
VSI BLISS X1.14-141
for OpenVMS x86-64 Systems
Release Notes

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Publication Date: August 2024

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

Table of Contents
1. OpenVMS X86-64 BLISS Bugfixes, Features, and Differences .. 4

1.1. The Family of BLISS Compilers .. 4
1.2. File Extensions and Output Locations ... 4
1.3. BLISS Differences Between VAX BLISS-32 and Alpha BLISS ... 5

1.3.1. VAX Hardware Registers .. 5
1.3.2. QUAD Allocation Unit ... 7
1.3.3. Attributes .. 7
1.3.4. Linkages .. 8
1.3.5. Machine Specific Features .. 9

1.4. BLISS Differences Between Alpha BLISS and Itanium BLISS .. 12
1.4.1. Machine Specific Built-ins .. 12
1.4.2. Itanium Registers .. 12
1.4.3. PALcode Built-in Functions .. 12
1.4.4. INTERRUPT and EXCEPTION Linkages .. 13
1.4.5. "BUILTIN Rn" .. 13
1.4.6. Built-ins ... 13
1.4.7. BLI$CALLG .. 15
1.4.8. Itanium Registers .. 16
1.4.9. ALPHA_REGISTER_MAPPING switch .. 16
1.4.10. /ANNOTATIONS Qualifier ... 17
1.4.11. /ALPHA_REGISTER_MAPPING Qualifier .. 18
1.4.12. /ALPHA_REGISTER_MAPPING Informationals ... 18
1.4.13. ADD, AND, Built-in Functions for Atomic Operations 18
1.4.14. TESTBITxxI and TESTBITxx Built-in Functions for Atomic Operations 19
1.4.15. Granularity of Byte, Longword and Quadword Writes .. 19
1.4.16. Shift Built-in Functions ... 19
1.4.17. Compare and Swap Built-in Functions .. 19
1.4.18. I64-specific Multimedia Instructions ... 20
1.4.19. Linkages .. 20
1.4.20. /[NO]TIE Qualifier ... 20
1.4.21. /ENVIRONMENT=([NO]FP) and ENVIRONMENT([NO]FP) 21
1.4.22. Floating Point Support .. 21
1.4.23. New and Expanded Lexicals ... 21
1.4.24. OpenVMS I64 BLISS Support for IPF Short Data Sections 22

1.5. BLISS Differences Between Itanium BLISS and x86-64 BLISS 24
1.5.1. Floating Point Register Names ... 24
1.5.2. RETURNADDRESS Built-in with BLISS-32 .. 24
1.5.3. BLI$CALLG Removed ... 24
1.5.4. ALPHA_REGISTER_MAPPING SWITCH and Qualifier 24
1.5.5. Unsupported and Ignored DCL Qualifiers .. 25
1.5.6. Built-ins Supported from OpenVMS Alpha and OpenVMS I64 Systems 25
1.5.7. New and Expanded Lexicals ... 27

1.6. Floating Point Support ... 27
1.6.1. Floating Point Built-in Functions ... 27
1.6.2. Floating Point Literals .. 27
1.6.3. Floating Point Registers .. 28
1.6.4. Calling Non-BLISS Routines with Floating Point Parameters 28

1.7. Documentation .. 28
1.8. Debugging .. 28
1.9. Building the STARLET and LIB .L32 and .L64 libraries .. 28

2

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

2. Maintenance Corrections for OpenVMS x86-64 BLISS .. 29
3. Known Bugs and Deficiencies .. 30

3

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

This document contains information about version X1.14-141 of the BLISS compilers for OpenVMS
x86-64.

1. OpenVMS X86-64 BLISS Bugfixes, Features,
and Differences
This chapter describes the bugfixes in this release of OpenVMS x86-64 BLISS, new features, and the
differences between the BLISS compilers on OpenVMS I64 and OpenVMS Alpha.

The list of corrections since the last release is found in Chapter 2.

1.1. The Family of BLISS Compilers
BLISS-32EN and BLISS-64EN are native compilers running on, and generating code for OpenVMS for
Alpha systems.

BLISS-32IN and BLISS-64IN are native compilers running on, and generating code for OpenVMS for
I64 systems.

BLISS-32XN and BLISS-64XN are native compilers running on, and generating code for OpenVMS for
x86-64 systems.

The BLISS-32xx compilers do operations 32 bits wide (i.e. BLISS values are longwords). The default
width is 32 bits. In this document, they are collectively referred to as "the 32-bit compilers."

The BLISS-64xx compilers do operations 64 bits wide (i.e. BLISS values are quadwords). The default
width is 64 bits. In this document, they are collectively referred to as "the 64-bit compilers."

The compilers are invoked as follows:

Compiler Command

BLISS-32EN BLISS/A32 or BLISS (On OpenVMS Alpha systems)
BLISS-64EN BLISS/A64
BLISS-32IN BLISS/I32 or BLISS (On OpenVMS I64 systems)
BLISS-64IN BLISS/I64
BLISS-32XN BLISS/X32 or BLISS (On OpenVMS x86-64 systems)
BLISS-64XN BLISS/X64

1.2. File Extensions and Output Locations
The default filetype for object files is .OBJ.

The default output filetype for library files is .L32 for BLISS-32EN, BLISS-32IN, and BLISS-32XN;
and .L64 for BLISS-64EN, BLISS-64IN, and BLISS-64XN.

Library files are NOT compatible between dialects.

The search list for BLISS-32EN is:

For source code: .B32E, .B32, .BLI
For require files: .R32E, .R32, .REQ

4

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

For library files: .L32E, .L32, .LIB

The search list for BLISS-64EN is:

For source code: .B64E, .B64, .BLI
For require files: .R64E, .R64, .REQ
For library files: .L64E, .L64, .LIB

The search list for BLISS-32IN is:

For source code: .B32I, .B32, .BLI
For require files: .R32I, .R32, .REQ
For library files: .L32I, .L32, .LIB

The search list for BLISS-64IN is:

For source code: .B64I, .B64, .BLI
For require files: .R64I, .R64, .REQ
For library files: .L64I, .L64, .LIB

The search list for BLISS-32XN is:

For source code: .B32X, .B32, .BLI
For require files: .R32X, .R32, .REQ
For library files: .L32X, .L32, .LIB

The search list for BLISS-64XN is:

For source code: .B64X, .B64, .BLI
For require files: .R64X, .R64, .REQ
For library files: .L64X, .L64, .LIB

The location of the output files depends on where in the command line the ouptut qualifier was found.

If an output file qualifier, such as /OBJECT, /LIST or /LIBRARY, is used after an input file
specification and does not include an output file specification, the output file specification defaults to the
device, directory, and file name of the immediately preceding input file.

Thus:

BLISS [FOO]BAR/OBJ -- Puts BAR.OBJ in directory FOO
BLISS /OBJ [FOO]BAR -- Puts BAR.OBJ in default directory
BLISS [FOO]BAR/OBJ=[] -- Puts BAR.OBJ in default directory

1.3. BLISS Differences Between VAX BLISS-32 and
Alpha BLISS
1.3.1. VAX Hardware Registers
1.3.1.1. AP Register

The parameter-passing mechanism is different on Alpha, and there is no equivalent to the AP register.

5

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

References to AP which are used to access the parameter list can be replaced by COMMON BLISS
linkage functions such as ACTUALPARAMETER and ACTUALCOUNT. The COMMON BLISS function
ARGPTR is supported on Alpha (but requires the compiler to "fake" an argument block, and so impacts
performance adversely, particularly for the 32-bit compilers). ARGPTR returns a pointer to a VAX-
format argument list (i.e. starting with a count, and structured as a vector). Vector elements are BLISS
values, 32 bits long in the 32-bit compilers and 64 bits long in the 64-bit compilers.

It is important to note that this means:

● The values in the ARGPTR vector are copies of the actuals, not the actuals themselves;

● There is no easy way for 32-bit code to look at the upper 32 bits of an actual parameter.

One common VAX idiom is CALLG(.AP, ...), which passes a routine's own input parameter
list on to another routine. For fixed-length parameter lists, this is easy for users to imitate in
COMMON BLISS, but for variable-length ones it is not. To support this idiom in Alpha BLISS, we
provide an assembly routine BLI$CALLG on Alpha and Itanium but replaced with the standard
LIB$CALLG on x86-64.

BLI$CALLG takes two arguments: the first is a pointer to the in-memory argument list built by the
ARGPTR built-in, and the second is the address of a routine to call. BLI$CALLG is designed to handle a
valid argument list. If anything else is passed to it, there will be unpredictable results.

We anticipate that users will replace CALLG(.AP,.RTN) by BLI$CALLG(ARGPTR(),.RTN).

Because the compiler has to "home" register arguments for ARGPTR, it will be more efficient to use
normal calls than to use BLI$CALLG(ARGPTR(),...). This contrasts with CALLG(.AP,...),
which is more efficient than a normal call.

Use of the AP as a scratch register holding a local variable is not portable, but the larger number of
registers offered on the Alpha will allow another register to be used in its place.

The name "AP" is not recognized by the compilers, and will cause an error.

1.3.1.2. FP Register

The Alpha calling standards do not directly support dynamic condition handling, so constructs of the
type .FP = handler are invalid.

COMMON BLISS has the ENABLE mechanism to establish static condition handlers.

The Alpha BLISS compilers provide two new built-ins named ESTABLISH and REVERT. Their
semantics parallel the VAX idiom of assignments to the location pointed to by the FP register.

● ESTABLISH(rtn)

Establishes RTN as the current handler. It has no value.

● REVERT()

Disestablishes any established handler routine. It also has no value.

These built-ins cannot be used in the same routine as ENABLE. No enable vector is passed to a handler
that is established using ESTABLISH.

When a routine which has established a handler returns, that handler is disestablished automatically.

6

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

Programs which inspect the frame will have to be re-written, as the frame layout has changed for Alpha.

Because all references to the VAX FP must be changed, use of the name "FP" in a BUILTIN
declaration is an error. Access to the Alpha FP may be achieved by use of register 29, the Alpha frame
pointer. However, this is almost certain to cause a register conflict and prevent the generation of code; we
recommend that all manipulation of the real FP take place in Alpha assembler.

1.3.1.3. SP Register

Because all references to the VAX SP must be changed, use of the name "SP" in a BUILTIN
declaration is an error. Access to the Alpha SP may be achieved by use of register 30, the Alpha stack
pointer. However, this is almost certain to cause a register conflict and prevent the generation of code; we
recommend that all manipulation of the real SP take place in Alpha assember.

1.3.1.4. PC Register

Use of the name "PC" is an error, as there is no equivalent to the VAX PC on Alpha.

1.3.2. QUAD Allocation Unit
The 64-bit compilers recognize QUAD as specifying a data-segment of eight bytes (64 bits), in the same
way that LONG is recognized as specifying 32 bits. QUAD is not recognized by the 32-bit compilers, as
the 32-bit version of the BLISS language provides no method for manipulating data-segments larger than
32 bits in size.

QUAD may be used in the 64-bit compilers wherever BYTE, WORD, and LONG may be used in
BLISS-32.

The default size for data-segments in the 64-bit compilers is LONG or QUAD, depending on the presence
or absence of the compile-time switch /ASSUME=LONG_DEFAULT or /ASSUME=SIGNED_LONG.

1.3.3. Attributes
1.3.3.1. ALIGN Attribute

The ALIGN attribute is allowed on EXTERNAL, BIND, and GLOBAL BIND declarations in addition to
the OWN, GLOBAL, LOCAL and STACKLOCAL declarations on which BLISS-32 allows it. In the Alpha
compilers, in addition to telling the compiler on what boundaries to allocate data, it tells the compiler
what assumptions it can make regarding the alignment of data that the compiler does not allocate in this
compilation unit.

1.3.3.2. ALIAS Attribute

The ALIAS attribute indicates that a variable may be changed by routine calls and indirect assignments.
ALIAS may be used on any of the following declarations: EXTERNAL, GLOBAL, OWN, FORWARD,
MAP, BIND, GLOBAL BIND, LOCAL, STACKLOCAL.

The BLISS language assumes that named storage segments will in general be changed only by using the
name of the variable. Also, BLISS expects that two different named pointer variables do not point to the
same block of storage.

If it is necessary to have more than one pointer to the same named variable or block of storage, these
pointers should be declared with the ALIAS attribute.

Any variable passed using an OpenVMS item-list must be treated as ALIAS.

7

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

The Alpha BLISS compilers automatically mark as ALIAS any variable whose address is used in a
context other than fetch or store. These are the variables that got the "consider VOLATILE" diagnostic
when /CHECK=ADDRESS_TAKEN was used. This diagnostic now reads: "assuming ALIAS".

In most cases, Alpha-only BLISS source code can rely on the automatic ALIAS analysis by the Alpha
BLISS compiler. Since VAX BLISS-32 does not do this, code that is common between Alpha and VAX
needs to use explicit ALIAS attributes. This requires VAX BLISS V4.7; older versions do not support
the ALIAS attribute.

1.3.3.3. VOLATILE Attribute

The VOLATILE attribute is stronger in Alpha BLISS than in VAX BLISS. On VAX, VOLATILE means
that the variable can change at any time. On Alpha, it has the following properties:

● Always causes one memory access for long/quad read/write and byte/word reads

● Strict source ordering (no reordering of reads, for example)

● Proper size (for long/quad)

● Only supported for aligned accesses

● Yields byte granularity

As a result, VOLATILE is sufficient for I/O registers.

This may require source code changes in existing Alpha BLISS programs. Specifically, writing to an
unaligned 16-bit (word) field in a VOLATILE structure causes an unrecoverable alignment (ROPRAND)
fault.

The compiler has added a diagnostic to issue a warning for unaligned VOLATILE references:

%BLS32-W-UNAVOLACC, volatile access appears unaligned, but must be
aligned at run-time

BLISS users should modify their code to completely eliminate all UNAVOLACC warnings.

What MUST Be Done to ensure correct operation:

1. Any references to VOLATILE unaligned 16-bit words must be changed to eliminate unrecoverable
faults.

2. All uses of structures that contain 16-bit words should be examined to ensure that either:

a. The 16-bit field is aligned, or

b. The structure is not accessed using REF VOLATILE

What SHOULD be done to get good performance:

1. Unaligned access of other types are recoverable but take extra time. In almost all cases, it is desirable
to change the VOLATILE attribute to ALIAS to avoid unnecessary alignment faults.

1.3.4. Linkages
1.3.4.1. CALL linkage

The CALL linkage is the standard linkage on Alpha. See the OpenVMS Calling Standard for details.

8

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

Routines compiled with a 32-bit compiler can call routines compiled with a 64-bit compiler and vice
versa. Parameters are truncated when shortened, and sign-extended when lengthened.

By default, CALL linkages pass an argument count. This can be overridden using the NOCOUNT linkage
option described below.

Though the arguments are passed in quadwords, the 32-bit compilers can only "see" the lower 32 bits.

1.3.4.2. JSB Linkage

The OpenVMS compilers have a JSB linkage type. Routines declared with the JSB linkage type are
frameless routines, i.e. they do not modify the FP register.

1.3.4.3. Global Registers

Routines with linkages with GLOBAL REGISTERS which did not declare those registers as
EXTERNAL REGISTERs follow the BLISS-32 rules:

● If the global register is not declared at all, its value will be preserved;

● If the register is specifically declared (e.g. as a GLOBAL register), the value of the register will be
preserved and a new, nested lifetime started for the register.

1.3.4.4. INTERRUPT and EXCEPTION Linkages

The OpenVMS compilers have INTERRUPT and EXCEPTION linkage types. See the System
Reference Manual for details. Routines with these linkages cannot be called from BLISS.

1.3.4.5. COUNT and NOCOUNT Linkage Attributes

The linkage attributes COUNT and NOCOUNT allow the user to specify whether the argument count
should be passed from the caller to the callee. These attributes are legal only for the CALL linkage
type. The default is COUNT. The default can be controlled on a module-wide basis by using either
the command line qualifier /[NO]COUNT or the module head switch [NO]COUNT. As usual, a
switch setting given in a module head overrides the command line qualifier. The linkage functions
ACTUALCOUNT, ACTUALPARAMETER, NULLPARAMETER, and ARGPTR may not be used in
routines whose linkages are NOCOUNT.

1.3.5. Machine Specific Features

1.3.5.1. Alpha Registers

Alpha integer registers are available, using the same syntax used on the VAX for access to VAX registers.
Alpha floating registers are not available.

Many of the registers are not available for use by user code, as they are reserved for special uses. A
register conflict message will be issued when a user request for a particular register cannot be satisfied.

1.3.5.2. PALcode Built-in Functions

The following PALcode instructions are available as built-in functions in the OpenVMS compilers.

BPT INSQHIL REMQHIL BUGCHK MTPR_ASTSR MFPR_MCES
CHME INSQTIL REMQTIL IMB MTPR_FEN MFPR_SSP

9

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

CHMK INSQUEL REMQUEL PROBER MTPR_PRBR MFPR_WHAMI
CHMS INSQHIQ REMQHIQ PROBEW MTPR_SIRR MFPR_PTBR
CHMU INSQTIQ REMQTIQ RD_PS MTPR_TBIAP MFPR_SISR
HALT INSQUEQ REMQUEQ SWASTEN MTPR_IPIR MFPR_IPL
 INSQUEL_D REMQUEL_D WR_PS_SW MTPR_MCES MFPR_PCBB
 INSQUEQ_D REMQUEQ_D CFLUSH MTPR_TBIS MFPR_SCBB
 INSQHILR REMQHILR DRAINA MTPR_SSP MFPR_TBCHK
 INSQHIQR REMQHIQR LDQP MTPR_ASTEN MFPR_ESP
 INSQTILR REMQTILR STQP MTPR_IPL MFPR_USP
 INSQTIQR REMQTIQR SWPCTX MTPR_SCBB MFPR_FEN
 GENTRAP MTPR_TBIA MFPR_PRBR
 RSCC MTPR_ESP MFPR_ASTEN
 READ_UNQ MTPR_USP MFPR_ASTSR
 WRITE_UNQ MTPR_VPTB MFPR_VPTB
 MTPR_TBISD
 MTPR_TBISI
 MTPR_DATFX
 MTPR_ASN
 MTPR_PERFMON

The following PALcode instructions are available as built-in functions in the other compilers:

BPT IMB HALT GENTRAP

Refer to the SRM for information regarding inputs and outputs. Please note that all of above names are
preceeded by a PAL_ to distinguish them from similar VAX built-ins.

CALL_PAL is a generic PALcode built-in. The first parameter, which must be a compile-time constant
expression, is the function field of the CALL_PAL instruction. The remaining parameters are the inputs
to the CALL_PAL instruction.

1.3.5.3. New Built-in Functions for Atomic Operations

The following new built-in functions allow atomic updating of memory:

ADD_ATOMIC_LONG, ADD_ATOMIC_QUAD, AND_ATOMIC_LONG,
 AND_ATOMIC_QUAD,OR_ATOMIC_LONG, OR_ATOMIC_QUAD

The operations have the form:

<op>_ATOMIC_<size>(ptr, expr

 [, retry_count] ! Optional input
 [; old_value]) ! Optional output

 Value: 1 Operation succeeded
 0 Operation failed

 <op> is one of AND, ADD, OR
 <size> is one of LONG or QUAD

The operation is addition (or ANDing or ORing) of the expression EXPR to the data-segment
pointed to by PTR within a load-locked/store-conditional code sequence. The operation will be tried
RETRY_COUNT times. If the operation cannot be performed successfully in the specified number of
trials, the built-in's value is zero.

PTR must be a naturally-aligned address.

10

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

The optional output parameter OLD_VALUE is set to the previous value of the data-segment pointed to
by PTR.

For the 32-bit compilers, the EXPR parameter will be sign-extended and the OLD_VALUE parameter
will be truncated for the QUAD operations.

1.3.5.4. Compatible Built-in Functions for Atomic Operations

TESTBITSSI, TESTBITCCI, TESTBITSS, TESTBITSC, TESTBITCS, TESTBITCC and
ADAWI have been implemented in an upward-compatible manner.

The TESTBITxx built-ins are AST-atomic. This is a weaker form of atomicity than the TESTBITxxI
built-ins have. The operations have the form:

 TESTBITxxx(field
 [, retry_count] ! Optional input
 [; success-flag]) ! Optional output

 Value: 1 Bit was set (TESTBITSSI) or clear (TESTBITCCI)
 0 Otherwise

BLISS-32's ADAWI returns the contents of the PSL. Since the PSL doesn't exist on Alpha, the return
value of ADAWI is a simulated partial VAX PSL, where only the condition codes are significant.

ADAWI(address, addend)

 Value: PSL 0:3 (Simulated partial VAX PSL)

1.3.5.5. New Shift Built-in Functions

Built-in functions for shifts in a known direction have been added. They are only valid for shift amounts
in the range 0..%BPVAL-1.

result = SLL(value, amount) Shift left logical
 result = SRL(value, amount) Shift right logical
 result = SRA(value, amount) Shift right arithmetic

1.3.5.6. Other Machine-specific Built-in Functions

Other machine specific built-in functions are:

● ROT(value, shift) – rotates value by shift bits, returning the rotated value.

● TRAPB() – generates the TRAPB instruction.

● RPCC() – generates the RPCC instruction.

● WRITE_MBX(dest-address, value-to-store) – generates the STQ_C instruction required for writing to
mailboxes. See the section "Mailbox Posting" in the I/O Architecture chapter of the SRM for details.
This function returns 1 for success and 0 for failure.

● UMULH, CMPBGE, ZAP, and ZAPNOT – UMULH, CMPBGE, ZAP and ZAPNOT each have two input
parameters and have a value. They correspond to the Alpha instructions with the same names.

● CMP_STORE_LONG and CMP_STORE_LONG – CMP_STORE_LONG(addr, comparand, value,
destination) and CMP_STORE_QUAD(addr, comparand, value, destination) do the following

11

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

interlocked operations: compare the longword or quadword at addr with comparand, and if they are
equal, store value at destination. They return an indicator of success (1) or failure (0).

1.4. BLISS Differences Between Alpha BLISS and
Itanium BLISS
This section describes those Alpha BLISS features that are not be supported by OpenVMS I64 BLISS.

1.4.1. Machine Specific Built-ins
The following Alpha BLISS machine-specific built-ins are not supported:

 RPCC ZAP
 TRAPB ZAPNOT
 DRAINT CMP_STORE_LONG
 WRITE_MBX CMP_STORE_QUAD
 CMPBGE

CMP_STORE_LONG and CMP_STORE_QUAD are replaced by CMP_SWAP_LONG and
CMP_SWAP_QUAD.

1.4.2. Itanium Registers
The following Itanium registers are not supported for naming in REGISTER, GLOBAL REGISTER,
EXTERNAL REGISTER or as parameters to LINKAGE declarations.

R0 zero register
R1 global pointer
R2 volatile and GEM scratch register
R12 stack pointer
R13 thread pointer
R14-R16 volatile and GEM scratch registers
R17-R18 volatile scratch registers

1.4.3. PALcode Built-in Functions
The following Alpha BLISS PALcode built-ins are not supported:

 CALL_PAL PAL_MFPR_PCBB PAL_MTPR_SIRR
 PAL_BPT PAL_MFPR_PRBR PAL_MTPR_SSP
 PAL_BUGCHK PAL_MFPR_PTBR PAL_MTPR_TBIA
 PAL_CFLUSH PAL_MFPR_SCBB PAL_MTPR_TBIAP
 PAL_CHME PAL_MFPR_SISR PAL_MTPR_TBIS
 PAL_CHMK PAL_MFPR_SSP PAL_MTPR_TBISD
 PAL_CHMS PAL_MFPR_TBCHK PAL_MTPR_TBISI
 PAL_CHMU PAL_MFPR_USP PAL_MTPR_USP
 PAL_DRAINA PAL_MFPR_VPTB PAL_MTPR_VPTB
 PAL_HALT PAL_MFPR_WHAMI PAL_PROBER
 PAL_GENTRAP PAL_MTPR_ASTEN PAL_PROBEW
 PAL_IMB PAL_MTPR_ASTSR PAL_RD_PS
 PAL_LDQP PAL_MTPR_DATFX PAL_READ_UNQ

12

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

 PAL_MFPR_ASN PAL_MTPR_ESP PAL_RSCC
 PAL_MFPR_ASTEN PAL_MTPR_FEN PAL_STQP
 PAL_MFPR_ASTSR PAL_MTPR_IPIR PAL_SWPCTX
 PAL_MFPR_ESP PAL_MTPR_IPL PAL_SWASTEN
 PAL_MFPR_FEN PAL_MTPR_MCES PAL_WRITE_UNQ
 PAL_MFPR_IPL PAL_MTPR_PRBR PAL_WR_PS_SW
 PAL_MFPR_MCES PAL_MTPR_SCBB PAL_MTPR_PERFMON

Macros are provided in STARLET.REQ for PALCALL built-ins. The privileged CALL_PALs call exec
routines and the unprivileged CALL_PALs execute system services.

1.4.4. INTERRUPT and EXCEPTION Linkages
The Alpha INTERRUPT and EXCEPTION linkages are not be supported.

1.4.5. "BUILTIN Rn"
The ability to specify an Itanium register name to the BUILTIN keyword is not supported.

1.4.6. Built-ins

1.4.6.1. Common BLISS Built-ins

The following existing Common BLISS built-ins are supported:

ABS CH$FIND_NOT_CH CH$WCHAR
ACTUALCOUNT CH$FIND_SUB CH$WCHAR_A
ACTUALPARAMETER CH$GEQ MAX
ARGPTR CH$GTR MAXA
BARRIER CH$LEQ MAXU
CH$ALLOCATION CH$LSS MIN
CH$A_RCHAR CH$MOVE MINA
CH$A_WCHAR CH$NEQ MINU
CH$COMPARE CH$PLUS NULLPARAMETER
CH$COPY CH$PTR REF
CH$DIFF CH$RCHAR SETUNWIND
CH$EQL CH$RCHAR_A SIGN
CH$FAIL CH$SIZE SIGNAL
CH$FILL CH$TRANSLATE SIGNAL_STOP
CH$FIND_CH CH$TRANSTABLE

1.4.6.1.1. RETURNADDRESS Built-in

A new built-in function RETURNADDRESS returns the PC of the caller's caller.

This built-in takes no arguments and the format is:

RETURNADDRESS()

1.4.6.2. Machine-specific Built-ins

The following Alpha BLISS machine-specific built-ins are supported:

BARRIER
ESTABLISH
REVERT

13

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

ROT
SLL
SRA
SRL
UMULH

ADAWI

ADD_ATOMIC_LONG AND_ATOMIC_LONG OR_ATOMIC_LONG
ADD_ATOMIC_QUAD AND_ATOMIC_QUAD OR_ATOMIC_QUAD

The XXX_ATOMIC_XXX built-ins no longer support the optional retry-count input argument.

TESTBITSSI TESTBITCC TESTBITCS
TESTBITCCI TESTBITSS TESTBITSC

The TESTBITxx instructions no longer support the optional retry-count input argument or the optional
success-flag output argument.

ADDD DIVD MULD SUBD CMPD
ADDF DIVF MULF SUBF CMPF
ADDG DIVG MULG SUBG CMPG
ADDS DIVS MULS SUBS CMPS
ADDT DIVT MULT SUBT CMPT

CVTDF CVTFD CVTGD CVTSF CVTTD
CVTDG CVTFG CVTGF CVTSI CVTTG
CVTDI CVTFI CVTGI CVTSL CVTTI
CVTDL CVTFL CVTGL CVTSQ CVTTL
CVTDQ CVTFQ CVTGQ CVTST CVTTQ
CVTDT CVTFS CVTGT CVTTS

CVTID CVTLD CVTQD
CVTIF CVTLF CVTQF
CVTIG CVTLG CVTQG
CVTIS CVTLS CVTQS
CVTIT CVTLT CVTQT

CVTRDL CVTRDQ
CVTRFL CVTRFQ
CVTRGL CVTRGQ
CVTRSL CVTRSQ
CVTRTL CVTRTQ

1.4.6.3. New Machine-specific Built-ins

A number of new built-ins have been added that provide access to single Itanium instructions which may
be used by the operating system.

1.4.6.3.1. Built-ins for Single Instructions

Each name capatilized below is a new built-in function which may be specified. The lower-case name in
parenthesis is the actual IA64 instruction executed. The arguments to these instructions (and therefore
their associated BLISS built-in names) are detailed in the "Intel IA-64 Architecture Software Developer's
Manual".

 BREAK (break) LOADRS (loadrs) RUM (rum) HINT (hint)

14

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

 BREAK2 (break)* PROBER (probe.r) SRLZD (srlz.d)
 FC (fc) PROBEW (probe.w) SRLZI (srlz.i)
 FLUSHRS (flushrs) PCTE (ptc.e) SSM (ssm)
 FWB (fwb) PCTG (ptc.g) SUM (sum)
 INVALAT (invala) PCTGA (ptc.ga) SYNCI (sync.i)
 ITCD (itc.d) PTCL (ptc.l) TAK (tak)
 ITCI (itc.i) PTRD (ptr.d) THASH (thash)
 ITRD (itr.d) PTRI (ptr.i) TPA (tpa)
 ITRI (itr.i) RSM (rsm) TTAG (ttag)

*The BREAK2 built-in requires two parameters. The first parameter, which must be a compiletime
literal, specifies the 21-bit immediate value of the BREAK instruction. The second parameter, may be
any expression whose value is moved into I64 general register R17 just prior prior to executing the
BREAK instruction.

1.4.6.3.2. Access to Processor Registers

The OpenVMS I64 BLISS compiler provides built-in functions for access to read and write the many
and varied processor registers in the Itanium implementations. They are:

GETREG SETREG GETREGIND SETREGIND

These built-ins execute the mov.i instruction which is detailed in the "Intel IA-64 Architecture Software
Developer's Manual".

The two GET built-ins return the value of the register specified.

To specify the register a specially encoded integer constant is used which is defined in an Intel C header
file. See Appendix A for the contents of this file.

1.4.6.4. PALcode Built-ins

The following Alpha BLISS PALcode built-ins are supported:

 PAL_INSQHIL PAL_REMQHIL
 PAL_INSQHILR PAL_REMQHILR
 PAL_INSQHIQ PAL_REMQHIQ
 PAL_INSQHIQR PAL_REMQHIQR
 PAL_INSQTIL PAL_REMQTIL
 PAL_INSQTILR PAL_REMQTILR
 PAL_INSQTIQ PAL_REMQTIQ
 PAL_INSQTIQR PAL_REMQTIQR
 PAL_INSQUEL PAL_REMQUEL
 PAL_INSQUEL_D PAL_REMQUEL_D
 PAL_INSQUEQ PAL_REMQUEQ
 PAL_INSQUEQ_D PAL_REMQUEQ_D

The 24 queue-manipulation PALcalls are implemented by BLISS as a call to a OpenVMS-provided
SYS$PAL_xxxx run-time routine.

1.4.7. BLI$CALLG
The VAX idiom CALLG(.AP, ...) was replaced by an assembly routine
BLI$CALLG(ARGPTR(), .RTN) for OpenVMS Alpha BLISS. This routine as defined for
OpenVMS ALpha BLISS will be re-written for the Itanium architecture and supported for OpenVMS
I64 BLISS.

15

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

1.4.8. Itanium Registers
The Itanium general registers which may be named in REGISTER, GLOBAL REGISTER,
EXTERNAL REGISTER and as parameters to LINKAGE declarations are as follows:

● R3-R11

● R19-R31

In addition, 8 parameter registers will be able to be named for parameters in LINKAGE declarations
only. They are: R32-R39.

There is no support for accessing the Itanium general registers R40-R127.

Naming of any of the Itanium Floating Point, Predicate, Branch and Application registers via the
REGISTER, GLOBAL REGISTER, EXTERNAL REGISTER and LINKAGE declarations is not
supported.

A register conflict message is issued when a user request for a particular register cannot be satisfied.

1.4.9. ALPHA_REGISTER_MAPPING switch
A new module level switch ALPHA_REGISTER_MAPPING is being provided for OpenVMS I64
BLISS.

This switch may be specified either in the MODULE declaration or a SWITCHES declaration. Use of
this switch will cause a re-mapping of Alpha register numbers to Itanium register numbers as described
below.

Any register number specified as part of a REGISTER, GLOBAL REGISTER,
EXTERNAL REGISTER or as parameters to GLOBAL, PRESERVE, NOPRESERVE or NOT USED in
linkage declarations in the range of 0-31 will be remapped according to the IMACRO mapping table as
follows:

0 = GEM_TS_REG_K_R8 16 = GEM_TS_REG_K_R14
1 = GEM_TS_REG_K_R9 17 = GEM_TS_REG_K_R15
2 = GEM_TS_REG_K_R28 18 = GEM_TS_REG_K_R16
3 = GEM_TS_REG_K_R3 19 = GEM_TS_REG_K_R17
4 = GEM_TS_REG_K_R4 20 = GEM_TS_REG_K_R18
5 = GEM_TS_REG_K_R5 21 = GEM_TS_REG_K_R19
6 = GEM_TS_REG_K_R6 22 = GEM_TS_REG_K_R22
7 = GEM_TS_REG_K_R7 23 = GEM_TS_REG_K_R23
8 = GEM_TS_REG_K_R26 24 = GEM_TS_REG_K_R24
9 = GEM_TS_REG_K_R27 25 = GEM_TS_REG_K_R25
10 = GEM_TS_REG_K_R10 26 = GEM_TS_REG_K_R0
11 = GEM_TS_REG_K_R11 27 = GEM_TS_REG_K_R0
12 = GEM_TS_REG_K_R30 28 = GEM_TS_REG_K_R0
13 = GEM_TS_REG_K_R31 29 = GEM_TS_REG_K_R29
14 = GEM_TS_REG_K_R20 30 = GEM_TS_REG_K_R12
15 = GEM_TS_REG_K_R21 31 = GEM_TS_REG_K_R0

The mappings for register numbers:

16-20

26-28

16

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

30-31

Translate into registers which are considered invalid specifications for OpenVMS I64 BLISS (see
sections 2.3.3 and 2.4.3 in the OpenVMS I64 BLISS specification). Declarations including any these
registers when ALPHA_REGISTER_MAPPING is specfied generate an error such as:

r30 = 30
.........^
Alpha register 30 cannot be declared, invalid mapping to IPF register 12 at
 line number 9 in file ddd:[xxx]TESTALPHAREGMAP.BLI

Notice that the source line names register number 30 but the error text indicates register 12 is the
problem. It is the translated register for 30, register 12, which is illegal to specify.

1.4.9.1. ALPHA_REGISTER_MAPPING and Linkage Declarations

There is a special set of mappings for Alpha registers R16-R21 if those registers are specified as linkage
I/O parameters.

For linkage I/O paramters ONLY the mappings for R16-R21 are as follows:

16 = GEM_TS_REG_K_R32 19 = GEM_TS_REG_K_R35
17 = GEM_TS_REG_K_R33 20 = GEM_TS_REG_K_R36
18 = GEM_TS_REG_K_R34 21 = GEM_TS_REG_K_R37

1.4.9.1.1. ALPHA_REGISTER_MAPPING and "NOTUSED"

When ALPHA_REGISTER_MAPPING is specified, any Alpha register that maps to an Itanium scratch
register and is specified as NOTUSED in a linkage declaration will be placed in the PRESERVE set.

This will cause the register to be saved on entry to the routine declaring it NOTUSED and restored on
exit.

1.4.10. /ANNOTATIONS Qualifier
The OpenVMS I64 BLISS compiler will support a new compiliation qualifier /ANNOTATIONS. This
qualifier provides information in the source listing regarding optimizations compiler is making (or not)
during compilation.

The qualifier accepts a number of keywords which reflect the different listing annotations available. They
are:

ALL
NONE
CODE Used for annotations of machine code listing. Only NOP instructions are currenly

annotated.
DETAIL Provides greater detail, used in conjunction with other keywords.

The remaining keywords reflect GEM optimizations:

 INLINING
 LOOP_TRANSFORMS
 LOOP_UNROLLING
 PREFETCHING

17

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

 SHRINKWRAPPING
 SOFTWARE_PIPELINING
 TAIL_CALLS
 TAIL_RECURSION
 LINKAGES

All keywords with the exception of ALL and NONE are negatable. The qualifier itself is also negatable.
By default it is not present in the command line.

If the /ANNOTATIONS qualifier is specified without any parameters the default is ALL.

1.4.11. /ALPHA_REGISTER_MAPPING Qualifier

The OpenVMS I64 BLISS compiler supports a new compilation qualifier to enable
ALPHA_REGISTER_MAPPING without having to modify the source.

This is a positional qualifier.

Specifying this qualifier on the compilation line for a module is equivalent to setting the
ALPHA_REGISTER_MAPPING switch in the module header.

1.4.12. /ALPHA_REGISTER_MAPPING Informationals

For OpenVMS I64 BLISS new informational messages have been added to show the usage of the
ALPHA_REGISTER_MAPPING feature.

If the switch ALPHA_REGISTER_MAPPING is specified in the module header or as an argument to
the SWITCHES declaration the following will be displayed:

MODULE SIMPLE (MAIN=TEST, ALPHA_REGISTER_MAPPING)=
 ^
 %BLS64-I-TEXT, Alpha Register Mapping enabled

If the switch NOALPHA_REGISTER_MAPPING is specified in the module header or as an argument to
the SWITCH declaration the following will be displayed:

MODULE SIMPLE (MAIN=TEST, NOALPHA_REGISTER_MAPPING)=
 ^
 %BLS64-I-TEXT, Alpha Register Mapping disabled

1.4.13. ADD, AND, Built-in Functions for Atomic Operations

The ADD_ATOMIC_XXXX, AND_ATOMIC_XXXX and OR_ATOMIC_XXXX built-in functions for
atomic updating of memory are supported by OpenVMS I64 BLISS.

Because the Itanium instructions to support these built-ins will wait until the operation succeeds the
optional retry-count input parameter has been eliminated. These built-ins now have the form:

<op>_ATOMIC_<size>(ptr, expr
 [;old_value]) !Optional output

 Value: 1 Operation succeeded
 0 Operation failed

 <op> is one of AND, ADD OR

18

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

 <size> is one of LONG or QUAD

The operation is addition (or ANDing or ORing) of the expression EXPR to the data-segment pointed to
by PTR in an atomic fashion.

PTR must be a naturally-aligned address.

The optional output parameter OLD_VALUE is set to the previous value of the data-segment pointed to
by PTR.

Any attempt to use the OpenVMS Alpha BLISS optional retry_count results in a syntax error.

1.4.14. TESTBITxxI and TESTBITxx Built-in Functions for Atomic
Operations
The TESTBITxxI and TESTBITxx built-in functions for atomic operations are supported by
OpenVMS I64 BLISS.

Because the Itanium instruction to support these built-ins will wait until the operation succeeds the
optionial input parameter retry_count and the optional output parameter success_flag have
been eliminated.

These built-ins now have the form:

 TESTBITxxx(field)

Any attempt to use the OpenVMS Alpha BLISS optional retry_count or
success_flag arguments results in a syntax error.

1.4.15. Granularity of Byte, Longword and Quadword Writes
OpenVMS I64 BLISS will support the /GRANULARITY=keyword qualifier, the switch
DEFAULT_GRANULARITY=n, and the data attribute GRANUALRITY(n) as described below.

Users can control the granularity of stores and fetches by using the command line qualifier
/GRANULARITY=keyword, the switch DEFAULT_GRANULARITY=n, and the data attribute
GRANULARITY(n).

The keyword in the command line qualifier must be either BYTE, LONGWORD, or QUADWORD. The
parameter n must be either 0(byte), 2(longword) or 3(quadword).

When these are used together, the data attribute has the highest priority. The switch, when used in a
SWITCHES declaration, sets the granularity of data declared after it within the same scope. The switch
may also be used in the module header. The command line qualifier has the lowest priority.

1.4.16. Shift Built-in Functions
The Alpha built-in functions for shifts in a known direction are be supported for OpenVMS I64 BLISS.

They are only valid for shift amounts in the range 0..%BPVAL-1.

1.4.17. Compare and Swap Built-in Functions
OpenVMS I64 provides support for the following new compare and swap built-in functions:

19

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

● CMP_SWAP_LONG(addr, comparand, value)

● CMP_SWAP_QUAD(addr, comparand, value)

These functions do the following interlocked operations: compare the longword or quadword at addr
with comparand, and if they are equal, store value at addr. They return an indicator of success (1) or
failure (0).

Note

These new built-in functions are provided for OpenVMS Alpha BLISS as well.

1.4.18. I64-specific Multimedia Instructions

There are no plans to support access to the I64-specific multimedia-type instructions.

1.4.19. Linkages

1.4.19.1. CALL Linkage

The CALL linkage, as described below for OpenVMS Alpha Bliss, is supported by OpenVMS I64
BLISS.

Routines compiled with a 32-bit compiler can call routines compiled with a 64-bit compiler and vice
versa. Parameters are truncated when shortened, and sign-extended when lengthened.

By default, CALL linkages pass an argument count. This can be overridden using the NOCOUNT linkage
option.

Though the arguments are passed in quadwords, the 32-bit compilers can only "see" the lower 32 bits.

1.4.19.2. JSB Linkage

The OpenVMS I64 BLISS compilers have a JSB linkage type. Routines declared with the JSB linkage
will fit in with the JSB rules as defined by the OpenVMS Calling Standard.

1.4.20. /[NO]TIE Qualifier

This qualifier is supported for OpenVMS I64.

TIE is used to enable the compiled code to be used in combination with translated images, either because
the code might call into a translated image or might be called from a translated image.

In particular, TIE

1. Causes the inclusion of procedure signature information in the compiled program. This may increase
the size and possibly also the number of relocations processed during linking and image activation,
but does not otherwise affect performance.

2. Causes calls to procedure values (sometimes called indirect or computed calls) to be compiled using
a service routine (OTS$CALL_PROC); this routine determines whether the target procedure is
native IPF code or in a translated image and proceeds accordingly.

20

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

/NOTIE is the default.

1.4.21. /ENVIRONMENT=([NO]FP) and ENVIRONMENT([NO]FP)
The /ENVIRONMENT=([NO]FP) qualifier and the ENVIRONMENT([NO]FP) switch were
provided for OpenVMS Alpha BLISS to cause the compiler to disable the use of floating point registers
for certain integer division operations.

For OpenVMS I64 BLISS, the /ENVIRONMENT=NOFP command qualifier or
ENVIRONMENT(NOFP) switch does not totally disable floating point due to the architectural features
of I64. Instead, source code is still restricted to not have floating point operations, but the generated
code for certain operations (in particular, integer multiplication and division and the constructs that imply
them) are restricted to use a small subset of the floating point registers. Specifically, if this option is
specified, the compiler is restricted to using f6-f11, and will set the ELF EF_IA_64_REDUCEFP
option described in the Intel Itanium Processor-specific Application Binary Interface, section 4.1.1.6.

The /ENVIRONMENT=FP command qualifier and ENVIRONMENT(FP) switch are unaffected.

1.4.22. Floating Point Support

1.4.22.1. Floating Point Built-in Functions

BLISS does not have a high level of support for floating-point numbers. The extent of the support
involves the ability to create floating-point literals, and there are machine-specific built-ins for floating-
point arithmetic and conversion operations.

None of the floating point built-in functions detect overflow, so they do not return a value.

1.4.22.2. Floating Point Literals

The floating point literals supported by OpenVMS I64 BLISS is the same set supported by OpenVMS
Alpha BLISS: %E, %D, %G, %S and %T.

1.4.22.3. Floating Point Registers

Direct use of the I64 floating-point registers is not supported.

1.4.22.4. Calling Non-BLISS Routines with Floating Point Parameters

It is possible to call standard non-BLISS routines that expect floating-point parameters passed by value,
and that return a floating-point or complex value.

The standard functions %FFLOAT, %DFLOAT, %GFLOAT, %SFLOAT and %TFLOAT are supported by
OpenVMS I64 BLISS.

1.4.23. New and Expanded Lexicals
BLISS will add new compiler-state lexicals to support the OpenVMS I64 compilers: BLISS32I and
BLISS64I.

● BLISS will add new compiler-state lexicals to support the OpenVMS I64 compilers: BLISS32I
and BLISS64I.

%BLISS(BLISS32) is true for all 32-bit BLISS compilers.

21

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

%BLISS(BLISS32V) is true only for VAX BLISS (BLISS-32).

%BLISS(BLISS32E) is true for all 32-bit Alpha compilers.

%BLISS(BLISS64E) is true for all 64-bit Alpha compilers.

%BLISS(BLISS32I) is true for all 32-bit I64 compilers.

%BLISS(BLISS64I) is true for all 64-bit I64 compilers.

● The lexicals %BLISS32I and %BLISS64I have been added. Their behavior matches that of the
new parameters to %BLISS.

● Support for the I64 architecture as a keyword to the %HOST and %TARGET lexicals has been added
for OpenVMS I64 BLISS.

1.4.24. OpenVMS I64 BLISS Support for IPF Short Data Sections
The OpenVMS Calling Standard requires that all global data objects with a size of 8 bytes or smaller be
allocated in short data sections.

Short data sections can be addressed with an efficient code sequence that involves adding a 22-bit literal
to the contents of the GP base register. This code sequence limits the combined size of all the short data
sections. A linker error will occur if the total amount of data allocated to short data sections exceeds a
size of 2**22 bytes.

Compilers on Itanium can use GP relative addressing when accessing short globals and short externals.

OpenVMS I64 BLISS has a new PSECT attribute, GP_RELATIVE, and a new PSECT attribute,
SHORT, to support allocating short data sections.

Specifying the GP_RELATIVE keyword as a PSECT attribute causes that PSECT to be labeled as
containing short data so that the linker will allocate the PSECT close to the GP base address.

The syntax of the SHORT attribute is as follows:

"SHORT" "(" psect-name ")"

The following rules apply to the SHORT attribute:

1. If the psect-name in a SHORT attribute is not yet declared then its appearance in a SHORT attribute
constitutes a declaration. The attributes of the PSECT containing the SHORT attribute become the
attributes of the PSECT named in the SHORT attribute, except that the PSECT name declared in the
SHORT attribute does not have the SHORT attribute and the PSECT name declared in the SHORT
attribute does have the GP_RELATIVE attribute.

2. If the psect-name in a SHORT attribute has been previously declared then its attributes are not
changed. A warning message is generated if the PSECT named in a SHORT attribute does not have
the GP_RELATIVE attribute.

3. If a data object with storage class OWN, GLOBAL or PLIT has a size of 8 or fewer bytes and the data
object is specified to be allocated to a PSECT that includes the SHORT attribute, then that object is
allocated to the PSECT named in the SHORT attribute. Note that this is a one-step process that is not
recursive. If a short data object has it allocation PSECT renamed by the SHORT attribute, then the
SHORT attribute of the renamed PSECT is not considered for any further renaming.

22

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

4. Data objects with sizes larger then 8 bytes ignore the SHORT attribute.

5. Data objects in the CODE, INITIAL and LINKAGE storage classes ignore the SHORT attribute,
regardless of their size.

6. For the purposes of PSECT renaming by means of the SHORT attribute, the size of a PLIT object
does not include the size of the count word that precedes the PLIT data.

Example:

PSECT

 NODEFAULT = $GLOBAL_SHORT$
 (READ,WRITE,NOEXECUTE,NOSHARE,NOPIC,CONCATENATE,LOCAL,ALIGN(3),
 GP_RELATIVE),

! The above declaration of $GLOBAL_SHORT$ is not needed. If the above
! declaration were deleted then the SHORT($GLOBAL_SHORT$) attribute in
! the following declaration would implicitly make an identical
! declaration of $GLOBAL_SHORT$.

 GLOBAL = $GLOBAL$
 (READ,WRITE,NOEXECUTE,NOSHARE,NOPIC,CONCATENATE,LOCAL,ALIGN(3),
 SHORT($GLOBAL_SHORT$)),

 NODEFAULT = MY_GLOBAL
 (READ,WRITE,NOEXECUTE,SHARE,NOPIC,CONCATENATE,LOCAL,ALIGN(3)),

 PLIT = $PLIT$
 (READ,NOWRITE,NOEXECUTE,SHARE,NOPIC,CONCATENATE,GLOBAL,ALIGN(3),
 SHORT($PLIT_SHORT$));

GLOBAL

 X1, ! allocated in $GLOBAL_SHORT$
 Y1 : VECTOR[2,LONG], ! allocated in $GLOBAL_SHORT$
 Z1 : VECTOR[3,LONG], ! allocated in $GLOBAL$
 A1 : PSECT(MY_GLOBAL), ! allocated in MY_GLOBAL
 B1 : VECTOR[3,LONG] PSECT(MY_GLOBAL), ! allocated in MY_GLOBAL
 C1 : VECTOR[3,LONG]
 PSECT($GLOBAL_SHORT$); ! allocated in $GLOBAL_SHORT$

PSECT GLOBAL = MY_GLOBAL;
! use MY_GLOBAL as default for both noshort/short

GLOBAL
 X2, ! allocated in MY_GLOBAL
 Y2 : VECTOR[2,LONG], ! allocated in MY_GLOBAL
 Z2 : VECTOR[3,LONG], ! allocated in MY_GLOBAL
 A2 : PSECT($GLOBAL$), ! allocated in $GLOBAL_SHORT$
 B2 : VECTOR[3,LONG] PSECT($GLOBAL$); ! allocated in $GLOBAL$;

! Note that the allocations of A1, X2 and Y2 violate the calling
! standard rules. These variables cannot be shared with other
! languages, such as C or C++.

PSECT GLOBAL = $GLOBAL$;
! back to using $GLOBAL$/$GLOBAL_SHORT$ as default noshort/short

23

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

GLOBAL BIND
 P1 = UPLIT("abcdefghi"), ! allocated in $PLIT$
 P2 = PLIT("abcdefgh"), ! allocated in $PLIT_SHORT$
 P3 = PSECT(GLOBAL) PLIT("AB"), ! allocated in $GLOBAL_SHORT$
 p4 = PSECT($PLIT_SHORT$)
 PLIT("abcdefghijklmn"), ! allocated in $PLIT_SHORT$
 P5 = PSECT(MY_GLOBAL) PLIT("AB"); ! allocated in MY_GLOBAL

! Note that the allocations of A1, X2, Y2 and P5 violate the calling
! standard rules. These variables cannot be shared with other
! languages, such as C or C++. They can be shared with modules
! written in BLISS and MACRO.

Note

Openvms I64 BLISS does not support using GP_RELATIVE addressing mode on EXTERNAL
variable references. However, the usual GENERAL addressing mode used by EXTERNAL
variables will correctly reference a GP_RELATIVE section. There are no plans to add an
ADDRESSING_MODE(GP_RELATIVE) attribute to BLISS.

1.5. BLISS Differences Between Itanium BLISS and
x86-64 BLISS
This section describes those BLISS features that will not be supported by OpenVMS x86-64 BLISS.

1.5.1. Floating Point Register Names
The Alpha/Itanium floating point register names are not supported for naming in REGISTER,
GLOBAL REGISTER, EXTERNAL REGISTER or as parameters to LINKAGE declarations.

1.5.2. RETURNADDRESS Built-in with BLISS-32
The RETURNADDRESS built-in function returns the PC of the caller's caller.

The linker on OpenVMS x86-64 will place code in 64-bit address space by default. BLISS-32 will only
return the bottom 32-bits of the PC of the caller's caller. There is no ability to obtain the full 64-bit
return address from BLISS-32.

1.5.3. BLI$CALLG Removed
The VAX idiom CALLG(.AP, ...) was replaced by an assembly routine
BLI$CALLG(ARGPTR(), .RTN) for OpenVMS Alpha and OpenVMS I64.

The BLI$CALLG routine that was present on OpenVMS Alpha and OpenVMS I64 has been obsoleted
for OpenVMS x86-64. Programs should just use the LIB$CALLG Run-Time Library function which
performs the identical function.

1.5.4. ALPHA_REGISTER_MAPPING SWITCH and Qualifier
The module level switch ALPHA_REGISTER_MAPPING as well as the
ALPHA_REGISTERMAPPING DCL qualifier are essentially ignored. All

24

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

1.5.5. Unsupported and Ignored DCL Qualifiers
The /ANNOTATIONS qualifier which provides information about optimizations applied to the program
on Alpha and I64 is ignored on x86-64.

The /GRANULARITY qualifier is ignored for x86-64. The x86 architecture is a byte-granular
architecture and the code generator will automatically adjust as needed for better performance.

The /MACHINE_CODE qualifier is ignored on x86-64. Use ANALYZE/OBJECT/DISASSEMBLE as
an alternative. We will provide an improved machine code listing in a future release.

The /TIE qualifier is ignored for x86-64 since there is no binary translator available on OpenVMS
x86-64.

1.5.6. Built-ins Supported from OpenVMS Alpha and OpenVMS I64
Systems

1.5.6.1. SETREG and GETREG Built-ins

The OpenVMS I64 BLISS compiler provided built-in functions (GETREG, SETREG, GETREGIND,
SETREGIND) for access to read and write the many and varied processor registers. The built-ins are
support on OpenVMS x86-64 for a limited number of x86-64 general registers and processor registers.
See STARLET.REQ (X86REG$ prefixed symbols) for the short list of registers.

1.5.6.2. Built-ins from OpenVMS I64

A small number of built-ins that were added for OpenVMS I64 BLISS are supported with OpenVMS
x86-64 BLISS.

BREAK
BREAK2

1.5.6.3. Built-ins from OpenVMS Alpha

The following built-ins from OpenVMS ALpha BLISS are supported with OpenVMS x86-64 BLISS.

BARRIER
ESTABLISH
REVERT

ROT
SLL
SRA
SRL
UMULH

ADAWI

ADD_ATOMIC_LONG AND_ATOMIC_LONG OR_ATOMIC_LONG
ADD_ATOMIC_QUAD AND_ATOMIC_QUAD OR_ATOMIC_QUAD

CMP_SWAP_LONG CMP_SWAP_QUAD

TESTBITSSI TESTBITCC TESTBITCS
TESTBITCCI TESTBITSS TESTBITSC

25

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

ADDD DIVD MULD SUBD CMPD
ADDF DIVF MULF SUBF CMPF
ADDG DIVG MULG SUBG CMPG
ADDS DIVS MULS SUBS CMPS
ADDT DIVT MULT SUBT CMPT

CVTDF CVTFD CVTGD CVTSF CVTTD
CVTDG CVTFG CVTGF CVTSI CVTTG
CVTDI CVTFI CVTGI CVTSL CVTTI
CVTDL CVTFL CVTGL CVTSQ CVTTL
CVTDQ CVTFQ CVTGQ CVTST CVTTQ
CVTDT CVTFS CVTGT CVTTS

CVTID CVTLD CVTQD
CVTIF CVTLF CVTQF
CVTIG CVTLG CVTQG
CVTIS CVTLS CVTQS
CVTIT CVTLT CVTQT

CVTRDL CVTRDQ
CVTRFL CVTRFQ
CVTRGL CVTRGQ
CVTRSL CVTRSQ
CVTRTL CVTRTQ

PAL_INSQHIL PAL_REMQHIL
PAL_INSQHILR PAL_REMQHILR
PAL_INSQHIQ PAL_REMQHIQ
PAL_INSQHIQR PAL_REMQHIQR
PAL_INSQTIL PAL_REMQTIL
PAL_INSQTILR PAL_REMQTILR
PAL_INSQTIQ PAL_REMQTIQ
PAL_INSQTIQR PAL_REMQTIQR
PAL_INSQUEL PAL_REMQUEL
PAL_INSQUEL_D PAL_REMQUEL_D
PAL_INSQUEQ PAL_REMQUEQ
PAL_INSQUEQ_D PAL_REMQUEQ_D

The TESTBITxx instructions do not support the optional retry-count input argument or the optional
success-flag output argument from Alpha.

The XXX_ATOMIC_XXX do not support the optional retry-count input argument from Alpha. These
built-ins now have the form:

<op>_ATOMIC_<size>(ptr, expr
 [;old_value]) !Optional output

 Value: 1 Operation succeeded
 0 Operation failed

 <op> is one of AND, ADD OR
 <size> is one of LONG or QUAD

The operation is addition (or ANDing or ORing) of the expression EXPR to the data-segment pointed to
by PTR in an atomic fashion.

PTR must be a naturally-aligned address.

26

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

The optional output parameter OLD_VALUE is set to the previous value of the data-segment pointed to
by PTR.

Any attempt to use the OpenVMS Alpha BLISS optional retry_count will result in a syntax error.

The CMP_SWAP built-ins have the form:

CMP_SWAP_<op>(addr, comparand, value)

These functions do the following interlocked operations: compare the longword or quadword at addr
with comparand, and if they are equal, store value at addr. They return an indicator of success (1) or
failure (0).

1.5.7. New and Expanded Lexicals
BLISS will add new compiler-state lexicals to support the OpenVMS x86-64 compilers: BLISS32X
and BLISS64X.

● %BLISS will now recognize BLISS32E, BLISS64E, BLISS32V, BLISS32I, BLISS64I,
BLISS32X, and BLISS64X.

%BLISS(BLISS32) is true for all 32-bit BLISS compilers.

%BLISS(BLISS32V) is true only for VAX BLISS (BLISS-32).

%BLISS(BLISS32E) is true for all 32-bit Alpha compilers.

%BLISS(BLISS64E) is true for all 64-bit Alpha compilers.

%BLISS(BLISS32I) is true for all 32-bit I64 compilers.

%BLISS(BLISS64I) is true for all 64-bit I64 compilers.

%BLISS(BLISS32X) is true for all 32-bit x86-64 compilers.

%BLISS(BLISS64X) is true for all 64-bit x86-64 compilers.

● The lexicals %BLISS32X and %BLISS64X have been added. Their behavior will parallel that of
the new parameters to %BLISS.

● Support for the x86_64 (also x86) architecture as a keyword to the %HOST and %TARGET lexicals
has been added for OpenVMS x86-64 BLISS.

1.6. Floating Point Support
1.6.1. Floating Point Built-in Functions
BLISS does not have a high level of support for floating-point numbers. The extent of the support
involves the ability to create floating-point literals, and there are machine-specific built-ins for floating-
point arithmetic and conversion operations.

1.6.2. Floating Point Literals
The floating point literals supported by OpenVMS x86-64 BLISS is the same set supported by
OpenVMS Alpha and OpenVMS I64 BLISS: %E, %D, %G, %S and %T.

27

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

1.6.3. Floating Point Registers
Direct use of the x86-64 floating-point registers is not supported.

1.6.4. Calling Non-BLISS Routines with Floating Point Parameters
It is possible to call standard non-BLISS routines that expect floating-point parameters passed by value,
and that return a floating-point or complex value.

The standard functions %FFLOAT, %DFLOAT, %GFLOAT, %SFLOAT and %TFLOAT will be supported
by OpenVMS x86-64 BLISS.

1.7. Documentation
Documentation avaliable for OpenVMS x64-64 BLISS consists of the following:

● VAX BLISS-32 Language Reference Manual (SYS$HELP:BLISSREFMANUAL.PDF)

● VAX BLISS-32 Language User Manual (SYS$HELP:BLISSUSERMANUAL.PDF)

● These release notes.

We are considering a future update/addendum to the manual to incorporate all the information from
these release notes.

1.8. Debugging
All programs that will be used with a debugger should be compiled with the /NOOPTIMIZE/DEBUG
qualifiers. Debugging optimized code is very difficult. Compilation with normal (full) optimization will
have these noticeable effects:

● Stepping by line will generally seem to bounce around due to the effects of code scheduling. The
general drift will definitely be forward, but experience indicates that the effect will be very close to
stepping by instruction.

● Variables that are "split" so that they are allocated in more than one location during different parts of
their lifetimes are not described at all.

Neither of these problems will occur in modules compiled /NOOPTIMIZE.

Debugging on OpenVMS x86-64 is currently limited due to missing support in the LLVM backend
for BLISS-specific DWARF records. We are working on this and expect future versions of BLISS to be
improved.

1.9. Building the STARLET and LIB .L32 and .L64
libraries
The STARLET and LIB precompiled header files are shipped as part of the OpenVMS x86-64 kit. If
you need to rebuild them yourself, below are the commands required to do so:

$bliss/x32/terminal=noerrors/lib=sys$common:[syslib]starlet.l32 sys
$library:starlet.req
$bliss/x32/terminal=noerrors/lib=sys$common:[syslib]lib.l32 sys
$library:starlet.req+sys$library:lib.req

28

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

$bliss/x64/terminal=noerrors/lib=sys$common:[syslib]starlet.l64 sys
$library:starlet.r64
$bliss/x64/terminal=noerrors/Assume=NoQuad_Literal -
 /lib=sys$common:[syslib]lib.l64 sys
$library:starlet.r64+sys$library:lib.r64

You will need to be logged into an account with system privileges to
successfuly write the files to SYS$COMMON:[SYSLIB]

2. Maintenance Corrections for OpenVMS
x86-64 BLISS
The following bugs have been fixed since the V1.13-136 release.

1. Initializing a bitvector would incorrectly overwrite adjacent variables. The following example
incorrectly writes 32-bits to variable A which is only 8-bits big:

 global b;
 local a : initial(.b) bitvector[8];

2. A field-selected store with size of zero would incorrectly write into the destination. This example
incorrectly writes the bottom byte of 'data':

own data : initial(-1);

 routine write(dptr, offset, s) : novalue =
 begin (.dptr)<.offset,.s,0> = 0; end;

 write(data,0,0);

3. The alignment of EXTERNAL LITERALs was incorrectly computed and the optimizer would
incorrectly believe that different literals were the same value.

4. The WEAK attribute did not work with EXTERNAL ROUTINE. It would generate a non-WEAK
reference instead.

5. LOCAL variables in nested scopes in a routine would get incorrect debug information and sometimes
cause a compiler assertion.

6. The compiler would get a G2L assertion if a routine and variable had the same name.

7. The ACTUALCOUNT builtin would sometimes return the wrong number of arguments when the
optimizer was enabled.

8. The compiler would generate incorrect calling sequences when calling a routine inside the same
module with different number of arguments.

9. The optimizer would perform a "tail-call" optimization where it would replace the final "callq"
instruction with a "jmp" instruction. This transformation is not allowed by the OpenVMS Calling
Standard and results in the exception handling stack-walking code to return prematurely.

10. Overlay PSECTs would be generated with extra padding at the end and be the wrong size.

11. The compiler would ACCVIO if /DEBUG was used with some LINKAGE declarations that
references Alpha registers.

29

VSI BLISS X1.14-141 for OpenVMS x86-64 Systems Release Notes

12. Improved code for various VAX floating builtins. The prior compiler would sometimes convert the
VAX floating to IEEE floating then immediately convert it back to VAX floating.

13. The compiler now uses 64-bit heap for much of the optimizer and code-generator. This allows much
larger programs to be compiled.

3. Known Bugs and Deficiencies
This chapter describes known bugs and deficiencies in the x86-64 BLISS compiler.

1. Due to a design flaw in structure definitions, compiler errors can occur when the first occurrence of a
structure formal is within a conditional branch.

Example:

 STRUCTURE BAD[I,P,S]= [%UPVAL]
 (IF .I THEN BAD ELSE BAD + .BAD<16,16>)<P,S>;

BLISS semantics guarantee that a structure actual-parameter is evaluated only once. This is
implemented by treating the first occurrence of a structure formal as if it were a BIND declaration.
The other occurrences of the structure formal are then treated as if they were uses of the "imaginary"
bind-name. This choice of implementation fails when the first occurrence of the structure formal is in
conditional flow. The problem can be avoided by ensuring that the first occurrence of each formal is
outside of conditional flow. The example structure should be written as:

STRUCTURE GOOD[I,P,S]= [%UPVAL]
 (GOOD; IF .I THEN GOOD ELSE GOOD
 + .GOOD<16,16>)<P,S>;

Note that the "structure-name" is the zeroth structure formal parameter. The formals "I", "P", and
"S" are already outside of conditional flow, so they are processed correctly. This change will cause
the compiler to use slightly more memory, but the resulting code will be correct. There also should
be no reduction in optimization.

No problem will occur when the conditional flow is constant folded at compile time, or when there is
no conditional flow in the structure body.

30

	VSI BLISS X1.14-141 for OpenVMS x86-64 Systems
	Table of Contents
	1. OpenVMS X86-64 BLISS Bugfixes, Features, and Differences
	1.1. The Family of BLISS Compilers
	1.2. File Extensions and Output Locations
	1.3. BLISS Differences Between VAX BLISS-32 and Alpha BLISS
	1.3.1. VAX Hardware Registers
	1.3.1.1. AP Register
	1.3.1.2. FP Register
	1.3.1.3. SP Register
	1.3.1.4. PC Register

	1.3.2. QUAD Allocation Unit
	1.3.3. Attributes
	1.3.3.1. ALIGN Attribute
	1.3.3.2. ALIAS Attribute
	1.3.3.3. VOLATILE Attribute

	1.3.4. Linkages
	1.3.4.1. CALL linkage
	1.3.4.2. JSB Linkage
	1.3.4.3. Global Registers
	1.3.4.4. INTERRUPT and EXCEPTION Linkages
	1.3.4.5. COUNT and NOCOUNT Linkage Attributes

	1.3.5. Machine Specific Features
	1.3.5.1. Alpha Registers
	1.3.5.2. PALcode Built-in Functions
	1.3.5.3. New Built-in Functions for Atomic Operations
	1.3.5.4. Compatible Built-in Functions for Atomic Operations
	1.3.5.5. New Shift Built-in Functions
	1.3.5.6. Other Machine-specific Built-in Functions

	1.4. BLISS Differences Between Alpha BLISS and Itanium BLISS
	1.4.1. Machine Specific Built-ins
	1.4.2. Itanium Registers
	1.4.3. PALcode Built-in Functions
	1.4.4. INTERRUPT and EXCEPTION Linkages
	1.4.5. "BUILTIN Rn"
	1.4.6. Built-ins
	1.4.6.1. Common BLISS Built-ins
	1.4.6.1.1. RETURNADDRESS Built-in

	1.4.6.2. Machine-specific Built-ins
	1.4.6.3. New Machine-specific Built-ins
	1.4.6.3.1. Built-ins for Single Instructions
	1.4.6.3.2. Access to Processor Registers

	1.4.6.4. PALcode Built-ins

	1.4.7. BLI$CALLG
	1.4.8. Itanium Registers
	1.4.9. ALPHA_REGISTER_MAPPING switch
	1.4.9.1. ALPHA_REGISTER_MAPPING and Linkage Declarations
	1.4.9.1.1. ALPHA_REGISTER_MAPPING and "NOTUSED"

	1.4.10. /ANNOTATIONS Qualifier
	1.4.11. /ALPHA_REGISTER_MAPPING Qualifier
	1.4.12. /ALPHA_REGISTER_MAPPING Informationals
	1.4.13. ADD, AND, Built-in Functions for Atomic Operations
	1.4.14. TESTBITxxI and TESTBITxx Built-in Functions for Atomic Operations
	1.4.15. Granularity of Byte, Longword and Quadword Writes
	1.4.16. Shift Built-in Functions
	1.4.17. Compare and Swap Built-in Functions
	1.4.18. I64-specific Multimedia Instructions
	1.4.19. Linkages
	1.4.19.1. CALL Linkage
	1.4.19.2. JSB Linkage

	1.4.20. /[NO]TIE Qualifier
	1.4.21. /ENVIRONMENT=([NO]FP) and ENVIRONMENT([NO]FP)
	1.4.22. Floating Point Support
	1.4.22.1. Floating Point Built-in Functions
	1.4.22.2. Floating Point Literals
	1.4.22.3. Floating Point Registers
	1.4.22.4. Calling Non-BLISS Routines with Floating Point Parameters

	1.4.23. New and Expanded Lexicals
	1.4.24. OpenVMS I64 BLISS Support for IPF Short Data Sections

	1.5. BLISS Differences Between Itanium BLISS and x86-64 BLISS
	1.5.1. Floating Point Register Names
	1.5.2. RETURNADDRESS Built-in with BLISS-32
	1.5.3. BLI$CALLG Removed
	1.5.4. ALPHA_REGISTER_MAPPING SWITCH and Qualifier
	1.5.5. Unsupported and Ignored DCL Qualifiers
	1.5.6. Built-ins Supported from OpenVMS Alpha and OpenVMS I64 Systems
	1.5.6.1. SETREG and GETREG Built-ins
	1.5.6.2. Built-ins from OpenVMS I64
	1.5.6.3. Built-ins from OpenVMS Alpha

	1.5.7. New and Expanded Lexicals

	1.6. Floating Point Support
	1.6.1. Floating Point Built-in Functions
	1.6.2. Floating Point Literals
	1.6.3. Floating Point Registers
	1.6.4. Calling Non-BLISS Routines with Floating Point Parameters

	1.7. Documentation
	1.8. Debugging
	1.9. Building the STARLET and LIB .L32 and .L64 libraries

	2. Maintenance Corrections for OpenVMS x86-64 BLISS
	3. Known Bugs and Deficiencies

