C are activated in parallel
-- before the first statement
...

end;

Notes:
10 An entry of a task can be called before the task has been activated. If several

tasks are activated in parallel, the execution of any of these tasks need
not await the end of the activation of the other tasks. A task may become
completed during its activation either because of an exception or because it is
aborted (see 9.10).

11 References : allocator 4.8, completed task 9.4, declarative part 3.9, elaboration
3.9, entry 9.5, exception 11, handling an exception 11.4, package body 7.1, parallel
execution 9, statement 5, subcomponent 3.3, task body 9.1, task object 9.2, task
termination 9.4, task type 9.1, tasking_error exception 11.1

4 See also Appendix G, AI-00198.

9–7 Task Execution—Task Activation 9.3

9.4 Task Dependence—Termination of Tasks
1 Each task depends on at least one master.5 A master is a construct that is

either a task, a currently executing block statement or subprogram, or a library
package (a package declared within another program unit is not a master).
The dependence on a master is a direct dependence in the following two cases:

2 (a) The task designated by a task object that is the object, or a
subcomponent of the object, created by the evaluation of an allocator
depends on the master that elaborates the corresponding access type
definition.

3 (b) The task designated by any other task object depends on the master
whose execution creates the task object.

4 Furthermore, if a task depends on a given master that is a block statement
executed by another master, then the task depends also on this other master,
in an indirect manner; the same holds if the given master is a subprogram
called by another master, and if the given master is a task that depends
(directly or indirectly) on another master. Dependences exist for objects of a
private type whose full declaration is in terms of a task type.

5 A task is said to have completed its execution when it has finished the
execution of the sequence of statements that appears after the reserved word
begin in the corresponding body. Similarly a block or a subprogram is said
to have completed its execution when it has finished the execution of the
corresponding sequence of statements. For a block statement, the execution
is also said to be completed when it reaches an exit, return, or goto statement
transferring control out of the block. For a procedure, the execution is also
said to be completed when a corresponding return statement is reached. For
a function, the execution is also said to be completed after the evaluation of
the result expression of a return statement. Finally the execution of a task,
block statement, or subprogram is completed if an exception is raised by the
execution of its sequence of statements and there is no corresponding handler,
or, if there is one, when it has finished the execution of the corresponding
handler.6

6 If a task has no dependent task, its termination takes place when it has
completed its execution. After its termination, a task is said to be terminated.
If a task has dependent tasks, its termination takes place when the execution
of the task is completed and all dependent tasks are terminated. A block

5 See also Appendix G, AI-00167.
6 See also Appendix G, AI-00173.

9.4 Task Dependence—Termination of Tasks 9–8

statement or subprogram body whose execution is completed is not left until
all of its dependent tasks are terminated.7

7 Termination of a task otherwise takes place if and only if its execution has
reached an open terminate alternative in a select statement (see 9.7.1), and
the following conditions are satisfied:

8 • The task depends on some master whose execution is completed (hence
not a library package).

9 • Each task that depends on the master considered is either already
terminated or similarly waiting on an open terminate alternative of a
select statement.

10 When both conditions are satisfied, the task considered becomes terminated,
together with all tasks that depend on the master considered.

11 Example:
declare

type GLOBAL is access RESOURCE; -- see 9.1
A, B : RESOURCE;
G : GLOBAL;

begin
-- activation of A and B
declare

type LOCAL is access RESOURCE;
X : GLOBAL := new RESOURCE; -- activation of X.all
L : LOCAL := new RESOURCE; -- activation of L.all
C : RESOURCE;

begin
-- activation of C
G := X; -- both G and X designate the same task object
...

end; -- await termination of C and L.all (but not X.all)
...

end; -- await termination of A, B, and G.all

Notes:
12 The rules given for termination imply that all tasks that depend (directly or

indirectly) on a given master and that are not already terminated, can be
terminated (collectively) if and only if each of them is waiting on an open
terminate alternative of a select statement and the execution of the given
master is completed.

7 See also Appendix G, AI-00441.

9–9 Task Dependence—Termination of Tasks 9.4

13 The usual rules apply to the main program. Consequently, termination of
the main program awaits termination of any dependent task even if the
corresponding task type is declared in a library package. On the other hand,
termination of the main program does not await termination of tasks that
depend on library packages; the language does not define whether such tasks
are required to terminate.

In DEC Ada, the environment task that calls the main program (see 10.1) is
the master of tasks that depend on library packages. In accordance with the
rules of this section, the environment task awaits termination of such tasks.
In particular, the rules concerning terminate alternatives in select statements
apply.

In mixed-language programs, termination of Ada tasks takes place according to
the usual rules. For example, termination of a non-Ada main program awaits
termination of any Ada subprograms that involve tasks.

14 For an access type derived from another access type, the corresponding access
type definition is that of the parent type; the dependence is on the master that
elaborates the ultimate parent access type definition.

15 A renaming declaration defines a new name for an existing entity and hence
creates no further dependence.

16 References : access type 3.8, allocator 4.8, block statement 5.6, declaration 3.1,
designate 3.8 9.1, exception 11, exception handler 11.2, exit statement 5.7, function 6.5,
goto statement 5.9, library unit 10.1, main program 10.1, object 3.2, open alternative
9.7.1, package 7, program unit 6, renaming declaration 8.5, return statement 5.8,
selective wait 9.7.1, sequence of statements 5.1, statement 5, subcomponent 3.3,
subprogram body 6.3, subprogram call 6.4, task body 9.1, task object 9.2, terminate
alternative 9.7.1

9.5 Entries, Entry Calls, and Accept Statements
1 Entry calls and accept statements are the primary means of synchronization of

tasks, and of communicating values between tasks. An entry declaration
is similar to a subprogram declaration and is only allowed in a task
specification. The actions to be performed when an entry is called are
specified by corresponding accept statements.

2 entry_declaration ::=
entry identifier [(discrete_range)] [formal_part];

entry_call_statement ::= entry_name [actual_parameter_part];

9.5 Entries, Entry Calls, and Accept Statements 9–10

accept_statement ::=
accept entry_simple_name [(entry_index)] [formal_part] [do

sequence_of_statements
end [entry_simple_name]];

entry_index ::= expression

3 An entry declaration that includes a discrete range (see 3.6.1) declares a family
of distinct entries having the same formal part (if any); that is, one such entry
for each value of the discrete range. The term single entry is used in the
definition of any rule that applies to any entry other than one of a family. The
task designated by an object of a task type has (or owns) the entries declared
in the specification of the task type.

4 Within the body of a task, each of its single entries or entry families can be
named by the corresponding simple name. The name of an entry of a family
takes the form of an indexed component, the family simple name being followed
by the index in parentheses; the type of this index must be the same as that
of the discrete range in the corresponding entry family declaration. Outside
the body of a task an entry name has the form of a selected component, whose
prefix denotes the task object, and whose selector is the simple name of one of
its single entries or entry families.

5 A single entry overloads a subprogram, an enumeration literal, or another
single entry if they have the same identifier. Overloading is not defined for
entry families. A single entry or an entry of an entry family can be renamed
as a procedure as explained in section 8.5.8

6 The parameter modes defined for parameters of the formal part of an entry
declaration are the same as for a subprogram declaration and have the same
meaning (see 6.2). The syntax of an entry call statement is similar to that of
a procedure call statement, and the rules for parameter associations are the
same as for subprogram calls (see 6.4.1 and 6.4.2).

7 An accept statement specifies the actions to be performed at a call of a
named entry (it can be an entry of a family). The formal part of an accept
statement must conform to the formal part given in the declaration of the
single entry or entry family named by the accept statement (see section 6.3.1
for the conformance rules). If a simple name appears at the end of an accept
statement, it must repeat that given at the start.

8 An accept statement for an entry of a given task is only allowed within the
corresponding task body; excluding within the body of any program unit that
is, itself, inner to the task body; and excluding within another accept statement
for either the same single entry or an entry of the same family.

8 See also Appendix G, AI-00287.

9–11 Entries, Entry Calls, and Accept Statements 9.5

(One consequence of this rule is that a task can execute accept statements only
for its own entries.) A task body can contain more than one accept statement
for the same entry.

9 For the elaboration of an entry declaration, the discrete range, if any, is
evaluated and the formal part, if any, is then elaborated as for a subprogram
declaration.

10 Execution of an accept statement starts with the evaluation of the entry index
(in the case of an entry of a family). Execution of an entry call statement starts
with the evaluation of the entry name; this is followed by any evaluations
required for actual parameters in the same manner as for a subprogram call
(see 6.4). Further execution of an accept statement and of a corresponding
entry call statement are synchronized.

11 If a given entry is called by only one task, there are two possibilities:

12 • If the calling task issues an entry call statement before a corresponding
accept statement is reached by the task owning the entry, the execution
of the calling task is suspended.

13 • If a task reaches an accept statement prior to any call of that entry, the
execution of the task is suspended until such a call is received.

14 When an entry has been called and a corresponding accept statement has been
reached, the sequence of statements, if any, of the accept statement is executed
by the called task (while the calling task remains suspended). This interaction
is called a rendezvous. Thereafter, the calling task and the task owning the
entry continue their execution in parallel.

15 If several tasks call the same entry before a corresponding accept statement is
reached, the calls are queued; there is one queue associated with each entry.
Each execution of an accept statement removes one call from the queue. The
calls are processed in the order of arrival.

16 An attempt to call an entry of a task that has completed its execution raises
the exception TASKING_ERROR at the point of the call, in the calling task;
similarly, this exception is raised at the point of the call if the called task
completes its execution before accepting the call (see also 9.10 for the case
when the called task becomes abnormal). The exception CONSTRAINT_
ERROR is raised if the index of an entry of a family is not within the specified
discrete range.

17 Examples of entry declarations:
entry READ(V : out ITEM);
entry SEIZE;
entry REQUEST(LEVEL)(D : ITEM); -- a family of entries

9.5 Entries, Entry Calls, and Accept Statements 9–12

18 Examples of entry calls:
CONTROL.RELEASE; -- see 9.2 and 9.1
PRODUCER_CONSUMER.WRITE(E); -- see 9.1
POOL(5).READ(NEXT_CHAR); -- see 9.2 and 9.1
CONTROLLER.REQUEST(LOW)(SOME_ITEM); -- see 9.1

19 Examples of accept statements:
accept SEIZE;

accept READ(V : out ITEM) do
V := LOCAL_ITEM;

end READ;

accept REQUEST(LOW)(D : ITEM) do
...

end REQUEST;

Notes:
20 The formal part given in an accept statement is not elaborated; it is only used

to identify the corresponding entry.

21 An accept statement can call subprograms that issue entry calls. An accept
statement need not have a sequence of statements even if the corresponding
entry has parameters. Equally, it can have a sequence of statements even if
the corresponding entry has no parameters. The sequence of statements of
an accept statement can include return statements. A task can call its own
entries but it will, of course, deadlock. The language permits conditional and
timed entry calls (see 9.7.2 and 9.7.3). The language rules ensure that a task
can only be in one entry queue at a given time.

22 If the bounds of the discrete range of an entry family are integer literals, the
index (in an entry name or accept statement) must be of the predefined type
INTEGER (see 3.6.1).

23 References : abnormal task 9.10, actual parameter part 6.4, completed task 9.4,
conditional entry call 9.7.2, conformance rules 6.3.1, constraint_error exception 11.1,
designate 9.1, discrete range 3.6.1, elaboration 3.1 3.9, enumeration literal 3.5.1,
evaluation 4.5, expression 4.4, formal part 6.1, identifier 2.3, indexed component 4.1.1,
integer type 3.5.4, name 4.1, object 3.2, overloading 6.6 8.7, parallel execution 9, prefix
4.1, procedure 6, procedure call 6.4, renaming declaration 8.5, return statement 5.8,
scope 8.2, selected component 4.1.3, selector 4.1.3, sequence of statements 5.1, simple
expression 4.4, simple name 4.1, subprogram 6, subprogram body 6.3, subprogram
declaration 6.1, task 9, task body 9.1, task specification 9.1, tasking_error exception
11.1, timed entry call 9.7.3

9–13 Entries, Entry Calls, and Accept Statements 9.5

9.6 Delay Statements, Duration, and Time
1 The execution of a delay statement evaluates the simple expression, and

suspends further execution of the task that executes the delay statement, for
at least the duration specified by the resulting value.9

2 delay_statement ::= delay simple_expression;

3 The simple expression must be of the predefined fixed point type DURATION;
its value is expressed in seconds; a delay statement with a negative value is
equivalent to a delay statement with a zero value.

4 Any implementation of the type DURATION must allow representation of
durations (both positive and negative) up to at least 86400 seconds (one day);
the smallest representable duration, DURATION’SMALL must not be greater
than twenty milliseconds (whenever possible, a value not greater than fifty
microseconds should be chosen). Note that DURATION’SMALL need not
correspond to the basic clock cycle, the named number SYSTEM.TICK
(see 13.7).10

In DEC Ada, DURATION’SMALL is 2�14 seconds or approximately 61
microseconds. The value does not correspond to the value of the named
number SYSTEM.TICK.

On OpenVMS VAX systems, the value of SYSTEM.TICK is 10.0�2 seconds or
10 milliseconds. (SYSTEM.TICK represents the smallest unit of time used by
the OpenVMS VAX operating system in its time-related system services.)

On Alpha systems, the value of SYSTEM.TICK is 10.0�3 seconds or 1
millisecond. (On OpenVMS Alpha systems, SYSTEM.TICK represents the
smallest unit of time used by the operating system in its time-related system
services. On Digital UNIX Alpha systems, SYSTEM.TICK represents the
resolution of the Digital UNIX system clock.)

5 The definition of the type TIME is provided in the predefined library package
CALENDAR. The function CLOCK returns the current value of TIME at
the time it is called. The functions YEAR, MONTH, DAY and SECONDS
return the corresponding values for a given value of the type TIME; the
procedure SPLIT returns all four corresponding values. Conversely, the
function TIME_OF combines a year number, a month number, a day number,
and a duration, into a value of type TIME. The operators ‘‘+’’ and ‘‘–’’ for
addition and subtraction of times and durations, and the relational operators
for times, have the conventional meaning.11

9 See also Appendix G, AI-00201 and AI-00464.
10 See also Appendix G, AI-00201.
11 See also Appendix G, AI-00195 and AI-00201.

9.6 Delay Statements, Duration, and Time 9–14

On OpenVMS systems, the function CLOCK returns the current time, and the
type TIME is implemented as OpenVMS binary time.

On Digital UNIX systems, the function CLOCK returns Greenwich time, and
the type TIME is implemented as a record type with two components. The
first component expresses the number of days since 1 January 1901. The
second component expresses the number of seconds that have passed during
the current day.

6 The exception TIME_ERROR is raised by the function TIME_OF if the actual
parameters do not form a proper date. This exception is also raised by the
operators ‘‘+’’ and ‘‘–’’ if, for the given operands, these operators cannot return
a date whose year number is in the range of the corresponding subtype, or
if the operator ‘‘–’’ cannot return a result that is in the range of the type
DURATION.12

7 package CALENDAR is
type TIME is private;

subtype YEAR_NUMBER is INTEGER range 1901 .. 2099;
subtype MONTH_NUMBER is INTEGER range 1 .. 12;
subtype DAY_NUMBER is INTEGER range 1 .. 31;
subtype DAY_DURATION is DURATION range 0.0 .. 86_400.0;

function CLOCK return TIME;

function YEAR (DATE : TIME) return YEAR_NUMBER;
function MONTH (DATE : TIME) return MONTH_NUMBER;
function DAY (DATE : TIME) return DAY_NUMBER;
function SECONDS(DATE : TIME) return DAY_DURATION;

procedure SPLIT (DATE : in TIME;
YEAR : out YEAR_NUMBER;
MONTH : out MONTH_NUMBER;
DAY : out DAY_NUMBER;
SECONDS : out DAY_DURATION);

function TIME_OF(YEAR : YEAR_NUMBER;
MONTH : MONTH_NUMBER;
DAY : DAY_NUMBER;
SECONDS : DAY_DURATION := 0.0) return TIME;

function "+" (LEFT : TIME;
RIGHT : DURATION) return TIME;

function "+" (LEFT : DURATION;
RIGHT : TIME) return TIME;

function "-" (LEFT : TIME;
RIGHT : DURATION) return TIME;

function "-" (LEFT : TIME;
RIGHT : TIME) return DURATION;

12 See also Appendix G, AI-00196.

9–15 Delay Statements, Duration, and Time 9.6

function "<" (LEFT, RIGHT : TIME) return BOOLEAN;
function "<=" (LEFT, RIGHT : TIME) return BOOLEAN;
function ">" (LEFT, RIGHT : TIME) return BOOLEAN;
function ">=" (LEFT, RIGHT : TIME) return BOOLEAN;

TIME_ERROR : exception;
-- can be raised by TIME_OF, "+", and "-"

private
-- implementation-dependent

end;13

8 Examples:
delay 3.0; -- delay 3.0 seconds

declare
use CALENDAR;
-- INTERVAL is a global constant of type DURATION
NEXT_TIME : TIME := CLOCK + INTERVAL;

begin
loop

delay NEXT_TIME - CLOCK;
-- some actions
NEXT_TIME := NEXT_TIME + INTERVAL;

end loop;
end;

Notes:
9 The second example causes the loop to be repeated every INTERVAL

seconds on average. This interval between two successive iterations is only
approximate. However, there will be no cumulative drift as long as the
duration of each iteration is (sufficiently) less than INTERVAL.

10 References : adding operator 4.5, duration C, fixed point type 3.5.9, function call
6.4, library unit 10.1, operator 4.5, package 7, private type 7.4, relational operator 4.5,
simple expression 4.4, statement 5, task 9, type 3.3

named number 3.2, system predefined package 13.7 13.7.1

13 See also Appendix G, AI-00355.

9.7 Select Statements 9–16

9.7 Select Statements
1 There are three forms of select statements. One form provides a selective wait

for one or more alternatives. The other two provide conditional and timed
entry calls.

2 select_statement ::= selective_wait
| conditional_entry_call | timed_entry_call

3 References : selective wait 9.7.1, conditional entry call 9.7.2, timed entry call 9.7.3

9.7.1 Selective Waits
1 This form of the select statement allows a combination of waiting for, and

selecting from, one or more alternatives. The selection can depend on
conditions associated with each alternative of the selective wait.

2 selective_wait ::=
select
select_alternative

{or
select_alternative}

[else
sequence_of_statements]

end select;

select_alternative ::=
[when condition =>]

selective_wait_alternative

selective_wait_alternative ::= accept_alternative
| delay_alternative | terminate_alternative

accept_alternative ::= accept_statement [sequence_of_statements]

delay_alternative ::= delay_statement [sequence_of_statements]

terminate_alternative ::= terminate;

3 A selective wait must contain at least one accept alternative. In addition a
selective wait can contain either a terminate alternative (only one), or one or
more delay alternatives, or an else part; these three possibilities are mutually
exclusive.

4 A select alternative is said to be open if it does not start with when and a
condition, or if the condition is TRUE. It is said to be closed otherwise.

5 For the execution of a selective wait, any conditions specified after when are
evaluated in some order that is not defined by the language; open alternatives
are thus determined. For an open delay alternative, the delay expression
is also evaluated. Similarly, for an open accept alternative for an entry of a
family, the entry index is also evaluated. Selection and execution of one open

9–17 Selective Waits 9.7.1

alternative, or of the else part, then completes the execution of the selective
wait; the rules for this selection are described below.14

6 Open accept alternatives are first considered. Selection of one such alternative
takes place immediately if a corresponding rendezvous is possible, that is, if
there is a corresponding entry call issued by another task and waiting to be
accepted. If several alternatives can thus be selected, one of them is selected
arbitrarily (that is, the language does not define which one). When such
an alternative is selected, the corresponding accept statement and possible
subsequent statements are executed. If no rendezvous is immediately possible
and there is no else part, the task waits until an open selective wait alternative
can be selected.

7 Selection of the other forms of alternative or of an else part is performed as
follows:

8 • An open delay alternative will be selected if no accept alternative can
be selected before the specified delay has elapsed (immediately, for
a negative or zero delay in the absence of queued entry calls); any
subsequent statements of the alternative are then executed. If several
delay alternatives can thus be selected (that is, if they have the same
delay), one of them is selected arbitrarily.

9 • The else part is selected and its statements are executed if no accept
alternative can be immediately selected, in particular, if all alternatives
are closed.

10 • An open terminate alternative is selected if the conditions stated in
section 9.4 are satisfied. It is a consequence of other rules that a
terminate alternative cannot be selected while there is a queued entry
call for any entry of the task.

11 The exception PROGRAM_ERROR is raised if all alternatives are closed and
there is no else part.

12 Examples of a select statement:
select

accept DRIVER_AWAKE_SIGNAL;
or

delay 30.0*SECONDS;
STOP_THE_TRAIN;

end select;

14 See also Appendix G, AI-00030.

9.7.1 Selective Waits 9–18

13 Example of a task body with a select statement:
task body RESOURCE is

BUSY : BOOLEAN := FALSE;
begin

loop
select

when not BUSY =>
accept SEIZE do

BUSY := TRUE;
end;

or
accept RELEASE do

BUSY := FALSE;
end;

or
terminate;

end select;
end loop;

end RESOURCE;

Notes:
14 A selective wait is allowed to have several open delay alternatives. A selective

wait is allowed to have several open accept alternatives for the same entry.

15 References : accept statement 9.5, condition 5.3, declaration 3.1, delay expression
9.6, delay statement 9.6, duration 9.6, entry 9.5, entry call 9.5, entry index 9.5,
program_error exception 11.1, queued entry call 9.5, rendezvous 9.5, select statement
9.7, sequence of statements 5.1, task 9

9.7.2 Conditional Entry Calls
1 A conditional entry call issues an entry call that is then canceled if a

rendezvous is not immediately possible.15

2 conditional_entry_call ::=
select

entry_call_statement
[sequence_of_statements]

else
sequence_of_statements

end select;

3 For the execution of a conditional entry call, the entry name is first evaluated.
This is followed by any evaluations required for actual parameters as in the
case of a subprogram call (see 6.4).

15 See also Appendix G, AI-00276 and AI-00444.

9–19 Conditional Entry Calls 9.7.2

4 The entry call is canceled if the execution of the called task has not reached a
point where it is ready to accept the call (that is, either an accept statement for
the corresponding entry, or a select statement with an open accept alternative
for the entry), or if there are prior queued entry calls for this entry. If the
called task has reached a select statement, the entry call is canceled if an
accept alternative for this entry is not selected.

5 If the entry call is canceled, the statements of the else part are executed.
Otherwise, the rendezvous takes place; and the optional sequence of statements
after the entry call is then executed.

6 The execution of a conditional entry call raises the exception TASKING_
ERROR if the called task has already completed its execution (see also 9.10 for
the case when the called task becomes abnormal).

7 Example:
procedure SPIN(R : RESOURCE) is
begin

loop
select

R.SEIZE;
return;

else
null; -- busy waiting

end select;
end loop;

end;

8 References : abnormal task 9.10, accept statement 9.5, actual parameter part
6.4, completed task 9.4, entry call statement 9.5, entry family 9.5, entry index 9.5,
evaluation 4.5, expression 4.4, open alternative 9.7.1, queued entry call 9.5, rendezvous
9.5, select statement 9.7, sequence of statements 5.1, task 9, tasking_error
exception 11.1

9.7.3 Timed Entry Calls
1 A timed entry call issues an entry call that is canceled if a rendezvous is not

started within a given delay.

2 timed_entry_call ::=
select

entry_call_statement
[sequence_of_statements]

or
delay_alternative

end select;

9.7.3 Timed Entry Calls 9–20

3 For the execution of a timed entry call, the entry name is first evaluated. This
is followed by any evaluations required for actual parameters as in the case of
a subprogram call (see 6.4). The expression stating the delay is then evaluated,
and the entry call is finally issued.

4 If a rendezvous can be started within the specified duration (or immediately,
as for a conditional entry call, for a negative or zero delay), it is performed
and the optional sequence of statements after the entry call is then executed.
Otherwise, the entry call is canceled when the specified duration has expired,
and the optional sequence of statements of the delay alternative is executed.16

5 The execution of a timed entry call raises the exception TASKING_ERROR if
the called task completes its execution before accepting the call (see also 9.10
for the case when the called task becomes abnormal).

6 Example:
select

CONTROLLER.REQUEST(MEDIUM)(SOME_ITEM);
or

delay 45.0;
-- controller too busy, try something else

end select;

7 References : abnormal task 9.10, accept statement 9.5, actual parameter part 6.4,
completed task 9.4, conditional entry call 9.7.2, delay expression 9.6, delay statement
9.6, duration 9.6, entry call statement 9.5, entry family 9.5, entry index 9.5, evaluation
4.5, expression 4.4, rendezvous 9.5, sequence of statements 5.1, task 9, tasking_error
exception 11.1

9.8 Priorities
1 Each task may (but need not) have a priority, which is a value of the subtype

PRIORITY (of the type INTEGER) declared in the predefined library package
SYSTEM (see 13.7).17 A lower value indicates a lower degree of urgency; the
range of priorities is implementation-defined. A priority is associated with a
task if a pragma18

pragma PRIORITY (static_expression);

16 See also Appendix G, AI-00276.
17 See also Appendix G, AI-00197.
18 See also Appendix G, AI-00031.

9–21 Priorities 9.8

2 appears in the corresponding task specification; the priority is given by the
value of the expression. A priority is associated with the main program if such
a pragma appears in its outermost declarative part. At most one such pragma
can appear within a given task specification or for a subprogram that is a
library unit, and these are the only allowed places for this pragma. A pragma
PRIORITY has no effect if it occurs in a subprogram other than the main
program.

DEC Ada specifies the subtype PRIORITY to be of the type INTEGER with a
range of 0 .. 15.

On Digital UNIX systems, DEC Ada allows task priorities to be changed
dynamically at run time to values of the subtype PRIORITY, as well as to the
values of Digital UNIX real-time and system priorities.

See the relevant DEC Ada run-time reference manual for information on using
the pragma PRIORITY to control DEC Ada task scheduling. See the DEC Ada
Run-Time Reference Manual for DEC OSF/1 Systems or the specification of the
DEC Ada package SET_TASK_PRIORITY for more information on dynamically
changing task priorities on Digital UNIX systems.

3 The specification of a priority is an indication given to assist the
implementation in the allocation of processing resources to parallel tasks
when there are more tasks eligible for execution than can be supported
simultaneously by the available processing resources. The effect of priorities
on scheduling is defined by the following rule:

4 If two tasks with different priorities are both eligible for execution
and could sensibly be executed using the same physical processors
and the same other processing resources, then it cannot be the case
that the task with the lower priority is executing while the task with
the higher priority is not.19

5 For tasks of the same priority, the scheduling order is not defined by the
language. For tasks without explicit priority, the scheduling rules are not
defined, except when such tasks are engaged in a rendezvous. If the priorities
of both tasks engaged in a rendezvous are defined, the rendezvous is executed
with the higher of the two priorities. If only one of the two priorities is defined,
the rendezvous is executed with at least that priority. If neither is defined, the
priority of the rendezvous is undefined.

For information on DEC Ada task scheduling, see the DEC Ada run-time
reference manuals.

19 See also Appendix G, AI-00032 and AI-00288.

9.8 Priorities 9–22

Notes:
6 The priority of a task is static and therefore fixed. However, the priority during

a rendezvous is not necessarily static since it also depends on the priority of
the task calling the entry. Priorities should be used only to indicate relative
degrees of urgency; they should not be used for task synchronization.

7 References : declarative part 3.9, entry call statement 9.5, integer type 3.5.4, main
program 10.1, package system 13.7, pragma 2.8, rendezvous 9.5, static expression 4.9,
subtype 3.3, task 9, task specification 9.1

9.8a Pragma Time_Slice (OpenVMS and Digital UNIX
Systems Only)

On OpenVMS and Digital UNIX systems, two scheduling strategies are
available for DEC Ada tasks:

• Tasks of the same priority are executed in first-in first-out order. This
strategy is the default on OpenVMS VAX systems.

• Tasks of equal priority take turns at the processor (round-robin task
scheduling). This strategy is the default on Alpha systems.

To allow round-robin scheduling to be enabled or disabled, DEC Ada provides
the pragma TIME_SLICE. The form of this pragma is as follows:

pragma TIME_SLICE (static_expression);

The static expression gives the value of a time slice in seconds. It must
be of the predefined fixed point type DURATION. A positive value enables
round-robin scheduling. A negative or zero value disables round-robin
scheduling.

On OpenVMS VAX systems, a positive time-slice value also determines the
maximum number of seconds each task executes when it takes its turn at the
processor.

This pragma is only allowed in the outermost declarative part of a subprogram
that is a library unit. At most one such pragma is allowed in a subprogram. If
it occurs in a subprogram other than the main program, this pragma has no
effect.

The following rules define the effect of enabling round-robin scheduling with
the pragma TIME_SLICE:

• The value applies to the scheduling of every task in the program.

9–23 Pragma Time_Slice (OpenVMS and Digital UNIX Systems Only) 9.8a

• The executing task executes for a limited amount of time. On
OpenVMS VAX systems, this time is at most the number of seconds
(approximate elapsed time) specified by the pragma. Then, if other
tasks of the same priority are eligible for execution, the executing task
stops executing, and the task that has been waiting the longest is
selected for execution.

Notes:
On OpenVMS VAX systems, the amount of scheduling overhead needed to
support round-robin task scheduling increases as the value of a time slice
decreases. See the DEC Ada Run-Time Reference Manual for OpenVMS
Systems for the recommended minimum value.

On OpenVMS VAX systems, the DEC Ada predefined package SYSTEM_
RUNTIME_TUNING also has operations that enable time slicing. See the
DEC Ada Run-Time Reference Manual for OpenVMS Systems or the package
specification for more information.

References: allow 1.6, declarative part 3.9, duration 9.6, fixed point type 3.5.9,
library unit 10.1, main program 10.1, pragma 2.8, priority of a task 9.8, static
expression 4.9, subprogram 6, task 9

9.8b Pragma Passive (OpenVMS Alpha and Digital UNIX
Only)

DEC Ada provides the pragma PASSIVE to direct the compiler to make a
particular task passive or to explicitly prevent the compiler from making a
task passive.

The form of this pragma is as follows:

pragma PASSIVE [(passive_form)];
passive_form => SEMAPHORE | NO

The following forms are equivalent and are considered assertions that the
containing task is passive and that optimization of context switch with this
task is permitted and desired.

pragma PASSIVE;
pragma PASSIVE(SEMAPHORE);

The following form is an assertion that the containing task should not be
optimized.

pragma PASSIVE(NO);

The pragma is allowed only within a task specification. The specification can
be for a task type or for a single task.

9.8b Pragma Passive (OpenVMS Alpha and Digital UNIX Only) 9–24

A passive task is a compiler optimization of an (unoptimized) Ada task.
Passive tasks behave exactly as unoptimized Ada tasks but yield dramatic
performance improvements. Not all tasks can be made passive. The best
candidates are tasks that act as servers or as protectors of shared resources.
These tasks commonly consist of a select statement within an infinite loop. A
typical server task accepts an entry call and then loops back to wait for the
next entry call.

If a task does not meet the requirements for a passive task, the task is not
made passive.

For more information on the requirements governing passive tasks, see the
DEC Ada run-time reference manuals.

References: library unit 10.1, pragma 2.8, task 9

9.9 Task and Entry Attributes
1 For a task object or value T the following attributes are defined:

2 T’CALLABLE Yields the value FALSE when the execution of the task
designated by T is either completed or terminated,
or when the task is abnormal. Yields the value
TRUE otherwise. The value of this attribute is of the
predefined type BOOLEAN.

3 T’TERMINATED Yields the value TRUE if the task designated by T
is terminated. Yields the value FALSE otherwise.
The value of this attribute is of the predefined type
BOOLEAN.

4 In addition, the representation attributes STORAGE_SIZE, SIZE, and
ADDRESS are defined for a task object T or a task type T (see 13.7.2).

5 The attribute COUNT is defined for an entry E of a task unit T. The entry
can be either a single entry or an entry of a family (in either case the name of
the single entry or entry family can be either a simple or an expanded name).
This attribute is only allowed within the body of T, but excluding within any
program unit that is, itself, inner to the body of T.

6 E’COUNT Yields the number of entry calls presently queued
on the entry E (if the attribute is evaluated by the
execution of an accept statement for the entry E, the
count does not include the calling task). The value of
this attribute is of the type universal_integer.20

20 See also Appendix G, AI-00034.

9–25 Task and Entry Attributes 9.9

Note:
7 Algorithms interrogating the attribute E’COUNT should take precautions to

allow for the increase of the value of this attribute for incoming entry calls,
and its decrease, for example with timed entry calls.

8 References : abnormal task 9.10, accept statement 9.5, attribute 4.1.4, boolean type
3.5.3, completed task 9.4, designate 9.1, entry 9.5, false boolean value 3.5.3, queue of
entry calls 9.5, storage unit 13.7, task 9, task object 9.2, task type 9.1, terminated task
9.4, timed entry call 9.7.3, true boolean value 3.5.3, universal_integer type 3.5.4

9.10 Abort Statements
1 An abort statement causes one or more tasks to become abnormal, thus

preventing any further rendezvous with such tasks.

2 abort_statement ::= abort task_name {, task_name};

3 The determination of the type of each task name uses the fact that the type of
the name is a task type.

4 For the execution of an abort statement, the given task names are evaluated
in some order that is not defined by the language. Each named task then
becomes abnormal unless it is already terminated; similarly, any task that
depends on a named task becomes abnormal unless it is already terminated.

5 Any abnormal task whose execution is suspended at an accept statement,
a select statement, or a delay statement becomes completed; any abnormal
task whose execution is suspended at an entry call, and that is not yet in a
corresponding rendezvous, becomes completed and is removed from the entry
queue; any abnormal task that has not yet started its activation becomes
completed (and hence also terminated). This completes the execution of the
abort statement.21

6 The completion of any other abnormal task need not happen before completion
of the abort statement. It must happen no later than when the abnormal task
reaches a synchronization point that is one of the following: the end of its
activation; a point where it causes the activation of another task; an entry
call; the start or the end of an accept statement; a select statement; a delay
statement; an exception handler; or an abort statement. If a task that calls an
entry becomes abnormal while in a rendezvous, its termination does not take
place before the completion of the rendezvous (see 11.5).22

21 See also Appendix G, AI-00198.
22 See also Appendix G, AI-00446.

9.10 Abort Statements 9–26

7 The call of an entry of an abnormal task raises the exception TASKING_
ERROR at the place of the call. Similarly, the exception TASKING_ERROR
is raised for any task that has called an entry of an abnormal task, if the
entry call is still queued or if the rendezvous is not yet finished (whether the
entry call is an entry call statement, or a conditional or timed entry call); the
exception is raised no later than the completion of the abnormal task. The
value of the attribute CALLABLE is FALSE for any task that is abnormal
(or completed).

8 If the abnormal completion of a task takes place while the task updates a
variable, then the value of this variable is undefined.

9 Example:
abort USER, TERMINAL.all, POOL(3);

Notes:
10 An abort statement should be used only in extremely severe situations

requiring unconditional termination. A task is allowed to abort any task,
including itself.

The rules for an abort statement permit either an asynchronous or a
synchronous implementation of abnormal task completion. An asynchronous
implementation causes an abnormal task to become completed at arbitrary
points in its execution (except where prohibited by the above rules). A
synchronous implementation causes an abnormal task to become completed
only at specific points in its execution. These points must include the
synchronization points listed above.

DEC Ada uses the synchronous implementation. A means of ensuring the
completion of an abnormal task at a particular point in a DEC Ada program is
to insert a delay 0.0 statement at that point.

For more information on the DEC Ada implementation of the abort statement,
see the relevant DEC Ada run-time reference manual.

11 References : abnormal in rendezvous 11.5, accept statement 9.5, activation 9.3,
attribute 4.1.4, callable (predefined attribute) 9.9, conditional entry call 9.7.2, delay
statement 9.6, dependent task 9.4, entry call statement 9.5, evaluation of a name 4.1,
exception handler 11.2, false boolean value 3.5.3, name 4.1, queue of entry calls 9.5,
rendezvous 9.5, select statement 9.7, statement 5, task 9, tasking_error exception 11.1,
terminated task 9.4, timed entry call 9.7.3

9–27 Abort Statements 9.10

9.11 Shared Variables
1 The normal means of communicating values between tasks is by entry calls

and accept statements.

2 If two tasks read or update a shared variable (that is, a variable accessible by
both), then neither of them may assume anything about the order in which
the other performs its operations, except at the points where they synchronize.
Two tasks are synchronized at the start and at the end of their rendezvous.
At the start and at the end of its activation, a task is synchronized with the
task that causes this activation. A task that has completed its execution is
synchronized with any other task.

3 For the actions performed by a program that uses shared variables, the
following assumptions can always be made:

4 • If between two synchronization points of a task, this task reads a
shared variable whose type is a scalar or access type, then the variable
is not updated by any other task at any time between these two points.

5 • If between two synchronization points of a task, this task updates a
shared variable whose type is a scalar or access type, then the variable
is neither read nor updated by any other task at any time between
these two points.

6 The execution of the program is erroneous if any of these assumptions is
violated.

7 If a given task reads the value of a shared variable, the above assumptions
allow an implementation to maintain local copies of the value (for example, in
registers or in some other form of temporary storage); and for as long as the
given task neither reaches a synchronization point nor updates the value of the
shared variable, the above assumptions imply that, for the given task, reading
a local copy is equivalent to reading the shared variable itself.

8 Similarly, if a given task updates the value of a shared variable, the above
assumptions allow an implementation to maintain a local copy of the value,
and to defer the effective store of the local copy into the shared variable until
a synchronization point, provided that every further read or update of the
variable by the given task is treated as a read or update of the local copy. On
the other hand, an implementation is not allowed to introduce a store, unless
this store would also be executed in the canonical order (see 11.6).

9.11 Shared Variables 9–28

9 The pragma SHARED can be used to specify that every read or update of
a variable is a synchronization point for that variable; that is, the above
assumptions always hold for the given variable (but not necessarily for other
variables). The form of this pragma is as follows:23

pragma SHARED(variable_simple_name);

10 This pragma is allowed only for a variable declared by an object declaration
and whose type is a scalar or access type; the variable declaration and
the pragma must both occur (in this order) immediately within the same
declarative part or package specification; the pragma must appear before any
occurrence of the name of the variable, other than in an address clause.

11 An implementation must restrict the objects for which the pragma SHARED
is allowed to objects for which each of direct reading and direct updating is
implemented as an indivisible operation.

DEC Ada does not allow the pragma SHARED for objects of generic formal
floating point types and types derived therefrom.

On OpenVMS VAX systems, DEC Ada does not allow the pragma SHARED
for objects of floating point types whose representation is not the same as
the representation of the type STANDARD.FLOAT (F_floating or IEEE single
float).

See the DEC Ada run-time reference manuals for more information on the
representation of types and objects and on the use of the pragma SHARED.

In addition to the pragma SHARED, DEC Ada provides the pragma VOLATILE
to allow variables that are subject to asynchronous modification to be specified
as such.

The pragma VOLATILE prevents the compiler from referring to an earlier
read or write of the variable to deduce the variable’s current value. Every
read of the variable reads the variable itself, rather than a copy of the variable
located in temporary storage. Likewise, every update of the variable updates
the variable itself, rather than a temporary copy. However, if the variable
is in memory shared by two or more processes, each process may have its
own cached copy of the variable. A write to this kind of variable must be
synchronized by a rendezvous, a machine instruction, or a write to an object
that has been specified with the pragma SHARED.

23 See also Appendix G, AI-00141.

9–29 Shared Variables 9.11

Unlike the pragma SHARED, the pragma VOLATILE does not guarantee
indivisible access to the shared variable. In other words, it is possible to read
partially updated values of the variable if other synchronization mechanisms
(rendezvous, machine instructions, and so on) have not been used. Tasks that
share a volatile variable must provide their own means of synchronizing their
references. The form of this pragma is as follows:

pragma VOLATILE (variable_simple_name)

This pragma is allowed only for a variable declared by an object declaration;
the variable can be of any type. The variable declaration and the pragma must
both occur (in this order) immediately within the same declarative part or
package specification; the pragma must appear before any occurrence of the
name of the variable, other than in an address clause or in one of the DEC
Ada pragmas IMPORT_OBJECT, INTERFACE_NAME, EXPORT_OBJECT,
or COMMON_OBJECT. It must not occur in combination with the pragma
SHARED.

The variable simple name must not be the result of a renaming declaration. If
a variable is specified with the pragma VOLATILE, then any renaming of it, or
any of its components, is also volatile.

Example:
CONSTANT_FIVE : constant INTEGER := 5;
VOLATILE_VAR, DUMMY : INTEGER;
pragma VOLATILE (VOLATILE_VAR);

begin
VOLATILE_VAR := CONSTANT_FIVE; -- statement 1
. . .

DUMMY := VOLATILE_VAR; -- statement 2
end;

In this example, statement 1 represents an update of the variable
VOLATILE_VAR, and statement 2 represents a read of the variable
VOLATILE_VAR. The pragma VOLATILE indicates to the compiler that
the variable VOLATILE_VAR may be subject to asynchronous modification.
In other words, it may be read or updated by a parallel task or some other
mechanism at unpredictable times. Consequently, the compiler always refers
to the variable VOLATILE_VAR itself, rather than to a local copy.

To further illustrate, suppose that another task were to update the value of
VOLATILE_VAR between statements 1 and 2. Then, the pragma VOLATILE
ensures that the value of VOLATILE_VAR used in statement 2 is the value
updated by the parallel task and not the value assigned in statement 1.

9.11 Shared Variables 9–30

Suppose, instead, that another task were to read the value of VOLATILE_
VAR sometime after statement 1, but before statement 2. Then, the pragma
VOLATILE ensures that the value of VOLATILE_VAR used by that task is the
value assigned by statement 1.

Notes:
On OpenVMS systems, any variable in DEC Ada that is asynchronously read
or written by an OpenVMS system service must be specified with a pragma
VOLATILE, or the program will be erroneous (see the OpenVMS System
Services Reference Manual for information on which system services have
parameters that are asynchronously modified).

If a variable is shared among tasks such that the assumptions about shared
variables given at the beginning of section 9.11 hold, then a pragma VOLATILE
is not needed.

Because of rules about forcing occurrences (see 13.1), a pragma VOLATILE or
a pragma SHARED for an object specified with an address clause must follow
the address clause.

12 References : accept statement 9.5, activation 9.3, assignment 5.2, canonical order
11.6, declarative part 3.9, entry call statement 9.5, erroneous 1.6, global 8.1, package
specification 7.1, pragma 2.8, read a value 6.2, rendezvous 9.5, simple name 3.1 4.1,
task 9, type 3.3, update a value 6.2, variable 3.2.1

allow 1.6, component 3.3, f_floating representation 3.5.7, name 4.1, object declaration
3.2.1, package standard C, renaming declaration 8.5

9.12 Example of Tasking
1 The following example defines a buffering task to smooth variations between

the speed of output of a producing task and the speed of input of some
consuming task. For instance, the producing task may contain the statements

2 loop
-- produce the next character CHAR
BUFFER.WRITE(CHAR);
exit when CHAR = ASCII.EOT;

end loop;

3 and the consuming task may contain the statements

4 loop
BUFFER.READ(CHAR);
-- consume the character CHAR
exit when CHAR = ASCII.EOT;

end loop;

9–31 Example of Tasking 9.12

5 The buffering task contains an internal pool of characters processed in a
round-robin fashion. The pool has two indices, an IN_INDEX denoting the
space for the next input character and an OUT_INDEX denoting the space for
the next output character.

6 task BUFFER is
entry READ (C : out CHARACTER);
entry WRITE(C : in CHARACTER);

end;

task body BUFFER is
POOL_SIZE : constant INTEGER := 100;
POOL : array(1 .. POOL_SIZE) of CHARACTER;
COUNT : INTEGER range 0 .. POOL_SIZE := 0;
IN_INDEX, OUT_INDEX : INTEGER range 1 .. POOL_SIZE := 1;

begin
loop

select
when COUNT < POOL_SIZE =>

accept WRITE(C : in CHARACTER) do
POOL(IN_INDEX) := C;

end;
IN_INDEX := IN_INDEX mod POOL_SIZE + 1;
COUNT := COUNT + 1;

or when COUNT > 0 =>
accept READ(C : out CHARACTER) do

C := POOL(OUT_INDEX);
end;
OUT_INDEX := OUT_INDEX mod POOL_SIZE + 1;
COUNT := COUNT - 1;

or
terminate;

end select;
end loop;

end BUFFER;

9.12 Example of Tasking 9–32

9.12a Task Entries and OpenVMS Asynchronous System
Traps (OpenVMS Systems Only)
An asynchronous system trap (AST) is a call made by the OpenVMS operating
system in response to certain events detected or caused by the operating
system. In general, an AST occurs upon successful completion of a requested
system service if the appropriate parameters have been specified as part of
the system service call. ASTs can be handled in DEC Ada with the pragma
AST_ENTRY and the AST_ENTRY attribute.

OpenVMS system services that deliver ASTs can be called in DEC Ada with
the subprograms provided in the DEC Ada package STARLET. (The package
TASKING_SERVICES also provides subprograms for calling those system
services that generate ASTs, but no AST handler can be provided by the
Ada program calling these operations.) For information on which system
services provide an AST option and for a detailed description of ASTs, see the
OpenVMS Programming Concepts Manual. For information on using AST
system services in an Ada program, see the DEC Ada Run-Time Reference
Manual for OpenVMS Systems.

The pragma AST_ENTRY identifies an Ada task entry as one that can
subsequently be called to handle an AST. This pragma must be used in
combination with the AST_ENTRY attribute and is allowed only in the same
task type specification (or single task) as the entry to which it applies. The
form of this pragma is as follows:

pragma AST_ENTRY (entry_simple_name);

The entry simple name must denote a unique entry declared with either zero
or one formal parameter. It may not denote an entry family or a member of an
entry family. At most one such pragma may be given for any one entry.

When the AST occurs, an entry call is queued to the given entry and the AST
is dismissed. Task execution then proceeds according to normal Ada rules. In
particular, the rendezvous that results from the AST does not execute at AST
level.

If the entry has a formal parameter, the parameter must be of a discrete,
address, or access type, and the parameter must be of mode in. When the AST
occurs and the entry is called, the formal parameter receives the value of the
astprm parameter provided by the system service.

9–33 Task Entries and OpenVMS Asynchronous System Traps (OpenVMS Systems Only) 9.12a

To connect OpenVMS ASTs with Ada task entries, DEC Ada provides the
following attribute, where E is the name of a single entry of a task:

E’AST_ENTRY Yields a value of the predefined type AST_
HANDLER (declared in the predefined package
SYSTEM) that enables the given entry, E, to be
called when an AST occurs. If the name to which
the attribute applies has not been specified with
the pragma AST_ENTRY, the attribute returns
the value SYSTEM.NO_AST_HANDLER, and no
AST occurs. If the entry is for a task that is not
callable (T’CALLABLE is false), the exception
PROGRAM_ERROR is raised. If an AST occurs for
an entry of a task that is terminated, the program
is erroneous.

E’AST_ENTRY is typically used and generally only useful as an actual
parameter corresponding to the astadr formal parameter of an OpenVMS
system service that provides an AST option.

Example:
with TEXT_IO; use TEXT_IO;
with STARLET; use STARLET;
with CONDITION_HANDLING; use CONDITION_HANDLING;
procedure AST_EXAMPLE is

RETURN_STATUS: COND_VALUE_TYPE;
IO_CHANNEL: CHANNEL_TYPE;
FUNCTION_CODE: FUNCTION_CODE_TYPE;

task AST_HANDLER is
entry RECEIVE_AST (ASTPRM: in INTEGER);
pragma AST_ENTRY (RECEIVE_AST);

end AST_HANDLER;

task body AST_HANDLER is
begin

loop
select

accept RECEIVE_AST(ASTPRM: in INTEGER) do
if ASTPRM = 3 then

PUT_LINE("Received the expected AST parameter");
end if;

end;
or

terminate;
end select;

end loop;
end AST_HANDLER;

9.12a Task Entries and OpenVMS Asynchronous System Traps (OpenVMS Systems Only) 9–34

begin
--
-- Code to initialize the IO_CHANNEL and FUNCTION_CODE
-- variables
--
-- Call the OpenVMS SYS$QIO system service using the
-- DEC Ada package STARLET interface
--
STARLET.QIO(STATUS => RETURN_STATUS,

CHAN => IO_CHANNEL,
FUNC => FUNCTION_CODE,
ASTADR => AST_HANDLER.RECEIVE_AST’AST_ENTRY,
ASTPRM => 3);

. . .
end AST_EXAMPLE;
. . .

Note:
Because it depends on the DEC Ada predefined type SYSTEM.AST_
HANDLER, the AST_ENTRY attribute can only be used in a compilation
unit to which the predefined package SYSTEM applies.

References: access type 3.8, actual parameter 6.4 6.4.1, address type 13.7 13.7a.1,
allow 1.6, attribute 4.1.4, callable (predefined attribute) 9.9, discrete type 3.5, entry
9.5, entry call 9.5 9.7.2 9.7.3, entry family 9.5, entry name 9.5, erroneous 1.6, formal
parameter 6.1 6.2, import pragma 13.9a, mode in 6.2, package system 13.7, pragma
import_valued_procedure 13.9a.1.1, pragma interface 13.9, procedure 6, program_error
exception 11.1, rendezvous 9.5, subprogram 6, system.ast_handler 13.7b.3, system.no_
ast_handler 13.7b.3, task specification 9.1, task type 9.2

9–35 Task Entries and OpenVMS Asynchronous System Traps (OpenVMS Systems Only) 9.12a

10
Program Structure and Compilation Issues

1 The overall structure of programs and the facilities for separate compilation
are described in this chapter. A program is a collection of one or more
compilation units submitted to a compiler in one or more compilations. Each
compilation unit specifies the separate compilation of a construct which can
be a subprogram declaration or body, a package declaration or body, a generic
declaration or body, or a generic instantiation. Alternatively this construct can
be a subunit, in which case it includes the body of a subprogram, package, task
unit, or generic unit declared within another compilation unit.

2 References: compilation 10.1, compilation unit 10.1, generic body 12.2, generic
declaration 12.1, generic instantiation 12.3, package body 7.1, package declaration 7.1,
subprogram body 6.3, subprogram declaration 6.1, subunit 10.2, task body 9.1, task
unit 9

10.1 Compilation Units—Library Units
1 The text of a program can be submitted to the compiler in one or more

compilations. Each compilation is a succession of compilation units.

2 compilation ::= {compilation_unit}

compilation_unit ::=
context_clause library_unit | context_clause secondary_unit

library_unit ::=
subprogram_declaration | package_declaration

| generic_declaration | generic_instantiation
| subprogram_body

secondary_unit ::= library_unit_body | subunit

library_unit_body ::= subprogram_body | package_body

3 The compilation units of a program are said to belong to a program library. A
compilation unit defines either a library unit or a secondary unit. A secondary
unit is either the separately compiled proper body of a library unit, or a
subunit of another compilation unit. The designator of a separately compiled
subprogram (whether a library unit or a subunit) must be an identifier. Within

10–1 Compilation Units—Library Units 10.1

a program library the simple names of all library units must be distinct
identifiers.1

4 The effect of compiling a library unit is to define (or redefine) this unit as one
that belongs to the program library. For the visibility rules, each library unit
acts as a declaration that occurs immediately within the package STANDARD.

5 The effect of compiling a secondary unit is to define the body of a library unit,
or in the case of a subunit, to define the proper body of a program unit that is
declared within another compilation unit.

6 A subprogram body given in a compilation unit is interpreted as a secondary
unit if the program library already contains a library unit that is a subprogram
with the same name; it is otherwise interpreted both as a library unit and as
the corresponding library unit body (that is, as a secondary unit).2

7 The compilation units of a compilation are compiled in the given order. A
pragma that applies to the whole of a compilation must appear before the first
compilation unit of that compilation.

8 A subprogram that is a library unit can be used as a main program in the
usual sense. Each main program acts as if called by some environment
task; the means by which this execution is initiated are not prescribed
by the language definition. An implementation may impose certain
requirements on the parameters and on the result, if any, of a main
program (these requirements must be stated in Appendix F). In any case,
every implementation is required to allow, at least, main programs that are
parameterless procedures, and every main program must be a subprogram that
is a library unit.

DEC Ada permits a library unit to be used as a main program under the
following conditions:

• If it is a procedure with no formal parameters.

On OpenVMS systems, the status returned to the OpenVMS environment
upon normal completion of the procedure is the value 1.

On Digital UNIX systems, the status returned to the Digital UNIX
environment upon normal completion of the procedure is the value 0.

On Digital UNIX systems, the status returned to the Digital UNIX
environment when unhandled exceptions have been raised is the value 42.

1 See also Appendix G, AI-00418.
2 See also Appendix G, AI-00199, AI-00225, and AI-00266.

10.1 Compilation Units—Library Units 10–2

• If it is a function with no formal parameters whose returned value is of
a discrete type. In this case, the status returned to the operating-system
environment upon normal completion of the function is the function value.

• If it is a procedure declared with the pragma EXPORT_VALUED_
PROCEDURE, and it has one formal out parameter that is of a discrete
type. In this case, the status returned to the operating-system environment
upon normal completion of the procedure is the value of the first (and only)
parameter.

When a main function or a main procedure declared with the pragma
EXPORT_VALUED_PROCEDURE returns a discrete value whose size is less
than 32 bits (on OpenVMS VAX systems) or 64 bits (on Alpha systems), the
value is zero- or sign-extended as appropriate.

Notes:
9 A simple program may consist of a single compilation unit. A compilation need

not have any compilation units; for example, its text can consist of pragmas.

10 The designator of a library function cannot be an operator symbol, but a
renaming declaration is allowed to rename a library function as an operator.
Two library subprograms must have distinct simple names and hence cannot
overload each other. However, renaming declarations are allowed to define
overloaded names for such subprograms, and a locally declared subprogram is
allowed to overload a library subprogram. The expanded name STANDARD.L
can be used for a library unit L (unless the name STANDARD is hidden) since
library units act as declarations that occur immediately within the package
STANDARD.

11 References: allow 1.6, context clause 10.1.1, declaration 3.1, designator 6.1,
environment 10.4, generic declaration 12.1, generic instantiation 12.3, hiding 8.3,
identifier 2.3, library unit 10.5, local declaration 8.1, must 1.6, name 4.1, occur
immediately within 8.1, operator 4.5, operator symbol 6.1, overloading 6.6 8.7, package
body 7.1, package declaration 7.1, parameter of a subprogram 6.2, pragma 2.8,
procedure 6.1, program unit 6, proper body 3.9, renaming declaration 8.5, simple
name 4.1, standard package 8.6, subprogram 6, subprogram body 6.3, subprogram
declaration 6.1, subunit 10.2, task 9, visibility 8.3

discrete type 3.5, formal parameter 6.1, function 6.5, pragma export_valued_procedure
13.9a.1.3

10–3 Context Clauses—With Clauses 10.1.1

10.1.1 Context Clauses—With Clauses
1 A context clause is used to specify the library units whose names are needed

within a compilation unit.

2 context_clause ::= {with_clause {use_clause}}

with_clause ::= with unit_simple_name {, unit_simple_name};

3 The names that appear in a context clause must be the simple names of library
units. The simple name of any library unit is allowed within a with clause.
The only names allowed in a use clause of a context clause are the simple
names of library packages mentioned by previous with clauses of the context
clause. A simple name declared by a renaming declaration is not allowed in a
context clause.

4 The with clauses and use clauses of the context clause of a library unit apply to
this library unit and also to the secondary unit that defines the corresponding
body (whether such a clause is repeated or not for this unit). Similarly, the
with clauses and use clauses of the context clause of a compilation unit apply
to this unit and also to its subunits, if any.3

5 If a library unit is named by a with clause that applies to a compilation unit,
then this library unit is directly visible within the compilation unit, except
where hidden; the library unit is visible as if declared immediately within the
package STANDARD (see 8.6).

6 Dependences among compilation units are defined by with clauses; that
is, a compilation unit that mentions other library units in its with clauses
depends on those library units. These dependences between units are taken
into account for the determination of the allowed order of compilation (and
recompilation) of compilation units, as explained in section 10.3, and for the
determination of the allowed order of elaboration of compilation units, as
explained in section 10.5.

Notes:
7 A library unit named by a with clause of a compilation unit is visible (except

where hidden) within the compilation unit and hence can be used as a
corresponding program unit. Thus within the compilation unit, the name
of a library package can be given in use clauses and can be used to form
expanded names; a library subprogram can be called; and instances of a library
generic unit can be declared.

8 The rules given for with clauses are such that the same effect is obtained
whether the name of a library unit is mentioned once or more than once by the
applicable with clauses, or even within a given with clause.

3 See also Appendix G, AI-00226.

10.1.1 Context Clauses—With Clauses 10–4

Example 1: A main program:
9 The following is an example of a main program consisting of a single

compilation unit: a procedure for printing the real roots of a quadratic
equation. The predefined package TEXT_IO and a user-defined package
REAL_OPERATIONS (containing the definition of the type REAL and of
the packages REAL_IO and REAL_FUNCTIONS) are assumed to be already
present in the program library. Such packages may be used by other main
programs.

10 with TEXT_IO, REAL_OPERATIONS; use REAL_OPERATIONS;
procedure QUADRATIC_EQUATION is

A, B, C, D : REAL;
use REAL_IO, -- achieves direct visibility of

-- GET and PUT for REAL

TEXT_IO, -- achieves direct visibility of
-- PUT for strings and of NEW_LINE

REAL_FUNCTIONS; -- achieves direct visibility of SQRT
begin

GET(A); GET(B); GET(C);
D := B**2 - 4.0*A*C;
if D < 0.0 then

PUT("Imaginary Roots.");
else

PUT("Real Roots : X1 = ");
PUT((-B - SQRT(D))/(2.0*A)); PUT(" X2 = ");
PUT((-B + SQRT(D))/(2.0*A));

end if;
NEW_LINE;

end QUADRATIC_EQUATION;

Notes on the example:
11 The with clauses of a compilation unit need only mention the names of those

library subprograms and packages whose visibility is actually necessary within
the unit. They need not (and should not) mention other library units that are
used in turn by some of the units named in the with clauses, unless these
other library units are also used directly by the current compilation unit. For
example, the body of the package REAL_OPERATIONS may need elementary
operations provided by other packages. The latter packages should not be
named by the with clause of QUADRATIC_EQUATION since these elementary
operations are not directly called within its body.

12 References: allow 1.6, compilation unit 10.1, direct visibility 8.3, elaboration 3.9,
generic body 12.2, generic unit 12.1, hiding 8.3, instance 12.3, library unit 10.1, main
program 10.1, must 1.6, name 4.1, package 7, package body 7.1, package declaration
7.1, procedure 6.1, program unit 6, secondary unit 10.1, simple name 4.1, standard
predefined package 8.6, subprogram body 6.3, subprogram declaration 6.1, subunit
10.2, type 3.3, use clause 8.4, visibility 8.3

10–5 Context Clauses—With Clauses 10.1.1

10.1.2 Examples of Compilation Units
1 A compilation unit can be split into a number of compilation units. For

example, consider the following program.

2 procedure PROCESSOR is

SMALL : constant := 20;
TOTAL : INTEGER := 0;

package STOCK is
LIMIT : constant := 1000;
TABLE : array (1 .. LIMIT) of INTEGER;
procedure RESTART;

end STOCK;

package body STOCK is
procedure RESTART is
begin

for N in 1 .. LIMIT loop
TABLE(N) := N;

end loop;
end;

begin
RESTART;

end STOCK;

procedure UPDATE(X : INTEGER) is
use STOCK;

begin
...
TABLE(X) := TABLE(X) + SMALL;
...

end UPDATE;

begin
...
STOCK.RESTART; -- reinitializes TABLE
...

end PROCESSOR;

3 The following three compilation units define a program with an effect
equivalent to the above example (the broken lines between compilation
units serve to remind the reader that these units need not be contiguous texts).

10.1.2 Examples of Compilation Units 10–6

4 Example 2: Several compilation units:
5 package STOCK is

LIMIT : constant := 1000;
TABLE : array (1 .. LIMIT) of INTEGER;
procedure RESTART;

end STOCK;

6 package body STOCK is
procedure RESTART is
begin

for N in 1 .. LIMIT loop
TABLE(N) := N;

end loop;
end;

begin
RESTART;

end STOCK;

7 with STOCK;
procedure PROCESSOR is

SMALL : constant := 20;
TOTAL : INTEGER := 0;

procedure UPDATE(X : INTEGER) is
use STOCK;

begin
...
TABLE(X) := TABLE(X) + SMALL;
...

end UPDATE;
begin

...
STOCK.RESTART; -- reinitializes TABLE
...

end PROCESSOR;

8 Note that in the latter version, the package STOCK has no visibility of outer
identifiers other than the predefined identifiers (of the package STANDARD).
In particular, STOCK does not use any identifier declared in PROCESSOR
such as SMALL or TOTAL; otherwise STOCK could not have been extracted
from PROCESSOR in the above manner. The procedure PROCESSOR, on
the other hand, depends on STOCK and mentions this package in a with
clause. This permits the inner occurrences of STOCK in the expanded name
STOCK.RESTART and in the use clause.

10–7 Examples of Compilation Units 10.1.2

9 These three compilation units can be submitted in one or more compilations.
For example, it is possible to submit the package specification and the package
body together and in this order in a single compilation.

10 References: compilation unit 10.1, declaration 3.1, identifier 2.3, package 7, package
body 7.1, package specification 7.1, program 10, standard package 8.6, use clause 8.4,
visibility 8.3, with clause 10.1.1

10.2 Subunits of Compilation Units
1 A subunit is used for the separate compilation of the proper body of a program

unit declared within another compilation unit. This method of splitting a
program permits hierarchical program development.

2 body_stub ::=
subprogram_specification is separate;

| package body package_simple_name is separate;
| task body task_simple_name is separate;

subunit ::=
separate (parent_unit_name) proper_body

3 A body stub is only allowed as the body of a program unit (a subprogram, a
package, a task unit, or a generic unit) if the body stub occurs immediately
within either the specification of a library package or the declarative part of
another compilation unit.4

4 If the body of a program unit is a body stub, a separately compiled subunit
containing the corresponding proper body is required. In the case of a
subprogram, the subprogram specifications given in the proper body and in the
body stub must conform (see 6.3.1).

5 Each subunit mentions the name of its parent unit, that is, the compilation
unit where the corresponding body stub is given. If the parent unit is a library
unit, it is called the ancestor library unit. If the parent unit is itself a subunit,
the parent unit name must be given in full as an expanded name, starting with
the simple name of the ancestor library unit. The simple names of all subunits
that have the same ancestor library unit must be distinct identifiers.5

6 Visibility within the proper body of a subunit is the visibility that would be
obtained at the place of the corresponding body stub (within the parent unit) if
the with clauses and use clauses of the subunit were appended to the context
clause of the parent unit. If the parent unit is itself a subunit, then the same
rule is used to define the visibility within the proper body of the parent unit.

4 See also Appendix G, AI-00035.
5 See also Appendix G, AI-00289.

10.2 Subunits of Compilation Units 10–8

7 The effect of the elaboration of a body stub is to elaborate the proper body of
the subunit.

Notes:
8 Two subunits of different library units in the same program library need not

have distinct identifiers. In any case, their full expanded names are distinct,
since the simple names of library units are distinct and since the simple
names of all subunits that have a given library unit as ancestor unit are also
distinct. By means of renaming declarations, overloaded subprogram names
that rename (distinct) subunits can be introduced.

9 A library unit that is named by the with clause of a subunit can be hidden by a
declaration (with the same identifier) given in the proper body of the subunit.
Moreover, such a library unit can even be hidden by a declaration given within
a parent unit since a library unit acts as if declared in STANDARD; this
however does not affect the interpretation of the with clauses themselves, since
only names of library units can appear in with clauses.

10 References: compilation unit 10.1, conform 6.3.1, context clause 10.1.1, declaration
3.1, declarative part 3.9, direct visibility 8.3, elaboration 3.9, expanded name 4.1.3,
generic body 12.2, generic unit 12, hidden declaration 8.3, identifier 2.3, library unit
10.1, local declaration 8.1, name 4.1, occur immediately within 8.1, overloading 8.3,
package 7, package body 7.1, package specification 7.1, program 10, program unit 6,
proper body 3.9, renaming declaration 8.5, separate compilation 10.1, simple name 4.1,
subprogram 6, subprogram body 6.3, subprogram specification 6.1, task 9, task body
9.1, task unit 9.1, use clause 8.4, visibility 8.3, with clause 10.1.1

10.2.1 Examples of Subunits
1 The procedure TOP is first written as a compilation unit without subunits.

2 with TEXT_IO;
procedure TOP is

type REAL is digits 10;
R, S : REAL := 1.0;

package FACILITY is
PI : constant := 3.14159_26536;
function F(X : REAL) return REAL;
procedure G(Y, Z : REAL);

end FACILITY;

package body FACILITY is
-- some local declarations followed by

function F(X : REAL) return REAL is
begin

-- sequence of statements of F
...

end F;

10–9 Examples of Subunits 10.2.1

procedure G(Y, Z : REAL) is
-- local procedures using TEXT_IO
...

begin
-- sequence of statements of G
...

end G;
end FACILITY;

procedure TRANSFORM(U : in out REAL) is
use FACILITY;

begin
U := F(U);
...

end TRANSFORM;
begin -- TOP

TRANSFORM(R);
...
FACILITY.G(R, S);

end TOP;

3 The body of the package FACILITY and that of the procedure TRANSFORM
can be made into separate subunits of TOP. Similarly, the body of the procedure
G can be made into a subunit of FACILITY as follows.

4 Example 3:
5 procedure TOP is

type REAL is digits 10;
R, S : REAL := 1.0;

package FACILITY is
PI : constant := 3.14159_26536;
function F(X : REAL) return REAL;
procedure G(Y, Z : REAL);

end FACILITY;

package body FACILITY is separate; -- stub of FACILITY
procedure TRANSFORM(U : in out REAL) is separate;

-- stub of TRANSFORM

begin -- TOP
TRANSFORM(R);
...
FACILITY.G(R, S);

end TOP;

10.2.1 Examples of Subunits 10–10

6 separate (TOP)
procedure TRANSFORM(U : in out REAL) is

use FACILITY;
begin

U := F(U);
...

end TRANSFORM;

7 separate (TOP)
package body FACILITY is

-- some local declarations followed by

function F(X : REAL) return REAL is
begin

-- sequence of statements of F
...

end F;

procedure G(Y, Z : REAL) is separate; -- stub of G
end FACILITY;

8 with TEXT_IO;
separate (TOP.FACILITY) -- full name of FACILITY
procedure G(Y, Z : REAL) is

-- local procedures using TEXT_IO
...

begin
-- sequence of statements of G
...

end G;

9 In the above example TRANSFORM and FACILITY are subunits of TOP, and
G is a subunit of FACILITY. The visibility in the split version is the same as in
the initial version except for one change: since TEXT_IO is only used within G,
the corresponding with clause is written for G instead of for TOP. Apart from
this change, the same identifiers are visible at corresponding program points in
the two versions. For example, all of the following are (directly) visible within
the proper body of the subunit G: the procedure TOP, the type REAL, the
variables R and S, the package FACILITY and the contained named number PI
and subprograms F and G.

10 References: body stub 10.2, compilation unit 10.1, identifier 2.3, local declaration
8.1, named number 3.2, package 7, package body 7.1, procedure 6, procedure body 6.3,
proper body 3.9, subprogram 6, type 3.3, variable 3.2.1, visibility 8.3, with clause 10.1.1

10–11 Examples of Subunits 10.2.1

10.3 Order of Compilation
1 The rules defining the order in which units can be compiled are direct

consequences of the visibility rules and, in particular, of the fact that any
library unit that is mentioned by the context clause of a compilation unit is
visible in the compilation unit.

2 A compilation unit must be compiled after all library units named by its
context clause. A secondary unit that is a subprogram or package body must
be compiled after the corresponding library unit. Any subunit of a parent
compilation unit must be compiled after the parent compilation unit.

3 If any error is detected while attempting to compile a compilation unit, then
the attempted compilation is rejected and it has no effect whatsoever on the
program library; the same holds for recompilations (no compilation unit can
become obsolete because of such a recompilation).6

4 The order in which the compilation units of a program are compiled must be
consistent with the partial ordering defined by the above rules.

5 Similar rules apply for recompilations. A compilation unit is potentially
affected by a change in any library unit named by its context clause. A
secondary unit is potentially affected by a change in the corresponding library
unit. The subunits of a parent compilation unit are potentially affected by a
change of the parent compilation unit. If a compilation unit is successfully
recompiled, the compilation units potentially affected by this change are
obsolete and must be recompiled unless they are no longer needed. An
implementation may be able to reduce the compilation costs if it can deduce
that some of the potentially affected units are not actually affected by the
change.

6 The subunits of a unit can be recompiled without affecting the unit itself.
Similarly, changes in a subprogram or package body do not affect other
compilation units (apart from the subunits of the body) since these compilation
units only have access to the subprogram or package specification. An
implementation is only allowed to deviate from this rule for inline inclusions,
for certain compiler optimizations, and for certain implementations of generic
program units, as described below.7

6 See also Appendix G, AI-00261.
7 See also Appendix G, AI-00408.

10.3 Order of Compilation 10–12

7 • If a pragma INLINE is applied to a subprogram declaration given in
a package specification, inline inclusion will only be achieved if the
package body is compiled before units calling the subprogram. In such
a case, inline inclusion creates a dependence of the calling unit on the
package body, and the compiler must recognize this dependence when
deciding on the need for recompilation. If a calling unit is compiled
before the package body, the pragma may be ignored by the compiler
for such calls (a warning that inline inclusion was not achieved may
be issued). Similar considerations apply to a separately compiled
subprogram for which an INLINE pragma is specified.8

• In DEC Ada, if a pragma INLINE_GENERIC is applied to a generic
instantiation, either by naming the instantiation or by naming the
generic declaration from which the instantiation was derived, inline
inclusion will only be achieved if the corresponding generic body is
compiled before the instantiation. In such a case, inline inclusion
creates a dependence of the instantiation on the generic body, and the
compiler recognizes this dependence when deciding on the need for
recompilation. If an instantiation is compiled before the generic body,
the pragma is ignored, and a diagnostic message that inline inclusion
was not achieved is issued.

8 • For optimization purposes, an implementation may compile several
units of a given compilation in a way that creates further dependences
among these compilation units. The compiler must then take these
dependences into account when deciding on the need for recompilations.

9 • An implementation may require that a generic declaration and the
corresponding proper body be part of the same compilation, whether
the generic unit is itself separately compiled or is local to another
compilation unit. An implementation may also require that subunits of
a generic unit be part of the same compilation.9

DEC Ada does not require that a generic declaration and the
corresponding proper body be part of the same compilation, nor
does DEC Ada require that the subunits of a generic unit be part of the
same compilation. The instantiation of a generic declaration before the
corresponding body is available results in an incomplete compilation.
See the DEC Ada program development manuals for information on
compiling and recompiling DEC Ada compilation units.

8 See also Appendix G, AI-00200.
9 See also Appendix G, AI-00257.

10–13 Order of Compilation 10.3

10 Examples of Compilation Order:

11 (a) In example 1 (see 10.1.1): The procedure QUADRATIC_EQUATION
must be compiled after the library packages TEXT_IO and REAL_
OPERATIONS since they appear in its with clause.

12 (b) In example 2 (see 10.1.2): The package body STOCK must be compiled
after the corresponding package specification.

13 (c) In example 2 (see 10.1.2): The specification of the package STOCK
must be compiled before the procedure PROCESSOR. On the other
hand, the procedure PROCESSOR can be compiled either before or
after the package body STOCK.

14 (d) In example 3 (see 10.2.1): The procedure G must be compiled after
the package TEXT_IO since this package is named by the with clause
of G. On the other hand, TEXT_IO can be compiled either before or
after TOP.

15 (e) In example 3 (see 10.2.1): The subunits TRANSFORM and FACILITY
must be compiled after the main program TOP. Similarly, the subunit
G must be compiled after its parent unit FACILITY.

Notes:
16 For library packages, it follows from the recompilation rules that a package

body is made obsolete by the recompilation of the corresponding specification.
If the new package specification is such that a package body is not required
(that is, if the package specification does not contain the declaration of a
program unit), then the recompilation of a body for this package is not
required. In any case, the obsolete package body must not be used and can
therefore be deleted from the program library.

17 References: compilation 10.1, compilation unit 10.1, context clause 10.1.1,
elaboration 3.9, generic body 12.2, generic declaration 12.1, generic unit 12, library
unit 10.1, local declaration 8.1, name 4.1, package 7, package body 7.1, package
specification 7.1, parent unit 10.2, pragma inline 6.3.2, procedure 6.1, procedure body
6.3, proper body 3.9, secondary unit 10.1, subprogram body 6.3, subprogram declaration
6.1, subprogram specification 6.1, subunit 10.2, type 3.3, variable 3.2.1, visibility 8.3,
with clause 10.1.1

generic body 12.2, instantiation 12.3

10.3 Order of Compilation 10–14

10.4 The Program Library
1 Compilers are required to enforce the language rules in the same manner

for a program consisting of several compilation units (and subunits) as for
a program submitted as a single compilation. Consequently, a library file
containing information on the compilation units of the program library must be
maintained by the compiler or compiling environment. This information may
include symbol tables and other information pertaining to the order of previous
compilations.

2 A normal submission to the compiler consists of the compilation unit(s) and the
library file. The latter is used for checks and is updated for each compilation
unit successfully compiled.

Notes:
3 A single program library is implied for the compilation units of a compilation.

The possible existence of different program libraries and the means by which
they are named are not concerns of the language definition; they are concerns
of the programming environment.

4 There should be commands for creating the program library of a given program
or of a given family of programs. These commands may permit the reuse
of units of other program libraries. Finally, there should be commands for
interrogating the status of the units of a program library. The form of these
commands is not specified by the language definition.

DEC Ada program library management, as well as the commands for creating
program libraries and for determining the status of the units of a program
library, is described in the DEC Ada program development manuals.

5 References: compilation unit 10.1, context clause 10.1.1, order of compilation 10.3,
program 10.1, program library 10.1, subunit 10.2, use clause 8.4, with clause 10.1.1

10.5 Elaboration of Library Units
1 Before the execution of a main program, all library units needed by the main

program are elaborated, as well as the corresponding library unit bodies, if
any. The library units needed by the main program are: those named by
with clauses applicable to the main program, to its body, and to its subunits;
those named by with clauses applicable to these library units themselves, to
the corresponding library unit bodies, and to their subunits; and so on, in a
transitive manner.10

10 See also Appendix G, AI-00158.

10–15 Elaboration of Library Units 10.5

2 The elaboration of these library units and of the corresponding library unit
bodies is performed in an order consistent with the partial ordering defined
by the with clauses (see 10.3). In addition, a library unit mentioned by the
context clause of a subunit must be elaborated before the body of the ancestor
library unit of the subunit.11

3 An order of elaboration that is consistent with this partial ordering does not
always ensure that each library unit body is elaborated before any other
compilation unit whose elaboration necessitates that the library unit body be
already elaborated. If the prior elaboration of library unit bodies is needed,
this can be requested by a pragma ELABORATE. The form of this pragma is
as follows:

pragma ELABORATE (library_unit_simple_name
{, library_unit_simple_name});

4 These pragmas are only allowed immediately after the context clause of
a compilation unit (before the subsequent library unit or secondary unit).
Each argument of such a pragma must be the simple name of a library unit
mentioned by the context clause, and this library unit must have a library unit
body. Such a pragma specifies that the library unit body must be elaborated
before the given compilation unit. If the given compilation unit is a subunit,
the library unit body must be elaborated before the body of the ancestor library
unit of the subunit.12

5 The program is illegal if no consistent order can be found (that is, if a
circularity exists). The elaboration of the compilation units of the program is
performed in some order that is otherwise not defined by the language.

6 References: allow 1.6, argument of a pragma 2.8, compilation unit 10.1, context
clause 10.1.1, dependence between compilation units 10.3, elaboration 3.9, illegal
1.6, in some order 1.6, library unit 10.1, name 4.1, main program 10.1, pragma 2.8,
secondary unit 10.1, separate compilation 10.1, simple name 4.1, subunit 10.2, with
clause 10.1.1

11 See also Appendix G, AI-00354.
12 See also Appendix G, AI-00236, AI-00298, and AI-00355.

10.5 Elaboration of Library Units 10–16

10.6 Program Optimization
1 Optimization of the elaboration of declarations and the execution of statements

may be performed by compilers. In particular, a compiler may be able to
optimize a program by evaluating certain expressions, in addition to those
that are static expressions. Should one of these expressions, whether static
or not, be such that an exception would be raised by its evaluation, then the
code in that path of the program can be replaced by code to raise the exception;
the same holds for exceptions raised by the evaluation of names and simple
expressions. (See also section 11.6.)

2 A compiler may find that some statements or subprograms will never be
executed, for example, if their execution depends on a condition known to be
FALSE. The corresponding object machine code can then be omitted. This rule
permits the effect of conditional compilation within the language.

Note:
3 An expression whose evaluation is known to raise an exception need not

represent an error if it occurs in a statement or subprogram that is never
executed. The compiler may warn the programmer of a potential error.

4 References: condition 5.3, declaration 3.1, elaboration 3.9, evaluation 4.5, exception
11, expression 4.4, false boolean value 3.5.3, program 10, raising of exceptions 11.3,
statement 5, static expression 4.9, subprogram 6

10–17 Program Optimization 10.6

11
Exceptions

1 This chapter defines the facilities for dealing with errors or other exceptional
situations that arise during program execution. Such a situation is called an
exception. To raise an exception is to abandon normal program execution so
as to draw attention to the fact that the corresponding situation has arisen.
Executing some actions, in response to the arising of an exception, is called
handling the exception.

2 An exception declaration declares a name for an exception. An exception can
be raised by a raise statement, or it can be raised by another statement or
operation that propagates the exception. When an exception arises, control
can be transferred to a user-provided exception handler at the end of a block
statement or at the end of the body of a subprogram, package, or task unit.

Note:
In DEC Ada, exceptions are implemented using operating-system-specific and
hardware-specific facilities. The DEC Ada run-time reference manuals describe
Digital’s implementation of Ada exceptions in more detail.

3 References: block statement 5.6, error situation 1.6, exception handler 11.2, name
4.1, package body 7.1, propagation of an exception 11.4.1 11.4.2, raise statement 11.3,
subprogram body 6.3, task body 9.1

11.1 Exception Declarations
1 An exception declaration declares a name for an exception. The name of

an exception can only be used in raise statements, exception handlers, and
renaming declarations.

2 exception_declaration ::= identifier_list : exception;

3 An exception declaration with several identifiers is equivalent to a sequence of
single exception declarations, as explained in section 3.2. Each single exception
declaration declares a name for a different exception. In particular, if a generic
unit includes an exception declaration, the exception declarations implicitly
generated by different instantiations of the generic unit refer to distinct

11–1 Exception Declarations 11.1

exceptions (but all have the same identifier). The particular exception denoted
by an exception name is determined at compilation time and is the same
regardless of how many times the exception declaration is elaborated. Hence, if
an exception declaration occurs in a recursive subprogram, the exception name
denotes the same exception for all invocations of the recursive subprogram.

4 The following exceptions are predefined in the language; they are raised when
the situations described are detected.

5 CONSTRAINT_ERROR This exception is raised in any of the following
situations: upon an attempt to violate a range
constraint, an index constraint, or a discriminant
constraint; upon an attempt to use a record
component that does not exist for the current
discriminant values; and upon an attempt to use
a selected component, an indexed component,
a slice, or an attribute, of an object designated
by an access value, if the object does not exist
because the access value is null.

In DEC Ada, this exception is also raised by
the execution of a predefined numeric operation
that cannot deliver a correct result (within the
declared accuracy for real types). It is raised
for integer overflow, floating point overflow,
and integer and floating point division by zero.
This exception is not raised by floating point
underflow.

On OpenVMS systems, underflow can be
handled as an imported OpenVMS condition (see
13.9a.3.1 for information on importing OpenVMS
conditions).

6 NUMERIC_ERROR This exception is raised by the execution of
a predefined numeric operation that cannot
deliver a correct result (within the declared
accuracy for real types); this includes the case
where an implementation uses a predefined
numeric operation for the execution, evaluation,
or elaboration of some construct. The rules
given in section 4.5.7 define the cases in which
an implementation is not required to raise this

11.1 Exception Declarations 11–2

exception when such an error situation arises; see
also section 11.6.1

DEC Ada raises the exception NUMERIC_
ERROR only when it is explicitly raised with a
raise statement. Wherever this standard requires
that NUMERIC_ERROR be raised, the exception
CONSTRAINT_ERROR is raised instead.2

7 PROGRAM_ERROR This exception is raised upon an attempt to
call a subprogram, to activate a task, or to
elaborate a generic instantiation, if the body
of the corresponding unit has not yet been
elaborated. This exception is also raised if the
end of a function is reached (see 6.5); or during
the execution of a selective wait that has no
else part, if this execution determines that
all alternatives are closed (see 9.7.1). Finally,
depending on the implementation, this exception
may be raised upon an attempt to execute an
action that is erroneous, and for incorrect order
dependences (see 1.6).

In DEC Ada, this exception is raised for some
erroneous situations. It is not raised for incorrect
order dependences.

8 STORAGE_ERROR This exception is raised in any of the following
situations: when the dynamic storage allocated
to a task is exceeded; during the evaluation of an
allocator, if the space available for the collection
of allocated objects is exhausted; or during the
elaboration of a declarative item, or during the
execution of a subprogram call, if storage is not
sufficient.

9 TASKING_ERROR This exception is raised when exceptions arise
during intertask communication (see 9 and 11.5).

DEC Ada also defines the exception NON_ADA_ERROR (in the package
SYSTEM); see sections 11.2 and 13.7a.3.

1 See also Appendix G, AI-00311, AI-00312, and AI-00387.
2 See also Appendix G, AI-00387.

11–3 Exception Declarations 11.1

DEC Ada also provides the language-defined package of input-output
exceptions: IO_EXCEPTIONS. On OpenVMS systems, DEC Ada provides
an additional package of input-output exceptions—AUX_IO_EXCEPTIONS—
for use with the DEC Ada relative and indexed input-output packages. The
DEC Ada input-output exceptions are described in sections 14.4, 14.5, and
14.5a.

Note:
10 The situations described above can arise without raising the corresponding

exceptions, if the pragma SUPPRESS has been used to give permission to omit
the corresponding checks (see 11.7).

In addition to the pragma SUPPRESS, DEC Ada provides the pragma
SUPPRESS_ALL (see 11.7).

11 Examples of user-defined exception declarations:
SINGULAR : exception;
ERROR : exception;
OVERFLOW, UNDERFLOW : exception;

12 References: access value 3.8, collection 3.8, declaration 3.1, exception 11, exception
handler 11.2, generic body 12.2, generic instantiation 12.3, generic unit 12, identifier
2.3, implicit declaration 12.3, instantiation 12.3, name 4.1, object 3.2, raise statement
11.3, real type 3.5.6, record component 3.7, return statement 5.8, subprogram 6,
subprogram body 6.3, task 9, task body 9.1

aux_io_exceptions package 14.4, erroneous 1.6, imported VAX condition 13.9a.3.1,
indexed input-output 14.2a 14.2a.1 14.2a.4 14.2b.9, indexed_io package 14.2a.5,
indexed_mixed_io package 14.2b.10, io_exceptions package 14.4, non_ada_error
exception 13.7a.3, package system 13.7, relative input-output 14.2a 14.2a.1 14.2a.2
14.2b.7, relative_io package 14.2a.3, relative_mixed_io package 14.2b.8

13 Constraint_error exception contexts: aggregate 4.3.1 4.3.2, allocator 4.8,
assignment statement 5.2 5.2.1, constraint 3.3.2, discrete type attribute 3.5.5,
discriminant constraint 3.7.2, elaboration of a generic formal parameter 12.3.1 12.3.2
12.3.4 12.3.5, entry index 9.5, exponentiating operator 4.5.6, index constraint 3.6.1,
indexed component 4.1.1, logical operator 4.5.1, null access value 3.8, object declaration
3.2.1, parameter association 6.4.1, qualified expression 4.7, range constraint 3.5,
selected component 4.1.3, slice 4.1.2, subtype indication 3.3.2, type conversion 4.6

14 Numeric_error exception contexts: discrete type attribute 3.5.5, implicit
conversion 3.5.4 3.5.6 4.6, numeric operation 3.5.5 3.5.8 3.5.10, operator of a numeric
type 4.5 4.5.7

15 Program_error exception contexts: collection 3.8, elaboration 3.9, elaboration
check 3.9 7.3 9.3 12.2, erroneous 1.6, incorrect order dependence 1.6, leaving a function
6.5, selective wait 9.7.1

16 Storage_error exception contexts: allocator 4.8

11.1 Exception Declarations 11–4

17 Tasking_error exception contexts: abort statement 9.10, entry call 9.5 9.7.2 9.7.3,
exceptions during task communication 11.5, task activation 9.3

11.2 Exception Handlers
1 The response to one or more exceptions is specified by an exception handler.

2 exception_handler ::=
when exception_choice {| exception_choice} =>

sequence_of_statements

exception_choice ::= exception_name | others

3 An exception handler occurs in a construct that is either a block statement or
the body of a subprogram, package, task unit, or generic unit. Such a construct
will be called a frame in this chapter. In each case the syntax of a frame that
has exception handlers includes the following part:

4 begin
sequence_of_statements

exception
exception_handler
{exception_handler}

end

5 The exceptions denoted by the exception names given as exception choices of a
frame must all be distinct. The exception choice others is only allowed for the
last exception handler of a frame and as its only exception choice; it stands for
all exceptions not listed in previous handlers of the frame, including exceptions
whose names are not visible at the place of the exception handler.

6 The exception handlers of a frame handle exceptions that are raised by the
execution of the sequence of statements of the frame. The exceptions handled
by a given exception handler are those named by the corresponding exception
choices.

When non-Ada code is imported in an Ada program (see 13.9a), hardware
conditions or exceptions that may be signaled can be handled by an others
choice in the Ada frame that calls the non-Ada routines. See the DEC Ada run-
time reference manuals for more information on handling non-Ada exceptions
from Ada programs.

11–5 Exception Handlers 11.2

7 Example:
begin

-- sequence of statements
exception

when SINGULAR | NUMERIC_ERROR =>
PUT(" MATRIX IS SINGULAR ");

when others =>
PUT(" FATAL ERROR ");
raise ERROR;

end;

Note:
8 The same kinds of statement are allowed in the sequence of statements of each

exception handler as are allowed in the sequence of statements of the frame.
For example, a return statement is allowed in a handler within a function
body.

9 References: block statement 5.6, declarative part 3.9, exception 11, exception
handling 11.4, function body 6.3, generic body 12.2, generic unit 12.1, name 4.1,
package body 7.1, raise statement 11.3, return statement 5.8, sequence of statements
5.1, statement 5, subprogram body 6.3, task body 9.1, task unit 9 9.1, visibility 8.3

import pragma 13.9a, non_ada_error exception 13.7a.3, package system 13.7

11.3 Raise Statements
1 A raise statement raises an exception.

2 raise_statement ::= raise [exception_name];

3 For the execution of a raise statement with an exception name, the named
exception is raised. A raise statement without an exception name is only
allowed within an exception handler (but not within the sequence of statements
of a subprogram, package, task unit, or generic unit, enclosed by the handler);
it raises again the exception that caused transfer to the innermost enclosing
handler.

4 Examples:
raise SINGULAR;
raise NUMERIC_ERROR; -- explicitly raising a predefined

-- exception

raise; -- only within an exception handler

5 References: exception 11, generic unit 12, name 4.1, package 7, sequence of
statements 5.1, subprogram 6, task unit 9

11.3 Raise Statements 11–6

11.4 Exception Handling
1 When an exception is raised, normal program execution is abandoned and

control is transferred to an exception handler. The selection of this handler
depends on whether the exception is raised during the execution of statements
or during the elaboration of declarations.3

Note:
DEC Ada allows non-Ada exceptions to be handled using various mechanisms
(see 11.2).

On OpenVMS systems, DEC Ada provides the following mechanisms for
handling system conditions or exported Ada exceptions:

• The pragma IMPORT_EXCEPTION (see 13.9a.3.1), which allows Ada
exception handlers to handle any OpenVMS conditions raised in DEC Ada
code or in imported (non-Ada) code.

• The package CONDITION_HANDLING, which allows additional control
over OpenVMS condition handling.

• The pragma EXPORT_EXCEPTION (see 13.9a.3.2), which allows handlers
written in other languages to handle exported Ada exceptions.

See the DEC Ada Run-Time Reference Manual for OpenVMS Systems for
implementation details and for information on using these pragmas and
packages.

2 References: declaration 3.1, elaboration 3.1 3.9, exception 11, exception handler 11.2,
raising of exceptions 11.3, statement 5

11.4.1 Exceptions Raised During the Execution of Statements
1 The handling of an exception raised by the execution of a sequence of

statements depends on whether the innermost frame or accept statement
that encloses the sequence of statements is a frame or an accept statement.
The case where an accept statement is innermost is described in section 11.5.
The case where a frame is innermost is presented here.

2 Different actions take place, depending on whether or not this frame has
a handler for the exception, and on whether the exception is raised in the
sequence of statements of the frame or in that of an exception handler.

3 See also Appendix G, AI-00446.

11–7 Exceptions Raised During the Execution of Statements 11.4.1

3 If an exception is raised in the sequence of statements of a frame that has
a handler for the exception, execution of the sequence of statements of the
frame is abandoned and control is transferred to the exception handler. The
execution of the sequence of statements of the handler completes the execution
of the frame (or its elaboration if the frame is a package body).4

4 If an exception is raised in the sequence of statements of a frame that does not
have a handler for the exception, execution of this sequence of statements is
abandoned. The next action depends on the nature of the frame:

5 (a) For a subprogram body, the same exception is raised again at the
point of call of the subprogram, unless the subprogram is the main
program itself, in which case execution of the main program is
abandoned.

6 (b) For a block statement, the same exception is raised again immediately
after the block statement (that is, within the innermost enclosing
frame or accept statement).

7 (c) For a package body that is a declarative item, the same exception
is raised again immediately after this declarative item (within the
enclosing declarative part). If the package body is that of a subunit,
the exception is raised again at the place of the corresponding body
stub. If the package is a library unit, execution of the main program
is abandoned.

8 (d) For a task body, the task becomes completed.

9 An exception that is raised again (as in the above cases (a), (b), and (c)) is
said to be propagated, either by the execution of the subprogram, the execution
of the block statement, or the elaboration of the package body. No propagation
takes place in the case of a task body. If the frame is a subprogram or a block
statement and if it has dependent tasks, the propagation of an exception takes
place only after termination of the dependent tasks.

10 Finally, if an exception is raised in the sequence of statements of an exception
handler, execution of this sequence of statements is abandoned. Subsequent
actions (including propagation, if any) are as in the cases (a) to (d) above,
depending on the nature of the frame.

4 See also Appendix G, AI-00455.

11.4.1 Exceptions Raised During the Execution of Statements 11–8

11 Example:
function FACTORIAL (N : POSITIVE) return FLOAT is
begin

if N = 1 then
return 1.0;

else
return FLOAT(N) * FACTORIAL(N-1);

end if;
exception

when NUMERIC_ERROR => return FLOAT’SAFE_LARGE;
end FACTORIAL;

12 If the multiplication raises NUMERIC_ERROR, then FLOAT’SAFE_LARGE
is returned by the handler. This value will cause further NUMERIC_ERROR
exceptions to be raised by the evaluation of the expression in each of the
remaining invocations of the function, so that for large values of N the function
will ultimately return the value FLOAT’SAFE_LARGE.

In DEC Ada, the predefined exception CONSTRAINT_ERROR is raised instead
of NUMERIC_ERROR (see 11.1).

13 Example:
procedure P is

ERROR : exception;
procedure R;

procedure Q is
begin

R;
... -- error situation (2)

exception
...
when ERROR => -- handler E2
...

end Q;

procedure R is
begin

... -- error situation (3)
end R;

begin
... -- error situation (1)
Q;
...

exception
...
when ERROR => -- handler E1
...

end P;

14 The following situations can arise:

11–9 Exceptions Raised During the Execution of Statements 11.4.1

15 (1) If the exception ERROR is raised in the sequence of statements of
the outer procedure P, the handler E1 provided within P is used to
complete the execution of P.

16 (2) If the exception ERROR is raised in the sequence of statements of Q,
the handler E2 provided within Q is used to complete the execution of
Q. Control will be returned to the point of call of Q upon completion of
the handler.

17 (3) If the exception ERROR is raised in the body of R, called by Q, the
execution of R is abandoned and the same exception is raised in the
body of Q. The handler E2 is then used to complete the execution of
Q, as in situation (2).

18 Note that in the third situation, the exception raised in R results in (indirectly)
transferring control to a handler that is part of Q and hence not enclosed by
R. Note also that if a handler were provided within R for the exception choice
others, situation (3) would cause execution of this handler, rather than direct
termination of R.

19 Lastly, if ERROR had been declared in R, rather than in P, the handlers E1 and
E2 could not provide an explicit handler for ERROR since this identifier would
not be visible within the bodies of P and Q. In situation (3), the exception
could however be handled in Q by providing a handler for the exception choice
others.

Notes:
20 The language does not define what happens when the execution of the main

program is abandoned after an unhandled exception.

21 The predefined exceptions are those that can be propagated by the basic
operations and the predefined operators.

22 The case of a frame that is a generic unit is already covered by the rules for
subprogram and package bodies, since the sequence of statements of such a
frame is not executed but is the template for the corresponding sequences of
statements of the subprograms or packages obtained by generic instantiation.

23 References: accept statement 9.5, basic operation 3.3.3, block statement 5.6, body
stub 10.2, completion 9.4, declarative item 3.9, declarative part 3.9, dependent task
9.4, elaboration 3.1 3.9, exception 11, exception handler 11.2, frame 11.2, generic
instantiation 12.3, generic unit 12, library unit 10.1, main program 10.1, numeric_
error exception 11.1, package 7, package body 7.1, predefined operator 4.5, procedure
6.1, sequence of statements 5.1, statement 5, subprogram 6, subprogram body 6.3,
subprogram call 6.4, subunit 10.2, task 9, task body 9.1

11.4.1 Exceptions Raised During the Execution of Statements 11–10

11.4.2 Exceptions Raised During the Elaboration of Declarations
1 If an exception is raised during the elaboration of the declarative part of a

given frame, this elaboration is abandoned. The next action depends on the
nature of the frame:

2 (a) For a subprogram body, the same exception is raised again at the
point of call of the subprogram, unless the subprogram is the main
program itself, in which case execution of the main program is
abandoned.

3 (b) For a block statement, the same exception is raised again immediately
after the block statement.

4 (c) For a package body that is a declarative item, the same exception is
raised again immediately after this declarative item, in the enclosing
declarative part. If the package body is that of a subunit, the
exception is raised again at the place of the corresponding body stub.
If the package is a library unit, execution of the main program is
abandoned.

5 (d) For a task body, the task becomes completed, and the exception
TASKING_ERROR is raised at the point of activation of the task, as
explained in section 9.3.

6 Similarly, if an exception is raised during the elaboration of either a package
declaration or a task declaration, this elaboration is abandoned; the next action
depends on the nature of the declaration.

7 (e) For a package declaration or a task declaration, that is a declarative
item, the exception is raised again immediately after the declarative
item in the enclosing declarative part or package specification. For the
declaration of a library package, the execution of the main program is
abandoned.

8 An exception that is raised again (as in the above cases (a), (b), (c) and (e))
is said to be propagated, either by the execution of the subprogram or block
statement, or by the elaboration of the package declaration, task declaration or
package body.

11–11 Exceptions Raised During the Elaboration of Declarations 11.4.2

9 Example of an exception in the declarative part of a block statement
(case (b)):
procedure P is

...
begin

declare
N : INTEGER := F; -- the function F may raise ERROR

begin
...

exception
when ERROR => -- handler E1

end;
...

exception
when ERROR => -- handler E2

end P;

-- if the exception ERROR is raised in the declaration of N,
-- it is handled by E2

10 References: activation 9.3, block statement 5.6, body stub 10.2, completed task 9.4,
declarative item 3.9, declarative part 3.9, elaboration 3.1 3.9, exception 11, frame
11.2, library unit 10.1, main program 10.1, package body 7.1, package declaration 7.1,
package specification 7.1, subprogram 6, subprogram body 6.3, subprogram call 6.4,
subunit 10.2, task 9, task body 9.1, task declaration 9.1, tasking_error exception 11.1

11.5 Exceptions Raised During Task Communication
1 An exception can be propagated to a task communicating, or attempting to

communicate, with another task. An exception can also be propagated to a
calling task if the exception is raised during a rendezvous.

2 When a task calls an entry of another task, the exception TASKING_ERROR is
raised in the calling task, at the place of the call, if the called task is completed
before accepting the entry call or is already completed at the time of the call.

3 A rendezvous can be completed abnormally in two cases:

4 (a) When an exception is raised within an accept statement, but not
handled within an inner frame. In this case, the execution of the
accept statement is abandoned and the same exception is raised again
immediately after the accept statement within the called task; the
exception is also propagated to the calling task at the point of the
entry call.

5 (b) When the task containing the accept statement is completed
abnormally as the result of an abort statement. In this case, the
exception TASKING_ERROR is raised in the calling task at the point
of the entry call.

11.5 Exceptions Raised During Task Communication 11–12

6 On the other hand, if a task issuing an entry call becomes abnormal (as the
result of an abort statement) no exception is raised in the called task. If the
rendezvous has not yet started, the entry call is cancelled. If the rendezvous is
in progress, it completes normally, and the called task is unaffected.

7 References: abnormal task 9.10, abort statement 9.10, accept statement 9.5,
completed task 9.4, entry call 9.5, exception 11, frame 11.2, rendezvous 9.5, task 9,
task termination 9.4, tasking_error exception 11.1

11.6 Exceptions and Optimization
1 The purpose of this section is to specify the conditions under which an

implementation is allowed to perform certain actions either earlier or later
than specified by other rules of the language.

2 In general, when the language rules specify an order for certain actions (the
canonical order), an implementation may only use an alternative order if it can
guarantee that the effect of the program is not changed by the reordering. In
particular, no exception should arise for the execution of the reordered program
if none arises for the execution of the program in the canonical order. When,
on the other hand, the order of certain actions is not defined by the language,
any order can be used by the implementation. (For example, the arguments
of a predefined operator can be evaluated in any order since the rules given in
section 4.5 do not require a specific order of evaluation.)

3 Additional freedom is left to an implementation for reordering actions involving
predefined operations that are either predefined operators or basic operations
other than assignments. This freedom is left, as defined below, even in the
case where the execution of these predefined operations may propagate a
(predefined) exception:

4 (a) For the purpose of establishing whether the same effect is obtained by
the execution of certain actions in the canonical and in an alternative
order, it can be assumed that none of the predefined operations
invoked by these actions propagates a (predefined) exception, provided
that the two following requirements are met by the alternative order:
first, an operation must not be invoked in the alternative order if it
is not invoked in the canonical order; second, for each operation, the
innermost enclosing frame or accept statement must be the same in
the alternative order as in the canonical order, and the same exception
handlers must apply.

11–13 Exceptions and Optimization 11.6

5 (b) Within an expression, the association of operators with operands
is specified by the syntax. However, for a sequence of predefined
operators of the same precedence level (and in the absence of
parentheses imposing a specific association), any association of
operators with operands is allowed if it satisfies the following
requirement: an integer result must be equal to that given by the
canonical left-to-right order; a real result must belong to the result
model interval defined for the canonical left-to-right order (see 4.5.7).
Such a reordering is allowed even if it may remove an exception, or
introduce a further predefined exception.

6 Similarly, additional freedom is left to an implementation for the evaluation of
numeric simple expressions. For the evaluation of a predefined operation, an
implementation is allowed to use the operation of a type that has a range wider
than that of the base type of the operands, provided that this delivers the exact
result (or a result within the declared accuracy, in the case of a real type),
even if some intermediate results lie outside the range of the base type. The
exception NUMERIC_ERROR need not be raised in such a case. In particular,
if the numeric expression is an operand of a predefined relational operator,
the exception NUMERIC_ERROR need not be raised by the evaluation of the
relation, provided that the correct BOOLEAN result is obtained.5

7 A predefined operation need not be invoked at all, if its only possible effect is
to propagate a predefined exception. Similarly, a predefined operation need not
be invoked if the removal of subsequent operations by the above rule renders
this invocation ineffective.

Notes:
8 Rule (b) applies to predefined operators but not to the short-circuit control

forms.

9 The expression SPEED < 300_000.0 can be replaced by TRUE if the value
300_000.0 lies outside the base type of SPEED, even though the implicit
conversion of the numeric literal would raise the exception NUMERIC_ERROR.

5 See also Appendix G, AI-00267.

11.6 Exceptions and Optimization 11–14

10 Example:
declare

N : INTEGER;
begin

N := 0; -- (1)
for J in 1 .. 10 loop

N := N + J**A(K); -- A and K are global variables
end loop;
PUT(N);

exception
when others => PUT("Some error arose"); PUT(N);

end;

11 The evaluation of A(K) may be performed before the loop, and possibly
immediately before the assignment statement (1) even if this evaluation
can raise an exception. Consequently, within the exception handler, the value
of N is either the undefined initial value or a value later assigned. On the
other hand, the evaluation of A(K) cannot be moved before begin since an
exception would then be handled by a different handler. For this reason, the
initialization of N in the declaration itself would exclude the possibility of
having an undefined initial value of N in the handler.

12 References: accept statement 9.5, accuracy of real operations 4.5.7, assignment 5.2,
base type 3.3, basic operation 3.3.3, conversion 4.6, error situation 11, exception 11,
exception handler 11.2, frame 11.2, numeric_error exception 11.1, predefined operator
4.5, predefined subprogram 8.6, propagation of an exception 11.4, real type 3.5.6,
undefined value 3.2.1

11.7 Suppressing Checks
1 The presence of a SUPPRESS pragma gives permission to an implementation

to omit certain run-time checks. The form of this pragma is as follows:

pragma SUPPRESS(identifier [, [ON =>] name]);

2 The identifier is that of the check that can be omitted. The name (if present)
must be either a simple name or an expanded name and it must denote either
an object, a type or subtype, a task unit, or a generic unit; alternatively the
name can be a subprogram name, in which case it can stand for several visible
overloaded subprograms.

3 A pragma SUPPRESS is only allowed immediately within a declarative part
or immediately within a package specification. In the latter case, the only
allowed form is with a name that denotes an entity (or several overloaded
subprograms) declared immediately within the package specification. The
permission to omit the given check extends from the place of the pragma to
the end of the declarative region associated with the innermost enclosing block

11–15 Suppressing Checks 11.7

statement or program unit. For a pragma given in a package specification, the
permission extends to the end of the scope of the named entity.

4 If the pragma includes a name, the permission to omit the given check is
further restricted: it is given only for operations on the named object or
on all objects of the base type of a named type or subtype; for calls of a
named subprogram; for activations of tasks of the named task type; or for
instantiations of the given generic unit.

In addition to the pragma SUPPRESS, DEC Ada provides the pragma
SUPPRESS_ALL for the purpose of suppressing all run-time checks in a
compilation unit. The form of this pragma is as follows:

pragma SUPPRESS_ALL;

The pragma SUPPRESS_ALL is only allowed following a compilation unit. The
scope of the pragma is the entire unit or subunit that it follows.

5 The following checks correspond to situations in which the exception
CONSTRAINT_ERROR may be raised; for these checks, the name (if present)
must denote either an object or a type.

6 ACCESS_CHECK When accessing a selected component, an
indexed component, a slice, or an attribute,
of an object designated by an access value,
check that the access value is not null.

7 DISCRIMINANT_CHECK Check that a discriminant of a composite
value has the value imposed by a
discriminant constraint. Also, when
accessing a record component, check that it
exists for the current discriminant values.

8 INDEX_CHECK Check that the bounds of an array value
are equal to the corresponding bounds of
an index constraint. Also, when accessing
a component of an array object, check for
each dimension that the given index value
belongs to the range defined by the bounds
of the array object. Also, when accessing a
slice of an array object, check that the given
discrete range is compatible with the range
defined by the bounds of the array object.

11.7 Suppressing Checks 11–16

9 LENGTH_CHECK Check that there is a matching component
for each component of an array, in the case
of array assignments, type conversions,
and logical operators for arrays of boolean
components.

10 RANGE_CHECK Check that a value satisfies a range
constraint. Also, for the elaboration of a
subtype indication, check that the constraint
(if present) is compatible with the type
mark. Also, for an aggregate, check that
an index or discriminant value belongs to
the corresponding subtype. Finally, check
for any constraint checks performed by a
generic instantiation.

In DEC Ada, when explicitly passing
an array by reference to an imported
subprogram, check if the array is aligned
on a byte boundary. Also, when a descriptor
or dope vector is created or used to pass
a parameter to or accept a function result
from an imported subprogram, check that
the descriptor or dope vector length field is
large enough to hold the actual parameter
or result length. See the DEC Ada run-time
reference manuals for more information on
when descriptors or dope vectors are created
or used.

11 The following checks correspond to situations in which the exception
NUMERIC_ERROR is raised. The only allowed names in the corresponding
pragmas are names of numeric types.

12 DIVISION_CHECK Check that the second operand is not zero
for the operations /, rem and mod.

13 OVERFLOW_CHECK Check that the result of a numeric operation
does not overflow.

14 The following check corresponds to situations in which the exception
PROGRAM_ERROR is raised. The only allowed names in the corresponding
pragmas are names denoting task units, generic units, or subprograms.

11–17 Suppressing Checks 11.7

15 ELABORATION_CHECK When either a subprogram is called, a task
activation is accomplished, or a generic
instantiation is elaborated, check that the
body of the corresponding unit has already
been elaborated.

16 The following check corresponds to situations in which the exception
STORAGE_ERROR is raised. The only allowed names in the corresponding
pragmas are names denoting access types, task units, or subprograms.

17 STORAGE_CHECK Check that execution of an allocator does
not require more space than is available for
a collection. Check that the space available
for a task or subprogram has not been
exceeded.

18 If an error situation arises in the absence of the corresponding run-time
checks, the execution of the program is erroneous (the results are not defined
by the language).

19 Examples:
pragma SUPPRESS(RANGE_CHECK);
pragma SUPPRESS(INDEX_CHECK, ON => TABLE);

Notes:
20 For certain implementations, it may be impossible or too costly to suppress

certain checks. The corresponding SUPPRESS pragma can be ignored. Hence,
the occurrence of such a pragma within a given unit does not guarantee
that the corresponding exception will not arise; the exceptions may also be
propagated by called units.

In DEC Ada, the pragma SUPPRESS_ALL does not suppress some checks that
are always performed by the hardware and run-time system. For example, on
OpenVMS systems, the checks DIVISION_CHECK and OVERFLOW_CHECK
correspond to hardware checks that cannot be suppressed. The exceptions
that correspond to the checks ACCESS_CHECK and STORAGE_CHECK
may also be raised when the pragma SUPPRESS_ALL is in effect. For more
information, see the DEC Ada run-time reference manuals.

21 References: access type 3.8, access value 3.8, activation 9.3, aggregate 4.3, allocator
4.8, array 3.6, attribute 4.1.4, block statement 5.6, collection 3.8, compatible 3.3.2,
component of an array 3.6, component of a record 3.7, composite type 3.3, constraint
3.3, constraint_error exception 11.1, declarative part 3.9, designate 3.8, dimension 3.6,
discrete range 3.6, discriminant 3.7.1, discriminant constraint 3.7.2, elaboration 3.1
3.9, erroneous 1.6, error situation 11, expanded name 4.1.3, generic body 11.1, generic
instantiation 12.3, generic unit 12, identifier 2.3, index 3.6, index constraint 3.6.1,
indexed component 4.1.1, null access value 3.8, numeric operation 3.5.5 3.5.8 3.5.10,

11.7 Suppressing Checks 11–18

numeric type 3.5, numeric_error exception 11.1, object 3.2, operation 3.3.3, package
body 7.1, package specification 7.1, pragma 2.8, program_error exception 11.1, program
unit 6, propagation of an exception 11.4, range constraint 3.5, record type 3.7, simple
name 4.1, slice 4.1.2, subprogram 6, subprogram body 6.3, subprogram call 6.4, subtype
3.3, subunit 10.2, task 9, task body 9.1, task type 9.1, task unit 9, type 3.3, type mark
3.3.2

actual parameter 6.4 6.4.1, allow 1.6, compilation unit 10.1, function result 6.5,
importing subprograms 13.9a.1.1, parameter 6.2, reference parameter passing
mechanism 13.9a.1.4, scope 8.2

11–19 Suppressing Checks 11.7

12
Generic Units

1 A generic unit is a program unit that is either a generic subprogram or a
generic package. A generic unit is a template, which is parameterized or not,
and from which corresponding (nongeneric) subprograms or packages can be
obtained. The resulting program units are said to be instances of the original
generic unit.

2 A generic unit is declared by a generic declaration. This form of declaration
has a generic formal part declaring any generic formal parameters. An
instance of a generic unit is obtained as the result of a generic instantiation
with appropriate generic actual parameters for the generic formal parameters.
An instance of a generic subprogram is a subprogram. An instance of a generic
package is a package.

3 Generic units are templates. As templates they do not have the properties
that are specific to their nongeneric counterparts. For example, a generic
subprogram can be instantiated but it cannot be called. In contrast, the
instance of a generic subprogram is a nongeneric subprogram; hence, this
instance can be called but it cannot be used to produce further instances.

4 References: declaration 3.1, generic actual parameter 12.3, generic declaration 12.1,
generic formal parameter 12.1, generic formal part 12.1, generic instantiation 12.3,
generic package 12.1, generic subprogram 12.1, instance 12.3, package 7, program unit
6, subprogram 6

12.1 Generic Declarations
1 A generic declaration declares a generic unit, which is either a generic

subprogram or a generic package. A generic declaration includes a
generic formal part declaring any generic formal parameters. A generic
formal parameter can be an object; alternatively (unlike a parameter of a
subprogram), it can be a type or a subprogram.

12–1 Generic Declarations 12.1

2 generic_declaration ::= generic_specification;

generic_specification ::=
generic_formal_part subprogram_specification

| generic_formal_part package_specification

generic_formal_part ::=
generic {generic_parameter_declaration}

generic_parameter_declaration ::=
identifier_list : [in [out]] type_mark [:= expression];

| type identifier is generic_type_definition;
| private_type_declaration
| with subprogram_specification [is name];
| with subprogram_specification [is <>];

generic_type_definition ::=
(<>) | range <> | digits <> | delta <>

| array_type_definition | access_type_definition

3 The terms generic formal object (or simply, formal object), generic formal type
(or simply, formal type), and generic formal subprogram (or simply, formal
subprogram) are used to refer to corresponding generic formal parameters.

4 The only form of subtype indication allowed within a generic formal part
is a type mark (that is, the subtype indication must not include an explicit
constraint). The designator of a generic subprogram must be an identifier.

5 Outside the specification and body of a generic unit, the name of this program
unit denotes the generic unit. In contrast, within the declarative region
associated with a generic subprogram, the name of this program unit denotes
the subprogram obtained by the current instantiation of the generic unit.
Similarly, within the declarative region associated with a generic package,
the name of this program unit denotes the package obtained by the current
instantiation.1

6 The elaboration of a generic declaration has no other effect.

7 Examples of generic formal parts:
generic -- parameterless

generic
SIZE : NATURAL; -- formal object

generic
LENGTH : INTEGER := 200; -- formal object with a

-- default expression

AREA : INTEGER := LENGTH*LENGTH; -- formal object with a
-- default expression

1 See also Appendix G, AI-00286, AI-00367, and AI-00412.

12.1 Generic Declarations 12–2

generic
type ITEM is private; -- formal type
type INDEX is (<>); -- formal type
type ROW is array(INDEX range <>) of ITEM; -- formal type
with function "<"(X, Y : ITEM) return BOOLEAN; -- formal

-- subprogram

8 Examples of generic declarations declaring generic subprograms:
generic

type ELEM is private;
procedure EXCHANGE(U, V : in out ELEM);

generic
type ITEM is private;
with function "*"(U, V : ITEM) return ITEM is <>;

function SQUARING(X : ITEM) return ITEM;

9 Example of a generic declaration declaring a generic package:
generic

type ITEM is private;
type VECTOR is array (POSITIVE range <>) of ITEM;
with function SUM(X, Y : ITEM) return ITEM;

package ON_VECTORS is
function SUM (A, B : VECTOR) return VECTOR;
function SIGMA(A : VECTOR) return ITEM;
LENGTH_ERROR : exception;

end;

Notes:
10 Within a generic subprogram, the name of this program unit acts as the name

of a subprogram. Hence this name can be overloaded, and it can appear
in a recursive call of the current instantiation. For the same reason, this
name cannot appear after the reserved word new in a (recursive) generic
instantiation.

11 An expression that occurs in a generic formal part is either the default
expression for a generic formal object of mode in, or a constituent of an
entry name given as default name for a formal subprogram, or the default
expression for a parameter of a formal subprogram. Default expressions
for generic formal objects and default names for formal subprograms are only
evaluated for generic instantiations that use such defaults. Default expressions
for parameters of formal subprograms are only evaluated for calls of the formal
subprograms that use such defaults. (The usual visibility rules apply to any
name used in a default expression: the denoted entity must therefore be visible
at the place of the expression.)

12 Neither generic formal parameters nor their attributes are allowed constituents
of static expressions (see 4.9).

12–3 Generic Declarations 12.1

13 References: access type definition 3.8, array type definition 3.6, attribute 4.1.4,
constraint 3.3, declaration 3.1, designator 6.1, elaboration has no other effect 3.1,
entity 3.1, expression 4.4, function 6.5, generic instantiation 12.3, identifier 2.3,
identifier list 3.2, instance 12.3, name 4.1, object 3.2, overloading 6.6 8.7, package
specification 7.1, parameter of a subprogram 6.2, private type definition 7.4, procedure
6.1, reserved word 2.9, static expression 4.9, subprogram 6, subprogram specification
6.1, subtype indication 3.3.2, type 3.3, type mark 3.3.2

12.1.1 Generic Formal Objects
1 The first form of generic parameter declaration declares generic formal objects.

The type of a generic formal object is the base type of the type denoted by the
type mark given in the generic parameter declaration. A generic parameter
declaration with several identifiers is equivalent to a sequence of single generic
parameter declarations, as explained in section 3.2.

2 A generic formal object has a mode that is either in or in out. In the absence
of an explicit mode indication in a generic parameter declaration, the mode in
is assumed; otherwise the mode is the one indicated. If a generic parameter
declaration ends with an expression, the expression is the default expression of
the generic formal parameter. A default expression is only allowed if the mode
is in (whether this mode is indicated explicitly or implicitly). The type of a
default expression must be that of the corresponding generic formal parameter.

3 A generic formal object of mode in is a constant whose value is a copy of
the value supplied as the matching generic actual parameter in a generic
instantiation, as described in section 12.3. The type of a generic formal object
of mode in must not be a limited type; the subtype of such a generic formal
object is the subtype denoted by the type mark given in the generic parameter
declaration.

4 A generic formal object of mode in out is a variable and denotes the object
supplied as the matching generic actual parameter in a generic instantiation,
as described in section 12.3. The constraints that apply to the generic formal
object are those of the corresponding generic actual parameter.

Note:
5 The constraints that apply to a generic formal object of mode in out are

those of the corresponding generic actual parameter (not those implied by
the type mark that appears in the generic parameter declaration). Whenever
possible (to avoid confusion) it is recommended that the name of a base type
be used for the declaration of such a formal object. If, however, the base type
is anonymous, it is recommended that the subtype name defined by the type
declaration for the base type be used.

12.1.1 Generic Formal Objects 12–4

6 References: anonymous type 3.3.1, assignment 5.2, base type 3.3, constant
declaration 3.2, constraint 3.3, declaration 3.1, generic actual parameter 12.3, generic
formal object 12.1, generic formal parameter 12.1, generic instantiation 12.3, generic
parameter declaration 12.1, identifier 2.3, limited type 7.4.4, matching generic actual
parameter 12.3, mode 6.1, name 4.1, object 3.2, simple name 4.1, subtype 3.3, type
declaration 3.3, type mark 3.3.2, variable 3.2.1

12.1.2 Generic Formal Types
1 A generic parameter declaration that includes a generic type definition or

a private type declaration declares a generic formal type. A generic formal
type denotes the subtype supplied as the corresponding actual parameter in a
generic instantiation, as described in 12.3(d). However, within a generic unit,
a generic formal type is considered as being distinct from all other (formal
or nonformal) types. The form of constraint applicable to a formal type in a
subtype indication depends on the class of the type as for a nonformal type.

2 The only form of discrete range that is allowed within the declaration of a
generic formal (constrained) array type is a type mark.

3 The discriminant part of a generic formal private type must not include
a default expression for a discriminant. (Consequently, a variable that is
declared by an object declaration must be constrained if its type is a generic
formal type with discriminants.)

4 Within the declaration and body of a generic unit, the operations available for
values of a generic formal type (apart from any additional operation specified
by a generic formal subprogram) are determined by the generic parameter
declaration for the formal type:

5 (a) For a private type declaration, the available operations are those
defined in section 7.4.2 (in particular, assignment, equality, and
inequality are available for a private type unless it is limited).

6 (b) For an array type definition, the available operations are those defined
in section 3.6.2 (for example, they include the formation of indexed
components and slices).

7 (c) For an access type definition, the available operations are those
defined in section 3.8.2 (for example, allocators can be used).

8 The four forms of generic type definition in which a box appears (that is, the
compound delimiter <>) correspond to the following major forms of scalar type:

9 (d) Discrete types: <>

The available operations are the operations common to enumeration
and integer types; these are defined in section 3.5.5.

12–5 Generic Formal Types 12.1.2

10 (e) Integer types: range <>

The available operations are the operations of integer types defined in
section 3.5.5.

11 (f) Floating point types: digits <>

The available operations are those defined in section 3.5.8.

12 (g) Fixed point types: delta <>

The available operations are those defined in section 3.5.10.

13 In all of the above cases (a) through (f), each operation implicitly associated
with a formal type (that is, other than an operation specified by a formal
subprogram) is implicitly declared at the place of the declaration of the formal
type. The same holds for a formal fixed point type, except for the multiplying
operators that deliver a result of the type universal_fixed (see 4.5.5), since
these special operators are declared in the package STANDARD.

14 For an instantiation of the generic unit, each of these operations is the
corresponding basic operation or predefined operator of the matching actual
type. For an operator, this rule applies even if the operator has been redefined
for the actual type or for some parent type of the actual type.

15 Examples of generic formal types:
type ITEM is private;
type BUFFER(LENGTH : NATURAL) is limited private;

type ENUM is (<>);
type INT is range <>;
type ANGLE is delta <>;
type MASS is digits <>;

type TABLE is array (ENUM) of ITEM;

16 Example of a generic formal part declaring a formal integer type:
generic

type RANK is range <>;
FIRST : RANK := RANK’FIRST;
SECOND : RANK := FIRST + 1; -- the operator "+" of

-- the type RANK

17 References: access type definition 3.8, allocator 4.8, array type definition 3.6,
assignment 5.2, body of a generic unit 12.2, class of type 3.3, constraint 3.3,
declaration 3.1, declaration of a generic unit 12.1, discrete range 3.6, discrete type
3.5, discriminant part 3.7.1, enumeration type 3.5.1, equality 4.5.2, fixed point type
3.5.9, floating point type 3.5.7, generic actual type 12.3, generic formal part 12.1,
generic formal subprogram 12.1.3, generic formal type 12.1, generic parameter
declaration 12.1, generic type definition 12.1, indexed component 4.1.1, inequality
4.5.2, instantiation 12.3, integer type 3.5.4, limited private type 7.4.4, matching generic

12.1.2 Generic Formal Types 12–6

actual type 12.3.2 12.3.3 12.3.4 12.3.5, multiplying operator 4.5 4.5.5, operation 3.3,
operator 4.5, parent type 3.4, private type definition 7.4, scalar type 3.5, slice 4.1.2,
standard package 8.6 C, subtype indication 3.3.2, type mark 3.3.2, universal_fixed 3.5.9

12.1.3 Generic Formal Subprograms
1 A generic parameter declaration that includes a subprogram specification

declares a generic formal subprogram.

2 Two alternative forms of defaults can be specified in the declaration of a
generic formal subprogram. In these forms, the subprogram specification is
followed by the reserved word is and either a box or the name of a subprogram
or entry. The matching rules for these defaults are explained in section 12.3.6.

3 A generic formal subprogram denotes the subprogram, enumeration literal,
or entry supplied as the corresponding generic actual parameter in a generic
instantiation, as described in section 12.3(f).

4 Examples of generic formal subprograms:
with function INCREASE(X : INTEGER) return INTEGER;
with function SUM(X, Y : ITEM) return ITEM;

with function "+"(X, Y : ITEM) return ITEM is <>;
with function IMAGE(X : ENUM) return STRING is ENUM’IMAGE;

with procedure UPDATE is DEFAULT_UPDATE;

Notes:
5 The constraints that apply to a parameter of a formal subprogram are

those of the corresponding parameter in the specification of the matching
actual subprogram (not those implied by the corresponding type mark in the
specification of the formal subprogram). A similar remark applies to the result
of a function. Whenever possible (to avoid confusion), it is recommended that
the name of a base type be used rather than the name of a subtype in any
declaration of a formal subprogram. If, however, the base type is anonymous,
it is recommended that the subtype name defined by the type declaration be
used.

6 The type specified for a formal parameter of a generic formal subprogram can
be any visible type, including a generic formal type of the same generic formal
part.

7 References: anonymous type 3.3.1, base type 3.3, box delimiter 12.1.2, constraint
3.3, designator 6.1, generic actual parameter 12.3, generic formal function 12.1, generic
formal subprogram 12.1, generic instantiation 12.3, generic parameter declaration
12.1, identifier 2.3, matching generic actual subprogram 12.3.6, operator symbol 6.1,
parameter of a subprogram 6.2, renaming declaration 8.5, reserved word 2.9, scope 8.2,
subprogram 6, subprogram specification 6.1, subtype 3.3.2, type 3.3, type mark 3.3.2

12–7 Generic Formal Subprograms 12.1.3

12.1a Pragma INLINE_GENERIC
DEC Ada provides the pragma INLINE_GENERIC to direct the compiler to
attempt inline expansion of the body created for each instantiation of the
named generic declarations or for the particular named instance. The form of
this pragma is as follows:

pragma INLINE_GENERIC (name {, name});

Each name is either the name of a generic declaration or the name of an
instance of a generic declaration. The pragma INLINE_GENERIC is only
allowed at the place of a declarative item in a declarative part or package
specification, or after a library unit in a compilation, but before any subsequent
compilation unit.

If the pragma appears at the place of a declarative item, each name must
denote a generic subprogram or package, or a (nongeneric) subprogram or
package that is an instance of a generic subprogram or package, declared by an
earlier declarative item of the same declarative part or package specification.
If several (nongeneric, overloaded) subprograms satisfy this requirement, the
pragma applies to all of them. If the pragma appears after a given library unit,
the only name allowed is the name of that unit. If the name of a subprogram
that is an instance of a generic subprogram is mentioned in the pragma, it
indicates that only inline expansion of the instance itself is desired. It does not
indicate that inline expansion of calls of the subprogram is desired.

If the name specified by a pragma INLINE_GENERIC is an instantiation
declared by a renaming declaration, the pragma INLINE_GENERIC applies to
the instantiation only if the instantiation that has been renamed, the renaming
declaration, and the pragma all occur in the same declarative part or package
specification. The pragma is ignored if these conditions are not satisfied.

The meaning of an instantiation is not changed by the pragma INLINE_
GENERIC.

Inline expansion of an instance creates a dependence of the unit containing the
instantiation upon the corresponding generic proper body (the template and its
subunits, if any). DEC Ada recognizes this dependence when deciding on the
need for recompilation. See the DEC Ada program development manuals for
more information on DEC Ada recompilation requirements.

12.1a Pragma INLINE_GENERIC 12–8

Notes:
The pragma INLINE_GENERIC causes inline expansion of the generic body
(and substitution of actual parameters for any generic formal parameters) at
the point of any instantiation to which the pragma applies. Because of this
effect, the pragma INLINE_GENERIC differs from the pragma INLINE in
two respects. First, the pragma INLINE_GENERIC for a generic subprogram
or an instance of a generic subprogram does not indicate a desire that calls
of the subprograms are to be expanded inline. Second, the pragma INLINE_
GENERIC can be given for a generic package or for an instance of a generic
package (while the pragma INLINE cannot).

If the pragma INLINE is given for a generic subprogram, the pragma INLINE_
GENERIC may also be given. Similarly, if the pragma INLINE is given for an
instance of a generic subprogram, the pragma INLINE_GENERIC may also be
given. In such cases, if calls are expanded inline, then the pragma INLINE_
GENERIC has no additional effect. However, if calls are not expanded inline,
the instance may still be expanded inline. (If only the pragma INLINE is
given, and calls are not expanded inline, then the instance cannot be expanded
inline either.)

If a pragma INLINE_GENERIC appears at the place of a declarative item
and a name in the pragma is overloaded, the pragma applies only to those
instantiations whose declarations occur (explicitly) earlier in the same
declarative part or package specification.

References: compilation unit 10.1, declarative item 3.9, declarative part 3.9, generic
declaration 12.1, generic package 12.1, generic subprogram 12.1, generic template
12 12.2, instance 12.3, instantiation 12.3, library unit 10.1, name 4.1, package
specification 7.1, renaming declaration 8.5, subprogram 6, subunit 10.2

12.1b Pragma SHARE_GENERIC
DEC Ada provides the pragma SHARE_GENERIC to direct the compiler to
attempt sharing of the code generated for each instantiation of the named
generic declarations or for the particular named instances. The form of this
pragma is as follows:

pragma SHARE_GENERIC (name {, name});

Each name is either the name of a generic declaration or the name of an
instance of a generic declaration. The pragma SHARE_GENERIC is only
allowed at the place of a declarative item in a declarative part or package
specification, or after a library unit in a compilation, but before any subsequent
compilation unit.

12–9 Pragma SHARE_GENERIC 12.1b

If the pragma appears at the place of a declarative item, each name must
denote a generic subprogram or package, or a (nongeneric) subprogram or
package that is an instance of a generic subprogram or package, declared by an
earlier declarative item of the same declarative part or package specification.
If several (nongeneric, overloaded) subprograms satisfy this requirement, the
pragma applies to all of them. If the pragma appears after a given library unit,
the only name allowed is the name of that unit.

If the name specified by a pragma SHARE_GENERIC is an instantiation
declared by a renaming declaration, the pragma SHARE_GENERIC applies to
the instantiation only if the instantiation that has been renamed, the renaming
declaration, and the pragma all occur in the same declarative part or package
specification. The pragma is ignored if these conditions are not satisfied.

The meaning of an instantiation is not changed by the pragma SHARE_
GENERIC.

The pragmas SHARE_GENERIC and INLINE_GENERIC cannot apply to
the same generic declaration. However, the pragma INLINE_GENERIC can
be specified for an instance even if the pragma SHARE_GENERIC applies
to the corresponding generic declaration. In this case, the pragma specified
for the instance overrides the pragma that applies to the generic declaration,
and the expansion of the particular instance is expanded inline. Similarly, the
pragma SHARE_GENERIC can be specified for an instance even if the pragma
INLINE_GENERIC applies to the corresponding generic declaration. Again,
the pragma specified for the instance overrides the pragma that applies to the
generic declaration.

Notes:
The pragma SHARE_GENERIC causes the code for an instance to be generated
in such a manner as to allow the same code to be shared by other instances of
the same generic under some conditions.

References: compilation unit 10.1, declarative item 3.9, declarative part 3.9, generic
declaration 12.1, generic package 12.1, generic subprogram 12.1, generic template
12 12.2, instance 12.3, instantiation 12.3, library unit 10.1, name 4.1, package
specification 7.1, renaming declaration 8.5, subprogram 6, subunit 10.2

12.2 Generic Bodies
1 The body of a generic subprogram or generic package is a template for the

bodies of the corresponding subprograms or packages obtained by generic
instantiations. The syntax of a generic body is identical to that of a nongeneric
body.2

2 See also Appendix G, AI-00328.

12.2 Generic Bodies 12–10

2 For each declaration of a generic subprogram, there must be a corresponding
body.

3 The elaboration of a generic body has no other effect than to establish that the
body can from then on be used as the template for obtaining the corresponding
instances.

4 Example of a generic procedure body:
procedure EXCHANGE(U, V : in out ELEM) is -- see example in 12.1

T : ELEM; -- the generic formal type
begin

T := U;
U := V;
V := T;

end EXCHANGE;

5 Example of a generic function body:
function SQUARING(X : ITEM) return ITEM is -- see example in 12.1
begin

return X*X; -- the formal operator "*"
end;

6 Example of a generic package body:
package body ON_VECTORS is -- see example in 12.1

function SUM(A, B : VECTOR) return VECTOR is
RESULT : VECTOR(A’RANGE); -- the formal type VECTOR
BIAS : constant INTEGER := B’FIRST - A’FIRST;

begin
if A’LENGTH /= B’LENGTH then

raise LENGTH_ERROR;
end if;
for N in A’RANGE loop

RESULT(N) := SUM(A(N), B(N + BIAS)); -- the formal
-- function SUM

end loop;
return RESULT;

end;

function SIGMA(A : VECTOR) return ITEM is
TOTAL : ITEM := A(A’FIRST); -- the formal

-- type ITEM
begin

for N in A’FIRST + 1 .. A’LAST loop
TOTAL := SUM(TOTAL, A(N)); -- the formal

-- function SUM
end loop;
return TOTAL;

end;
end;

12–11 Generic Bodies 12.2

7 References: body 3.9, elaboration 3.9, generic body 12.1, generic instantiation 12.3,
generic package 12.1, generic subprogram 12.1, instance 12.3, package body 7.1,
package 7, subprogram 6, subprogram body 6.3

12.3 Generic Instantiation
1 An instance of a generic unit is declared by a generic instantiation.

2 generic_instantiation ::=
package identifier is

new generic_package_name [generic_actual_part];
| procedure identifier is

new generic_procedure_name [generic_actual_part];
| function designator is

new generic_function_name [generic_actual_part];

generic_actual_part ::=
(generic_association {, generic_association})

generic_association ::=
[generic_formal_parameter =>] generic_actual_parameter

generic_formal_parameter ::=
parameter_simple_name | operator_symbol

generic_actual_parameter ::= expression | variable_name
| subprogram_name | entry_name | type_mark

3 An explicit generic actual parameter must be supplied for each generic formal
parameter, unless the corresponding generic parameter declaration specifies
that a default can be used. Generic associations can be either positional or
named in the same manner as parameter associations of subprogram calls
(see 6.4). If two or more formal subprograms have the same designator, then
named associations are not allowed for the corresponding generic parameters.

4 Each generic actual parameter must match the corresponding generic formal
parameter. An expression can match a formal object of mode in; a variable
name can match a formal object of mode in out; a subprogram name or an
entry name can match a formal subprogram; a type mark can match a formal
type. The detailed rules defining the allowed matches are given in sections
12.3.1 to 12.3.6; these are the only allowed matches.

5 The instance is a copy of the generic unit, apart from the generic formal
part; thus the instance of a generic package is a package, that of a generic
procedure is a procedure, and that of a generic function is a function. For each
occurrence, within the generic unit, of a name that denotes a given entity, the
following list defines which entity is denoted by the corresponding occurrence
within the instance. 3

3 See also Appendix G, AI-00398, AI-00409, and AI-00483.

12.3 Generic Instantiation 12–12

6 (a) For a name that denotes the generic unit: The corresponding
occurrence denotes the instance.

7 (b) For a name that denotes a generic formal object of mode in: The
corresponding name denotes a constant whose value is a copy of the
value of the associated generic actual parameter.

8 (c) For a name that denotes a generic formal object of mode in out: The
corresponding name denotes the variable named by the associated
generic actual parameter.

9 (d) For a name that denotes a generic formal type: The corresponding
name denotes the subtype named by the associated generic actual
parameter (the actual subtype).

10 (e) For a name that denotes a discriminant of a generic formal type: The
corresponding name denotes the corresponding discriminant (there
must be one) of the actual type associated with the generic formal
type.

11 (f) For a name that denotes a generic formal subprogram: The
corresponding name denotes the subprogram, enumeration literal, or
entry named by the associated generic actual parameter (the actual
subprogram).

12 (g) For a name that denotes a formal parameter of a generic formal
subprogram: The corresponding name denotes the corresponding
formal parameter of the actual subprogram associated with the formal
subprogram.

13 (h) For a name that denotes a local entity declared within the generic
unit: The corresponding name denotes the entity declared by the
corresponding local declaration within the instance.

14 (i) For a name that denotes a global entity declared outside of the generic
unit: The corresponding name denotes the same global entity.

15 Similar rules apply to operators and basic operations: in particular, formal
operators follow a rule similar to rule (f), local operations follow a rule similar
to rule (h), and operations for global types follow a rule similar to rule (i). In
addition, if within the generic unit a predefined operator or basic operation of
a formal type is used, then within the instance the corresponding occurrence
refers to the corresponding predefined operation of the actual type associated
with the formal type.

16 The above rules apply also to any type mark or (default) expression given
within the generic formal part of the generic unit.

12–13 Generic Instantiation 12.3

17 For the elaboration of a generic instantiation, each expression supplied as an
explicit generic actual parameter is first evaluated, as well as each expression
that appears as a constituent of a variable name or entry name supplied as an
explicit generic actual parameter; these evaluations proceed in some order that
is not defined by the language. Then, for each omitted generic association (if
any), the corresponding default expression or default name is evaluated; such
evaluations are performed in the order of the generic parameter declarations.
Finally, the implicitly generated instance is elaborated. The elaboration of a
generic instantiation may also involve certain constraint checks as described in
later subsections.4

18 Recursive generic instantiation is not allowed in the following sense: if a
given generic unit includes an instantiation of a second generic unit, then the
instance generated by this instantiation must not include an instance of the
first generic unit (whether this instance is generated directly, or indirectly by
intermediate instantiations).

19 Examples of generic instantiations (see 12.1):
procedure SWAP is new EXCHANGE(ELEM => INTEGER);
procedure SWAP is new EXCHANGE(CHARACTER); -- SWAP is overloaded

function SQUARE is new SQUARING(INTEGER); -- "*" of INTEGER
-- used by default

function SQUARE is new SQUARING(ITEM => MATRIX,
"*" => MATRIX_PRODUCT);

function SQUARE is new SQUARING(MATRIX, MATRIX_PRODUCT);
-- same as previous

package INT_VECTORS is new ON_VECTORS(INTEGER, TABLE, "+");

20 Examples of uses of instantiated units:
SWAP(A, B);
A := SQUARE(A);

T : TABLE(1 .. 5) := (10, 20, 30, 40, 50);
N : INTEGER := INT_VECTORS.SIGMA(T); -- 150 (see 12.2 for

-- the body of SIGMA)

use INT_VECTORS;
M : INTEGER := SIGMA(T); -- 150

4 See also Appendix G, AI-00237 and AI-00365.

12.3 Generic Instantiation 12–14

Notes:
21 Omission of a generic actual parameter is only allowed if a corresponding

default exists. If default expressions or default names (other than simple
names) are used, they are evaluated in the order in which the corresponding
generic formal parameters are declared.

22 If two overloaded subprograms declared in a generic package specification
differ only by the (formal) type of their parameters and results, then there
exist legal instantiations for which all calls of these subprograms from outside
the instance are ambiguous. For example:

generic
type A is (<>);
type B is private;

package G is
function NEXT(X : A) return A;
function NEXT(X : B) return B;

end;

package P is new G(A => BOOLEAN, B => BOOLEAN);
-- calls of P.NEXT are ambiguous

23 References: declaration 3.1, designator 6.1, discriminant 3.7.1, elaboration 3.1 3.9,
entity 3.1, entry name 9.5, evaluation 4.5, expression 4.4, generic formal object 12.1,
generic formal parameter 12.1, generic formal subprogram 12.1, generic formal type
12.1, generic parameter declaration 12.1, global declaration 8.1, identifier 2.3, implicit
declaration 3.1, local declaration 8.1, mode in 12.1.1, mode in out 12.1.1, name 4.1,
operation 3.3, operator symbol 6.1, overloading 6.6 8.7, package 7, simple name 4.1,
subprogram 6, subprogram call 6.4, subprogram name 6.1, subtype declaration 3.3.2,
type mark 3.3.2, variable 3.2.1, visibility 8.3

12.3.1 Matching Rules for Formal Objects
1 A generic formal parameter of mode in of a given type is matched by an

expression of the same type. If a generic unit has a generic formal object
of mode in, a check is made that the value of the expression belongs to the
subtype denoted by the type mark, as for an explicit constant declaration
(see 3.2.1). The exception CONSTRAINT_ERROR is raised if this check fails.

2 A generic formal parameter of mode in out of a given type is matched by
the name of a variable of the same type. The variable must not be a formal
parameter of mode out or a subcomponent thereof. The name must denote a
variable for which renaming is allowed (see 8.5).

12–15 Matching Rules for Formal Objects 12.3.1

Notes:
3 The type of a generic actual parameter of mode in must not be a limited type.

The constraints that apply to a generic formal parameter of mode in out are
those of the corresponding generic actual parameter (see 12.1.1).

4 References: constraint 3.3, constraint_error exception 11.1, expression 4.4, formal
parameter 6.1, generic actual parameter 12.3, generic formal object 12.1.1, generic
formal parameter 12.1, generic instantiation 12.3, generic unit 12.1, limited type 7.4.4,
matching generic actual parameter 12.3, mode in 12.1.1, mode in out 12.1.1, mode out
6.2, name 4.1, raising of exceptions 11, satisfy 3.3, subcomponent 3.3, type 3.3, type
mark 3.3.2, variable 3.2.1

12.3.2 Matching Rules for Formal Private Types
1 A generic formal private type is matched by any type or subtype (the actual

subtype) that satisfies the following conditions:

2 • If the formal type is not limited, the actual type must not be a limited
type. (If, on the other hand, the formal type is limited, no such
condition is imposed on the corresponding actual type, which can be
limited or not limited.)

3 • If the formal type has a discriminant part, the actual type must be a
type with the same number of discriminants; the type of a discriminant
that appears at a given position in the discriminant part of the actual
type must be the same as the type of the discriminant that appears
at the same position in the discriminant part of the formal type; and
the actual subtype must be unconstrained. (If, on the other hand, the
formal type has no discriminants, the actual type is allowed to have
discriminants.)

4 Furthermore, consider any occurrence of the name of the formal type at a place
where this name is used as an unconstrained subtype indication. The actual
subtype must not be an unconstrained array type or an unconstrained type
with discriminants, if any of these occurrences is at a place where either a
constraint or default discriminants would be required for an array type or for
a type with discriminants (see 3.6.1 and 3.7.2). The same restriction applies to
occurrences of the name of a subtype of the formal type, and to occurrences of
the name of any type or subtype derived, directly or indirectly, from the formal
type.5

5 See also Appendix G, AI-00037.

12.3.2 Matching Rules for Formal Private Types 12–16

5 If a generic unit has a formal private type with discriminants, the elaboration
of a corresponding generic instantiation checks that the subtype of each
discriminant of the actual type is the same as the subtype of the corresponding
discriminant of the formal type. The exception CONSTRAINT_ERROR is
raised if this check fails.

6 References: array type 3.6, constraint 3.3, constraint_error exception 11.1, default
expression for a discriminant 3.7.1, derived type 3.4, discriminant 3.7.1, discriminant
part 3.7.1, elaboration 3.9, generic actual type 12.3, generic body 12.2, generic
formal type 12.1.2, generic instantiation 12.3, generic specification 12.1, limited type
7.4.4, matching generic actual parameter 12.3, name 4.1, private type 7.4, raising of
exceptions 11, subtype 3.3, subtype indication 3.3.2, type 3.3, type with discriminants
3.3, unconstrained array type 3.6, unconstrained subtype 3.3

12.3.3 Matching Rules for Formal Scalar Types
1 A generic formal type defined by (<>) is matched by any discrete subtype

(that is, any enumeration or integer subtype). A generic formal type defined
by range <> is matched by any integer subtype. A generic formal type defined
by digits <> is matched by any floating point subtype. A generic formal type
defined by delta <> is matched by any fixed point subtype. No other matches
are possible for these generic formal types.

2 References: box delimiter 12.1.2, discrete type 3.5, enumeration type 3.5.1, fixed
point type 3.5.9, floating point type 3.5.7, generic actual type 12.3, generic formal
type 12.1.2, generic type definition 12.1, integer type 3.5.4, matching generic actual
parameter 12.3, scalar type 3.5

12.3.4 Matching Rules for Formal Array Types
1 A formal array type is matched by an actual array subtype that satisfies the

following conditions:

2 • The formal array type and the actual array type must have the same
dimensionality; the formal type and the actual subtype must be either
both constrained or both unconstrained.

3 • For each index position, the index type must be the same for the actual
array type as for the formal array type.

4 • The component type must be the same for the actual array type as for
the formal array type. If the component type is other than a scalar
type, then the component subtypes must be either both constrained or
both unconstrained.

12–17 Matching Rules for Formal Array Types 12.3.4

5 If a generic unit has a formal array type, the elaboration of a corresponding
instantiation checks that the constraints (if any) on the component type are the
same for the actual array type as for the formal array type, and likewise that
for any given index position the index subtypes or the discrete ranges have
the same bounds. The exception CONSTRAINT_ERROR is raised if this check
fails.

6 Example:
-- given the generic package

generic
type ITEM is private;
type INDEX is (<>);
type VECTOR is array (INDEX range <>) of ITEM;
type TABLE is array (INDEX) of ITEM;

package P is
...

end;

-- and the types

type MIX is array (COLOR range <>) of BOOLEAN;
type OPTION is array (COLOR) of BOOLEAN;

-- then MIX can match VECTOR and OPTION can match TABLE

package R is new P(ITEM => BOOLEAN, INDEX => COLOR,
VECTOR => MIX, TABLE => OPTION);

-- Note that MIX cannot match TABLE and
-- OPTION cannot match VECTOR

Note:
7 For the above rules, if any of the index or component types of the formal array

type is itself a formal type, then within the instance its name denotes the
corresponding actual subtype (see 12.3(d)).

8 References: array type 3.6, array type definition 3.6, component of an array 3.6,
constrained array type 3.6, constraint 3.3, constraint_error exception 11.1, elaboration
3.9, formal type 12.1, generic formal type 12.1.2, generic instantiation 12.3, index 3.6,
index constraint 3.6.1, matching generic actual parameter 12.3, raise statement 11.3,
subtype 3.3, unconstrained array type 3.6

12.3.5 Matching Rules for Formal Access Types
1 A formal access type is matched by an actual access subtype if the type of the

designated objects is the same for the actual type as for the formal type. If the
designated type is other than a scalar type, then the designated subtypes must
be either both constrained or both unconstrained.

12.3.5 Matching Rules for Formal Access Types 12–18

2 If a generic unit has a formal access type, the elaboration of a corresponding
instantiation checks that any constraints on the designated objects are the
same for the actual access subtype as for the formal access type. The exception
CONSTRAINT_ERROR is raised if this check fails.

3 Example:
-- the formal types of the generic package

generic
type NODE is private;
type LINK is access NODE;

package P is
...

end;

-- can be matched by the actual types

type CAR;
type CAR_NAME is access CAR;

type CAR is
record

PRED, SUCC : CAR_NAME;
NUMBER : LICENSE_NUMBER;
OWNER : PERSON;

end record;

-- in the following generic instantiation

package R is new P(NODE => CAR, LINK => CAR_NAME);

Note:
4 For the above rules, if the designated type is itself a formal type, then within

the instance its name denotes the corresponding actual subtype (see 12.3(d)).

5 References: access type 3.8, access type definition 3.8, constraint 3.3, constraint_
error exception 11.1, designate 3.8, elaboration 3.9, generic formal type 12.1.2, generic
instantiation 12.3, matching generic actual parameter 12.3, object 3.2, raise statement
11.3, value of access type 3.8

12.3.6 Matching Rules for Formal Subprograms
1 A formal subprogram is matched by an actual subprogram, enumeration literal,

or entry if both have the same parameter and result type profile (see 6.6); in
addition, parameter modes must be identical for formal parameters that are at
the same parameter position.

2 If a generic unit has a default subprogram specified by a name, this name must
denote a subprogram, an enumeration literal, or an entry, that matches the
formal subprogram (in the above sense). The evaluation of the default name

12–19 Matching Rules for Formal Subprograms 12.3.6

takes place during the elaboration of each instantiation that uses the default,
as defined in section 12.3.6

3 If a generic unit has a default subprogram specified by a box, the corresponding
actual parameter can be omitted if a subprogram, enumeration literal, or entry
matching the formal subprogram, and with the same designator as the formal
subprogram, is directly visible at the place of the generic instantiation; this
subprogram, enumeration literal, or entry is then used by default (there
must be exactly one subprogram, enumeration literal, or entry satisfying the
previous conditions).

4 Example:
-- given the generic function specification

generic
type ITEM is private;
with function "*" (U, V : ITEM) return ITEM is <>;

function SQUARING(X : ITEM) return ITEM;

-- and the function

function MATRIX_PRODUCT(A, B : MATRIX) return MATRIX;

-- the following instantiation is possible

function SQUARE is new SQUARING(MATRIX, MATRIX_PRODUCT);

-- the following instantiations are equivalent

function SQUARE is new SQUARING(ITEM => INTEGER, "*" => "*");
function SQUARE is new SQUARING(INTEGER, "*");
function SQUARE is new SQUARING(INTEGER);

Notes:
5 The matching rules for formal subprograms state requirements that are similar

to those applying to subprogram renaming declarations (see 8.5). In particular,
the name of a parameter of the formal subprogram need not be the same as
that of the corresponding parameter of the actual subprogram; similarly, for
these parameters, default expressions need not correspond.

6 A formal subprogram is matched by an attribute of a type if the attribute is a
function with a matching specification. An enumeration literal of a given type
matches a parameterless formal function whose result type is the given type.

7 References: attribute 4.1.4, box delimiter 12.1.2, designator 6.1, entry 9.5, function
6.5, generic actual type 12.3, generic formal subprogram 12.1.3, generic formal type
12.1.2, generic instantiation 12.3, matching generic actual parameter 12.3, name 4.1,
parameter and result type profile 6.3, subprogram 6, subprogram specification 6.1,
subtype 3.3, visibility 8.3

6 See also Appendix G, AI-00038.

12.3.6 Matching Rules for Formal Subprograms 12–20

12.4 Example of a Generic Package
1 The following example provides a possible formulation of stacks by means of a

generic package. The size of each stack and the type of the stack elements are
provided as generic parameters.

2 generic
SIZE : POSITIVE;
type ITEM is private;

package STACK is
procedure PUSH(E : in ITEM);
procedure POP (E : out ITEM);
OVERFLOW, UNDERFLOW : exception;

end STACK;

package body STACK is

type TABLE is array (POSITIVE range <>) of ITEM;
SPACE : TABLE(1 .. SIZE);
INDEX : NATURAL := 0;

procedure PUSH(E : in ITEM) is
begin

if INDEX >= SIZE then
raise OVERFLOW;

end if;
INDEX := INDEX + 1;
SPACE(INDEX) := E;

end PUSH;

procedure POP(E : out ITEM) is
begin

if INDEX = 0 then
raise UNDERFLOW;

end if;
E := SPACE(INDEX);
INDEX := INDEX - 1;

end POP;

end STACK;

3 Instances of this generic package can be obtained as follows:

package STACK_INT is new STACK(SIZE => 200, ITEM => INTEGER);
package STACK_BOOL is new STACK(100, BOOLEAN);

4 Thereafter, the procedures of the instantiated packages can be called as
follows:

STACK_INT.PUSH(N);
STACK_BOOL.PUSH(TRUE);

12–21 Example of a Generic Package 12.4

5 Alternatively, a generic formulation of the type STACK can be given as follows
(package body omitted):

generic
type ITEM is private;

package ON_STACKS is
type STACK(SIZE : POSITIVE) is limited private;
procedure PUSH(S : in out STACK; E : in ITEM);
procedure POP (S : in out STACK; E : out ITEM);
OVERFLOW, UNDERFLOW : exception;

private
type TABLE is array (POSITIVE range <>) of ITEM;
type STACK(SIZE : POSITIVE) is

record
SPACE : TABLE(1 .. SIZE);
INDEX : NATURAL := 0;

end record;
end;

6 In order to use such a package, an instantiation must be created and thereafter
stacks of the corresponding type can be declared:

declare
package STACK_REAL is new ON_STACKS(REAL); use STACK_REAL;
S : STACK(100);

begin
...
PUSH(S, 2.54);
...

end;

12.4 Example of a Generic Package 12–22

13
Representation Clauses and

Implementation-Dependent Features

1 This chapter describes representation clauses, certain implementation-
dependent features, and other features that are used in system programming.

13.1 Representation Clauses
1 Representation clauses specify how the types of the language are to be mapped

onto the underlying machine. They can be provided to give more efficient
representation or to interface with features that are outside the domain of the
language (for example, peripheral hardware).

2 representation_clause ::=
type_representation_clause | address_clause

type_representation_clause ::= length_clause
| enumeration_representation_clause
| record_representation_clause

3 A type representation clause applies either to a type or to a first named
subtype (that is, to a subtype declared by a type declaration, the base type
being therefore anonymous). Such a representation clause applies to all objects
that have this type or this first named subtype. At most one enumeration
or record representation clause is allowed for a given type: an enumeration
representation clause is only allowed for an enumeration type; a record
representation clause, only for a record type. (On the other hand, more than
one length clause can be provided for a given type; moreover, both a length
clause and an enumeration or record representation clause can be provided.)
A length clause is the only form of representation clause allowed for a type
derived from a parent type that has (user-defined) derivable subprograms. 1

4 An address clause applies either to an object; to a subprogram, package, or
task unit; or to an entry. At most one address clause is allowed for any of these
entities.

1 See also Appendix G, AI-00040, AI-00138, and AI-00422.

13–1 Representation Clauses 13.1

In DEC Ada, an address clause can apply to an object or imported subprogram.
On Digital UNIX systems, an address clause can also apply to a single entry.
See section 13.5 for more information.

5 A representation clause and the declaration of the entity to which the clause
applies must both occur immediately within the same declarative part, package
specification, or task specification; the declaration must occur before the
clause. In the absence of a representation clause for a given declaration, a
default representation of this declaration is determined by the implementation.
Such a default determination occurs no later than the end of the immediately
enclosing declarative part, package specification, or task specification. For a
declaration given in a declarative part, this default determination occurs before
any enclosed body.

6 In the case of a type, certain occurrences of its name imply that the
representation of the type must already have been determined. Consequently
these occurrences force the default determination of any aspect of the
representation not already determined by a prior type representation clause.
This default determination is also forced by similar occurrences of the name
of a subtype of the type, or of the name of any type or subtype that has
subcomponents of the type. A forcing occurrence is any occurrence other
than in a type or subtype declaration, a subprogram specification, an entry
declaration, a deferred constant declaration, a pragma, or a representation
clause for the type itself. In any case, an occurrence within an expression is
always forcing. 2

7 A representation clause for a given entity must not appear after an occurrence
of the name of the entity if this occurrence forces a default determination of
representation for the entity.3

8 Similar restrictions exist for address clauses. For an object, any occurrence
of its name (after the object declaration) is a forcing occurrence. For a
subprogram, package, task unit, or entry, any occurrence of a representation
attribute of such an entity is a forcing occurrence.

9 The effect of the elaboration of a representation clause is to define the
corresponding aspects of the representation.

10 The interpretation of some of the expressions that appear in representation
clauses is implementation-dependent, for example, expressions specifying
addresses. An implementation may limit its acceptance of representation
clauses to those that can be handled simply by the underlying hardware.
If a representation clause is accepted by an implementation, the compiler

2 See also Appendix G, AI-00039, AI-00186, AI-00321, and AI-00322.
3 See also Appendix G, AI-00039 and AI-00371.

13.1 Representation Clauses 13–2

must guarantee that the net effect of the program is not changed by the
presence of the clause, except for address clauses and for parts of the
program that interrogate representation attributes. If a program contains a
representation clause that is not accepted, the program is illegal. For each
implementation, the allowed representation clauses, and the conventions used
for implementation-dependent expressions, must be documented in Appendix F
of the reference manual.

The allowed representation clauses and the conventions used for
implementation-dependent expressions are documented in this chapter
and summarized in Appendix F.

11 Whereas a representation clause is used to impose certain characteristics of
the mapping of an entity onto the underlying machine, pragmas can be used
to provide an implementation with criteria for its selection of such a mapping.
The pragma PACK specifies that storage minimization should be the main
criterion when selecting the representation of a record or array type. Its form
is as follows:

pragma PACK(type_simple_name);

12 Packing means that gaps between the storage areas allocated to consecutive
components should be minimized. It need not, however, affect the mapping
of each component onto storage. This mapping can itself be influenced by
a pragma (or controlled by a representation clause) for the component or
component type. The position of a PACK pragma, and the restrictions on the
named type, are governed by the same rules as for a representation clause;
in particular, the pragma must appear before any use of a representation
attribute of the packed entity.

13 The pragma PACK is the only language-defined representation pragma.
Additional representation pragmas may be provided by an implementation;
these must be documented in Appendix F. (In contrast to representation
clauses, a pragma that is not accepted by the implementation is ignored.)

In DEC Ada, each noncomposite component (scalar, access, and so on) is
aligned by default on an appropriate boundary, according to the following
conventions:

• On OpenVMS VAX systems, all noncomposite components are aligned on
byte boundaries.

• On Alpha systems, all noncomposite components are aligned on natural
boundaries. For example, 1-byte components are aligned on byte
boundaries, 2-byte components on 2-byte boundaries, 4-byte components on
4-byte boundaries, and so on.

13–3 Representation Clauses 13.1

Each composite component is aligned so that it satisfies the maximum
alignment required for its subcomponents and (in the case of record
components) any representation clauses or representation pragmas that
might apply.

On all systems, the effect of the pragma PACK on a record or array is to
cause the record or array components to be allocated in the next available bit
(if the component is packable) or byte (otherwise) without regard to natural
boundaries. Whether any particular component is packable depends on the
rules for its type. See the DEC Ada run-time reference manuals for more
information.

DEC Ada provides one additional representation pragma: the pragma
COMPONENT_ALIGNMENT. See section 13.1a for more information.

Note:
14 No representation clause is allowed for a generic formal type.

DEC Ada also does not allow a representation clause for a type that depends
on a generic formal type. A type depends on a generic formal type if:

• It has a subcomponent of a generic formal type or a subcomponent that
depends on a generic formal type

• If it is derived from a generic formal type or a type that depends on a
generic formal type.

15 References: address clause 13.5, allow 1.6, body 3.9, component 3.3, declaration
3.1, declarative part 3.9, default expression 3.2.1, deferred constant declaration
7.4, derivable subprogram 3.4, derived type 3.4, entity 3.1, entry 9.5, enumeration
representation clause 13.3, expression 4.4, generic formal type 12.1.2, illegal 1.6,
length clause 13.2, must 1.6, name 4.1, object 3.2, occur immediately within 8.1,
package 7, package specification 7.1, parent type 3.4, pragma 2.8, record representation
clause 13.4, representation attribute 13.7.2 13.7.3, subcomponent 3.3, subprogram 6,
subtype 3.3, subtype declaration 3.3.2, task specification 9.1, task unit 9, type 3.3, type
declaration 3.3.1 extension>

array 3.6, constant 3.2.1, record 3.7, variable 3.2.1, variant 3.7.3

13.1a The Pragma Component_Alignment 13–4

13.1a The Pragma Component_Alignment
DEC Ada provides the representation pragma COMPONENT_ALIGNMENT to
allow the specification of a default storage representation for declarative parts
or array or record types. The form of this pragma is as follows:

pragma COMPONENT_ALIGNMENT([FORM =>] alignment_choice
[, [NAME =>] type_simple_name]);

alignment_choice ::=
COMPONENT_SIZE | COMPONENT_SIZE_4

| DEFAULT | STORAGE_UNIT

The alignment choices are briefly defined as follows:

COMPONENT_SIZE Specifies that scalar components and
subcomponents of the array or record type
are aligned on boundaries appropriate to
their inherent size (naturally aligned). For
example, 1-byte components are aligned
on byte boundaries, 2-byte components are
aligned on 2-byte boundaries,
4-byte components are aligned on
4-byte boundaries, and so on.

COMPONENT_SIZE_4 Specifies that components with a size of
four or fewer bytes are naturally aligned.
Components that are larger than 4 bytes are
placed on the next 4-byte boundary.

DEFAULT Specifies that array or record components
are aligned on default boundaries
appropriate to the underlying hardware
or operating system or both.

On OpenVMS VAX systems, the effect of
the DEFAULT choice is the same as the
STORAGE_UNIT choice (byte alignment).

On Alpha systems, the effect of the
DEFAULT choice is the same as the
COMPONENT_SIZE choice (natural
alignment).

STORAGE_UNIT Specifies that array or record components
are aligned on boundaries determined
by the current value of the constant
SYSTEM.STORAGE_UNIT.

13–5 The Pragma Component_Alignment 13.1a

In DEC Ada, the value of the constant
SYSTEM.STORAGE_UNIT must be 8 (bits)
(1 byte). The STORAGE_UNIT alignment
choice causes all array or record components
to which the pragma COMPONENT_
ALIGNMENT applies to be aligned on byte
boundaries.

When you omit the NAME parameter, the pragma must occur within a
declarative part or package specification. In this case, the pragma specifies
a default representation for record or array types that are not specified in a
representation clause or pragma. The effect of the pragma extends to types
declared from the place of the pragma to the end of the innermost declarative
part or package specification in which the pragma was declared.

When you specify the NAME parameter, the type simple name must be the
name of an array or record type, and the pragma applies only to that type.
The pragma and the type declaration must both occur immediately within
the same declarative part, package specification, or task specification The
declaration must occur before the pragma. The position of the pragma and the
restrictions on the named type are governed by the same rules as those for a
representation clause. In particular, the pragma must appear before any use of
a representation attribute of the named type.

When the pragma COMPONENT_ALIGNMENT applies to a type, the following
rules or consequences apply:

• A pragma PACK and a pragma COMPONENT_ALIGNMENT cannot
both apply to a type. If both apply, then the pragma COMPONENT_
ALIGNMENT is ignored.

• If a representation clause and a pragma COMPONENT_ALIGNMENT both
apply to a type, the components mentioned in the representation clause are
laid out first, and any remaining components are laid out and aligned in a
manner consistent with the pragma.

If a pragma COMPONENT_ALIGNMENT does not apply to a type, then a
default alignment is used (see 13.1). On OpenVMS VAX systems, the default
alignment is byte alignment (equivalent to the STORAGE_UNIT alignment
choice). On Alpha systems, the default alignment is natural alignment
(equivalent to the COMPONENT_SIZE alignment choice).

13.1a The Pragma Component_Alignment 13–6

Example:
type FLOAT_REC is record

SINGLE: FLOAT;
DOUBLE: LONG_FLOAT;

end record;
pragma COMPONENT_ALIGNMENT (COMPONENT_SIZE, FLOAT_REC);

In this example, the COMPONENT_SIZE choice causes the pragma
COMPONENT_ALIGNMENT to align the component FLOAT_REC.SINGLE at
byte 0 and the component FLOAT_REC.DOUBLE at byte 8. The STORAGE_
UNIT choice would have aligned FLOAT_REC.DOUBLE at byte 4.

By explicitly specifying the COMPONENT_SIZE choice, the use of this pragma
ensures that natural alignment is used across all OpenVMS and Digital UNIX
systems.

Note:
Derived types inherit any representation pragmas or clauses that apply to
their parent types, but an explicit pragma applied to the derived type takes
precedence over an inherited pragma. For example, if a derived type inherits
a pragma PACK, an explicit pragma COMPONENT_ALIGNMENT applied
to that type overrides the inherited pragma PACK. Similarly, the alignment
choice of a pragma COMPONENT_ALIGNMENT that applies to a derived type
overrides the alignment choice of a pragma COMPONENT_ALIGNMENT that
applies to the parent type.

References: array 3.6, array component 3.6, array type 3.6, compilation unit 10.1,
component 3.3, declarative part 3.9, name 4.1, package specification 7.1, pragma 2.8,
record 3.7, record component 3.7, record type 3.7, representation clause 13.1, task
specification 9.1, type 3.3, type declaration 3.3

13.2 Length Clauses
1 A length clause specifies an amount of storage associated with a type.

2 length_clause ::= for attribute use simple_expression;

4

3 The expression must be of some numeric type and is evaluated during the
elaboration of the length clause (unless it is a static expression). The prefix of
the attribute must denote either a type or a first named subtype. The prefix
is called T in what follows. The only allowed attribute designators in a length

4 See also Appendix G, AI-00300.

13–7 Length Clauses 13.2

clause are SIZE, STORAGE_SIZE, and SMALL. The effect of the length clause
depends on the attribute designator:

4 (a) Size specification: T’SIZE

5 The expression must be a static expression of some integer type. The
value of the expression specifies an upper bound for the number of
bits to be allocated to objects of the type or first named subtype T. The
size specification must allow for enough storage space to accommodate
every allowable value of these objects. A size specification for a
composite type may affect the size of the gaps between the storage
areas allocated to consecutive components. On the other hand, it need
not affect the size of the storage area allocated to each component.

6 The size specification is only allowed if the constraints on T and on
its subcomponents (if any) are static. In the case of an unconstrained
array type, the index subtypes must also be static.

In DEC Ada, for a discrete type, the given size must not exceed
the maximum size (in bits) for the given type. On OpenVMS VAX
systems, the maximum size is 32 for all types. On Alpha systems,
the maximum size is 64 for integer and enumeration types and 32 for
fixed point types. The given size becomes the default allocation for all
objects and components (in arrays and records) of that type.

For integer and enumeration types, the given size affects the internal
representation as follows: for integer types, high order bits are sign-
extended; for enumeration types, the high order bits can be either
zero- or sign-extended depending upon the base representation that is
selected.

For fixed point types, the given size affects the range (but not the
precision) of the underlying model numbers of the type. That is, the
given size determines the value of B, which is described in section
3.5.9. The given size may not equal the value of B because the given
size includes any sign bit and B does not.

For all other types, the given size must equal the size that would
apply in the absence of a size specification.

7 (b) Specification of collection size: T’STORAGE_SIZE

8 The prefix T must denote an access type. The expression must be
of some integer type (but need not be static); its value specifies the
number of storage units to be reserved for the collection, that is, the
storage space needed to contain all objects designated by values of the
access type and by values of other types derived from the access type,

13.2 Length Clauses 13–8

directly or indirectly. This form of length clause is not allowed for a
type derived from an access type.

In DEC Ada, the specification of a collection size is interpreted
as follows. If the value of the expression is greater than zero, the
specified size (representing the number of bytes in the collection) is
rounded up to an appropriate boundary and then is used as the initial
size for the collection. The collection is not extended if the initial
allocation is exhausted. The exception CONSTRAINT_ERROR is
raised if the value, rounded up, exceeds the maximum collection size.

If the value is equal to zero or less than zero, no storage is allocated
for the collection, and the collection is not extended.

The default behavior (in the absence of a length clause) is for no
storage to be initially allocated for the collection. Storage is then
allocated as needed, until all virtual memory is depleted.

9 (c) Specification of storage for a task activation: T’STORAGE_SIZE

10 The prefix T must denote a task type. The expression must be of some
integer type (but need not be static); its value specifies the number of
storage units to be reserved for an activation (not the code) of a task
of the type.

In DEC Ada, the specification of storage for a task activation is
interpreted as follows. If the value of the expression is greater than
zero, the specified storage (in bytes) is rounded up to an appropriate
boundary and is then used as the amount of storage to be allocated
for an activation of a task of the given type. If the value is equal to
zero, a default allocation is used. (This is the default behavior in the
absence of a length clause.)

In both cases, the task activation storage is fixed and is not extended
if the initial allocation is exhausted. If the value is less than zero, the
exception CONSTRAINT_ERROR is raised.

The storage allocation for a task may also be affected by the pragmas
TASK_STORAGE (see 13.2a) and MAIN_STORAGE (see 13.2b); see
also the DEC Ada run-time reference manuals.

11 (d) Specification of small for a fixed point type: T’SMALL

12 The prefix T must denote the first named subtype of a fixed point
type. The expression must be a static expression of some real type; its
value must not be greater than the delta of the first named subtype.
The effect of the length clause is to use this value of small for the
representation of values of the fixed point base type. (The length

13–9 Length Clauses 13.2

clause thereby also affects the amount of storage for objects that have
this type.) 5

In DEC Ada, the value of small in a fixed point representation clause
can be any value in the range 2.0�62 .. 2.031.

Notes:
13 A size specification is allowed for an access, task, or fixed point type, whether

or not another form of length clause is also given for the type.

14 What is considered to be part of the storage reserved for a collection or for
an activation of a task is implementation-dependent. The control afforded by
length clauses is therefore relative to the implementation conventions. For
example, the language does not define whether the storage reserved for an
activation of a task includes any storage needed for the collection associated
with an access type declared within the task body. Neither does it define
the method of allocation for objects denoted by values of an access type. For
example, the space allocated could be on a stack; alternatively, a general
dynamic allocation scheme or fixed storage could be used.

The DEC Ada run-time reference manuals discuss task and access type storage
and storage allocation in more detail.

15 The objects allocated in a collection need not have the same size if the
designated type is an unconstrained array type or an unconstrained type
with discriminants. Note also that the allocator itself may require some space
for internal tables and links. Hence a length clause for the collection of an
access type does not always give precise control over the maximum number of
allocated objects.

16 Examples:
-- assumed declarations:

type MEDIUM is range 0 .. 65000;
type SHORT is delta 0.01 range -100.0 .. 100.0;
type DEGREE is delta 0.1 range -360.0 .. 360.0;

BYTE : constant := 8;
PAGE : constant := 2000;

-- length clauses:

for COLOR’SIZE use 1*BYTE; -- see 3.5.1
for MEDIUM’SIZE use 2*BYTE;
for SHORT’SIZE use 15;

for CAR_NAME’STORAGE_SIZE use -- approximately 2000 cars
2000*((CAR’SIZE/SYSTEM.STORAGE_UNIT) + 1);

5 See also Appendix G, AI-00099.

13.2 Length Clauses 13–10

for KEYBOARD_DRIVER’STORAGE_SIZE use 1*PAGE;

for DEGREE’SMALL use 360.0/2**(SYSTEM.STORAGE_UNIT - 1);

17 Notes on the examples:
In the length clause for SHORT, fifteen bits is the minimum neces-
sary, since the type definition requires SHORT’SMALL = 2.0�7 and
SHORT’MANTISSA = 14. The length clause for DEGREE forces the model
numbers to exactly span the range of the type.

18 References: access type 3.8, allocator 4.8, allow 1.6, array type 3.6, attribute 4.1.4,
collection 3.8, composite type 3.3, constraint 3.3, delta of a fixed point type 3.5.9,
derived type 3.4, designate 3.8, elaboration 3.9, entity 3.1, evaluation 4.5, expression
4.4, first named subtype 13.1, fixed point type 3.5.9, index subtype 3.6, integer type
3.5.4, must 1.6, numeric type 3.5, object 3.2, real type 3.5.6, record type 3.7, small of
a fixed point type 3.5.10, static constraint 4.9, static expression 4.9, static subtype 4.9,
storage unit 13.7, subcomponent 3.3, system package 13.7, task 9, task activation 9.3,
task specification 9.1, task type 9.2, type 3.3, unconstrained array type 3.6

component 3.6 3.7, constraint_error exception 11.1, discrete type 3.5, enumeration
type 3.5.1, fixed point type declaration 3.5.9, length clause 13.2, object 3.2, pragma
task_storage 13.2a, range of a fixed point type 3.5.9, representation clause 13.1

13.2a The Pragma Task_Storage
DEC Ada provides the pragma TASK_STORAGE to allow the specification of
additional storage, called the guard area, for each task activation.

See the DEC Ada run-time reference manuals for more information about the
guard area.

The form of this pragma is as follows:

pragma TASK_STORAGE([TASK_TYPE =>] simple_name,
[TOP_GUARD =>] static_simple_expression);

The simple expression must be a static expression of some integer type. Its
value specifies the additional number of storage units to be allocated as the
guard area. The value is rounded up to an appropriate boundary. If the value
is zero, then it has the following effect:

• On OpenVMS VAX systems, no guard area is created.

• On Alpha systems, a minimal guard area is created.

If the value is less than zero, the pragma is ignored and a default guard area
is created.

13–11 The Pragma Task_Storage 13.2a

A pragma TASK_STORAGE is allowed anywhere that a task storage size
specification is allowed for the named task type: the pragma and the
declaration of the task type to which the pragma applies must both occur
immediately within the same declarative part or package specification. The
type declaration must occur before the pragma. However, a pragma TASK_
STORAGE can precede or follow any existing task storage size specification.

Example:
-- guard area will be 3 pages; activation size
-- (storage size) will be the default
task type EVEN_GUARD is

. . .
end EVEN_GUARD;
pragma TASK_STORAGE (TASK_TYPE => EVEN_GUARD,

TOP_GUARD => 3*PAGE_SIZE);

-- guard area will be rounded up;
-- activation size (storage size) will be 10 pages
task type ROUND_IT is

. . .
end ROUND_IT;
pragma TASK_STORAGE (TASK_TYPE => ROUND_IT,

TOP_GUARD => 1000);
for ROUND_IT’STORAGE_SIZE use 10*PAGE_SIZE;

References: allow 1.6, declarative part 3.9, integer type 3.5.4, package specification
7.1, pragma 2.8, simple expression 4.9, simple name 4.1, static expression 4.9, storage
unit 13.7, task activation 9.3, task storage size specification 13.2, task type 9.2, task
type declaration 9.1

13.2b The Pragma Main_Storage (OpenVMS VAX Systems
Only)
DEC Ada provides the pragma MAIN_STORAGE to allow a fixed-size stack
and stack storage areas to be specified for the task associated with a main
program. Working storage can also be specified for the task activation, and
additional storage, or guard pages, can be specified to provide protection
against storage overflow during task execution of non-Ada code. The form of
this pragma is as follows:

pragma MAIN_STORAGE(
main_storage_option [, main_storage_option]);

main_storage_option :=
[WORKING_STORAGE =>] static_simple_expression

| [TOP_GUARD =>] static_simple_expression

13.2b The Pragma Main_Storage (OpenVMS VAX Systems Only) 13–12

The simple expression given for a main storage option must be a nonnegative
static expression of some integer type. Its value specifies either the number
of storage units (bytes) to be allocated for the main task stack working
storage area or the number of storage units to be allocated as guard pages. If
positional association is used, the first or only option is the working storage
option. The second option is the top guard option.

For both the WORKING_STORAGE and TOP_GUARD options, the value
specified is rounded up to an integral number of pages (where one page is
512 bytes). If the value is zero for WORKING_STORAGE, a default size is
assumed. If the value is zero for TOP_GUARD, no guard pages are provided. If
the value is less than zero for either WORKING_STORAGE or TOP_GUARD,
the pragma is ignored.

A pragma MAIN_STORAGE is only allowed in the outermost declarative
part of a library subprogram. At most one such pragma is allowed for a
subprogram. This pragma has an effect only when the subprogram to which it
applies is used as a main program.

Note:
When a program that specifies a pragma MAIN_STORAGE is run on an
OpenVMS VAX system, the main stack is allocated in P0 space (rather than
in the default P1 space). See the DEC Ada Run-Time Reference Manual for
OpenVMS Systems for more information.

Example:
procedure MAIN_PROGRAM is
pragma MAIN_STORAGE (WORKING_STORAGE => 10*512,

TOP_GUARD => 1000);
begin

. . .
end MAIN_PROGRAM;

In this example, the working storage for procedure MAIN_PROGRAM will be
10 pages. The guard storage will be 2 pages (1000 bytes rounds up to 2*512
bytes). The stack for the environment task associated with procedure MAIN_
PROGRAM will be fixed. If the procedure is run on an OpenVMS VAX system,
the stack for the environment task will be allocated in P0 space.

References: allow 1.6, declarative part 3.9, environment task 10.1, integer type 3.5.4,
library unit 10.1, main program 10.1, positional parameter association 6.4, pragma 2.8,
simple expression 4.4, static expression 4.9, storage unit 13.7, subprogram 6

13–13 The Pragma Main_Storage (OpenVMS VAX Systems Only) 13.2b

13.3 Enumeration Representation Clauses
1 An enumeration representation clause specifies the internal codes for the

literals of the enumeration type that is named in the clause.

2 enumeration_representation_clause ::=

for type_simple_name use aggregate;6

3 The aggregate used to specify this mapping is written as a one-dimensional
aggregate, for which the index subtype is the enumeration type and the
component type is universal_integer.

4 All literals of the enumeration type must be provided with distinct integer
codes, and all choices and component values given in the aggregate must be
static. The integer codes specified for the enumeration type must satisfy the
predefined ordering relation of the type.

In DEC Ada, each component value for an integer code must have a value in
the range MIN_INT .. MAX_INT. Signed representation is used if any value
given in an enumeration representation clause is negative.

5 Example:
type MIX_CODE is (ADD, SUB, MUL, LDA, STA, STZ);

for MIX_CODE use
(ADD => 1, SUB => 2, MUL => 3,
LDA => 8, STA => 24, STZ => 33);

Notes:
6 The attributes SUCC, PRED, and POS are defined even for enumeration

types with a noncontiguous representation; their definition corresponds to the
(logical) type declaration and is not affected by the enumeration representation
clause. In the example, because of the need to avoid the omitted values, these
functions are likely to be less efficiently implemented than they could be in the
absence of a representation clause. Similar considerations apply when such
types are used for indexing.

7 References: aggregate 4.3, array aggregate 4.3.2, array type 3.6, attribute of
an enumeration type 3.5.5, choice 3.7.3, component 3.3, enumeration literal 3.5.1,
enumeration type 3.5.1, function 6.5, index 3.6, index subtype 3.6, literal 4.2, ordering
relation of an enumeration type 3.5.1, representation clause 13.1, simple name 4.1,
static expression 4.9, type 3.3, type declaration 3.3.1, universal_integer type 3.5.4

system.max_int 13.7, system.min_int 13.7

6 See also Appendix G, AI-00422.

13.3 Enumeration Representation Clauses 13–14

13.4 Record Representation Clauses
1 A record representation clause specifies the storage representation of

records, that is, the order, position, and size of record components (including
discriminants, if any).

2 record_representation_clause ::=
for type_simple_name use

record [alignment_clause]
{component_clause}

end record;

alignment_clause ::= at mod static_simple_expression;

component_clause ::=
component_name at static_simple_expression

range static_range;7

3 The simple expression given after the reserved words at mod in an alignment
clause, or after the reserved word at in a component clause, must be a static
expression of some integer type. If the bounds of the range of a component
clause are defined by simple expressions, then each bound of the range must
be defined by a static expression of some integer type, but the two bounds need
not have the same integer type.

4 An alignment clause forces each record of the given type to be allocated at a
starting address that is a multiple of the value of the given expression (that
is, the address modulo the expression must be zero). An implementation may
place restrictions on the allowable alignments.

DEC Ada allows the simple expression in an alignment clause to have a value
of 2n, where

0 <= n <= 9 on OpenVMS VAX systems
0 <= n <= 16 on OpenVMS Alpha systems
0 <= n <= 3 on Digital UNIX systems

In other words, the simple expression must be an integer in the range (1 .. 512,
1 .. 65536, or 1 .. 8) that is also a power of 2. The allocations then occur at
addresses that are a multiple of the simple expression (a value of 2 aligns the
data on a 2-byte boundary, a value of 4 aligns the data on a 4-byte boundary,
and so on).

There are no other restrictions on record type alignments. See the DEC Ada
run-time reference manuals for more information on how record objects are
allocated.

7 See also Appendix G, AI-00422.

13–15 Record Representation Clauses 13.4

5 A component clause specifies the storage place of a component, relative to the
start of the record. The integer defined by the static expression of a component
clause is a relative address expressed in storage units. The range defines
the bit positions of the storage place, relative to the storage unit. The first
storage unit of a record is numbered zero. The first bit of a storage unit is
numbered zero. The ordering of bits in a storage unit is machine-dependent
and may extend to adjacent storage units. (For a specific machine, the size in
bits of a storage unit is given by the configuration-dependent named number
SYSTEM.STORAGE_UNIT.) Whether a component is allowed to overlap a
storage boundary, and if so, how, is implementation-defined.

In DEC Ada, the size of a storage unit (SYSTEM.STORAGE_UNIT) is eight
bits (one byte). If the number of bits specified by the range is sufficient for the
component subtype, the requested size and placement of the field is observed
(and overlaps storage boundaries if necessary). Otherwise, the specification is
illegal. For a component of a discrete or fixed point type, the number of bits
must be as follows:

• On OpenVMS VAX systems, the number of bits must be between 1 and 32
for all types.

• On Alpha systems, the number of bits must be between 1 and 64 for a
discrete type; between 1 and 32 for a fixed point type.

For a component of any other type, the size must not exceed the actual size of
the component. See the DEC Ada run-time reference manuals for information
about determining the number of bits that are sufficient for any given subtype.

In DEC Ada, component values of integer types may be biased when a
component clause requires a very small component storage space. Each
value stored is the unsigned quantity formed by subtracting the value
COMPONENT_SUBTYPE’FIRST from the original value. See the DEC Ada
run-time reference manuals for more information.

Component clauses in DEC Ada are restricted as follows:

• Any component that is not packable must be allocated on a byte boundary.
Components that are packable can be allocated without restriction. See the
DEC Ada run-time reference manuals for a definition and description of
packable components.

• Any representation clause or pragma that applies to the component type
still applies (affects the alignment and size of the component).

13.4 Record Representation Clauses 13–16

6 At most one component clause is allowed for each component of the record type,
including for each discriminant (component clauses may be given for some, all,
or none of the components). If no component clause is given for a component,
then the choice of the storage place for the component is left to the compiler.
If component clauses are given for all components, the record representation
clause completely specifies the representation of the record type and must be
obeyed exactly by the compiler.

In DEC Ada, components named in a component clause are allocated first.
Unnamed components are allocated in the order in which they are written in
the record type declaration. Variants can be overlapped. If the pragma PACK
is specified, packed allocation rules are used. Otherwise, unpacked allocation
is used. If the pragma COMPONENT_ALIGNMENT is specified, its alignment
rules (see 13.1a) are used. Otherwise, default alignments are used.

7 Storage places within a record variant must not overlap, but overlap of the
storage for distinct variants is allowed. Each component clause must allow for
enough storage space to accommodate every allowable value of the component.
A component clause is only allowed for a component if any constraint on this
component or on any of its subcomponents is static.8

8 An implementation may generate names that denote implementation-
dependent components (for example, one containing the offset of another
component). Such implementation-dependent names can be used in record
representation clauses (these names need not be simple names; for example,
they could be implementation-dependent attributes).

DEC Ada generates no implementation-dependent components or names.

9 Example:
WORD : constant := 4; -- storage unit is byte,

-- 4 bytes per word

type STATE is (A, M, W, P);
type MODE is (FIX, DEC, EXP, SIGNIF);

type BYTE_MASK is array (0 .. 7) of BOOLEAN;
type STATE_MASK is array (STATE) of BOOLEAN;
type MODE_MASK is array (MODE) of BOOLEAN;

pragma PACK (BYTE_MASK); -- in DEC Ada these must be packed
pragma PACK (STATE_MASK); -- for the alignment to work
pragma PACK (MODE_MASK);

8 See also Appendix G, AI-00132.

13–17 Record Representation Clauses 13.4

type PROGRAM_STATUS_WORD is
record

SYSTEM_MASK : BYTE_MASK;
PROTECTION_KEY : INTEGER range 0 .. 3;
MACHINE_STATE : STATE_MASK;
INTERRUPT_CAUSE : INTERRUPTION_CODE;
ILC : INTEGER range 0 .. 3;
CC : INTEGER range 0 .. 3;
PROGRAM_MASK : MODE_MASK;
INST_ADDRESS : ADDRESS;

end record;

for PROGRAM_STATUS_WORD use
record at mod 8;

SYSTEM_MASK at 0*WORD range 0 .. 7; -- bits 8,9
PROTECTION_KEY at 0*WORD range 10 .. 11; -- unused
MACHINE_STATE at 0*WORD range 12 .. 15;
INTERRUPT_CAUSE at 0*WORD range 16 .. 31;
ILC at 1*WORD range 0 .. 1; -- second word
CC at 1*WORD range 2 .. 3;
PROGRAM_MASK at 1*WORD range 4 .. 7;
INST_ADDRESS at 1*WORD range 8 .. 31;

end record;

for PROGRAM_STATUS_WORD’SIZE use 8*SYSTEM.STORAGE_UNIT;

Note on the example:
10 The record representation clause defines the record layout. The length clause

guarantees that exactly eight storage units are used.

The example assumes that the type ADDRESS is represented in 24 bits.

On OpenVMS systems, DEC Ada represents the type ADDRESS in 32 bits.

On Digital UNIX systems, DEC Ada represents the type ADDRESS in 64 bits.

Component Specification Example:
subtype S is INTEGER range 10 .. 13;

type REC is
record

X : S;
Y : S;
Z : S;

end record;

for REC use
record

X at 0 range 0 .. 4; -- legal: 4 bits are sufficient for
-- an unsigned representation

Y at 0 range 5 .. 6; -- legal: 2 bits are sufficient for
-- a biased representation

13.4 Record Representation Clauses 13–18

Z at 0 range 7 .. 7; -- illegal: 1 bit is not enough to
-- represent an integer of subtype S

end record;

Notes on the example:
The subtype declaration in this example implies an integer with a minimum
size of 4 bits. The component clause for X is legal because it requires at least
the minimum number of bits required for the integer subtype. The component
clause for Y is legal because it requires at least the minimum number of bits
required for a biased representation of the subtype. The component clause
for Z is illegal because it does not allow enough bits to represent the integer
subtype.

11 References: allow 1.6, attribute 4.1.4, constant 3.2.1, constraint 3.3, discriminant
3.7.1, integer type 3.5.4, must 1.6, named number 3.2, range 3.5, record component 3.7,
record type 3.7, simple expression 4.4, simple name 4.1, static constraint 4.9, static
expression 4.9, storage unit 13.7, subcomponent 3.3, system package 13.7, variant 3.7.3

component clause 13.4, component subtype 3.7, object 3.2, packable 13.1, pragma pack
13.1

13.5 Address Clauses
1 An address clause specifies a required address in storage for an entity.

2 address_clause ::= for simple_name use at simple_expression;

3 The expression given after the reserved word at must be of the type ADDRESS
defined in the package SYSTEM (see 13.7); this package must be named by a
with clause that applies to the compilation unit in which the address clause
occurs. The conventions that define the interpretation of a value of the type
ADDRESS as an address, as an interrupt level, or whatever it may be, are
implementation-dependent. The allowed nature of the simple name and the
meaning of the corresponding address are as follows:

4 (a) Name of an object: the address is that required for the object (variable
or constant). 9

5 (b) Name of a subprogram, package, or task unit: the address is that
required for the machine code associated with the body of the program
unit. 10

6 (c) Name of a single entry: the address specifies a hardware interrupt to
which the single entry is to be linked.

9 See also Appendix G, AI-00263.
10 See also Appendix G, AI-00336.

13–19 Address Clauses 13.5

7 If the simple name is that of a single task, the address clause is understood
to refer to the task unit and not to the task object. In all cases, the address
clause is only legal if exactly one declaration with this identifier occurs earlier,
immediately within the same declarative part, package specification, or task
specification. A name declared by a renaming declaration is not allowed as the
simple name.

In DEC Ada, the simple name must be the name of an object or imported
subprogram. On Digital UNIX systems, the simple name can also be the name
of a single entry.

Address clauses are not allowed in combination with any of the DEC Ada
pragmas for importing or exporting objects. If used in such cases, the pragma
involved is ignored.

The rules for specifying an address clause for an imported subprogram are as
follows:

• The subprogram must be specified with a pragma INTERFACE. It may
also be specified with an import pragma:

IMPORT_FUNCTION
IMPORT_PROCEDURE
IMPORT_VALUED_PROCEDURE
INTERFACE_NAME

• If the subprogram is specified in an import pragma, a null string ("") must
be specified for the external designator (see 13.9a).

• The address clause must be specified after the pragma INTERFACE. If a
DEC Ada import pragma is also specified, the order of the address clause
and the import pragma is not significant.

8 Address clauses should not be used to achieve overlays of objects or overlays of
program units. Nor should a given interrupt be linked to more than one entry.
Any program using address clauses to achieve such effects is erroneous. 11

9 Example:
for CONTROL use at 16#0020#; -- assuming that SYSTEM.ADDRESS

-- is an integer type

11 See also Appendix G, AI-00292 and AI-00379.

13.5 Address Clauses 13–20

Notes:
10 The above rules imply that if two subprograms overload each other and are

visible at a given point, an address clause for any of them is not legal at this
point. Similarly if a task specification declares entries that overload each
other, they cannot be interrupt entries. The syntax does not allow an address
clause for a library unit. An implementation may provide pragmas for the
specification of program overlays.

In DEC Ada, the alignment required for the address is checked against the
alignment given for the type in the following cases:

• If an address clause is specified for a record object whose type has been
declared with an alignment clause.

• If an address clause is specified for a record or array object whose type
has been specified in a pragma COMPONENT_ALIGNMENT, and the
alignment choice is either COMPONENT_SIZE or COMPONENT_SIZE_4.

If the two alignments are incompatible, the exception PROGRAM_ERROR is
raised.

The same check applies to a type that contains a component whose type
has been declared with an alignment clause or a pragma COMPONENT_
ALIGNMENT (the alignment of the component forces the alignment of the
containing type).

In DEC Ada, the usual implicit initialization associated with a type is
performed, even when an object of the type is declared with an address clause.
For example, access values are initialized to null, and record components can
also receive initial values. See the DEC Ada run-time reference manuals for
more information.

11 References: address predefined type 13.7, apply 10.1.1, compilation unit 10.1,
constant 3.2.1, entity 3.1, entry 9.5, erroneous 1.6, expression 4.4, library unit 10.1,
name 4.1, object 3.2, package 7, pragma 2.8, program unit 6, reserved word 2.9, simple
expression 4.4, simple name 4.1, subprogram 6, subprogram body 6.3, system package
13.7, task body 9.1, task object 9.2, task unit 9, type 3.3, variable 3.2.1, with clause
10.1.1

declarative part 3.9, forcing occurrence 13.1, imported subprogram 13.9a 13.9a.1.1
package specification 7.1

13–21 Interrupts 13.5.1

13.5.1 Interrupts
On OpenVMS systems, DEC Ada does not support interrupts as defined in
this section. Instead, DEC Ada provides the pragma AST_ENTRY and the
AST_ENTRY attribute as alternative mechanisms for handling asynchronous
interrupts from the OpenVMS operating system. See section 9.12a for more
information on this pragma and attribute.

On Digital UNIX systems, DEC Ada supports interrupts as defined in this
section to allow some Digital UNIX signals to be associated with task entry
calls.

1 An address clause given for an entry associates the entry with some device
that may cause an interrupt; such an entry is referred to in this section as
an interrupt entry. If control information is supplied upon an interrupt, it is
passed to an associated interrupt entry as one or more parameters of mode in;
only parameters of this mode are allowed.

2 An interrupt acts as an entry call issued by a hardware task whose priority is
higher than the priority of the main program, and also higher than the priority
of any user-defined task (that is, any task whose type is declared by a task unit
in the program). The entry call may be an ordinary entry call, a timed entry
call, or a conditional entry call, depending on the kind of interrupt and on the
implementation.

3 If a select statement contains both a terminate alternative and an accept
alternative for an interrupt entry, then an implementation may impose further
requirements for the selection of the terminate alternative in addition to those
given in section 9.4.

4 Example:
task INTERRUPT_HANDLER is

entry DONE;
for DONE use at 16#40#; -- assuming that SYSTEM.ADDRESS

-- is an integer type
end INTERRUPT_HANDLER;

Notes:
5 Interrupt entry calls need only have the semantics described above; they may

be implemented by having the hardware directly execute the appropriate
accept statements.

6 Queued interrupts correspond to ordinary entry calls. Interrupts that are
lost if not immediately processed correspond to conditional entry calls. It is a
consequence of the priority rules that an accept statement executed in response
to an interrupt takes precedence over ordinary, user-defined tasks, and can be
executed without first invoking a scheduling action.

13.5.1 Interrupts 13–22

7 One of the possible effects of an address clause for an interrupt entry is to
specify the priority of the interrupt (directly or indirectly). Direct calls to an
interrupt entry are allowed.

8 References: accept alternative 9.7.1, accept statement 9.5, address predefined
type 13.7, allow 1.6, conditional entry call 9.7.2, entry 9.5, entry call 9.5, mode 6.1,
parameter of a subprogram 6.2, priority of a task 9.8, select alternative 9.7.1, select
statement 9.7, system package 13.7, task 9, terminate alternative 9.7.1, timed entry
call 9.7.3

13.6 Change of Representation
1 At most one representation clause is allowed for a given type and a given

aspect of its representation. Hence, if an alternative representation is needed,
it is necessary to declare a second type, derived from the first, and to specify a
different representation for the second type. 12

2 Example:
-- PACKED_DESCRIPTOR and DESCRIPTOR are two different
-- types with identical characteristics, apart from
-- their representation

type DESCRIPTOR is
record

-- components of a descriptor
end record;

type PACKED_DESCRIPTOR is new DESCRIPTOR;

for PACKED_DESCRIPTOR use
record

-- component clauses for some or for all components
end record;

3 Change of representation can now be accomplished by assignment with explicit
type conversions:

D : DESCRIPTOR;
P : PACKED_DESCRIPTOR;

P := PACKED_DESCRIPTOR(D); -- pack D
D := DESCRIPTOR(P); -- unpack P

4 References: assignment 5.2, derived type 3.4, type 3.3, type conversion 4.6, type
declaration 3.1, representation clause 13.1

12 See also Appendix G, AI-00040 and AI-00138.

13–23 Change of Representation 13.6

13.7 The Package System
1 For each implementation there is a predefined library package called

SYSTEM which includes the definitions of certain configuration-dependent
characteristics. The specification of the package SYSTEM is implementation-
dependent and must be given in Appendix F. The visible part of this package
must contain at least the following declarations.

DEC Ada additions to the package SYSTEM are described in sections 13.7a
and 13.7b.

A composite DEC Ada specification of the package SYSTEM is included in
Appendix F.

2 package SYSTEM is
type ADDRESS is implementation_defined;
type NAME is implementation_defined_enumeration_type;

SYSTEM_NAME : constant NAME := implementation_defined;

STORAGE_UNIT : constant := implementation_defined;
MEMORY_SIZE : constant := implementation_defined;

-- System-Dependent Named Numbers:

MIN_INT : constant := implementation_defined;
MAX_INT : constant := implementation_defined;
MAX_DIGITS : constant := implementation_defined;
MAX_MANTISSA : constant := implementation_defined;
FINE_DELTA : constant := implementation_defined;
TICK : constant := implementation_defined;

13.7 The Package System 13–24

-- Other System-Dependent Declarations

subtype PRIORITY is INTEGER range implementation_defined;
...

end SYSTEM;13

3 The type ADDRESS is the type of the addresses provided in address clauses; it
is also the type of the result delivered by the attribute ADDRESS. Values of the
enumeration type NAME are the names of alternative machine configurations
handled by the implementation; one of these is the constant SYSTEM_NAME.
The named number STORAGE_UNIT is the number of bits per storage unit;
the named number MEMORY_SIZE is the number of available storage units in
the configuration; these named numbers are of the type universal_integer.

In DEC Ada, values of the type ADDRESS refer to addresses in virtual address
space.

4 An alternative form of the package SYSTEM, with given values for any of
SYSTEM_NAME, STORAGE_UNIT, and MEMORY_SIZE, can be obtained
by means of the corresponding pragmas. These pragmas are only allowed
at the start of a compilation, before the first compilation unit (if any) of the
compilation.

5 pragma SYSTEM_NAME(enumeration_literal);

6 The effect of the above pragma is to use the enumeration literal with the
specified identifier for the definition of the constant SYSTEM_NAME. This
pragma is only allowed if the specified identifier corresponds to one of the
literals of the type NAME.

In DEC Ada, the enumeration literals for the type NAME are system-specific,
as follows:

System Enumeration literal

OpenVMS VAX VAX_VMS

OpenVMS Alpha OpenVMS_AXP

Digital UNIX DEC_OSF1_AXP

On OpenVMS and Digital UNIX systems, all literals are defined in the type
SYSTEM.NAME.

7 pragma STORAGE_UNIT(numeric_literal);

13 See also Appendix G, AI-00045 and
AI-00355.

13–25 The Package System 13.7

8 The effect of the above pragma is to use the value of the specified numeric
literal for the definition of the named number STORAGE_UNIT.

In DEC Ada, the value given for STORAGE_UNIT must be 8 (bits).

9 pragma MEMORY_SIZE(numeric_literal);

10 The effect of the above pragma is to use the value of the specified numeric
literal for the definition of the named number MEMORY_SIZE.

In DEC Ada, the number given for MEMORY_SIZE must be in the range
0 .. MAX_INT. It replaces the default value (MAX_INT). DEC Ada does not
provide support for checking or ensuring that the given size is not exceeded.

11 The compilation of any of these pragmas causes an implicit recompilation of the
package SYSTEM. Consequently any compilation unit that names SYSTEM
in its context clause becomes obsolete after this implicit recompilation. An
implementation may impose further limitations on the use of these pragmas.
For example, an implementation may allow them only at the start of the first
compilation, when creating a new program library.

DEC Ada imposes no further limitations on these pragmas. To reduce the
amount of recompilation required, DEC Ada identifies those units that have
a real dependence on the values affected by these pragmas. Only such
units must be recompiled. In particular, predefined DEC Ada packages do
not depend on the values affected by these pragmas, and none requires
recompilation if these pragmas are used.

Note:
12 It is a consequence of the visibility rules that a declaration given in the

package SYSTEM is not visible in a compilation unit unless this package
is mentioned by a with clause that applies (directly or indirectly) to the
compilation unit.

13 References: address clause 13.5, apply 10.1.1, attribute 4.1.4, compilation unit 10.1,
declaration 3.1, enumeration literal 3.5.1, enumeration type 3.5.1, identifier 2.3, library
unit 10.1, must 1.6, named number 3.2, number declaration 3.2.2, numeric literal
2.4, package 7, package specification 7.1, pragma 2.8, program library 10.1, type 3.3,
visibility 8.3, visible part 7.2, with clause 10.1.1

dependence between compilation units 10.3, erroneous 1.6, exception 11, expression 4.4,
integer type 3.5.4, range 3.5, system.max_int 13.7

13.7 The Package System 13–26

13.7.1 System-Dependent Named Numbers
1 Within the package SYSTEM, the following named numbers are declared. The

numbers FINE_DELTA and TICK are of the type universal_real; the others are
of the type universal_integer.

2 MIN_INT The smallest (most negative) value of all predefined
integer types.

In DEC Ada on OpenVMS VAX systems, the value for
MIN_INT is –231.

In DEC Ada on Alpha systems, the value for MIN_INT
is–263.

3 MAX_INT The largest (most positive) value of all predefined
integer types.

In DEC Ada on OpenVMS VAX systems, the value for
MAX_INT is 231

� 1.

In DEC Ada on Alpha systems, the value for MAX_
INT is 263

� 1.

4 MAX_DIGITS The largest value allowed for the number of significant
decimal digits in a floating point constraint.

In DEC Ada on OpenVMS VAX systems, the value for
MAX_DIGITS is 33.

In DEC Ada on Alpha systems, the value for MAX_
DIGITS is 15.

5 MAX_MANTISSA The largest possible number of binary digits in the
mantissa of model numbers of a fixed point subtype.

In DEC Ada, the value for MAX_MANTISSA is 31.

6 FINE_DELTA The smallest delta allowed in a fixed point constraint
that has the range constraint –1.0 .. 1.0.

In DEC Ada, the value for FINE_DELTA is 2.0�31.

7 TICK The basic clock period, in seconds. 14

In DEC Ada on OpenVMS VAX systems, the value
for TICK is 10.0�2 (or 10 milliseconds). This value
corresponds to the clock interval provided by the
time-related OpenVMS system services.

14 See also Appendix G, AI-00201 and AI-00366.

13–27 System-Dependent Named Numbers 13.7.1

In DEC Ada on Alpha systems, the value for TICK
is 10.0�3 (or 1 millisecond). On OpenVMS Alpha
systems, this value corresponds to the clock interval
provided by the time-related OpenVMS system
services. On Digital UNIX systems, this value
corresponds to the resolution of the Digital UNIX
system clock.

8 References: allow 1.6, delta of a fixed point constraint 3.5.9, fixed point constraint
3.5.9, floating point constraint 3.5.7, integer type 3.5.4, model number 3.5.6, named
number 3.2, package 7, range constraint 3.5, system package 13.7, type 3.3, universal_
integer type 3.5.4, universal_real type 3.5.6

13.7.2 Representation Attributes
1 The values of certain implementation-dependent characteristics can be

obtained by interrogating appropriate representation attributes. These
attributes are described below.

2 For any object, program unit, label, or entry X:

3 X’ADDRESS Yields the address of the first of the storage units
allocated to X. For a subprogram, package, task
unit or label, this value refers to the machine code
associated with the corresponding body or statement.
For an entry for which an address clause has been
given, the value refers to the corresponding hardware
interrupt. The value of this attribute is of the type
ADDRESS defined in the package SYSTEM. 15

For an object that is a variable in DEC Ada, the value
is the actual address of the variable (which may be
statically or dynamically allocated). This attribute
forces a variable to be allocated in memory. It causes
the variable to be marked as volatile for the duration
of the block statement or body containing the use of
the attribute. If the location of the variable is not byte-
aligned, the value is the address of the lowest byte
that holds part or all of the variable. For an object
that is a constant, the value is the address of the
constant value in memory. However, two occurrences
of C’ADDRESS, where C denotes a constant, may or
may not yield the same address value. For an object

15 See also Appendix G, AI-00305.

13.7.2 Representation Attributes 13–28

that is a named number, the value is zero (ADDRESS_
ZERO).

For an access object, X.all’ADDRESS is the address
of the designated object. X.all’ADDRESS is subject
to an ACCESS_CHECK for the designated object. For
a record component, X.C’ADDRESS is subject to a
DISCRIMINANT_CHECK for an object in a variant
part. For an array component or slice, X(I)’ADDRESS
or X(I1 .. I2)’ADDRESS is subject to an INDEX_
CHECK for the denoted component or slice.

For program units that are generic units, task units,
or package units, the value is zero (ADDRESS_
ZERO). For program units that are imported or
exported subprograms, the value is the same as the
address that is imported or exported. (See section
13.9a.1.1 for information on the pragmas IMPORT_
FUNCTION, IMPORT_PROCEDURE, and IMPORT_
VALUED_PROCEDURE. See section 13.9a.1.3 for
information on the pragmas EXPORT_FUNCTION,
EXPORT_PROCEDURE, and EXPORT_VALUED_
PROCEDURE. See section 13.9b for information on
the pragma INTERFACE_NAME.) For subprograms
that are not imported or exported, the value is zero
(ADDRESS_ZERO).

For labels or entries, the value is zero (ADDRESS_
ZERO).

4 For any type or subtype X, or for any object X:

5 X’SIZE Applied to an object, yields the number of bits
allocated to hold the object. Applied to a type or
subtype, yields the minimum number of bits that is
needed by the implementation to hold any possible
object of this type or subtype. The value of this
attribute is of the type universal_integer.

For a type or a subtype in DEC Ada, the value is
limited to values in the range 0 .. 231–1. The exception
CONSTRAINT_ERROR is raised for values outside
this range.

For an object that is a variable or a constant in DEC
Ada, the value is its size in bits.

13–29 Representation Attributes 13.7.2

For an object that is a named number, the value is
zero.

For a record component, X.C’SIZE is subject to a
DISCRIMINANT_CHECK for an object in a variant
part.

For an array component or slice, X(I)’SIZE or X(I1
.. I2)’SIZE is subject to an INDEX_CHECK for the
denoted component or slice.

6 For the above two representation attributes, if the prefix is the name of a
function, the attribute is understood to be an attribute of the function (not
of the result of calling the function). Similarly, if the type of the prefix is an
access type, the attribute is understood to be an attribute of the prefix (not
of the designated object: attributes of the latter can be written with a prefix
ending with the reserved word all). 16

For any type or subtype X:

X’MACHINE_SIZE Yields the total number of machine bits to be allocated
for objects of the type or subtype. This value takes
into account any padding bits used by DEC Ada when
allocating storage for an object. The value of this
attribute is of the type universal_integer.

The value is always a multiple of the size of a storage
unit (in DEC Ada, this size is eight (bits)). The value
is limited to the range 0 .. 231–1. The exception
CONSTRAINT_ERROR is raised for values outside
this range.

See the DEC Ada run-time reference manuals for more
discussion of this attribute and for more information
on DEC Ada storage allocation.

For any object X:

X’BIT Yields the bit offset within the storage unit (byte)
that contains the first bit of the storage allocated for
the object. The value of this attribute is of the type
universal_integer, and is always in the range 0 .. 7.

16 See also Appendix G, AI-00012 and AI-00015.

13.7.2 Representation Attributes 13–30

For an object that is a variable or a constant allocated
in a register, the value is zero. (The use of this
attribute does not force the allocation of a variable to
memory.)

For an object that is a formal parameter, this attribute
applies to either the matching actual parameter or to
a copy of the matching actual parameter.

For an access object, the value is zero (in the absence
of CONSTRAINT_ERROR). X.all’BIT is subject to an
ACCESS_CHECK for the designated object.

For a record component, X.C’BIT is subject to a
DISCRIMINANT_CHECK for a component in a
variant part.

For an array component or slice, X(I)’BIT or
X(I1 .. I2)’BIT is subject to an INDEX_CHECK
for the denoted component or slice.

7 For any component C of a record object R: 17

8 R.C’POSITION Yields the offset, from the start of the first storage unit
occupied by the record, of the first of the storage units
occupied by C. This offset is measured in storage units.
The value of this attribute is of the type universal_
integer. 18

9 R.C’FIRST_BIT Yields the offset, from the start of the first of the
storage units occupied by C, of the first bit occupied by
C. This offset is measured in bits. The value of this
attribute is of the type universal_integer.

10 R.C’LAST_BIT Yields the offset, from the start of the first of the
storage units occupied by C, of the last bit occupied by
C. This offset is measured in bits. The value of this
attribute is of the type universal_integer.

11 For any access type or subtype T:

12 T’STORAGE_SIZE Yields the total number of storage units reserved for
the collection associated with the base type of T. The
value of this attribute is of the type universal_integer.

13 For any task type or task object T:

17 See also Appendix G, AI-00258.
18 See also Appendix G, AI-00362 and AI-00503.

13–31 Representation Attributes 13.7.2

14 T’STORAGE_SIZE Yields the number of storage units reserved for each
activation of a task of the type T or for the activation
of the task object T. The value of this attribute is of
the type universal_integer.

Notes:
15 For a task object X, the attribute X’SIZE gives the number of bits used to hold

the object X, whereas X’STORAGE_SIZE gives the number of storage units
allocated for the activation of the task designated by X. For a formal parameter
X, if parameter passing is achieved by copy, then the attribute X’ADDRESS
yields the address of the local copy; if parameter passing is by reference, then
the address is that of the actual parameter.

The attribute X’MACHINE_SIZE gives the size that is used for a variable of
the type or subtype. It does not give the size that can be used for a component
of that type or subtype.

The machine size of a type or subtype can be influenced by representation
clauses or pragmas, unlike the size of a type or subtype, which is independent
of representation clauses or pragmas. The machine size of a base type can be
less than, equal to, or greater than the size of that same base type. See the
DEC Ada run-time reference manuals for examples and additional discussion.

The machine size of a type or subtype determines the number of bits that are
read or written to external files in input-output operations for elements of that
type or subtype (see chapter 14 for information on input-output operations).

16 References: access subtype 3.8, access type 3.8, activation 9.3, actual parameter
6.2, address clause 13.5, address predefined type 13.7, attribute 4.1.4, base type 3.3,
collection 3.8, component 3.3, entry 9.5, formal parameter 6.1 6.2, label 5.1, object 3.2,
package 7, package body 7.1, parameter passing 6.2, program unit 6, record object
3.7, statement 5, storage unit 13.7, subprogram 6, subprogram body 6.3, subtype 3.3,
system predefined package 13.7, task 9, task body 9.1, task object 9.2, task type 9.2,
task unit 9, type 3.3, universal_integer type 3.5.4

access object 3.8, array component 3.6, block statement 5.6, body 3.9, constant
3.2.1, constraint_error exception 11.1, designated object 3.8, exported subprogram
13.9a.1.3, generic unit 12 12.1, integer type 3.5.4, named number 3.2, package 7,
range 3.5, record component 3.7, slice 4.1.2, subtype 3.3, system.address_zero 13.7a.1,
system.max_int 13.7, type 3.3, variable 3.2.1, variant part 3.7.3

13.7.3 Representation Attributes of Real Types 13–32

13.7.3 Representation Attributes of Real Types
1 For every real type or subtype T, the following machine-dependent attributes

are defined, which are not related to the model numbers. Programs using
these attributes may thereby exploit properties that go beyond the minimal
properties associated with the numeric type (see section 4.5.7 for the rules
defining the accuracy of operations with real operands). Precautions must
therefore be taken when using these machine-dependent attributes if
portability is to be ensured.

2 For both floating point and fixed point types:

3 T’MACHINE_ROUNDS Yields the value TRUE if every predefined
arithmetic operation on values of the base
type of T either returns an exact result or
performs rounding; yields the value FALSE
otherwise. The value of this attribute is of
the predefined type BOOLEAN. 19

In DEC Ada on OpenVMS VAX systems, this
value is TRUE for floating point types. It is
FALSE for any fixed point type where the
value of small is a power of two. It is TRUE
for all other fixed point types.

In DEC Ada on all other systems, this value
is TRUE.

(In DEC Ada, the value of small is a power
of two by default. A length clause can be
used to achieve other values. See 13.2.)

4 T’MACHINE_OVERFLOWS Yields the value TRUE if every predefined
operation on values of the base type of
T either provides a correct result, or
raises the exception NUMERIC_ERROR
in overflow situations (see 4.5.7); yields
the value FALSE otherwise. The value
of this attribute is of the predefined type
BOOLEAN.

In DEC Ada, this value is TRUE.

19 See also Appendix G, AI-00263.

13–33 Representation Attributes of Real Types 13.7.3

5 For floating point types, the following attributes provide characteristics of the
underlying machine representation, in terms of the canonical form defined in
section 3.5.7: 20

6 T’MACHINE_RADIX Yields the value of the radix used by the
machine representation of the base type of
T. The value of this attribute is of the type
universal_integer.

In DEC Ada, this value is 2.

7 T’MACHINE_MANTISSA Yields the number of digits in the mantissa
for the machine representation of the base
type of T (the digits are extended digits in
the range 0 to T’MACHINE_RADIX � 1).
The value of this attribute is of the type
universal_integer.

For types based on the VAX hardware
types, this value can be 24 (F_floating),
53 (G_floating), 56 (D_floating), or 113
(H_floating).

For types based on the IEEE hardware
types, this value can be 24 (IEEE single
float) or 53 (IEEE double float).

8 T’MACHINE_EMAX Yields the largest value of exponent for the
machine representation of the base type of
T. The value of this attribute is of the type
universal_integer.

For types based on the VAX hardware
types, this value can be 127 (F_floating or
D_floating), 1023 (G_floating), or 16,383
(H_floating).

For types based on the IEEE hardware
types, this value can be 128 (IEEE single
float) or 1024 (IEEE double float).

9 T’MACHINE_EMIN Yields the smallest (most negative) value
of exponent for the machine representation
of the base type of T. The value of this
attribute is of the type universal_integer.

20 See also Appendix G, AI-00263.

13.7.3 Representation Attributes of Real Types 13–34

For types based on the VAX hardware
types, this value can be –127 (F_floating or
D_floating), –1023 (G_floating), or –16,383
(H_floating).

For types based on the IEEE hardware
types, this value can be –125 (IEEE single
float) or –1021 (IEEE double float).

The DEC Ada values of the representation attributes for floating point numbers
are listed in Appendix F. Definitions of the six floating point representations
(F_floating, D_floating, G_floating, H_floating, IEEE single float, and IEEE
double float) are given in section 3.5.7.

Note:
10 For many machines the largest machine representable number of type F is

almost

(F’MACHINE_RADIX)**(F’MACHINE_EMAX),

11 and the smallest positive representable number is

F’MACHINE_RADIX ** (F’MACHINE_EMIN - 1)

12 References: arithmetic operator 4.5, attribute 4.1.4, base type 3.3, boolean predefined
type 3.5.3, false boolean value 3.5.3, fixed point type 3.5.9, floating point type 3.5.7,
model number 3.5.6, numeric type 3.5, numeric_error exception 11.1, predefined
operation 3.3.3, radix 3.5.7, real type 3.5.6, subtype 3.3, true boolean value 3.5.3, type
3.3, universal_integer type 3.5.4

d_floating representation 3.5.7 3.5.7b, f_floating representation 3.5.7, g_floating
representation 3.5.7 3.5.7b, h_floating representation 3.5.7, IEEE double float
representation 3.5.7, IEEE single float representation 3.5.7

13.7a General DEC Ada Additions to the Package System
In addition to the language-required declarations in the package SYSTEM,
DEC Ada declares the operations, constants, types, and subtypes described in
the following sections. The information in these sections applies to all DEC
Ada compilers.

13–35 Address Type Declarations 13.7a.1

13.7a.1 Address Type Declarations
In DEC Ada, ADDRESS is a private type for which the following operations
are declared in the package SYSTEM:

type ADDRESS is private;

ADDRESS_ZERO : constant ADDRESS;
NO_ADDR : constant ADDRESS;
NULL_ADDRESS : constant ADDRESS;

-- System-specific definition of ADDRESS_SIZE
--
---- On Digital UNIX systems:
ADDRESS_SIZE : constant := 64;
--
---- On OpenVMS systems:
ADDRESS_SIZE : constant := 32;

function "+" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function "+" (LEFT : INTEGER; RIGHT : ADDRESS) return ADDRESS;
function "-" (LEFT : ADDRESS; RIGHT : ADDRESS) return INTEGER;
function "-" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;

-- Because ADDRESS is a private type
-- the functions "=" and "/=" are already available and
-- do not have to be explicitly defined
--
-- function "=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

function "<" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

generic
type TARGET is private;

function FETCH_FROM_ADDRESS (A : ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGN_TO_ADDRESS (A : ADDRESS; T : TARGET);

The addition, subtraction, and relational functions provide arithmetic and
comparative operations for addresses. The generic subprograms FETCH_
FROM_ADDRESS and ASSIGN_TO_ADDRESS provide operations for reading
from or writing to a given address interpreted as having any desired type.
The value of the deferred constant ADDRESS_ZERO corresponds to the first
(machine) address.

13.7a.1 Address Type Declarations 13–36

In an instantiation of FETCH_FROM_ADDRESS or ASSIGN_TO_ADDRESS,
the actual subtype corresponding to the formal type TARGET must be neither
an unconstrained array type nor an unconstrained type with discriminants.
If the actual subtype is a type with discriminants, the value fetched by a call
of a function resulting from an instantiation of FETCH_FROM_ADDRESS is
checked to ensure that the discriminants satisfy the constraints of the actual
subtype. In any other case, no check is made.

Functions for converting values to and from the type ADDRESS are also
provided, as follows:

function TO_ADDRESS (X : INTEGER) return ADDRESS;
function TO_ADDRESS (X : UNSIGNED_LONGWORD) return ADDRESS;
function TO_ADDRESS (X : {universal_integer}) return ADDRESS;

function TO_INTEGER (X : ADDRESS) return INTEGER;
function TO_UNSIGNED_LONGWORD (X : ADDRESS) return UNSIGNED_LONGWORD;

See section 13.7a.4 for information about the type SYSTEM.UNSIGNED_
LONGWORD.

Note:
On OpenVMS and Digital UNIX systems, DEC Ada provides a predefined
library package of integer-related address operations. This package is generic
and can be instantiated for any integer type. It is provided to accommodate for
differences among address representations across DEC Ada systems.

with SYSTEM;
with UNCHECKED_CONVERSION;
generic

type INTEGER_TYPE is range <>;
package ADDRESS_OPERATIONS is

function "+" (LEFT : SYSTEM.ADDRESS; RIGHT : INTEGER_TYPE)
return SYSTEM.ADDRESS;

function "+" (LEFT : INTEGER_TYPE; RIGHT : SYSTEM.ADDRESS)
return SYSTEM.ADDRESS;

function "-" (LEFT : SYSTEM.ADDRESS; RIGHT : SYSTEM.ADDRESS)
return INTEGER_TYPE;

function "-" (LEFT : SYSTEM.ADDRESS; RIGHT : INTEGER_TYPE)
return SYSTEM.ADDRESS;

function TO_ADDRESS (X : INTEGER_TYPE) return ADDRESS;
function TO_INTEGER_TYPE (X : ADDRESS) return INTEGER_TYPE;

private

pragma INLINE ("+","-", TO_ADDRESS, TO_INTEGER_TYPE);

end ADDRESS_OPERATIONS;
pragma INLINE_GENERIC (ADDRESS_OPERATIONS);

13–37 Address Type Declarations 13.7a.1

Example:
X : INTEGER;
A : SYSTEM.ADDRESS := X’ADDRESS; -- legal

function FETCH is new FETCH_FROM_ADDRESS(INTEGER);
procedure ASSIGN is new ASSIGN_TO_ADDRESS(INTEGER);

X := FETCH(A); -- like "X := A.all;"
ASSIGN(A,X); -- like "A.all := X;"

This example assumes that the representations of the type INTEGER and
the type ADDRESS are the same. On systems where the representations are
different, the code needs to take that into account. For example, on Alpha
systems, the type INTEGER is represented in 32 bits and the type ADDRESS
is represented in 32 or 64 bits (32 bits on OpenVMS Alpha systems and 64
bits on Digital UNIX systems). On these systems, the example needs to be
rewritten as follows:

type ADDRESS_INTEGER is
-2**(SYSTEM.ADDRESS_SIZE -1) .. 2**(SYSTEM.ADDRESS_SIZE -1) - 1;

. . .

X : ADDRESS_INTEGER;
A : SYSTEM.ADDRESS := X’ADDRESS; -- legal

function FETCH is new FETCH_FROM_ADDRESS(ADDRESS_INTEGER);
procedure ASSIGN is new ASSIGN_TO_ADDRESS(ADDRESS_INTEGER);

X := FETCH(A); -- like "X := A.all;"
ASSIGN(A,X); -- like "A.all := X;"

References: actual parameter 6.4 6.4.1, boolean predefined type 3.5.3, deferred
constant 7.4, discriminant 3.3 3.7.1, erroneous 1.6, formal parameter 6.4, function
6.5, generic subprogram 12.1 12.1.3, instantiation 12.3, integer type 3.5.4, operation
3.3.3, private type 7.4 7.4.1, range 3.5, subtype 3.3, system.max_int 13.7, type 3.3,
unconstrained array type 3.6

13.7a.2 Enumeration Type for Identifying Type Classes
DEC Ada declares the following enumeration type in the package SYSTEM for
identifying the various Ada type classes:

type TYPE_CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS);

13.7a.2 Enumeration Type for Identifying Type Classes 13–38

In addition to the usual operations for discrete types (see 3.5.5), DEC Ada
provides the attribute TYPE_CLASS.

For every type or subtype T:

T’TYPE_CLASS Yields the value of the type class for the full type of T.
If T is a generic formal type, then the value is the value
for the corresponding actual subtype. The value of this
attribute is of the type TYPE_CLASS.

This attribute is only allowed within a unit to which the predefined package
SYSTEM applies.

Examples:
Given

type MY_INT is range 1 .. 10;
type NEW_INT is new STRING;
package PACK is

type PRIV is private;
private

type PRIV is new FLOAT;
end PACK;

then

-- MY_INT’TYPE_CLASS equals TYPE_CLASS_INTEGER
-- NEW_INT’TYPE_CLASS equals TYPE_CLASS_ARRAY
-- PRIV’TYPE_CLASS equals TYPE_CLASS_FLOATING_POINT

References: access type 3.8, address type 13.7 13.7a.1, array type 3.6, discrete type
3.5, enumeration type 3.5.1, fixed point type 3.5.9, floating point type 3.5.7, generic
formal type 12.1 12.1.2, integer type 3.5.4, record type 3.9, subtype 3.3 3.3.2, task type
9.1

13.7a.3 Non-Ada Exception
DEC Ada declares the following exception in the package SYSTEM to allow
the treatment of non-Ada conditions or signals as a special subclass of Ada
exceptions:

NON_ADA_ERROR : exception;

When used as a choice in an Ada exception part, the exception NON_ADA_
ERROR matches itself and other non-Ada exceptions as follows:

• On OpenVMS systems, it matches the following:

– Itself.

13–39 Non-Ada Exception 13.7a.3

– Any OpenVMS condition whose facility field is not ADA and which does
not match an Ada exception (see the DEC Ada Run-Time Reference
Manual for OpenVMS Systems for more information).

– Ada exceptions for which the pragma IMPORT_EXCEPTION or
EXPORT_EXCEPTION is given and for which the VMS format has
been specified.

• On Digital UNIX systems, it matches itself and any Digital UNIX signals
that denote error conditions and are not already matched by predefined
Ada exceptions (for example, signals that are matched by the exceptions
CONSTRAINT_ERROR, STORAGE_ERROR, and so on).

See the DEC Ada run-time reference manuals for more information on the
matching of Ada exceptions to system conditions or signals.

Example:
-- mixed-language example involving errors that can be handled
-- only by a handler for the exception NON_ADA_ERROR (or for others)
--
with TEXT_IO, SYSTEM; use TEXT_IO, SYSTEM;
procedure NON_ADA_EX is

function CALL_C (INT_VAL : in INTEGER) return INTEGER;

pragma INTERFACE (C, CALL_C);

begin

-- call C routine, passing integer parameter
--
TEXT_IO.PUT (INTEGER’IMAGE (CALL_C(12)));

exception
when NON_ADA_ERROR =>

TEXT_IO.PUT_LINE ("NON_ADA_ERROR handled");
end NON_ADA_EX;

/*
* C routine expects a pointer to an integer rather
* than an integer; causes a system error
*/
call_c (int_ptr)
int *int_ptr;
{

return *int_ptr * 2;
}

13.7a.3 Non-Ada Exception 13–40

In this example, the mismatch in declarations for the INT_VAL and int_ptr
parameters causes an access violation on OpenVMS systems (ACCVIO) and
a segmentation violation (SIGSEGV) on Digital UNIX systems. These errors
cannot be handled with handlers for any of the Ada predefined exceptions.
They can be handled with a handler for the exception NON_ADA_ERROR (or
with the more global others choice).

References: exception 11, exception declaration 11.1

13.7a.4 Hardware-Oriented Types and Functions
DEC Ada declares the following types, subtypes, and functions in the package
SYSTEM for convenience in working with hardware-oriented storage:

type BIT_ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BIT_ARRAY);

subtype BIT_ARRAY_8 is BIT_ARRAY (0 .. 7);
subtype BIT_ARRAY_16 is BIT_ARRAY (0 .. 15);
subtype BIT_ARRAY_32 is BIT_ARRAY (0 .. 31);
subtype BIT_ARRAY_64 is BIT_ARRAY (0 .. 63);

type UNSIGNED_BYTE is range 0 .. 255;
for UNSIGNED_BYTE’SIZE use 8;

function "not" (LEFT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "and" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "or" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "xor" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;

function TO_UNSIGNED_BYTE (X : BIT_ARRAY_8) return UNSIGNED_BYTE;
function TO_BIT_ARRAY_8 (X : UNSIGNED_BYTE) return BIT_ARRAY_8;

type UNSIGNED_BYTE_ARRAY is array (INTEGER range <>) of UNSIGNED_BYTE;

type UNSIGNED_WORD is range 0 .. 65535;
for UNSIGNED_WORD’SIZE use 16;

function "not" (LEFT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "and" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "or" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "xor" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;

function TO_UNSIGNED_WORD (X : BIT_ARRAY_16) return UNSIGNED_WORD;
function TO_BIT_ARRAY_16 (X : UNSIGNED_WORD) return BIT_ARRAY_16;

type UNSIGNED_WORD_ARRAY is array (INTEGER range <>) of UNSIGNED_WORD;

type UNSIGNED_LONGWORD is range -2_147_483_648 .. 2_147_483_647;
for UNSIGNED_LONGWORD’SIZE use 32;

function "not" (LEFT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "and" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "or" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "xor" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;

13–41 Hardware-Oriented Types and Functions 13.7a.4

function TO_UNSIGNED_LONGWORD (X : BIT_ARRAY_32) return UNSIGNED_LONGWORD;
function TO_BIT_ARRAY_32 (X : UNSIGNED_LONGWORD) return BIT_ARRAY_32;

type UNSIGNED_LONGWORD_ARRAY is
array (INTEGER range <>) of UNSIGNED_LONGWORD;

-- On Alpha systems:
type UNSIGNED_32 is range 0 .. 4_294_967_295;
for UNSIGNED_32’SIZE use 32;

-- On Alpha systems:
function "not" (LEFT : UNSIGNED_32) return UNSIGNED_32;
function "and" (LEFT, RIGHT : UNSIGNED_32) return UNSIGNED_32;
function "or" (LEFT, RIGHT : UNSIGNED_32) return UNSIGNED_32;
function "xor" (LEFT, RIGHT : UNSIGNED_32) return UNSIGNED_32;

-- On Alpha systems:
function TO_UNSIGNED_32 (X : BIT_ARRAY_32) return UNSIGNED_32;
function TO_BIT_ARRAY_32 (X : UNSIGNED_32) return BIT_ARRAY_32;

type UNSIGNED_QUADWORD is
record

L0 : UNSIGNED_LONGWORD;
L1 : UNSIGNED_LONGWORD;

end record;
for UNSIGNED_QUADWORD’SIZE use 64;
for UNSIGNED_QUADWORD use

record at mod 8;
end record;

function "not" (LEFT : UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;
function "and" (LEFT, RIGHT : UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;
function "or" (LEFT, RIGHT : UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;
function "xor" (LEFT, RIGHT : UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;

function TO_UNSIGNED_QUADWORD (X : BIT_ARRAY_64) return UNSIGNED_QUADWORD;
function TO_BIT_ARRAY_64 (X : UNSIGNED_QUADWORD) return BIT_ARRAY_64;

type UNSIGNED_QUADWORD_ARRAY is
array (INTEGER range <>) of UNSIGNED_QUADWORD;

Note:
On Digital UNIX systems, these declarations are provided primarily for
compatibility with Ada programs written for OpenVMS systems. on OpenVMS
VAX systems, the type UNSIGNED_LONGWORD does not have an unsigned
range. See the DEC Ada Run-Time Reference Manual for OpenVMS Systems
for more information.

References: address predefined type 3.7, array 3.6, boolean predefined type 3.5.3,
function 6.5, integer type 3.5.4, overloading 8.7, subtype 3.3 3.3.2, system.ast_handler
type 13.7b.3, system.max_int 13.7, system.min_int 13.7, type 3.3, universal_integer
type 3.5.4

13.7a.4 Hardware-Oriented Types and Functions 13–42

13.7a.5 Convenient Unsigned Longword Declarations
The following DEC Ada package SYSTEM declarations provide convenient
names for static subtypes of the predefined type UNSIGNED_LONGWORD:

subtype UNSIGNED_1 is UNSIGNED_LONGWORD range 0 .. 2** 1-1;
subtype UNSIGNED_2 is UNSIGNED_LONGWORD range 0 .. 2** 2-1;
subtype UNSIGNED_3 is UNSIGNED_LONGWORD range 0 .. 2** 3-1;
subtype UNSIGNED_4 is UNSIGNED_LONGWORD range 0 .. 2** 4-1;
subtype UNSIGNED_5 is UNSIGNED_LONGWORD range 0 .. 2** 5-1;
subtype UNSIGNED_6 is UNSIGNED_LONGWORD range 0 .. 2** 6-1;
subtype UNSIGNED_7 is UNSIGNED_LONGWORD range 0 .. 2** 7-1;
subtype UNSIGNED_8 is UNSIGNED_LONGWORD range 0 .. 2** 8-1;
subtype UNSIGNED_9 is UNSIGNED_LONGWORD range 0 .. 2** 9-1;
subtype UNSIGNED_10 is UNSIGNED_LONGWORD range 0 .. 2**10-1;
subtype UNSIGNED_11 is UNSIGNED_LONGWORD range 0 .. 2**11-1;
subtype UNSIGNED_12 is UNSIGNED_LONGWORD range 0 .. 2**12-1;
subtype UNSIGNED_13 is UNSIGNED_LONGWORD range 0 .. 2**13-1;
subtype UNSIGNED_14 is UNSIGNED_LONGWORD range 0 .. 2**14-1;
subtype UNSIGNED_15 is UNSIGNED_LONGWORD range 0 .. 2**15-1;
subtype UNSIGNED_16 is UNSIGNED_LONGWORD range 0 .. 2**16-1;
subtype UNSIGNED_17 is UNSIGNED_LONGWORD range 0 .. 2**17-1;
subtype UNSIGNED_18 is UNSIGNED_LONGWORD range 0 .. 2**18-1;
subtype UNSIGNED_19 is UNSIGNED_LONGWORD range 0 .. 2**19-1;
subtype UNSIGNED_20 is UNSIGNED_LONGWORD range 0 .. 2**20-1;
subtype UNSIGNED_21 is UNSIGNED_LONGWORD range 0 .. 2**21-1;
subtype UNSIGNED_22 is UNSIGNED_LONGWORD range 0 .. 2**22-1;
subtype UNSIGNED_23 is UNSIGNED_LONGWORD range 0 .. 2**23-1;
subtype UNSIGNED_24 is UNSIGNED_LONGWORD range 0 .. 2**24-1;
subtype UNSIGNED_25 is UNSIGNED_LONGWORD range 0 .. 2**25-1;
subtype UNSIGNED_26 is UNSIGNED_LONGWORD range 0 .. 2**26-1;
subtype UNSIGNED_27 is UNSIGNED_LONGWORD range 0 .. 2**27-1;
subtype UNSIGNED_28 is UNSIGNED_LONGWORD range 0 .. 2**28-1;
subtype UNSIGNED_29 is UNSIGNED_LONGWORD range 0 .. 2**29-1;
subtype UNSIGNED_30 is UNSIGNED_LONGWORD range 0 .. 2**30-1;
subtype UNSIGNED_31 is UNSIGNED_LONGWORD range 0 .. 2**31-1;

References: range 3.5, static subtype 4.9, subtype 3.3 3.3.2, system.unsigned_
longword 13.7a.4, type 3.3

13.7a.6 Global Symbol Values
The following DEC Ada function obtains the value of a link-time global symbol
(sometimes called a global literal):

function IMPORT_VALUE (SYMBOL : STRING) return UNSIGNED_LONGWORD;

On OpenVMS systems, if the parameter SYMBOL is a string literal of 31
or fewer characters, then the value of the function is the value of the global
symbol in the external environment.

13–43 Global Symbol Values 13.7a.6

On OpenVMS and Digital UNIX systems, the following DEC Ada functions
also obtain a link-time global symbol as a value of the type ADDRESS or of the
largest integer type:

function IMPORT_ADDRESS (SYMBOL : STRING) return ADDRESS;

function IMPORT_LARGEST_VALUE (SYMBOL : STRING) return LARGEST_INTEGER;

The maximum length for the string literal is related to the maximum size of a
system address or integer (31 characters on OpenVMS systems; 63 characters
on Digital UNIX systems).

Examples:
CMS_CREATED : constant CONDITION_HANDLING.COND_VALUE_TYPE

:= IMPORT_VALUE("CMS$_CREATED");

The preceding constant declaration is used in a DEC Ada program that calls
DEC Code Management System (CMS) routines. The IMPORT_VALUE
function is used to assign the value of the global symbol CMS$_CREATE
to the condition value constant (an unsigned longword) CMS_CREATED, so
that the success or failure of a CMS creation routine can be monitored. (The
specification of the DEC Ada package CONDITION_HANDLING is presented
in the DEC Ada Run-Time Reference Manual for OpenVMS Systems.)

with SYSTEM, TEXT_IO;
use SYSTEM, TEXT_IO;
procedure IMPORT_VALUE_EXAMPLE is

ETEXT : constant LARGEST_INTEGER := IMPORT_LARGEST_VALUE ("etext");
begin

PUT_LINE ("Address of etext: " & LARGEST_INTEGER’IMAGE(ETEXT));
end IMPORT_VALUE_EXAMPLE;

When the preceding example is linked into an image on a Digital UNIX
system, the Ada constant ETEXT is assigned the address of the symbol etext.
The symbol is created by the linker, and its value indicates an address after
the text segment of the image. The text segment is often or can be made read-
only). See end(3) and a.out(5) for more information about etext and Digital
UNIX image structure.

References: constant declaration 3.2, function 6.1, function result 6.5, parameter 6.2,
string literal 2.6, string type 3.6.3

13.7b System-Specific DEC Ada Additions to the Package System 13–44

13.7b System-Specific DEC Ada Additions to the Package
System
In addition to the language-required declarations in and the general DEC
Ada additions to the package SYSTEM, DEC Ada declares the operations,
constants, types, and subtypes described in the following sections. The
information in these sections applies to individual DEC Ada compilers.

13.7b.1 VAX Floating Point Types (OpenVMS Systems Only)
DEC Ada declares four floating point types in the package SYSTEM. These
types correspond to the four VAX hardware floating point data representations:
D_floating, F_floating, G_floating, and H_floating.

type D_FLOAT is implementation_defined;
type F_FLOAT is implementation_defined;
type G_FLOAT is implementation_defined;
type H_FLOAT is implementation_defined; -- on VAX systems only

These types have all of the properties of floating types in general (operators,
attributes, implicit conversion of real literals, and so on). See section 3.5.7
and the DEC Ada Run-Time Reference Manual for OpenVMS Systems for
explanations of the VAX floating point types and type representations.

13.7b.2 IEEE Floating Point Types (OpenVMS Alpha and Digital UNIX
Systems Only)

DEC Ada declares two floating point types in the package SYSTEM. These
types correspond to the two IEEE floating point data representations: IEEE
single float and IEEE double float.

type IEEE_SINGLE_FLOAT is
implementation_defined;
type IEEE_DOUBLE_FLOAT is
implementation_defined;

These types have all of the properties of floating types in general (operators,
attributes, implicit conversion of real literals, and so on). See section 3.5.7 and
the DEC Ada run-time reference manuals for explanations of the IEEE floating
point types and type representations.

13–45OpenVMS Asynchronous-System-Trap-Related Declarations (OpenVMS Systems Only) 13.7b.3

13.7b.3 OpenVMS Asynchronous-System-Trap-Related Declarations
(OpenVMS Systems Only)

To support a means of handling OpenVMS asynchronous system traps (ASTs),
and to allow the explicit specification of imported OpenVMS system service
routines that involve ASTs, DEC Ada declares the following type and its
auxiliary constant in the package SYSTEM:

type AST_HANDLER is limited private;

NO_AST_HANDLER : constant AST_HANDLER;

The type AST_HANDLER is used in the specification of the AST_ENTRY
attribute, which is the only operation defined for this type. A value of the type
AST_HANDLER is the address of a specially created routine that implements
the delivery of an AST as a call to a particular entry in a particular task. See
section 9.12a.

When used as an actual parameter to an imported OpenVMS system service
routine, the constant NO_AST_HANDLER allows explicit specification that no
AST handler is provided.

A function for converting values of the type AST_HANDLER to the type
SYSTEM.UNSIGNED_LONGWORD is as follows:

function TO_UNSIGNED_LONGWORD (X : AST_HANDLER)
return UNSIGNED_LONGWORD;

See section 13.7a.4 for information about the type SYSTEM.UNSIGNED_
LONGWORD.

Note:
When using the type AST_HANDLER to pass a parameter to an imported
subprogram, it is generally necessary to specify the VALUE mechanism
option. See section 13.9a.1.4 and the DEC Ada Run-Time Reference Manual for
OpenVMS Systems.

Example:
-- interface for the Get Job/Process Information system service

13.7b.3 OpenVMS Asynchronous-System-Trap-Related Declarations (OpenVMS Systems Only)13–46

procedure GETJPI (
STATUS : out COND_VALUE_TYPE;
EFN : in EF_NUMBER_TYPE := EF_NUMBER_ZERO;
PIDADR : in ADDRESS := ADDRESS_ZERO;
PRCNAM : in PROCESS_NAME_TYPE:= PROCESS_NAME_TYPE’NULL_PARAMETER;
ITMLST : in ITEM_LIST_TYPE;
IOSB : out IOSB_TYPE;
ASTADR : in AST_HANDLER := NO_AST_HANDLER;
ASTPRM : in USER_ARG_TYPE := USER_ARG_ZERO);

pragma INTERFACE (EXTERNAL, GETJPI);
pragma IMPORT_VALUED_PROCEDURE (GETJPI, "SYS$GETJPI",

(COND_VALUE_TYPE, EF_NUMBER_TYPE, ADDRESS,
PROCESS_NAME_TYPE, ITEM_LIST_TYPE, IOSB_TYPE,
AST_HANDLER, USER_ARG_TYPE),
(VALUE, VALUE, VALUE, DESCRIPTOR(S), REFERENCE, REFERENCE,
VALUE, VALUE));

As the preceding example shows, the type AST_HANDLER and constant NO_
AST_HANDLER are useful in writing interfaces to OpenVMS system routines.
This specification from the package STARLET shows the use of the type AST_
HANDLER to declare an AST address parameter and shows the use of the
constant NO_AST_HANDLER to give that parameter a default value.

References: actual parameter 6.4 6.4.1, asynchronous system trap 9.12a, attribute
4.1.4, constant 3.2.1, entry 9.5, exception 11, exception declaration 11.1, importing
subprograms 13.9a.1.1, limited private type 7.4.4, operation 3.3.3, task 9, type 3.3

13.7b.4 VAX Processor and Device Register Operations (OpenVMS
VAX Systems Only)

The following package SYSTEM operations allow access to VAX processor
device registers:

function READ_REGISTER (SOURCE : UNSIGNED_BYTE)
return UNSIGNED_BYTE;

function READ_REGISTER (SOURCE : UNSIGNED_WORD)
return UNSIGNED_WORD;

function READ_REGISTER (SOURCE : UNSIGNED_LONGWORD)
return UNSIGNED_LONGWORD;

procedure WRITE_REGISTER(SOURCE : UNSIGNED_BYTE;
TARGET : out UNSIGNED_BYTE);

procedure WRITE_REGISTER(SOURCE : UNSIGNED_WORD;
TARGET : out UNSIGNED_WORD);

procedure WRITE_REGISTER(SOURCE : UNSIGNED_LONGWORD;
TARGET : out UNSIGNED_LONGWORD);

The READ_REGISTER functions return the value of a variable reference (byte,
word, or longword). The WRITE_REGISTER procedures load a specified value
or group of values into a specified target variable reference (byte, word, or
longword).

13–47 VAX Processor and Device Register Operations (OpenVMS VAX Systems Only) 13.7b.4

Each READ_REGISTER and WRITE_REGISTER operation is performed by a
single machine instruction and is not affected by any compiler optimizations.
Use of these operations is the only safe method for reading or writing a device
register. These operations can also be used to read or write a variable in
shared memory although use of the pragma SHARED is the preferred method
of doing so.

References: exception 11, exception handling 11.4, function 6.1, integer type 3.5.4,
procedure 6.1, system.unsigned_byte type 13.7a.4, system.unsigned_word type 13.7a.4,
system.unsigned_longword type 13.7a.4, variable 3.2.1 3.7.3

13.7b.5 Interlocked-Instruction Procedures (OpenVMS and Digital UNIX
Systems Only)

The following package SYSTEM procedures provide equivalents for VAX
interlocked instructions:

-- On OpenVMS and Digital UNIX systems:
procedure CLEAR_INTERLOCKED (BIT : in out BOOLEAN;

OLD_VALUE : out BOOLEAN);
procedure SET_INTERLOCKED (BIT : in out BOOLEAN;

OLD_VALUE : out BOOLEAN);

-- On OpenVMS and Digital UNIX systems:
type ALIGNED_WORD is

record
VALUE : SHORT_INTEGER;

end record;
for ALIGNED_WORD use

record at mod 2;
end record;

-- On Alpha systems only:
procedure CLEAR_INTERLOCKED (BIT : in out BOOLEAN;

OLD_VALUE : out BOOLEAN;
RETRY_COUNT : in NATURAL;
SUCCESS_FLAG : out BOOLEAN);

procedure SET_INTERLOCKED (BIT : in out BOOLEAN;
OLD_VALUE : out BOOLEAN;
RETRY_COUNT : in NATURAL;
SUCCESS_FLAG : out BOOLEAN);

-- On OpenVMS and Digital UNIX systems:
procedure ADD_INTERLOCKED (ADDEND : in SHORT_INTEGER;

AUGEND : in out ALIGNED_WORD;
SIGN : out INTEGER);

The procedure:

• CLEAR_INTERLOCKED is equivalent to the VAX Branch on Bit Clear and
Clear Interlocked (BBCCI) instruction

13.7b.5 Interlocked-Instruction Procedures (OpenVMS and Digital UNIX Systems Only) 13–48

• SET_INTERLOCKED is equivalent to the VAX Branch on Bit Set and Set
Interlocked (BBSSI) instruction

• ADD_INTERLOCKED is equivalent to the VAX Add Aligned Word
Interlocked (ADAWI) instruction.

These instructions interlock memory accesses and provide a means for
synchronizing access to shared memory across processors.

The CLEAR_INTERLOCKED and SET_INTERLOCKED procedures clear or
set a single bit and return the previous value of the bit.

The ADD_INTERLOCKED procedure adds two signed-word integers (ADDEND
and AUGEND). SIGN is assigned the following integer result:

–1 if the new value of AUGEND is negative
0 if AUGEND is zero
+1 if AUGEND is positive

The type ALIGNED_WORD, used in the ADD_INTERLOCKED pro-
cedure, specifies a word-sized integer that is word-aligned (the type
STANDARD.SHORT_INTEGER is a word-sized integer that is byte-aligned).

For more information on the use of these operations, see the DEC Ada run-time
reference manuals..

References: boolean predefined type 3.5.3, integer type 3.5.4, procedure 6.1, type 3.3,
short_integer predefined type 3.5.4

13.7b.6 Atomic Procedures (Alpha Systems Only)
The following package SYSTEM procedures provide atomic addition, AND,
and OR operations for longwords and quadwords (4- and 8-byte quantities) on
Alpha systems. These procedures guarantee that the operations performed will
be indivisible.

-- On Alpha systems only:
type ALIGNED_INTEGER is

record
VALUE : INTEGER;

end record;
for ALIGNED_INTEGER use

record at mod 4;
end record;

13–49 Atomic Procedures (Alpha Systems Only) 13.7b.6

-- On Alpha systems only:
type ALIGNED_LONG_INTEGER is

record
VALUE : LONG_INTEGER;

end record;
for ALIGNED_LONG_INTEGER use

record at mod 8;
end record;

-- For the following declarations, the declaration without
-- a RETRY_COUNT parameter mean to retry infinitely. A value of 0
-- for the RETRY_COUNT parameter means do not retry.
--
-- On Alpha systems only:
procedure ADD_ATOMIC (TO : in out ALIGNED_INTEGER;

AMOUNT : in INTEGER);
procedure ADD_ATOMIC (TO : in out ALIGNED_INTEGER;

AMOUNT : in INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out INTEGER;
SUCCESS_FLAG : out BOOLEAN);

procedure ADD_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
AMOUNT : in LONG_INTEGER);

procedure ADD_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
AMOUNT : in LONG_INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out LONG_INTEGER;
SUCCESS_FLAG : out BOOLEAN);

-- On Alpha systems only:
procedure AND_ATOMIC (TO : in out ALIGNED_INTEGER;

FROM : in INTEGER);
procedure AND_ATOMIC (TO : in out ALIGNED_INTEGER;

FROM : in INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out INTEGER;
SUCCESS_FLAG : out BOOLEAN);

procedure AND_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
FROM : in LONG_INTEGER);

procedure AND_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
FROM : in LONG_INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out LONG_INTEGER;
SUCCESS_FLAG : out BOOLEAN);

13.7b.6 Atomic Procedures (Alpha Systems Only) 13–50

-- On Alpha systems only:
procedure OR_ATOMIC (TO : in out ALIGNED_INTEGER;

FROM : in INTEGER);
procedure OR_ATOMIC (TO : in out ALIGNED_INTEGER;

FROM : in INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out INTEGER;
SUCCESS_FLAG : out BOOLEAN);

procedure OR_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
FROM : in LONG_INTEGER);

procedure OR_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
FROM : in LONG_INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out LONG_INTEGER;
SUCCESS_FLAG : out BOOLEAN);

References: integer type 3.5.4, procedure 6.1, type 3.3

13.7b.7 Interlocked-Queue-Instruction Procedures (OpenVMS Systems
Only)

The following package SYSTEM procedures provide equivalents for VAX
interlocked queue instructions. Note that the types INSQ_STATUS and
REMQ_STATUS are slightly different on VAX and Alpha systems.

-- On OpenVMS VAX systems only:
type INSQ_STATUS is (OK_NOT_FIRST, FAIL_NO_LOCK,
OK_FIRST);
for INSQ_STATUS use (OK_NOT_FIRST => 0,

FAIL_NO_LOCK => 1,
OK_FIRST => 2);

-- On OpenVMS VAX systems only:
type REMQ_STATUS is (OK_NOT_EMPTY, FAIL_NO_LOCK,

OK_EMPTY, FAIL_WAS_EMPTY);
for REMQ_STATUS use (OK_NOT_EMPTY => 0,

FAIL_NO_LOCK => 1,
OK_EMPTY => 2,
FAIL_WAS_EMPTY => 3);

-- On OpenVMS Alpha systems only:
type INSQ_STATUS is (FAIL_NO_LOCK, OK_NOT_FIRST,
OK_FIRST);
for INSQ_STATUS use (FAIL_NO_LOCK => -1,

OK_NOT_FIRST => 0,
OK_FIRST => 1);

13–51 Interlocked-Queue-Instruction Procedures (OpenVMS Systems Only) 13.7b.7

-- On OpenVMS Alpha systems only:
type REMQ_STATUS is (FAIL_NO_LOCK, FAIL_WAS_EMPTY,

OK_NOT_EMPTY, OK_EMPTY);
for REMQ_STATUS use (FAIL_NO_LOCK => -1,

FAIL_WAS_EMPTY => 0,
OK_NOT_EMPTY => 1,
OK_EMPTY => 2);

-- On OpenVMS systems only:
procedure INSQHI (ITEM : in ADDRESS;

HEADER : in ADDRESS;
STATUS : out INSQ_STATUS);

-- On OpenVMS systems only:
procedure REMQHI (HEADER : in ADDRESS;

ITEM : out ADDRESS;
STATUS : out REMQ_STATUS);

-- On OpenVMS systems only:
procedure INSQTI (ITEM : in ADDRESS;

HEADER : in ADDRESS;
STATUS : out INSQ_STATUS);

-- On OpenVMS systems only:
procedure REMQTI (HEADER : in ADDRESS;

ITEM : out ADDRESS;
STATUS : out REMQ_STATUS);

The procedure:

• INSQHI is equivalent to the VAX Insert Entry into Queue at Head,
Interlocked instruction

• INSQTI is equivalent to the VAX Insert Entry into Queue at Tail,
Interlocked instruction

• REMQHI is equivalent to the VAX Remove Entry from Queue at Head,
Interlocked instruction

• REMQTI is equivalent to the Remove Entry from Queue at Tail,
Interlocked instruction

The types INSQ_STATUS and REMQ_STATUS are defined to represent the
status results of the procedures for manipulating self-relative queues (queues
where the forward and backward links are defined as offsets from one link to
the next, rather than as virtual addresses).

The INSQHI, REMQHI, INSQTI, and REMQTI procedures perform queue
insertion and removal operations at the head and tail of a self-relative queue.
The address values of HEADER and ITEM must be quadword-aligned. The
enumeration value assigned to STATUS gives the state of the queue after the
operation has been executed.

13.7b.7 Interlocked-Queue-Instruction Procedures (OpenVMS Systems Only) 13–52

The VAX INSQHI, REMQHI, INSQTI, and REMQTI instructions all have a
parameter named "entry". Because "entry" is a reserved word in Ada, the
"entry" parameter in each analogous DEC Ada procedure has been changed to
ITEM.

For more information on the use of these operations, see the DEC Ada
Run-Time Reference Manual for OpenVMS Systems.

References: address predefined type 13.7, boolean predefined type 3.5.3, integer type
3.5.4, parameter 6.2, procedure 6.1, record representation clause 13.4, record type 3.7,
type 3.3, short_integer predefined type 3.5.4

13.8 Machine Code Insertions
1 A machine code insertion can be achieved by a call to a procedure whose

sequence of statements contains code statements.

2 code_statement ::= type_mark’record_aggregate;

3 A code statement is only allowed in the sequence of statements of a procedure
body. If a procedure body contains code statements, then within this procedure
body the only allowed form of statement is a code statement (labeled or not),
the only allowed declarative items are use clauses, and no exception handler is
allowed (comments and pragmas are allowed as usual).

4 Each machine instruction appears as a record aggregate of a record type that
defines the corresponding instruction. The base type of the type mark of a
code statement must be declared within the predefined library package called
MACHINE_CODE; this package must be named by a with clause that applies
to the compilation unit in which the code statement occurs. An implementation
is not required to provide such a package.

DEC Ada does not provide the package MACHINE_CODE; a user-provided
package named MACHINE_CODE cannot be used for machine code insertions.

5 An implementation is allowed to impose further restrictions on the record
aggregates allowed in code statements. For example, it may require that
expressions contained in such aggregates be static expressions.

6 An implementation may provide machine-dependent pragmas specifying
register conventions and calling conventions. Such pragmas must be
documented in Appendix F.

DEC Ada does not provide machine-dependent pragmas specifying register
conventions. Calling conventions are specified by the interface and import-
export pragmas (see 13.9 and 13.9a).

13–53 Machine Code Insertions 13.8

7 Example:
M : MASK;
procedure SET_MASK; pragma INLINE(SET_MASK);

procedure SET_MASK is
use MACHINE_CODE;

begin
SI_FORMAT’(CODE => SSM, B => M’BASE_REG, D => M’DISP);
-- M’BASE_REG and M’DISP are implementation-specific
-- predefined attributes

end;

8 References: allow 1.6, apply 10.1.1, comment 2.7, compilation unit 10.1, declarative
item 3.9, exception handler 11.2, inline pragma 6.3.2, labeled statement 5.1, library
unit 10.1, package 7, pragma 2.8, procedure 6 6.1, procedure body 6.3, record aggregate
4.3.1, record type 3.7, sequence of statements 5.1, statement 5, static expression 4.9,
use clause 8.4, with clause 10.1.1

13.9 Interface to Other Languages
1 A subprogram written in another language can be called from an Ada program

provided that all communication is achieved via parameters and function
results. A pragma of the form

2 pragma INTERFACE (language_name, subprogram_name);

3 must be given for each such subprogram; a subprogram name is allowed to
stand for several overloaded subprograms. This pragma is allowed at the
place of a declarative item, and must apply in this case to a subprogram
declared by an earlier declarative item of the same declarative part or package
specification. The pragma is also allowed for a library unit; in this case
the pragma must appear after the subprogram declaration, and before any
subsequent compilation unit. The pragma specifies the other language (and
thereby the calling conventions) and informs the compiler that an object
module will be supplied for the corresponding subprogram. A body is not
allowed for such a subprogram (not even in the form of a body stub) since the
instructions of the subprogram are written in another language.21

4 This capability need not be provided by all implementations. An
implementation may place restrictions on the allowable forms and places
of parameters and calls.

Use of this pragma in DEC Ada is equivalent to supplying the body of the
named subprogram or subprograms. So, the following rules apply:

• If a subprogram body is given later for a subprogram named with a pragma
INTERFACE, the body is illegal.

21 See also Appendix G, AI-00180 and AI-00298.

13.9 Interface to Other Languages 13–54

• If a pragma INTERFACE names a subprogram body, the pragma is illegal.

• If a duplicate pragma INTERFACE is given, the latter pragma is illegal.

In DEC Ada, a name specified by a pragma INTERFACE can be declared by
a renaming declaration. In this case, the pragma INTERFACE applies to the
subprogram only if the following all occur in the same declarative part or
package specification:

• The subprogram that has been renamed

• The renaming declaration

• The pragma

The pragma is ignored if these conditions are not satisfied.

In addition, DEC Ada interprets the effect of a pragma INTERFACE such that
implicit declarations of subprograms (such as predefined operators, derived
subprograms, attribute functions, and so on) are accepted and ignored.

Depending upon its use in a DEC Ada program, a pragma INTERFACE is
interpreted in combination with one of the three DEC Ada import subprogram
pragmas: IMPORT_FUNCTION, IMPORT_PROCEDURE, or IMPORT_
VALUED_PROCEDURE. These pragmas are described in section 13.9a.1.1.

If a pragma INTERFACE is used without one of these import pragmas, a
default interpretation is used, as follows:

• If the subprogram name applies to a single subprogram, then a default
import pragma is assumed.

For a function, the default is:

pragma IMPORT_FUNCTION (function_designator);

For a procedure, the default is:

pragma IMPORT_PROCEDURE (procedure_identifier);

• If the subprogram name applies to two or more subprograms, the pragma
applies to all of them. However, a warning is given if the appropriate DEC
Ada import pragmas are not given for all of the subprograms.

Whether or not the pragma INTERFACE is used with an import pragma, the
following rules apply:

• The language name must be an identifier.

• The language name determines a set of default characteristics for the
subprogram; for example, the parameter passing mechanisms, the return
mechanism (if the subprogram is a function), and so on.

13–55 Interface to Other Languages 13.9

On OpenVMS systems, the language name can be ADA, BLISS, C,
FORTRAN, or DEFAULT. Any other language name or identifier causes
the set of DEFAULT defaults to be chosen.

On Digital UNIX systems, the language name can be ADA, BLISS, C,
or FORTRAN. Any other language name or identifier causes the set of C
defaults to be chosen.

For some parameter or result types, no default mechanism is chosen.
In those cases, if an explicit mechanism is not specified, the pragma
INTERFACE is ignored.

See the DEC Ada run-time reference manuals for more information about
the defaults.

• The subprogram name must be either an identifier or a string literal that
denotes an operator symbol.

5 Example:
package FORT_LIB is

function SQRT(X : FLOAT) return FLOAT;
function EXP (X : FLOAT) return FLOAT;

private
pragma INTERFACE(FORTRAN, SQRT);
pragma INTERFACE(FORTRAN, EXP);

end FORT_LIB;

In DEC Ada, the preceding example is interpreted as follows: the pragma
INTERFACE specifies that the indicated routines SQRT and EXP are to be
imported and used as bodies for the Ada functions SQRT and EXP in the
package FORT_LIB.

package CHOOSE_R is
procedure P(X : INTEGER);
procedure P(X : FLOAT);

private
procedure R(X : FLOAT) renames P;
pragma INTERFACE(C, R);

end CHOOSE_R;

In this example, the preceding pragma INTERFACE indicates that the body for
the second procedure P is to be imported as routine R.

13.9 Interface to Other Languages 13–56

Notes:
6 The conventions used by other language processors that call Ada programs are

not part of the Ada language definition. Such conventions must be defined by
these other language processors.

7 The pragma INTERFACE is not defined for generic subprograms.

The meaning of the subprogram name is determined as for any name
(see 8.3), except that the name can denote more than one subprogram. In
the following declaration, the pragma INTERFACE applies to the first two
procedures; it does not apply to the third because the declaration is not visible
at the place of the pragma. This same interpretation is made for pragmas used
to import and export subprograms (see 13.9a.1).

procedure P (B: BOOLEAN);
procedure P (I: INTEGER);
pragma INTERFACE (NONADA, P);
procedure P (F: FLOAT);

If a pragma INTERFACE and a pragma INLINE are used together, the pragma
INLINE is ignored regardless of the order in which the two pragmas appear.

8 References: allow 1.6, body stub 10.2, compilation unit 10.1, declaration 3.1,
declarative item 3.9, declarative part 3.9, function result 6.5, library unit 10.1, must
1.6, name 4.1, overloaded subprogram 6.6, package specification 7.1, parameter of a
subprogram 6.2, pragma 2.8, subprogram 6, subprogram body 6.3, subprogram call 6.4,
subprogram declaration 6.1

attribute 4.1.4, declarative part 3.9, derived subprogram 3.4, function 6.5, identifier
2.3, operator 4.5, operator symbol 6.1, procedure 6.1, renaming declaration 8.5, string
literal 2.6

13.9a DEC Ada Import and Export Pragmas
DEC Ada provides import and export pragmas designed specifically for
constructing programs composed of both Ada and non-Ada entities. The import
pragmas allow an Ada program to refer to entities written in another language.
The export pragmas make Ada entities available to programs written in other
languages. The names of the pragmas indicate the kind of entity involved, as
follows:

• Pragmas applying to (nongeneric) functions:

IMPORT_FUNCTION
EXPORT_FUNCTION

• Pragmas applying to (nongeneric) procedures:

IMPORT_PROCEDURE

13–57 DEC Ada Import and Export Pragmas 13.9a

IMPORT_VALUED_PROCEDURE
EXPORT_PROCEDURE
EXPORT_VALUED_PROCEDURE

• Pragmas applying to objects:

IMPORT_OBJECT
EXPORT_OBJECT
COMMON_OBJECT

On OpenVMS systems, DEC Ada provides the following additional pragmas:

• The pragma PSECT_OBJECT applies to objects (and is equivalent to the
pragma COMMON_OBJECT).

• The pragmas IMPORT_EXCEPTION and EXPORT_EXCEPTION apply to
exceptions.

All of these pragmas are described in this section, summarized in Annex B,
and listed in Appendix F.

DEC Ada also provides the import-export pragma INTERFACE_NAME. This
pragma is described in section 13.9b, summarized in Annex B, and listed in
Appendix F.

The form of all of the DEC Ada import and export pragmas is as follows:

pragma import_export_pragma_name
(internal_name [, external_designator]

[, pragma_specific_options]);

import_export_pragma_name ::= COMMON_OBJECT
| EXPORT_EXCEPTION -- OpenVMS systems only
| EXPORT_FUNCTION
| EXPORT_OBJECT
| EXPORT_PROCEDURE
| EXPORT_VALUED_PROCEDURE
| IMPORT_EXCEPTION -- OpenVMS systems only
| IMPORT_FUNCTION
| IMPORT_OBJECT
| IMPORT_PROCEDURE
| IMPORT_VALUED_PROCEDURE
| PSECT_OBJECT -- OpenVMS systems only

internal_name ::= [INTERNAL =>] simple_name
| [INTERNAL =>] operator_symbol -- EXPORT_FUNCTION and

-- IMPORT_FUNCTION only

external_designator ::= [EXTERNAL =>] external_symbol

external_symbol ::= identifier | string_literal

13.9a DEC Ada Import and Export Pragmas 13–58

The internal name can be an Ada simple name, or, if the declared entity is a
function, the internal name can be a string literal that denotes an operator
symbol. A subprogram to be imported or exported must be uniquely identified
by its internal name and parameter types and, in the case of a function, the
result type (see 13.9a.1.1).

The external designator determines a symbol that is referenced or declared in
the linker object module. If a string literal is given, the exact value (including
the case of any letters) is used as the symbol. The value must be acceptable
to the linker. If an identifier is given, the identifier is used to determine
the symbol. If no external designator is given, the internal name is used to
determine the symbol.

On OpenVMS systems, the external designator must be 31 or fewer characters.
On Digital UNIX systems, the external designator must be less than or equal
to 63 or fewer characters. If the external designator has more than the allowed
number of characters, the import or export pragma is ignored.

Pragma-specific options are described in the individual pragma sections that
follow.

The DEC Ada import and export pragmas are only allowed at the place of a
declarative item and must apply to an entity declared by an earlier declarative
item of the same declarative part or package specification. At most one import
or export pragma is allowed for any given entity. In the case of multiple
overloaded subprograms, this rule applies to each subprogram independently.

Additional placement and usage rules that apply to particular pragmas are
described in the individual pragma sections that follow.

Note:
On OpenVMS systems, external designator string literals containing dollar
signs ($) are reserved for identifiers of Digital-supplied software components.

Parameter associations for DEC Ada import and export pragmas may be
either positional or named. With positional association, the parameters are
interpreted in the same order as they appear in the syntax definition. The
rules for the mixing of positional and named association are the same as those
that apply to subprograms (see 6.4).

A pragma for an entity declared in a package specification must not be given in
the package body. A pragma for an entity given in the visible part of a package
specification can, however, be given in either the visible or private part of the
specification.

DEC Ada does not check that exported symbols do not conflict with each other
or with other global symbols. Such checking is performed by the linker.

13–59 DEC Ada Import and Export Pragmas 13.9a

References: allow 1.6, declaration 3.1, declarative item 3.9, declarative part 3.9,
entity 3.1, exception 11, function 6.5, generic subprogram 12.1, identifier 2.3, named
parameter association 6.4, object 3.2, operator symbol 4.5 6.1, overloading 6.6, package
body 7.1, package specification 7.1, parameter 6.2, positional parameter association 6.4,
pragma 2.8, private part 7.2, procedure 6.1, program 10.1, renaming declaration 8.5,
result type 5.8, simple name 3.1 4.1, string literal 2.6, string type 3.6.3, subprogram 6,
visibility 8.3

13.9a.1 Importing and Exporting Subprograms
DEC Ada provides a series of pragmas that make it possible to call (nongeneric)
subprograms in a mixed-language programming environment. The pragmas
IMPORT_FUNCTION, IMPORT_PROCEDURE, and IMPORT_VALUED_
PROCEDURE specify that the body of the subprogram associated with
an Ada subprogram specification is to be provided from another programming
language. The pragma INTERFACE must precede one of these import pragmas
(see 13.9).

The pragmas EXPORT_FUNCTION, EXPORT_PROCEDURE, and EXPORT_
VALUED_PROCEDURE allow an Ada procedure or function to be called from
another programming language.

References: function 6.5, generic subprogram 12.1, pragma 2.8, procedure 6.1,
subprogram 6, subprogram body 6.3, subprogram specification 6.1

13.9a.1.1 Importing Subprograms
DEC Ada provides three pragmas for importing subprograms: IMPORT_
FUNCTION, IMPORT_PROCEDURE, and IMPORT_VALUED_PROCEDURE.
The pragma INTERFACE_NAME can also be used to import subprograms; see
13.9b.

The pragmas IMPORT_FUNCTION and IMPORT_PROCEDURE allow an Ada
program to call external (non-Ada) functions and procedures.

The pragma IMPORT_VALUED_PROCEDURE allows an Ada program to call
an external routine that (like a function) returns a result value but that (like
a procedure) can also cause side effects on its parameters. (A function with in
out or out parameters is not legal in Ada.)

The pragma IMPORT_VALUED_PROCEDURE allows a routine to be
interpreted as a procedure in the environment of an Ada program and as
a function in the external environment. The function result is returned in the
first parameter. This pragma is especially useful for calling routines written
in other programming languages that return a status value but that can also
update their parameters.

13.9a.1.1 Importing Subprograms 13–60

The form of the pragmas for importing subprograms is as follows:

pragma IMPORT_FUNCTION
| IMPORT_PROCEDURE | IMPORT_VALUED_PROCEDURE
(internal_name [, external_designator]

[, [PARAMETER_TYPES =>] (parameter_types)]
[, [RESULT_TYPE =>] type_mark] -- IMPORT_FUNCTION

-- only
[, [MECHANISM =>] mechanism]
[, [RESULT_MECHANISM =>] mechanism_name]-- IMPORT_FUNCTION

-- only
[, [FIRST_OPTIONAL_PARAMETER =>] identifier]); -- OpenVMS

-- systems
-- only

parameter_types ::= null | type_mark {, type_mark}

mechanism ::=
mechanism_name | (mechanism_association {, mechanism_association })

mechanism_association ::=
[formal_parameter =>] mechanism_name

mechanism_name ::=
VALUE

| REFERENCE
| DESCRIPTOR [([CLASS =>] class-name)] -- OpenVMS

-- systems only

class_name ::= UBS | UBSB | UBA | S | SB | A | NCA

Functions must be uniquely identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and result types must be
specified.

Procedures must be uniquely identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly one
procedure of that name in the same declarative part or package specification.
Otherwise, the parameter types must be specified.

While the internal name can denote a subprogram renaming declaration, the
import pragma actually applies to the base subprogram declaration. The base
subprogram is obtained by following any sequence of renaming declarations
back to the first nonrenaming subprogram declaration. Except for the rules
related to the internal name itself, the rules and requirements for the use of
these pragmas are given in terms of the base subprogram.

13–61 Importing Subprograms 13.9a.1.1

The external designator denotes a linker global symbol that is associated with
the external subprogram. The external designator is interpreted as follows:

• When the external designator is a string literal, the exact value (including
the case of any letters) is used as the symbol. If a null string is given, no
global symbol is defined.

• When the external designator is an identifier or when no external
designator is given (the internal name is used), the compiler chooses a
default spelling for the symbol as follows:

– On OpenVMS systems, the symbol is spelled in uppercase letters

– On Digital UNIX systems, the symbol is spelled in lowercase letters

– On Digital UNIX systems, if the language Fortran is also specified in
the associated pragma INTERFACE, the symbol is spelled in lowercase
letters with an appended underscore

The parameter types option specifies a series of one or more type marks (type
or subtype names), not parameter names. Each type mark is positionally
associated with a formal parameter in the subprogram’s declaration. The
absence of parameters must be indicated by the reserved word null.

The result type option is used only for functions. It specifies the type or
subtype of the function result.

The mechanism option specifies how the imported subprogram expects its
parameters to be passed (for example, by value, by reference, or by descriptor).
The calling Ada program is responsible for ensuring that parameters are
passed in the form required by the external routine. Mechanism options and
possible values for mechanism names and class names are described in section
13.9a.1.4.

If the first form of mechanism is given (a single mechanism name without
parentheses), all parameters are passed using that mechanism. If the second
form of mechanism is given (a series of mechanism names or associations given
in parentheses and separated by commas), positional or named association can
be used for each mechanism name.

The result mechanism option specifies how the imported function expects its
result to be returned (for example, by value, by reference, or by descriptor).
The calling program (namely, the Ada program) is responsible for ensuring
that the function result is passed in the form required by the external routine.
Possible values for mechanism names and class names are described in
section 13.9a.1.4.

13.9a.1.1 Importing Subprograms 13–62

On OpenVMS systems, the first optional parameter specifies the name of the
first parameter that can be omitted from the parameter list in a call to the
imported subprogram. This option is designed to be used with subprograms
that allow parameters to be omitted with a truncated argument list. It
optimizes the code generated for calls to those subprograms.

This option is supported only on OpenVMS systems.

The first optional parameter must specify the name of a formal parameter
of the base subprogram. That formal parameter and all following formal
parameters, if any, of the base subprogram must be of mode in and must have
been specified with default expressions.

When this option is specified, the parameter list generated for the call to the
imported subprogram is truncated as follows:

• Beginning at the end of the parameter list and working back toward the
beginning of the list, actual parameters are omitted—or truncated. This
happens provided that the evaluation of each actual parameter has no side
effects (assignments to variables or input-output actions) and provided that
one of the following conditions is true:

The actual parameter is implicit. It has been omitted in the call to the
subprogram, allowing the default expression to take effect.

The value of the actual parameter is equal to the value of the
corresponding default expression. (This condition is only considered if
the values of both the actual parameter and its default expression are
known at compilation time.)

• Truncation stops when either an actual parameter cannot be omitted or
when the actual parameter associated with the formal parameter specified
as the first optional parameter has been omitted.

If either the actual parameter or the default expression is or contains a
function call, then a determination of equality or of side effects cannot be
made. In other cases, the determination of equality or the absence of side
effects may depend on the specifics of the situation.

In addition to the rules given in section 13.9a, the following rules apply to all
DEC Ada imported subprograms:

• If an import pragma is given for a subprogram specification, the pragma
INTERFACE (see 13.9) must also be given for the subprogram earlier in
the same declarative part or package specification. The use of the pragma
INTERFACE requires that a corresponding body is not given.

13–63 Importing Subprograms 13.9a.1.1

• If a subprogram has been declared as a compilation unit, the pragma is
only allowed after the subprogram declaration and before any subsequent
compilation unit.

• The procedure specification that corresponds to a pragma IMPORT_
VALUED_PROCEDURE must have at least one parameter, and the first
(or only) parameter must be of mode out.

• These pragmas can be used for subprograms declared with a renaming
declaration. The internal name must be a simple name. The given pragma
applies to the named subprogram only if the subprogram that has been
renamed, the renaming declaration, and the pragma all occur in that same
declarative part or package specification. The pragma is ignored if these
conditions are not satisfied.

• None of these pragmas can be used for a generic subprogram or a generic
subprogram instantiation. They also cannot be used for a subprogram that
is declared by an instantiation of a predefined generic subprogram (such as
UNCHECKED_CONVERSION).

Examples:
function SQRT (X : FLOAT) return FLOAT;
pragma INTERFACE(C, SQRT);
pragma IMPORT_FUNCTION (SQRT, FSQRT, (FLOAT), FLOAT);

In the preceding example, the pragma INTERFACE identifies SQRT as an
external subprogram. The language name argument C identifies the external
subprogram as being written in the C language.

The pragma IMPORT_FUNCTION uses positional notation to specify
arguments for importing the declared function SQRT. The pragma form
indicates that the internal name is SQRT, and the external designator is
FSQRT (on OpenVMS systems, the associated linker symbol will be spelled in
uppercase; on Digital UNIX systems, in lowercase).

The parameter type is FLOAT, and the result is of the type FLOAT. Because no
parameter or result passing mechanism is specified, default mechanisms will
be used (in this case, for the C language).

function SQRT (X : LONG_FLOAT) return LONG_FLOAT;
pragma INTERFACE (C, SQRT);
pragma IMPORT_FUNCTION (INTERNAL => SQRT,

PARAMETER_TYPES => (LONG_FLOAT),
RESULT_TYPE => LONG_FLOAT,
EXTERNAL => SQRT);

13.9a.1.1 Importing Subprograms 13–64

The preceding example shows an alternative way of importing the declared
function SQRT using named notation and different parameter and result types.
If this example is combined with the code in the first example (with only one
occurrence of the pragma INTERFACE), then the result is an overloading of
SQRT, as follows:

function SQRT (X : FLOAT) return FLOAT;
function SQRT (X : LONG_FLOAT) return LONG_FLOAT;
pragma INTERFACE (C, SQRT);
pragma IMPORT_FUNCTION (SQRT, FSQRT, (FLOAT), FLOAT);
pragma IMPORT_FUNCTION (INTERNAL => SQRT,

PARAMETER_TYPES => (LONG_FLOAT),
RESULT_TYPE => LONG_FLOAT,
EXTERNAL => SQRT);

In the preceding example, the parameter and result passing mechanisms are
again not specified, forcing the use of default mechanisms (for the C language).

procedure CHANGE (X,Y : INTEGER);
procedure EXCHANGE (X,Y : INTEGER) renames CHANGE;
pragma INTERFACE (FORTRAN, EXCHANGE);
pragma IMPORT_PROCEDURE (INTERNAL => EXCHANGE,

PARAMETER_TYPES => (INTEGER,INTEGER));

The preceding example shows the use of renaming with an imported procedure.
(It is assumed that these declarations occur in a declarative part or package
specification.) The renaming causes the imported Fortran procedure to be
used in calls to both of the procedures CHANGE and EXCHANGE. Because no
external designator is specified, the internal name is used to spell the linker
global symbol.

On OpenVMS systems, the spelling is "EXCHANGE". On Digital UNIX
systems, the spelling is "exchange_".

References: actual parameter 6.2 6.4 6.4.1, allow 1.6, compilation unit 10.1,
declarative part 3.9, external designator 13.9a.1, formal parameter 6.1 6.2, function
6.5, function call 6.4, function result 6.5, generic instantiation 12.3, generic subprogram
12.1, internal name 13.9a.1, name 4.1, null reserved word 2.9, overloading 6.6, package
specification 7.1, parameter mode 6.2, positional parameter association 6.4, pragma
2.8, procedure 6.1, procedure specification 6.1, program 10.1, renaming declaration
8.5, reserved word 2.9, result type 5.8, simple identifier 4.1, static expression
4.9, subprogram 6, subprogram body 6.3, subprogram declaration 6.1, subprogram
specification 6.1, subtype 3.3.2, type 3.3.1, type mark 3.3.2

13–65 Importing Subprograms 13.9a.1.1

13.9a.1.2 Attribute for Optional Parameters
The OpenVMS calling standard provides conventions for optional arguments
in OpenVMS routines (any non-Ada routines) that differ substantially from
the conventions for default parameters in Ada subprograms. In an Ada
subprogram with default parameters, the values of the parameters (if specified
or absent) are evaluated during the call to the subprogram.

In a non-Ada routine, the absence of a parameter is indicated by a ‘‘shortened’’
argument list and/or by an argument list entry containing the address zero (for
arguments that are passed by reference or by descriptor).

In these cases, depending on the kind of routine involved, default actions may
be taken by the routine. The DEC Ada attribute NULL_PARAMETER allows
the OpenVMS conventions for optional arguments in non-Ada routines to be
used in calls to imported subprograms.

NULL_PARAMETER is supported on all systems.

For any type or subtype T:

T’NULL_PARAMETER Denotes an (imaginary) object of type or
subtype T allocated at (machine) address zero.
The attribute is allowed only as the default
expression of a formal parameter or as an actual
expression of a subprogram call; in either case,
the subprogram must be imported.

The identity of the object is represented by the
address zero in the argument list, independent of
the passing mechanism (explicit or default).

13.9a.1.2 Attribute for Optional Parameters 13–66

Example:
procedure CRMPSC (

STATUS: out COND_VALUE_TYPE;
INADR: in ADDRESS_RANGE_TYPE

:= ADDRESS_RANGE_TYPE’NULL_PARAMETER;
RETADR: in ADDRESS := ADDRESS_ZERO;
ACMODE: in ACCESS_MODE_TYPE := ACCESS_MODE_ZERO;
FLAGS: in UNSIGNED_LONGWORD := 0;
GSDNAM: in SECTION_NAME_TYPE

:= SECTION_NAME_TYPE’NULL_PARAMETER;
IDENT: in SECTION_ID_TYPE

:= SECTION_ID_TYPE’NULL_PARAMETER;
RELPAG: in UNSIGNED_LONGWORD := 0;
CHAN: in CHANNEL_TYPE := CHANNEL_ZERO;
PAGCNT: in UNSIGNED_LONGWORD := 0;
VBN: in UNSIGNED_LONGWORD := 0;
PROT: in FILE_PROTECTION_TYPE := FILE_PROTECTION_ZERO;
PFC: in UNSIGNED_LONGWORD := 0);

pragma INTERFACE (EXTERNAL, CRMPSC);
pragma IMPORT_VALUED_PROCEDURE (

INTERNAL => CRMPSC,
EXTERNAL => "SYS$CRMPSC",
PARAMETER_TYPES => (COND_VALUE_TYPE, ADDRESS_RANGE_TYPE, ADDRESS,

ACCESS_MODE_TYPE, UNSIGNED_LONGWORD, SECTION_NAME_TYPE,
SECTION_ID_TYPE, UNSIGNED_LONGWORD, CHANNEL_TYPE,
UNSIGNED_LONGWORD, UNSIGNED_LONGWORD, FILE_PROTECTION_TYPE,
UNSIGNED_LONGWORD),

MECHANISM => (VALUE, REFERENCE, VALUE, VALUE, VALUE,
DESCRIPTOR(S), REFERENCE, VALUE, VALUE, VALUE, VALUE,
VALUE, VALUE));

This example is one of the interfaces declared in the DEC Ada package
STARLET for the OpenVMS system service SYS$CRMPSC. Default values
are specified for all of the parameters except for the STATUS parameter
because all of the parameters to SYS$CRMPSC are optional.

Note the use of the DEC Ada attribute NULL_PARAMETER to give default
values to the INADR, GSDNAM, and IDENT parameters. These parameters
are passed by reference, descriptor, and reference, respectively. Because of
their passing mechanisms, they cannot be given the zero default values (0,
ADDRESS_ZERO, and so on) that can otherwise be given to parameters that
are passed by value.

References: attribute 4.1.4, formal parameter 6.2, object 3.2 3.2.1, parameter
6.2, parameter passing 13.9a.1.4, subprogram 6, subprogram call 6.4, subtype 3.3,
system.address_zero 13.7a.1, type 3.3

13–67 Attribute for Optional Parameters 13.9a.1.2

13.9a.1.3 Exporting Subprograms
DEC Ada provides three pragmas for exporting subprograms:

EXPORT_FUNCTION
EXPORT_PROCEDURE
EXPORT_VALUED_PROCEDURE

All three export pragmas establish an external name for a subprogram
and make the name available to the linker as a global symbol, so that the
subprogram can be called by a non-Ada routine.

The pragmas EXPORT_FUNCTION and EXPORT_PROCEDURE allow the
export of the kind of subprograms indicated. The pragma EXPORT_VALUED_
PROCEDURE allows an external (non-Ada) routine to call an Ada procedure
that (like a function) returns a result value but that (like a procedure) can
cause side effects on its parameters (a function with in out or out parameters
is not legal in Ada). The pragma EXPORT_VALUED_PROCEDURE allows
a procedure written in Ada to be interpreted as a function in the external
environment; the function result is returned in the first parameter. The
pragma is especially useful for writing Ada subprograms that are called by
external routines, where the Ada subprogram involved is expected to return a
status value and may update its parameters.

The form of the pragmas for exporting subprograms is as follows:

pragma EXPORT_FUNCTION
| EXPORT_PROCEDURE | EXPORT_VALUED_PROCEDURE
(internal_name [, external_designator]

[, [PARAMETER_TYPES =>] (parameter_types)]
[, [RESULT_TYPE =>] type_mark] -- EXPORT_FUNCTION

-- only
[, [MECHANISM =>] mechanism]
[, [RESULT_MECHANISM =>] mechanism_name]); -- EXPORT_FUNCTION

-- only

Functions must be uniquely identified by their internal names and parameter
and result types. The parameter and result types can be omitted only if
there is exactly one function of that name in the same declarative part or
package specification. Otherwise, both the parameter and result types must be
specified.

Procedures must be uniquely identified by their internal names and parameter
types. The parameter types can be omitted only if there is exactly one
procedure of that name in the same declarative part or package specification.
Otherwise, the parameter types must be specified.

13.9a.1.3 Exporting Subprograms 13–68

The external designator denotes a linker global symbol that is associated with
the external subprogram. The external designator is interpreted as follows:

• When the external designator is a string literal, the exact value (including
the case of any letters) is used as the symbol. If a null string is given, no
global symbol is defined.

• When the external designator is an identifier or when no external
designator is given (the internal name is used), the compiler chooses a
default spelling for the symbol as follows:

– On OpenVMS systems, the symbol is spelled in uppercase letters

– On Digital UNIX systems, the symbol is spelled in lowercase letters

The parameter types option specifies a series of one or more type marks (type
or subtype names), not parameter names. Each type mark is positionally
associated with a formal parameter in the subprogram’s declaration. The
absence of parameters must be indicated by the reserved word null.

The result type option is used only for functions. It specifies the type or
subtype of the function result.

The mechanism option specifies how the exported subprogram expects its
parameters to be passed (for example, by value, by reference, or by descriptor).
The calling non-Ada routine is responsible for ensuring that parameters are
passed in the form required by the Ada subprogram. Mechanism options and
possible values for mechanism names and class names are described in sections
13.9a.1.1 and 13.9a.1.4.

If a single mechanism name is specified without parentheses, all parameters
are passed using that mechanism. If a series of mechanism names or
associations are given in parentheses and separated by commas, positional
or named association can be used for each mechanism name.

The result mechanism option specifies how the imported function expects its
result to be returned (for example, by value, by reference, or by descriptor).
The calling non-Ada routine is responsible for ensuring that the function
result is passed in the form required by the Ada function. Possible values for
mechanism names and class names are described in section 13.9a.1.4.

In addition to the rules given in section 13.9a, the rules for exporting
subprograms are as follows:

13–69 Exporting Subprograms 13.9a.1.3

• An exported subprogram must be a library unit or must be declared in the
outermost declarative part of a library package. This means pragmas for
exporting subprograms are allowed only in the following cases:

For a subprogram specification or a subprogram body that is a library
unit.

For a subprogram specification that is declared in the outermost
declarations of a package specification or a package body that is a
library unit.

For a subprogram body that is declared in the outermost declarations
of a package body that is a library unit.

Consequently, an export pragma for a subprogram body is allowed only
if either the body does not have a corresponding specification or if the
specification and body occur in the same declarative part.

This set of rules implies that a pragma EXPORT_FUNCTION, EXPORT_
PROCEDURE, or EXPORT_VALUED_PROCEDURE cannot be given for
a generic library subprogram, nor can one be given for a subprogram
declared in a generic library package. However, any of these pragmas can
be given for a subprogram resulting from the instantiation of a generic
subprogram, provided that the instantiation otherwise satisfies this set of
rules.

• In the case of a subprogram declared as a compilation unit, the pragma is
only allowed after the subprogram declaration and before any subsequent
compilation unit.

• The procedure specification that corresponds to a pragma EXPORT_
VALUED_PROCEDURE must have at least one parameter, and the first
(or only) parameter must be of mode out.

• None of these pragmas can be used for a subprogram that is declared with
a renaming declaration.

• None of these pragmas can be used for a subprogram that is declared
by an instantiation of a built-in library generic subprogram (such as
UNCHECKED_CONVERSION).

13.9a.1.3 Exporting Subprograms 13–70

Examples:
procedure PROC (X : INTEGER);
pragma EXPORT_PROCEDURE (PROC);

This example shows an export pragma that causes the Ada procedure PROC
to be exported for use in a non-Ada routine. The name PROC will be declared
as a linker global symbol. On OpenVMS systems, the symbol will be spelled in
uppercase; on Digital UNIX systems, in lowercase.

procedure MULTIPLY (X : out INTEGER;
Y : in out INTEGER) is

begin
X := 10*Y;

end;
pragma EXPORT_VALUED_PROCEDURE (

INTERNAL => MULTIPLY,
PARAMETER_TYPES => (INTEGER,INTEGER));

--

PROGRAM Call_Ada (INPUT, OUTPUT);

VAR
A : INTEGER;

FUNCTION Multiply (VAR T : INTEGER) : INTEGER; EXTERN;

BEGIN
A := 1;
A := Multiply(A);

END.

The preceding example shows an Ada procedure being used as a function
in a Pascal program. Because of the use of pragma EXPORT_VALUED_
PROCEDURE, the first parameter of the Ada procedure MULTIPLY is
recognized as a function result in the Pascal program Call_Ada; the value
of the Ada parameter X is assigned to the Pascal variable A. The preceding
example runs on OpenVMS systems only.

with SYSTEM;
package RECORD_PKG is

HI : STRING (1 .. 11) := "HELLO WORLD";

type VAR_STR_TYPE is
record

ADDR : SYSTEM.ADDRESS;
LEN : SHORT_INTEGER;

end record;
pragma COMPONENT_ALIGNMENT (COMPONENT_SIZE, VAR_STR_TYPE);

13–71 Exporting Subprograms 13.9a.1.3

procedure ASSIGN_RECORD (REC : out VAR_STR_TYPE);
pragma EXPORT_PROCEDURE (

INTERNAL => ASSIGN_RECORD,
EXTERNAL => "assign_record",
PARAMETER_TYPES => (VAR_STR_TYPE),
MECHANISM => (REFERENCE));

end RECORD_PKG;

package body RECORD_PKG is

procedure ASSIGN_RECORD (REC : out VAR_STR_TYPE) is
begin

REC.LEN := HI’LENGTH;
REC.ADDR := HI’ADDRESS;

end;

end RECORD_PKG;
--
#include <ada_init.h>

extern void assign_record();
extern void assign_rec_elab();

main()
{

long init_handle;

struct S {
char *addr;
short len;

} record_obj;

/*
* initialize the component
*/
ada_init_component (assign_rec_elab, DA_EXCLUSIVE,

BHVR_ERROR, &init_handle);

if (init_handle == 0)
{
write (1, "Ada_init_component failed.\n", 23);
};

/*
* call Ada procedure, passing it a structure parameter by reference
*/
assign_record (&record_obj);

printf ("%.*s\n", record_obj.len, record_obj.addr);

/*
* finalize the component
*/
ada_complete_component(&init_handle);

}

13.9a.1.3 Exporting Subprograms 13–72

The preceding example shows an Ada procedure being called by a C program.
The C program calls the Ada procedure to assign values to the C object record_
obj. Then, the C program prints out the value of the object. This example runs
on Digital UNIX systems only.

On Digital UNIX systems, the C program must initialize and finalize the
exported Ada procedure. See the DEC Ada Digital UNIX run-time reference
and program development manuals for more information about exporting Ada
subprograms on Digital UNIX systems.

References: allow 1.6, compilation unit 10.1, declarative part 3.9, external designator
13.9a.1, formal parameter 6.1, function result 6.5, generic package 12, generic
subprogram 12, instantiation 12.3, internal name 13.9a.1, library unit 10.1, package
body 7.3, package specification 7.1, parameter 6.2, parameter name 6.1, pragma
2.8, procedure 6 6.1, renaming declaration 8.5, reserved word 2.9, result type 5.8,
simple identifier 4.1, subprogram 6, subprogram body 6.3, subprogram declaration 6.1,
subprogram specification 6.1, subtype name 3.3.2, type mark 3.3.2, type name 3.3.1

13.9a.1.4 Controlling the Passing Mechanisms for Parameters and
Function Results

The import and export pragmas allow the option of specifying the passing
mechanisms for parameters and function results of imported or exported
subprograms. The three available DEC Ada mechanism names are VALUE,
REFERENCE, and DESCRIPTOR. These names force the use of specific
mechanisms, and they can be used to guarantee that the specified mechanisms
are used.

As shown in sections 13.9a.1.1 and 13.9a.1.3, mechanism names have the
following form:

mechanism_name ::=
VALUE

| REFERENCE
| DESCRIPTOR [([CLASS =>] class-name)] -- OpenVMS

-- systems only

The names are briefly defined as follows. See the DEC Ada run-time reference
manuals for detailed information on which DEC Ada types can be passed by
each mechanism.

VALUE Specifies that the value of the actual parameter
or function result is passed in the argument
list or returned.

REFERENCE Specifies that the address of the value of the
actual parameter or function result is passed
in the argument list or returned.

13–73 Controlling the Passing Mechanisms for Parameters and Function Results 13.9a.1.4

DESCRIPTOR On OpenVMS systems, specifies that the
address of a descriptor is passed or returned.

The descriptor contains the address of the
value of the actual parameter or function
result, plus additional information about
the parameter or function result. The
descriptor may include a class, specified
with the following form:

DESCRIPTOR[([CLASS =>] class_name)]

If the class name is omitted, DEC Ada supplies
defaults based on the type.

The possible class names and their meanings
follow. Note the following definitions:

A bit string is any one-dimensional array
of a discrete type whose components occupy
successive single bits and are unsigned.

A bit array is any array whose components are
not byte aligned, yet which is also not a bit
string.

A string is any array of a discrete type whose
components occupy successive, unsigned bytes.

Ada descriptor
class name Used for

UBS an unaligned bit string

UBSB an unaligned bit string with arbitrary bounds

UBA an unaligned bit array

S a string; also a scalar or access type parameter

SB a string with arbitrary bounds

A a contiguous array

NCA a noncontiguous array

For more information on descriptors, see the OpenVMS Calling Standard.

13.9a.1.4 Controlling the Passing Mechanisms for Parameters and Function Results 13–74

To determine the default mechanisms chosen by the DEC Ada compiler, see the
compiler-generated compilation notes, as follows:

• On OpenVMS systems, the compilation notes are available when the
/WARNINGS=COMPILATION_NOTES qualifier is in effect during a
compilation. See Developing Ada Programs on OpenVMS Systems for more
information.

• On Digital UNIX systems, the compilation notes are available during a
compilation when an ADAERRFLAGS or ADALISFLAGS environment
variable is defined with a string that includes the letter c. See Developing
Ada Programs on DEC OSF/1 Systems for more information.

Examples:
procedure P (X : STRING);
pragma INTERFACE(C, P);
pragma IMPORT_PROCEDURE (P, MECHANISM => DESCRIPTOR (A));

In the preceding example, the arguments given for the pragma IMPORT_
PROCEDURE indicate that the DESCRIPTOR mechanism and the A
descriptor class are to be used to pass the formal parameter X.

type BIT_STRING is array (1 .. 32) of BOOLEAN;
pragma PACK(BIT_STRING);
function F (Y : BIT_STRING) return INTEGER;
pragma INTERFACE (C, F);
pragma IMPORT_FUNCTION (INTERNAL => F,

MECHANISM => VALUE,
RESULT_MECHANISM => VALUE);

In the preceding example, the arguments given for the pragma IMPORT_
FUNCTION indicate that the VALUE mechanism is to be used to pass the
formal parameter Y and the function result.

procedure ASSIGN_RECORD (REC : out VAR_STR_TYPE);
pragma EXPORT_PROCEDURE (

INTERNAL => ASSIGN_RECORD,
PARAMETER_TYPES => (VAR_STR_TYPE),
MECHANISM => REFERENCE);

In the preceding example, the arguments given for the pragma EXPORT_
PROCEDURE indicate that the REFERENCE mechanism is to be used to pass
the formal parameter VAR_STR_TYPE.

References: access type 3.8, actual parameter 6.4, address type 13.7 13.7a.1,
argument 2.8, discrete type 3.5, formal parameter mode 6.2, full type 7.4.1, private
type 7.4 7.4.1, record type 3.7, scalar type 3.5, static 4.9, type declaration 3.3.1

13–75 Controlling the Passing Mechanisms for Parameters and Function Results 13.9a.1.4

13.9a.2 Importing and Exporting Objects
DEC Ada provides three pragmas for importing and exporting objects:

IMPORT_OBJECT
EXPORT_OBJECT
COMMON_OBJECT

The pragma IMPORT_OBJECT references storage declared in an external
(non-Ada) routine.

The pragma EXPORT_OBJECT allows an external routine to refer to the
storage allocated for an Ada object.

The pragma COMMON_OBJECT allows both Ada and non-Ada programs to
share the same block of storage. So, the pragma COMMON_OBJECT functions
as both an import and an export pragma. (The pragma INTERFACE_NAME
can also be used to import and export objects. See 13.9b.)

On OpenVMS systems, DEC Ada also provides the pragma PSECT_OBJECT,
which is synonymous with the DEC Ada pragma COMMON_OBJECT and has
the same effect.

In addition to the rules given in section 13.9a, the rules for importing and
exporting objects are as follows:

• The size of the object to be imported or exported must be known at compile
time.

• Import and export pragmas are not allowed for objects declared with a
renaming declaration.

Notes:
Objects of private or limited private types cannot be imported or exported
outside of the package that declares the (limited) private type. They can be
imported or exported inside the body of the package where the type is declared
(that is, where the full type is known).

The DEC Ada pragmas for importing or exporting objects can precede or follow
a pragma VOLATILE for the same objects (see 9.11).

Address clauses are not allowed in combination with any of the DEC Ada
pragmas for importing or exporting objects. If used in such cases, the pragma
involved is ignored (see 13.5).

References: array subtype 3.6, component 3.3, discriminant 3.3, generic unit 12 12.1,
index constraint 3.6, limited private type 7.4.4, object 3.2, object declaration 3.2.1,
package body 7.3, package specification 7.1, pragma 2.8, private type 7.4 7.4.1, record
type 3.7, renaming declaration 8.5, scalar type 3.5, simple record type 13.9a.1.4, static
constraint 4.9, subcomponent 3.3, subtype 3.3 3.3.2, variable 3.2.1, variant part 3.7.3

13.9a.2 Importing and Exporting Objects 13–76

13.9a.2.1 Importing Objects
The DEC Ada pragma IMPORT_OBJECT specifies that the storage allocated
for the object (when the external routine is compiled) be made known to the
calling Ada program by an externally defined linker global symbol.

The form of this pragma is as follows:

pragma IMPORT_OBJECT
(internal_name [, external_designator]

[, [SIZE =>] external_symbol]);

The internal name is the object identifier.

The external designator denotes a linker global symbol that is associated with
the external object. The external designator is interpreted as follows:

• When the external designator is a string literal, the exact value (including
the case of any letters) is used as the symbol. If a null string is given, no
global symbol is defined.

• Where the external designator is an identifier or the internal name is used,
the compiler chooses a default spelling for the symbol as follows:

– On OpenVMS systems, the symbol is spelled in uppercase letters

– On Digital UNIX systems, the symbol is spelled in lowercase letters

The size option specifies a linker global symbol that will be defined in the
object module. On OpenVMS systems, the symbol is the value of an absolute
global symbol that will equal the size in bytes of the imported object. On
OpenVMS systems, the size option can be used to achieve some level of link-
time consistency checking. See the DEC Ada Run-Time Reference Manual for
OpenVMS Systems for more information. On Digital UNIX systems, the size
option is accepted, but has no effect.

In addition to the rules given in sections 13.9a and 13.9a.2, the following rule
applies to the pragma IMPORT_OBJECT:

• Because it is not created by an Ada elaboration, the object to be imported
cannot be a constant or require implicit initialization. Specifically, this
restriction means that the object to be imported:

– Cannot be a constant.

– Cannot be an access type (which has a default initial value of null).

– Cannot be a record type that has discriminants (which are always
initialized) or components with default initial expressions.

– Cannot be an object of a task type.

13–77 Importing Objects 13.9a.2.1

Examples:
PID : INTEGER;
pragma IMPORT_OBJECT (INTERNAL => PID,

EXTERNAL => "PROCESS$ID",
SIZE => PSIZE);

In the preceding example, the variable PID refers to the externally defined
OpenVMS symbol PROCESS$ID. The symbol PSIZE represents the default
size for the symbol PROCESS$ID. In this case, PSIZE is 4 because PID is
declared to be of type INTEGER, for which the Ada default is 4 bytes.

-- Ada declaration
--
GLOBAL_VAR : INTEGER;
pragma IMPORT_OBJECT (INTERNAL => GLOBAL_VAR,

EXTERNAL => "global_var");
--
/*
* C declaration
*/
extern int global_var;

In the preceding example, the variable GLOBAL_VAR is imported so that it can
refer to an equivalent variable declared in another Digital UNIX language (for
example, C). The external designator explicitly specifies a lowercase spelling for
the linker global symbol. Lowercase is the expected spelling for linker global
symbols on Digital UNIX systems.

References: access type 3.8, component 3.3 3.7, constant 3.2.1, default initial value
3.8, discriminant 3.7.1, elaboration 3.1, expression 4.4, external designator 13.9a.1,
external symbol 13.9a.1, identifier 2.3, implicit initial value 3.2.1, internal name
13.9a.1, integer type 3.5.4, object 3.2, pragma 2.8, record type 3.7, string literal 2.6 4.2,
task type 9.2

13.9a.2.2 Exporting Objects
The DEC Ada pragma EXPORT_OBJECT specifies that when the Ada program
is compiled, the storage allocated for the object be made known to other
non-Ada programs by a linker global symbol.

The form of this pragma is as follows:

pragma EXPORT_OBJECT
(internal_name [, external_designator]

[, [SIZE =>] external_symbol]);

The internal name is the object identifier.

13.9a.2.2 Exporting Objects 13–78

The external designator denotes a linker global symbol that is associated with
the external object. The external designator is interpreted as follows:

• When the external designator is a string literal, the exact value (including
the case of any letters) is used as the symbol. If a null string is given, no
global symbol is defined.

• In the cases where the external designator is an identifier or the internal
name is used, the compiler chooses a default spelling for the symbol as
follows:

– On OpenVMS systems, the symbol is spelled in uppercase letters

– On Digital UNIX systems, the symbol is spelled in lowercase letters

The size option specifies a linker global symbol that will be defined in the
object module. On OpenVMS systems, the symbol is the value of an absolute
global symbol that will equal the size in bytes of the imported object. On
OpenVMS systems, the size option can be used to achieve some level of link-
time consistency checking. See the DEC Ada Run-Time Reference Manual for
OpenVMS Systems for more information. On Digital UNIX systems, the size
option is accepted but has no effect.

In addition to the rules given in sections 13.9a and 13.9a.2, the following rules
apply to the pragma EXPORT_OBJECT:

• The object to be exported must be a constant or a variable declared with an
object declaration at the outermost level of a library package specification
or body.

• The pragma EXPORT_OBJECT is not allowed in a generic unit.

Examples:
PID: INTEGER;
pragma EXPORT_OBJECT (INTERNAL => PID,

EXTERNAL => "PROCESS$ID",
SIZE => PSIZE);

In the preceding example, the variable PID refers to the externally defined
OpenVMS symbol PROCESS$ID. The symbol PSIZE represents the default
size for the symbol PROCESS$ID. In this case, PSIZE is 4 because PID is
declared to be of type INTEGER, for which the Ada default is 4 bytes.

ADA_VAL : INTEGER := 54_321;
pragma EXPORT_OBJECT (INTERNAL => ADA_VAL);

In the preceding example, the Ada variable ADA_VAL is exported so that
it can be called by another language. Once it is exported, ADA_VAL can be
referenced by a C routine that declares its C equivalent (ada_val) with the
extern specifier.

13–79 Exporting Objects 13.9a.2.2

References: external designator 13.9a.1, external symbol 13.9a.1, identifier 2.3,
internal name 13.9a.1, object 3.2, pragma 2.8

13.9a.2.3 Importing and Exporting Objects with the Pragma
Common_Object

The pragma COMMON_OBJECT enables shared use of variables that are
stored in overlaid linker storage areas. For example, the pragma COMMON_
OBJECT is useful for referring to Fortran or BASIC common blocks or external
variables in PL/I, C, or Pascal.

The pragma COMMON_OBJECT allows only one object to be allocated in a
particular storage area.

The form of this pragma is as follows:

pragma COMMON_OBJECT
(internal_name [, external_designator]

[, [SIZE =>] external_symbol]);

On OpenVMS systems, the pragma PSECT_OBJECT is synonymous with the
pragma COMMON_OBJECT and has the same syntax. Both pragmas are
accepted in programs compiled on OpenVMS systems, and both have the same
effect.

The internal name must be an Ada identifier that denotes a variable. The
external designator names the linker storage area and can be either an Ada
identifier or a string denoting an OpenVMS or Digital UNIX name.

When a pragma COMMON_OBJECT is used for exporting an object, the
external designator establishes the name of the linker storage area. When
a pragma COMMON_OBJECT is used for importing an object, the external
designator refers to an existing (external) linker storage area. The external
designator is interpreted as follows:

• When the external designator is a string literal, the exact value (including
the case of any letters) is used as the symbol. If a null string is given, no
global symbol is defined.

• In the cases where the external designator is an identifier or the internal
name is used, the compiler chooses a default spelling for the symbol as
follows:

– On OpenVMS systems, the symbol is spelled in uppercase letters

– On Digital UNIX systems, the symbol is spelled in lowercase letters

13.9a.2.3 Importing and Exporting Objects with the Pragma Common_Object 13–80

The size option specifies a linker global symbol that will be defined in the
object module. In OpenVMS systems, the symbol is the value of an absolute
global symbol that will equal the size in bytes of the imported object. On
OpenVMS systems, the size option can be used to achieve some level of
link-time consistency checking. On Digital UNIX systems, the size option is
accepted, but has no effect.

In addition to the rules given in sections 13.9a and 13.9a.2, the following rule
applies to the pragmas COMMON_OBJECT and PSECT_OBJECT:

• Because it is not created by an Ada elaboration, an object specified with a
pragma COMMON_OBJECT or PSECT_OBJECT cannot be a constant or
require implicit initialization. Specifically, this restriction means that the
object:

– Cannot be a constant.

– Cannot be an access type (which has a default initial value of null).

– Cannot be a record type that has discriminants (which are always
initialized) or components with default initial expressions.

– Cannot be an object of a task type.

See the DEC Ada run-time reference manuals for more information on using
the pragmas COMMON_OBJECT and PSECT_OBJECT.

Note:
Unlike other programming languages, DEC Ada allows only one object to be
stored in a linker storage area. However, by using record objects, the effect
of storing multiple objects in one linker storage area can be achieved. Each
record component then corresponds to one external variable.

Examples:
type BLOCK is

record
X1, X2, X3 : FLOAT;

end record;

XS : BLOCK;
pragma COMMON_OBJECT (XS);

The preceding example of the pragma COMMON_OBJECT shows the
allocation of the record variable XS with three components (X1, X2, X3) of
the type FLOAT in the linker storage area XS. The name of the linker storage
area is assumed to be the internal name XS because no external designator is
given.

13–81 Importing and Exporting Objects with the Pragma Common_Object 13.9a.2.3

The code in this example represents the same linker storage area as the
following named Fortran common block:

COMMON /XS/ X1, X2, X3

As specified, this declaration works on OpenVMS systems. For this declaration
to work on Digital UNIX systems, the external designator must be specified,
giving the spelling of the linker storage area expected by Fortran on Digital
UNIX systems (on Digital UNIX systems, Fortran expects lowercase spelling
with an appended underscore: "xs_").

-- Ada declarations for another shared common block

type MAP is array (INTEGER range 1 .. 10) of SHORT_INTEGER;

type NESTED is
record

COMP : INTEGER;
LIST : MAP;
CHAR : CHARACTER;

end record;
pragma COMPONENT_ALIGNMENT (STORAGE_UNIT, NESTED);

type REC is
record

FIRST : NESTED;
SECOND : INTEGER;

end record;
pragma COMPONENT_ALIGNMENT (STORAGE_UNIT, REC);

OBJ : REC;

pragma COMMON_OBJECT (OBJ, "comm_");

The preceding example of the pragma COMMON_OBJECT shows the
allocation of the record variable OBJ in the linker storage area "comm_".
The external designator is explicitly specified so that it matches the name of its
Fortran equivalent and so that it follows the spelling conventions required by
Fortran on Digital UNIX systems. (On Digital UNIX systems, Fortran expects
lowercase spelling with an appended underscore.)

STRUCTURE /NEST/
INTEGER COMP
INTEGER*2 LIST (10)
CHARACTER CHAR

END STRUCTURE

STRUCTURE /STRUCT/
RECORD /NEST/ FIRST
INTEGER SECOND

END STRUCTURE

RECORD /STRUCT/ OBJ

13.9a.2.3 Importing and Exporting Objects with the Pragma Common_Object 13–82

COMMON /COMM/ OBJ

The code in the preceding example represents the same linker storage area as
the following named Fortran common block (COMM).

References: component type 3.7, external designator 13.9a.1, external symbol
13.9a.1, identifier 2.3, internal name 13.9a.1, object 3.2, pragma 2.8, record type 3.7,
string 3.6.3, variable 3.2.1

13.9a.3 Importing and Exporting Exceptions (OpenVMS Systems Only)
On OpenVMS systems, DEC Ada provides the pragmas IMPORT_EXCEPTION
and EXPORT_EXCEPTION for importing and exporting exceptions. The
pragma IMPORT_EXCEPTION allows non-Ada (especially OpenVMS)
exceptions to be used in Ada programs. The pragma EXPORT_EXCEPTION
allows Ada exceptions to be used by external modules.

For clarity in describing these pragmas, the terms exception and Ada exception
are used to refer to Ada exceptions as described in chapter 11. The terms
condition and OpenVMS condition are used to refer to OpenVMS conditions as
defined in the OpenVMS Calling Standard.

The rules for importing and exporting exceptions are given in section 13.9a.
Any additional rules that apply are described in the following sections. Import
and export pragmas are not allowed for exceptions declared with a renaming
declaration.

Note:
A pragma for an exception that is declared in a package specification is not
allowed in the package body.

References: exception 11, exception declaration 11.1, package body 7.3, package
specification 7.1, pragma 2.8, renaming declaration 8.5

13.9a.3.1 Importing Exceptions (OpenVMS Systems Only)
On OpenVMS systems, the DEC Ada pragma IMPORT_EXCEPTION allows
OpenVMS conditions (for example, from OpenVMS system services or other
OpenVMS languages) to be propagated to Ada programs as Ada exceptions.
This pragma specifies that the exception associated with an exception
declaration in an Ada program be defined externally (in non-Ada code).

The form of this pragma is as follows:

pragma IMPORT_EXCEPTION
(internal_name [, external_designator]

[, [FORM =>] ADA | VMS]
[, [CODE =>] static_integer_expression]);

13–83 Importing Exceptions (OpenVMS Systems Only) 13.9a.3.1

The internal name must be an Ada identifier that denotes a declared exception.
The external designator denotes a OpenVMS Linker global symbol to be used
to refer to the exception. If no external designator is given, the internal name
is used as the global symbol.

The external designator is interpreted as follows:

• When the external designator is a string literal, the exact value (including
the case of any letters) is used as the symbol. If a null string is given, no
global symbol is defined.

• In the cases where the external designator is an identifier or the internal
name is used, the compiler spells the symbol in uppercase letters by
default.

The form option indicates whether an Ada exception or a OpenVMS condition
is being imported. The form ADA must be specified if an Ada exception is
being imported. The form VMS (the default) must be specified if a OpenVMS
condition is being imported.

If the form ADA is specified, then the external designator refers to the address
of an Ada exception name (the address of a counted ASCII string that names
the exception). If the exception form VMS is specified, then the external
designator refers to the value of a 32-bit condition value, which is determined
according to OpenVMS conventions.

If the exception code option is specified, it is interpreted as the 32-bit
value of a standard OpenVMS condition value. (The value must have
a maximum size of 32 bits. For example, it should be in the range
INTEGER’FIRST .. INTEGER’LAST).) This option is legal only if VMS
is also specified for the form option either explicitly or by default. If an
exception code option is also specified, then it is not legal to also specify an
external designator. To do so would imply two definitions of the exception code
value.

OpenVMS condition values are defined in the OpenVMS Calling Standard.
The DEC Ada Run-Time Reference Manual for OpenVMS Systems explains the
specification of code options in more detail.

Example:
ACCVIO : exception;
pragma IMPORT_EXCEPTION (ACCVIO, "SS$_ACCVIO");

In this example, the OpenVMS condition SS$_ACCVIO is imported as the
global symbol SS$_ACCVIO. It is referred to within the Ada program by the
internal name ACCVIO, and the value of the form option is the default (VMS).

13.9a.3.1 Importing Exceptions (OpenVMS Systems Only) 13–84

References: exception 11, exception declaration 11.1, exception propagation 11.4.1
11.4.2, expression 4.4, external designator 13.9a.1, identifier 2.3, internal name 13.9a.1,
pragma 2.8, system.max_int 13.7, system.min_int 13.7

13.9a.3.2 Exporting Exceptions (OpenVMS Systems Only)
On OpenVMS systems, the DEC Ada pragma EXPORT_EXCEPTION
propagates Ada exceptions outside of the Ada program, so they can be handled
by programs written in other OpenVMS languages. This pragma establishes
an external name for an Ada exception and makes the name available to the
OpenVMS Linker as a global symbol.

The form of this pragma is as follows:

pragma EXPORT_EXCEPTION
(internal_name [, external_designator]

[, [FORM =>] ADA | VMS]
[, [CODE =>] static_integer_expression]);

The internal name must be an Ada identifier that denotes a declared exception.
The external designator denotes a OpenVMS Linker global symbol to be used
to refer to the exception. If no external designator is given, the internal name
is used as the global symbol.

The external designator is interpreted as follows:

• When the external designator is a string literal, the exact value (including
the case of any letters) is used as the symbol. If a null string is given, no
global symbol is defined.

• When the external designator is an identifier or the internal name is used,
the compiler spells the symbol in uppercase letters by default.

The form option indicates whether an Ada exception or a OpenVMS condition
is being exported. The form ADA must be specified if an Ada exception is
being exported. The form VMS, the default, must be specified if a OpenVMS
condition is being exported.

If the form ADA is specified, then the external designator refers to the address
of an Ada exception name (the address of a counted ASCII string that names
the exception).

If the form VMS is specified, the code option must be specified. The
value for the code option must have a size of 32 bits (be in the range
INTEGER’FIRST .. INTEGER’LAST) and is interpreted as a standard
OpenVMS condition value. The external designator denotes a OpenVMS
Linker global symbol for the condition value. If no external designator is
specified, the internal name is used as the global symbol.

13–85 Exporting Exceptions (OpenVMS Systems Only) 13.9a.3.2

OpenVMS condition values are defined in the OpenVMS Calling Standard.
Then DEC Ada Run-Time Reference Manual for OpenVMS Systems explains
the specification of code options in more detail.

In addition to the rules given in section 13.9a, the rules for exporting
exceptions include the following:

• The EXPORT_EXCEPTION pragma is not allowed for exceptions that are
declared in a generic unit.

Example:
ACCVIO : exception;
pragma EXPORT_EXCEPTION (ACCVIO, "MY_PACKAGE$_ACCVIO", ADA);

In this example, an Ada exception is exported as a global symbol.

References: exception 11, exception declaration 11.1, identifier 2.3, pragma
2.8, propagation of an exception 11.4.1 11.4.2, string 3.6.3, system.max_int 13.7,
system.min_int 13.7

13.9b The Pragma Interface_Name
DEC Ada provides the pragma INTERFACE_NAME to associate an external
symbol with the internal Ada name for a subprogram or object.

The form of this pragma is as follows:

pragma INTERFACE_NAME (internal_name, external_name);

internal_name ::= simple_name | operator_symbol

external_name ::= string_literal

The internal name can be an Ada simple name that denotes a subprogram or
an object. If the declared entity is a function, the internal name can be a string
literal that denotes an operator symbol.

While the internal name can denote a subprogram renaming declaration,
the pragma INTERFACE_NAME actually applies to the base subprogram
declaration. The base subprogram is obtained by following any sequence of
renaming declarations back to the first nonrenaming subprogram declaration.
Except for the rules related to the internal name itself, the rules and
requirements for the use of this pragma are given in terms of the base
subprogram.

The external name may be any string literal. The string literal is used as a
linker global symbol that is associated with the external subprogram or object.

13.9b The Pragma Interface_Name 13–86

The pragma INTERFACE_NAME is only allowed at the place of a declarative
item, and it must apply to an entity declared by an earlier declarative item
of the same declarative part or package specification. This pragma can apply
to more than one subprogram with the same internal name. In this case, the
external name is used for all of the overloaded subprograms.

When the pragma INTERFACE_NAME applies to a subprogram, the following
rules apply:

• If a pragma INTERFACE_NAME is given for a subprogram specification,
the pragma INTERFACE (see 13.9) must also be given for the subprogram
earlier in the same declarative part or package specification. The use of
the pragma INTERFACE implies that a corresponding body is not given.

• A pragma IMPORT_PROCEDURE, IMPORT_FUNCTION, or IMPORT_
VALUED_PROCEDURE cannot be used for the same subprogram named
in the pragma INTERFACE_NAME. If this occurs, the second pragma is
ignored.

• If a subprogram has been declared as a compilation unit, the pragma is
only allowed after the subprogram declaration and before any subsequent
compilation unit.

• This pragma can be used for subprograms declared with a renaming
declaration. The pragma INTERFACE_NAME applies to the named
subprogram only if the subprogram that has been renamed, the renaming
declaration, and the pragma all occur in that same declarative part or
package specification. The pragma is ignored if these conditions are not
satisfied.

• This pragma cannot be used for a generic subprogram or a generic
subprogram instantiation. It also cannot be used for a subprogram that is
declared by an instantiation of a predefined generic subprogram (such as
the generic function UNCHECKED_CONVERSION).

When the pragma INTERFACE_NAME applies to an object, the following rules
apply:

• The size of the object must be known at compile time.

• A pragma IMPORT_OBJECT, EXPORT_OBJECT, PSECT_OBJECT, or
COMMON_OBJECT cannot be used for the same object named in the
pragma INTERFACE_NAME. If this occurs, the second pragma is ignored.

• An address clause and a pragma INTERFACE_NAME cannot both apply
to an object. If both are specified, the pragma INTERFACE_NAME is
ignored.

13–87 The Pragma Interface_Name 13.9b

• The pragma INTERFACE_NAME is not allowed in a generic unit.

• The object must not be declared with a renaming declaration.

• Because it is not created by an Ada elaboration, the object cannot be a
constant or require implicit initialization. Specifically, this restriction
means that the object:

– Cannot be a constant.

– Cannot be an access type (which has a default initial value of null).

– Cannot be a record type that has discriminants (which are always
initialized) or components with default initial expressions.

– Cannot be an object of a task type.

Examples:
function SQRT (X : FLOAT) returns FLOAT;
pragma INTERFACE (C, SQRT);
pragma INTERFACE_NAME (SQRT, "SquareRoot");

In the preceding example, the pragma INTERFACE_NAME associates the Ada
function SQRT with a C function named SquareRoot.

LATEST_VALUE : INTEGER;
pragma INTERFACE_NAME (LATEST_VALUE, "Latest_Value");

In the preceding example, the pragma INTERFACE_NAME associates the Ada
object LATEST_VALUE with a variable that has the external name Latest_
Value.

References: access type 3.8, address clause 13.5, body 3.9, body of a program unit
3.9, compilation unit 10.1, constant 3.2.1, declarative item 3.9, declarative part 3.9,
discriminants 3.3 3.7.1, elaboration 3.1 3.9, function 6.1 6.5, generic instantiation 12.3,
generic subprogram 12.1, generic unit 12 12.1, initialization 3.2.1, instantiation 12.3,
null access value 3.8, object 3.2 3.2.1, operator symbol 6.1, overloading subprogram 6.6,
package specification 7.1, pragma 2.8, record type 3.7, renaming declaration 8.5, simple
name 4.1, string literal 2.6 4.2, subprogram 6, subprogram declaration 6.1, subprogram
name 6.1, subprogram specification 6.1, task type 9.1 9.2

13.10 Unchecked Programming
1 The predefined generic library subprograms UNCHECKED_DEALLOCATION

and UNCHECKED_CONVERSION are used for unchecked storage deallocation
and for unchecked type conversions.

13.10 Unchecked Programming 13–88

2 generic
type OBJECT is limited private;
type NAME is access OBJECT;

procedure UNCHECKED_DEALLOCATION(X : in out NAME);

3 generic
type SOURCE is limited private;
type TARGET is limited private;

function UNCHECKED_CONVERSION(S : SOURCE) return TARGET;

4 References: generic subprogram 12.1, library unit 10.1, type 3.3

13.10.1 Unchecked Storage Deallocation
1 Unchecked storage deallocation of an object designated by a value of an access

type is achieved by a call of a procedure that is obtained by instantiation of the
generic procedure UNCHECKED_DEALLOCATION. For example: 22

procedure FREE is new UNCHECKED_DEALLOCATION(object_type_name,
access_type_name);

2 Such a FREE procedure has the following effect:

3 (a) after executing FREE(X), the value of X is null;

4 (b) FREE(X), when X is already equal to null, has no effect;

5 (c) FREE(X), when X is not equal to null, is an indication that the object
designated by X is no longer required, and that the storage it occupies
is to be reclaimed.

6 If X and Y designate the same object, then accessing this object through Y is
erroneous if this access is performed (or attempted) after the call FREE(X); the
effect of each such access is not defined by the language.

Notes:
7 It is a consequence of the visibility rules that the generic procedure

UNCHECKED_DEALLOCATION is not visible in a compilation unit unless
this generic procedure is mentioned by a with clause that applies to the
compilation unit. 23

8 If X designates a task object, the call FREE(X) has no effect on the task
designated by the value of this task object. The same holds for any
subcomponent of the object designated by X, if this subcomponent is a task
object.

22 See also Appendix G, AI-00355.
23 See also Appendix G, AI-00356.

13–89 Unchecked Storage Deallocation 13.10.1

9 References: access type 3.8, apply 10.1.1, compilation unit 10.1, designate 3.8 9.1,
erroneous 1.6, generic instantiation 12.3, generic procedure 12.1, generic unit 12,
library unit 10.1, null access value 3.8, object 3.2, procedure 6, procedure call 6.4,
subcomponent 3.3, task 9, task object 9.2, visibility 8.3, with clause 10.1.1

13.10.2 Unchecked Type Conversions
1 An unchecked type conversion can be achieved by a call of a function

that is obtained by instantiation of the generic function UNCHECKED_
CONVERSION. 24

2 The effect of an unchecked conversion is to return the (uninterpreted)
parameter value as a value of the target type, that is, the bit pattern defining
the source value is returned unchanged as the bit pattern defining a value
of the target type. An implementation may place restrictions on unchecked
conversions, for example, restrictions depending on the respective sizes of
objects of the source and target type. Such restrictions must be documented in
Appendix F.

DEC Ada supports the generic function UNCHECKED_CONVERSION with
the following restrictions on the class of types involved:

• The actual subtype corresponding to the formal type TARGET must not be
an unconstrained array type.

• The actual subtype corresponding to the formal type TARGET must not be
an unconstrained type with discriminants.

Further, when the target type is a type with discriminants, the value resulting
from a call of the conversion function resulting from an instantiation of
UNCHECKED_CONVERSION is checked to ensure that the discriminants
satisfy the constraints of the actual subtype.

If the size of the source value is greater than the size of the target subtype,
then the high order bits of the value are ignored (truncated). If the size of
the source value is less than the size of the target subtype, then the value is
extended with zero bits to form the result value.

3 Whenever unchecked conversions are used, it is the programmer’s
responsibility to ensure that these conversions maintain the properties that
are guaranteed by the language for objects of the target type. Programs that
violate these properties by means of unchecked conversions are erroneous.

24 See also Appendix G, AI-00355.

13.10.2 Unchecked Type Conversions 13–90

Note:
4 It is a consequence of the visibility rules that the generic function UNCHECKED_

CONVERSION is not visible in a compilation unit unless this generic function
is mentioned by a with clause that applies to the compilation unit.

5 References: apply 10.1.1, compilation unit 10.1, erroneous 1.6, generic function 12.1,
instantiation 12.3, parameter of a subprogram 6.2, type 3.3, with clause 10.1.1

actual subtype 12.3, discriminant 3.3 3.7.1, formal type 12.1, unconstrained array type
3.6, unconstrained type 3.3

13–91 Unchecked Type Conversions 13.10.2

14
Input-Output

1 Input-output is provided in the language by means of predefined packages.
The generic packages SEQUENTIAL_IO and DIRECT_IO define input-output
operations applicable to files containing elements of a given type. Additional
operations for text input-output are supplied in the package TEXT_IO. The
package IO_EXCEPTIONS defines the exceptions needed by the above three
packages. Finally, a package LOW_LEVEL_IO is provided for direct control of
peripheral devices.

In addition to the packages SEQUENTIAL_IO, DIRECT_IO, and TEXT_IO,
DEC Ada provides packages for handling files containing elements of mixed
types. On all systems, DEC Ada provides a total of five predefined input-output
packages:

• SEQUENTIAL_IO

• DIRECT_IO

• TEXT_IO

• SEQUENTIAL_MIXED_IO

• DIRECT_MIXED_IO

On OpenVMS systems, DEC Ada provides four additional packages for relative
and indexed access to files:

• RELATIVE_IO

• INDEXED_IO

• RELATIVE_MIXED_IO

• INDEXED_MIXED_IO

On all systems, DEC Ada provides the package IO_EXCEPTIONS.
On OpenVMS systems, DEC Ada provides the additional package
AUX_IO_EXCEPTIONS, which defines the exceptions needed by the
relative and indexed input-output packages.

14–1

DEC Ada does not provide the package LOW_LEVEL_IO for general use;
however, a DEC Ada package LOW_LEVEL_IO exists for the implementation
of the other input-output packages.

Complete descriptions and specifications for the DEC Ada predefined input-
output and exceptions packages appear in the sections that follow. Detailed
information on DEC Ada input-output processing can be found in the DEC Ada
run-time reference manuals.

2 References : direct_io package 14.2 14.2.4, io_exceptions package 14.5, low_level_io
package 14.6, sequential_io package 14.2 14.2.2, text_io package 14.3

aux_io_exceptions package 14.4 14.5a, direct access 14.2, direct_mixed_io package 14.2
14.2b 14.2b.5, element 14.1a, indexed access 14.2a, indexed_io package 14.2a 14.2a.4,
indexed_mixed_io package 14.2a 14.2b 14.2b.9, library package 10.1, mixed-type file
14.2b, relative access 14.2a, relative_io package 14.2a 14.2a.2, relative_mixed_io
package 14.2a 14.2b 14.2b.7, sequential access 14.2, sequential_mixed_io package 14.2
14.2b 14.2b.3

14.1 External Files and File Objects
1 Values input from the external environment of the program, or output to the

environment, are considered to occupy external files. An external file can be
anything external to the program that can produce a value to be read or receive
a value to be written. An external file is identified by a string (the name). A
second string (the form) gives further system-dependent characteristics that
may be associated with the file, such as the physical organization or access
rights. The conventions governing the interpretation of such strings must be
documented in Appendix F. 1

The DEC Ada interpretation of form strings is also described in section 14.1b.

2 Input and output operations are expressed as operations on objects of some
file type, rather than directly in terms of the external files. In the remainder
of this chapter, the term file is always used to refer to a file object; the term
external file is used otherwise. The values transferred for a given file must all
be of one type.

On OpenVMS systems, DEC Ada uses OpenVMS Record Management Services
(RMS) to perform operations on external files. On Digital UNIX systems, DEC
Ada uses system calls to perform operations on external files.

The attributes of the external file, the storage medium, and the input-output
package determine which operations can be used to manipulate data.

1 See also Appendix G, AI-00355.

14.1 External Files and File Objects 14–2

3 Input-output for sequential files of values of a single element type is defined by
means of the generic package SEQUENTIAL_IO. The skeleton of this package
is given below.

4 with IO_EXCEPTIONS;
generic

type ELEMENT_TYPE is private;
package SEQUENTIAL_IO is

type FILE_TYPE is limited private;
type FILE_MODE is (IN_FILE, OUT_FILE);
...
procedure OPEN (FILE : in out FILE_TYPE; ...);
...
procedure READ (FILE : in FILE_TYPE;

ITEM : out ELEMENT_TYPE);
procedure WRITE(FILE : in FILE_TYPE;

ITEM : in ELEMENT_TYPE);
...

end SEQUENTIAL_IO;

5 In order to define sequential input-output for a given element type, an
instantiation of this generic unit, with the given type as actual parameter,
must be declared. The resulting package contains the declaration of a file
type (called FILE_TYPE) for files of such elements, as well as the operations
applicable to these files, such as the OPEN, READ, and WRITE procedures.

5 Input-output for direct access files is likewise defined by a generic package
called DIRECT_IO. Input-output in human-readable form is defined by the
(nongeneric) package TEXT_IO.

In DEC Ada, input-output for sequential access files is also defined by the
(nongeneric) package SEQUENTIAL_MIXED_IO. Input-output for direct access
files is defined by the (nongeneric) package DIRECT_MIXED_IO.

Input-output for relative and indexed access to files is available on
OpenVMS systems. Relative access to files is defined by the generic package
RELATIVE_IO and the (nongeneric) package RELATIVE_MIXED_IO. Indexed
access to files is defined by the generic package INDEXED_IO and the
(nongeneric) package INDEXED_MIXED_IO.

6 Before input or output operations can be performed on a file, the file must first
be associated with an external file. While such an association is in effect, the
file is said to be open, and otherwise the file is said to be closed.

7 The language does not define what happens to external files after the
completion of the main program (in particular, if corresponding files have not

14–3 External Files and File Objects 14.1

been closed). The effect of input-output for access types is implementation-
dependent. 2

In DEC Ada, input-output for access or task types is erroneous.

8 An open file has a current mode, which is a value of one of the enumeration
types

type FILE_MODE is
(IN_FILE, INOUT_FILE, OUT_FILE); -- for DIRECT_IO

type FILE_MODE is
(IN_FILE, OUT_FILE); -- for SEQUENTIAL_IO

-- and TEXT_IO

9 These values correspond respectively to the cases where only reading, both
reading and writing, or only writing are to be performed. The mode of a file
can be changed.

For the additional DEC Ada input-output packages, an open file’s current mode
can be one of the following values:

type FILE_MODE is
(IN_FILE, INOUT_FILE, OUT_FILE); -- on all systems for

-- DIRECT_MIXED_IO; also on
-- OpenVMS systems for
-- RELATIVE_IO,
-- RELATIVE_MIXED_IO,
-- INDEXED_IO, and
-- INDEXED_MIXED_IO

type FILE_MODE is
(IN_FILE, OUT_FILE); -- for SEQUENTIAL_MIXED_IO

10 Several file management operations are common to the three input-output
packages. These operations are described in section 14.2.1 for sequential and
direct files. Any additional effects concerning text input-output are described
in section 14.3.1.

The file management operations for the additional DEC Ada input-output
packages are essentially the same as those described in section 14.2.1 for
sequential and direct files. Differences and additional effects are described in
section 14.2a.1 for relative and indexed input-output and in section 14.2b.1 for
mixed input-output.

2 See also Appendix G, AI-00466.

14.1 External Files and File Objects 14–4

11 The exceptions that can be raised by a call of an input-output subprogram are
all defined in the package IO_EXCEPTIONS; the situations in which they can
be raised are described, either following the description of the subprogram
(and in section 14.4), or in Appendix F in the case of error situations that are
implementation-dependent. 3

On OpenVMS systems, the DEC Ada packages RELATIVE_IO, INDEXED_IO,
RELATIVE_MIXED_IO, and INDEXED_MIXED_IO also use the additional
package AUX_IO_EXCEPTIONS. See section 14.5a for information on these
auxiliary exceptions.

Notes:
12 Each instantiation of the generic packages SEQUENTIAL_IO and DIRECT_IO

declares a different type FILE_TYPE; in the case of TEXT_IO, the type FILE_
TYPE is unique.

In DEC Ada each instantiation of the generic packages RELATIVE_IO and
INDEXED_IO declares a different type FILE_TYPE; in the case of the
packages SEQUENTIAL_MIXED_IO, DIRECT_MIXED_IO, RELATIVE_
MIXED_IO, and INDEXED_MIXED_IO, the type FILE_TYPE is declared
by the (nongeneric) package.

13 A bidirectional device can often be modeled as two sequential files associated
with the device, one of mode IN_FILE, and one of mode OUT_FILE. An
implementation may restrict the number of files that may be associated with a
given external file. The effect of sharing an external file in this way by several
file objects is implementation-dependent. 4

On OpenVMS systems, DEC Ada permits the sharing of external files, and,
in addition, uses the RMS automatic locking facility to provide record-locking
capabilities. This means that when an external file is opened in more than
one place, the operations are automatically coordinated. Record locking
ensures that one task cannot add, delete, or modify a record of an external
file that is concurrently being accessed by another task. Record locking
also coordinates accesses between programs that are executing as separate
OpenVMS processes. This includes processes executing on different nodes of a
VAXcluster, VMScluster (including dual-architecture VMSclusters) or DECnet
network. See the DEC Ada Run-Time Reference Manual for OpenVMS Systems
for more information on file sharing and record locking.

On Digital UNIX systems, DEC Ada has no special sharing or locking
capabilities. External files can be shared or locked at the operating-system
level, using Digital UNIX system calls.

3 See also Appendix G, AI-00279.
4 See also Appendix G, AI-00320.

14–5 External Files and File Objects 14.1

14 References : create procedure 14.2.1, current index 14.2, current size 14.2, delete
procedure 14.2.1, direct access 14.2, direct file procedure 14.2, direct_io package 14.1
14.2, enumeration type 3.5.1, exception 11, file mode 14.2.3, generic instantiation 12.3,
index 14.2, input file 14.2.2, io_exceptions package 14.5, open file 14.1, open procedure
14.2.1, output file 14.2.2, read procedure 14.2.4, sequential access 14.2, sequential file
14.2, sequential input-output 14.2.2, sequential_io package 14.2 14.2.2, string 3.6.3,
text_io package 14.3, write procedure 14.2.4

access type 3.8, direct_mixed_io package 14.2 14.2b 14.2b.5, erroneous 1.6, external file
14.1, file sharing 14.2a, generic package 12.1, indexed access 14.2a, indexed_io package
14.2a 14.2a.4, indexed_mixed_io package 14.2a 14.2b 14.2b.9, mixed-type file 14.1a
14.2b, operation 3.3.3, record locking 14.2a 14.2b, relative access 14.2a, relative_io
package 14.2a 14.2a.2, relative_mixed_io package 14.2a 14.2b 14.2b.7, sequential_
mixed_io package 14.2 14.2b 14.2b.3, task 9

14.1a File Elements
In DEC Ada, input-output operations for all nontext files are defined in terms
of file elements. Values retrieved for an element of a file object are read from
an element of the external file. Values transferred to an element of a file object
are written to an element of the external file. On OpenVMS systems, each
DEC Ada external file element corresponds to an RMS record.

For files containing values of mixed types, an element can represent a single
value (just as an element in a file of uniform-type values represents a single
value), or it can represent a set of values, or items. A mixed-type file, then,
can be a file of elements of different types, or it can be a file of elements whose
items have different types. DEC Ada provides an additional set of input-output
operations, defined in terms of items, for mixed-type files. Section 14.2b
explains these operations in more detail.

Input-output operations for text files are not defined in terms of elements.
Rather, they are defined in terms of lines and in terms of values, or items, of
various types. Section 14.3 explains text files and their operations in more
detail.

14.1a File Elements 14–6

14.1b Specification of the FORM Parameter in DEC Ada
All of the DEC Ada input-output packages provide CREATE and OPEN
procedures that have a FORM parameter, which corresponds to the language-
required form string (see 14.1). The FORM parameter determines the
system-dependent characteristics or attributes associated with an external file
when it is opened or created.

References: create procedure 14.2.1, external file 14.1, open procedure 14.2.1

14.1b.1 The FORM Parameter on OpenVMS Systems
On OpenVMS systems, the value of the FORM parameter can be one of the
following:

• A string of statements of the OpenVMS Record Management Services
(RMS) File Definition Language (FDL)

• A string referring to a text file of FDL statements (called an FDL file)

FDL is a special-purpose OpenVMS language for writing file specifications.
These specifications are then used by DEC Ada run-time routines to create or
open files.

See the DEC Ada Run-Time Reference Manual for OpenVMS Systems for the
rules governing the FORM parameter and for a general description of FDL.

See the Guide to OpenVMS File Applications and the OpenVMS Record
Management Utilities Reference Manual for complete information on FDL.

On OpenVMS systems, each input-output package has a default string of FDL
statements that is used to open or create a file. In general, specification of a
FORM parameter is not necessary. It is never necessary in an OPEN procedure
although it may be necessary in a CREATE procedure. The packages for which
a value for the FORM parameter must be specified in a CREATE procedure are
as follows:

• The packages DIRECT_IO and RELATIVE_IO require that a maximum
element (record) size be specified in the FORM parameter if the item with
which the package is instantiated is unconstrained.

• The packages DIRECT_MIXED_IO and RELATIVE_MIXED_IO require
that a maximum element (record) size be specified in the FORM parameter.

• The packages INDEXED_IO and INDEXED_MIXED_IO require that
information about keys be specified in the FORM parameter.

14–7 The FORM Parameter on OpenVMS Systems 14.1b.1

Any explicit FORM specification supersedes the default attributes of the
governing input-output package. The DEC Ada Run-Time Reference Manual
for OpenVMS Systems describes the default external file attributes of each
input-output package.

References: create procedure 14.2.1, direct_io package 14.2 14.2.4, direct_mixed_io
package 14.2 14.2b 14.2b.5, external file 14.1, indexed_io package 14.2a 14.2a.4,
indexed_mixed_io package 14.2a 14.2b 14.2b.9, instantiation 12.3, item 14.2b, key
14.2a, open file 14.1, open procedure 14.2.1, relative_io package 14.2a 14.2a.2, relative_
mixed_io package 14.2a 14.2b 14.2b.7, string 2.6 3.6.3 4.2, text file 14.3, unconstrained
type 3.3 3.3.2

14.1b.2 The FORM Parameter on Digital UNIX Systems
On Digital UNIX systems, the value of the FORM parameter conforms to the
description of the FORM parameter in IEEE Standard 1003.5-1992, IEEE
Standard for Information Technology, POSIX Ada Language Interfaces. The
value of the FORM parameter must be a character string, defined as follows:

form_image ::=
[field_name_identifier => field_value

{,field_name_identifier => field _value}]

field_value ::= field_value_identifier | integer

The field names and field values supported by DEC Ada are as follows:

OWNER, GROUP, OTHER Determines the file permissions associated
with the file.

The field value can be NONE, READ, WRITE,
EXECUTE, or any combination of the latter
three values separated by underscores (for
example, READ_WRITE). The field values set
the access permissions for the created file. If
no field value is specified, the default value is
READ_WRITE_EXECUTE.

The file permissions field names and values
can be used only in the FORM parameter of
a CREATE procedure. The exception USE_
ERROR is raised if they are used in the FORM
parameter of an OPEN procedure.

APPEND Determines whether or not data can be
appended to the file.

14.1b.2 The FORM Parameter on Digital UNIX Systems 14–8

The field value must be either TRUE or
FALSE. A value of TRUE causes any output
to be written to the end of the named external
file. If no field value is specified, the default
value is FALSE.

The append field name and value can be used
only in the FORM parameter of an OPEN
procedure. The exception USE_ERROR is
raised if they are used in the FORM parameter
of a CREATE procedure.

BLOCKING Determines whether or not blocking input-
output is in effect.

The field value must be TASKS. This value
causes a calling task (but not other tasks) to
wait for the completion of any input-output
operation on the file.

TERMINAL_INPUT Specifies how characters are read from the
keyboard. This field applies to text files only.

The field value must be either LINES or
CHARACTERS. The value LINES causes
the canonical terminal input. The value
CHARACTERS causes noncanonical terminal
input. If no field value is specified, the default
value is LINES.

The terminal input field name and value have
no effect if the file is not opened for input or if
the file is not opened on a terminal.

FILE_STRUCTURE Determines whether the file is first-in first-out
(FIFO) or not.

The field value must be either REGULAR or
FIFO. If no field value is specified, the default
value is REGULAR.

The file structure field name and values can
be used only in the FORM parameter of a
CREATE procedure. The exception USE_
ERROR is raised if they are used in the
FORM parameter of an OPEN procedure.
The exception USE_ERROR is also raised if

14–9 The FORM Parameter on Digital UNIX Systems 14.1b.2

the field name and values are applied to files
created or opened with operations from the
packages DIRECT_IO and DIRECT_MIXED_
IO.

FILE_DESCRIPTOR Specifies a Digital UNIX file descriptor for the
Ada file being opened.

The field value specifies the file descriptor. The
file descriptor must be open.

If the file descriptor is not open, if the file
descriptor refers to an Ada file that is already
open, or if the file descriptor refers to an
Ada file with an incompatible mode, then
the exception USE_ERROR is raised. The
file descriptor option can be used only in the
FORM parameter of an OPEN procedure.

PAGE_TERMINATORS Determines the treatment of line, page, and
file terminators. This field applies to text files
only.

The field value must be either TRUE or
FALSE. A value of TRUE causes the
external representation of line, page, and
file terminators to be as defined in the DEC
Ada run-time reference manuals. A value of
FALSE causes the external file to have no page
terminators. If no field value is specified, the
default value is TRUE.

Output to the external file occurs as
follows when the field value is FALSE: line
terminators are represented by the character
ASCII.LF, page terminators are omitted, and
file terminators are represented by the physical
end of the file. The exception USE_ERROR
is raised when an explicit call is made to the
procedure TEXT_IO.NEW_PAGE or an explicit
call is made to the procedure TEXT_IO.SET_
LINE and the current line number exceeds the
value specified by the TO parameter.

14.1b.2 The FORM Parameter on Digital UNIX Systems 14–10

Input to the external file occurs as follows
when the field value is FALSE: any occurrence
of the character ASCII.FF is interpreted as the
character ASCII.FF, not as a page terminator.

BUFFER_SIZE Determines the size of the buffer used during
file operations.

The field value must be an integer. It specifies
the number of bytes in the buffer.

ELEMENT_SIZE Determines the maximum element size for a
direct file.

The field value must be an integer. It specifies
the maximum number of bytes in the element.

Each input-output package has an implementation-defined value form string
that is used to open or create a file. In general, specification of a FORM
parameter is not necessary. The packages for which a value for the FORM
parameter must be specified in a CREATE procedure are as follows:

• The package DIRECT_IO requires that a maximum element size be
specified in the FORM parameter if the item with which the package is
instantiated is unconstrained.

• The package DIRECT_MIXED_IO requires that a maximum element size
be specified in the FORM parameter.

References: ascii predefined package C, canonical order 11.6, create procedure 14.2.1,
direct_io package 14.2 14.2.4, direct_mixed_io package 14.2 14.2b 14.2b.5, element
14.1a, external file 14.1, instantiation 12.3, item 14.2b, open file 14.1, open procedure
14.2.1, string 2.6 3.6.3 4.2, task 9, unconstrained type 3.3 3.3.2

14.2 Sequential and Direct Files
1 Two kinds of access to external files are defined: sequential access and direct

access. The corresponding file types and the associated operations are provided
by the generic packages SEQUENTIAL_IO and DIRECT_IO. A file object to
be used for sequential access is called a sequential file, and one to be used for
direct access is called a direct file.

In DEC Ada, sequential and direct access are also provided in the predefined
(nongeneric) packages SEQUENTIAL_MIXED_IO and DIRECT_MIXED_IO,
which allow values of different types to be mixed in a file. The operations
provided by these packages are described in section 14.2b.

14–11 Sequential and Direct Files 14.2

2 For sequential access, the file is viewed as a sequence of values that are
transferred in the order of their appearance (as produced by the program or by
the environment). When the file is opened, transfer starts from the beginning
of the file.

3 For direct access, the file is viewed as a set of elements occupying consecutive
positions in linear order; a value can be transferred to or from an element of
the file at any selected position. The position of an element is specified by its
index, which is a number, greater than zero, of the implementation-defined
integer type COUNT. The first element, if any, has index one; the index of the
last element, if any, is called the current size; the current size is zero if there
are no elements. The current size is a property of the external file.

In DEC Ada, the integer type COUNT is the range 0 .. INTEGER’LAST.

4 An open direct file has a current index, which is the index that will be used
by the next read or write operation. When a direct file is opened, the current
index is set to one. The current index of a direct file is a property of a file
object, not of an external file.

5 All three file modes are allowed for direct files. The only allowed modes for
sequential files are the modes IN_FILE and OUT_FILE.

6 References : count type 14.3, file mode 14.1, in_file 14.1, out_file 14.1

direct_io package 14.2 14.2.4, direct_mixed_io package 14.2 14.2b 14.2b.5, generic
package 12.1, integer type 3.5.4, mixed_type file 14.1a, sequential_io package 14.2
14.2.2, sequential_mixed_io package 14.2 14.2b 14.2b.3

14.2.1 File Management
1 The procedures and functions described in this section provide for the control of

external files; their declarations are repeated in each of the three packages for
sequential, direct, and text input-output. For text input-output, the procedures
CREATE, OPEN, and RESET have additional effects described in section
14.3.1.

The declarations of the procedures and functions described in this section
are also repeated in each of the DEC Ada packages for relative, indexed, and
mixed-type input-output. For relative input-output, the procedure CREATE
has additional effects described in section 14.2a.1. For indexed input-output
the procedures CREATE and RESET have additional effects described in
section 14.2a.1. For direct, relative, and indexed mixed input-output, the
procedure CREATE has additional effects described in section 14.2b.1.

14.2.1 File Management 14–12

2 procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := default_mode;
NAME : in STRING := "";
FORM : in STRING := "");

3 Establishes a new external file, with the given name and form, and
associates this external file with the given file. The given file is left
open. The current mode of the given file is set to the given access mode.
The default access mode is the mode OUT_FILE for sequential and text
input-output; it is the mode INOUT_FILE for direct input-output.
For direct access, the size of the created file is implementation-
dependent. A null string for NAME specifies an external file that is not
accessible after the completion of the main program (a temporary file).
A null string for FORM specifies the use of the default options of the
implementation for the external file. 5

For direct files in DEC Ada, the size of a file that has just been created
is zero.

On OpenVMS systems, a name can be specified in FORM. However,
NAME overrides any name given in FORM. If NAME is null, any
name given in FORM is ignored, and a temporary file is created that
is not accessible after the file is closed.6 See the DEC Ada Run-Time
Reference Manual for OpenVMS Systems for more information on
naming external files on OpenVMS systems.

On Digital UNIX systems, a file descriptor can be specified in FORM. If
the external file referred to by the file descriptor is already open, then
the Ada file is opened, and the file pointer is set to the beginning of the
file.

4 The exception STATUS_ERROR is raised if the given file is already
open. The exception NAME_ERROR is raised if the string given
as NAME does not allow the identification of an external file. The
exception USE_ERROR is raised if, for the specified mode, the
environment does not support creation of an external file with the
given name (in the absence of NAME_ERROR) and form. 7

In DEC Ada, the exception USE_ERROR is raised if the mode is IN_
FILE. The exception USE_ERROR is also raised if any file attributes
specified in FORM are not supported by the package.

5 See also Appendix G, AI-00046 and AI-00247.
6 See also Appendix G, AI-00046.
7 See also Appendix G, AI-00332.

14–13 File Management 14.2.1

5 procedure OPEN(FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

6 Associates the given file with an existing external file having the given
name and form, and sets the current mode of the given file to the given
mode. The given file is left open.

7 The exception STATUS_ERROR is raised if the given file is already
open. The exception NAME_ERROR is raised if the string given as
NAME does not allow the identification of an external file; in particular,
this exception is raised if no external file with the given name exists.
The exception USE_ERROR is raised if, for the specified mode, the
environment does not support opening for an external file with the
given name (in the absence of NAME_ERROR) and form. 8

8 procedure CLOSE(FILE : in out FILE_TYPE);

9 Severs the association between the given file and its associated external
file. The given file is left closed. 9

10 The exception STATUS_ERROR is raised if the given file is not open.

11 procedure DELETE(FILE : in out FILE_TYPE);

12 Deletes the external file associated with the given file. The given file is
closed, and the external file ceases to exist.

13 The exception STATUS_ERROR is raised if the given file is not open.
The exception USE_ERROR is raised if (as fully defined in Appendix F)
deletion of the external file is not supported by the environment.

In DEC Ada on Digital UNIX systems, the exception USE_ERROR
is raised if an attempt is made to delete an Ada file that was opened
by specifying the file descriptor in the FORM parameter of an OPEN
procedure.

14 procedure RESET(FILE : in out FILE_TYPE; MODE : in FILE_MODE);
procedure RESET(FILE : in out FILE_TYPE);

15 Resets the given file so that reading from or writing to its elements
can be restarted from the beginning of the file; in particular, for direct
access this means that the current index is set to one. If a MODE
parameter is supplied, the current mode of the given file is set to the
given mode. 10

8 See also Appendix G, AI-00332.
9 See also Appendix G, AI-00357.
10 See also Appendix G, AI-00357.

14.2.1 File Management 14–14

16 The exception STATUS_ERROR is raised if the file is not open. The
exception USE_ERROR is raised if the environment does not support
resetting for the external file and, also, if the environment does not
support resetting to the specified mode for the external file.

17 function MODE(FILE : in FILE_TYPE) return FILE_MODE;

18 Returns the current mode of the given file.

19 The exception STATUS_ERROR is raised if the file is not open.

20 function NAME(FILE : in FILE_TYPE) return STRING;

21 Returns a string which uniquely identifies the external file currently
associated with the given file (and may thus be used in an OPEN
operation). If an environment allows alternative specifications of the
name (for example, abbreviations), the string returned by the function
should correspond to a full specification of the name.

22 The exception STATUS_ERROR is raised if the given file is not open.11

In DEC Ada on Digital UNIX systems, the exception USE_ERROR is
raised if an attempt is made to obtain the name of an Ada file that was
opened by specifying the file descriptor in the FORM parameter of an
OPEN or CREATE procedure.

23 function FORM(FILE : in FILE_TYPE) return STRING;

24 Returns the form string for the external file currently associated with
the given file. If an environment allows alternative specifications of
the form (for example, abbreviations using default options), the string
returned by the function should correspond to a full specification (that
is, it should indicate explicitly all options selected, including default
options).

See section 14.1b for an explanation of the form string on DEC Ada
systems.

On OpenVMS systems, a full FDL string is returned. See the DEC Ada
Run-Time Reference Manual for OpenVMS Systems for an explanation
of FDL strings.

11 See also Appendix G, AI-00046.

14–15 File Management 14.2.1

25 The exception STATUS_ERROR is raised if the given file is not open.

26 function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

27 Returns TRUE if the file is open (that is, if it is associated with an
external file), otherwise returns FALSE.

28 References : current mode 14.1, current size 14.1, closed file 14.1, direct access 14.2,
external file 14.1, file 14.1, file_mode type 14.1, file_type type 14.1, form string 14.1,
inout_file 14.2.4, mode 14.1, name string 14.1, name_error exception 14.4, open file
14.1, out_file 14.1, status_error exception 14.4, use_error exception 14.4

in_file 14.1 string 3.6.3

14.2.2 Sequential Input-Output
1 The operations available for sequential input and output are described in this

section. 12 The exception STATUS_ERROR is raised if any of these operations
is attempted for a file that is not open.

See section 14.2.1 for descriptions of the file management operations that are
available for sequential input and output.

2 procedure READ(FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE);

3 Operates on a file of mode IN_FILE. Reads an element from the given
file, and returns the value of this element in the ITEM parameter.

4 The exception MODE_ERROR is raised if the mode is not IN_FILE.
The exception END_ERROR is raised if no more elements can be
read from the given file. The exception DATA_ERROR is raised if the
element read cannot be interpreted as a value of the type ELEMENT_
TYPE; however, an implementation is allowed to omit this check if
performing the check is too complex.

In DEC Ada, this procedure does not perform the check that raises the
exception DATA_ERROR.

5 procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE);

6 Operates on a file of mode OUT_FILE. Writes the value of ITEM to the
given file.

7 The exception MODE_ERROR is raised if the mode is not OUT_FILE.
The exception USE_ERROR is raised if the capacity of the external file
is exceeded.

12 See also Appendix G, AI-00320.

14.2.2 Sequential Input-Output 14–16

8 function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

9 Operates on a file of mode IN_FILE. Returns TRUE if no more
elements can be read from the given file; otherwise returns FALSE.

10 The exception MODE_ERROR is raised if the mode is not IN_FILE.

11 References : data_error exception 14.4, element 14.1, element_type 14.1, end_error
exception 14.4, external file 14.1, file 14.1, file mode 14.1, file_type 14.1, in_file
14.1, mode_error exception 14.4, out_file 14.1, status_error exception 14.4, use_error
exception 14.4

14.2.3 Specification of the Package Sequential_IO
1 with IO_EXCEPTIONS;

generic
type ELEMENT_TYPE is private;

package SEQUENTIAL_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, OUT_FILE);

-- File management

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := OUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);
procedure RESET (FILE : in out FILE_TYPE;

MODE : in FILE_MODE);
procedure RESET (FILE : in out FILE_TYPE);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Input and output operations

procedure READ (FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE);
procedure WRITE (FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE);

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

-- Exceptions

14–17 Specification of the Package Sequential_IO 14.2.3

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;

private
-- implementation-dependent

end SEQUENTIAL_IO;

2 References : close procedure 14.2.1, create procedure 14.2.1, data_error exception
14.4, delete procedure 14.2.1, device_error exception 14.4, end_error exception 14.4,
end_of_file function 14.2.2, file_mode 14.1, file_type 14.1, form function 14.2.1, in_
file 14.1, io_exceptions 14.4, is_open function 14.2.1, mode function 14.2.1, mode_error
exception 14.4, name function 14.2.1, name_error exception 14.4, open procedure 14.2.1,
out_file 14.1, read procedure 14.2.2, reset procedure 14.2.1, sequential_io package 14.2
14.2.2, status_error exception 14.4, use_error exception 14.4, write procedure 14.2.2,

14.2.4 Direct Input-Output
1 The operations available for direct input and output are described in this

section. 13 The exception STATUS_ERROR is raised if any of these operations
is attempted for a file that is not open.

See section 14.2.1 for descriptions of the file management operations that are
available for direct input and output.

2 procedure READ(FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ(FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE);

3 Operates on a file of mode IN_FILE or INOUT_FILE. In the case of
the first form, sets the current index of the given file to the index value
given by the parameter FROM. Then (for both forms) returns, in the
parameter ITEM, the value of the element whose position in the given
file is specified by the current index of the file; finally, increases the
current index by one.

4 The exception MODE_ERROR is raised if the mode of the given file is
OUT_FILE. The exception END_ERROR is raised if the index to be
used exceeds the size of the external file. The exception DATA_ERROR
is raised if the element read cannot be interpreted as a value of the
type ELEMENT_TYPE; however, an implementation is allowed to omit
this check if performing the check is too complex.

13 See also Appendix G, AI-00320.

14.2.4 Direct Input-Output 14–18

In DEC Ada, this procedure does not perform the check that raises the
exception DATA_ERROR.

5 procedure WRITE(FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE;
TO : in POSITIVE_COUNT);

procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE);

6 Operates on a file of mode INOUT_FILE or OUT_FILE. In the case
of the first form, sets the index of the given file to the index value
given by the parameter TO. Then (for both forms) gives the value of
the parameter ITEM to the element whose position in the given file is
specified by the current index of the file; finally, increases the current
index by one.

7 The exception MODE_ERROR is raised if the mode of the given file is
IN_FILE. The exception USE_ERROR is raised if the capacity of the
external file is exceeded.

8 procedure SET_INDEX(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT);

9 Operates on a file of any mode. Sets the current index of the given file
to the given index value (which may exceed the current size of the file).

10 function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT;

11 Operates on a file of any mode. Returns the current index of the given
file.

12 function SIZE(FILE : in FILE_TYPE) return COUNT;

13 Operates on a file of any mode. Returns the current size of the external
file that is associated with the given file.

Returns the number of elements in the file (in DEC Ada). This value
is obtained from the external file when an existing file is opened. The
value is updated whenever the index of a WRITE operation to the file
exceeds the current size. Therefore, the size of the file is always equal
to the highest index number that has been written to the file.

On OpenVMS systems, the number of elements returned equals the
number of RMS records in the file.

On Digital UNIX systems, the current size of the external file is the
index of the last element in the file. The SIZE function returns the
number of bytes in the file, divided by the open file’s maximum element
size.

14–19 Direct Input-Output 14.2.4

14 function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

15 Operates on a file of mode IN_FILE or INOUT_FILE. Returns TRUE
if the current index exceeds the size of the external file; otherwise,
returns FALSE.

16 The exception MODE_ERROR is raised if the mode of the given file is
OUT_FILE.

17 References : count type 14.2, current index 14.2, current size 14.2, data_error
exception 14.4, element 14.1, element_type 14.1, end_error exception 14.4, external file
14.1, file 14.1, file mode 14.1, file_type 14.1, in_file 14.1, index 14.2, inout_file 14.1,
mode_error exception 14.4, open file 14.1, positive_count 14.3, status_error exception
14.4, use_error exception 14.4

update a value 6.2, RMS record 14.1a

14.2.5 Specification of the Package Direct_IO
1 with IO_EXCEPTIONS;

generic
type ELEMENT_TYPE is private;

package DIRECT_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, INOUT_FILE, OUT_FILE);
type COUNT is range 0 .. implementation_defined;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT’LAST;

-- File management

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

-- NOTE: If ELEMENT_TYPE is an unconstrained type,
-- a maximum element size must be specified
-- in the FORM parameter of the CREATE procedure.

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);
procedure RESET (FILE : in out FILE_TYPE;

MODE : in FILE_MODE);
procedure RESET (FILE : in out FILE_TYPE);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

14.2.5 Specification of the Package Direct_IO 14–20

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Input and output operations

procedure READ (FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE;
FROM : POSITIVE_COUNT);

procedure READ (FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE);

procedure WRITE(FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE;
TO : POSITIVE_COUNT);

procedure WRITE(FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE);

procedure SET_INDEX(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT;
function SIZE (FILE : in FILE_TYPE) return COUNT;

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

-- Exceptions

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;

private
-- implementation-dependent

end DIRECT_IO;

2 References close procedure 14.2.1, count type 14.2, create procedure 14.2.1, data_
error exception 14.4, default_mode 14.2.5, delete procedure 14.2.1, device_error
exception 14.4, element_type 14.2.4, end_error exception 14.4, end_of_file function
14.2.4, file_mode 14.2.5, file_type 14.2.4, form function 14.2.1, in_file 14.2.4, index
function 14.2.4, inout_file 14.2.4 14.2.1, io_exceptions package 14.4, is_open function
14.2.1, mode function 14.2.1, mode_error exception 14.4, name function 14.2.1, name_
error exception 14.4, open procedure 14.2.1, out_file 14.2.1, read procedure 14.2.4,
set_index procedure 14.2.4, size function 14.2.4, status_error exception 14.4, use_error
exception 14.4, write procedure 14.2.4 14.2.1

14–21 Relative and Indexed Files (OpenVMS Systems Only) 14.2a

14.2a Relative and Indexed Files (OpenVMS Systems Only)
On OpenVMS systems, DEC Ada defines relative access and indexed access
in addition to sequential and direct access. The corresponding file types and
the associated operations are provided by the predefined generic packages
RELATIVE_IO and INDEXED_IO. A file object to be used for relative access
is called a relative file. A file object to be used for indexed access is called an
indexed file.

Relative and indexed access are also provided in the predefined (nongeneric)
packages RELATIVE_MIXED_IO and INDEXED_MIXED_IO, which allow
values of different types to be mixed in a file. The operations provided by these
packages are described in section 14.2b.

For relative access, the file is viewed as a set of fixed-length cells occupying
consecutive positions in linear order. Cells can either be empty or can contain
fixed- or variable-length elements. A cell is said to contain an element if an
element has been written to that position (and not deleted), and a cell is said
to be empty if an element has not been written to that position (or the last
written element has been deleted).

The position of a cell is specified by its index, which is a number of the type
COUNT (that is, it is in the range 0 .. INTEGER’LAST). The first cell in
a relative file has an index of one. Like an open direct file, an open relative
file has a current index, which is the index that will be used by the next read
or write operation. When a relative file is opened, the current index is set to
one. The current index of a relative file is a property of a file object, not of an
external file. Also, the concept of size does not apply to relative files: end-of-file
is true if all remaining elements, starting at the current index, are empty.

For indexed access, the file is viewed as a set of elements that are ordered by
predefined keys. Each key has a number (a nonnegative integer) and a value.
When the file is created, the keys of an element are defined in the form string
to correspond to fields of that element, and cannot be changed thereafter. Each
element has at least one primary key (numbered 0) and can have as many as
254 alternate keys (numbered 1 to 254).

The elements of the file can be accessed by any key. When a file is read, the
element fields are searched until the key characteristics are matched. The
read operation allows both exact and inexact matching of the key value. The
type of matching can be specified by one of the values of the enumeration type
RELATION_TYPE, which is defined as follows:

type RELATION_TYPE is (EQUAL_NEXT, EQUAL, NEXT);

14.2a Relative and Indexed Files (OpenVMS Systems Only) 14–22

The value EQUAL_NEXT corresponds to the case where a match will be
greater than or equal to the key value if ascending keys are involved. The
match will be less than or equal to the key value if descending keys are
involved. The value EQUAL corresponds to the case where a match will be
equal to the key value. The value NEXT corresponds to the case where a
match will be greater than the key value if ascending keys are involved. The
match will be less than the key value if descending keys are involved. If there
are duplicate keys in the file, they are retrieved in the order in which they are
written to the file.

An open indexed file has a next element, which is the first element of the
primary key when the file is first opened. The next element is redefined after
each successful read operation, or it can be reset to the first sequential element
according to a specified key. As with relative files, the concept of size does not
apply to indexed files: end-of-file is true if no more elements, starting at the
next element in the file, exist.

An open relative or indexed file has a current element, which is the target
element for the UPDATE and DELETE_ELEMENT operations. The current
element is said to be defined after a successful READ, READ_EXISTING,
READ_BY_KEY, or END_OF_FILE operation (if END_OF_FILE results in
the reading of the next element of the file). The current element is said
to be undefined after a successful CREATE, OPEN, CLOSE, DELETE,
RESET, WRITE, UPDATE, UNLOCK, or DELETE_ELEMENT operation.
The current element is said to be undefined after an unsuccessful READ,
READ_EXISTING, READ_BY_KEY, WRITE, UPDATE, UNLOCK, DELETE_
ELEMENT, RESET (except when the exception MODE_ERROR is raised), or
END_OF_FILE operation (if END_OF_FILE results in an attempt to read past
the end of the external file).

All three file modes are allowed for relative and indexed files.

Depending on the sharing and access attributes specified in their form strings,
relative and indexed files may be write shared. Element (RMS record) locking
is automatically provided for the packages RELATIVE_IO and INDEXED_IO.
When the current element in a relative or indexed file is defined (a successful
read operation is performed), the element is locked until a subsequent read,
write, update, delete, or unlock operation is performed; until the file is closed;
or until an RMS operation on that file fails.

The purpose of locking is to prevent two (or more) tasks that share the same
external file (by means of two different internal files) from interfering with
each other’s read and write operations. See the DEC Ada Run-Time Reference
Manual for OpenVMS Systems for more information on sharing, file attributes,
and record locking.

14–23 Relative and Indexed Files (OpenVMS Systems Only) 14.2a

References: close procedure 14.2.1, count type 14.2, create procedure 14.2a.1 14.2b.1,
delete procedure 14.2.1, delete_element procedure 14.2a.2 14.2a.4 14.2b.7 14.2b.9,
element 14.1a, end_of_file function 14.2a.2 14.2a.4 14.2b.7 14.2b.9, enumeration type
3.5.1, external file 14.1, file object 14.1, form string 14.1 14.1b, generic package 12.1,
indexed_io package 14.2a 14.2a.4, indexed_mixed_io package 14.2a 14.2b 14.2b.9,
integer type 3.5.4, mode_error exception 14.4, open file 14.1, operation 3.3.3, package
7, range 3.5, read procedure 14.2a.2 14.2a.4 14.2b.7 14.2b.9, read_by_key procedure
14.2a.4 14.2b.9, read_existing procedure 14.2a.2 14.2b.7, relative_io package 14.2a
14.2a.2, relative_mixed_io package 14.2a 14.2b 14.2b.7, reset procedure 14.2.1 14.2a.1,
task 9, unlock procedure 14.2a.2 14.2a.4 14.2b.7 14.2b.9, update procedure 14.2a.2
14.2a.4 14.2b.7 14.2b.9, RMS record 14.1a, write procedure 14.2a.2 14.2a.4 14.2b.7
14.2b.9

14.2a.1 File Management (OpenVMS Systems Only)
Except for the following differences, the procedures and functions for
controlling relative and indexed access to external files containing values
of the same type are the same as those for controlling sequential and direct
access (see 14.2.1). The default mode for the CREATE procedures of both
packages is INOUT_FILE.

For the package RELATIVE_IO, a maximum external element (record) size
must be specified in the FORM parameter of the CREATE procedure if the
package is instantiated with an unconstrained element type.

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

--
-- Example:
--
-- procedure CREATE(FILE => MY_FILE;
-- FORM => "RECORD;" &
-- "SIZE 128");

For the package INDEXED_IO, the FORM parameter of the CREATE
procedure must be specified. There is no default. In particular, the FORM
parameter must specify all information about the keys in the file to be created.
If the package is instantiated with an unconstrained element type, a maximum
external element (record) size must be specified.

14.2a.1 File Management (OpenVMS Systems Only) 14–24

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING);

--
-- Example:
--
-- procedure CREATE(FILE => MY_FILE;
-- FORM => "KEY 0;" &
-- "LENGTH 5;" &
-- "POSITION 0;" &
-- "TYPE STRING;");
--

Also for the package INDEXED_IO, the RESET procedures have a parameter
for specifying the key number at which the file is to be reset. The default value
for KEY_NUMBER is 0, which designates the primary key.

procedure RESET (FILE : in FILE_TYPE;
MODE : in FILE_MODE;
KEY_NUMBER : in INTEGER := 0);

procedure RESET (FILE : in FILE_TYPE;
KEY_NUMBER : in INTEGER := 0);

References: create procedure 14.2.1, direct access 14.2, external file 14.1, file
mode 14.1, form string 14.1 14.1b, function 6.5, indexed access 14.2a, inout_file 14.1,
instantiation 12.3, key 14.2a, procedure 6.1, relative access 14.2a, relative_io package
14.2a 14.2a.2, reset procedure 14.2.1, sequential access 14.2, unconstrained type 3.3
3.3.2

14.2a.2 Relative Input-Output (OpenVMS Systems Only)
The operations available for relative input and output are described in this
section. The exception STATUS_ERROR is raised if any of these operations is
attempted for a file that is not open.

See section 14.2a.1 for information on the file management operations that are
available for relative input and output.

procedure READ(FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ(FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE);

Operates on a file of mode IN_FILE or INOUT_FILE. In the case of
the first form, sets the current index of the given file to the index value
given by the parameter FROM. Then (for both forms) returns, in the
parameter ITEM, the value of the element whose position is specified

14–25 Relative Input-Output (OpenVMS Systems Only) 14.2a.2

by the current index of the given file. The element read becomes the
current element, and the current index is increased by one.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE. The exception LOCK_ERROR is raised if the element to be read
is locked. This error is possible only if the external file is being shared.
The exception EXISTENCE_ERROR is raised if the element does not
exist (the given cell is empty or the current index is beyond the end of
the file).

procedure READ_EXISTING(FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ_EXISTING(FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE);

Operates on a file of mode IN_FILE or INOUT_FILE. In the case of
the first form, sets the current index of the given file to the index
value given by the parameter FROM. Then (for both forms) starts at
the current index and scans forward, skipping empty cells, and sets
the current index to the first nonempty cell. Then returns, in the
parameter ITEM, the value of the element whose position is specified
by the current index of the given file. The element read becomes the
current element, and the current index is increased by one.

The exception MODE_ERROR is raised if the mode of the given file
is OUT_FILE. The exception LOCK_ERROR is raised if the element
found is locked; this error is possible only if the external file is being
shared. The exception EXISTENCE_ERROR is raised if the current
index is beyond the end of the file, or if the end of the file is reached
before an existing element (a nonempty cell) is found.

procedure WRITE(FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE;
TO : in POSITIVE_COUNT);

procedure WRITE(FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE);

Operates on a file of mode INOUT_FILE or OUT_FILE. In the case of
the first form, sets the current index of the given file to the index value
given by the parameter TO. Then (for both forms) writes the value
of the parameter ITEM to the cell whose position in the given file is
specified by the current index of the file; finally, increases the current
index by one.

14.2a.2 Relative Input-Output (OpenVMS Systems Only) 14–26

The exception MODE_ERROR is raised if the mode of the given file is
IN_FILE. The exception USE_ERROR is raised if the element position
in the file has already been written.

procedure UPDATE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE);

Operates on a file of mode INOUT_FILE. Updates the current element
of the given file with the value of the parameter ITEM.

The exception MODE_ERROR is raised if the current mode is not
INOUT_FILE. The exception USE_ERROR is raised if the current
element is undefined at the start of this operation.

procedure UNLOCK(FILE : in FILE_TYPE);

Operates on a file of any mode. After this operation, the current
element is undefined.

procedure DELETE_ELEMENT(FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE. Deletes the current element
in the file.

The exception MODE_ERROR is raised if the current mode is not
INOUT_FILE. The exception USE_ERROR is raised if the current
element is undefined at the start of this operation.

procedure SET_INDEX(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT);

Operates on a file of any mode. Sets the current index of the given file
to the index value given by the parameter TO.

function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT;

Operates on a file of any mode. Returns the current index of the given
file.

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

Operates on a file of mode IN_FILE or INOUT_FILE. Returns TRUE if
no cell, starting at the current index, contains an element; otherwise,
returns FALSE.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE.

References: cell 14.2a, current element 14.2a, current index 14.2a, element 14.1a,
end of file 14.2a, existence_error exception 14.4, file 14.1, file mode 14.1, file sharing
14.2a, index 14.2a, in_file 14.1, inout_file 14.1, lock_error exception 14.4, locking 14.2a,
mode_error exception 14.4, open file 14.1, out_file 14.1, relative access 14.2a, relative

14–27 Relative Input-Output (OpenVMS Systems Only) 14.2a.2

file 14.2a, status_error exception 14.4, undefined current element 14.2a, use_error
exception 14.4

14.2a.3 Specification of the Package Relative_IO (OpenVMS Systems
Only)

with IO_EXCEPTIONS;
with AUX_IO_EXCEPTIONS;
generic

type ELEMENT_TYPE is private;
package RELATIVE_IO is

type FILE_TYPE is limited private;
type FILE_MODE is (IN_FILE, INOUT_FILE, OUT_FILE);
type COUNT is range 0 .. INTEGER’LAST;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT’LAST;

-- File management

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

-- NOTE: If ELEMENT_TYPE is an unconstrained type,
-- a maximum element (or record) size must be specified
-- in the FORM parameter of the CREATE procedure.

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);

procedure RESET (FILE : in out FILE_TYPE;
MODE : in FILE_MODE);

procedure RESET (FILE : in out FILE_TYPE);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Input and output operations

procedure READ (FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ (FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE);

14.2a.3 Specification of the Package Relative_IO (OpenVMS Systems Only) 14–28

procedure READ_EXISTING(FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ_EXISTING(FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE);

procedure WRITE (FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE;
TO : in POSITIVE_COUNT);

procedure WRITE (FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE);

procedure UPDATE(FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE);

procedure UNLOCK(FILE : in FILE_TYPE);

procedure DELETE_ELEMENT(FILE : in FILE_TYPE);

procedure SET_INDEX(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT;

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

-- Exceptions

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;
LOCK_ERROR : exception renames AUX_IO_EXCEPTIONS.LOCK_ERROR;
EXISTENCE_ERROR : exception

renames AUX_IO_EXCEPTIONS.EXISTENCE_ERROR;

private
-- implementation-dependent

end RELATIVE_IO;

References: aux_io_exceptions package 14.4, close procedure 14.2.1, count type
14.2, create procedure 14.2a.1, data_error exception 14.4, delete procedure 14.2.1,
delete_element procedure 14.2a.2, device_error exception 14.4, element_type 14.1,
end_error exception 14.4, end_of_file function 14.2a.2, existence_error exception 14.4,
file_mode 14.1, file_type 14.1, form function 14.2.1, index function 14.2a.2, integer type
3.5.4, io_exceptions package 14.4, is_open function 14.2.1, lock_error exception 14.4,
mode function 14.2.1, mode_error exception 14.4, name function 14.2.1, name_error
exception 14.4, open procedure 14.2.1, read procedure 14.2a.2, read_existing procedure
14.2a.2, reset procedure 14.2.1, set_index procedure 14.2a.2, status_error exception
14.4, unconstrained type 3.3 3.3.2, unlock procedure 14.2a.2, update procedure 14.2a.2,
use_error exception 14.4, write procedure 14.2a.2

14–29 Specification of the Package Relative_IO (OpenVMS Systems Only) 14.2a.3

14.2a.4 Indexed Input-Output (OpenVMS Systems Only)
The operations available for indexed input and output are described in this
section. The exception STATUS_ERROR is raised if any of these operations is
attempted for a file that is not open.

See section 14.2a.1 for information on the file management operations that are
available for indexed input and output.

The package INDEXED_IO provides a generic READ_BY_KEY procedure,
which defines input for the given element type. This procedure must be
instantiated with an actual type parameter for the generic parameter
KEY_TYPE. It can be instantiated with or without a value for the generic
parameter DEFAULT_KEY_NUMBER. The range of values for DEFAULT_
KEY_NUMBER is 0 to 254. A value of 0 (the default) designates the primary
key.

If the RELATION parameter to the READ_BY_KEY procedure is specified,
it must have a value of EQUAL_NEXT, EQUAL, or NEXT (the default is
EQUAL).

procedure READ (FILE : in FILE_TYPE; ITEM : out ELEMENT_TYPE);

generic
type KEY_TYPE is private;
DEFAULT_KEY_NUMBER : INTEGER := 0;

procedure READ_BY_KEY(FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE;
KEY : in KEY_TYPE;
KEY_NUMBER : in INTEGER :=

DEFAULT_KEY_NUMBER;
RELATION : in RELATION_TYPE := EQUAL);

Operates on a file of mode IN_FILE or INOUT_FILE. In the case of
the first form, returns, in the parameter ITEM, the value of the next
element, according to the most recent key and relation information. In
the case of the second form, returns, in the parameter ITEM, the value
of the element specified by the given key information; KEY gives the
key value; KEY_NUMBER designates a primary (0) or alternate key (1
to 254); and RELATION determines the kind of match to be made for
the key value.

For both forms, the element read becomes the current element. In the
case of the first form, the next sequential element becomes the next
element, according to the most recent key and relation information. In
the case of the second form, the next sequential element that matches
the key and relation information specified becomes the next element. If
neither the key nor the relation information changes from one READ_

14.2a.4 Indexed Input-Output (OpenVMS Systems Only) 14–30

BY_KEY operation to the next, the same element will continue to be
read.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE.

The exception END_ERROR is raised if an attempt is made to read
past the end of the file by the first form.

The exception LOCK_ERROR is raised if the element to be read is
locked. This error is possible only if the external file is being shared.
The exception EXISTENCE_ERROR is raised if the element does not
exist. The exception KEY_ERROR is raised if the size of the given key
is not a multiple of eight bits.

procedure WRITE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE);

Operates on a file of mode INOUT_FILE or OUT_FILE. Gives the value
of the parameter ITEM to the element whose position in the given file
is specified by the key information contained within the value of ITEM.

The exception MODE_ERROR is raised if the current mode is IN_FILE.

The exception USE_ERROR is raised if the element position in the file
has already been written.

The exception KEY_ERROR is raised if a key has been duplicated and
if duplicates are not allowed by the external file.

procedure UPDATE(FILE : in FILE_TYPE; ITEM : in ELEMENT_TYPE);

Operates on a file of mode INOUT_FILE. Updates the current element
of the given file with the value of the parameter ITEM.

The exception MODE_ERROR is raised if the current mode is not
INOUT_FILE.

The exception USE_ERROR is raised if the current element is
undefined at the start of this operation or if some key specification
in ITEM violates the external file attributes defined for that key.

The exception KEY_ERROR is raised if a key has been changed or
duplicated and if changes or duplicates are not allowed by the external
file.

procedure UNLOCK(FILE : in FILE_TYPE);

Operates on a file of any mode. After this operation, the current
element is undefined.

14–31 Indexed Input-Output (OpenVMS Systems Only) 14.2a.4

procedure DELETE_ELEMENT(FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE. Deletes the current element
of the file.

The exception MODE_ERROR is raised if the current mode is not
INOUT_FILE. The exception USE_ERROR is raised if the current
element is undefined at the start of this operation.

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

Operates on a file of mode IN_FILE or INOUT_FILE. Returns TRUE
if there are no more elements (according to the most recent key and
relation information) starting at the next element in the file; otherwise,
returns FALSE.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE.

References: current element 14.2a, element 14.1a, element_type 14.1, end_error
exception 14.4, existence_error exception 14.4, external file 14.1, file 14.1, file mode
14.1, file sharing 14.2a, generic actual parameter 12.3, generic formal parameter
12.3, generic procedure 12.1, in_file 14.1, inout_file 14.1, instantiation 12.3, key 14.2a,
key_error exception 14.4, lock_error exception 14.4, locking 14.2a, mode_error exception
14.4, next element 14.2a, out_file 14.1, range 3.5, relation_type 14.2a, read_by_key
procedure 14.2a.4, status_error exception 14.4, undefined current element 14.2a, use_
error exception 14.4

14.2a.5 Specification of the Package Indexed_IO (OpenVMS Systems
Only)

with IO_EXCEPTIONS;
with AUX_IO_EXCEPTIONS;
generic

type ELEMENT_TYPE is private;
package INDEXED_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, INOUT_FILE, OUT_FILE);

type RELATION_TYPE is (EQUAL_NEXT, EQUAL, NEXT);

function GREATER return RELATION_TYPE
renames NEXT;

function GREATER_EQUAL return RELATION_TYPE
renames EQUAL_NEXT;

-- File management

14.2a.5 Specification of the Package Indexed_IO (OpenVMS Systems Only) 14–32

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING);

-- NOTE: All information about the keys must be provided
-- in the FORM parameter of the CREATE procedure.
-- If ELEMENT_TYPE is an unconstrained type, a
-- maximum element (or record) size must also be specified.

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);

procedure RESET (FILE : in FILE_TYPE;
MODE : in FILE_MODE;
KEY_NUMBER : in INTEGER := 0);

procedure RESET (FILE : in FILE_TYPE;
KEY_NUMBER : in INTEGER := 0);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Input and output operations

procedure READ (FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE);

generic
type KEY_TYPE is private;
DEFAULT_KEY_NUMBER : INTEGER := 0;

procedure READ_BY_KEY (FILE : in FILE_TYPE;
ITEM : out ELEMENT_TYPE;
KEY : in KEY_TYPE;
KEY_NUMBER : in INTEGER :=

DEFAULT_KEY_NUMBER;
RELATION : in RELATION_TYPE := EQUAL);

procedure WRITE (FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE);

procedure UPDATE(FILE : in FILE_TYPE;
ITEM : in ELEMENT_TYPE);

procedure UNLOCK(FILE : in FILE_TYPE);

procedure DELETE_ELEMENT(FILE : in FILE_TYPE);

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

14–33 Specification of the Package Indexed_IO (OpenVMS Systems Only) 14.2a.5

-- Exceptions

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;
LOCK_ERROR : exception renames AUX_IO_EXCEPTIONS.LOCK_ERROR;
KEY_ERROR : exception renames AUX_IO_EXCEPTIONS.KEY_ERROR;
EXISTENCE_ERROR : exception

renames AUX_IO_EXCEPTIONS.EXISTENCE_ERROR;

private
-- implementation-dependent

end INDEX_IO;

References: aux_io_exceptions package 14.4, close procedure 14.2.1, create procedure
14.2a.1, data_error exception 14.4, delete procedure 14.2.1, delete_element procedure
14.2a.4, device_error exception 14.4, element_type 14.1, end_error exception 14.4,
end_of_file function 14.2a.4, existence_error exception 14.4, file_mode 14.1, file_type
14.1, form function 14.2.1, form parameter 14.1, io_exceptions package 14.4, is_open
function 14.2.1, key 14.2a, key_error exception 14.4, lock_error exception 14.4, mode
function 14.2.1, mode_error exception 14.4, name function 14.2.1, name_error exception
14.4, open procedure 14.2.1, read procedure 14.2a.4, read_by_key procedure 14.2a.4,
record size 14.2b, relation_type 14.2a, reset procedure 14.2a.1, status_error exception
14.4, unconstrained type 3.3 3.3.2, unlock procedure 14.2a.4, update procedure 14.2a.4,
use_error exception 14.4, write procedure 14.2a.4

14.2b Mixed-Type Input-Output
The following DEC Ada predefined packages provide types and operations
for files consisting of elements that can contain zero or more items of various
types:

SEQUENTIAL_MIXED_IO
DIRECT_MIXED_IO
RELATIVE_MIXED_IO
INDEXED_MIXED_IO

Section 14.7a gives an example of using a mixed-type input-output package.
The packages RELATIVE_MIXED_IO and INDEXED_MIXED_IO are available
on OpenVMS systems only.

Each file opened by one of these mixed-type input-output packages has an
associated file buffer maintained by the package. The size of the file buffer
is limited by the maximum element size of the external file. The maximum

14.2b Mixed-Type Input-Output 14–34

element size is controlled by the FORM parameter in a CREATE or OPEN
procedure as follows:

• On OpenVMS systems, the maximum element size is controlled by a FORM
parameter that includes the string "RECORD; SIZE max_record_size".

• On Digital UNIX systems, the maximum element size is controlled by a
FORM parameter that includes the string "ELEMENT_SIZE => max_
element_size".

(See 14.1b.1 for more information on specifying FORM parameters.)

Element input-output operations, such as READ and WRITE, provide the
means for reading a file element into the file buffer (and reading an element
of the associated external file) or writing the contents of the file buffer into an
element (and writing an element of the associated external file).

Item input-output operations, such as GET and PUT, provide the means for
transferring an item (value) from or to the file buffer. Every item transfer
begins on a byte boundary and involves the number of bits required by the
type of the item. The position or current position in the file buffer is thus a
byte offset from the beginning of the buffer. All of the predefined mixed-type
input-output packages provide the same item input-output operations. See
section 14.2b.2.

On OpenVMS systems, element (RMS record) locking is provided for the
packages RELATIVE_MIXED_IO and INDEXED_MIXED_IO. A brief
explanation of how locking affects relative and indexed files containing
elements of the same type is given at the end of section 14.2a. The same
information applies to relative and indexed files containing elements of mixed
types.

References: direct file 14.2, element 14.1a, locking 14.2a, external file 14.1, indexed
file 14.2, open file 14.1, package 7, relative file 14.2, sequential file 14.2, RMS record
14.1a

14.2b.1 File Management
Except for the following differences, the procedures and functions for
controlling access to files containing mixed-type values are the same as those
for controlling access to files containing values of the same type (see 14.2.1
and 14.2a.1). The default mode for the CREATE procedure of the package
SEQUENTIAL_MIXED_IO is OUT_FILE. INOUT_FILE is the default mode
for the CREATE procedures of the packages DIRECT_MIXED_IO, RELATIVE_
MIXED_IO, and INDEXED_MIXED_IO.

14–35 File Management 14.2b.1

For the packages DIRECT_MIXED_IO and RELATIVE_MIXED_IO, a
maximum element size must be specified in the FORM parameter of the
CREATE procedures.

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

--
-- OpenVMS example:
--
-- procedure CREATE(FILE => MY_FILE;
-- FORM => "RECORD;" &
-- "SIZE 128");
--
-- Digital UNIX example:
--
-- procedure CREATE(FILE => MY_FILE;
-- FORM => "ELEMENT_SIZE => 128");

For the package INDEXED_MIXED_IO, all information about the file keys
must be specified in the FORM parameter of the CREATE procedure.

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING);

--
-- Example:
--
-- procedure CREATE(FILE => MY_FILE;
-- FORM => "KEY 0;" &
-- "LENGTH 5;" &
-- "POSITION 0;" &
-- "TYPE STRING;");
--

References: direct_mixed_io package 14.2 14.2b 14.2b.5, file 14.1, file mode 14.1,
form parameter 14.1 14.1b, function 6.5, indexed_mixed_io package 14.2a 14.2b 14.2b.9,
inout_file 14.1, key 14.2a, out_file 14.1, procedure 6.1, relative_mixed_io package 14.2a
14.2b 14.2b.7, sequential_mixed_io package 14.2 14.2b 14.2b.3

14.2b.2 Item Input-Output
The same item input-output operations are available in all of the DEC Ada
mixed-type input-output packages. This section describes the operations that
provide item input and output to and from the file buffer.

All of the mixed-type packages provide generic GET_ITEM, GET_ARRAY, and
PUT_ITEM procedures, which define buffer input and output for given item
and item-array types.

14.2b.2 Item Input-Output 14–36

The GET_ITEM and PUT_ITEM procedures must be instantiated with an
actual type parameter for the generic parameter ITEM_TYPE. The GET_
ARRAY procedure must be instantiated with actual type parameters for the
generic parameters ITEM_TYPE (to determine the array component types),
INDEX (to determine how the array is indexed), and ITEM_ARRAY (to
determine the array to be output).

generic
type ITEM_TYPE is private;

procedure GET_ITEM(FILE : in FILE_TYPE; ITEM : out ITEM_TYPE);

Operates on a file buffer for a file of mode IN_FILE or INOUT_FILE.
Gets an item from the file buffer at the current position, and returns
its value in the parameter ITEM. The current position in the file buffer
is updated to the position of the next item.

The exception MODE_ERROR is raised if the current mode of the given
file is OUT_FILE. The exception LAYOUT_ERROR is raised if no more
items can be read from the file buffer.

generic
type ITEM_TYPE is private;
type INDEX is (<>);
type ITEM_ARRAY is array (INDEX range <>) of ITEM_TYPE;

procedure GET_ARRAY(FILE : in FILE_TYPE;
ITEMS : out ITEM_ARRAY;
LAST : out INDEX);

Operates on a file buffer for a file of mode IN_FILE or INOUT_FILE.
Gets the remaining items in the file buffer and returns their values in
the parameter ITEMS. Sets LAST to the index of the last element of
ITEMS that is updated.

Reading stops when the array ITEMS is full or when no more items
can be read from the file buffer. The current position in the file buffer
is updated to the position after the last position read.

If no items are read, returns in LAST an index value that is one less
than ITEMS’FIRST.

The exception MODE_ERROR is raised if the current mode of the given
file is OUT_FILE.

generic
type ITEM_TYPE is private;

procedure PUT_ITEM(FILE : in FILE_TYPE; ITEM : in ITEM_TYPE);

Operates on a file buffer for a file of mode OUT_FILE or INOUT_FILE.
The value of the parameter ITEM is written into the file buffer at the

14–37 Item Input-Output 14.2b.2

current position, and the current position is updated to the position of
the next item in the file buffer.

The exception MODE_ERROR is raised if the current mode of the given
file is IN_FILE. The exception LAYOUT_ERROR is raised if the current
position exceeds the file buffer size. The file buffer size is limited by
the maximum size of an element in the external file.

function END_OF_BUFFER(FILE : in FILE_TYPE) return BOOLEAN;

Operates on a file buffer for a file of mode IN_FILE or INOUT_FILE.
Returns TRUE if there are no more items to be read from the file
buffer. Returns FALSE otherwise.

The exception MODE_ERROR is raised if the current mode of the given
file is OUT_FILE.

procedure SET_POSITION(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

Operates on a file buffer for a file of any mode. Sets the current
position of the file buffer to the position specified by the value of TO.

function POSITION(FILE : in FILE_TYPE) return POSITIVE_COUNT;

Operates on a file buffer for a file of any mode. Returns the current
position in the file buffer.

function MAX_ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

Operates on a file of any mode. Returns the maximum element size
(in bytes) specified for the external file. The maximum element size,
in turn, defines the limits for the size of the file buffer. A value of zero
indicates that there is no maximum element size associated with the
file.

On OpenVMS systems, a maximum element size can be specified for a
file (when it is created) with a FORM parameter value that includes
the string "RECORD; SIZE max_record_size". On OpenVMS systems,
the buffer size is limited only by the maximum size of an RMS record.

On Digital UNIX systems, a maximum element size can be specified
for a file with a FORM parameter value that includes the string
"ELEMENT_SIZE => max_element_size".

function ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

Operates on a file buffer for a file of mode IN_FILE or INOUT_FILE.
Returns the size (in bytes) of the element (record) last read into the file

14.2b.2 Item Input-Output 14–38

buffer. If no elements have ever been read into the file buffer, a value
of zero is returned.

The ELEMENT_SIZE function can be used in combination with the
POSITION function to determine the number of bytes remaining
in the file buffer (of the last element read): ELEMENT_SIZE (F) �
POSITION (F) + 1, for any file F.

The exception MODE_ERROR is raised if the mode is not IN_FILE or
INOUT_FILE.

References: buffer size 14.2b, current position 14.2b, direct_mixed_io package
14.2 14.2b 14.2b.3, external file 14.1, file 14.1, file buffer 14.2b, file mode 14.1,
indexed_mixed_io package 14.2a 14.2b 14.2b.9, in_file 14.1, inout_file 14.1, item 14.2b,
layout_error exception 14.4, mode_error exception 14.4, out_file 14.1, relative_mixed_io
package 14.2a 14.2b 14.2b.7, sequential_mixed_io package 14.2 14.2b 14.2b.3, RMS
record 14.1a

14.2b.3 Sequential Mixed Input-Output
The operations available for sequential mixed-type input and output are
described in this section. The exception STATUS_ERROR is raised if any of
these operations is attempted for a file that is not open.

See sections 14.2b.1 and 14.2b.2 for information on the file management and
item input-output operations that are available for sequential mixed input and
output.

procedure READ(FILE : in FILE_TYPE);

Operates on a file of mode IN_FILE. Reads the next sequential element
from the given file into the file buffer.

The exception MODE_ERROR is raised if the mode is not IN_FILE.
The exception END_ERROR is raised if an attempt is made to read
past the end of the file.

procedure WRITE(FILE : in FILE_TYPE);

Operates on a file of mode OUT_FILE. Writes the file buffer to the
given file as a new element. If the external file element format is fixed
and the current position in the file buffer does not indicate the end of
the buffer, the rest of the buffer is filled with zero bits before being
written to the file.

14–39 Sequential Mixed Input-Output 14.2b.3

The exception MODE_ERROR is raised if the mode is not OUT_FILE.

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

Operates on a file of mode IN_FILE. Returns TRUE if no more
elements can be read from the given file; otherwise returns FALSE.

The exception MODE_ERROR is raised if the mode is not IN_FILE.

References: current position 14.2b, element 14.1a, end_error exception 14.4, external
file 14.1, file 14.1, file buffer 14.2b, file mode 14.1, in_file 14.1, mixed-type file 14.1a,
mode_error exception 14.4, open file 14.1, out_file 14.1, sequential file 14.2, status_
error exception 14.4

14.2b.4 Specification of the Package Sequential_Mixed_IO
with IO_EXCEPTIONS;
package SEQUENTIAL_MIXED_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, OUT_FILE);

type COUNT is range 0 .. INTEGER’LAST;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT’LAST;

-- File management

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := OUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);

procedure RESET (FILE : in out FILE_TYPE;
MODE : in FILE_MODE);

procedure RESET (FILE : in out FILE_TYPE);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Item input and output operations

generic
type ITEM_TYPE is private;

procedure GET_ITEM (FILE : in FILE_TYPE; ITEM : out ITEM_TYPE);

14.2b.4 Specification of the Package Sequential_Mixed_IO 14–40

generic
type ITEM_TYPE is private;
type INDEX is (<>);
type ITEM_ARRAY is array (INDEX range <>) of ITEM_TYPE;

procedure GET_ARRAY(FILE : in FILE_TYPE;
ITEMS : out ITEM_ARRAY;
LAST : out INDEX);

generic
type ITEM_TYPE is private;

procedure PUT_ITEM (FILE : in FILE_TYPE; ITEM : in ITEM_TYPE);
function END_OF_BUFFER(FILE : in FILE_TYPE) return BOOLEAN;

procedure SET_POSITION(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

function POSITION(FILE : in FILE_TYPE) return POSITIVE_COUNT;

function MAX_ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

function ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

-- Element input and output operations

procedure READ (FILE : in FILE_TYPE);
procedure WRITE(FILE : in FILE_TYPE);

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

-- Exceptions

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;

private
-- implementation-dependent

end SEQUENTIAL_MIXED_IO;

References: close procedure 14.2.1, count type 14.2, create procedure 14.2.1, data_
error exception 14.4, delete procedure 14.2.1, device_error exception 14.4, element_
size function 14.2b.2, end_error exception 14.4, end_of_buffer function 14.2b.2, end_
of_file function 14.2b.3, file_mode 14.1, file_type 14.1, form function 14.2.1, get_
array procedure 14.2b.2, get_item procedure 14.2b.2, io_exceptions package 14.4,
is_open function 14.2.1, item_array 14.2b.2, item_type 14.2b.2, max_element_size
function 14.2b.2, mode function 14.2.1, mode_error exception 14.4, name function
14.2.1, name_error exception 14.4, open procedure 14.2.1, position function 14.2b.2,
put_item procedure 14.2b.2, read procedure 14.2b.3, reset procedure 14.2.1, set_
position procedure 14.2b.2, status_error exception 14.4, use_error exception 14.4, write
procedure 14.2b.3

14–41 Specification of the Package Sequential_Mixed_IO 14.2b.4

14.2b.5 Direct Mixed Input-Output
The operations available for direct mixed-type input and output are described
in this section. The exception STATUS_ERROR is raised if any of these
operations is attempted for a file that is not open.

See sections 14.2b.1 and 14.2b.2 for information on the file management and
element input-output operations that are available for direct mixed input and
output.

procedure READ (FILE : in FILE_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ (FILE : in FILE_TYPE);

Operates on a file of mode IN_FILE or INOUT_FILE. In the case of
the first form, sets the current index of the given file to the index value
given by the parameter FROM. Then (for both forms) returns, in the
file buffer, the value of the element whose position is specified by the
current index of the file; finally, increases the current index by one.

The exception MODE_ERROR is raised if the mode of the given file is
OUT_FILE. The exception END_ERROR is raised if the index to be
used exceeds the size of the external file.

procedure WRITE (FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

procedure WRITE (FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE or OUT_FILE. In the case of
the first form, sets the index of the given file to the index value given
by the parameter TO. Then (for both forms) writes the file buffer to
the element whose position in the given file is specified by the current
index of the file; finally, increases the current index by one.

If the current position in the file buffer does not indicate the end of
the buffer, the rest of the file buffer is filled with zero bits before being
written to the file.

The exception MODE_ERROR is raised if the mode of the given file is
IN_FILE.

procedure SET_INDEX(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

Operates on a file of any mode. Sets the current index of the given file
to the index value given by the parameter TO. The value can exceed
the size of the file.

14.2b.5 Direct Mixed Input-Output 14–42

function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT;

Operates on a file of any mode. Returns the current index of the given
file.

function SIZE(FILE : in FILE_TYPE) return COUNT;

Operates on a file of any mode. Returns the number of elements in the
file.

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

Operates on a file of mode IN_FILE or INOUT_FILE. Returns TRUE if
the current index exceeds the size of the external file; otherwise returns
FALSE.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE.

References: current index 14.2a, current position 14.2b, direct file 14.2, element
14.1a, end_error exception 14.4, external file 14.1, file 14.1, file buffer 14.2b, file
mode 14.1, index 14.2, in_file 14.1, inout_file 14.1, mixed-type file 14.1a, mode_error
exception 14.4, open file 14.1, out_file 14.1, status_error exception 14.4, RMS record
14.1a

14.2b.6 Specification of the Package Direct_Mixed_IO
with IO_EXCEPTIONS;
package DIRECT_MIXED_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, INOUT_FILE, OUT_FILE);
type COUNT is range 0 .. INTEGER’LAST;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT’LAST;

-- File management

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

-- NOTE: A maximum element size must be specified
-- in the FORM parameter of the CREATE procedure.

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);

14–43 Specification of the Package Direct_Mixed_IO 14.2b.6

procedure RESET (FILE : in out FILE_TYPE; MODE : in FILE_MODE);
procedure RESET (FILE : in out FILE_TYPE);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Item input and output operations

generic
type ITEM_TYPE is private;

procedure GET_ITEM (FILE : in FILE_TYPE; ITEM : out ITEM_TYPE);

generic
type ITEM_TYPE is private;
type INDEX is (<>);
type ITEM_ARRAY is array (INDEX range <>) of ITEM_TYPE;

procedure GET_ARRAY(FILE : in FILE_TYPE;
ITEMS : out ITEM_ARRAY;
LAST : out INDEX);

generic
type ITEM_TYPE is private;

procedure PUT_ITEM (FILE : in FILE_TYPE; ITEM : in ITEM_TYPE);

function END_OF_BUFFER(FILE : in FILE_TYPE) return BOOLEAN;

procedure SET_POSITION(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

function POSITION (FILE : in FILE_TYPE) return POSITIVE_COUNT;

function MAX_ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

function ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

-- Element input and output operations

procedure READ (FILE : in FILE_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ (FILE : in FILE_TYPE);

procedure WRITE(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

procedure WRITE(FILE : in FILE_TYPE);

procedure SET_INDEX(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

function INDEX (FILE : in FILE_TYPE) return POSITIVE_COUNT;

function SIZE (FILE : in FILE_TYPE) return COUNT;

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

-- Exceptions

14.2b.6 Specification of the Package Direct_Mixed_IO 14–44

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;

private
-- implementation-dependent

end DIRECT_MIXED_IO;

References: close procedure 14.2.1, count type 14.2, create procedure 14.2b.1, data_
error exception 14.4, delete procedure 14.2.1, device_error exception 14.4, element_size
function 14.2b.2, end_error exception 14.4, end_of_buffer function 14.2b.2, end_of_
file function 14.2b.5, file_mode 14.1, file_type 14.1, form function 14.2.1, get_array
procedure 14.2b.2, get_item procedure 14.2b.2, index function 14.2b.5, io_exceptions
package 14.4, is_open function 14.2.1, item_array 14.2b.2, item_type 14.2b.2, max_
element_size function 14.2b.2, mode function 14.2.1, mode_error exception 14.4, name
function 14.2.1, name_error exception 14.4, open procedure 14.2.1, position function
14.2b.2, put_item procedure 14.2b.2, read procedure 14.2b.5, reset procedure 14.2.1,
set_index procedure 14.2b.5, set_position procedure 14.2b.2, size function 14.2b.5,
status_error exception 14.4, use_error exception 14.4, write procedure 14.2b.5

14.2b.7 Relative Mixed Input-Output (OpenVMS Systems Only)
The operations available for relative mixed-type input and output are described
in this section. The exception STATUS_ERROR is raised if any of these
operations is attempted for a file that is not open.

See sections 14.2b.1 and 14.2b.2 for information on the file management and
element input-output operations that are available for relative mixed input and
output.

procedure READ (FILE : in FILE_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ (FILE : in FILE_TYPE);

Operates on a file of mode IN_FILE or INOUT_FILE. In the case of
the first form, sets the current index of the given file to the index value
given by the parameter FROM. Then (for both forms) returns, in the
file buffer, the value of the element whose position is specified by the
current index of the given file. The element read becomes the current
element, and the current index is increased by one.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE. The exception LOCK_ERROR is raised if the element to be read
is locked; this error is possible only if the external file is being shared.
The exception EXISTENCE_ERROR is raised if the element does not

14–45 Relative Mixed Input-Output (OpenVMS Systems Only) 14.2b.7

exist (that is, the given cell is empty or the current index is beyond the
end of the file).

procedure READ_EXISTING (FILE : in FILE_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ_EXISTING (FILE : in FILE_TYPE);

Operates on a file of mode IN_FILE or INOUT_FILE. In the case of
the first form, sets the current index of the given file to the index
value given by the parameter FROM. Then (for both forms) starts at
the current index and scans forward, skipping empty cells, and sets
the current index to the first nonempty cell. Then returns, in the
file buffer, the value of the element whose position is specified by the
current index of the given file. The element read becomes the current
element, and the current index is increased by one.

The exception MODE_ERROR is raised if the mode of the given file is
OUT_FILE. The exception LOCK_ERROR is raised if the element to
be read is locked; this error is possible only if the external file is being
shared. The exception EXISTENCE_ERROR is raised if the current
index is beyond the end of the file, or if the end of the file is reached
before an existing element (nonempty cell) is found.

procedure WRITE (FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

procedure WRITE (FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE or OUT_FILE. In the case of
the first form, sets the current index of the given file to the index value
given by the parameter TO. Then (for both forms) writes the contents
of the file buffer to the cell whose position in the given file is specified
by the current index of the file; finally, increases the current index by
one.

If the format of the associated external file is fixed and the current
position in the file buffer does not indicate the end of the buffer, the
rest of the file buffer is filled with zero bits before being written to the
file.

The exception MODE_ERROR is raised if the mode of the given file is
IN_FILE. The exception USE_ERROR is raised if the element position
in the file has already been written.

procedure UPDATE(FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE. Updates the current element
with the contents of the file buffer.

14.2b.7 Relative Mixed Input-Output (OpenVMS Systems Only) 14–46

The exception MODE_ERROR is raised if the current mode is not
INOUT_FILE. The exception USE_ERROR is raised if the current
element is undefined at the start of this operation.

procedure UNLOCK (FILE : in FILE_TYPE);

Operates on a file of any mode. After this operation, the current
element is undefined.

procedure DELETE_ELEMENT(FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE. Deletes the current element
in the file.

The exception MODE_ERROR is raised if the current mode is not
INOUT_FILE. The exception USE_ERROR is raised if the current
element is undefined at the start of this operation.

procedure SET_INDEX(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT);

Operates on a file of any mode. Sets the current index of the given file
to the index value specified by the parameter TO.

function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT;

Operates on a file of any mode. Returns the current index of the given
file.

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

Operates on a file of mode IN_FILE or INOUT_FILE. Returns TRUE
if no cell, starting at the current index, contains an element; otherwise
returns FALSE.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE.

References: cell 14.2a, current element 14.2a, current index 14.2a, current mode
14.1, current position 14.2b, element 14.1a, end of file 14.2a, existence_error exception
14.4, file 14.1, file buffer 14.2b, file mode 14.1, file sharing 14.2a, index 14.2a, in_file
14.1, inout_file 14.1, lock_error exception 14.4, locking 14.2a, mixed-type file 14.1a,
mode_error exception 14.4, open file 14.1, out_file 14.1, relative file 14.2a, status_error
exception 14.4, undefined current element 14.2a, use_error exception 14.4

14–47 Relative Mixed Input-Output (OpenVMS Systems Only) 14.2b.7

14.2b.8 Specification of the Package Relative_Mixed_IO (OpenVMS
Systems Only)

with IO_EXCEPTIONS;
with AUX_IO_EXCEPTIONS;
package RELATIVE_MIXED_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, INOUT_FILE, OUT_FILE);

type COUNT is range 0 .. INTEGER’LAST;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT’LAST;

-- File management

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

-- NOTE: A maximum element (or record) size must be
-- specified in the FORM parameter of the CREATE
-- procedure.

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);

procedure RESET (FILE : in out FILE_TYPE; MODE : in FILE_MODE);
procedure RESET (FILE : in out FILE_TYPE);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Item input and output operations

generic
type ITEM_TYPE is private;

procedure GET_ITEM(FILE : in FILE_TYPE; ITEM : out ITEM_TYPE);

generic
type ITEM_TYPE is private;
type INDEX is (<>);
type ITEM_ARRAY is array (INDEX range <>) of ITEM_TYPE;

procedure GET_ARRAY(FILE : in FILE_TYPE;
ITEMS : out ITEM_ARRAY;
LAST : out INDEX);

14.2b.8 Specification of the Package Relative_Mixed_IO (OpenVMS Systems Only) 14–48

generic
type ITEM_TYPE is private;

procedure PUT_ITEM (FILE : in FILE_TYPE; ITEM : in ITEM_TYPE);

function END_OF_BUFFER(FILE : in FILE_TYPE) return BOOLEAN;

procedure SET_POSITION(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

function POSITION (FILE : in FILE_TYPE) return POSITIVE_COUNT;

function MAX_ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

function ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

-- Element input and output operations

procedure READ (FILE : in FILE_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ (FILE : in FILE_TYPE);

procedure READ_EXISTING(FILE : in FILE_TYPE;
FROM : in POSITIVE_COUNT);

procedure READ_EXISTING(FILE : in FILE_TYPE);

procedure WRITE (FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

procedure WRITE (FILE : in FILE_TYPE);

procedure UPDATE(FILE : in FILE_TYPE);

procedure UNLOCK (FILE : in FILE_TYPE);

procedure DELETE_ELEMENT(FILE : in FILE_TYPE);

procedure SET_INDEX(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

function INDEX(FILE : in FILE_TYPE) return POSITIVE_COUNT;

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

-- Exceptions

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;
LOCK_ERROR : exception renames AUX_IO_EXCEPTIONS.LOCK_ERROR;
EXISTENCE_ERROR : exception

renames AUX_IO_EXCEPTIONS.EXISTENCE_ERROR;

private
-- implementation-dependent

end RELATIVE_MIXED_IO;

14–49 Specification of the Package Relative_Mixed_IO (OpenVMS Systems Only) 14.2b.8

References: aux_io_exceptions package 14.4, close procedure 14.2.1, count type 14.2,
create procedure 14.2b.1, data_error exception 14.4, delete procedure 14.2.1, delete_
element procedure 14.2b.7, device_error exception 14.4, element_size function 14.2b.2,
end_error exception 14.4, end_of_buffer function 14.2b.2, end_of_file function 14.2b.7,
existence_error exception 14.4, file_mode 14.1, file_type 14.1, form function 14.2.1,
get_array procedure 14.2b.2, get_item procedure 14.2b.2, index 14.2b.2, index function
14.2b.7, io_exceptions package 14.4, is_open function 14.2.1, item_array 14.2b.2,
item_type 14.2b.2, lock_error exception 14.4, max_element_size function 14.2b.2, mode
function 14.2.1, mode_error exception 14.4, name function 14.2.1, name_error exception
14.4, open procedure 14.2.1, position function 14.2b.2, put_item procedure 14.2b.2, read
procedure 14.2b.7, read_existing procedure 14.2b.7, reset procedure 14.2.1, set_index
procedure 14.2b.7, set_position procedure 14.2b.2, status_error exception 14.4, unlock
procedure 14.2b.7, update procedure 14.2b.7, use_error exception 14.4, write
procedure 14.2b.7

14.2b.9 Indexed Mixed Input-Output (OpenVMS Systems Only)
The operations available for indexed mixed-type input and output are described
in this section. The exception STATUS_ERROR is raised if any of these
operations is attempted for a file that is not open.

See sections 14.2b.1 and 14.2b.2 for information on the file management and
element input-output operations that are available for indexed mixed input
and output.

This package provides a generic READ_BY_KEY procedure, which defines
input for the given element type. This procedure must be instantiated with
an actual type parameter for the generic parameter KEY_TYPE. It can be
instantiated with or without a value for the generic parameter DEFAULT_
KEY_NUMBER. The range of values for DEFAULT_KEY_NUMBER is 0 to
254. A value of 0 (the default) designates the primary key.

If the RELATION parameter to the READ_BY_KEY procedure is specified,
it must have a value of EQUAL_NEXT, EQUAL, or NEXT (the default is
EQUAL).

procedure READ(FILE : in FILE_TYPE);

generic
type KEY_TYPE is private;
DEFAULT_KEY_NUMBER : INTEGER := 0;

procedure READ_BY_KEY(FILE : in FILE_TYPE;
KEY : in KEY_TYPE;
KEY_NUMBER : in INTEGER :=

DEFAULT_KEY_NUMBER;
RELATION : in RELATION_TYPE := EQUAL);

Operates on a file of mode IN_FILE or INOUT_FILE. In the case of
the first form, returns in the file buffer the value of the next element,

14.2b.9 Indexed Mixed Input-Output (OpenVMS Systems Only) 14–50

according to the last specified key and relation information. In the case
of the second form, returns in the file buffer the value of the element
specified by the given key information; KEY gives the key value; KEY_
NUMBER designates a primary (0) or alternate key (1 to 254); and
RELATION determines the kind of match to be made for the key value.

For both forms, the element read becomes the current element. In the
case of the first form, the next sequential element becomes the next
element, according to the most recent key and relation information. In
the case of the second form, the next sequential element that matches
the key and relation information specified becomes the next element. If
neither the key nor the relation information changes from one READ_
BY_KEY operation to the next, the same element will continue to be
read.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE. The exception END_ERROR is raised if an attempt is made to
read past the end of the file by the first form. The exception LOCK_
ERROR is raised if the element to be read is locked. (This error
is possible only if the external file is being shared.) The exception
EXISTENCE_ERROR is raised if the element does not exist. The
exception KEY_ERROR is raised if the size of the given key is not a
multiple of eight bits.

procedure WRITE(FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE or OUT_FILE. Gives the
value of the file buffer to the element whose position in the given file is
specified by the key information contained within the file buffer. If the
format of the associated external file is fixed and the current position
in the file buffer does not indicate the end of the buffer, the rest of the
file buffer is filled with zero bits before being written to the file.

The exception MODE_ERROR is raised if the current mode is IN_FILE.
The exception USE_ERROR is raised if the element position in the file
has already been written. The exception KEY_ERROR is raised if a key
has been duplicated and if duplicates are not allowed by the external
file.

procedure UPDATE(FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE. Updates the current element
of the given file with the contents of the file buffer. If the format of the
associated external file element is fixed and the current position in the
file buffer does not indicate the end of the buffer, the rest of the file
buffer is filled with zero bits before being written to the file.

14–51 Indexed Mixed Input-Output (OpenVMS Systems Only) 14.2b.9

The exception MODE_ERROR is raised if the current mode is not
INOUT_FILE. The exception USE_ERROR is raised if the current
element is undefined at the start of this operation or if some key
specification in the file buffer violates the external file attributes
defined for that key. The exception KEY_ERROR is raised if a key has
been changed or duplicated and if changes or duplicates are not allowed
by the external file.

procedure UNLOCK(FILE : in FILE_TYPE);

Operates on a file of any mode. After this operation, the current
element is undefined.

procedure DELETE_ELEMENT(FILE : in FILE_TYPE);

Operates on a file of mode INOUT_FILE. Deletes the current element
of the file.

The exception MODE_ERROR is raised if the current mode is not
INOUT_FILE. The exception USE_ERROR is raised if the current
element is undefined at the start of this operation.

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

Operates on a file of mode IN_FILE or INOUT_FILE. Returns TRUE
if there are no more elements (according to the most recent key and
relation information) starting at the next element in the file; otherwise
returns FALSE.

The exception MODE_ERROR is raised if the current mode is OUT_
FILE.

References: current element 14.2a, current position 14.2b, element 14.1a, element_
type 14.1, end_error exception 14.4, existence_error exception 14.4, external file 14.1,
file 14.1, file buffer 14.2b, file mode 14.1, file sharing 14.2a, generic actual parameter
12.3, generic formal parameter 12.3, generic procedure 12.1, indexed file 14.2a, in_file
14.1, inout_file 14.1, instantiation 12.3, key 14.2a, key_error exception 14.4, lock_error
exception 14.4, locking 14.2a, match 14.2a, mixed-type file 14.1a, mode_error exception
14.4, next element 14.2a, open file 14.1, out_file 14.1, range 3.5 relation_type 14.2a,
status_error exception 14.4, use_error exception 14.4

14.2b.9 Indexed Mixed Input-Output (OpenVMS Systems Only) 14–52

14.2b.10 Specification of the Package Indexed_Mixed_IO
(OpenVMS Systems Only)

with IO_EXCEPTIONS;
with AUX_IO_EXCEPTIONS;
package INDEXED_MIXED_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, INOUT_FILE, OUT_FILE);

type RELATION_TYPE is (EQUAL_NEXT, EQUAL, NEXT);

function GREATER return RELATION_TYPE
renames NEXT;

function GREATER_EQUAL return RELATION_TYPE
renames EQUAL_NEXT;

type COUNT is range 0 .. INTEGER’LAST;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT’LAST;

-- File management

procedure CREATE(FILE : in out FILE_TYPE;
MODE : in FILE_MODE := INOUT_FILE;
NAME : in STRING := "";
FORM : in STRING);

-- All information about the keys must be provided in the
-- FORM parameter of the CREATE procedure.

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE(FILE : in out FILE_TYPE);
procedure RESET (FILE : in FILE_TYPE;

MODE : in FILE_MODE;
KEY_NUMBER : in INTEGER := 0);

procedure RESET (FILE : in FILE_TYPE;
KEY_NUMBER : in INTEGER := 0);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Item input and output operations

generic
type ITEM_TYPE is private;

procedure GET_ITEM(FILE : in FILE_TYPE; ITEM : out ITEM_TYPE);

14–53 Specification of the Package Indexed_Mixed_IO(OpenVMS Systems Only) 14.2b.10

generic
type ITEM_TYPE is private;
type INDEX is (<>);
type ITEM_ARRAY is array (INDEX range <>) of ITEM_TYPE;

procedure GET_ARRAY(FILE : in FILE_TYPE;
ITEMS : out ITEM_ARRAY;
LAST : out INDEX);

generic
type ITEM_TYPE is private;

procedure PUT_ITEM(FILE : in FILE_TYPE; ITEM : in ITEM_TYPE);

function END_OF_BUFFER(FILE : in FILE_TYPE) return BOOLEAN;

procedure SET_POSITION(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

function POSITION(FILE : in FILE_TYPE) return POSITIVE_COUNT;

function MAX_ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

function ELEMENT_SIZE(FILE : in FILE_TYPE) return COUNT;

-- Element input and output operations

procedure READ (FILE : in FILE_TYPE);

generic
type KEY_TYPE is private;
DEFAULT_KEY_NUMBER : INTEGER := 0;

procedure READ_BY_KEY(FILE : in FILE_TYPE;
KEY : in KEY_TYPE;
KEY_NUMBER : in INTEGER :=

DEFAULT_KEY_NUMBER;
RELATION : in RELATION_TYPE := EQUAL);

procedure WRITE (FILE : in FILE_TYPE);

procedure UPDATE(FILE : in FILE_TYPE);

procedure UNLOCK(FILE : in FILE_TYPE);

procedure DELETE_ELEMENT(FILE : in FILE_TYPE);

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;

14.2b.10 Specification of the Package Indexed_Mixed_IO(OpenVMS Systems Only) 14–54

-- Exceptions

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;
LOCK_ERROR : exception renames AUX_IO_EXCEPTIONS.LOCK_ERROR;
KEY_ERROR : exception renames AUX_IO_EXCEPTIONS.KEY_ERROR;
EXISTENCE_ERROR : exception

renames AUX_IO_EXCEPTIONS.EXISTENCE_ERROR;

private
-- implementation-dependent

end INDEX_MIXED_IO;

References: aux_io_exceptions package 14.4, close procedure 14.2.1, count type 14.2,
create procedure 14.2b.1, data_error exception 14.4, delete procedure 14.2.1, delete_
element procedure 14.2b.9, device_error exception 14.4, element_size function 14.2b.2,
end_error exception 14.4, end_of_buffer function 14.2b.2, end_of_file function 14.2b.9,
existence_error exception 14.4, file_mode 14.1, file_type 14.1, form function 14.2.1,
get_array procedure 14.2b.2, get_item procedure 14.2b.2, index 14.2b.2, io_exceptions
package 14.4, is_open function 14.2.1, item_array 14.2b.2, item_type 14.2b.2, key_error
exception 14.4, lock_error exception 14.4, max_element_size function 14.2b.2, mode
function 14.2.1, mode_error exception 14.4, name function 14.2.1, name_error exception
14.4, open procedure 14.2.1, position function 14.2b.2, put_item procedure 14.2b.2, read
procedure 14.2b.9, read_by_key procedure 14.2b.9, relation_type 14.2a, reset procedure
14.2a.1, set_position procedure 14.2b.2, status_error exception 14.4, unlock procedure
14.2b.9, update procedure 14.2b.9, use_error exception 14.4, write procedure 14.2b.9

14.3 Text Input-Output
1 This section describes the package TEXT_IO, which provides facilities for input

and output in human-readable form. Each file is read or written sequentially,
as a sequence of characters grouped into lines, and as a sequence of lines
grouped into pages. The specification of the package is given below in section
14.3.10. 14

2 The facilities for file management given above, in sections 14.2.1 and 14.2.2,
are available for text input-output. In place of READ and WRITE, however,
there are procedures GET and PUT that input values of suitable types from
text files, and output values to them. These values are provided to the PUT
procedures, and returned by the GET procedures, in a parameter ITEM.
Several overloaded procedures of these names exist, for different types of
ITEM. These GET procedures analyze the input sequences of characters as

14 See also Appendix G, AI-00355.

14–55 Text Input-Output 14.3

lexical elements (see chapter 2) and return the corresponding values; the PUT
procedures output the given values as appropriate lexical elements. Procedures
GET and PUT are also available that input and output individual characters
treated as character values rather than as lexical elements.

3 In addition to the procedures GET and PUT for numeric and enumeration
types of ITEM that operate on text files, analogous procedures are provided
that read from and write to a parameter of type STRING. These procedures
perform the same analysis and composition of character sequences as their
counterparts which have a file parameter.

4 For all GET and PUT procedures that operate on text files, and for many
other subprograms, there are forms with and without a file parameter. Each
such GET procedure operates on an input file, and each such PUT procedure
operates on an output file. If no file is specified, a default input file or a default
output file is used.

5 At the beginning of program execution the default input and output files are
the so-called standard input file and standard output file. These files are
open, have respectively the current modes IN_FILE and OUT_FILE, and are
associated with two implementation-defined external files. Procedures are
provided to change the current default input file and the current default output
file.

On OpenVMS systems, DEC Ada has two logical file names, ADA$INPUT
and ADA$OUTPUT, which can be defined to refer to the standard input and
standard output files. If these logical names are not defined, then the standard
input and standard output files are represented by the default system input
and output logical names SYS$INPUT and SYS$OUTPUT.

On Digital UNIX systems, the DEC Ada standard input file corresponds to
the Digital UNIX file descriptor 0; the standard output file corresponds to the
Digital UNIX file descriptor 1.

See the DEC Ada run-time reference manuals for more information.

6 From a logical point of view, a text file is a sequence of pages, a page is a
sequence of lines, and a line is a sequence of characters; the end of a line is
marked by a line terminator; the end of a page is marked by the combination
of a line terminator immediately followed by a page terminator; and the
end of a file is marked by the combination of a line terminator immediately
followed by a page terminator and then a file terminator. Terminators are
generated during output; either by calls of procedures provided expressly for
that purpose; or implicitly as part of other operations, for example, when a
bounded line length, a bounded page length, or both, have been specified for a
file.

14.3 Text Input-Output 14–56

7 The actual nature of terminators is not defined by the language and hence
depends on the implementation. Although terminators are recognized or
generated by certain of the procedures that follow, they are not necessarily
implemented as characters or as sequences of characters. Whether they are
characters (and if so which ones) in any particular implementation need not
concern a user who neither explicitly outputs nor explicitly inputs control
characters. The effect of input or output of control characters (other than
horizontal tabulation) is not defined by the language.

The DEC Ada run-time reference manuals describe how line, page, and file
terminators are interpreted in DEC Ada.

8 The characters of a line are numbered, starting from one; the number of a
character is called its column number. For a line terminator, a column number
is also defined: it is one more than the number of characters in the line. The
lines of a page, and the pages of a file, are similarly numbered. The current
column number is the column number of the next character or line terminator
to be transferred. The current line number is the number of the current
line. The current page number is the number of the current page. These
numbers are values of the subtype POSITIVE_COUNT of the type COUNT
(by convention, the value zero of the type COUNT is used to indicate special
conditions).

type COUNT is range 0 .. implementation_defined;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT’LAST;

In DEC Ada, the integer type COUNT is range 0 .. INTEGER’LAST.

9 For an output file, a maximum line length can be specified and a maximum
page length can be specified. If a value to be output cannot fit on the current
line, for a specified maximum line length, then a new line is automatically
started before the value is output; if, further, this new line cannot fit on
the current page, for a specified maximum page length, then a new page is
automatically started before the value is output. Functions are provided to
determine the maximum line length and the maximum page length. When a
file is opened with mode OUT_FILE, both values are zero: by convention, this
means that the line lengths and page lengths are unbounded. (Consequently,
output consists of a single line if the subprograms for explicit control of line
and page structure are not used.) The constant UNBOUNDED is provided for
this purpose.

10 References : count type 14.3.10, default current input file 14.3.2, default current
output file 14.3.2, external file 14.1, file 14.1, get procedure 14.3.5, in_file 14.1, out_file
14.1, put procedure 14.3.5, read 14.2.2, sequential access 14.1, standard input file
14.3.2, standard output file 14.3.2

14–57 Text Input-Output 14.3

14.3.1 File Management
1 The only allowed file modes for text files are the modes IN_FILE and OUT_

FILE. The subprograms given in section 14.2.1 for the control of external files,
and the function END_OF_FILE given in section 14.2.2 for sequential input-
output, are also available for text files. There is also a version of END_OF_
FILE that refers to the current default input file. For text files, the procedures
have the following additional effects:

2 • For the procedures CREATE and OPEN: After opening a file with mode
OUT_FILE, the page length and line length are unbounded (both have
the conventional value zero). After opening a file with mode IN_FILE
or OUT_FILE, the current column, current line, and current page
numbers are set to one.

3 • For the procedure CLOSE: If the file has the current mode OUT_FILE,
has the effect of calling NEW_PAGE, unless the current page is already
terminated; then outputs a file terminator.

4 • For the procedure RESET: If the file has the current mode OUT_FILE,
has the effect of calling NEW_PAGE, unless the current page is already
terminated; then outputs a file terminator. If the new file mode is
OUT_FILE, the page and line lengths are unbounded. For all modes,
the current column, line, and page numbers are set to one. 15

5 The exception MODE_ERROR is raised by the procedure RESET upon an
attempt to change the mode of a file that is either the current default input
file, or the current default output file. 16

6 References : create procedure 14.2.1, current column number 14.3, current default
input file 14.3, current line number 14.3, current page number 14.3, end_of_file 14.3,
external file 14.1, file 14.1, file mode 14.1, file terminator 14.3, in_file 14.1, line length
14.3, mode_error exception 14.4, open procedure 14.2.1, out_file 14.1, page length 14.3,
reset procedure 14.2.1

14.3.2 Default Input and Output Files
1 The following subprograms provide for the control of the particular default

files that are used when a file parameter is omitted from a GET, PUT or other
operation of text input-output described below. 17

2 procedure SET_INPUT(FILE : in FILE_TYPE);

3 Operates on a file of mode IN_FILE. Sets the current default input file
to FILE.

15 See also Appendix G, AI-00047 and AI-00486.
16 See also Appendix G, AI-00048.
17 See also Appendix G, AI-00048.

14.3.2 Default Input and Output Files 14–58

4 The exception STATUS_ERROR is raised if the given file is not open.
The exception MODE_ERROR is raised if the mode of the given file is
not IN_FILE.

5 procedure SET_OUTPUT(FILE : in FILE_TYPE);

6 Operates on a file of mode OUT_FILE. Sets the current default output
file to FILE.

7 The exception STATUS_ERROR is raised if the given file is not open.
The exception MODE_ERROR is raised if the mode of the given file is
not OUT_FILE.

8 function STANDARD_INPUT return FILE_TYPE;

9 Returns the standard input file (see 14.3).

10 function STANDARD_OUTPUT return FILE_TYPE;

11 Returns the standard output file (see 14.3).

12 function CURRENT_INPUT return FILE_TYPE;

13 Returns the current default input file.

14 function CURRENT_OUTPUT return FILE_TYPE;

15 Returns the current default output file.

Note:
16 The standard input and the standard output files cannot be opened, closed,

reset, or deleted, because the parameter FILE of the corresponding procedures
has the mode in out.

17 References : current default file 14.3, default file 14.3, file_type 14.1, get procedure
14.3.5, mode_error exception 14.4, put procedure 14.3.5, status_error exception 14.4

14.3.3 Specification of Line and Page Lengths
1 The subprograms described in this section are concerned with the line and

page structure of a file of mode OUT_FILE. They operate either on the file
given as the first parameter, or, in the absence of such a file parameter, on the
current default output file. They provide for output of text with a specified
maximum line length or page length. In these cases, line and page terminators
are output implicitly and automatically when needed. When line and page
lengths are unbounded (that is, when they have the conventional value zero),
as in the case of a newly opened file, new lines and new pages are only started
when explicitly called for.

14–59 Specification of Line and Page Lengths 14.3.3

2 In all cases, the exception STATUS_ERROR is raised if the file to be used is
not open; the exception MODE_ERROR is raised if the mode of the file is not
OUT_FILE.

3 procedure SET_LINE_LENGTH(FILE : in FILE_TYPE; TO : in COUNT);
procedure SET_LINE_LENGTH(TO : in COUNT);

4 Sets the maximum line length of the specified output file to the number
of characters specified by TO. The value zero for TO specifies an
unbounded line length.

5 The exception USE_ERROR is raised if the specified line length is
inappropriate for the associated external file.

6 procedure SET_PAGE_LENGTH(FILE : in FILE_TYPE; TO : in COUNT);
procedure SET_PAGE_LENGTH(TO : in COUNT);

7 Sets the maximum page length of the specified output file to the
number of lines specified by TO. The value zero for TO specifies an
unbounded page length.

8 The exception USE_ERROR is raised if the specified page length is
inappropriate for the associated external file.

9 function LINE_LENGTH(FILE : in FILE_TYPE) return COUNT;
function LINE_LENGTH return COUNT;

10 Returns the maximum line length currently set for the specified output
file, or zero if the line length is unbounded.

11 function PAGE_LENGTH(FILE : in FILE_TYPE) return COUNT;
function PAGE_LENGTH return COUNT;

12 Returns the maximum page length currently set for the specified
output file, or zero if the page length is unbounded.

13 References : count type 14.3, current default output file 14.3, external file 14.1, file
14.1, file_type 14.1, line 14.3, line length 14.3, line terminator 14.3, maximum line
length 14.3, maximum page length 14.3, mode_error exception 14.4, open file 14.1,
out_file 14.1, page 14.3, page length 14.3, page terminator 14.3, status_error exception
14.4, unbounded page length 14.3, use_error exception 14.4

14.3.4 Operations on Columns, Lines, and Pages 14–60

14.3.4 Operations on Columns, Lines, and Pages
1 The subprograms described in this section provide for explicit control of line

and page structure; they operate either on the file given as the first parameter,
or, in the absence of such a file parameter, on the appropriate (input or output)
current default file. 18 The exception STATUS_ERROR is raised by any of
these subprograms if the file to be used is not open.

2 procedure NEW_LINE(FILE : in FILE_TYPE;
SPACING : in POSITIVE_COUNT := 1);

procedure NEW_LINE(SPACING : in POSITIVE_COUNT := 1);

Operates on a file of mode OUT_FILE.

3 For a SPACING of one: Outputs a line terminator and sets the current
column number to one. Then increments the current line number by
one, except in the case that the current line number is already greater
than or equal to the maximum page length, for a bounded page length;
in that case a page terminator is output, the current page number is
incremented by one, and the current line number is set to one.

4 For a SPACING greater than one, the above actions are performed
SPACING times.

5 The exception MODE_ERROR is raised if the mode is not OUT_FILE.

6 procedure SKIP_LINE(FILE : in FILE_TYPE;
SPACING : in POSITIVE_COUNT := 1);

procedure SKIP_LINE(SPACING : in POSITIVE_COUNT := 1);

7 Operates on a file of mode IN_FILE.

8 For a SPACING of one: Reads and discards all characters until a line
terminator has been read, and then sets the current column number
to one. If the line terminator is not immediately followed by a page
terminator, the current line number is incremented by one. Otherwise,
if the line terminator is immediately followed by a page terminator,
then the page terminator is skipped, the current page number is
incremented by one, and the current line number is set to one.

9 For a SPACING greater than one, the above actions are performed
SPACING times.

18 See also Appendix G, AI-00320.

14–61 Operations on Columns, Lines, and Pages 14.3.4

10 The exception MODE_ERROR is raised if the mode is not IN_FILE.
The exception END_ERROR is raised if an attempt is made to read a
file terminator.

11 function END_OF_LINE(FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_LINE return BOOLEAN;

12 Operates on a file of mode IN_FILE. Returns TRUE if a line terminator
or a file terminator is next; otherwise returns FALSE.

13 The exception MODE_ERROR is raised if the mode is not IN_FILE.

14 procedure NEW_PAGE(FILE : in FILE_TYPE);
procedure NEW_PAGE;

15 Operates on a file of mode OUT_FILE. Outputs a line terminator if the
current line is not terminated, or if the current page is empty (that is,
if the current column and line numbers are both equal to one). Then
outputs a page terminator, which terminates the current page. Adds
one to the current page number and sets the current column and line
numbers to one.

16 The exception MODE_ERROR is raised if the mode is not OUT_FILE.

17 procedure SKIP_PAGE(FILE: in FILE_TYPE);
procedure SKIP_PAGE;

18 Operates on a file of mode IN_FILE. Reads and discards all characters
and line terminators until a page terminator has been read. Then adds
one to the current page number, and sets the current column and line
numbers to one.

19 The exception MODE_ERROR is raised if the mode is not IN_FILE.
The exception END_ERROR is raised if an attempt is made to read a
file terminator.

20 function END_OF_PAGE(FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_PAGE return BOOLEAN;

21 Operates on a file of mode IN_FILE. Returns TRUE if the combination
of a line terminator and a page terminator is next, or if a file
terminator is next; otherwise returns FALSE.

22 The exception MODE_ERROR is raised if the mode is not IN_FILE.

23 function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_FILE return BOOLEAN;

24 Operates on a file of mode IN_FILE. Returns TRUE if a file terminator
is next, or if the combination of a line, a page, and a file terminator is
next; otherwise returns FALSE.

14.3.4 Operations on Columns, Lines, and Pages 14–62

25 The exception MODE_ERROR is raised if the mode is not IN_FILE.

26 The following subprograms provide for the control of the current position of
reading or writing in a file. In all cases, the default file is the current output
file.

27 procedure SET_COL(FILE : in FILE_TYPE; TO : in POSITIVE_COUNT);
procedure SET_COL(TO : in POSITIVE_COUNT);

28 If the file mode is OUT_FILE:

29 If the value specified by TO is greater than the current column number,
outputs spaces, adding one to the current column number after each
space, until the current column number equals the specified value. If
the value specified by TO is equal to the current column number, there
is no effect. If the value specified by TO is less than the current column
number, has the effect of calling NEW_LINE (with a spacing of one),
then outputs (TO � 1) spaces, and sets the current column number to
the specified value.

30 The exception LAYOUT_ERROR is raised if the value specified by TO
exceeds LINE_LENGTH when the line length is bounded (that is, when
it does not have the conventional value zero).

31 If the file mode is IN_FILE:

32 Reads (and discards) individual characters, line terminators, and page
terminators, until the next character to be read has a column number
that equals the value specified by TO; there is no effect if the current
column number already equals this value. Each transfer of a character
or terminator maintains the current column, line, and page numbers
in the same way as a GET procedure (see 14.3.5). (Short lines will be
skipped until a line is reached that has a character at the specified
column position.)

33 The exception END_ERROR is raised if an attempt is made to read a
file terminator.

34 procedure SET_LINE(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

procedure SET_LINE(TO : in POSITIVE_COUNT);

35 If the file mode is OUT_FILE:

14–63 Operations on Columns, Lines, and Pages 14.3.4

36 If the value specified by TO is greater than the current line number,
has the effect of repeatedly calling NEW_LINE (with a spacing of one),
until the current line number equals the specified value. If the value
specified by TO is equal to the current line number, there is no effect.
If the value specified by TO is less than the current line number, has
the effect of calling NEW_PAGE followed by a call of NEW_LINE with
a spacing equal to (TO � 1).

37 The exception LAYOUT_ERROR is raised if the value specified by TO
exceeds PAGE_LENGTH when the page length is bounded (that is,
when it does not have the conventional value zero).

38 If the mode is IN_FILE:

39 Has the effect of repeatedly calling SKIP_LINE (with a spacing of one),
until the current line number equals the value specified by TO; there
is no effect if the current line number already equals this value. (Short
pages will be skipped until a page is reached that has a line at the
specified line position.)

40 The exception END_ERROR is raised if an attempt is made to read a
file terminator.

41 function COL(FILE : in FILE_TYPE) return POSITIVE_COUNT;
function COL return POSITIVE_COUNT;

42 Returns the current column number.

43 The exception LAYOUT_ERROR is raised if this number exceeds
COUNT’LAST.

44 function LINE(FILE : in FILE_TYPE) return POSITIVE_COUNT;
function LINE return POSITIVE_COUNT;

45 Returns the current line number.

46 The exception LAYOUT_ERROR is raised if this number exceeds
COUNT’LAST.

47 function PAGE(FILE : in FILE_TYPE) return POSITIVE_COUNT;
function PAGE return POSITIVE_COUNT;

48 Returns the current page number.

49 The exception LAYOUT_ERROR is raised if this number exceeds
COUNT’LAST.

14.3.4 Operations on Columns, Lines, and Pages 14–64

50 The column number, line number, or page number are allowed to exceed
COUNT’LAST (as a consequence of the input or output of sufficiently many
characters, lines, or pages). These events do not cause any exception to be
raised. However, a call of COL, LINE, or PAGE raises the exception LAYOUT_
ERROR if the corresponding number exceeds COUNT’LAST.

Note:
51 A page terminator is always skipped whenever the preceding line terminator

is skipped. An implementation may represent the combination of these
terminators by a single character, provided that it is properly recognized at
input.

The interpretation of these terminators is given in the DEC Ada run-time
reference manuals.

52 References : current column number 14.3, current default file 14.3, current line
number 14.3, current page number 14.3, end_error exception 14.4, file 14.1, file
terminator 14.3, get procedure 14.3.5, in_file 14.1, layout_error exception 14.4, line
14.3, line number 14.3, line terminator 14.3, maximum page length 14.3, mode_error
exception 14.4, open file 14.1, page 14.3, page length 14.3, page terminator 14.3,
positive count 14.3, status_error exception 14.4

14.3.5 Get and Put Procedures
1 The procedures GET and PUT for items of the types CHARACTER, STRING,

numeric types, and enumeration types are described in subsequent sections.
Features of these procedures that are common to most of these types are
described in this section. The GET and PUT procedures for items of type
CHARACTER and STRING deal with individual character values; the GET
and PUT procedures for numeric and enumeration types treat the items as
lexical elements.

2 All procedures GET and PUT have forms with a file parameter, written first.
Where this parameter is omitted, the appropriate (input or output) current
default file is understood to be specified. Each procedure GET operates on a file
of mode IN_FILE. Each procedure PUT operates on a file of mode OUT_FILE.

3 All procedures GET and PUT maintain the current column, line, and page
numbers of the specified file: the effect of each of these procedures upon these
numbers is the resultant of the effects of individual transfers of characters and
of individual output or skipping of terminators. Each transfer of a character
adds one to the current column number. Each output of a line terminator sets
the current column number to one and adds one to the current line number.
Each output of a page terminator sets the current column and line numbers
to one and adds one to the current page number. For input, each skipping
of a line terminator sets the current column number to one and adds one to
the current line number; each skipping of a page terminator sets the current

14–65 Get and Put Procedures 14.3.5

column and line numbers to one and adds one to the current page number.
Similar considerations apply to the procedures GET_LINE, PUT_LINE, and
SET_COL. 19

4 Several GET and PUT procedures, for numeric and enumeration types, have
format parameters which specify field lengths; these parameters are of the
nonnegative subtype FIELD of the type INTEGER.

5 Input-output of enumeration values uses the syntax of the corresponding
lexical elements. Any GET procedure for an enumeration type begins by
skipping any leading blanks, or line or page terminators; a blank being defined
as a space or a horizontal tabulation character. Next, characters are input
only so long as the sequence input is an initial sequence of an identifier or
of a character literal (in particular, input ceases when a line terminator is
encountered). The character or line terminator that causes input to cease
remains available for subsequent input.

6 For a numeric type, the GET procedures have a format parameter called
WIDTH. If the value given for this parameter is zero, the GET procedure
proceeds in the same manner as for enumeration types, but using the syntax
of numeric literals instead of that of enumeration literals. If a nonzero value
is given, then exactly WIDTH characters are input, or the characters up to a
line terminator, whichever comes first; any skipped leading blanks are included
in the count. The syntax used for numeric literals is an extended syntax that
allows a leading sign (but no intervening blanks, or line or page terminators).

7 Any PUT procedure, for an item of a numeric or an enumeration type, outputs
the value of the item as a numeric literal, identifier, or character literal, as
appropriate. This is preceded by leading spaces if required by the format
parameters WIDTH or FORE (as described in later sections), and then a
minus sign for a negative value; for an enumeration type, the spaces follow
instead of leading. The format given for a PUT procedure is overridden if it is
insufficiently wide. 20

8 Two further cases arise for PUT procedures for numeric and enumeration
types, if the line length of the specified output file is bounded (that is, if it does
not have the conventional value zero). If the number of characters to be output
does not exceed the maximum line length, but is such that they cannot fit on
the current line, starting from the current column, then (in effect) NEW_LINE
is called (with a spacing of one) before output of the item. Otherwise, if the
number of characters exceeds the maximum line length, then the exception
LAYOUT_ERROR is raised and no characters are output.

19 See also Appendix G, AI-00320.
20 See also Appendix G, AI-00243.

14.3.5 Get and Put Procedures 14–66

9 The exception STATUS_ERROR is raised by any of the procedures GET, GET_
LINE, PUT, and PUT_LINE if the file to be used is not open. The exception
MODE_ERROR is raised by the procedures GET and GET_LINE if the mode of
the file to be used is not IN_FILE; and by the procedures PUT and PUT_LINE,
if the mode is not OUT_FILE.

10 The exception END_ERROR is raised by a GET procedure if an attempt
is made to skip a file terminator. The exception DATA_ERROR is raised
by a GET procedure if the sequence finally input is not a lexical element
corresponding to the type, in particular if no characters were input; for this
test, leading blanks are ignored; for an item of a numeric type, when a sign
is input, this rule applies to the succeeding numeric literal. The exception
LAYOUT_ERROR is raised by a PUT procedure that outputs to a parameter of
type STRING, if the length of the actual string is insufficient for the output of
the item.

11 Examples:
12 In the examples, here and in sections 14.3.7 and 14.3.8, the string quotes and

the lower case letter b are not transferred: they are shown only to reveal the
layout and spaces.

N : INTEGER;
...

GET(N);

-- Characters at input Sequence input Value of N
-- bb-12535b -12535 -12535
-- bb12_535E1b 12_535E1 125350
-- bb12_535E; 12_535E (none)
-- DATA_ERROR raised

13 Example of overridden width parameter:
PUT(ITEM => -23, WIDTH => 2); -- "-23"

14 References : blank 14.3.9, column number 14.3, current default file 14.3, data_error
exception 14.4, end_error exception 14.4, file 14.1, fore 14.3.8, get procedure 14.3.6
14.3.7 14.3.8 14.3.9, in_file 14.1, layout_error exception 14.4, line number 14.1, line
terminator 14.1, maximum line length 14.3, mode 14.1, mode_error exception 14.4,
new_file procedure 14.3.4, out_file 14.1, page number 14.1, page terminator 14.1,
put procedure 14.3.6 14.3.7 14.3.8 14.3.9, skipping 14.3.7 14.3.8 14.3.9, status_error
exception 14.4, width 14.3.5 14.3.7 14.3.9

14–67 Input-Output of Characters and Strings 14.3.6

14.3.6 Input-Output of Characters and Strings
1 For an item of type CHARACTER the following procedures are provided:

2 procedure GET(FILE : in FILE_TYPE;
ITEM : out CHARACTER);

procedure GET(ITEM : out CHARACTER);

3 After skipping any line terminators and any page terminators, reads
the next character from the specified input file and returns the value of
this character in the out parameter ITEM.

4 The exception END_ERROR is raised if an attempt is made to skip a
file terminator.

5 procedure PUT(FILE : in FILE_TYPE; ITEM : in CHARACTER);
procedure PUT(ITEM : in CHARACTER);

6 If the line length of the specified output file is bounded (that is, does
not have the conventional value zero), and the current column number
exceeds it, has the effect of calling NEW_LINE with a spacing of one.
Then, or otherwise, outputs the given character to the file.

7 For an item of type STRING the following procedures are provided:

8 procedure GET(FILE : in FILE_TYPE; ITEM : out STRING);
procedure GET(ITEM : out STRING);

9 Determines the length of the given string and attempts that number of
GET operations for successive characters of the string (in particular, no
operation is performed if the string is null).

10 procedure PUT(FILE : in FILE_TYPE; ITEM : in STRING);
procedure PUT(ITEM : in STRING);

11 Determines the length of the given string and attempts that number of
PUT operations for successive characters of the string (in particular, no
operation is performed if the string is null).

12 procedure GET_LINE(FILE : in FILE_TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GET_LINE(ITEM : out STRING;
LAST : out NATURAL);

13 Replaces successive characters of the specified string by successive
characters read from the specified input file. Reading stops if the end
of the line is met, in which case the procedure SKIP_LINE is then

14.3.6 Input-Output of Characters and Strings 14–68

called (in effect) with a spacing of one; reading also stops if the end of
the string is met. Characters not replaced are left undefined. 21

14 If characters are read, returns in LAST the index value such that
ITEM(LAST) is the last character replaced (the index of the first
character replaced is ITEM’FIRST). If no characters are read, returns
in LAST an index value that is one less than ITEM’FIRST.

15 The exception END_ERROR is raised if an attempt is made to skip a
file terminator.

16 procedure PUT_LINE(FILE : in FILE_TYPE; ITEM : in STRING);
procedure PUT_LINE(ITEM : in STRING);

17 Calls the procedure PUT for the given string, and then the procedure
NEW_LINE with a spacing of one.

Notes:
18 In a literal string parameter of PUT, the enclosing string bracket characters

are not output. Each doubled string bracket character in the enclosed string
is output as a single string bracket character, as a consequence of the rule for
string literals (see 2.6).

19 A string read by GET or written by PUT can extend over several lines.

20 References : current column number 14.3, end_error exception 14.4, file 14.1, file
terminator 14.3, get procedure 14.3.5, line 14.3, line length 14.3, new_line procedure
14.3.4, page terminator 14.3, put procedure 14.3.4, skipping 14.3.5

14.3.7 Input-Output for Integer Types
1 The following procedures are defined in the generic package INTEGER_IO.

This must be instantiated for the appropriate integer type (indicated by NUM
in the specification).

2 Values are output as decimal or based literals, without underline characters
or exponent, and preceded by a minus sign if negative. The format (which
includes any leading spaces and minus sign) can be specified by an optional
field width parameter. Values of widths of fields in output formats are of the
nonnegative integer subtype FIELD. Values of bases are of the integer subtype
NUMBER_BASE.

subtype NUMBER_BASE is INTEGER range 2 .. 16;

21 See also Appendix G, AI-00050 and AI-00172.

14–69 Input-Output for Integer Types 14.3.7

3 The default field width and base to be used by output procedures are defined by
the following variables that are declared in the generic package INTEGER_IO:

DEFAULT_WIDTH : FIELD := NUM’WIDTH;
DEFAULT_BASE : NUMBER_BASE := 10;

4 The following procedures are provided:

5 procedure GET(FILE : in FILE_TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET(ITEM : out NUM; WIDTH : in FIELD := 0);

6 If the value of the parameter WIDTH is zero, skips any leading blanks,
line terminators, or page terminators, then reads a plus or a minus
sign if present, then reads according to the syntax of an integer
literal (which may be a based literal). If a nonzero value of WIDTH is
supplied, then exactly WIDTH characters are input, or the characters
(possibly none) up to a line terminator, whichever comes first; any
skipped leading blanks are included in the count. 22

7 Returns, in the parameter ITEM, the value of type NUM that
corresponds to the sequence input.

8 The exception DATA_ERROR is raised if the sequence input does not
have the required syntax or if the value obtained is not of the subtype
NUM.

9 procedure PUT(FILE : in FILE_TYPE;
ITEM : in NUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
BASE : in NUMBER_BASE := DEFAULT_BASE);

procedure PUT(ITEM : in NUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
BASE : in NUMBER_BASE := DEFAULT_BASE);

10 Outputs the value of the parameter ITEM as an integer literal, with no
underlines, no exponent, and no leading zeros (but a single zero for the
value zero), and a preceding minus sign for a negative value.

11 If the resulting sequence of characters to be output has fewer than
WIDTH characters, then leading spaces are first output to make up the
difference.

22 See also Appendix G, AI-00051 and AI-00307.

14.3.7 Input-Output for Integer Types 14–70

12 Uses the syntax for decimal literal if the parameter BASE has the
value ten (either explicitly or through DEFAULT_BASE); otherwise,
uses the syntax for based literal, with any letters in upper case.

13 procedure GET(FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

14 Reads an integer value from the beginning of the given string, following
the same rules as the GET procedure that reads an integer value from
a file, but treating the end of the string as a file terminator. Returns,
in the parameter ITEM, the value of type NUM that corresponds
to the sequence input. Returns in LAST the index value such that
FROM(LAST) is the last character read. 23

15 The exception DATA_ERROR is raised if the sequence input does not
have the required syntax or if the value obtained is not of the subtype
NUM.

16 procedure PUT(TO : out STRING;
ITEM : in NUM;
BASE : in NUMBER_BASE := DEFAULT_BASE);

17 Outputs the value of the parameter ITEM to the given string, following
the same rule as for output to a file, using the length of the given string
as the value for WIDTH.

18 Examples:
package INT_IO is new INTEGER_IO(SMALL_INT); use INT_IO;
-- default format used at instantiation,
-- DEFAULT_WIDTH = 4, DEFAULT_BASE = 10

PUT(126); -- "b126"
PUT(-126, 7); -- "bbb-126"
PUT(126, WIDTH => 13, BASE => 2); -- "bbb2#1111110#"

19 References : based literal 2.4.2, blank 14.3.5, data_error exception 14.4, decimal
literal 2.4.1, field subtype 14.3.5, file_type 14.1, get procedure 14.3.5, integer_io
package 14.3.10, integer literal 2.4, layout_error exception 14.4, line terminator 14.3,
put procedure 14.3.5, skipping 14.3.5, width 14.3.5

23 See also Appendix G, AI-00307.

14–71 Input-Output for Real Types 14.3.8

14.3.8 Input-Output for Real Types
1 The following procedures are defined in the generic packages FLOAT_IO and

FIXED_IO, which must be instantiated for the appropriate floating point or
fixed point type respectively (indicated by NUM in the specifications).

2 Values are output as decimal literals without underline characters. The format
of each value output consists of a FORE field, a decimal point, an AFT field,
and (if a nonzero EXP parameter is supplied) the letter E and an EXP field.
The two possible formats thus correspond to:

FORE . AFT

3 and to:

FORE . AFT E EXP

4 without any spaces between these fields. The FORE field may include leading
spaces, and a minus sign for negative values. The AFT field includes only
decimal digits (possibly with trailing zeros). The EXP field includes the sign
(plus or minus) and the exponent (possibly with leading zeros).

5 For floating point types, the default lengths of these fields are defined by the
following variables that are declared in the generic package FLOAT_IO:

DEFAULT_FORE : FIELD := 2;
DEFAULT_AFT : FIELD := NUM’DIGITS-1;
DEFAULT_EXP : FIELD := 3;

6 For fixed point types, the default lengths of these fields are defined by the
following variables that are declared in the generic package FIXED_IO:

DEFAULT_FORE : FIELD := NUM’FORE;
DEFAULT_AFT : FIELD := NUM’AFT;
DEFAULT_EXP : FIELD := 0;

7 The following procedures are provided:

8 procedure GET(FILE : in FILE_TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET(ITEM : out NUM;
WIDTH : in FIELD := 0);

9 If the value of the parameter WIDTH is zero, skips any leading blanks,
line terminators, or page terminators, then reads a plus or a minus sign
if present, then reads according to the syntax of a real literal (which
may be a based literal). If a nonzero value of WIDTH is supplied, then
exactly WIDTH characters are input, or the characters (possibly none)

14.3.8 Input-Output for Real Types 14–72

up to a line terminator, whichever comes first; any skipped leading
blanks are included in the count. 24

10 Returns, in the parameter ITEM, the value of type NUM that
corresponds to the sequence input.

11 The exception DATA_ERROR is raised if the sequence input does not
have the required syntax or if the value obtained is not of the subtype
NUM.

12 procedure PUT(FILE : in FILE_TYPE;
ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

procedure PUT(ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

13 Outputs the value of the parameter ITEM as a decimal literal with
the format defined by FORE, AFT and EXP. If the value is negative, a
minus sign is included in the integer part. If EXP has the value zero,
then the integer part to be output has as many digits as are needed
to represent the integer part of the value of ITEM, overriding FORE
if necessary, or consists of the digit zero if the value of ITEM has no
integer part.

14 If EXP has a value greater than zero, then the integer part to be output
has a single digit, which is nonzero except for the value 0.0 of ITEM.

15 In both cases, however, if the integer part to be output has fewer than
FORE characters, including any minus sign, then leading spaces are
first output to make up the difference. The number of digits of the
fractional part is given by AFT, or is one if AFT equals zero. The value
is rounded; a value of exactly one half in the last place may be rounded
either up or down.

16 If EXP has the value zero, there is no exponent part. If EXP has a
value greater than zero, then the exponent part to be output has as
many digits as are needed to represent the exponent part of the value
of ITEM (for which a single digit integer part is used), and includes an
initial sign (plus or minus). If the exponent part to be output has fewer
than EXP characters, including the sign, then leading zeros precede

24 See also Appendix G, AI-00307.

14–73 Input-Output for Real Types 14.3.8

the digits, to make up the difference. For the value 0.0 of ITEM, the
exponent has the value zero.

17 procedure GET(FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

18 Reads a real value from the beginning of the given string, following
the same rule as the GET procedure that reads a real value from a
file, but treating the end of the string as a file terminator. Returns,
in the parameter ITEM, the value of type NUM that corresponds
to the sequence input. Returns in LAST the index value such that
FROM(LAST) is the last character read. 25

19 The exception DATA_ERROR is raised if the sequence input does not
have the required syntax, or if the value obtained is not of the subtype
NUM.

20 procedure PUT(TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

26

21 Outputs the value of the parameter ITEM to the given string, following
the same rule as for output to a file, using a value for FORE such that
the sequence of characters output exactly fills the string, including any
leading spaces.

22 Examples:
package REAL_IO is new FLOAT_IO(REAL); use REAL_IO;
-- default format used at instantiation, DEFAULT_EXP = 3

X : REAL := -123.4567; -- digits 8 (see 3.5.7)

PUT(X); -- default format "-1.2345670E+02"
PUT(X, FORE => 5, AFT => 3, EXP => 2); -- "bbb-1.235E+2"
PUT(X, 5, 3, 0); -- "b-123.457"

25 See also Appendix G, AI-00307.

26 Specification corrected according to AI-00215; see
Appendix Appendix G.

14.3.8 Input-Output for Real Types 14–74

Note:
23 For an item with a positive value, if output to a string exactly fills the string

without leading spaces, then output of the corresponding negative value will
raise LAYOUT_ERROR.

24 References : aft attribute 3.5.10, based literal 2.4.2, blank 14.3.5, data_error
exception 14.3.5, decimal literal 2.4.1, field subtype 14.3.5, file_type 14.1, fixed_io
package 14.3.10, floating_io package 14.3.10, fore attribute 3.5.10, get procedure
14.3.5, layout_error 14.3.5, line terminator 14.3.5, put procedure 14.3.5, real literal 2.4,
skipping 14.3.5, width 14.3.5

14.3.9 Input-Output for Enumeration Types
1 The following procedures are defined in the generic package

ENUMERATION_IO, which must be instantiated for the appropriate
enumeration type (indicated by ENUM in the specification).

2 Values are output using either upper or lower case letters for identifiers. This
is specified by the parameter SET, which is of the enumeration type TYPE_
SET.

type TYPE_SET is (LOWER_CASE, UPPER_CASE);

3 The format (which includes any trailing spaces) can be specified by an
optional field width parameter. The default field width and letter case are
defined by the following variables that are declared in the generic package
ENUMERATION_IO:

DEFAULT_WIDTH : FIELD := 0;
DEFAULT_SETTING : TYPE_SET := UPPER_CASE;

4 The following procedures are provided:

5 procedure GET(FILE : in FILE_TYPE; ITEM : out ENUM);
procedure GET(ITEM : out ENUM);

6 After skipping any leading blanks, line terminators, or page
terminators, reads an identifier according to the syntax of this
lexical element (lower and upper case being considered equivalent),
or a character literal according to the syntax of this lexical element
(including the apostrophes). Returns, in the parameter ITEM, the
value of type ENUM that corresponds to the sequence input. 27

27 See also Appendix G, AI-00239, AI-00307, and AI-00316.

14–75 Input-Output for Enumeration Types 14.3.9

7 The exception DATA_ERROR is raised if the sequence input does not
have the required syntax, or if the identifier or character literal does
not correspond to a value of the subtype ENUM.

8 procedure PUT(FILE : in FILE_TYPE;
ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
SET : in TYPE_SET := DEFAULT_SETTING);

procedure PUT(ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
SET : in TYPE_SET := DEFAULT_SETTING);

9 Outputs the value of the parameter ITEM as an enumeration literal
(either an identifier or a character literal). The optional parameter
SET indicates whether lower case or upper case is used for identifiers;
it has no effect for character literals. If the sequence of characters
produced has fewer than WIDTH characters, then trailing spaces are
finally output to make up the difference. 28

10 procedure GET(FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

11 Reads an enumeration value from the beginning of the given
string, following the same rule as the GET procedure that reads
an enumeration value from a file, but treating the end of the string as
a file terminator. Returns, in the parameter ITEM, the value of type
ENUM that corresponds to the sequence input. Returns in LAST the
index value such that FROM(LAST) is the last character read. 29

12 The exception DATA_ERROR is raised if the sequence input does not
have the required syntax, or if the identifier or character literal does
not correspond to a value of the subtype ENUM.

13 procedure PUT(TO : out STRING;
ITEM : in ENUM;
SET : in TYPE_SET := DEFAULT_SETTING);

14 Outputs the value of the parameter ITEM to the given string, following
the same rule as for output to a file, using the length of the given string
as the value for WIDTH.

15 Although the specification of the package ENUMERATION_IO would allow
instantiation for an integer type, this is not the intended purpose of this
generic package, and the effect of such instantiations is not defined by the
language.

28 See also Appendix G, AI-00239
29 See also Appendix G, AI-00307.

14.3.9 Input-Output for Enumeration Types 14–76

Notes:
16 There is a difference between PUT defined for characters, and for enumeration

values. Thus

TEXT_IO.PUT(’A’); -- outputs the character A

package CHAR_IO is new TEXT_IO.ENUMERATION_IO(CHARACTER);
CHAR_IO.PUT(’A’); -- outputs the character ’A’,

-- between single quotes

17 The type BOOLEAN is an enumeration type, hence ENUMERATION_IO can
be instantiated for this type.

When a control character is input or output using one of the GET or PUT
operations resulting from an instantiation of the package ENUMERATION_IO
for the type CHARACTER, the text input (for GET) or output (for PUT) is
the two- or three-character mnemonic for the control character, as shown (in
italics) in Annex C. For example:

CHAR_IO.PUT(ASCII.NUL); -- outputs the characters NUL

For the analogous operation CHAR_IO.GET, the input value would be NUL.

18 References : blank 14.3.5, data_error 14.3.5, enumeration_io package 14.3.10,
field subtype 14.3.5, file_type 14.1, get procedure 14.3.5, line terminator 14.3.5, put
procedure 14.3.5, skipping 14.3.5, width 14.3.5

character type 3.5.2, instantiation 12.3

14.3.10 Specification of the Package Text_IO
1 with IO_EXCEPTIONS;

package TEXT_IO is

type FILE_TYPE is limited private;

type FILE_MODE is (IN_FILE, OUT_FILE);

type COUNT is range 0 .. implementation_defined;
subtype POSITIVE_COUNT is COUNT range 1 .. COUNT’LAST;
UNBOUNDED : constant COUNT := 0; -- line and page length

subtype FIELD is INTEGER range 0 .. implementation_defined;
subtype NUMBER_BASE is INTEGER range 2 .. 16;

type TYPE_SET is (LOWER_CASE, UPPER_CASE);

-- File Management

procedure CREATE (FILE : in out FILE_TYPE;
MODE : in FILE_MODE := OUT_FILE;
NAME : in STRING := "";
FORM : in STRING := "");

14–77 Specification of the Package Text_IO 14.3.10

procedure OPEN (FILE : in out FILE_TYPE;
MODE : in FILE_MODE;
NAME : in STRING;
FORM : in STRING := "");

procedure CLOSE (FILE : in out FILE_TYPE);
procedure DELETE (FILE : in out FILE_TYPE);
procedure RESET (FILE : in out FILE_TYPE;

MODE : in FILE_MODE);
procedure RESET (FILE : in out FILE_TYPE);

function MODE (FILE : in FILE_TYPE) return FILE_MODE;
function NAME (FILE : in FILE_TYPE) return STRING;
function FORM (FILE : in FILE_TYPE) return STRING;

function IS_OPEN(FILE : in FILE_TYPE) return BOOLEAN;

-- Control of default input and output files

procedure SET_INPUT (FILE : in FILE_TYPE);
procedure SET_OUTPUT(FILE : in FILE_TYPE);

function STANDARD_INPUT return FILE_TYPE;
function STANDARD_OUTPUT return FILE_TYPE;

function CURRENT_INPUT return FILE_TYPE;
function CURRENT_OUTPUT return FILE_TYPE;

-- Specification of line and page lengths

procedure SET_LINE_LENGTH(FILE : in FILE_TYPE;
TO : in COUNT);

procedure SET_LINE_LENGTH(TO : in COUNT);

procedure SET_PAGE_LENGTH(FILE : in FILE_TYPE;
TO : in COUNT);

procedure SET_PAGE_LENGTH(TO : in COUNT);

function LINE_LENGTH(FILE : in FILE_TYPE) return COUNT;
function LINE_LENGTH return COUNT;

function PAGE_LENGTH(FILE : in FILE_TYPE) return COUNT;
function PAGE_LENGTH return COUNT;

-- Column, Line, and Page Control

procedure NEW_LINE (FILE : in FILE_TYPE;
SPACING : in POSITIVE_COUNT := 1);

procedure NEW_LINE (SPACING : in POSITIVE_COUNT := 1);

procedure SKIP_LINE (FILE : in FILE_TYPE;
SPACING : in POSITIVE_COUNT := 1);

procedure SKIP_LINE (SPACING : in POSITIVE_COUNT := 1);

function END_OF_LINE(FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_LINE return BOOLEAN;

14.3.10 Specification of the Package Text_IO 14–78

procedure NEW_PAGE (FILE : in FILE_TYPE);
procedure NEW_PAGE;

procedure SKIP_PAGE (FILE : in FILE_TYPE);
procedure SKIP_PAGE;

function END_OF_PAGE(FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_PAGE return BOOLEAN;

function END_OF_FILE(FILE : in FILE_TYPE) return BOOLEAN;
function END_OF_FILE return BOOLEAN;

procedure SET_COL (FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

procedure SET_COL (TO : in POSITIVE_COUNT);

procedure SET_LINE(FILE : in FILE_TYPE;
TO : in POSITIVE_COUNT);

procedure SET_LINE(TO : in POSITIVE_COUNT);

function COL (FILE : in FILE_TYPE) return POSITIVE_COUNT;
function COL return POSITIVE_COUNT;

function LINE(FILE : in FILE_TYPE) return POSITIVE_COUNT;
function LINE return POSITIVE_COUNT;

function PAGE(FILE : in FILE_TYPE) return POSITIVE_COUNT;
function PAGE return POSITIVE_COUNT;

-- Character Input-Output

procedure GET(FILE : in FILE_TYPE;
ITEM : out CHARACTER);

procedure GET(ITEM : out CHARACTER);
procedure PUT(FILE : in FILE_TYPE;

ITEM : in CHARACTER);
procedure PUT(ITEM : in CHARACTER);

-- String Input-Output

procedure GET(FILE : in FILE_TYPE;
ITEM : out STRING);

procedure GET(ITEM : out STRING);
procedure PUT(FILE : in FILE_TYPE;

ITEM : in STRING);
procedure PUT(ITEM : in STRING);

procedure GET_LINE(FILE : in FILE_TYPE;
ITEM : out STRING;
LAST : out NATURAL);

procedure GET_LINE(ITEM : out STRING;
LAST : out NATURAL);

procedure PUT_LINE(FILE : in FILE_TYPE;
ITEM : in STRING);

procedure PUT_LINE(ITEM : in STRING);

-- Generic package for Input-Output of Integer Types

14–79 Specification of the Package Text_IO 14.3.10

generic
type NUM is range <>;

package INTEGER_IO is

DEFAULT_WIDTH : FIELD := NUM’WIDTH;
DEFAULT_BASE : NUMBER_BASE := 10;

procedure GET(FILE : in FILE_TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET(ITEM : out NUM; WIDTH : in FIELD := 0);

procedure PUT(FILE : in FILE_TYPE;
ITEM : in NUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
BASE : in NUMBER_BASE := DEFAULT_BASE);

procedure PUT(ITEM : in NUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
BASE : in NUMBER_BASE := DEFAULT_BASE);

procedure GET(FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT(TO : out STRING;
ITEM : in NUM;
BASE : in NUMBER_BASE := DEFAULT_BASE);

end INTEGER_IO;

-- Generic packages for Input-Output of Real Types

generic
type NUM is digits <>;

package FLOAT_IO is

DEFAULT_FORE : FIELD := 2;
DEFAULT_AFT : FIELD := NUM’DIGITS-1;
DEFAULT_EXP : FIELD := 3;

procedure GET(FILE : in FILE_TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET(ITEM : out NUM; WIDTH : in FIELD := 0);

procedure PUT(FILE : in FILE_TYPE;
ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

procedure PUT(ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

14.3.10 Specification of the Package Text_IO 14–80

procedure GET(FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT(TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

end FLOAT_IO;

generic
type NUM is delta <>;

package FIXED_IO is

DEFAULT_FORE : FIELD := NUM’FORE;
DEFAULT_AFT : FIELD := NUM’AFT;
DEFAULT_EXP : FIELD := 0;

procedure GET(FILE : in FILE_TYPE;
ITEM : out NUM;
WIDTH : in FIELD := 0);

procedure GET(ITEM : out NUM; WIDTH : in FIELD := 0);

procedure PUT(FILE : in FILE_TYPE;
ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

procedure PUT(ITEM : in NUM;
FORE : in FIELD := DEFAULT_FORE;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

procedure GET(FROM : in STRING;
ITEM : out NUM;
LAST : out POSITIVE);

procedure PUT(TO : out STRING;
ITEM : in NUM;
AFT : in FIELD := DEFAULT_AFT;
EXP : in FIELD := DEFAULT_EXP);

end FIXED_IO;

-- Generic package for Input-Output of Enumeration Types

generic
type ENUM is (<>);

package ENUMERATION_IO is

DEFAULT_WIDTH : FIELD := 0;
DEFAULT_SETTING : TYPE_SET := UPPER_CASE;

procedure GET(FILE : in FILE_TYPE; ITEM : out ENUM);
procedure GET(ITEM : out ENUM);

14–81 Specification of the Package Text_IO 14.3.10

procedure PUT(FILE : in FILE_TYPE;
ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
SET : in TYPE_SET := DEFAULT_SETTING);

procedure PUT(ITEM : in ENUM;
WIDTH : in FIELD := DEFAULT_WIDTH;
SET : in TYPE_SET := DEFAULT_SETTING);

procedure GET(FROM : in STRING;
ITEM : out ENUM;
LAST : out POSITIVE);

procedure PUT(TO : out STRING;
ITEM : in ENUM;
SET : in TYPE_SET := DEFAULT_SETTING);

end ENUMERATION_IO;

-- Exceptions

STATUS_ERROR : exception renames IO_EXCEPTIONS.STATUS_ERROR;
MODE_ERROR : exception renames IO_EXCEPTIONS.MODE_ERROR;
NAME_ERROR : exception renames IO_EXCEPTIONS.NAME_ERROR;
USE_ERROR : exception renames IO_EXCEPTIONS.USE_ERROR;
DEVICE_ERROR : exception renames IO_EXCEPTIONS.DEVICE_ERROR;
END_ERROR : exception renames IO_EXCEPTIONS.END_ERROR;
DATA_ERROR : exception renames IO_EXCEPTIONS.DATA_ERROR;
LAYOUT_ERROR : exception renames IO_EXCEPTIONS.LAYOUT_ERROR;

private
-- implementation-dependent

end TEXT_IO;

14.4 Exceptions in Input-Output
1 The following exceptions can be raised by input-output operations. They

are declared in the package IO_EXCEPTIONS, defined in section 14.5;
this package is named in the context clause for each of the three input-
output packages. Only outline descriptions are given of the conditions under
which NAME_ERROR, USE_ERROR, and DEVICE_ERROR are raised;
for full details see Appendix F. If more than one error condition exists, the
corresponding exception that appears earliest in the following list is the one
that is raised.

In DEC Ada, the exception DEVICE_ERROR is never raised. Device-
related errors raise the exception USE_ERROR. The input-output operation
descriptions in the previous sections give the conditions under which the
exceptions NAME_ERROR and USE_ERROR are raised. Appendix F
summarizes these conditions.

2 The exception STATUS_ERROR is raised by an attempt to operate upon a file
that is not open, and by an attempt to open a file that is already open.

14.4 Exceptions in Input-Output 14–82

3 The exception MODE_ERROR is raised by an attempt to read from, or test for
the end of, a file whose current mode is OUT_FILE, and also by an attempt
to write to a file whose current mode is IN_FILE. In the case of TEXT_IO,
the exception MODE_ERROR is also raised by specifying a file whose current
mode is OUT_FILE in a call of SET_INPUT, SKIP_LINE, END_OF_LINE,
SKIP_PAGE, or END_OF_PAGE; and by specifying a file whose current mode
is IN_FILE in a call of SET_OUTPUT, SET_LINE_LENGTH, SET_PAGE_
LENGTH, LINE_LENGTH, PAGE_LENGTH, NEW_LINE, or NEW_PAGE.

4 The exception NAME_ERROR is raised by a call of CREATE or OPEN if the
string given for the parameter NAME does not allow the identification of an
external file. For example, this exception is raised if the string is improper, or,
alternatively, if either none or more than one external file corresponds to the
string. 30

5 The exception USE_ERROR is raised if an operation is attempted that is not
possible for reasons that depend on characteristics of the external file. For
example, this exception is raised by the procedure CREATE, among other
circumstances, if the given mode is OUT_FILE but the form specifies an input
only device, if the parameter FORM specifies invalid access rights, or if an
external file with the given name already exists and overwriting is not allowed.
31

6 The exception DEVICE_ERROR is raised if an input-output operation cannot
be completed because of a malfunction of the underlying system.

The exception DEVICE_ERROR is never raised in DEC Ada. Any device-
related errors will raise the exception USE_ERROR.

7 The exception END_ERROR is raised by an attempt to skip (read past) the end
of a file.

8 The exception DATA_ERROR may be raised by the procedure READ if the
element read cannot be interpreted as a value of the required type. This
exception is also raised by a procedure GET (defined in the package TEXT_IO)
if the input character sequence fails to satisfy the required syntax, or if the
value input does not belong to the range of the required type or subtype.

9 The exception LAYOUT_ERROR is raised (in text input-output) by COL,
LINE, or PAGE if the value returned exceeds COUNT’LAST. The exception
LAYOUT_ERROR is also raised on output by an attempt to set column or line
numbers in excess of specified maximum line or page lengths, respectively
(excluding the unbounded cases). It is also raised by an attempt to PUT too
many characters to a string.

30 See also Appendix G, AI-00332.
31 See also Appendix G, AI-00332.

14–83 Exceptions in Input-Output 14.4

The exception LAYOUT_ERROR can also be raised in DEC Ada by the GET_
ITEM and PUT_ITEM procedures in the mixed-type packages. LAYOUT_
ERROR is raised for GET_ITEM if no more items can be read from the file
buffer. It is raised for PUT_ITEM if the current position exceeds the file buffer
size.

On OpenVMS systems, the following exceptions can also be raised by the DEC
Ada input-output operations described in sections 14.2a.2, 14.2a.4, 14.2b.7,
and 14.2b.9. These exceptions are declared in the DEC Ada package AUX_
IO_EXCEPTIONS (defined in 14.5a), which is named in the context clause
for the packages RELATIVE_IO, RELATIVE_MIXED_IO, INDEXED_IO, and
INDEXED_MIXED_IO:

• The exception LOCK_ERROR is raised by the READ or READ_EXISTING
procedures if the result is a locked record error in a relative or indexed file.
See section 14.1 for a general explanation of record locking. See the DEC
Ada Run-Time Reference Manual for OpenVMS Systems for a more detailed
explanation.

• The exception EXISTENCE_ERROR is raised by the READ or READ_
EXISTING procedures if the element to be read cannot be found in a
relative or indexed file.

• The exception KEY_ERROR is raised in an indexed file if the key has been
changed or duplicated and changes or duplicates are not permitted. The
exception KEY_ERROR is also raised by the READ_BY_KEY procedures if
the size of the given key is not a multiple of eight bits.

10 References : col function 14.3.4, create procedure 14.2.1, end_of_line function 14.3.4,
end_of_page function 14.3.4, external file 14.1, file 14.1, form string 14.1, get procedure
14.3.5, in_file 14.1, io_exceptions package 14.5, line function 14.3.4, line_length
function 14.3.4, name string 14.1, new_line procedure 14.3.4, new_page procedure
14.3.4, open procedure 14.2.1, out_file 14.1, page function 14.3.4, page_length function
14.3.4, put procedure 14.3.5, read procedure 14.2.2 14.2.3, set_input procedure 14.3.2,
set_line_length 14.3.3, set_page_length 14.3.3, set_output 14.3.2, skip_line procedure
14.3.4, skip_page procedure 14.3.4, text_io package 14.3

indexed_io package 14.2a 14.2a.4, indexed_mixed_io package 14.2a 14.2b 14.2b.9, key
14.2a, locking 14.2a, read procedure 14.2a.2 14.2a.4 14.2b.7 14.2b.9, read_existing
procedure 14.2a.2 14.2b.7, relative_io package 14.2a 14.2a.2, relative_mixed_io package
14.2a 14.2b 14.2b.7

14.4 Exceptions in Input-Output 14–84

14.5 Specification of the Package IO_Exceptions
1 This package defines the exceptions needed by the packages SEQUENTIAL_IO,

DIRECT_IO, and TEXT_IO.

2 package IO_EXCEPTIONS is

STATUS_ERROR : exception;
MODE_ERROR : exception;
NAME_ERROR : exception;
USE_ERROR : exception;
DEVICE_ERROR : exception;
END_ERROR : exception;
DATA_ERROR : exception;
LAYOUT_ERROR : exception;

end IO_EXCEPTIONS;

14.5a Specification of the Package Aux_IO_Exceptions
(OpenVMS Systems Only)
This package defines the exceptions needed by the DEC Ada packages
RELATIVE_IO, INDEXED_IO, RELATIVE_MIXED_IO, and INDEXED_
MIXED_IO.

package AUX_IO_EXCEPTIONS is

LOCK_ERROR : exception;
EXISTENCE_ERROR : exception;
KEY_ERROR : exception;

end AUX_IO_EXCEPTIONS;

14.6 Low Level Input-Output
DEC Ada does not provide the low level input-output package described in this
section.

1 A low level input-output operation is an operation acting on a physical device.
Such an operation is handled by using one of the (overloaded) predefined
procedures SEND_CONTROL and RECEIVE_CONTROL.

2 A procedure SEND_CONTROL may be used to send control information to a
physical device. A procedure RECEIVE_CONTROL may be used to monitor
the execution of an input-output operation by requesting information from the
physical device.

14–85 Low Level Input-Output 14.6

3 Such procedures are declared in the standard package LOW_LEVEL_IO
and have two parameters identifying the device and the data. However, the
kinds and formats of the control information will depend on the physical
characteristics of the machine and the device. Hence, the types of the
parameters are implementation-defined. Overloaded definitions of these
procedures should be provided for the supported devices.

4 The visible part of the package defining these procedures is outlined as follows:

5 package LOW_LEVEL_IO is
-- declarations of the possible types for DEVICE and DATA;
-- declarations of overloaded procedures for these types:
procedure SEND_CONTROL (DEVICE : device_type;

DATA : in out data_type);
procedure RECEIVE_CONTROL (DEVICE : device_type;

DATA : in out data_type);
end;

32

6 The bodies of the procedures SEND_CONTROL and RECEIVE_CONTROL for
various devices can be supplied in the body of the package LOW_LEVEL_IO.
These procedure bodies may be written with code statements.

14.7 Example of Input-Output
1 The following example shows the use of some of the text input-output facilities

in a dialogue with a user at a terminal. The user is prompted to type a color,
and the program responds by giving the number of items of that color available
in stock, according to an inventory. The default input and output files are
used. For simplicity, all the requisite instantiations are given within one
subprogram; in practice, a package, separate from the procedure, would be
used.

2 with TEXT_IO; use TEXT_IO;
procedure DIALOGUE is

type COLOR is (WHITE, RED, ORANGE, YELLOW, GREEN, BLUE, BROWN);
package COLOR_IO is new ENUMERATION_IO(ENUM => COLOR);
package NUMBER_IO is new INTEGER_IO(INTEGER);
use COLOR_IO, NUMBER_IO;

INVENTORY : array (COLOR) of INTEGER := (20, 17, 43, 10,
28, 173, 87);

CHOICE : COLOR;

32 See also Appendix G, AI-00355.

14.7 Example of Input-Output 14–86

procedure ENTER_COLOR (SELECTION : out COLOR) is
begin

loop
begin

PUT("Color selected: "); -- prompts user
GET(SELECTION); -- accepts color typed,

-- or raises exception
return;

exception
when DATA_ERROR =>

PUT("Invalid color, try again. ");
-- user has typed new line
NEW_LINE(2);
-- completes execution of the block statement

end;
end loop; -- repeats the block statement until color accepted

end;
begin -- statements of DIALOGUE;

NUMBER_IO.DEFAULT_WIDTH := 5;

loop

ENTER_COLOR(CHOICE); -- user types color and new line

SET_COL(5); PUT(CHOICE); PUT(" items available:");
SET_COL(40); PUT(INVENTORY(CHOICE)); -- default width is 5
NEW_LINE;

end loop;
end DIALOGUE;

3 Example of an interaction (characters typed by the user are italicized):
Color selected: Black
Invalid color, try again.

Color selected: Blue
BLUE items available: 173

Color selected: Yellow
YELLOW items available: 10

14.7a Example of Additional DEC Ada Input-Output
This example shows the use of the additional DEC Ada input-output package
SEQUENTIAL_MIXED_IO. This program reads values of mixed types from
different file elements and then processes the values for output to an array:

14–87 Example of Additional DEC Ada Input-Output 14.7a

with SEQUENTIAL_MIXED_IO; use SEQUENTIAL_MIXED_IO;
procedure READ_FILE(FILE_NAME : STRING) is

type FLOAT_ARRAY is array (INTEGER range <>) of FLOAT;

F_ARRAY : FLOAT_ARRAY(1 .. 100);
F2, F3, F4 : FLOAT;
I1, I5, I6 : INTEGER;
LAST : INTEGER;
FILE : FILE_TYPE;

-- Instantiate GET_ITEM for each type in the file.
--
procedure GET_INTEGER is new GET_ITEM(INTEGER);
procedure GET_FLOAT is new GET_ITEM(FLOAT);
procedure GET_STRING is new GET_ITEM(STRING);

-- Instantiate GET_ARRAY for a sequence of floating values.
--
procedure GET_FLOAT_ARRAY is

new GET_ARRAY(FLOAT, INTEGER, FLOAT_ARRAY);

-- Procedure for processing the values
--
procedure PROCESS_ARRAY(FA : FLOAT_ARRAY;

LAST : INTEGER) is separate;

begin
OPEN(FILE, IN_FILE, FILE_NAME);

-- Read the first file element consisting of an integer and
-- two floating point values.
--
READ(FILE);
GET_INTEGER(FILE, I1);
GET_FLOAT(FILE, F2);
GET_FLOAT(FILE, F3);

-- Read the second element consisting of a floating point value
-- and two integers.
--
READ(FILE);
GET_FLOAT(FILE, F4);
GET_INTEGER(FILE, I5);
GET_INTEGER(FILE, I6);

14.7a Example of Additional DEC Ada Input-Output 14–88

-- The remainder of the file consists of a number of elements
-- (each of which contains a variable number of F_floating
-- values), which are processed up to 100 at a time.
--
READ(FILE);
loop

if END_OF_BUFFER(FILE) then
READ(FILE);

end if;
GET_FLOAT_ARRAY(FILE, F_ARRAY, LAST);
PROCESS_ARRAY(F_ARRAY, LAST);

end loop;
CLOSE(FILE);

exception
when END_ERROR => CLOSE(FILE);

end READ_FILE;

14–89 Example of Additional DEC Ada Input-Output 14.7a

A
Predefined Language Attributes

1 This annex summarizes the definitions given elsewhere of the predefined
language attributes.

2 P’ADDRESS For a prefix P that denotes an object, a
program unit, a label, or an entry:

Yields the address of the first of the storage
units allocated to P. For a subprogram,
package, task unit, or label, this value refers
to the machine code associated with the
corresponding body or statement. For an
entry for which an address clause has been
given, the value refers to the corresponding
hardware interrupt. The value of this
attribute is of the type ADDRESS defined in
the package SYSTEM. (See 13.7.2.)

3 P’AFT For a prefix P that denotes a fixed point
subtype:

Yields the number of decimal digits needed
after the point to accommodate the precision
of the subtype P, unless the delta of the
subtype P is greater than 0.1, in which case
the attribute yields the value one. (P’AFT
is the smallest positive integer N for which
(10**N)*P’DELTA is greater than or equal
to one.) The value of this attribute is of the
type universal_integer. (See 3.5.10.)

A–1

P’AST_ENTRY On OpenVMS systems only.

For a prefix P that denotes a single entry
of an object of a task type or an entry of a
single task:

Yields a value of the type AST_HANDLER
(in the package SYSTEM) that transforms
an AST occurrence into a call of the
given entry. This attribute can only
occur in a compilation unit to which the
package SYSTEM applies, and the pragma
AST_ENTRY must have been specified for
the entry. (See 9.12a.)

4 P’BASE For a prefix P that denotes a type or
subtype:

This attribute denotes the base type of
P. It is only allowed as the prefix of the
name of another attribute: for example,
P’BASE’FIRST. (See 3.3.3.)

P’BIT For a prefix P that denotes an object:

Yields the bit offset within the storage unit
(byte) containing the first bit of the storage
for the object P. The value of this attribute
is of the type universal_integer. (See 13.7.2.)

5 P’CALLABLE For a prefix P that is appropriate for a task
type:

Yields the value FALSE when the execution
of the task P is either completed or
terminated, or when the task is abnormal;
yields the value TRUE otherwise. The value
of this attribute is of the predefined type
BOOLEAN. (See 9.9.)

6 P’CONSTRAINED For a prefix P that denotes an object of a
type with discriminants:

Yields the value TRUE if a discriminant
constraint applies to the object P, or if the
object is a constant (including a formal
parameter or generic formal parameter of
mode in); yields the value FALSE otherwise.

A–2

If P is a generic formal parameter of mode
in out, or if P is a formal parameter of
mode in out or out and the type mark
given in the corresponding parameter
specification denotes an unconstrained
type with discriminants, then the value of
this attribute is obtained from that of the
corresponding actual parameter. The value
of this attribute is of the predefined type
BOOLEAN. (See 3.7.4.)

7 P’CONSTRAINED For a prefix P that denotes a private type or
subtype:

Yields the value FALSE if P denotes an
unconstrained nonformal private type with
discriminants; also yields the value FALSE
if P denotes a generic formal private type
and the associated actual subtype is either
an unconstrained type with discriminants
or an unconstrained array type; yields
the value TRUE otherwise. The value of
this attribute is of the predefined type
BOOLEAN. (See 7.4.2.)

8 P’COUNT For a prefix P that denotes an entry of a
task unit:

Yields the number of entry calls presently
queued on the entry (if the attribute is
evaluated within an accept statement for
the entry P, the count does not include the
calling task). The value of this attribute is
of the type universal_integer. (See 9.9.)

9 P’DELTA For a prefix P that denotes a fixed point
subtype:

Yields the value of the delta specified in
the fixed accuracy definition for the subtype
P. The value of this attribute is of the type
universal_real. (See 3.5.10.)

A–3

10 P’DIGITS For a prefix P that denotes a floating point
subtype:

Yields the number of decimal digits in the
decimal mantissa of model numbers of
the subtype P. (This attribute yields the
number D of section 3.5.7.) The value of this
attribute is of the type universal_integer.
(See 3.5.8.)

11 P’EMAX For a prefix P that denotes a floating point
subtype:

Yields the largest exponent value in the
binary canonical form of model numbers
of the subtype P. (This attribute yields
the product 4*B of section 3.5.7.) The
value of this attribute is of the type
universal_integer. (See 3.5.8.)

12 P’EPSILON For a prefix P that denotes a floating point
subtype:

Yields the absolute value of the difference
between the model number 1.0 and the
next model number above, for the subtype
P. The value of this attribute is of the type
universal_real. (See 3.5.8.)

13 P’FIRST For a prefix P that denotes a scalar type, or
a subtype of a scalar type:

Yields the lower bound of P. The value of
this attribute has the same type as P.
(See 3.5.)

14 P’FIRST For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the lower bound of the first index
range. The value of this attribute has the
same type as this lower bound. (See 3.6.2
and 3.8.2.)

15 P’FIRST(N) For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

A–4

Yields the lower bound of the N-th index
range. The value of this attribute has
the same type as this lower bound. The
argument N must be a static expression of
type universal_integer. The value of N must
be positive (nonzero) and no greater than
the dimensionality of the array. (See 3.6.2
and 3.8.2.)

16 P’FIRST_BIT For a prefix P that denotes a component of a
record object:

Yields the offset, from the start of the
first of the storage units occupied by the
component, of the first bit occupied by the
component. This offset is measured in bits.
The value of this attribute is of the type
universal_integer. (See 13.7.2.)

17 P’FORE For a prefix P that denotes a fixed point
subtype:

Yields the minimum number of characters
needed for the integer part of the decimal
representation of any value of the subtype
P, assuming that the representation does
not include an exponent, but includes a one-
character prefix that is either a minus sign
or a space. (This minimum number does not
include superfluous zeros or underlines, and
is at least two.) The value of this attribute
is of the type universal_integer. (See 3.5.10.)

18 P’IMAGE For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must
be a value of the base type of P. The result
type is the predefined type STRING. The
result is the image of the value of X, that
is, a sequence of characters representing
the value in display form. The image of an
integer value is the corresponding decimal
literal; without underlines, leading zeros,
exponent, or trailing spaces; but with a one

A–5

character prefix that is either a minus sign
or a space.

The image of an enumeration value is
either the corresponding identifier in upper
case or the corresponding character literal
(including the two apostrophes); neither
leading nor trailing spaces are included.
The image of a character other than a
graphic character is implementation-defined.
(See 3.5.5.)

19 P’LARGE For a prefix P that denotes a real subtype:

The attribute yields the largest positive
model number of the subtype P. The value of
this attribute is of the type universal_real.
(See 3.5.8 and 3.5.10.)

20 P’LAST For a prefix P that denotes a scalar type, or
a subtype of a scalar type:

Yields the upper bound of P. The value of
this attribute has the same type as P.
(See 3.5.)

21 P’LAST For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the upper bound of the first index
range. The value of this attribute has the
same type as this upper bound. (See 3.6.2
and 3.8.2.)

22 P’LAST(N) For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the upper bound of the N-th index
range. The value of this attribute has
the same type as this upper bound. The
argument N must be a static expression of
type universal_integer. The value of N must
be positive (nonzero) and no greater than
the dimensionality of the array. (See 3.6.2
and 3.8.2.)

A–6

23 P’LAST_BIT For a prefix P that denotes a component of a
record object:

Yields the offset, from the start of the
first of the storage units occupied by the
component, of the last bit occupied by the
component. This offset is measured in bits.
The value of this attribute is of the type
universal_integer. (See 13.7.2.)

24 P’LENGTH For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the number of values of the first
index range (zero for a null range). The
value of this attribute is of the type
universal_integer. (See 3.6.2.)

25 P’LENGTH(N) For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the number of values of the N-th
index range (zero for a null range). The
value of this attribute is of the type
universal_integer. The argument N must be
a static expression of type universal_integer.
The value of N must be positive (nonzero)
and no greater than the dimensionality of
the array. (See 3.6.2 and 3.8.2.)

26 P’MACHINE_EMAX For a prefix P that denotes a floating point
type or subtype:

Yields the largest value of exponent for the
machine representation of the base type of
P. The value of this attribute is of the type
universal_integer. (See 13.7.3.)

27 P’MACHINE_EMIN For a prefix P that denotes a floating point
type or subtype:

Yields the smallest (most negative) value
of exponent for the machine representation
of the base type of P. The value of this

A–7

attribute is of the type universal_integer.
(See 13.7.3.)

28 P’MACHINE_MANTISSA For a prefix P that denotes a floating point
type or subtype:

Yields the number of digits in the mantissa
for the machine representation of the base
type of P (the digits are extended digits in
the range 0 to P’MACHINE_RADIX � 1).
The value of this attribute is of the type
universal_integer. (See 13.7.3.)

29 P’MACHINE_OVERFLOWS For a prefix P that denotes a real type or
subtype:

Yields the value TRUE if every predefined
operation on values of the base type of P
either provides a correct result, or raises
the exception NUMERIC_ERROR in
overflow situations; yields the value FALSE
otherwise. The value of this attribute is of
the predefined type BOOLEAN. (See 13.7.3.)

30 P’MACHINE_RADIX For a prefix P that denotes a floating point
type or subtype:

Yields the value of the radix used by the
machine representation of the base type of
P. The value of this attribute is of the type
universal_integer. (See 13.7.3.)

31 P’MACHINE_ROUNDS For a prefix P that denotes a real type or
subtype:

Yields the value TRUE if every predefined
arithmetic operation on values of the base
type of P either returns an exact result or
performs rounding; yields the value FALSE
otherwise. The value of this attribute is of
the predefined type BOOLEAN. (See 13.7.3.)

A–8

P’MACHINE_SIZE For a prefix P that denotes any type or
subtype:

Yields the number of machine bits to
be allocated for variables of the type or
subtype. This value takes into account
any padding bits used by DEC Ada when
allocating a variable on a byte boundary.
The value of this attribute is of the type
universal_integer. (See 13.7.2.)

32 P’MANTISSA For a prefix P that denotes a real subtype:

Yields the number of binary digits in the
binary mantissa of model numbers of the
subtype P. (This attribute yields the number
B of section 3.5.7 for a floating point type,
or of section 3.5.9 for a fixed point type.)
The value of this attribute is of the type
universal_integer. (See 3.5.8 and 3.5.10.)

P’NULL_PARAMETER For a prefix P that denotes any type or
subtype:

Yields an (imaginary) object of type or
subtype P allocated at (machine) address
zero. The attribute is allowed only as the
default expression of a formal parameter or
as an actual expression of a subprogram
call; in either case, the subprogram must be
imported. (See 13.9a.1.2.)

33 P’POS For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must be
a value of the base type of P. The result type
is the type universal_integer. The result
is the position number of the value of the
actual parameter. (See 3.5.5.)

A–9

34 P’POSITION For a prefix P that denotes a component of a
record object:1

Yields the offset, from the start of the first
storage unit occupied by the record, of the
first of the storage units occupied by the
component. This offset is measured in
storage units. The value of this attribute is
of the type universal_integer. (See 13.7.2.)

35 P’PRED For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must be
a value of the base type of P. The result type
is the base type of P. The result is the value
whose position number is one less than that
of X. The exception CONSTRAINT_ERROR
is raised if X equals P’BASE’FIRST.
(See 3.5.5.)

36 P’RANGE For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the first index range of P, that is, the
range P’FIRST .. P’LAST. (See 3.6.2.)

37 P’RANGE(N) For a prefix P that is appropriate for an
array type, or that denotes a constrained
array subtype:

Yields the N-th index range of P, that is, the
range P’FIRST(N) .. P’LAST(N).
(See 3.6.2.)

38 P’SAFE_EMAX For a prefix P that denotes a floating point
type or subtype:

Yields the largest exponent value in the
binary canonical form of safe numbers of
the base type of P. (This attribute yields the
number E of section 3.5.7.) The value of this
attribute is of the type universal_integer.
(See 3.5.8.)

1 See also Appendix G, AI-00258.

A–10

39 P’SAFE_LARGE For a prefix P that denotes a real type or
subtype:

Yields the largest positive safe number
of the base type of P. The value of this
attribute is of the type universal_real.
(See 3.5.8 and 3.5.10.)

40 P’SAFE_SMALL For a prefix P that denotes a real type or
subtype:

Yields the smallest positive (nonzero) safe
number of the base type of P. The value of
this attribute is of the type universal_real.
(See 3.5.8 and 3.5.10.)

41 P’SIZE For a prefix P that denotes an object:

Yields the number of bits allocated to hold
the object. The value of this attribute is of
the type universal_integer. (See 13.7.2.)

42 P’SIZE For a prefix P that denotes any type or
subtype:

Yields the minimum number of bits that
is needed by the implementation to hold
any possible object of the type or subtype
P. The value of this attribute is of the type
universal_integer. (See 13.7.2.)

43 P’SMALL For a prefix P that denotes a real subtype:

Yields the smallest positive (nonzero) model
number of the subtype P. The value of this
attribute is of the type universal_real.
(See 3.5.8 and 3.5.10.)

A–11

44 P’STORAGE_SIZE For a prefix P that denotes an access type or
subtype:

Yields the total number of storage units
reserved for the collection associated
with the base type of P. The value of this
attribute is of the type universal_integer.
(See 13.7.2.)

45 P’STORAGE_SIZE For a prefix P that denotes a task type or a
task object:

Yields the number of storage units reserved
for each activation of a task of the type P
or for the activation of the task object P.
The value of this attribute is of the type
universal_integer. (See 13.7.2.)

46 P’SUCC For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must
be a value of the base type of P. The result
type is the base type of P. The result is
the value whose position number is one
greater than that of X. The exception
CONSTRAINT_ERROR is raised if X equals
P’BASE’LAST. (See 3.5.5.)

47 P’TERMINATED For a prefix P that is appropriate for a task
type:

Yields the value TRUE if the task P
is terminated; yields the value FALSE
otherwise. The value of this attribute is of
the predefined type BOOLEAN. (See 9.9.)

P’TYPE_CLASS For a prefix P that denotes a type or
subtype:

Yields the value of the type class for the
full type of P. If P is a generic formal type,
then the value is that for the corresponding
actual subtype. The value of this attribute
is of the type TYPE_CLASS in the package
SYSTEM. (See 13.7a.2.)

A–12

48 P’VAL For a prefix P that denotes a discrete type
or subtype:

This attribute is a special function with a
single parameter X which can be of any
integer type. The result type is the base
type of P. The result is the value whose
position number is the universal_integer
value corresponding to X. The exception
CONSTRAINT_ERROR is raised if the
universal_integer value corresponding to X is
not in the range P’POS(P’BASE’FIRST) ..
P’POS(P’BASE’LAST). (See 3.5.5.)

49 P’VALUE For a prefix P that denotes a discrete type
or subtype:

This attribute is a function with a single
parameter. The actual parameter X must be
a value of the predefined type STRING. The
result type is the base type of P. Any leading
and any trailing spaces of the sequence
of characters that corresponds to X are
ignored.

For an enumeration type, if the sequence of
characters has the syntax of an enumeration
literal and if this literal exists for the base
type of P, the result is the corresponding
enumeration value. For an integer type, if
the sequence of characters has the syntax
of an integer literal, with an optional single
leading character that is a plus or minus
sign, and if there is a corresponding value
in the base type of P, the result is this
value. In any other case, the exception
CONSTRAINT_ERROR is raised.
(See 3.5.5.)

50 P’WIDTH For a prefix P that denotes a discrete
subtype:

A–13

Yields the maximum image length over
all values of the subtype P (the image is
the sequence of characters returned by
the attribute IMAGE). The value of this
attribute is of the type universal_integer.
(See 3.5.5.)

A–14

B
Predefined Language Pragmas

1 This annex defines the pragmas LIST, PAGE, and OPTIMIZE, and summarizes
the definitions given elsewhere of the remaining language-defined pragmas.

The DEC Ada pragmas IDENT and TITLE are also defined in this annex.

Pragma Meaning

AST_ENTRY On OpenVMS systems only.

Takes the simple name of a single
entry as the single argument; at most
one AST_ENTRY pragma is allowed
for any given entry. This pragma
must be used in combination with the
AST_ENTRY attribute, and is only
allowed after the entry declaration and
in the same task type specification or
single task as the entry to which it
applies. This pragma specifies that the
given entry may be used to handle an
OpenVMS asynchronous system trap
(AST) resulting from an OpenVMS
system service call. The pragma does
not affect normal use of the entry (see
9.12a).

COMMON_OBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
linker storage area) and a size as
arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a variable
declared by an earlier declarative

B–1

item of the same declarative part or
package specification. The variable
must have a size that is known at
compile time, and it must not require
implicit initialization. This pragma is
not allowed for objects declared with
a renaming declaration. This pragma
enables the shared use of objects that
are stored in overlaid storage areas
(see 13.9a.2.3).

COMPONENT_ALIGNMENT Takes an alignment choice and
optionally the simple name of an array
or record type as arguments. When no
simple name is specified, the pragma
must occur within a declarative part or
package specification, and the effect of
the pragma extends to types declared
from the place of the pragma to the
end of the innermost declarative part
or package specification in which
the pragma was declared. When a
simple name is specified, the pragma
and the type declaration must both
occur immediately within the same
declarative part, package specification,
or task specification; the declaration
must occur before the pragma. The
position of the pragma and the
restrictions on the named type are
governed by the same rules as those for
a representation clause. This pragma
specifies the kind of alignment used for
the components of the array or record
types to which it applies (see 13.1a).

2 CONTROLLED Takes the simple name of an access
type as the single argument. This
pragma is only allowed immediately
within the declarative part or package
specification that contains the
declaration of the access type; the
declaration must occur before the
pragma. This pragma is not allowed for

B–2

a derived type. This pragma specifies
that automatic storage reclamation
must not be performed for objects
designated by values of the access type,
except upon leaving the innermost
block statement, subprogram body, or
task body that encloses the access type
declaration, or after leaving the main
program (see 4.8).

3 ELABORATE Takes one or more simple names
denoting library units as arguments.
This pragma is only allowed
immediately after the context clause
of a compilation unit (before the
subsequent library unit or secondary
unit). Each argument must be
the simple name of a library unit
mentioned by the context clause.
This pragma specifies that the
corresponding library unit body
must be elaborated before the
given compilation unit. If the given
compilation unit is a subunit, the
library unit body must be elaborated
before the body of the ancestor library
unit of the subunit (see 10.5).

EXPORT_EXCEPTION On OpenVMS systems only.

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
linker global symbol), a form (ADA
or VMS), and a code (a static integer
expression that is interpreted as a
condition code) as arguments. A code
value must be specified when the
form is VMS (the default if the form
is not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative
item of the same declarative part

B–3

or package specification; it is not
allowed for an exception declared
with a renaming declaration or for an
exception declared in a generic unit.
This pragma permits an Ada exception
to be handled by programs written in
another programming language (see
13.9a.3.2).

EXPORT_FUNCTION Takes an internal name denoting
a function, and optionally takes an
external designator (the name of a
linker global symbol), parameter types,
result type, parameter mechanisms,
and result mechanism as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a function declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before
any subsequent compilation unit.
This pragma is not allowed for a
function declared with a renaming
declaration, and it is not allowed for a
generic function (it may be given for
a generic instantiation). This pragma
permits an Ada function to be called
from a program written in another
programming language (see 13.9a.1.3).

EXPORT_OBJECT Takes an internal name denoting an
object, and optionally takes an external
designator (the name of a linker global
symbol) and size option (a linker
absolute global symbol that will be
defined in the object module—useful on
OpenVMS systems only) as arguments.
This pragma is only allowed at the
place of a declarative item, and must
apply to a constant or a variable

B–4

declared by an earlier declarative
item of the same declarative part or
package specification; the declaration
must occur at the outermost level of a
library package specification or body.
The object to be exported must have
a size that is known at compile time.
This pragma is not allowed for objects
declared with a renaming declaration,
and is not allowed in a generic unit.
This pragma permits an Ada object to
be referred to by a routine written in
another programming language (see
13.9a.2.2).

EXPORT_PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms
as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed
after the procedure declaration and
before any subsequent compilation
unit. This pragma is not allowed for
a procedure declared with a renaming
declaration, and is not allowed for a
generic procedure (it may be given for
a generic instantiation). This pragma
permits an Ada routine to be called
from a program written in another
programming language (see 13.9a.1.3).

EXPORT_VALUED_PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms

B–5

as arguments. This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the
pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma is
not allowed for a procedure declared
with a renaming declaration and is not
allowed for a generic procedure (it may
be given for a generic instantiation).
This pragma permits an Ada procedure
to behave as a function that both
returns a value and causes side effects
on its parameters when it is called
from a routine written in another
programming language (see 13.9a.1.3).

FLOAT_REPRESENTATION On OpenVMS and Digital UNIX
systems only.

On OpenVMS VAX systems, takes
VAX_FLOAT as the single argument.
On OpenVMS Alpha systems, takes
either VAX_FLOAT or IEEE_FLOAT
as the single argument; the default
is VAX_FLOAT. On Digital UNIX
systems, takes IEEE_FLOAT as the
single argument. This pragma is only
allowed at the start of a compilation,
before the first compilation unit (if
any) of the compilation. It specifies the
choice of representation to be used for
the predefined floating point types in
the package STANDARD (see 3.5.7a).

B–6

IDENT Takes a string literal of 31 or fewer
characters as the single argument. The
pragma IDENT has the following form:

pragma IDENT (string_literal);

This pragma is allowed only in
the outermost declarative part or
declarative items of a compilation unit.
The given string is used to identify
the object module associated with the
compilation unit in which the pragma
IDENT occurs.

IMPORT_EXCEPTION On OpenVMS systems only.

Takes an internal name denoting an
exception, and optionally takes an
external designator (the name of a
linker global symbol), a form (ADA
or VMS), and a code (a static integer
expression that is interpreted as a
condition code) as arguments. A code
value is allowed only when the form
is VMS (the default if the form is
not specified). This pragma is only
allowed at the place of a declarative
item, and must apply to an exception
declared by an earlier declarative item
of the same declarative part or package
specification; it is not allowed for an
exception declared with a renaming
declaration. This pragma permits a
non-Ada exception (most notably, an
OpenVMS condition) to be handled by
an Ada program (see 13.9a.3.1).

IMPORT_FUNCTION Takes an internal name denoting
a function, and optionally takes an
external designator (the name of a
linker global symbol), parameter types,
result type, parameter mechanisms,
and result mechanism as arguments.
On OpenVMS systems, a first optional
parameter is also available as an

B–7

argument. The pragma INTERFACE
must be used with this pragma
(see 13.9). This pragma is only allowed
at the place of a declarative item, and
must apply to a function declared
by an earlier declarative item of the
same declarative part or package
specification. In the case of a function
declared as a compilation unit, the
pragma is only allowed after the
function declaration and before any
subsequent compilation unit. This
pragma is allowed for a function
declared with a renaming declaration;
it is not allowed for a generic function
or a generic function instantiation.
This pragma permits a non-Ada
routine to be used as an Ada function
(see 13.9a.1.1).

IMPORT_OBJECT Takes an internal name denoting
an object, and optionally takes an
external designator (the name of a
linker global symbol) and size (a linker
absolute global symbol that will be
defined in the object module—useful on
OpenVMS systems only) as arguments.
This pragma is only allowed at the
place of a declarative item, and
must apply to a variable declared
by an earlier declarative item of the
same declarative part or package
specification. The variable must have
a size that is known at compile time,
and it cannot have an initial value.
This pragma is not allowed for objects
declared with a renaming declaration.
This pragma permits storage declared
in a non-Ada routine to be referred to
by an Ada program (see 13.9a.2.1).

B–8

IMPORT_PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms as
arguments. On OpenVMS systems,
a first optional parameter is also
available as an argument. The pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative
item of the same declarative part or
package specification. In the case of a
procedure declared as a compilation
unit, the pragma is only allowed after
the procedure declaration and before
any subsequent compilation unit. This
pragma is allowed for a procedure
declared with a renaming declaration;
it is not allowed for a generic procedure
or a generic procedure instantiation.
This pragma permits a non-Ada routine
to be used as an Ada procedure
(see 13.9a.1.1).

IMPORT_VALUED_PROCEDURE Takes an internal name denoting
a procedure, and optionally takes
an external designator (the name of
a linker global symbol), parameter
types, and parameter mechanisms as
arguments. On OpenVMS systems,
a first optional parameter is also
available as an argument. The pragma
INTERFACE must be used with this
pragma (see 13.9). This pragma is only
allowed at the place of a declarative
item, and must apply to a procedure
declared by an earlier declarative item
of the same declarative part or package
specification. In the case of a procedure
declared as a compilation unit, the

B–9

pragma is only allowed after the
procedure declaration and before any
subsequent compilation unit. The first
(or only) parameter of the procedure
must be of mode out. This pragma
is allowed for a procedure declared
with a renaming declaration; it is not
allowed for a generic procedure. This
pragma permits a non-Ada routine that
returns a value and causes side effects
on its parameters to be used as an Ada
procedure (see 13.9a.1.1).

4 INLINE Takes one or more names as
arguments; each name is either the
name of a subprogram or the name of
a generic subprogram. This pragma
is only allowed at the place of a
declarative item in a declarative part
or package specification, or after a
library unit in a compilation, but before
any subsequent compilation unit. This
pragma specifies that the subprogram
bodies should be expanded inline at
each call whenever possible; in the case
of a generic subprogram, the pragma
applies to calls of its instantiations
(see 6.3.2).

INLINE_GENERIC Takes one or more names as
arguments; each name is either the
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit
in a compilation, but before any
subsequent compilation unit. Each
argument must be the simple name
of a generic subprogram or package,
or a (nongeneric) subprogram or
package that is an instance of a generic
subprogram or package declared by

B–10

an earlier declarative item of the
same declarative part or package
specification. This pragma specifies
that inline expansion of the generic
body is desired for each instantiation
of the named generic declarations or
of the particular named instances;
the pragma does not apply to calls of
instances of generic subprograms
(see 12.1a).

5 INTERFACE Takes a language name and a
subprogram name as arguments. This
pragma is allowed at the place of a
declarative item, and must apply in
this case to a subprogram declared
by an earlier declarative item of the
same declarative part or package
specification. This pragma is also
allowed for a library unit; in this case
the pragma must appear after the
subprogram declaration, and before
any subsequent compilation unit. This
pragma specifies the other language
(and thereby the calling conventions)
and informs the compiler that an
object module will be supplied for the
corresponding subprogram (see 13.9).

In DEC Ada, the pragma INTERFACE
is required in combination with the
pragmas IMPORT_FUNCTION,
IMPORT_PROCEDURE, IMPORT_
VALUED_PROCEDURE, and
INTERFACE_NAME when any of those
pragmas are used (see 13.9a.1).

INTERFACE_NAME Takes an internal name and an
external name as arguments. The
internal name may be an Ada simple
name that denotes a subprogram or
an object. If the declared entity is a
function, the internal name may be a
string literal that denotes an operator

B–11

symbol. The external name may be any
string literal; the literal is used as a
linker global symbol that is associated
with the external subprogram or
object. This pragma is only allowed
at the place of a declarative item,
and must apply to an entity declared
by an earlier declarative item of the
same declarative part or package
specification.

If this pragma applies to a subprogram,
then the pragma INTERFACE must
also apply (see 13.9). If a subprogram
has been declared as a compilation
unit, the pragma is only allowed after
the subprogram declaration and before
any subsequent compilation unit. This
pragma is allowed for subprograms
declared with a renaming declaration.
This pragma is not allowed for a
generic subprogram or a generic
subprogram instantiation.

If this pragma applies to an object,
then the size of the object must be
known at compile time. This pragma is
not allowed for an object declared with
a renaming declaration.

This pragma associates an external
symbol with the internal Ada name for
a subprogram or object (see 13.9b).

6 LIST Takes one of the identifiers ON or
OFF as the single argument. This
pragma is allowed anywhere a pragma
is allowed. It specifies that listing of
the compilation is to be continued or
suspended until a LIST pragma with
the opposite argument is given within
the same compilation. The pragma
itself is always listed if the compiler is
producing a listing.

B–12

LONG_FLOAT On OpenVMS systems only. Also,
the value of the pragma FLOAT_
REPRESENTATION must be VAX_
FLOAT.

Takes either D_FLOAT or G_FLOAT
as the single argument. The default
is G_FLOAT. This pragma is only
allowed at the start of a compilation,
before the first compilation unit
(if any) of the compilation. It specifies
the choice of representation to be used
for the predefined type LONG_FLOAT
in the package STANDARD, and for
floating point type declarations with
digits specified in the range 7 .. 15
(see 3.5.7b).

MAIN_STORAGE On OpenVMS VAX systems only.

Takes one or two nonnegative static
simple expressions of some integer type
as arguments. This pragma is only
allowed in the outermost declarative
part of a library subprogram; at most
one such pragma is allowed in a library
subprogram. It has an effect only when
the subprogram to which it applies is
used as a main program. This pragma
causes a fixed-size stack to be created
for a main task (the task associated
with a main program), and determines
the number of storage units (bytes)
to be allocated for the stack working
storage area or guard pages or both.
The value specified for either or both
the working storage area and guard
pages is rounded up to an integral
number of pages. A value of zero for
the working storage area results in the
use of a default size; a value of zero for
the guard pages results in no guard
storage. A negative value for either

B–13

working storage or guard pages causes
the pragma to be ignored (see 13.2b).

7 MEMORY_SIZE Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the
first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number MEMORY_SIZE
(see 13.7).

8 OPTIMIZE Takes one of the identifiers TIME
or SPACE as the single argument.
This pragma is only allowed within a
declarative part and it applies to the
block or body enclosing the declarative
part. It specifies whether time or space
is the primary optimization criterion.

In DEC Ada, this pragma is only
allowed immediately within a
declarative part of a body declaration.

9 PACK Takes the simple name of a record or
array type as the single argument. The
allowed positions for this pragma, and
the restrictions on the named type,
are governed by the same rules as for
a representation clause. The pragma
specifies that storage minimization
should be the main criterion when
selecting the representation of the
given type (see 13.1).

10 PAGE This pragma has no argument, and is
allowed anywhere a pragma is allowed.
It specifies that the program text which
follows the pragma should start on a
new page (if the compiler is currently
producing a listing).

PASSIVE On OpenVMS Alpha and Digital UNIX
systems only.

B–14

Takes an argument indicating whether
or not to make a containing task
passive. The default (no arguments)
indicates a desire to make the
containing task passive. This pragma
must be specified within a task
specification. The specification can be
for a task type or for a single task. (see
9.8b).

11 PRIORITY Takes a static expression of the
predefined integer subtype PRIORITY
as the single argument. This pragma is
only allowed within the specification of
a task unit or immediately within the
outermost declarative part of a main
program. It specifies the priority of the
task (or tasks of the task type) or the
priority of the main program (see 9.8).

PSECT_OBJECT On OpenVMS systems only.

Has the same syntax and the same
effect as the pragma COMMON_
OBJECT (see 13.9a.2.3).

12 SHARED Takes the simple name of a variable as
the single argument. This pragma is
allowed only for a variable declared by
an object declaration and whose type
is a scalar or access type; the variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. This pragma
specifies that every read or update of
the variable is a synchronization point
for that variable. An implementation
must restrict the objects for which
this pragma is allowed to objects
for which each of direct reading and
direct updating is implemented as an
indivisible operation (see 9.11).

SHARE_GENERIC

B–15

Takes one or more names as
arguments; each name is either the
name of a generic declaration or the
name of an instance of a generic
declaration. This pragma is only
allowed at the place of a declarative
item in a declarative part or package
specification, or after a library unit in a
compilation, but before any subsequent
compilation unit. Each argument
either must be the simple name of a
generic subprogram or package, or it
must be a (nongeneric) subprogram
or package that is an instance of a
generic subprogram or package. If the
argument is an instance of a generic
subprogram or package, then it must
be declared by an earlier declarative
item of the same declarative part or
package specification. This pragma
specifies that generic code sharing is
desired for each instantiation of the
named generic declarations or of the
particular named instances (see 12.1b).

13 STORAGE_UNIT Takes a numeric literal as the single
argument. This pragma is only allowed
at the start of a compilation, before the
first compilation unit (if any) of the
compilation. The effect of this pragma
is to use the value of the specified
numeric literal for the definition of the
named number STORAGE_UNIT
(see 13.7).

In DEC Ada, the only argument
allowed for this pragma is 8 (bits).

14 SUPPRESS Takes as arguments the identifier
of a check and optionally also the
name of either an object, a type or
subtype, a subprogram, a task unit, or
a generic unit. This pragma is only
allowed either immediately within a

B–16

declarative part or immediately within
a package specification. In the latter
case, the only allowed form is with a
name that denotes an entity (or several
overloaded subprograms) declared
immediately within the package
specification. The permission to omit
the given check extends from the
place of the pragma to the end of the
declarative region associated with the
innermost enclosing block statement or
program unit. For a pragma given in a
package specification, the permission
extends to the end of the scope of the
named entity.

If the pragma includes a name, the
permission to omit the given check
is further restricted: it is given only
for operations on the named object
or on all objects of the base type of a
named type or subtype; for calls of a
named subprogram; for activations of
tasks of the named task type; or for
instantiations of the given generic unit
(see 11.7).

SUPPRESS_ALL This pragma has no argument and is
only allowed following a compilation
unit. This pragma specifies that
all run-time checks in the unit are
suppressed (see 11.7).

15 SYSTEM_NAME Takes an enumeration literal as the
single argument. This pragma is only
allowed at the start of a compilation,
before the first compilation unit
(if any) of the compilation. The effect of
this pragma is to use the enumeration
literal with the specified identifier
for the definition of the constant
SYSTEM_NAME. This pragma is
only allowed if the specified identifier
corresponds to one of the literals of the

B–17

type NAME declared in the package
SYSTEM (see 13.7).

TASK_STORAGE Takes the simple name of a task
type and a static expression of some
integer type as arguments. This
pragma is allowed anywhere that a
task storage specification is allowed;
that is, the declaration of the task
type to which the pragma applies and
the pragma must both occur (in this
order) immediately within the same
declarative part, package specification,
or task specification. The effect of
this pragma is to use the value of the
expression as the number of storage
units (bytes) to be allocated as guard
storage. The value is rounded up to
an appropriate boundary. A negative
value causes the pragma to be ignored.
A zero value has system-specific
results: on OpenVMS VAX systems,
a value of zero results in no guard
storage; on OpenVMS Alpha and DEC
OSF/1 or ULTRIX systems, a value of
zero results in a minimal guard area
(see 13.2a).

TIME_SLICE On OpenVMS and Digital UNIX
systems only.

Takes a static expression of the
predefined fixed point type DURATION
(in the package STANDARD) as the
single argument. This pragma is only
allowed in the outermost declarative
part of a library subprogram, and
at most one such pragma is allowed
in a library subprogram. It has an
effect only when the subprogram to
which it applies is used as a main
program. This pragma causes the task
scheduler to turn time slicing on or
off and, on some systems, to limit the

B–18

amount of continuous execution time
given to a task (see 9.8a; see also the
appropriate run-time reference manual
for implementation differences across
systems).

TITLE Takes a title or a subtitle string, or
both, as arguments. The pragma
TITLE has the following form:

pragma TITLE (titling-option
[,titling-option]);

titling-option :=
[TITLE =>] string_literal

| [SUBTITLE =>] string_literal

This pragma is allowed anywhere a
pragma is allowed; the given strings
supersede the default title and/or
subtitle portions of a compilation
listing.

VOLATILE Takes the simple name of a variable
as the single argument. This pragma
is only allowed for a variable declared
by an object declaration. The variable
declaration and the pragma must
both occur (in this order) immediately
within the same declarative part or
package specification. The pragma
must appear before any occurrence of
the name of the variable other than
in an address clause or in one of the
DEC Ada pragmas IMPORT_OBJECT,
EXPORT_OBJECT, COMMON_
OBJECT, or PSECT_OBJECT. The
variable cannot be declared by a
renaming declaration. The pragma
VOLATILE specifies that the variable
may be modified asynchronously. This
pragma instructs the compiler to obtain
the value of a variable from memory
each time it is used (see 9.11).

B–19

C
Predefined Language Environment

1 This annex outlines the specification of the package STANDARD containing
all predefined identifiers in the language. The corresponding package body is
implementation-defined and is not shown.

2 The operators that are predefined for the types declared in the package
STANDARD are given in comments since they are implicitly declared. Italics
are used for pseudo-names of anonymous types (such as universal_real) and for
undefined information (such as implementation_defined and any_fixed_point_
type).

3 package STANDARD is

4 type BOOLEAN is (FALSE, TRUE);

-- The predefined relational operators for this type are
-- as follows:

-- function "=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- The predefined logical operators and the predefined logical
-- negation operator are as follows:

-- function "and" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "or" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;
-- function "xor" (LEFT, RIGHT : BOOLEAN) return BOOLEAN;

-- function "not" (RIGHT : BOOLEAN) return BOOLEAN;

5 -- The universal type universal_integer is predefined.

C–1

type LONG_INTEGER is implementation_defined;

6 type INTEGER is implementation_defined;

-- The predefined operators for this type are as follows:

-- function "=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">" (LEFT, RIGHT : INTEGER) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : INTEGER) return BOOLEAN;

-- function "+" (RIGHT : INTEGER) return INTEGER;
-- function "-" (RIGHT : INTEGER) return INTEGER;
-- function "abs" (RIGHT : INTEGER) return INTEGER;

-- function "+" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "-" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "*" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "/" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "rem" (LEFT, RIGHT : INTEGER) return INTEGER;
-- function "mod" (LEFT, RIGHT : INTEGER) return INTEGER;

-- function "**" (LEFT : INTEGER;
-- RIGHT : INTEGER) return INTEGER;

7 -- An implementation may provide additional predefined integer types.
-- It is recommended that the names of such additional types end
-- with INTEGER as in SHORT_INTEGER or LONG_INTEGER. The specifi-
-- cation of each operator for the type universal_integer, or for
-- any additional predefined integer type, is obtained by replacing
-- INTEGER by the name of the type in the specification of the
-- corresponding operator of the type INTEGER, except for the
-- right operand of the exponentiating operator.

type SHORT_INTEGER is implementation_defined;
type SHORT_SHORT_INTEGER is implementation_defined;

8 -- The universal type universal_real is predefined.

9 type FLOAT is implementation_defined;

-- The predefined operators for this type are as follows:

-- function "=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "<" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function ">" (LEFT, RIGHT : FLOAT) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : FLOAT) return BOOLEAN;

-- function "+" (RIGHT : FLOAT) return FLOAT;
-- function "-" (RIGHT : FLOAT) return FLOAT;
-- function "abs" (RIGHT : FLOAT) return FLOAT;

C–2

-- function "+" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "-" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "*" (LEFT, RIGHT : FLOAT) return FLOAT;
-- function "/" (LEFT, RIGHT : FLOAT) return FLOAT;

-- function "**" (LEFT : FLOAT; RIGHT : INTEGER) return FLOAT;

10 -- An implementation may provide additional predefined floating point
-- types. It is recommended that the names of such additional types
-- end with FLOAT as in SHORT_FLOAT or LONG_FLOAT. The specification
-- of each operator for the type universal_real, or for any additional
-- predefined floating point type, is obtained by replacing FLOAT by
-- the name of the type in the specification of the corresponding
-- operator of the type FLOAT.

type LONG_FLOAT is implementation_defined;
type LONG_LONG_FLOAT is implementation_defined;

11 -- In addition, the following operators are predefined for
-- universal types:

-- function "*" (LEFT : universal_integer;
-- RIGHT : universal_real) return universal_real;
-- function "*" (LEFT : universal_real;
-- RIGHT : universal_integer) return universal_real;
-- function "/" (LEFT : universal_real;

type {universal_fixed} is {delta unbounded range unbounded .. unbounded};

-- The type universal_fixed is predefined. The only operators
-- declared for this type are

-- function "*" (LEFT : any_fixed_point_type;
-- RIGHT : any_fixed_point_type)
-- return universal_fixed;
-- function "/" (LEFT : any_fixed_point_type;
-- RIGHT : any_fixed_point_type)
-- return universal_fixed;

12 -- The following characters form the standard Latin-1 character set.
-- Character literals corresponding to control characters are not
-- identifiers; they are indicated in italics in this definition.

C–3

13 type CHARACTER is

(nul, soh, stx, etx, eot, enq, ack, bel,
bs, ht, lf, vt, ff, cr, so, si,
dle, dc1, dc2, dc3, dc4, nak, syn, etb,
can, em, sub, esc, fs, gs, rs, us,
’ ’, ’!’, ’"’, ’#’, ’$’, ’%’, ’&’, ’’’,
’(’, ’)’, ’*’, ’+’, ’,’, ’-’, ’.’, ’/’,
’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’,
’8’, ’9’, ’:’, ’;’, ’<’, ’=’, ’>’, ’?’,

’@’, ’A’, ’B’, ’C’, ’D’, ’E’, ’F’, ’G’,
’H’, ’I’, ’J’, ’K’, ’L’, ’M’, ’N’, ’O’,
’P’, ’Q’, ’R’, ’S’, ’T’, ’U’, ’V’, ’W’,
’X’, ’Y’, ’Z’, ’[’, ’\’, ’]’, ’^’, ’_’,

’‘’, ’a’, ’b’, ’c’, ’d’, ’e’, ’f’, ’g’,
’h’, ’i’, ’j’, ’k’, ’l’, ’m’, ’n’, ’o’,
’p’, ’q’, ’r’, ’s’, ’t’, ’u’, ’v’, ’w’,
’x’, ’y’, ’z’, ’{’, ’|’, ’}’, ’~’, del,

x80, x81, bph, nbh, ind, nel, ssa, esa,
hts, htj, vts, pld, plu, ri, ss2, ss3,
dcs, pu1, pu2, sts, cch, mw, spa, epa,
sos, x99, sci, csi, st, osc, pm, apc,

’ ’, ’¡’, ’¢’, ’£’, ’¤’, ’¥’, ’¦’, ’§’,
’¨’, ’©’, ’ª’, ’«’, ’¬’, ’-’, ’®’, ’¯’,
’°’, ’±’, ’²’, ’³’, ’´’, ’µ’, ’¶’, ’·’,
’¸’, ’¹’, ’º’, ’»’, ’¼’, ’½’, ’¾’, ’¿’,

’À’, ’Á’, ’Â’, ’Ã’, ’Ä’, ’Å’, ’Æ’, ’Ç’,
’È’, ’É’, ’Ê’, ’Ë’, ’Ì’, ’Í’, ’Î’, ’Ï’,
’Ð’, ’Ñ’, ’Ò’, ’Ó’, ’Ô’, ’Õ’, ’Ö’, ’� ’,
’Ø’, ’Ù’, ’Ú’, ’Û’, ’Ü’, ’Ý’, ’Þ’, ’ß’,

’à’, ’á’, ’â’, ’ã’, ’ä’, ’å’, ’æ’, ’ç’,
’è’, ’é’, ’ê’, ’ë’, ’ì’, ’í’, ’î’, ’ï’,
’ð’, ’ñ’, ’ò’, ’ó’, ’ô’, ’õ’, ’ö’, ’� ’,
’ø’, ’ù’, ’ú’, ’û’, ’ü’, ’ý’, ’þ’, ’ÿ’);

-- for CHARACTER use -- 256 Latin-1 character set without holes
-- (0, 1, 2, 3, 4, 5, ..., 253, 254, 255);

for CHARACTER’SIZE use 8;

C–4

14 -- The predefined operators for the type CHARACTER are the same
-- as for any enumeration type.

15 package ASCII is

-- Control characters:

NUL : constant CHARACTER := nul;
SOH : constant CHARACTER := soh;
STX : constant CHARACTER := stx;
ETX : constant CHARACTER := etx;
EOT : constant CHARACTER := eot;
ENQ : constant CHARACTER := enq;
ACK : constant CHARACTER := ack;
BEL : constant CHARACTER := bel;
BS : constant CHARACTER := bs;
HT : constant CHARACTER := ht;
LF : constant CHARACTER := lf;
VT : constant CHARACTER := vt;
FF : constant CHARACTER := ff;
CR : constant CHARACTER := cr;
SO : constant CHARACTER := so;
SI : constant CHARACTER := si;
DLE : constant CHARACTER := dle;
DC1 : constant CHARACTER := dc1;
DC2 : constant CHARACTER := dc2;
DC3 : constant CHARACTER := dc3;
DC4 : constant CHARACTER := dc4;
NAK : constant CHARACTER := nak;
SYN : constant CHARACTER := syn;
ETB : constant CHARACTER := etb;
CAN : constant CHARACTER := can;
EM : constant CHARACTER := em;
SUB : constant CHARACTER := sub;
ESC : constant CHARACTER := esc;
FS : constant CHARACTER := fs;
GS : constant CHARACTER := gs;
RS : constant CHARACTER := rs;
US : constant CHARACTER := us;
DEL : constant CHARACTER := del;

C–5

-- Other characters:

EXCLAM : constant CHARACTER := ’!’;
QUOTATION : constant CHARACTER := ’"’;
SHARP : constant CHARACTER := ’#’;
DOLLAR : constant CHARACTER := ’$’;
PERCENT : constant CHARACTER := ’%’;
AMPERSAND : constant CHARACTER := ’&’;
COLON : constant CHARACTER := ’:’;
SEMICOLON : constant CHARACTER := ’;’;
QUERY : constant CHARACTER := ’?’;
AT_SIGN : constant CHARACTER := ’@’;
L_BRACKET : constant CHARACTER := ’[’;
BACK_SLASH : constant CHARACTER := ’\’;
R_BRACKET : constant CHARACTER := ’]’;
CIRCUMFLEX : constant CHARACTER := ’^’;
UNDERLINE : constant CHARACTER := ’_’;
GRAVE : constant CHARACTER := ’‘’;
L_BRACE : constant CHARACTER := ’{’;
BAR : constant CHARACTER := ’|’;
R_BRACE : constant CHARACTER := ’}’;
TILDE : constant CHARACTER := ’~’;

-- Lower case letters:

LC_A : constant CHARACTER := ’a’;
...
LC_Z : constant CHARACTER := ’z’;

end ASCII;

16 -- Predefined subtypes:

subtype NATURAL is INTEGER range 0 .. INTEGER’LAST;
subtype POSITIVE is INTEGER range 1 .. INTEGER’LAST;

17 -- Predefined string type:

type STRING is array(POSITIVE range <>) of CHARACTER;
pragma PACK(STRING);

18 -- The predefined operators for this type are as follows:

-- function "=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function "<=" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">" (LEFT, RIGHT : STRING) return BOOLEAN;
-- function ">=" (LEFT, RIGHT : STRING) return BOOLEAN;

C–6

-- function "&" (LEFT : STRING;
-- RIGHT : STRING) return STRING;
-- function "&" (LEFT : CHARACTER;
-- RIGHT : STRING) return STRING;
-- function "&" (LEFT : STRING;
-- RIGHT : CHARACTER) return STRING;
-- function "&" (LEFT : CHARACTER;
-- RIGHT : CHARACTER) return STRING;

19 type DURATION is delta implementation_defined
range implementation_defined;

for DURATION’SIZE use 32;

-- The predefined operators for the type DURATION are the same
-- as for any fixed point type.

20 -- The predefined exceptions:

CONSTRAINT_ERROR : exception;
NUMERIC_ERROR : exception;
PROGRAM_ERROR : exception;
STORAGE_ERROR : exception;
TASKING_ERROR : exception;

end STANDARD;

21 Certain aspects of the predefined entities cannot be completely described in
the language itself. For example, although the enumeration type BOOLEAN
can be written showing the two enumeration literals FALSE and TRUE, the
short-circuit control forms cannot be expressed in the language.

Note:
22 The language definition predefines the following library units:1

- The package CALENDAR (see 9.6)

- The package SYSTEM (see 13.7)

- The package MACHINE_CODE (if provided) (see 13.8)

- The generic procedure UNCHECKED_DEALLOCATION (see 13.10.1)

- The generic function UNCHECKED_CONVERSION (see 13.10.2)

- The generic package SEQUENTIAL_IO (see 14.2.3)

1 See also Appendix G, AI-00355.

C–7

- The generic package DIRECT_IO (see 14.2.5)

- The package TEXT_IO (see 14.3.10)

- The package IO_EXCEPTIONS (see 14.5)

- The package LOW_LEVEL_IO (see 14.6)

C–8

D
Glossary

This appendix is informative and is not part of the standard definition of the
Ada programming language. Italicized terms in the abbreviated descriptions
below either have glossary entries themselves or are described in entries for
related terms.

Absolute global symbol (OpenVMS term).

An absolute global symbol is a global symbol with a fixed numerical value. The
value is not relocatable. It is not changed during linking operations.

Accept statement.

See entry.

Access type.

A value of an access type (an access value) is either a null value, or a value
that designates an object created by an allocator. The designated object can
be read and updated via the access value. The definition of an access type
specifies the type of the objects designated by values of the access type. See
also collection.

Actual parameter.

See parameter.

Aggregate.

The evaluation of an aggregate yields a value of a composite type. The value
is specified by giving the value of each of the components. Either positional
association or named association may be used to indicate which value is
associated with which component.

Allocator.

The evaluation of an allocator creates an object and returns a new access value
which designates the object.

D–1

Array type.

A value of an array type consists of components which are all of the
same subtype (and hence, of the same type). Each component is uniquely
distinguished by an index (for a one-dimensional array) or by a sequence
of indices (for a multidimensional array). Each index must be a value of a
discrete type and must lie in the correct index range.

Assignment.

Assignment is the operation that replaces the current value of a variable by a
new value. An assignment statement specifies a variable on the left, and on the
right, an expression whose value is to be the new value of the variable.

Asynchronous system trap (OpenVMS term).

An asynchronous system trap (AST) is an interrupt mechanism that is used
by some OpenVMS system services to transfer control to a user-specified
procedure when an asynchronous event occurs during a process’s execution. In
DEC Ada, control can be passed to a task entry that handles the event.

Attribute.

The evaluation of an attribute yields a predefined characteristic of a named
entity; some attributes are functions.

Bit array.

A bit array is an array whose components are not byte aligned, yet which is
also not a bit string.

Bit string.

A bit string is any one-dimensional array of a discrete type whose components
occupy successive single bits.

Block statement.

A block statement is a single statement that may contain a sequence of
statements. It may also include a declarative part, and exception handlers;
their effects are local to the block statement.

Body.

A body defines the execution of a subprogram, package, or task. A body stub
is a form of body that indicates that this execution is defined in a separately
compiled subunit.

D–2

Box.

A box is an Ada delimiter (<>) used to denote an undefined discrete range for
array types and generic formal types.

Collection.

A collection is the entire set of objects created by evaluation of allocators for an
access type.

Compilation unit.

A compilation unit is the declaration or the body of a program unit, presented
for compilation as an independent text. It is optionally preceded by a context
clause, naming other compilation units upon which it depends by means of one
or more with clauses.

Component.

A component is a value that is a part of a larger value, or an object that is part
of a larger object.

Composite type.

A composite type is one whose values have components. There are two kinds of
composite type: array types and record types.

Condition (OpenVMS term).

An OpenVMS exception condition is a hardware- or software-detected event
that alters the normal flow of instruction execution.

Condition value (OpenVMS term).

A condition value is a 32-bit value used to uniquely identify an OpenVMS
exception condition.

Constant.

See object.

Constraint.

A constraint determines a subset of the values of a type. A value in that subset
satisfies the constraint.

Context clause.

See compilation unit.

D–3

Contiguous array.

A contiguous array is one in which the storage of the array components is
allocated without any separation between adjacent components.

Declaration.

A declaration associates an identifier (or some other notation) with an entity.
This association is in effect within a region of text called the scope of the
declaration. Within the scope of a declaration, there are places where it is
possible to use the identifier to refer to the associated declared entity. At such
places the identifier is said to be a simple name of the entity; the name is said
to denote the associated entity.

Declarative Part.

A declarative part is a sequence of declarations. It may also contain related
information such as subprogram bodies and representation clauses.

Denote.

See declaration.

Derived Type.

A derived type is a type whose operations and values are replicas of those of an
existing type. The existing type is called the parent type of the derived type.

Descriptor.

A descriptor is a data structure used for parameter passing. The descriptor
contains the address, data type, and size of the parameter, as well as other
information needed to fully describe the data being passed.

Designate.

See access type, task.

Direct visibility.

See visibility.

Discrete Type.

A discrete type is a type which has an ordered set of distinct values. The
discrete types are the enumeration and integer types. Discrete types are used
for indexing and iteration, and for choices in case statements and record
variants.

D–4

Discriminant.

A discriminant is a distinguished component of an object or value of a record
type. The subtypes of other components, or even their presence or absence, may
depend on the value of the discriminant.

Discriminant constraint.

A discriminant constraint on a record type or private type specifies a value for
each discriminant of the type.

Elaboration.

The elaboration of a declaration is the process by which the declaration
achieves its effect (such as creating an object); this process occurs during
program execution.

Entry.

An entry is used for communication between tasks. Externally, an entry is
called just as a subprogram is called; its internal behavior is specified by one
or more accept statements specifying the actions to be performed when the
entry is called.

Enumeration type.

An enumeration type is a discrete type whose values are represented by
enumeration literals which are given explicitly in the type declaration. These
enumeration literals are either identifiers or character literals.

Evaluation.

The evaluation of an expression is the process by which the value of the
expression is computed. This process occurs during program execution.

Exception.

An exception is an error situation which may arise during program execution.
To raise an exception is to abandon normal program execution so as to signal
that the error has taken place. An exception handler is a portion of program
text specifying a response to the exception. Execution of such a program text
is called handling the exception.

Expanded name.

An expanded name denotes an entity which is declared immediately within
some construct. An expanded name has the form of a selected component:
the prefix denotes the construct (a program unit; or a block, loop, or accept
statement); the selector is the simple name of the entity.

D–5

Expression.

An expression defines the computation of a value.

File descriptor (Digital UNIX term).

A file descriptor is a nonnegative integer that is assigned to each file by
the Digital UNIX system. File descriptors can be used to identify files in
input-output operations. The file descriptor 0 always refers to Digital UNIX
standard input; the file descriptor 1 to standard output, and the file descriptor
2 to standard error.

Fixed point type.

See real type.

Floating point type.

See real type.

Formal parameter.

See parameter.

Function.

See subprogram.

Generic unit.

A generic unit is a template either for a set of subprograms or for a set of
packages. A subprogram or package created using the template is called an
instance of the generic unit. A generic instantiation is the kind of declaration
that creates an instance. A generic unit is written as a subprogram or package
but with the specification prefixed by a generic formal part which may declare
generic formal parameters. A generic formal parameter is either a type, a
subprogram, or an object. A generic unit is one of the kinds of program unit.

Global symbol.

A symbol defined in an OpenVMS module (such as a source, object, or image
module) or Digital UNIX object file that is potentially available for reference by
another module or object file. The linker resolves global symbols. (The linker
matches references with definitions).

Handler.

See exception.

D–6

Index.

See array type.

Index constraint.

An index constraint for an array type specifies the lower and upper bounds for
each index range of the array type.

Indexed component.

An indexed component denotes a component in an array. It is a form of name
containing expressions which specify the values of the indices of the array
component. An indexed component may also denote an entry in a family of
entries.

Instance.

See generic unit.

Instantiation.

An instantiation is the creation of a particular instance of a generic unit. In
other words, the template defined by the generic package or subprogram is
named, and all generic parameters are replaced by actual parameters.

Integer type.

An integer type is a discrete type whose values represent all integer numbers
within a specific range.

Lexical element.

A lexical element is an identifier, a literal, a delimiter, or a comment.

Limited type.

A limited type is a type for which neither assignment nor the predefined
comparison for equality is implicitly declared. All task types are limited. A
private type can be defined to be limited. An equality operator can be explicitly
declared for a limited type.

Linker.

A system program that creates an executable program from one or more object
modules (OpenVMS) or object files (Digital UNIX) produced by a language
compiler or assembler. The linker resolves external references, acquires
referenced library routines, and performs other processing required to create
executable images (OpenVMS) or object files (Digital UNIX).

D–7

Literal.

A literal represents a value literally, that is, by means of letters and other
characters. A literal is either a numeric literal, an enumeration literal, a
character literal, or a string literal.

Membership test.

A membership test is a basic operation that indicates whether a given value is
contained in a given range or subtype.

Mode.

See parameter.

Model number.

A model number is an exactly representable value of a real type. Operations
of a real type are defined in terms of operations on the model numbers of the
type. The properties of the model numbers and of their operations are the
minimal properties preserved by all implementations of the real type.

Name.

A name is a construct that stands for an entity: it is said that the name
denotes the entity, and that the entity is the meaning of the name. See also
declaration, prefix.

Named association.

A named association specifies the association of an item with one or more
positions in a list, by naming the positions.

Noncontiguous array.

A noncontiguous array is a descriptor class. A noncontiguous array is one
in which the storage of the array components may be allocated with a fixed,
nonzero number of bytes separating logically adjacent components.

Object.

An object contains a value. A program creates an object either by elaborating
an object declaration or by evaluating an allocator. The declaration or allocator
specifies a type for the object: the object can only contain values of that type.

Object file (Digital UNIX term).

The binary output of a Digital UNIX language processor (such as an assembler
or compiler), which can either be executed or be used as input to the linker.

D–8

Object module (OpenVMS term).

The binary output of an OpenVMS language processor (such as an assembler
or compiler), which is used as input to the OpenVMS Linker.

Operation.

An operation is an elementary action associated with one or more types. It is
either implicitly declared by the declaration of the type, or it is a subprogram
that has a parameter or result of the type.

Operator.

An operator is an operation which has one or two operands. A unary operator
is written before an operand; a binary operator is written between two
operands. This notation is a special kind of function call. An operator can
be declared as a function. Many operators are implicitly declared by the
declaration of a type (for example, most type declarations imply the declaration
of the equality operator for values of the type).

Overloading.

An identifier can have several alternative meanings at a given point in the
program text: this property is called overloading. For example, an overloaded
enumeration literal can be an identifier that appears in the definitions of two
or more enumeration types. The effective meaning of an overloaded identifier
is determined by the context. Subprograms, aggregates, allocators, and string
literals can also be overloaded.

Packable.

A type is packable if storage for objects of the type can be aligned on an
arbitrary bit boundary.

Package.

A package specifies a group of logically related entities, such as types, objects
of those types, and subprograms with parameters of those types. It is written
as a package declaration and a package body. The package declaration
has a visible part, containing the declarations of all entities that can be
explicitly used outside the package. It may also have a private part containing
structural details that complete the specification of the visible entities, but
which are irrelevant to the user of the package. The package body contains
implementations of subprograms (and possibly tasks as other packages) that
have been specified in the package declaration. A package is one of the kinds
of program unit.

D–9

Parameter.

A parameter is one of the named entities associated with a subprogram, entry,
or generic unit, and used to communicate with the corresponding subprogram
body, accept statement or generic body. A formal parameter is an identifier
used to denote the named entity within the body. An actual parameter is
the particular entity associated with the corresponding formal parameter
by a subprogram call, entry call, or generic instantiation. The mode of a
formal parameter specifies whether the associated actual parameter supplies
a value for the formal parameter, or the formal supplies a value for the
actual parameter, or both. The association of actual parameters with formal
parameters can be specified by named associations, by positional associations,
or by a combination of these.

Parent type.

See derived type.

Positional association.

A positional association specifies the association of an item with a position in a
list, by using the same position in the text to specify the item.

Pragma.

A pragma conveys information to the compiler.

Prefix.

A prefix is used as the first part of certain kinds of name. A prefix is either a
function call or a name.

Private part.

See package.

Private type.

A private type is a type whose structure and set of values are clearly defined,
but not directly available to the user of the type. A private type is known
only by its discriminants (if any) and by the set of operations defined for it. A
private type and its applicable operations are defined in the visible part of a
package, or in a generic formal part. Assignment, equality, and inequality are
also defined for private types, unless the private type is limited.

Procedure.

See subprogram.

D–10

Program.

A program is composed of a number of compilation units, one of which is a
subprogram called the main program. Execution of the program consists of
execution of the main program, which may invoke subprograms declared in the
other compilation units of the program.

Program section (OpenVMS term).

A program section (psect) is a portion of a program with a given OpenVMS
protection and set of storage management attributes. Program sections with
the same attributes are gathered by the OpenVMS Linker to form an image
section.

Program unit.

A program unit is any one of a generic unit, package, subprogram, or task unit.

Psect (OpenVMS term).

See program section.

Qualified expression.

A qualified expression is an expression preceded by an indication of its type or
subtype. Such qualification is used when, in its absence, the expression might
be ambiguous (for example as a consequence of overloading).

Raising an exception.

See exception.

Range.

A range is a contiguous set of values of a scalar type. A range is specified by
giving the lower and upper bounds for the values. A value in the range is said
to belong to the range.

Range constraint.

A range constraint of a type specifies a range, and thereby determines the
subset of the values of the type that belong to the range.

Real type.

A real type is a type whose values represent approximations to the real
numbers. There are two kinds of real type: fixed point types are specified
by absolute error bound; floating point types are specified by a relative error
bound expressed as a number of significant decimal digits.

D–11

Record type.

A value of a record type consists of components which are usually of different
types or subtypes. For each component of a record value or record object, the
definition of the record type specifies an identifier that uniquely determines
the component within the record.

Renaming declaration.

A renaming declaration declares another name for an entity.

Rendezvous.

A rendezvous is the interaction that occurs between two parallel tasks when
one task has called an entry of the other task, and a corresponding accept
statement is being executed by the other task on behalf of the calling task.

Representation clause.

A representation clause directs the compiler in the selection of the mapping
of a type, an object, or a task onto features of the underlying machine that
executes a program. In some cases, representation clauses completely specify
the mapping; in other cases, they provide criteria for choosing a mapping.

Satisfy.

See constraint, subtype.

Scalar type.

An object or value of a scalar type does not have components. A scalar type is
either a discrete type or a real type. The values of a scalar type are ordered.

Scope.

See declaration.

Selected component.

A selected component is a name consisting of a prefix and of an identifier
called the selector. Selected components are used to denote record components,
entries, and objects designated by access values; they are also used as expanded
names.

Selector.

See selected component.

D–12

Short circuit control form.

A short circuit control form is one of the reserved word pairs and then and or
else. Each has the same precedence as a logical operator.

Signal (Digital UNIX term).

A Digital UNIX signal is a hardware- or software-detected event that alters
the normal flow of instruction execution.

Simple name.

See declaration, name.

Simple record.

A simple record type is one that does not have a variant part and in which any
constraint for each component and subcomponent is static. A simple record
subtype is either a simple record type or a static constrained subtype of a
record type (with discriminants) in which any constraint for each component
and subcomponent of the record type is static.

Statement.

A statement specifies one or more actions to be performed during the execution
of a program.

Status value (OpenVMS term).

A status value is the condition value returned by an OpenVMS routine to
indicate whether or not the routine completed successfully.

Subcomponent.

A subcomponent is either a component, or a component of another
subcomponent.

Subprogram.

A subprogram is either a procedure or a function. A procedure specifies a
sequence of actions and is invoked by a procedure call statement. A function
specifies a sequence of actions and also returns a value called the result, and
so a function call is an expression. A subprogram is written as a subprogram
declaration, which specifies its name, formal parameters, and (for a function)
its result; and a subprogram body which specifies the sequence of actions. The
subprogram call specifies the actual parameters that are to be associated with
the formal parameters. A subprogram is one of the kinds of program unit.

D–13

Subtype.

A subtype of a type characterizes a subset of the values of the type. The subset
is determined by a constraint on the type. Each value in the set of values of
a subtype belongs to the subtype and satisfies the constraint determining the
subtype.

Subunit.

See body.

Task.

A task operates in parallel with other parts of the program. It is written as
a task specification (which specifies the name of the task and the names and
formal parameters of its entries), and a task body which defines its execution.
A task unit is one of the kinds of program unit. A task type is a type that
permits the subsequent declaration of any number of similar tasks of the type.
A value of a task type is said to designate a task.

Thread.

A single, sequential flow of control within a program. Within a single thread,
there is a single point of execution. Most traditional programs consist of a
single thread.

Type.

A type characterizes both a set of values, and a set of operations applicable to
those values. A type definition is a language construct that defines a type. A
particular type is either an access type, an array type, a private type, a record
type, a scalar type, or a task type.

Use clause.

A use clause achieves direct visibility of declarations that appear in the visible
parts of named packages.

Variable.

See object.

Variant part.

A variant part of a record specifies alternative record components, depending
on a discriminant of the record. Each value of the discriminant establishes a
particular alternative of the variant part.

D–14

Visibility.

At a given point in a program text, the declaration of an entity with a certain
identifier is said to be visible if the entity is an acceptable meaning for an
occurrence at that point of the identifier. The declaration is visible by selection
at the place of the selector in a selected component or at the place of the name
in a named association. Otherwise, the declaration is directly visible, that is, if
the identifier alone has that meaning.

Visible part.

See package.

With clause.

See compilation unit.

D–15

E
Syntax Summary

Note

This syntax summary is not part of the standard definition of the Ada
programming language.

2.1
graphic_character ::= basic_graphic_character

| lower_case_letter | other_special_character

basic_graphic_character ::=
upper_case_letter | digit

| special_character | space_character

basic_character ::=
basic_graphic_character | format_effector

2.3
identifier ::=

letter {[underline] letter_or_digit}

letter_or_digit ::= letter | digit

letter ::= upper_case_letter | lower_case_letter

2.4
numeric_literal ::= decimal_literal | based_literal

2.4.1

decimal_literal ::= integer [.integer] [exponent]

integer ::= digit {[underline] digit}

exponent ::= E [+] integer | E - integer

E–1

2.4.2

based_literal ::=
base # based_integer [.based_integer] # [exponent]

base ::= integer

based_integer ::=
extended_digit {[underline] extended_digit}

extended_digit ::= digit | letter

2.5
character_literal ::= ’graphic_character’

2.6
string_literal ::= "{graphic_character}"

2.8
pragma ::=

pragma identifier [(argument_association
{, argument_association})];

argument_association ::=
[argument_identifier =>] name

| [argument_identifier =>] expression

3.1
basic_declaration ::=

object_declaration | number_declaration
| type_declaration | subtype_declaration
| subprogram_declaration | package_declaration
| task_declaration | generic_declaration
| exception_declaration | generic_instantiation
| renaming_declaration | deferred_constant_declaration

3.2
object_declaration ::=

identifier_list : [constant] subtype_indication
[:= expression];

| identifier_list : [constant] constrained_array_definition
[:= expression];

number_declaration ::=
identifier_list : constant := universal_static_expression;

identifier_list ::= identifier {, identifier}

E–2

3.3.1

type_declaration ::= full_type_declaration
| incomplete_type_declaration | private_type_declaration

full_type_declaration ::=
type identifier [discriminant_part] is type_definition;

type_definition ::=
enumeration_type_definition | integer_type_definition

| real_type_definition | array_type_definition
| record_type_definition | access_type_definition
| derived_type_definition

3.3.2

subtype_declaration ::=
subtype identifier is subtype_indication;

subtype_indication ::= type_mark [constraint]

type_mark ::= type_name | subtype_name

constraint ::=
range_constraint | floating_point_constraint

| fixed_point_constraint | index_constraint
| discriminant_constraint

3.4
derived_type_definition ::= new subtype_indication

3.5
range_constraint ::= range range

range ::= range_attribute
| simple_expression .. simple_expression

3.5.1

enumeration_type_definition ::=
(enumeration_literal_specification

{, enumeration_literal_specification})

enumeration_literal_specification ::= enumeration_literal

enumeration_literal ::= identifier | character_literal

3.5.4

integer_type_definition ::= range_constraint

3.5.6

real_type_definition ::=
floating_point_constraint | fixed_point_constraint

E–3

3.5.7

floating_point_constraint ::=
floating_accuracy_definition [range_constraint]

floating_accuracy_definition ::=
digits static_simple_expression

3.5.9

fixed_point_constraint ::=
fixed_accuracy_definition [range_constraint]

fixed_accuracy_definition ::=
delta static_simple_expression

3.6
array_type_definition ::=

unconstrained_array_definition
| constrained_array_definition

unconstrained_array_definition ::=
array(index_subtype_definition

{, index_subtype_definition}) of
component_subtype_indication

constrained_array_definition ::=
array index_constraint of component_subtype_indication

index_subtype_definition ::= type_mark range <>

index_constraint ::= (discrete_range {, discrete_range})

discrete_range ::= discrete_subtype_indication | range

3.7
record_type_definition ::=

record
component_list

end record

component_list ::=
component_declaration {component_declaration}

| {component_declaration} variant_part
| null;

component_declaration ::=
identifier_list : component_subtype_definition

[:= expression];

component_subtype_definition ::= subtype_indication

E–4

3.7.1

discriminant_part ::=
(discriminant_specification {; discriminant_specification})

discriminant_specification ::=
identifier_list : type_mark [:= expression]

3.7.2

discriminant_constraint ::=
(discriminant_association {, discriminant_association})

discriminant_association ::=
[discriminant_simple_name {| discriminant_simple_name} =>]

expression

3.7.3

variant_part ::=
case discriminant_simple_name is

variant
{variant}

end case;

variant ::=
when choice {| choice} =>

component_list

choice ::= simple_expression
| discrete_range | others | component_simple_name

3.8
access_type_definition ::= access subtype_indication

3.8.1

incomplete_type_declaration ::=
type identifier [discriminant_part];

3.9
declarative_part ::=

{basic_declarative_item} {later_declarative_item}

basic_declarative_item ::= basic_declaration
| representation_clause | use_clause

later_declarative_item ::= body
| subprogram_declaration | package_declaration
| task_declaration | generic_declaration
| use_clause | generic_instantiation

body ::= proper_body | body_stub

E–5

proper_body ::=
subprogram_body | package_body | task_body

4.1
name ::= simple_name

| character_literal | operator_symbol
| indexed_component | slice
| selected_component | attribute

simple_name ::= identifier

prefix ::= name | function_call

4.1.1

indexed_component ::= prefix(expression {, expression})

4.1.2

slice ::= prefix(discrete_range)

4.1.3

selected_component ::= prefix.selector

selector ::= simple_name
| character_literal | operator_symbol | all

4.1.4

attribute ::= prefix’attribute_designator

attribute_designator ::=
simple_name [(universal_static_expression)]

4.3
aggregate ::=

(component_association {, component_association})

component_association ::=
[choice {| choice} =>] expression

4.4
expression ::=

relation {and relation} | relation {and then relation}
| relation {or relation} | relation {or else relation}
| relation {xor relation}

relation ::=
simple_expression [relational_operator simple_expression]

| simple_expression [not] in range
| simple_expression [not] in type_mark

simple_expression ::=
[unary_adding_operator] term {binary_adding_operator term}

E–6

term ::= factor {multiplying_operator factor}

factor ::= primary [** primary] | abs primary | not primary

primary ::=
numeric_literal | null | aggregate | string_literal

| name | allocator | function_call | type_conversion
| qualified_expression | (expression)

4.5
logical_operator ::= and | or | xor

relational_operator ::= = | /= | < | <= |> | >=

binary_adding_operator ::= + | - | &

unary_adding_operator ::= + | -

multiplying_operator ::= * | / | mod | rem

highest_precedence_operator ::= ** | abs | not

4.6
type_conversion ::= type_mark(expression)

4.7
qualified_expression ::=

type_mark’(expression) | type_mark’aggregate

4.8
allocator ::=

new subtype_indication | new qualified_expression

5.1
sequence_of_statements ::= statement {statement}

statement ::=
{label} simple_statement | {label} compound_statement

simple_statement ::= null_statement
| assignment_statement | procedure_call_statement
| exit_statement | return_statement
| goto_statement | entry_call_statement
| delay_statement | abort_statement
| raise_statement | code_statement

compound_statement ::=
if_statement | case_statement

| loop_statement | block_statement
| accept_statement | select_statement

E–7

label ::= <<label_simple_name>>

null_statement ::= null;

5.2
assignment_statement ::=

variable_name := expression;

5.3
if_statement ::=

if condition then
sequence_of_statements

{elsif condition then
sequence_of_statements}

[else
sequence_of_statements]

end if;

condition ::= boolean_expression

5.4
case_statement ::=

case expression is
case_statement_alternative
{case_statement_alternative}

end case;

case_statement_alternative ::=
when choice {| choice } =>

sequence_of_statements

5.5
loop_statement ::=

[loop_simple_name:]
[iteration_scheme] loop

sequence_of_statements
end loop [loop_simple_name];

iteration_scheme ::= while condition
| for loop_parameter_specification

E–8

loop_parameter_specification ::=
identifier in [reverse] discrete_range

5.6
block_statement ::=

[block_simple_name:]
[declare

declarative_part]
begin

sequence_of_statements
[exception

exception_handler
{exception_handler}]

end [block_simple_name];

5.7
exit_statement ::=

exit [loop_name] [when condition];

5.8
return_statement ::= return [expression];

5.9
goto_statement ::= goto label_name;

6.1
subprogram_declaration ::= subprogram_specification;

subprogram_specification ::=
procedure identifier [formal_part]

| function designator [formal_part] return type_mark

designator ::= identifier | operator_symbol

operator_symbol ::= string_literal

formal_part ::=
(parameter_specification {; parameter_specification})

parameter_specification ::=
identifier_list : mode type_mark [:= expression]

E–9

mode ::= [in] | in out | out

6.3
subprogram_body ::=

subprogram_specification is
[declarative_part]

begin
sequence_of_statements

[exception
exception_handler
{exception_handler}]

end [designator];

6.4
procedure_call_statement ::=

procedure_name [actual_parameter_part];

function_call ::=
function_name [actual_parameter_part]

actual_parameter_part ::=
(parameter_association {, parameter_association})

parameter_association ::=
[formal_parameter =>] actual_parameter

formal_parameter ::= parameter_simple_name

actual_parameter ::=
expression | variable_name | type_mark(variable_name)

7.1
package_declaration ::= package_specification;

package_specification ::=
package identifier is
{basic_declarative_item}

[private
{basic_declarative_item}]

end [package_simple_name]

package_body ::=
package body package_simple_name is

[declarative_part]
[begin

sequence_of_statements
[exception

exception_handler
{exception_handler}]]

end [package_simple_name];

7.4
private_type_declaration ::=

type identifier [discriminant_part] is [limited] private;

E–10

deferred_constant_declaration ::=
identifier_list : constant type_mark;

8.4
use_clause ::= use package_name {, package_name};

8.5
renaming_declaration ::=

identifier : type_mark renames object_name;
| identifier : exception renames exception_name;
| package identifier renames package_name;
| subprogram_specification renames subprogram_or_entry_name;

9.1
task_declaration ::= task_specification;

task_specification ::=
task [type] identifier [is

{entry_declaration}
{representation_clause}

end [task_simple_name]]

task_body ::=
task body task_simple_name is

[declarative_part]
begin

sequence_of_statements
[exception

exception_handler
{exception_handler}]

end [task_simple_name];

9.5
entry_declaration ::=

entry identifier [(discrete_range)] [formal_part];

entry_call_statement ::=
entry_name [actual_parameter_part];

accept_statement ::=
accept entry_simple_name [(entry_index)] [formal_part] [do

sequence_of_statements
end [entry_simple_name]];

entry_index ::= expression

9.6
delay_statement ::= delay simple_expression;

9.7
select_statement ::= selective_wait

| conditional_entry_call | timed_entry_call

E–11

9.7.1

selective_wait ::=
select
select_alternative

{or
select_alternative}

[else
sequence_of_statements]

end select;

select_alternative ::=
[when condition =>]

selective_wait_alternative

selective_wait_alternative ::= accept_alternative
| delay_alternative | terminate_alternative

accept_alternative ::=
accept_statement [sequence_of_statements]

delay_alternative ::=
delay_statement [sequence_of_statements]

terminate_alternative ::= terminate;

9.7.2

conditional_entry_call ::=
select

entry_call_statement
[sequence_of_statements]

else
sequence_of_statements

end select;

9.7.3

timed_entry_call ::=
select

entry_call_statement
[sequence_of_statements]

or
delay_alternative

end select;

E–12

9.10
abort_statement ::= abort task_name {, task_name};

10.1
compilation ::= {compilation_unit}

compilation_unit ::=
context_clause library_unit

| context_clause secondary_unit

library_unit ::=
subprogram_declaration | package_declaration

| generic_declaration | generic_instantiation
| subprogram_body

secondary_unit ::= library_unit_body | subunit

library_unit_body ::= subprogram_body | package_body

10.1.1

context_clause ::= {with_clause {use_clause}}

with_clause ::=
with unit_simple_name {, unit_simple_name};

10.2
body_stub ::=

subprogram_specification is separate;
| package body package_simple_name is separate;
| task body task_simple_name is separate;

subunit ::= separate (parent_unit_name) proper_body

11.1
exception_declaration ::= identifier_list : exception;

11.2
exception_handler ::=

when exception_choice {| exception_choice} =>
sequence_of_statements

exception_choice ::= exception_name | others

11.3
raise_statement ::= raise [exception_name];

12.1
generic_declaration ::= generic_specification;

generic_specification ::=
generic_formal_part subprogram_specification

| generic_formal_part package_specification

E–13

generic_formal_part ::=
generic {generic_parameter_declaration}

generic_parameter_declaration ::=
identifier_list : [in [out]] type_mark [:= expression];

| type identifier is generic_type_definition;
| private_type_declaration
| with subprogram_specification [is name];
| with subprogram_specification [is <>];

generic_type_definition ::=
(<>) | range <> | digits <> | delta <>

| array_type_definition | access_type_definition

12.3
generic_instantiation ::=

package identifier is
new generic_package_name [generic_actual_part];

| procedure identifier is
new generic_procedure_name [generic_actual_part];

| function designator is
new generic_function_name [generic_actual_part];

generic_actual_part ::=
(generic_association {, generic_association})

generic_association ::=
[generic_formal_parameter =>] generic_actual_parameter

generic_formal_parameter ::=
parameter_simple_name | operator_symbol

generic_actual_parameter ::= expression | variable_name
| subprogram_name | entry_name | type_mark

13.1
representation_clause ::=

type_representation_clause | address_clause

type_representation_clause ::= length_clause
| enumeration_representation_clause
| record_representation_clause

13.2
length_clause ::= for attribute use simple_expression;

13.1a
alignment_choice ::=

COMPONENT_SIZE | COMPONENT_SIZE_4
| DEFAULT | STORAGE_UNIT

E–14

13.2b
main_storage_option ::=

[WORKING_STORAGE =>] static_simple_expression
| [TOP_GUARD =>] static_simple_expression

13.3
enumeration_representation_clause ::=

for type_simple_name use aggregate;

13.4
record_representation_clause ::=

for type_simple_name use
record [alignment_clause]

{component_clause}
end record;

alignment_clause ::= at mod static_simple_expression;

component_clause ::=
component_name at static_simple_expression

range static_range;

13.5
address_clause ::=

for simple_name use at simple_expression;

13.8
code_statement ::= type_mark’record_aggregate;

13.9a
external_designator ::= [EXTERNAL =>] external_symbol

external_symbol ::= identifier | string_literal

import_export_pragma_name ::=
COMMON_OBJECT

| EXPORT_EXCEPTION -- OpenVMS systems only
| EXPORT_FUNCTION | EXPORT_OBJECT
| EXPORT_PROCEDURE | EXPORT_VALUED_PROCEDURE
| IMPORT_EXCEPTION -- OpenVMS systems only
| IMPORT_FUNCTION | IMPORT_OBJECT
| IMPORT_PROCEDURE | IMPORT_VALUED_PROCEDURE
| PSECT_OBJECT -- OpenVMS systems only

internal_name ::=
[INTERNAL =>] simple_name

| [INTERNAL =>] operator_symbol -- EXPORT_FUNCTION and
-- IMPORT_FUNCTION only

E–15

13.9a.1.1

class_name ::= UBS | UBSB | UBA | S | SB | A | NCA

mechanism ::=
mechanism_name | (mechanism_association {, mechanism_association })

mechanism_association ::=
[formal_parameter =>] mechanism_name

mechanism_name ::=
VALUE

| REFERENCE
| DESCRIPTOR [([CLASS =>] class_name)] -- OpenVMS

-- systems only
parameter_types ::= null | type_mark {, type_mark}

13.9b (pragma INTERFACE_NAME)
external_name ::= string_literal

B (pragma TITLE)
titling_option ::=

[TITLE =>] string_literal
| [SUBTITLE =>] string_literal

Syntax Cross Reference
In the list given below each syntactic category is followed by the section
number where it is defined. For example:

adding_operator 4.5

In addition, each syntactic category is followed by the names of other categories
in whose definition it appears. For example, adding_operator appears in the
definition of simple_expression:

adding_operator
simple_expression

4.5
4.4

An ellipsis (. . .) is used when the syntactic category is not defined by a syntax
rule. For example:

lower_case_letter . . .

All uses of parentheses are combined in the term ‘‘()’’. The italicized prefixes
used with some terms have been deleted here.

abort
abort_statement

. . .
9.10

E–16

abort_statement
simple_statement

9.10
5.1

abs
factor
highest_precedence_operator

. . .
4.4
4.5

accept
accept_statement

. . .
9.5

accept_alternative
selective_wait_alternative

9.7.1
9.7.1

accept_statement
accept_alternative
compound_statement

9.5
9.7.1
5.1

access
access_type_definition

. . .
3.8

access_type_definition
generic_type_definition
type_definition

3.8
12.1
3.3.1

actual_parameter
parameter_association

6.4
6.4

actual_parameter_part
entry_call_statement
function_call
procedure_call_statement

6.4
9.5
6.4
6.4

address_clause
representation_clause

13.5
13.1

aggregate
code_statement
enumeration_representation_clause
primary
qualified_expression

4.3
13.8
13.3
4.4
4.7

alignment_choice 13.1a

alignment_clause
record_representation_clause

13.4
13.4

all
selector

. . .
4.1.3

allocator
primary

4.8
4.4

and
expression
logical_operator

. . .
4.4
4.5

E–17

argument_association
pragma

2.8
2.8

array
constrained_array_definition
unconstrained_array_definition

. . .
3.6
3.6

array_type_definition
generic_type_definition
type_definition

3.6
12.1
3.3.1

assignment_statement
simple_statement

5.2
5.1

at
address_clause
alignment_clause
component_clause

. . .
13.5
13.4
13.4

attribute
length_clause
name
range

4.1.4
13.2
4.1
3.5

attribute_designator
attribute

4.1.4
4.1.4

base
based_literal

2.4.2
2.4.2

based_integer
based_literal

2.4.2
2.4.2

based_literal
numeric_literal

2.4.2
2.4

basic_character 2.1

basic_declaration
basic_declarative_item

3.1
3.9

basic_declarative_item
declarative_part
package_specification

3.9
3.9
7.1

basic_graphic_character
basic_character
graphic_character

2.1
2.1
2.1

begin
block_statement
package_body
subprogram_body
task_body

. . .
5.6
7.1
6.3
9.1

E–18

binary_adding_operator
simple_expression

4.5
4.4

block_statement
compound_statement

5.6
5.1

body
later_declarative_item

3.9
3.9

body
body_stub
package_body
task_body

. . .
10.2
7.1
9.1

body_stub
body

10.2
3.9

case
case_statement
variant_part

. . .
5.4
3.7.3

case-statement
compound_statement

5.4
5.1

case_statement_alternative
case_statement

5.4
5.4

character_literal
enumeration_literal
name
selector

2.5
3.5.1
4.1
4.1.3

choice
case_statement_alternative
component_association
variant

3.7.3
5.4
4.3
3.7.3

class_name 13.9a.1.1

code_statement
simple_statement

13.8
5.1

compilation 10.1

compilation_unit
compilation

10.1
10.1

component_association
aggregate

4.3
4.3

component_clause
record_representation_clause

13.4
13.4

component_declaration
component_list

3.7
3.7

E–19

component_list
record_type_definition
variant

3.7
3.7
3.7.3

component_subtype_definition
component_declaration

3.7
3.7

compound_statement
statement

5.1
5.1

condition
exit_statement
if_statement
iteration_scheme
select_alternative

5.3
5.7
5.3
5.5
9.7.1

conditional_entry_call
select_statement

9.7.2
9.7

constant
deferred_constant_declaration
number_declaration
object_declaration

. . .
7.4
3.2
3.2

constrained_array_definition
array_type_definition
object_declaration

3.6
3.6
3.2

constraint
subtype_indication

3.3.2
3.3.2

context_clause
compilation_unit

10.1.1
10.1

decimal_literal
numeric_literal

2.4.1
2.4

declarative_part
block_statement
package_body
subprogram_body
task_body

3.9
5.6
7.1
6.3
9.1

declare
block_statement

. . .
5.6

deferred_constant_declaration
basic_declaration

7.4
3.1

delay
delay_statement

. . .
9.6

delay_alternative
selective_wait_alternative
timed_entry_call

9.7.1
9.7.1
9.7.3

E–20

delay_statement
delay_alternative
simple_statement

9.6
9.7.1
5.1

delta
fixed_accuracy_definition
generic_type_definition

. . .
3.5.9
12.1

derived_type_definition
type_definition

3.4
3.3.1

designator
generic_instantiation
subprogram_body
subprogram_specification

6.1
12.3
6.3
6.1

digit
basic_graphic_character
extended_digit
integer
letter_or_digit

. . .
2.1
2.4.2
2.4.1
2.3

digits
floating_accuracy_definition
generic_type_definition

. . .
3.5.7
12.1

discrete_range
choice
entry_declaration
index_constraint
loop_parameter_specification
slice

3.6
3.7.3
9.5
3.6
5.5
4.1.2

discriminant_association
discriminant_constraint

3.7.2
3.7.2

discriminant_constraint
constraint

3.7.2
3.3.2

discriminant_part
full_type_declaration
incomplete_type_declaration
private_type_declaration

3.7.1
3.3.1
3.8.1
7.4

discriminant_specification
discriminant_part

3.7.1
3.7.1

do
accept_statement

. . .
9.5

E
exponent

. . .
2.4.1

E–21

else
conditional_entry_call
expression
if_statement
selective_wait

. . .
9.7.2
4.4
5.3
9.7.1

elsif
if_statement

. . .
5.3

end
accept_statement
block_statement
case_statement
conditional_entry_call
if_statement
loop_statement
package_body
package_specification
record_representation_clause
record_type_definition
selective_wait
subprogram_body
task_body
task_specification
timed_entry_call
variant_part

. . .
9.5
5.6
5.4
9.7.2
5.3
5.5
7.1
7.1
13.4
3.7
9.7.1
6.3
9.1
9.1
9.7.3
3.7.3

entry
entry_declaration

. . .
9.5

entry_call_statement
conditional_entry_call
simple_statement
timed_entry_call

9.5
9.7.2
5.1
9.7.3

entry_declaration
task_specification

9.5
9.1

entry_index
accept_statement

9.5
9.5

enumeration_literal
enumeration_literal_specification

3.5.1
3.5.1

enumeration_literal_specification
enumeration_type_definition

3.5.1
3.5.1

enumeration_representation_clause
type_representation_clause

13.3
13.1

enumeration_type_definition
type_definition

3.5.1
3.3.1

E–22

exception
block_statement
exception_declaration
package_body
renaming_declaration
subprogram_body
task_body

. . .
5.6
11.1
7.1
8.5
6.3
9.1

exception_choice
exception_handler

11.2
11.2

exception_declaration
basic_declaration

11.1
3.1

exception_handler
block_statement
package_body
subprogram_body
task_body

11.2
5.6
7.1
6.3
9.1

exit
exit_statement

. . .
5.7

exit_statement
simple_statement

5.7
5.1

exponent
based_literal
decimal_literal

2.4.1
2.4.2
2.4.1

expression
actual_parameter
argument_association
assignment_statement
attribute_designator
case_statement
component_association
component_declaration
condition
discriminant_association
discriminant_specification
entry_index
generic_actual_parameter
generic_parameter_declaration
indexed_component
number_declaration
object_declaration
parameter_specification
primary
qualified_expression
return_statement
type_conversion

4.4
6.4
2.8
5.2
4.1.4
5.4
4.3
3.7
5.3
3.7.2
3.7.1
9.5
12.3
12.1
4.1.1
3.2
3.2
6.1
4.4
4.7
5.8
4.6

E–23

extended_digit
based_integer

2.4.2
2.4.2

external_designator 13.9a

external_name 13.9b

external_symbol 13.9a

factor
term

4.4
4.4

fixed_accuracy_definition
fixed_point_constraint

3.5.9
3.5.9

fixed_point_constraint
constraint
real_type_definition

3.5.9
3.3.2
3.5.6

floating_accuracy_definition
floating_point_constraint

3.5.7
3.5.7

floating_point_constraint
constraint
real_type_definition

3.5.7
3.3.2
3.5.6

for
address_clause
enumeration_representation_clause
iteration_scheme
length_clause
record_representation_clause

. . .
13.5
13.3
5.5
13.2
13.4

formal_parameter
parameter_association

6.4
6.4

formal_part
accept_statement
entry_declaration
subprogram_specification

6.1
9.5
9.5
6.1

format_effector
basic_character

. . .
2.1

full_type_declaration
type_declaration

3.3.1
3.3.1

function
generic_instantiation
subprogram_specification

. . .
12.3
6.1

function_call
prefix
primary

6.4
4.1
4.4

generic
generic_formal_part

. . .
12.1

E–24

generic_actual_parameter
generic_association

12.3
12.3

generic_actual_part
generic_instantiation

12.3
12.3

generic_association
generic_actual_part

12.3
12.3

generic_declaration
basic_declaration
later_declarative_item
library_unit

12.1
3.1
3.9
10.1

generic_formal_parameter
generic_association

12.3
12.3

generic_formal_part
generic_specification

12.1
12.1

generic_instantiation
basic_declaration
later_declarative_item
library_unit

12.3
3.1
3.9
10.1

generic_parameter_declaration
generic_formal_part

12.1
12.1

generic_specification
generic_declaration

12.1
12.1

generic_type_definition
generic_parameter_declaration

12.1
12.1

goto
goto_statement

. . .
5.9

goto_statement
simple_statement

5.9
5.1

graphic_character
character_literal
string_literal

2.1
2.5
2.6

highest_precedence_operator 4.5

E–25

identifier
argument_association
designator
entry_declaration
enumeration_literal
full_type_declaration
generic_instantiation
generic_parameter_declaration
identifier_list
incomplete_type_declaration
loop_parameter_specification
package_specification
pragma
private_type_declaration
renaming_declaration
simple_name
subprogram_specification
subtype_declaration
task_specification

2.3
2.8
6.1
9.5
3.5.1
3.3.1
12.3
12.1
3.2
3.8.1
5.5
7.1
2.8
7.4
8.5
4.1
6.1
3.3.2
9.1

identifier_list
component_declaration
deferred_constant_declaration
discriminant_specification
exception_declaration
generic_parameter_declaration
number_declaration
object_declaration
parameter_specification

3.2
3.7
7.4
3.7.1
11.1
12.1
3.2
3.2
6.1

if
if_statement

. . .
5.3

if_statement
compound_statement

5.3
5.1

import_export_pragma_name 13.9a

in
generic_parameter_declaration
loop_parameter_specification
mode
relation

. . .
12.1
5.5
6.1
4.4

incomplete_type_declaration
type_declaration

3.8.1
3.3.1

index_constraint
constrained_array_definition
constraint

3.6
3.6
3.3.2

index_subtype_definition
unconstrained_array_definition

3.6
3.6

E–26

indexed_component
name

4.1.1
4.1

integer
base
decimal_literal
exponent

2.4.1
2.4.2
2.4.1
2.4.1

integer_type_definition
type_definition

3.5.4
3.3.1

internal_name 13.9a

is
body_stub
case_statement
full_type_declaration
generic_instantiation
generic_parameter_declaration
package_body
package_specification
private_type_declaration
subprogram_body
subtype_declaration
task_body
task_specification
variant_part

. . .
10.2
5.4
3.3.1
12.3
12.1
7.1
7.1
7.4
6.3
3.3.2
9.1
9.1
3.7.3

iteration_scheme
loop_statement

5.5
5.5

label
statement

5.1
5.1

later_declarative_item
declarative_part

3.9
3.9

length_clause
type_representation_clause

13.2
13.1

letter
extended_digit
identifier
letter_or_digit

2.3
2.4.2
2.3
2.3

letter_or_digit
identifier

2.3
2.3

library_unit
compilation_unit

10.1
10.1

library_unit_body
secondary_unit

10.1
10.1

E–27

limited
private_type_declaration

. . .
7.4

logical_operator 4.5

loop
loop_statement

. . .
5.5

loop_parameter_specification
iteration_scheme

5.5
5.5

loop_statement
compound_statement

5.5
5.1

lower_case_letter
graphic_character
letter

. . .
2.1
2.3

main_storage_option 13.2b

mechanism 13.9a.1.1

mechanism_association 13.9a.1.1

mechanism_name 13.9a.1.1

mod
alignment_clause
multiplying_operator

. . .
13.4
4.5

mode
parameter_specification

6.1
6.1

multiplying_operator
term

4.5
4.4

E–28

name
abort_statement
actual_parameter
argument_association
assignment_statement
component_clause
entry_call_statement
exception_choice
exit_statement
function_call
generic_actual_parameter
generic_instantiation
generic_parameter_declaration
goto_statement
prefix
primary
procedure_call_statement
raise_statement
renaming_declaration
subunit
type_mark
use_clause

4.1
9.10
6.4
2.8
5.2
13.4
9.5
11.2
5.7
6.4
12.3
12.3
12.1
5.9
4.1
4.4
6.4
11.3
8.5
10.2
3.3.2
8.4

new
allocator
derived_type_definition
generic_instantiation

. . .
4.8
3.4
12.3

not
factor
highest_precedence_operator
relation

. . .
4.4
4.5
4.4

null
component_list
null_statement
primary

. . .
3.7
5.1
4.4

null_statement
simple_statement

5.1
5.1

number_declaration
basic_declaration

3.2
3.1

numeric_literal
primary

2.4
4.4

object_declaration
basic_declaration

3.2
3.1

of
constrained_array_definition
unconstrained_array_definition

. . .
3.6
3.6

E–29

operator_symbol
designator
generic_formal_parameter
name
selector

6.1
6.1
12.3
4.1
4.1.3

or
expression
logical_operator
selective_wait
timed_entry_call

. . .
4.4
4.5
9.7.1
9.7.3

other_special_character
graphic_character

. . .
2.1

others
choice
exception_choice

. . .
3.7.3
11.2

out
generic_parameter_declaration
mode

. . .
12.1
6.1

package
body_stub
generic_instantiation
package_body
package_specification
renaming declaration

. . .
10.2
12.3
7.1
7.1
8.5

package_body
library_unit_body
proper_body

7.1
10.1
3.9

package_declaration
basic_declaration
later_declarative_item
library_unit

7.1
3.1
3.9
10.1

package_specification
generic_specification
package_declaration

7.1
12.1
7.1

parameter_association
actual_parameter_part

6.4
6.4

parameter_types 13.9a.1.1

parameter_specification
formal_part

6.1
6.1

pragma 2.8

pragma
pragma

. . .
2.8

E–30

prefix
attribute
indexed_component
selected_component
slice

4.1
4.1.4
4.1.1
4.1.3
4.1.2

primary
factor

4.4
4.4

private
package_specification
private_type_declaration

. . .
7.1
7.4

private_type_declaration
generic_parameter_declaration
type_declaration

7.4
12.1
3.3.1

procedure
generic_instantiation
subprogram_specification

. . .
12.3
6.1

procedure_call_statement
simple_statement

6.4
5.1

proper_body
body
subunit

3.9
3.9
10.2

qualified_expression
allocator
primary

4.7
4.8
4.4

raise
raise_statement

. . .
11.3

raise_statement
simple_statement

11.3
5.1

range
component_clause
discrete_range
range_constraint
relation

3.5
13.4
3.6
3.5
4.4

range
component_clause
generic_type_definition
index_subtype_definition
range_constraint

. . .
13.4
12.1
3.6
3.5

range_constraint
constraint
fixed_point_constraint
floating_point_constraint
integer_type_definition

3.5
3.3.2
3.5.9
3.5.7
3.5.4

E–31

real_type_definition
type_definition

3.5.6
3.3.1

record
record_representation_clause
record_type_definition

. . .
13.4
3.7

record_representation_clause
type_representation_clause

13.4
13.1

record_type_definition
type_definition

3.7
3.3.1

relation
expression

4.4
4.4

relational_operator
relation

4.5
4.4

rem
multiplying_operator

. . .
4.5

renames
renaming_declaration

. . .
8.5

renaming_declaration
basic_declaration

8.5
3.1

representation_clause
basic_declarative_item
task_specification

13.1
3.9
9.1

return
return_statement
subprogram_specification

. . .
5.8
6.1

return_statement
simple_statement

5.8
5.1

reverse
loop_parameter_specification

. . .
5.5

secondary_unit
compilation_unit

10.1
10.1

select
conditional_entry_call
selective_wait
timed_entry_call

. . .
9.7.2
9.7.1
9.7.3

select_alternative
selective_wait

9.7.1
9.7.1

select_statement
compound_statement

9.7
5.1

E–32

selected_component
name

4.1.3
4.1

selective_wait
select_statement

9.7.1
9.7

selective_wait_alternative
select_alternative

9.7.1
9.7.1

selector
selected_component

4.1.3
4.1.3

separate
body_stub
subunit

. . .
10.2
10.2

sequence_of_statements
accept_alternative
accept_statement
block_statement
case_statement_alternative
conditional_entry_call
delay_alternative
exception_handler
if_statement
loop_statement
package_body
selective_wait
subprogram_body
task_body
timed_entry_call

5.1
9.7.1
9.5
5.6
5.4
9.7.2
9.7.1
11.2
5.3
5.5
7.1
9.7.1
6.3
9.1
9.7.3

simple_expression
address_clause
alignment_clause
choice
component_clause
delay_statement
fixed_accuracy_definition
floating_accuracy_definition
length_clause
range
relation

4.4
13.5
13.4
3.7.3
13.4
9.6
3.5.9
3.5.7
13.2
3.5
4.4

E–33

simple_name
accept_statement
address_clause
attribute_designator
block_statement
body_stub
choice
discriminant_association
enumeration_representation_clause
formal_parameter
generic_formal_parameter
label
loop_statement
name
package_body
package_specification
record_representation_clause
selector
task_body
task_specification
variant_part
with_clause

4.1
9.5
13.5
4.1.4
5.6
10.2
3.7.3
3.7.2
13.3
6.4
12.3
5.1
5.5
4.1
7.1
7.1
13.4
4.1.3
9.1
9.1
3.7.3
10.1.1

simple_statement
statement

5.1
5.1

slice
name

4.1.2
4.1

space_character
basic_graphic_character

. . .
2.1

special_character
basic_graphic_character

. . .
2.1

statement
sequence_of_statements

5.1
5.1

string_literal
operator_symbol
primary

2.6
6.1
4.4

subprogram_body
library_unit
library_unit_body
proper_body

6.3
10.1
10.1
3.9

subprogram_declaration
basic_declaration
later_declarative_item
library_unit

6.1
3.1
3.9
10.1

E–34

subprogram_specification
body_stub
generic_parameter_declaration
generic_specification
renaming_declaration
subprogram_body
subprogram_declaration

6.1
10.2
12.1
12.1
8.5
6.3
6.1

subtype
subtype_declaration

. . .
3.3.2

subtype_declaration
basic_declaration

3.3.2
3.1

subtype_indication
access_type_definition
allocator
component_subtype_definition
constrained_array_definition
derived_type_definition
discrete_range
object_declaration
subtype_declaration
unconstrained_array_definition

3.3.2
3.8
4.8
3.7
3.6
3.4
3.6
3.2
3.3.2
3.6

subunit
secondary_unit

10.2
10.1

task
body_stub
task_body
task_specification

. . .
10.2
9.1
9.1

task_body
proper_body

9.1
3.9

task_declaration
basic_declaration
later_declarative_item

9.1
3.1
3.9

task_specification
task_declaration

9.1
9.1

term
simple_expression

4.4
4.4

terminate
terminate_alternative

. . .
9.7.1

terminate_alternative
selective_wait_alternative

9.7.1
9.7.1

then
expression
if_statement

. . .
4.4
5.3

E–35

timed_entry_call
select_statement

9.7.3
9.7

titling_option B (pragma TITLE)

type
full_type_declaration
generic_parameter_declaration
incomplete_type_declaration
private_type_declaration
task_specification

. . .
3.3.1
12.1
3.8.1
7.4
9.1

type_conversion
primary

4.6
4.4

type_declaration
basic_declaration

3.3.1
3.1

type_definition
full_type_declaration

3.3.1
3.3.1

type_mark
actual_parameter
code_statement
deferred_constant_declaration
discriminant_specification
generic_actual_parameter
generic_parameter_declaration
index_subtype_definition
parameter_specification
qualified_expression
relation
renaming_declaration
subprogram_specification
subtype_indication
type_conversion

3.3.2
6.4
13.8
7.4
3.7.1
12.3
12.1
3.6
6.1
4.7
4.4
8.5
6.1
3.3.2
4.6

type_representation_clause
representation_clause

13.1
13.1

unary_adding_operator
simple_expression

4.5
4.4

unconstrained_array_definition
array_type_definition

3.6
3.6

underline
based_integer
identifier
integer

. . .
2.4.2
2.3
2.4.1

upper_case_letter
basic_graphic_character
letter

. . .
2.1
2.3

E–36

use
address_clause
enumeration_representation_clause
length_clause
record_representation_clause
use_clause

. . .
13.5
13.3
13.2
13.4
8.4

use_clause
basic_declarative_item
context_clause
later_declarative_item

8.4
3.9
10.1.1
3.9

variant
variant_part

3.7.3
3.7.3

variant_part
component_list

3.7.3
3.7

when
case_statement_alternative
exception_handler
exit_statement
select_alternative
variant

. . .
5.4
11.2
5.7
9.7.1
3.7.3

while
iteration_scheme

. . .
5.5

with
generic_parameter_declaration
with_clause

. . .
12.1
10.1.1

with_clause
context_clause

10.1.1
10.1.1

xor
expression
logical_operator

. . .
4.4
4.5

"
string_literal

. . .
2.6

#
based_literal

. . .
2.4.2

&
binary_adding_operator

. . .
4.5

’
attribute
character_literal
code_statement
qualified_expression

. . .
4.1.4
2.5
13.8
4.7

E–37

()
accept_statement
actual_parameter
actual_parameter_part
aggregate
attribute_designator
discriminant_constraint
discriminant_part
entry_declaration
enumeration_type_definition
formal_part
generic_actual_part
generic_type_definition
index_constraint
indexed_component
pragma
primary
qualified_expression
slice
subunit
type_conversion
unconstrained_array_definition

. . .
9.5
6.4
6.4
4.3
4.1.4
3.7.2
3.7.1
9.5
3.5.1
6.1
12.3
12.1
3.6
4.1.1
2.8
4.4
4.7
4.1.2
10.2
4.6
3.6

*
multiplying_operator

. . .
4.5

**
factor
highest_precedence_operator

. . .
4.4
4.5

+
binary_adding_operator
exponent
unary_adding_operator

. . .
4.5
2.4.1
4.5

,
abort_statement
actual_parameter_part
aggregate
discriminant_constraint
enumeration_type_definition
generic_actual_part
identifier_list
index_constraint
indexed_component
pragma
unconstrained_array_definition
use_clause
with_clause

. . .
9.10
6.4
4.3
3.7.2
3.5.1
12.3
3.2
3.6
4.1.1
2.8
3.6
8.4
10.1.1

E–38

–
binary_adding_operator
exponent
unary_adding_operator

. . .
4.5
2.4.1
4.5

.
based_literal
decimal_literal
selected_component

. . .
2.4.2
2.4.1
4.1.3

..
range

. . .
3.5

/
multiplying_operator

. . .
4.5

/=
relational_operator

. . .
4.5

:
block_statement
component_declaration
deferred_constant_declaration
discriminant_specification
exception_declaration
generic_parameter_declaration
loop_statement
number_declaration
object_declaration
parameter_specification
renaming_declaration

. . .
5.6
3.7
7.4
3.7.1
11.1
12.1
5.5
3.2
3.2
6.1
8.5

:=
assignment_statement
component_declaration
discriminant_specification
generic_parameter_declaration
number_declaration
object_declaration
parameter_specification

. . .
5.2
3.7
3.7.1
12.1
3.2
3.2
6.1

;
abort_statement
accept_statement
address_clause
alignment_clause
assignment_statement
block_statement
body_stub
case_statement
code_statement

. . .
9.10
9.5
13.5
13.4
5.2
5.6
10.2
5.4
13.8

E–39

component_clause
component_declaration
component_list
conditional_entry_call
deferred_constant_declaration
delay_statement
discriminant_part
entry_call_statement
entry_declaration
enumeration_representation_clause

13.4
3.7
3.7
9.7.2
7.4
9.6
3.7.1
9.5
9.5
13.3

exception_declaration
exit_statement
formal_part
full_type_declaration
generic_declaration
generic_instantiation
generic_parameter_declaration
goto_statement
if_statement
incomplete_type_declaration

11.1
5.7
6.1
3.3.1
12.1
12.3
12.1
5.9
5.3
3.8.1

length_clause
loop_statement
null_statement
number_declaration
object_declaration
package_body
package_declaration
pragma
private_type_declaration
procedure_call_statement

13.2
5.5
5.1
3.2
3.2
7.1
7.1
2.8
7.4
6.4

E–40

raise_statement
record_representation_clause
renaming_declaration
return_statement
selective_wait
subprogram_body
subprogram_declaration
subtype_declaration
task_body
task_declaration
terminate_alternative
timed_entry_call
use_clause
variant_part
with_clause

11.3
13.4
8.5
5.8
9.7.1
6.3
6.1
3.3.2
9.1
9.1
9.7.1
9.7.3
8.4
3.7.3
10.1.1

<
relational_operator

. . .
4.5

<<
label

. . .
5.1

<=
relational_operator

. . .
4.5

<>
generic_parameter_declaration
generic_type_definition
index_subtype_definition

. . .
12.1
12.1
3.6

=
relational_operator

. . .
4.5

=>
argument_association
case_statement_alternative
component_association
discriminant_association
exception_handler
generic_association
parameter_association
select_alternative
variant

. . .
2.8
5.4
4.3
3.7.2
11.2
12.3
6.4
9.7.1
3.7.3

>
relational_operator

. . .
4.5

>=
relational_operator

. . .
4.5

E–41

>>
label

. . .
5.1

|
case_statement_alternative
component_association
discriminant_association
exception_handler
variant

. . .
5.4
4.3
3.7.2
11.2
3.7.3

E–42

F
Implementation-Dependent Characteristics

Note

This appendix is not part of the standard definition of the Ada
programming language.

This appendix summarizes the implementation-dependent characteristics of
DEC Ada by presenting the following:

• Lists of the DEC Ada pragmas and attributes

• The specification of the package SYSTEM

• The restrictions on representation clauses and unchecked type conversions

• The conventions for names denoting implementation-dependent
components in record representation clauses

• The interpretation of expressions in address clauses

• The implementation-dependent characteristics of the input-output
packages

• Other implementation-dependent characteristics

See the relevant run-time reference manual for additional implementation-
specific details.

F.1 Implementation-Dependent Pragmas
DEC Ada provides the following pragmas, which are defined elsewhere in the
text:

F–1 Implementation-Dependent Pragmas F.1

Pragma
DEC Ada systems
on which it applies Section

AST_ENTRY OpenVMS 9.12a

COMMON_OBJECT All 13.9a.2.3

COMPONENT_ALIGNMENT All 13.1a

EXPORT_EXCEPTION OpenVMS 13.9a.3.2

EXPORT_FUNCTION All 13.9a.1.3

EXPORT_OBJECT All 13.9a.2.2

EXPORT_PROCEDURE All 13.9a.1.3

EXPORT_VALUED_PROCEDURE All 13.9a.1.3

FLOAT_REPRESENTATION All 3.5.7a

IDENT All Annex B

IMPORT_EXCEPTION OpenVMS 13.9a.3.1

IMPORT_FUNCTION All 13.9a.1.1

IMPORT_OBJECT All 13.9a.2.1

IMPORT_PROCEDURE All 13.9a.1.1

IMPORT_VALUED_PROCEDURE All 13.9a.1.1

INLINE_GENERIC All 12.1a

INTERFACE_NAME All 13.9b

LONG_FLOAT OpenVMS 3.5.7b

MAIN_STORAGE OpenVMS VAX 13.2b

PSECT_OBJECT OpenVMS 13.9a.2.3

PASSIVE OpenVMS Alpha
Digital UNIX

9.8b

SHARE_GENERIC All 12.1b

SUPPRESS_ALL All 11.7

TASK_STORAGE All 13.2a

TIME_SLICE OpenVMS 9.8a

TITLE All Annex B

VOLATILE All 9.11

DEC Ada also restricts the predefined language pragmas INLINE and
INTERFACE. See Annex B for a descriptive pragma summary.

F.1 Implementation-Dependent Pragmas F–2

F.2 Implementation-Dependent Attributes
DEC Ada provides the following attributes, which are defined elsewhere in the
text:

Attribute
DEC Ada systems
on which it applies Section

AST_ENTRY OpenVMS 9.12a

BIT All 13.7.2

MACHINE_SIZE All 13.7.2

NULL_PARAMETER All 13.9a.1.2

TYPE_CLASS All 13.7a.2

See Annex A for a descriptive attribute summary.

F.3 Specification of the Package System
DEC Ada provides a system-specific version of the package SYSTEM for each
system on which it is supported. The following specification is composite: it
includes all common and system-specific features.

package SYSTEM is

type NAME is
-- DEC Ada implementations

(VAX_VMS, OpenVMS_AXP, RISC_ULTRIX, DEC_OSF1_AXP,
-- XD Ada implementations
MIL_STD_1750A, MC68000, MC68020, MC68040, CPU32);

for NAME use (1, 2, 7, 8, 9, 101, 102, 103, 104, 105);

-- System-specific definitions of SYSTEM_NAME
SYSTEM_NAME : constant NAME := VAX_VMS;
SYSTEM_NAME : constant NAME := OpenVMS_AXP;
SYSTEM_NAME : constant NAME := DEC_OSF1_AXP;
SYSTEM_NAME : constant NAME := RISC_ULTRIX;

STORAGE_UNIT : constant := 8;
MEMORY_SIZE : constant := 2**63-1;
MEMORY_SIZE : constant := 2**31-1;

F–3 Specification of the Package System F.3

-- System-specific definitions of MAX_INT and MIN_INT
--
---- On Alpha systems:
MAX_INT : constant := 2**63-1;
MIN_INT : constant := -(2**63);
--
---- On all other systems:
MAX_INT : constant := 2**31-1;
MIN_INT : constant := -(2**31);

-- System-specific definitions of MAX_DIGITS
--
---- On OpenVMS VAX systems:
MAX_DIGITS : constant := 33;
--
---- On all other systems:
MAX_DIGITS : constant := 15;

MAX_MANTISSA : constant := 31;
FINE_DELTA : constant := 2.0**(-31);

-- System-specific definitions of TICK
--
---- On OpenVMS VAX systems:
TICK : constant := 10.0**(-2);
--
---- On Alpha systems:
TICK : constant := 10.0**(-3);
--

subtype PRIORITY is INTEGER range 0 .. 15;

-- On OpenVMS and Digital UNIX systems:
type INTEGER_8 is range -128 .. 127;
for INTEGER_8’SIZE use 8;

-- On OpenVMS and Digital UNIX systems:
type INTEGER_16 is range -32_768 .. 32_767;
for INTEGER_16’SIZE use 16;

-- On OpenVMS and Digital UNIX systems:
type INTEGER_32 is range -2_147_483_648 .. 2_147_483_647;
for INTEGER_32’SIZE use 32;

-- On Alpha systems:
type INTEGER_64 is range

-9_223_372_036_854_775_808 .. 9_223_372_036_854_775_807;
for INTEGER_64’SIZE use 64;

-- On OpenVMS and Digital UNIX systems:
type LARGEST_INTEGER is range MIN_INT .. MAX_INT;

F.3 Specification of the Package System F–4

-- On OpenVMS and Digital UNIX systems:
function "not" (LEFT : LARGEST_INTEGER) return LARGEST_INTEGER;
function "and" (LEFT, RIGHT : LARGEST_INTEGER) return LARGEST_INTEGER;
function "or" (LEFT, RIGHT : LARGEST_INTEGER) return LARGEST_INTEGER;
function "xor" (LEFT, RIGHT : LARGEST_INTEGER) return LARGEST_INTEGER;

-- Address type
--

type ADDRESS is private;

ADDRESS_ZERO : constant ADDRESS;
NO_ADDR : constant ADDRESS;
NULL_ADDRESS : constant ADDRESS;

-- System-specific definition of ADDRESS_SIZE
--
---- On Digital UNIX systems:
ADDRESS_SIZE : constant := 64;
--
---- On OpenVMS systems:
ADDRESS_SIZE : constant := 32;

function "+" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;
function "+" (LEFT : INTEGER; RIGHT : ADDRESS) return ADDRESS;
function "-" (LEFT : ADDRESS; RIGHT : ADDRESS) return INTEGER;
function "-" (LEFT : ADDRESS; RIGHT : INTEGER) return ADDRESS;

-- Note that because ADDRESS is a private type
-- the functions "=" and "/=" are already available and
-- do not have to be explicitly defined
--
-- function "=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
-- function "/=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

function "<" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function "<=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">" (LEFT, RIGHT : ADDRESS) return BOOLEAN;
function ">=" (LEFT, RIGHT : ADDRESS) return BOOLEAN;

generic
type TARGET is private;

function FETCH_FROM_ADDRESS (A : ADDRESS) return TARGET;

generic
type TARGET is private;

procedure ASSIGN_TO_ADDRESS (A : ADDRESS; T : TARGET);

-- DEC Ada floating point type declarations for the VAX
-- floating point data types

F–5 Specification of the Package System F.3

--
---- On OpenVMS systems:
type F_FLOAT is {digits 6};
type D_FLOAT is {digits 9};
type G_FLOAT is {digits 15};
--
---- On OpenVMS VAX systems:
type H_FLOAT is {digits 33};

-- DEC Ada floating point type declarations for the IEEE
-- floating point data types

--
---- On Alpha systems:
type IEEE_SINGLE_FLOAT is {digits 6};
type IEEE_DOUBLE_FLOAT is {digits 15};

type TYPE_CLASS is (TYPE_CLASS_ENUMERATION,
TYPE_CLASS_INTEGER,
TYPE_CLASS_FIXED_POINT,
TYPE_CLASS_FLOATING_POINT,
TYPE_CLASS_ARRAY,
TYPE_CLASS_RECORD,
TYPE_CLASS_ACCESS,
TYPE_CLASS_TASK,
TYPE_CLASS_ADDRESS);

-- AST handler type

-- On OpenVMS systems:
type AST_HANDLER is limited private;

-- On OpenVMS systems:
NO_AST_HANDLER : constant AST_HANDLER;

-- Non-Ada exception

NON_ADA_ERROR : exception;

-- Hardware-oriented types and functions

type BIT_ARRAY is array (INTEGER range <>) of BOOLEAN;
pragma PACK(BIT_ARRAY);

subtype BIT_ARRAY_8 is BIT_ARRAY (0 .. 7);
subtype BIT_ARRAY_16 is BIT_ARRAY (0 .. 15);
subtype BIT_ARRAY_32 is BIT_ARRAY (0 .. 31);
subtype BIT_ARRAY_64 is BIT_ARRAY (0 .. 63);

type UNSIGNED_BYTE is range 0 .. 255;
for UNSIGNED_BYTE’SIZE use 8;

function "not" (LEFT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "and" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "or" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function "xor" (LEFT, RIGHT : UNSIGNED_BYTE) return UNSIGNED_BYTE;

F.3 Specification of the Package System F–6

function TO_UNSIGNED_BYTE (X : BIT_ARRAY_8) return UNSIGNED_BYTE;
function TO_BIT_ARRAY_8 (X : UNSIGNED_BYTE) return BIT_ARRAY_8;

type UNSIGNED_BYTE_ARRAY is array (INTEGER range <>) of UNSIGNED_BYTE;

type UNSIGNED_WORD is range 0 .. 65535;
for UNSIGNED_WORD’SIZE use 16;

function "not" (LEFT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "and" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "or" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;
function "xor" (LEFT, RIGHT : UNSIGNED_WORD) return UNSIGNED_WORD;

function TO_UNSIGNED_WORD (X : BIT_ARRAY_16) return UNSIGNED_WORD;
function TO_BIT_ARRAY_16 (X : UNSIGNED_WORD) return BIT_ARRAY_16;

type UNSIGNED_WORD_ARRAY is array (INTEGER range <>) of UNSIGNED_WORD;

type UNSIGNED_LONGWORD is range -2_147_483_648 .. 2_147_483_647;
for UNSIGNED_LONGWORD’SIZE use 32;

function "not" (LEFT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "and" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "or" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;
function "xor" (LEFT, RIGHT : UNSIGNED_LONGWORD) return UNSIGNED_LONGWORD;

function TO_UNSIGNED_LONGWORD (X : BIT_ARRAY_32) return UNSIGNED_LONGWORD;
function TO_BIT_ARRAY_32 (X : UNSIGNED_LONGWORD) return BIT_ARRAY_32;

type UNSIGNED_LONGWORD_ARRAY is
array (INTEGER range <>) of UNSIGNED_LONGWORD;

-- On Alpha systems:
type UNSIGNED_32 is range 0 .. 4_294_967_295;
for UNSIGNED_32’SIZE use 32;

-- On Alpha systems:
function "not" (LEFT : UNSIGNED_32) return UNSIGNED_32;
function "and" (LEFT, RIGHT : UNSIGNED_32) return UNSIGNED_32;
function "or" (LEFT, RIGHT : UNSIGNED_32) return UNSIGNED_32;
function "xor" (LEFT, RIGHT : UNSIGNED_32) return UNSIGNED_32;

-- On Alpha systems:
function TO_UNSIGNED_32 (X : BIT_ARRAY_32) return UNSIGNED_32;
function TO_BIT_ARRAY_32 (X : UNSIGNED_32) return BIT_ARRAY_32;

type UNSIGNED_QUADWORD is
record

L0 : UNSIGNED_LONGWORD;
L1 : UNSIGNED_LONGWORD;

end record;
for UNSIGNED_QUADWORD’SIZE use 64;
for UNSIGNED_QUADWORD use

record at mod 8;
end record;

F–7 Specification of the Package System F.3

function "not" (LEFT : UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;
function "and" (LEFT, RIGHT : UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;
function "or" (LEFT, RIGHT : UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;
function "xor" (LEFT, RIGHT : UNSIGNED_QUADWORD) return UNSIGNED_QUADWORD;

function TO_UNSIGNED_QUADWORD (X : BIT_ARRAY_64) return UNSIGNED_QUADWORD;
function TO_BIT_ARRAY_64 (X : UNSIGNED_QUADWORD) return BIT_ARRAY_64;

type UNSIGNED_QUADWORD_ARRAY is
array (INTEGER range <>) of UNSIGNED_QUADWORD;

function TO_ADDRESS (X : INTEGER) return ADDRESS;
function TO_ADDRESS (X : UNSIGNED_LONGWORD) return ADDRESS;
function TO_ADDRESS (X : {universal_integer}) return ADDRESS;

function TO_INTEGER (X : ADDRESS) return INTEGER;
function TO_UNSIGNED_LONGWORD (X : ADDRESS) return UNSIGNED_LONGWORD;

-- On OpenVMS systems only:
function TO_UNSIGNED_LONGWORD (X : AST_HANDLER) return UNSIGNED_LONGWORD;

-- Conventional names for static subtypes of type UNSIGNED_LONGWORD

subtype UNSIGNED_1 is UNSIGNED_LONGWORD range 0 .. 2** 1-1;
subtype UNSIGNED_2 is UNSIGNED_LONGWORD range 0 .. 2** 2-1;
subtype UNSIGNED_3 is UNSIGNED_LONGWORD range 0 .. 2** 3-1;
subtype UNSIGNED_4 is UNSIGNED_LONGWORD range 0 .. 2** 4-1;
subtype UNSIGNED_5 is UNSIGNED_LONGWORD range 0 .. 2** 5-1;
subtype UNSIGNED_6 is UNSIGNED_LONGWORD range 0 .. 2** 6-1;
subtype UNSIGNED_7 is UNSIGNED_LONGWORD range 0 .. 2** 7-1;
subtype UNSIGNED_8 is UNSIGNED_LONGWORD range 0 .. 2** 8-1;
subtype UNSIGNED_9 is UNSIGNED_LONGWORD range 0 .. 2** 9-1;
subtype UNSIGNED_10 is UNSIGNED_LONGWORD range 0 .. 2**10-1;
subtype UNSIGNED_11 is UNSIGNED_LONGWORD range 0 .. 2**11-1;
subtype UNSIGNED_12 is UNSIGNED_LONGWORD range 0 .. 2**12-1;
subtype UNSIGNED_13 is UNSIGNED_LONGWORD range 0 .. 2**13-1;
subtype UNSIGNED_14 is UNSIGNED_LONGWORD range 0 .. 2**14-1;
subtype UNSIGNED_15 is UNSIGNED_LONGWORD range 0 .. 2**15-1;
subtype UNSIGNED_16 is UNSIGNED_LONGWORD range 0 .. 2**16-1;
subtype UNSIGNED_17 is UNSIGNED_LONGWORD range 0 .. 2**17-1;
subtype UNSIGNED_18 is UNSIGNED_LONGWORD range 0 .. 2**18-1;
subtype UNSIGNED_19 is UNSIGNED_LONGWORD range 0 .. 2**19-1;
subtype UNSIGNED_20 is UNSIGNED_LONGWORD range 0 .. 2**20-1;
subtype UNSIGNED_21 is UNSIGNED_LONGWORD range 0 .. 2**21-1;
subtype UNSIGNED_22 is UNSIGNED_LONGWORD range 0 .. 2**22-1;
subtype UNSIGNED_23 is UNSIGNED_LONGWORD range 0 .. 2**23-1;
subtype UNSIGNED_24 is UNSIGNED_LONGWORD range 0 .. 2**24-1;
subtype UNSIGNED_25 is UNSIGNED_LONGWORD range 0 .. 2**25-1;
subtype UNSIGNED_26 is UNSIGNED_LONGWORD range 0 .. 2**26-1;
subtype UNSIGNED_27 is UNSIGNED_LONGWORD range 0 .. 2**27-1;
subtype UNSIGNED_28 is UNSIGNED_LONGWORD range 0 .. 2**28-1;
subtype UNSIGNED_29 is UNSIGNED_LONGWORD range 0 .. 2**29-1;
subtype UNSIGNED_30 is UNSIGNED_LONGWORD range 0 .. 2**30-1;
subtype UNSIGNED_31 is UNSIGNED_LONGWORD range 0 .. 2**31-1;

F.3 Specification of the Package System F–8

-- Function for obtaining global symbol values

function IMPORT_VALUE (SYMBOL : STRING) return UNSIGNED_LONGWORD;

-- On OpenVMS and Digital UNIX systems:
function IMPORT_ADDRESS (SYMBOL : STRING) return ADDRESS;
function IMPORT_LARGEST_VALUE (SYMBOL : STRING) return LARGEST_INTEGER;

-- VAX device and process register operations

-- On OpenVMS VAX systems only:
function READ_REGISTER (SOURCE : UNSIGNED_BYTE) return UNSIGNED_BYTE;
function READ_REGISTER (SOURCE : UNSIGNED_WORD) return UNSIGNED_WORD;
function READ_REGISTER (SOURCE : UNSIGNED_LONGWORD)

return UNSIGNED_LONGWORD;

-- On OpenVMS VAX systems only:
procedure WRITE_REGISTER(SOURCE : UNSIGNED_BYTE;

TARGET : out UNSIGNED_BYTE);
procedure WRITE_REGISTER(SOURCE : UNSIGNED_WORD;

TARGET : out UNSIGNED_WORD);
procedure WRITE_REGISTER(SOURCE : UNSIGNED_LONGWORD;

TARGET : out UNSIGNED_LONGWORD);

-- On OpenVMS VAX systems only:
function MFPR (REG_NUMBER : INTEGER) return UNSIGNED_LONGWORD;
procedure MTPR (REG_NUMBER : INTEGER;

SOURCE : UNSIGNED_LONGWORD);

-- For the following declarations, note that the declaration without
-- a RETRY_COUNT parameter mean to retry infinitely. A value of 0
-- for the RETRY_COUNT means do not retry.
--

-- Interlocked-instruction procedures

-- On OpenVMS and Digital UNIX systems:
procedure CLEAR_INTERLOCKED (BIT : in out BOOLEAN;

OLD_VALUE : out BOOLEAN);
procedure SET_INTERLOCKED (BIT : in out BOOLEAN;

OLD_VALUE : out BOOLEAN);

-- On OpenVMS and Digital UNIX systems:
type ALIGNED_WORD is

record
VALUE : SHORT_INTEGER;

end record;
for ALIGNED_WORD use

record at mod 2;
end record;

F–9 Specification of the Package System F.3

-- On Alpha systems only:
procedure CLEAR_INTERLOCKED (BIT : in out BOOLEAN;

OLD_VALUE : out BOOLEAN;
RETRY_COUNT : in NATURAL;
SUCCESS_FLAG : out BOOLEAN);

procedure SET_INTERLOCKED (BIT : in out BOOLEAN;
OLD_VALUE : out BOOLEAN;
RETRY_COUNT : in NATURAL;
SUCCESS_FLAG : out BOOLEAN);

-- On OpenVMS and Digital UNIX systems:
procedure ADD_INTERLOCKED (ADDEND : in SHORT_INTEGER;

AUGEND : in out ALIGNED_WORD;
SIGN : out INTEGER);

-- On Alpha systems only:
type ALIGNED_INTEGER is

record
VALUE : INTEGER;

end record;
for ALIGNED_INTEGER use

record at mod 4;
end record;

-- On Alpha systems only:
type ALIGNED_LONG_INTEGER is

record
VALUE : LONG_INTEGER;

end record;
for ALIGNED_LONG_INTEGER use

record at mod 8;
end record;

-- For the following declarations, note that the declaration without
-- a RETRY_COUNT parameter mean to retry infinitely. A value of 0
-- for the RETRY_COUNT means do not retry.
--
-- On Alpha systems only:
procedure ADD_ATOMIC (TO : in out ALIGNED_INTEGER;

AMOUNT : in INTEGER);
procedure ADD_ATOMIC (TO : in out ALIGNED_INTEGER;

AMOUNT : in INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out INTEGER;
SUCCESS_FLAG : out BOOLEAN);

procedure ADD_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
AMOUNT : in LONG_INTEGER);

procedure ADD_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
AMOUNT : in LONG_INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out LONG_INTEGER;
SUCCESS_FLAG : out BOOLEAN);

F.3 Specification of the Package System F–10

-- On Alpha systems only:
procedure AND_ATOMIC (TO : in out ALIGNED_INTEGER;

FROM : in INTEGER);
procedure AND_ATOMIC (TO : in out ALIGNED_INTEGER;

FROM : in INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out INTEGER;
SUCCESS_FLAG : out BOOLEAN);

procedure AND_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
FROM : in LONG_INTEGER);

procedure AND_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
FROM : in LONG_INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out LONG_INTEGER;
SUCCESS_FLAG : out BOOLEAN);

-- On Alpha systems only:
procedure OR_ATOMIC (TO : in out ALIGNED_INTEGER;

FROM : in INTEGER);
procedure OR_ATOMIC (TO : in out ALIGNED_INTEGER;

FROM : in INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out INTEGER;
SUCCESS_FLAG : out BOOLEAN);

procedure OR_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
FROM : in LONG_INTEGER);

procedure OR_ATOMIC (TO : in out ALIGNED_LONG_INTEGER;
FROM : in LONG_INTEGER;
RETRY_COUNT : in NATURAL;
OLD_VALUE : out LONG_INTEGER;
SUCCESS_FLAG : out BOOLEAN);

-- On OpenVMS VAX systems only:
type INSQ_STATUS is (OK_NOT_FIRST, FAIL_NO_LOCK, OK_FIRST);
for INSQ_STATUS use (OK_NOT_FIRST => 0,

FAIL_NO_LOCK => 1,
OK_FIRST => 2);

-- On OpenVMS VAX systems only:
type REMQ_STATUS is (OK_NOT_EMPTY, FAIL_NO_LOCK,

OK_EMPTY, FAIL_WAS_EMPTY);
for REMQ_STATUS use (OK_NOT_EMPTY => 0,

FAIL_NO_LOCK => 1,
OK_EMPTY => 2,
FAIL_WAS_EMPTY => 3);

-- On OpenVMS Alpha systems only:
type INSQ_STATUS is (FAIL_NO_LOCK, OK_NOT_FIRST, OK_FIRST);
for INSQ_STATUS use (FAIL_NO_LOCK => -1,

OK_NOT_FIRST => 0,
OK_FIRST => 1);

F–11 Specification of the Package System F.3

-- On OpenVMS Alpha systems only:
type REMQ_STATUS is (FAIL_NO_LOCK, FAIL_WAS_EMPTY,

OK_NOT_EMPTY, OK_EMPTY);
for REMQ_STATUS use (FAIL_NO_LOCK => -1,

FAIL_WAS_EMPTY => 0,
OK_NOT_EMPTY => 1,
OK_EMPTY => 2);

-- On OpenVMS systems only:
procedure INSQHI (ITEM : in ADDRESS;

HEADER : in ADDRESS;
STATUS : out INSQ_STATUS);

-- On OpenVMS systems only:
procedure REMQHI (HEADER : in ADDRESS;

ITEM : out ADDRESS;
STATUS : out REMQ_STATUS);

-- On OpenVMS systems only:
procedure INSQTI (ITEM : in ADDRESS;

HEADER : in ADDRESS;
STATUS : out INSQ_STATUS);

-- On OpenVMS systems only:
procedure REMQTI (HEADER : in ADDRESS;

ITEM : out ADDRESS;
STATUS : out REMQ_STATUS);

private

-- Not shown

end SYSTEM;

F.4 Restrictions on Representation Clauses
The representation clauses allowed in DEC Ada are length, enumeration,
record representation, and address clauses.

In DEC Ada, a representation clause is not allowed for:

• A generic formal type

• A type that depends on a generic formal type

• A composite type that has a component or subcomponent of a generic
formal type

• A type derived from a generic formal type

F.4 Restrictions on Representation Clauses F–12

F.5 Restrictions on Unchecked Type Conversions
DEC Ada supports the generic function UNCHECKED_CONVERSION with
the following restrictions on the class of types involved:

• The actual subtype corresponding to the formal type TARGET must not be
an unconstrained array type.

• The actual subtype corresponding to the formal type TARGET must not be
an unconstrained type with discriminants.

When the target type is a type with discriminants, the value resulting
from a call of the conversion function resulting from an instantiation of
UNCHECKED_CONVERSION is checked to ensure that the discriminants
satisfy the constraints of the actual subtype.

If the size of the source value is greater than the size of the target subtype, the
high order bits of the value are ignored (truncated). If the size of the source
value is less than the size of the target subtype, the value is extended with
zero bits to form the result value.

F.6 Conventions for Implementation-Generated Names
Denoting Implementation-Dependent Components in
Record Representation Clauses

DEC Ada does not allocate implementation-dependent components in records.

F.7 Interpretation of Expressions Appearing in Address
Clauses

Expressions appearing in address clauses must be of the type ADDRESS
defined in the package SYSTEM (see 13.7a.1 and F.3). In DEC Ada, values
of the type SYSTEM.ADDRESS are interpreted as virtual addresses in the
machine’s address space.

DEC Ada allows address clauses for objects and imported subprograms. On
Digital UNIX systems, the simple name can also be the name of a single entry
(see 13.5).

On OpenVMS systems, DEC Ada does not support interrupts as defined in
section 13.5.1. Instead, DEC Ada provides the pragma AST_ENTRY and the
AST_ENTRY attribute as alternative mechanisms for handling asynchronous
interrupts from the OpenVMS operating system (see 9.12a).

F–13 Interpretation of Expressions Appearing in Address Clauses F.7

On Digital UNIX systems, DEC Ada supports interrupts as defined in section
13.5.1, to allow some Digital UNIX signals to be associated with task entry
calls. For information on handling Digital UNIX signals, see the DEC Ada
Run-Time Reference Manual for DEC OSF/1 Systems.

F.8 Implementation-Dependent Characteristics of
Input-Output Packages

In addition to the standard predefined input-output packages
(SEQUENTIAL_IO, DIRECT_IO, TEXT_IO, and IO_EXCEPTIONS), DEC Ada
provides the following packages for handling sequential and direct files with
mixed-type elements:

• SEQUENTIAL_MIXED_IO (see 14.2b.4)

• DIRECT_MIXED_IO (see 14.2b.6)

DEC Ada does not provide the low level input-output package described in this
section.

As specified in section 14.4, DEC Ada raises the following language-defined
exceptions for error conditions that occur during input-output operations:

• STATUS_ERROR

• MODE_ERROR

• NAME_ERROR

• USE_ERROR

• END_ERROR

• DATA_ERROR

• LAYOUT_ERROR

DEC Ada does not raise the language-defined exception DEVICE_ERROR.
Device-related errors cause the exception USE_ERROR to be raised.

The exception USE_ERROR is raised under the following conditions:

• If the capacity of the external file has been exceeded

• In all CREATE operations if the mode specified is IN_FILE

• In all CREATE operations if the file attributes specified by the FORM
parameter are not supported by the package

F.8 Implementation-Dependent Characteristics of Input-Output Packages F–14

• In all CREATE, OPEN, DELETE, and RESET operations if, for the
specified mode, the environment does not support the operation for an
external file

• In all NAME operations if the file has no name

• In the SET_LINE_LENGTH and SET_PAGE_LENGTH operations on text
files if the lengths specified are inappropriate for the external file

• In text files if an operation is attempted that is not possible for reasons
that depend on characteristics of the external file

DEC Ada provides other input-output packages that are available on specific
systems. The following sections outline those packages. The following sections
also give system-specific information about the overall set of DEC Ada
input-output packages and input-output exceptions.

F.8.1 DEC Ada Input-Output Packages on OpenVMS Systems
On OpenVMS systems, the DEC Ada predefined packages and their operations
are implemented using OpenVMS Record Management Services (RMS)
file organizations and facilities. To give users the maximum benefit of the
underlying RMS input-output facilities, DEC Ada provides the following
OpenVMS-specific packages:

• RELATIVE_IO (see 14.2a.3)

• INDEXED_IO (see 14.2a.5)

• RELATIVE_MIXED_IO (see 14.2b.8)

• INDEXED_MIXED_IO (see 14.2b.10)

• AUX_IO_EXCEPTIONS (see 14.5a)

The following sections summarize the implementation-dependent characteris-
tics of the DEC Ada input-output packages. The DEC Ada Run-Time Reference
Manual for OpenVMS Systems discusses these characteristics in more detail.

F.8.1.1 Interpretation of the FORM Parameter on OpenVMS Systems
On OpenVMS systems, the value of the FORM parameter can be a string
of statements of the OpenVMS Record Management Services (RMS) File
Definition Language (FDL), or it can be a string referring to a text file of FDL
statements (called an FDL file).

FDL is a special-purpose OpenVMS language for writing file specifications.
These specifications are then used by DEC Ada run-time routines to create
or open files. See the DEC Ada Run-Time Reference Manual for OpenVMS
Systems for the rules governing the FORM parameter and for a general

F–15 Interpretation of the FORM Parameter on OpenVMS Systems F.8.1.1

description of FDL. See the Guide to OpenVMS File Applications and the
OpenVMS Record Management Utilities Reference Manual for complete
information on FDL.

On OpenVMS systems, each input-output package has a default string of
FDL statements that is used to open or create a file. In general, specification
of a FORM parameter is not necessary: it is never necessary in an OPEN
procedure; it may be necessary in a CREATE procedure. The packages for
which a value for the FORM parameter must be specified in a CREATE
procedure are as follows:

• The packages DIRECT_IO and RELATIVE_IO require that a maximum
element (record) size be specified in the FORM parameter if the item with
which the package is instantiated is unconstrained.

• The packages DIRECT_MIXED_IO and RELATIVE_MIXED_IO require
that a maximum element (record) size be specified in the FORM parameter.

• The packages INDEXED_IO and INDEXED_MIXED_IO require that
information about keys be specified in the FORM parameter.

Any explicit FORM specification supersedes the default attributes of the
governing input-output package. The DEC Ada Run-Time Reference Manual
for OpenVMS Systems describes the default external file attributes of each
input-output package.

The use of the FORM parameter is described for each input-output package
in chapter 14. For information on the default FORM parameters for each
DEC Ada input-output package and for information on using the FORM
parameter to specify external file attributes, see the DEC Ada Run-Time
Reference Manual for OpenVMS Systems. For information on FDL, see the
Guide to OpenVMS File Applications and the OpenVMS Record Management
Utilities Reference Manual.

F.8.1.2 Input-Output Exceptions on OpenVMS Systems
In addition to the DEC Ada exceptions that apply on all systems, the following
also apply on OpenVMS systems:

• The DEC Ada exceptions LOCK_ERROR, EXISTENCE_ERROR, and KEY_
ERROR are raised for relative and indexed input-output operations.

• The exception USE_ERROR is raised as follows in relative and indexed
files:

– In the WRITE operations on relative or indexed files if the element in
the position indicated has already been written

F.8.1.2 Input-Output Exceptions on OpenVMS Systems F–16

– In the DELETE_ELEMENT operations on relative and indexed files if
the current element is undefined at the start of the operation

– In the UPDATE operations on indexed files if the current element is
undefined or if the specified key violates the external file attributes

• The exception NAME_ERROR is raised as specified in section 14.4:
by a call of a CREATE or OPEN procedure if the string given for the
NAME parameter does not allow the identification of an external file. On
OpenVMS systems, the value of a NAME parameter can be a string that
denotes an OpenVMS file specification or an OpenVMS logical name (in
either case, the string names an external file).

For a CREATE procedure, the value of a NAME parameter can also be a
null string, in which case it names a temporary external file that is deleted
when the main program exits. The DEC Ada Run-Time Reference Manual
for OpenVMS Systems explains the naming of external files in more detail.

• The exception LAYOUT_ERROR is raised as specified in section 14.4:
in text input-output by the functions COL, LINE, or PAGE if the value
returned exceeds COUNT’LAST. The exception LAYOUT_ERROR is also
raised on output by an attempt to set column or line numbers in excess
of specified maximum line or page lengths and by attempts to output too
many characters to a string.

In the DEC Ada mixed input-output packages, the exception LAYOUT_
ERROR is raised by the procedure GET_ITEM if no more items can be
read from the file buffer. It is raised by the procedure PUT_ITEM if the
current position exceeds the file buffer size.

F.8.2 Input-Output Packages on Digital UNIX Systems
On Digital UNIX systems, the DEC Ada predefined packages and their
operations are implemented using Digital UNIX file facilities. DEC Ada
provides no additional input-output packages specifically related to Digital
UNIX systems.

The following sections summarize the Digital UNIX-specific characteristics of
the DEC Ada input-output packages.

F–17 Interpretation of the FORM Parameter on Digital UNIX Systems F.8.2.1

F.8.2.1 Interpretation of the FORM Parameter on Digital UNIX Systems
On Digital UNIX systems, the value of the FORM parameter conforms to the
description of the FORM parameter in IEEE Standard 1003.5-1992, IEEE
Standard for Information Technology, POSIX Ada Language Interfaces. The
value of the FORM parameter must be a character string, defined as follows:

form_image ::=
[field_name_identifier => field_value

{,field_name_identifier => field _value}]

field_value ::= field_value_identifier | integer

The field names and field values supported by DEC Ada are as follows:

OWNER, GROUP, OTHER Determines the file permissions associated
with the file.

The field value can be NONE, READ, WRITE,
EXECUTE, or any combination of the latter
three values separated by underscores (for
example, READ_WRITE). The field values set
the access permissions for the created file. If
no field value is specified, the default value is
READ_WRITE_EXECUTE.

The file permissions field names and values
can be used only in the FORM parameter of
a CREATE procedure. The exception USE_
ERROR is raised if they are used in the FORM
parameter of an OPEN procedure.

APPEND Determines whether or not data can be
appended to the file.

The field value must be either TRUE or
FALSE. A value of TRUE causes any output
to be written to the end of the named external
file. If no field value is specified, the default
value is FALSE.

The append field name and value can be used
only in the FORM parameter of an OPEN
procedure. The exception USE_ERROR is
raised if they are used in the FORM parameter
of a CREATE procedure.

BLOCKING Determines whether or not blocking input-
output is in effect.

F.8.2.1 Interpretation of the FORM Parameter on Digital UNIX Systems F–18

The field value must be TASKS. This value
causes a calling task (but not other tasks) to
wait for the completion of any input-output
operation on the file.

TERMINAL_INPUT Specifies how characters are read from the
keyboard. This field applies to text files only.

The field value must be either LINES or
CHARACTERS. The value LINES causes
the canonical terminal input. The value
CHARACTERS causes noncanonical terminal
input. If no field value is specified, the default
value is LINES.

The terminal input field name and value have
no effect if the file is not opened for input or if
the file is not opened on a terminal.

FILE_STRUCTURE Determines whether the file is first-in first-out
(FIFO) or not.

The field value must be either REGULAR or
FIFO. If no field value is specified, the default
value is REGULAR.

The file structure field name and values may
be used only in the FORM parameter of a
CREATE procedure. The exception USE_
ERROR is raised if they are used in the FORM
parameter of an OPEN procedure.

The exception USE_ERROR is also raised if
the field name and values are applied to files
created or opened with operations from the
packages DIRECT_IO and DIRECT_MIXED_
IO.

FILE_DESCRIPTOR Specifies a Digital UNIX file descriptor for the
Ada file being opened.

The field value specifies the file descriptor. The
file descriptor must be open.

F–19 Interpretation of the FORM Parameter on Digital UNIX Systems F.8.2.1

If the file descriptor is not open, if the file
descriptor refers to an Ada file that is already
open, or if the file descriptor refers to an Ada
file with an incompatible mode, the exception
USE_ERROR is raised.

The file descriptor option can be used only in
the FORM parameter of an OPEN procedure.

PAGE_TERMINATORS Determines the treatment of line, page, and
file terminators. This field applies to text files
only.

The field value must be either TRUE
or FALSE. A value of TRUE causes the
external representation of line, page, and
file terminators to be as defined in the DEC
Ada run-time reference manuals. A value of
FALSE causes the external file to have no page
terminators. If no field value is specified, the
default value is TRUE.

Output to the external file occurs as
follows when the field value is FALSE: line
terminators are represented by the character
ASCII.LF, page terminators are omitted, and
file terminators are represented by the physical
end of the file. The exception USE_ERROR is
raised when an explicit call is made to the
procedure TEXT_IO.NEW_PAGE or an explicit
call is made to the procedure TEXT_IO.SET_
LINE and the current line number exceeds the
value specified by the TO parameter.

Input to the external file occurs as follows
when the field value is FALSE: any occurrence
of the character ASCII.FF is interpreted as the
character ASCII.FF not as a page terminator.

BUFFER_SIZE Determines the size of the buffer used during
file operations.

The field value must be an integer. It specifies
the number of bytes in the buffer.

ELEMENT_SIZE Determines the maximum element size for a
direct file.

F.8.2.1 Interpretation of the FORM Parameter on Digital UNIX Systems F–20

The field value must be an integer. It specifies
the maximum number of bytes in the element.

Each input-output package has an implementation-defined value form string
that is used to open or create a file. In general, specification of a FORM
parameter is not necessary. The following packages require a value for the
FORM parameter to be specified in a CREATE procedure:

• The package DIRECT_IO requires that a maximum element size be
specified in the FORM parameter if the item with which the package is
instantiated is unconstrained.

• The package DIRECT_MIXED_IO requires that a maximum element size
be specified in the FORM parameter.

F.8.2.2 Input-Output Exceptions on Digital UNIX Systems
In addition to the DEC Ada exceptions that apply on all systems, the following
also apply on Digital UNIX systems:

• The exception NAME_ERROR is raised as specified in section 14.4: by a
call of a CREATE or OPEN procedure if the string given for the NAME
parameter does not allow the identification of an external file. On Digital
UNIX systems, the value of a NAME parameter can be a string that
denotes an Digital UNIX file specification.

For a CREATE procedure, the value of a NAME parameter can also be a
null string in which case it names a temporary external file that is deleted
when the main program exits.

• The exception LAYOUT_ERROR is raised as specified in section 14.4:
in text input-output by the functions COL, LINE, or PAGE if the value
returned exceeds COUNT’LAST. The exception LAYOUT_ERROR is also
raised on output by an attempt to set column or line numbers in excess
of specified maximum line or page lengths, and by attempts to output too
many characters to a string.

In the DEC Ada mixed input-output packages, the exception LAYOUT_
ERROR is raised by the procedure GET_ITEM if no more items can be
read from the file buffer. It is raised by the procedure PUT_ITEM if the
current position exceeds the file buffer size.

F.9 Other Implementation Characteristics
Implementation characteristics relating to the definition of a main program,
various numeric ranges, and implementation limits are summarized in the
following sections.

F–21 Other Implementation Characteristics F.9

F.9.1 Definition of a Main Program
DEC Ada permits a library unit to be used as a main program under the
following conditions:

• If it is a procedure with no formal parameters:

– On OpenVMS systems, the status returned to the OpenVMS
environment upon normal completion of the procedure is the value
1.

– On Digital UNIX systems, the status returned to the Digital UNIX
environment upon normal completion of the procedure is the value 0.

– On Digital UNIX systems, the status returned to the Digital UNIX
environment when unhandled exceptions have been raised is the value
42.

• If it is a function with no formal parameters whose returned value is of
a discrete type. In this case, the status returned to the operating-system
environment upon normal completion of the function is the function value.

• If it is a procedure declared with the pragma EXPORT_VALUED_
PROCEDURE, and it has one formal out parameter that is of a discrete
type. In this case, the status returned to the operating-system environment
upon normal completion of the procedure is the value of the first (and only)
parameter.

When a main function or a main procedure declared with the pragma
EXPORT_VALUED_PROCEDURE returns a discrete value whose size is
less than 32 bits (on OpenVMS VAX systems) or 64 bits (on Alpha systems),
the value is zero- or sign-extended as appropriate.

F.9.1 Definition of a Main Program F–22

F.9.2 Values of Integer Attributes
The ranges of values for integer types declared in the package STANDARD are
as follows:

Integer type Range
Systems on which it
applies

SHORT_SHORT_INTEGER –128 .. 127 All

SHORT_INTEGER –32768 .. 32767 All

INTEGER –2147483648 .. 2147483647 All

LONG_INTEGER –2147483648 .. 2147483647
–263 .. 263–1

OpenVMS VAX
Alpha

For the applicable input-output packages, the ranges of values for the types
COUNT and POSITIVE_COUNT are as follows:

COUNT 0 .. INTEGER’LAST

POSITIVE_COUNT 1 .. INTEGER’LAST

For the package TEXT_IO, the range of values for the type FIELD is as follows:

FIELD 0 .. INTEGER’LAST

F.9.3 Values of Floating Point Attributes
DEC Ada provides the following floating point types in the package
STANDARD. Additional floating point types are declared in the package
SYSTEM (see 13.7b.1 and 13.7b.2).

Type Default Representation
Systems on which
it applies Section

FLOAT F_floating
IEEE single float

OpenVMS
Digital UNIX

3.5.7

LONG_FLOAT G_floating
IEEE double float

OpenVMS
Digital UNIX

3.5.7

LONG_LONG_FLOAT H_floating
G_floating
IEEE double float

OpenVMS VAX
Alpha
Digital UNIX

3.5.7

The values of the floating point attributes for the different floating point
representations appear in the following tables.

F–23 Values of Floating Point Attributes F.9.3

F.9.3.1 F_floating Characteristics

Attribute
F_floating value and approximate decimal equivalent
(where applicable)

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON
approximately

16#0.1000_000#e–4
9.53674E–07

SMALL
approximately

16#0.8000_000#e–21
2.58494E–26

LARGE
approximately

16#0.FFFF_F80#e+21
1.93428E+25

SAFE_EMAX 127

SAFE_SMALL
approximately

16#0.1000_000#e–31
2.93874E–39

SAFE_LARGE
approximately

16#0.7FFF_FC0#e+32
1.70141E+38

FIRST
approximately

–16#0.7FFF_FF8#e+32
–1.70141E+38

LAST
approximately

16#0.7FFF_FF8#e+32
1.70141E+38

MACHINE_RADIX 2

MACHINE_MANTISSA 24

MACHINE_EMAX 127

MACHINE_EMIN –127

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F.9.3.1 F_floating Characteristics F–24

F.9.3.2 D_floating Characteristics

Attribute
D_floating value and approximate decimal equivalent
(where applicable)

DIGITS 9

MANTISSA 31

EMAX 124

EPSILON
approximately

16#0.4000_0000_0000_000#e–7
9.3132257461548E–10

SMALL
approximately

16#0.8000_0000_0000_000#e–31
2.3509887016446E–38

LARGE
approximately

16#0.FFFF_FFFE_0000_000#e+31
2.1267647922655E+37

SAFE_EMAX 127

SAFE_SMALL
approximately

16#0.1000_0000_0000_000#e–31
2.9387358770557E–39

SAFE_LARGE
approximately

16#0.7FFF_FFFF_0000_000#e+32
1.7014118338124E+38

FIRST
approximately

–16#0.7FFF_FFFF_FFFF_FF8#e+32
–1.7014118346047E+38

LAST
approximately

16#0.7FFF_FFFF_FFFF_FF8#e+32
1.7014118346047E+38

MACHINE_RADIX 2

MACHINE_MANTISSA 56

MACHINE_EMAX 127

MACHINE_EMIN –127

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F–25 D_floating Characteristics F.9.3.2

F.9.3.3 G_floating Characteristics

Attribute
G_floating value and approximate decimal equivalent
(where applicable)

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON
approximately

16#0.4000_0000_0000_00#e–12
8.881784197001E–16

SMALL
approximately

16#0.8000_0000_0000_00#e–51
1.944692274332E–62

LARGE
approximately

16#0.FFFF_FFFF_FFFF_E0#e+51
2.571100870814E+61

SAFE_EMAX 1023

SAFE_SMALL
approximately

16#0.1000_0000_0000_00#e–255
5.562684646268E–309

SAFE_LARGE
approximately

16#0.7FFF_FFFF_FFFF_F0#e+256
8.988465674312E+307

FIRST
approximately

–16#0.7FFF_FFFF_FFFF_FC#e+256
–8.988465674312E+307

LAST
approximately

16#0.7FFF_FFFF_FFFF_FC#e+256
8.988465674312E+307

MACHINE_RADIX 2

MACHINE_MANTISSA 53

MACHINE_EMAX 1023

MACHINE_EMIN –1023

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F.9.3.3 G_floating Characteristics F–26

F.9.3.4 H_floating Characteristics

Attribute
H_floating value and approximate decimal equivalent
(where applicable)

DIGITS 33

MANTISSA 111

EMAX 444

EPSILON
approximately

16#0.4000_0000_0000_0000_0000_0000_0000_0#e–27
7.7037197775489434122239117703397E–34

SMALL
approximately

16#0.8000_0000_0000_0000_0000_0000_0000_0#e–111
1.1006568214637918210934318020936E–134

LARGE
approximately

16#0.FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFE_0#e+111
4.5427420268475430659332737993000E+133

SAFE_EMAX 16383

SAFE_SMALL
approximately

16#0.1000_0000_0000_0000_0000_0000_0000_0#e–4095
8.4052578577802337656566945433044E–4933

SAFE_LARGE
approximately

16#0.7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_0#e+4096
5.9486574767861588254287966331400E+4931

FIRST
approximately

–16#0.7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_C#e+4096
–5.9486574767861588254287966331400E+4931

LAST
approximately

16#0.7FFF_FFFF_FFFF_FFFF_FFFF_FFFF_FFFF_C#e+4096
5.9486574767861588254287966331400E+4931

MACHINE_RADIX 2

MACHINE_MANTISSA 113

MACHINE_EMAX 16383

MACHINE_EMIN –16383

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F–27 H_floating Characteristics F.9.3.4

F.9.3.5 IEEE Single Float Characteristics

Attribute
IEEE single float value and approximate decimal equivalent
(where applicable)

DIGITS 6

MANTISSA 21

EMAX 84

EPSILON
approximately

16#0.1000_000#e–4
9.53674E-07

SMALL
approximately

16#0.8000_000#e–21
2.5849E–26

LARGE
approximately

16#0.FFFF_F80#E+21
1.93428E+25

SAFE_EMAX 125

SAFE_SMALL
approximately 1.17549E–38

SAFE_LARGE
approximately 4.25353E+37

FIRST
approximately –3.40282E+38

LAST
approximately 3.40282E+38

MACHINE_RADIX 2

MACHINE_MANTISSA 24

MACHINE_EMAX 128

MACHINE_EMIN –125

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F.9.3.5 IEEE Single Float Characteristics F–28

F.9.3.6 IEEE Double Float Characteristics

Attribute
IEEE double float value and approximate decimal equivalent
(where applicable)

DIGITS 15

MANTISSA 51

EMAX 204

EPSILON
approximately 8.8817841970012E–16

SMALL
approximately 1.9446922743316E–62

LARGE
approximately 2.5711008708144E+61

SAFE_EMAX 1021

SAFE_SMALL
approximately 2.22507385850720E–308

SAFE_LARGE
approximately 2.2471164185779E+307

FIRST
approximately –1.7976931348623E+308

LAST
approximately 1.7976931348623E+308

MACHINE_RADIX 2

MACHINE_MANTISSA 53

MACHINE_EMAX 1024

MACHINE_EMIN –1021

MACHINE_ROUNDS True

MACHINE_OVERFLOWS True

F.9.4 Attributes of Type DURATION
The values of the significant attributes of the type DURATION are as follows:

DURATION’DELTA 0.0001

DURATION’SMALL 2�14

DURATION’FIRST –131072.0000

F–29 Attributes of Type DURATION F.9.4

DURATION’LAST 131071.9999

DURATION’LARGE 131071.9999

F.9.5 Implementation Limits

Limit

DEC
systems
on which it
applies Value

In a subprogram or entry declaration, maximum
number of formal parameters that are of an
unconstrained record type

All 32

Maximum identifier length (number of characters) All 255

Maximum number of characters in a source line All 255

Maximum collection size (number of bytes) OpenVMS

Digital
UNIX

231–1

263–1

Maximum number of discriminants for a record type All 245

Maximum number of formal parameters in an entry or
subprogram declaration

All 246

Maximum number of dimensions in an array type All 255

Maximum number of library units and subunits in a
compilation closure1

All 4095

Maximum number of library units and subunits in an
execution closure2

All 16383

Maximum number of objects declared with the pragma
COMMON_OBJECT or PSECT_OBJECT

All 32757

Maximum number of enumeration literals in an
enumeration type definition

All 65535

Maximum number of lines in a source file All 65534

Maximum number of bits in any object All 231
� 1

Maximum size of the static portion of a stack frame
(approximate)

All 230

1The compilation closure of a given unit is the total set of units that the given unit depends on,
directly and indirectly.
2The execution closure of a given unit is the compilation closure plus all associated secondary units
(library bodies and subunits).

F.9.5 Implementation Limits F–30

G
Ada Language Interpretations

Under the rules of the American National Standards Institute (ANSI), the Ada
Joint Program Office (AJPO) of the United States Department of Defense, as
the sponsor of the United States Ada language standard, is responsible for the
ongoing maintenance and interpretation of that standard.

Under the rules of the International Standards Organization (ISO),
ISO-IEC/JTC1/SC22/WG9 (WG9) is responsible for the development and
ongoing maintenance and interpretation of the international Ada language
standard, coordination with related standards, and so on. Under WG9, an
Ada Rapporteur Group (ARG) has been formed to make recommendations on
maintenance and interpretation of the standard to WG9.

Both the ANSI (AJPO) and ISO (WG9/ARG) groups coordinate their efforts,
and, in particular, seek to retain Ada’s strength as an internationally single
standard and to avoid any divergence in the interpretation of the ISO and
ANSI Ada language standards.

A number of language interpretations (called Ada commentaries) have
been made (or recommended) between publication of the standards and the
publication of this version of the DEC Ada Language Reference Manual. These
commentaries have been coordinated between, and are endorsed by, both the
ANSI and ISO groups. The summary part of each commentary is presented
here for convenience.

For information on how to obtain the full text of the commentaries, contact the
AJPO (see the Postscript at the end of this manual for the mailing address),
the WG9, or the Ada Information Clearinghouse (AdaIC).

G–1

The Ada Information Clearinghouse is operated by the IIT Research Institute
for the AJPO. Its post office mailing addresses and phone numbers are as
follows:

AdaIC
3D139 (1211 Fern St., C-107)
The Pentagon
Washington, DC 20301-3081
(703) 685-1477

AdaIC
4600 Forbes Blvd.
Lanham, MD 20706
(301) 459-3711

AI-00001/10: Renaming and static expressions [4.9(06), 8.5(04)]
If the name declared by a renaming declaration denotes a constant explicitly
declared by a constant declaration having the form specified in 4.9(6), then the
name can be used as a primary in a static expression.

AI-00002/07: Deriving homographs for an enumeration literal and a function
[8.3(17)]
It is possible to derive both an enumeration literal and a user-defined function
that is a homograph of the literal. In such cases, the enumeration literal is
hidden by the user-defined function.

AI-00006/05: The subtype of a loop parameter [5.5(06)]
The subtype of a loop parameter is determined by the discrete range in the loop
parameter specification. Therefore, the loop parameter has a static subtype if
the discrete range is static.

AI-00007/19: Discriminant compatibility for incomplete, private, and access
types [3.7.2(05), 3.8.1 (04)]
When a subtype indication with a discriminant constraint is elaborated,
3.3.2(6-8) requires that the compatibility check defined in 3.7.2(5) be
performed. The check has two parts: first, check that the value of each
discriminant belongs to the corresponding discriminant subtype, and second, if
a discriminant is used in a subcomponent constraint, check the constraint for
compatibility with the subcomponent’s type. If a discriminant constraint
is applied to a private type or to an incomplete type before its complete
declaration, the second part of the check cannot be performed when the subtype
indication is elaborated because no subcomponent declarations exist.

The recommended interpretation of 3.7.2(5) in this case is that the check for
subcomponents be deferred and be performed no later than the end of the
declaration that allows the deferred check to be completely performed, except
when an incomplete type is declared in the private part of a package and its
full declaration is given in the package body; in this case, a discriminant
constraint is not allowed for the type prior to the end of the package
specification.

G–2

If a discriminant constraint is given for an access type, the constraint applies
to the designated type. The second part of the compatibility check is optional
in this case (even if the designated type is completely declared, e.g., even if the
constraint occurs in an object declaration or allocator).

When the initial values of discriminants are given by the evaluation of default
expressions, the corresponding constraint is checked for compatibility.

AI-00008/05: Negative exponents in based notation [2.4.2(04)]
The exponent of a based literal must not have a minus sign if the based literal
is an integer literal.

AI-00014/10: Evaluating default discriminant expressions [3.7.2(08)]
Default discriminant expressions are not evaluated when an explicit
initialization expression is provided in an object declaration or a component
declaration.

AI-00012/06: Declaration of homographs by derivation and instantiation
[8.3(17), 12.3(22)]
Derived subprograms can be homographs, and so can subprograms declared in
an instance.

AI-00015/12: When the prefix of ’ADDRESS contains a function name
[4.1.4(03), 13.7.2(06)]
The name of an attribute designator can be taken into account when deciding
whether the prefix of an attribute is a name or a function call, but the attribute
designator cannot be considered when resolving identifiers that are used in the
prefix. In particular, the fact that the prefix of ’ADDRESS (as well as the
prefix of ’SIZE, ’CONSTRAINED, and ’STORAGE_SIZE) can be an object but
not a function call does not affect the resolution of a name that occurs in the
prefix.

AI-00016/10: Using a renamed package prefix inside a package
[4.1.3(15), 4.1.3(18)]
An expanded name is legal if the prefix denotes a package and the selector is
a simple name declared within the visible part of the package, regardless of
whether the prefix is a name declared by a renaming declaration.

AI-00018/06: Checking aggregate index and subcomponent values [4.3.2(11)]
The check that the value of an index in an array aggregate belongs to an index
subtype can be made before or after all choices have been evaluated. Similarly,
the check that a subcomponent value belongs to the subcomponent’s subtype
can be performed before or after all subcomponent expressions have been
evaluated.

G–3

AI-00019/07: Checking for too many components in positional aggregates
[4.3.2(11)]
CONSTRAINT_ERROR is raised if the bounds of a positional aggregate do not
belong to the corresponding index subtype.

AI-00020/07: Real literals with fixed point multiplication and division
[4.5.5(10)]
A real literal is not allowed as an operand of a fixed point multiplication or
division. The possibility of adopting a more liberal rule in a future version of
the language will be studied.

AI-00023/06: Static numeric subtypes [4.9(11), 3.5.4(04), 3.5.7(10), 3.5.9(08)]
Declarations containing integer and real type definitions declare static
subtypes, e.g., given

type T is range 1 .. 10;

T is a static subtype.

AI-00024/09: Type conversions as out parameters for non-scalar types
[6.4.1(04)]
If an out parameter has the form of a type conversion and the type mark
denotes an array type, the type conversion is performed before the call
(see 4.6(11, 13) for the semantics of such a conversion). If the type mark
denotes an access type, the value of the variable is converted before the call to
the base type of the formal parameter; the designated object need not satisfy a
constraint imposed by the formal parameter.

AI-00025/08: Checking out parameter constraints for private types [6.4.1(09)]
When a subprogram parameter has a private type, the constraint checks
that are performed before or after the call are those appropriate for the type
declared in the private type’s full declaration.

AI-00026/07: Effect of full type decl on CONSTRAINED attribute
[7.4.2(09)]
After the full declaration of a private type P, P’CONSTRAINED is not allowed
unless P’s full declaration derives from a private type.

AI-00027/07: Visibility of type mark in explicit conversion or qualified
expression [8.3(18)]
The type mark that occurs in an explicit conversion or in a qualified expression
must denote a visible declaration.

G–4

AI-00030/07: All guards need not be evaluated first [9.7.1(05)]
In the execution of a selective wait statement, the evaluation of conditions,
delay expressions, and entry indices is performed in some order that is not
defined by the language, except that a delay expression or an entry index
cannot be evaluated until after the condition for the corresponding alternative
is evaluated and found to be true.

AI-00031/06: Out-of-range argument to pragma PRIORITY [9.8(01)]
If the argument to pragma PRIORITY does not lie in the range of the subtype
PRIORITY, the pragma has no effect.

AI-00032/09: Preemptive scheduling is required [9.8(04)]
If an implementation supports more than one priority level, or interrupts, then
it must also support a preemptive scheduling policy.

AI-00034/06: Value of COUNT in an accept statement [9.9(06)]
In an accept statement for a member of an entry family, the member being
called (and consequently, the task calling the member) is not known until the
entry index has been evaluated. This means that if the entry index contains
a COUNT attribute, its value is not affected by what member of the family is
eventually determined to be called.

AI-00035/06: Body stubs are not allowed in package specifications
[10.2(03)]
Body stubs are not allowed in package specifications.

AI-00037/12: Instantiating when discriminants have defaults [12.3.2(04)]
An actual subtype in a generic instantiation can be an unconstrained type with
discriminants that have defaults even if an occurrence of the formal type (as
an unconstrained subtype indication) is at a place where either a constraint or
default discriminants would be required for a type with discriminants.

AI-00038/06: Declarations associated with default names [12.3.6(02)]
The normal visibility rules apply to identifiers used in default subprogram
names, i.e., these identifiers are associated with declarations visible at the
point of the generic declaration, not those visible at each place of instantiation.

AI-00039/12: Forcing occurrences and premature uses of a type
[13.1(06), 13.1(07), 7.4.1(04)]
Each operand of a relational operator (and similarly, the operand of a type
conversion or membership test) is considered to be implicitly qualified with
the name of the corresponding operand type; such implicit occurrences are
considered to be occurrences of the type name with respect to the rules given in
13.1(6), 13.1(7), and 7.4.1(4). This means that such occurrences can be illegal
if the implicit type name is an incompletely declared private type (7.4.1(4)),

G–5

or they can make the subsequent occurrence of a representation clause illegal
(13.1(6, 7)).

AI-00040/07: Multiple specification of T’SIZE, T’STORAGE_SIZE, T’SMALL
[13.1(03), 13.6(01)]
For a given type, the ’SIZE, ’STORAGE_SIZE, and ’SMALL attributes can
each be specified at most once by an explicit representation clause.

AI-00045/05: Subtype SYSTEM.PRIORITY [13.7(02)]
The subtype SYSTEM.PRIORITY can be non-static. The subtype can have a
null range.

AI-00046/06: Lifetime of a temporary file and its name [14.2.1(03), 14.2.1(22)]
1) An implementation is allowed to delete a temporary file immediately after
closing it.

2) The NAME function is allowed to raise USE_ERROR if its argument is
associated with an external file that has no name, in particular, a temporary
file.

AI-00047/08: Effect of RESET on line and page length [14.3.1(04)]
Calling RESET resets the line and page lengths to UNBOUNDED.

AI-00048/12: Default files can be closed, deleted, and re-opened [14.3.2(01),
14.3.1(05)]
The CLOSE operation can be applied to a file object that is also serving as
the default input or default output file. The effect is to close the default file.
A subsequent OPEN operation can have the effect of opening the default file
as well. Similarly, a DELETE operation can be applied to a file object that is
serving as the default file.

The exception MODE_ERROR is raised by OPEN if the specified mode is
OUT_FILE and the file object being opened is serving as the default input file.
Similarly, MODE_ERROR is raised if the specified mode is IN_FILE and the
file object being opened is serving as the default output file.

AI-00050/11: When does GET_LINE call SKIP_LINE? [14.3.6(13)]
GET_LINE reads characters until either the end of the string is met or until
END_OF_LINE is true. If the end of the string has been met, SKIP_LINE is
not called even if END_OF_LINE is true. In particular, no characters are read
if the string is null.

G–6

AI-00051/07: Reading ‘‘integer literals’’ [14.3.7(06)]
Integer GET reads according to the syntax of an optionally signed numeric
literal that does not contain a point. It raises DATA_ERROR if the characters
read do not form a legal integer literal. For example, if integer GET attempts
to read 0.3, 0E–3, or 20#0#, reading stops before the decimal point for 0.3, after
the 3 for 0E–3, and after the second # for 20#0#; DATA_ERROR is raised for
0E–3 since legal integer literals are not allowed to have exponents containing
minus signs. DATA_ERROR is also raised for 20#0#, since 20 is not an allowed
base value.

AI-00099/12: ’SMALL can be specified for a derived fixed point type
[13.2(12)]
A representation clause specifying small for a derived fixed point type is
allowed if the resulting model numbers are (representable) values of the parent
type and the value specified for small is not greater than the delta of the
derived type.

AI-00103/06: Accuracy of a relation between two static universal real
operands [4.10(04)]
The relational and membership operations for static universal real operands
must be evaluated exactly.

AI-00113/12: A subunit’s with clause can name its ancestor library unit
[10.5(02)]
A with clause for a subunit can name the subunit’s ancestor library name.

AI-00120/05: Overload resolution for assignment statements [8.7(03)]
The type of the right-hand side of an assignment statement can be used to
determine an overload resolution of the left-hand side.

AI-00128/04: No membership tests or short-circuit operations in static
expressions [4.9(02)]
Membership tests and short-circuit control forms are not allowed in static
expressions because neither of these are operators.

AI-00132/05: Static constraints and component clauses [13.4(07)]
A record component clause is only allowed for a record component having a
constraint if the constraint is static and, if the component has subcomponents
that are constrained, each subcomponent constraint is static.

G–7

AI-00137/05: Exponentiation with floating point operand [4.5.6(06)]
Since the model interval for X*X*X*X is sometimes smaller than the interval
for (X*X)*(X*X), an implementation cannot compute X**4 as sqr(sqr(X)), where
sqr(Y) computes Y*Y. In general, exponentiation to the Nth power must be
implemented using N � 1 multiplications to ensure the required accuracy is
obtained.

AI-00138/10: Representation clauses for derived types [3.4(10), 3.4(22),
13.1(03), 13.6(01)]
If an aspect of a parent type’s representation has been specified by an implicit
or explicit representation clause and no explicit representation clause is given
for the same aspect of the derived type, the representation of the derived and
parent types are the same with respect to this aspect.

An explicit length clause for STORAGE_SIZE of a task type, for SIZE
(of any type), or for SMALL of a fixed point type, an explicit enumeration
representation clause, an explicit record representation clause, or an explicit
address clause for a task type can be given for a derived type (prior to a forcing
occurrence for the type) even if a representation clause has also been given
(explicitly or implicitly) for the same aspect of the parent type’s representation.
(But only a length clause is allowed for a derived type if the parent type has
derivable subprograms.)

An expression in an implicit representation clause is not evaluated when the
implicit clause is elaborated.

AI-00139/04: The declaration of ‘‘additional operations’’ for access types
[7.4.2(07)]
A consequence of the rule in 7.4.2(7, 8) is that an object A1 can be declared
such that the name A1(1) is illegal when A1.all(1) would be legal. Similar
examples exist for slices, for the attributes ’FIRST, ’LAST, ’LENGTH, and
’RANGE, and for selection of a record component (e.g., R1.C1 can be illegal
when R1.all.C1 is legal).

AI-00143/04: Model numbers for delta 1.0 range –7.0 .. 8.0 [3.5.9(06)]
Given

type F is delta 1.0 range -7.0 .. 8.0;

The model numbers for F do not include the value 8.0 and F’MANTISSA must
be 3.

G–8

AI-00144/10: A fixed point type declaration cannot raise an exception
[3.5.9(09)]
A fixed point type declaration cannot raise an exception. Declarations such as:

type F is delta 2**(-15) range -1.0 .. 1.0;

are legal even if F’SIZE is equal to 16 so 1.0 is not a representable value.

AI-00145/04: Dynamic computation of ’MANTISSA for fixed point subtypes
[3.5.9(14)]
If F is a non-static fixed point subtype, F’MANTISSA must, in general, be
computed at runtime.

AI-00146/10: Model numbers for a fixed point subtype with length clause
[3.5.9(14), 3.5.9(16)]
If a length clause specifying small has been given for a fixed point type, T, then
the value of small for any subtype of T is given by T’SMALL.

AI-00147/05: Declaring a fixed point type that occupies one word
[3.5.9(18)]
A fixed point type that occupies a full word can be declared as:

DEL : constant := 1.0/2**(WORD_LENGTH - 1);
type FRACTION is delta DEL range -1.0 .. 1.0 - DEL;

AI-00148/05: Legality of –1 .. 10 in loops [3.6.1(02)]
The range –1 .. 10 is illegal as the discrete range in an iteration rule,
constrained array type definition, and entry family declaration, since –1 is
an expression having a form prohibited by 3.6.1(2), and the other rules of the
language do not determine a unique type for the bounds. The possibility of
adopting a more liberal rule in a future version of the language will be studied.
Note, however, that instead of writing –1 .. 10, one can always write INTEGER
range –1 .. 10 or declare –1 as a constant and use the constant name in place
of the expression, –1; often it will be appropriate to use the attribute ’RANGE
in place of an explicit range such as –1 .. 10.

AI-00149/09: Activating a task before elaboration of its body [3.9(06)]
If an attempt is made to activate a task before its body has been elaborated,
PROGRAM_ERROR is raised.

If more than one task is to be activated, the check for unelaborated bodies is
performed before an attempt is made to activate any task. Consequently, if
PROGRAM_ERROR is raised, no tasks have been activated.

G–9

AI-00150/04: Allocated objects belong to the designated subtype
[4.8(05)]
CONSTRAINT_ERROR is raised if an object specified by an allocator does not
belong to the designated subtype for the allocator.

AI-00151/05: Case expression of a type derived from a generic formal type
[5.4(03)]
A type derived from a generic formal type cannot be used in the expression of
a case statement.

AI-00153/05: Membership tests cannot use an incompletely declared private
type [7.4.1(04)]
The type mark for a private type cannot be used in a membership test before
the end of the full declaration of the type. This restriction also applies to the
use of a name that denotes a subtype of the private type and the use of a name
that denotes any type or subtype that has a subcomponent of the private type.

AI-00154/06: Additional operations for composite and access types
[7.4.2(08), 7.4.2(07)]
This Commentary gives details showing which operations are declared for
certain composite and access types immediately after their declaration and
which are declared later in a package body.

AI-00155/08: Evaluation of an attribute prefix having an undefined value
[3.2.1(18), 7.4.3(04)]
The execution of a program is erroneous if the name of a deferred constant
is evaluated before the full declaration of the constant has been elaborated.
Evaluation of the name of a scalar variable is not erroneous, even if the
variable has an undefined value, if the name occurs as the prefix for the
attribute ADDRESS, FIRST_BIT, LAST_BIT, POSITION, or SIZE. (In these
cases, the value of the variable is not needed.)

AI-00157/05: Overloading resolution and parenthesized expressions
[8.7(07)]
The rule requiring aggregates to be given in named notation if they contain
a single component association (4.3(4)) is to be considered a syntax rule for
purposes of overloading resolution, and in particular, can be used to help
resolve the type of a parenthesized expression.

AI-00158/05: The main program is elaborated before it is called [10.5(01)]
The main program is elaborated before it is called.

AI-00163/05: Implicit conversion preserves staticness [4.9(06)]
A static expression is static even if an implicit conversion is applied to it.

G–10

AI-00167/05: It is possible to access a task from outside its master
[9.4(00)]
A task can be accessed from outside its master, since a function can return a
task object as its value, even a task that was activated inside the function.

AI-00169/06: Legality of incomplete null multidimensional array aggregates
[4.3(06)]
A multidimensional aggregate is illegal if a value is omitted in the specification
of any dimension.

AI-00170/07: Renaming a slice [8.5(05)]
A slice must not be renamed if renaming is prohibited for any of its
components.

AI-00172/06: GET_LINE for interactive devices [14.3.6(13)]
An implementation is allowed to assume that certain external files do not
contain page terminators. Such external files might be used to represent
interactive input devices. (To ensure that such files have no page terminators,
an implementation may refuse to recognize any input sequence as a page
terminator.) Under such an assumption, GET_LINE and SKIP_LINE can
return as soon as a line terminator is read.

AI-00173/05: Completion of execution by exception propagation
[9.4(05)]
The execution of a task, block statement, or subprogram is completed if an
exception is raised by the elaboration of its declarative part. The execution
of a task, block statement, or subprogram is completed if an exception is
raised before the first statement following the declarative part and there is no
corresponding handler, or if there is one, when it has finished the execution of
the corresponding handler. (TASKING_ERROR is the only exception that can
be raised under these circumstances. It can be raised by unsuccessful attempts
to activate one or more dependent tasks after elaboration of the declarative
part and before beginning execution of the sequence of statements.)

AI-00177/04: Use of others in a multidimensional aggregate [4.3.2(08)]
An others choice is allowed if an aggregate is not a subaggregate and is
the expression of a component association of an enclosing (array or record)
aggregate. An others choice is also allowed if an aggregate is a subaggregate
of a multidimensional array aggregate that is in one of the contexts specified
by 4.3.2(5-8).

AI-00179/08: The definition of the attribute FORE [3.5.10(08)]
The attribute ’FORE is defined in terms of the decimal representation of model
numbers.

G–11

AI-00180/07: Elaboration checks for INTERFACE subprograms
[3.9(05), 13.9(03)]
If a subprogram is named in an INTERFACE pragma, no check need be made
that the subprogram body has been elaborated before it is called.

AI-00181/04: NUMERIC_ERROR for nonstatic universal operands
[4.10(05)]
When evaluating a nonstatic universal expression, NUMERIC_ERROR can be
raised if any operand or the result is a real value that lies outside the range
of safe numbers of the most accurate predefined floating point type (excluding
universal_real) or an integer value that lies outside the range SYSTEM.MIN_
INT .. SYSTEM.MAX_INT.

AI-00186/08: Pragmas recognized by an impl do not force default
representation [13.1(06), 2.8(09)]
The intent of 2.8(9) is that an invalid pragma have the same effect as if it
were absent. To ensure that this intent is realized, a pragma defined by the
Standard or by an implementation is not allowed to contain an occurrence of a
name or expression that forces the determination of the default representation
of a type, since such occurrences would make later representation clauses
for the type illegal. Consequently, a representation clause for a type can
be accepted even if the clause is given after a pragma that contains an
expression that normally would force the default representation of the type
to be determined (since such a pragma will be considered invalid, and ignored).
(See AI-00322 for a similar rule for pragmas whose identifiers are not defined
either by the Standard or by the implementation.)

AI-00187/06: Using a name decl by a renaming decl as an expanded name
selector [4.1.3(15)]
A name declared by a renaming declaration can be used as a selector in an
expanded name.

AI-00190/06: A static expression cannot have a generic formal type
[4.9(02), 4.3.2(03)]
A static expression is not allowed to have a generic formal type (including a
type derived from a generic formal type, directly or indirectly). (Consequently,
if an array’s index subtype is a generic formal type, aggregates for that
dimension of the array can have only a single component association and
this component association must have a single choice.)

AI-00192/05: Allowed names of library units [8.6(02)]
The name of a library unit cannot be a homograph of a name that is already
declared in package STANDARD.

G–12

AI-00193/05: The value of ’FIRST’s argument in overloading resolution
[8.7(08)]
Any overloaded identifiers occurring in the argument for ’FIRST(N),
’LAST(N), and ’RANGE(N) must be resolved independently of the context
in which these attributes are used.

AI-00195/09: The intended use of CLOCK [9.6(05)]
CLOCK returns a value that reflects the time of day in the external
environment.

AI-00196/05: Use of 86_400.0 in TIME_OF [9.6(06)]
If TIME_OF is called with a seconds value of 86_400.0, the value returned is
equal to TIME_OF for the next day with a seconds value of 0.0. In addition,
the SECONDS function always returns a value less than 86_400.0, even if the
SECONDS argument of TIME_OF was 86_400.0.

AI-00197/07: With SYSTEM clause not needed for pragma PRIORITY
[9.8(00)]
Use of the pragma PRIORITY does not require the package SYSTEM to be
named in a with clause for the enclosing compilation unit.

AI-00198/09: Termination of unactivated tasks [9.3(04), 9.10(05),
9.3(08)]
If a task is abnormally completed, then any task it has created but not yet
activated becomes terminated and is never activated.

If PROGRAM_ERROR is raised before attempting to activate one or more tasks
because the body of at least one of these tasks has not yet been elaborated
(see AI-00149), all the unactivated tasks become terminated.

AI-00199/08: Implicit declaration of library subprograms [10.1(06)]
A subprogram body given in a compilation unit (following the context clause)
is interpreted as a secondary unit if the program library already contains a
subprogram declaration or generic subprogram declaration having the same
identifier as the body. Otherwise, the subprogram body is interpreted as a
library unit.

Successfully compiling a subprogram body that is a library unit means the
unit is added to the library, replacing any previously existing library unit
having the same identifier. (The previously existing library unit can only be a
package declaration, a generic package declaration, a generic instantiation, or
a previously compiled subprogram body that is a library unit.)

G–13

AI-00200/08: Dependences created by inline of generic instantiations
[10.3(07), 6.3.2(03)]
If inline inclusion of a subprogram call is achieved due to pragma INLINE,
an implementation is allowed to create a dependence of the calling unit on
the subprogram body; when such a dependence exists, the unit containing
the call is obsolete if the subprogram body is obsolete. Such dependences
can be created even when the subprogram is created as a result of a generic
instantiation.

AI-00201/07: The relation between TICK, CLOCK, and the delay statement
[9.6(01), 9.6(05), 9.6(04), 13.7.1(07)]
The value returned by successive calls to the CLOCK function can be expected
to change at the frequency indicated by SYSTEM.TICK.

There is no required relation between SYSTEM.TICK and
DURATION’SMALL.

Delay statements need not be executed with an accuracy that is related to
SYSTEM.TICK or DURATION’SMALL; in particular, delay statements can
be executed more accurately than SYSTEM.TICK implies. Execution with less
accuracy than SYSTEM.TICK requires justification in terms of AI-00325.

AI-00205/06: The formula for MANTISSA is correct [3.5.7(06)]
The number of mantissa bits for D decimal digits of accuracy is correctly given
by the formula in the Standard, namely, the integer next above
(D*log(10)/log(2)) + 1.

AI-00209/06: Exact evaluation of static universal real expressions
[4.10(04)]
An implementation can refuse to evaluate a static universal real expression
only if there are insufficient resources to evaluate the expression exactly, e.g.,
if there is insufficient memory available. Inexact results must not be delivered.

AI-00210/04: Loop name in an exit statement as an expanded name
[5.7(02)]
An expanded name is allowed as the loop name in an exit statement.

AI-00215/05: Type of EXP should be FIELD [14.3.8(20)]
The type of the EXP parameter for PUT is FIELD, not INTEGER.

AI-00217/05: The safe numbers of a floating point subtype [3.5.7(09)]
The safe numbers of a floating point subtype are the safe numbers of its base
type.

G–14

AI-00219/06: Use of & and ’IMAGE in static expressions [4.9(02)]
In a static expression, every factor, term, simple expression, and relation must
have a scalar type.

AI-00225/09: Secondary units for generic subprograms [10.1(06)]
If a subprogram body given in a compilation unit has the same identifier as a
library unit and the library unit is a generic subprogram declaration, then the
subprogram body is interpreted as a secondary unit.

AI-00226/06: Applicability of context clauses to subunits [10.1.1(04)]
The context clause of a library unit that is a declaration applies not only to the
secondary unit that defines the corresponding body, but also to any subunits of
the secondary unit.

AI-00231/03: Full declarations of incomplete types can have discriminants
[3.8.1(04)]
The full declaration of an incomplete type can be a derived type with
unconstrained discriminants when no discriminant part is given in the
incomplete type’s declaration.

AI-00232/05: Full declarations that implicitly declare unconstrained types
[7.4.1(03)]
A full declaration of a private type can declare a constrained array subtype or
a constrained type with discriminants.

AI-00234/05: Lower bound for ’IMAGE of enumeration values
[3.5.5(10)]
The lower bound of the string returned by the predefined attribute IMAGE is
one.

AI-00235/05: Redundant parentheses enclosing universal_fixed expressions
[4.5.5(11)]
An expression having type universal_fixed can be enclosed in parentheses
before being converted to some other numeric type.

AI-00236/12: Pragma ELABORATE for bodiless packages with tasks
[10.5(04)]
If a package declares a task object but no package body is required or provided
by a programmer, 9.3(5) says an implicit body is provided. The effect of a
pragma ELABORATE that names such a package is to require that the
implicitly provided package body be elaborated, thereby activating the task
declared in the package.

G–15

AI-00237/06: Instances having implicit package bodies [12.3(17),
9.3(05)]
Given a generic package declaration that does not require a body and that
has no explicit body, when the generic package is instantiated, if the instance
specification requires a body, then an implicit instance body is created and is
elaborated when the instantiation is elaborated.

AI-00239/11: ENUMERATION_IO and IMAGE for non-graphic characters
[14.3.9(06), 14.3.9(09), 3.5.5(11)]
If ENUM_IO is an instantiation of ENUMERATION_IO for a character type
that contains a non-graphic character, e.g.,

package ENUM_IO is new ENUMERATION_IO (CHARACTER);

then for each non-graphic character (such as ASCII.NUL), ENUM_IO.PUT
should output the corresponding sequence of characters used in the type
definition (e.g., PUT(ASCII.NUL) should output the string ‘‘NUL’’ if SET has
the value UPPER_CASE and WIDTH is less than 4). Furthermore, ENUM_
IO.GET should be able to read the sequence of characters output by ENUM_
IO.PUT for a non-graphic character, returning in its ITEM parameter the
corresponding enumeration value.

Similarly, the image of a non-graphic character (i.e., the result returned for the
attribute designator IMAGE) should be the sequence of characters used in the
type definition of CHARACTER (e.g., CHARACTER’IMAGE(ASCII.NUL)
= ‘‘NUL’’),and ’VALUE should accept such a string as representing the
corresponding enumeration value.

An implementation conforms to the Standard in this respect if the result
produced by ’IMAGE for a non-graphic character is accepted by ’VALUE, and
if the result (if any) produced by PUT can be read by GET; GET is also allowed
to raise DATA_ERROR when attempting to read any string produced by PUT
for a non-graphic character.

This interpretation is non-binding, i.e., implementers are encouraged to
conform to it but are not required to do so by the validation tests. A future
version of the Standard may incorporate this interpretation.

AI-00240/05: Integer type definitions cannot contain a RANGE attribute
[3.5.4(03)]
A range attribute is not allowed in an integer type definition.

G–16

AI-00242/09: Subprogram names allowed in pragma INLINE [6.3.2(03),
2.8(09)]
If the pragma INLINE appears at the place of a declarative item, every name
in the pragma must denote at least one subprogram or generic subprogram
declared explicitly earlier in the same declarative part or package specification.
If the pragma appears after a given library unit, the pragma must contain just
the name of the library unit, and the library unit must be a subprogram or a
generic subprogram. If a pragma INLINE appears at the place of a declarative
item and a name in the pragma is overloaded, the pragma applies just to
those subprograms whose declarations occur (explicitly) earlier in the same
declarative part or package specification. If a name in a pragma INLINE is
declared by a renaming declaration, and the denoted subprogram is explicitly
declared earlier in the same declarative part or package specification, inline
expansion is desired for every call of the denoted subprogram (whether the call
uses the new or the old name). If a pragma INLINE applies to a subprogram,
inline expansion is desired for every call of the subprogram, whether or not the
call uses a name declared by a renaming declaration.

AI-00243/05: Overriding width format in TEXT_IO [14.3.5(07)]
If the specification of WIDTH or FORE in a call of PUT is insufficiently large,
the output is given with no leading spaces.

AI-00244/04: Record aggregates with multiple choices in a component
association [4.3.1(01)]
In a record aggregate, a component association having multiple choices
denoting components of the same type is considered equivalent to a sequence of
single choice component associations representing the same components.

AI-00245/08: Type conversion conformance for renamed subprogram/entry
calls [6.4.1(03), 8.5(08)]
When a type conversion is used as an actual parameter corresponding to an in
out or out formal parameter and the subprogram being called was declared
by a renaming declaration (renaming either a subprogram or entry), the name
given as the type mark (in the type conversion) must conform to the name
given for the corresponding parameter of the denoted subprogram or entry (not
the name given in the renaming declaration).

AI-00247/05: A non-null FORM argument can be required by an
implementation [14.2.1(03)]
An implementation can require that a non-null FORM argument be given to
CREATE and/or OPEN by raising USE_ERROR if one is not provided.

G–17

AI-00251/05: Are types derived from generic formal types static subtypes?
[4.9(11)]
Types derived from generic formal types are not static subtypes.

AI-00257/04: Restricting generic unit bodies to compilations [10.3(09)]
10.3(9) allows an implementation to require that bodies and subunits of a
generic unit appear in the same compilation. An implementation is allowed to
apply this rule selectively, i.e., the conditions under which an implementation
requires placement in a single compilation may depend on characteristics of
the generic specification, body, or subunit.

AI-00258/06: ’POSITION etc. for renamed components [13.7.2(07),
A(34)]
The prefix for ’POSITION, ’FIRST_BIT, and ’LAST_BIT must have the form
R.C, where R is a name denoting a record and C is the name of a component of
the record.

AI-00260/06: Limited ‘‘full types’’ [7.4.4(04)]
A full type declaration declares a limited type if an assignment operation is
not visible for the type of some subcomponent at the place of the full type
declaration.

A formal parameter whose type mark denotes an incompletely declared private
type cannot have mode OUT if the parameter’s full type declaration declares a
limited type.

AI-00261/03: ‘‘any error’’ –> ‘‘any illegal construct’’ [10.3(03)]
An attempt to compile an illegal compilation unit has no effect on the program
library (see also AI-00255).

AI-00263/06: A named number is not an object [3.2(08), 13.5(04), 13.7.3(03),
13.7.3(05)]
A number declaration declares a named number, which is not an object.

The elaboration of a number declaration proceeds by evaluating the
initialization expression and creating a named number. The value of the
initialization expression then becomes the value of the named number.

AI-00265/05: Index subtype of an array aggregate [4.3.2(11)]
The index subtype of an array type declared by a constrained array definition
is the subtype defined by the corresponding discrete range.

G–18

AI-00266/09: A body cannot be compiled for a library unit instantiation
[10.1(06)]
If a generic package is instantiated as a library unit, it is illegal to attempt to
compile a package body having the same identifier as that of the instantiation.

After instantiating a generic subprogram as a library unit, any attempt to
compile a subprogram body having the same identifier as that of the library
unit instantiation causes the instantiation to be deleted from the library and
replaced with the new library unit subprogram.

AI-00267/06: Evaluating expressions in case statements [3.5.4(10), 5.4(06),
11.6(06)]
An exception is raised if the value of the expression in a case statement does
not belong to the base type of the expression.

AI-00268/06: Activation of already abnormal tasks [9.3(03)]
If a task is aborted before it is activated, no exception is raised when an
attempt is made to activate the task.

AI-00276/07: Rendezvous that are ‘‘immediately possible’’ vs. timed entry
calls [9.7.3(04), 9.7.2(01)]
A timed entry call with a zero or negative delay issues an entry call that is
canceled only if a rendezvous is not immediately possible. 9.7.2(4) specifies
the conditions under which an entry call is immediately possible. In a
distributed implementation of Ada, it may take a non-negligible amount of
time to determine whether an entry call is ‘‘immediately’’ possible.

AI-00279/09: Exceptions raised by calls of I/O subprograms [14.1(11)]
Any exception can be raised when evaluating the actual parameters of a call
of an input-output subprogram. In addition, STORAGE_ERROR can be raised
by the call itself before execution of the body has begun. But once execution of
the body of an input-output subprogram has been started, the only exceptions
that can be propagated to the caller are the exceptions defined in the package
IO_EXCEPTIONS and the exceptions PROGRAM_ERROR and STORAGE_
ERROR. In particular, if CONSTRAINT_ERROR, NUMERIC_ERROR, or
TASKING_ERROR is not raised by the evaluation of any argument, then
none of these exceptions will be raised by the call. Furthermore, PROGRAM_
ERROR can only be raised due to errors made by the user of the input-output
subprogram.

AI-00282/06: Compatibility of constraint defined by discrete range [3.6.1(04)]
The constraint defined by a discrete range is compatible with a subtype if
each bound of the discrete range belongs to the subtype, or if the discrete
range defines a null range; otherwise the constraint is not compatible with the
subtype.

G–19

AI-00286/11: Declarations visible in a generic subprogram decl and body
[12.1(05), 8.4(05), 8.3(15)]
Except within the body of a generic subprogram, the declaration of a generic
unit is not a declaration for which overloading is allowed. In particular, any
declarations occurring in an outer declarative region or made potentially visible
by a use clause are not directly visible in the generic formal part if they have
the same identifier as the subprogram.

Within the body of a generic subprogram, overloading is defined for the generic
subprogram declaration in the same way as for a nongeneric subprogram. In
particular, overloadable declarations occurring in an outer declarative region or
made potentially visible by a use clause can be directly visible in the body even
though they are not directly visible in the generic formal part.

AI-00287/05: Resolving overloaded entry calls [9.5(05), 8.7(13)]
A call to an overloaded entry is resolved using the same kind of information
as is used for resolving overloaded procedure calls (the name of the entry, the
number of parameters, the types and the order of the actual parameters, and
the names of the formal parameters).

AI-00288/06: Effect of priorities during activation [9.8(04)]
A task activation should be performed with the priority of the task being
activated or the priority of the task causing the activation, whichever is higher.

AI-00289/05: Ancestor unit names in separate clauses must be simple names
[10.2(05)]
If P is a library unit, then the name in a ‘‘separate’’ clause for a subunit of P
must be P and not STANDARD.P.

AI-00292/05: Derived types with address clauses for entries [3.4(10), 13.5(08)]
An address clause applied to an entry of a task type also applies to a type
derived (directly or indirectly) from the task type.

AI-00293/05: Null others choice for array aggregates [4.3(06)]
The others choice in an array aggregate can specify no components.

AI-00294/05: The name given in pragma CONTROLLED [4.8(11)]
The type name given in a pragma CONTROLLED cannot be declared by a
subtype declaration nor can it be a first named subtype since a derived type is
not allowed.

AI-00295/05: Evaluating the variable in an actual parameter type conversion
[6.4.1(04)]
For an actual parameter (of any type) of mode in out or out that is a type
conversion, the variable name is evaluated before the call and therefore
determines the denoted entity.

G–20

AI-00298/05: Interaction between pragmas ELABORATE and INTERFACE
[10.5(04), 13.9(03)]
A pragma ELABORATE can be applied to a library unit whose body is supplied
by a pragma INTERFACE.

AI-00300/07: Prefixes of attributes in length clauses [13.2(02)]
The prefix of the attribute that appears in a length clause must be a simple
name. An expanded name, or the name T’BASE, is not allowed.

AI-00305/05: T’ADDRESS when T is a task type yields the task object
address [13.7.2(03)]
If T denotes a task type, then within the body of task unit T, the T in
T’ADDRESS is considered to refer to the name of the task object that
designates the task currently executing the body, i.e., T’ADDRESS returns
the address of the object.

AI-00306/15: Pragma INTERFACE; allowed names and illegalities
[2.8(09), 13.9(03)]
If a pragma INTERFACE names a language that is acceptable to an
implementation, the subprogram name must denote one or more subprograms
declared explicitly earlier in the same declarative part or package specification.
(The pragma has no effect if no named subprogram satisfies the requirements.)
The pragma is applied to all such subprograms other than enumeration literals
and subprograms declared by generic instantiation.

If a subprogram named in the pragma was declared by a renaming declaration,
the pragma applies to the denoted subprogram, but only if the denoted
subprogram otherwise satisfies the above requirements.

It is illegal to apply a pragma INTERFACE to a subprogram for which a
pragma INTERFACE has already been applied.

If a pragma INTERFACE applies to a subprogram, it is illegal to provide a
body for the subprogram.

AI-00307/04: GET at end of file and from a null string [14.3.7(06), 14.3.7(14),
14.3.8(09), 14.3.8(18), 14.3.9(06), 14.3.9(11)]
END_ERROR is raised (not DATA_ERROR) when attempting to read integer,
real, or enumeration values from a string that is null or that only contains
blanks. END_ERROR (not DATA_ERROR) is raised when attempting to
read integer, real, or enumeration values from a file that has no remaining
elements or whose only remaining elements are blanks, line terminators, or
page terminators.

G–21

AI-00308/05: Checking default initialization of discriminants for compatibility
[3.2.1(16)]
When an object of a type with discriminants is created either by an object
declaration or an allocator, and the values of the object’s discriminants are
determined by default, each discriminant value is checked for compatibility, as
defined in 3.7.2(5). CONSTRAINT_ERROR is raised if this check fails.

AI-00310/04: OTHERS choices and static index constraints [4.3.2(03)]
An others choice is static if the corresponding index subtype is static and if the
corresponding index bounds were specified with a static discrete range in the
applicable index constraint.

AI-00311/06: No NUMERIC_ERROR for null strings [11.1(06)]
When computing the upper bound of a null string literal, NUMERIC_ERROR
must not be raised, even if the lower bound has no predecessor (but see
AI-00325).

AI-00312/04: NUMERIC_ERROR when evaluating null aggregates and slices
[11.1(06)]
When determining the length of a null aggregate or slice, it is usually easy
for an implementation to avoid raising NUMERIC_ERROR. This exception
should be raised in these circumstances only when relevant restrictions in the
execution or compilation environment make it impractical or impossible to
avoid raising the exception (see AI-00325).

AI-00313/03: Non-null bounds belong to the index subtype [4.3.2(11), 4.6(13)]
CONSTRAINT_ERROR is raised if a non-null choice of an aggregate does not
belong to the corresponding index subtype.

For conversion to an unconstrained array type, CONSTRAINT_ERROR is
raised if a non-null dimension of the operand has bounds that do not belong to
the corresponding index subtype of the target type.

AI-00314/05: The safe numbers for IBM-370 floating point [3.5.7(09)]
The safe and model numbers for IBM-370 32-bit floating point have the
following characteristics:

DIGITS=6
MANTISSA = 21
EMAX = 84
SAFE_EMAX = 252

AI-00316/05: Definition of blank, inclusion of horizontal tab [14.3.9(06)]
A blank is defined as a space or a horizontal tabulation character.

G–22

AI-00319/09: Checking for subtype incompatibility [3.7.2(05),
3.8.1(04)]
No object can have a subcomponent with an incompatible discriminant or index
constraint. In particular, even when a discriminant constraint is applied to
a private type before its full declaration or to an incomplete type (before its
full declaration) and a discriminant is used to constrain a subcomponent, no
object of the type can be created if it would have a subcomponent with an
incompatible discriminant or index constraint.

AI-00320/06: Sharing external files [14.3.5(03), 14.2.4(00),
14.3.4(00), 14.2.2(00)]
If several file objects are associated with the same external file, some effects
are implementation dependent. For example, if two sequential file objects are
associated with the same external file, applying a read or write operation to
one file object can change the effect of applying these operations (or the end
of file operation) to the other file object. Other effects are specified by the
language. In particular, if two text file objects are associated with a single
external file (e.g., a terminal), the page, line, and column numbers for the
output file object cannot be updated implicitly after reading from the input file
object, and vice versa.

AI-00321/02: Forcing occurrence of index subtype [13.1(06)]
A forcing occurrence of the name of an array type or subtype forces the default
determination of each index subtype, and similarly, for forcing occurrences of
any type or subtype having a subcomponent of such an array type.

AI-00322/02: Forcing occurrences in unknown pragmas [13.1(06),
2.8(09)]
An occurrence of a name within an expression is not a forcing occurrence if
the expression occurs in a pragma whose identifier is not defined either by the
Standard or by the implementation.

AI-00324/06: Checking the subtype of a non-null access value [3.8(06)]
An access value of type T belongs to every subtype of T if T’s designated type is
neither an array type nor a type with discriminants.

AI-00325/05: Implementation-dependent limitations [1.1.2(00)]
Implementation-dependent limitations must be justified. An implementation-
dependent limitation is justified if it is impossible or impractical to remove it,
given an implementation’s execution environment.

AI-00328/08: Legality of uninstantiated generic units [12.2(01)]
The legality of a generic unit must be checked even if the generic unit is never
instantiated.

G–23

AI-00330/12: Explicit declaration of enumeration literals [8.3(17), 3.5.1(03),
3.3.3(01)]
If an enumeration literal is declared with an enumeration type definition,
then a function having the same identifier as the enumeration literal and the
same parameter and result type profile cannot also be declared immediately
within the same declarative region. Similarly, a non-overloadable declaration
of the enumeration literal’s identifier is not allowed immediately within the
declarative region containing the enumeration type definition.

AI-00331/07: The effect of a constraint in an allocator [4.8(05)]
When a discriminant or index constraint is imposed on the type mark in an
allocator and the type mark denotes an access type, the constraint does not
affect the subtype of the allocated object (which in this case has an access
value).

Similarly, when the type mark in an allocator denotes a scalar type, the
subtype denoted by the type mark does not affect the subtype of the allocated
(scalar) object.

AI-00332/04: NAME_ERROR or USE_ERROR raised when I/O not supported
[14.2.1(04), 14.2.1(07), 14.4(04), 14.4(05)]
CREATE and OPEN can raise USE_ERROR or NAME_ERROR if file creation
or opening is not allowed for any file.

AI-00336/05: Address clause for subprogram bodies [13.5(05)]
An address clause cannot be given for a subprogram whose body acts as its
declaration.

AI-00339/04: Allow non-English characters in comments [2.7(01),
2.1(01)]
An implementation is allowed (but not required) to accept an extended
character set (i.e., graphic characters whose codes do not belong to the ISO
seven-bit coded character set (ISO standard 646)) as long as the additional
characters appear only in comments.

AI-00343/05: Decimal fixed point representations [3.5.9(10)]
An implementation can use decimal or binary representations for fixed point
values as long as all model numbers are represented exactly.

AI-00350/04: Lexical elements not changed by allowable character
replacements [6.3.1(05), 2.10(05)]
Lexical elements differing only in their use of allowable replacements of
characters (as defined in 2.10) are considered as the same. In particular, use
of the allowable replacements does not affect the conformance of formal parts,
discriminant parts, or actual parameters.

G–24

AI-00354/03: On the elaboration of library units [10.5(02)]
There is no requirement that the body of a library unit be elaborated as soon
as possible after the library unit is elaborated. In particular, the pragma
ELABORATE should be used if it is important that a library package’s body be
elaborated before another package is elaborated.

AI-00355/06: Pragma ELABORATE for predefined library packages
[10.5(04), 9.6(07), 13.7(02), 13.10.1(01), 13.10.2(01), 14.1(01), 14.3(01), 14.6(05),
C(22)]
An attempt to use an entity declared within a predefined library unit or a unit
declared within a predefined library package must raise PROGRAM_ERROR
if a required body has not been elaborated (3.9(5-8)). An implementation is
not allowed to raise PROGRAM_ERROR for this reason, however, if a pragma
ELABORATE has been given for the library unit. (In particular, if the library
unit body provided by the implementation depends on other (implementation-
defined) library units, the implementation must ensure prior elaboration of the
required bodies, e.g., by providing appropriate ELABORATE pragmas.)

AI-00356/08: Access values that designate deallocated objects
[3.2.1(18), 4.8(07), 13.10.1(06)]
The storage occupied by a designated object can be reclaimed immediately
after applying an instance of the unchecked deallocation procedure to an access
variable that designates the object.

If two objects having non-null access values designate the same object and
an instance of the unchecked deallocation procedure is applied to one of the
objects, the other object is considered to have an undefined value; any attempt
to use such a value makes execution of the program erroneous.

Similarly, if a name declared by a renaming declaration denotes a subcompo-
nent of an object that is later freed by calling an instance of the unchecked
deallocation procedure, the name is considered to have an undefined value; any
attempt to evaluate the name (e.g., by assigning a value to it) makes execution
of the program erroneous.

AI-00357/05: CLOSE or RESET of a sequential file from OUT_FILE mode
[14.2.1(09), 14.2.1(15)]
If a sequential input-output file having mode OUT_FILE is closed or reset, the
most recently written element since the last open or reset is the last element
that can be read from the file. If no elements have been written, the closed
or reset file is empty. (As a consequence, opening a sequential input-output
file with mode OUT_FILE or resetting a sequential input-output file to mode
OUT_FILE has the effect of deleting the previous contents of the file.)

G–25

AI-00358/10: Discriminant checks for non-existent subcomponents [3.7.2(05),
3.7(08)]
When checking the compatibility of a discriminant constraint, 3.7.2(5) requires
that a discriminant’s value be substituted in component subtype definitions
that depend on the discriminant. This substitution is performed only for those
subcomponents that exist in the subtype defined by the constraint.

AI-00362/03: ‘‘component of a record’’ for representation attributes
[13.7.2(08)]
The prefix of ’POSITION, ’FIRST_BIT, or ’LAST_BIT must denote a
component of a record object.

AI-00365/05: Actual parameter names are evaluated in generic instantiations
[12.3(17)]
In a generic instantiation, the names appearing as actual parameters are
evaluated.

AI-00366/07: The value of SYSTEM.TICK for different execution environments
[13.7.1(07)]
SYSTEM.TICK should have a value that reflects the precision of the clock in
the main program’s execution environment. If SYSTEM.TICK does not have
an appropriate value, the effect of executing the program is not defined.

AI-00367/06: Deriving from types declared in a generic package
[3.4(11), 12.1(05)]
The rules concerning derivable subprograms in the visible part of a nongeneric
package are applicable in the visible part of a generic package. (The effect
of a derived type declaration in an instance of a generic unit is discussed in
AI-00398.)

AI-00370/06: Visibility of subprogam names within instantiations
[8.3(16)]
Any declaration with the same designator as a subprogram instantiation is not
visible, even by selection, within the instantiation.

AI-00371/05: Representation clauses containing forcing occurrences
[13.1(07), 2.8(09)]
An expression in a representation clause is illegal if it contains a forcing
occurrence for the type whose representation is being specified.

AI-00374/06: An attempt to access an undefined constant is erroneous
[3.2.1(18)]
The execution of a program is erroneous if it attempts to evaluate a scalar
constant with an undefined value.

G–26

AI-00375/05: Restricting the allowed values of a floating point subtype
[3.5.7(17)]
If a floating point constraint in a subtype indication includes a range
constraint, the range of the values that belong to the subtype (i.e., that satisfy
the constraint) is defined by the range constraint. If no range constraint is
present, the range of values that belong to the subtype is not affected, even
though the accuracy of the subtype may be reduced.

AI-00376/04: Universal real operands with fixed point * and / [4.5.5(10)]
An expression having type universal_real is not allowed as an operand of a
fixed point multiplication or division operation. The possibility of adopting a
more liberal rule in a future version of the language will be studied.

This commentary extends the conclusions of AI-00020 to cover all expressions
of type universal_real, not just those having the form of a real literal.

AI-00379/03: Address clauses for entries of task types [13.5(08)]
If an interrupt is linked to an entry of more than one task object (of the same
type), the program is erroneous.

AI-00384/05: Use of an incomplete private type in a formal type declaration
[7.4.1(04)]
An incompletely declared private type cannot be used in the declaration of a
generic formal type.

AI-00387/05: Raising CONSTRAINT_ERROR instead of NUMERIC_ERROR
[11.1(06), 3.5.4(10), 3.5.6(06), 4.5(07), 4.5.5(12), 4.5.7(07), 4.10(05)]
Wherever the Standard requires that NUMERIC_ERROR be raised (other than
by a raise statement), CONSTRAINT_ERROR should be raised instead. This
interpretation is non-binding.

AI-00388/06: Pragmas are allowed in a generic formal part [2.8(04)]
Pragmas are allowed in a generic formal part.

AI-00396/03: Correction to discussion of AI-00025 [6.4.1(09)]
The discussion section of AI-00025/07 should be corrected. Instead of saying,

‘‘The effect of the call, CALL_Q_NOW.CALL_Q.Q(Y), is to assign an invalid
value to P.Z’’

the discussion should say,

‘‘The effect of elaborating CALL_Q_NOW is to assign an invalid value to
P.Z’’.

G–27

AI-00397/04: Checking the designated subtype for an allocator [4.8(13),
4.8(05)]
When evaluating an allocator, a check is made that the designated object
belongs to the allocator’s designated subtype. CONSTRAINT_ERROR is raised
if this check fails. This check can be made any time before evaluation of the
allocator is complete. In particular, it is not defined whether this check is
performed before creation of a designated object, evaluation of any default
initialization expressions, or evaluation of any expressions contained in the
allocator.

AI-00398/08: Operations declared for types declared in instances
[12.3(05), 3.4(11)]
If the parent type in a derived type definition is a generic formal type, the
operations declared for the derived type in the template are determined by the
class of the formal type. The operations declared for the derived type in the
instance are determined by the type denoted by the formal parameter.

Similarly, if the component type of an array type is a generic formal type or if
the designated type of an access type is a generic formal type, the operations
declared for the array and access type in the template depend on the class of
the formal type. If the array and access type declarations do not occur in the
generic formal part, then the operations declared for these types in a generic
instance are determined by the type denoted by the formal parameter in the
instance.

If the designated type in an access type declaration is an incomplete type,
additional operations can be declared for the access type by the full declaration
of the incomplete type (7.4.2(7-8)). If the full declaration declares a type
derived from a generic formal type, the additional operations (if any) declared
for the access type in the template are determined by the class of the formal
type. The additional operations declared for the access type in the instance are
determined by the type denoted by the formal parameter.

Similar rules apply when the parent type, component type, or designated type
is derived, directly or indirectly, from a generic formal type.

AI-00405/06: One nonstatic operand for a universal real relation
[4.10(04)]
If the operands of a relational operator or membership test have the type
universal_real and one or more of the operands is nonstatic, the static operands
must be evaluated exactly. Doing so, however, does not impose a run-time
overhead.

G–28

AI-00406/05: Evaluating parameters of a call before raising
PROGRAM_ERROR [3.9(05)]
It is not defined whether the check that the body of a subprogram has been
elaborated is made before or after the actual parameters of a call have been
evaluated.

Similarly, it is not defined whether the check that the body of a generic unit
has been elaborated is made before or after the generic actual parameters of
an instantiation have been evaluated.

AI-00407/06: The operations of a subtype with reduced accuracy
[3.5.8(16), 3.5.10(15), 4.5.7(00), 5.2(03)]
When assigning a fixed or floating point value to a variable, the stored value
need only be represented as a model number of the variable’s subtype.
Furthermore, if no exception is raised by the assignment, the stored value
belongs to the subtype of the variable.

If a real subtype is used as the type mark in a membership test, qualification,
or explicit conversion, the corresponding operation is performed with the
accuracy of the base type and the range of the subtype.

For a real subtype, the value of the attributes FIRST or LAST is represented
with at least the accuracy of the base type. The values of other attributes of a
real subtype are given exactly.

AI-00408/11: Effect of compiling generic unit bodies separately [10.3(06)]
An implementation is allowed to create a dependence on a generic unit body
such that successfully compiling (or recompiling) the body separately makes
previously compiled units obsolete if they contain an instantiation of the
generic unit. A similar dependence can be created for separately compiled
subunits of a generic unit.

AI-00409/05: Static subtype names created by instantiation [12.3(05), 4.9(11)]
A subtype can be nonstatic in a generic template and static in a corresponding
instance.

AI-00412/06: Expanded names for generic formal parameters
[4.1.3(15), 4.1.3(18), 12.1(05)]
A formal parameter of a generic unit can be denoted by an expanded name.

AI-00418/06: Self-referencing with clauses [10.1(03)]
Circular dependences among library units are not allowed, i.e., the library unit
being compiled cannot have the same name as a previously compiled library
unit if a with clause for the unit being compiled establishes a direct or indirect
dependence on the previously compiled unit.

G–29

AI-00422/06: Representation clauses for derived enumeration and record
types [13.1(03), 13.3(02), 13.4(02)]
An enumeration representation clause or a record representation clause can
be given for an enumeration type or a record type declared by a derived type
declaration.

The index subtype for the aggregate used in an enumeration representation
clause is the base type of the enumeration type.

A record representation clause for a first named subtype can specify the
representation of any component that belongs to the record’s base type, even if
the subtype is constrained.

AI-00425/05: Restrictions on arguments of implementation-defined pragmas
[2.8(08)]
An implementation can impose restrictions on the arguments of its
implementation-defined pragmas (e.g., it can require that an argument be
a static expression).

AI-00426/05: Operations on undefined array values [3.2.1(18),
4.5.1(03)]
If both operands of a predefined logical operator do not have the same number
of components, CONSTRAINT_ERROR is raised, even if one of the operands
has a scalar component with an undefined value.

AI-00430/05: Using an enumeration literal does not raise PROGRAM_ERROR
[3.5.1(03), 3.9(08)]
The use of an enumeration literal (i.e., a call of the corresponding parameter-
less function) does not raise PROGRAM_ERROR.

AI-00431/05: Boolean operators producing out of range results
[4.5.1(03)]
Predefined logical operations on boolean arrays are performed on a component-
by-component basis, using the predefined logical operation for the component
type (even if a user-defined logical operation for the component type is visible
and hides the predefined one).

AI-00441/06: A task without dependents can be completed but not
terminated [9.4(06)]
A task that has no dependent tasks can be completed but not yet terminated,
i.e., T’CALLABLE can be FALSE when T’TERMINATED is not yet TRUE.

AI-00444/05: Conditional entry calls can be queued momentarily
[9.7.2(01)]
A conditional entry call may (momentarily) increase the COUNT attribute of
an entry, even if the conditional call is not accepted.

G–30

AI-00446/05: Raising an exception in an abnormally completed task
[9.10(06), 11.4(01)]
An exception can be propagated to an abnormally completed task that is
engaged in a rendezvous or that is waiting for a task to be activated. If this
occurs, the exception has no effect.

AI-00449/04: Evaluating default discriminant expressions [3.3.2(06)]
Default discriminant expressions are not evaluated when a subtype indication
is elaborated.

AI-00455/05: Raising an exception before the sequence of statements
[11.4.1(03)]
If an exception is raised due to the attempt to activate a task and the exception
is raised after elaboration of a declarative part and just before execution of a
sequence of statements, the sequence of statements is not executed and control
is transferred in the same manner as for an exception raised in the sequence of
statements.

AI-00464/05: Delay statements executed by the environment task
[9.6(01)]
Delay statements can be executed by the environment task when a library
package is elaborated. Such statements delay the environment task.

AI-00466/04: I/O performed by library tasks [14.1(07)]
The language does not define what happens to external files after the
completion of the main program and before completion of all the library tasks.

AI-00467/04: Correction to AI-00179/06 [3.5.10(08)]
In the discussion section of AI-00179/06, the upper bound of SG’s range
constraint and the model interval in the subsequent discussion are incorrect
because the model numbers for subtype SG are the same as the model numbers
for type G.

AI-00468/04: Correction to AI-00187/04 discussion [4.1.3(15)]
The discussion section of AI-00187/04 should be corrected to point out that a
name declared by a renaming declaration is not allowed as the prefix of an
expanded name if the selector is not declared in the visible part of the package
denoted by the prefix.

AI-00471/04: Correction to AI-00144/08 examples [3.5.9(09)]
In the examples, the value of delta is given incorrectly as an integer
expression, 2**(–15); the expression should be 2.0**(–15).

G–31

AI-00475/05: Multiplication of fixed point values by negative integers
[4.5.5(08)]
If the integer in an integer multiplication of a fixed point value is negative,
the multiplication is equivalent to changing the sign of the fixed point value
followed by repeated addition.

AI-00483/04: Correction to question in AI-00409/03 [12.3(05)]
The instantiation of SET_OF in the question is illegal because the formal
generic type is an integer type. The formal type should be declared as a
discrete type.

AI-00486/04: Correction to AI-00047/06 example [14.3.1(04)]
The call to SET_PAGE_LENGTH in the question’s example should refer to file
FT, not the default output file.

AI-00493/05: Operator symbols that represent the same operator
[6.3.1(04)]
Two string literals serving as operator symbols represent the same operator
if the string literals are identical or if the only difference is that some letters
appear in upper case rather than lower case.

AI-00502/05: Error in AI-00170/06 [8.5(05)]
The declaration of type SINT in the question’s example should be replaced with
a subtype declaration so SINT has the type INTEGER.

AI-00503/04: Error in AI-00258/05 [13.7.2(07)]
The renaming declaration for Ren_C2 in AI-00258/05 is illegal since a type
mark is required instead of a subtype indication. An appropriate subtype
declaration should be added to the example.

AI-00508/03: The safe numbers of a fixed point subtype [3.5.9(11)]
The safe numbers of a fixed point subtype are the safe numbers of its
base type.

AI-00511/05: Error in AI-00388/04 [2.8(04)]
The example given in the response is syntactically incorrect unless ‘‘package
P’’ is replaced with either ‘‘procedure P’’ or ‘‘package P is end’’.

AI-00516/05: The safe interval for a fixed/integer result [4.5.7(04)]
When a fixed point value is divided by an integer value, the result model
interval is determined by considering the integer value to be a model interval
consisting of a single integer value.

G–32

AI-00866/03: The Latin-1 character set is used in source code and literals
[2.1(01), 2.5(01), 2.7(01), C(13)]
The Ada character set is based on ISO 8859/1, Latin-1. This commentary
replaces and extends AI-00339, which applied only to character codes used in
comments.

An implementation is allowed to provide pragmas or operating modes in which
the graphic characters used in identifiers and string literals are defined in a
locally appropriate manner (e.g., Latin-2).

G–33

Index

An entry exists in this index for each technical term or phrase that is defined in the
reference manual. The term or phrase is in boldface and is followed by the section
number where it is defined, also in boldface, for example:

Record aggregate 4.3.1

References to other sections that provide additional information are shown after a
semicolon, for example:

Record aggregate 4.3.1; 4.3

References to other related entries in the index follow in brackets, and a line that is
indented below a boldface entry gives the section numbers where particular uses of
the term or phrase can be found; for example:

Record aggregate 4.3.1; 4.3
[see also: aggregate]

as a basic operation 3.3.3; 3.7.4
in a code statement 13.8

The index also contains entries for different parts of a phrase, entries that correct
alternative terminology, and entries directing the reader to information otherwise
hard to find, for example:

Check
[see: suppress pragma]

The entries for the DEC Ada technical terms, phrases, references, and so on have
been incorporated into the index following the established conventions. Additions to
an existing entry have been added to the end of the entry; additional main entries
have been inserted directly into the existing index. All DEC Ada additions are
distinguished by colored print.

Index–1

Abandon elaboration or evaluation (of
declarations or statements)

[see: exception, raise statement]

Abnormal task 9.10; 9.9
[see also: abort statement]

as recipient of an entry call 9.7.2,
9.7.3, 11.5; 9.5
raising tasking_error in a calling
task 11.5; 9.5

Abort statement 9.10
[see also: abnormal task, statement,
task]

as a simple statement 5.1

Abs unary operator 4.5.6; 4.5
[see also: highest precedence
operator]

as an operation of a fixed point
type 3.5.10
as an operation of a floating point
type 3.5.8
as an operation of an integer type
3.5.5
in a factor 4.4

Absolute global symbol D; 13.9a.2.1,
13.9a.2.2, 13.9a.2.3

Absolute value operation 4.5.6

Accept alternative (of a selective wait)
9.7.1

for an interrupt entry 13.5.1

Accept statement 9.5; 9, D
[see also: entry call statement, simple
name in . . . , statement, task]

accepting a conditional entry call
9.7.2
accepting a timed entry call 9.7.3
and optimization with exceptions
11.6
as a compound statement 5.1
as part of a declarative region 8.1
entity denoted by an expanded
name 4.1.3
in an abnormal task 9.10

in a select alternative 9.7.1
including an exit statement 5.7
including a goto statement 5.9
including a return statement 5.8
raising an exception 11.5
to communicate values 9.11

Access to external files 14.2

Access type 3.8; 3.3, D
[see also: allocator, appropriate for a
type, class of type, collection, derived
type of an access type, null access
value, object designated by . . .]

as a derived type 3.4
as a generic formal type 12.1.2,
12.3.5
deallocation [see: unchecked_
deallocation]
designating a limited type 7.4.4
designating a task type
determining task dependence
9.4
formal parameter 6.2
name in a controlled pragma 4.8
object initialization 3.2.1
operation 3.8.2
prefix 4.1
value designating an object 3.2,
4.8
value designating an object with
discriminants 5.2
with a discriminant constraint
3.7.2
with an index constraint 3.6.1
input-output of 14.1

Access type definition 3.8; 3.3.1, 12.1.2
as a generic type definition 12.1

Access_check
[see: constraint_error, suppress]
[see also: address (predefined
attribute); bit (DEC Ada predefined
attribute)]

Index–2

Accuracy
of a numeric operation 4.5.7
of a numeric operation of a
universal type 4.10

Activation
[see: task activation]

Actual object
[see: generic actual object]

Actual parameter 6.4.1; D; (of an
operator) 6.7; (of a subprogram) 6.4; 6.2,
6.3

[see also: entry call, formal
parameter, function call, procedure
call statement, subprogram call]

characteristics and overload
resolution 6.6
in a generic instantiation

[see: generic actual parameter]
of an array type 3.6.1
of a record type 3.7.2
of a task type 9.2
that is an array aggregate 4.3.2
that is a loop parameter 5.5

Actual parameter part 6.4
in a conditional entry call 9.7.2
in an entry call statement 9.5
in a function call 6.4
in a procedure call statement 6.4
in a timed entry call 9.7.3

Actual part
[see: actual parameter part, generic
actual part]

Actual subprogram
[see: generic actual subprogram]

Actual type
[see: generic actual type]

ADD_ATOMIC (DEC Ada predefined
procedure)

[see:system.add_atomic]

Adding operator
[see: binary adding operator, unary
adding operator]

ADD_INTERLOCKED (DEC Ada
predefined procedure)

[see:system.add_interlocked]

Addition operation 4.5.3
accuracy for a real type 4.5.7

ADDRESS (predefined attribute) 13.7.2;
3.5.5, 3.5.8, 3.5.10, 3.6.2, 3.7.4, 3.8.2, 7.4.2,
9.9, 13.7, A

[see also: address clause,
system.address]

ADDRESS (predefined type)
[see: system.address]

Address clause 13.5; 13.1, 13.7
[see also: storage address,
system.address]

as a representation clause 13.1
for an entry 13.5.1
DEC Ada interpretation of
expressions F.7
DEC Ada restrictions on 13.5

ADDRESS_OPERATIONS (DEC Ada
predefined package) 13.7a.1

ADDRESS_SIZE (DEC Ada predefined
constant)

[see:system.address_size]

ADDRESS_ZERO (DEC Ada predefined
constant)

[see: system.address_zero]

AFT (predefined attribute) for a fixed
point type 3.5.10; A

Aft field of text_io output 14.3.8, 14.3.10

Aggregate 4.3, D
[see also: array aggregate,
overloading of . . . , record aggregate]

as a basic operation 3.3.3; 3.6.2,
3.7.4
as a primary 4.4

Index–3

in an allocator 4.8
in a code statement 13.8
in an enumeration representation
clause 13.3
in a qualified expression 4.7
must not be the argument of a
conversion 4.6
of a derived type 3.4

ALIGNED_WORD (DEC Ada predefined
type)

[see: system.aligned_word]

Alignment clause (in a record
representation clause) 13.4

All in a selected component 4.1.3

Allocation
of array and record components
13.1, 13.4
of variables forced to memory
with representation attribute
address 13.7.2

Allocation of processing
resources 9.8

Allocator 4.8; 3.8, D
[see also: access type, collection,
exception raised during . . . , initial
value, object, overloading of . . .]

as a basic operation 3.3.3; 3.8.2
as a primary 4.4
creating an object with a
discriminant 4.8; 5.2
for an array type 3.6.1
for a generic formal access type
12.1.2
for a private type 7.4.1
for a record type 3.7.2
for a task type 9.2; 9.3
must not be the argument of a
conversion 4.6
raising storage_error due to
the size of the collection being
exceeded 11.1
setting a task value 9.2
without storage check 11.7

Allowed 1.6

Alternate key in an indexed access file
14.2a

Alternative
[see: accept alternative, case
statement alternative, closed
alternative, delay alternative,
open alternative, select alternative,
selective wait, terminate alternative]

Ambiguity
[see: overloading]

Ampersand
[see: catenation]

character 2.1
delimiter 2.2

Ancestor library unit 10.2

And operator
[see: logical operator]

And then control form
[see: short circuit control form]

AND_ATOMIC (DEC Ada predefined
procedure)

[see:system.and_atomic]

Anonymous type 3.3.1; 3.5.4, 3.5.7,
3.5.9, 3.6, 9.1

Anonymous base type
[see: first named subtype]

ANSI (american national standards
institute) 2.1

Apostrophe character 2.1
in a character literal 2.5

Apostrophe delimiter 2.2
in an attribute 4.1.4
of a qualified expression 4.7

Apply 10.1.1

Index–4

Appropriate for a type 4.1
for an array type 4.1.1, 4.1.2
for a record type 4.1.3
for a task type 4.1.3

Arbitrary selection of select alternatives
9.7.1

Argument association in a pragma 2.8

Argument identifier in a pragma 2.8

Arithmetic operator 4.5
[see also: binary adding operator,
exponentiating operator, multiplying
operator, predefined operator, unary
adding operator]

as an operation of a fixed point
type 3.5.10
as an operation of a floating point
type 3.5.8
as an operation of an integer type
3.5.5
rounding for real types 13.7.3

Array aggregate 4.3.2; 4.3
[see also: aggregate]

as a basic operation 3.3.3; 3.6.2
in an enumeration representation
clause 13.3

Array assignment 5.2.1

Array bounds
[see: bound of an array]

Array component
[see: array type, component, indexed
component]
[see also: allocation]

Array type 3.6; 3.3, D
[see also: component, composite type,
constrained array, constrained . . . ,
index, matching components, null
slice, slice, unconstrained . . .]

as a full type 7.4.1
as a generic formal type 12.1.2
as a generic parameter 12.3.4

as the type of a formal parameter
6.2
conversion 4.6
for a prefix of an indexed
component 4.1.1
for a prefix of a slice 4.1.2
operation 3.6.2; 4.5.2, 4.5.3
operation on an array of boolean
components 4.5.1, 4.5.6
with a component type with
discriminants 3.7.2
with a limited component type
7.4.4
maximum number of dimensions
in DEC Ada F

Array type definition 3.6; 3.3.1, 12.1.2,
12.3.4

[see also: constrained array definition,
elaboration of . . . , unconstrained
array definition]

as a generic type definition 12.1

Arrow compound delimiter 2.2

ASCII (american standard code for
information interchange) 2.1

ASCII (predefined library package) 3.5.2;
2.6, C

[see also: graphical symbol]

Assignment compound delimiter 2.2;
5.2

in an object declaration 3.2.1

Assignment operation 5.2; D
[see also: initial value, limited type]

as a basic operation 3.3, 3.3.3;
3.5.5, 3.5.8, 3.5.10, 3.6.2, 3.7.4,
3.8.2, 7.4.2, 12.1.2
for a generic formal type 12.1.2
not available for a limited type
7.4.4
of an array aggregate 4.3.2
of an initial value to an object
3.2.1
to an array variable 5.2.1; 5.2
to a loop parameter 5.5

Index–5

to an object designated by an
access value 3.8
to a shared variable 9.11

Assignment statement 5.2; D
[see also: statement]

as a simple statement 5.1

ASSIGN_TO_ADDRESS (DEC Ada
generic procedure)

[see: system.assign_to_address]

Associated declarative region of a
declaration or statement 8.1

Association
[see: component association,
discriminant association,

generic association, parameter
association]

AST_ENTRY (DEC Ada predefined
attribute) 9.12a; A

AST_ENTRY (DEC Ada predefined
pragma) 9.12a; B

AST_HANDLER (DEC Ada predefined
type)

[see: system.ast_handler]

Asynchronous system trap (AST)
(OpenVMS) D

[see also: ast_entry, system.ast_
handler]

Attribute 4.1.4; D
[see also: predefined attribute,
representation attribute]

as a basic operation 3.3.3
as a name 4.1
as a primary 4.4
in a length clause 13.2
in a static expression in a generic
unit 12.1
of an access type 3.5.8
of an array type 3.6.2
of a derived type 3.4
of a discrete type or subtype 3.5.5
of an entry 9.9

of a fixed point type 3.5.10
of a floating point type 3.5.8
of an object of a task type 9.9
of a private type 7.4.2; 3.7.4
of a record type 3.7.4
of a static subtype in a static
expression 4.9
of a task type 9.9
of a type 3.3
of a type as a generic actual
function 12.3.6
of a type with discriminants 3.7.4
renamed as a function 8.5
that is a function 3.5.5

Attribute designator 4.1.4

AUX_IO_EXCEPTIONS (DEC Ada
predefined input-output package) 14.4;
14.2a.3, 14.2a.5, 14.2b.8, 14.2b.10

specification 14.5a

Bar
[see: vertical bar]

BASE (predefined attribute) 3.3.3; A
for an access type 3.8.2
for an array type 3.6.2
for a discrete type 3.5.5
for a fixed point type 3.5.10
for a floating point type 3.5.8
for a private type 7.4.2
for a record type 3.7.4

Base type (of a subtype) 3.3
as a static subtype 4.9
as target type of a conversion 4.6
due to elaboration of a type
definition 3.3.1
name [see: name of a base type]
of an array type 3.6; 4.1.2
of a derived subtype 3.4

Index–6

of a discriminant determining the
set of choices of a variant part
3.7.3
of a fixed point type 3.5.9
of a floating point type 3.5.7
of a formal parameter of a generic
formal subprogram 12.1.3
of an integer type 3.5.4
of a parent subtype 3.4
of a qualified expression 4.7
of a type mark 3.3.2
of a type mark in a membership
test 4.5.2
of the discrete range in a loop
parameter specification 5.5
of the expression in a case
statement 5.4
of the result of a generic formal
function 12.1.3
of the result subtype of a function
5.8
of the subtype indication in an
access type definition 3.8
of the type in the declaration of a
generic formal object 12.1.1
of the type mark in a renaming
declaration 8.5

Based literal 2.4.2; 14.3.7
[see also: colon character, sharp
character]

as a numeric literal 2.4

Basic character 2.1
[see also: basic graphic character,
character]

Basic character set 2.1
is sufficient for a program text
2.10

Basic declaration 3.1
as a basic declarative item 3.9

Basic declarative item 3.9
in a package specification 7.1; 7.2

Basic graphic character 2.1
[see also: basic character, digit,
graphic character, space character,
special character, upper case letter]

Basic operation 3.3.3
[see also: operation, scope of . . . ,
visibility . . .]

accuracy for a real type 4.5.7
implicitly declared 3.1, 3.3.3
of an access type 3.8.2
of an array type 3.6.2
of a derived type 3.4
of a discrete type 3.5.5
of a fixed point type 3.5.10
of a floating point type 3.5.8
of a limited type 7.4.4
of a private type 7.4.2
of a record type 3.7.4
of a task type 9.9
propagating an exception 11.6
raising an exception 11.4.1
that is an attribute 4.1.4

Belong
to a range 3.5
to a subtype 3.3
to a subtype of an access type 3.8

Binary adding operator 4.5; 4.5.3, C
[see also: arithmetic operator,
overloading of an operator]

for time predefined type 9.6
in a simple expression 4.4
overloaded 6.7

Binary operation 4.5

Bit
[see: storage bits]

BIT (DEC Ada predefined attribute)
13.7.2; A

Bit array D; 13.9a.1.2

BIT_ARRAY (DEC Ada predefined type)
[see: system.bit_array]

Bit string 13.9a.1.2; D

Index–7

Blank skipped by a text_io procedure
14.3.5

Block name 5.6
declaration 5.1
implicitly declared 3.1

Block statement 5.6; D
[see also: completed block statement,
statement]

as a compound statement 5.1
as a declarative region 8.1
entity denoted by an expanded
name 4.1.3
having dependent tasks 9.4
including an exception handler
11.2; 11
including an implicit declaration
5.1
including a suppress pragma 11.7
raising an exception 11.4.1, 11.4.2

Body 3.9; D
[see also: declaration, generic
body, generic package body,
generic subprogram body, library
unit, package body, proper body,
subprogram body, task body]

as a later declarative item 3.9

Body stub 10.2; D
acting as a subprogram
declaration 6.3
as a body 3.9
as a portion of a declarative
region 8.1
must be in the same declarative
region as the declaration 3.9, 7.1

BOOLEAN (predefined type) 3.5.3; C
derived 3.4; 3.5.3
result of a condition 5.3
result of an explicitly declared
equality operator 6.7

Boolean expression
[see: condition, expression]

Boolean operator
[see: logical operator]

Boolean type 3.5.3
[see also: derived type of a boolean
type, predefined type]

operation 3.5.5; 4.5.1, 4.5.2, 4.5.6
operation comparing real
operands 4.5.7

Bound
[see: error bound, first attribute, last
attribute]

Bound of an array 3.6, 3.6.1
[see also: index range, slice]

aggregate 4.3.2
ignored due to index_check
suppression 11.7
initialization in an allocator
constrains the allocated object 4.8
that is a formal parameter 6.2
that is the result of an operation
4.5.1, 4.5.3, 4.5.6

Bound of a range 3.5; 3.5.4
of a discrete range in a slice 4.1.2
of a discrete range is of universal_
integer type 3.6.1
of a static discrete range 4.9

Bound of a scalar type 3.5

Bound of a slice 4.1.2

Box D

Box compound delimiter 2.2
in a generic parameter
declaration 12.1, 12.1.2, 12.1.3;
12.3.3
in an index subtype definition 3.6

Bracket
[see: label bracket, left parenthesis,
parenthesized expression, right
parenthesis, string bracket]

Index–8

CALENDAR (predefined library package)
9.6; C

Call
[see: conditional entry call, entry call
statement, function call, procedure
call statement, subprogram call, timed
entry call]

CALLABLE (predefined attribute)
for an abnormal task 9.10
for a task object 9.9; A

Calling conventions
[see: subprogram declaration]

of a subprogram written in
another language 13.9

Cancelation of an entry call statement
9.7.2, 9.7.3

Carriage return format effector 2.1

Case of a letter
[see: letter, lower case letter, upper
case letter]

Case statement 5.4
[see also: statement]

as a compound statement 5.1

Case statement alternative 5.4

Catenation operation 4.5.3
for an array type 3.6.2
in a replacement of a string
literal 2.10

Catenation operator 4.5; 2.6, 3.6.3,
4.5.3, C

[see also: predefined operator]

Cell in a relative access file 14.2a

Character 2.1
[see also: ampersand, apostrophe,
basic character, colon, divide, dot,
equal, exclamation mark character,
graphic character, greater than,
hyphen, less than, minus, other

special character, parenthesis,
percent, period, plus, point character,
pound sterling, quotation, semicolon,
sharp, space, special character, star,
underline, vertical bar]

in a lexical element 2, 2.2
names of characters 2.1
replacement in program text 2.10
image of a nongraphic 3.5.5

CHARACTER (predefined type) 3.5.2; C
as the component type of the type
string 3.6.3

Character literal 2.5; 3.5.2, 4.2
[see also: scope of . . . , space
character literal, visibility of . . .]

as a basic operation 3.3.3
as an enumeration literal 3.5.1
as a name 4.1
as a selector 4.1.3
declared by an enumeration
literal specification 3.1
in a static expression 4.9
in homograph declarations 8.3
must be visible at the place of a
string literal 4.2

Character type 3.5.2; 2.5
operation 3.5.5

Check
[see: suppress pragma]

Choice 3.7.3
[see also: exception choice]

in an aggregate 4.3
in an array aggregate 4.3.2
in a case statement alternative
5.4
in a component association 4.3,
4.3.1, 4.3.2
in a record aggregate 4.3.1
in a variant of a record type
definition 3.7.3

Circularity in dependences
between compilation units 10.5

Index–9

Class of type 3.3; 12.1.2
[see also: access type, composite type,
private type, scalar type, task type]

of a derived type 3.4

Clause
[see: address clause, alignment
clause, component clause, context
clause, enumeration representation
clause, length clause, record
representation clause, representation
clause, use clause, with clause]

CLEAR_INTERLOCKED (DEC Ada
predefined procedure)

[see: system.clear_interlocked]

CLOCK (predefined function) 9.6
[see also: system.tick]

CLOSE (input-output procedure)
in an instance of direct_io 14.2.1;
14.2.5
in an instance of sequential_io
14.2.1; 14.2.3
in text_io 14.2.1; 14.3.10
in an instance of indexed_io
14.2.1; 14.2a.5
in an instance of relative_io
14.2a.1; 14.2a.3
in direct_mixed_io 14.2.1; 14.2b.6
in indexed_mixed_io 14.2.1;
14.2b.10
in relative_mixed_io 14.2.1;
14.2b.8
in sequential_mixed_io 14.2.1;
14.2b.4

Closed alternative (of a selective wait)
9.7.1; 11.1

[see also: alternative]

Closed file 14.1

Code statement 13.8
[see also: statement]

as a simple statement 5.1

COL (text_io function) 14.3.4; 14.3.10
raising an exception 14.4

Collection (of an access type) 3.8; 4.8, D
[see also: access type, allocator, length
clause, object, storage units allocated,
storage_size attribute]

of a derived access type 13.2; 3.4

Colon character 2.1
[see also: based literal]

replacing sharp character 2.10

Colon delimiter 2.2

Column 14.3.4

Comma
character 2.1
delimiter 2.2

Comment 2.7; 2.2
in a conforming construct 6.3.1

COMMON_OBJECT (DEC Ada
predefined pragma) 13.9a.2.3; 13.9a,
13.9a.2, B

maximum number of objects
declared with F

Communication
between tasks [see: accept
statement, entry, rendezvous]
of values between tasks 9.5, 9.11

Comparison
[see: relational operator]

Compatibility (of constraints) 3.3.2
[see also: constraint]

failure not causing constraint_
error 11.7
of a discrete range with an index
subtype 3.6.1
of discriminant constraints 3.7.2
of fixed point constraints 3.5.9
of floating point constraints 3.5.7
of index constraints 3.6.1
of range constraints 3.5

Index–10

Compilation 10.1; 10, 10.4
as a sequence of lexical elements
2
including an inline pragma 6.3.2

Compilation order
[see: order of compilation]

Compilation unit 10.1; 10, 10.4, D
[see also: library unit, secondary unit]

compiled after library units
named in its context clause 10.3
followed by an inline pragma
6.3.2
with a context clause 10.1.1
with a use clause 8.4

Compile time evaluation of expressions
10.6; 4.9

Compiler 10.4

Compiler listing
[see: list pragma, page pragma]

Compiler optimization
[see: optimization, optimize pragma]

Completed block statement 9.4

Completed subprogram 9.4

Completed task 9.4; 9.9
[see also: tasking_error, terminated
task]

as recipient of an entry call 9.5,
9.7.2, 9.7.3
becoming abnormal 9.10
completion during activation 9.3
due to an exception in the task
body 11.4.1, 11.4.2

Component (of a composite type) 3.3; 3.6,
3.7, D

[see also: component association,
component clause, component list,
composite type, default expression,
dependence on a discriminant,
discriminant, indexed component,

object, record type, selected
component, subcomponent]

combined by aggregate 4.3
depending on a discriminant
3.7.1; 11.1
name starting with a prefix 4.1
of an array 3.6 [see also: array
type]
of a constant 3.2.1
of a derived type 3.4
of an object 3.2
of a private type 7.4.2
of a record 3.7 [see also: record
type]
of a variable 3.2.1
simple name as a choice 3.7.3
subtype 3.7
subtype itself a composite type
3.6.1, 3.7.2
that is a task object 9.3
whose type is a limited type 7.4.4
biasing of 13.4

Component association 4.3
in an aggregate 4.3
including an expression that is an
array aggregate 4.3.2
named component association 4.3
named component association for
selective visibility 8.3
positional component association
4.3

Component clause (in a record
representation clause) 13.4

Component declaration 3.7
[see also: declaration, record type
definition]

as part of a basic declaration 3.1
having an extended scope 8.2
in a component list 3.7
of an array object 3.6.1
of a record object 3.7.2
visibility 8.3

Index–11

Component list 3.7
in a record type definition 3.7
in a variant 3.7.3

Component subtype definition 3.7
[see also: dependence on a
discriminant]

in a component declaration 3.7

Component type
catenation with an array type
4.5.3
object initialization [see: initial
value]
of an expression in an array
aggregate 4.3.2
of an expression in a record
aggregate 4.3.1
of a generic formal array type
12.3.4
operation determining a
composite type operation 4.5.1,
4.5.2

COMPONENT_ALIGNMENT (DEC Ada
predefined pragma) 13.1a; B

Composite type 3.3; 3.6, 3.7, D
[see also: array type, class of type,
component, discriminant, record type,
subcomponent]

including a limited subcomponent
7.4.4
including a task subcomponent
9.2
object initialization 3.2.1 [see
also: initial value]
of an aggregate 4.3
with a private type component
7.4.2

Compound delimiter 2.2
[see also: arrow, assignment, box,
delimiter, double dot, double star,
exponentiation, greater than or equal,
inequality, left label bracket, less than
or equal, right label bracket]

names of delimiters 2.2

Compound statement 5.1
[see also: statement]

including the destination of a goto
statement 5.9

Concatenation
[see: catenation]

Condition 5.3
[see also: expression]

determining an open alternative
of a selective wait 9.7.1
in an exit statement 5.7
in an if statement 5.3
in a while iteration scheme 5.5

Condition value D; 13.9a.3.1, 13.9a.3.2

Conditional compilation 10.6

Conditional entry call 9.7.2; 9.7
and renamed entries 8.5
subject to an address clause
13.5.1

Conforming 6.3.1
discriminant parts 6.3.1; 3.8.1,
7.4.1
formal parts 6.3.1
formal parts in entry declarations
and accept statements 9.5
subprogram specifications 6.3.1;
6.3
subprogram specifications in body
stub and subunit 10.2
type marks 6.3.1; 7.4.3

Conjunction
[see: logical operator]

Constant 3.2.1; D
[see also: deferred constant, loop
parameter, object]

access object 3.8
formal parameter 6.2
generic formal object 12.1.1, 12.3
in a static expression 4.9
renamed 8.5
that is a slice 4.1.2

Index–12

Constant declaration 3.2.1
[see also: deferred constant
declaration]

as a full declaration 7.4.3
with an array type 3.6.1
with a record type 3.7.2

CONSTRAINED (predefined attribute)
for an object of a type with
discriminants 3.7.4; A
for a private type 7.4.2, A

Constrained array definition 3.6
in an object declaration 3.2, 3.2.1

Constrained array type 3.6
[see also: array type, constraint]

Constrained subtype 3.3; 3.2.1, 3.6,
3.6.1, 3.7, 3.7.2, 6.4.1, 12.3.4

[see also: constraint, subtype, type,
unconstrained subtype]

due to elaboration of a type
definition 3.3.1
due to the elaboration of a derived
type definition 3.4
object declarations 3.2.1
of a subtype indication in an
allocator 4.8

Constraint (on an object of a type) 3.3,
3.3.2; D

[see also: accuracy constraint,
compatibility, constrained subtype,
dependence on a discriminant,
discriminant constraint, elaboration
of . . . , fixed point constraint, floating
point constraint, index constraint,
range constraint, satisfy, subtype,
unconstrained subtype]

explicitly specified by use of a
qualification 4.7
in a subtype indication in an
allocator 4.8
not considered in overload
resolution 8.7
on a derived subtype 3.4
on a formal parameter 6.2

on a formal parameter of a
generic formal subprogram 12.1.3
on a generic actual parameter
12.3.1
on a generic formal object 12.1.1
on a generic formal parameter
12.1; 12.3.1
on an object designated by an
access value 3.8
on a renamed object 8.5
on a subcomponent subject to a
component clause must be static
13.4
on a subtype of a generic formal
type 12.1.2
on a type mark in a generic
parameter declaration 12.3.1
on a variable 3.2.1, 3.3, 3.6
on the result of a generic formal
function 12.1.3

CONSTRAINT_ERROR (predefined
exception) 11.1

[see also: suppress pragma]
raised by an accept statement 9.5
raised by an actual parameter
not in the subtype of the formal
parameter 6.4.1
raised by an allocator 4.8
raised by an assignment 5.2; 3.5.4
raised by an attribute 3.5.5
raised by a component of an array
aggregate 4.3.2
raised by a component of a record
aggregate 4.3.1
raised by an entry call statement
9.5
raised by a formal parameter
not in the subtype of the actual
parameter 6.4.1
raised by an index value out of
bounds 4.1.1, 4.1.2
raised by a logical operation on
arrays of different lengths 4.5.1
raised by a name with a prefix
evaluated to a null access value
4.1

Index–13

raised by a qualification 4.7
raised by a result of a conversion
4.6
raised by a return statement 5.8
raised by incompatible
constraints 3.3.2
raised by integer exponentiation
with a negative exponent 4.5.6
raised by matching failure in an
array assignment 5.2.1
raised by naming of a variant not
present in a record 4.1.3
raised by the elaboration of a
generic instantiation 12.3.1,
12.3.2, 12.3.4, 12.3.5
raised by the initialization of an
object 3.2.1
raised by the result of a
catenation 4.5.3
raised by a negative value of the
storage_size attribute in a length
clause 13.2

Context clause 10.1.1; D
[see also: use clause, with clause]

determining order of elaboration
of compilation units 10.5
in a compilation unit 10.1
including a use clause 8.4
inserted by the environment 10.4
of a subunit 10.2

Context of overload resolution 8.7
[see also: overloading]

Contiguous array D; 13.9a.1.4

Control form
[see: short circuit control form]

CONTROLLED (predefined pragma) 4.8;
B

Conversion operation 4.6
[see also: explicit conversion,
implicit conversion, numeric type,
subtype conversion, type conversion,
unchecked conversion]

applied to an undefined value
3.2.1
as a basic operation 3.3.3; 3.3,
3.5.5, 3.5.8, 3.5.10, 3.6.2, 3.7.4,
3.8.2, 7.4.2
between array types 4.6
between numeric types 3.3.3,
3.5.5, 4.6
from universal_fixed type 4.5.5
in a static expression 4.9
of a universal type expression 5.2
of the bounds of a loop parameter
5.5
to a derived type 3.4
to a real type 4.5.7

Convertible universal operand 4.6

Copy (parameter passing) 6.2

COUNT (predefined attribute) for an
entry 9.9; A

COUNT (predefined integer type) 14.2,
14.2.5, 14.3.10; 14.2.4, 14.3, 14.3.3, 14.3.4,
14.4

COUNT (DEC Ada input-output type)
14.2a

in an instance of relative_io
14.2a.3
in relative_mixed_io 14.2b.8

CREATE (input-output procedure)
in an instance of direct_io 14.2.1;
14.2.5
in an instance of sequential_io
14.2.1; 14.2.3
in text_io 14.2.1, 14.3.1; 14.3.10
raising an exception 14.4
in an instance of indexed_io
14.2.1; 14.2a.1, 14.2a.5
in an instance of relative_io
14.2.1; 14.2a.1, 14.2a.3
in direct_mixed_io 14.2.1; 14.2b.1,
14.2b.6
in indexed_mixed_io 14.2.1;
14.2b.1, 14.2b.10

Index–14

in relative_mixed_io 14.2.1;
14.2b.1, 14.2b.8
in sequential_mixed_io 14.2.1;
14.2b.1, 14.2b.4

Current column number 14.3; 14.3.1,
14.3.4, 14.3.5, 14.3.6

Current element of a relative or indexed
access file 14.2a

defined and undefined 14.2a
locking of 14.2a

Current index of a direct access file 14.2,
14.2.1; 14.2.4

Current index of a relative access file
14.2a

Current line number 14.3; 14.3.1,
14.3.4, 14.3.5

Current mode of a file 14.1, 14.2.1;
14.2.2, 14.2.4, 14.3, 14.3.5, 14.4

Current page number 14.3; 14.3.1,
14.3.4, 14.3.5

Current size of a direct access file 14.2

CURRENT_INPUT (text_io function)
14.3.2; 14.3.10

CURRENT_OUTPUT (text_io function)
14.3.2; 14.3.10

DATA_ERROR (input-output exception)
14.4; 14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3.5,
14.3.7, 14.3.8, 14.3.9, 14.3.10, 14.5,
14.2a.3, 14.2a.5, 14.2b.4, 14.2b.6, 14.2b.8,
14.2b.10

Date
[see: day, month, time, year]

DAY (predefined function) 9.6

Dead code elimination
[see: conditional compilation]

Deallocation
[see: access type, unchecked_
deallocation]

Decimal literal 2.4.1; 14.3.7, 14.3.8 as a
numeric literal 2.4

Decimal number (in text_io) 14.3.7

Decimal point
[see: fixed point, floating point, point
character]

Declaration 3.1; D
[see also: basic declaration, block
name declaration, body, component
declaration, constant declaration,
deferred constant declaration, denote,
discriminant specification, entry
declaration, enumeration literal
specification, exception declaration,
exception raised during . . . , generic
declaration, generic formal part,
generic instantiation, generic
parameter declaration, generic
specification, hiding, implicit
declaration, incomplete type
declaration, label declaration, local
declaration, loop name declaration,
loop parameter specification, number
declaration, object declaration,
package declaration, package
specification, parameter specification,
private type declaration, renaming
declaration, representation
clause, scope of . . . , specification,
subprogram declaration, subprogram
specification, subtype declaration,
task declaration, task specification,
type declaration, visibility]

as an overload resolution context
8.7
determined by visibility from an
identifier 8.3
made directly visible by a use
clause 8.4

Index–15

of an enumeration literal 3.5.1
of a formal parameter 6.1
of a loop parameter 5.5
overloaded 6.6
raising an exception 11.4.2; 11.4
to which a representation clause
applies 13.1

Declarative item 3.9
[see also: basic declarative item, later
declarative item]

in a code procedure body 13.8
in a declarative part 3.9; 6.3.2
in a package specification 6.3.2
in a visible part 7.4
that is a use clause 8.4

Declarative part 3.9; D
[see also: elaboration of . . .]

in a block statement 5.6
in a package body 7.1; 7.3
in a subprogram body 6.3
in a task body 9.1; 9.3
including a generic declaration
12.2
including an inline pragma 6.3.2
including an interface pragma
13.9
including a representation clause
13.1
including a suppress pragma 11.7
including a task declaration 9.3
with implicit declarations 5.1

Declarative region 8.1; 8.2, 8.4
[see also: scope of . . .]

determining the visibility of a
declaration 8.3
formed by the predefined package
standard 8.6
in which a declaration is hidden
8.3
including a full type definition
7.4.2
including a subprogram
declaration 6.3

Declared immediately within
[see: occur immediately within]

Default determination of a
representation for an entity 13.1

Default expression
[see: default initial value, default
initialization, discriminant
specification, formal parameter,
generic formal object, initial value]

cannot include a forcing
occurrence 13.1
for a component 3.3; 7.4.3, 7.4.4
for a component of a derived type
object 3.4
for a discriminant 3.7.1; 3.2.1,
3.7.2, 12.3.2
for a formal parameter 6.1, 6.4.2;
6.4, 6.7, 7.4.3
for a formal parameter of a
generic formal subprogram 12.1;
7.4.3
for a formal parameter of a
renamed subprogram or entry 8.5
for a generic formal object 12.1,
12.1.1; 12.3
for the discriminants of an
allocated object 4.8
in a component declaration 3.7
in a discriminant specification
3.7.1
including the name of a private
type 7.4.1

Default file 14.3.2; 14.3

Default generic formal
subprogram 12.1; 12.1.3, 12.3.6

Default initial value (of a type) 3.3
[see also: default expression, initial
value]

for an access type object 3.8; 3.2.1
[see also: null access value]
for a record type object 3.7; 3.2.1

Index–16

Default initialization (for an object)
3.2.1, 3.3

[see also: default expression, default
initial value, initial value]

Default mode (of a file) 14.2.1; 14.2.3,
14.2.5, 14.3.10

Default_aft (field length) of fixed_io or
float_io 14.3.8; 14.3.10

Default_base of integer_io 14.3.7; 14.3.10

Default_exp (field length) of fixed_io or
float_io 14.3.8; 14.3.10

Default_fore (field length) of fixed_io or
float_io 14.3.8; 14.3.10

Default_setting (letter case) of
enumeration_io 14.3.9; 14.3.10

Default_width (field length)
of enumeration_io 14.3.9; 14.3.10
of integer_io 14.3.7; 14.3.10

Deferred constant 7.4.3
of a limited type 7.4.4

Deferred constant declaration 7.4;
7.4.3

[see also: private part (of a package),
visible part (of a package)]

as a basic declaration 3.1
is not a forcing occurrence 13.1

Definition
[see: access type definition, array
type definition, component subtype
definition, constrained array
definition, derived type definition,
enumeration type definition, generic
type definition, index subtype
definition, integer type definition, real
type definition, record type definition,
type definition, unconstrained array
definition]

Delay alternative (of a selective wait)
9.7.1

Delay expression 9.6; 9.7.1
[see also: duration]

in a timed entry call 9.7.3

Delay statement 9.6
[see also: statement, task]

as a simple statement 5.1
in an abnormal task 9.10
in a select alternative 9.7.1
in a timed entry call 9.7.3

DELETE (input-output procedure)
in an instance of direct_io 14.2.1;
14.2.5
in an instance of sequential_io
14.2.1; 14.2.3
in text_io 14.2.1; 14.3.10
in an instance of indexed_io
14.2.1; 14.2a.5
in an instance of relative_io
14.2.1; 14.2a.3
in direct_mixed_io 14.2.1; 14.2b.6
in indexed_mixed_io 14.2.1;
14.2b.10
in relative_mixed_io 14.2.1;
14.2b.8
in sequential_mixed_io 14.2.1;
14.2b.4

DELETE_ELEMENT (DEC Ada input-
output procedure)

in an instance of indexed_io
14.2a.4, 14.2a.5
in an instance of relative_io
14.2a.2, 14.2a.3
in indexed_mixed_io 14.2b.9,
14.2b.10
in relative_mixed_io 14.2b.7,
14.2b.8

Delimiter 2.2
[see also: ampersand, apostrophe,
arrow, assignment, colon, compound
delimiter, divide, dot, double
dot, equal, exclamation mark,
exponentiation, greater than or
equal, greater than, inequality, label
bracket, less than or equal, less than,

Index–17

minus, parenthesis, period, plus,
point, semicolon, star, vertical bar]

Delta (of a fixed point type) 3.5.9
[see also: fixed point type]

of universal_fixed 4.5.5

DELTA (predefined attribute) 3.5.10;
4.1.4, A

Denote an entity 3.1, 4.1; D
[see also: declaration, entity, name]

Dependence between compilation
units 10.3; 10.5

[see also: with clause]
circularity implying illegality 10.5

Dependence on a discriminant 3.7.1; 3.7
[see also: component subtype
definition, component, constraint,
discriminant constraint, discriminant,
index constraint, subcomponent,
subtype definition, variant part]

affecting renaming 8.5
by a subcomponent that is an
actual parameter 6.2
effect on compatibility 3.7.2
effect on matching of components
4.5.2
for an assignment 5.2

Dependent task 9.4
delaying exception propagation
11.4.1
of an abnormal task 9.10

Derivable subprogram 3.4
prohibiting representation clauses
13.1

Derived subprogram 3.4
as an operation 3.3.3
implicitly declared 3.3.3

Derived type 3.4; D
[see also: parent type]

conversion to or from a parent
type or related type 4.6

of an access type [see: access
type, collection]
of an access type designating
a task type determining task
dependence 9.4
of a boolean type 3.4, 3.5.3
of a limited type 7.4.4
of a private type 7.4.1
subject to a representation clause
13.1, 13.6

Derived type definition 3.4; 3.3.1
[see also: elaboration of . . .]

Descriptor D; 13.9a.1.4

Descriptor parameter passing
mechanism 13.9a.1.4

Designate 3.8, 9.1; D
[see also: access type, allocator, object
designated by . . . , task designated
by . . . , task object designated
by . . .]

Designated subtype (of an access type)
3.8

Designated type (of an access type) 3.8

Designator (of a function) 6.1
[see also: attribute designator,
operator, overloading of . . .]

in a function declaration 4.5
in a subprogram body 6.3
in a subprogram specification 6.1;
6.3
of a generic formal subprogram
12.3.6; 12.1, 12.1.3
of a library unit 10.1
overloaded 6.6

DEVICE_ERROR (input-output
exception) 14.4; 14.2.3, 14.2.5, 14.3.10,
14.5, 14.2a.3, 14.2a.5, 14.2b.4, 14.2b.6,
14.2b.8, 14.2b.10

D_FLOAT (DEC Ada predefined type)
[see system.d_float]

Index–18

D_floating (VAX floating point type
representation) 3.5.7; 3.5.7a, 3.5.7b

values of for machine-dependent
attributes F

Digit 2.1
[see also: basic graphic character,
extended digit, letter or digit]

in a based literal 2.4.2
in a decimal literal 2.4.1
in an identifier 2.3

Digits (of a floating point type) 3.5.7
[see also: floating point type]

DIGITS (predefined attribute) 3.5.8; 4.1.4,
A

Dimensionality of an array 3.6

Direct access file 14.2; 14.1, 14.2.1

Direct input-output 14.2.4; 14.2.1

Direct visibility 8.3; D
[see also: basic operation, character
literal, operation, operator symbol,
selected component, visibility]

due to a use clause 8.4
of a library unit due to a with
clause 10.1.1
within a subunit 10.2

DIRECT_IO (predefined input-output
generic package) 14.2, 14.2.4; 14, 14.1,
14.2.5, C

exceptions 14.4; 14.5
specification 14.2.5
requisite specification of FORM
parameter with 14.1b

DIRECT_MIXED_IO (DEC Ada
predefined input-output package) 14.2b.5;
14.2b.6

exceptions 14.4; 14.5
requisite specification of FORM
parameter with 14.1b
specification 14.2b.6

Discrete range 3.6, 3.6.1
[see also: range, static discrete range]

as a choice 3.7.3
as a choice in an aggregate 4.3
for a loop parameter 5.5
in a choice in a case statement
5.4
in a generic formal array type
declaration 12.1.2; 12.3.4
in an index constraint 3.6
in a loop parameter specification
5.5
in a slice 4.1.2
of entry indices in an entry
declaration 9.5

Discrete type 3.5; D
[see also: basic operation of . . . ,
enumeration type, index, integer type,
iteration scheme, operation of . . . ,
scalar type]

as a generic actual parameter
12.3.3
as a generic formal type 12.1.2
expression in a case statement
5.4
of a discriminant 3.7.1
of a loop parameter 5.5
of index values of an array 3.6
operation 3.5.5; 4.5.2

Discriminant 3.3, 3.7.1; 3.7, D
[see also: component clause,
component, composite type, default
expression, dependence on . . . ,
record type, selected component,
subcomponent]

in a record aggregate 4.3.1
initialization in an allocator
constrains the allocated object 4.8
of a derived type 3.4
of a formal parameter 6.2
of a generic actual type 12.3.2
of a generic formal type 12.3,
12.3.2
of an implicitly initialized object
3.2.1

Index–19

of an object designated by an
access value 3.7.2; 5.2
of a private type 7.4.2; 3.3
of a variant part must not be of a
generic formal type 3.7.3
simple name in a variant part
3.7.3
subcomponent of an object 3.2.1
with a default expression 3.7.1;
3.2.1
maximum number in record type
F

Discriminant association 3.7.2
in a discriminant constraint 3.7.2
named discriminant association
3.7.2
named discriminant association
for selective visibility 8.3
positional discriminant
association 3.7.2

Discriminant constraint 3.7.2; 3.3.2, D
[see also: dependence on a
discriminant]

ignored due to access_check
suppression 11.7
in an allocator 4.8
on an access type 3.8
violated 11.1

Discriminant part 3.7.1; 3.7
[see also: elaboration of . . .]

absent from a record type
declaration 3.7
as a portion of a declarative
region 8.1
conforming to another 3.8.1, 6.3.1,
7.4.1
in a generic formal type
declaration 3.7.1; 12.1
in an incomplete type declaration
3.8.1
in a private type declaration 7.4,
7.4.1
in a type declaration 3.3, 3.3.1
must not include a pragma 2.8

of a full type declaration is not
elaborated 3.3.1

Discriminant specification 3.7.1
[see also: default expression]

as part of a basic declaration 3.1
declaring a component 3.7
having an extended scope 8.2
in a discriminant part 3.7.1
visibility 8.3

Discriminant_check
[see: constraint_error, suppress]
[see also: address (predefined
attribute), bit (DEC Ada predefined
attribute), size (predefined attribute)]

Disjunction
[see: logical operator]

Divide
character 2.1
delimiter 2.2

Division operation 4.5.5
accuracy for a real type 4.5.7

Division operator
[see: multiplying operator]

Division_check
[see: numeric_error, suppress]

Dot
[see: double dot]

character 2.1 [see also: double
dot, point character]
delimiter 2.2
delimiter of a selected component
8.3; 4.1.3

Double dot compound delimiter 2.2

Double hyphen starting a comment 2.7

Double star compound delimiter 2.2
[see also: exponentiation compound
delimiter]

Index–20

DURATION (predefined type) 9.6; C
[see also: delay expression, fixed point
type]

of alternative delay statements
9.7.1
DEC Ada values for F

Effect
[see: elaboration has no other effect]

ELABORATE (predefined pragma) 10.5;
B

Elaborated 3.9

Elaboration 3.9; 3.1, 3.3, 10.1, D
[see also: exception raised
during . . . , order of elaboration]

optimized 10.6

Elaboration has no other effect 3.1

Elaboration of
an access type definition 3.8
an array type definition 3.6
a body stub 10.2
a component declaration 3.7
a component subtype definition
3.7
a constrained array definition 3.6
a declaration 3.1
a declarative item 3.9
a declarative part 3.9
a deferred constant declaration
7.4.3
a derived type definition 3.4
a discriminant constraint 3.7.2
a discriminant part 3.7.1
a discriminant specification 3.7.1
an entry declaration 9.5
an enumeration literal
specification 3.5.1
an enumeration type definition
3.5.1

a fixed point type declaration
3.5.9
a floating point type declaration
3.5.7
a formal part 6.1
a full type declaration 3.3.1
a generic body 12.2
a generic declaration 12.1
a generic instantiation 12.3
an incomplete type declaration
3.8.1
an index constraint 3.6.1
an integer type definition 3.5.4
a library unit 10.5
a loop parameter specification 5.5
an object declaration 3.2.1
a package body 7.3
a package declaration 7.2
a parameter specification 6.1
a private type declaration 7.4.1
a range constraint 3.5
a real type definition 3.5.6
a record type definition 3.7
a renaming declaration 8.5
a representation clause 13.1
a subprogram body 6.3
a subprogram declaration 6.1
a subtype declaration 3.3.2
a subtype indication 3.3.2
a task body 9.1
a task declaration 9.1
a task specification 9.1
a type declaration 3.3.1, 3.8.1,
7.4.1
a type definition 3.3.1
an unconstrained array definition
3.6
a use clause 8.4

Elaboration_check
[see: program_error exception,
suppress]

Element in a file 14, 14.1; 14.2
in a direct access file 14.2.4
in a sequential access file 14.2.2
DEC Ada implementation of
14.1a

Index–21

ELEMENT_SIZE (DEC Ada mixed-type
input-output function)

in direct_mixed_io 14.2b.2,
14.2b.6
in indexed_mixed_io 14.2b.2,
14.2b.10
in relative_mixed_io 14.2b.2,
14.2b.8
in sequential_mixed_io 14.2b.2,
14.2b.4

ELEMENT_TYPE (generic formal type of
direct_io) 14.2.5; 14.1, 14.2.4

ELEMENT_TYPE (generic formal type of
indexed_io) 14.2a.5; 14.2a.4

ELEMENT_TYPE (generic formal type of
relative_io) 14.2a.3; 14.2a.2

ELEMENT_TYPE (generic formal type of
sequential_io) 14.2.3; 14.1, 14.2.2

Else part
of a conditional entry call 9.7.2
of an if statement 5.3
of a selective wait 9.7.1; 11.1

EMAX (predefined attribute) 3.5.8; A
[see also: machine_emax]

DEC Ada floating point values for
F

Emin
[see: machine_emin]

Empty string literal 2.6

End of line 2.2
as a separator 2.2
due to a format effector 2.2
terminating a comment 2.7

END_ERROR (input-output exception)
14.4; 14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3.4,
14.3.5, 14.3.6, 14.3.10, 14.5, 14.2a.3,
14.2a.4, 14.2a.5, 14.2b.3, 14.2b.4, 14.2b.5,
14.2b.6, 14.2b.8, 14.2b.9, 14.2b.10

END_OF_BUFFER (DEC Ada mixed-
type input-output function)

in direct_mixed_io 14.2b.2;
14.2b.6
in indexed_mixed_io 14.2b.2;
14.2b.10
in relative_mixed_io 14.2b.2;
14.2b.8
in sequential_mixed_io 14.2b.2;
14.2b.4

END_OF_FILE (input-output function)
in an instance of direct_io 14.2.4;
14.2.5
in an instance of sequential_io
14.2.2; 14.2.3
in text_io 14.3.1, 14.3.10
in an instance of indexed_io
14.2a.4, 14.2a.5
in an instance of relative_io
14.2a.2, 14.2a.3
in direct_mixed_io 14.2b.5,
14.2b.6
in indexed_mixed_io 14.2b.9,
14.2b.10
in relative_mixed_io 14.2b.7,
14.2b.8
in sequential_mixed_io 14.2b.3,
14.2b.4

END_OF_LINE (text_io function) 14.3.4;
14.3.10

raising an exception 14.4

END_OF_PAGE (text_io function) 14.3.4;
14.3.10, 14.4

Entry (of a task) 9.5; 9, 9.2, D
[see also: actual parameter,
address attribute, attribute of . . . ,
formal parameter, interrupt entry,
overloading of . . . , parameter
and result type profile, parameter,
subprogram]

declared by instantiation of a
generic formal parameter 12.3
denoted by an indexed component
4.1.1

Index–22

denoted by a selected component
4.1.3
name [see: name of an entry]
name starting with a prefix 4.1
of a derived task type 3.4
of a task designated by an object
of a task type 9.5
renamed 8.5
subject to an address clause 13.5,
13.5.1
subject to a representation clause
13.1

[see also: ast_entry]

Entry call 9.5; 9, 9.7.1, 9.7.2, 9.7.3
[see also: actual parameter,
conditional entry call, subprogram
call, timed entry call]

to an abnormal task 9.5, 9.10,
11.5; 9.5
to communicate values 9.11

Entry call statement 9.5
[see also: accept statement,
actual parameter, statement, task
declaration, task]

as a simple statement 5.1
in an abnormal task 9.10
in a conditional entry call 9.7.2;
9.5
in a timed entry call 9.7.3; 9.5

Entry declaration 9.5
[see also: elaboration of . . .]

as an overloaded declaration 8.3
as part of a basic declaration 3.1
cannot include a forcing
occurrence 13.1
having an extended scope 8.2
in a task specification 9.1
including the name of a private
type 7.4.1
visibility 8.3

Entry family 9.5
denoted by a selected component
4.1.3
name starting with a prefix 4.1

Entry index (in the name of an entry of
a family) 9.5

for an open accept alternative
9.7.1
in a conditional entry call 9.7.2
in a timed entry call 9.7.3

Entry queue (of calls awaiting
acceptance) 9.5

count of calls in the queue 9.9
due to queued interrupts 13.5.1
of an abnormal task 9.10

Enumeration literal 3.5.1, 4.2
[see also: overloading of . . . ,
predefined function]

as an operation 3.3.3
as an operator 3.5.5
as result for image attribute 3.5.5
as the parameter for value
attribute 3.5.5
implicitly declared 3.3.3
in a static expression 4.9
in pragma system_name 13.7
of a derived type 3.4
overloaded 8.3
renamed as a function 8.5
representation 13.3
maximum number in
enumeration type declaration
F

Enumeration literal specification 3.5.1
as part of a basic declaration 3.1
made directly visible by a use
clause 8.4

Enumeration representation clause
13.3 as a representation clause
13.1
range of possible DEC Ada
enumeration codes for 13.3
use for achieving signed
representation of enumeration
codes 13.3

Index–23

Enumeration type 3.5.1; 3.3, 3.5, D
[see also: discrete type, scalar type]

as a character type 3.5.2
as a generic formal type 12.1.2
as a generic parameter 12.3.3
boolean 3.5.3
operation 3.5.5

Enumeration type definition 3.5.1;
3.3.1

[see also: elaboration of . . .]

ENUMERATION_IO (text_io inner
generic package) 14.3.9; 14.3.10

Environment of a program 10.4
environment task calling the
main program 10.1

EPSILON (predefined attribute) 3.5.8; A
DEC Ada floating point values for
F

Equal
character 2.1
delimiter 2.2

Equality operator 4.5; 4.5.2
[see also: limited type, relational
operator]

explicitly declared 4.5.2, 6.7; 7.4.4
for an access type 3.8.2
for an array type 3.6.2
for a generic formal type 12.1.2
for a limited type 4.5.2, 7.4.4
for a real type 4.5.7
for a record type 3.7.4

Erroneous execution 1.6
[see also: program_error]

due to an access to a deallocated
object 13.10.1
due to an unchecked conversion
violating properties of objects of
the result type 13.10.2
due to assignment to a shared
variable 9.11
due to changing of a discriminant
value 5.2, 6.2

due to dependence on parameter
passing mechanism 6.2
due to multiple address clauses
for overlaid entities 13.5
due to suppression of an exception
check 11.7
due to use of an undefined value
3.2.1
due to an AST occurrence for an
entry of a terminated task 9.12a

Error bounds of a predefined operation
of a real type 3.5.9, 4.5.7; 3.5.6, 3.5.7

Error detected at
compilation time 1.6
run time 1.6

Error situation 1.6, 11, 11.1; 11.6

Error that may not be detected 1.6

Evaluation (of an expression) 4.5; D
[see also: compile time evaluation,
expression]

at compile time 4.9, 10.6
of an actual parameter 6.4.1
of an aggregate 4.3; 3.3.3
of an allocator 4.8
of an array aggregate 4.3.2
of a condition 5.3, 5.5, 5.7, 9.7.1
of a default expression 3.7.2
of a default expression for a
formal parameter 6.4.2; 6.1
of a discrete range 3.5; 9.5
of a discrete range used in an
index constraint 3.6.1
of an entry index 9.5
of an expression in an assignment
statement 5.2
of an expression in a constraint
3.3.2
of an expression in a generic
actual parameter 12.3
of an indexed component 4.1.1
of an initial value [see: default
expression]
of a literal 4.2; 3.3.3
of a logical operation 4.5.1

Index–24

of a name 4.1; 4.1.1, 4.1.2, 4.1.3,
4.1.4
of a name in an abort statement
9.10
of a name in a renaming
declaration 8.5
of a name of a variable 5.2, 6.4.1,
12.3
of a primary 4.4
of a qualified expression 4.7; 4.8
of a range 3.5
of a record aggregate 4.3.1
of a short circuit control form
4.5.1
of a static expression 4.9
of a type conversion 4.6
of a universal expression 4.10
of the bounds of a loop parameter
5.5
of the conditions of a selective
wait 9.7.1

Evaluation order
[see: order of evaluation]

Exception 11; 1.6, D
[see also: constraint_error, numeric_
error, predefined . . . , program_error,
raise statement, raising of . . . ,
storage_error, tasking_error, time_
error]

causing a loop to be exited 5.5
causing a transfer of control 5.1
due to an expression evaluated at
compile time 10.6
implicitly declared in a generic
instantiation 11.1
in input-output 14.4; 14.5
renamed 8.5
suppress pragma 11.7
exporting to a non-Ada program
13.9a.3, 13.9a.3.2
importing from a non-Ada
program 13.9a.3, 13.9a.3.1

Exception choice 11.2

Exception declaration 11.1; 11
as a basic declaration 3.1

Exception handler 11.2; D
in an abnormal task 9.10
in a block statement 5.6
in a package body 7.1; 7.3
in a subprogram body 6.3
in a task body 9.1
including a raise statement 11.3
including the destination of a goto
statement 5.9
including the name of an
exception 11.1
not allowed in a code procedure
body 13.8
raising an exception 11.4.1
selected to handle an exception
11.4.1; 11.6

Exception handling 11.4; 11.4.1, 11.4.2,
11.5

Exception propagation 11
delayed by a dependent task
11.4.1
from a declaration 11.4.2
from a predefined operation 11.6
from a statement 11.4.1
to a communicating task 11.5
maximum number of frames for F

Exception raised during execution or
elaboration of

an accept statement 11.5
an allocator of a task 9.3
a conditional entry 9.7.2
a declaration 11.4.2; 11.4
a declarative part that declares
tasks 9.3
a generic instantiation 12.3.1,
12.3.2, 12.3.4, 12.3.5
a selective wait 9.7.1
a statement 11.4.1; 11.4
a subprogram call 6.3; 6.2, 6.5
a task 11.5
a timed entry call 9.7.3

Index–25

task activation 9.3

Exceptions and optimization 11.6

Exclamation character 2.1
replacing vertical bar 2.10

Exclusive disjunction
[see: logical operator]

Execution
[see: sequence of statements,
statement, task body, task]

EXISTENCE_ERROR (DEC Ada input-
output exception) 14.4; 14.2a.2, 14.2a.3,
14.2a.4, 14.2a.5, 14.2b.7, 14.2b.8, 14.2b.9,
14.2b.10, 14.5a

Exit statement 5.7
[see also: statement]

as a simple statement 5.1
causing a loop to be exited 5.5
causing a transfer of control 5.1
completing block statement
execution 9.4

Expanded name 4.1.3; D
denoting a loop 5.5
in a static expression 4.9
of a parent unit 10.2
replacing a simple name 6.3.1

Explicit conversion 4.6
[see also: conversion operation,
implicit conversion, subtype
conversion, type conversion]

from universal_fixed type 4.5.5
to a real type 4.5.7

Explicit declaration 3.1; 4.1
[see also: declaration]

Explicit initialization
[see: allocator, object declaration,
qualified expression]

Exponent of a floating point number
3.5.7; 13.7.3

Exponent part
in output of real values 14.3.8
of a based literal 2.4.1, 2.4.2
of a decimal literal 2.4.1

Exponentiating operator 4.5; 4.5.6
[see also: highest precedence
operator]

in a factor 4.4
overloaded 6.7

Exponentiation compound delimiter
2.2

[see also: double star compound
delimiter]

Exponentiation operation 4.5.6

Export pragmas 13.9a

EXPORT_EXCEPTION (DEC Ada
predefined pragma) 13.9a.3.2; 13.9a,
13.9a.3, B

EXPORT_FUNCTION (DEC Ada
predefined pragma) 13.9a.1.3; 13.9a,
13.9a.1, B

EXPORT_OBJECT (DEC Ada predefined
pragma) 13.9a.2.2; 13.9a, 13.9a.2, B

EXPORT_PROCEDURE (DEC Ada
predefined pragma) 13.9a.1.3; 13.9a,
13.9a.1, B

EXPORT_VALUED_PROCEDURE
(DEC Ada predefined pragma) 13.9a.1.3;
13.9a, 13.9a.1, B

Expression 4.4; D
[see also: compile time evaluation,
default expression, delay expression,
evaluation, qualified expression,
simple expression, static expression,
universal type expression]

as an actual parameter 6.4, 6.4.1
as a condition 5.3
as a generic actual parameter
12.3; 12.3.1
as the argument of a pragma 2.8

Index–26

in an actual parameter of a
conditional entry call 9.7.2
in an actual parameter of an
entry call statement 9.5
in an actual parameter of a timed
entry call 9.7.3
in an allocator 4.8
in an assignment statement 5.2
in an attribute designator 4.1.4
in a case statement 5.4
in a choice in a case statement
5.4
in a component association 4.3
in a component declaration 3.7
in a constraint 3.3.2
in a conversion 4.6
in a discriminant association 3.7.2
in a discriminant specification
3.7.1
in a generic formal part 12.1
in an indexed component 4.1.1
in a length clause 13.2
in a name of a variable 5.2, 6.4.1
in a number declaration 3.2
in an object declaration 3.2, 3.2.1
in a parameter specification 6.1
in a primary 4.4
in a qualified expression 4.7
in a representation clause 13.1
in a return statement 5.8
in a specification of a derived
subprogram 3.4
in a type conversion 8.7
including the name of a private
type 7.4.1
specifying an entry in a family
4.1.1
specifying the value of an index
4.1.1
with a boolean result 4.5.1, 4.5.2,
4.5.6

Extended_digit in a based literal 2.4.2

External file 14.1
[see also: file]

Factor 4.4
in a term 4.4

FALSE boolean enumeration literal
3.5.3; C

Family of entries
[see: entry family]

FETCH_FROM_ADDRESS (DEC Ada
generic function)

[see: system.fetch_from_address]

F_FLOAT (DEC Ada predefined type)
[see: system.f_float]

F_floating (DEC Ada floating point type
representation) 3.5.7; 3.5.7a, 3.5.7b)

values of for machine-dependent
attributes F

FIELD (predefined integer subtype)
14.3.5; 14.3.7, 14.3.10

File (object of a file type) 14.1
[see also: external file]

arrangement of values in 14.1a
mixed-type elements in 14.1a,
14.2a

File Definition Language (FDL) 14.1b

File descriptor D

File management 14.2.1
in text_io 14.3.1
in DEC Ada relative and indexed
packages 14.2a.1
in DEC Ada mixed-type packages
14.2b.1

File terminator 14.3; 14.3.1, 14.3.4,
14.3.5, 14.3.6, 14.3.7, 14.3.8, 14.3.9

FILE_MODE (input-output type)
in an instance of direct_io 14.1,
14.2.1; 14.2.5
in an instance of sequential_io
14.1, 14.2.1; 14.2.3
in text_io 14.1, 14.2.1; 14.3.10

Index–27

in an instance of indexed_io 14.2;
14.2a.1, 14.2.1; 14.2a.5
in an instance of relative_io 14.2;
14.2a.1, 14.2.1; 14.2a.3
in direct_mixed_io 14.2b.1, 14.2.1;
14.2b.6
in indexed_mixed_io 14.2b.1,
14.2.1; 14.2b.10
in relative_mixed_io 14.2b.1,
14.2.1; 14.2b.8
in sequential_mixed_io 14.2b.1,
14.2.1; 14.2b.4

FILE_TYPE (input-output type)
in an instance of direct_io 14.1,
14.2.1; 14.2, 14.2.4, 14.2.5
in an instance of sequential_io
14.1, 14.2.1; 14.2, 14.2.2, 14.2.3
in text_io 14.1, 14.2.1; 14.2,
14.3.3, 14.3.4, 14.3.6, 14.3.7,
14.3.8, 14.3.9, 14.3.10
in an instance of indexed_io
14.2a.1, 14.2a.4, 14.2a.5
in an instance of relative_io
14.2a.1, 14.2a.2, 14.2a.3
in direct_mixed_io 14.2b.1,
14.2b.2, 14.2b.5, 14.2b.6
in indexed_mixed_io 14.2b.1,
14.2b.2, 14.2b.9, 14.2b.10
in relative_mixed_io 14.2b.1,
14.2b.2, 14.2b.7, 14.2b.8
in sequential_mixed_io 14.2b.1,
14.2b.2, 14.2b.3, 14.2b.4

FINE_DELTA
[see: system.fine_delta]

FIRST (predefined attribute) A
[see also: bound]

for an access value 3.8.2
for an array type 3.6.2
for a scalar type 3.5
DEC Ada floating point values for
F

First named subtype 13.1
[see also: anonymous base type,
representation clause]

FIRST_BIT (predefined attribute) 13.7.2;
A

[see also: record representation
clause]

Fixed accuracy definition 3.5.9

Fixed point constraint 3.5.9; 3.5.6
on a derived subtype 3.4

Fixed point predefined type 3.5.9

Fixed point type 3.5.9; D
[see also: basic operation of . . . ,
duration, numeric type, operation
of . . . , real type, scalar type, small,
system.fine_delta, system.max_
mantissa]

accuracy of an operation 4.5.7
as a generic actual type 12.3.3
as a generic formal type 12.1.2
error bounds 4.5.7; 3.5.6
operation 3.5.10; 4.5.3, 4.5.4, 4.5.5
result of an operation out of range
of the type 4.5.7
DEC Ada implementation of 3.5.9

FIXED_IO (text_io inner generic package)
14.3.8; 14.3.10

FLOAT (predefined type) 3.5.7; C

FLOAT_IO (text_io inner generic
package) 14.3.8; 14.3.10

FLOAT_REPRESENTATION (DEC Ada
predefined pragma) 3.5.7a; B

Floating accuracy definition 3.5.7

Floating point constraint 3.5.7; 3.5.6
on a derived subtype 3.4

Floating point predefined type
[see: FLOAT, LONG_FLOAT,
SHORT_FLOAT]
[see: D_FLOAT, F_FLOAT, G_FLOAT,
H_FLOAT, IEEE_SINGLE_FLOAT,
IEEE_DOUBLE_FLOAT, LONG_
LONG_FLOAT]

Index–28

Floating point type 3.5.7; D
[see also: numeric type, real type,
scalar type, system.max_digits]

accuracy of an operation 4.5.7
as a generic actual type 12.3.3
as a generic formal type 12.1.2
error bounds 4.5.7; 3.5.6
operation 3.5.8; 4.5.3, 4.5.4, 4.5.5,
4.5.6
result of an operation out of range
of the type 4.5.7
DEC Ada representation of 3.5.7,
3.5.7a, 3.5.7b

Font design of graphical symbols 2.1

For loop
[see: loop statement]

Forcing occurrence (of a name leading
to default determination of representation)
13.1

FORE (predefined attribute) for a fixed
point type 3.5.10; A

Fore field of text_io input or output
14.3.8, 14.3.10; 14.3.5

FORM (input-output function)
in an instance of direct_io 14.2.1;
14.2.5
in an instance of sequential_io
14.2.1, 14.2.3
in text_io 14.2.1; 14.3.10
raising an exception 14.4
in an instance of indexed_io
14.2.1, 14.2a.5
in an instance of relative_io
14.2.1, 14.2a.3
in direct_mixed_io 14.2.1, 14.2b.4
in indexed_mixed_io 14.2.1,
14.2b.10
in relative_mixed_io 14.2.1,
14.2b.8
in sequential_mixed_io 14.2.1,
14.2b.4

Form feed format effector 2.1

Form string of a file 14.1; 14.2.1, 14.2.3,
14.2.5, 14.3.10

DEC Ada interpretation of 14.1b

Formal object
[see: generic formal object]

Formal parameter 6.1; D; (of an entry)
9.5; 3.2, 3.2.1; (of a function) 6.5; (of an
operator) 6.7; (of a subprogram) 6.1, 6.2,
6.4; 3.2, 3.2.1, 6.3

[see also: actual parameter, default
expression, entry, generic formal
parameter, mode, object, subprogram]

as a constant 3.2.1
as an object 3.2
as a variable 3.2.1
names and overload resolution 6.6
of a derived subprogram 3.4
of a generic formal subprogram
12.1, 12.1.3
of a main program 10.1
of an operation 3.3.3
of a renamed entry or subprogram
8.5
whose type is an array type 3.6.1
whose type is a limited type 7.4.4
whose type is a record type 3.7.2
whose type is a task type 9.2
maximum number in a DEC Ada
subprogram or entry declaration
F

Formal part 6.1; 6.4
[see also: generic formal part,
parameter type profile]

conforming to another 6.3.1
in an accept statement 9.5
in an entry declaration 9.5
in a subprogram specification 6.1
must not include a pragma 2.8

Formal subprogram
[see: generic formal subprogram]

Formal type
[see: generic formal type]

Index–29

Format effector 2.1
[see also: carriage return, form
feed, horizontal tabulation, line feed,
vertical tabulation]

as a separator 2.2
in an end of line 2.2

Format of text_io input or output 14.3.5,
14.3.7, 14.3.8, 14.3.9

Formula
[see: expression]

Frame 11.2
and optimization 11.6
in which an exception is raised
11.4.1, 11.4.2

Full declaration
of a deferred constant 7.4.3

Full type declaration 3.3.1
discriminant part is not
elaborated 3.3.1
of an incomplete type 3.8.1
of a limited private type 7.4.4
of a private type 7.4.1; 7.4.2

Function 6.1, 6.5; 6, 12.3, D
[see also: operator, parameter
and result type profile, parameter,
predefined function, result subtype,
return statement, subprogram]

as a main program 10.1
renamed 8.5
result [see: returned value]
that is an attribute 4.1.4; 12.3.6
exporting 13.9a.1.4
importing 13.9a.1.1

Function body
[see: subprogram body]

Function call 6.4; 6
[see also: actual parameter,
subprogram call]

as a prefix 4.1, 4.1.3
as a primary 4.4
in a static expression 4.9

with a parameter of a derived
type 3.4
with a result of a derived type 3.4

Function specification
[see: subprogram specification]

Garbage collection 4.8

Generic actual object 12.3.1; 12.1.1
[see also: generic actual parameter]

Generic actual parameter 12.3; 12
[see also: generic actual object,
generic actual subprogram, generic
actual type, generic association,
generic formal parameter, generic
instantiation, matching]

cannot be a universal_fixed
operation 4.5.5
for a generic formal access type
12.3.5
for a generic formal array type
12.3.4
for a generic formal object 12.1.1
for a generic formal private type
12.3.2
for a generic formal scalar type
12.3.3
for a generic formal subprogram
12.1.3; 12.3.6
for a generic formal type 12.1.2
is not static 4.9
that is an array aggregate 4.3.2
that is a loop parameter 5.5
that is a task type 9.2

Generic actual part 12.3

Generic actual subprogram 12.1.3,
12.3.6

[see also: generic actual parameter]

Index–30

Generic actual type
[see: generic actual parameter]

for a generic formal access type
12.3.5
for a generic formal array type
12.3.4
for a generic formal scalar type
12.3.3
for a generic formal type with
discriminants 12.3.2
for a generic private formal type
12.3.2
that is a private type 7.4.1

Generic association 12.3
[see also: generic actual parameter,
generic formal parameter]

named generic association 12.3
named generic association for
selective visibility 8.3
positional generic association 12.3

Generic body 12.2; 12.1, 12.1.2, 12.3.2
[see also: body stub, elaboration
of . . .]

in a package body 7.1
including an exception handler
11.2; 11
including an exit statement 5.7
including a goto statement 5.9
including an implicit declaration
5.1
must be in the same declarative
region as the declaration 3.9, 7.1
not yet elaborated at an
instantiation 3.9
inlined for each instantiation
12.1a

Generic declaration 12.1; 12, 12.1.2,
12.2

[see also: elaboration of . . .]
and body as a declarative region
8.1
and proper body in the same
compilation 10.3
as a basic declaration 3.1
as a later declarative item 3.9

as a library unit 10.1
in a package specification 7.1
recompiled 10.3

Generic formal object 12.1, 12.1.1; 3.2,
12.3, 12.3.1

[see also: default expression, generic
formal parameter]

of an array type 3.6.1
of a record type 3.7.2

Generic formal parameter 12.1, 12.3;
12, D

[see also: generic actual parameter,
generic association, generic formal
object, generic formal subprogram,
generic formal type, matching, object]

as a constant 3.2.1
as a variable 3.2.1
of a limited type 7.4.4
of a task type 9.2

Generic formal part 12.1; 12, D

Generic formal subprogram 12.1,
12.1.3; 12.1.2, 12.3, 12.3.6

[see also: generic formal parameter]
formal function 12.1.3
with the same name as another
12.3

Generic formal type 12.1, 12.1.2; 12.3
[see also: constraint on . . . ,
discriminant of . . . , generic formal
parameter, subtype indication . . .]

as index or component type of a
generic formal array type 12.3.4
formal access type 12.1.2, 12.3.5
formal array type 12.1.2, 12.3.4
formal array type (constrained)
12.1.2
formal discrete type 12.1.2
formal enumeration type 12.1.2
formal fixed point type 12.1.2
formal floating point type 12.1.2
formal integer type 12.1.2
formal limited private type 12.3.2
formal limited type 12.1.2
formal part 12.1.2

Index–31

formal private type 12.1.2, 12.3.2
formal private type with
discriminants 12.3.2
formal scalar type 12.1.2, 12.3.3

Generic function
[see: generic subprogram]

Generic instance 12.3; 12, 12.1, 12.2, D
[see also: generic instantiation, scope
of . . .]

inlined in place of each call 6.3.2
of a generic package 12.3
of a generic subprogram 12.3
raising an exception 11.4.1
inlining of body for 12.1a
sharing code generated for 12.1b

Generic instantiation 12.3; 12.1, 12.1.3,
12.2, D

[see also: declaration, elaboration
of . . . , generic actual parameter]

as a basic declaration 3.1
as a later declarative item 3.9
as a library unit 10.1
before elaboration of the body 3.9,
11.1
implicitly declaring an exception
11.1
invoking an operation of a generic
actual type 12.1.2
of a predefined input-output
package 14.1
recompiled 10.3
with a formal access type 12.3.5
with a formal array type 12.3.4
with a formal scalar type 12.3.3
with a formal subprogram 12.3.6

Generic package 12.1; 12
for input-output 14
instantiation 12.3; 12, 12.1 [see
also: generic instantiation]
specification 12.1 [see also:
generic specification]

Generic package body 12.2; 12.1
[see also: package body]

Generic parameter declaration 12.1;
12.1.1, 12.1.2, 12.1.3, 12.3

[see also: generic formal parameter]
as a declarative region 8.1
having an extended scope 8.2
visibility 8.3

Generic procedure
[see: generic subprogram]

Generic specification 12.1; 12.3.2
[see also: generic package
specification, generic subprogram
specification]

Generic subprogram 12.1; 12 body 12.2;
12.1 [see also: subprogram body]

instantiation 12.3; 12, 12.1 [see
also: generic instantiation]
interface pragma is not defined
13.9
specification 12.1 [see also:
generic specification]

Generic type definition 12.1; 12.1.2,
12.3.3, 12.3.4

Generic unit 12, 12.1; 12.2, 12.3, D
[see also: generic declaration,
program unit]

including an exception declaration
11.1
including a raise statement 11.3
subject to a suppress pragma 11.7
with a separately compiled body
10.2

[see also: inline_generic pragma,
share_generic pragma]

Generic unit body
[see: generic body]

Generic unit specification
[see: generic specification]

GET (text_io procedure) 14.3.5; 14.3,
14.3.2, 14.3.4, 14.3.10

for character and string types
14.3.6
for enumeration types 14.3.9

Index–32

for integer types 14.3.7
for real types 14.3.8
raising an exception 14.4

GET_ARRAY (DEC Ada mixed-type
input-output procedure)

in direct_mixed_io 14.2b.2,
14.2b.6
in indexed_mixed_io 14.2b.2,
14.2b.10
in relative_mixed_io 14.2b.2,
14.2b.8
in sequential_mixed_io 14.2b.2,
14.2b.4

GET_ITEM (DEC Ada mixed-type input-
output procedure)

in direct_mixed_io 14.2b.2,
14.2b.6
in indexed_mixed_io 14.2b.2,
14.2b.10
in relative_mixed_io 14.2b.2,
14.2b.8
in sequential_mixed_io 14.2b.2,
14.2b.4

GET_LINE (text_io procedure) 14.3.6;
14.3.10

G_FLOAT (DEC Ada predefined type)
[see: system.g_float]

G_floating (DEC Ada real type
representation) 3.5.7; 3.5.7a, 3.5.7b)

values of for machine-dependent
attributes F

Global declaration 8.1
of a variable shared by tasks 9.11

Global symbol D; 13.9a.1.1, 13.9a.1.4,
13.9a.2.1, 13.9a.2.2, 13.9a.2.3, 13.9a.3.1,
13.9a.3.2

obtaining value of 13.7a.6

Goto statement 5.9
[see also: statement]

as a simple statement 5.1
causing a loop to be exited 5.5
causing a transfer of control 5.1
completing block statement
execution 9.4

Graphic character 2.1
[see also: basic graphic character,
character, lower case letter, other
special character]

in a character literal 2.5
in a string literal 2.6

Graphical symbol 2.1
[see also: ascii]

not available 2.10

Greater than
character 2.1
delimiter 2.2
operator [see: relational operator]

Greater than or equal
compound delimiter 2.2
operator [see: relational operator]

Guard area for tasks 13.2a

Handler
[see: exception handler, exception
handling]

H_FLOAT (DEC Ada predefined type)
[see: system.h_float]

H_floating (DEC Ada floating point type
representation) 3.5.7; 3.5.7a, 3.5.7b)

values of for machine-dependent
attributes F

Index–33

Hiding (of a declaration) 8.3
[see also: visibility]

and renaming 8.5
and use clauses 8.4
due to an implicit declaration 5.1
of a generic unit 12.1
of a library unit 10.1
of a subprogram 6.6
of or by a derived subprogram 3.4
of the package standard 10.1
within a subunit 10.2

Highest precedence operator 4.5
[see also: abs, arithmetic operator,
exponentiating operator, not unary
operator, overloading of an operator,
predefined operator]

as an operation of a discrete type
3.5.5
as an operation of a fixed point
type 3.5.10
as an operation of a floating point
type 3.5.8
overloaded 6.7

Homograph (declaration) 8.3
[see also: overloading]

and use clauses 8.4

Horizontal tabulation
as a separator 2.2
character in a comment 2.7
format effector 2.1
in text_io input 14.3.5

Hyphen character 2.1
[see also: minus character]

starting a comment 2.7

IDENT (DEC Ada predefined pragma) B

Identifier 2.3; 2.2
[see also: direct visibility, loop
parameter, name, overloading of . . . ,
scope of . . . , simple name, visibility]

and an adjacent separator 2.2
as an attribute designator 4.1.4
as a designator 6.1
as a reserved word 2.9
as a simple name 4.1
can be written in the basic
character set 2.10
denoting an object 3.2.1
denoting a value 3.2.2
in a deferred constant declaration
7.4.3
in an entry declaration 9.5
in an exception declaration 11.1
in a generic instantiation 12.3
in an incomplete type declaration
3.8.1
in a number declaration 3.2.2
in an object declaration 3.2
in a package specification 7.1
in a private type declaration 7.4;
7.4.1
in a renaming declaration 8.5
in a subprogram specification 6.1
in a task specification 9.1
in a type declaration 3.3.1; 7.4.1
in its own declaration 8.3
in pragma system_name 13.7
of an argument of a pragma 2.8
of an enumeration value 3.5.1
of a formal parameter of a generic
formal subprogram 12.1.3
of a generic formal object 12.1,
12.1.1
of a generic formal subprogram
12.1; 12.1.3
of a generic formal type 12.1;
12.1.2
of a generic unit 12.1
of a library unit 10.1
of a pragma 2.8
of a subprogram 6.1
of a subtype 3.3.2
of a subunit 10.2

Index–34

of homograph declarations 8.3
overloaded 6.6
versus simple name 3.1
maximum DEC Ada length F

Identifier list 3.2
in a component declaration 3.7
in a deferred constant declaration
7.4
in a discriminant specification
3.7.1
in a generic parameter
declaration for generic formal
objects 12.1
in a number declaration 3.2
in an object declaration 3.2
in a parameter specification 6.1

Identity operation 4.5.4

IEEE double float (DEC Ada floating
point type representation) 3.5.7

values of for machine-dependent
attributes F

IEEE_DOUBLE_FLOAT (DEC Ada
predefined type)

[see: system.ieee_double_float]

IEEE single float (DEC Ada floating
point type representation) 3.5.7

values of for machine-dependent
attributes F

IEEE_SINGLE_FLOAT (DEC Ada
predefined type)

[see: system.ieee_single_float]

If statement 5.3
[see also: statement]

as a compound statement 5.1

Illegal 1.6

IMAGE (predefined attribute) 3.5.5; A

Immediate scope 8.2; 8.3

Immediately within (a declarative
region)

[see: occur immediately within]

Implementation defined
[see: system dependent]

Implementation defined pragma F

Implementation dependent
[see: system dependent]

Implicit conversion 4.6
[see also: conversion operation,
explicit conversion, subtype
conversion]

of an integer literal to an integer
type 3.5.4
of a real literal to a real type
3.5.6
of a universal expression 3.5.4,
3.5.6
of a universal real expression
4.5.7

Implicit declaration 3.1; 4.1
[see also: scope of . . .]

by a type declaration 4.5
hidden by an explicit declaration
8.3
of a basic operation 3.1, 3.3.3
of a block name, loop name, or
label 5.1; 3.1
of a derived subprogram 3.3.3, 3.4
of an enumeration literal 3.3.3
of an equality operator 6.7
of an exception due to an
instantiation 11.1
of a library unit 8.6, 10.1
of a predefined operator 4.5
of universal_fixed operators 4.5.5

Implicit initialization of an object
[see: allocator, default initial value]

Implicit representation clause
for a derived type 3.4

Import pragmas 13.9

IMPORT_ADDRESS (DEC Ada
predefined function)

[see:system.import_address]

Index–35

IMPORT_EXCEPTION (DEC Ada
predefined pragma) 13.9a.3.1; 13.9a,
13.9a.3, B

IMPORT_FUNCTION (DEC Ada
predefined pragma) 13.9a.1.1; 13.9a,
13.9a.1, B

IMPORT_LARGEST_INTEGER (DEC
Ada predefined function)

[see:system.import_largest_integer]

IMPORT_OBJECT (DEC Ada predefined
pragma) 13.9a.2.1; 13.9a, 13.9a.2,
13.9a.2.3, B

IMPORT_PROCEDURE (DEC Ada
predefined pragma) 13.9a.1.1; 13.9a,
13.9a.1, B

IMPORT_VALUE (DEC Ada predefined
function)

[see: system.import_value]

IMPORT_VALUED_PROCEDURE
(DEC Ada predefined pragma) 13.9a.1.1;
13.9a, 13.9a.1, B

In membership test
[see: membership test]

In mode
[see: mode in]

In out mode
[see: mode in out]

IN_FILE (input-output file mode
enumeration literal) 14.1

Inclusive disjunction
[see: logical operator]

Incompatibility (of constraints)
[see: compatibility]

Incomplete type 3.8.1
corresponding full type
declaration 3.3.1

Incomplete type declaration 3.8.1;
3.3.1, 7.4.1

as a portion of a declarative
region 8.1

Incorrect order dependence 1.6
[see also: program error]

assignment statement 5.2
bounds of a range constraint 3.5
component association of an array
aggregate 4.3.2
component association of a record
aggregate 4.3.1
component subtype indication 3.6
default expression for a
component 3.2.1
default expression for a
discriminant 3.2.1
expression 4.5
index constraint 3.6
library unit 10.5
parameter association 6.4
prefix and discrete range of a slice
4.1.2

Index 3.6; D
[see also: array, discrete type, entry
index]

INDEX (input-output function)
in an instance of direct_io 14.2.4;
14.2.5
in an instance of relative_io
14.2a.2, 14.2a.3
in direct_mixed_io 14.2b.5,
14.2b.6
in relative_mixed_io 14.2b.7,
14.2b.8

Index constraint 3.6, 3.6.1; D
[see also: dependence on a
discriminant]

ignored due to index_check
suppression 11.7
in an allocator 4.8
in a constrained array definition
3.6
in a subtype indication 3.3.2

Index–36

on an access type 3.8
violated 11.1

Index of an element in a direct access file
14.2; 14.2.4

Index in a relative access file 14.2a

Index range 3.6
matching 4.5.2

Index subtype 3.6

Index subtype definition 3.6

Index type
of a choice in an array aggregate
4.3.2
of a generic formal array type
12.3.4

Index_check
[see: constraint_error, suppress]
[see also: address (DEC Ada
predefined attribute), size (DEC
Ada predefined attribute), bit (DEC
Ada predefined attribute)]

Indexed access file 14.2a

Indexed component 4.1.1; 3.6, D
as a basic operation 3.3.3; 3.3,
3.6.2, 3.8.2
as a name 4.1
as the name of an entry 9.5
of a value of a generic formal
array type 12.1.2

INDEXED_IO (DEC Ada predefined
input-output package) 14.2a.4; 14.2a,
14.2a.5

exceptions 14.4; 14.5, 14.5a
element locking in 14.2a
requisite specification of FORM
parameter with 14.1b, 14.2a.1
specification 14.2a.5

INDEXED_MIXED_IO (DEC Ada
predefined input-output package) 14.2b.9;
14.2b.10]

exceptions 14.4; 14.5, 14.5a
requisite specification of FORM
parameter with 14.1b
specification 14.2b.10

Indication
[see: subtype indication]

Indivisible access of a shared variable
9.11

Inequality compound delimiter 2.2

Inequality operator 4.5; 4.5.2
[see also: limited type, relational
operator]

cannot be explicitly declared 6.7
for an access type 3.8.2
for an array type 3.6.2
for a generic formal type 12.1.2
for a real type 4.5.7
for a record type 3.7.4
not available for a limited type
7.4.4

Initial value (of an object) 3.2.1
[see also: allocator, composite type,
default expression, default initial
value, default initialization]

in an allocator 4.8; 3.8, 7.4.4
of an array object 3.6.1
of a constant 3.2.1
of a constant in a static
expression 4.9
of a discriminant of a formal
parameter 6.2
of a discriminant of an object
3.7.2
of a limited private type object
7.4.4
of an object declared in a package
7.1
of an out mode formal parameter
6.2
of a record object 3.7.2

Index–37

Initialization
[see: assignment, default expression,
default initialization, initial value]

INLINE (predefined pragma) 6.3.2; B
creating recompilation
dependence 10.3

INLINE_GENERIC (DEC Ada predefined
pragma) 12.1a; B

creating recompilation
dependence 10.3

INOUT_FILE (input-output file_mode
enumeration literal) 14.1

Input-output 14
[see also: direct_io, io_exceptions,
low_level_io, sequential_io, text_io]
[see also: aux_io_exceptions, direct_
mixed_io, indexed_io, indexed_mixed_
io, relative_io, relative_mixed_io,
sequential_mixed_io]

at device level 14.6
exceptions 14.4; 14.5
with a direct access file 14.2.4
with a sequential file 14.2.2
with a text file 14.3
auxiliary exceptions 14.5a
implementation-dependent
characteristics of F
with an indexed file 14.2a
with a mixed-type file 14.2b
with a relative file 14.2a

INSQHI (DEC Ada procedure)
[see: system.insqhi]

INSQ_STATUS (DEC Ada type)
[see: system.insq_status]

INSQTI (DEC Ada procedure)
[see: system.insqti]

Instance
[see: generic instance]

Instantiation
[see: generic instantiation]

INTEGER (predefined type) 3.5.4; C
as base type of a loop parameter
5.5
as default type for the bounds of
a discrete range 3.6.1; 9.5

Integer literal 2.4
[see also: based integer literal,
universal_integer type]

as a bound of a discrete range 9.5
as a universal_integer literal
3.5.4
in based notation 2.4.2
in decimal notation 2.4.1

Integer part
as a base of a based literal 2.4.2
of a decimal literal 2.4.1

Integer predefined type 3.5.4
[see also: INTEGER, LONG_
INTEGER, SHORT_INTEGER]

[see also: SHORT_SHORT_
INTEGER, system.integer]

Integer subtype
[see: priority]

due to an integer type definition
3.5.4

Integer type 3.5.4; 3.3, 3.5, D
[see also: discrete type, numeric
type, predefined type, scalar type,
system.maxint, system.min_int,
universal_integer type]

as a generic formal type 12.1.2
as a generic parameter 12.3.3
operation 3.5.5; 4.5.3, 4.5.4, 4.5.5,
4.5.6
result of a conversion from a
numeric type 4.6
result of an operation out of range
of the type 4.5

Integer type declaration
[see: integer type definition]

Index–38

Integer type definition 3.5.4; 3.3.1
[see also: elaboration of . . .]

Integer type expression
in a length clause 13.2
in a record representation clause
13.4

INTEGER_IO (text_io inner generic
package) 14.3.6; 14.3.10

INTERFACE (predefined pragma) 13.9; B

with imported subprograms
13.9a.1.1

Interface to other languages 13.9

INTERFACE_NAME (DEC Ada
predefined pragma) 13.9b; B

Interrupt 13.5

Interrupt entry 13.5.1
[see also: address attribute]
[see also: ast_entry]

Interrupt queue
[see: entry queue]

IO_EXCEPTIONS (predefined input-
output package) 14.4; 14, 14.1, 14.2.3,
14.2.5, 14.3.10, C

specification 14.5

IS_OPEN (input-output function)
in an instance of direct_io 14.2.1;
14.2.5
in an instance of sequential_io
14.2.1, 14.2.3
in text_io 14.2.1; 14.3.10
in an instance of indexed_io
14.2.1, 14.2a.5
in an instance of relative_io
14.2.1, 14.2a.3
in direct_mixed_io 14.2.1, 14.2b.6
in indexed_mixed_io 14.2.1,
14.2b.10
in relative_mixed_io 14.2.1,
14.2b.8

in sequential_mixed_io 14.2.1,
14.2b.4

ISO (international organization for
standardization) 2.1

ISO seven bit coded character set 2.1

Item
[see: basic declarative item, later
declarative item]

Iteration scheme 5.5
[see also: discrete type]

Key in an indexed access file 14.2a
exact and inexact matching of
14.2a

KEY_ERROR (DEC Ada input-output
exception) 14.4; 14.2a.4, 14.2a.5, 14.2b.9,
14.2b.10, 14.5a

Label 5.1
[see also: address attribute, name,
statement]

declaration 5.1
implicitly declared 3.1
target of a goto statement 5.9

Label bracket
compound delimiter 2.2

Labeled statement 5.1
in a code statement 13.8

Language interpretations G

Index–39

LARGE (predefined attribute) 3.5.8,
3.5.10; A

DEC Ada floating point values for
F

LAST (predefined attribute) A
[see also: bound]

for an access value 3.8.2
for an array type 3.6.2
for a scalar type 3.5
DEC Ada floating point values for
F

LAST_BIT (predefined attribute) 13.7.2;
A

[see also: record representation
clause]

Later declarative item 3.9

Layout recommended
[see: paragraphing recommended]

LAYOUT_ERROR (input-output
exception) 14.4; 14.3.4, 14.3.5, 14.3.7,
14.3.8, 14.3.9, 14.3.10, 14.5, 14.2b.2

Leading zeros in a numeric literal 2.4.1

Left label bracket compound delimiter
2.2

Left parenthesis
character 2.1
delimiter 2.2

Legal 1.6

LENGTH (predefined attribute) 3.6.2; A
for an access value 3.8.2

Length clause 13.2
as a representation clause 13.1
for an access type 4.8
specifying small of a fixed point
type 13.2; 3.5.9

Length of a string literal 2.6

Length of the result
of an array comparison 4.5.1
of an array logical negation 4.5.6
of a catenation 4.5.3

Length_check
[see: constraint_error, suppress]

Less than
character 2.1
delimiter 2.2
operator [see: relational operator]

Less than or equal
compound delimiter 2.2
operator [see: relational operator]

Letter 2.3
[see also: lower case letter, upper case
letter]

e or E in a decimal literal 2.4.1
in a based literal 2.4.2
in an identifier 2.3

Letter_or_digit 2.3

Lexical element 2, 2.2; 2.4, 2.5, 2.6, D
as a point in the program text 8.3
in a conforming construct 6.3.1
transferred by a text_io procedure
14.3, 14.3.5, 14.3.9

Lexicographic order 4.5.2

Library package
[see: library unit, package]

having dependent tasks 9.4

Library package body
[see: library unit, package body]

raising an exception 11.4.1, 11.4.2

Library unit 10.1; 10.5
[see also: compilation unit, predefined
package, predefined subprogram,
program unit, secondary unit,
standard predefined package, subunit]

compiled before the corresponding
body 10.3

Index–40

followed by an inline pragma
6.3.2
included in the predefined
package standard 8.6
must not be subject to an address
clause 13.5
named in a use clause 10.5
named in a with clause 10.1.1;
10.3, 10.5
recompiled 10.3
scope 8.2
subject to an interface pragma
13.9
that is a package 7.1
visibility due to a with clause 8.3
whose name is needed in a
compilation unit 10.1.1
with a body stub 10.2
maximum number in DEC Ada F

Limited private type 7.4.4
[see also: private type]

as a generic actual type 12.3.2
as a generic formal type 12.1.2

Limited type 7.4.4; 9.2, 12.3.1, D
[see also: assignment, equality
operator, inequality operator,
predefined operator, task type]

as a full type 7.4.1
component of a record 3.7
generic formal object 12.1.1
in an object declaration 3.2.1
limited record type 3.7.4
operation 7.4.4; 4.5.2
parameters for explicitly declared
equality operators 6.7

Line 14.3, 14.3.4

LINE (text_io function) 14.3.4; 14.3.10
raising an exception 14.4

Line feed format effector 2.1

Line length 14.3, 14.3.3; 14.3.1, 14.3.4,
14.3.5, 14.3.6

Line terminator 14.3; 14.3.4, 14.3.5,
14.3.6, 14.3.7, 14.3.8, 14.3.9

LINE_LENGTH (text_io function) 14.3.3,
14.3.4; 14.3.3, 14.3.10

raising an exception 14.4

Linker D

List
[see: component list, identifier_list]

LIST (predefined pragma) B

Listing of program text
[see: list pragma, page pragma]

Literal 4.2; D
[see also: based literal, character
literal, decimal literal, enumeration
literal, integer literal, null literal,
numeric literal, overloading of . . . ,
real literal, string literal]

as a basic operation 3.3.3
of a derived type 3.4
of universal_integer type 3.5.4
of universal_real type 3.5.6
specification [see: enumeration
literal specification]

Local declaration 8.1
in a generic unit 12.3

LOCK_ERROR (DEC Ada input-output
exception) 14.4; 14.2a.2, 14.2a.3, 14.2a.4,
14.2a.5, 14.2b.7, 14.2b.8, 14.2b.9, 14.2b.10,
14.5a

Logical negation operation 4.5.6

Logical operation 4.5.1

Logical operator 4.5; 4.4, 4.5.1, C
[see also: overloading of an operator,
predefined operator]

as an operation of boolean type
3.5.5
for an array type 3.6.2
in an expression 4.4
overloaded 6.7

Index–41

Logical processor 9

LONG_FLOAT (predefined type) 3.5.7; C

LONG_FLOAT (DEC Ada predefined
pragma) 3.5.7b; B

LONG_LONG_FLOAT (DEC Ada
predefined type) 3.5.7; C

LONG_INTEGER (predefined type) 3.5.4;
C

Loop name 5.5
declaration 5.1
implicitly declared 3.1
in an exit statement 5.7

Loop parameter 5.5
[see also: constant, object]

as an object 3.2

Loop parameter specification 5.5
[see also: elaboration of . . .]

as an overload resolution context
8.7
as a declaration 3.1

Loop statement 5.5
[see also: statement]

as a compound statement 5.1
as a declarative region 8.1
denoted by an expanded name
4.1.3
including an exit statement 5.7

LOW_LEVEL_IO (predefined input-
output package) 14.6; 14, C

Lower bound
[see: bound, first attribute]

Lower case letter 2.1
[see also: graphic character]

a to f in a based literal 2.4.2
e in a decimal literal 2.4.1
in an identifier 2.3

Machine code insertion 13.8

Machine dependent attribute 13.7.3

Machine representation
[see: representation]

MACHINE_CODE (predefined package)
13.8; C

MACHINE_EMAX (predefined attribute)
13.7.3; 3.5.8, A

DEC Ada floating point values for
F

MACHINE_EMIN (predefined attribute)
13.7.3; 3.5.8, A

DEC Ada floating point values for
F

MACHINE_MANTISSA (predefined
attribute) 13.7.3; 3.5.8, A

DEC Ada floating point values for
F

MACHINE_OVERFLOWS (predefined
attribute) 13.7.3; 3.5.8, 3.5.10, A

DEC Ada floating point values for
F

MACHINE_RADIX (predefined attribute)
13.7.3; 3.5.8, A

DEC Ada floating point values for
F

MACHINE_ROUNDS (predefined
attribute) 13.7.3; 3.5.8, 3.5.10, A

DEC Ada floating point values for
F

MACHINE_SIZE (DEC Ada predefined
attribute) 13.7.2; A

Main program 10.1
execution requiring elaboration of
library units 10.5
included in the predefined
package standard 8.6
including a priority pragma 9.8
raising an exception 11.4.1, 11.4.2

Index–42

termination 9.4
DEC Ada definition of 10.1, F
stack and stack storage for 13.2b

MAIN_STORAGE (DEC Ada predefined
pragma) 13.2b; B

MANTISSA (predefined attribute) 3.5.8,
3.5.10; A

DEC Ada floating point values of
F

Mantissa
of a fixed point number 3.5.9
of a floating point number 3.5.7;
13.7.3

Mark
[see: type_mark]

Master (task) 9.4

Matching components
of arrays 4.5.2; 4.5.1, 5.2.1
of records 4.5.2

Matching generic formal
and actual parameters 12.3
access type 12.3.5
array type 12.3.4
default subprogram 12.3.6; 12.1.3
object 12.3.1; 12.1.1
private type 12.3.2
scalar type 12.3.3
subprogram 12.3.6; 12.1.3
type 12.3.2, 12.3.3, 12.3.4, 12.3.5;
12.1.2

Mathematically correct result of a
numeric operation 4.5; 4.5.7

MAX_DIGITS
[see: system.max_digits]

MAX_ELEMENT_SIZE (DEC Ada
mixed-type input-output function)

in direct_mixed_io 14.2b.2,
14.2b.6
in indexed_mixed_io 14.2b.2,
14.2b.10

in relative_mixed_io 14.2b.2,
14.2b.8
in sequential_mixed_io 14.2b.2,
14.2b.4

MAX_INT
[see: system.max_int]

MAX_MANTISSA
[see: system.max_mantissa]

Maximum line length 14.3

Maximum page length 14.3

Membership test 4.4, 4.5.2
cannot be overloaded 6.7

Membership test operation 4.5
[see also: overloading of . . .]

as a basic operation 3.3.3; 3.3,
3.5.5, 3.5.8, 3.5.10, 3.6.2, 3.7.4,
3.8.2, 7.4.2
for a real type 4.5.7

MEMORY_SIZE (predefined named
number)

[see: system.memory_size]

MEMORY_SIZE (predefined pragma)
13.7; B

MFPR (DEC Ada predefined function)
[see: system.mfpr]

MIN_INT
[see: system.min_int]

Minimization of storage
[see: pack predefined pragma]

Minus
character [see: hyphen character]
character in an exponent of a
numeric literal 2.4.1
delimiter 2.2
operator [see: binary adding
operator, unary adding operator]
unary operation 4.5.4

Mod operator 4.5.5
[see also: multiplying operator]

Index–43

MODE (input-output function)
in an instance of direct_io 14.2.1;
14.2.5
in an instance of sequential_io
14.2.1; 14.2.3
in text_io 14.2.1; 14.3.3, 14.3.4,
14.3.10
in an instance of indexed_io
14.2.1, 14.2a.5
in an instance of relative_io
14.2.1, 14.2a.3
in direct_mixed_io 14.2.1, 14.2b.6
in indexed_mixed_io 14.2.1,
14.2b.10
in relative_mixed_io 14.2.1,
14.2b.8
in sequential_mixed_io 14.2.1,
14.2b.4

Mode (of a file) 14.1; 14.2.1
of a direct access file 14.2; 14.2.5
of a sequential access file 14.2;
14.2.3
of a text_io file 14.3.1; 14.3.4
of an indexed access file 14.2a
of a relative access file 14.2a

Mode (of a formal parameter) 6.2; 6.1, D
[see also: formal parameter, generic
formal parameter]

of a formal parameter of a derived
subprogram 3.4
of a formal parameter of a
renamed entry or subprogram
8.5
of a generic formal object 12.1.1

Mode in for a formal parameter 6.1, 6.2;
3.2.1

of a function 6.5
of an interrupt entry 13.5.1

Mode in for a generic formal object
12.1.1; 3.2.1, 12.3, 12.3.1

Mode in out for a formal parameter 6.1,
6.2; 3.2.1

of a function is not allowed 6.5
of an interrupt entry is not
allowed 13.5.1

Mode in out for a generic formal object
12.1.1; 3.2.1, 12.3, 12.3.1

Mode out for a formal parameter 6.1, 6.2
of a function is not allowed 6.5
of an interrupt entry is not
allowed 13.5.1

MODE_ERROR (input-output exception)
14.4; 14.2.2, 14.2.3, 14.2.4, 14.2.5, 14.3.1,
14.3.2, 14.3.3, 14.3.4, 14.3.5, 14.3.10, 14.5,
14.2a.2, 14.2a.3, 14.2a.4, 14.2a.5, 14.2b.2,
14.2b.3, 14.2b.4, 14.2b.5, 14.2b.6, 14.2b.7,
14.2b.8, 14.2b.9, 14.2b.10

Model interval of a subtype 4.5.7

Model number (of a real type) 3.5.6; D
[see also: real type, safe number]

accuracy of a real operation 4.5.7
of a fixed point type 3.5.9; 3.5.10
of a floating point type 3.5.7; 3.5.8

Modulus operation 4.5.5

MONTH (predefined function) 9.6

MTPR (DEC Ada predefined procedure)
[see: system.mtpr]

Multidimensional array 3.6

Multiple
component declaration 3.7; 3.2
deferred constant declaration 7.4;
3.2
discriminant specification 3.7.1;
3.2
generic parameter declaration
12.1; 3.2
number declaration 3.2.2; 3.2
object declaration 3.2
parameter specification 6.1; 3.2

Index–44

Multiplication operation 4.5.5
accuracy for a real type 4.5.7

Multiplying operator 4.5; 4.5.5, C
[see also: arithmetic operator,
overloading of an operator]

in a term 4.4
overloaded 6.7

Must (legality requirement) 1.6

Mutually recursive types 3.8.1; 3.3.1

NAME (input-output function)
in an instance of direct_io 14.2.1
in an instance of sequential_io
14.2.1
in text_io 14.2.1
in an instance of indexed_io
14.2.1, 14.2a.5
in an instance of relative_io
14.2.1, 14.2a.3
in direct_mixed_io 14.2.1, 14.2b.8
in indexed_mixed_io 14.2.1,
14.2b.10
in relative_mixed_io 14.2.1,
14.2b.6
in sequential_mixed_io 14.2.1,
14.2b.4

NAME (predefined type)
[see: system.name]

Name (of an entity) 4.1; 2.3, 3.1, D
[see also: attribute, block name,
denote, designator, evaluation of . . . ,
forcing occurrence, function call,
identifier, indexed component, label,
loop name, loop parameter, operator
symbol, renaming declaration,
selected component, simple name,
slice, type_mark, visibility]

as a prefix 4.1
as a primary 4.4

as the argument of a pragma 2.8
as the expression in a case
statement 5.4
conflicts 8.5
declared by renaming is not
allowed as prefix of certain
expanded names 4.1.3
declared in a generic unit 12.3
denoting an entity 4.1
denoting an object designated by
an access value 4.1
generated by an implementation
13.4
starting with a prefix 4.1; 4.1.1,
4.1.2, 4.1.3, 4.1.4

Name string (of a file) 14.1; 14.2.1,
14.2.3, 14.2.5, 14.3, 14.3.10, 14.4

NAME_ERROR (input-output exception)
14.4; 14.2.1, 14.2.3, 14.2.5, 14.3.10, 14.5,
14.2a.3, 14.2a.5, 14.2b.6, 14.2b.8, 14.2b.10

Named association 6.4.2, D
[see also: component association,
discriminant association, generic
association, parameter association]

Named block statement
[see: block name]

Named loop statement
[see: loop name]

Named number 3.2; 3.2.2
as an entity 3.1
as a primary 4.4
in a static expression 4.9

NATURAL (predefined integer subtype) C

Negation
[see: logical negation operation]

Negation operation (numeric) 4.5.4

Negative exponent
in a numeric literal 2.4.1
to an exponentiation operator
4.5.6

Index–45

NEW_LINE (text_io procedure) 14.3.4;
14.3.5, 14.3.6, 14.3.10

raising an exception 14.4

NEW_PAGE (text_io procedure) 14.3.4;
14.3.10

raising an exception 14.4

Next element in an indexed access file
14.2a

No other effect
[see: elaboration has no other effect]

NO_ADDR (DEC Ada predefined
constant)

[see:system.no_addr]

NO_AST_HANDLER (DEC Ada
predefined constant) 9.12a; F

[see: system.no_ast_handler]

NON_ADA_ERROR (DEC Ada
predefined exception)

[see: system.non_ada_error]

Noncontiguous array D; 13.9a.1.2

Not equal
compound delimiter [see:
inequality compound delimiter]
operator [see: relational operator]

Not in membership test
[see: membership test]

Not unary operator
[see: highest precedence operator]

as an operation of an array type
3.6.2
as an operation of boolean type
3.5.5
in a factor 4.4

Not yet elaborated 3.9

Null access value 3.8; 3.4, 4.2, 6.2, 11.1
[see also: default initial value of an
access type object]

causing constraint_error 4.1
not causing constraint_error 11.7

Null array 3.6.1; 3.6
aggregate 4.3.2
and relational operation 4.5.2
as an operand of a catenation
4.5.3

Null component list 3.7

Null literal 3.8, 4.2
[see also: overloading of . . .]

as a basic operation 3.3.3; 3.8.2
as a primary 4.4
must not be the argument of a
conversion 4.6

Null range 3.5
as a choice of a variant part 3.7.3
for a loop parameter 5.5

Null record 3.7
and relational operation 4.5.2

Null slice 4.1.2
[see also: array type]

Null statement 5.1
[see also: statement]

as a simple statement 5.1

Null string literal 2.6

NULL_ADDRESS (DEC Ada predefined
constant)

[see:system.null_address]

NULL_PARAMETER (DEC Ada
predefined attribute) 13.9a.1.2; A

Number
[see: based literal, decimal literal]

Number declaration 3.2, 3.2.2
as a basic declaration 3.1

NUMBER_BASE (predefined integer
subtype) 14.3.7; 14.3.10

Numeric literal 2.4, 4.2; 2.2, 2.4.1, 2.4.2
[see also: universal type expression]

and an adjacent separator 2.2
as a basic operation 3.3.3
as a primary 4.4

Index–46

as the parameter of value
attribute 3.5.5
as the result of image attribute
3.5.5
assigned 5.2
can be written in the basic
character set 2.10
in a conforming construct 6.3.1
in a static expression 4.9
in pragma memory_size 13.7
in pragma storage_unit 13.7

Numeric operation of a universal type
4.10

Numeric type 3.5
[see also: conversion, fixed point type,
floating point type, integer type, real
type, scalar type]

operation 4.5, 4.5.2, 4.5.3, 4.5.4,
4.5.5, 4.5.6

Numeric type expression
in a length clause 13.2

Numeric value of a named number 3.2

NUMERIC_ERROR (predefined
exception) 11.1

[see also: suppress pragma]
not raised due to lost overflow
conditions 13.7.3
not raised due to optimization
11.6
raised by a numeric operator 4.5
raised by a predefined integer
operation 3.5.4
raised by a real result out of
range of the safe numbers 4.5.7
raised by a universal expression
4.10
raised by integer division
remainder or modulus 4.5.5
raised due to a conversion out of
range 3.5.4, 3.5.6

Object 3.2; 3.2.1, D
[see also: address attribute, allocator,
collection, component, constant,
formal parameter, generic formal
parameter, initial value, loop
parameter, size attribute, storage bits
allocated, subcomponent, variable]

as an actual parameter 6.2
as a generic formal parameter
12.1.1
created by an allocator 4.8
created by elaboration of an object
declaration 3.2.1
of an access type [see: access type
object]
of a file type [see: file]
of a task type [see: task object]
renamed 8.5
subject to an address clause 13.5
subject to a representation clause
13.1
subject to a suppress pragma 11.7

exporting to non-Ada programs
13.9a.2, 13.9a.2.2, 13.9a.2.3
importing from non-Ada programs
13.9a.2, 13.9a.2.1, 13.9a.2.3
maximum number of bits in DEC
Ada F
maximum number declared with
PSECT_OBJECT pragma F

Object declaration 3.2, 3.2.1
[see also: elaboration of . . . , generic
parameter declaration]

as a basic declaration 3.1
as a full declaration 7.4.3
implied by a task declaration 9.1
in a package specification 7.1
of an array object 3.6.1
of a record object 3.7.2
with a limited type 7.4.4
with a task type 9.2; 9.3

Index–47

Object designated by an access value
3.2, 3.8, 4.8; 4.1.3, 5.2, 9.2, 11.1)

[see also: task object designated . . .]
by an access value denoted by a
name 4.1
by an access-to-array type 3.6.1
by an access-to-record type 3.7.2
by a generic formal access type
value 12.3.5

Object file D

Object module
for a subprogram written in
another language 13.9
OpenVMS D

Obsolete compilation unit (due to
recompilation) 10.3

Occur immediately within (a
declarative region) 8.1; 8.3, 8.4, 10.2

Omitted parameter association for a
subprogram call 6.4.2

OPEN (input-output procedure)
in an instance of direct_io 14.2.1;
14.1, 14.2.5
in an instance of sequential_io
14.2.1; 14.1, 14.2.3
in text_io 14.2.1; 14.1, 14.3.1,
14.3.10
raising an exception 14.4
in an instance of indexed_io
14.2.1, 14.2a.5
in an instance of relative_io
14.2.1, 14.2a.3
in direct_mixed_io 14.2.1, 14.2b.6
in indexed_mixed_io 14.2.1,
14.2b.10
in relative_mixed_io 14.2.1,
14.2b.8
in sequential_mixed_io 14.2.1,
14.2b.4

Open alternative 9.7.1
[see also: alternative]

accepting a conditional entry call
9.7.2
accepting a timed entry call 9.7.3

Open file 14.1

Operation 3.3, 3.3.3; D
[see also: basic operation, direct
visibility, operator, predefined
operation, visibility by selection,
visibility]

classification 3.3.3
of an access type 3.8.2
of an array type 3.6.2
of a discrete type 3.5.5
of a fixed point type 3.5.10
of a floating point type 3.5.8
of a generic actual type 12.1.2
of a generic formal type 12.1.2;
12.3
of a limited type 7.4.4
of a private type 7.4.2; 7.4.1
of a record type 3.7.4
of a subtype 3.3
of a subtype of a discrete type
3.5.5
of a type 3.3
of a universal type 4.10
propagating an exception 11.6
subject to a suppress pragma 11.7

Operator 4.5; 4.4, C, D
[see also: binary adding operator,
designator, exponentiating operator,
function, highest precedence operator,
logical operator, multiplying operator,
overloading of . . . , predefined
operator, relational operator, unary
adding operator]

as an operation 3.3.3 [see also:
operation]
implicitly declared 3.3.3
in an expression 4.4
in a static expression 4.9
of a derived type 3.4
of a generic actual type 12.1.2

Index–48

overloaded 6.7; 6.6
renamed 8.5

Operator declaration 6.1; 4.5, 6.7

Operator symbol 6.1
[see also: direct visibility, overloading
of . . . , scope of . . . , visibility by
selection, visibility]

as a designator 6.1
as a designator in a function
declaration 4.5
as a name 4.1
before arrow compound delimiter
8.3
declared 3.1
declared in a generic unit 12.3
in a renaming declaration 8.5
in a selector 4.1.3
in a static expression 4.9
not allowed as the designator of a
library unit 10.1
of a generic formal function
12.1.3, 12.3
of homograph declarations 8.3
overloaded 6.7; 6.6

Optimization 10.6
[see also: optimize pragma]

and exceptions 11.6

OPTIMIZE (predefined pragma) B

Optional parameter
in imported subprogram 13.9a.1.2

Or else control form
[see: short circuit control form]

Or operator
[see: logical operator]

OR_ATOMIC (DEC Ada predefined
procedure)

[see: system.or_atomic]

Order
[see: lexicographic order]

Order not defined by the language
[see: incorrect order dependence]

Order of application of operators in an
expression 4.5

Order of compilation (of compilation
units) 10.1, 10.3; 10.1.1, 10.4

creating recompilation
dependence 10.3

Order of copying back of out and in out
formal parameters 6.4

Order of elaboration 3.9
[see also: incorrect order dependence];
(of compilation units) 10.5; 10.1.1

Order of evaluation 1.6
[see also: incorrect order dependence]

and exceptions 11.6
of conditions in an if statement
5.3
of default expressions for
components 3.2.1
of expressions and the name in
an assignment statement 5.2
of operands in an expression 4.5
of parameter associations in a
subroutine call 6.4
of the bounds of a range 3.5
of the conditions in a selective
wait 9.7.1

Order of execution of statements 5.1
[see also: incorrect order dependence]

Ordering operator 4.5; 4.5.2

Ordering relation 4.5.2
[see also: relational operator]

for a real type 4.5.7
of an enumeration type preserved
by a representation clause 13.3
of a scalar type 3.5

Other effect
[see: elaboration has no other effect]

Index–49

Other special character 2.1
[see also: graphic character]

Others 3.7.3
as a choice in an array aggregate
4.3.2
as a choice in a case statement
alternative 5.4
as a choice in a component
association 4.3
as a choice in a record aggregate
4.3.1
as a choice in a variant part 3.7.3
as an exception choice 11.2
as a choice for handling
OpenVMS conditions signaled
from non-Ada code 11.2

Out mode
[see: mode out]

OUT_FILE (input-output file mode
enumeration literal) 14.1

Overflow of real operations 4.5.7; 13.7.3

Overflow_check
[see: numeric_error, suppress]

Overlapping scopes
[see: hiding, overloading]

Overlapping slices in array assignment
5.2.1

Overlaying of objects or program units
13.5

Overloading 8.3; D
[see also: designator, homograph
declaration, identifier, operator
symbol, scope, simple name,
subprogram, visibility]

and visibility 8.3
in an assignment statement 5.2
in an expression 4.4
resolution 6.6
resolution context 8.7
resolved by explicit qualification
4.7

Overloading of
an aggregate 3.4
an allocator 4.8
a declaration 8.3
a designator 6.6; 6.7
an entry 9.5
an enumeration literal 3.5.1; 3.4
a generic formal subprogram 12.3
a generic unit 12.1
an identifier 6.6
a library unit by a locally
declared subprogram 10.1
a library unit by means of
renaming 10.1
a literal 3.4
a membership test 4.5.2
an operator 4.5, 6.7; 4.4, 6.1
an operator symbol 6.6; 6.7
a subprogram 6.6; 6.7
a subprogram subject to an
interface pragma 13.9
the expression in a case
statement 5.4

PACK (predefined pragma) 13.1; B

Packable D

Package 7, 7.1; D
[see also: deferred constant
declaration, library unit, predefined
package, private part, program unit,
visible part]

as a generic instance 12.3; 12
including a raise statement 11.3
named in a use clause 8.4
renamed 8.5
subject to an address clause 13.5
subject to representation clause
13.1
with a separately compiled body
10.2

Index–50

Package body 7.1, 7.3; D
[see also: body stub]

as a generic body 12.2
as a proper body 3.9
as a secondary unit 10.1
as a secondary unit compiled
after the corresponding library
unit 10.3
in another package body 7.1
including an exception handler
11.2; 11
including an exit statement 5.7
including a goto statement 5.9
including an implicit declaration
5.1
must be in the same declarative
region as the declaration 3.9
raising an exception 11.4.1, 11.4.2
recompiled 10.3
subject to a suppress pragma 11.7

Package declaration 7.1, 7.2; D
and body as a declarative region
8.1
as a basic declaration 3.1
as a later declarative item 3.9
as a library unit 10.1
determining the visibility of
another declaration 8.3
elaboration raising an exception
11.4.2
in a package specification 7.1
recompiled 10.3

Package identifier 7.1

Package specification 7.1, 7.2
in a generic declaration 12.1
including an inline pragma 6.3.2
including an interface pragma
13.9
including a representation clause
13.1
including a suppress pragma 11.7

Page 14.3, 14.3.4

PAGE (predefined pragma) B

PAGE (text_io function) 14.3.4; 14.3.10
raising an exception 14.4

Page length 14.3, 14.3.3; 14.3.1, 14.3.4,
14.4

Page terminator 14.3; 14.3.3, 14.3.4,
14.3.5

PAGE_LENGTH (text_io function) 14.3.3;
14.3.10

raising an exception 14.4

Paragraphing recommended for the
layout of programs 1.5

Parallel execution
[see: task]

Parameter D
[see also: actual parameter, default
expression, entry, formal parameter,
formal part, function, generic actual
parameter, generic formal parameter,
loop parameter, mode, procedure,
subprogram]

of a main program 10.1

Parameter and result type profile 6.6

Parameter association 6.4, 6.4.1
for a derived subprogram 3.4
named parameter association 6.4
named parameter association for
selective visibility 8.3
omitted for a subprogram call
6.4.2
positional parameter association
6.4

Parameter declaration
[see: generic parameter declaration,
parameter specification]

Parameter part
[see: actual parameter part]

Parameter passing
overriding default mechanisms
13.9a.1.4

Index–51

Parameter specification 6.1
[see also: loop parameter
specification]

as part of a basic declaration 3.1
having an extended scope 8.2
in a formal part 6.1
visibility 8.3

Parameter type profile 6.6

Parent subprogram (of a derived
subprogram) 3.4

Parent subtype (of a derived subtype)
3.4

Parent type (of a derived type) 3.4; D
[see also: derived type]

declared in a visible part 3.4
of a generic actual type 12.1.2
of a numeric type is predefined
and anonymous 3.5.4, 3.5.7, 3.5.9

Parent unit (of a body stub) 10.2
compiled before its subunits 10.3

Parenthesis
character 2.1
delimiter 2.2

Parenthesized expression
as a primary 4.4; 4.5
in a static expression 4.9

Part
[see: actual parameter part,
declarative part, discriminant part,
formal part, generic actual part,
generic formal part, variant part]

Partial ordering of compilation 10.3

PASSIVE (DEC Ada predefined pragma)
9.8b; B

Percent character 2.1
[see also: string literal]

replacing quotation character 2.10

Period character 2.1
[see also: dot character, point
character]

Physical processor 9; 9.8

Plus
character 2.1
delimiter 2.2
operator [see: binary adding
operator, unary adding operator]
unary operation 4.5.4

Point character 2.1
[see also: dot]

in a based literal 2.4.2
in a decimal literal 2.4.1
in a numeric literal 2.4

Point delimiter 2.2

Pointer
[see: access type]

Portability 1.1
of programs using real types
13.7.3; 3.5.6

POS (predefined attribute) 3.5.5; 13.3, A

POSITION (predefined attribute) 13.7.2;
A

[see also: record representation
clause]

POSITION (DEC Ada mixed-type input-
output function)

in direct_mixed_io 14.2b.2,
14.2b.6
in indexed_mixed_io 14.2b.2,
14.2b.10
in relative_mixed_io 14.2b.2,
14.2b.8
in sequential_mixed_io 14.2b.2,
14.2b.4

Position number
as parameter to val attribute
3.5.5
of an enumeration literal 3.5.1

Index–52

of an integer value 3.5.4
of a value of a discrete type 3.5
returned by pos attribute 3.5.5

Position of a component within a record
[see: record representation clause]

Position of an element in a direct access
file 14.2

Positional association 6.4; 6.4.2, D
[see also: component association,
discriminant association, generic
association, parameter association]

POSITIVE (predefined integer subtype)
3.6.3; 14.3.7, 14.3.8, 14.3.9, 14.3.10, C

as the index type of the string
type 3.6.3

POSITIVE_COUNT (predefined integer
subtype) 14.2.5, 14.3.10; 14.2.4, 14.3,
14.3.4

Potentially visible declaration 8.4

Pound sterling character 2.1

Power operator
[see: exponentiating operator]

Pragma 2.8; 2, D
[see also: predefined pragma]

applicable to the whole of a
compilation 10.1
argument that is an overloaded
subprogram name 6.3.2, 8.7, 13.9
for the specification of a
subprogram body in another
language 13.9
for the specification of program
overlays 13.5
in a code procedure body 13.8
recommending the representation
of an entity 13.1
specifying implementation
conventions for code statements
13.8

Precedence 4.5

Precision (numeric)
[see: delta, digits]

PRED (predefined attribute) 3.5.5; 13.3, A

Predecessor
[see: pred attribute]

Predefined attribute
[see: address, base, callable,
constrained, count, first, first_bit,
image, last, last_bit, pos, pred,
range, size, small, storage_size,
succ, terminated, val, value, width]
[see: ast_entry, bit, machine_size,
null_parameter, type_class]

Predefined constant 8.6; C
[see also: system.system_name]
[see also: system.address_zero,
system.no_addr, system.null_address,
system.no_ast_handler]

for CHARACTER values [see:
ascii]

Predefined exception 8.6, 11.1; 11.4.1,
C

[see also: constraint_error, io_
exceptions, numeric_error, program_
error, tasking_error, time_error]
[see also: aux_io_exceptions]

Predefined function 8.6; C
[see also: attribute, character literal,
enumeration literal, predefined
generic library function]

Predefined generic library function
8.6; C

[see also: unchecked_conversion]

Predefined generic library package
8.6; C

[see also: direct_io, input-output
package, sequential_io]
[see also: relative_io, indexed_io]

Predefined generic library procedure
8.6; C

[see also: unchecked_deallocation]

Index–53

Predefined generic library
subprogram 8.6; C

Predefined identifier 8.6; C

Predefined library package 8.6; C
[see also: predefined generic library
package, predefined package, ascii,
calendar, input-output package,
io_exceptions, low_level_io, machine_
code, system, text_io]
[see also: aux_io_exceptions]

Predefined library subprogram
[see: predefined generic library
subprogram]

Predefined named number
[see: system.fine_delta, system.max_
digits, system.max_int, system.max_
mantissa, system.memory_size,
system.min_int, system.storage_unit,
system.tick]
[see: system.address_size]

Predefined operation 3.3, 3.3.3; 8.6
[see also: operation, predefined
operator]

accuracy for a real type 4.5.7
of a discrete type 3.5.5
of a fixed point type 3.5.10
of a floating point type 3.5.8
of a universal type 4.10
propagating an exception 11.6

Predefined operator 4.5, 8.6; C
[see also: abs, arithmetic operator,
binary adding operator, catenation,
equality, exponentiating operator,
highest precedence operator,
inequality, limited type, logical
operator, multiplying operator,
operator, predefined operation,
relational operator, unary adding
operator]

applied to an undefined value
3.2.1
as an operation 3.3.3
for an access type 3.8.2

for an array type 3.6.2
for a record type 3.7.4
implicitly declared 3.3.3
in a static expression 4.9
of a derived type 3.4
of a fixed point type 3.5.9
of a floating point type 3.5.7
of an integer type 3.5.4
raising an exception 11.4.1

Predefined package 8.6; C
[see also: ascii, library unit,
predefined library package, standard]

for input-output 14

Predefined pragma
[see: controlled, elaborate, inline,
interface, list, memory_size, optimize,
pack, page, priority, shared, storage_
unit, suppress, system_name]
[see: ast_entry, common_object,
component_alignment, export_
exception, export_function,
export_object, export_procedure,
export_valued_procedure, float_
representation, ident, import_
exception, import_function, import_
object, import_procedure, import_
valued_procedure, inline_generic,
interface_name, long_float, main_
storage, psect_object, share_generic,
suppress_all, task_storage, time_slice,
title, volatile]

Predefined subprogram 8.6; C
[see also: input-output subprogram,
library unit, predefined generic library
subprogram]

Predefined subtype 8.6; C
[see also: field, natural, number_base,
positive, priority]

Predefined type 8.6; C
[see also: boolean, character, count,
duration, float, integer, long_float,
long_integer, priority, short_float,
short_integer, string, system.address,

Index–54

system.name, time, universal_integer,
universal_real]
[see also: long_long_float, short_
short_integer, system (and individual
DEC Ada types declared in system)]

Prefix 4.1; D
[see also: appropriate for a type,
function call, name, selected
component, selector]

in an attribute 4.1.4
in an indexed component 4.1.1
in a selected component 4.1.3
in a slice 4.1.2
that is a function call 4.1
that is a name 4.1

Primary 4.4
in a factor 4.4
in a static expression 4.9

Primary key in an indexed access file
14.2a

PRIORITY (predefined integer subtype)
9.8; 13.7, C

[see also: task priority]

PRIORITY (predefined pragma) 9.8; 13.7,
B

[see also: task priority]

Private part (of a package) 7.2; 7.4.1,
7.4.3, D

[see also: deferred constant
declaration, private type declaration]

Private type 3.3, 7.4, 7.4.1; D
[see also: class of type, derived type
of a private type, limited private type,
type with discriminants]

as a generic actual type 12.3.2
as a generic formal type 12.1.2
as a parent type 3.4
corresponding full type
declaration 3.3.1
formal parameter 6.2
of a deferred constant 7.4; 3.2.1
operation 7.4.2

Private type declaration 7.4; 7.4.1,
7.4.2

[see also: private part (of a package),
visible part (of a package)]

as a generic type declaration 12.1
as a portion of a declarative
region 8.1
including the word ’limited’ 7.4.4

Procedure 6.1; 6, D
[see also: parameter and result type
profile, parameter, subprogram]

as a main program 10.1
as a renaming of an entry 9.5
renamed 8.5
exporting 13.9a.1.4
importing 13.9a.1.1

Procedure body
[see: subprogram body]

including code statements 13.8

Procedure call 6.4; 6, D
[see also: subprogram call]

Procedure call statement 6.4
[see also: actual parameter,
statement]

as a simple statement 5.1
with a parameter of a derived
type 3.4

Procedure specification
[see: subprogram specification]

Processor 9

Profile
[see: parameter and result type
profile, parameter type profile]

Program 10; D
[see also: main program]

Program legality 1.6

Program library 10.1, 10.4; 10.5
creation 10.4; 13.7
manipulation and status 10.4

Index–55

maximum number of units in
DEC Ada F

Program optimization 11.6; 10.6

Program section D; 13.9a.2.3

Program text 2.2, 10.1; 2.10

Program unit 6, 7, 9, 12; D
[see also: address attribute,
generic unit, library unit, package,
subprogram, task unit]

body separately compiled [see:
subunit]
including a declaration denoted
by an expanded name 4.1.3
including a suppress pragma 11.7
subject to an address clause 13.5
with a separately compiled body
10.2

PROGRAM_ERROR (predefined
exception) 11.1

[see also: erroneous execution,
suppress pragma]

raised by an erroneous program
or incorrect order dependence 1.6;
11.1
raised by a generic instantiation
before elaboration of the body 3.9;
12.1, 12.2
raised by a selective wait 9.7.1
raised by a subprogram call
before elaboration of the body 3.9;
7.3
raised by a task activation before
elaboration of the body 3.9
raised by reaching the end of a
function body 6.5
raised for AST occurring for entry
of noncallable task 9.12a

Propagation of an exception
[see: exception propagation]

Proper body 3.9
as a body 3.9
in a subunit 10.2
of a library unit separately
compiled 10.1

Psect D

PSECT_OBJECT (DEC Ada predefined
pragma) 13.9a.2.3; B

maximum number of objects
declared with F

PUT (text_io procedure) 14.3, 14.3.5;
14.3.2, 14.3.10

for character and string types
14.3.6
for enumeration types 14.3.9
for integer types 14.3.7
for real types 14.3.8
raising an exception 14.4

PUT_ITEM (DEC Ada mixed-type input-
output procedure)

in direct_mixed_io 14.2b.2,
14.2b.6
in indexed_mixed_io 14.2b.2,
14.2b.10
in relative_mixed_io 14.2b.2,
14.2b.8
in sequential_mixed_io 14.2b.2,
14.2b.4

Qualification 4.7
as a basic operation 3.3.3; 3.3,
3.5.5, 3.5.8, 3.5.10, 3.6.2, 3.7.4,
3.8.2, 7.4.2
using a name of an enumeration
type as qualifier 3.5.1

Index–56

Qualified expression 4.7; D
as a primary 4.4
in an allocator 4.8
in a case statement 5.4
in a static expression 4.9
qualification of an array
aggregate 4.3.2
to resolve an overloading
ambiguity 6.6

Queue of entry calls
[see: entry queue]

Queue of interrupts
[see: entry queue]

Quotation character 2.1
in a string literal 2.6
replacement by percent character
2.10

Radix of a floating point type 3.5.7; 13.7.3

Raise statement 11.3; 11
[see also: exception, statement]

as a simple statement 5.1
including the name of an
exception 11.1

Raising of an exception 11, 11.3; D
[see also: exception]

causing a transfer of control 5.1

Range 3.5; D
[see also: discrete range, null range]

as a discrete range 3.6
in a record representation clause
13.4
in a relation 4.4
of an index subtype 3.6
of an integer type containing the
result of an operation 4.5
of a predefined integer type 3.5.4

of a real type containing the
result of an operation 4.5.7
yielded by an attribute 4.1.4

RANGE (predefined attribute) 3.6.2;
4.1.4, A

for an access value 3.8.2

Range constraint 3.5; D
[see also: elaboration of . . .]

ignored due to range_check
suppression 11.7
in a fixed point constraint 3.5.9
in a floating point constraint 3.5.7
in an integer type definition 3.5.4
in a subtype indication 3.5; 3.3.2
on a derived subtype 3.4
violated 11.1

Range_check
[see: constraint_error, suppress]

when array parameter passing
involves a descriptor 11.7

READ (input-output procedure)
in an instance of direct_io 14.2.4;
14.1, 14.2, 14.2.5
in an instance of sequential_io
14.2.2; 14.1, 14.2, 14.2.3
in an instance of indexed_io
14.2a.4, 14.2a.5
in an instance of relative_io
14.2a.2, 14.2a.3
in direct_mixed_io 14.2b.5,
14.2b.6
in indexed_mixed_io 14.2b.9,
14.2b.10
in relative_mixed_io 14.2b.7,
14.2b.8
in sequential_mixed_io 14.2b.3,
14.2b.4

READ_BY_KEY (DEC Ada input-output
generic procedure)

in an instance of indexed_io
14.2a.4, 14.2a.5
in indexed_mixed_io 14.2b.9,
14.2b.10

Index–57

READ_EXISTING (DEC Ada input-
output procedure)

in an instance of relative_io
14.2a.2, 14.2a.3
in relative_mixed_io 14.2b.7,
14.2b.8

Reading the value of an object 6.2, 9.11

READ_REGISTER (DEC Ada predefined
function)

[see system.read_register]

Real literal 2.4
[see also: universal_real type]

in based notation 2.4.2
in decimal notation 2.4.1
is of type universal_real 3.5.6

[see also: D_floating, F_floating,
G_floating, H_floating]

Real type 3.5.6; 3.3, 3.5, D
[see also: fixed point type, floating
point type, model number, numeric
type, safe number, scalar type,
universal_real type]

accuracy of an operation 4.5.7
representation attribute 13.7.3
result of a conversion from a
numeric type 4.5.7; 4.6
result of an operation out of range
of the type 4.5.7

Real type definition 3.5.6; 3.3.1, 3.5.7,
3.5.9

[see also: elaboration of . . .]

RECEIVE_CONTROL (low_level_io
procedure) 14.6

Reciprocal operation in exponentiation
by a negative integer 4.5.6

Recompilation 10.3
implicit 3.5.7a, 3.5.7b

Record (RMS)
[see also: element]

correspondence to a file element
14.1a
correspondence to a source line
2.2
determining number of in direct
input-output file 14.2.4
locking in a relative or indexed
access file 14.2a

Record aggregate 4.3.1; 4.3
[see also: aggregate]

as a basic operation 3.3.3; 3.7.4
in a code statement 13.8

Record component
[see: component, record type, selected
component]
[see also: allocation]

Record representation clause 13.4
[see also: first_bit attribute, last_bit
attribute, position attribute]

as a representation clause 13.1
DEC Ada restrictions on
component clause in 13.4

Record type 3.7; 3.3, D
[see also: component, composite
type, discriminant, matching
components, subcomponent, type
with discriminants, variant]

formal parameter 6.2
including a limited subcomponent
7.4.4
operation 3.7.4

Record type declaration
[see: record type definition, type
declaration]

as a declarative region 8.1
determining the visibility of
another declaration 8.3

Record type definition 3.7; 3.3.1
[see also: component declaration]

Index–58

Recursive
call of a subprogram 6.1, 12.1;
6.3.2
generic instantiation 12.1, 12.3
types 3.8.1; 3.3.1

Reentrant subprogram 6.1

Reference (parameter passing) 6.2;
13.9a.1.4

Relation (in an expression) 4.4

Relational expression
[see: relation, relational operator]

Relational operation 4.5.2
of a boolean type 3.5.3
of a discrete type 3.5.5
of a fixed point type 3.5.10
of a floating point type 3.5.8
of a scalar type 3.5
result for real operands 4.5.7

Relational operator 4.5; 4.5.2, C
[see also: equality operator,
inequality operator, ordering relation,
overloading of an operator, predefined
operator]

for an access type 3.8.2
for an array type 3.6.2
for a private type 7.4.2
for a record type 3.7.4
for time predefined type 9.6
in a relation 4.4
overloaded 6.7

RELATION_TYPE (DEC Ada input-
output type) 14.2a

in an instance of indexed_io
14.2a.4, 14.2a.5
in indexed_mixed_io 14.2b.9,
14.2b.10

Relative access file 14.2a

Relative address of a component within
a record

[see: record representation clause]

RELATIVE_IO (DEC Ada predefined
input-output package) 14.2a.2; 14.2a.3

element locking in 14.2a
exceptions 14.4; 14.5, 14.5a
requisite specification of FORM
parameter with 14.1.b, 14.2a.1
specification 14.2a.3

RELATIVE_MIXED_IO (DEC Ada
predefined input-output package)14.2b.7;
14.2b.8

exceptions 14.4; 14.5, 14.5a
requisite specification of FORM
parameter with 14.1b
specification 14.2b.8

Rem operator 4.5.5
[see also: multiplying operator]

Remainder operation 4.5.5

REMQHI (DEC Ada predefined
procedure)

[see: system.remqhi]

REMQ_STATUS (DEC Ada predefined
type)

[see: system.remq_status]

REMQTI (DEC Ada predefined procedure)
[see: system.remqti]

Renaming declaration 8.5; 4.1, 12.1.3,
D

[see also: name]
as a basic declaration 3.1
as a declarative region 8.1
cannot rename a universal_fixed
operation 4.5.5
for an array object 3.6.1
for an entry 9.5
for a record object 3.7.2
name declared is not allowed as a
prefix of certain expanded names
4.1.3
to overload a library unit 10.1
to overload a subunit 10.2
to resolve an overloading
ambiguity 6.6

Index–59

and the pragma inline 6.3.2
and the pragma inline_generic
12.1a
and the pragma interface 13.9
for a volatile variable 9.11
for imported subprograms
13.9a.1.1

Rendezvous (of tasks) 9.5; 9, 9.7.1, 9.7.2,
9.7.3, D

during which an exception is
raised 11.5
priority 9.8
prohibited for an abnormal task
9.10

Replacement of characters in program
text 2.10

Representation (of a type and its objects)
13.1

recommendation by a pragma
13.1

Representation attribute 13.7.2, 13.7.3
as a forcing occurrence 13.1
with a prefix that has a null value
4.1

Representation clause 13.1; 13.6, D
[see also: address clause, elaboration
of . . . , enumeration representation
clause, first named subtype, length
clause, record representation clause,
type]

an overload resolution context 8.7
as a basic declarative item 3.9
as a portion of a declarative
region 8.1
cannot include a forcing
occurrence 13.1
for a derived type 3.4
for a private type 7.4.1
implied for a derived type 3.4
in a task specification 9.1
DEC Ada restrictions F

Reserved word 2.9; 2.2, 2.3

RESET (input-output procedure)
in an instance of direct_io 14.2.1;
14.2.5
in an instance of sequential_io
14.2.1; 14.2.3
in text_io 14.2.1; 14.3.1, 14.3.10
in an instance of indexed_io
14.2a.1, 14.2a.5
in an instance of relative_io
14.2.1, 14.2a.3
in direct_mixed_io 14.2.1, 14.2b.6
in indexed_mixed_io 14.2a.1,
14.2b.10
in relative_mixed_io 14.2.1,
14.2b.8
in sequential_mixed_io 14.2.1,
14.2b.4

Resolution of overloading
[see: overloading]

Result subtype (of a function) 6.1
of a return expression 5.8

Result type profile
[see: parameter and . . .]

Result type and overload resolution
6.6

Result of a function
[see: returned value]

Return
[see: carriage return]

Return statement 5.8
[see also: function, statement]

as a simple statement 5.1
causing a loop to be exited 5.5
causing a transfer of control 5.1
completing block statement
execution 9.4
completing subprogram execution
9.4
expression that is an array
aggregate 4.3.2
in a function body 6.5

Index–60

Returned value
[see: function call]

of a function call 5.8, 6.5; 8.5
of an instance of a generic formal
function 12.1.3
of a main program 10.1
of an operation 3.3.3
of a predefined operator of an
integer type 3.5.4
of a predefined operator of a real
type 3.5.6, 4.5.7

Right label bracket compound delimiter
2.2

Right parenthesis
character 2.1
delimiter 2.2

Rounding
in a real-to-integer conversion 4.6
of results of real operations 4.5.7;
13.7.3

Run time check 11.7; 11.1

Safe interval 4.5.7

Safe number (of a real type) 3.5.6; 4.5.7
[see also: model number, real type
representation attribute, real type]

limit to the result of a real
operation 4.5.7
of a fixed point type 3.5.9; 3.5.10
of a floating point type 3.5.7; 3.5.8
result of universal expression too
large 4.10

SAFE_EMAX (predefined attribute) 3.5.8;
A

DEC Ada floating point values for
F

SAFE_LARGE (predefined attribute)
3.5.8, 3.5.10; A

DEC Ada floating point values for
F

SAFE_SMALL (predefined attribute)
3.5.8, 3.5.10; A

DEC Ada floating point values for
F

Satisfy (a constraint) 3.3; D
[see also: constraint, subtype]

a discriminant constraint 3.7.2
an index constraint 3.6.1
a range constraint 3.5

Scalar type 3.3, 3.5; D
[see also: class of type, discrete
type, enumeration type, fixed point
type, floating point type, integer
type, numeric type, real type, static
expression]

as a generic parameter 12.1.2,
12.3.3
formal parameter 6.2
of a range in a membership test
4.5.2
operation 3.5.5; 4.5.2

Scheduling 9.8; 13.5.1

Scheme
[see: iteration scheme]

Scope 8.2; 8.3, D
[see also: basic operation, character
literal, declaration, declarative region,
generic instance, identifier, immediate
scope, implicit declaration, operator
symbol, overloading, visibility]

of a use clause 8.4

Secondary unit 10.1
[see also: compilation unit, library
unit]

compiled after the corresponding
library unit or parent unit 10.3
subject to a pragma elaborate
10.5

Index–61

SECONDS (predefined function) 9.6

Select alternative (of a selective wait)
9.7.1

Select statement 9.7; 9.7.1, 9.7.2, 9.7.3
[see also: statement, task, terminate
alternative]

as a compound statement 5.1
in an abnormal task 9.10

Selected component 4.1.3; 8.3, D
[see also: direct visibility, prefix,
selector, visibility by selection,
visibility]

as a basic operation 3.3.3; 3.3,
3.7.4, 3.8.2, 7.4.2
as a name 4.1
as the name of an entry or entry
family 9.5
for selective visibility 8.3
in a conforming construct 6.3.1
starting with standard 8.6
using a block name 5.6
using a loop name 5.5
whose prefix denotes a package
8.3
whose prefix denotes a record
object 8.3
whose prefix denotes a task object
8.3

Selection of an exception handler 11.4,
11.4.1, 11.4.2; 11.6

Selective visibility
[see: visibility by selection]

Selective wait 9.7.1; 9.7
[see also: terminate alternative]

accepting a conditional entry call
9.7.2
accepting a timed entry call 9.7.3
raising program_error 11.1

Selector 4.1.3; D
[see also: prefix, selected component]

Semicolon character 2.1

Semicolon delimiter 2.2
followed by a pragma 2.8

SEND_CONTROL (low_level_io
procedure) 14.6

Separate compilation 10, 10.1; 10.5
of a proper body 3.9
of a proper body declared in
another compilation unit 10.2

Separator 2.2

Sequence of statements 5.1
in an accept statement 9.5
in a basic loop 5.5
in a block statement 5.6; 9.4
in a case statement alternative
5.4
in a conditional entry call 9.7.2
in an exception handler 11.2
in an if statement 5.3
in a package body 7.1; 7.3
in a selective wait statement 9.7.1
in a subprogram body 6.3; 9.4,
13.8
in a task body 9.1; 9.4
in a timed entry call 9.7.3
including a raise statement 11.3
of code statements 13.8
raising an exception 11.4.1

Sequential access file 14.2; 14.1, 14.2.1

Sequential execution
[see: sequence of statements,
statement]

Sequential input-output 14.2.2; 14.2.1

SEQUENTIAL_IO (predefined input-
output generic package) 14.2, 14.2.2; 14,
14.1, 14.2.3, C

exceptions 14.4; 14.5
specification 14.2.3

Index–62

SEQUENTIAL_MIXED_IO (DEC Ada
predefined input-output package)14.2b.3;
14.2b.4

example 14.7a
exceptions 14.4; 14.5
specification 14.2b.4

SET_COL (text_io procedure) 14.3.4;
14.3.10

SET_INDEX (input-output procedure)
in an instance of direct_io 14.2.4;
14.2.5
in an instance of relative_io
14.2a.2, 14.2a.3
in direct_mixed_io 14.2b.5,
14.2b.6
in relative_mixed_io 14.2b.7,
14.2b.8

SET_INPUT (text_io procedure) 14.3.2;
14.3.10

raising an exception 14.4

SET_INTERLOCKED (DEC Ada
predefined procedure)

[see: system.set_interlocked]

SET_LINE (text_io procedure) 14.3.4;
14.3.10

SET_LINE_LENGTH (text_io procedure)
14.3.3; 14.3.10

raising an exception 14.4

SET_OUTPUT (text_io procedure) 14.3.2;
14.3.10

raising an exception 14.4

SET_PAGE_LENGTH (text_io procedure)
14.3.3; 14.3.10

raising an exception 14.4

SET_POSITION (DEC Ada mixed-type
input-output procedure)

in direct_mixed_io 14.2b.2,
14.2b.6
in indexed_mixed_io 14.2b.2,
14.2b.10

in relative_mixed_io 14.2b.2,
14.2b.8
in sequential_mixed_io 14.2b.2,
14.2b.4

SHARE_GENERIC (DEC Ada predefined
pragma) 12.1b; B

SHARED (predefined pragma) 9.11; B
[see also: volatile]

Shared variable (of two tasks) 9.11
[see also: task]

Sharp character 2.1
[see also: based literal]

replacement by colon character
2.10

Short circuit control form 4.5, 4.5.1;
4.4

as a basic operation 3.3.3; 3.5.5
in an expression 4.4

SHORT_FLOAT (predefined type) 3.5.7;
C

SHORT_INTEGER (predefined type)
3.5.4; C

SHORT_SHORT_INTEGER (DEC Ada
predefined type) 3.5.4; C

Sign of a fixed point number 3.5.9

Sign of a floating point number 3.5.7

Signal D

Significant decimal digits 3.5.7

Simple expression 4.4
as a choice 3.7.3
as a choice in an aggregate 4.3
as a range bound 3.5
for an entry index in an accept
statement 9.5
in an address clause 13.5
in a delay statement 9.6
in a fixed accuracy definition 3.5.9
in a floating accuracy definition
3.5.7

Index–63

in a record representation clause
13.4
in a relation 4.4

Simple name 4.1; 2.3, D
[see also: block name, identifier, label,
loop name, loop simple name, name,
overloading, visibility]

as a choice 3.7.3
as a formal parameter 6.4
as a label 5.1
as a name 4.1
before arrow compound delimiter
8.3
in an accept statement 9.5
in an address clause 13.5
in an attribute designator 4.1.4
in a conforming construct 6.3.1
in a discriminant association 3.7.2
in an enumeration representation
clause 13.3
in a package body 7.1
in a package specification 7.1
in a record representation clause
13.4
in a selector 4.1.3
in a suppress pragma 11.7
in a task body 9.1
in a variant part 3.7.3
in a with clause 10.1.1
versus identifier 3.1

Simple statement 5.1
[see also: statement]

Single task 9.1

SIZE (input-output function)
in an instance of direct_io 14.2.4;
14.2.5
in direct_mixed_io 14.2b.5,
14.2b.6

SIZE (predefined attribute) 13.7.2; A
[see also: storage bits]

specified by a length clause 13.2

SKIP_LINE (text_io procedure) 14.3.4;
14.3.10

raising an exception 14.4

SKIP_PAGE (text_io procedure) 14.3.4;
14.3.10

raising an exception 14.4

Slice 4.1.2
[see also: array type]

as a basic operation 3.3.3; 3.6.2,
3.8.2
as a name 4.1
as destination of an assignment
5.2.1
of a constant 3.2.1
of a derived type 3.4
of an object as an object 3.2
of a value of a generic formal
array type 12.1.2
of a variable 3.2.1
starting with a prefix 4.1, 4.1.2

SMALL (predefined attribute) 3.5.8,
3.5.10; A

[see also: fixed point type]
specified by a length clause 13.2
DEC Ada floating point values for
F

Small of a fixed point model number 3.5.9

Some order not defined by the
language

[see: incorrect order dependence]

Source file
for a DEC Ada program 2.2
maximum number of lines in F

Source line
in a DEC Ada program 2.2
maximum number of characters
in F

Space character 2.1
[see also: basic graphic character]

as a separator 2.2
in a comment 2.7
not allowed in an identifier 2.3

Index–64

not allowed in a numeric literal
2.4.1

Space character literal 2.5; 2.2

Special character 2.1
[see also: basic graphic character,
other special character]

in a delimiter 2.2

Specification
[see: declaration, discriminant
specification, enumeration literal
specification, generic specification,
loop parameter specification, package
specification, parameter specification,
subprogram specification, task
specification]

STANDARD (predefined package) 8.6; C
[see also: library unit]

as a declarative region 8.1
enclosing the library units of a
program 10.1.1; 10.1, 10.2
including implicit declarations of
fixed point cross-multiplication
and cross-division 4.5.5
implicit recompilation of 3.5.7a,
3.5.7b

STANDARD_INPUT (text_io function)
14.3.2; 14.3.10

STANDARD_OUTPUT (text_io function)
14.3.2; 14.3.10

Star
[see: double star]

character 2.1
delimiter 2.2

Statement 5.1; 5, D
[see also: abort statement, accept
statement, address attribute,
assignment statement, block
statement, case statement, code
statement, compound statement,
delay statement, entry call statement,
exit statement, goto statement, if
statement, label, loop statement,

null statement, procedure call
statement, raise statement, return
statement, select statement, sequence
of statements, target statement]

allowed in an exception handler
11.2
as an overload resolution context
8.7
optimized 10.6
raising an exception 11.4.1; 11.4
that cannot be reached 10.6

Statement alternative
[see: case statement alternative]

Static constraint 4.9
on a subcomponent subject to a
component clause 13.4
on a type 3.5.4, 3.5.7, 3.5.9, 13.2

Static discrete range 4.9
as a choice of an aggregate 4.3.2
as a choice of a case statement
5.4
as a choice of a variant part 3.7.3

Static expression 4.9; 8.7
as a bound in an integer type
definition 3.5.4
as a choice in a case statement
5.4
as a choice of a variant part 3.7.3
for a choice in a record aggregate
4.3.2
for a discriminant in a record
aggregate 4.3.1
in an attribute designator 4.1.4
in an enumeration representation
clause 13.3
in a fixed accuracy definition 3.5.9
in a floating accuracy definition
3.5.7
in a generic unit 12.1
in a length clause 13.2
in a number declaration 3.2, 3.2.2
in a record representation clause
13.4
in priority pragma 9.8

Index–65

whose type is a universal type
4.10

Static others choice 4.3.2

Static subtype 4.9
of a discriminant 3.7.3
of the expression in a case
statement 5.4

Status value D; 10.1

STATUS_ERROR (input-output
exception) 14.4; 14.2.1, 14.2.2, 14.2.3,
14.2.4, 14.2.5, 14.3.2, 14.3.3, 14.3.4, 14.3.5,
14.3.10, 14.5, 14.2a.2, 14.2a.3, 14.2a.4,
14.2a.5, 14.2b.3, 14.2b.4, 14.2b.5, 14.2b.6
14.2b.7, 14.2b.8, 14.2b.9, 14.2b.10

Storage address of a component 13.4
[see also: address clause]

Storage bits
allocated to an object or type 13.2;
13.7.2 [see also: size]
of a record component relative to
a storage unit 13.4
size of a storage unit 13.7

Storage deallocation
[see: unchecked_deallocation]

Storage minimization
[see: pack pragma]

Storage reclamation 4.8

Storage representation of a record 13.4

Storage unit 13.7
offset to the start of a record
component 13.4
size of a storage unit in bits 13.7

Storage units allocated
[see: storage_size]

to a collection 13.2; 4.8, 11.1,
13.7.2
to a task activation 13.2; 9.9,
11.1, 13.7.2

Storage_check
[see: program_error exception,
suppress]

STORAGE_ERROR (predefined
exception) 11.1

[see also: suppress pragma]
raised by an allocator exceeding
the allocated storage 4.8; 11.1
raised by an elaboration of a
declarative item 11.1
raised by a task activation
exceeding the allocated storage
11.1
raised by the execution of a
subprogram call 11.1

STORAGE_SIZE (predefined attribute)
13.7.2; A

[see also: storage units allocated]
for an access type 3.8.2
for a task object or task type 9.9
specified by a length clause 13.2

STORAGE_UNIT (predefined named
number)

[see: system.storage_unit]

STORAGE_UNIT (predefined pragma)
13.7; B

[see also: system.storage_unit]

STRING (predefined type) 3.6.3; C
[see also: predefined type]

as the parameter of value
attribute 3.5.5
as the result of image attribute
3.5.5
maximum number of characters
in value of F

String bracket 2.6; 2.10

String literal 2.6, 4.2; 2.2, 3.6.3
[see also: overloading of . . . , percent
mark character, quotation character]

as a basic operation 3.3.3, 4.2;
3.6.2
as an operator symbol 6.1

Index–66

as a primary 4.4
must not be the argument of a
conversion 4.6
replaced by a catenation of basic
characters 2.10

Stub
[see: body stub]

Subaggregate 4.3.2

Subcomponent 3.3; D
[see also: component, composite type,
default expression, discriminant,
object]

depending on a discriminant
3.7.1; 5.2, 8.5
of a component for which a
component clause is given 13.4
renamed 8.5
that is a task object 9.2; 9.3
whose type is a limited type 7.4.4
whose type is a private type 7.4.1

Subprogram 6; D
[see also: actual parameter, completed
subprogram, derived subprogram,
entry, formal parameter, function,
library unit, overloading of . . . ,
parameter and result type profile,
parameter, predefined subprogram,
procedure, program unit]

as a generic instance 12.3; 12
as a main program 10.1
as an operation 3.3.3; 7.4.2
including a raise statement 11.3
of a derived type 3.4
overloaded 6.6
renamed 8.5
subject to an address clause 13.5
subject to an inline pragma 6.3.2
subject to an interface pragma
13.9
subject to a representation clause
13.1
subject to a suppress pragma 11.7
with a separately compiled body
10.2

exporting Ada to non-Ada
programs 13.9a.1.4
importing non-Ada from Ada
programs 13.9, 13.9a.1.1,
13.9a.1.2, 13.9a.1.3

Subprogram body 6.3; 6, D
[see also: body stub]

as a generic body 12.2
as a library unit 10.1
as a proper body 3.9
as a secondary unit 10.1
as a secondary unit compiled
after the corresponding library
unit 10.3
having dependent tasks 9.4
in a package body 7.1
including an exception handler
11.2; 11
including an exit statement 5.7
including a goto statement 5.9
including an implicit declaration
5.1
including a return statement 5.8
including code statements must
be a procedure body 13.8
inlined in place of each call 6.3.2
must be in the same declarative
region as the declaration 3.9, 7.1
not allowed for a subprogram
subject to an interface pragma
13.9
not yet elaborated at a call 3.9
raising an exception 11.4.1, 11.4.2
recompiled 10.3

Subprogram call 6.4; 6, 6.3, 12.3
[see also: actual parameter, entry call
statement, entry call, function call,
procedure call statement, procedure
call]

before elaboration of the body 3.9
statement replaced by an inlining
of the body 6.3.2
statement with a default actual
parameter 6.4.2
to a derived subprogram 3.4
to a generic instance 12

Index–67

Subprogram declaration 6.1; 6, D
and body as a declarative region
8.1
as a basic declaration 3.1
as a later declarative item 3.9
as a library unit 10.1
as an overloaded declaration 8.3
implied by the body 6.3, 10.1
in a package specification 7.1
made directly visible by a use
clause 8.4
of an operator 6.7
recompiled 10.3

Subprogram specification 6.1
and forcing occurrences 13.1
conforming to another 6.3.1
for a function 6.5
in a body stub 10.2
in a generic declaration 12.1;
12.1.3
in a renaming declaration 8.5
in a subprogram body 6.3
including the name of a private
type 7.4.1
of a derived subprogram 3.4

Subtraction operation 4.5.3
for a real type 4.5.7

Subtype 3.3, 3.3.2; D
[see also: attribute of . . . , base
attribute, constrained subtype,
constraint, first named subtype,
operation of . . . , result subtype,
satisfy, size attribute, static subtype,
type, unconstrained subtype]

declared by a numeric type
declaration 3.5.4, 3.5.7, 3.5.9
in a membership test 4.5.2
name [see: name of a subtype,
type_mark of a subtype]
not considered in overload
resolution 8.7
of an access type 3.8
of an actual parameter 6.4.1
of an array type [see: constrained
array type, index constraint]

of a component of an array 3.6
of a component of a record 3.7
of a constant in a static
expression 4.9
of a discriminant of a generic
formal type 12.3.2
of a formal parameter 6.4.1
of a formal parameter or result of
a renamed subprogram or entry
8.5
of a generic formal type 12.1.2
of an index of a generic formal
array type 12.3.4
of an object [see: elaboration
of . . .]
of a private type 7.4, 7.4.1
of a real type 3.5.7, 3.5.9; 3.5.6,
4.5.7
of a record type [see: constrained
record type, discriminant
constraint]
of a scalar type 3.5
of a task type 9.2
of a variable 5.2
subject to a representation clause
13.1

Subtype conversion 4.6
[see also: conversion operation,
explicit conversion, implicit
conversion, type conversion]

in an array assignment 5.2.1; 5.2
to a real type 4.5.7

Subtype declaration 3.3.2; 3.1
and forcing occurrences 13.1
as a basic declaration 3.1
including the name of a private
type 7.4.1

Subtype definition
[see: component subtype definition,
dependence on a discriminant, index
subtype definition]

Index–68

Subtype indication 3.3.2
[see also: elaboration of . . .]

as a component subtype
indication 3.7
as a discrete range 3.6
for a subtype of a generic formal
type 12.1.2
in an access type definition 3.8
in an allocator 4.8
in an array type definition 3.6
in a component declaration 3.7
in a constrained array definition
3.6
in a derived type definition 3.4
in a generic formal part 12.1
in an object declaration 3.2, 3.2.1
in an unconstrained array
definition 3.6
including a fixed point constraint
3.5.9
including a floating point
constraint 3.5.7
with a range constraint 3.5

Subunit 10.2; D
[see also: library unit]

as a compilation unit 10.4
as a library unit 10.4
as a secondary unit 10.1
compiled after the corresponding
parent unit 10.3
not allowed for a subprogram
subject to an interface pragma
13.9
of a compilation unit subject to a
context clause 10.1.1
raising an exception 11.4.1, 11.4.2
recompiled (does not affect other
compilation units) 10.3

SUCC (predefined attribute) 3.5.5; 13.3, A

Successor
[see: succ attribute]

SUPPRESS (predefined pragma) 11.7;
11.1, B

SUPPRESS_ALL (DEC Ada predefined
pragma) 11.7; B

Symbol
[see: graphical symbol, operator
symbol]

Synchronization of tasks
[see: task synchronization]

Syntactic category 1.5

Syntax notation 1.5

Syntax rule 1.5; E

SYSTEM (predefined library package)
13.7; C, F

System dependent F
attribute 13.4
constant 13.7
named number 13.7, 13.7.1
record component 13.4
type 13.7

System services (OpenVMS)
asynchronous 9.12a
calling from DEC Ada 9.12a
clock interval provided by 13.7.1
using null_parameter (DEC Ada
predefined attribute) in calls to
13.9a.1.3
reading volatile variables from
9.11

SYSTEM.ADD_ATOMIC (DEC Ada
predefined procedure) 13.7b.6

SYSTEM.ADD_INTERLOCKED (DEC
Ada predefined procedure) 13.7b.5

SYSTEM.ADDRESS (predefined type)
13.7; 13.5

[see also: address attribute, address
clause]

properties of 13.7a.1

SYSTEM.ADDRESS_SIZE (DEC Ada
predefined constant) 13.7a.1

Index–69

SYSTEM.ADDRESS_ZERO (DEC Ada
predefined constant) 13.7a.1; 13.7.2

SYSTEM.ALIGNED_INTEGER (DEC
Ada predefined type) 13.7b.6

SYSTEM.ALIGNED_LONG_INTEGER
(DEC Ada predefined type) 13.7b.6

SYSTEM.ALIGNED_WORD (DEC Ada
predefined type) 13.7b.5

SYSTEM.AND_ATOMIC (DEC Ada
predefined procedure) 13.7b.6

SYSTEM.ASSIGN_TO_ADDRESS (DEC
Ada generic procedure) 13.7a.1

SYSTEM.AST_HANDLER (DEC Ada
predefined type) 13.7b.3; 9.12a

SYSTEM.BIT_ARRAY (DEC Ada
predefined type and associated subtypes)
13.7a.4

SYSTEM.CLEAR_INTERLOCKED
(DEC Ada predefined procedure) 13.7b.5

SYSTEM.D_FLOAT (DEC Ada
predefined type) 13.7b.1

SYSTEM.FETCH_FROM_ADDRESS
(DEC Ada generic function) 13.7a.1

SYSTEM.F_FLOAT (DEC Ada predefined
type) 13.7b.1

SYSTEM.FINE_DELTA (predefined
named number) 13.7.1

SYSTEM.G_FLOAT (DEC Ada
predefined type) 13.7b.1

SYSTEM.H_FLOAT (DEC Ada
predefined type) 13.7b.1

SYSTEM.IEEE_DOUBLE_FLOAT (DEC
Ada predefined type) 13.7b.2

SYSTEM.IEEE_SINGLE_FLOAT (DEC
Ada predefined type) 13.7b.2

SYSTEM.IMPORT_ADDRESS (DEC
Ada predefined function) 13.7a.6

SYSTEM.IMPORT_LARGEST_VALUE
(DEC Ada predefined function) 13.7a.6

SYSTEM.IMPORT_VALUE (DEC Ada
predefined function) 13.7a.6

SYSTEM.INSQHI (DEC Ada predefined
procedure) 13.7b.7

SYSTEM.INSQ_STATUS (DEC Ada
predefined type) 13.7b.7

SYSTEM.INTEGER (DEC Ada
predefined types) 13.7a.4

SYSTEM.INSQTI (DEC Ada predefined
procedure) 13.7b.7

SYSTEM.LARGEST_INTEGER (DEC
Ada predefined type) 13.7a.4

SYSTEM.MAX_DIGITS (predefined
named number) 13.7.1

limit on the significant digits of a
floating point type 3.5.7

SYSTEM.MAX_INT (predefined named
number) 13.7.1; 3.5.4

exceeded by the value of a
universal expression 4.10

SYSTEM.MAX_MANTISSA (predefined
named number) 13.7.1

SYSTEM.MEMORY_SIZE (predefined
named number) 13.7

SYSTEM.MFPR (DEC Ada predefined
function) 13.7b.4

SYSTEM.MIN_INT (predefined named
number) 13.7.1; 3.5.4

greater than the value of a
universal expression 4.10

SYSTEM.MTPR (DEC Ada predefined
procedure) 13.7b.4

SYSTEM.NAME (predefined type) 13.7

Index–70

NO_ADDR (DEC Ada predefined
constant) 13.7a.1

SYSTEM.NO_AST_HANDLER (DEC
Ada predefined constant) 13.7b.3; 9.12a

SYSTEM.NON_ADA_ERROR (DEC Ada
predefined exception) 13.7a.3; 11.2

SYSTEM.NULL_ADDRESS (DEC Ada
predefined constant) 13.7a.1

SYSTEM.OR_ATOMIC (DEC Ada
predefined procedure) 13.7b.6

SYSTEM.READ_REGISTER (DEC Ada
predefined function) 13.7b.4

SYSTEM.REMQHI (DEC Ada predefined
procedure) 13.7b.7

SYSTEM.REMQ_STATUS (DEC Ada
predefined type) 13.7b.7

SYSTEM.REMQTI (DEC Ada predefined
procedure) 13.7b.7

SYSTEM.SET_INTERLOCKED (DEC
Ada predefined procedure) 13.7b.5

SYSTEM.STORAGE_UNIT (predefined
named number) 13.7; 13.4

SYSTEM.SYSTEM_NAME (predefined
constant) 13.7

[see also: system_name]

SYSTEM.TICK (predefined named
number) 13.7.1; 9.6

SYSTEM.TO_ADDRESS (DEC Ada
predefined function) 13.7a.1

SYSTEM.TO_BIT_ARRAY_8 (DEC Ada
predefined function) 13.7a.4

SYSTEM.TO_BIT_ARRAY_16 (DEC Ada
predefined function) 13.7a.4

SYSTEM.TO_BIT_ARRAY_32 (DEC Ada
predefined function) 13.7a.4

SYSTEM.TO_BIT_ARRAY_64 (DEC Ada
predefined function) 13.7a.4

SYSTEM.TO_INTEGER (DEC Ada
predefined function) 13.7a.1

SYSTEM.TO_UNSIGNED_BYTE (DEC
Ada predefined function) 13.7a.4

SYSTEM.TO_UNSIGNED_
LONGWORD (DEC Ada predefined
function) 13.7a.4, 13.7b.3

SYSTEM.TO_UNSIGNED_
QUADWORD(DEC Ada predefined
function) 13.7a.4

SYSTEM.TO_UNSIGNED_WORD (DEC
Ada predefined function) 13.7a.4

SYSTEM.TYPE_CLASS (DEC Ada
predefined type) 13.7a.2

SYSTEM.UNSIGNED_BYTE (DEC Ada
predefined type) 13.7a.4

SYSTEM.UNSIGNED_BYTE_ARRAY
(DEC Ada predefined type) 13.7a.4

SYSTEM.UNSIGNED_LONGWORD
(DEC Ada predefined type) 13.7a.4

SYSTEM.UNSIGNED_LONGWORD_
ARRAY (DEC Ada predefined type)
13.7a.4

static subtypes of 13.7a.5

SYSTEM.UNSIGNED_QUADWORD
(DEC Ada predefined type) 13.7a.4

SYSTEM.UNSIGNED_QUADWORD_
ARRAY (DEC Ada predefined type)
13.7a.4

SYSTEM.UNSIGNED_WORD (DEC Ada
predefined type) 13.7a.4

SYSTEM.UNSIGNED_WORD_ARRAY
(DEC Ada predefined type) 13.7a.4

SYSTEM.WRITE_REGISTER (DEC Ada
predefined procedure) 13.7b.4

Index–71

SYSTEM_NAME (predefined pragma)
13.7; B

[see also: system.system_name
predefined constant]

Tabulation
[see: horizontal tabulation, vertical
tabulation]

Target statement (of a goto statement)
5.9

Target type of a conversion 4.6

Task 9; D
[see also: abnormal task, abort
statement, accept statement,
communication between . . . ,
completed task, delay statement,
dependent task, entry (of a task),
entry call statement, rendezvous,
select statement, selective wait,
shared variable, single task,
terminated task]

calling the main program 10.1
raising an exception 11.5
scheduling 9.8, 9.8a
suspension awaiting a rendezvous
9.5
suspension by a delay statement
9.6
suspension by a selective wait
9.7.1
suspension of an abnormal task
9.10

[see also: main_storage pragma, task_
storage pragma, time_slice pragma]

Task activation 9.3
[see also: length clause, storage units
allocated, storage_size attribute]

before elaboration of the body 3.9
causing synchronization 9.10, 9.11

not started for an abnormal task
9.10
of a task with no task body 11.1
specification of storage for 13.2a

Task body 9.1; 9, D
[see also: body stub, elaboration
of . . .]

as a proper body 3.9
in a package body 7.1
including an exception handler
11.2; 11
including an exit statement 5.7
including a goto statement 5.9
including an implicit declaration
5.1
must be in the same declarative
region as the declaration 3.9, 7.1
not yet elaborated at an
activation 3.9
raising an exception 11.4.1, 11.4.2
specifying the execution of a task
9.2, 9.3

Task communication
[see: rendezvous]

Task completion
[see: completed task]

Task declaration 9.1
and body as a declarative region
8.1
as a basic declaration 3.1
as a later declarative item 3.9
elaboration raising an exception
11.4.2
in a package specification 7.1

Task dependence
[see: dependent task]

Task designated
by a formal parameter 6.2
by a value of a task type 9.1; 9.2,
9.4, 9.5

Task execution 9.3

Index–72

Task object 9.2; 9.1, 9.5
[see also: attribute of . . . , task
activation]

designated by an access value 9.2
determining task dependence 9.4
renamed 8.5

Task priority 9.8
[see also: priority pragma, priority
subtype]

of a task with an interrupt entry
13.5.1

Task specification 9.1; 9, D
[see also: elaboration of . . .]

including an entry declaration 9.5
including a priority pragma 9.8
including a representation clause
13.1

Task storage
[see: main_storage pragma, task_
storage pragma]

Task synchronization 9.5; 9.11

Task termination
[see: terminated task]

Task type 9.1, 9.2; D
[see also: attribute of . . . , class of
type, derived type of a task type,
limited type]

completing an incomplete type
definition 3.8.1
formal parameter 6.2
object initialization 3.2.1
value designating a task object
3.2.1, 9.1, 9.2

Task unit 9.1; 9
[see also: program unit]

declaration determining the
visibility of another declaration
8.3
including a raise statement 11.3
subject to an address clause 13.5
subject to a representation clause
13.1

subject to a suppress pragma 11.7
with a separately compiled body
10.2

TASKING_ERROR (predefined
exception) 11.1

[see also: suppress pragma]
raised by an entry call to an
abnormal task 9.10, 11.5
raised by an entry call to a
completed task 9.5, 9.7.2, 9.7.3,
11.5
raised by an exception in the task
body 11.4.2
raised by failure of an activation
9.3; 11.4.2

TASK_STORAGE (DEC Ada predefined
pragma) 13.2a; B

Template
[see: generic unit]

Term 4.4
in a simple expression 4.4

Terminate alternative (of a selective
wait) 9.7.1

[see also: select statement]
causing a transfer of control 5.1
in a select statement causing a
loop to be exited 5.5
selection 9.4
selection in the presence of an
accept alternative for an interrupt
entry 13.5.1

TERMINATED (predefined attribute) for
a task object 9.9; A

Terminated task 9.4; 9.3, 9.9
[see also: completed task]

not becoming abnormal 9.10
object or subcomponent of an
object designated by an access
value 4.8
termination of a task during its
activation 9.3

Index–73

Terminator
[see: file terminator, line terminator,
page terminator]

Text input-output 14.3; 14.2.1

Text of a program 2.2, 10.1

TEXT_IO (predefined input-output
package) 14.3; 14, 14.1, 14.3.9, 14.3.10, C

exceptions 14.4; 14.5
specification 14.3.10

TICK
[see: system.tick]

TIME (predefined type) 9.6
[see also: clock, date, day, make_time,
month, system.tick, year]

TIME_ERROR (predefined exception) 9.6

TIME_OF (predefined function) 9.6

TIME_SLICE (DEC Ada predefined
pragma) 9.8a; B

Timed entry call 9.7.3; 9.7
and renamed entries 8.5
subject to an address clause
13.5.1

Times operator
[see: multiplying operator]

TITLE (DEC Ada predefined pragma) B

TO_ADDRESS (DEC Ada predefined
function)

[see: system.to_address]

TO_BIT_ARRAY_8 (DEC Ada predefined
function)

[see: system.to_bit_array_8]

TO_BIT_ARRAY_16 (DEC Ada
predefined function)

[see: system.to_bit_array_16]

TO_BIT_ARRAY_32 (DEC Ada
predefined function)

[see: system.to_bit_array_32]

TO_BIT_ARRAY_64 (DEC Ada
predefined function)

[see: system.to_bit_array_64]

TO_INTEGER (DEC Ada predefined
function)

[see: system.to_integer]

TO_UNSIGNED_BYTE (DEC Ada
predefined function)

[see: system.to_unsigned_byte_]

TO_UNSIGNED_LONGWORD (DEC
Ada predefined function)

[see: system.to_unsigned_longword]

TO_UNSIGNED_QUADWORD (DEC
Ada predefined function)

[see: system.to_unsigned_quadword]

TO_UNSIGNED_WORD (DEC Ada
predefined function)

[see: system.to_unsigned_word]

Transfer of control 5.1
[see also: exception, exit statement,
goto statement, return statement,
terminate alternative]

TRUE boolean enumeration literal
3.5.3; C

Type 3.3; D
[see also: access type, appropriate
for a type, array type, attribute
of . . . , base attribute, base type,
boolean type, character type, class
of type, composite type, constrained
type, derived type, discrete type,
discriminant of . . . , enumeration
type, fixed point type, floating point
type, forcing occurrence, generic
actual type, generic formal type,
integer type, limited private type,
limited type, numeric type, operation
of . . . , parent type, predefined type,
private type, real type, record type,
representation clause, scalar type,
size attribute, storage allocated,

Index–74

subtype, unconstrained subtype,
unconstrained type, universal type]

name 3.3.1
of an actual parameter 6.4.1
of an aggregate 4.3.1, 4.3.2
of an array component of a
generic formal array type 12.3.4
of an array index of a generic
formal array type 12.3.4
of a case statement expression 5.4
of a condition 5.3
of a declared object 3.2, 3.2.1
of a discriminant of a generic
formal private type 12.3.2
of an expression 4.4
of a file 14.1
of a formal parameter of a generic
formal subprogram 12.1.3
of a generic actual object 12.3.1
of a generic formal object 12.1.1;
12.3.1
of an index 4.1.1
of a loop parameter 5.5
of a named number 3.2, 3.2.2
of an object designated by a
generic formal access type 12.3.5
of a primary in an expression 4.4
of a shared variable 9.11
of a slice 4.1.2
of a string literal 4.2
of a task object 9.2
of a universal expression 4.10
of a value 3.3; 3.2
of discriminants of a generic
formal object and the matching
actual object 12.3.2
of the literal null 4.2
of the result of a generic formal
function 12.1.3
renamed 8.5
subject to a representation clause
13.1; 13.6
subject to a suppress pragma 11.7
yielded by an attribute 4.1.4

Type conversion 4.6
[see also: conversion operation,
conversion, explicit conversion,
subtype conversion, unchecked_
conversion]

as an actual parameter 6.4, 6.4.1
as a primary 4.4
in a static expression 4.9
to a real type 4.5.7

Type declaration 3.3.1
[see also: elaboration of . . . ,
incomplete type declaration, private
type declaration]

as a basic declaration 3.1
as a full declaration 7.4.1
implicitly declaring operations
3.3.3
in a package specification 7.1
including the name of a private
type 7.4.1
of a fixed point type 3.5.9
of a floating point type 3.5.7
of an integer type 3.5.4
of a subtype 13.1

Type definition 3.3.1; D
[see also: access type definition,
array type definition, derived type
definition, elaboration of . . . ,
enumeration type definition, generic
type definition, integer type definition,
real type definition, record type
definition]

Type mark (denoting a type or subtype)
3.3.2

as a generic actual parameter
12.3
in an allocator 4.8
in a code statement 13.8
in a conversion 4.6
in a deferred constant declaration
7.4
in a discriminant specification
3.7.1
in a generic formal part 12.1, 12.3

Index–75

in a generic parameter
declaration 12.3.1
in an index subtype definition 3.6
in a parameter specification 6.1;
6.2
in a qualified expression 4.7
in a relation 4.4
in a renaming declaration 8.5
in a subprogram specification 6.1
of a formal parameter of a generic
formal subprogram 12.1.3
of a generic formal array type
12.1.2
of a static scalar subtype 4.9
of the result of a generic formal
function 12.1.3

Type with discriminants 3.3; 3.3.1,
3.3.2, 3.7, 3.7.1, 7.4, 7.4.1

[see also: private type, record type]
as an actual to a formal private
type 12.3.2
as the component type of an
array that is the operand of a
conversion 4.6

TYPE_CLASS (DEC Ada predefined
attribute) 13.7a.2; A

TYPE_CLASS (DEC Ada predefined type)
[see: system.type_class]

Unary adding operator 4.4, 4.5, C; 4.5.4
[see also: arithmetic operator,
overloading of an operator, predefined
operator]

as an operation of a discrete type
3.5.5
in a simple expression 4.4
overloaded 6.7

Unary operator 4.5; 3.5.5, 3.5.8, 3.5.10,
3.6.2, 4.5.4, 4.5.6, C

[see also: highest precedence operator,
unary adding operator]

UNCHECKED_CONVERSION
(predefined generic library function)
13.10.2; 13.10, C

UNCHECKED_DEALLOCATION
(predefined generic library procedure)
13.10.1; 4.8, 13.10, C

Unconditional termination of a task
[see: abnormal task, abort statement]

Unconstrained array definition 3.6

Unconstrained array type 3.6; 3.2.1
as an actual to a formal private
type 12.3.2
formal parameter 6.2
subject to a length clause 13.2

Unconstrained subtype 3.3, 3.3.2
[see also: constrained subtype,
constraint, subtype, type]

indication in a generic unit 12.3.2

Unconstrained type 3.3; 3.2.1, 3.6, 3.6.1,
3.7, 3.7.2

formal parameter 6.2
with discriminants 6.4.1, 12.3.2

Unconstrained variable 3.3, 3.6, 3.7;
12.3.1

as a subcomponent [see:
subcomponent]

Undefined value
of a scalar parameter 6.2
of a scalar variable 3.2.1

Underflow (floating point) handling in an
exception 11.1

Underline character 2.1
in a based literal 2.4.2
in a decimal literal 2.4.1
in an identifier 2.3

Index–76

Unhandled exception 11.4.1

Unit
[see: compilation unit, generic unit,
library unit, program unit, storage
unit, task unit]

Universal expression 4.10
assigned 5.2
in an attribute designator 4.1.4
of a real type implicitly converted
4.5.7
that is static 4.10

Universal type 4.10
[see also: conversion, implicit
conversion]

expression [see: expression,
numeric literal]
of a named number 3.2.2; 3.2
result of an attribute [see:
attribute]

UNIVERSAL_FIXED (predefined type)
3.5.9

result of fixed point multiplying
operators 4.5.5

UNIVERSAL_INTEGER (predefined
type) 3.5.4, 4.10; C

[see also: integer literal]
argument of a conversion 3.3.3,
4.6
attribute 3.5.5, 13.7.1, 13.7.2,
13.7.3; 9.9
bounds of a discrete range 3.6.1
bounds of a loop parameter 5.5
codes representing enumeration
type values 13.3
converted to an integer type 3.5.5
of integer literals 2.4, 4.2
result of an operation 4.10; 4.5

UNIVERSAL_REAL (predefined type)
3.5.6, 4.10

[see also: real literal]
argument of a conversion 3.3.3,
4.6
attribute 13.7.1

converted to a fixed point type
3.5.10
converted to a floating point type
3.5.8
of real literals 2.4, 4.2
result of an operation 4.10; 4.5

UNLOCK (DEC Ada input-output
procedure)

in an instance of indexed_io
14.2a.4, 14.2a.5
in an instance of relative_io
14.2a.2, 14.2a.3
in indexed_mixed_io 14.2b.9,
14.2b.10
in relative_mixed_io 14.2b.7,
14.2b.8

UNSIGNED_BYTE (DEC Ada predefined
type)

[see: system.unsigned_byte]

UNSIGNED_BYTE_ARRAY (DEC Ada
predefined type)

[see: system.unsigned_byte_array]

UNSIGNED_LONGWORD (DEC Ada
predefined type)

[see: system.unsigned_longword]

UNSIGNED_LONGWORD_ARRAY
(DEC Ada predefined type)

[see: system.unsigned_longword_
array]

UNSIGNED_QUADWORD (DEC Ada
predefined type)

[see: system.unsigned_quadword]

UNSIGNED_QUADWORD_ARRAY
(DEC Ada predefined type)

[see: system.unsigned_quadword_
array]

UNSIGNED_WORD (DEC Ada
predefined type)

[see: system.unsigned_word]

Index–77

UNSIGNED_WORD_ARRAY (DEC Ada
predefined type)

[see: system.unsigned_word_array]

UPDATE (DEC Ada input-output
procedure)

in an instance of indexed_io
14.2a.4, 14.2a.5
in an instance of relative_io
14.2a.2, 14.2a.3
in indexed_mixed_io 14.2b.9,
14.2b.10
in relative_mixed_io 14.2b.7,
14.2b.8

Updating the value of an object 6.2

Upper bound
[see: bound, last attribute]

Upper case letter 2.1
[see also: basic graphic character]

A to F in a based literal 2.4.2
E in a decimal literal 2.4.1
in an identifier 2.3

Urgency of a task
[see: task priority]

Use clause (to achieve direct visibility)
8.4; 8.3, D

[see also: context clause]
as a basic declarative item 3.9
as a later declarative item 3.9
in a code procedure body 13.8
in a context clause of a
compilation unit 10.1.1
in a context clause of a subunit
10.2
inserted by the environment 10.4

USE_ERROR (input-output exception)
14.4; 14.2.1, 14.2.3, 14.2.5, 14.3.3, 14.3.10,
14.5, 14.2a.2, 14.2a.3, 14.2a.4, 14.2a.5,
14.2b.4, 14.2b.6, 14.2b.7, 14.2b.8, 14.2b.9,
14.2b.10

VAL (predefined attribute) 3.5.5; A

Value
[see: assignment, evaluation,
expression, initial value, returned
value, subtype , task designated . . . ,
type]

in a constant 3.2.1; 3.2
in a task object 9.2
in a variable 3.2.1, 5.2; 3.2
of an access type [see: object
designated, task object
designated]
of an array type 3.6; 3.6.1 [see
also: array, slice]
of a based literal 2.4.2
of a boolean type 3.5.3
of a character literal 2.5
of a character type 3.5.2; 2.5, 2.6
of a decimal literal 2.4.1
of a fixed point type 3.5.9, 4.5.7
of a floating point type 3.5.7, 4.5.7
of a record type 3.7
of a record type with
discriminants 3.7.1
of a string literal 2.6; 2.10
of a task type [see: task
designated]
returned by a function call [see:
returned value]

VALUE (predefined attribute) 3.5.5; A

Value parameter passing mechanism
13.9a.1.4

Variable 3.2.1; D
[see also: object, shared variable]

as an actual parameter 6.2
declared in a package body 7.3
formal parameter 6.2
in an assignment statement 5.2
of an array type as destination of
an assignment 5.2.1
of a private type 7.4.1
renamed 8.5
that is a slice 4.1.2

Index–78

Variable declaration 3.2.1

Variant 3.7.3; 4.1.3
[see also: component clause, record
type]

in a variant part 3.7.3

Variant part 3.7.3; D
[see also: dependence on a
discriminant]

in a component list 3.7
in a record aggregate 4.3.1

Vertical bar character 2.1
replacement by exclamation
character 2.10

Vertical bar delimiter 2.2

Vertical tabulation format effector 2.1

Violation of a constraint
[see: constraint_error exception]

Visibility 8.3; 8.2, D
[see also: direct visibility, hiding,
identifier, name, operation,
overloading]

and renaming 8.5
determining multiple meanings of
an identifier 8.4, 8.7; 8.5
determining order of compilation
10.3
due to a use clause 8.4
of a basic operation 8.3
of a character literal 8.3
of a default for a generic formal
subprogram 12.3.6
of a generic formal parameter
12.3
of a library unit due to a with
clause 8.6, 10.1.1
of a name of an exception 11.2
of an operation declared in a
package 7.4.2
of an operator symbol 8.3
of a renaming declaration 8.5
of a subprogram declared in a
package 6.3

of declarations in a package body
7.3
of declarations in a package
specification 7.2
of declarations in the package
system 13.7
within a subunit 10.2

Visibility by selection 8.3
[see also: basic operation, character
literal, operation, operator symbol,
selected component]

Visible part (of a package) 7.2; 3.2.1, 7.4,
7.4.1, 7.4.3, D

[see also: deferred constant
declaration, private type declaration]

expanded name denoting a
declaration in a visible part 8.2
scope of a declaration in a visible
part 4.1.3
use clause naming the package
8.4
visibility of a declaration in a
visible part 8.3

VOLATILE (DEC Ada predefined
pragma) 9.11; B

Wait
[see: selective wait, task suspension]

While loop
[see: loop statement]

WIDTH (predefined attribute) 3.5.5; A

With clause 10.1.1; D
[see also: context clause]

determining order of compilation
10.3
determining the implicit order of
library units 8.6

Index–79

in a context clause of a
compilation unit 10.1.1
in a context clause of a subunit
10.2
inserted by the environment 10.4
leading to direct visibility 8.3

WRITE (input-output procedure)
in an instance of direct_io 14.2.4;
14.1, 14.2, 14.2.5
in an instance of sequential_io
14.2.2; 14.1, 14.2, 14.2.3
in an instance of indexed_io
14.2a.4, 14.2a.5
in an instance of relative_io
14.2a.2, 14.2a.3
in direct_mixed_io 14.2b.5,
14.2b.6
in indexed_mixed_io 14.2b.9,
14.2b.10
in relative_mixed_io 14.2b.7,
14.2b.8
in sequential_mixed_io 14.2b.3,
14.2b.4

WRITE_REGISTER (DEC Ada
predefined procedure)

[see: system.write_register]

Writing to an output file 14.1, 14.2.2,
14.2.4

Xor operator
[see: logical operator]

YEAR (predefined function) 9.6

Index–80

Postscript : Submission of Comments

Note

This postscript is not part of the standard definition of the Ada
programming language.

For submission of comments on the DEC Ada information (all material printed
in color), use the Reader’s Comments form at the back of the manual. For
reporting errors or problems encountered when using the DEC Ada software,
submit a Software Problem Report (SPR).

For submission of comments on the standard Ada reference manual (all
material printed in black), use the Arpanet address

Ada-Comment at ECLB

If you do not have Arpanet access, please send the comments on the standard
Ada reference manual by mail to

Ada Joint Program Office (AJPO)
Office of the Under Secretary of Defense Research and Engineering
Washington, DC 20301
United States of America

If you mail your comments, it will assist the AJPO if you can send them on
8-inch single-sided single-density IBM format diskettes—with an additional
paper copy, in case of problems with reading the diskettes.

All comments are sorted and processed mechanically, in order to simplify their
analysis and to facilitate giving them proper consideration. To aid this process,
please precede each comment with the three line header

!section . . .
!version 1983
!topic . . .

The section line should include the section number, the paragraph number
enclosed in parentheses, your name or affiliation (or both), and the date in ISO
standard form (year-month-day). The paragraph number is the one given in
the margin of the paper form of this document (it is not contained in the ECLB
files); paragraph numbers are optional, but very helpful. For example, here is
the section line of comment #1194 on a previous version:

!section 03.02.01(12)D.Taffs 82–04–26

The version line for comments on the current standard should contain only
‘‘!version 1983’’. The purpose of this line is to distinguish comments that refer
to different versions.

The topic line should contain a one line summary of the comment. This line is
essential, and you are kindly asked to avoid topics such as ‘‘Typo’’ or ‘‘Editorial
comment’’, which will not convey any information when printed in a table of
contents. As an example of an informative topic line consider:

!topic Subcomponents of constants are constants

Nothing prevents the topic line from including all the information of a
comment, as in the following topic line:

!topic Insert: ‘‘ . . . are {implicitly} defined by a subtype declaration’’

As a final example here is a complete comment received on a prior version of
this manual:

!section 03.02.01(12)D.Taffs 82–04–26
!version 10
!topic Subcomponents of constants are constants

Change ‘‘component’’ to ‘‘subcomponent’’ in the last sentence.

Otherwise the statement is inconsistent with the defined use of
subcomponent
in 3.3, which says that subcomponents are excluded when the term
component is used instead of subcomponent.

	DEC Ada Language Reference Manual
	Preface
	1 Introduction
	1.1 Scope of the Standard
	1.1.1 Extent of the Standard
	1.1.2 Conformity of an Implementation With the Standard

	1.2 Structure of the Standard
	1.4 Language Summary
	1.4a DEC Ada
	1.5 Method of Description and Syntax Notation
	1.6 Classification of Errors

	2 Lexical Elements
	2.1 Character Set
	2.2 Lexical Elements, Separators, and Delimiters
	2.3 Identifiers
	2.4 Numeric Literals
	2.4.1 Decimal Literals
	2.4.2 Based Literals

	2.5 Character Literals
	2.6 String Literals
	2.7 Comments
	2.8 Pragmas
	2.9 Reserved Words
	2.10 Allowable Replacements of Characters

	3 Declarations and Types
	3.1 Declarations
	3.2 Objects and Named Numbers
	3.2.1 Object Declarations
	3.2.2 Number Declarations

	3.3 Types and Subtypes
	3.3.1 Type Declarations
	3.3.2 Subtype Declarations
	3.3.3 Classification of Operations

	3.4 Derived Types
	3.5 Scalar Types
	3.5.1 Enumeration Types
	3.5.2 Character Types
	3.5.3 Boolean Types
	3.5.4 Integer Types
	3.5.5 Operations of Discrete Types
	3.5.6 Real Types
	3.5.7 Floating Point Types
	3.5.7a Pragma Float_Representation
	3.5.7b Pragma Long_Float (OpenVMS Systems Only)
	3.5.8 Operations of Floating Point Types
	3.5.9 Fixed Point Types
	3.5.10 Operations of Fixed Point Types

	3.6 Array Types
	3.6.1 Index Constraints and Discrete Ranges
	3.6.2 Operations of Array Types
	3.6.3 The Type String

	3.7 Record Types
	3.7.1 Discriminants
	3.7.2 Discriminant Constraints
	3.7.3 Variant Parts
	3.7.4 Operations of Record Types

	3.8 Access Types
	3.8.1 Incomplete Type Declarations
	3.8.2 Operations of Access Types

	3.9 Declarative Parts

	4 Names and Expressions
	4.1 Names
	4.1.1 Indexed Components
	4.1.2 Slices
	4.1.3 Selected Components
	4.1.4 Attributes

	4.2 Literals
	4.3 Aggregates
	4.3.1 Record Aggregates
	4.3.2 Array Aggregates

	4.4 Expressions
	4.5 Operators and Expression Evaluation
	4.5.1 Logical Operators and Short-circuit Control Forms
	4.5.2 Relational Operators and Membership Tests
	4.5.3 Binary Adding Operators
	4.5.4 Unary Adding Operators
	4.5.5 Multiplying Operators
	4.5.6 Highest Precedence Operators
	4.5.7 Accuracy of Operations with Real Operands

	4.6 Type Conversions
	4.7 Qualified Expressions
	4.8 Allocators
	4.9 Static Expressions and Static Subtypes
	4.10 Universal Expressions

	5 Statements
	5.1 Simple and Compound Statements—Sequences of Statements
	5.2 Assignment Statement
	5.2.1 Array Assignments

	5.3 If Statements
	5.4 Case Statements
	5.5 Loop Statements
	5.6 Block Statements
	5.7 Exit Statements
	5.8 Return Statements
	5.9 Goto Statements

	6 Subprograms
	6.1 Subprogram Declarations
	6.2 Formal Parameter Modes
	6.3 Subprogram Bodies
	6.3.1 Conformance Rules
	6.3.2 Inline Expansion of Subprograms

	6.4 Subprogram Calls
	6.4.1 Parameter Associations
	6.4.2 Default Parameters

	6.5 Function Subprograms
	6.6 Parameter and Result Type Profile—Overloading of Subprograms
	6.7 Overloading of Operators

	7 Packages
	7.1 Package Structure
	7.2 Package Specifications and Declarations
	7.3 Package Bodies
	7.4 Private Type and Deferred Constant Declarations
	7.4.1 Private Types
	7.4.2 Operations of a Private Type
	7.4.3 Deferred Constants
	7.4.4 Limited Types

	7.5 Example of a Table Management Package
	7.6 Example of a Text Handling Package

	8 Visibility Rules
	8.1 Declarative Region
	8.2 Scope of Declarations
	8.3 Visibility
	8.4 Use Clauses
	8.5 Renaming Declarations
	8.6 The Package Standard
	8.7 The Context of Overload Resolution

	9 Tasks
	9.1 Task Specifications and Task Bodies
	9.2 Task Types and Task Objects
	9.3 Task Execution—Task Activation
	9.4 Task Dependence—Termination of Tasks
	9.5 Entries, Entry Calls, and Accept Statements
	9.6 Delay Statements, Duration, and Time
	9.7 Select Statements
	9.7.1 Selective Waits
	9.7.2 Conditional Entry Calls
	9.7.3 Timed Entry Calls

	9.8 Priorities
	9.8a Pragma Time_Slice (OpenVMS and Digital UNIX Systems Only)
	9.8b Pragma Passive (OpenVMS Alpha and Digital UNIX Only)
	9.9 Task and Entry Attributes
	9.10 Abort Statements
	9.11 Shared Variables
	9.12 Example of Tasking
	9.12a Task Entries and OpenVMS Asynchronous System Traps (OpenVMS Systems Only)

	10 Program Structure and Compilation Issues
	10.1 Compilation Units—Library Units
	10.1.1 Context Clauses—With Clauses
	10.1.2 Examples of Compilation Units

	10.2 Subunits of Compilation Units
	10.2.1 Examples of Subunits

	10.3 Order of Compilation
	10.4 The Program Library
	10.5 Elaboration of Library Units
	10.6 Program Optimization

	11 Exceptions
	11.1 Exception Declarations
	11.2 Exception Handlers
	11.3 Raise Statements
	11.4 Exception Handling
	11.4.1 Exceptions Raised During the Execution of Statements
	11.4.2 Exceptions Raised During the Elaboration of Declarations

	11.5 Exceptions Raised During Task Communication
	11.6 Exceptions and Optimization
	11.7 Suppressing Checks

	12 Generic Units
	12.1 Generic Declarations
	12.1.1 Generic Formal Objects
	12.1.2 Generic Formal Types
	12.1.3 Generic Formal Subprograms
	12.1a Pragma INLINE_GENERIC
	12.1b Pragma SHARE_GENERIC

	12.2 Generic Bodies
	12.3 Generic Instantiation
	12.3.1 Matching Rules for Formal Objects
	12.3.2 Matching Rules for Formal Private Types
	12.3.3 Matching Rules for Formal Scalar Types
	12.3.4 Matching Rules for Formal Array Types
	12.3.5 Matching Rules for Formal Access Types
	12.3.6 Matching Rules for Formal Subprograms

	12.4 Example of a Generic Package

	13 Representation Clauses and Implementation-Dependent Features
	13.1 Representation Clauses
	13.1a The Pragma Component_Alignment
	13.2 Length Clauses
	13.2a The Pragma Task_Storage
	13.2b The Pragma Main_Storage (OpenVMS VAX Systems Only)
	13.3 Enumeration Representation Clauses
	13.4 Record Representation Clauses
	13.5 Address Clauses
	13.5.1 Interrupts

	13.6 Change of Representation
	13.7 The Package System
	13.7.1 System-Dependent Named Numbers
	13.7.2 Representation Attributes
	13.7.3 Representation Attributes of Real Types
	13.7a General DEC Ada Additions to the Package System
	13.7a.1 Address Type Declarations
	13.7a.2 Enumeration Type for Identifying Type Classes
	13.7a.3 Non-Ada Exception
	13.7a.4 Hardware-Oriented Types and Functions
	13.7a.5 Convenient Unsigned Longword Declarations
	13.7a.6 Global Symbol Values

	13.7b System-Specific DEC Ada Additions to the Package System
	13.7b.1 VAX Floating Point Types (OpenVMS Systems Only)
	13.7b.2 IEEE Floating Point Types (OpenVMS Alpha and Digital UNIX Systems Only)
	13.7b.3 OpenVMS Asynchronous-System-Trap-Related Declarations (OpenVMS Systems Only)
	13.7b.4 VAX Processor and Device Register Operations (OpenVMS VAX Systems Only)
	13.7b.5 Interlocked-Instruction Procedures (OpenVMS and Digital UNIX Systems Only)
	13.7b.6 Atomic Procedures (Alpha Systems Only)
	13.7b.7 Interlocked-Queue-Instruction Procedures (OpenVMS Systems Only)

	13.8 Machine Code Insertions
	13.9 Interface to Other Languages
	13.9a DEC Ada Import and Export Pragmas
	13.9a.1 Importing and Exporting Subprograms
	13.9a.1.1 Importing Subprograms
	13.9a.1.2 Attribute for Optional Parameters
	13.9a.1.3 Exporting Subprograms
	13.9a.1.4 Controlling the Passing Mechanisms for Parameters and Function Results

	13.9a.2 Importing and Exporting Objects
	13.9a.2.1 Importing Objects
	13.9a.2.2 Exporting Objects
	13.9a.2.3 Importing and Exporting Objects with the Pragma Common_Object

	13.9a.3 Importing and Exporting Exceptions (OpenVMS Systems Only)
	13.9a.3.1 Importing Exceptions (OpenVMS Systems Only)
	13.9a.3.2 Exporting Exceptions (OpenVMS Systems Only)

	13.9b The Pragma Interface_Name
	13.10 Unchecked Programming
	13.10.1 Unchecked Storage Deallocation
	13.10.2 Unchecked Type Conversions

	14 Input-Output
	14.1 External Files and File Objects
	14.1a File Elements
	14.1b Specification of the FORM Parameter in DEC Ada
	14.1b.1 The FORM Parameter on OpenVMS Systems
	14.1b.2 The FORM Parameter on Digital UNIX Systems

	14.2 Sequential and Direct Files
	14.2.1 File Management
	14.2.2 Sequential Input-Output
	14.2.3 Specification of the Package Sequential_IO
	14.2.4 Direct Input-Output
	14.2.5 Specification of the Package Direct_IO

	14.2a Relative and Indexed Files (OpenVMS Systems Only)
	14.2a.1 File Management (OpenVMS Systems Only)
	14.2a.2 Relative Input-Output (OpenVMS Systems Only)
	14.2a.3 Specification of the Package Relative_IO (OpenVMS Systems Only)
	14.2a.4 Indexed Input-Output (OpenVMS Systems Only)
	14.2a.5 Specification of the Package Indexed_IO (OpenVMS Systems Only)

	14.2b Mixed-Type Input-Output
	14.2b.1 File Management
	14.2b.2 Item Input-Output
	14.2b.3 Sequential Mixed Input-Output
	14.2b.4 Specification of the Package Sequential_Mixed_IO
	14.2b.5 Direct Mixed Input-Output
	14.2b.6 Specification of the Package Direct_Mixed_IO
	14.2b.7 Relative Mixed Input-Output (OpenVMS Systems Only)
	14.2b.8 Specification of the Package Relative_Mixed_IO (OpenVMS Systems Only)
	14.2b.9 Indexed Mixed Input-Output (OpenVMS Systems Only)
	14.2b.10 Specification of the Package Indexed_Mixed_IO (OpenVMS Systems Only)

	14.3 Text Input-Output
	14.3.1 File Management
	14.3.2 Default Input and Output Files
	14.3.3 Specification of Line and Page Lengths
	14.3.4 Operations on Columns, Lines, and Pages
	14.3.5 Get and Put Procedures
	14.3.6 Input-Output of Characters and Strings
	14.3.7 Input-Output for Integer Types
	14.3.8 Input-Output for Real Types
	14.3.9 Input-Output for Enumeration Types
	14.3.10 Specification of the Package Text_IO

	14.4 Exceptions in Input-Output
	14.5 Specification of the Package IO_Exceptions
	14.5a Specification of the Package Aux_IO_Exceptions (OpenVMS Systems Only)
	14.6 Low Level Input-Output
	14.7 Example of Input-Output
	14.7a Example of Additional DEC Ada Input-Output

	A Predefined Language Attributes
	B Predefined Language Pragmas
	C Predefined Language Environment
	D Glossary
	E Syntax Summary
	F Implementation-Dependent Characteristics
	F.1 Implementation-Dependent Pragmas
	F.2 Implementation-Dependent Attributes
	F.3 Specification of the Package System
	F.4 Restrictions on Representation Clauses
	F.5 Restrictions on Unchecked Type Conversions
	F.6 Conventions for Implementation-Generated Names Denoting Implementation-Dependent Components in Record Representation Clauses
	F.7 Interpretation of Expressions Appearing in Address Clauses
	F.8 Implementation-Dependent Characteristics of Input-Output Packages
	F.8.1 DEC Ada Input-Output Packages on OpenVMS Systems
	F.8.1.1 Interpretation of the FORM Parameter on OpenVMS Systems
	F.8.1.2 Input-Output Exceptions on OpenVMS Systems

	F.8.2 Input-Output Packages on Digital UNIX Systems
	F.8.2.1 Interpretation of the FORM Parameter on Digital UNIX Systems
	F.8.2.2 Input-Output Exceptions on Digital UNIX Systems

	F.9 Other Implementation Characteristics
	F.9.1 Definition of a Main Program
	F.9.2 Values of Integer Attributes
	F.9.3 Values of Floating Point Attributes
	F.9.3.1 F_floating Characteristics
	F.9.3.2 D_floating Characteristics
	F.9.3.3 G_floating Characteristics
	F.9.3.4 H_floating Characteristics
	F.9.3.5 IEEE Single Float Characteristics
	F.9.3.6 IEEE Double Float Characteristics

	F.9.4 Attributes of Type DURATION
	F.9.5 Implementation Limits

	G Ada Language Interpretations

