
VSI OpenVMS

Guide to OpenVMS File Applications

Operating System and Version: VSI OpenVMS IA-64 Version 8.4-1H1 or higher
VSI OpenVMS Alpha Version 8.4-2L1 or higher

VMS Software, Inc. (VSI)
Boston, Massachusetts, USA

Guide to OpenVMS File Applications

Copyright © 2025 VMS Software, Inc. (VSI), Boston, Massachusetts, USA

Legal Notice

Confidential computer software. Valid license from VSI required for possession, use or copying. Consistent with FAR 12.211 and 12.212,
Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S.
Government under vendor's standard commercial license.

The information contained herein is subject to change without notice. The only warranties for VSI products and services are set forth in the
express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional
warranty. VSI shall not be liable for technical or editorial errors or omissions contained herein.

HPE, HPE Integrity, HPE Alpha, and HPE Proliant are trademarks or registered trademarks of Hewlett Packard Enterprise.

ii

Guide to OpenVMS File Applications

Table of Contents
Preface .. xi

1. About VSI ... xi
2. Intended Audience .. xi
3. Document Structure .. xi
4. Related Documents .. xii
5. OpenVMS Documentation ... xii
6. VSI Encourages Your Comments .. xii
7. Conventions .. xii

Chapter 1. Introduction ... 1
1.1. File Concepts ... 1
1.2. Disk Concepts .. 3

1.2.1. Files–11 On-Disk Structure Concepts .. 5
1.2.2. Files–11 Control Files .. 7

1.2.2.1. Index File ... 8
1.2.2.2. Storage Bit Map File ... 9
1.2.2.3. Bad Block File .. 9
1.2.2.4. Master File Directory .. 9
1.2.2.5. Core Image File .. 9
1.2.2.6. Volume Set List File .. 9
1.2.2.7. Continuation File ... 9
1.2.2.8. Backup Log File .. 10
1.2.2.9. Pending Bad Block Log File ... 10
1.2.2.10. Security Profiles File (VAX Only) .. 10

1.2.3. Files–11 On–Disk Structure Level 1 Versus Structure Level 2 10
1.2.4. Physical Structures ... 11
1.2.5. CD–ROM Concepts .. 12

1.2.5.1. CD–ROM On-Disc Formats ... 12
1.2.5.2. Volume Structure .. 12
1.2.5.3. Files–11 C/D – ACPs .. 13
1.2.5.4. Using DIGITAL System Identifiers on CD–ROM 13

1.3. Magnetic Tape Concepts .. 15
1.3.1. ANSI-Labeled Magnetic Tape ... 16

1.3.1.1. Logical Format of ANSI Magnetic Tape Volumes 16
1.3.1.2. RMS Magnetic Tape Ancillary Control Process (MTAACP) 16
1.3.1.3. Basic Components of the ANSI Magnetic Tape Format 16
1.3.1.4. Volume and File Configurations ... 18
1.3.1.5. Volume Labels .. 20
1.3.1.6. Header Labels ... 21
1.3.1.7. Trailer Labels .. 27

1.4. Using Command Procedures to Perform Routine File and Device Operations 28
1.5. Volume Protection .. 28
1.6. RMS (Record Management Services) ... 29

1.6.1. File Definition Language (FDL) .. 29
1.6.2. RMS Data Structures .. 29
1.6.3. Record Management Services .. 30

1.7. RMS Utilities ... 30
1.7.1. The Analyze/RMS_File Utility .. 30
1.7.2. The Convert Utility .. 31
1.7.3. The Convert/Reclaim Utility .. 31

iii

Guide to OpenVMS File Applications

1.7.4. The Create/FDL Utility .. 32
1.7.5. The Edit/FDL Utility .. 32

1.8. Process and System Resources for File Applications ... 33
1.8.1. Memory Requirements .. 33
1.8.2. Process Limits .. 34

Chapter 2. Choosing a File Organization ... 35
2.1. Record Concepts ... 35

2.1.1. Record Access Modes ... 36
2.1.1.1. Sequential Access .. 36
2.1.1.2. Random Access by Key Value or Relative Record Number 38
2.1.1.3. Random Access by Record File Address .. 39

2.1.2. Record Formats .. 40
2.1.2.1. Fixed-Length Record Format .. 41
2.1.2.2. Variable-Length Record Format .. 41
2.1.2.3. Variable-Length with Fixed-Length Control Field (VFC) Record
Format .. 42
2.1.2.4. Stream Record Format ... 43

2.2. File Organization Concepts .. 44
2.2.1. Sequential File Organization .. 45
2.2.2. Relative File Organization ... 46
2.2.3. Indexed File Organization ... 48

2.2.3.1. Sequentially Retrieving Indexed Records .. 48
2.2.3.2. Index Keys .. 49
2.2.3.3. Other Key Characteristics ... 49
2.2.3.4. Specifying Sort Order .. 50
2.2.3.5. Using Collated Keys .. 51
2.2.3.6. Summary of Indexed File Organization ... 52

Chapter 3. Performance Considerations ... 53
3.1. Design Considerations ... 53

3.1.1. Speed .. 53
3.1.2. Space .. 54
3.1.3. Shared Access .. 55
3.1.4. Impact on Applications Design .. 55

3.2. Tuning ... 55
3.2.1. File Design Attributes ... 55

3.2.1.1. Initial File Allocation ... 56
3.2.1.2. Contiguity ... 56
3.2.1.3. Extending a File .. 56
3.2.1.4. Truncating a File ... 60
3.2.1.5. Units of I/O .. 61
3.2.1.6. Multiple Areas for Indexed Files ... 61
3.2.1.7. Bucket Fill Factor for Indexed Files .. 61

3.2.2. Processing Options ... 62
3.2.2.1. Multiple Buffers .. 62
3.2.2.2. Deferred-Write Processing .. 63
3.2.2.3. Global Buffers ... 63
3.2.2.4. Read-Ahead and Write-Behind Processing ... 64

3.3. Tuning a Sequential File .. 64
3.3.1. Block Span Option ... 64
3.3.2. Multiblock Size Option ... 64
3.3.3. Number of Buffers ... 65

iv

Guide to OpenVMS File Applications

3.3.4. Global Buffer Option .. 65
3.3.5. Read-Ahead and Write-Behind Options .. 65

3.4. Tuning a Relative File ... 66
3.4.1. Bucket Size .. 66
3.4.2. Number of Buffers ... 67
3.4.3. Global Buffer Option .. 68
3.4.4. Deferred-Write Option .. 68

3.5. Tuning an Indexed File ... 69
3.5.1. File Structure ... 69

3.5.1.1. Prologs ... 69
3.5.1.2. Primary Index Structure ... 70
3.5.1.3. Alternate Index Structure ... 72
3.5.1.4. Records ... 72
3.5.1.5. Keys ... 73
3.5.1.6. Areas .. 73

3.5.2. Optimizing File Performance ... 75
3.5.2.1. Bucket Size ... 75
3.5.2.2. Fill Factor ... 76
3.5.2.3. Number of Buffers ... 76
3.5.2.4. Global Buffers ... 77
3.5.2.5. Using the Deferred-Write Option .. 77

3.6. Monitoring RMS Performance ... 78
3.6.1. Enabling RMS Statistics .. 78
3.6.2. Using RMS Statistics .. 79

3.7. Processing in an OpenVMS Cluster Environment ... 81
3.7.1. OpenVMS Cluster Shared Access .. 81

3.7.1.1. Locking Considerations .. 82
3.7.1.2. I/O Considerations ... 82

3.7.2. Performance Recommendations ... 82
Chapter 4. Creating and Populating Files .. 85

4.1. File Creation Characteristics .. 85
4.1.1. Using RMS Control Blocks ... 85

4.1.1.1. File Access Block .. 85
4.1.1.2. Extended Attribute Blocks .. 86

4.1.2. Using File Definition Language ... 86
4.1.2.1. Using the Edit/FDL Utility ... 87
4.1.2.2. Designing an FDL File .. 95

4.1.3. Using the FDL Routines ... 97
4.2. Creating a File .. 99

4.2.1. Using the Create Service ... 99
4.2.2. Using the Create/FDL Utility .. 100
4.2.3. Using the Convert Utility .. 100
4.2.4. Using the FDL$CREATE Routine ... 100

4.3. Creating and Accessing Tagged Files .. 103
4.3.1. Programming Interface for File Tagging ... 104
4.3.2. Accessing a Tagged File .. 105

4.3.2.1. File Accesses That Do Not Sense Tags .. 106
4.3.2.2. File Accesses That Sense Tags .. 106

4.3.3. Preserving Tags .. 108
4.4. Defining File Protection ... 109

4.4.1. UIC-Based Protection ... 109
4.4.2. ACL-Based Protection .. 109

v

Guide to OpenVMS File Applications

4.5. Populating a File ... 110
4.5.1. Using the Convert Utility .. 110
4.5.2. Using the Convert Routines ... 110

4.6. Summary of File-Creation Options ... 114
4.6.1. File-Creation Options .. 114
4.6.2. File Characteristics ... 115
4.6.3. File Allocation and Positioning .. 118

Chapter 5. Locating and Naming Files on Disks ... 121
5.1. Understanding Disk File Specifications ... 121
5.2. File Specification Components ... 122

5.2.1. The Node Component .. 122
5.2.1.1. Local Node ... 122
5.2.1.2. Remote Node .. 123

5.2.2. The Device Component .. 123
5.2.3. On-Disk Components .. 124

5.2.3.1. Character Set for On-Disk Components ... 124
5.2.4. RMS and On-Disk Representation ... 125

5.2.4.1. Simple Characters .. 126
5.2.4.2. Compound Characters .. 126
5.2.4.3. Uppercase and Lowercase Letters and Multiple File Versions 127
5.2.4.4. Convert System Service .. 128

5.2.5. The Root Component ... 128
5.2.6. The Directory Component ... 128
5.2.7. The File Name, Type, and Version Components .. 129
5.2.8. Leading Hyphens in File and Subdirectory Names (Alpha Only) 130
5.2.9. Restrictions and Anomalies ... 130

5.2.9.1. Restriction with Extended File Names ... 130
5.2.9.2. DCL Parsing Anomaly ... 131

5.3. Logical Names and Parsing .. 132
5.4. File Specification and Component Length Limits ... 132

5.4.1. VAX Systems and ODS-2 Disks on Alpha Systems ... 132
5.4.2. ODS-5 on Alpha Systems .. 133
5.4.3. Maximum Subdirectory Depths ... 134
5.4.4. Accessing Files on ODS-5 Disks from VAX Systems ... 134
5.4.5. Determining the Structure Level of a Disk Device ... 134
5.4.6. Using File Specification Defaults ... 137

5.5. Image Activation Using Logical Names ... 137
5.6. Sample Use of Logical Names ... 138
5.7. Types of Logical Names .. 139
5.8. Introduction to File Parsing .. 140
5.9. Using One File Specification to Locate Many Files .. 141

5.9.1. Processing One File .. 147
5.9.2. Processing Many Files .. 148
5.9.3. Processing One or Many Files ... 148

Chapter 6. Advanced Use of File Specifications ... 151
6.1. How RMS Applies Defaults ... 151
6.2. Understanding RMS Parsing .. 154

6.2.1. Checking for Open-by-Name Block .. 154
6.2.2. File Specification Formats and Translating Logical Names 155
6.2.3. Special Parsing Conventions .. 156

6.2.3.1. Parsing Conventions for a Search List .. 156

vi

Guide to OpenVMS File Applications

6.2.3.2. Special Processing for a Related File Specification 158
6.2.3.3. Input File Specification Parsing ... 158
6.2.3.4. Output File Specification Parsing .. 159

6.3. Directory Syntax Conventions and Directory Concatenation .. 161
6.3.1. Using Normal Directory Syntax ... 161
6.3.2. Rooted-Directory Syntax Applications .. 163
6.3.3. Using Rooted-Directory Syntax ... 163
6.3.4. Concatenating Rooted-Directory Specifications ... 164
6.3.5. An Example of Using a Rooted Directory .. 167
6.3.6. Using a Rooted Directory to Extend RMS's Subdirectory Limit 167

6.4. DID-Abbreviated Directories (Alpha Only) ... 168
6.5. FID-Abbreviated Names (Alpha Only) .. 169

6.5.1. Restrictions on FID-Abbreviated Names ... 170
6.6. Using Process-Permanent Files ... 170

Chapter 7. File Sharing and Buffering ... 173
7.1. File Accessing ... 173

7.1.1. Types of File Sharing and Record Streams ... 174
7.1.2. Interlocked Interprocess File Sharing ... 177
7.1.3. User-Interlocked Interprocess File Sharing .. 178

7.2. Record Locking .. 178
7.2.1. Default Record Locking .. 179
7.2.2. Record-Locking Options ... 180

7.2.2.1. Exclusive Locking .. 180
7.2.2.2. Write Locking ... 181
7.2.2.3. Read Locking .. 181
7.2.2.4. No Locking (Query Locking) ... 181
7.2.2.5. No Query Record Locking Option (Alpha Only) 182
7.2.2.6. Put Service Considerations ... 183
7.2.2.7. Summary .. 184

7.2.3. Handling Record-Locking Conflicts ... 184
7.2.3.1. Handling the Record-Locked Error .. 185
7.2.3.2. Waiting for Locked Records ... 186
7.2.3.3. Reading Regardless of Lock .. 186

7.2.4. Miscellaneous Record-Locking Options .. 186
7.2.4.1. Manual-Unlocking Option .. 186
7.2.4.2. Lock-Nonexistent-Record Option .. 187

7.2.5. Record-Locking Deadlocks .. 187
7.2.5.1. Record Locking Options to Control Deadlock Detection 188

7.3. Local and Shared Buffering Techniques .. 188
7.3.1. Record Transfer Modes ... 188
7.3.2. Understanding Buffering ... 189
7.3.3. Buffering for Sequential Files .. 190
7.3.4. Buffering for Relative Files ... 191
7.3.5. Buffering for Indexed Files ... 191
7.3.6. Using Global Buffers for Shared Files .. 192

7.3.6.1. Enhancing Global Buffer Performance ... 193
Chapter 8. Record Processing ... 197

8.1. Record Operations ... 197
8.2. Primary Services ... 197

8.2.1. Locating and Retrieving Records ... 198
8.2.2. Inserting Records .. 199

vii

Guide to OpenVMS File Applications

8.2.3. Updating Records ... 200
8.2.4. Deleting Records .. 200

8.3. Secondary Services ... 201
8.4. Record Access for the Various File Organizations .. 201

8.4.1. Processing Sequential Files .. 203
8.4.1.1. Sequential Access .. 203
8.4.1.2. Random Access ... 203

8.4.2. Processing Relative Files ... 203
8.4.2.1. Sequential Access .. 204
8.4.2.2. Random Access ... 204

8.4.3. Processing Indexed Files ... 204
8.4.3.1. Sequential Access .. 207
8.4.3.2. Random Access ... 208

8.4.4. Access by Record File Address (RFA) ... 209
8.5. Block Input/Output .. 210
8.6. Current Record Context ... 210

8.6.1. Current-Record Position .. 211
8.6.2. Next-Record Position .. 212

8.7. Synchronous and Asynchronous Operations ... 213
8.7.1. Using Synchronous Operations .. 213
8.7.2. Using Asynchronous Operations .. 214

Chapter 9. Run-Time Options ... 215
9.1. Specifying Run-Time Options .. 215

9.1.1. Using the Edit/FDL Utility .. 215
9.1.2. Using Language Statements and RMS .. 218

9.2. Options Related to Opening and Closing Files ... 219
9.2.1. File Access and Sharing Options ... 219
9.2.2. File Specifications .. 220
9.2.3. File Performance Options .. 221

9.2.3.1. Extension Size ... 221
9.2.3.2. Window Size ... 221
9.2.3.3. Summary of Performance Options .. 222

9.2.4. Record Access Options ... 224
9.2.5. Options for Adding Records .. 224
9.2.6. Options for Data Reliability ... 225
9.2.7. Options for File Disposition .. 225
9.2.8. Options for Indexed Files .. 226
9.2.9. Options for Magnetic Tape Processing .. 227
9.2.10. Options for Nonstandard File Processing .. 228

9.3. Summary of Record Operation Options .. 228
9.3.1. Record Retrieval Options .. 229
9.3.2. Put Service Options .. 232
9.3.3. Record Update Options ... 234
9.3.4. Record Deletion Options ... 235

9.4. Run-Time Example .. 235
Chapter 10. Maintaining Files ... 239

10.1. Viewing File Characteristics ... 239
10.1.1. Performing an Error Check ... 239
10.1.2. Generating a Statistics Report .. 244
10.1.3. Using Interactive Mode ... 249
10.1.4. Examining a Sequential File .. 250

viii

Guide to OpenVMS File Applications

10.1.5. Examining a Relative File .. 252
10.1.6. Examining an Indexed File .. 254

10.2. Generating an FDL File from a Data File .. 257
10.3. Optimizing and Redesigning File Characteristics .. 259

10.3.1. Redesigning an FDL File ... 260
10.3.2. Optimizing a Data File .. 261

10.4. Making a File Contiguous .. 262
10.4.1. Using the Copy Utility .. 262
10.4.2. Using the Convert Utility .. 263
10.4.3. Reclaiming Buckets in Prolog 3 Files ... 263

10.5. Reorganizing a File .. 263
10.6. Making Archive Copies ... 263

Appendix A. Edit/FDL Utility Optimization Algorithms .. 265
A.1. Allocation .. 265
A.2. Extension Size .. 265
A.3. Bucket Size .. 265
A.4. Global Buffers ... 266
A.5. Index Depth ... 266

ix

Guide to OpenVMS File Applications

x

Preface
This document is intended for application programmers and designers who write programs that use
OpenVMS RMS files.

1. About VSI
VMS Software, Inc. (VSI) is an independent software company licensed by Hewlett Packard Enterprise
to develop and support the OpenVMS operating system.

2. Intended Audience
This document is intended for applications programmers and designers who create or maintain
application programs that use RMS files.

You may also read this document to gain a general understanding of the file- and record-processing
options available on an OpenVMS system.

3. Document Structure
This guide contains 10 chapters and one appendix.

● Chapter 1, "Introduction" provides general information on file, disk, and magnetic tape concepts and
brief overviews of available media, RMS, FDL, and resource requirements.

● Chapter 2, "Choosing a File Organization" describes the file organizations and record access modes
to help you choose the correct file organization for your application.

● Chapter 3, "Performance Considerations" discusses general performance considerations and specific
decisions you can make in the design of your application.

● Chapter 4, "Creating and Populating Files" describes procedures necessary to create files, populate
files with records, and protect files.

● Chapter 5, "Locating and Naming Files on Disks" describes file specifications and the procedures
needed to use them.

● Chapter 6, "Advanced Use of File Specifications" describes the rules of file specification parsing and
advanced file specification use. Information about rooted directories is also provided.

● Chapter 7, "File Sharing and Buffering" describes file sharing and buffering, including record locking
and the use of global buffers.

● Chapter 8, "Record Processing" describes aspects of record processing, including record access
modes; synchronous and asynchronous record operations; and retrieving, inserting, updating, and
deleting records.

● Chapter 9, "Run-Time Options" describes how to specify run-time options and summarizes the run-
time options available when a file is opened and closed and when records are retrieved, inserted,
updated, and deleted.

● Chapter 10, "Maintaining Files" describes procedures needed to maintain properly tuned files, with
the emphasis on efficiently maintaining indexed files.

xi

Preface

● Appendix A, "Edit/FDL Utility Optimization Algorithms" describes the algorithms used by the Edit/
FDL utility.

4. Related Documents
The reader should be familiar with the information in the following documents:

● The VSI OpenVMS User's Manual describes the use of the operating system for a general audience.

● Programmers should be familiar with the appropriate documentation for the high-level language in
which the application will be written.

● System managers should be familiar with the VSI OpenVMS System Manager's Manual, a task-
oriented guide to managing an OpenVMS system.

5. OpenVMS Documentation
The full VSI OpenVMS documentation set can be found on the VMS Software Documentation webpage
at https://docs.vmssoftware.com.

6. VSI Encourages Your Comments
You may send comments or suggestions regarding this manual or any VSI document by sending
electronic mail to the following Internet address: <docinfo@vmssoftware.com>. Users who have
VSI OpenVMS support contracts through VSI can contact <support@vmssoftware.com> for
help with this product.

7. Conventions
The following conventions may be used in this manual:

Convention Meaning

Ctrl/ x A sequence such as Ctrl/ x indicates that you must hold down the key labeled Ctrl
while you press another key or a pointing device button.

PF1 x A sequence such as PF1 x indicates that you must first press and release the key
labeled PF1 and then press and release another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that you press a key on the
keyboard. (In text, a key name is not enclosed in a box.)

... A horizontal ellipsis in examples indicates one of the following possibilities:

● Additional optional arguments in a statement have been omitted.

● The preceding item or items can be repeated one or more times.

● Additional parameters, values, or other information can be entered.
.
.
.

A vertical ellipsis indicates the omission of items from a code example or
command format; the items are omitted because they are not important to the
topic being discussed.

() In command format descriptions, parentheses indicate that you must enclose the
options in parentheses if you choose more than one.

xii

https://docs.vmssoftware.com

Preface

Convention Meaning

[] In command format descriptions, brackets indicate optional choices. You can
choose one or more items or no items. Do not type the brackets on the command
line. However, you must include the brackets in the syntax for OpenVMS directory
specifications and for a substring specification in an assignment statement.

[|] In command format descriptions, vertical bars separate choices within brackets or
braces. Within brackets, the choices are options; within braces, at least one choice
is required. Do not type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required choices; you must
choose at least one of the items listed. Do not type the braces on the command
line.

bold text This typeface represents the introduction of a new term. It also represents the
name of an argument, an attribute, or a reason.

italic text Italic text indicates important information, complete titles of manuals, or variables.
Variables include information that varies in system output (Internal error number),
in command lines (/PRODUCER= name), and in command parameters in text
(where dd represents the predefined code for the device type).

UPPERCASE
TEXT

Uppercase text indicates a command, the name of a routine, the name of a file, or
the abbreviation for a system privilege.

Monospace
type

Monospace type indicates code examples and interactive screen displays.

In the C programming language, monospace type in text identifies the following
elements: keywords, the names of independently compiled external functions and
files, syntax summaries, and references to variables or identifiers introduced in an
example.

- A hyphen at the end of a command format description, command line, or code line
indicates that the command or statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless otherwise noted. Nondecimal
radixes—binary, octal, or hexadecimal—are explicitly indicated.

xiii

Preface

xiv

Chapter 1. Introduction
This chapter illustrates how basic data management concepts are applied by the OpenVMS Record
Management Services (OpenVMS RMS), referred to hereafter as RMS. RMS is the data management
subsystem of the operating system. In combination with OpenVMS operating systems, RMS allows
efficient and flexible storage, retrieval, and modification of data on disks, magnetic tapes, and other
devices. RMS may be implemented through the File Definition Language (FDL) interface or through
high-level language, program-specific processing options. Although RMS supports devices such as
line printers, terminals, and card readers, the purpose of this guide is to introduce you to RMS record
keeping on magnetic tape and disk.

In contrast to magnetic tape storage, disk storage allows faster data access while providing the same
virtually limitless storage capacity. Disks provide faster access because the computer can locate files and
records selectively without first searching through intervening data. This faster access time makes disks
the most appropriate medium for online file processing applications.

1.1. File Concepts
The following file concepts are discussed in this manual:

● Files

● Records

● Fields

● Bytes and bits

● Access modes

● Record formats

● Maximum RMS file size

A computer file is an organized collection of data stored on a mass storage volume and processed by a
central processing unit (CPU). Data files are organized to accommodate the processing of data within the
file by an application program. The basic unit of electronic data processing is the record. A record is a
collection of related data that the application program processes as a functional entity. For example, all
the information about an employee, such as name, street address, city, and state, constitutes a personnel
record. Records are made up of fields, which are sets of contiguous bytes. For example, a person's name
or address might be a field. A byte is a group of binary digits (bits) that are used to represent a single
character. You can also think of a field or an item as a group of bytes in a record that are related in some
way.

The records in a file must be formatted uniformly. That is, they must conform to some defined
arrangement of the record fields including the field length, field location, and the field data type
(character strings or binary integers, for instance). To process file data, an application must know the
arrangement of the record fields, especially if the application intends to modify existing records or to add
new records to the file.

The file organization is the manner in which data is recorded within a file, typically using either fixed-
length or variable-length records. The file organization, together with the applicable storage medium,
determines what techniques are used to access data. Currently, RMS supports two methods of record

1

Chapter 1. Introduction

access: sequential access and direct access. Direct access includes relative access (using the relative
position of a record) and indexed access (using an indexing key within the record). See Table 1.1,
"Record Access Methods" for more information about record access methods.

Table 1.1. Record Access Methods

Access Method Description

Sequential Access Records are stored or retrieved one after another
starting at a particular point in the file and
continuing in order through the file.

Relative Record Number Access Records are stored and retrieved by relative record
number or by file address. Records occupy cells of
equal length, and each cell is assigned a relative
record number, which represents the cell's
position relative to the beginning of the file.

Record File Address Access When a record is accessed directly by its file
address, the distinction is made by its unique
location in the file; that is, its record file address
(RFA).

Indexed Access Indexed file records are stored and retrieved by
a key in the data record. The desired records
are usually accessed directly and then retrieved
sequentially in sorted order using a key embedded
in the record.

The record format refers to the way all records in a file appear physically on the recording surface of the
storage medium and is defined in terms of record length. Table 1.2, "Record Formats" describes the four
record formats supported by RMS.

Table 1.2. Record Formats

Record Format Description

Fixed length All records are the same length.
Variable length Records vary in length. Each record is prefixed

with a count byte that contains the number of bytes
in the record. The count byte may be either MSB-
or LSB-formatted.

Variable record length with fixed-length control Records do not have to be the same length, but
each includes a fixed-length control field that
precedes the variable-length data portion.

Stream Records are delimited by special characters or
character sequences called terminators. Records
with stream format are interpreted as a continuous
sequence, or stream, of bytes. The carriage return
and the line feed characters are commonly used as
terminators.

When you design a file, you specify the file storage medium and the file and record characteristics
directly through your application program or indirectly using an appropriate utility. Chapter 2, "Choosing
a File Organization" outlines RMS file organization, record access modes, and record characteristics in
detail.

2

Chapter 1. Introduction

After RMS creates the file, the application program must consider these record characteristics
when storing, retrieving, and modifying records. See Chapter 4, "Creating and Populating Files"
for information about creating files, populating files with records, and protecting files. See Chapter
8, "Record Processing" for information about record processing, including record access modes;
synchronous and asynchronous record operations; and retrieving, inserting, updating, and deleting
records.

The maximum size of an RMS file has no built-in limitation other than the 32-bit virtual block number
(VBN). In terms of blocks, a single file is limited to a VBN that must be described in 32 bits. So the
maximum size of an RMS file is about 4.2 billion (4,294,967,295) blocks. In terms of bytes, this is
equivalent to 2 terabytes.

1.2. Disk Concepts
This section describes disk concepts as an aid to understanding how a disk may be configured to
enhance data access for improved performance. Disk structures may be defined as either logical or
physical and the two types interact with each other to some degree. That is, you cannot manipulate a
logical structure without considering the effect on a corresponding physical structure.

RMS disk files reside on Files–11 On-Disk Structure (ODS) disks. Files–11 is the name of the disk
structures supported by the operating system. Files–11 disk structures are further characterized as being
either on-disk structures or CD–ROM volume and file structures. The Files–11 structure is a hierarchical
organization of files, their data, and the directories needed to gain access to them. The OpenVMS file
system implements the Files–11 on-disk structure and provides random access to the files located on the
disk or CD-ROM. Users can read from and write to disks. Users can read from and write to disks. They
can read from CD-ROMs and if they have a CD-Recordable (CD-R or CD-RW) drive, they can write (or
burn) their own CD-ROMs.

On-disk structures include levels 1, 2, and 5. Levels 3 and 4 are internal names for ISO and High Sierra
CD formats. ODS-1 and ODS-2 structures have been available on OpenVMS systems for some time.
Beginning with OpenVMS Version 7.2 on Alpha systems, you can also specify ODS-5 to format disks.

Table 1.3, "File Structure Options on OpenVMS Systems" compares the characteristics of file structures
that are available on OpenVMS Version 7.2 and later systems.

Table 1.3. File Structure Options on OpenVMS Systems

Structure Disk or CD Description

ODS-1 Both VAX only; use for RSX
compatibility: RSX–11M, RSX–
11D, RSX–11M–PLUS, and IAS
operating systems.

ODS-2 Both Default disk structure of the
OpenVMS operating system; use
to share data between VAX and
Alpha with full compatibility.

ODS-5 Both Alpha only1; superset of ODS-2;
use when working with systems
like NT that need expanded
character sets or directories
deeper than ODS-2.

3

Chapter 1. Introduction

Structure Disk or CD Description

ISO 9660 CD CD ISO format files: read by
systems that do not have ODS-2
capability such as PCs, NT
systems, and Macintoshes.

Dual format CD Single volume with both ISO
9660 CD and Files-11 CD
formats. Files are accessible to
both formats whose directories
might point to the same data.

Foreign Both A structure that is not related to
a Files–11 structure. When you
specify a foreign structure, you
make the contents of a volume
known to the system, but the
system makes no assumptions
about its file structure. The
application is responsible for
supplying a structure.

1You can mount ODS-5-enabled volumes on VAX systems, but you cannot access ODS-5-specific features on a VAX system.

Table 1.4, "Comparison of ODS-1, ODS-2, and ODS-5 Levels" compares the specific characteristics of
Files–11 On-Disk Structure (ODS) levels 1, 2, and 5.

Table 1.4. Comparison of ODS-1, ODS-2, and ODS-5 Levels

Characteristic ODS-1 (VAX only) ODS-2 ODS-5

File names 9.3 39.39 238 bytes, including the
dot. For Unicode, that is
119 characters including
the dot.

Character set Uppercase alphanumeric Uppercase alphanumeric
plus hyphen (-), dollar
sign ($), and underscore
(_)

ISO Latin-1, Unicode.

File versions 32,767 limit; version
limits are not supported

32,767 limit; version
limits are supported

32,767 limit; version
limits are supported

Directories No hierarchies of
directories and
subdirectories; directory
entries are not ordered1

Alpha: 255 2VAX: 8
(with rooted logical, 16)

Alpha: 255 VAX: 8
(with rooted logical, 16).

System disk Cannot be an ODS-1
volume

Can be an ODS-2
volume

Cannot be an ODS-5
volume.

OpenVMS Cluster
access

Local access only; files
cannot be shared across
a cluster

Files can be shared
across a cluster

Files can be shared
across a cluster.
However, only
computers running
OpenVMS Version
7.2–EFT1 or later can
mount ODS-5 disks.

4

Chapter 1. Introduction

Characteristic ODS-1 (VAX only) ODS-2 ODS-5
VAX computers running
Version 7.2–EFT1 or
later can see only files
with ODS-2 style names.

Disk Unprotected objects Protected objects Protected objects.
Disk quotas Not supported Supported Supported.
Multivolume files and
volume sets

Not supported Supported Supported.

Placement control Not supported Supported Supported
Caches No caching of file

header blocks, file
identification slots, or
extent entries

Caching of file header
blocks, file identification
slots, and extent entries

Caching of file header
blocks, file identification
slots, and extent entries.

Clustered allocation Not supported Supported Supported.
Backup home block Not supported Supported Supported.
Protection code E E means “extend” for

the RSX–11M operating
system but is ignored by
OpenVMS

E means “execute
access”

E means “execute
access”.

Enhanced protection
features (for example,
access control lists)

Not supported Enhanced protection
features supported

Enhanced protection
features supported.

RMS journaling Not supported Supported Supported.
1RSX–11M, RSX–11D, RSX–11M–PLUS, and IAS systems do not support subdirectories and alphabetical directory entries.
2Prior to OpenVMS Version 7.2, RMS limited directory levels to 8 or 16.

Note

Future enhancements to OpenVMS software will be based primarily on structure levels 2 and 5;
therefore, structure level 1 volumes might be further restricted in the future. However, VSI does not
intend for ODS-5 to become the default OpenVMS file structure. The principal use of ODS-5 will be
when OpenVMS is a server for other systems (such as Windows NT) that have extended file names.

The default disk structure is Files–11 ODS-2. VAX systems also support Files–11 ODS-1 from earlier
operating systems1 to ensure compatibility among systems.

1.2.1. Files–11 On-Disk Structure Concepts
The term Files–11 On-Disk Structure, or simply ODS, refers to the logical structure given to magnetic
disks; namely, a hierarchical organization of files, their data, and the directories needed to gain access
to them. The file system implements Files–11 ODS-1 (on VAX systems only) and Files–11 ODS-2
(on VAX and Alpha systems) to define the disk structure and to provide access to the files located on
magnetic disks.

1Earlier operating systems include the RSX–11M,

RSX–11D

, RSX–11M–PLUS, and Micro/RSX systems.

5

Chapter 1. Introduction

This section describes the Files–11 ODS levels and defines related terminology.

See Section 1.2.5, "CD–ROM Concepts" for information about concepts and logical structures used with
CD–ROMs formatted in accordance with ISO 9660.

The primary difference between Files–11 ODS-1 and Files–11 ODS-2 is that Files–11 ODS-2
incorporates control capabilities that permit added features including volume sets (described later).

The logical ordering of ODS structures is listed below in order of ascending hierarchy:

● Blocks

● Clusters

● Extents

● Files

● Volumes

● Volume Sets

Figure 1.1, "Files–11 On-Disk Structure Hierarchy" shows the hierarchy of blocks, clusters, extents, and
files in the Files–11 ODS.

Figure 1.1. Files–11 On-Disk Structure Hierarchy

The next higher level of Files–11 ODS is the volume (not illustrated), which is the ordered set of blocks
that comprise a disk. However, a volume may include several disks that together make up a structure
called a volume set. Because a volume set consists of two or more related volumes, the system treats it as
a single volume.

Note

The terms disk and volume are used interchangeably in this document.

The smallest addressable logical structure on a Files–11 ODS disk is a block, comprising 512, 8-bit bytes.
During input/output operations, one or more blocks may be transferred as a single unit between a Files–
11 ODS disk and memory.

RMS allocates disk space for new files or extended files using multiblock units called clusters. The
system manager specifies the number of blocks in a cluster as part of volume initialization.

Clusters may or may not be contiguous (share a common boundary) on a disk. Cluster sizes may range
from 1 to 65,535 blocks. Generally, a system manager assigns a small cluster size to a disk with a
relatively small number of blocks. Relatively larger disks are assigned a larger cluster size to minimize the
overhead for disk space allocation.

6

Chapter 1. Introduction

An extent is one or more adjacent clusters allocated to a file or to a portion of a file. If enough
contiguous disk space is available, the entire file is allocated as a single extent. Conversely, if there is
not enough contiguous disk space, the file is allocated using several extents, which may be scattered
physically on the disk. Figure 1.2, "Single and Multiple File Extents" shows how a single file (File A)
may be stored as a single extent or as multiple extents.

Figure 1.2. Single and Multiple File Extents

With RMS, you can exercise varying degrees of control over file space allocation. At one extreme, you
can specify the number of blocks to be allocated and their precise location on the volume. At the other
extreme, you can allow RMS to handle all disk space allocation automatically. As a compromise, you
might specify the size of the initial space allocation and have RMS determine the amount of space
allocated each time the file is extended. You can also specify that unused space at the end of the file is to
be deallocated from the file, making that space available to other files on the volume.

When you need a large amount of file storage space, you can combine several Files–11 ODS volumes
into a volume set with file extents located on different volumes in the set. You need not specify a
particular volume in the set to locate or create a file, but you may improve performance if you explicitly
specify a volume for a particular allocation request.

1.2.2. Files–11 Control Files
Ten files control the structure of a Files–11 On–Disk Structure Level 2 volume. Only five of these files
are used for a Files–11 On–Disk Structure Level 1 volume. Table 1.5, "Files–11 Control Files" identifies
all nine files, which are referred to as reserved files, and indicates to which Files–11 On–Disk Structure
level they pertain.

Table 1.5. Files–11 Control Files

Reserved File File Name Structure Structure

Level 1 Level 2

Index file INDEXF.SYS;1 X X
Storage bit map file BITMAP.SYS;1 X X
Bad block file BADBLK.SYS;1 X X
Master file directory 000000.DIR;1 X X
Core image file CORIMG.SYS;1 X X
Volume set list file VOLSET.SYS;1 X
Continuation file CONTIN.SYS;1 X
Backup log file BACKUP.SYS;1 X
Pending bad block BADLOG.SYS;1 X

7

Chapter 1. Introduction

Reserved File File Name Structure Structure

Level 1 Level 2

Security profile SECURITY.SYS X

All the files listed in Table 1.5, "Files–11 Control Files" are listed in the master file directory (MFD),
[000000].

1.2.2.1. Index File
Every Files–11 volume has an index file, which is created when the volume is initialized. This index file
identifies the volume to the operating system as a Files–11 structure and contains the access data for
all files on the volume. The index file, which is listed in the master file directory as INDEXF.SYS;1,
contains the following information:

● Bootstrap block — The volume's bootstrap block is virtual block number 1 of the index file. If the
volume is a system volume, this block contains a bootstrap program that loads the operating system
into memory. If the volume is not a system volume, this block contains a program that displays the
message that the volume is not the system device but a device that contains user files only.

● Home block — The home block provides specific information about the volume, including default
file values. The following information is included within the home block:

• The volume name

• Information to locate the remainder of the index file

• The maximum number of files that can be present on the volume at any given time

• The user identification code (UIC) of the volume owner

• Volume protection information (specifies which users can read and/or write the entire volume)

The home block identifies the disk as a Files–11 ODS volume. Initially, the home block is the second
block on the volume. Files–11 ODS volumes contain several copies of the home block to ensure
that accidental destruction of this information does not affect the ability to locate other files on the
volume. If the current home block becomes corrupted, the system selects an alternate home block.

● Alternate home block — The alternate home block is a copy of the home block. It permits the
volume to be used even if the primary home block is destroyed.

● Alternate index file header — The alternate index file header permits recovery of data on the volume
if the primary index file header becomes damaged.

● Index file bit map — The index file bit map controls the allocation of file headers and thus the
number of files on the volume. The bit map contains a bit for each file header allowed on the volume.
If the value of a bit for a given file header is 0, a file can be created with this file header. If the value
is 1, the file header is already in use.

● File headers — The largest part of the index file is made up of file headers. Each file on the volume
has a file header, which describes such properties of the file as file ownership, creation date, and
time. Each file header also contains a list of the extents that define the physical location of the file.
When a file has many extents, it may be necessary to have multiple file headers for locating them.
When this occurs, each header is assigned a file identifier number to associate it with the appropriate
file.

8

Chapter 1. Introduction

When you create a file, you normally specify a name that RMS assigns to the file on a Files–11
ODS volume. RMS places the file name and file identifier associated with the newly created file in
a directory that contains an entry defining the location for each file. To subsequently access the file,
you specify its name. The system uses the name to define a path through the directory entry to the
file identifier. In turn, the file identifier points to the file header that lists the file's extents.

1.2.2.2. Storage Bit Map File
The storage bit map file controls the available space on a volume; this file is listed in the master file
directory as BITMAP.SYS;1. It contains a storage control block, which consists of summary information
intended to optimize the Files–11 space allocation, and the bit map itself, which lists the availability of
individual blocks.

1.2.2.3. Bad Block File
The bad block file, which is listed in the master file directory as BADBLK.SYS;1, contains all the bad
blocks on the volume. The system detects bad disk blocks dynamically and prevents their reuse once the
files to which they are allocated have been deleted.

1.2.2.4. Master File Directory
The master file directory (MFD) itself is listed in the MFD as 000000.DIR;1. The MFD, which is the
root of the volume's directory structure, lists the reserved files that control the volume structure and
may list both users' files and users' file directories. Usually the MFD is used to list the reserved files and
users' file directories; users seldom enter files in the MFD, even on private volumes. In fact, on a private
volume, it is most convenient for a user to create a directory that has the same name as the user's default
directory on a system disk.

Note

Wildcard directory searches in the MFD always start after 000000.DIR to prevent recursive looping.
Therefore, you should avoid creating any directories in the MFD that lexically precede "000000".

When the Backup utility (BACKUP) creates sequential disk save sets, it stores the save set file in the
MFD.

For an explanation of user file directories and file specifications, see the VSI OpenVMS User's Manual.

1.2.2.5. Core Image File
The core image file is listed in the MFD as CORIMG.SYS;1. It is not supported by the operating system.

1.2.2.6. Volume Set List File
The volume set list file is listed in the MFD as VOLSET.SYS;1. This file is used only on relative volume
1 of a volume set. The file contains a list of the labels of all the volumes in the set and the name of the
volume set.

1.2.2.7. Continuation File
The continuation file is listed in the MFD as CONTIN.SYS;1. This file is used as the extension file
identifier when a file crosses from one volume to another volume of a loosely coupled volume set. This
file is used for all but the first volume of a sequential disk save set.

9

Chapter 1. Introduction

1.2.2.8. Backup Log File
The backup log file is listed in the MFD as BACKUP.SYS;1. This file is reserved for future use.

1.2.2.9. Pending Bad Block Log File
The pending bad block log file is listed in the MFD as BADLOG.SYS;1. This file contains a list of
suspected bad blocks on the volume that are not listed in the bad block file.

1.2.2.10. Security Profiles File (VAX Only)
This file contains the volume security profile and is managed with the SET/SHOW security commands.

1.2.3. Files–11 On–Disk Structure Level 1 Versus
Structure Level 2
For reasons of performance and reliability, Files–11 On–Disk structure level 2, a compatible superset of
structure level 1, is the preferred disk structure on an OpenVMS system.

At volume initialization time (see the INITIALIZE command in the VSI OpenVMS DCL Dictionary),
structure level 2 is the default.

On VAX systems, structure level 1 should be specified only for volumes that must be transportable to
RSX–11M, RSX–11D, RSX–11M–PLUS, and IAS systems, as these systems support only that structure
level. Additionally, you may be required to handle structure level 1 volumes transported to OpenVMS
systems from one of the previously mentioned systems.

Structure level 1 volumes have the following limitations:

● Directories — No hierarchies of directories and subdirectories, and no ordering of directory entries
(that is, the file names) in any way. RSX–11M, RSX–11D, RSX–11M–PLUS, and IAS systems do
not support subdirectories and alphabetical directory entries.

● Disk quotas — Not supported.

● Multivolume files and volume sets — Not supported.

● Placement control — Not supported.

● Caches — No caching of file header blocks, file identification slots, or extent entries.

● System disk — Cannot be a structure level 1 volume.

● OpenVMS Cluster access — Local access only; cannot be shared across an OpenVMS Cluster.

Note

In this document, discussions that refer to OpenVMS Cluster environments apply to both VAXcluster
systems that include only VAX nodes and OpenVMS Cluster systems that include at least one Alpha
node unless indicated otherwise.

● Clustered allocation — Not supported.

● Backup home block — Not supported.

10

Chapter 1. Introduction

● Protection code E — Means extend for the RSX–11M operating system but is ignored by OpenVMS
systems.

● File versions — Limited to 32,767; version limits are not supported.

● Enhanced protection features (for example, access control lists) — not supported.

● Extended File Specifications— Not supported.

● RMS journaling for OpenVMS — Not supported.

● RMS execution statistics monitoring — Not supported.

1.2.4. Physical Structures
For performance reasons, you should be aware of certain physical aspects of a disk.

A disk (or volume) consists of one or more platters that spin at very high, constant speeds and usually
contain data on both surfaces (upper and lower). A disk pack is made up of two or more platters having a
common center.

Data is located at different distances from the center of the platter and is stored or retrieved using
read/write heads that move to access data at various radii from the platter's center. The time required
to position the read/write heads over the selected radius (referred to as a track) is called seek time.
Each track is divided into 512-byte structures called sectors. The time required to bring the selected
sector (logical block) under the read/write heads at the selected radius (track) is called the rotational
latency. Because seek time usually exceeds the rotational latency by a factor of 2 to 4, related blocks
(sectors) should be located at or near the same track to obtain the best performance when transferring
data between the disk and RMS-maintained buffers in memory. Typically, related blocks of data
might include the contents of a file or several files that are accessed together by a performance-critical
application.

Another physical disk structure is called a cylinder. A cylinder consists of all tracks at the same radius
on all recording surfaces of a disk.

Figure 1.3, "Tracks and Cylinders" illustrates the relationship between tracks and cylinders.

Figure 1.3. Tracks and Cylinders

Because all blocks in a cylinder can be accessed without moving the disk's read and write heads, it is
generally advantageous to keep related blocks in the same cylinder. For this reason, when choosing a

11

Chapter 1. Introduction

cluster size for a large-capacity disk, a system manager should consider one that divides evenly into the
cylinder size.

1.2.5. CD–ROM Concepts
This section describes software support for accessing CD–ROM media in compliance with the ISO
9660 standard. Compact Disc Read Only Memory (CD–ROM) discs and CD–ROM readers used with
computers are very similar to the CD–ROMs and CD–ROM readers used for audio applications and may
incorporate the same hardware. The major difference is that CD–ROM disc readers used with computers
have a digital interface that incorporates circuitry which provides error detection and correction logic to
improve the accuracy of the disc data.

CD–ROMs provide the following advantages when used to store data:

● Direct access of data allowed.

● Typically less expensive than other direct-access media.

● Large storage capability. Currently, you can store approximately 650 megabytes (1.27 million blocks)
of data on a CD–ROM.

● Easier to store and handle off line.

1.2.5.1. CD–ROM On-Disc Formats
CD–ROM media may be formatted according to one or more media formats to incorporate a volume
and file structure that is compatible with OpenVMS file system processing. OpenVMS supports CD–
ROM access based on the following media formats:

● Files–11 ODS-2—OpenVMS On Disk Structure, Level 2

● ISO 9660—A volume and file structure standard for information interchange on CD–ROMs

● High Sierra—Working paper of the CD–ROM Advisory Committee

1.2.5.2. Volume Structure
CD–ROM media is divided into logical sectors that are assigned a unique logical sector number. Logical
sectors are the smallest addressable units of a CD–ROM. Each logical sector consists of one or more
consecutively ascending physical sectors as defined by the relevant recording standard. 2Logical sectors
are numbered in ascending order. The value 0 is assigned to the logical sector with the lowest physical
address containing recorded data. Each logical sector includes a data field made up of at least 2048 bytes
—but, in all cases, the number must be a power of 2.

ISO 9660-formatted CD–ROM volumes include a system area and a data area. The reserved system
area includes logical sectors 0 through 15. The data area includes the remaining logical sectors and is
called volume space. Volume space is organized into logical blocks that are numbered in consecutively
ascending logical block number order.

Logical blocks are made up of at least 512 bytes—but, in all cases, the number of bytes must be a power
of 2. However, no logical block can be larger than a logical sector.

The data area may include one or more Volume Descriptors, File Descriptors, Directory Descriptors, and
Path Tables. These entities collectively describe the volume and file structure of an ISO 9660-formatted

2ISO 10149—Data Interchange on read-only 120mm Optical Discs (CD–ROM), the Yellow Book.

12

Chapter 1. Introduction

CD–ROM. The Ancillary Control Process (ACP) that manages I/O access to the CD–ROM views the
volume and file structure as an integral part of the base OpenVMS file system.

1.2.5.3. Files–11 C/D – ACPs
The Files–11 C/D implementations allow OpenVMS systems to conform to the ISO 9660 standard
at implementation level 2 and interchange level 3. This section describes how Files–11 C/D resolves
incompatibilities between the OpenVMS file system and the ISO 9660 standard. The incompatibilities
include the following:

● The ISO 9660 requirement for handling blocks that exceed 512 bytes

● Partial extents

● Interleaved data

● Undefined record formats

Logical Blocks Greater Than 512 Bytes

OpenVMS device drivers are designed to handle files made up of 512-byte blocks that are uniquely
addressable. The ISO 9660 standard supports logical blocks that are greater than 512-bytes. The Files-11
C/D ACP solves this incompatibility by converting ISO 9660 logical-block-size requests into OpenVMS-
block-size requests at the file system level.

Partial Data Blocks

Any logical block in an ISO 9660 file extent may be partially filled with data. RMS assumes that all
file blocks are filled with data, with the possible exception of the final block. When RMS finds a data
block that is not filled, it attempts to start end-of-file processing. To prevent RMS from misinterpreting
a partially-filled block as the final file block, the Files-11 C/D ACP uses I/O operations that combine
adjacent ISO 9660 logical blocks into full 512-byte logical blocks.

Interleaving

Interleaving is used to gain efficiency in accessing information by storing sequential information on
separate tracks. The OpenVMS file system is not natively compatible with interleaving, but ISO 9660
file extents may be interleaved. That is, ISO 9660 extents may consist of logical block groupings that are
separated by interleaving gaps. In order to make the OpenVMS file system compatible with interleaving,
the Files–11 C/D ACP treats each of the interleaved logical block groups as an extent.

Undefined Record Format

ISO 9660 CD–ROMs may be mastered without a specified record format because the ISO 9660 media
can be mastered from platforms that do not support the semantics of files containing predefined record
formats. See the VSI OpenVMS System Manager's Manual for details about mounting media with
undefined record formats.

1.2.5.4. Using DIGITAL System Identifiers on CD–ROM
When an ISO 9660-formatted CD–ROM contains information written according to VSI specifications,
affected records may include a DIGITAL System Identifier (DSI) in the associated extended attribute
records (XAR). This section describes how DIGITAL System Identifiers are recorded on ISO 9660
media and how a DSI is used to encode OpenVMS formatted information on the media. Figure 1.4,
"DSI and FAT Structures in an XAR" illustrates the DSI and FAT structures in an XAR.

13

Chapter 1. Introduction

On ISO 9660 media, XARs include fields for specifying a system identifier in byte positions 85 to 116
(see (A), Figure 1.4, "DSI and FAT Structures in an XAR".) Immediately preceding the DSI structure,
the XAR contains three fields containing record information. If the area immediately following the DSI
contains OpenVMS file and record information, you should insert nulls in the record information fields
immediately preceding the DSI. The following three fields contain record information:

● Record format in byte position 79

● Record attributes in byte position 80

● Record length in byte positions 81 to 84

If the DSI file identifier field (DSI$FILE_SYSTEM_IDENTIFIER) contains a 0 and the DSI file version
field (DSI$FILE_SYSTEM_VERSION) contains either a 1 or a 2, use the area immediately following
the DSI to obtain OpenVMS file and record information (See (B), Figure 1.4, "DSI and FAT Structures
in an XAR".)

If the DSI file version field contains a 1, the area immediately following the DSI contains a binary, hex-
encoded, file attributes block that provides file and record information. (See (C), Figure 1.4, "DSI and
FAT Structures in an XAR".)

If the DSI file version field contains a 2, the area immediately following the DSI contains an ASCII, hex-
encoded, byte stream that provides file and record information. (See (D) in Figure 1.4, "DSI and FAT
Structures in an XAR".)

When the DSI file version field contains a 0, the area immediately following the DSI will not contain file
and record information. Nevertheless, if the media is mounted for DSI protection, the OpenVMS UIC
codes and permission codes for system, owner, group, and world (SOGW) users will be enforced.

Figure 1.4. DSI and FAT Structures in an XAR

14

Chapter 1. Introduction

1.3. Magnetic Tape Concepts
This section describes magnetic tape concepts. Data records are organized on magnetic tape in the order
in which they are entered; that is, sequentially.

Characters of data on magnetic tape are measured in bits per inch (bpi). This measurement is called
density. A 1600-bpi tape can accommodate 1600 characters of data in 1 inch of recording space. A tape
has 9 parallel tracks containing 8 bits and 1 parity bit.

A parity bit is used to check for data integrity using a scheme where each character contains an odd
number of marked bits, regardless of its data bit configuration. For example, the alphabetic character
(A) has an ASCII bit configuration of 100 0001, where two bits, the most significant and the least
significant, are marked. With an odd-parity checking scheme, a marked eighth bit is added to the
character so that it appears as 1100 0001. When this character is transmitted to a receiving station, the
receiver logic checks to make sure that the character still has an odd number of marked bits. If media
distortion corrupts the data resulting in an even number of marked bits, the receiving station asks the
sending station to retransmit the data.

Even though a tape may have a density of 1600 bpi, there are not always 1600 characters on every inch
of magnetic tape because of the interrecord gap (IRG). The IRG is an interval of blank space between
data records that is created automatically when records are written to the tape. After a record operation,
this breakpoint allows the tape unit to decelerate, stop if necessary, and then resume working speed
before the next record operation.

Each IRG is approximately 0.6 inch in length. Writing an 80-character record at 1600 bpi requires 0.05
inch of space. The IRG, therefore, requires twelve times more space than the data with a resultant waste
of storage space.

RMS can reduce the size of this wasted space by using a record blocking technique that groups
individual records into a block and places the IRG after the block rather than after each record. (A block
on disk is different from a block on tape. On disk, a block is fixed at 512 bytes; on tape, you determine
the size of a block.) However, record blocking requires more buffer space for your program, resulting in
an increased need for memory. The greater the number of records in a block, the greater the buffer size
requirements. You must determine the point at which the benefits of record blocking cease, based on the
configuration of your computer system.

Figure 1.5, "Interrecord Gaps" shows how space can be saved by record blocking. Assume that a 1600-
bpi tape contains 10 records not grouped into record blocks. Each record is 160 characters long (0.1
inch at 1600 bpi) with a 0.6-inch IRG after each record; this uses 7 inches of tape. Placing the same 10
records into 1 record block uses only 1.6 inches of tape (1 inch for the data records and 0.6 inch for the
IRG).

Figure 1.5. Interrecord Gaps

15

Chapter 1. Introduction

Record blocking also increases the efficiency of the flow of data into the computer. For example, 10
unblocked records require 10 separate physical transfers, while 10 records placed into a single block
require only 1 physical transfer. Moreover, a shorter length of tape is traversed for the same amount of
data, thereby reducing operating time.

Like disk data, magnetic tape data is organized into files. When you create a file on tape, RMS writes a
set of header labels on the tape immediately preceding the data blocks. These labels contain information
such as the user-supplied file name, creation date, and expiration date. Additional labels, called trailer
labels, are also written following the file. Trailer labels indicate whether or not a file extends beyond a
volume boundary.

To access a file on tape by the file name, the file system searches the tape for the header label set that
contains the specified file name.

When the data blocks of a file or related files do not physically fit on one volume (a reel of tape or a
tape cartridge), the file is continued on another volume, creating a multivolume tape file that contains
a volume set. When a program accesses a volume set, it searches all volumes in the set. For additional
information about magnetic tapes, see the VSI OpenVMS System Manager's Manual.

1.3.1. ANSI-Labeled Magnetic Tape
This section describes ANSI magnetic tape labels, data, and record formats supported by OpenVMS
operating systems. Note, however, that OpenVMS operating systems also support the ISO standard. For a
complete description of these labels, please refer to the ANSI X3.27–1978 or ISO 1001–1979 magnetic
tape standard.

1.3.1.1. Logical Format of ANSI Magnetic Tape Volumes
The format of ANSI magnetic tape volumes is based on Level 3 of the ANSI standard for magnetic tape
labels and file structure for information interchange. This standard specifies the format, content, and
sequence of volume labels, file labels, and file structures. According to this standard, volumes are written
and read on 9-track magnetic tape drives only. The contents of labels must conform to prescribed data
and record formats. All labels must consist of ASCII “a” characters.

The ANSI magnetic tape format allows you to write binary data in the file sections (see Figure 1.6,
"Basic Layout of an ANSI Magnetic Tape Volume") of files. However, if you plan to use such files for
information interchange across systems, make sure that the recipient system can read the binary data.

1.3.1.2. RMS Magnetic Tape Ancillary Control Process (MTAACP)
The RMS magnetic tape ancillary control process (MTAACP) is the internal operating system software
process that interprets the logical format of ANSI magnetic tape volumes. Transparent to your process,
the MTAACP process reads, writes, and interprets ANSI labels before passing this information to RMS
and $QIO system services. These services, in turn, read, write, and interpret the record format of the data
written in the file section.

1.3.1.3. Basic Components of the ANSI Magnetic Tape Format
The format of ANSI magnetic tape consists of the following basic components:

● Beginning-of-tape (BOT) and end-of-tape (EOT) markers

● Tape marks

16

Chapter 1. Introduction

● File sections

● Volume, header, and trailer labels

Figure 1.6, "Basic Layout of an ANSI Magnetic Tape Volume" displays the arrangement and function of
these components.

Figure 1.6. Basic Layout of an ANSI Magnetic Tape Volume

Beginning-of-Tape and End-of-Tape Markers

Every volume has beginning-of-tape (BOT) and end-of-tape (EOT) markers. These markers are pieces
of photoreflective tape that delimit the writable area on a volume. ANSI magnetic tape standards require
that a minimum of 14 feet to a maximum of 18 feet of magnetic tape precede the BOT marker; a
minimum of 25 feet to a maximum of 30 feet of magnetic tape, of which 10 feet must be writable, must
follow the EOT marker. The EOT marker indicates the start of the end of the writable area of the tape,
rather than the physical end of the tape. Therefore, data and labels can be written after the EOT marker.

Tape Marks

Tape marks separate the file labels from the file sections, separate one file from another, and denote the
logical end-of-volume. On the basis of the number and relative placement of tape marks written on a
volume, OpenVMS systems determine whether a tape mark delimits a label, a file, or a volume.

Tape marks are written both singly and in pairs. Single tape marks separate either a file section from
the header and trailer labels or one file from another. When written after a set of header labels, a single
tape mark signals the beginning of a file section. When written before a set of trailer labels, a single
tape mark indicates the end of a file section. When written after a trailer label set, a single tape mark
separates one file from another.

Double tape marks indicate that either an empty file section exists or the logical end-of-volume has been
reached. OpenVMS systems create an empty file when a volume is initialized.

17

Chapter 1. Introduction

Labels

Labels identify, describe, and control access to volumes and their files. The ANSI magnetic tape format
supports volume, header, and trailer labels. The volume labels are the first labels written on a volume.
They identify the volume and the volume owner and specify access protection. Header and trailer labels
are sets of labels that identify, describe, and delimit files. Header labels precede files; trailer labels follow
files.

Table 1.6, "Labels and Components Supported by OpenVMS Systems" lists the labels supported by
OpenVMS operating systems. All other ANSI magnetic tape labels are ignored on input.

Although each type of label uses a different format to organize its contents, all labels conforming to
Version 3 of the ANSI magnetic tape standard must consist of ASCII “a” characters. Some labels contain
reserved fields designed for future system use or future ANSI magnetic tape standardization. Reserved
fields also must consist of ASCII “a” characters; however, OpenVMS systems ignore these characters on
input.

Table 1.6. Labels and Components Supported by OpenVMS Systems

Symbol Meaning

BOT Beginning-of-tape marker
EOF1 First end-of-file label
EOF2 Second end-of-file label
EOF3 Third end-of-file label
EOF4 Fourth end-of-file label
EOT End-of-tape marker label
EOV1 First end-of-volume label
EOV2 Second end-of-volume label
EOV3 Third end-of-volume label
EOV4 Fourth end-of-volume label
HDR1 First header label
HDR2 Second header label
HDR3 Third header label
HDR4 Fourth header label
VOL1 First volume label
VOL2 Second volume label
TM Tape mark
TM TM Double tape mark indicates an empty file section

or the logical end-of-volume

1.3.1.4. Volume and File Configurations
ANSI magnetic tape volumes support four file and volume configurations:

● A single file residing on a single volume

● A single file requiring multiple volumes

18

Chapter 1. Introduction

● Multiple files residing on a single volume

● Multiple files requiring multiple volumes

All these configurations conform to the following guidelines:

● The file sequence number field allows as many as 9999 file sections for one file. In effect, the file
length is unlimited.

● Only one file section of a given file is written on a volume.

● When multiple sections exist for one file, each file section is written to a separate volume in
the volume set. The file section numbers of each section are written consecutively in ascending
order (section n+1 is written immediately following section n); file sections of other files are not
interspersed.

Each of the file and volume configurations is illustrated in the sections that follow.

Single File Residing on a Single Tape Volume

A single file on a single tape volume configuration consists of one file on one volume. The components
of the ANSI magnetic tape format for this configuration are illustrated in Figure 1.7, "Single File on a
Single Volume".

Figure 1.7. Single File on a Single Volume

Single File Requiring Multiple Tape Volumes

A single-file/multivolume configuration consists of one file that spans two or more volumes in a volume
set. Figure 1.8, "Single File on Multiple Tape Volumes" illustrates the components of the ANSI magnetic
tape format for this configuration.

Figure 1.8. Single File on Multiple Tape Volumes

19

Chapter 1. Introduction

Multiple Files on a Single Tape Volume

A multifile/single-volume configuration consists of two or more files on a single volume. It is the most
common file and volume configuration. Figure 1.9, "Multifile/Single-Volume Configuration" illustrates
the components of the ANSI magnetic tape format for this configuration.

Figure 1.9. Multifile/Single-Volume Configuration

Multifile/Multivolume Configuration

A multifile/multivolume configuration consists of two or more files that span two or more volumes in the
same volume set. Figure 1.10, "Multifile/Multivolume Configuration" illustrates the components of the
ANSI magnetic tape format for this configuration.

Figure 1.10. Multifile/Multivolume Configuration

1.3.1.5. Volume Labels

The sections that follow describe the first volume (VOL1) and second volume (VOL2) labels.

1.3.1.5.1. VOL1 Label

The 80-character volume label (VOL1) is the first label written on an ANSI magnetic tape volume. It
defines the label type, name, and owner of the volume. Although there are many fields in a VOL1 label,
this section describes only those fields that you can access or that can inhibit access to a volume and its
files on OpenVMS systems.

20

Chapter 1. Introduction

Volume Identifier Field

The volume identifier field is a 6-character field that contains the name of the volume. You specify the
volume identifier in the command string when you initialize or mount a volume (see the VSI OpenVMS
System Manager's Manual). The volume identifier consists of six ASCII “a” characters. Lowercase
characters are not in the “a” set, but if you specify them, OpenVMS systems change them to uppercase.
If you specify fewer than six characters, OpenVMS systems pad the field by right-justifying the field
with the ASCII space character.

Accessibility Field

The accessibility field is a one-character field that allows an installation to control access to a volume.
See the VSI OpenVMS System Manager's Manual for a description of accessibility support.

Implementation Identifier Field

The implementation identifier field contains the identifier of the implementation that creates the
magnetic tape. This field controls how certain implementation-specific fields and volume labels are
interpreted. The magnetic tape file system's implementation identifier is DECFILE11 A. This field
contains the implementation identifier only if a second volume (VOL2) label is written on the magnetic
tape. Otherwise, it is filled with ASCII space characters.

Owner Identifier Field

The owner identifier field is available to the user. This field does not affect the checking of a user's
access to a volume, except as noted in the VSI OpenVMS System Manager's Manual.

1.3.1.5.2. VOL2 Label

In addition to the first volume (VOL1) label described above, OpenVMS systems provide a second
volume (VOL2) label, the volume-owner field.

The volume-owner field contains the OpenVMS protection information that has been written on the
magnetic tape. A second volume label is written only if an OpenVMS protection scheme had been
specified on either the MOUNT or INITIALIZE command.

The volume-owner field also contains a value that incorporates the user identification code (UIC) with
the OpenVMS protection code specified for a volume. By default, OpenVMS systems do not write a
UIC to this field, thus allowing all users READ and WRITE access. Note, however, that EXECUTE and
DELETE access are not applicable to magnetic tape volumes. Also note that, regardless of the protection
code that you specify, both system users and the volume owner always have READ and WRITE access
to a volume. The contents of the volume-owner field depends on the OpenVMS protection code that you
specify.

1.3.1.6. Header Labels

OpenVMS operating systems support four file-header labels: HDR1, HDR2, HDR3, and HDR4. The
HDR3 and HDR4 labels are optional. The following sections describe and illustrate each file-header
label.

1.3.1.6.1. HDR1 Label

Every file on a volume has a HDR1 label, which identifies and describes the file by supplying the
OpenVMS MTAACP with the following information:

21

Chapter 1. Introduction

● File identifier

● File-set identifier

● File section number

● File sequence number

● Generation and generation version numbers

● File creation and expiration dates

● Accessibility code

● Implementation identifier

File Identifier Field

The file identifier field contains the first 17 characters of the file name you specify. The remainder
of the file name is written into the HDR4 label, provided that this label is allowed. If no HDR4 label
is supported, a file name longer than 17 characters will be truncated. You may use either an ANSI
magnetic tape file name or an OpenVMS file specification of the following format:

filename.type;version

OpenVMS file specifications are a subset of ANSI magnetic tape file names. However, ANSI magnetic
tape file names are valid only for magnetic tape volumes; OpenVMS file specifications are valid for disk
and tape volumes. Both types of file specifiers are compatible with compatibility mode.

An OpenVMS file specification consists of a file name, a file type, and an optional version number.
Valid file names contain a maximum of 39 characters. Valid file types consist of a period followed by a
maximum of 39 characters. The semicolon separates the version number from the file type.

Except for wildcard characters, only the characters A through Z, 0 through 9, and the special characters
ampersand (&), hyphen (-), underscore (_), and dollar sign ($) are valid for OpenVMS file names
and types. The period and semicolon are the only other valid special characters, and they are always
separators.

ANSI magnetic tape file names do not have a file type field. An ANSI magnetic tape file name consists
of a 17-character name string, a period, a semicolon, and an optional version number. You can specify
a name string consisting of a maximum of 17 ASCII “a” characters, but you must enclose the string in
quotation marks (as in, for example, “file name”). When you specify fewer than 17 characters, the string
is padded on the right with spaces to the 17-character maximum size. If you specify a file name that has
trailing spaces, OpenVMS systems truncate them when the file name is returned. In addition, the space-
padded field prevents you from specifying a unique file name that consists of spaces.

Although you can specify longer file names (up to 79 characters), only the first 17 characters of the file
name will be used in interchange.

The quotation mark character requires special treatment because it is both the file name delimiter
and a valid ASCII “a” character that can itself be embedded in the name string. You must specify two
quotation marks for each one that you want the operating system to interpret. The additional quotation
mark informs the operating system that one of the quotation marks is part of the name string, rather than
a delimiter.

22

Chapter 1. Introduction

Embedded spaces also are valid characters, but embedded tabs are not. Lowercase characters are not
in the ASCII “a” character set, but if you specify them, OpenVMS systems convert them to uppercase
characters.

If you do not specify a file type or version number on input, OpenVMS systems supply a period (the
default file type) and a semicolon (the default version number). However, the period and semicolon will
not be written to this field on the tape.

Although the operating system considers version numbers for ANSI magnetic tape file names and
OpenVMS file names to be part of the file name specification, the version number of a file is not written
to the file identifier field but is mapped to the generation number and generation version-number fields
as described in the section called “Generation Number and Generation Version-Number Fields”.

Examples below display ANSI magnetic tape file names. The input is the format that you specify. The
output shown displays the OpenVMS format returned to your process and the format written to the label.
The number sign (#) in the examples indicates a space character. In the last example, an OpenVMS file
name is enclosed in quotation marks, like an ANSI magnetic tape file name, on input. However, the
operating system returns the file name to the process as an OpenVMS file name, rather than as an ANSI
magnetic tape file name. Therefore, when you enclose a valid OpenVMS file name in quotation marks
on input, the operating system parses the file name as an OpenVMS file name.

 Input

"AB2&D""FgHI*k4""#-M";2

"##########"

""""""""""""""""""""""""""";

"DWDEVOP.DAT"

"VMS_LONG_FILENAME.LONG_FILETYPE"

 Output to User Process

"AB2&D""FGHI*K4""#-M";2

"".;

"""""""""""""""""""""""""""".;

DWDEVOP.DAT;

VMS_LONG_FILENAME.LONG_FILETYPE

 Output to HDR1 Label

AB2&D"FGHI*K4"#-M

#################

"""""""""""""####

DWDEVOP.DAT######

23

Chapter 1. Introduction

VMS_LONG_FILENAME

File-Set Identifier Field

The 6-character file-set identifier field denotes all files that belong to the same volume set. The file-set
identifier for any file within a given volume set should always be the same as the file-set identifier of the
first file on the first volume that you mount. The file-set identifier is the same as the volume identifier of
the first volume that you mount.

File Section Number and File Sequence Number Fields

The file section number is a 4-character field that specifies the number of the file section.

The file sequence number is a 4-character field that specifies the number of the file in a file set.

Generation Number and Generation Version-Number Fields

The generation number (a decimal number from 0001 to 9999) and generation version-number (a 2-
digit decimal number) fields store the file version number specified on input and written by the system
on output. The operating system does not increment the version number of a file, even when the version
of the specified file already exists on the volume. Therefore, if the file that you specify has the same
file name and version number as an existing file, you will have at least two files with the same version
number on the same volume set.

On input, OpenVMS systems compute the version number by using this calculation:

version number = [(generation number - 1) * 100] + generation version-
number + 1

Version numbers larger than 32,767 are divided by 32,768; the integer remainder becomes the version
number.

On output, the generation number is derived from the version number with this calculation:

generation number = [(version number - 1)/100] + 1

If there is a remainder after the version number is divided by 100, the remainder becomes the generation
version number. It is not added to 1 to form the generation number.

Creation Date and Expiration Date Fields

The creation date field contains the date the file is created. The expiration date field contains the date the
file expires. The system interprets the expiration date of the first file on a volume as the date that both
the file and the volume expire. The creation and expiration dates are stored in the Julian format. This 6-
character format (#YYDDD) permits the # symbol to consist of either an ASCII space or an ASCII zero,
with the YYDDD consisting of a year and day value. If an ASCII space is indicated, it is assumed that
1900 is added to the 2-digit year value; if an ASCII zero is indicated, it is assumed that 2000 is added to
the 2-digit year value. For the YYDDD part of the format, only dates are relevant for these fields; time is
always returned as 00:00:00:00.

OpenVMS Version 5.1-1 and later versions implement the ASCII zero to the previously existing ASCII
space per the ANSI X3.27–1987 standard, making them year 2000 ready. This ANSI standard is
believed to be valid through the year 2100.

OpenVMS versions prior to Version 5.1-1 have known problems initializing and mounting magnetic
tapes in the year 2000 and later.

24

Chapter 1. Introduction

By default, the current date is written to both the creation and expiration date fields when you create a
file. Because the expiration date is the same as the creation date, the file expires on creation and you can
overwrite it immediately. If the expiration date is a date that is later than the creation date and if the files
you want to overwrite have not expired, you must specify the /OVERRIDE=EXPIRATION qualifier
with the INITIALIZE or MOUNT command.

To write dates other than the defaults in the date fields in this label, specify the creation date field (CDT)
and the expiration date field (EDT) of the RMS date and time extended attribute block (XABDAT).

When you do not specify a creation date, RMS defaults the current date to the creation date field. To
specify a zero creation date, you must specify a year before 1900. If you specify a binary zero in the date
field, the system will write the current date to the field.

For details on the XABDAT, see the VSI OpenVMS Record Management Services Reference Manual.

Accessibility Field

The contents of this field are described in Section 1.3.1.5, "Volume Labels".

Implementation Identifier Field

The implementation identifier field specifies, using ASCII “a” characters, an identification of the
implementation that recorded the Volume Header Label Set.

1.3.1.6.2. HDR2 Label

The HDR2 label describes the record format, maximum record size, and maximum block size of a file.

Record Format Field

The record format field specifies the type of record format the file contains. The operating system
supports two record formats: fixed length (F) and variable length (D). When files contain record formats
that the system does not support, it cannot interpret the formats and classifies them as undefined.

Fixed-length records are all the same length. No indication of the record length is required within the
records because either the HDR2 label defines the record length or you specify the record length with
the /RECORDSIZE qualifier. A fixed-length record can be a complete block, or several records can be
grouped together in a block.

Fixed-length blocked records are padded to a multiple of 4 records. Variable-length records are padded
to the block size. If a block is not filled, it will be padded with circumflex characters (^). The standard
does not allow records containing only circumflexes; the system will interpret this as padding, not data.

Figure 1.11, "Blocked Fixed-Length Records" shows a block of fixed-length records. Each record has a
fixed length of 50 bytes. All six records are contained in a 300-byte block. The records are blocked—
that is, grouped together as one entity—to increase processing efficiency; when records are blocked, you
can access many of them with one I/O request. The block size should be a multiple of the record size.

Figure 1.11. Blocked Fixed-Length Records

25

Chapter 1. Introduction

The size of a variable-length record is indicated by a record control word (RCW). The RCW consists of
four bytes at the beginning of each record. A variable-length record can be a complete block, or several
records can be grouped together in a block.

Two variable-length records are shown in Figure 1.12, "Variable-Length Records". The first consists of
54 bytes, including the RCW. The second consists of 112 bytes, including the RCW. The records are
contained in a 166-byte block.

Do not use system-dependent record formats on volumes used for information interchange. OpenVMS
system-dependent formats are stream and variable with fixed-length control (VFC).

Figure 1.12. Variable-Length Records

Block Length Field

The block length field denotes the maximum size of the blocks. According to the ANSI magnetic
tape standard, valid block sizes range from 18 to 2048 bytes. However, the operating system allows
you to specify a smaller or larger block size by using the /BLOCKSIZE qualifier with the MOUNT
command. To specify the block size using RMS, see the BLS field in the file access block (FAB) in the
VSI OpenVMS Record Management Services Reference Manual. When you specify a block size outside
the ANSI magnetic tape standard range, the volume may not be processed correctly by other systems
that support the ANSI magnetic tape standards.

Record Length Field

The record length field denotes either the size of fixed-length records or the maximum size of variable-
length records in a file. Valid RMS record sizes vary, depending on the record format. The range for
fixed-length records is 1 to 65,534 bytes; the range for variable-length records is 4 to 9,999 bytes,
including the 4-byte RCW. Therefore, the maximum length of the data area of a variable-length record is
9,995 bytes. To comply with ANSI magnetic tape standards, the record size should not be larger than the
maximum block size of 2,048 bytes, even though OpenVMS systems allow larger record sizes (when the
block size is larger).

For volumes containing files that do not have HDR2 labels, you must specify MOUNT/
RECORDSIZE=n at mount time. The variable n denotes the record length in bytes. Files without HDR2
labels were created by a system that supports only level 1 or 2 of the ANSI standard for magnetic tape
labels and file structure. Records should be fixed length because this is the only record format that either
level supports. If you do not specify a record size, each block will be considered a single record.

Implementation-Dependent Field

The implementation-dependent field contains two 1-character subfields that describe how the operating
system interprets record format and form control.

The first subfield, character position 16, denotes whether the RMS attributes are in this label or the
HDR3 label. If character position 16 contains a space, the RMS attributes are in the HDR3 label; if it
contains any character other than a space, character position 16 is the first byte of the RMS attributes in
the HDR2 label. The attributes appear in character positions 16 through 36 and 38 through 50.

26

Chapter 1. Introduction

The second subfield, the form control field at character position 37, specifies the form control that
defines the carriage control applied to records within a file. Possible values supported for RMS magnetic
tape volumes are listed below.

A First byte of record contains Fortran control
characters.

M The record contains all form control information.
space Line-feed/carriage-return combination is to be

inserted between records when the records are
written to a carriage-control device, such as a line
printer or terminal. If form control is not specified
when a file is created, this is the default.

Buffer-Offset Length Field

For implementations that support buffer offsets, the buffer-offset length field indicates the length of
information that prefixes each data block. The magnetic tape file system supports the input of buffer
offset, which means that the buffer-offset length obtained from the HDR2 label (when reading the file)
is used to determine the actual start of the data block. The magnetic tape file system does not support the
writing of a buffer offset.

Note that, if you open a file for append or update access and the buffer-offset length is nonzero, the open
operation will not succeed.

1.3.1.6.3. HDR3 Label

The HDR3 label describes the RMS file attributes. For RMS operations, data in the HDR3 label
supersedes data in the HDR2 label.

Although the HDR3 label usually exists for every file on an ANSI magnetic tape volume, there are two
situations when this label will not be written. The first is when an empty dummy file is created during
volume initialization; no HDR3 label is written because the empty file does not require RMS attributes.
The second is when you specify MOUNT/NOHDR3 at mount time. You should use the /NOHDR3
qualifier when you create files on volumes that will be interchanged to systems that do not process
HDR3 labels correctly.

The RMS attributes describe the record format of a file. These attributes are converted from 32 bytes
of binary values to 64 bytes of ASCII representations of their hexadecimal equivalents for storage in the
HDR3 label.

1.3.1.6.4. HDR4 Label

The HDR4 label contains the remainder of an OpenVMS file name that would not fit in the HDR1 file
identifier field.

1.3.1.7. Trailer Labels
The operating system supports two sets of trailer labels: end-of-file (EOF) and end-of-volume (EOV). A
trailer label is written for each header label.

EOF and EOV labels are identical to their file header label counterparts except that:

● The label identifier field (characters 1-3) contains EOF or EOV.

27

Chapter 1. Introduction

● The block count field (characters 55-60) in the EOF1 and EOV1 labels contains the number of data
blocks in the file section.

The particular label that OpenVMS systems write depends on whether a file extends beyond a volume. If
a file terminates within the limits of a volume, EOF labels are written to delimit the file (see Figure 1.7,
"Single File on a Single Volume"). If a file extends across volume boundaries before terminating, EOV
labels are written, indicating that the file continues on another volume (see Figure 1.8, "Single File on
Multiple Tape Volumes").

1.4. Using Command Procedures to Perform
Routine File and Device Operations
Many of the operations that you perform on disk and magnetic tape media are routine in nature.
Therefore, you will find it worthwhile to take the time to identify those tasks that you routinely perform
at your particular site. Once you have isolated those tasks, you can design command procedures to assist
you in performing them.

For example, if you are a system manager or an operator, you must frequently perform data integrity
tasks such as backing up media. You could enter all of the commands, parameters, and qualifiers
required to back up your media each time that you perform the backup operation, or you can write a
single command procedure (containing that set of commands, qualifiers, and parameters) that, when
executed, would also perform the backup operation.

In order to familiarize yourself with the syntax used to design and execute command procedures, see the
VSI OpenVMS User's Manual.

1.5. Volume Protection
The system protects data on disk and tape volumes to make sure that no one accesses the data
accidentally or without authorization. For volumes, the system provides protection at the file, directory,
and volume levels. For tape volumes, the system provides protection at the volume level only.

In addition to protecting the data on mounted volumes, the system provides device protection coded into
the home block of the disks and tapes. See Section 1.2, "Disk Concepts" for more information.

In general, you can protect your disk and tape volumes with user identification codes (UICs) and access
control lists (ACLs). The standard protection mechanism is UIC-based protection. Access control lists
permit you to customize security for a file or a directory.

UIC-based protection is determined by an owner UIC and a protection code, whereas ACL-based
protection is determined by a list of entries that grant or deny access to specified files and directories.

Note

You cannot use ACLs with magnetic tape files.

When you try to access a file that has an ACL, the system uses the ACL to determine whether or not you
have access to the file. If ACL does not explicitly allow or refuse you access or if the file has no ACL,
the system uses the UIC-based protection to determine access. (See the VSI OpenVMS Guide to System
Security for additional information about system security.)

For detailed information about protecting your files, directories, or volumes, see Section 4.4, "Defining
File Protection".

28

Chapter 1. Introduction

1.6. RMS (Record Management Services)
OpenVMS Record Management Services (OpenVMS RMS or simply RMS) is the file and record access
subsystem of the OpenVMS operating systems. RMS allows efficient and flexible data storage, retrieval,
and modification for disks, magnetic tapes, and other devices.

You can use RMS from low-level and high-level languages. If you use a high-level language, it may not
be easy or feasible to use the RMS services directly because you must allocate control blocks and access
fields within them. Instead, you can rely on certain processing options of your language's input/output
(I/O) statements or upon a specialized language provided as an alternative to using RMS control blocks
directly, the File Definition Language (FDL).

If you use a low-level language, you can either use record management services directly, or you may use
FDL.

1.6.1. File Definition Language (FDL)
FDL is a special-purpose language you can use to specify file characteristics. FDL is particularly useful
when you are using a high-level language or when you want to ensure that you create properly tuned
files. Properly tuned files can be created from an existing file or from a new design for a file. The
performance benefits of properly tuned files can greatly affect application and system performance,
especially when using large indexed files.

FDL allows you to use all of the creation-time capabilities and many of the run-time capabilities of RMS
control blocks, including the file access block (FAB), the record access block (RAB), and the extended
attribute blocks (XABs).

For more information about FDL, see Section 4.1.2, "Using File Definition Language".

1.6.2. RMS Data Structures
RMS control blocks generally fall into two groups: those pertaining to files and those pertaining to
records.

To exchange file-related information with file services, you use a control block called a file access block
(FAB). You use the FAB to define file characteristics, file specifications, and various run-time options.
The FAB has a number of fields, each identified by a symbolic offset value. For instance, the allocation
quantity for a file is specified in a longword-length field having a symbolic offset value of FAB$L_ALQ.
FAB$L_ALQ indicates the number of bytes from the beginning of the FAB to the start of the field.

To exchange record-related information with RMS, you use a control block called a record access block
(RAB). You use the RAB to define the location, type, and size of the input and output buffers, the
record access mode, certain tuning options, and other information. The symbolic offset values for the
RAB fields have the prefix RAB$ to differentiate them from the values used to identify FAB fields. The
RAB symbolic offset values have the same general format, where the letter following the dollar sign
indicates the field length and the letters following the underscore are a mnemonic for the field's function.
For example, the multibuffer count field (MBF) specifies the number of local buffers to be used for I/O
and has the symbolic offset value RAB$B_MBF. The value of RAB$B_MBF is equal to the number of
bytes from the beginning of the RAB to the start of the field.

Where applicable, RMS uses control blocks called extended attribute blocks (XABs), together with FABs
and RABs, to support the exchange of information with RMS. For example, a Key Definition XAB

29

Chapter 1. Introduction

specifies the characteristics for each key within an indexed file. The symbolic offset values for XAB
fields have the common prefix XAB$.

For more information about RMS control blocks, see Chapter 4, "Creating and Populating Files".

1.6.3. Record Management Services
Because RMS performs operations related to files and records, services generally fall into one of two
groups:

● Services that support file processing. These services create and access new files, access (or open)
previously created files, extend the disk space allocated to files, close files, get file characteristics,
and perform other functions related to the file.

● Services that support record processing. These services get (extract), find (locate), put (insert),
update (modify), and delete (remove) records and perform other record operations.

For more information about the various services, see Chapter 7, "File Sharing and Buffering" and
Chapter 8, "Record Processing".

1.7. RMS Utilities
The following are RMS file-related utilities:

● The Analyze/RMS_File utility

● The Convert utility

● The Convert/Reclaim utility

● The Create/FDL utility

● The Edit/FDL utility

These utilities let you design, create, populate, maintain, and analyze data files that can use the full set of
RMS create-time and run-time options. They help you create efficient files that use a minimum amount
of system resources, while decreasing I/O time.

For more information about the record management utilities, see the VSI OpenVMS Record Management
Utilities Reference Manual.

1.7.1. The Analyze/RMS_File Utility
With the Analyze/RMS_File utility (ANALYZE/RMS_FILE), you can perform five functions:

● Inspect and analyze the internal structure of an RMS file

● Generate a statistical report on the file's structure and use

● Interactively explore the file's internal structure

● Generate an FDL file from an RMS file

● Generate a summary report on the file's structure and use

30

Chapter 1. Introduction

ANALYZE/RMS_FILE is particularly useful in generating an FDL file from an existing data file that
you can then use with the Edit/FDL utility (also called the FDL editor) to optimize your data files.
Alternatively, you can provide general tuning for the file without the FDL editor.

To invoke the Analyze/RMS_File utility, use the following DCL command line format:

 ANALYZE/RMS_FILE filespec[,...]

The filespec parameter lets you select the data file you want to analyze.

For more information about the Analyze/RMS_File utility, refer to Chapter 10, "Maintaining Files" of
this manual and the VSI OpenVMS Record Management Utilities Reference Manual.

1.7.2. The Convert Utility
The Convert utility (CONVERT) copies records from one or more files to an output file, optionally
changing the record format and file organization to that of the output file. Note that the Convert utility
processes relative files by sequentially reading records from the input file, then writing them to the
output file. As a result, the relative record numbers (RRN) change when the input file contains deleted or
unused records.

CONVERT is particularly useful in the tuning cycle of a file. After you have analyzed and optimized the
file, you can use CONVERT to create a new file having the new, optimized characteristics and to copy
the records in the old file to the new file. You can also use CONVERT to reformat an indexed file that
has had many record insertions or deletions.

To invoke the Convert utility, use the following DCL command line format:

CONVERT input-filespec[,...] output-filespec

Use the input-filespec parameter to specify the file or files you want to convert, and use the output-
filespec parameter to specify a destination file for the converted records.

Figure 1.13, "Using CONVERT to Create a Data File" shows how CONVERT creates data files and
loads them with converted records from an input file.

Figure 1.13. Using CONVERT to Create a Data File

For more information about the Convert utility, refer to Chapter 4, "Creating and Populating Files" and
the VSI OpenVMS Record Management Utilities Reference Manual.

1.7.3. The Convert/Reclaim Utility
The Convert/Reclaim utility reclaims empty buckets in Prolog 3 indexed files so that new records can be
added to them. A bucket is a storage structure that RMS uses to build and process files.

31

Chapter 1. Introduction

The Convert/Reclaim utility does an “in-place” reorganization of the file in contrast to the Convert
utility, which creates a new file from the old file. For this reason, the Convert/Reclaim utility is more
appropriate for large disk files where space is limited. Before using the Convert/Reclaim utility, be sure
to back up the file.

For more information about the Convert/Reclaim utility, see Chapter 4, "Creating and Populating Files"
of this manual and the VSI OpenVMS Record Management Utilities Reference Manual.

1.7.4. The Create/FDL Utility
The Create/FDL utility (CREATE/FDL) uses the specifications in an existing FDL file to create a new,
empty data file.

To invoke this utility, use the following DCL command line format:

CREATE/FDL=fdl-filespec [filespec]

The fdl-filespec parameter specifies the source FDL file for creating the data file. The filespec
parameter gives you the option of assigning a file specification to the data file.

Figure 1.14, "Using CREATE/FDL to Create an Empty Data File" shows how the CREATE/FDL utility
creates empty data files from the specifications in an FDL file.

For more information about the CREATE/FDL utility, see Chapter 4, "Creating and Populating Files"
and the VSI OpenVMS Record Management Utilities Reference Manual.

Figure 1.14. Using CREATE/FDL to Create an Empty Data File

1.7.5. The Edit/FDL Utility
The Edit/FDL utility (EDIT/FDL) creates and modifies files that contain specifications for RMS data
files. The specifications are written in the file definition language, and the files are called FDL files.

A completed FDL file is an ordered sequence of file attribute keywords and their associated values. By
using an FDL file to specify the characteristics of a data file, you can use most of the RMS capabilities
without having to access the RMS control blocks directly.

While you are designing the data model, EDIT/FDL informs you of syntax errors and the effects of
altering file characteristics. Using EDIT/FDL, you can experiment with attributes that are critical to the
record-processing performance of the file, and you can calculate optimum file size.

For example, the depth of an index is an important consideration in designing an indexed file, and bucket
size is one variable that determines the number of levels. EDIT/FDL can show the effects of varying the
bucket size on the index depth to help you choose the optimum bucket size.

To invoke this utility, use the following DCL command line format:

32

Chapter 1. Introduction

EDIT/FDL fdl-filespec

The fdl-filespec parameter specifies the FDL file you want to create, modify, or optimize.

For more information about the Edit/FDL utility, see the VSI OpenVMS Record Management Utilities
Reference Manual.

1.8. Process and System Resources for File
Applications
To use RMS files efficiently, your application requires various process and system resources. You may
have to adjust specific resources and quotas for the process running a file application. Before using RMS
options, you should consider their impact on process and system resources. In some cases, you may need
additional memory or disk drives to ensure that sufficient system resources are available.

1.8.1. Memory Requirements
One of the most important ways to improve application performance is to allocate larger buffer areas or
more buffers for an application. As described in Chapter 7, "File Sharing and Buffering", the number
of buffers and the size of buckets and blocks can be fine tuned on the basis of the way the file will be
accessed. For indexed files, the index structure and other factors must also be considered.

When a file is opened or created, RMS maintains the buffers and control structures charged to process
memory use. Memory use generally increases with the number of files to be processed at the same time.
The amount of memory needed for I/O buffers can vary greatly for each file, but the amount of memory
needed for control structures is fairly constant.

The memory use (working set) of a process is governed by three resource limits:

● Working set default (WSDEFAULT)

● Working set quota (WSQUOTA)

● Working set extent (WSEXTENT)

These values can ensure that the process has sufficient memory to perform the application with
minimum paging. For a complete description of these limits, see the VSI OpenVMS System Manager's
Manual.

In addition to process requirements, you may want a shared file to use global buffers to avoid needless I/
O when the desired buffer is already in memory. Global buffer usage is limited by the following system
parameters:

● RMS global buffer quota (RMS_GBLBUFQUO)

● Global sections (GBLSECTIONS)

● Global pages (GBLPAGES)

● Global page-file pages (GBLPAGFIL)

When DCL opens a process-permanent file, RMS places internal structures for the file in a special
portion of P1 space called the process I/O segment. The segment size is determined by the system

33

Chapter 1. Introduction

parameter PIOPAGES and cannot be expanded dynamically. If there is insufficient space in the process
I/O segment for the internal structures, DCL generates an error message and does not open the file.

For a complete description of these parameters, see the VSI OpenVMS System Manager's Manual.

1.8.2. Process Limits
If you anticipate asynchronous record I/O or are going to access a shared file, you should consider the
following process limits:

● Asynchronous system trap limit (ASTLM)

● Buffered I/O limit (BIOLM)

● Direct I/O limit (DIOLM)

● Enqueue quota limit (ENQLM)

● Open file limit (FILLM)

For a complete description of these process limits, see the VSI OpenVMS System Manager's Manual.

34

Chapter 2. Choosing a File
Organization
When you write an application program, you want the program to input data, process it, store it, update
it if necessary, and output it at the right time in the right format. Moreover, the program should perform
these functions quickly and accurately.

To achieve this objective, you should consider the structure of your data files and the data processing
capabilities available to you through OpenVMS RMS, referred to hereafter as RMS.

You should consider these factors when you write the application program, especially if you have many
users simultaneously accessing large files, or if you have a high level of file activity where many records
are stored, retrieved, updated, or deleted in a given time period.

You may later reconsider these factors if you are not satisfied with the application program's
performance.

This chapter describes file design and structure to help you make the first important design decision:
selecting a file organization.Section 2.1, "Record Concepts" covers record access modes and
formats.Section 2.2, "File Organization Concepts" describes file concepts and organization.

See Chapter 3, "Performance Considerations" for a description of performance criteria that will help you
to evaluate the performance of your data files.

All of the RMS features described in this chapter are available at the VAX MACRO programming
level, and many are available to higher-level OpenVMS programming languages that use FDL as an
intermediary to the RMS control blocks. (See the descriptions of the FDL routines in the VSI OpenVMS
Utility Routines Manual for details.)

High-level languages may support only a subset of RMS features. If you intend to use RMS from a high-
level language, refer to your language manual to determine the RMS capabilities available to you.

2.1. Record Concepts
In considering the structure of your data files, note that a file is an ordered collection of logically related
records treated as a unit.

One design consideration is the way records are transferred to your program from storage. For disk
files, the smallest unit of transfer is a block, but records are usually transferred in multiple blocks using
transfer units that are primarily dictated by file organization. If you use the sequential file organization,
the multiblock run-time option allows multiple blocks to be transferred during a single I/O operation.
Relative files and indexed files use buckets to transfer records. A bucket is a storage structure, consisting
of 1 to 63 blocks, used for building and processing relative and indexed files.

Another design consideration is how records are accessed: therecord access mode. The record access
mode specifies the way your program stores and retrieves file records.

A third consideration in designing files is how records are formatted. The program that creates the
file specifies its record format. Any program that accesses the file must conform to the defined record
format.

35

Chapter 2. Choosing a File Organization

A fourth consideration is record layout. The record layout defines the number and length of record fields.
For example, a program that creates records in a payroll file might use a record layout containing the
following fields:

● Employee name

● Social security number

● Pay rate

● Deductions

The next two sections describe RMS record access modes and record formats, respectively.

2.1.1. Record Access Modes
RMS provides two record access modes: sequential access and random access. Random access can be
further catalogued as one of the three following modes:

● Random access by key value

● Random access by relative record number

● Random access by record file address (RFA)

Although you cannot change its file organization after you create a file, you can change the record access
mode each time you access a record in the file. For example, a relative file can be processed in sequential
access mode one time and in a random access mode the next time. Table 2.1, "Supported Record Access
Modes and File Organizations" lists the combinations of record access modes and file organizations
supported by RMS.

Table 2.1. Supported Record Access Modes and File Organizations

 File Organization

Access Mode Sequential Relative Indexed

Sequential Yes Yes Yes
Random by relative
record number

Yes 1 Yes No

Random by key value No No Yes
Random by record file
address

Yes 2 Yes Yes

The following sections describe the record access modes and the capability for switching from one mode
to another during program execution.

2.1.1.1. Sequential Access
In sequential access mode, storage or retrieval begins at a designated point in the file and continues
sequentially through the file. RMS begins accessing records at the start of the file, unless you either
specify the starting point explicitly or establish a starting point through a previous operation.

In the sequential access mode, your program issues a series of requests to RMS to retrieve or store
succeeding records in a file. Before acting on these requests, RMS checks the file organization to

36

Chapter 2. Choosing a File Organization

determine how to proceed. The following sections describe how RMS handles sequential access for each
of the three file organizations.

Sequential Access to Sequential Files

In a sequential file, records are stored adjacent to one other. To retrieve a particular record within the
file, your program must open the file and successively retrieve all records between the current record
position and the selected record.

Figure 2.1, "Sequential Access to a Sequential File" shows a disk surface. Each lettered section on the
surface represents a record in a sequential file, beginning with record A. When the program requests
sequential access to the file records, RMS interprets each request in the context of the file's organization.

Because this particular file is sequential, RMS complies with each request (except for the first request)
by accessing the record immediately following the previously accessed record. For example, after RMS
accesses record A, it updates the current-record position to record B in anticipation of the next request.

Figure 2.1. Sequential Access to a Sequential File

There are limitations imposed by sequential access. When accessing data sequentially, a program can
access a previous record only by reopening or rewinding the file, or by switching to a random access
mode. (See Chapter 8, "Record Processing" for details.) Another limitation of sequential access is that
you can add records only to the end of the file.

Sequential Access to Relative Files

Relative files may be accessed sequentially even if some of the fixed-length file cells are empty (because
records were never stored in them or because records were deleted from them). RMS ignores empty cells
and sequentially searches for the next occupied cell. For example, assume a relative file contains records
only in cells 1, 3, and 6. RMS responds to a sequential retrieval request by retrieving the record in cell 1,
then the record in cell 3, and then the record in cell 6.

Figure 2.2, "Sequentially Retrieving Records in a Relative File" shows how RMS checks each cell,
ignores an empty cell when it finds one, and then checks the next cell for a record.

Figure 2.2. Sequentially Retrieving Records in a Relative File

When storing records sequentially in a relative file, RMS places each new record in the cell whose
relative record number is one higher than the most recently accessed cell, provided the cell is empty. If
the cell is not empty, the new record cannot be stored in it. Instead, RMS returns an error status.

As Figure 2.3, "Sequentially Storing Records in a Relative File" shows, the program directs RMS to store
record F in cell 2. Record A already occupies cell 1 but cell 2 is empty, so RMS can store the record in
this cell. If this request is followed by a request to sequentially store the next record, RMS stores the

37

Chapter 2. Choosing a File Organization

record in cell 3, which is also empty. However, if the program tries to store a new record in the next cell
(which already contains record B), the attempt fails.

Note that although RMS cannot store a new record in a cell that is already occupied, your program can
modify the record occupying the cell.

Figure 2.3. Sequentially Storing Records in a Relative File

Sequential Access to Indexed Files

When a program sequentially accesses an indexed file, RMS uses one or more indexes to determine the
order in which to process the file records. Because index entries are ordered by key values, an index
represents a logical ordering of the records in the file. If you define more than one key for the file,
each index associated with a key represents a different logical ordering of the records in the file. Your
program can then use the sequential access mode to retrieve records in the logical order represented by
any index.

To retrieve records sequentially from an indexed file, your program must first specify a key of reference
(for example, primary key, first alternate key, second alternate key, and so on). For successive retrievals,
RMS uses the appropriate index to retrieve records based on how the records are ordered in the index.

If RMS accesses the index in ascending sort order, it returns the record with a key value equal to or
higher than the key value in the previously accessed record. Conversely, if RMS accesses records in
descending order, it accesses the next record having a key value equal to or lower than the key value in
the previously accessed record. In contrast to a request to retrieve data sequentially from an indexed file,
a request to store data sequentially in an indexed file does not require a key of reference. Rather, RMS
uses the definition of the primary key to place the record in the primary index and, where applicable,
uses the definition of the appropriate alternate key to place a record pointer in the alternate index.

When a program issues a series of requests to sequentially store data, RMS verifies that the key value in
each successive record is ordered correctly.

2.1.1.2. Random Access by Key Value or Relative Record Number
RMS supports random access for all relative files, all indexed files, and a restricted set of sequential
disk files—those having fixed-length records. In random access mode, your program (not the file
organization) determines the record processing order. For example, to randomly access a record in a
relative file or a record in a sequential disk file having fixed-length records, your program must provide
the relative record number of the cell containing the record. Similarly, to randomly access a record from
an indexed file, your program must provide the appropriate key of reference and key value.

Random Access to Sequential and Relative Files

Unlike sequential access, random access follows no specific pattern. Your program may make successive
requests for storing or retrieving records anywhere within the file. In Figure 2.4, "Random Access by

38

Chapter 2. Choosing a File Organization

Relative Record Number", the program directs RMS to retrieve the record from the sixth cell in a relative
file (record C) and then requests RMS to retrieve record F, which occupies the second cell.

Figure 2.4. Random Access by Relative Record Number

Compare Figure 2.4, "Random Access by Relative Record Number" withFigure 2.1, "Sequential Access to
a Sequential File" andFigure 2.2, "Sequentially Retrieving Records in a Relative File".

Random Access to Indexed Files

To randomly access a record from an indexed file, your program must specify both a key value and the
index that RMS must search (for example, primary index, first alternate key index, and so on). When
RMS finds a record with a matching key value, it passes the record to your program.

Your program can use several methods to randomly access a record by key:

● Exact match of key values.

● Approximate match of key values. When accessing an index in ascending sort order, RMS returns the
record that has the next higher key value. Conversely, when it accesses the index in descending sort
order, RMS returns the record that has the next lower key value.

● Generic match of key values. Applies to string data-type keys only (STRING, DSTRING,
COLLATED and DCOLLATED). For a generic match, the program need specify only a match of
some specified number of leading characters in the key.

● Combination of approximate and generic match.

Chapter 8, "Record Processing" describes these key match conditions in more detail.

In contrast to record retrieval requests, program requests to store records randomly in an indexed file do
not require the separate specification of a key value. All keys (primary and any alternate key values) are
in the record itself.

When your program opens an indexed file to store a new record, RMS uses the key definitions in the file
to find each key field in the record and to determine the length of each key. After writing the new record
into the file, RMS uses the record's key values to make appropriate entries in the related indexes so that
the record can be accessed subsequently using any of its key values.

2.1.1.3. Random Access by Record File Address

Every record on disk has a unique file address—the record file address (RFA)—that provides another
way to randomly retrieve records in all types of file organizations.

Note

RFA mode provides the only means of randomly accessing variable-length records in a sequential file.

39

Chapter 2. Choosing a File Organization

An important feature of the RFA is that it remains constant as long as the record is in the file. RMS
returns the RFA to your program each time the record is retrieved or stored. Your program can either
ignore the RFA or keep it as a random-access pointer to the record for subsequent accesses.

Figure 2.5, "Random Access by Record File Address" contains two illustrations. The first shows that when
a record is stored, its RFA is returned to the program. The second shows that when the program wants
to access the record randomly, it provides RMS with the RFA.

Figure 2.5. Random Access by Record File Address

2.1.2. Record Formats
Except for the key values that are part of the records in indexed files, RMS is less concerned with
the record content than with the record's format, that is, the way the record physically appears on the
recording surface of the storage medium.

RMS supports four record formats:

● Fixed-length format

● Variable-length format

● Variable-length with fixed-length control field (VFC) format

● Stream format

The fixed-length and variable-length record formats are supported for all three file organizations. The
variable-length with fixed-length control field (VFC) record format is supported only for sequential and
relative files.

Note

In relative files, all records are in fixed-length cells regardless of their format.

RMS supports the stream format for sequential files only.

At the VAX MACRO level, you may specify the record format for a file directly by using the FAB
$B_RFM field in the FAB.

40

Chapter 2. Choosing a File Organization

2.1.2.1. Fixed-Length Record Format
When you specify fixed-length record format, all file records are the same length and each record begins
on an even-byte boundary. For example, when you specify 9-byte, fixed-length records, each block can
hold up to 51 records (512/10) not 56 records (512/9).

When you accept the block span option (the default), the maximum fixed-length record size for
sequential files is 32767 bytes. If you specify no block spanning, the maximum fixed-length record size
is 512 bytes (one block). For additional information about selecting the block span option, see the VSI
OpenVMS Record Management Services Reference Manual.

The record length set at file-creation time cannot be changed. It becomes part of the information that
RMS stores and maintains for the file.

For the fixed-length record format, each record occupies the same amount of space in the file, and the
specified length must be able to accommodate the longest record in the file. If any record fields are not
used, your program must be able to detect them and provide appropriate error processing. If you specify
the block span option, records are limited to 512 bytes.

2.1.2.2. Variable-Length Record Format
When you specify the variable-length record format, each record is as long as the data within it requires,
except that all records are padded to an even number of bytes. The number of bytes is encoded in a 2-
byte count field prefixed to the record.

The field may be coded in either LSB (least significant byte) or MSB (most significant byte) format.

The count field for each record begins on an even-byte boundary and contains the number of bytes in the
record. RMS builds the count field from information in your program and treats it separately from the
associated record data field.

RMS uses the following types of variable-length record formats:

V (LSB) format Applies to variable-length records in disk files.
RMS prefixes the data portion of each variable-
length V (LSB) record with a 2-byte, binary count
field in LSB format that specifies the length of the
record in bytes, excluding the count field itself.

V (MSB) format Applies to variable-length records in disk files.
RMS prefixes the data portion of each record
with a 2-byte, binary count field in MSB format
that specifies the length of the record in bytes,
excluding the count field itself.

D format Applies to variable-length records in tape files.
To comply with the American National Standard
X3.27-1978 (Level 3), Magnetic Tape Labels
and Record Formats for Information Interchange,
RMS stores a 4-byte decimal count field before
the data field of each record on a magnetic tape
volume. In contrast to V-format records, the count
field is considered as part of the record; but before
returning the count, RMS adjusts it to include only
the length of the record data.

41

Chapter 2. Choosing a File Organization

When you create a file of variable-length records, specify the value (in bytes) of the largest record
permitted in the file.

If you take the block span option (the default), the maximum variable-length record size is 32767 bytes.
If you specify no block spanning, the maximum variable-length record size is 510 bytes. For additional
information about selecting the block span option, see the VSI OpenVMS Record Management Services
Reference Manual.

Any attempt to store a record containing more bytes than the specified value results in an error. If you
specify a value of 0, any length record can be stored; however, you must consider the bucket capacity
limitation defined for relative and indexed files.

Figure 2.6, "Comparison of Fixed- and Variable-Length Records" compares fixed-length record formats
and variable-length record formats as they apply to sequential files. Each format shows a portion of a file
that contains three records. The comparable record in each format contains the same number of bytes.
The first record has 8 bytes, the second, 16, and the third, 24. For the fixed-length record format, the
record length is set at 32 bytes. Therefore, RMS considers all 32 bytes to be used.

Figure 2.6. Comparison of Fixed- and Variable-Length Records

Clearly, variable-length records can save space; but if records are updated in place, you should consider
trading off some space efficiency for update flexibility. All records in a relative file are in fixed-length
cells. Here, variable-length records do not save space; in fact, the two count-field bytes prefixing each
record actually consume additional space.

In the indexed file organization, the capacity of the data bucket and the maximum record size limit
record length.

2.1.2.3. Variable-Length with Fixed-Length Control Field (VFC)
Record Format
VFC records are similar to variable-length records except that a fixed-length control field is prefixed to
the variable-length data portion. Unlike variable-length records, VFC records cannot be used in indexed
files.

When you create a file for VFC records, you must specify the value (in bytes) of the longest record
permitted in the file. If you accept the block span option (the default), the maximum VFC record
size is 32767 bytes, less the number of bytes in the fixed-length control field. If you specify no block
spanning, the maximum VFC record size is 510 bytes, less the number of bytes in the fixed-length
control field. For additional information about selecting the block span option, see the VSI OpenVMS
Record Management Services Reference Manual.

42

Chapter 2. Choosing a File Organization

Any attempt to store a record containing more bytes than the specified value results in an error. If you
specify a value of 0, any length record can be stored.

You must also specify the value in bytes of the fixed-length control field. The fixed-length control
field lets you include within the record additional data that may have no direct relationship to the other
contents of the record. For example, the fixed-length control field may contain line-sequence numbers
for every record in the file. The program does not use the line-sequence numbers, but they are helpful in
locating records during file editing.

At the VAX MACRO level, you establish the length of the control field for VFC records using the FAB
$B_FSZ field in the FAB. The Open, Create, and Display services provide the control field length in the
XAB$B_HSZ field of the File Header Characteristic XAB. For more information, see the VSI OpenVMS
Record Management Services Reference Manual.

When writing a VFC record to a file, RMS merges the fixed-length control field with the variable-length
record data and prefixes the merged record with the count field. Figure 2.7, "Writing a VFC Record to a
File" shows how RMS writes a VFC record to a file.

Figure 2.7. Writing a VFC Record to a File

When RMS reads a VFC record, it uses the count field to determine the overall length of the record,
and it uses the appropriate file attribute to determine the length of the control field. After subtracting
the control-field length from the overall record length, RMS uses the result to separate the data from the
control information. It then processes the data and stores the control information in a designated storage
area for program use, if applicable. See Figure 2.8, "Retrieving a VFC Record".

Figure 2.8. Retrieving a VFC Record

2.1.2.4. Stream Record Format
There are four variations of stream record format. Special characters or character sequences called
terminators delimit the records in files using the first three variations:

43

Chapter 2. Choosing a File Organization

STREAM_CR This variation uses a carriage return as the
terminator.

STREAM_LF This variation uses a line feed as the terminator.
STREAM This variation ignores leading zeros and uses a

terminator from a limited set of special characters:
the line feed (LF), the carriage-return/line-feed
combination (CR/LF), the form feed (FF), or the
vertical tab (VT).

UNDEFINED This variation has no terminator. The length of
each record is determined by the size of the user
buffer (maximum 65,535 bytes), or the end-of_file.

RMS supports the stream record format for sequential files on disk devices only. In a stream-formatted
file, RMS treats the data as a continuous stream of bytes, without control information. Stream records
are always permitted to span block boundaries.

2.2. File Organization Concepts
The terms file organization and access mode are closely related, but they are distinct from each other,
nonetheless.

You establish the physical arrangement of records in the file—the file organization—when you create
it. The organization of a file cannot be changed unless you use a utility conversion routine (such as
the Convert utility) to create the file again with a different organization. Note that the Convert utility
processes relative files by sequentially reading records from the input file, then writing them to the
output file. As a result, the relative record numbers (RRN) change when the input file contains deleted or
unused records.

One of the file attributes you specify before creating a file is how records are inserted into it and
subsequently retrieved from it—the access mode.

The terms file organization and access mode are sometimes confused because they share common
elements. That is, files areorganized sequentially, relative to some reference value, or by keyed index
value. Similarly, a file may be accessed sequentially, relative to some reference value, or by using a keyed
index value. The following sections emphasize the distinctions between the types of file organization.

Table 2.2, "File Organization Characteristics" lists important features of each file organization.

Table 2.2. File Organization Characteristics

Characteristics Sequential Relative Indexed

Medium
Disk Yes Yes Yes
Magnetic tape Yes No 1 No 1

Unit record 2 Yes No No
Record Formats
Fixed-length Yes Yes Yes
Variable-length Yes Yes Yes
VFC (disk only) Yes Yes No
Stream (disk only) Yes No No

44

Chapter 2. Choosing a File Organization

Characteristics Sequential Relative Indexed

Undefined (disk only) Yes No No
Overhead Per Record

0, 1, or 2 bytes 3 1 or 3 bytes 4 7 to 13 bytes 5

Record Operations
Connect Yes Yes Yes
Delete No Yes Yes
Disconnect Yes Yes Yes
Find Yes Yes Yes
Flush Yes Yes Yes
Free Yes Yes Yes
Get Yes Yes Yes
Rewind Yes Yes Yes
Truncate Yes No No
Update (disk only) Yes Yes Yes
Put Yes Yes Yes
I/O Unit

1 or more blocks Bucket Bucket
I/O Techniques
Deferred write Normal mode Selectable Selectable
Multiblock count Yes Bucket size Bucket size
Multiple access streams Yes Yes Yes
Multiple buffers Yes Yes Yes
Access sharing Read/write Read/write Read/write
Other features Block-spanning records Maximum record

number
Areas

1Although these file organizations are not compatible with magnetic tape operations, you may use magnetic tape to transport the files.
2Unit record devices include printers, terminals, card readers, mailboxes, and so forth.
3Fixed-length records and records with undefined format use no overhead; stream records use either 1 or 2 bytes of overhead; variable-length
and VFC records use 2 bytes of overhead.
4Fixed-length records use 1 byte of overhead; variable-length records and VFC records use 3 bytes of overhead; extra overhead applies to each
cell.
5Prolog 1 and Prolog 2 fixed-length records use 7 bytes of overhead. Prolog 1 and Prolog 2 variable-length records use 9 bytes of overhead. For
Prolog 3, fixed-length records use 9 bytes of uncompressed overhead, and variable-length records use 11 bytes of uncompressed overhead. For
key compression, add 2 bytes of overhead.

The next three sections describe file organizations.

2.2.1. Sequential File Organization
RMS supports the sequential file organization for all device types. It is the only organization supported
for nondisk devices.

In sequential file organization, records are arranged one after the other in the order in which they are
stored. For example, the fourth record is between the third and fifth records, as illustrated inFigure 2.9,
"Sequential File Organization".

45

Chapter 2. Choosing a File Organization

Figure 2.9. Sequential File Organization

You cannot insert new records between existing records because no physical space separates them.
Therefore, you can only add records to the current end of the file, that is, immediately following the most
recently added record. For the same reason, you cannot add to the length of an existing record when
updating it.

Some advantages and disadvantages of the sequential file organization are outlined in Table 2.3,
"Sequential File Organization: Advantages and Disadvantages".

Table 2.3. Sequential File Organization: Advantages and Disadvantages

Advantages Disadvantages

Simplest organization To get a particular record, most higher-level
languages must access all the records before it—no
random access by key. 1

Minimum overhead on disk Interactive processing is awkward; operator must
wait as the program searches for a record.

Allows block spanning You can add records only to the end of the file.
Optimal if application accesses all records on each
run
Most versatile format: exchange data with systems
other than RMS; compatible with ANSI magnetic
tape format
No restrictions on the type of storage media; the
file is portable
Random access by key available on fixed-format
disk sequential files

1This restriction does not apply to disk sequential files with fixed-length record format. Records in such files can be stored and retrieved using
random access by key, depending on language capabilities.

2.2.2. Relative File Organization
The relative file organization allows sequential and random access of records on disk devices only.

Note

Although relative files are not supported for magnetic tape operations, magnetic tape can be used to
transport relative files.

In fact, relative files provide the fastest random access, and they require fewer tuning considerations.

A relative file consists of a series of fixed-length record positions (or cells) numbered consecutively from
1 to n that enables RMS to calculate the record's physical position on the disk. The number, referred to
as the relative record number, indicates the record cell's position relative to the beginning of the file.

46

Chapter 2. Choosing a File Organization

RMS uses the relative record number as the key value to randomly access records in a relative file. The
preferred method of tracking relative record numbers is to assign them based on some numeric field
within the record, for example, the account number.

See Section 2.1.1.2, "Random Access by Key Value or Relative Record Number" for a description of
random access by key.

Each record in the file may be randomly assigned to a specific cell. For example, the first record may
be assigned the first cell and the second record may be assigned the third cell, leaving the second cell
empty. Unused cells and cells from which records have been deleted may be used to store new records.

Figure 2.10, "Relative File Organization" illustrates the relative file organization.

Figure 2.10. Relative File Organization

In a relative file, the actual length of the individual records may vary (that is, different size records can
be in the same file) up to the limits imposed by the specified cell length. For example, think of a relative
file configured as shown in Figure 2.11, "Variable-Length Records in Fixed-Length Cells".

Note that because the records are variable-length records, each is prefixed by 3 bytes: the 2-byte count
field (described in Section 2.1.2.2, "Variable-Length Record Format") and a 1-byte field that indicates
whether or not the cell is empty (a delete flag). These bytes are used only by RMS—you need not be
concerned with them, except when planning the file's space requirements.

Figure 2.11. Variable-Length Records in Fixed-Length Cells

Some advantages and disadvantages of relative file organization are outlined in Table 2.4, "Relative File
Organization: Advantages and Disadvantages".

Table 2.4. Relative File Organization: Advantages and Disadvantages

Advantages Disadvantages

Random access in all languages Restricted to disk devices.

47

Chapter 2. Choosing a File Organization

Advantages Disadvantages

Allows deletions File contains a cell for each cell number between
first and last record in file; limits data density.

Allows random Get and Put operations Program must know relative record number or
RFA before it can randomly access the data; no
generic access as in indexed file organization.

Random and sequential access with low overhead Interactive access can be awkward if you do not
access records by relative record number.

Can be write-shared You can only insert records into unused record
cells, but you can update existing records.
RMS does not allow duplicate relative record
numbers.
The space taken up by each record is as long as the
maximum record size.

2.2.3. Indexed File Organization
The indexed file organization allows sequential and random access of records on disk devices only. This
type of file organization lets you store data records in an index structure ordered by the primary key and
retrieve data using index structures ordered by primary or alternate keys. The alternate index structures
do not contain data records; instead, they contain pointers to the data records in the primary index.

For example, an indexed file may be ordered in ascending sort order by the primary key “employee
number.” However, you may want to set up additional (alternate) indexes for retrieving records from the
file. Typically, you might set up an alternate index in descending sort order by each employee's social
security number.

Note

The physical location of records in an indexed file is transparent to your program because RMS controls
record placement.

In addition to the indexes, each indexed file includes a prolog structure that contains information about
the file, including file attributes. RMS currently supports three distinct prologs—Prolog 1, Prolog 2
and Prolog 3—but RMS normally creates a Prolog 3 indexed file. However, you can specify a previous
prolog version, typically for compatibility with RMS–11.

2.2.3.1. Sequentially Retrieving Indexed Records

To sequentially retrieve indexed records, your program must specify the key for the first access. RMS
then uses the index for that key to retrieve successive records. For example, assume an index file with
three records, having primary keys of A, B, and C, respectively. To retrieve these records sequentially in
ascending sort order, your program must provide the key A on the first access; RMS accesses the next
two records without further key inputs from your program.

To randomly retrieve records in an index file, your program must provide the appropriate key value
for each access. Now assume an index file with three records having primary keys A, B, and C that are
retrieved in C, A, B order. On the first access, your program must provide the key C, on the next access
the key A, and on the final access the keyB.

48

Chapter 2. Choosing a File Organization

2.2.3.2. Index Keys
In an indexed file, each record includes one or more key fields (or simply keys) that RMS uses to
build related indexes. Each key is identified by its location, its length, and whether it is a simple or a
segmented key.

A simple key may be any one of the following data types:

● A single contiguous character string

● A packed decimal number

● A 2-, 4-, or 8-byte unsigned binary number

● A 2-, 4-, or 8-byte signed integer

Note

RMS–11 cannot process 8-byte numeric keys.

Segmented keys are fields of character strings having from 2 to 8 segments that may be or may not be
contiguous; however, RMS treats all key segments as a logically contiguous string. Segmented keys
enhance flexibility in manipulating data files by letting you select the placement of data fields and then
tailoring the key structure to fit this layout. You can improve performance by defining a segment that
contains the desired key together with another segment that contains a unique field, thereby making
the entire key unique. When only noncontiguous portions of a text string are needed for a key, you can
improve efficiency by defining smaller keys that include only these segments.

For an indexed file, you must define at least one key, the primary key, and you can optionally define one
or more alternate keys. RMS uses alternate keys to build indexes that identify records in alternate sort
orders. As with the primary key, each alternate key is defined by location and length.

2.2.3.3. Other Key Characteristics
In addition to defining keys, you can specify various key characteristics (FDL secondary key attributes)
including the following:

Duplicate keys This characteristic permits you to use the key
value in more than one record. However, only the
first record having the key value can be accessed
randomly; other records having the same key value
can be accessed only sequentially.

Changeable keys This characteristic applies to alternate keys only.
When you specify changeable alternate keys,
thealternate keys in a record can be changed when
the record is updated. When an alternate key
value changes, RMS automatically adjusts the
appropriate index to reflect the new key value.

Null keys This characteristic applies to alternate keys only.
When you fill an alternate key field with null
characters, RMS does not insert the record in the
related index.

49

Chapter 2. Choosing a File Organization

Note

RMS excludes from the related index any record not long enough to contain a complete alternate key.

Key characteristics can be defined separately for each key.

When you do not allow duplicate key values, RMS rejects any attempt to put a record into a file if
it contains a key value that duplicates a key value already present in another record. Similarly, when
alternate key values cannot be changed, RMS does not allow your program to update a record by
changing the alternate key value. If you disallow a null value for a key, RMS inserts an entry for the
record in the associated alternate index.

Figure 2.12, "Single-Key Indexed File Organization" illustrates the general structure of an indexed file
containing only a primary key: the employee name in an employment record file. Figure 2.13, "Multiple-
Key Indexed File Organization" illustrates the general structure of an indexed file in which the primary
key and one alternate key are defined. The primary key is the name of the employee; the alternate key is
the employee badge number in an employment record file.

Figure 2.12. Single-Key Indexed File Organization

Figure 2.13. Multiple-Key Indexed File Organization

2.2.3.4. Specifying Sort Order
RMS lets you specify either ascending sort order or descending sort order for each key. At the VAX
MACRO level, you encode sort order within the key data type field (XAB$B_DTP) of the associated
key XAB; you use the attribute KEY TYPE at the FDL level. For example, if you want to build an index
of string data type keys in ascending sort order using VAX MACRO, you enter the following line in the
associated key XAB:

DTP = STG

To build an index of string data type keys in descending sort order, you enter this line in the associated
key XAB:

DTP = DSTG

50

Chapter 2. Choosing a File Organization

See the VSI OpenVMS Record Management Services Reference Manual for a complete listing of key data
types used to specify ascending and descending sort order.

2.2.3.5. Using Collated Keys
The RMS multinational key feature lets you assign alternative (non-ASCII) collating sequences to a key.
For example, a program can sort records using a key that accesses a collating sequence based on French
or alternatively accesses a collating sequence based on Spanish.

The basis for this feature is the National Character Set utility (NCS). When an application program
creates an index file with an alternative collating sequence, it calls NCS. NCS responds by retrieving the
collating sequence from the NCS library, storing it in local memory and providing the calling program
with a pointer to it. In addition to naming the collating sequence, the calling program must provide NCS
with a location for storing the pointer (CS_ID) to the memory location of the collating sequence. (For
information about NCS, see the OpenVMS National Character Set Utility Manual.)1

When the application program creates the data file, it uses the pointer to copy the collating sequence
from local memory into the data file's prolog space. A collating sequence is typically 1 block long.

The application program may specify a collated key from either the RMS interface or the FDL interface.

From the RMS interface, the application program identifies the collating sequence using an appropriate
string descriptor and includes a symbolic reference to the location of the pointer. As with all other
keys, the application program may specify either ascending or descending sort order. From the RMS
interface, you specify the key data type COL for an ascending sort order or the key data type DCOL for
descending sort order.

From FDL, you specify a collated key by selecting one of the collated key data types (collated for
ascending sort order, decollated for descending sort order) from the INDEXED file script. FDL responds
by prompting for the name of the collating sequence. If you enter an invalid collating sequence, any
attempt to use the FDL file for creating a data file will be unsuccessful, and NCS generates the following
error message:

%NCS-F-NOT_CS, name or id is not a CS

Example 2.1, "Creating a File Containing Collated Keys" illustrates the use of collated keys in a
MACRO-32 program segment.

Example 2.1. Creating a File Containing Collated Keys

 .
 .
 .
 .TITLE Example
;
; Define key type as COL or DCOL
;
KEY0: $XABKEY
 .
 .
 .
 DTP=COL
;

1This manual has been archived but is available on the OpenVMS Documentation CD-ROM. A printed book can be ordered by calling
800-282-6672.

51

Chapter 2. Choosing a File Organization

; Descriptor for collating sequence name
;
CS_DESC: .ASCID /Spanish/
 .EXTRN NCS$GET_CS
 .
 .
 .
; Collating sequence name descriptor
;
 PUSHAL CS_DESC
;
; Where to store address of collating sequence
;
 PUSHAL KEY0+XAB$L_COLTBL
;
; Fetch collating sequence
;
 CALLS #2,G^NCS$GET_CS
 BLBC R0,ERROR
;
; Create file
;
 $CREATE FAB=OUTFAB
 BLBC R0,ERROR

2.2.3.6. Summary of Indexed File Organization
Some advantages and disadvantages of the indexed file organization are outlined in Table 2.5, "Indexed
File Organization: Advantages and Disadvantages".

Table 2.5. Indexed File Organization: Advantages and Disadvantages

Advantages Disadvantages

Most flexible random access: by any one of
multiple keys or RFA; key access by generic or
approximate value

Highest overhead on disk and in memory

Duplicate key values possible Restricted to disk
Automatic sort of records by primary and alternate
keys; available during sequential access

Most complex programming

Record location is transparent to user Longest record access times
Potential range of key values not physically present
as in relative file organization
Variety of data formats for keys
Transparent data compression

52

Chapter 3. Performance
Considerations
When you design a file, your decisions regarding record access mode, record format, and file
organization should be aimed at achieving optimum data processing performance for your application.
This chapter discusses general performance considerations and specific trade-offs you can make in the
design of your data files. In Section 3.3, "Tuning a Sequential File", Section 3.4, "Tuning a Relative File",
and Section 3.5, "Tuning an Indexed File", these trade-offs are discussed in the contexts of the three file
organizations: sequential, relative, and indexed.

3.1. Design Considerations
In designing files for optimum data processing performance, you should emphasize the following
performance factors:

● Speed—You want to maximize the speed with which your program processes data.

● Space—You want to minimize the space required to store data on disk and to process data in
memory.

● Shared access—You want your data to be simultaneously accessible to authorized users.

● Impact on application design—You want to minimize the application design effort.

3.1.1. Speed
The first guideline you can apply to the design process is to decrease the amount of program I/O time.

Storing data on, and retrieving data from, mass storage devices is the most time-consuming OpenVMS
RMS (hereafter referred to as RMS) operation. For example, when an application needs data, the disk
controller must first search for the data on the disk. The disk controller must then transfer the data from
the disk to main memory. After processing the data, the program must provide for returning the results to
mass storage via the I/O subsystem.

One way to reduce I/O time is to have the data in memory so that you can minimize search and transfer
operations. If data must be transferred to memory for processing, you should consider design variables
that reduce transfer time.

The first variable you might consider is the set of file attributes that may affect I/O time:

● Initial file allocation

● Default extension quantity

● Bucket size (for a relative or indexed file)

● Number of keys (for an indexed file)

● Number of duplicate key values (for an indexed file)

The second variable is the file size as measured by the number of records in the file. File size affects the
time it takes to scan a file sequentially or to access records using an index.

53

Chapter 3. Performance Considerations

A third variable is the storage device on which your program and data files reside. Crucial to I/O
performance are the type of device chosen (moving-head, fixed-head, and so on) and the amount of I/O
activity for that device within the system.

To make your applications run faster, consider the following:

● Keep as much data in memory as possible, but be wary of any significant increase in the page fault
rate.

● Minimize the number of I/O transfers by transferring larger portions of data.

● Arrange your data on the disk to minimize disk head motion.

3.1.2. Space
When you run your application, you need space to buffer data in memory. You can reduce data
processing time by increasing the size of the I/O buffers RMS uses; however, avoid exceeding the space
limitations imposed by the working set.

In addition to the data buffers themselves, the space required to store data can vary depending on the file
organization you choose.

For example, sequential file organization requires RMS to add an empty byte to a record when the record
has an odd number of bytes but must be aligned on an even-numbered byte boundary. At the record
level, you should consider the added space required to prefix a two-byte count field to each variable-
length record.

For the relative file organization, RMS constructs a series of record storage cells based on the maximum
length of the records. The record cells are 1 byte longer than the size of fixed-length records or 3 bytes
longer than the maximum size specified for variable-length records.

For the indexed sequential file organization, RMS must add the following informational components to
your data files:

● An index for each defined key.

● 15 bytes of formatting information for each bucket.

● A 7-byte header for each record.

● A count field for each variable-length record.

● Other overhead of varying lengths that is needed by RMS to move files and to delete records. You
should keep the size of records to the minimum required for your application.

You should also consider the effects of compression on the size of your indexed files. You can compress
keys in data buckets and in index buckets, and you can compress data in the primary buckets. If you use
key, index, or data compression, the file requires less space on the disk, and each I/O buffer can hold
more information. Compression may even eliminate one index level thereby reducing the number of disk
transfers needed for random access.

Note

You cannot use key compression or index compression with the collated key data type.

54

Chapter 3. Performance Considerations

Random access of compressed files requires slightly more CPU time, but this is usually offset by the
improved performance you achieve with fewer index levels.

3.1.3. Shared Access
A file management technique that allows more than one user to simultaneously access a file or a group
of files is called shared access or file sharing. When you try to adjust the performance of shared files,
you need to pay particular attention to record locking options and the use of global buffers. Avoid
assigning sharing attributes to files that are not actually shared.

There are essentially three sharing conditions: no sharing, sharing without interlocking, and sharing with
interlocking. Chapter 7, "File Sharing and Buffering" discusses each of these in detail.

3.1.4. Impact on Applications Design
The impact on applications design increases as file design complexity increases. That is, your application
programs require more design effort for processing indexed files than for processing sequential files. The
primary consideration here should be to evaluate whether the benefits derived by having direct access
to records is worth the added cost of the application program design needed to interface with the file
management system.

3.2. Tuning
The process of designing your files to achieve better processing performance is called tuning.

Tuning requires you to make a number of trade-offs and design decisions. For example, if a process had
sole access to the processor, it could keep all of its data in memory and tuning would be unnecessary, but
this situation is unlikely. Instead, several processes are usually running simultaneously and are competing
for the memory resource. If all processes demand large amounts of memory, the system responds by
paging and swapping, which slows down system performance.

The way you intend to use your programs and data files can determine some of the basic tuning
decisions. For example, if you know that three files are accessed 80 percent of the time, you might
consider locating the files in a common area on the disk to speed up access to them. The performance of
programs that use the other files is slower, but the system as a whole runs faster.

In tuning your file management system, you implement these trade-offs and design decisions by
specifying file design attributes together with various file-processing options and record-processing
options.

3.2.1. File Design Attributes
The following file design attributes control how the file is arranged on the disk and how much of the
file is transferred to main memory when needed. These file design attributes generally apply to all
three types of file organization; other file design attributes that specifically pertain to the various file
organizations are described under the appropriate heading.

● Initial file allocation

● Contiguity

● File extend quantity

● Units of I/O

55

Chapter 3. Performance Considerations

● The use of multiple areas (for indexed files)

● Bucket fill factor (for indexed files)

The following sections discuss how each file design attribute can maximize efficiency.

3.2.1.1. Initial File Allocation
When you create a file, you should allocate enough space to store it in one contiguous section of the
disk. If the file is contiguous on the disk, it requires only one retrieval pointer in the header; this reduces
disk head motion.

You should also consider allocating additional space in anticipation of file growth to reduce the number
of required extensions.

You can allocate space either by using the FDL attribute FILE ALLOCATION or by using the file access
control block field FAB$L_ALQ.

3.2.1.2. Contiguity
Use the FILE secondary attribute CONTIGUOUS to arrange the file contiguously on the disk, if you
have sufficient space. If you assign the CONTIGUOUS attribute and there is not enough contiguous
space on the disk, RMS does not create the file. To avoid this, consider using the FDL attribute
BEST_TRY_CONTIGUOUS instead of the CONTIGUOUS attribute. The BEST_TRY_CONTIGUOUS
attribute arranges the file contiguously on the disk if there is sufficient space or noncontiguously if the
space is not available for a contiguous file.

You can make this choice by accepting the FDL default values for both attributes—NO for
CONTIGUOUS, YES for BEST_TRY_CONTIGUOUS or by taking the RMS FAB$V_CBT option in
the FAB$L_FOP field.

3.2.1.3. Extending a File
An extend operation (file extend) adds unused disk blocks to an RMS file when the free space within
a file is exhausted. If the unused disk blocks are not contiguous to the previously allocated disk
blocks of the file, the file becomes fragmented. As a file becomes fragmented, access time increases
and processing performance can degrade. Appropriate use of extend operations can minimize file
fragmentation.

If you intend to add large amounts of data to a file over a short time, using large extends will minimize
file fragmentation and the overhead of extend operations. Conversely, if you intend to add small amounts
of data to a file over a long time, smaller file extends can avoid wasted disk space.

There are two methods for extending files. One method is for an application program to call the
$EXTEND service (see the VSI OpenVMS Record Management Services Reference Manual for details).
When it calls the $EXTEND service, the application must specify an explicit extend size, in disk blocks,
because no defaults are used to determine the extend size.

The other method is for RMS to automatically extend (auto extend) a file when free space is needed.
You can specify the size of auto extends using various default extension quantities, or you can have RMS
supply a default extend size. However, when RMS supplies a default, it uses an algorithm that allocates a
minimal extend. Repeated minimal extends can increase file fragmentation.

3.2.1.3.1. Auto Extend Size Selection

This section describes the factors used to determine the size of auto extends. These include:

56

Chapter 3. Performance Considerations

● File organization (sequential, relative, and indexed)

● Type of access (record I/O or block I/O)

● Various default extension quantities

The remainder of this section describes how to use the various default extension quantities to select the
auto extend size for all file organizations and access types. Manipulating the various default extension
quantities is described in Section 3.2.1.3.2, "Establishing Auto Extend Default Quantities".

Sequential File and Block I/O Accessed File Extend Size

The auto extend size used for sequential files is also used for all file organizations when accessed by
block I/O. The extend size is selected from the following ordered list of default extension quantities.
Generally, if a default extension quantity does not exist, it is set to zero. RMS processes this list until it
finds a nonzero value.

● File default extension quantity

● Process default extension quantity

● System default extension quantity

Note that, if the selected value from this list is any value but the file default extension quantity, the
selected value is maximized against the volume default extension quantity. In the case of a device-full
error, RMS retries the extend requesting the minimum number of blocks to satisfy the user's write
request. No retries are done if a disk quota is exceeded; a quota exceeded error is returned.

RMS Supplies a Minimal Extend Size

RMS supplies a minimal extend size that is the smaller of twice the buffer size or 256. The buffer size in
this calculation depends on the type of file access. If the file is a sequential file that is opened for record
I/O access, RMS uses the multiblock count. If the file is opened for block I/O access (regardless of
organization), RMS uses the size of the user buffer supplied by the application to the $WRITE service.

Relative File Extend Size

A relative file can be viewed as an accessible series of fixed-sized cells (or records) ranging from one to
the maximum number of cells. Writing new cells that are located substantially beyond the allocated space
of the relative file is permitted.

The size of a relative file auto extend is initially set to the minimum number of disk blocks that must be
allocated to reference the new cell. The extend size is then rounded to the next bucket boundary so that
the entire bucket containing the new record can be accessed. This value is then maximized against the
file default extension quantity. If no file default exists, this value is maximized against the volume default
extension quantity.

The process and system default extension quantities are not applicable to auto extending a relative file.

Indexed File Extend Size

Indexed files are auto extended by adding space to a particular area of the indexed file. The extend size
is always rounded to a multiple of the bucket size for the area being extended.

● If the area being auto extended had an area default extension quantity specified when the indexed file
was created (or converted using an FDL), that quantity is used for the extend size.

57

Chapter 3. Performance Considerations

● If no area default extension quantity exists, the file default extension quantity is used for the extend
size.

● If no area or file default extension quantities are specified, RMS auto extends the area by one bucket.

The process, system, and volume default extension quantities are not applicable to auto extending an
indexed file.

3.2.1.3.2. Establishing Auto Extend Default Quantities

This section describes how to establish the auto extend default quantities for an RMS file.

Area and File Default Extension Quantities

You can establish a file-specific default, called the file default extension quantity, for all file
organizations. In the case of an indexed file with multiple areas, you can also establish a separate area
default extension quantity for each area of the indexed file.

The following list describes the methods for establishing file default extension quantities, and, where
applicable, area default extension quantities:

● The recommended method is to use the Edit/FDL utility to permanently establish file and area
default extension quantities when you create or convert a file. The Edit/FDL utility calculates these
quantities using your responses to the script questions, and it assigns the file default extension
quantity using the FILE EXTENSION attribute. For indexed files with multiple areas, the Edit/
FDL utility assigns a default extension quantity to each area using the AREA EXTENSION
attribute. A subsequent $CREATE service or use of the CONVERT utility using an FDL with
these EXTENSION attributes permanently sets these defaults. For a description of how the Edit/
FDL utility calculates default extension quantities, see Appendix A, "Edit/FDL Utility Optimization
Algorithms".

● One alternative to using the Edit/FDL utility is to permanently establish the file and area default
extension quantities by specifying the appropriate values in the FAB (or XABALL) used as input to
the $CREATE service.

The FAB$W_DEQ field defines the file default extension quantity. For indexed files with multiple
areas, individual area XABALLs (with the XAB$B_AID field and the related XAB$W_DEQ field
set appropriately) establish area default extension quantities.

If you use this method, you can determine the default extension quantities using file and area-specific
information such as the average record size, the number of records to be added to the file during a
given period of time, the number of records per bucket and the bucket size.

When both a FAB and a XABALL are present on the opening or creation of an RMS file, the
XABALL fields override equivalent FAB fields. If the XABALL is present, then the file default
extension quantity is set from the XAB$W_DEQ, overriding any value in the FAB$W_DEQ field.
In the case of an indexed file with multiple areas where multiple XABALLs might exist, the file
default extension quantity is set to the default extension quantity for Area 0.

A single allocation XAB (XABALL) can also be specified on the creation of a relative or sequential
file. However, there is no separate area default extension quantity maintained for these files. The
XABALL is used in this case to establish the file default extension quantity in one of the following
ways:

• After a file has been created, specifying the file default extension quantities (FAB$W_DEQ)
on input to a $OPEN establishes a temporary file default extension quantity that overrides any

58

Chapter 3. Performance Considerations

permanent setting that might exist. This temporary default is used when you access the file until
the file is closed.

Note that the area default extension quantities for an indexed file specified on a $CREATE
cannot be changed over the lifetime of the file nor can they be overridden at run time.

• Once a file has been created, you can change or establish the permanent file default extension
quantity by using the DCL command SET FILE/EXTENSION=n, where n is the extension
quantity in disk blocks for the file. The next time the file is opened, it uses the new default
quantity.

In addition to the file and area default extension quantities, there are process, system, and volume default
extension quantities.

Process Default Extension Quantity

The process default extension quantity is established by the DCL command SET RMS_DEFAULT/
EXTEND_QUANTITY=n, where n is the extension quantity. This default applies only to the process
issuing this DCL command and remains in effect only until the process is deleted.

System Default Extension Quantity

The system default extension quantity is established by the SET RMS_DEFAULT/SYSTEM/
EXTEND_QUANTITY=n command. Note that you need the CMKRNL privilege to use the /SYSTEM
qualifier. This default applies to all processes on a node in the cluster. When you use this DCL command
to establish the system default extension quantity, it remains in effect until the node is rebooted.

You can also establish the system default extension quantity in a temporary or permanent fashion by
appropriately setting the SYSGEN system parameter RMS_EXTEND_SIZE.

Volume Default Extension Quantity

The volume default extension quantity can be permanently established when the volume is initialized
with the INITIALIZE/EXTENSION=n command. This default quantity is used whenever the volume
is mounted. To permanently change the volume default extension quantity, you can use the SET
VOLUME/EXTENSION=n command on a mounted disk. To temporarily establish a volume default
extension quantity or temporarily override the permanent volume default extension quantity, use the
MOUNT/EXTENSION=n command. The new default is in effect until the volume is dismounted. Unlike
the other default quantities described that default to zero if not specified, the volume default extension
quantity defaults to 5 if not specified.

3.2.1.3.3. Placement and Contiguity of Extends

In addition to specifying the size of an extend, you can specify other characteristics that affect the
placement and contiguity of the extend.

When an application extends a file by calling the $EXTEND service, an Allocation XAB (XABALL)
can be used to place an extend on a particular disk block or disk cylinder. If no allocation XAB is present
on the $EXTEND and the FAB contiguity options (described later in this section) are not selected, RMS
automatically places the extend near the last allocated disk block in the file. If the file being extended
in this fashion is an indexed file opened for record I/O access, RMS adds the new disk space as near as
possible to the last allocated disk block in the area being extended. This technique groups disk blocks
belonging to the same area of the indexed file.

When RMS automatically extends a file, the application cannot control placement; however, RMS uses
placement controls in one of the following ways, depending on how the file is organized:

59

Chapter 3. Performance Considerations

● When automatically extending an indexed file, RMS uses placement control to allocate the new disk
space as close as possible to the last allocated disk block of the indexed file area being extended.

● When automatically extending a relative file, RMS uses placement control to allocate the new disk
space as close as possible to the last allocated disk block of the file.

● No placement control is used when RMS automatically extends a sequential file or any file
organization accessed for block I/O.

An extend is considered contiguous if all the disk blocks of the extend are physically adjacent on the
disk. There are two types of contiguous extend requests that can be made. The first, called a contiguous
request, returns an error if contiguous disk blocks cannot be found to satisfy the request. The second,
called a contiguous best try request, attempts to find contiguous disk blocks for the request. If it does
not find sufficient contiguous space, it extends the file and does not return an error. The contiguity
options can be input to an $EXTEND service in the FAB (FABV_CBT, FABV_CTG) or in the
Allocation XAB (XABV_CBT, XABV_CTG). The Allocation XAB settings override any FAB
settings.

When RMS automatically extends a file, the application can only indirectly control contiguity by setting
the FAB or XABALL contiguity bits on input to the $CREATE service. Once set on file creation, these
options are available for subsequent extends done automatically by RMS.

Note that setting the FAB$V_CTG bit could cause an extend to fail on a sufficiently fragmented disk.
Note too, that the FAB$V_CBT option is disabled after several failures to allocate contiguous disk space
to avoid the expensive overhead of contiguous best try processing on a badly fragmented disk.

3.2.1.4. Truncating a File
Only RMS sequential disk files that have been opened for write access (FABV_PUT, FABV_UPD,
FAB$V_DEL or FAB$V_TRN) can be truncated. This applies to unshared and shared sequential files.

Two types of truncation can occur on RMS sequential files: RMS truncation and Ancillary Control
Procedure (ACP) truncation.

RMS truncation involves resetting the end-of-file (EOF) pointer back to a previous position (possibly the
beginning) of a sequential file to reuse the allocated space in a file. RMS truncation is described in the
VSI OpenVMS Record Management Services Reference Manual under the $TRUNCATE service.

ACP truncation occurs when RMS closes a sequential file and requests that the ACP deallocate all disk
blocks allocated beyond the EOF of the file. The primary use of ACP truncation is to conserve disk
space. The remainder of this section deals with ACP truncation.

You can also use ACP truncation in conjunction with large extend sizes to reduce disk fragmentation.
If a file is growing slowly over time, the application can allocate the largest possible extend, and when
finished, it can use ACP truncation to deallocate any unused space at the end of the sequential file.
However, if a sequential file is continually growing, excessive ACP truncation can lead to an increase in
disk fragmentation resulting in more CPU and I/O overhead.

ACP truncation can be requested directly by way of the programming interface by setting the FAB
$V_TEF bit on input to the $OPEN, $CREATE, or $CLOSE service. The ACP truncation occurs on the
close of the sequential file. Note that ACP truncation can occur on shared as well as unshared sequential
files. If there are shared readers of the file, ACP truncation is postponed until the last reader of the file
closes the file. If there are other writers of a shared sequential file, then ACP truncation requests are
ignored. However, the ACP truncation request of the last writer to close the file will be honored.

60

Chapter 3. Performance Considerations

ACP truncation of a sequential file can be automatically requested by RMS if an auto extend has been
done during this file access and no file default extend quantity exists to be used for the auto extend.
Using ACP truncation in this instance avoids wasting space when auto extending with a less precise
extend quantity default, such as the system default extend quantity.

3.2.1.5. Units of I/O
Another file design consideration is to reduce the number of times that RMS must transfer data from
disk to memory by making the I/O units as large as possible. Each time RMS fetches data from the disk,
it stores the data in an I/O memory buffer whose capacity is equal to the size of one I/O unit. A larger I/
O unit makes more records immediately accessible to your program from the I/O buffers.

In general, using larger units of I/O for disk transfers improves performance, as long as the data does
not have to be swapped out too frequently. However, as the total space used for I/O buffers in the system
approaches a point that results in excessive paging and swapping, increasing I/O unit size degrades
system performance.

RMS performs I/O operations using one of the following I/O unit types:

● Blocks

● Multiblocks

● Buckets

A block is the basic unit of disk I/O, and it consists of 512 contiguous bytes. Even if your program
requests less than a block of data, RMS automatically transfers an entire block.

The other I/O units—multiblocks and buckets—are made up of block multiples. A multiblock is an I/
O unit that includes up to 127 blocks but whose use is restricted to sequential files. See Section 3.3.2,
"Multiblock Size Option" for details. A bucket is the I/O unit for relative and indexed files and it may
include up to 63 blocks. See Section 3.4, "Tuning a Relative File" and Section 3.5, "Tuning an Indexed
File" for details.

3.2.1.6. Multiple Areas for Indexed Files
For indexed files, another design strategy is to separate the file into multiple areas. Each area has its own
extension size, initial allocation size, contiguity options, and bucket size. You can minimize access times
by precisely positioning each area on a specific volume, cylinder, or block.

For instance, you can place the data area on one volume of a volume set and place the indexed area on
another volume. If your application is I/O bound, this strategy could increase its throughput. You can
also derive data bucket contiguity by allocating extra space for future extensions of the data area.

3.2.1.7. Bucket Fill Factor for Indexed Files
Any attempt to insert a record into a filled bucket results in a bucket split. When a bucket split occurs,
RMS tries to keep half of the records (including the new record, if applicable) in the original bucket and
moves the remaining records to a newly created bucket.

Excessive bucket splitting can degrade system performance through wasted space, excessive processing
overhead, and file fragmentation. For example, each record that moves to a new bucket must maintain
a forward pointer in the original bucket. The forward pointer indicates the record's new location. At the
new bucket, the record must maintain a backward pointer to its original bucket. RMS uses the backward
pointer to update the forward pointer in the original bucket if the record later moves to yet another
bucket.

61

Chapter 3. Performance Considerations

When a program attempts to access a record either by alternate key or by RFA, it must first go to the
bucket where the record originally resided, read the pointer to the record's current bucket residence, and
then access the record.

To avoid bucket splits, you should permit buckets to be only partially filled when records are initially
loaded. This provides your application with space to make additional random inserts without overfilling
the affected bucket.

Section 3.5.2.2, "Fill Factor" describes fill factors in more detail.

3.2.2. Processing Options
Five processing options can be used to improve I/O operations: two file-processing options and three
record-processing options. The file-processing options include the deferred-write option and the global
buffer option. The global buffer option may be used with all three file organizations, but the deferred-
write option is restricted to use with relative and indexed files.

The record-processing options include the multiple buffer option, the read-ahead option and the write-
behind option. The multiple buffer option may be used with all three file organizations, but the read-
ahead option and the write-behind option may be used only with sequential files.

This section summarizes the options. Section 3.3, "Tuning a Sequential File" through Section 3.5,
"Tuning an Indexed File" describe the options in the context of tuning files. For additional information
about buffering, see Chapter 7, "File Sharing and Buffering".

3.2.2.1. Multiple Buffers
When a program accesses a data file, it transfers the file from disk into memory using I/O units of
blocks, multiblocks, or buckets. The I/O units are subsequently placed in memory I/O buffers sized to be
compatible with the I/O units.

If you do not have enough buffers, excessive I/O transfers may degrade the performance of your
application. On the other hand, if you have too many buffers, performance may degrade because of an
overly large working set. As a rule, however, increasing the size and number of buffers can improve
performance if the data read into the buffers will soon be processed and if your working set can
efficiently maintain the buffers. In fact, changing the size and number of buffers is the quickest way to
improve the performance of your application when you are processing localized data.

The optimum number of buffers depends on the organization and use of your data files. The
recommended way to determine the optimum number of buffers for your application is to use the Edit/
FDL utility.

The number of I/O buffers is a run-time parameter you set with the FDL editor by adding the
CONNECT secondary attribute MULTIBUFFER_COUNT to the definition file. (See Chapter 9, "Run-
Time Options".) With a low-level language, you can set the value directly into the RAB$B_MBF field of
the record access block, or you can set the count using the XAB$_MULTIBUFFER_COUNT XABITM
if you want to specify more than 127 buffers.

Alternatively, the number of buffers may be specified for a process using the DCL command SET
RMS_DEFAULT/BUFFER_COUNT=n, where the variable n represents the desired number of buffers.
With this command, you may set distinct values for your sequential, relative, and indexed files using the
appropriate file organization qualifier. If you omit the file organization qualifier, sequential organization
is assumed. To examine the current settings for the process and system default multibuffer count, use the
DCL command SHOW RMS_DEFAULT. If none of the above methods is used, RMS uses the system-

62

Chapter 3. Performance Considerations

wide default value established by the system manager. If the system-wide default is either omitted or is
set to 0, RMS uses a value of 1 for sequential and relative files and a value of 2 for indexed files.

For more details about using multiple buffers with sequential files, see Section 3.3.3, "Number of
Buffers". For more details about using multiple buffers with relative files, see Section 3.4.2, "Number of
Buffers". For more details about using multiple buffers with indexed files, see Section 3.5.2.3, "Number
of Buffers".

Chapter 7, "File Sharing and Buffering" describes the use of multiple buffers in the context of shared
files.

3.2.2.2. Deferred-Write Processing
One way to improve performance through minimized I/O is to use the deferred-write option to keep data
in memory as long as practicable. However, you must determine if this added performance benefit is
worth the increased risk of losing data if the system crashes before a buffer is transferred to disk.

With indexed files and relative files, you may use the deferred-write option to defer writing modified
buckets to disk until the buffer is needed for another purpose or until the file is closed.

Typically, the largest gains in performance come from using the deferred-write option with sequential
access. Retrieving and modifying records one after the other permits you to access all of the records
from one bucket while the bucket is in memory.

You may also improve performance by using the deferred-write option to prevent writing a shared
sequential file to disk on each modification. However, this increases the risk of losing data if the system
crashes before the full buffer is transferred to disk.

Note that nonshared sequential files behave as if the deferred-write option is always specified, because a
buffer is only written to disk after it is completely filled.

Deferred-write processing is a default run-time option for some high-level languages and can be specified
by using clauses in other languages. You can activate this option through FDL by adding the FILE
attribute DEFERRED_WRITE. From a low-level language, you can activate the deferred-write option by
setting the FAB$V_DFW bit in FAB$L_FOP field.

3.2.2.3. Global Buffers
If several processes are to share a file, you may want to provide the file with global buffers—I/O
buffers that two or more processes can access. With global buffers, processes may access file information
without allocating dedicated buffers. If you do not allocate dedicated buffers, you can conserve buffer
space and buffer management overhead. You gain this benefit at the cost of additional system resources,
as described in the VSI OpenVMS Record Management Services Reference Manual.

When you create a file, you can assign the desired number of global buffers by using the FDL editor to
set the value for the FILE secondary attribute GLOBAL_BUFFER_COUNT. From a low-level language,
you can optionally set the value directly into the FAB$W_GBC field. Alternatively, you may use the
DCL command SET FILE/GLOBAL_BUFFERS to set the global buffer count.

Global buffers are not used directly to retain modified information when the deferred-write option is
enabled. If a global buffer is modified and the deferred-write option is enabled, the contents of the global
buffer are copied to a process local buffer before other processes are allowed to access the global buffer
contents. Subsequent use of the modified buffer by the process that deferred the writeback refer to the
process local buffer while it remains in the process local cache. Reference to the global buffer by another
process causes the contents of the process local buffer to be written back to disk.

63

Chapter 3. Performance Considerations

If a global buffer is modified and the deferred-write option is not enabled, then the contents are written
out to disk from the global buffer. Therefore, using global buffers along with the deferred-write option
may cause a slight increase in processing overhead if in fact no further references to the modified buffer
occur before it is flushed from the cache anyway. For that reason, you may want to disable the deferred-
write option for processes that do not reaccess buffers after records have been written to them.

Section 3.3, "Tuning a Sequential File", Section 3.4, "Tuning a Relative File", and Section 3.5, "Tuning
an Indexed File" discuss the use of global buffers in tuning the various file types.

3.2.2.4. Read-Ahead and Write-Behind Processing
The operation of sequentially organized files can be improved by implementing read-ahead and write-
behind processing. These features improve performance by permitting record processing and I/O
operation to occur simultaneously. The read-ahead and write-behind features are default run-time
attributes in some languages, but they must be explicitly specified in others.

You implement read-ahead and write-behind processing by using two buffers. The processing program
uses one buffer, and the I/O subsystem uses the other. In read-ahead processing, the program reads data
from one buffer as the second buffer inputs data from the disk. In write-behind processing, one buffer
accepts output data from the program, while the second buffer outputs program data to a disk.

The next section provides additional information about read-ahead and write-behind processing.

3.3. Tuning a Sequential File
Sequential files consist of a file header and a series of data records. Records are stored in the order in
which they are written to the file.

The following sections provide guidelines for improving the performance of sequential file processing
using various tuning options.

3.3.1. Block Span Option
You should always specify that records in a sequential file are permitted to span blocks, that is, to cross
block boundaries. In this way, RMS can pack the records efficiently and avoid wasted space at the end of
a block. Note that you cannot turn off this option for STREAM formatted files.

By default, the FDL editor activates block spanning for files organized sequentially by setting the
RECORD secondary attribute BLOCK_SPAN to YES. If you are using a low-level language, you
activate the block span option directly in the FAB by resetting the FAB$V_BLK bit in the FAB$L_RAT
field.

3.3.2. Multiblock Size Option
A multiblock is an I/O unit that includes up to 127 blocks but can be used only with sequential files.
When a program instructs RMS to fetch data within a multiblock, the entire multiblock is copied from
disk to memory.

You specify the number of blocks in a multiblock using the multiblock count, a run-time option. If you
are using the FDL editor, specify the multiblock count option using the secondary CONNECT attribute,
MULTIBLOCK_COUNT. From a lower-level language, you may set the value into the RAB$B_MBC
field, directly. Another alternative is to establish the count using a DCL command of the following form:

64

Chapter 3. Performance Considerations

SET RMS_DEFAULT/BLOCK_COUNT=n

The variable n represents the specified number of blocks. Here, the specified multiblock count is limited
to your process unless you specify the /SYSTEM qualifier.

In most cases, the largest practical multiblock value to specify is the number of blocks in one track of the
disk, a number that varies with the various types of disks. (See the VSI OpenVMS I/O User's Reference
Manual for the supported track sizes). However, the most efficient number of blocks for your application
may be more or less than the number of blocks in a track. You should try various sizes of multiblocks
until you find the optimum value.

3.3.3. Number of Buffers
For sequential files, you can specify the number of buffers at run time. From FDL, you can set the
number of buffers with the secondary CONNECT attribute MULTIBUFFER_COUNT. From an
assembler language, you can set the value directly into the RAB$B_MBF field in the RAB, or you can
set the count using the XAB$_MULTIBUFFER_COUNT XABITM if you want to specify more than
127 buffers. From the DCL interface, you can establish the number of buffers using a DCL command in
the following form:

SET RMS_DEFAULT/SEQUENTIAL/DISK/BUFFER_COUNT=n

The variable n represents the number of buffers.

In simple operations with sequential files, one I/O buffer is sufficient. Increasing the number of buffers
uses space in the process working set and could degrade performance.

With nonshared sequential files, particularly if you want to perform sequential access, you can use read-
ahead and write-behind processing. With this type of processing, a buffer contains the next record to be
read or written to the disk while a separate buffer completes the current I/O operation.

The length of the buffers used for sequential files is determined by the specified multiblock count. The
optimal number of blocks per buffer depends on the record size for sequential access to a sequential file,
but a value such as 16 may be appropriate.

3.3.4. Global Buffer Option
If a file is shareable, you may want to allocate it global buffers. A global buffer is an I/O buffer that two
or more processes can access. If two or more processes are requesting the same information from a file,
I/O can be minimized because the data is already in the global buffer. This is especially true for program
sequences in which all of the processes are reading data.

For shared sequential file operations, the first accessor of the file uses the multiblock count to establish
the global buffer size for all subsequent accessors.

Note that RMS also provides each process with local I/O buffers to attain efficient buffering capacity.

3.3.5. Read-Ahead and Write-Behind Options
Specifying the read-ahead and write-behind options for sequential files can improve performance. The
read-ahead and write-behind options require at least two I/O buffers and the multibuffer attribute. Note
that using more than two I/O buffers usually does not improve performance. (See Section 3.3.3, "Number
of Buffers".)

65

Chapter 3. Performance Considerations

Most languages incorporate the read-ahead and write-behind options by default. With some languages,
you must specify the read-ahead and write-behind options explicitly using a clause in the language. If an
OpenVMS language does not have a clause for specifying the read-ahead and write-behind options, you
must use a VAX MACRO routine to select these options when you open the file.

At the VAX MACRO level, you can select these options by setting the RAB$V_RAH bit in the RAB
$L_ROP field for read-ahead processing and the RAB$V_WBH bit for write-behind processing prior to
requesting the Connect service.

You can also use FDL to select these options by using the secondary CONNECT attributes
READ_AHEAD and WRITE_BEHIND respectively.

As of OpenVMS Alpha Version 7.3-1, a new RMS system feature related to write-behind was
implemented:

Write-Behind Option as a System Default
A dynamic SYSGEN parameter (RMS_SEQFILE_WBH) can be used to externally request RMS to
implement the write-behind feature as a system default. (See the VSI OpenVMS System Manager's
Manual.) If this system option is set, RMS implements the existing RMS user write-behind option as
a system default (regardless of the RAB$L_ROP RAB$V_WBH setting) whenever write access is
requested for an unshared sequential file opened for image I/O.

This feature is a system option. It is not the default for the following reasons:

1. Enabling write-behind involves a change in error reporting that could affect some application (a write
error may be reported for a subsequent operation rather than for the write the error occurred on).

2. The allocation of an additional RMS intermediate buffer may result in more page faulting if process
working set quotas are insufficient.

3.4. Tuning a Relative File
A relative file consists of a file header, file attributes, a prolog, and a series of fixed-length cells. Each
cell contains one record that includes a deleted-record byte followed by the data portion of the record,
which may or may not be blank.

RMS assigns each cell a sequential number, called the relative record number, that can be used to
randomly access the record.

A relative file can contain fixed-length records, variable-length records, or VFC records. Fixed-length
records are particularly useful in relative files because of the fixed cell size.

The maximum size for fixed-length records in a relative file is 32,255 bytes. For variable-length records
the maximum size is 32,253 bytes. The maximum size for VFC records is 32,253 bytes minus the size of
the fixed-length control field, which may be up to 255 bytes long.

3.4.1. Bucket Size
With relative files, buckets are used as the unit of transfer between the disk and memory. You specify
bucket size when you create the file, but you can change the size later by converting the file (see Chapter
10, "Maintaining Files".) Note that the Convert utility processes relative files by sequentially reading
records from the input file, then writing them to the output file. As a result, the relative record numbers
(RRN) change when the input file contains deleted or unused records.

66

Chapter 3. Performance Considerations

You can specify the bucket size using the FDL FILE secondary attribute BUCKET_SIZE or by inserting
the value directly into the RMS control block fields FAB$B_BKS and XAB$B_BKZ. Although the
size can be as large as 63 blocks, a bucket size larger than one disk track usually does not improve
performance.

If you choose to select the bucket size, you should also consider how your application accesses the file.
For random access, you may want to choose a small bucket size; for sequential access, a large bucket
size; and for mixed access, a medium bucket size.

One way to improve performance for a relative file is to align the file on a cylinder boundary and
specify the size of one disk track as the bucket size. However, this requires that you can perform an exact
alignment on the file.

If you use the FDL editor to establish the bucket size (this is recommended), the editor fixes the size at
the optimum value based on your script inputs.

If you intend to access the file randomly, EDIT/FDL sets the bucket size equal to four records because
it assumes that four records are a reasonable amount of data for a random access. If you intend to access
records sequentially, EDIT/FDL sets the bucket size equal to 16 records because it assumes that 16
records is a reasonable amount of data for one sequential access.

If you find that your application needs more data per access, then use the EDIT/FDL command
MODIFY to change the assigned values.

3.4.2. Number of Buffers
The multibuffer count is a run-time option that you can set with the DCL command SET
RMS_DEFAULT/RELATIVE/BUFFER_COUNT= n, the FDL attribute CONNECT
MULTIBUFFER_COUNT, the RMS control block field RAB$B_MBF or the XAB
$_MULTIBUFFER_COUNT XABITM. The type of record access determines the best use of buffers.

The two extremes of record access are when records are processed either completely randomly or
completely sequentially. Also, there are cases in which records are accessed randomly but may be
reaccessed (random with temporal locality) and cases where records are accessed randomly but adjacent
records are likely to be accessed (random with spatial locality).

In completely sequential processing, the first record may be located randomly and the following records
accessed sequentially (records are usually not referenced more than once). For best performance, you
should specify one buffer with a large bucket size unless you use the read-ahead option, which requires
two buffers.

Large buckets hold more records, so you can access a greater number of records before performing I/O
operations. However, a small multibuffer count, such as the default of 1 buffer, is sufficient.

When you want to improve sequential access performance, you may get better results by tuning the
bucket size rather than changing the number of buffers.

Completely random processing means that records are not accessed again, and adjacent records are not
likely to be accessed. You should use one buffer with a minimal bucket size. You do not need to build
a memory cache because the records are likely to be scattered throughout the file. New requests for
records most likely result in an I/O operation, and caching extra buckets wastes space in your working
set.

In random with temporal locality processing (reaccessed records), records are processed randomly, but
the same records may be accessed again. You should use multiple small buffers to cache records that are

67

Chapter 3. Performance Considerations

to be reaccessed. The bucket size can be small for this type of access because the records near the record
currently accessed are not likely to be accessed. Caching reaccessed records in large buckets wastes space
in memory. Multiple buffers allow the previously accessed records to remain in memory for subsequent
access.

In random with spatial locality processing (adjacent records), records are processed randomly, but the
next or previous record has a good chance of being accessed. You should use a large buffer and bucket
size to improve the probability that the next record to be processed is in the same bucket as the record
most recently processed. One or two buffers should be sufficient.

If you process your data file with a combination of these patterns, you should compromise between the
processing strategies. An application illustrating both temporal and spatial access uses the first record in
the file as a pointer to the last record accessed. The program reads the first record to find the location of
the next record to be processed, processes the record, and updates the pointer in the first record. Because
the application accesses the first record frequently, the access pattern exhibits temporal locality, but
because it adds records sequentially to the end of the file, the access pattern also exhibits spatial locality.

When you add records to a relative file, you might consider choosing the deferred write option (FDL
attribute FILE DEFERRED_WRITE, FAB$L_FOP field FAB$V_DFW). With this option, the contents
of the write buffer are not transferred from memory to disk until the buffer is needed for another
purpose or until the file is closed. Note, however, that the possibility of losing data during a system crash
increases when you use the deferred write option.

To see what the current default buffer count is, give the DCL command SHOW RMS_DEFAULT.
To set the default buffer count, use the DCL command SET RMS_DEFAULT/RELATIVE/
BUFFER_COUNT=n, where n is the number of buffers.

3.4.3. Global Buffer Option
If several processes share a relative file, you may want to specify that the file use the global buffer
option. A global buffer is an I/O buffer that two or more processes can access. If two or more processes
simultaneously request the same information from a file, each process can use the global buffers instead
of allocating its own dedicated buffers. Only one copy of the buffers resides at any time in memory,
although the buffers are charged against each process's working set size.

Using the global buffer option to form a memory cache may not reduce the number of I/O operations
necessary to process the file in all cases. Regardless of how many global buffers you allocate, RMS
always allocates one I/O buffer per process, which provides efficient buffering capacity.

If your application has several processes sharing the file and accessing the same records in a transaction
sequence, then you may benefit from allocating enough global buffers to cache these shared records.

3.4.4. Deferred-Write Option
The deferred-write option is a run-time option that can improve performance. It is the default operation
for some high-level languages and can be specified by clauses in other high-level languages.

If there is no language support, you can use a VAX MACRO subroutine to set the FAB$V_DFW bit in
the FAB$L_FOP field before opening the file.

When you select the deferred-write option, RMS delays writing a modified bucket to disk until the buffer
is needed for another purpose or until another process needs to use the bucket. This delay improves
performance because it reduces the number of disk I/O operations. You achieve the largest performance
gains using the deferred-write option with sequential access file operations.

68

Chapter 3. Performance Considerations

For example, in a relative file with 100-byte records and 2-block buckets, 10 records fit in one bucket.
Without the deferred-write option, writing records 1 through 10 in order results in eleven I/O operations
—one for the initial file access and one for each of the records.

With the deferred-write option, you need only two I/O operations—one for the initial file access and one
to write the bucket.

A larger cache might be useful in situations in which the accesses are not strictly sequential but follow
some local pattern.

3.5. Tuning an Indexed File
This section discusses the structure of indexed files and ways to optimize their performance.

3.5.1. File Structure
An indexed file consists of a file header, a prolog, and one or more index structures. The primary index
structure contains the data records. If the file has alternate keys, it has an alternate index structure for
each alternate key. The alternate index structures contain secondary index data records (SIDRs) that
provide pointers to the data records in the primary index structure. The index structures also contain the
values of the keys by which RMS accesses the records in the indexed file.

3.5.1.1. Prologs
RMS places information concerning file attributes, key descriptors, and area descriptors in the prolog.
You can examine the prolog with the Analyze/RMS_File utility described in Chapter 10, "Maintaining
Files".

There are three types of prologs: Prolog 1, Prolog 2, and Prolog 3.

Prolog 1 and Prolog 2 Files

Any indexed file created with a version of the operating system lower than Version 3.0 is either a Prolog
1 file or a Prolog 2 file. Prolog 1 files and Prolog 2 files operate identically.

If an indexed file uses only string data-type keys, the file is a Prolog 1 file.

Note

The string data-type keys include STRING, DSTRING, COLLATED, and DCOLLATED keys.

If an indexed file uses numeric type keys, it is a Prolog 2 file.

You cannot use the Convert/Reclaim utility on a Prolog 1 file or a Prolog 2 file to reclaim empty buckets.
If your file undergoes a large number of deletions (resulting in empty, unusable buckets), you must use
the Convert utility (CONVERT) to reorganize the file. (Note that CONVERT establishes new RFAs for
the records.)

The compression allowed with Prolog 3 files is not possible with Prolog 1 or Prolog 2 files.

Prolog 3 Files

Prolog 3 files can accept multiple (or alternate) keys and all data types (including the nonstring 8-byte
BIN8 and INT8 types). They also give you the option of saving space by compressing your data, indexes,
and keys.

69

Chapter 3. Performance Considerations

Key compression compresses the key values in the data buckets. Likewise, index compression
compresses the key values in index buckets, and data compression compresses the data portion of the
records in the data buckets.

Key or index compression is restricted to the string key data type and the string must be at least 6 bytes
in length.

Note

You cannot use key compression or index compression with any numeric or collated key data types.

With key or index compression, repeating leading and trailing characters are compressed. With front
key compression, any characters that are identical to the characters at the front of the previous key are
compressed. For example, the keys JOHN, JOHNS, JOHNSON, and JONES appear as JOHN, S, ON,
and NES.

With rear key compression, any repeating characters at the end of the key are compressed to a single
character. For instance, the key JOHNSON00000 appears as JOHNSON0.

Enabling index compression results in RMS doing a sequential search in index buckets rather than its
default binary search, since each index key value must be expanded until a match is found.

With data compression, RMS can compress sequences of up to 255 repeating characters in the data
portion of the user data records. For optimal performance, RMS does not compress sequences having
less than five repeating characters.

Compression has a direct effect on CPU time and disk space. Compression increases CPU time, but the
keys are smaller, so your application can scan more quickly through the data and index buckets.

The disk space saved by using Prolog 3 indexed files can significantly improve performance. With
compression, each I/O buffer can hold more information to improve buffer space efficiency. Compression
can also decrease the number of index levels, which decreases the number of I/O operations per random
access.

Prolog 3 files can have segmented primary keys, but the segments cannot overlap. If you want to use
a Prolog 3 file in this case, consider defining the overlapping segmented key as an alternate key and
choosing a different key to be the primary key. If you want to use overlapping primary key segments,
you must use a Prolog 2 file.

If record deletions result in empty buckets in Prolog 3 files, you can use the Convert/Reclaim utility to
make the buckets usable again. Because CONVERT/RECLAIM does not create a new file, RFAs remain
the same.

Note that RMS–11 does not support Prolog 3 files. To use a Prolog 3 file with RMS–11 you must first
use the Convert utility to transform the file into a Prolog 1 file or into a Prolog 2 file.

3.5.1.2. Primary Index Structure
The primary index structure consists of the file's data records and a key pathway based on the primary
key (key 0). The base of a primary index structure is the data records themselves, arranged sequentially
according to the primary key value. The data records are called level 0 of the index structure.

The data records are grouped into buckets, which is the I/O unit for indexed files. Because the records
are arranged according to their primary key values, no other record in the bucket has a higher key value

70

Chapter 3. Performance Considerations

than the last record in that bucket. This high key value, along with a pointer to the data bucket, is copied
to an index record on the next level of the index structure, known as level 1.

The index records are also placed in buckets. The last index record in a bucket itself has the high key
value for its bucket; this high key value is then copied to an index record on the next higher level. This
process continues until all of the index records on a level fit into one bucket. This level is then known as
the root level for that index structure.

Figure 3.1, "RMS Index Structure" is a diagram of an index structure.

Figure 3.2, "Primary Index Structure" illustrates a primary index structure. (For simplicity, the records
are assumed to be uncompressed, and the contents of the data records are not shown.) The records are
132 bytes long (including overhead), with a primary key field of 6 bytes. Bucket size is one block, which
means that each bucket on Level 0 can contain three records. You calculate the number of records per
bucket as shown by the following algorithm:

Substituting the values in this instance:

Note that you must round the result down to the next lower integer, in this case, the integer 3.

Figure 3.1. RMS Index Structure

Because the key size is small and the database in this example consists of only 27 records, the index
records can all fit in one bucket on level 1. The index records in this example are 6 bytes long. Each
index record has one byte of control information. In this example, the size of the pointers is 2 bytes per
index record, for a total index record size of 9 bytes. You calculate the number of records per bucket in
this case as follows:

Again, you must round the remainder down to the next lower integer, 55.

Figure 3.2. Primary Index Structure

To read the record with the primary key 14, RMS begins by scanning the root level bucket, looking for
the first index record with a key value greater than or equal to 14. This record is the index record with
key 15. The index record contains a pointer to the level 0 data bucket that contains the records with the
keys 13, 14, and 15. Scanning that bucket, RMS finds the record (see Figure 3.3, "Finding the Record
with Key 14").

71

Chapter 3. Performance Considerations

Figure 3.3. Finding the Record with Key 14

3.5.1.3. Alternate Index Structure
Alternate indexes (also referred to as secondary indexes) provide your program with alternate record
processing. If you have one or more alternate indexes, you can process data records using any of the
alternate keys in addition to processing data with the primary key. Note that a file with alternate indexes
does require additional disk space.

The alternate index structure is similar to the primary index structure except that, instead of containing
data records, alternate indexes contain secondary index data records (SIDRs). An SIDR includes an
alternate key value from a data record in the primary index and one or more pointers to data records in
the primary index. (SIDRs have pointers to more than one record only if you allow duplicate keys and
there are duplicate key values in the database.) You do not need an SIDR for every data record in the
database. If a variable-length record is not long enough to contain a given alternate key, an SIDR is not
created. For example, if you define an alternate key field to be bytes 10 through 20 and you insert a 15-
byte record, no SIDR is created in that alternate index structure.

When you create a file, you can use null key values to improve performance for programs that use
alternate keys. When a secondary index has relatively few entries, performance may diminish because
RMS tries to treat the null entries (typically blank keys) as duplicates. The resultant duplicate-key
processing is unnecessary and can be avoided by assigning a null key value for the index. By using a null
key value, you minimize the list of duplicates. This can improve performance when you insert records
because the null key entries do not get processed as index entries. Note that when you sequentially access
records using null key processing, null records are not processed.

If you use the string data type, RMS uses the ASCII null character as the default null key value.
However, you can specify any character as the null value. If you use numeric keys, RMS uses zero (0) as
the null value.

3.5.1.4. Records
Records in an indexed file can be fixed-length records or variable-length records. Fixed-length records
begin with a record header. Variable-length records include a record header followed by a 2-byte count
field that contains the number of data bytes in the record. Unlike variable-length records in relative files,
each variable-length record in an indexed file requires only enough space for the record. See Table 2.2,
"File Organization Characteristics" for more information on record overhead.

Records cannot span bucket boundaries.

For Prolog 3 files, the maximum record size is 32,224 bytes. For Prolog 1 files and Prolog 2 files, the
maximum length for a fixed-length record is 32,234 bytes; the maximum length for a variable-length
record is 32,232 bytes. Note that when you specify a record length for a Prolog 3 file that is greater than
the maximum record length, RMS automatically converts the file to a Prolog 1 or Prolog 2 file.

Record length should reflect application requirements. There is no advantage to using a record length
that is based on the number of bytes in a bucket.

72

Chapter 3. Performance Considerations

The value of the primary key must be contained within the records. The records can contain either a
valid key field value for the alternate keys or, if you specify that null keys are allowed, a field of null
characters.

3.5.1.5. Keys
A key is a record field that identifies the record to help you retrieve the record. There are two types of
keys—primary keys and alternate keys. Data records are filed in the order of their primary key. The most
time-efficient value for primary keys is a unique value that begins at byte 0 of the record. You can allow
duplicate keys in the primary index, but duplicate keys may slow performance.

The primary key and alternate keys can be character strings or numerical values. Key type is specified by
the FDL attribute KEY TYPE.

If it is not possible to put the records into the file in order of their primary key, you should specify
that the buckets not be filled completely when the file is loaded. If you attempt to write a record to a
full bucket, a bucket split occurs. RMS keeps half of the records in the original bucket and moves the
other records to the newly created bucket. Each time a record moves to a new bucket, it leaves behind a
forwarding pointer called a record reference vector (RRV). You should avoid bucket splits because they
use additional disk space and CPU time. An extra I/O operation is required to access a record in a split
bucket when the program accesses a record by an alternate key or by RFA.

Alternate keys have a direct impact on I/O operations, CPU time, and disk space. The number of I/O
operations and the CPU time required for Put, Update, and Delete operations are directly proportional
to the number of keys. For example, inserting a record with a primary key and three alternate keys takes
approximately four times longer than inserting a record with only a primary key.

To update the value of an alternate key, you have to traverse the alternate index structure twice, and
bucket splits are more likely to occur. Randomly accessing an alternate key generally requires an extra I/
O operation over a comparable access by the primary key, and extra disk space is required to store each
alternate index structure.

Alternate keys are more likely than primary keys to have duplicate values. For example, the zip code is a
common alternate key. However, allowing many duplicate values can have a performance cost. Duplicate
values can cause clustered record or pointer insertions in data buckets, long sequential searches, a large
number of I/O operations, and loss of physical contiguity due to continuation buckets (especially for the
primary key).

Where possible, you should validate record keys before inserting the record, especially when you have
primary and alternate keys.

In general, as the number of keys increases, so does the time it takes to add and delete records from your
file. If CPU time is a critical resource on your system, you should define as few keys as possible.

If you are reading records in your file, the number of keys has relatively little impact on performance.

3.5.1.6. Areas
An area is a portion of an indexed file that RMS treats as a separate entity. You can divide an indexed
file into separate areas where each area has its own bucket size, initial allocation, extension size, and
volume positioning, just as if each area were a separate file.

Using multiple areas has distinct advantages. However, if each area has a different bucket size, all
buffers are as large as the largest bucket. If you use multiple areas, the file itself is probably not
contiguous; however, you can make each area within the file contiguous by specifying the FDL

73

Chapter 3. Performance Considerations

attribute AREA CONTIGUOUS. To ensure that the area is created without error, use the AREA
BEST_TRY_CONTIGUOUS attribute.

When you separate key and data areas, you tend to keep related buckets close together, thereby
decreasing disk seek time. You also minimize the number of disk-head movements for a series of
operations. For example, if you have a dedicated multidisk volume set, you could place the data level of
a file in an area on one disk and the index levels of the file in an area on a separate disk. Then there is
little or no competition for the disk head on the disk that contains the index structures.

One strategy is to allocate a separate area for level 0 of a primary index (the data level). These buckets
are the only ones referenced when you access the records sequentially by their primary key, so keeping
them in a separate area optimizes that type of operation.

Do not allocate separate areas for level 1 of an index and the other index levels if the index has just one
level. In such a case, you force RMS to create an additional level in the index structure.

In most cases, you should allocate at least one area for each alternate index structure. By default, EDIT/
FDL creates two areas in an indexed file for each index structure—one for the data level and one for all
of the index levels. You can allocate up to 255 areas, so with most applications you can set up enough
areas to handle all alternate index structures.

It is possible to set up a separate area for each of the following:

● Primary index level 0 (the data records)

● Primary index level 1 (the lowest index level)

● Primary index levels 2+ (the rest of the index levels)

● Alternate index level 0 (the secondary index data records)

● Alternate index level 1 (the lowest index level)

● Alternate index levels 2+ (the rest of the index levels)

Be sure to allocate sufficient space for each area and to specify area contiguity, because extending an
area generally creates a noncontiguous area extent. The resulting noncontiguous extent may be anywhere
on the disk, and you may lose the benefits of multiple areas.

If you are using a single area for the file, you should allocate enough contiguous space at creation
time for the entire file. If you plan to add data to the file later, you should allocate extra space using
the FDL attribute FILE ALLOCATION. To ensure contiguous allocation, set the FDL attribute FILE
CONTIGUOUS to YES.

If you are using multiple areas, you should allocate each one by specifying a value for the FDL attribute
AREA ALLOCATION.

If the file is relatively small, or if you know that it needs to be extended, you do not have to use multiple
areas. In such cases, it is more important to calculate the proper extension size.

To specify multiple areas using an FDL file, you assign each area its own AREA primary attribute. The
AREA primary attribute takes as an argument a number whose value identifies the area.

Use the KEY attributes DATA_AREA, LEVEL1_INDEX_AREA, and INDEX_AREA to match each
area specified with its index level. In the primary index structure, the primary attribute KEY must
take the value 0. Within the KEY 0 section, you assign the DATA_AREA attribute the number which
identifies the data record area.

74

Chapter 3. Performance Considerations

Then you associate the KEY LEVEL1_INDEX_AREA attribute with an AREA by assigning the
appropriate area number to the LEVEL1_INDEX_AREA attribute. You also assign the appropriate area
number to the INDEX_AREA attribute for the other index levels in the primary index structure. For
each alternate index structure, you use the same attributes (DATA_AREA, LEVEL1_INDEX_AREA,
INDEX_AREA) in another KEY primary attribute. In KEY sections that define alternate keys, the
DATA_AREA is where RMS puts the SIDRs.

3.5.2. Optimizing File Performance
This section discusses adjustments in file design that can improve a file's performance.

3.5.2.1. Bucket Size
For indexed files, the bucket size controls the number of levels in the index structure, which has the
greatest impact on performance for most applications. You can specify the bucket size with the FDL
attribute FILE BUCKET_SIZE or the control block fields FAB$B_BKS and XAB$B_BKZ. When you
sequentially access files, large buckets are generally beneficial.

For keyed access to index files, set the bucket size so that the number of index levels does not exceed
four. In general, the smaller the bucket size, the deeper the tree structure. If you find that a small increase
in bucket size eliminates one level, use a larger bucket size. At some point, however, the benefit of
having fewer levels is offset by the cost of scanning through the larger buckets.

As a rule, you should never increase bucket size unless the increase reduces the number of levels. For
example, you may find that a bucket size of 4 or more yields an index with four levels, and a bucket size
of 10 or more yields an index with three levels. In this case, you never want to specify a bucket size of
9 because that does not reduce the number of levels, and performance does not improve. In fact, such a
specification could hurt performance because each I/O operation takes longer, yet the number of accesses
remains the same. However, larger bucket sizes always improve performance if you are accessing the
records sequentially by primary key because more records fit in a bucket.

Conversely, with smaller buckets you have to search fewer keys. So if you can cache your whole structure
(except for level 0), you can save a lot of time. Also, performance in this case is comparable to flat file
design although add operations may take a little longer.

You can decrease the depth of your index structure in two ways. First, you can increase the number
of records per bucket by increasing the bucket size, increasing the fill factor, using compression, or
decreasing the size of keys and records.

Note

You cannot use key compression or index compression with the collated key data type.

However, changing the bucket size also has disadvantages. Larger buckets use more buffer space in
memory. And the number of records per bucket determines bucket search time, which directly affects
CPU time. A larger fill factor decreases the room for growth in the file, so bucket splits may occur.
Compression increases the record search time.

Alternatively, you can reduce the index depth by decreasing the number of records in the file.

If you are using multiple areas, you can set a different bucket size for each area. You should use different
bucket sizes if you are performing random accesses of records in no predictable pattern and if the data
records are large. Using different bucket sizes allows you to specify a smaller size for the index structures
and SIDRs than for the primary data level.

75

Chapter 3. Performance Considerations

You can use the Edit/FDL utility to determine the optimum bucket size.

Use the same bucket size for all areas if the data records are small or if the record accesses follow a
clustered pattern, that is, if the records that you access have keys that are close in value.

In general, increasing the bucket size increases other resources:

● Levels in the tree structure

● Buckets needed to maintain the tree structure

● Buffers needed for cache

Conversely, decreasing the bucket size decreases the pages per bucket and the average number of keys
searched while traversing the tree.

3.5.2.2. Fill Factor
If you know that the application makes random insertions into the database, you should reserve some
space in the buckets when records are first loaded into the file. You can specify a fill factor from 50%
to 100%. For example, a fill factor of 50% means that RMS writes records in only half of each bucket
when the records are first loaded, leaving the remainder of the bucket empty for future write operations.
This fill factor minimizes the number of bucket splits.

The fill factor is set with the FDL attributes KEY DATA_FILL and KEY INDEX_FILL. The value
assigned to both attributes should be the same.

When you specify a fill factor, consider the following:

● If the inserted records are distributed unevenly (highly skewed) by their primary key value, then
specifying a fill factor of less than 100% does not reduce the number of bucket splits.

● If the records have key values that are close or if they are added at one end of the file, many bucket
splits occur anyway, and the partially filled buckets in the database just waste space. If this is the
case, you should either specify a fill factor of 100% and use the Convert utility to reorganize the file
after the insertions are made, or you should choose a different primary key.

● If the inserted records are distributed fairly evenly or by their primary key, then specifying a fill
factor of less than 100% could significantly reduce bucket splits. However, the trade-off is initially
wasted disk space.

3.5.2.3. Number of Buffers
At run time, you can specify the number of buffers with the FDL attribute CONNECT
MULTIBUFFER_COUNT, the control block field RAB$B_MBF, or the XAB
$_MULTIBUFFER_COUNT XABITM. The number of buffers each application needs depends on the
type of record access your application performs.

The minimum number of buffers for indexed files is two. If the application performs sequential access
on your database, two buffers are sufficient. More than two buffers for sequential access could actually
degrade performance. During a sequential access, a given bucket is accessed as many times in a row
as there are records in the bucket. After RMS has read the records in that bucket, the bucket is not
referenced again. Therefore, it is unnecessary to cache extra buckets when accessing records sequentially.

When you access indexed files randomly, RMS reads the index portion of the file to locate the record
you want to process. RMS tries to keep the higher-level buckets of the index in memory; the buffers for
the actual data buckets and the lower level index buckets tend to be reused first when other buckets need

76

Chapter 3. Performance Considerations

to be cached. Therefore, you should use as many buffers as your process working set can support so you
can cache as many buckets as possible.

When you access records sequentially, even after you have located the first record randomly, you should
use a large bucket size. A small multibuffer count, such as the default of two buffers, is sufficient.

If you process your data file with a combination of the above access modes, you should compromise on
the recommended bucket sizes and number of buffers.

When you add records to an indexed file, consider choosing the deferred-write option (FDL attribute
FILE DEFERRED_WRITE; FAB$L_FOP field FAB$V_DFW). With this option, the buffer into which
the records have been moved is not written to disk until the buffer is needed for other purposes, the
Flush service is used, or until the file is closed. The deferred-write option, however, may cause records to
be lost if a system crashes before RMS transfers the records to the disk.

In general, you must consider several trade-offs when you set the number of buffers your application
needs:

● CPU time

● Availability of memory and number of page faults

● I/O operations

With indexed files, buckets (not blocks) are the units of transfer between the disk and memory. You
specify the bucket size when you create the file, although you can change the bucket size of an existing
file with the Convert utility (see Chapter 10, "Maintaining Files").

3.5.2.4. Global Buffers
If several processes share the indexed file concurrently, you may want to specify that the file use global
buffers. A global buffer is an I/O buffer that two or more processes can access. If two or more processes
request the same information from a file, each process can use the global buffers instead of allocating its
own.

Only one copy of the buffers resides at any one time in memory although the buffers are charged against
each process's working set size.

The guideline for using global buffers is the same as the guideline for using local process I/O buffers.
Global buffers only provide significant benefits if more than one process refers to the same bucket
in the global cache. If bucket contention is high, I/O transfers can be minimized and performance
improved. However, global buffers do not always improve performance. For example, multiple processes
independently reading records and using sequential access are most apt to refer to separate buckets. In
that case, bucket contention is low and the number of I/O transfers is not reduced, so global buffers do
not improve performance.

3.5.2.5. Using the Deferred-Write Option
The deferred-write option is a run-time option that can improve performance. It is the default operation
for some high-level languages and can be specified by clauses in other high-level languages.

If there is no language support, you can call a VAX MACRO subroutine that sets the FAB$L_FOP field,
the FAB$V_DFW option.

When you select the deferred-write option, RMS delays writing a modified bucket to the disk until the
buffer is needed to read another bucket into the cache or until another process needs to reference the

77

Chapter 3. Performance Considerations

modified bucket. If a subsequent operation references the bucket before it is flushed out to disk, then
one I/O operation has been eliminated. Typically, the largest performance gains come from using the
deferred-write option with sequential access because random accesses of the file usually result in several
I/O operations to bring in the single records.

Not all operations on indexed files can be deferred. Any operation that causes a bucket split forces
the writeback of the modified buckets to disk. (This forced writeback decreases the chances of lost
information should a system failure occur.)

Using the deferred-write option improves performance if you are performing multiple I/O operations on
a bucket. Consider the following example. The indexed file has a single key and its records are 100 bytes
long. The bucket size is 3 blocks with a fill factor of 67%. Thus, there is an average of 10 records in each
bucket. A batch program reads each record and updates part of it, beginning at the first record in the file
and moving through the records sequentially. Without the deferred-write option, 11 disk I/O operations
occur for every 10 records—one to read the bucket and one to write the bucket for each record. With the
deferred-write option, only two disk I/O operations occur for every 10 records—one to read the bucket
and one to write the bucket after the record operations are completed.

3.6. Monitoring RMS Performance
You can improve file performance by gathering statistics on RMS activity. Then, you can use these
statistics to fine-tune the file. When you have enabled the gathering of statistics, you can selectively use
the Monitor utility to view them.

You normally enable statistics gathering prior to opening a file and then turn on the Monitor utility
periodically to measure file performance as desired. However, the Monitor utility can begin monitoring a
file even before an application opens the file.

In all cases, the following restrictions apply to statistics gathering:

● All other processes accessing the file must close the file before you can enable statistics gathering.

● Statistics gathering is not supported for ODS-1 disks.

● You cannot collect statistics for process-permanent files. If a file is opened for both process-
permanent activity and as a standard file, the process-permanent activity is not included in the
statistics.

● Non-RMS file activity is not included in RMS statistics.

3.6.1. Enabling RMS Statistics
You can enable statistics gathering in one of three ways:

● Through the DCL interface using the SET FILE/STATISTICS command

● From a program through the Create service using a $XABITM macro

● Through the FDL interface by assigning the FILE secondary attribute FILE_MONITORING when
creating the file

The Monitor utility begins monitoring RMS statistics for a file even if RMS statistics are not enabled.
When the Monitor utility's display indicates a 0 in the Active Streams field for a file (see the sample
display in Section 3.6.2, "Using RMS Statistics"), one of the following conditions is true:

78

Chapter 3. Performance Considerations

● OpenVMS RMS statistics have not been enabled.

● The file has not been opened or connected.

● A restriction listed previously in Section 3.6, "Monitoring RMS Performance" has been ignored.

From the programming interface, you can determine whether RMS statistics are enabled by using an
appropriately configured XABITM. You can interactively determine whether RMS statistics are enabled
by using the DCL DIRECTORY/FULL command. If RMS statistics are enabled, the DIRECTORY/
FULL display includes the following line:

RMS attributes: File statistics enabled

Note that RMS creates a global page-file section when you initially open a file marked for statistics
gathering. Excessive use of statistics gathering might exhaust resources associated with global sections,
and if RMS cannot create the global page-file section, the $OPEN service returns an error. See the VSI
OpenVMS System Services Reference Manual: A–GETUAI for information about system parameters
associated with global sections.

See the VSI OpenVMS DCL Dictionary for details about using the DCL interface to enable statistics
gathering for a file. The VSI OpenVMS Record Management Utilities Reference Manual provides details
about enabling RMS statistics for a file through the FDL interface. Instructions for gathering RMS
statistics through the program interface are provided in the VSI OpenVMS Record Management Services
Reference Manual.

3.6.2. Using RMS Statistics
This section provides an example of how you can use RMS statistics to improve file-processing
performance. In this example, the system manager suspects that an I/O bottleneck involving the file
DATABASE.DAT is causing a system performance problem. To confirm the suspicion, the system
manager enables statistics monitoring on the file. Note that, if the system manager does not have sole
access to the file, the SET FILE command returns a file access conflict error message. You can use the /
SHARE qualifier in conjunction with the /STATISTICS qualifier to enable or disable statistics on a file
that is currently being accessed. However, only statistics of new accessors of the file will be measured.

The system manager invokes the Monitor utility to obtain a periodic sampling of RMS statistics that
describe the processing activity related to DATABASE.DAT. The statistics relating to the operations rate,
the buffer caching rate, the data rate, and the locking rate displayed on the Monitor screens provide the
system manager with information for making decisions about where to place the file on disk and how to
select optimal tuning parameters for the file.

Using the DCL interface, the system manager enables statistics gathering with the following command:

$ SET FILE/STATISTICS DATABASE.DAT

The SET/FILE STATISTICS command applies an application access control entry (ACE) to the
specified file. The ACE does not affect access control and is only meaningful to the application assigning
it.

Having enabled RMS statistics, the system manager runs the application and then uses the DCL interface
to periodically display the statistics using the following command:

$ MONITOR RMS/FILE=DATABASE.DAT/ITEM=CACHING

The Monitor utility responds with information displays similar to the following:

79

Chapter 3. Performance Considerations

 VAX/VMS Monitor Utility
 RMS CACHE STATISTICS
 on node MENASH
 28-FEB-1994
 16:03:59
(Index) MENASH$DUA0:[TOREP]DATABASE.DAT;1
Active Streams: 60 CUR AVE MIN
 MAX

 Local Cache Hit Percent 40.00 59.86 38.00
 80.00

 Local Cache Attempt Rate 59.81 59.26 56.07
 60.55

 Global Cache Hit Percent 87.54 81.38 57.43
 100.00

 Global Cache Attempt Rate 23.36 14.88 7.47
 23.85

 Global Buf Read I/O Rate 0.00 1.21 0.00
 2.91

 Global Buf Write I/O Rate 0.00 0.00 0.00
 0.00

 Local Buf Read I/O Rate 12.14 8.84 4.67
 13.08

 Local Buf Write I/O Rate 29.90 29.63 28.97 29.90

Interpretation of RMS cache statistics depends in great part on the application and file organization. The
file type (Index) is noted on the display immediately preceding the file specification. The MONITOR
display illustrated here is limited to the activity on a single node, MENASH. To obtain a clusterwide
view of RMS activity, you must run the Monitor utility using the /RECORD qualifier on all cluster nodes
that access the file. You can then analyze the resultant MONITOR recording files to obtain a complete
record of RMS activity.

If this display represents a period of activity that the system manager or application developer wants to
optimize, then the following observations can be derived:

● The number of Active Streams connected to this file and the cache attempt rates verify that this is a
very active file that could benefit from performance analysis.

● Global buffer utilization is very good as indicated by Global Cache Hit Percent. The relatively few
global buffer read I/Os and complete absence of global buffer write I/Os might be due to the fact that
index buckets tend to be placed in global buffers. Index buckets are often read but seldom written.
Generally, global buffer I/O activity can be reduced by adding global buffers. However, excessive use
of global buffers can increase the elapsed time for RMS operations as measured in the application.
The Run-Time Library timer routines can be used to measure elapsed time for RMS operations. You
can derive an optimal number of global buffers by varying the number and then evaluating the global
buffer I/O rates against elapsed time per operation.

● Local buffer read and write I/O rates indicate that the application might be saturating the capacity
of the disk (RA81). You can verify this by running the MONITOR DISK option clusterwide and

80

Chapter 3. Performance Considerations

examining the queue length for the disk involved. It might help to spread the file over more than one
disk.

There is a tendency for index file data buckets to be placed into local buffers even when a large
global buffer cache is present. By varying the number of local buffers and re-examining these
statistics, you can pick an optimal number of local buffers. As always, you should check that any
buffering changes do not result in additional paging I/Os.

There are other MONITOR utility screens that display information on the rate of various RMS
operations being done by the application, the data transfer size per operation, and the locking rates
associated with RMS operations. The locking rate screen also displays the number of bucket splits
occurring for an indexed file. To display all monitor RMS statistics screens, use the following command:

$ MONITOR MONITOR RMS/FILE=DATABASE.DAT/ITEM=ALL

For more information about using the SET FILE/STATISTICS command, see the VSI OpenVMS
DCL Dictionary. The VSI OpenVMS System Manager's Manual provides detailed information about
using the Monitor utility. For more information on performance management, see Guide to OpenVMS
Performance Management and A Comparison of System Management on OpenVMS AXP and OpenVMS
VAX.

3.7. Processing in an OpenVMS Cluster
Environment
This section discusses designing file applications for an OpenVMS Cluster and the performance you can
reasonably expect from the OpenVMS Cluster environment.

Note

In this document, discussions that refer to OpenVMS Cluster environments apply to systems that include
only VAX nodes and OpenVMS Cluster systems that include at least one Alpha node unless indicated
otherwise.

Processing in an OpenVMS Cluster environment offers many advantages:

● Performance—In general, the performance of each node in an OpenVMS Cluster is similar to that of
a single-node system that has the same processing load, assuming the aggregate I/O per disk drive is
reasonable.

● Availability—With the appropriate configuration, a node that leaves the OpenVMS Cluster does not
stop the OpenVMS Cluster.

● Flexibility—You can process shared applications on more than one node.

● Accessibility—Shared resources are very easy to use in an OpenVMS Cluster. The synchronized
access to the data provides data integrity with no redundancy.

For more information about OpenVMS Clusters, see VSI OpenVMS Cluster Systems Manual.

3.7.1. OpenVMS Cluster Shared Access
Shared access is one of the chief advantages of processing in an OpenVMS Cluster environment. Many
applications that run on a single-node system can run on an OpenVMS Cluster with no changes.

81

Chapter 3. Performance Considerations

However, applications that access shared files in an OpenVMS Cluster incur some additional overhead
for the OpenVMS Cluster synchronization; the amount of additional overhead depends on the locking
requirements of your application.

3.7.1.1. Locking Considerations
The distributed lock manager allows several users to share files concurrently in an organized manner.
RMS uses the lock manager to control file access.

The lock-mastering node controls the record and bucket locking for a given file for users on every node
of the OpenVMS Cluster. Initially, it is the first node from which the file is opened. However, another
node may become the lock-mastering node when a node either joins or leaves the OpenVMS Cluster.

The lock-mastering node may also change every time the file is opened. When another process opens the
file (provided that the file was closed), the node on which that process resides becomes the new lock-
mastering node for that file.

Lock requests issued by processes on the lock-mastering node incur less cost than lock requests issued
from other nodes. Conversely, the lock-mastering node has the additional work of processing lock
requests for that file for all other nodes.

The lock-requesting node is any node in the OpenVMS Cluster other than the lock-mastering node for
a given file.

RMS locks buckets and records during record operations only if the file is open for shared writing.
Conversely, RMS does no locking during record operations if the file is open for shared read-only access
or for exclusive access.

Lock requests for root locks (top-level or parent locks) in an OpenVMS Cluster may be slightly slower
than on a single-node system. However, these locks are used when you open and close files, so the time
for lock operations is only a fraction of the total time needed to open and close files.

There is no performance difference between a single-node system and an OpenVMS Cluster if the file
sharing takes place on a single node of the OpenVMS Cluster. Only when sharing spans across the
OpenVMS Cluster nodes does distributed locking occur.

As a result, the record locking itself may take a little longer, but because you have multiple CPUs in the
OpenVMS Cluster, your application benefits from the added processing power.

Sharing files in an OpenVMS Cluster also requires enough memory for nonpaged pool to store
additional lock data structures. This requirement, however, is dependent upon your processing load.

3.7.1.2. I/O Considerations
Sharing files in an OpenVMS Cluster environment also means sharing resources, such as disks and other
pieces of I/O hardware. When applications on many nodes share data on one disk, OpenVMS Cluster
performance may degrade due to excessive I/O operations.

3.7.2. Performance Recommendations
Four general recommendations about performance in an OpenVMS Cluster environment are described
in the following list:

● Estimate the I/O needs of your application. In an OpenVMS Cluster, and particularly with a shared
file, multiple nodes can generate many I/O requests to a single disk. The capacity of the disk to

82

Chapter 3. Performance Considerations

handle I/O traffic can affect OpenVMS Cluster performance if you allow your applications to
become I/O bound. The Monitor utility is a good tool for estimating how many I/O requests your
application generates. For more information about the Monitor utility, see the VSI OpenVMS System
Manager's Manual.

● Process files with exclusive access to obtain better performance than processing files with shared-
write access. Opening files for unnecessary shared-write access incurs needless locking cost (even on
a single node system).

● If possible, confine your application to a single CPU. If sufficient CPU resources and I/O capacity
are available, your application performs faster than if it was spread over many nodes.

● Provide for sufficient memory because the space overhead for the lock database and other system
software can be significant.

83

Chapter 3. Performance Considerations

84

Chapter 4. Creating and
Populating Files
After you have designed your file, you need to create it. First you must specify the file characteristics you
selected during the design phase. Then you need to create the actual file with those characteristics and to
protect it (decide who has access to the file). Lastly, you need to put records in the file, or “populate” it.

This chapter describes the process of creating and populating files.

● Section 4.1, "File Creation Characteristics" tells how to select and specify file-creation
characteristics.

● Section 4.2, "Creating a File" describes how to create a file.

● Section 4.3, "Creating and Accessing Tagged Files" describes how to create and access tagged files.

● Section 4.4, "Defining File Protection" explains how to define file protection.

● Section 4.5, "Populating a File" describes how to populate the file.

● Section 4.6, "Summary of File-Creation Options" provides a summary of the options related to file
creation.

4.1. File Creation Characteristics
You can specify the characteristics you need to create a file in two ways.

If you use VAX MACRO or BLISS–32, you can specify file characteristics by including OpenVMS
RMS (hereafter referred to as RMS) control blocks in your application program.

If you use a high-level language, you can use the File Definition Language (FDL), a special-purpose
language that is used to write specifications for data files. Of course, you also have the option of using
FDL with VAX MACRO or BLISS–32.

The following sections describe how you can specify file-creation characteristics by using RMS control
blocks or by creating FDL files.

4.1.1. Using RMS Control Blocks
You can establish characteristics for the file you create by using an RMS file access block (FAB)
and extended attribute blocks (XABs). These control blocks allow you to take the defaults that RMS
provides or to override the defaults and define the characteristics that suit your particular application.

4.1.1.1. File Access Block
The FAB is made up of fields that describe various file characteristics and contain the following file-
related information:

● The addresses of the file name string and the default name string

● The file organization

85

Chapter 4. Creating and Populating Files

● The record format

● Information about disk storage space

The FAB lets you use both the creation-time characteristics and the run-time characteristics of RMS.
You must define one FAB for each file your program opens or creates.

For more information about the FAB, see the VSI OpenVMS Record Management Services Reference
Manual.

4.1.1.2. Extended Attribute Blocks
Extended attribute blocks (XABs) are optional control blocks that contain supplementary file-attribute
information. The following is a partial list of XABs that can be used to provide supporting file
information:

● Initial size and extent information (XABALL)

● File protection (XABPRO)

● Key definition (XABKEY)

● Date and time information (XABDAT)

Like FABs, XABs allow you to use both the creation-time characteristics and the run-time characteristics
of RMS.

With XABs, you can define various file attributes beyond those specified in the associated FABs.

For more information about the extended attribute blocks, see the VSI OpenVMS Record Management
Services Reference Manual.

4.1.2. Using File Definition Language
FDL provides a way to create data files using special text files called FDL files. FDL files are written in
a file definition language, which permits you to specify appropriate attributes and values for the file.

You create and modify FDL files using the Edit/FDL utility (EDIT/FDL). The Edit/FDL utility contains
built-in design algorithms to help you optimize data file design. The Edit/FDL utility recognizes correct
FDL syntax and informs you immediately of syntax errors. (You can use a text editor or the DCL
command CREATE to create an FDL file, but you must then follow the validity rules listed in the VSI
OpenVMS Record Management Utilities Reference Manual.)

You can also use the Analyze/RMS_File utility to create FDL files from existing data files. FDL files
created in this manner contain special analysis sections that you can use with the Edit/FDL utility to tune
your data files.

You can use the Create/FDL utility and the Convert utility to create data files from the specifications in
the FDL files. Note that the Convert utility processes relative files by sequentially reading records from
the input file, then writing them to the output file. As a result, the relative record numbers (RRN) change
when the input file contains deleted or unused records.

By using an FDL file to create a data file from a high-level language, you can specify most of the
creation-time characteristics that are available with RMS control blocks (FABs and XABs). However, to
use all of the connect-time features, including wildcard characters, you must use the RMS control blocks.

86

Chapter 4. Creating and Populating Files

4.1.2.1. Using the Edit/FDL Utility
You can use the Edit/FDL utility in two ways: with a terminal dialog (interactively) or without one
(noninteractively).

If you use the Edit/FDL utility noninteractively, you can execute only the OPTIMIZE script. The
OPTIMIZE script lets you optimize an existing FDL file without an interactive session. For more
information, see Section 10.3, "Optimizing and Redesigning File Characteristics".

Alternatively, if you use the Edit/FDL utility interactively, you can use all the scripts, each of which has a
series of menus. When you invoke the Edit/FDL utility, it displays a main menu. To select a menu item,
you only need to enter the first letter of the item because each selection has a unique first letter.

Table 4.1, "Summary of the Edit/FDL Utility Commands" summarizes the Edit/FDL utility commands.

Table 4.1. Summary of the Edit/FDL Utility Commands

Command Function

ADD Inserts one or more lines into the FDL definition.
If the line already exists, you can replace it with
your new line. Once you have inserted a line, you
can continue to add lines until you are satisfied
with that particular primary section. If no primary
section exists to hold the secondary attribute being
added, the Edit/FDL utility creates one.

DELETE Removes one or more lines from the FDL
definition. If you delete all of the secondary
attributes in a primary section, you effectively
remove the primary attribute. Once you have
removed a line, you can continue to delete lines
under that particular primary section.

EXIT Creates the output FDL file, stores the current FDL
definition in it, and terminates the Edit/FDL utility
session. The Edit/FDL utility leaves unchanged
any FDL file that it used as input. The FDL file
that is created is, by default, a sequential file with
variable-length records and carriage-return record
attributes, and has your process ’s default RMS
protection and ownership.

HELP Displays the top level help text for the Edit/FDL
utility and then continues to prompt for more
keywords. Pressing the Return key in response to
the "Topic? " prompt or pressing Ctrl/Z will return
you to the main function prompt.

INVOKE Prompts you for your choice of scripts and starts a
series of logically ordered questions that help you
create new FDL files or modify existing ones.

MODIFY Allows you to change the value of one or more
lines in the FDL definition. Once you have
changed a line, you can continue to modify lines
under that particular primary section.

87

Chapter 4. Creating and Populating Files

Command Function

QUIT Aborts the session without creating an output FDL
file. You can also press Ctrl/C or

Ctrl/Y

to abort the session.
SET Allows you to establish defaults or to select any of

the Edit/FDL utility characteristics you forgot to
specify on the command line.

VIEW Displays the current FDL definition.
? Causes the utility to display more information. You

can enter the question mark character in response
to any question asked by the Edit/FDL utility. In
all cases, it will result in repetition of the question.
Note too, that the utility responds to an invalid
response in the same manner that it responds to a
question mark.

Ctrl/Z is equivalent to the EXIT command if you use it at the main menu level. If you use it from any
other level, Ctrl/Z returns you to the main menu level.

In most cases, a command from the main menu brings up a second level menu. For instance, typing the
ADD command displays the following menu:

 Legal Primary Attributes

ACCESS attributes set the run-time access mode of the file
AREA x attributes define the characteristics of file area x
CONNECT attributes set various RMS run-time options
DATE attributes set the date parameters of the file
FILE attributes affect the entire RMS data file
KEY y attributes define the characteristics of key y
NETWORK attributes set run-time network access parameters
RECORD attributes set the non-key aspects of each record
SHARING attributes set the run-time sharing mode of the file
SYSTEM attributes document operating system-specific items
TITLE is the header line for the FDL file

Enter desired primary (Keyword)[FILE] :

One of the most important features of the Edit/FDL utility is that it helps you create FDL files that
define indexed, relative, and sequential data files. To do this, the Edit/FDL utility provides seven scripts
that guide you through an interactive session. You can choose one of these scripts at the start of a
session, or you can instruct the Edit/FDL utility to automatically invoke a particular script each time that
you enter the EDIT/FDL command.

Table 4.2, "Edit/FDL Utility Scripts" lists the seven scripts.

Table 4.2. Edit/FDL Utility Scripts

Script Function

ADD_KEY Allows you to model or add to the attributes of a
new index.

88

Chapter 4. Creating and Populating Files

Script Function

DELETE_KEY Allows you to remove attributes from the highest-
level index of your file.

INDEXED Begins a dialog in which you are prompted for
information about the indexed data file you want
to create from the FDL file. The Edit/FDL utility
supplies values for certain attributes.

OPTIMIZE Helps you redesign an FDL file using an
analysis file from the Analyze/RMS_File utility
(ANALYZE/RMS_FILE/FDL). The FDL file
itself is one of the inputs to the Edit/FDL utility. In
effect, this script allows you to tune the parameters
of your indexes using the file statistics from
the FDL ANALYSIS sections produced by
ANALYZE/RMS_FILE.

RELATIVE Begins a dialog in which you are prompted for
information about the relative data file to be
created from the FDL file. The Edit/FDL utility
supplies values for certain attributes.

SEQUENTIAL Begins a dialog in which you are prompted for
information about the sequential data file to be
created from the FDL file. The Edit/FDL utility
supplies values for certain attributes.

TOUCHUP Begins a dialog in which you are prompted for
information about how you want to change an
existing index.

An interactive session is controlled by these Edit/FDL utility scripts. You can invoke a script in two
ways:

● You can select the INVOKE command from the main menu and then choose your script. When you
answer the script questions, the Edit/FDL utility displays a list of FDL attributes and their assigned
values. At this point, you can use the Edit/FDL utility commands to further modify the attribute
values or to end the editing session.

● You can begin a script by entering a DCL command in the following form:

EDIT/FDL/SCRIPT=script-name

This command bypasses the main menu to directly display the menu for the selected script.

Example 4.1, "Sample Edit/FDL Utility Session" shows a sample session with the Edit/FDL utility.

Example 4.1. Sample Edit/FDL Utility Session

 OpenVMS FDL Editor

 Add to insert one or more lines into the FDL definition
 Delete to delete one or more lines from the FDL definition
 Exit to leave the FDL Editor after creating the FDL file
 Help to obtain information about the FDL Editor
 Invoke to initiate a script of related questions

 Modify to change existing line(s) in the FDL definition

89

Chapter 4. Creating and Populating Files

 Quit to abort the FDL Editor with no FDL file creation
 Set to specify FDL Editor characteristics
 View to display the current FDL Definition
 Main Editor Function (Keyword)[Help] : INVOKE

 Script Title Selection

 Add_Key modeling and addition of a new index's parameters
 Delete_Key removal of the highest index's parameters
 Indexed modeling of parameters for an entire Indexed file
 Optimize tuning of all indexes' parameters using file statistics

 Relative selection of parameters for a Relative file
 Sequential selection of parameters for a Sequential file
 Touchup remodeling of parameters for a particular index
 Editing Script Title (Keyword)[-] : INDEXED
 Target disk volume Cluster Size (1-1Giga)[3] : 3
 Number of Keys to Define (1-255)[1] : 1

 Line Bucket Size vs Index Depth as a 2 dimensional plot
 Fill Bucket Size vs Load Fill Percent vs Index Depth
 Key Bucket Size vs Key Length vs Index Depth

 Record Bucket Size vs Record Size vs Index Depth
 Init Bucket Size vs Initial Load Record Count vs Index Depth
 Add Bucket Size vs Additional Record Count vs Index Depth
 Graph type to display (Keyword)[Line] : LINE
 Number of Records that will be Initially Loaded

 into the File (0-1Giga)[-] : 100000
 (Fast_Convert NoFast_Convert RMS_Puts)

 Initial File Load Method (Keyword)[Fast] : FAST
 Number of Additional Records to be Added After

 the Initial File Load (0-1Giga)[0] : 0

 Key 0 Load Fill Percent (50-100)[100] : 100
 (Fixed Variable)

 Record Format (Keyword)[Var] : VARIABLE
 Mean Record Size (1-32229)[-] : 80
 Maximum Record Size (0,80-32229)[0] : 0

 (Bin2 Bin4 Bin8 Int2 Int4 Int8 Decimal String Collated

 Dbin2 Dbin4 Dbin8 Dint2 Dint4 Dint8 Ddecimal Dstring Dcollated)
 Key 0 Data Type (Keyword)[Str] : STRING
 Key 0 Segmentation desired (Yes/No)[No] : NO
 Key 0 Length (1-255)[-] : 9
 Key 0 Position (0-32220)[0] : 0
 Key 0 Duplicates allowed (Yes/No)[No] : NO
 File Prolog Version (0-3)[3] : 3
 Data Key Compression desired (Yes/No)[Yes] : YES

90

Chapter 4. Creating and Populating Files

 Data Record Compression desired (Yes/No)[Yes] : YES
 Index Compression desired (Yes/No)[Yes] : YES

 *|
 9|
 8|
 Index 7|
 6|
 Depth 5|
 4|
 3| 3 3
 2| 2
 1| 1 1 1 1 1 1 1 1
 +- + - - - + - - - - + - - - - + - - - - + - - - - + - - - - + - +
 1 5 10 15 20 25 30

 32
 Bucket Size (number of blocks)

 PV-Prolog Version 3 KT-Key 0 Type String EM-Emphasis Flatter
 (3)
 DK-Dup Key 0 Values No KL-Key 0 Length 9 KP-Key 0 Position
 0
 RC-Data Record Comp 0% KC-Data Key Comp 0% IC-Index Record Comp
 0%
 BF-Bucket Fill 100% RF-Record Format Variable RS-Mean Record Size
 80
 LM-Load Method Fast_Conv IL-Initial Load 100000 AR-Added Records
 0
 (Type "FD" to Finish Design)
 Which File Parameter (Mnemonic)[refresh] : FD
 Text for FDL Title Section (1-126 chars)[null]

 : FDL_SESSION_EXAMPLE
 Data File file-spec (1-126 chars)[null]

 : EXAMPLE.DAT
 (Carriage_Return Fortran None Print)

 Carriage Control (Keyword)[Carr] : CARRIAGE_RETURN

 Emphasis Used In Defining Default: (Flatter_files)
 Suggested Bucket Sizes: (3 3 27)
 Number of Levels in Index: (2 2 1)

 Number of Buckets in Index: (72 72 1)
 Pages Required to Cache Index: (216 216 27)
 Processing Used to Search Index: (168 168 766)
31 Key 0 Bucket Size (1-63)[3] : 3
32 Key 0 Name (1-32 chars)[null]
 : SSNUM
33 Global Buffers desired (Yes/No)[No] : NO
34 The Depth of Key 0 is Estimated to be No Greater
 than 2 Index levels, which is 3 Total levels.
35 Press RETURN to continue (^Z for Main Menu)

 OpenVMS FDL Editor

 Add to insert one or more lines into the FDL definition
 Delete to delete one or more lines from the FDL definition
 Exit to leave the FDL Editor after creating the FDL file
36 Help to obtain information about the FDL Editor
 Invoke to initiate a script of related questions

91

Chapter 4. Creating and Populating Files

 Modify to change existing line(s) in the FDL definition
 Quit to abort the FDL Editor with no FDL file creation
 Set to specify FDL Editor characteristics
 View to display the current FDL Definition
37 Main Editor Function (Keyword)[Help] : EXIT
38 DISK$:[FOX.RMS]FDL_SESSION_EXAMPLE.FDL;1 40 lines

The Main Editor Function menu displays the Edit/FDL utility commands.

The INVOKE command displays the Script Title Selection menu. Note that HELP is the default
command so if you want online help, just press the Return key.

The Script Title Selection menu shows the seven scripts you can choose to help you design your
file. There is no default so you must explicitly select one of the scripts.

Choose the INDEXED script to design an indexed data file.

Choose a disk cluster size of three.

Define only one key—the primary key.

This menu provides a selection of graphic display types.

Select a line plot display.

Select 100,000 records to be loaded initially.

Select the CONVERT/FAST_LOAD method of loading records into the data file.

Opt for no additional records after the initial load.

Elect a fill level of 100 percent for the primary index buckets.

Choose the variable-length record format.

Select an average record size of 80 characters.

Select an unlimited maximum record size.

Select the string data type for the primary key.

Note

The string data-type keys include STRING, DSTRING, COLLATED and DCOLLATED keys.

Opt to disallow segmentation in the primary key.

Set the length of the primary key to 9 bytes.

Define the initial position of the primary key at column 0.

Opt to disallow duplicates of the primary key.

Choose the Prolog 3 version.

Select data key compression.

Select data record compression.

92

Chapter 4. Creating and Populating Files

Select index compression.

This is a line plot showing bucket size against index depth.

Type “FD” to finish the design session.

Enter the title of your FDL file specification.

Enter the file specification of your data file.

Select the CARRIAGE_RETURN carriage control.

This display shows the tuning emphasis you chose to design your file. It also shows suggested
bucket sizes for various index level depths and other tuning information.

31 Select the default bucket size for the primary key.

32 Enter the name of the primary key.

33 Choose whether you want global buffers.

34 This message shows the depth of the primary key index and gives the total number of levels.

35 Press the Return key to display the main menu.

36 This is the main menu.

37 Use the EXIT command to exit the editor and to create the FDL file.

38 This message shows the resulting FDL file specification and the number of lines it contains.

Note that the example uses most of the suggested defaults. There are three ways to accept defaults:

● Press the Return key without entering a value.

● Use the /RESPONSES=AUTOMATIC qualifier when you invoke the Edit/FDL utility.

● Use the following sequence:

1. Select the SET command from the main menu.

2. Select RESPONSES from the SET menu.

3. Accept the default (AUTO) when the Edit/FDL utility prompts for “Default responses in script.”

Key compression and index compression are not acceptable options when you select a collated key data
type.

When the Edit/FDL utility creates an FDL file, it groups the attributes into major sections. The section
headings are called primary attributes, and the attributes within a primary section are called secondary
attributes. Certain secondary attributes contain a third level of attributes called qualifiers.

The objective of using the Edit/FDL utility is to create an FDL file with optimum values for the various
attributes. An FDL file contains a list of the primary and secondary attributes with related qualifiers. If a
primary or secondary attribute does not appear in the FDL file, it is assigned its default value.

Example 4.2, "Sample FDL File" shows an FDL file. IDENT, SYSTEM, FILE, RECORD, AREA n, and
KEY n are primary attributes; the others are secondary attributes.

93

Chapter 4. Creating and Populating Files

Example 4.2. Sample FDL File

IDENT
" 1-MAR-1993 14:07:46 OpenVMS FDL Editor"

SYSTEM
 SOURCE VMS
FILE
 GLOBAL_BUFFER_COUNT 0
 NAME DISK$RMS:[RMSTEST]INDEXED.DAT;3
 ORGANIZATION indexed
 OWNER [RMS1,TEST]
 PROTECTION (system:RWED, owner:RWED, group:RE, world:)

RECORD
 BLOCK_SPAN yes
 CARRIAGE_CONTROL none
 FORMAT variable
 SIZE 2048

AREA 0
 ALLOCATION 233
 BEST_TRY_CONTIGUOUS yes
 BUCKET_SIZE 5
 EXTENSION 60
AREA 1
 ALLOCATION 5
 BEST_TRY_CONTIGUOUS yes
 BUCKET_SIZE 5
 EXTENSION 5

AREA 2
 ALLOCATION 18
 BEST_TRY_CONTIGUOUS yes
 BUCKET_SIZE 3
 EXTENSION 6

KEY 0
 CHANGES no
 DATA_AREA 0
 DATA_FILL 100
 DATA_KEY_COMPRESSION no
 DATA_RECORD_COMPRESSION no
 DUPLICATES no
 INDEX_AREA 1
 INDEX_COMPRESSION no
 INDEX_FILL 100
 LEVEL1_INDEX_AREA 1
 NAME "NUM"
 NULL_KEY no
 PROLOG 3
 SEG0_LENGTH 8
 SEG0_POSITION 0
 TYPE bin8

KEY 1
 CHANGES yes
 DATA_AREA 2

94

Chapter 4. Creating and Populating Files

 DATA_FILL 100
 DATA_KEY_COMPRESSION yes
 DUPLICATES yes
 INDEX_AREA 2
 INDEX_COMPRESSION yes
 INDEX_FILL 100
 LEVEL1_INDEX_AREA 2
 NAME "NAME"
 NULL_KEY yes
 NULL_VALUE 0
 SEG0_LENGTH 39
 SEG0_POSITION 9
 TYPE string

4.1.2.2. Designing an FDL File
When you want to create an FDL file, you invoke the Edit/FDL utility with a DCL command in the
following form:

EDIT/FDL/CREATE fdl-filespec

The /CREATE qualifier specifies that you want to create an FDL file with the name entered in the fdl-
filespec parameter. When the Edit/FDL utility displays the main menu, select the INVOKE command.
In response to the INVOKE command, the Edit/FDL utility prompts you for a script. The only
appropriate scripts for creating a file are INDEXED, RELATIVE, and SEQUENTIAL.

As discussed previously, you can enter a script directly by specifying the /SCRIPT qualifier on the DCL
command line. For example, enter the following command to create an indexed FDL file:

$ EDIT/FDL/CREATE/SCRIPT=INDEXED MY_FDL_FILE

When you select the script, the Edit/FDL utility prompts you for information about the data file. Each
prompt consists of a short question, a range of acceptable values (for example, 50-100) or the value type
(for example, Keyword, YES/NO, and so forth) in parentheses, and the default answer in brackets. One
of the questions in the INDEXED script is shown as follows:

Number of Keys to Define (1-255)[1] :

In this example, the Edit/FDL utility prompts you for the number of keys you want to define for an
indexed data file. The Edit/FDL utility accepts any number from 1 to 255. If you do not specify a value,
it assumes that you want to define one key only, the primary key. To accept the default value, press the
Return key.

If the Edit/FDL utility requires that you enter a value (that is, no default value is specified for the
response), it includes a dash within brackets [-].

When you specify the SEQUENTIAL script or the RELATIVE script, the Edit/FDL utility returns you
to the main menu level after finishing the dialog. When you specify the INDEXED script, one of the
prompts requests your choice of a design graphics display: a Line_Plot graph or a Surface_Plot graph.
After finishing the dialog, the Edit/FDL utility displays the selected graph to help you make your final
design choice.

The Line_Plot graph plots bucket size against index depth. All things equal, the size of the buckets
determines the number of levels in the index, and the number of levels has a direct effect on the run-time
performance of an indexed file. Fewer levels generally reduce the average number of keys searched when
the index tree is traversed. However, fewer levels imply more records per data bucket and may cause
longer data bucket search times. Thus, the Line_Plot graph helps you decide on the best bucket size for
your application. Figure 4.1, "Line_Plot Graph" shows a Line_Plot graph.

95

Chapter 4. Creating and Populating Files

Figure 4.1. Line_Plot Graph

As shown in Figure 4.1, "Line_Plot Graph", a bucket size of 1 block results in an index with five levels.
Increasing the bucket size to 2 blocks reduces the number of index levels to four, but an increase to 5
blocks does not reduce the number of index levels at all. A bucket size of 7 blocks, however, reduces the
number of index levels to three.

When you choose the bucket size, remember that the graphs do not display the data level. For example, if
you want three levels in the file, then you must limit the number of index levels to two.

The Surface_Plot graphics mode lets you choose a range of values to see their effects. The Edit/FDL
utility prompts you to enter a lower and upper bound for one of the following values:

● Load fill percent

● Key length

● Record size

● Initial load record count

● Additional record count

The selected range is displayed along the graph's vertical axis.

The variable on the graph's horizontal axis is bucket size. The numbers in the field portion of the graph
show the number of levels at each bucket size for each of the other values.

Figure 4.2, "Surface_Plot Graph" is a Surface_Plot graph that shows a range of values for initial fill
factors ranging from 100% to 40%.

Figure 4.2. Surface_Plot Graph

The area on the graph within the slash marks represents combinations that RMS finds acceptable. In
Figure 4.2, "Surface_Plot Graph", a fill factor of 70% and a bucket size of 10 blocks is the optimum
combination. A fill factor of 70% and a bucket size of 15 blocks is a relatively poor combination because
it falls outside of the slash boundaries.

If you are sure the information you supplied to the Edit/FDL utility is valid, the best values are those
that lie along the left-hand boundary next to the slash marks. If you are not sure that your information is
valid, you should choose a value that lies more to the right of the slash boundary.

When you complete the dialog and the Edit/FDL utility presents the graph, you can make changes to
certain attributes of the proposed data file. The design is not complete until you specify “FD” for “Finish

96

Chapter 4. Creating and Populating Files

Design,” at which point the Edit/FDL utility asks a few more questions. You then have the opportunity
to return to the main menu to view the file attributes that the Edit/FDL utility has created.

Figure 4.3, "Design Mnemonics" shows the attributes that you can alter when the Edit/FDL utility
displays the graph. Note that each attribute has a 2-letter mnemonic. To alter an attribute, you specify the
corresponding mnemonic. To refresh the display, press the Return key. To begin the final design phase,
enter “FD.”

Figure 4.3. Design Mnemonics

During the final design phase, the Edit/FDL utility gives you an opportunity to supply values for such
attributes as TITLE, an optional primary that allows you to label the FDL file. (Most of these questions
are also applicable to designing sequential and relative files.) When you have answered the questions,
the Edit/FDL utility assigns the values to the FDL attributes and returns you to the main menu level to
display the resulting FDL file.

At the main menu, you can select the ADD command to assign values to any attribute the script omitted.
Remember that if an attribute does not appear in the FDL file, it assumes the default value. (For a list
of the default values for each attribute, see the VSI OpenVMS Record Management Utilities Reference
Manual.) To modify an attribute, use the MODIFY command, and to delete an attribute, use the
DELETE command.

To create the displayed FDL file, select the EXIT command. To abort the session without creating an
FDL file, select the QUIT command.

4.1.3. Using the FDL Routines
You can also define file-creation characteristics with the FDL utility routines. The FDL routines
provide you with the functions of the File Definition Language, and they allow you to set file creation
characteristics from within your application.

There are four FDL routines:

FDL$CREATE Creates a file from an FDL specification, and then
closes the file. See Section 4.2.4, "Using the FDL
$CREATE Routine" for more information.

FDL$GENERATE Produces an FDL specification by interpreting
a set of control blocks. It then writes the FDL
specification either to an FDL file or to a character
string.

FDL$PARSE Parses an FDL specification, allocates control
blocks, and then fills in the relevant fields.

FDL$RELEASE Deallocates the virtual memory used by the control
blocks created by FDL$PARSE. You must use
FDL$PARSE to fill in (to populate) the control
blocks if you plan to release the memory with FDL
$RELEASE later.

Because the FDL$GENERATE, FDL$PARSE, and FDL$RELEASE routines allow you to use the run-
time, as well as the creation-time, features of RMS, you must call them from a language that can access

97

Chapter 4. Creating and Populating Files

the control block fields that specify the CONNECT options. This may be difficult from a high-level
language.

Example 4.3, "Using FDL Routines in a Pascal Program" shows how to call the FDL$PARSE and FDL
$GENERATE routines from a Pascal program.

Example 4.3. Using FDL Routines in a Pascal Program

[INHERIT ('SYS$LIBRARY:STARLET')]
PROGRAM example2 (input,output,order_master);

(* This program fills in its own FAB, RAB, and *)
(* XABs by calling FDL$PARSE and then generates *)
(* an FDL specification by calling FDL$GENERATE.*)
(* It requires an existing input FDL file *)
(* (TESTING.FDL) for FDL$PARSE to parse. *)

TYPE
(*+ *)
(* FDL CALL INTERFACE CONTROL FLAGS *)
(*- *)
 $BIT1 = [BIT(1),UNSAFE] BOOLEAN;

 FDL2$TYPE = RECORD CASE INTEGER OF
 1: (FDL$_FDLDEF_BITS : [BYTE(1)] RECORD END;
);
 2: (FDL$V_SIGNAL : [POS(0)] $BIT1;
 (* Signal errors; don't return *)
 FDL$V_FDL_STRING : [POS(1)] $BIT1;
 (* Main FDL spec is a char string *)
 FDL$V_DEFAULT_STRING : [POS(2)] $BIT1;
 (* Default FDL spec is a char string *)
 FDL$V_FULL_OUTPUT : [POS(3)] $BIT1;
 (* Produce a complete FDL spec *)
)
 END;

 mail_order = RECORD
 order_num : [KEY(0)] INTEGER;
 name : PACKED ARRAY[1..20] OF CHAR;
 address : PACKED ARRAY[1..20] OF CHAR;
 city : PACKED ARRAY[1..19] OF CHAR;
 state : PACKED ARRAY[1..2] OF CHAR;
 zip_code : [KEY(1)] PACKED ARRAY[1..5]
 OF CHAR;
 item_num : [KEY(2)] INTEGER;
 shipping : REAL;
 END;
 order_file = [UNSAFE] FILE OF mail_order;
 ptr_to_FAB = ^FAB$TYPE;
 ptr_to_RAB = ^RAB$TYPE;
 byte = 0..255;

VAR
 order_master : order_file;
 flags : FDL2$TYPE;
 order_rec : mail_order;

98

Chapter 4. Creating and Populating Files

 temp_FAB : ptr_to_FAB;
 temp_RAB : ptr_to_RAB;
 status : integer;

FUNCTION LIB$SIGNAL
 (%REF cond_val: INTEGER;
 %IMMED num: INTEGER := %immed 0;
 %STDESCR s1: PACKED ARRAY[L1..U1: INTEGER] OF CHAR := %IMMED 0;
 %STDESCR s2: PACKED ARRAY[L2..U2: INTEGER] OF CHAR := %IMMED 0):
 INTEGER;
 EXTERN;

FUNCTION FDL$PARSE
 (%STDESCR FDL_FILE : PACKED ARRAY [L1..U1:INTEGER]
 OF CHAR;
 VAR FAB_PTR : PTR_TO_FAB;
 VAR RAB_PTR : PTR_TO_RAB) : INTEGER; EXTERN;
FUNCTION FDL$GENERATE
 (%REF FLAGS : FDL2$TYPE;
 FAB_PTR : PTR_TO_FAB;
 RAB_PTR : PTR_TO_RAB;
 %STDESCR FDL_FILE_DST : PACKED ARRAY [L1..U1:INTEGER]
 OF CHAR) : INTEGER;
 EXTERN;

BEGIN

 status := FDL$PARSE ('TESTING',TEMP_FAB,TEMP_RAB);
 if not odd (status) then LIB$SIGNAL(status);
 flags::byte := 0;
 status := FDL$GENERATE (flags,
 temp_FAB,
 temp_RAB,
 'SYS$OUTPUT:');
 if not odd (status) then LIB$SIGNAL(status);

END.

For more information about FDL routines, see the VSI OpenVMS Utility Routines Manual.

4.2. Creating a File
After you select the creation characteristics for your file, you use the selected characteristics to create the
file. You can create the file using one of the following:

● Create service

● Create/FDL utility

● Convert utility

● FDL$CREATE routine

4.2.1. Using the Create Service
The Create service creates a new data file assigning it the attributes you specify in the FAB and any
applicable XABs. Note that where there is a conflict, the XAB fields override the FAB fields.

99

Chapter 4. Creating and Populating Files

When you use the Create service to create a file, the file remains open until you explicitly close it.

If you set the create-if (CIF) bit in the FOP (file-processing options) field of the FAB, you can open an
existing file with the Create service. If the file you try to create has the same name as an existing file, the
Create service opens the existing file instead of creating the new file.

The Create service allows you to set file-creation characteristics and to create the file directly from your
application program.

For more information about the Create service, see the VSI OpenVMS Record Management Services
Reference Manual.

4.2.2. Using the Create/FDL Utility
Unlike the Create service, using FDL to create a file is a two-step process. You must first create the FDL
file using the Edit/FDL utility and then use another RMS utility or your application program to create
the data file.

One of the utilities you can use to create a file is the Create/FDL utility (CREATE/FDL). CREATE/FDL
creates an empty data file from the specifications in an existing FDL file. This feature allows you to use
the Edit/FDL utility to create standard FDL files that describe commonly needed data files and then to
use CREATE/FDL to create the data files as they are needed.

For example, to create an empty data file called CUSTRECS.DAT from the specifications in an FDL file
called INDEXED.FDL, enter the following DCL command:

$ CREATE/FDL=INDEXED.FDL CUSTRECS.DAT

4.2.3. Using the Convert Utility
Another RMS utility that creates an output data file from the specifications in an FDL file is the Convert
utility (CONVERT). However, instead of being empty, the new output file generally contains data
records from the input file unless the input file was also empty. Note that the Convert utility processes
relative files by sequentially reading records from the input file, then writing them to the output file. As a
result the relative record numbers (RRN) change when the input file contains deleted or unused records.

If you want to use CONVERT to change the characteristics of a particular file, you can use a DCL
command of the following form:

CONVERT/FDL=fdl-file input-file output-file

The CONVERT/FDL command creates a new file named by the output-file parameter and assigns the
new file the characteristics specified in the FDL file.

For more information about populating data files with CONVERT, see Section 4.5, "Populating a File".

4.2.4. Using the FDL$CREATE Routine
You can also create data files according to your specifications with the FDL$CREATE routine. FDL
$CREATE is the FDL routine most likely to be called from a high-level language. It creates a file from
an FDL specification and then closes the file.

The FDL$CREATE routine performs the same function as the Create/FDL utility, but it allows you to
create data files from your application. However, it allows you to use only the creation-time features of
RMS.

100

Chapter 4. Creating and Populating Files

Example 4.4, "Using the FDL$CREATE Routine in a Fortran Program" shows how to call the FDL
$CREATE routine from a Fortran program.

Example 4.4. Using the FDL$CREATE Routine in a Fortran Program

* This program calls the FDL$CREATE routine. It
* creates an indexed output file named NEW_MASTER.DAT
* from the specifications in the FDL file named
* INDEXED.FDL. You can also supply a default file name
* and a result name (which receives the name of the created
* file). The program also returns all statistics.
*
 IMPLICIT INTEGER*4 (A - Z)
 EXTERNAL LIBGET_LUN, FDLCREATE
 CHARACTER IN_FILE*11 /'INDEXED.FDL'/,
 1 OUT_FILE*14 /'NEW_MASTER.DAT'/,
 1 DEF_FILE*11 /'DEFAULT.FDL'/,
 1 RES_FILE*50
 INTEGER*2 FIDBLK(3) /0,0,0/
 I = 1
 STATUS = FDL$CREATE (IN_FILE,OUT_FILE,
 DEF_FILE,RES_FILE,FIDBLK,,)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))
*
 STATUS=LIB$GET_LUN(LOG_UNIT)
 OPEN (UNIT=LOG_UNIT,FILE=RES_FILE,STATUS='OLD')
 CLOSE (UNIT=LOG_UNIT, STATUS='KEEP')
*
 WRITE (6,1000) (RES_FILE)
 WRITE (6,2000) (FIDBLK (I), I=1,3)
*
1000 FORMAT (1X,'The result filename is: ',A50)
*
2000 FORMAT (/1X,'FID-NUM: ',I5/,
 1 1X,'FID-SEQ: ',I5/,
 1 1X,'FID-RVN: ',I5)
*
 END

Example 4.5, "Using the FDL$CREATE Routine from a COBOL Program" shows how to call the FDL
$CREATE routine from a COBOL program.

Example 4.5. Using the FDL$CREATE Routine from a COBOL Program

* FDLCR.COB
*
* This program calls the FDL$CREATE routine. It creates
* an indexed output file named NEW_MASTER.DAT from the
* specifications in the FDL file named INDEXED.DAT. You
* can also supply a default file name and a result name
* (that receives the name of the created file). The
* program also returns the FDL$CREATE statistics.
*
* DATA NAMES:
*
* OUT-REC defines the output record
* STATVALUE receives the status value from the routine
* call

101

Chapter 4. Creating and Populating Files

* NORMAL receives the value from SS$_NORMAL
* FIDBLOCK receives the FDL$CREATE statistics. There
* are three:
* (1) file identification number (FID-NUM)
* (2) file sequence number (FID-SEQ)
* (3) relative volume number (RVN)
* RESNAME receives the name of the file that is created
* (the result file name)
*
IDENTIFICATION DIVISION.
PROGRAM-ID. FDL-CREATE-EXAMPLE.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX
OBJECT-COMPUTER. VAX
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT OUT-FILE ASSIGN TO 'NEWMASTER.DAT'.

DATA DIVISION.
FILE SECTION.
FD OUT-FILE
 DATA RECORD IS OUT-REC.

01 OUT-REC.
 02 OUT-NUM PIC X(4).
 02 OUT-NAME PIC X(20).
 02 OUT-COLOR PIC X(4).
 02 OUT-WEIGHT PIC X(4).
 02 SUPL-NAME PIC X(20).
 02 FILLER PIC X(28).
WORKING-STORAGE SECTION.
01 MORE-DATA-FLAGS PIC XXX VALUE 'YES'.
 88 THERE-IS-DATA VALUE 'YES'.
 88 THERE-IS-NO-DATA VALUE 'NO '.

01 STATVALUE PIC S9(9) COMP.

01 FIDBLOCK USAGE IS COMP.
 02 NUM PIC S9(9) VALUE 0.
 02 SEQ PIC S9(9) VALUE 0.
 02 RVN PIC S9(9) VALUE 0.

01 RESNAME PIC X(50).

PROCEDURE DIVISION.
MAIN.
 PERFORM CREATE-FILE THRU DISPLAY-STATS.
 STOP RUN.

CREATE-FILE.
 CALL 'FDL$CREATE' USING BY DESCRIPTOR 'INDEXED.FDL'
 BY DESCRIPTOR 'NEWMASTER.DAT'
 BY DESCRIPTOR 'DEFAULT.DAT'
 BY DESCRIPTOR RESNAME
 BY REFERENCE FIDBLOCK
 BY VALUE 0

102

Chapter 4. Creating and Populating Files

 BY VALUE 0
 BY VALUE 0
 BY VALUE 0
 BY VALUE 0
 GIVING STATVALUE.

 IF STATVALUE IS FAILURE
 CALL 'LIB$STOP' USING BY VALUE STATVALUE.

DISPLAY-STATS.
 DISPLAY 'The result filename is: ',RESNAME CONVERSION.
 DISPLAY 'FID number: ',NUM CONVERSION.
 DISPLAY 'FID sequence: ',SEQ CONVERSION.
 DISPLAY 'Volume number: ',RVN CONVERSION.

4.3. Creating and Accessing Tagged Files
RMS supports the use of compound document text through the implementation of tagged files. The
term compound documents refers to files that contain a number of integrated components including
text, graphics, and scanned images.

Tagged files are made distinguishable by the RMS file attribute stored semantics. The value of the
stored semantics attribute is called the file tag, and it specifies how file data is to be interpreted.

RMS support for compound document text requires that compound document files be tagged with
the appropriate stored semantics values. These are binary values that can be up to 64 bytes long and
can be expressed using hexadecimal notation. The hexadecimal value of the DDIF tag, for example, is
2B0C8773010301. The operating system lets you assign names to tag values so that DCL commands
such as DIRECTORY/FULL and utilities such as FDL and ANALYZE/RMS_FILE display a more
easily remembered mnemonic for the DDIF tag instead of the hexadecimal value.

Assigning a name to the tag also aids in using the /SEMANTICS qualifier with the DCL SET FILE
command when you want to tag a file from the DCL interface. For example, you can use a command
like the following:

$ SET FILE/SEMANTICS=DDIF MY.FILE

To assign a tag a name, you must have privileges to make appropriate entries in two system tables, RMS
$SEMANTIC_TAGS and RMS$SEMANTIC_OBJECTS.

For example, the following DCL commands have been included in the system startup command file to
assign the mnemonic DDIF to the hexadecimal value for a DDIF tag:

$ DEFINE/TABLE=RMS$SEMANTIC_TAGS DDIF 2B0C8773010301
$ DEFINE/TABLE=RMS$SEMANTIC_OBJECTS 2B0C8773010301 DDIF

With the appropriate DEFINE commands, you can assign mnemonics for other tags, including tags used
with international program applications.

You can tag files through the DCL interface, the FDL interface, or from your program by way of the
RMS interface. This section describes the implementation of tagged files through the RMS interface
including:

● Tagging files

● Accessing tagged files

103

Chapter 4. Creating and Populating Files

● Preserving tags

4.3.1. Programming Interface for File Tagging
You can tag a file from the RMS interface by using the Create service in conjunction with an item XAB
($XABITM). See OpenVMS Record Management Services Reference Manual for more information about
using the $XABITM macro.

Example 4.6, "Tagging a File" illustrates a BLISS--32 program that tags a DDIF file through the RMS
interface. The tag value shown is a 7-byte hexadecimal number representing the code for the DDIF tag.
The RMS program interface accepts only hexadecimal tag values.

To write to a tagged file, the application program must use a $XABITM macro to specify access
semantics that match the file's stored semantics as established by a $XABITM macro. As shown in
the example, the Create service tags the file and the Connect service specifies the appropriate access
semantics.

Example 4.6. Tagging a File

MODULE TYPE$MAIN (
 IDENT = 'X-1',
 MAIN = MAIN,
 ADDRESSING_MODE (EXTERNAL=GENERAL)
) =
BEGIN
!
FORWARD ROUTINE
 MAIN : NOVALUE; ! Main routine
!
! INCLUDE FILES:
!
LIBRARY 'SYS$LIBRARY:LIB';
OWN
 NAM : $NAM(),
 RETLEN,
 DDIF_TAG : BLOCK[7, BYTE]
 INITIAL(BYTE(%X'2B', %X'0C', %X'87', %X'73', %X'01',
 %X'03', %X'01')),
 FAB_XABITM :
 $xabitm
 (itemlist=
 $ITMLST_UPLIT
 (
 (ITMCOD=XAB$_STORED_SEMANTICS,
 BUFADR=DDIF_TAG,
 BUFSIZ=%ALLOCATION(DDIF_TAG))
),
 mode = SETMODE),
 RAB_XABITM :
 $xabitm
 (itemlist=
 $ITMLST_UPLIT
 (
 (ITMCOD=XAB$_ACCESS_SEMANTICS,
 BUFADR=DDIF_TAG,
 BUFSIZ=%ALLOCATION(DDIF_TAG))
),

104

Chapter 4. Creating and Populating Files

 mode = SETMODE),
 FAB : $FAB(fnm = 'TAGGED-FILE.TEST',
 nam = NAM,
 mrs = 512,
 rfm = FIX,
 fac = <GET,PUT,UPD>,
 xab = FAB_XABITM),
 REC : BLOCK[512,BYTE],
 STATUS,
 RAB : $RAB(xab = RAB_XABITM,
 fab = FAB,
 rsz = 512,
 rbf = REC,
 usz = 512,
 ubf = REC),
 DESC : BLOCK[8,BYTE] INITIAL(0);
ROUTINE MAIN : NOVALUE =
BEGIN
STATUS = $CREATE(FAB = FAB);
IF NOT .STATUS
THEN
 SIGNAL (.STATUS);
STATUS = $CONNECT(RAB = RAB);
IF NOT .STATUS
THEN
 SIGNAL (.STATUS);
STATUS = $CLOSE(FAB = FAB);
IF NOT .STATUS
THEN
 SIGNAL (.STATUS);
END;
END
ELUDOM

4.3.2. Accessing a Tagged File
This section details how RMS handles access to tagged files at the program level. When a program
accesses a tagged file, RMS must determine whether and when to associate an RMS extension with the
access. This is important to the programmer because an RMS extension can change the attributes of the
accessed file.

RMS extensions are system images that perform specialized file or record operations within the context
of RMS. Record management services can invoke an extension if specified conditions are met. Functions
provided by an extension are only accessible through the record management services and are generally
transparent to the application.

An example of an RMS extension is the DDIF-to-ASCII text translator. RMS can call this extension to
extract ASCII text from a DDIF file. The conditions that determine when this extension is called are
described in this section.

A DDIF file is a sequentially organized file with 512-byte, fixed-length records. If the DDIF-to-ASCII
RMS extension is used to extract text from a DDIF file, the accessed file appears as a sequentially
organized file having variable-length records with a maximum record size of 2048 bytes and an implicit
carriage return.

One consideration in determining whether an access requires the RMS extension is the type of access
(FAB$B_FAC). When an application program opens a file through the RMS program interface, it must

105

Chapter 4. Creating and Populating Files

specify if it will be doing record I/O (default), block I/O (BIO), or mixed I/O (BRO) operations, where
the program has the option of using either block I/O or record I/O for each access. For example, if block
I/O operations are specified, RMS does not associate the RMS extension with the file access.

Another consideration is whether the program senses the tag when it opens a file. If the program does
not sense the tag when it opens a DDIF file for record access, RMS associates the RMS extension with
the file access during the Open service and returns the file attributes that have been modified by the
extension.

The final consideration is the access semantics that the program specifies and the file's stored semantics
(tag). If the program specifies block I/O (FAB$V_BIO) operations, RMS does not associate the RMS
extension with the file access and the Open service returns the file's stored attributes to the accessing
program regardless of whether the program senses tags.

4.3.2.1. File Accesses That Do Not Sense Tags
This section describes what happens when a program does not use a XABITM control block to sense a
tag when it opens a file.

When a program opens a DDIF file for record operations and does not sense the tag, RMS assumes that
the program wants to access text in the file. In this case, RMS associates the RMS extension with the file
access, which provides file attributes that correspond to record-mode access.

When a program opens a DDIF file with the FAB$V_BRO option and does not sense the tag, any
subsequent attempt to use block I/O fails. If the program specifies block I/O (FAB$V_BIO) when it
invokes the Connect service, the operation fails because the file attributes returned at Open permit record
access only. Similarly, if the program specifies the FAB$V_BRO option when it opens the file and then
specifies mixed mode (block/record) operations by not specifying RAB$V_BIO at connect time, block
operations such as READ and WRITE are disallowed.

4.3.2.2. File Accesses That Sense Tags
RMS does not associate the RMS extension with the file access as part of the Open service if a program
opens a DDIF file and senses the stored semantics. This allows the program to specify access semantics
with the Connect service. RMS returns the file attributes, including the stored semantics attribute (tag
value), to the program as part of the Open service.

When the program subsequently invokes the Connect service, RMS uses the specified operations mode
to determine its response. If the program specified FAB$V_BRO with the Open service and then
specifies block I/O (RAB$V_BIO) when it invokes the Connect service, RMS does not associate the
RMS extension with the file access.

But, if the program specifies record access or FAB$V_BRO when it opens the file and then decides to
use record I/O when it invokes the Connect service, RMS compares the access semantics with the file's
stored semantics to determine whether to associate the RMS extension with the file access. If the access
semantics match the stored semantics, RMS does not associate the RMS extension with the file access.
If the access semantics do not match the stored semantics, RMS associates the RMS extension with the
file access. In this case, the program must use the Display service to obtain the modified file attributes. If
RMS cannot find the appropriate RMS extension, the operation fails and the Connect service returns the
EXTNOTFOU error message.

If the application program senses the file's stored semantics, RMS allows mixed-mode operations. In
this case, mixed block and record operations are permitted because the application gets record mode file
attributes and data from the RMS extension and block mode file attributes and data from the file.

106

Chapter 4. Creating and Populating Files

Example 4.7, "Accessing a Tagged File" illustrates a BLISS--32 program that accesses a tagged file from
an application program that does not use an RMS extension.

Example 4.7. Accessing a Tagged File

MODULE TYPE$MAIN (
 IDENT = 'X-1',
 MAIN = MAIN,
 ADDRESSING_MODE (EXTERNAL=GENERAL)
) =
BEGIN
!
FORWARD ROUTINE
 MAIN : NOVALUE; ! Main routine
!
! INCLUDE FILES:
!
LIBRARY 'SYS$LIBRARY:STARLET';
OWN
 NAM : $NAM(),
 ITEM_BUFF : BLOCK[XAB$K_SEMANTICS_MAX_LEN,BYTE],
 RETLEN,
 FAB_XABITM :
 $xabitm
 (itemlist=
 $ITMLST_UPLIT
 ((ITMCOD=XAB$_STORED_SEMANTICS,
 BUFADR=ITEM_BUFF,
 BUFSIZ=XAB$K_SEMANTICS_MAX_LEN,
 RETLEN=RETLEN)),
 mode = SENSEMODE),
 RAB_ITEMLIST : BLOCK[ITM$S_ITEM + 4, BYTE],
 RAB_XABITM : $XABITM
 (itemlist=RAB_ITEMLIST,
 mode=SETMODE),
 FAB : $FAB(fnm = 'TAGGED-FILE.TEST',
 nam = NAM,
 fac = <GET,PUT,UPD>,
 xab = FAB_XABITM),
 REC : BLOCK[512,BYTE],
 STATUS,
 RAB : $RAB(xab = RAB_XABITM,
 fab = FAB,
 rsz = 512,
 rbf = REC,
 usz = 512,
 ubf = REC),
 DESC : BLOCK[8,BYTE] INITIAL(0);
ROUTINE MAIN : NOVALUE =
BEGIN
STATUS = $OPEN(FAB = FAB);
IF NOT .STATUS
THEN
 SIGNAL (.STATUS);
RAB_ITEMLIST[ITM$W_BUFSIZ] = .RETLEN;
RAB_ITEMLIST[ITM$L_BUFADR] = ITEM_BUFF;
RAB_ITEMLIST[ITM$W_ITMCOD] = XAB$_ACCESS_SEMANTICS;
STATUS = $CONNECT(RAB = RAB);

107

Chapter 4. Creating and Populating Files

IF NOT .STATUS
THEN
 SIGNAL (.STATUS);
STATUS = $CLOSE(FAB = FAB);
IF NOT .STATUS
THEN
 SIGNAL (.STATUS);
END;
END
ELUDOM

4.3.3. Preserving Tags
In order to preserve the integrity of a tagged file that is being copied or transmitted, the tag must
be preserved in the destination (output) file. The most efficient way to use the RMS interface for
propagating tags involves a 2-step procedure:

1. Open the source file (input) and sense the tag using a $XABITM macro with the item code XAB
$_STORED_SEMANTICS, as shown in the following example:

 .
 .
 .
ITEMLIST[ITM$W_BUFSIZ] = XAB$K_SEMANTICS_MAX_LEN;
ITEMLIST[ITM$L_BUFADR] = ITEM_BUFF;
ITEMLIST[ITM$L_RETLEN] = RETLEN;
ITEMLIST[ITM$W_ITMCOD] = XAB$_STORED_SEMANTICS;
 .
 .
 .
XABITM[XAB$B_MODE] = XAB$K_SENSEMODE;
STATUS = $OPEN(FAB = FAB);
 .
 .
 .

2. Create the destination (output) file and set the tag using a $XABITM macro with the item code
XAB$_STORED_SEMANTICS:

 .
 .
 .
IF .RETLEN GTR 0
THEN
 BEGIN
 ITEMLIST[ITM$W_ITMCOD] = XAB$_STORED_SEMANTICS;
 ITEMLIST[ITM$L_SIZE] = .RETLEN;
 XABITM[XAB$B_MODE] = XAB$K_SETMODE;
 END;

STATUS = $CREATE(FAB = FAB);
 .
 .
 .
END;
END
ELUDOM

108

Chapter 4. Creating and Populating Files

4.4. Defining File Protection
You can protect a disk file in two ways:

● UIC-based protection codes

● Access control lists (ACLs)

4.4.1. UIC-Based Protection
You can protect the disk with UIC-based protect codes that are described in the OpenVMS Guide to
System Security.

The owner UIC is normally the UIC of the person who created the file. The protection code indicates
who is allowed access and what type of access they are permitted.

When you try to open a file, your UIC is compared to the owner UIC of the file. Depending on the
relationship of the UICs, you might be classified under one or more of the following categories:

● System

● Owner

● Group

● World

Depending on your classification, you may be allowed or denied the following types of access:

Read Can examine, print, or copy a disk or tape file
Write Can modify or write to a disk or tape file
Execute Can execute a disk file that contains executable

program images
Delete Can delete a disk file

You can specify the UIC-based protection value you need when the file is created if you use either an
FDL specification or RMS directly.

After you create a file, you can change its UIC-based protection with the DCL command SET
PROTECTION. For more information about the SET PROTECTION command, see the VSI OpenVMS
DCL Dictionary.

The previous list omits CONTROL access because it is never specified in the standard UIC-based
protection code. However, CONTROL access can be specified in an ACL and is automatically granted to
certain user categories when UIC-based protection is evaluated.

CONTROL access grants the accessor all the privileges of the object's actual owner. For more
information, see the documentation related to OpenVMS security.

4.4.2. ACL-Based Protection
You can also protect disk files with access control lists (ACLs). (ACLs cannot be used with magnetic
tape files.)

109

Chapter 4. Creating and Populating Files

An ACL is a list of people or groups who are allowed to access a particular file. ACLs offer more scope
than UICs in determining what action you want taken when someone tries to access your file. You can
provide an ACL on any file to permit as much or as little access as you want.

You can specify the ACL for a file when you create it if you use RMS directly. You cannot specify an
ACL in an FDL specification, and ACLs are not supported over DECnet.

After a file is created, you can define the access control list for it with the ACL Editor. You can invoke
this editor with either of the following DCL commands:

● EDIT/ACL

● SET FILE/ACL

For more information about how to invoke, modify, and display ACLs, see the OpenVMS System
Management Utilities Reference Manual. For additional information about operating system security
features, see your system or security manager, or consult the documentation related to OpenVMS
security.

4.5. Populating a File
The next two sections explain how to use the Convert utility to populate a file.

4.5.1. Using the Convert Utility
The Convert utility allows you to create and populate a file.

To create a file, you need an input data file and an FDL file that describes the output file you want to
create. You issue a DCL command in the following form:

CONVERT/CREATE/FDL=fdl-file input-file output-file

As with the CREATE/FDL command, the CONVERT/CREATE/FDL command creates a file named
by the output-file parameter and having characteristics specified in your FDL file. Unlike the CREATE/
FDL command, CONVERT populates the output file with the records from the input file. For example,
to create the file CUST.IDX from the specifications in the FDL file STDINDEX.FDL and copy the
records from the input file CUST.SEQ into CUST.IDX, you enter the following command:

$ CONVERT/CREATE/FDL=STDINDEX.FDL CUST.SEQ CUST.IDX

RMS assigns the characteristics specified in the file STDINDEX.FDL to the records in CUST.IDX. Note
that the Convert utility processes relative files by sequentially reading records from the input file, then
writing them to the output file. As a result, the relative record numbers (RRN) change when the input
file contains deleted or unused records.

4.5.2. Using the Convert Routines
You can invoke the functions of the Convert utility from your application program by calling the
following series of convert routines:

CONV$PASS_FILES Names the files to be converted. You can also
specify an FDL file.

CONV$PASS_OPTIONS Indicates the CONVERT qualifiers that you want
to use. You may specify any legal CONVERT
option, or you may accept the defaults.

110

Chapter 4. Creating and Populating Files

CONV$CONVERT Copies records from one or more source data
files to an output data file. The output file is not
required to have the same file organization and
format as the source files.

The routines must be called in this order.

Example 4.8, "Using the CONVERT Routines in a Fortran Program" shows how to call the CONVERT
routines from a Fortran program.

Example 4.8. Using the CONVERT Routines in a Fortran Program

* This program calls the routines that perform the
* functions of the Convert utility. It creates an
* indexed output file named CUSTDATA.DAT from the
* specifications in an FDL file named INDEXED.FDL.
* The program then loads CUSTDATA.DAT with records

* from the sequential file SEQ.DAT. No exception
* file is created. This program also returns the
* "BRIEF" CONVERT statistics.
* Program declarations

 IMPLICIT INTEGER*4 (A - Z)

* Set up parameter list: number of options, CREATE,
* NOSHARE, FAST_LOAD, MERGE, APPEND, SORT, WORK_FILES,
* KEY=0, NOPAD, PAD CHARACTER, NOTRUNCATE,
* NOEXIT, NOFIXED_CONTROL, FILL_BUCKETS, NOREAD_CHECK,
* NOWRITE_CHECK, FDL, and NOEXCEPTION.
*
 INTEGER*4 OPTIONS(19),
 1 /18,1,0,1,0,0,1,2,0,0,0,0,0,0,0,0,0,1,0/

* Set up statistics list as an array with the
* number of statistics that requested. There are
* four: number of files, number of records, exception
* records, and good records, in that order.
 INTEGER*4 STATSBLK(5) /4,0,0,0,0/

* Declare the file names

 CHARACTER IN_FILE*7 /'SEQ.DAT'/,
 1 OUT_FILE*12 /'CUSTDATA.DAT'/,
 1 FDL_FILE*11 /'INDEXED.FDL'/

* Call the routines in their required order.

 STATUS = CONV$PASS_FILES (IN_FILE, OUT_FILE, FDL_FILE)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

 STATUS = CONV$PASS_OPTIONS (OPTIONS)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

 STATUS = CONV$CONVERT (STATSBLK)
 IF (.NOT. STATUS) CALL LIB$STOP (%VAL(STATUS))

111

Chapter 4. Creating and Populating Files

* Display the statistics information.

 WRITE (6,1000) (STATSBLK(I),I=2,5)
1000 FORMAT (1X,'Number of files processed: ',I5/,
 1 1X,'Number of records: ',I5/,
 1 1X,'Number of exception records: ',I5/,
 1 1X,'Number of valid records: ',I5)

 END

Example 4.9, "Using the CONVERT Routines in a COBOL Program" shows how to call the CONVERT
routines from a COBOL program.

Example 4.9. Using the CONVERT Routines in a COBOL Program

* CONV.COB
*
* This program calls the routines that perform the
* functions of the Convert utility. It creates an
* indexed output file named CUSTDATA.DAT from the
* specifications in an FDL file named INDEXED.FDL.
* The program then loads CUSTDATA.DAT with records

* from the sequential file SEQ.DAT. No exception
* file is created. This program also returns the
* "BRIEF" CONVERT statistics.

*
* DATA NAMES:
*
* IN-REC defines the input record
* OUT-REC defines the output record
* STATVALUE receives the status value from the
* routine call
* NORMAL receives the value from SS$_NORMAL
* OPTIONS defines the CONVERT parameter list
* STATSBLK receives the CONVERT statistics. The
* first data field (NUM-STATS) contains
* the total number of statistics requested.
* There are four:
* (1) number of files processed (NUM-STATS)
* (2) number of records processed (NUM-FILES)
* (3) number of exception records (NUM-RECS)
* (4) number of valid records (NUM-VALRECS)
*
IDENTIFICATION DIVISION.
PROGRAM-ID. PARTS.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. VAX
OBJECT-COMPUTER. VAX
INPUT-OUTPUT SECTION.
FILE-CONTROL.
 SELECT IN-FILE ASSIGN TO SEQ.
 SELECT OUT-FILE ASSIGN TO CUSTDATA.
DATA DIVISION.
FILE SECTION.

112

Chapter 4. Creating and Populating Files

FD IN-FILE
 DATA RECORD IS IN-REC.

01 IN-REC.
 02 IN-NUM PIC X(4).
 02 IN-NAME PIC X(20).
 02 IN-COLOR PIC X(4).
 02 IN-WEIGHT PIC X(4).
 02 SUPL-NAME PIC X(20).
 02 FILLER PIC X(28).

FD OUT-FILE
 DATA RECORD IS OUT-REC.
01 OUT-REC.
 02 OUT-NUM PIC X(4).
 02 OUT-NAME PIC X(20).
 02 OUT-COLR PIC X(4).
 02 OUT-WGHT PIC X(4).
 02 SUPL-NAME PIC X(20).

WORKING-STORAGE SECTION.
01 MORE-DATA-FLAGS PIC X(3) VALUE 'YES'.
 88 THERE-IS-DATA VALUE 'YES'.
 88 THERE-IS-NO-DATA VALUE 'NO '.

01 STATVALUE PIC S9(9) COMP.

01 OPTIONS USAGE IS COMP.
 02 NUM-OPTS PIC S9(9) VALUE 18.
 02 CREATE PIC S9(9) VALUE 1.
 02 NOSHARE PIC S9(9) VALUE 0.
 02 FASTLOAD PIC S9(9) VALUE 1.
 02 NOMERGE PIC S9(9) VALUE 0.
 02 NOPPEND PIC S9(9) VALUE 0.
 02 XSORT PIC S9(9) VALUE 1.
 02 XWORKFILES PIC S9(9) VALUE 2.
 02 KEYS PIC S9(9) VALUE 0.
 02 NOPAD PIC S9(9) VALUE 0.
 02 PADCHAR PIC S9(9) VALUE 0.
 02 NOTRUNCATE PIC S9(9) VALUE 0.
 02 NOEXIT PIC S9(9) VALUE 0.
 02 NOFIXEDCTRL PIC S9(9) VALUE 0.
 02 NOFILLBUCKETS PIC S9(9) VALUE 0.
 02 NOREADCHECK PIC S9(9) VALUE 0.
 02 NOWRITECHECK PIC S9(9) VALUE 0.
 02 FDL PIC S9(9) VALUE 1.
 02 NOEXCEPTION PIC S9(9) VALUE 0.
01 STATSBLK USAGE IS COMP.
 02 NUM-STATS PIC S9(9) VALUE 4.
 02 NUM-FILES PIC S9(9) VALUE 0.
 02 NUM-RECS PIC S9(9) VALUE 0.
 02 NUM-EXCS PIC S9(9) VALUE 0.
 02 NUM-VALRECS PIC S9(9) VALUE 0.
PROCEDURE DIVISION.
MAIN.
 PERFORM CONVERT-FILE THRU DISPLAY-STATS.
 OPEN INPUT IN-FILE.
 READ IN-FILE

113

Chapter 4. Creating and Populating Files

 AT END MOVE 'NO ' TO MORE-DATA-FLAGS.
 CLOSE IN-FILE.
 STOP RUN.

CONVERT-FILE.
 CALL 'CONV$PASS_FILES' USING BY DESCRIPTOR 'SEQ.DAT'
 BY DESCRIPTOR 'CUSTDATA.DAT'
 BY DESCRIPTOR 'INDEXED.FDL'
 GIVING STATVALUE.
 IF STATVALUE IS FAILURE
 CALL 'LIB$STOP' USING BY VALUE STATVALUE.

 CALL 'CONV$PASS_OPTIONS' USING BY CONTENT OPTIONS
 GIVING STATVALUE.
 IF STATVALUE IS FAILURE
 CALL 'LIB$STOP' USING BY VALUE STATVALUE.

 CALL 'CONV$CONVERT' USING BY REFERENCE STATSBLK
 GIVING STATVALUE.
 IF STATVALUE IS FAILURE
 CALL 'LIB$STOP' USING BY VALUE STATVALUE.

DISPLAY-STATS.
 DISPLAY 'Number of files processed: ',NUM-FILES CONVERSION.
 DISPLAY 'Number of records: ',NUM-RECS CONVERSION.
 DISPLAY 'Number of exception records: ',NUM-EXCS CONVERSION.
 DISPLAY 'Number of valid records: ',NUM-VALRECS CONVERSION.

For more information about calling the Convert routines, see the VSI OpenVMS Utility Routines Manual.

4.6. Summary of File-Creation Options
This section summarizes the file-creation options that are available using RMS. File-creation options
may be available as qualifiers or keywords to the OPEN statement and include various aspects of file
creation, including file disposition, file characteristics, file allocation, and file positioning.

Note that the run-time options for opening files in conjunction with creating files are not included here,
but they are described in Chapter 9, "Run-Time Options".

4.6.1. File-Creation Options
The following table lists the creation-time options that apply to specifying how an application uses a file:

Name of Option Function

Create-if Creates the file only if the directory does not
contain a file with the same name. If a file with the
same name exists in the directory, RMS opens the
existing file instead of creating a new file.

● FDL: FILE CREATE_IF

● RMS: FAB$L_FOP FAB$V_CIF
Maximize version Creates the file with the specified version number

or a version number one greater than a file of the
same name in that directory.

114

Chapter 4. Creating and Populating Files

Name of Option Function
● FDL: FILE MAXIMIZE_VERSION

● RMS: FAB$L_FOP FAB$V_MXV
Supersede version Supersedes the file with the same name, type, and

version number in the current directory.

● FDL: FILE SUPERSEDE

● RMS: FAB$L_FOP FAB$V_SUP
Temporary Creates a temporary file (which has no directory

entry) that is retained when the file is closed.
The file can be accessed only if its internal file
identifier is known (requires the use of a name
block). Name blocks provide additional fields for
extended file specifications.

● FDL: FILE DIRECTORY_ENTRY

● RMS: FAB$L_FOP FAB$V_TMP
Temporary, delete Creates a temporary file (which has no directory

entry) marked for deletion. The file is deleted
automatically when the file is closed.

● FDL: FILE TEMPORARY

● RMS: FAB$L_FOP FAB$V_TMD

4.6.2. File Characteristics
The creation-time options that define file characteristics are described in the following chart:

Name of Option Function

Block size Defines the number of bytes to be used in each
block (unit of I/O) throughout the life of this file.
This file characteristic applies only to magnetic
tape files.

● FDL: FILE MT_BLOCK_SIZE

● RMS: FAB$W_BLS
Bucket size Defines the number of blocks to be used in each

bucket (unit of I/O) throughout the life of this file.
This file characteristic applies only to relative and
indexed files.

● FDL: FILE BUCKET_SIZE

● RMS: FAB$B_BKS or XAB$B_BKZ
Date information Specifies the date and time values for file backup,

file creation, file expiration, and file revision. Can
also set the number of file revisions.

115

Chapter 4. Creating and Populating Files

Name of Option Function
● FDL: DATE attributes and

FILE REVISION

● RMS: Date and Time XAB fields
File organization Defines the file organization: sequential, relative,

or indexed.

● FDL: FILE ORGANIZATION

● RMS: FAB$B_ORG
File protection Defines the file protection for the file being

created.

● FDL: FILE OWNER,

FILE PROTECTION,

FILE MT_PROTECTION

● RMS: Protection XAB fields
Fixed-length control field size Defines the number of bytes in the fixed-length

control field of a VFC record.

● FDL: FILE CONTROL_FIELD_SIZE

● RMS: FAB$B_FSZ
Key characteristics Defines the characteristics of a key in an indexed

file, including key size, starting position, key type,
bucket fill size, and key options.

● FDL: KEY attributes

● RMS: Key Definition XAB fields
Maximum record number Defines the maximum number of records for the

file. Applies only to relative files.

● FDL: FILE MAX_RECORD_NUMBER

● RMS: FAB$L_MRN
Maximum record size Defines the maximum record size for all records

in the file. Maximum record size refers to the size
of all records in a file with fixed-length records,
the size of the largest record with variable-length
records, or the size of the variable-length portion
of VFC records. A value of 0 with variable-length
records means that there is no limit on the record
size, except for magnetic tape files, for which a
value of 0 sets an effective maximum record size
equal to the block size minus 4. Variable-length
records and VFC records must conform to certain

116

Chapter 4. Creating and Populating Files

Name of Option Function
physical limitations (see the OpenVMS Record
Management Services Reference Manual).

● FDL: RECORD SIZE

● RMS: FAB$L_MRS
Record attributes Defines the following control information for each

record:

● Records can use one of the following carriage
control conventions:

○ Each record is preceded by a line
feed and terminated by a carriage
return (FDL attribute RECORD
CARRIAGE_RETURN). This is the
default.

○ Each record contains a Fortran carriage
return (FDL attribute RECORD
FORTRAN).

○ Each record is in print format where the
two-byte fixed-length control field (VFC
record format) of each record contains the
carriage return information (FDL attribute
RECORD PRINT).

○ No carriage control provided (FDL
attribute RECORD NONE).

● Records can be prevented from crossing
block boundaries (FDL attribute RECORD
BLOCK_SPAN).

● For variable-length records, the byte count field
may be formatted in LSB (least-significant-
byte) format (default) or in MSB (most-
significant-byte) format (FDL attribute
RECORD MSB_RECORD_LENGTH).

● FDL: RECORD BLOCK_SPAN, RECORD
MSB_RECORD_LENGTH

● RMS: FAB$B_RAT
Record format Defines the record format:

● Fixed-length record format

● Variable-length record format

● VFC record format

117

Chapter 4. Creating and Populating Files

Name of Option Function
● Stream record format

● Undefined record format (sequential files only)

● FDL: RECORD FORMAT

● RMS: FAB$B_RFM

4.6.3. File Allocation and Positioning
You can specify file-allocation and positioning options with either the FAB control block or an
allocation XAB (XABALL) control block. Note that any value specified in the XABALL control block
overrides the corresponding value in the FAB. The creation-time options described in the following table
apply to file allocation and positioning:

Name of Option Function

Allocation quantity Allocates the file or area using the number of
blocks specified by this value, rounded up to the
nearest even multiple of the volume's cluster size.

● FDL: FILE ALLOCATION or

AREA ALLOCATION

● RMS: FAB$L_ALQ or

XAB$L_ALQ
Areas Allocates the file using single or multiple areas.

Applies only to indexed files; sequential and
relative files are always contained in a single area.
Indexed files can be placed in specific areas, for
example, to separate the data area from the index
area.

● FDL: AREA number

● RMS: XAB$B_AID
Contiguous Allocates the file or area using a single extent.

If the disk's unallocated space does not permit
the file to be allocated contiguously, an error is
returned.

● FDL: FILE CONTIGUOUS or

AREA CONTIGUOUS

● RMS: FAB$L_FOP FAB$V_CTG or

XAB$L_AOP XAB$V_CTG
Contiguous best try Attempts to allocate the file or area using a

minimum number of extents. If the file cannot be
allocated contiguously, an error is not returned.

118

Chapter 4. Creating and Populating Files

Name of Option Function
● FDL: FILE BEST_TRY_CONTIGUOUS or

AREA BEST_TRY_CONTIGUOUS

● RMS: FAB$L_FOP FAB$V_CBT or

XAB$L_AOP XAB$V_CBT
Cylinder boundary Allocates the file or area at the beginning of a

cylinder boundary.

● FDL: AREA POSITION

ANY_CYLINDER

● RMS: XAB$B_AOP XAB$V_ONC
Cylinder position Positions the file or area at the beginning of the

specified cylinder number.

● FDL: AREA POSITION CYLINDER

● RMS: XAB$B_ALN XAB$V_CYL and

XAB$L_LOC
Default extension Defines the minimum number of blocks for

a file extension (extent) when additional disk
space is needed. For the Edit/FDL utility file
extension sizes, see Appendix A, "Edit/FDL Utility
Optimization Algorithms"

● FDL: FILE EXTENSION

● RMS: FAB$W_DEQ or

XAB$W_DEQ
Hard positioning Directs OpenVMS RMS to return an error if the

requested file or area positioning or alignment
cannot be performed.

● FDL: AREA EXACT_POSITIONING

● RMS: XAB$B_AOP XAB$V_HRD
Logical block position Positions the file or area at the beginning of the

specified logical block.

● FDL: AREA POSITION LOGICAL

● RMS: XAB$B_ALN XAB$V_LBN and

XAB$L_LOC
Related file position Positions the file or area as close as possible to a

related file, at the specified virtual block.

119

Chapter 4. Creating and Populating Files

Name of Option Function
● FDL: AREA POSITION FILE_ID or

AREA POSITON FILE_NAME

● RMS: XAB$B_ALN XAB$V_RFI and

XAB$L_LOC
Virtual block position Positions the file or area at the beginning of the

specified virtual block.

● FDL: AREA POSITION VIRTUAL

● RMS: XAB$B_ALN XAB$V_VBN and

XAB$L_LOC
Truncate end of file Truncates a nonshared sequential file at its logical

end to release the space between the logical end of
the file (end of file data) and the physical end of
the file (allocated file space) for other use.

● FDL: FILE_TRUNCATE_ON_CLOSE

● RMS: FAB$V_TEF
Volume number Indicates the volume set where the file or area is

placed when it is created.

● FDL: AREA VOLUME

● RMS: XAB$W_VOL

For the list of the run-time options that are common to creating and opening a file, see Chapter 9, "Run-
Time Options".

For more information about the options listed above, see Chapter 2, "Choosing a File Organization". For
more detailed information about the programming aspects of these options, refer to the VSI OpenVMS
Record Management Services Reference Manual.

120

Chapter 5. Locating and Naming
Files on Disks
When creating or opening a file, your program must identify it with an appropriate file specification.
Typically, high-level languages require a file specification argument for an OPEN statement that names a
file being created or locates a file being opened.

The most direct way for an application to provide a file specification is to accept a complete specification
from the user and to pass it to the OPEN statement.

Another way is to have the application program supply specifications to RMS so that RMS can combine
these, as defaults, with a partial user specification to compose a fully qualified file specification. Or,
to have RMS resolve a partial specification by searching the disk for an existing file that matches the
specification.

This chapter describes the components that make up a complete file specification and how RMS is
used to name and locate files on disks. Chapter 6 describes in more detail the process that RMS uses to
compose fully qualified file specifications from user input and from application input.

Note

This chapter documents file specifications as presented at the RMS interface such as RMS services SYS
$OPEN and SYS$SEARCH. For details on specifications at the ACP-XQP interface, such as the system
service SYS$QIO, refer to the VSI OpenVMS I/O User's Reference Manual.

As of OpenVMS V7.2, RMS on Alpha systems has been extended to support disk file specifications of
greater length and with a larger character set than was supported on prior versions and than is supported
on VAX platforms. Some of the extended features can be used on existing ODS-2 structure-level disks.
Many features are available only on ODS-5 structure-level disks. Throughout this chapter, behaviors that
differ depending upon the architecture, Alpha or VAX, or upon the target device, ODS-5 disk or ODS-2
disk, are so marked in the text.

5.1. Understanding Disk File Specifications
A disk file specification on an OpenVMS system consists of up to seven components, several of which
assume default values when they are not specified. To allow RMS to identify the boundaries of each
component, certain characters separate the components in a file specification. These characters mark the
beginning or the end of a file specification component and allow RMS to identify missing components
for which defaults can be substituted. A complete file specification takes the following form:

node::device:[root.][directory-name]filename.type;version

The following table lists the characters that separate components of a file specification:

Component Separator Character(s)

Node Double colon (::) ends a node name.
Device Single colon (:) ends a device name.
Root Square brackets ([]) or angle brackets (<>) delimit

the root name. Within the root component, a
period (.) separates subdirectory names. A period

121

Chapter 5. Locating and Naming Files on Disks

Component Separator Character(s)
(.) before the closing bracket distinguishes a root
component from a directory.

Directory Square brackets ([]) or angle brackets (<>)
delimit the directory name. Within the directory
component, a period (.) separates subdirectory
names.

File Name The rightmost period (.) that is not the version
delimiter begins the type component and ends the
file name.

File Type The rightmost period (.) that is not the version
delimiter begins the type component. A version
delimiter ends the type component.

File Version Period (.) or semicolon (;) followed by legal
version characters begins the version. Section 5.2.7,
"The File Name, Type, and Version Components"
describes a legal version component. The end of
the file specification ends the file version.

Some examples of valid file specifications follow:

DISK1:[MYROOT.][MYDIR]FILE.DAT
DISK1:[MYDIR]FILE.DAT
[MYDIR]FILE.DAT
FILE.DAT;10
NODE::DISK5:[REMOTE.ACCESS]FILE.DAT

5.2. File Specification Components
The following sections describe the particular file specification components.

5.2.1. The Node Component
Whether or not you should include the optional node component in a file specification depends on
whether you confine file activity to the local node, or you conduct file activity on remote nodes. To
locate a file on the local node, or in an OpenVMS Cluster environment, you do not have to include the
node name in the file specification.

Note

In this chapter, discussions that refer to OpenVMS Cluster environments apply to both VAXcluster
systems that include only VAX nodes and OpenVMS Cluster systems that include at least one Alpha
node unless indicated otherwise.

Conversely, to locate a file on a remote node, you must present the name of the remote node either as the
physical node name or as a logical name whose translation contains the physical node name. A logical
node name can also contain access control information used to log in to the remote system.

5.2.1.1. Local Node
The following file specification format does not include a node name:

122

Chapter 5. Locating and Naming Files on Disks

device:[root.][directory-name]filename.type;version

This is the general format of a file specification used to locate a file on the local node, or in an
OpenVMS Cluster.

Note that a null node name of the form “::” specifies the local node; this form overrides any default node
names.

5.2.1.2. Remote Node
The following file specification formats are used for accessing files on remote nodes:

node::filespec

node “access-control-string”::filespec

The second file specification format includes an access control string. If an access control string is
specified or if the process seeking to gain access to a remote file has a proxy login account on the remote
node, the specified remote process uses its access rights to locate the file. If an access control string is
not specified and a proxy account does not exist on the remote system, the local process may use the
default DECnet account, if there is one, to locate the file.

By default the actual password in the access control string is replaced by the word "password" in the
expanded or resultant remote file specification for security reasons. A user-mode logical with the dummy
"password" string is created by RMS for this purpose; this logical can be used by only one image.
The default behavior of not displaying the actual password may be overridden from program control
by setting the NAM$V_PWD option in the NAM[L]$L_NOP field. If this option is set, the actual
password in the access control string is returned unaltered in the expanded or resultant file specification.

The following file specification format, known as a foreign file specification, is used to locate files on
remote nodes that might have file specification formats that differ from those of the local node:

node::“foreign-filespec”

The only action RMS takes with the foreign file specification is to translate the logical node name, if
applicable. This format is especially useful when the remote system is not an OpenVMS system and the
file specification does not conform to OpenVMS file specification syntax conventions. Refer to the VSI
OpenVMS DECnet Networking Manual for more information.

The following file specification format does not specify a file directly. Instead, it specifies a task on the
remote system.

node::“task-spec-string”

For more information about specifying a logical node name or using any of the file specification formats
and their associated syntax rules, refer to the VSI OpenVMS User's Manual.

5.2.2. The Device Component
The device can be identified with either a physical name or a logical name. You can terminate a physical
device name or a logical device name with a colon and place one or more file specification components
(directory name, file name, file type, and version) after it.

A logical device name may translate to another logical name, a physical device name, or a physical
device name with additional file specification components. The logical name may translate to a

123

Chapter 5. Locating and Naming Files on Disks

combined device name, which may be a logical name itself, and root name. The logical name can be a
search list, which specifies multiple file locations where the file can be found. (See Section 5.7, "Types of
Logical Names".)

You have to include only the device name when specifying a record-oriented device, such as a terminal.
However, if you choose to include other file specification components, you must follow the naming
conventions described previously.

See also section Section 5.3, "Logical Names and Parsing".

The following file specification format is used only for ANSI-formatted magnetic tape volumes:

device:[directory-name]“quoted-ascii-a-string”.;nn

The VSI OpenVMS User's Manual lists the characters from the DEC Multinational character set and the
ASCII “a” characters that can be used in a quoted string for naming ANSI-formatted magnetic tape files.

5.2.3. On-Disk Components
The following sections describe the file specification components that apply to files residing on disks.
The details of the components are determined by whether the application is running on an Alpha system
or a VAX system and on the structure level of the disk.

5.2.3.1. Character Set for On-Disk Components

As of OpenVMS V7.2 on Alpha systems, RMS supports a larger character set than was supported in
previous versions; it is also larger than the set that is supported under V7.2 on VAX systems. Creating
such files is supported only on disks of ODS-5 (or greater) structure level.

5.2.3.1.1. Base Character Set

On OpenVMS Alpha and VAX systems, on ODS-5 and ODS-2 devices, a basic set of simple characters
is valid for the node, device, root, directory, and file name and type components of a file specification.
These characters include the following:

● Upper and lowercase alphanumeric characters:

 A - Z, a - z, 0 - 9

● Special ASCII (7-bit) characters:

 $ - _ ~

5.2.3.1.2. Extended Character Set

In addition, OpenVMS V7.2 on Alpha systems and ODS-5 disks includes support for the use of file
names, and subdirectory and root subdirectory names, that include all possible 8-bit characters, excluding
values 00 through 1F (hexadecimal) and excluding the following characters:

 < > : / \ | ? * "

OpenVMS 7.3-1 on Alpha systems and ODS–5 disks includes enhanced support for the use of file
names, and subdirectory and root subdirectory names. It supports all possible 8-bit characters, excluding
only the following two characters: ? *

124

Chapter 5. Locating and Naming Files on Disks

Note that the character set includes both the ISO Latin-1 C1 character set (hexadecimal 80 - 9F) as well
as graphical and other characters between A0 and FF. This allows the entire ISO Latin-1 character set
(with the exclusions noted above). In addition, there is support for names that include any of the defined
16-bit Unicode characters (except for the character exclusions noted above).

5.2.4. RMS and On-Disk Representation
The extended character set includes characters that have special significance to RMS (for example,
delimiters, such as ']'), that have significance to DCL (for example, the comment character, '!'), and that
cannot be easily entered or displayed via keyboards and display devices that are commonly available
(for example, the Unicode characters and the ISO Latin-1 C1 control characters). To accommodate the
use of these characters, RMS accepts and displays them in a format that uses a sequence of common
ASCII characters to represent a single one of these special characters. These sequences are known
as compound characters. For example, the sequence of six simple characters "^U1234" comprise a
compound character to represent the Unicode character that corresponds to the hexadecimal value 1234.
Likewise, the compound character "^[" is used to include the bracket as a character in a file or directory
name rather than as the root or directory component delimiter. And, the compound character "^." is
used to represent the period as a character in a file or directory name rather than as the file type or the
subdirectory delimiter.

The RMS escape character ('^') is always used to begin one of these compound characters.

Certain characters can be represented in more than one way as input to RMS. Each character, however,
will always be represented the same way in RMS's output, no matter which representation was used for
input. The standard representation for each character is known as its canonical form.

For example, the input specifications:

 File^37.Txt and File^U0037.Txt

would appear in output as:

 File7.Txt

(The ASCII encoding of the numeral '7' is the hexadecimal value 37.)

Note

The use of compound characters in RMS is allowed only on Alpha systems running OpenVMS Version
7.2. The use of ODS-5 characters that are not also ODS-2 characters is allowed only on ODS-5 disks
accessed from Alpha systems running OpenVMS Version 7.2.

When RMS outputs a file specification (as a resultant name, for example), it follows the rule that any
ISO Latin-1 8-bit character that has no graphical representation or that is used for control functions by
other OpenVMS software or by a terminal or printer will be output as an escape character followed by
two hexadecimal digits (^xx). Otherwise, it is output unaltered from its internal (for example, ASCII
or ISO Latin-1) format. The following 8-bit values are output as an escape character followed by two
hexadecimal digits.

7F (rubout)
80-9F (C1 control characters)
A0 (nonbreaking space)
A0 (nonbreaking space)

125

Chapter 5. Locating and Naming Files on Disks

FF (Latin small letter y diaeresis)

5.2.4.1. Simple Characters
The set of characters valid through the RMS interface in a file specification (without any special
escape character) includes the following. Note that these characters must not be preceded by the escape
character ^ to be interpreted correctly.

● Upper and lowercase alphanumeric characters:

 A - Z
 a - z
 0 - 9

● Special ASCII (7-bit) characters:

 Dollar sign ($)
 Minus sign (-)
 Underscore (_)

● ISO Latin-1 (graphic) characters in the range (hexadecimal) A0 to FF.

5.2.4.2. Compound Characters
Escape followed by a pair of hexadecimal digits is interpreted as a hexadecimal value for an arbitrary
(and otherwise legal) 1-byte character. For example, ^20 represents a space. (The ASCII code for space
is hexadecimal 20.)

Escape followed by "_" or by a space represents a space.

Escape followed by "U" followed by 4 hexadecimal digits is interpreted as a 2-byte Unicode character.

Escape followed by any of the following characters means that the character is to be used as part of a
file name rather than as a character that has a special meaning in a file specification. For the period (.) 1
and tilde (~), the escape character is required only under some circumstances, detailed in their respective
footnotes.

 Period (.)1

 Comma (,)
 Semilcolon (;)
 Left bracket ([)
 Right bracket (])
 Percent (%)
 Circumflex (^)
 Amperesand (&)
 Exclamation point (!)
 Pound sign (#)
 Apostrophe (')
 Left parenthesis (()
 Right parenthesis ())
 Plus sign (+)
 Atsign (@)
 Grave accent (`)
 Left brace ({)

1The escape character is required before a period in a directory name, is optional before a period in a file name, and must not be used for the
period that delimits file type. A period is not permitted in a file type.

126

Chapter 5. Locating and Naming Files on Disks

 Right brace (})
 Equal sign (=)
 Tilde (~)2

The following characters may be preceded by an escape, but need not be on input to RMS.

 Period (.)1 Dollar sign ($)
 Minus sign (-)
 Tilde (~)2

Sequences consisting of the escape character followed by any character not mentioned previously are
reserved.

Spaces not preceded by the RMS escape character are removed from the specification by RMS (on
Alpha and VAX).

Note that the extended character set applies only to directory names and file names. Device names and
node names must conform to ODS-2 requirements.

5.2.4.3. Uppercase and Lowercase Letters and Multiple File
Versions
On ODS-5 disks on Alpha systems, the Extended File Specifications changes added support in
OpenVMS Version 7.2 for preserving case (as in uppercase and lowercase letters). If a file is created
with lowercase letters from program control, the name, as stored on disk, is lowercase.

From the DCL command interface, file names that are entered at the command prompt with
lowercase letters will be translated by default to uppercase before they are passed to RMS. Case
may be preserved from the DCL command interface by using the DCL command SET PROCESS/
PARSE_STYLE=EXTENDED (also see the SYS$SET_PROCESS_PROPERTIESW system service).

File look-ups, however, are case-blind. For example, the filename "File.Txt" (as stored on an ODS–5
disk) could be accessed with a reference to "FILE.TXT" or "file.txt".

As of OpenVMS Version 7.3-1, an option may be set for file look-ups at either the process or file level
to request RMS to either ignore or notice the case sensitivity of file names on ODS–5 disks.

At the process level, the user may request RMS to ignore case by using SET PROCESS/
CASE_LOOKUP=BLIND. If a file on an ODS–5 disk already exists whose name matches that of a
file being created except for its case, the new file will be created with the same case as the existing file
(rather than with the case as entered). This is the default behavior. In contrast, the user may request
RMS to notice case by using SET PROCESS/CASE_LOOKUP=SENSITIVE (also see the SYS
$SET_PROCESS_PROPERTIESW system service). If the SENSITIVE option is in effect and the user
creates more than one file on an ODS–5 disk with the same name differing only in case, each file is
treated as a new file.

At the file level, the NAML$V_CASE_LOOKUP flag can be used to instruct RMS to ignore or notice
case for a file on an ODS–5 disk (see the NAM$L_INPUT_FLAGS field in the NAML structure in
the VSI OpenVMS Record Management Services Reference Manual). NAML$C_CASE_BLIND is set
to tell RMS to ignore case or NAML$C_CASE_LOOKUP_SENSITIVE to notice case when creating,
deleting or searching for a file on an ODS–5 disk. If the NAML structure is not used or this flag is zero,
the current process setting for CASE_LOOKUP is used.

1The escape character is required before a period in a directory name, is optional before a period in a file name, and must not be used for the
 period that delimits file type. A period is not permitted in a file type.

127

Chapter 5. Locating and Naming Files on Disks

The SET PROCESS/PARSE_STYLE qualifier is independent of the /CASE_LOOKUP qualifier. If
the creation, deletion, or search of files on an ODS–5 disk is being done using the DCL command
interface and case is relevant, /PARSE_STYLE=EXTENDED must be used to inform the DCL interface
to preserve the case specified in the DCL command. The /CASE_LOOKUP qualifier instructs RMS
whether to ignore or notice the case (either preserved or not).

5.2.4.4. Convert System Service

On Alpha systems, a system service, SYS$CVT_FILENAME, is available to convert names between
their RMS-interface form and their ACP-XQP on-disk form. See the VSI OpenVMS System Services
Reference Manual: A–GETUAI for details on its use.

5.2.5. The Root Component
The root component of a file specification begins with an open square bracket ("[") or an open angle
bracket ("<") and ends with a period (".") followed by a closing square bracket ("]") or a closing angle
bracket (">"). A root that begins with a square bracket must end with a square bracket, and a root that
begins with an angle bracket must end with an angle bracket.

The root component contains a series of root subdirectory names, separated by periods.

Examples of legal root components are:

 [RLEVEL0.]
 [RLEVEL0.RLEVEL1.]
 [RLEVEL0.RLEVEL1.RLEVEL2.]
 <RLEVEL0.RLEVEL1.>

Note

An alternate form of root subdirectory name, supported by RMS only on Alpha systems (on both ODS-5
and ODS-2 disks), is that of a directory ID (referred to as "DID"). This form is described in Chapter 6,
"Advanced Use of File Specifications".

A root subdirectory name may contain a period ("."). To be distinguishable from the delimiter periods, it
must be specified to RMS as "^.".

5.2.6. The Directory Component
The directory component of a file specification begins with an open square bracket ("[") or an open
angle bracket ("<") and ends with a closing square bracket ("]") or a closing angle bracket (">"). A
directory component that begins with a square bracket must end with a square bracket, and a directory
component that begins with an angle bracket must end with an angle bracket.

The directory component contains a series of subdirectory names, separated by periods.

Examples of legal directory components are:

 [DLEVEL0]
 [DLEVEL0.DLEVEL1]
 [DLEVEL0.DLEVEL1.DLEVEL2]
 <DLEVEL0.DLEVEL1>

128

Chapter 5. Locating and Naming Files on Disks

Note

An alternate form of subdirectory name, supported by RMS only on Alpha systems (on both ODS-5
and ODS-2 disks), is that of a directory ID (referred to as "DID"). This form is described in Chapter 6,
"Advanced Use of File Specifications".

A subdirectory name may contain a period ("."). To be distinguishable from the delimiter periods, it
must be specified to RMS as "^.".

5.2.7. The File Name, Type, and Version Components
On Alpha systems, RMS identifies the file name, file type, and file version components from the portion
of a file specification that follows any node, device, root and directory components as follows:

The right-most semicolon or period followed by legal version characters begins the version component.
A semicolon (unescaped) followed by characters that are not legal for a version component is illegal. The
right-most period to the left of the version (if any) begins the type component. The characters to the left
of the type are the file name.

Legal forms of a version component are:

 ;<decimal digit(s)>
 ;-<decimal digit(s)>
 ;* (multiple-character wildcard)

On ODS-2 and ODS-5 disks, the numerals in a version component, interpreted as a decimal number,
may not exceed 32767.

Note that, although RMS accepts a period as a version delimiter, in output specifications, RMS always
uses the semicolon as the delimiter.

The following are some examples of name, type, and version:

 Name+Type+Version Name Type Version
 A.B;1 A .B ;1
 A.B.C A.B .C (none)
 A.B;C (illegal)
 A.B.1 A .B .1
 A.B.-1 A .B .-1
 A.B.-32767 A .B .-32767
 A^.B A^.B (none) (none)
 A.B^.C (illegal)
 A.B;1234567 (illegal)

Note that, although RMS on Alpha systems allows periods in a file name, files with such names can be
created only on ODS-5 disks.

Note

An alternate way of specifying a file within a directory, supported by RMS only on Alpha systems (on
both ODS-5 and ODS-2 disks), is that of a file ID (referred to as "FID"). This form is described in
Chapter 6, "Advanced Use of File Specifications".

On VAX systems and on Alpha systems with versions previous to OpenVMS V7.2, RMS identifies the
file name, file type, and file version components from the portion of a file specification that follows any
node, device, root, and directory components as follows:

129

Chapter 5. Locating and Naming Files on Disks

● A semicolon or the right-most period followed by legal version characters begins the version
component.

● A semicolon followed by characters that are not legal for a version is illegal.

● A period to the left of the version (if any) begins the type component.

● No periods, other than the type and version delimiters, are allowed.

5.2.8. Leading Hyphens in File and Subdirectory Names
(Alpha Only)
On Alpha systems, OpenVMS Version 7.2 supports the use of file names and subdirectory names that
begin with hyphens. This is supported on ODS-5 and ODS-2 disks.

No special action is required for specifying a name that begins with a hyphen, with the following
exception. A reference to a subdirectory whose name consists only of hyphens must include at least one
escaped hyphen (so that RMS can distinguish the reference from a relative directory specification). On
output, RMS always displays such a subdirectory name with the first hyphen escaped.

For example:

$CREATE/DIRECTORY DISK$:[^---]
$CREATE/DIRECTORY DISK$:[FLARKY.LEVEL1.LEVEL2.LEVEL3]
$SET DEFAULT DISK$:[FLARKY.LEVEL1.LEVEL2.LEVEL3]
$WRITE SYS$OUTPUT F$PARSE("[---]") ! (relative spec.)
DISK$:[FLARKY].;
$WRITE SYS$OUTPUT F$PARSE("[^---]") ! (directory ---)
DISK$:[^---].;
$$ WRITE SYS$OUTPUT F$PARSE("[-^--]") ! (directory ---)
DISK$:[^---].;
$DIRECTORY/NOHEADING/NOTRAILING DISK$:[000000]---.DIR
DISK$:[000000]---.DIR;1 ! (file ---.DIR)

Note

OpenVMS Version 7.2 for VAX and versions of OpenVMS prior to Version 7.2 do not support file
and subdirectory names with leading hyphens. Although you can create files with such names, it is not
recommended because access to the files will be limited to a subset of otherwise-supported functions.

In addition, remember that in a mixed-cluster environment, although such files can be created and
accessed from a Version 7.2 Alpha cluster member, they are not fully accessible from all of the other
cluster members.

5.2.9. Restrictions and Anomalies
The following sections describe a restriction when using extended file names and a DCL parsing
anomaly.

5.2.9.1. Restriction with Extended File Names
Using the tilde (~) as the first character in a file name in the VSI C Run-Time Library (CRTL) allows
a programmer to specify both UNIX style and OpenVMS style file specifications to routines such as
creat() and fopen().

130

Chapter 5. Locating and Naming Files on Disks

In UNIX file specifications, a tilde (~) in the first character of a pathname represents the user's home
directory. However, in an OpenVMS extended file name, a tilde is legal anywhere in a file name or
directory name.

To preserve backward compatibility, the CRTL will continue to interpret a leading tilde (~) to mean the
user's home directory. To pass an OpenVMS file name that begins with a tilde (~) to a CRTL routine
that accepts UNIX style file specifications, specify the tilde preceded by the escape character (^). For
example, ^~.

The following VSI CRTL functions accept OpenVMS extended file names and require this syntax for a
leading tilde (~) in the file specification:

.create

.fopen

.freopen

.open

.stat

5.2.9.2. DCL Parsing Anomaly
Prior to OpenVMS Version 7.2, DCL parses some file specifications incompletely, and does not detect
all illegal ODS-2 file specifications. Specifically, if a file specification has three components separated by
two delimiters, DCL does not verify that the second delimiter is a semicolon and the third component is
a version number. However, RMS verifies the file specification completely and detects errors that DCL
may miss. For example, on an ODS-2 volume:

$CREATE A.B.C
%CREATE-E-OPENOUT, error opening A.B.C as output
-RMS-F-SYN, file specification syntax error.

For compatibility, this behavior has been preserved. However, this can produce unexpected results when
accessing an ODS-5 volume under the following conditions:

● The parsing style is traditional (the default).

● The file specification is illegal on ODS-2.

● DCL does not detect the error.

● The file specification is legal on ODS-5.

Under these conditions, the command CREATE A.B.C succeeds on an ODS-5 volume. However, you
cannot access the file with a DCL command that requires a version number (such as the DELETE
command). For example:

$DELETE A.B.C
%DELETE-E-DELVER, explicit version number or wild card required
$DELETE A.B.C;1
%DCL-W-PARMDEL, invalid parameter delimiter - check use of
special characters \;1\

The only way to delete this file when the parsing style is TRADITIONAL is to use wildcards, and for
safety, you should use the /CONFIRM qualifier with the DELETE command. However, it is safer to
change the parsing style to EXTENDED. For example:

$SET PROCESS/PARSE_STYLE=EXTENDED
$DELETE A.B.C;1

131

Chapter 5. Locating and Naming Files on Disks

$SET PROCESS/PARSE_STYLE=TRADITIONAL

5.3. Logical Names and Parsing
RMS translates a logical name present in a file specification at run time. The use of logical names can be
desirable for several reasons, including program simplification, device independence, file independence,
and ease of use.

You can specify the file specification at compile (or assembly) time, or the program can prompt for it at
run time. By specifying a logical name when you compile a program, you eliminate having to program a
terminal input request, and you preserve the flexibility of being able to specify the input file at run time.

Device independence is more readily attainable if a logical name is used for the device name component.
By using a logical name rather than explicitly specifying a physical device, an alternate device (usually
containing a recent backup copy of the device) can be substituted by changing the definition of the
logical name. Typically, device independence can reduce or eliminate the downtime caused by media
failure or scheduled preventive maintenance.

Similarly, when you use a logical name, and the current copy of a file is not available, an alternate file
can be used. To locate several files in a defined search order, you can use a search list, which is a form
of logical name. Alternatively, you can use wildcard characters to locate several files using one file
specification; however, wildcard characters do not allow you to specify a search order.

Using a logical name to represent a complex file specification or a file specification component reduces
keystrokes to save time and reduces the chance of error. For example, you could define a logical node
name that translates to an actual node name and access control string for use when locating remote
files. To keep the password a secret when you use this technique, the logical name should be defined
interactively rather than in a command procedure.

RMS attempts to treat the file name component as a logical name if the file name is the only component
in the file specification. Refer to the VSI OpenVMS User's Manual for additional information on defining
logical names. No logical name translation is done on any logical name that contains a compound
character (containing the RMS escape character: "^").

5.4. File Specification and Component Length
Limits
The following section describes a file specification on ODS-2 and ODS-5 disks.

5.4.1. VAX Systems and ODS-2 Disks on Alpha
Systems
The maximum length of a file specification string is 255 characters, including all separator characters.
The following table lists the length limits for each of the component parts of a file specification. Note
that although the collective limit exceeds 255 characters, the overriding limitation is on the length of the
file specification.

Component Number of Characters

Node Up to 59 bytes including an access control string
(physical node names are up to 6 bytes; logical
node names are up to 15 bytes)

132

Chapter 5. Locating and Naming Files on Disks

Component Number of Characters

Device Up to 15 bytes for a physical device name; up to
64 bytes for a logical device name

Root Up to 39 bytes for each root name
Directory Up to 39 bytes for each subdirectory and

subdirectory name
Filename Up to 39 bytes
Type Up to 39 bytes
Version Up to 5 digits, which optionally may be preceded

by a hyphen (-)

5.4.2. ODS-5 on Alpha Systems
The maximum length of a file specification string is 4095 characters, including all delimiters. The
following table lists the length limits for each of the component parts of a file specification.

Component Number of Characters

Node Up to 59 bytes including an access control string
(physical node names are up to 6 bytes; logical
node names are up to 15 bytes)

Device Up to 15 bytes for a physical device name; up to
64 bytes for a logical device name

Root The sum of all of the characters in all of the
subdirectory names (not counting the brackets
or the delimiter periods) should not exceed 512
(compound) characters. In addition, individual
subdirectory names have the same constraints
as those for the file name, type, and version
components, taking into account the fact that
subdirectories are stored on disk in the form of
files with the names <subdirectory>.DIR;1.

Directory The sum of all of the characters in all of the
subdirectory names (not counting the brackets
or the delimiter periods) should not exceed 512
(compound) characters. In addition, individual
subdirectory names have the same constraints
as those for the file name, type, and version
components, taking into account the fact that
subdirectories are stored on disk in the form of
files with the names <subdirectory>.DIR;1.

File Name Up to 255 bytes, subject to the constraint on the
sum of the lengths of the file name, the file type,
and the file version, as described below.

Type Up to 255 bytes, subject to the constraint on the
sum of the lengths of the file name, the file type,
and the file version, as described below.

Version Up to 5 digits, which optionally may be preceded
by a hyphen (-) (plus the delimiter), subject to

133

Chapter 5. Locating and Naming Files on Disks

Component Number of Characters
the constraint on the sum of the lengths of the
file name, the file type, and the file version, as
described below.

RMS supports file names for which the sum of the lengths of the file name, the file type, and the file
version does not exceed 255 (simple) characters. ODS-5 disks support file names for which the sum of
the lengths of the file name and the file type does not exceed 236 bytes.

Be careful when naming files that will be copied or accessed by remote systems. File name restrictions
are generally determined by the file naming capabilities of the networked systems that require access to
them. These restrictions must be considered part of the overall application design when network access is
required.

5.4.3. Maximum Subdirectory Depths
RMS supports creating and accessing up to 255 subdirectory levels (in any combination in the root and
directory components) on ODS-2 and ODS-5 volumes accessed from Alpha systems. For ODS-2 and
ODS-5 volumes accessed from VAX systems, RMS supports up to 8 subdirectory levels each for the root
and directory components.

5.4.4. Accessing Files on ODS-5 Disks from VAX
Systems
On VAX systems, RMS allows access to ODS-5 volumes. But, file specifications are allowed on those
volumes that RMS on VAX does not support. Some of the limitations are described here.

When a search is done of a directory that contains files whose names are legal for ODS-5, but not for
ODS-2, one of two pseudonames, "\PISO_LATIN\.???" or "\PUNICODE\.???" will be displayed. Such
files can be accessed via RMS only from an Alpha system.

It is possible to create directory trees on both ODS-5 and ODS-2 volumes that are deeper than RMS can
display. In those cases, RMS will not display any subdirectories that lie beyond its limits.

5.4.5. Determining the Structure Level of a Disk Device
From DCL, you can determine a disk device's structure level (for example, ODS-2 or ODS-5) via a
SHOW DEVICE/FULL command.

A DCL command procedure can determine the structure level with code such as the following:

$!
$DeviceName = "SYS$SYSDEVICE"
$DeviceType = F$GETDVI(DeviceName,"ACPTYPE")
$IF DeviceType .EQS. "F11V5"
$THEN
$ DeviceType = "ODS-5"
$ELSE IF DeviceType .EQS. "F11V2"
$ THEN
$ DeviceType = "ODS-2"
$ ELSE
$ DeviceType is "unknown"
$ENDIF
$ENDIF

134

Chapter 5. Locating and Naming Files on Disks

$WRITE SYS$OUTPUT -
$ "Disk ''DeviceName' on-disk structure is ''DeviceType'"
$!
$EXIT

The structure level can be determined in a program (executable image) via a call to the SYS$GETDVI
system service using an item list with the DVI$_ACPTYPE request code. The following example, in the
C programming language, displays a disk device's structure level of determining ODS-2 against ODS-5.

//;
//; Copyright 2001 Compaq Computer Corporation
//;
//; Compaq and the Compaq logo Registered in U.S. Patent and Trademark
 Office.
//;
//; Confidential computer software. Valid license from Compaq required
 for
//; possession, use or copying. Consistent with FAR 12.211 and 12.212,
//; Commercial Computer Software, Computer Software Documentation, and
//; Technical Data for Commercial Items are licensed to the U.S.
 Government
//; under vendors standard commercial license.
//;
//; Module:
//; Determine_ODS_Level.C
//;
//; Abstract:
//; Main (sole) module for a program to display the
//; the on-disk structure level (e.g., ODS-2, ODS-5...)
//; of a disk device, based on the ACP type identified
//; by the SYS$GETDVI system service.
//;
//; The device is identified by name, via the string
//; deviceName, specified below.
//;
//;
//; To Build (OpenVMS/Alpha):
//; CC Determine_ODS_Level [/NODEBUG/OPTIMIZE]
//; LINK Determine_ODS_Level [/NODEBUG]
//; RUN Determine_ODS_Level [/NODEBUG]
//;

// Include (Header) Files
//
#include <descrip.h> // VMS descriptors...
#include <dvidef.h> // SYS$GETDVI() arguments
#include <lib$routines.h> // lib$signal()...
#define __NEW_STARLET 1 // for built-in IOSB defn.
#include <starlet.h> // sys$getdvi()...
#include <iosbdef.h> // struct _iosb
#include <stdio.h> // printf()...
#include <string.h> // strlen()...

// Structure Definitions
//
#pragma member_alignment save

135

Chapter 5. Locating and Naming Files on Disks

#pragma nomember_alignment // structure members must be
 adjacent
typedef struct _item_list_3 // sys$getdvi() item list (one
 entry)
 {
 unsigned short bufflen;
 unsigned short itemcode;
 unsigned long *buffaddr;
 signed long *retlenaddr;
 unsigned int terminator;
 } ITEM_LIST_3;
#pragma member_alignment restore

// Main routine.
//
main()
 {
 static struct dsc$descriptor DevNameDesc; // descriptor for device name
 buffer references
 char deviceName[]="SYS$SYSDEVICE"; // device name string
 unsigned long ACP_typeBuffer; // buffer for returned ACP type
 info. from sys$getdvi()
 long retLen; // buffer for returned info. length
 (4) from sys$getdvi()
 int status; // SYS$GETDVI() return status
 struct _iosb iosb; // I/O status block for SYS$GETDVI
 ITEM_LIST_3 DVI_itemList; // item list for sys$getdvi()

 // Initialize the descriptor for the device name string.
 //
 DevNameDesc.dsc$w_length = strlen(deviceName);
 DevNameDesc.dsc$a_pointer = &deviceName[0];

 // Initialize the item list to request ACP type information
 // from sys$getdvi().
 //
 DVI_itemList.bufflen = sizeof(ACP_typeBuffer);
 DVI_itemList.itemcode = DVI$_ACPTYPE;
 DVI_itemList.buffaddr = &ACP_typeBuffer;
 DVI_itemList.retlenaddr = &retLen;
 DVI_itemList.terminator = 0;

 status = sys$getdviw(0, // efn (not used)
 0, // channel (not used)
 &DevNameDesc, // device name (descriptor, by
 ref.)
 &DVI_itemList, // item list (by ref.)
 &iosb, // I/O status block (by ref.)
 0, // astadr (not used)
 0, // astprm (not used)
 0); // nullarg (not used)

136

Chapter 5. Locating and Naming Files on Disks

 if ((status & 1) == 1) status = iosb.iosb$w_status;// If the call
 succeeded, get the
 // status value from
 the queued request.
 if (status & 1) // If success...
 {
 switch(ACP_typeBuffer)
 {
 case DVI$C_ACP_F11V1:
 printf("On-disk structure level of disk device %s is 1\n",
 deviceName);
 break;
 case DVI$C_ACP_F11V2:
 printf("On-disk structure level of disk device %s is 2\n",
 deviceName);
 break;
 case DVI$C_ACP_F11V5:
 printf("On-disk structure level of disk device %s is 5\n",
 deviceName);
 break;
 default:
 printf("Device %s is not of a recognized on-disk structure
 level\n",
 deviceName);
 printf("...ACP type code is %8.8X\n",
 ACP_typeBuffer);
 break;
 } // end of
 "switch(ACP_typeBuffer)"
 } // end of "if (status & 1)"
 else // Call or queued request failed;
 lib$signal(status); // signal exception.
 } // end of "main()"

5.4.6. Using File Specification Defaults
When you omit file specification components (except for the node name and root name), RMS supplies
default values for the missing components. The file specification to which defaults are applied is
called the primary file specification. Your program can supply default values for all file specification
components using either the default file specification or the related file specification. In addition, the
process executing the program supplies specific default values for device and directory components, via
the process default specification.

Where applicable, RMS substitutes the translated logical name to the primary file specification before it
applies default values. After translating the primary file specification, RMS applies the defaults from the
default file specification, then it applies the defaults from the related file specification, if relevant. RMS
then applies the process default values, where applicable, for the device and directory to obtain the full
file specification it uses to locate the file.

For more information about the application of defaults, refer to Section 6.1, "How RMS Applies
Defaults".

5.5. Image Activation Using Logical Names
When an OpenVMS system activates an image, it uses RMS to open the image file. If the program
specifies the image file with a logical name, RMS uses the equivalence name to look up the image in

137

Chapter 5. Locating and Naming Files on Disks

the known file list, unless the file specification includes a version number delimiter (a semicolon [;] or a
period [.]). Known files are files that are installed using the Install utility, and the known file list provides
a listing of these files by name and by number (file ID).

If RMS finds the file in the known file list, it uses the file number to access the file directly on disk and
bring it into memory for execution. If the specified image file is not in the known file list, RMS goes
through the time-consuming process of looking through the disk directories to find the file.

If you create a new version of an image but do not install it as a known image and do not remove the old
version of the image from the known file list, the new image will not run.

Similarly, when you use a search list to specify the image, the known file lookup takes precedence. Until
a lookup is successful or until the search list is exhausted, RMS executes a known file lookup for each
element on the search list that does not include a file version delimiter. If it exhausts the search list, RMS
uses the search list again, this time trying to locate and open the image file on disk.

If an older version of the image is included in the search list and if RMS finds the older version first, it
will execute the older version and never look for the new version. Be sure to consider this when using
search lists.

5.6. Sample Use of Logical Names
Regardless of the programming language, you can use a logical name to provide components of a file
specification. The following program example shows how to access a remote file. You access a remote
file in the same way that you access a local file, except that the remote file specification includes a node
name.

Example 5.1, "Using Logical Names for Remote File Access" is a simple Fortran program that transfers
a remote file on node TRNTO to the line printer on node BOSTON, using the logical names SRC and
DST. You must define the logical name for the process before you run the program, using the following
sequence of commands:

$ DEFINE SRC TRNTO::USER:[STOCKROOM.PAPER]INVENTORY.DAT
$ DEFINE DST BOSTON::LPA0:
$ RUN TRANSFER

In Example 5.1, "Using Logical Names for Remote File Access", standard I/O calls transfer the file's
records from one device to another. Note the use of the OpenVMS file specification format with a
remote node name. (If the remote node is running a system other than OpenVMS, the format of the file
specification may differ.)

After opening the files and copying all the records, the program closes the channels, thereby terminating
network operations. These operations are similar for applications in the other high-level languages.

Example 5.1. Using Logical Names for Remote File Access

 PROGRAM TRANSFER
C
C This program creates a sequential file with variable-length
C records from a sequential input file. The input and output
C files are identified by the logical names SRC and DST,
C respectively.
C
 CHARACTER BUFFER*132
C
100 FORMAT (Q,A)

138

Chapter 5. Locating and Naming Files on Disks

200 FORMAT (A)
C
C Open the input and output files.
C
 OPEN (UNIT=1,NAME='SRC',TYPE='OLD',ACCESS='SEQUENTIAL',
 1 FORM='FORMATTED')
 OPEN (UNIT=2,NAME='DST',TYPE='NEW',ACCESS='SEQUENTIAL',
 1 FORM='FORMATTED',CARRIAGECONTROL='LIST',
 2 RECORDTYPE='VARIABLE')
C
C Transfer records until end-of-file or other error condition.
C
10 READ (1,100,END=20,ERR=20) NCHAR,BUFFER(:NCHAR)
 WRITE (2,200) BUFFER(:NCHAR)
 GOTO 10
C
C Close the input and output files.
C
20 CLOSE (UNIT=2)
 CLOSE (UNIT=1)
 END

You can substitute the system logical name defined on a remote system as one or more of the
components in the remote file specification, as follows:

● Device alone

● Both device and directory

● Complete file specification if it includes node

A logical name that includes the device, directory, and filename components but does not include the
node, as illustrated in the following example, is not supported in a remote file specification:

$DEFINE/SYSTEM myfile work2:[user1]a.a
$DIRECTORY alpha1"user1 password"::myfile
%DIRECT-W-NOFILES, no files found
$DIRECTORY alpha1"user1 password"::myfile:
%DIRECT-E-OPENIN, error opening ALPHA1"USER1 password"::MYFILE:*.*;* as
 input
-RMS-F-FNM, error in file name

Note that a foreign file specification would work:

$DIRECTORY alpha1"user1 password"::"myfile"
Directory 0"user1 password"::
"WORK2:[USER1]A.A;2"

5.7. Types of Logical Names
When a logical name is defined, you can assign it various translation attributes including the concealed
attribute and the terminal attribute. By default, a logical name is neither concealed nor terminal.

To specify a logical name as either concealed or terminal, use the /TRANSLATION_ATTRIBUTES
qualifier for the DCL commands DEFINE or ASSIGN.

The terminal attribute indicates that the related logical name is the final name in the translation process.
That is, no further translation is to be performed.

139

Chapter 5. Locating and Naming Files on Disks

The concealed attribute ensures that RMS uses the device logical name when communicating with
the application program. If the device logical name does not have the concealed attribute, any file
specification information returned to the application program includes the device's physical name rather
than its logical name. To illustrate, enter the following command sequence:

$ DEFINE/SYSTEM USERDISK DUA5:
$ SET DEFAULT USERDISK:[JONES]
$ DIRECTORY

The system responds with the following display, which identifies the device by its physical name
(DUA5):

DIRECTORY DUA5:[JONES]

FILE.TXT;1 FILE.TXT;2

Total of 2 files.

Now enter the following command sequence:

$ DEFINE/SYSTEM/TRANSLATE=CONCEALED USERDISK DUA5:
$ DIRECTORY

The system responds with the following display, which identifies the device by its logical name
(USERDISK).

DIRECTORY USERDISK:[JONES]

FILE.TXT;1 FILE.TXT;2

Total of 2 files.

A search list is a logical name that contains more than one file specification. Typically a search list is
used to search multiple file locations looking for a file. RMS attempts to locate the file by using the first
file specification in the search list, then the next, and so forth until the file is found or the search list
is exhausted. Like other logical names, a search list is usually defined using the ASSIGN or DEFINE
commands; however, in a search list logical name, the multiple file specifications (equivalence names)
must be separated by commas.

Any of the equivalence names in the search list may be specified individually as being terminal or being
concealed. Section 6.2, "Understanding RMS Parsing" describes the use of search lists and wildcard
characters for multiple file processing and parsing. For general information about using logical names,
refer to the VSI OpenVMS User's Manual.

5.8. Introduction to File Parsing
RMS allows an application program to specify defaults for the device and directory components of a file
specification as well as other components of a file specification. The method RMS uses to apply defaults
and translate any logical names present is called file parsing. In effect, RMS merges the various default
strings (after translating any logical names) to generate the file specification used to locate the file.

One of the functions of file parsing is to determine when a logical name is present and whether the file
specification describes a file on the local node. If a node name is not present in the file specification (the
file is located on the local system), RMS translates any logical names, applies defaults to any missing
components, and then attempts to locate the file.

140

Chapter 5. Locating and Naming Files on Disks

If a node name is present, RMS does not process the file specification on the local node. Instead, it
merges any program-specified defaults without translation and passes the defaulted, untranslated file
specification to the file access listener (FAL) at the remote node; the operating system on the remote
node interprets it.

With advanced file parsing, a single file specification can be used to locate a single file or multiple files.
To locate a single file, multiple file locations or file names can be searched to ensure that the file is
found. The multiple file locations or file names can be located in the same or in different directories,
on different devices, on different nodes, or a combination thereof. Using wildcard characters and search
lists, you can locate multiple files with a single file specification.

When a wildcard character or a search list is included in a file specification, the application program may
need to preprocess the file specification before attempting to locate the file. An RMS file service that
operates on an unopened file (such as the Create service and the Open service) performs the following
file-parsing tasks:

● Examines a file specification for validity

● Translates any logical names present

● Applies defaults

● Attempts to locate the file

If a name block is present, the service may also do the following file-parsing tasks:

● Returns the actual complete file specification used to access the file and its associated file identifier

● Returns the length of each component of a file specification as well as other information about the
file specification

Some file services, including the Open and Create services, cannot process a file specification that
contains wildcard characters. If a file specification contains wildcard characters, you must use the Search
service to resolve the wildcard characters before you invoke the Open service or the Create service.

The Parse service determines whether wildcard characters or search lists are present, and it initializes
control block fields that are necessary to search for multiple files using the Search service. To use the
Search service, a name block (NAM or NAML) must be present when the Parse service is invoked.

Alternatively, you can use the SYS$FILESCAN system service (scan string for file specification) to
scan a file specification for validity and optionally return the lengths of the individual file specification
components without translating logical names or applying defaults. Two Run-Time Library routines, LIB
$FIND_FILE and LIB$FILE_SCAN, perform functions that are similar to the SYS$SEARCH system
service.

For more information about how RMS parses a file specification, see Section 6.1, "How RMS Applies
Defaults". For additional information about using directory specifications, including directory syntax
conventions, see Section 6.3, "Directory Syntax Conventions and Directory Concatenation".

5.9. Using One File Specification to Locate
Many Files
Five services can translate and apply defaults to a file specification to produce a fully qualified file
specification: the Create, Open, Erase, Parse, and Rename services. Other file services must be preceded
by one of these services to parse the file specification and, in some cases, to open the file.

141

Chapter 5. Locating and Naming Files on Disks

If a file specification contains one or more wildcard characters, it must be preprocessed using the Parse
and Search services before the file can be located. The Parse service sets bit values in the name block
file name status bits field (NAM$L_FNB or NAML$L_FNB). This field can be tested to determine
whether a wildcard character or a search list logical name is present. The Search service locates a file
and specifies its name (without wildcard characters). If wildcard characters are present, you must first
invoke the Search service before processing (opening or creating) the file; if wildcard characters are not
present, the file can be processed without invoking the Search service.

To process a single file, you need to invoke the Search service only once; to process many files, invoke
the Search service as many times as needed to return the next full file specification. When no more files
match the file specification, the Search service returns a no-more-files-found message (RMS$_NMF).

In summary, the Parse and Search services work together to provide a fully qualified file specification
that the Search service uses to locate the file.

Your program can process a single file without using the Search service if neither the file specification
nor the search list contain wildcard characters. If any of the file specifications in a search list contain
wildcard characters, the Search service must be invoked before processing the file to prevent an invalid
wildcard completion status error. If a wildcard character is present in the second or subsequent file
specifications in a search list, RMS does not set the wildcard bit in the file name status bits field.

If the Parse and Search services precede an Open service, an open-by-name-block operation should be
performed by specifying the address of the name block in the name block address (FAB$L_NAM or
FAB$L_NAML) field and setting the file-processing options (FAB$L_FOP) open-by-name-block (FAB
$V_NAM) bit option.

Wildcard characters cannot be present in the file specification when the Create service is invoked.
Sometimes the Parse service and the Search service precede a Create service.

When the create-if option bit (FAB$V_CIF) or the supersede option bit (FAB$V_SUP) is set in the file-
processing options (FAB$L_FOP) field, the program may invoke the Parse service to check for wildcard
characters or search lists in the file specification. If a search list or wildcard characters are found, the
program must invoke the Search service before invoking the Create service.

The create-if option tries to open any file found in the search list. If the file is not found in the search
list, RMS creates it using the first file specification in the search list. If these options are specified and
a wildcard character is present when the Create service is invoked, the file specification is invalid; if a
search list is present, the file is created using the first file specification from the search list.

You can either call these services directly from a VAX MACRO procedure, as part of a USEROPEN or
USER_ACTION routine in a high-level language, or you may execute the calls from high-level language
subroutines or functions that call RMS. The Parse and Search services require that a name block be
present. Unless your language supports a means of setting values in a name block (and other control
blocks) and invoking RMS, you should use a VAX MACRO procedure. FDL does not support the use of
a name block.

In addition to a name block, you usually need a file access block (FAB) and a record access block
(RAB). To perform file services, a FAB (and, if needed, extended attribute blocks [XABs]) must be
present; to perform record services, a RAB must be present.

The following program shows how to use the LIB$FIND_FILE routine to locate the desired file, which
the interactive user enters. Because LIB$FIND_FILE is used with the supplied arguments, the file
specification may contain wildcard characters, a search list, and a search list that assumes the program
will allow the use of “sticky” defaults, as in DCL command line parsing. The routine is called by the
following VAX BASIC program USEROPEN option for the BASIC OPEN statement:

142

Chapter 5. Locating and Naming Files on Disks

100 MAP (REC.1) SURNAME$ = 20%, REST$ = 60%
110 OPEN " " FOR OUTPUT AS FILE #1%, ORGANIZATION RELATIVE, &
 MAP REC.1, USEROPEN LOCATE
120 CLOSE #1%
130 END

The BASIC program allocates the control blocks before control is given to the USEROPEN routine;
it also passes the address of the FAB as the first argument and the address of the RAB as the second
argument. These arguments enable the VAX MACRO routine to obtain the control block addresses
because the argument pointer points to the longword count of arguments, followed by the longword-
length arguments. Because the VAX MACRO macros $FAB and $NAM are not used, access to the
symbolic offset values defined for these control blocks is not available; thus, the $FABDEF, $NAMDEF
and $RABDEF macros define these symbols for the USEROPEN routine.

In addition to locating the file using any valid file specification, the called routine also connects to the
file requesting 15 global buffers (or as many global buffers as system resources permit). This routine is
linked with the BASIC program to form the executable image. Example 5.2, "Selecting the USEROPEN
Option to Call a Routine" shows the routine.

Example 5.2. Selecting the USEROPEN Option to Call a Routine

 .TITLE LOCATE
 .PSECT DATA,WRT,NOEXE
 .EXTERNAL LIB$SIGNAL,LIB$STOP,LIBGET_INPUT,LIBPUT_OUTPUT
 .EXTERNAL STR$GET1_DX
 $FABDEF ; Define FAB symbols
 $RABDEF ; Define RAB symbols
;
IFILE: .BLKB 80 ; Input filespec
IFILED: .LONG 80 ; Filespec descriptor
 .ADDRESS IFILE
;
OFILED: .WORD 255 ; Filespec descriptor
 .BYTE DSC$K_DTYPE_T ; Specify character text
 .BYTE DSC$K_CLASS_D ; Specify descriptor class
OFILE: .LONG 0 ; Address set by STR$GET1_DX
;
DFILED: .ASCID /.DAT/ ; Default filespec descriptor
;
PROMPT: .ASCID /Enter the filespec: / ; User prompt
LOC_P: .ASCID /*** NOTE: Global buffers unavailable ***/ ;
NULL_P: .ASCID / / ; Blank line prompt

ARGS: .LONG 7 ; 7 arguments
 .ADDRESS IFILED ; Input filespec
 .ADDRESS OFILED ; Output filespec
 .ADDRESS CTEXT ; Context
 .ADDRESS DFILED ; Default filespec
 .ADDRESS NULL ; No related filespec
 .ADDRESS STV_L ; STV field
 .ADDRESS UFLAGS ; User flags
CTEXT: .LONG 0 ; Context work area
NULL: .LONG 0 ; No related filespec
STV_L: .BLKL 1 ; STV status return area
UFLAGS: .BLKL 1 ; User flags
LEN: .WORD 255
 ;

143

Chapter 5. Locating and Naming Files on Disks

 .PSECT CODE,NOWRT,EXE
 .ENTRY LOCATE,^M<R6,R7>
 ;
 MOVL 4(AP),R6 ; Move FAB address into R6
 MOVL 8(AP),R7 ; Move RAB address into R7
 BISL2 #2,UFLAGS ; Set flag for sticky
 defaults
TERR: PUSHAL IFILED ; Get input length
 PUSHAL PROMPT ; Prompt for input
 PUSHAL IFILED ; Input descriptor
 CALLS #3, G^LIB$GET_INPUT ; Get input
 BLBC R0,TERR ; Retry on error
 PUSHAL OFILED ; Push descriptor address
 PUSHAL LEN ; And length
 CALLS #2, G^STR$GET1_DX ; Allocate dynamic string
 BLBC R0,ERR ; Branch on error
 CALLG ARGS, G^LIB$FIND_FILE ; Call RTL Find File Routine
 BLBC R0,ERR ; Branch on error
 BRW OPEN ; Skip on success
ERR: PUSHL STV_L ; Signal error status
 PUSHL R0 ; codes
 CALLS #2, G^LIB$SIGNAL ; Display error
 BRW TERR ; Reenter filespec on error
OPEN:
 PUSHAL OFILED ; Display filespec
 CALLS #1, G^LIB$PUT_OUTPUT ; on screen
 MOVL OFILE,R10 ; Move filespec address to
 R10
 $FAB_STORE FAB=R6,FNA=(R10),FAC=GET,-
 FNS=OFILED,SHR=<GET,MSE> ; Set read-sharing global
 buffer
 $OPEN FAB=R6 ; Open the file
 BLBS R0,CONNECT ; Branch on success
 PUSHL FAB$L_STV(R6) ; Push STV and STS in reverse
 PUSHL FAB$L_STS(R6) ; order on stack to
 CALLS #2, G^LIB$STOP ; Signal error and stop
;
; This block of code attempts to Connect with global buffers if possible
; and uses local buffers if global buffer resources are not available.
; Because the global buffer value is set between the Open and Connect,
; all defaults are overwritten.
;
CONNECT:
 MOVL #15,R9 ; R9 contains global buffer
 count
 BRB RETRY ; Skip local buffer handling
LOCAL: MOVL #0,R9 ; Turn off global buffers
 $RAB_STORE RAB=R7,MBF=#6 ; Request 6 local buffers
 PUSHAL LOC_P ; Inform user
 CALLS #1, G^LIB$PUT_OUTPUT ; No global buffers
RETRY: $FAB_STORE FAB=R6,GBC=R9 ; Override default global
 buffer
 $CONNECT RAB=R7 ; Connect the record stream
 BLBC R0,RERR ; Branch on error
 BRW DONE ; On success, return
RERR: CMPL R0,#RMS$_CRMP ; Test if too many global
 buffers
 BNEQ CERR ; Quit if other error

144

Chapter 5. Locating and Naming Files on Disks

 CMPL #4,R9 ; Test if too few global
 buffers
 BLSS LOCAL ; Use local buffers
 SUBL2 #3,R9 ; Decrement R9 by 3
 BRW RETRY ; Attempt Connect again
CERR:
 PUSHL RAB$L_STV(R7) ; Push STV and STS in reverse
 PUSHL RAB$L_STS(R7) ; order on stack to
 CALLS #2, G^LIB$STOP ; Signal and end on error
DONE: RET ; Return to main program
 .END

Example 5.2, "Selecting the USEROPEN Option to Call a Routine" also shows the proper way to signal
errors. The RAB$L_STS (completion status) field and the RAB$L_STV (additional status values) field
of the FAB or RAB are used so that secondary completion information is displayed, if appropriate, by
the LIB$SIGNAL or LIB$STOP routines.

The VAX MACRO program shown in Example 5.3, "Using the Parse and Search Services" invokes
the Parse service, determines whether a wildcard character or search list is present, and conditionally
branches to a sequence of instructions that invoke the Search service followed by the Open service. The
resultant string is displayed after the file is opened.

For more information about the LIB$ routines, see the VSI OpenVMS RTL Library (LIB$) Manual.

The next example program uses the $PARSE and $SEARCH functions, demonstrates the use of C
language's fopen function, and shows how you can mix RMS calls and C I/O calls.

Example 5.3, "Using the Parse and Search Services" uses cc$rms_fab and cc$rms_nam to define the
$FAB and $NAM control blocks and specify the arguments for the Parse, and Search services.

The program shows how to preprocess a file specification using the Parse and Search services. First,
the program prompts the user for an input file specification that may contain wildcard characters. The
program then searches each file that matches the file specification for the specified text string.

Finally, the program outputs all records from the target files that contain the specified string.

Example 5.3. Using the Parse and Search Services

/* Using Parse and Search Services */
#include <stdio.h>
#include <ssdef.h>
#include <stsdef.h>
#include <string.h>
#include <rms.h>
#include <starlet.h>

#define MAXLINE 256

static int rms_status; /* RMS status variable */
static char ibuf[MAXLINE], /* input buffer */
 obuf[MAXLINE], /* output buffer */
 fbuf[MAXLINE], /* filename buffer */
 xbuf[MAXLINE]; /* expanded filename buffer */
struct FAB filfab; /* FAB for $PARSE and $SEARCH */
struct NAM filnam; /* NAM for $PARSE and $SEARCH */
void init() /* Initialize RMS structures */
{
 filfab = cc$rms_fab; /* Get a FAB */

145

Chapter 5. Locating and Naming Files on Disks

 filfab.fab$l_fna = ibuf; /* Parse filename from IBUF */
 filfab.fab$b_fac = FAB$M_GET; /* Only allow $GETs */
 filfab.fab$l_fop = FAB$M_NAM; /* Use the NAM block for filename */
 filfab.fab$l_nam = &filnam; /* -> NAM block */

 filnam = cc$rms_nam; /* Get a NAM block */
 filnam.nam$l_esa = xbuf; /* -> Expanded filespec buffer */
 filnam.nam$b_ess = 255; /* Expanded filespec buffer length */
 filnam.nam$l_rsa = fbuf; /* -> Resultant filespec buffer */
 filnam.nam$b_rss = 255; /* Resultant filespec buffer length */
}
main()
{
 auto FILE *fil; /* File pointer for file functions */
 auto int i; /* Generic loop variable */

 init(); /* Initialize RMS structures */

 /* Get filespec to search */
 fputs("File: ", stdout);
 if (!gets(ibuf)) return;

 /* Validate filespec */
 filfab.fab$b_fns = strlen(ibuf);
 if (((rms_status = sys$parse(&filfab)) & STS$M_SUCCESS) == 0)
 return (rms_status);

 /* Get search string */
 fputs("String: ", stdout);
 if (!gets(ibuf)) return;
 /* Loop for all files matching filespec */
 while ((rms_status = sys$search(&filfab)) & STS$M_SUCCESS)
 {
 /* Output a row of asterisks, the filename,
 and other row of asterisks */
 for (i = 0; i < 80; i++)
 obuf[i] = '*';
 obuf[80] = '\0';
 puts(obuf);
 fbuf[filnam.nam$b_rsl] = '\0'; /* Add <NUL> terminator */
 puts(fbuf);
 puts(obuf);
 if (fil = fopen(fbuf, "r")) /* Try to open the file */
 {
 /* Process the file... */
 while (fgets(obuf, MAXLINE, fil))
 if (strstr(obuf, ibuf)) fputs(obuf, stdout);
 fclose(fil); /* Done with this file */
 }
 putchar('\f'); /* Print <FF> between files */
 }
 if ((rms_status == RMS$_FNF) || (rms_status == RMS$_NMF))
 rms_status = SS$_NORMAL; /* Handle expected errors */

 return(rms_status);
}

146

Chapter 5. Locating and Naming Files on Disks

An application may also need to process either one file or many files, depending on the file specification
that the terminal user enters or the logical name that is provided (if the program uses a logical name in
its file specification). Each of these cases is discussed in the following sections.

5.9.1. Processing One File
When only a single file needs to be processed, but more than one location for the file may need to be
searched, you can usually find the file by specifying a file specification that contains a search list.

For example, consider the case of a directory that contains the file PAY.DAT and a backup copy of the
file named PAY_BUP.DAT. You could specify a file name of PAY*.DAT in the file specification and
invoke the Parse service once and the Search service once to locate either of the two files; this method
will locate PAY.DAT before PAY_BUP.DAT.

A potential problem arises if the file PAY.DAT has been deleted or renamed. In this case, unless the
program determines that the file specification is one of several that are acceptable, any file named
PAY that has the file type .DAT could be accessed: for example, PAY_ACC.DAT. You can avoid such
problems by defining a search list logical name that specifies a search for PAY.DAT and PAY_BUP.DAT.
A search list named SEARCH could be defined as follows for the directory [SMITH]:

$ DEFINE SEARCH [SMITH]PAY.DAT,[SMITH]PAY_BUP.DAT

To locate the file, specify SEARCH as the primary file specification.

When the file locations to be searched reside in different directories of a directory tree, you can use
the ellipsis wildcard character in the directory field to search all subdirectories. Alternatively, you
could define a search list that searches for the file PAY.DAT in one directory, the same file name in a
subdirectory, and PAY_BUP.DAT in any directory in the directory tree by using the following DEFINE
command:

$ DEFINE SEARCH [SMITH]PAY,[SMITH.PAY]PAY,[SMITH...]PAY_BUP

You use the file specification SEARCH:.DAT to locate the desired file. In this example, note that one
of the search list file specifications contains wildcard characters. Wildcard characters can be used in a
search list if they are needed, just as with any other logical names and file specifications. However, the
Parse and Search services must be used to locate the correct file.

When you need to locate files in different directory trees (or top-level directories), include complete
directory specifications in your search list definition. For example, to locate the file TEST_DATA.DAT
in the device/directory combinations of DISK1:[SMITH], DISK2:[STATS], or DISK2:[SMITH] you
could use the following command to define the search list TST:

$ DEFINE TST DISK1:[SMITH],DISK2:[STATS],DISK2:[SMITH]

You can also use search lists to locate files on different devices. To locate this file, you specify
TST:TEST_DATA.DAT.

To find the same directory and the same file name on different devices, you could use the following
command to define TST:

$ DEFINE TST DISK1:,DISK2:,DISK3:

When you define the search list TST in this manner, you can locate the file by using the search list to
specify the device name. In this way, you can use a single search list to locate files that would otherwise
require multiple file specifications, even if wildcard characters were used.

147

Chapter 5. Locating and Naming Files on Disks

5.9.2. Processing Many Files
To process many files using a single file specification, you always need to use the Parse and Search
services to locate the files.

The application requirements and the directory location of the files generally determine whether one or
more search lists, wildcard characters, or search lists containing wildcard characters are used in the file
specification. When files must be accessed in nonalphabetical order, use a search list.

To process multiple files using a single file specification, invoke the Parse service (or its equivalent) once
to interpret the file specification and to create the file specification pattern to be searched. After the file
specification is parsed, you can invoke the Search service to locate each file that matches the original file
specification. In some cases, you can examine (or display) the resultant file specification string returned
by the Search service to determine if you (or the interactive user) want to process (open) the file.

If you want to list all file specifications that match a particular file specification and let the terminal
user choose each file to be processed, wildcard characters can be used safely, possibly in a search list
that contains wildcard characters in one or more of its file specifications. To reduce the number of
files that the user might choose to process, use a search list without wildcard characters or rely less on
wildcard characters. For example, to locate all files in a directory tree on different devices with a file
type of .DAT, you could define the search list TREE as follows:

$ DEFINE TREE DISK1:[MYDIR...],DISK2:[MYDIR...]

The primary file specification that would be used for the Parse service would be TREE:*.DAT. A great
number of files might match this.

For applications that will need to locate certain files, search lists with more limited use of wildcard
characters might be needed. Consider a file that contains a prefix of RESULTS followed by the date
for which the data applies. You could use the file name RESULTS*JUN*.DAT to locate a record
that was entered in the month of June by executing a Search service followed by an Open service
for each file, reading all records until the correct one is found, and invoking the Close service after
processing each file. limited use of wildcard characters might be needed. Consider a file that contains
a prefix of RESULTS followed by the date for which the data applies. You could use the file name
RESULTS*JUN*.DAT to locate a record that was entered in the month of June by executing a Search
service followed by an Open service for each file, reading all records until the correct one is found, and
invoking the Close service after processing each file. contains a prefix of RESULTS followed by the date
for which the data applies. You could use the file name RESULTS*JUN*.DAT to locate a record that
was entered in the month of June by executing a Search service followed by an Open service for each
file, reading all records until the correct one is found, and invoking the Close service after processing
each file.

A search list should be used when a predefined group of files is processed by a program that is not
intended to be interactive. Using a search list is particularly desirable if the files have unrelated file
names or if they are located on different directories or devices. A search list also minimizes processing
time by searching for a definite group of files.

5.9.3. Processing One or Many Files
For general-purpose applications, when the user enters a file specification that may indicate one file or
many files, there is a means of testing whether one file or many files are to be processed, or to explicitly
disallow the use of wildcard characters for applications where only a single file should be processed. To
test for wildcard characters or search lists, or both, invoke the Parse service and test the appropriate bits
in the NAM$L_FNB or NAML$L_FNB field.

148

Chapter 5. Locating and Naming Files on Disks

The presence of a wildcard character usually indicates that many files should be processed, depending
on program conventions. If a search list is present, it may or may not indicate that only one file should
be processed and a convention is needed for users of that program. Thus, by testing whether a wildcard
is present, the program can either invoke the Parse service once and the Search service repeatedly for
each file to be opened, or it can disallow wildcard characters and request that the file specification be
reentered. In some cases, the program may need to disallow the use of a search list or allow one or many
files to be accessed, depending upon application conventions.

If you want to disallow wildcard characters, invoke the Open service. The Open service fails when it
encounters a wildcard character.

149

Chapter 5. Locating and Naming Files on Disks

150

Chapter 6. Advanced Use of File
Specifications
This chapter is intended for readers who want to better understand how OpenVMS RMS (hereafter
referred to as RMS) internally applies defaults, parses file specifications, and handles directory
specifications. This chapter also describes the use of rooted-directory syntax and process-permanent
files.

6.1. How RMS Applies Defaults
This section describes how RMS applies defaults when it parses specifications supplied by your program.

Several file specifications can be used by RMS's Parse operation to compose a fully-qualified expanded
file specification, which can then be used for operations such as searching for a specific file, opening an
existing file, or creating a new file.

The program-supplied file specifications are the primary file specification, the default file specification,
and one or more related file specifications. RMS also uses the process-default file specification, but it is
not supplied by the program.

The program accepts from the user a file specification and passes it to RMS as the primary file
specification.

The program provides to RMS, through the default file specification, components that RMS can use in
place of missing components in the primary specification, and that are related to the program's function
rather than to the files being operated on. Typically, the default file specification contains a default
for the type component (for example, .DAT to specify a data file, or .TXT to specify a text file), or it
contains default device and directory components.

The related file specification is used when two files are involved in an operation, such as copying or
merging files, in which the input file specification can provide default components for the output file
specification.

The final default mechanism, which is not provided by the program, is for RMS to use the process
default device and directory. Table 6.1, "File Specification Defaults" describes the defaults that RMS
uses to produce a complete file specification when these components (device and directory) cannot be
obtained from the primary, default, and related file specifications.

Table 6.1. File Specification Defaults

File Specification Description

Primary If the device field is a logical name, RMS
translates the logical device name to its component
parts. The resulting device name may be a physical
device name, a process-permanent file name, or
another logical name.

Default If the device field is a logical name, RMS
translates it before defaults are applied. If any
of the fields in the file specification from the

151

Chapter 6. Advanced Use of File Specifications

File Specification Description
previous step are missing, they are supplied from
the corresponding fields in the translated default
file specification, where applicable.

Related If the device field is a logical name, RMS
translates it and applies the default values
before it uses the related file specification to
add missing component fields. If fields contain
wildcard characters, the wildcard characters
remain in the fields. When RMS uses the related
file specification to complete an output file
specification, the file name field and the file type
field are replaced by the corresponding related file
specification fields, where applicable. For more
information, including the use of multiple related
file specifications, see Section 6.2.3, "Special
Parsing Conventions".

Device and Directory If the device name is omitted, the device field and,
optionally, the directory field accept the system
logical name SYS$DISK. If RMS cannot translate
the logical name SYS$DISK to a physical device
name, an error occurs. If the directory field does
not accept the logical name SYS$DISK, it accepts
the name of the current process default directory.

Primary, default, and related file specifications can use logical names. RMS translates the primary file
specification before it applies defaults and missing components. RMS also translates the default file
specification before using the default values. Finally, RMS translates the related file specification before
it uses missing components supplied by the related file specification. If the file specification is still
missing the device or directory name components, the process executing the program supplies default
device and directory values.

The algorithm used in determining the appropriate translation is as follows:

if node name present
 then translate node name
else if device name present
 then translate device name
else if only file name present
 then translate file name

For the remainder of this description, the component parts of the file specification are referred to as
strings. For example, the device component is referred to as the device string; the name component is the
name string, and so forth. Furthermore, as components are added to a file specification, the expanded
file specification is referred to as the expanded string. Finally, the resultant file specification is called the
resultant string.

Table 6.2, "Example of Applying Defaults" shows the sequence in which defaults are applied to a file
specification (primary file specification string) and the resulting file specification (resultant string). In
Table 6.2, "Example of Applying Defaults", the program specifies the primary file specification string
FILE, omitting all other components of the file specification. The default file specification string .DAT
provides the file type component. The related file specification string does not provide any component
strings, but the default device string (logically SYS$DISK) provides the device string DISK1: and the

152

Chapter 6. Advanced Use of File Specifications

directory string, [INV_C], is provided by the default directory string. Finally, because the resultant string
is used to specify a new file, RMS applies the version number 1 to complete the new file specification.

Table 6.2. Example of Applying Defaults

String Name String Applied Expanded String

Primary file specification FILE FILE
Default file specification .DAT FILE.DAT;
Related file specification None. FILE.DAT;
Default device (SYS$DISK) DISK1: DISK1:FILE.DAT;
Default directory [INV_C] DISK1:[INV_C]FILE.DAT;
Resultant string DISK1:[INV_C]FILE.DAT;1

RMS appends the version number to the expanded string to convert it into the resultant string. The
resultant string is the resultant file specification that RMS uses to locate the file.

When coding the file specification information in a program, you can use the language keyword
for the OPEN (or CREATE) statement. Then you use the FDL Editor to enter the file specification
characteristics. Finally, you call the FDL$CREATE routine to create a file, or you call the FDL$PARSE
routine and the FDL$RELEASE routine to open a file.

Alternatively, you can set the appropriate control block fields and call the RMS services directly, perhaps
as part of a USEROPEN routine or a USER_ACTION routine.

Consider a program that does not explicitly specify the device and directory in any of the file
specifications and does not have a related file specification. RMS adds the current process default device
and the current process default directory to the expanded string after it applies components provided
by the default file specification. However, if the program looks for a data file that is not in the current
process default device and directory, it does not find the file. In this case, the solution is to specify the
data file's device and directory either in the primary file specification, the default file specification, or the
related file specification.

The program-supplied file specifications can be specified using the methods summarized in the following
chart:

File Specification How You Can Specify It

Primary Use the FDL attribute FILE_NAME; use the file
name or the name following the FILE, FILE_ID,
or FILENAME keywords in the OPEN statement
in some high-level languages; or use the string
pointed to by the FAB field FAB$L_FNA.

Default Use the FDL attribute FILE DEFAULT_NAME;
use the default file specification or the
name following the DEFAULTNAME or
DEFAULT_FILE_ID keyword in the OPEN
statement in some high-level languages; or use the
string pointed to by the FAB field FAB$L_DNA.

Related Use the name block (NAM) pointed to by the
NAM$L_RLF field; the related name block
must specify the location of a file specification,
which must be pointed to by the NAM field NAM
$L_RSA.

153

Chapter 6. Advanced Use of File Specifications

Specifying all components in the primary file specification explicitly decreases the chance of error.
However, defaults are provided and can be very useful, especially for general-purpose applications
and for applications in which the file specification is entered by the interactive user. Another option to
consider is the use of logical names.

See the appropriate languages documentation for information about language statements and their
keywords. Consult the VSI OpenVMS Record Management Utilities Reference Manual for information
about the FDL Editor, and refer to the VSI OpenVMS Utility Routines Manual for information about the
FDL$PARSE and FDL$RELEASE routines. For detailed information about RMS control blocks and
services, see the VSI OpenVMS Record Management Services Reference Manual.

6.2. Understanding RMS Parsing
In the following text, the term expanded string buffer refers to the user-allocated buffer that is pointed
to by the NAM block expanded string address field (NAM$L_ESA), by the NAML block short
expanded string address field (NAML$L_ESA), or by the NAML block long expanded string address
field (NAML$L_LONG_EXPAND).

As it processes each program-supplied file specification, RMS identifies each specification's component
parts. Components present in the primary, default, or related, and process-default file specifications
are used to form the expanded file specification. The expanded file specification can then be used to
locate one or more files. If a name block (NAM or NAML) is present, and the address and size of the
expanded string buffer are specified, the file specification is copied into the expanded string buffer.

Note that the Parse service operates differently from other services with regard to the expanded
string. With the Parse service, the expanded string contains all wildcard characters present in the file
specification. RMS does not generate the resultant string until the program invokes a related service,
such as SYS$SEARCH, which uses the expanded string from the Parse service as input.

When you use a search list, the expanded string contains the first location to be searched. RMS stores
internally the information that specifies the remaining search list equivalence strings. Note that the
equivalence string from a $PARSE is not guaranteed to point to an actual file. As different file locations
are examined, RMS updates the expanded string to reflect the current location, and the resultant string
contains the actual file specification of the file.

With the Create, Display, Erase, Open, and Search services, defaults are applied to the expanded string
to select the actual file used. The resultant string can be used by the program to indicate which file was
located. When the file is located, the version number found (or created) is appended to the resultant file
specification string (not the expanded file specification string). When a search list is used, the resultant
string contains the file specification where the file was actually found.

The following sections describe the steps that RMS uses to create a complete file specification.

6.2.1. Checking for Open-by-Name Block
If the open-by-name-block option is specified (FAB$V_NAM), RMS examines the name (NAM or
NAML) block for a valid device identification field (NAM$T_DVI or NAML$T_DVI), directory
identification field (NAM$W_DID or NAML$W_DID), and file identification field (NAM$W_FID
or NAML$W_FID). If these fields are present, RMS uses them to locate the file; all other components
are ignored because they are not needed. If the open-by-name block succeeds, no expanded or resultant
string is produced.

If these fields are not present in the name block or if an open-by-name block is not specified
(for example, an Open service not preceded by a Parse service), RMS performs the translation

154

Chapter 6. Advanced Use of File Specifications

and application of defaults. A file can also be created using the name block device and directory
identification fields, but RMS does not use the file identification.

If an open-by-name block is requested for remote DECnet for OpenVMS file access between two
OpenVMS systems, RMS does not check the device identification, directory identification, or file
identification to determine whether the requested open-by-name block operation can be performed.
Instead, RMS checks to see if a qualified resultant string is present. If a qualified resultant string is not
present, RMS translates logical names and applies defaults as if an open-by-name block operation was
not requested (see Section 6.2.2, "File Specification Formats and Translating Logical Names").

6.2.2. File Specification Formats and Translating
Logical Names
To form the file specification, RMS examines and attempts to translate each program-supplied file
specification, beginning with the primary file specification string indicated by the contents of the FAB
$L_FNA and FAB$B_FNS fields, or by the contents of the NAML$L_LONG_FILENAME and
NAML$L_LONG_FILENAME_SIZE fields.

A file specification may have one of three formats:

● The first file specification is in the following format:

 node::“foreign-filespec” node::“task-spec-string”

RMS attempts to translate the node name so that it can determine whether a logical node name
is present. Only a logical or physical node name (including an access control string, if present) is
allowed if the translation is successful. If a logical node name is found, the translation is repeated.
When translation cannot be performed, the file specification is copied directly into the expanded
string. The quoted string is not parsed except to determine if it refers to a file or a task on the remote
system. For additional information about these formats, see the VSI OpenVMS DECnet Networking
Manual.

● If the file specification contains only a name (without a terminating period or colon), RMS attempts
to translate it as a logical name. If the file name field is translated successfully, the entire translation
operation restarts, using the equivalence string as input. If the file name field is not translated
successfully, RMS uses it as the file name component.

● If the file specification is not in either of the formats described previously, RMS assumes it to be in
the following file specification format:

node::device:[root.][directory]filename.type;version

Note that in the context of a file specification, brackets do not imply optional components. The only
optional components are the node component and the root component.

RMS isolates the components, checks them for proper syntax, and copies them to the expanded
string. If a node name is present, RMS attempts to translate it as a logical node name as described
previously. If a name in the device component is present and the node name is omitted, RMS
attempts to translate the device name as a logical name.

After translating a logical name, RMS determines whether the translation contains a duplicate
component. If RMS finds a duplicate component in the primary file specification translation,
it signals an error. Conversely, if RMS finds a duplicated component in the default string file
specification translation or in the related string file specification translation, it ignores (discards) the
duplicate component.

155

Chapter 6. Advanced Use of File Specifications

If the node name is omitted and the device component does not translate successfully, RMS treats
the name in the device component as a device name.

If the logical name translates successfully, RMS makes several checks and then performs the
appropriate task:

• Checks the equivalence string to determine whether it refers to a process-permanent file. If the
equivalence string refers to a process-permanent file, defaults are not needed so RMS stops
processing the file specification and copies the logical name to the expanded string. Process-
permanent files are described in Section 6.6, "Using Process-Permanent Files".

• Checks the equivalence string to determine whether the logical name is a concealed-device
logical name. If the logical name is a concealed-device logical name, and if no concealed-device
logical names have been encountered previously in the device file specification, the source string
is used as the device name.

• Restarts the translation operation using the equivalence string as input, if the equivalence string
does not contain a process-permanent file and does not have the terminal attribute.

If a node name is present, RMS passes the entire file specification (without the node name) to the
remote node for interpretation, using the DECnet data access protocol (DAP) to communicate with
the DECnet file access listener (FAL) at the remote node.

The logical name translation procedure reveals two conventions. First, if the file specification has been
parsed previously by an RMS file service, it uses the open-by-name-block option to save processing
time. Second, a logical device name must be placed at the beginning of a file specification, unless it is
preceded by a node name that indicates the node where the logical name should be translated.

6.2.3. Special Parsing Conventions
Additional parsing conventions for advanced file specifications include search lists, related file
specifications, and the way RMS handles directory specifications.

6.2.3.1. Parsing Conventions for a Search List
RMS uses several conventions when processing a search list logical name.

● When RMS encounters a search list, it searches internally for the file using search list file
specifications previously specified. RMS treats each file specification in the search list as a new file
specification. That is, RMS does not use components of one file specification element in the search
list as the default for subsequent elements in the search list.

● When it uses search lists, RMS ignores the following errors:

Invalid device name (RMS$_DEV)
Device not ready or not mounted (RMS$_DNR)
Directory not found (RMS$_DNF)
File not found (RMS$_FNF)
Privilege violation (RMS$_PRV)

All other errors terminate search list processing.

● When a search list is embedded (nested) in another search list, all file specifications of the nested
search list are processed before the file specifications in the next-higher search list level. Therefore,

156

Chapter 6. Advanced Use of File Specifications

RMS permits iterative substitution in nested search lists as it does with other logical names. For
example, consider the following search lists, X and Y:

$ DEFINE X DISK1:[RED],DISK2:[WHITE]
$ DEFINE Y X,DISK1:[BLUE]

The following search order is derived from search list Y:

1. DISK1:[RED]

2. DISK2:[WHITE]

3. DISK1:[BLUE]

● When opening a file, RMS tries all search list possibilities before it signals an error completion status.
If RMS cannot find the file, it displays, where applicable, the final search list file specification and
the error message.

● When RMS tries to locate a file using multiple search lists, it uses all combinations of the elements in
the search lists. First it combines the first entry in the first list with the first entry in the second list.
Then it combines the first entry in the first list with the second entry in the second list. After trying
all combinations of the first entry in the first list with all entries in the second list, RMS repeats the
exercise using the entries in the second list with the second entry in the first list. This continues until
RMS locates the file or until it tries all combinations of all lists.

For example, assume the program is looking for FILE.DAT, which may be in one of two directories,
[BIG] or [BEST], on one of two disks, DISK1: or DISK2:. First, the program defines two search
lists, a disk search list (PRIM) and a directory search list (DEF):

$ DEFINE PRIM DISK1,DISK2
$ DEFINE DEF [BIG],[BEST]

Next, the program provides a primary file specification that includes the search list (PRIM) for the
disk together with the file name component:

PRIM:FILE

Finally, the program must provide the default specification that includes the search list (DEF) for the
directory together with the file type component:

DEF:.DAT

Given this information, RMS looks for FILE.DAT using the file specification data in the following
order:

Primary File Specification Default File Specification Expanded String

DISK1 [BIG] DISK1:[BIG]TEST.DAT;
DISK2 [BIG] DISK2:[BIG]TEST.DAT;
DISK1 [BEST] DISK1:[BEST]TEST.DAT;
DISK2 [BEST] DISK2:[BEST]TEST.DAT;

Now, assume the program provides a related file specification with a search list for FILE.DAT.

1. RMS uses all combinations of the search list elements in the primary and default file
specifications with the first component (device) of the related file specification.

157

Chapter 6. Advanced Use of File Specifications

2. RMS uses all combinations of the search list elements in the primary and default file
specifications with the second component (directory) of the related file specification.

3. RMS repeats steps 1 and 2 with each search list element in the related file specification.

6.2.3.2. Special Processing for a Related File Specification
This section describes the special processing needed to implement sticky defaults when a search
list is used in a related file specification for an input file parse. The term sticky default means that
file specification components from the first file specification are applied as defaults to the next file
specification component, eliminating the need, for instance, to specify the device specification for each
file specification when all the files are located on the same device.

The related file specification provides defaults when a related file name block is present. To use the
related file specification, the file access block must specify the address of the primary file's name block
(in the FAB$L_NAM or FAB$L_NAML field), and that name block must specify the address of the
related file's name block (in the NAM$L_RLF or NAML$L_RLF field). The related file's name block
must specify the address of a valid file specification in the resultant string (NAML_RSA/NAMB_RSS
or NAML$L_LONG_RESULT/NAML$L_LONG_RESULT_ALLOC) field. Typically, an RMS file
service (other than Parse) places the file specification in the resultant string.

You can specify whether the related file is used as an input file specification or an output file
specification by setting (output file specification parsing) or resetting (input file specification parsing) the
output-file parse (FAB$V_OFP) bit in the file-processing options (FAB$L_FOP) field.

When an input file specification is being parsed, you can have multiple related name blocks by specifying
the second related file's name block address in the NAM$L_RLF or NAML$L_RLF field of the first
related name block, the address of the third related name block in the NAM$L_RLF or NAML$L_RLF
field of the second name block, and so forth. The use of multiple related name blocks is especially
useful for search lists; one related name block might contain a file type that can be used by any file
specification in a search list, another might contain the full file specification that was produced by
the first search list file specification, and another might contain the full file specification produced by
the second search list file specification. This method allows the file specifications in a search list to
provide sticky defaults, a characteristic associated with DCL command lines that contain multiple file
specifications.

For a search list to be applied as a related file specification, the related file specification must not be a
resultant string but must include the search list logical name. The related file specification in this case
must describe the original primary file specification. For example, consider the following search list
definition:

$ DEFINE WORK DISK1:[MINE],DISK2:[GROUP]

To process lists of input files—such as WORK:A,B,C,—your program must supply the string WORK:A
as the related file specification, not DISK2:[GROUP]A.DAT. The routines LIB$FIND_FILE and LIB
$FILE_SCAN are provided to perform this special processing; consult the VSI OpenVMS RTL Library
(LIB$) Manual for additional information; also refer to Example 5.2, "Selecting the USEROPEN Option
to Call a Routine", which shows how to call the LIB$FIND_FILE routine.

6.2.3.3. Input File Specification Parsing
When the file-processing options (FAB$L_FOP) field output-file parse (FAB$V_OFP) bit is clear and a
node name is not present, VAX RMS processes the related file specification as an input file specification

158

Chapter 6. Advanced Use of File Specifications

as shown below; the only wildcard character allowed is a single asterisk. When the output-file parsing
bit (FAB$V_OFP) is reset and the node name is omitted, RMS processes the related file specification
as an input file specification. This is shown in the following table. Note that the only wildcard character
allowed is a single asterisk.

File Specification Component Null Field Specification Wildcard (*) Field
Specification

File Specification Component Null Field Specification Wildcard (*) Field
Specification

Node Use related file specification Illegal
Device Use related file specification Illegal
Directory Use related file specification Remains wild
Filename Use related file specification Remains wild
Type Use related file specification Remains wild
Version Remains null Remains wild

When the FAB$L_FOP field FAB$V_OFP bit is clear and a node name is present, VAX RMS
processes the related file specification as an input file specification as shown below. When the FAB
$V_OFP bit is reset and a node name is present, RMS processes the related file specification as an input
file specification, as shown in the following table:

File Specification Component Null Field Specification Wildcard (*) Field
Specification

Device Remains null Illegal
Directory Remains null Remains wild
Filename Use related file specification Remains wild
Type Use related file specification Remains wild
Version Remains null Remains wild

6.2.3.4. Output File Specification Parsing
When the FAB$L_FOP field FAB$V_OFP bit is set and a node name is not present, VAX RMS
processes the related file specification as an output file specification as shown below.

File Specification Component Null Field Specification Wildcard (*) Field
Specification

Node Remains null Illegal
Device Remains null Illegal
Directory Remains null Substitute from related file

specification with restrictions
Filename Use related file specification Substitute from related file

specification
Type Use related file specification Substitute from related file

specification
Version Remains null Substitute from related file

specification

159

Chapter 6. Advanced Use of File Specifications

When the FAB$V_OFP bit is set and a node name is present, RMS processes the related file
specification as an output file specification, as shown in the following table:

File Specification Component Null Field Specification Wildcard (*) Field
Specification

Device Remains null Illegal
Directory Remains null Substitute from related file

specification with restrictions
Filename Use related file specification Substitute from related file

specification
Type Use related file specification Substitute from related file

specification
Version Remains null Substitute from related file

specification

As shown in the previous table, a wildcard character in an output directory specification is subject to the
following syntax restrictions:

● Only the asterisk and the ellipsis are permitted in the output directory specification. In the case of
a related file specification, you may choose either the asterisk or the ellipsis (but not both) in the
output directory specification unless you use the following form:

[*...]

● A subdirectory specification that contains wildcard characters cannot be followed by a subdirectory
specification that does not contain wildcard characters.

● Specifications in the UIC directory format may receive defaults only from directories in the UIC
directory format.

● Specifications in the non-UIC directory format may receive defaults only from directories in the non-
UIC directory format.

● Specifications in the non-UIC directory format that consist entirely of wildcard characters may
receive related file specification defaults from directories in UIC or non-UIC format.

RMS processes wildcard characters in an output directory specification as follows:

● If you specify an output directory using a specification that consists entirely of wildcard characters
(only [*] and [*...] are allowed), RMS accepts the complete directory component from the related
file specification. This permits you to duplicate an entire directory specification.

● If you specify an output directory with a trailing asterisk (for example, [A.B.*]), RMS substitutes the
first "wild" subdirectory from the related file specification. This substitution permits you to move
files from one directory tree to another directory tree that is not as deep as the first one.

● If you specify an output directory with a trailing ellipsis (for example, [A.B...]), RMS substitutes the
entire "wild" subdirectory from the related file specification. This substitution permits you to move
entire subdirectory trees.

● The related name block must have the appropriate file name status bits set in the NAM$L_FNB
or NAML$L_FNB field set according to the resultant string to allow RMS to identify the "wild"
portion of the resultant string.

160

Chapter 6. Advanced Use of File Specifications

6.3. Directory Syntax Conventions and
Directory Concatenation
One of the components of a file specification is the directory specification. RMS supports two
conventions or types of directory specifications, one of which is used more often than the other.

When RMS applies defaults to a directory specification in a file specification, the rules differ depending
on what type of a directory specification is present. Two directory syntax conventions are available to
access directories: normal and rooted. The default directory access is normal syntax. That is, you can
specify the directory desired using the directory syntax described in the VSI OpenVMS DCL Dictionary.

6.3.1. Using Normal Directory Syntax
There is a master file directory (MFD) on each volume. Within each MFD, top-level directories
are cataloged using the DCL command CREATE/DIRECTORY (or equivalent record management
services). Beneath each top-level directory, you can create subdirectories referenced from the top-level
directory.

Once the subdirectories are created, you can create subdirectories referenced from each subdirectory.
You can create a large number of levels of subdirectories beneath a top-level directory. The
subdirectories created beneath a directory and the subdirectories within the subdirectories (and so
forth) are called collectively a directory tree. The base point for normal directory syntax access can
be relative to the current position in the directory tree or an absolute reference that explicitly or by
default states any higher-level directories or subdirectories needed to identify the appropriate directory or
subdirectory. An absolute directory reference begins with a directory name; a relative directory reference
begins with a hyphen (-) or a period (.). An absolute reference might include the name of the top-level
directory and one or more subdirectories. A relative directory reference relies on the use of the process-
default directory and device, which are set using the DCL command SET DEFAULT. Refer to the VSI
OpenVMS DCL Dictionary for additional information and examples.

A relative directory reference can be in one of several forms. Assume the current directory position
(process-default directory) is [SMITH.JONES].

● You can specify a lower level in the directory tree with a period (.) to indicate that the current
directory position ([SMITH.JONES]) is prefixed to the specified directory as shown in the following
command:

$ SET DEFAULT [.DATA]

This directory specification is combined with the current directory position to form
[SMITH.JONES.DATA].

● You can specify higher levels in the directory tree by beginning the directory specification with a
hyphen (-) to indicate that the directory specification is the next level up from the current directory
level. If you are currently at directory level [SMITH.JONES], the following command directs RMS
to use the directory SMITH:

$ SET DEFAULT [-]

If you include more than one hyphen, RMS ascends the directory tree by a corresponding number of
levels. For example, if you use the following command from directory level [RED.WHITE.BLUE],
RMS moves up the tree to level [RED]:

$ SET DEFAULT [- -]

161

Chapter 6. Advanced Use of File Specifications

● You can use combinations of hyphens and periods to traverse a directory tree. For example, assume
the following directory tree structure:

 ONE
 / \
 TWO THREE
 / \
 FOUR FIVE
 / \
SIX SEVEN

Assume that your process is in directory [ONE.TWO.FOUR.SIX] and you want to access a file in
[ONE.THREE.FIVE]. You can do this with the following DCL command:

$ SET DEFAULT [- - -.THREE.FIVE]

● You can refer to the default directory explicitly by specifying an empty directory specification at
the DCL prompt. This feature is useful when you want to use a single DCL command to perform
directory operations in your default directory and one other directory.

For example, assume you have a directory on device USERDISK named [CUSTOMERS.LOCAL]
that contains three files: ABERCROMBIE, FITCH, and GOULD. Another directory named
[CUSTOMERS.INTERNATIONAL] also contains three files: MERRILL, LYNCH, and PIERCE.
Assume that your default directory is [CUSTOMERS.LOCAL] but you need a directory listing that
contains the sizes of all customer files. You can list both directories using the following command
line:

$ DIRECTORY/SIZE [CUSTOMERS.INTERNATIONAL],[]

DCL responds to this command with the following display:

Directory USERDISK:[CUSTOMERS.INTERNATIONAL]

MERRILL 1100
LYNCH 155
PIERCE 645

Directory USERDISK:[CUSTOMERS.LOCAL]

ABERCROMBIE 230
FITCH 100
GOULD 355

Total of 6 files, 2585 blocks

A directory name at the leftmost end of a directory specification is interpreted as a top-level directory,
or an absolute directory reference. The syntax shown for the following specification refers to a top-level
directory named GREEN, regardless of the current default directory:

[GREEN]

Conversely, a period or a hyphen before a directory name is always associated with a relative directory
reference.

Note that because only one directory can be directly above any other directory, you can use a hyphen
without explicitly naming the next higher directory. But, because many directories can be directly
beneath the current directory, you must explicitly specify the directory at the next lower level by
following the period with the name of the selected directory.

162

Chapter 6. Advanced Use of File Specifications

If the program omits either the device or the directory component in a file specification, RMS accepts
the value of the current device and directory from the logical translation of SYS$DISK. Therefore, any
directory fields yielded by translation of SYS$DISK override the process default directory. If translation
of SYS$DISK does not yield the directory element, RMS uses the process default directory. Note that
you can change the process default directory with the SET DEFAULT command or by invoking the SYS
$SETDDIR system service.

6.3.2. Rooted-Directory Syntax Applications
Rooted-directory syntax allows you to refer to directory trees as logical devices and top-level directories.
A reference to a top-level directory actually accesses existing subdirectories without program
modification; thus, rooted-directory syntax extends the flexibility associated with logical names.
Similarly, rooted-directory syntax can reduce the number of top-level directories needed for a volume.
Rooted-directory syntax allows multiple system directory trees to exist on a single system volume.

You specify rooted-directory syntax using a logical name in a program-specified file specification or in
the device and directory for a SET DEFAULT command. If a program specifies a logical device name
in the file specification, the logical device name can be redefined to specify a rooted-directory logical
name. Redefining the logical device name to specify a rooted directory changes the directory (and the
file or files) accessed by the program without modifying the program.

If a program does not specify a logical device name in the file specification, the user (or a command
procedure) can issue DEFINE commands and the SET DEFAULT command before running the
program to indicate the use of rooted-directory syntax and to specify the process-default device/
directory. Using the SET DEFAULT command changes the directory accessed by the program without
requiring that you modify the program. When the program finishes, use the SET DEFAULT command
again to specify the new process-default device/directory and to resume the use of normal directory
syntax (if desired).

Using rooted-directory syntax as illustrated in the preceding text provides several advantages. Because
you did not modify the program, you avoided having to recompile (or reassemble), relink, or retest it.
Another advantage is that because you were able to run the program from its resident directory, you
eliminated the overhead of having to move the file several times.

6.3.3. Using Rooted-Directory Syntax
Rooted-directory syntax provides a way of making a directory or subdirectory appear to the user as the
master file directory (MFD) for the logical disk volume. Subdirectories of the rooted directory appear as
top-level directories (user file directories) for the logical volume.

The root directory is the directory you specify during logical name definition that serves as a base from
which you can access the directories beneath it.

Note

Octal group and member directory designations, for example, [1,4] are not allowed in rooted directories.

A concealed-device logical name that defines a hidden root directory is called a rooted-device logical
name.

When you define the rooted-device logical name for use in a program in a SET DEFAULT
command, you specify that the logical name is a concealed-device logical name by using the /
TRANSLATION_ATTRIBUTES=CONCEALED qualifier with the DCL command DEFINE or

163

Chapter 6. Advanced Use of File Specifications

ASSIGN. To define the concealed-device logical name as a rooted-device logical name, the root
directory must contain a trailing period (.), such as DUA22:[ROOT.]. When specifying a directory, you
can only use a trailing period for the root directory.

When you define a root directory, all directory references refer to the specified root directory or
directories beneath it in the directory tree. A reference to a top-level directory refers to a subdirectory of
the specified root directory when using rooted-directory syntax. This is consistent with the fact that the
root directory appears as the MFD because a reference to directory [000000] refers to the root directory.
When you execute the SHOW DEFAULT and other direct commands, the system displays the root
directory as [000000]. Note that the directory specification form [0,0] for the MFD is not valid when
using rooted-directory syntax.

For example, assume the top-level directory [ROOT1] on disk DUA7 contains a subdirectory
[ROOT1.SUB]. The directory [ROOT1] is defined as the root directory associated with the logical name
BASE as follows:

$ DEFINE BASE DUA7:[ROOT1.]

When you associate the root directory with the logical name base, you can refer to the logical top level
directory [ROOT1.SUB] using the syntax BASE:[SUB]. The following chart provides a summary of the
actual directory accessed and the equivalent rooted-directory syntax that applies to this example:

Actual Directory Rooted Syntax Comments

DUA7:[ROOT1] BASE:[000000] [ROOT1] appears as the MFD
DUA7:[ROOT1.SUB] BASE:[SUB] [ROOT1.SUB] appears as a top-

level directory

The next example shows how to define the root logical name described in the previous chart and how
to access a subdirectory of the specified root directory. Note that the trailing period [ROOT1.] indicates
that a root directory is present.

$ DEFINE/TRANSLATION_ATTR=CONCEALED BASE DUA7:[ROOT1.]
$ SET DEFAULT BASE:[SUB]
$ DIRECTORY *.DIR,[-]*.DIR

The system responds with the following display:

BASE:[SUB]

SUBSUB.DIR

BASE:[000000]

SUB.DIR

In the preceding example, the SET DEFAULT command defines the process-default directory as
[ROOT1.SUB] using the rooted-device logical name BASE. The DIRECTORY command looks for
directory files in the current directory ([ROOT1.SUB]) and then in the directory directly above it
([ROOT1]). The directory [ROOT1.SUB] is listed (by the DIRECTORY command) as a top-level
directory (BASE:[SUB]) and the root directory is listed using the syntax of the MFD, BASE:[000000].

6.3.4. Concatenating Rooted-Directory Specifications
When it concatenates specifications for rooted directories, RMS uses different syntax rules than it uses
when it concatenates directory specifications for normal directory syntax.

164

Chapter 6. Advanced Use of File Specifications

One difference between the two conventions is associated with the trailing period in the root directory
definition. For example, consider how a top-level directory reference is handled. With rooted-directory
syntax, the root directory's trailing period is implied as a leading period in subsequent rooted-directory
references.

Directory concatenation within the same file specification occurs only with a rooted-device logical
name. Normal directory concatenation occurs only through the application of defaults. Rooted-directory
concatenation can occur within the same file specification and through the application of defaults.
Rooted-device logical names specify a device name and a root directory. RMS translates a rooted-device
logical name into the device and root directory before it merges any other parts of a file specification (if
present) into the equivalence file specification.

When you use a rooted-device logical name together with a directory specification, the following rules
apply:

● You can refer to the root directory itself. The syntax of [000000] and relative directory references
refer to the root directory.

You can never refer to a directory above the specified root directory because the root directory is the
logical MFD whenever a directory specification is used. When the process-default directory is the
root directory, a reference to [-] results in an error, as shown in the following example:

$ DEFINE/TRANSLATION_ATTR=CONCEALED BASE DUA7:[ROOT1.]
$ SET DEFAULT BASE:[000000]
$ DIRECTORY *.DIR

The system responds to this command sequence with the following display:

BASE:[000000]

No files found

The user then tries to check the contents of the next higher directory with the following command:

$ DIRECTORY [-]*.DIR

The system responds with the following messages:

%DIRECT-E-OPENING, error opening [-]*.DIR as input
-RMS-E-DIR, error in directory name

● You can refer to a specific subdirectory of the root directory in the same way that you refer to a top-
level directory using normal directory syntax, as shown in the following example:

$ DEFINE BASE DUA7:[ROOT1.]
$ SET DEFAULT BASE:[SUBDIR]

● You can refer to any subdirectory beneath the root directory using wildcard characters to vertically
traverse the directory tree. You can refer to all directories below the root directory [*...], all
directories one level below the root directory [*], all directories two levels below the root directory
[*.*], and other reference combinations, as shown in the following example:

$ DEFINE/TRANSLATION_ATTR=CONCEALED BASE DUA7:[ROOT1.]
$ DIR BASE:[*...]*.DIR

The system responds with the following display:

BASE:[SUBDIR]

165

Chapter 6. Advanced Use of File Specifications

 SUBSUBDIR.DIR

BASE:[SUBDIR.SUBSUBDIR]

 SUBSUBSUBDIR.DIR

BASE:[OTHERSUB]

 OTHERSUBSUB.DIR

With rooted-directory syntax, RMS uses the process-default device and directory indirectly as defaults.
This occurs because RMS uses the expanded rooted-device logical name device and root directory
before applying the process-default device and directory.

With rooted-directory syntax, you can use relative directory syntax, such as the hyphen (-) and
leading period (.name). When a directory component is missing, RMS attempts to obtain the missing
components from the process-default directory.

Consider the rooted-device logical name X defined as shown in the following DCL command:

$ DEFINE X DJB3:[SMITH.]

Now assume you set the default directory to JONES:

$ SET DEFAULT [JONES]

When the rooted-device logical name X is used with a directory specification, all directory references are
relative to the root directory [SMITH.]. Most wildcard characters that apply to normal directory syntax
also apply to rooted-directory syntax.

The following table lists the file specifications involving the rooted-device logical name X and the
directory that is accessed with each specification:

File Specification Directories Accessed

X: [SMITH.JONES]
X:[000000] Root directory, [SMITH.]
X:[] [SMITH.JONES]
X:[-] Root directory [SMITH.], listed as X:[000000]
X:[- -] Invalid (error)
X:[name] [SMITH.name]
X:[.name] [SMITH.JONES.name]
X:[name.*...] All directories in all directory trees below

[SMITH.name]
X:[*] All directories one level below [SMITH.]
X:[*...] All directories in all directory trees below

[SMITH.]
X:[...] All directories in all directory trees below

[SMITH.JONES]

Note that RMS uses the default directory with relative directory references when the specified directory
name contains a leading period or a hyphen, or if no directory name is specified.

166

Chapter 6. Advanced Use of File Specifications

6.3.5. An Example of Using a Rooted Directory
Consider an application made up of several programs that refer to the same file using a file specification
IN:[INVENTORY]FILE.DAT. Assume that all of the programs invoke the following command
procedure to define the logical name IN as device DUA29:

$ ON CONTROL_Y THEN GOTO ENDIT
$ DEFINE IN DUA29:
$ RUN XYZPROG
$ ENDIT:
$ EXIT

The programs show the current inventory level and the stockroom used for a particular item and
are dispersed among many users in the company. As the business grows, the number of items in the
inventory grows and the number of inventory records makes the file extremely large and difficult to
access. Because the items can be classified as belonging to one of four groups, the data management
department decides to split the file into four parts. A special-purpose program reads each record in the
master file, determines the record type, and routes the record to the appropriate file group. All output
files are named FILE.DAT, but each is distinguished by putting it in a top-level directory associated
with the appropriate group category. For example, computer supplies files are cataloged in the directory
[COMPUTER.INVENTORY].

This is done by modifying the command procedure to conditionally define the value of IN to be a
rooted-device logical name with four subdirectories. The modified command procedure is shown in
Example 6.1, "Rooted-Directory Syntax".

Example 6.1. Rooted-Directory Syntax

$ ON CONTROL_Y THEN GOTO END
$ GOTO ASK
$ RETRY:
$ WRITE SYS$OUTPUT "Enter a number from 1 to 4 for the type of part"
$ ASK:
$ WRITE SYS$OUTPUT -
 "Select Parts Group: 1-COMPUTER 2-TYPEWRITER 3-DESK 4-OTHER 5-END"
$ INQUIRE ANS
$ IF ANS .GT. 5 .OR. ANS .LT. 1 THEN GOTO RETRY
$ IF ANS .EQ. 5 THEN EXIT
$ IF ANS .EQ. 1 THEN DEFINE/TRANS=CONCEAL IN DUA29:[COMPUTER.]
$ IF ANS .EQ. 2 THEN DEFINE/TRANS=CONCEAL IN DUA29:[TYPEWRITER.]
$ IF ANS .EQ. 3 THEN DEFINE/TRANS=CONCEAL IN DUA29:[DESK.]
$ IF ANS .EQ. 4 THEN DEFINE/TRANS=CONCEAL IN DUA29:[OTHER.]
$ RUN XYZPROG
$ END:
$ EXIT

With the enhanced command procedure, none of the programs has to be modified, recompiled (or
reassembled), relinked, or copied to a different directory.

6.3.6. Using a Rooted Directory to Extend RMS's
Subdirectory Limit
On Alpha systems running OpenVMS versions prior to V7.2 and on VAX systems, RMS limits the
number of subdirectory levels that can be accessed to eight. Rooted directory syntax can be used to allow

167

Chapter 6. Advanced Use of File Specifications

access to subdirectories up to fifteen levels below the volume's MFD. RMS allows up to seven levels in
the root, with eight in the normal (non-root) directory.

You must access the files using rooted-directory syntax, whether or not a logical name is used for the
rooted directory. For example, you can legally define the rooted-directory logical name MYROOT to
be DUA0:[D1.D2.D3.D4.D5.D6.] and nest six subdirectories beneath it using the following directory
syntax:

MYROOT:[D7.D8.D9.D10.D11.D12]

You can also refer to it as the following:

DUA0:[D1.D2.D3.D4.D5.D6.][D7.D8.D9.D10.D11.D12]

But if you try to access this file using the following directory syntax, RMS returns a status code that
indicates that the file specification is illegal:

DUA0:[D1.D2.D3.D4.D5.D6.D7.D8.D9.D10.D11.D12]

Note

When you are choosing directory tree depths, remember that the Backup utility, as opposed to
BACKUP/IMAGE or BACKUP/PHYSICAL, has depth limits when it is doing file backups. See
OpenVMS System Manager's Manual, Volume 1: Essentials, and OpenVMS System Management Utilities
Reference Manual: A--L for information about using the Backup utility.

Note

Alpha systems running OpenVMS versions V7.2 and later have a limit of 255 levels. DID abbreviation
allows access to all subdirectories on a volume, regardless of "depth."

6.4. DID-Abbreviated Directories (Alpha Only)
To support Extended File Specifications, RMS's user interface was extended to include capacities
for the larger specifications that are sometimes necessary to access ODS-5-named files. (See the VSI
OpenVMS Record Management Services Reference Manual.) To take full advantage of all of the new
features, applications would have to be updated to use the interface extensions. To provide extended
capabilities (such as access to deep directories) to applications that continue to use the older interface,
RMS supports the generation and acceptance of file specifications with an abbreviated form of root or
directory specification, known as a DID (for Directory ID) abbreviation.

Note

The DID abbreviation is used in file specifications and should not be confused with the numeric DID
field of the NAM block.

The DID is an alternate form of subdirectory specification that is not relative to the MFD. It takes the
form (for ODS-2 and ODS-5 disks) of three decimal numbers separated by commas and can be used in
the MFD position in a root or directory component specification.

Examples of valid root and directory components with DIDs are as follow:

 DKA200:[24,42,0]

168

Chapter 6. Advanced Use of File Specifications

 DKA200:[1223,4,0.a]
 DKA200:[134,59,0...]
 DKA200:[1223,4,0.][134,59,0]

A DID can also be used in place of a subdirectory in a root or directory component, but subdirectories
located to its left in the specification (above it in the directory tree) are elided by RMS, as shown in the
following example:

$SET PROCESS/PARSE_STYLE=EXTENDED
$WRITE SYS$OUTPUT F$PARSE("DKA200:[system.test.134,59,0...]*.*;*")
DKA200:[134,59,0...]*.*;*
$WRITE SYS$OUTPUT F$PARSE("DKA200:[system.test.134,59,0.BTEST2]*.*;*")
DKA200:[134,59,0.BTEST2]*.*;*

If a specification contains both a root with a DID and a directory with a DID, the root will be ignored
(though not elided) by RMS.

The directory ID numbers are those that are displayed for a directory with the DIRECTORY/FILE_ID
DCL command, as shown in the following:

$DIRECTORY/FILE_ID/NOHEADER/NOTRAILING/WIDTH=(FILE=45) .DIR;1
 DKA200:[SYSTEM]1.DIR;1 (24,42,0)
 DKA200:[SYSTEM]a.DIR;1 (1223,4,0)
 DKA200:[SYSTEM]BTEST1.DIR;1 (134,59,0)
 DKA200:[SYSTEM]DIR^^_1.DIR;1 (609,22,0)
 DKA200:[SYSTEM]lowercase.DIR;1 (655,49,0)
 DKA200:[SYSTEM]te^[mp.DIR;1 (20,37,0)
 DKA200:[SYSTEM]tmp^.tmp.DIR;1 (355,20,0)
 DKA200:[SYSTEM]UNICODE.DIR;1 (1968,10,0)
 DKA200:[SYSTEM]UPPERCASE.DIR;1 (656,45,0)
 DKA200:[SYSTEM]with^.dot.DIR;1 (768,28,0)

When RMS attempts to generate a file specification that is too long for the application's output buffer,
pointed to by the NAM block expanded or resultant string field, NAM$L_ESA or NAM$L_RSA; or by
the NAML block short expanded or short resultant string file, NAML$L_ESA or NAML$L_RSA, it
replaces the root and directory component with one that has the DID for the lowest level subdirectory of
the replaced component(s). The specification that results can then be used as input to RMS.

It should be noted that not all RMS features are available with DIDs. For example, attempts to use sticky
defaulting with a root or directory with a DID will result in an error. And you cannot create a directory
using a DID.

6.5. FID-Abbreviated Names (Alpha Only)
On Alpha systems, when a file specification, even with DID abbreviation, is too long to fit into a
resultant name buffer (NAM block NAM$L_RSA field or NAML block NAML$L_RSA field), RMS
attempts to generate a short-enough file specification by identifying the file with its file ID (three
decimal numbers separated by commas, surrounded by brackets) in the file name component.

In cases in which the file type component would otherwise be presented, a generated file specification
will either include the entire type or will not include any type (including the "." delimiter), depending
upon whether or not there is space.

In cases in which the version component would otherwise be presented, a generated file specification
will include the version component.

169

Chapter 6. Advanced Use of File Specifications

As a human-readable aid in recognizing files, when a FID is generated, the name component also
contains a DCL-legal initial subset of the actual file name. The subset consists of the first 38 simple
characters (where "^U1234" is six simple characters) of the actual file name, followed by "~".

No attempt is made to resolve ambiguities for files that differ only after the first 38 simple characters of
their names.

An example of a generated name with a FID is as follows:

DKA200:[SYSTEM]leadingfilenamechars~[384,35200,0].txt;1

Such a file specification can be used as input to RMS, with some limitations.

6.5.1. Restrictions on FID-Abbreviated Names
A FID can be used for input to RMS, but only the FID is significant. The subset portion of the name
component, the type component, and the version component are ignored by RMS.

As input, the FID-abbreviated file name component is not used as a default (as from a related file
specification to replace a wildcard in an output specification). Instead, the output specification will get a
null file name, as shown in the following:

$COPY/LOG ^U6666^U7777^U8888^U9999^U5555^U6666~[449,35295,0].txt;1 *.xxx
%COPY-S-COPIED, DKA200:[SYSTEM]^U6666^U7777^U8888^U9999^U5555^U6666~
[449,35295,0].txt;1 copied to DKA200:[SYSTEM].xxx;1

Note that generated names with FIDs are possible only for resultant specifications, which refer to
specific files, and not for expanded specifications, which do not necessarily refer to one file.

6.6. Using Process-Permanent Files
Process-permanent files are files that remain open independent of image activation and rundown.
Process-permanent files are created by setting the process-permanent file bit (FAB$V_PPF) in the file-
processing options field (FAB$L_FOP). When the bit is set, RMS-maintained internal data structures
are allocated in the process control region of memory for the life of the process. Thus, process-
permanent files can remain open across image activations. SYS$COMMAND, SYS$INPUT, SYS
$OUTPUT, and SYS$ERROR are all opened in this manner by the LOGINOUT command image.

The DCL command OPEN also opens files in this manner. With user mode code, you can access
process-permanent files only indirectly. RMS provides a subset of the total available operations to the
indirect accessor.

Indirect accessors gain access to process-permanent files through the logical name mechanism, as
follows:

1. The LOGINOUT command image, or at a later point the command interpreter, opens or creates
a file corresponding to the process's command, input, output, and error message streams. Logical
names are created in the process logical name table for SYS$COMMAND, SYS$INPUT, SYS
$OUTPUT, and SYS$ERROR, respectively. The equivalence string for the logical name has a
special format that indicates the correspondence between the logical name and the related process-
permanent file. For more detail concerning the equivalence-string format for logical names, see
the discussion of logical name services in the VSI OpenVMS System Services Reference Manual: A–
GETUAI. For example, for an interactive user, these single process-permanent files are opened for
the terminal.

170

Chapter 6. Advanced Use of File Specifications

2. When an indirect accessor opens or creates a file specifying a logical name that has one of these
special equivalence strings, RMS recognizes this and therefore does not open or create a new file.
Instead, the returned value for the internal file identifier (and later the value for the internal stream
identifier from a Connect service) is set to indicate that access to the associated process-permanent
file is with the indirect subset of allowable functions.

The implications for the indirect accessor are described in the following list:

● A Create service for a process-permanent file becomes an Open service; the fields of the FAB are
output according to the description of the Open service, not the Create service.

● The Open and Create services require no I/O operations.

● Any number of indirect Open and Create operations are allowed.

● There is only one position context for the file; each sequence of the Open or Create service accesses
the same record stream, not an independent stream.

● If the process-permanent file was initially opened with the sequential-processing-only (FAB
$V_SQO) bit set in the FAB$L_FOP field, neither random access nor the Rewind service is
permitted. This is the case for SYS$COMMAND, SYS$INPUT, SYS$OUTPUT, and SYS$ERROR.

● Certain options to various services produce errors. For example, you cannot set the non-file-
structured (FAB$V_NFS), process-permanent file (FAB$V_PPF), and user-file-open (FAB
$V_UFO) bits of the FAB$L_FOP field for the Open and Create services. Other options are
ignored, such as: the spool (FAB$V_SPL), submit-command-file (FAB$V_SCF), delete (FAB
$V_DLT) bits of the FAB$L_FOP field for the Close service; the asynchronous (RAB$V_ASY)
bit of the RAB$L_ROP field; the multiblock count field (RAB$B_MBC) and the multibuffer count
field (RAB$B_MBF; or optionally, the XAB$_MULTIBUFFER_COUNT XABITM).

● If a name block is used and either an expanded or resultant file specification string is returned, the
string consists solely of the process logical name followed by a colon (such as SYS$INPUT:).

● The file access (FAB$B_FAC) field is ignored by the Open service; instead, operations are checked
against the FAB$B_FAC field specified for the original Open or Create service.

● Information from the record attributes field is saved on each Open service and subsequent Connect
service in the values returned in the internal file identifier and internal stream identifier fields. If the
output file is a print file (VFC record format and the FAB$V_PRN bit set in the record attributes
field), mapping is performed for each Put service from the user-specified carriage control to the
print file carriage control format. Thus, different carriage control types from different indirect Open
services all work correctly.

● You cannot use the Erase service.

● Checking is performed for $DECK, $EOD, and other dollar-sign ($) records on the SYS$INPUT
stream if the SYS$INPUT stream is from a file. Checking is not done if SYS$INPUT comes from a
record-oriented device, such as a terminal or a mailbox. (See the VSI OpenVMS DCL Dictionary.)

● At image exit time, the run-down control routine ensures that the indirect I/O on process-permanent
files terminates; however, these files are not closed.

● All file organizations may be opened directly as process-permanent files (for example, through
the DCL command OPEN), but only those files with a sequential organization may be indirectly
accessed.

171

Chapter 6. Advanced Use of File Specifications

172

Chapter 7. File Sharing and
Buffering
This chapter discusses the run-time options that are available when opening, connecting, and closing a
shared file. These options are implicit in creating a shared file because the Create service includes an
implied file open.

File sharing includes file accessing, record locking, and local and shared buffering. Figure 7.1, "Shared
File Access" shows a typical shared file situation.

Figure 7.1. Shared File Access

See the VSI OpenVMS Record Management Services Reference Manual for more information about
accessing and sharing files.

7.1. File Accessing
OpenVMS RMS (hereafter referred to as RMS) file sharing allows multiple users to access a single file.
Timely access to files sometimes requires that more than one active program be allowed to read, write,
and modify records within the same file simultaneously.

Whether or not a file can be shared depends on the type of device it resides on and the explicit file-
sharing information specified by the processes that access the file. Magnetic tape files cannot be shared
because magnetic tape drives are sequentially operated devices. However, disk files can be shared by
any combination of readers and writers without restriction. Your program provides the information that
enables file sharing. You control the degree of sharing by providing an explicit file-sharing specification
when your program opens or creates a file. This specification indicates the types of file operations that
are permitted for application programs that share the file.

When a program creates or opens a disk file, it gives two pieces of information needed to determine if
and how the file may be shared. First, it states the types of operations it intends to perform on the file,
such as read, write, or update. RMS later checks this information to protect against unauthorized file
access.

Second, the program specifies the types of operations other concurrently active programs can perform on
the file. When the sharing specification of one program is compatible with the sharing specification of
another, both programs can gain access to the file simultaneously. To ensure that multiple programs can
access the file simultaneously, you may have to do some schedule planning.

173

Chapter 7. File Sharing and Buffering

7.1.1. Types of File Sharing and Record Streams
A single process can access the same file using multiple record streams. A record stream is the access
environment in which file records may be read, written, deleted, or updated. Important elements of the
access environment are the current record position (if any), the access mode established for the current
record, the sequential next record position, and the state of locks on other records in the file.

The Connect service creates a record stream and associates it with a file opened or created by the
appropriate service. The connection between a record stream and a file is explicitly terminated by the
Disconnect service or is implicitly terminated by closing the file. Record streams are connected to a file
in one of three ways:

● Within one process or across several processes, multiple FABs can be connected to a shared file.
One or more record streams may then be connected to each FAB. This form of sharing is known as
interlocked interprocess file sharing and is associated with reading or writing records, not blocks.

● Within one process, multiple record streams can be associated with one FAB to read and write
records, not blocks. This form of sharing is known as multistreaming.

● Within one process or across several processes, multiple FABs can be connected to a file. One record
stream (RAB) is connected to each FAB, and users provide their own synchronization. This form of
file sharing is known as user-interlocked interprocess file sharing. (User-interlocked interprocess
file sharing usually applies only to block I/O processing and to record processing for nonshared
sequential files residing on disk devices.)

Two important options for shared files are the file-access and file-sharing options. These options
specify the type of record access that the sharing processes can perform. They are specified by the
FDL attributes ACCESS and SHARING and the FAB fields identified by the symbolic offsets FAB
$B_FAC and FAB$B_SHR. When creating or opening a file, RMS compares the values of these fields
to determine whether or not the requesting process may have access to the file.

In this manual, the term accessor refers either to a process that accesses a file or a record stream that
accesses a record. The first process to access a file determines which operations other accessors can
perform on the file, which in practice determines whether or not subsequent users are allowed to access
the file. For example, if your process requests a certain type of access that the first accessor (since the file
was last closed) has disallowed, your process cannot access the file.

When choosing the access other processes may have to the file, you can specify the type of file sharing
to be used and indicate whether or not other processors can access the file simultaneously.

In an OpenVMS Cluster environment, processes can access shared files on the same or different nodes.
(See Section 3.7, "Processing in an OpenVMS Cluster Environment").

A single file can be accessed by both interlocked interprocess file sharing and multistreaming. VSI
does not recommend the simultaneous use of interlocked interprocess file sharing and user-interlocked
interprocess file sharing on the same file if the process that requests user-interlocked interprocess file
sharing intends to modify the file. The reason is that record locking is not done or checked for the
processes using user-interlocked interprocess file sharing.

You must define your process access based on planned record operations. The record operations with
associated FDL and RMS options are summarized inTable 7.1, "File Access Record Operations".

174

Chapter 7. File Sharing and Buffering

Table 7.1. File Access Record Operations

Function (Service) FDL and RMS Options

Read records (Get) ACCESS GET specified or FAB$B_FAC field
FAB$V_GET set

Locate records (Find) ACCESS GET specified or FAB$B_FAC field
FAB$V_GET set

Delete records (Delete) ACCESS DELETE specified or FAB$B_FAC field
FAB$V_DEL set

Add new records (Put) ACCESS PUT specified or FAB$B_FAC field
FAB$V_PUT set

Truncate file (Truncate) ACCESS TRUNCATE specified or FAB$B_FAC
field FAB$V_TRN set

Modify records (Update) ACCESS UPDATE specified or FAB$B_FAC field
FAB$V_UPD set

Access blocks (see text) ACCESS BLOCK_IO specified or FAB$B_FAC
field FAB$V_BIO set under certain conditions,
ACCESS RECORD_IO or FAB$B_FAC FAB
$V_BRO

The record-access functions you request are compared with the protection on the specified file. If your
process is limited to reading and locating records, it should have read access to the file. If your process is
deleting, adding, truncating, or updating records, it must have write access to the file. RMS permits any
process that may delete, add, truncate, or modify records to also locate and read records because write
access to a file also implies read access.

You can perform block I/O operations using the Read, Space, and Write services. Block I/O is usually
only used by applications written in VAX MACRO or other low-level languages. Note that when
ACCESS BLOCK_IO is specified, the application program must also specify either SHARING
USER_INTERLOCK or SHARING PROHIBIT.

Different types of record operations can be specified to define the type of access to be allowed for other
processes, as shown in Table 7.2, "File-Sharing Record Operations".

Table 7.2. File-Sharing Record Operations

Function (Service) FDL and RMS Options

Read records (Get) SHARING GET specified or FAB$B_SHR field
FAB$V_SHRGET set

Locate records (Find) SHARING GET specified or FAB$B_SHR field
FAB$V_SHRGET set

Delete records (Delete) SHARING DELETE specified or FAB$B_SHR
field FAB$V_SHRDEL set

Add new records (Put) SHARING PUT specified or FAB$B_SHR field
FAB$V_SHRPUT set

Modify records (Update) SHARING UPDATE specified or FAB$B_FAC
field FAB$V_SHRUPD set

No access SHARING PROHIBIT or FAB$B_SHR field FAB
$V_NIL set

175

Chapter 7. File Sharing and Buffering

Function (Service) FDL and RMS Options

User interlocking SHARING USER_INTERLOCK or FAB$B_SHR
field FAB$V_UPI set

Multistreaming SHARING MULTISTREAM or FAB$B_SHR
field FAB$V_MSE set

If other processes are limited to reading and locating records, they are unable to modify or add records,
and record-lock checking is not performed. If other processes are allowed to delete, add, or modify
records, they can also read records however, record-lock checking occurs. All record-access functions
use interlocked interprocess file sharing.

No access denies access to all accessors except the accessor who specifies the option. This option might
be used when a file is shared infrequently or when doing a major update. When you use this option, be
sure to close the file promptly when other users are trying to access the file. Choose this option or the
user-interlocking option when using block access. To use the Queue I/O Request system service, specify
the FILE USER_FILE_OPEN attribute (FAB$L_FOP field FAB$V_UFO set). The no-access option
does not allow file sharing and requires that your process have write file protection access.

User interlocking permits the user to maintain interlocking protection (including maintaining the end-of-
file mark). For any other form of file sharing, RMS controls the reading and writing of I/O buffers to
ensure the integrity of file and record structures. This option is useful for nonshared sequential files and
for block I/O access using RMS or the Queue I/O Request system service.

Multistreaming allows your process to access the same file using more than one record stream and allows
other users to access the file using interlocked interprocess file sharing (unless SHARING PROHIBIT
is also specified). When you select this option, select the appropriate SHARING record operations, such
as SHARING GET. When multiple streams are connected, the buffers allocated for each stream become
part of a buffer cache for the entire process. (A buffer cache is a common shared buffer pool intended
to minimize I/O.) A record operation on one stream may use cached buffers from a previous record
operation on a different stream that referenced the same buckets.

When you open or create a file, you must specify the file access and file sharing you want for it. When
using FDL or RMS, the default is to read records from the file (ACCESS GET) and to allow others
accessors to read records from the file (SHARING GET). Typically, an application program may want
to read records (ACCESS GET) while allowing other accessors to add records (SHARING PUT). You
might want to modify records (ACCESS UPDATE) while allowing other accessors to add new records to
the file (SHARING PUT).

When you create a file, the default is for FDL and RMS to add records to the file (ACCESS PUT) and to
not allow others to access the file (SHARING NONE). When you create a file with the create-if option,
it is especially important to specify the access and sharing values. In this instance, you have denied
yourself access if the file already exists because you have specified SHARING NONE and you are not
the initial accessor. One way to avoid this when you create a file is to allow most operations for other
users (such as SHARING GET, SHARING PUT, SHARING UPDATE, and SHARING DELETE).

Combinations of file access and file sharing that specify a mixture of interlocked interprocess file access
and user-interlocked interprocess file sharing allow the application program to access the file without
record locking protection. Such combinations are not recommended for general use they should be used
only for application programs that require read-only access to a file. Other combinations may cause an
error, such as requesting ACCESS BLOCK_IO without specifying SHARING NONE or SHARING
USER_INTERLOCK.

176

Chapter 7. File Sharing and Buffering

7.1.2. Interlocked Interprocess File Sharing
Interlocked interprocess is the most common form of file sharing. This method allows the connection of
one or more record streams (RABs) to one or more processes (FABs), either within a single process or
across several processes. When using this form of file sharing, the values specified for file sharing and
file access by the initial accessor determine the type of access permitted for subsequent processes.

The initial accessor must consider the restrictions that result from the values specified for file sharing
and file access. Typically, the initial accessor denies all write access to subsequent processes. Such a
restriction occurs when the initial accessor specifies some type of write access for file access without
specifying write access for file sharing.

If the initial accessor specifies read-only file access and file sharing, subsequent accessors can only read
the file. If the appropriate type of write access is not specified, then subsequent accessors cannot perform
the corresponding write operations to the file.

If the initial accessor specifies one or more values for file sharing, subsequent processes can access the
file if they specify compatible file access values. For example, if the initial accessor specifies SHARING
GET and SHARING PUT, subsequent accessors must specify ACCESS GET to read the file, and
ACCESS PUT to write new records to the file (read access is implied by all four types of write access).

Table 7.3, "Initial File Sharing and Subsequent File Access" presents the values that the initial accessor of
a file can specify for file sharing to permit access to subsequent accessors.

Table 7.3. Initial File Sharing and Subsequent File Access

Initial Accessor Sharing Subsequent Accessor Access

SHARING PROHIBIT No access allowed
SHARING GET 1 ACCESS GET 1

SHARING DELETE ACCESS DELETE
SHARING PUT ACCESS PUT
SHARING UPDATE ACCESS UPDATE

1Implied related operation

Because the initial accessor can specify multiple SHARING values, a subsequent accessor whose
ACCESS values match one, some, or all of the initial accessor's SHARING values is allowed access
however, when the subsequent accessor specifies an ACCESS value that the initial accessor did not
specify as a SHARING value (an exception is SHARING GET, which is implied), access is denied to the
subsequent accessor.

In addition to comparing the file access values that subsequent accessors specify with the file-sharing
values specified by the initial accessor, the values that subsequent accessors specify must be compatible
with values specified by the initial accessor. Table 7.4, "Initial File Access and Subsequent File Sharing"
shows the file-sharing values that subsequent accessors must specify to access the file.

Table 7.4. Initial File Access and Subsequent File Sharing

Initial Accessor Access Subsequent Accessor Sharing

ACCESS GET 1 SHARING GET 1

ACCESS DELETE SHARING DELETE
ACCESS PUT SHARING PUT

177

Chapter 7. File Sharing and Buffering

Initial Accessor Access Subsequent Accessor Sharing

ACCESS UPDATE SHARING UPDATE
1May be implied a related operation

Because the initial accessor can specify multiple ACCESS values, a subsequent accessor whose
SHARING values match all of the initial accessor's ACCESS values is allowed access however, when the
subsequent accessor specifies a SHARING value that the initial accessor did not specify as an ACCESS
value (an exception is ACCESS GET, which is implied), access is denied.

7.1.3. User-Interlocked Interprocess File Sharing
User-interlocked interprocess file sharing allows one or more application programs to write records to a
sequential file residing on a disk device or to a file on a disk device that is open for block I/O processing.
It cannot be used with relative and indexed files opened for record access. (For record access to relative
and indexed files, RMS transparently controls the reading and writing of buffers to the file and always
maintains current end-of-file information.)

All sequential files that reside on disk devices may be write shared with user-provided interlocks. To
use this feature, you must specify SHARING USER_INTERLOCK (set the FAB$B_SHR field FAB
$V_UPI bit). Note that when this option is specified, RMS does not attempt to control the reading and
writing of I/O buffers across processes, nor does it maintain end-of-file information. Thus, you must
use the Flush service (or language equivalent, if any) to force the writing of modified I/O buffers and to
rewrite the record attributes (including end-of-file information) in the file header. Processes that open the
file after that point obtain the new end-of-file information. Note also that record attributes are rewritten
whenever a file is closed. The last write accessor to close the file must also be the last accessor to have
extended the file. If not, end-of-file information is written by another write accessor. Read accessors of a
shared sequential file can update their internal end-of-file context by closing and reopening the file.

No form of record locking is supported for this type of file sharing. Although record locking is not
checked using user-interlocked interprocess file sharing, file locking is checked. For instance, if you or
another user specify SHARING NONE, one of you may be denied access.

If a process tries to implement the truncate service when closing a sequential file, it must have sole write
access to the file. If other processes have write access to the file, RMS does not close it and it remains
accessible to other processes. If other processes have the file open for read access, RMS defers the
truncation until the final process having read access closes the file.

Similarly, if a process tries to implement the truncate-on-put option when inserting a record into a
sequential file, it must have sole access to the file. If other processes have access to the file, RMS does
not insert the record.

7.2. Record Locking
Synchronized access to records is required in a shared file environment where record streams may
compete for access to records. The operating system implements synchronized access using record
locking. That is, record access conflicts are resolved by locking the record until the final competing
record stream processes the record. This ensures that a program may add, delete, or modify records
without interference and that when a record operation is finished, the data is consistent.

178

Chapter 7. File Sharing and Buffering

Note

On VAX systems, RMS record locking differs from RMS Journaling for OpenVMS record locking. If
your application program uses Recovery Unit Journaling, see the RMS Journaling for OpenVMS Manual
for details.

The operating system allows you to determine whether the application program or RMS provides record
locking. Processes accessing the file make this choice by specifying appropriate sharing attributes and
access attributes in the FAB as described in Section 7.1, "File Accessing". In general, RMS enables
record locking when record modifications are permitted in a shared file environment.

RMS provides record locking for all file organizations and uses the lock manager to keep conflicting
record streams from updating a record simultaneously. The rest of this section describes record locking.

7.2.1. Default Record Locking
You can specify various record-locking options in the RAB when you access a record by way of a record
stream. If you do not explicitly specify any record-locking options when you access a record, RMS uses
default record locking to automatically and transparently lock and unlock shared records. Default record
locking does not require special handling of locks in the application program.

In a typical record-locking scenario, an application program calls a service to access and lock a record.
The application program then processes the locked record. When it finishes processing the record, the
application program calls the appropriate service to finish processing and unlock the record.

The following scenario illustrates processing an existing record:

1. The application program invokes the Get service to access the record, lock the record for exclusive
access, and return the record to the application program.

2. The application program modifies the locked record. Other record streams that try to access the
record using default record locking get a record-locked error. This prevents the locked record from
being accessed and modified before the application program finishes modifying it.

3. The application program invokes the Update service to store the modified record in the file and
remove the lock on the modified record, thereby making the record available to other record streams.

When RMS provides record locking, the Get, Find, and Put services apply locks. The Get service
and the Find service normally return with a record locked, but the Put service returns with the record
unlocked unless you specify the manual-unlocking option.

When the application program uses default record locking, RMS automatically unlocks the locked record
when one of the following events occurs:

● Another record is accessed (Get service and Find service).

● The current record is updated (Update service).

● The current record is deleted (Delete service).

● The record stream is disconnected (Disconnect service).

● The file is closed (Close service).

● The record stream is positioned to the beginning of the file (Rewind service).

179

Chapter 7. File Sharing and Buffering

● A new record is added to the file (Put service).

● The record lock is explicitly removed (Release service or Free service).

● An error occurs during a record operation

Note that a sequential Get service immediately following a Find service does not unlock the record
because it accesses the same record.

7.2.2. Record-Locking Options
Record-locking options can be divided into three groups:

● Options that specify the access allowed by other record streams

● Options that control record conflicts between record streams

● Miscellaneous options

All record-locking options are specified by RAB input to the accessing service. All record-locking
options apply to the Get service and the Find service, and most record-locking options apply to the Put
service. You can specify a different set of record-locking options each time the record stream accesses a
record.

This section describe the types of record access allowed by each record locking option. It also provides
some examples of when an application program might select a particular record-locking option. The
following five record-locking options control record access by other record streams:

● Exclusive locking

● Write locking

● Read locking

● No locking

● No query locking

To update or delete a record, a record stream must have an exclusive lock or a write lock on the record.

7.2.2.1. Exclusive Locking
By default, RMS performs exclusive locking. With exclusive locking, only the initial record stream is
permitted to access the record for reading or writing until the lock is released. Any other record stream
that tries to read or write the record by applying a lock is denied access. When a record stream is denied
access because of a locked record, the requesting service returns a locked-record status (RMS$_RLK).

A record stream can read an exclusively locked record only with the read-regardless option (see Section
7.2.3.3, "Reading Regardless of Lock").

Most application programs use exclusive locking because it requires minimal programming and provides
maximum protection when modifying and reading records. Note, however, that contention is apt to be
greatest when a record stream uses the exclusive-locking option.

See Section 7.2.1, "Default Record Locking" for an example of how RMS uses exclusive locking for an
application program that is modifying a record.

180

Chapter 7. File Sharing and Buffering

7.2.2.2. Write Locking

The write-locking option allows the record stream that locks a record to modify the record. This option
prohibits other record streams from having write-lock access or exclusive lock access, both of which
imply an intent to modify the record. The write-locking option also denies read-lock access to other
record streams because a read-lock access is incompatible with a record stream that is modifying the
record.

Contending record streams can read the record using the no-locking option, or the read-regardless option
(see Section 7.2.3.3, "Reading Regardless of Lock"). When a contending record stream reads a write-
locked record using the no-locking option, the accessing service returns a success status.

Typically, an application program uses the write-locking option when it wants the record to remain in a
consistent state while the application program is modifying the record.

7.2.2.3. Read Locking

The read-locking option permits other record streams to access the record for reading but denies access
to any record stream that attempts to access the record for making modifications.

No record stream is allowed to access a read-locked record for making modifications to the record until
all record streams that have a read lock release the record. Any record stream that attempts to access
a read-locked record using either the exclusive-locking option or the write-locking option are denied
access. The requesting service returns a completion status record to the application program indicating
that the record was locked (RMS$_RLK) and the requesting record stream was denied access.

Contending record streams can read the record using the read-locking option, the no-locking option
or the read-regardless option (seeSection 7.2.3.3, "Reading Regardless of Lock"). When a contending
record stream accesses a read-locked record using the read-locking option or the no-locking option, the
accessing service returns a success status.

Typically, an application program uses the read-locking option when it wants the record to remain in a
consistent state while reading the record but does not intend to modify the record.

7.2.2.4. No Locking (Query Locking)

The no-locking option specifies that the requesting record stream does not want to lock the record.
This locking option permits the requesting record stream to have access to all locked records except for
records that are locked for exclusive access. It also permits other record streams to apply any type of
lock to the record. Using this option minimizes contention, but unlike the no query record locking option
does not avoid a call to the lock manager.

By implication, a record stream that uses the no-locking option can only access the record for reading.
When a record stream uses the no-locking option to access a record, the invoked service returns with the
record unlocked.

Note that when a record stream selects the no-locking option, RMS momentarily locks the record to
query whether or not the record is already locked by another record stream. This is required in order to
determine if access is allowed. If the record is not locked, the requesting service returns a completion
status indicating a successful access. If the record has an exclusive lock, the access is denied and the
requesting service returns a completion status indicating the record is locked (RMS$_RLK). If the
record has a write lock, the requesting service reads the record and returns a completion status indicating
that the record was locked but a read was permitted (RMS$_OK_RLK).

181

Chapter 7. File Sharing and Buffering

If you specify the no-locking option together with the manual-unlocking option, the no-locking option
takes precedence. That is, if you specify both options to the service that accesses the record, the service
returns control to the application program with the record unlocked. SeeSection 7.2.4.1, "Manual-
Unlocking Option" for a description of the manual-unlocking option.

7.2.2.5. No Query Record Locking Option (Alpha Only)
The OpenVMS operating system provides functionality that can minimize record locking for read
accesses to shared files, thereby avoiding the processing associated with record locking calls to the lock
manager.

In previous releases to OpenVMS Version 7.2–1H1, if a file is opened allowing write sharing, an
exclusive record lock is taken out for all record operations (both read and write). Applications may
obtain record locking modes other than the exclusive lock (default) by specifying certain options to the
RAB$L_ROP field. However, all the options involve some level of record locking. That is, the options
require $ENQ or $DEQ system service calls to the lock manager.

The user record locking options include the RAB$V_NLK (no lock) query locking option, which
requests that RMS take out a lock to probe for status and not hold the lock for synchronization. If the
lock is not granted (exclusive lock held) and the read-regardless (RAB$V_RRL) option is not set,
the record access fails with an RMS$_RLK status. Otherwise, the record is returned with one of the
following statuses:

● RMS$_SUC — No other writers

● RMS$_OK_RLK — Record can be read but not written

● RMS$_OK_RRL — Exclusive lock is held (lock request denied) but the read-regardless (RAB
$V_RRL) option is set

When only the RAB$V_NLK option is specified, record access can be denied. When both the RAB
$V_NLK and RAB$V_RRL options are specified, an application can guarantee the return of any record
with a success or alternate success status.

The OpenVMS Version 7.2–1H1 introduces the no query record locking option, which allows
applications to read records (using $GET or $FIND services) without any consideration of record
locking. This option:

● Does not make a call to the lock manager

● Is equivalent to both RAB$V_NLK and RAB$V_RRL being set except that the RMS$_OK_RLK
or RMS$_OK_RRL status will not be returned

This functionality applies to all three file organizations (sequential, relative, and indexed).

Three alternate methods for specifying the no query record locking option are outlined in Table 7.5,
"Methods Available for Specifying No Query Record Locking".

Note the following:

● The first method allows the option to be enabled externally, potentially without any application
change.

● You should use any of the methods only as appropriate for the application. In particular, you should
check for any dependency in an existing application on the alternate success status RMS$_OK_RLK
or RMS$_OK_RRL.

182

Chapter 7. File Sharing and Buffering

Table 7.5. Methods Available for Specifying No Query Record Locking

To... Use This Method...

Disable query record locking at the process or
system level.

Enter the following DCL command to request the
RMS use no query record locking for any read
operation with both RAB$V_NLK and RAB
$V_RRL options set in the RAB$L_ROP field:

$ SET RMS_DEFAULT/
QUERY_LOCKING=DISABLE[/SYSTEM]

Keys on RAB$V_NLK and RAB$V_RRL options
in existing applications.

Enable no query record locking on a per-record
read operation.

Set the RAB$V_NQL option in the RAB
$W_ROP_2 field.

The RAB$V_NQL option takes precedence over
all other record locking options. Use only if the
current read ($GET or $FIND) operation is not
followed by an $UPDATE or $DELETE call.

Enable no query record locking at the file level. Set the FAB$V_NQL option in the FAB$B_SHR
field to request that RMS use no query locking
for the entire period the file is open for any read
record operation with both RAB$V_NLK and
RAB$V_RRL options set in the RAB$L_ROP
field.

This option can be used with any combination of
the other available FAB$B_SHR sharing options.
Keys on RAB$V_NLK and RAB$V_RRL options
in applications.

RMS precedence for the no query record locking option is as follows:

● The RAB$V_NQL option set in the RAB$W_ROP_2 field

● At file open (and applied, if RAB$V_NLK and RAB$V_RRL are set for the read operation):

○ The FAB$V_NQL option set in the FAB$B_SHR field

○ The SET RMS_DEFAULT/QUERY_LOCKING=DISABLE setting at the process level

○ The SET RMS_DEFAULT/QUERY_LOCKING=DISABLE setting at the system level. If the
process /QUERY_LOCKING setting equals SYSTEM_DEFAULT (the default when the process
is created), RMS uses the system specified value.

7.2.2.6. Put Service Considerations
Because the Put service adds a new record, the application program does not have to access an existing
record. However, because adding a record is a multistep process, the record that is being added must be
locked until the entire process is finished.

The scenario for adding a record to a file begins with the application program moving a record into its
buffer. Next, the application program calls the Put service, which locks the record while it moves it from

183

Chapter 7. File Sharing and Buffering

the application program buffer to the file. When the record is in the file, the Put service unlocks the
record, making it available to other record streams. The locking process is transparent at the program
level unless the application program selects the manual-unlocking option.

If a record stream tries to add a record using the no-locking option, the Put service ignores the option
and adds the record.

7.2.2.7. Summary
This section provides two tables to summarize the information described in Sections Section 7.2.2.1,
"Exclusive Locking" throughSection 7.2.2.6, "Put Service Considerations".

The record-locking options that control record access exhibit varying degrees of compatibility. Table
7.6, "Compatibility of Record-Locking Options" summarizes access control locking compatibility by
comparing the type of access being requested by a record stream with the current lock held by another
record stream. The table does not take into account miscellaneous record-locking options, notably the
read-regardless option.

Table 7.6. Compatibility of Record-Locking Options

Current Lock Held by Another Record Stream

Requested Access EXCLUSIVE WRITE READ None

EXCLUSIVE NO NO NO YES
WRITE NO NO NO YES
READ NO NO YES YES
NO LOCK NO YES 1 YES 1 YES

1RMS$_OK_RLK is returned.

The next table lists record-locking options that control record access and how you select each option
through the FDL and RMS interfaces.

Option Interface How to Select

Exclusive locking FDL: RMS: This is the default when you do
not select write locking, read
locking, or no locking.

Write locking FDL: RMS: CONNECT LOCK_ON_WRITE
AB$L_ROP RAB$V_RLK

Read locking FDL: RMS: CONNECT LOCK_ON_READ
RAB$L_ROP RAB$V_REA

No locking FDL: RMS: CONNECT NOLOCK RAB
$L_ROP RAB$V_NLK

7.2.3. Handling Record-Locking Conflicts
Application programs that use shared files must handle record locking conflicts that may occur when two
or more record streams try to access the same record.

RMS provides three options for handling record locking conflicts:

● You can have the application program handle the record-locked error status (RMS$_RLK) returned
by RMS when a record stream is denied access to a record.

184

Chapter 7. File Sharing and Buffering

● You can have the requesting service wait for access (wait-if-locked option).

● You can have the requesting service ignore the lock (read-regardless option).

The following table lists the options for having RMS handle record locking conflicts and how you select
each option through the FDL and RMS interfaces.

Option Interface How to Select

Wait if locked FDL: RMS: CONNECT
WAIT_FOR_RECORD RAB
$L_ROP RAB$V_WAT

Wait timeout period FDL: RMS: CONNECT
TIMEOUT_ENABLE
and CONNECT
TIMEOUT_PERIOD RAB
$L_ROP RAB$V_TMO and
RAB$B_TMO

Read regardless FDL: RMS: CONNECT
READ_REGARDLESS RAB
$L_ROP RAB$V_RRL

The following sections describe each of these options.

7.2.3.1. Handling the Record-Locked Error

When a service is denied record access because of a record conflict, it returns a record-locked error
status (RMS$_RLK) that indicates the access attempt failed because the record was locked. One option
is to have the application program pause briefly, and then try again to access the record.

Example 7.1, "Designing a Pause Between Attempts to Access a Record" contains a program fragment
written in VAX MACRO that demonstrates one method of implementing a short pause between attempts
to access a locked record.

Example 7.1. Designing a Pause Between Attempts to Access a Record

 .
 .
 .
10$: $GET RAB=INRAB ; Get the record
 BLBS R0,GOT_RECORD ; Branch on success
 CMPL R0,#RMS$_RLK ; Record-locked error?
 BNEQ ERROR ; Quit on other errors
 PUSHAL ONE_SECOND ; Pause for
 CALLS #1, G^LIB$WAIT ; One second
 BLBC R0,ERROR ; Quit on error
 BRB 10$; Try again for record
 .
 .
 .

For more information about process control techniques, see the VSI OpenVMS System Services Reference
Manual.

185

Chapter 7. File Sharing and Buffering

7.2.3.2. Waiting for Locked Records
Another option for handling record-locking conflicts is to use the wait-if-locked option to wait for the
locked record to be released. When you take this option, the accessing service does not return until the
record is released or until a specified wait period expires.

The optional wait period is established using the wait-timeout-period option in conjunction with the wait-
if-locked option. If the specified wait period expires before the requesting service obtains access to the
locked record, the requesting service discards the request. The requesting service returns a completion
status indicating that it waited for the locked record but was not granted access within the specified time
period (RMS$_TMO).

If you select the wait-if-locked option and the requesting service must wait to access the record, it returns
an alternate success status that indicates that it had to wait (RMS$_OK_WAT).

7.2.3.3. Reading Regardless of Lock
The third choice available to you for handling record-locking conflicts involves using the read-regardless
(of lock) option. This option allows the accessing service to ignore a lock that prohibits read access. If
a lock is granted under the specified record-locking option, access is granted and the service returns
with the specified lock. If the lock is denied, the read-regardless option allows the accessing service, Get
or Find, to read the record, regardless of the lock. The service returns without a lock for all three file
organizations, but the returned status depends on the file organization:

● For sequential files, the service returns RMS$_SUC.

● For relative and indexed files, the service returns alternate success status, RMS$_OK_RRL.

An application program might use the read-regardless option to avoid record locking conflicts when a
coordinated view of a record is not necessary. This option can also be used to continue sequential reads
through a locked record.

Note that when you use the read-regardless option with the wait-if-locked option and a wait timeout
period, RMS acts on the read-regardless option only after the wait timeout expires.

7.2.4. Miscellaneous Record-Locking Options
This section describes two miscellaneous record-locking options—the manual-unlocking option and the
lock-nonexistent-record option in a relative file.

7.2.4.1. Manual-Unlocking Option
The manual-unlocking option gives the application program explicit control over releasing a record lock
established by the Get service, the Find service, or the Put service as described inSection 7.2.1, "Default
Record Locking".

Even if you select the manual-unlocking option, RMS unlocks affected records when a record stream
is disconnected (Disconnect service), or when a file is closed (Close service). Other record operations,
including operations that result in errors, do not unlock the record.

To manually release record locks, the application program can invoke the Free service to unlock all
record locks held by a record stream, or it can invoke the Release service to selectively release record
locks, using the record's RFA.

186

Chapter 7. File Sharing and Buffering

Manual unlocking is useful when you have to modify multiple records as part of a single transaction. For
example, assume the application program must modify two related but separate records. Assume, too,
that the modified first record must not be accessed by another record stream until modifications to the
second record are completed.

While the program modifies the first record, it uses the manual-unlocking option to hold the lock on the
modified first record. It then proceeds to modify the second record while still maintaining a lock on the
first record. By using manual unlocking, the application program can restore the original contents of the
first record if the update to the second record fails, thereby maintaining data integrity.

7.2.4.2. Lock-Nonexistent-Record Option
The lock-nonexistent-record option applies only to random accessing of relative files. Relative files have
a static physical structure made up of record cells in contrast to sequential files and indexed files, which
have a dynamic structure. The record cells may or may not contain records. A record may have been
deleted from a cell, or the cell may be empty (that is, it never contained a record). In either case, the
record cells are accessible to the application program.

Typically, if a record stream tries to access and lock an empty cell in a relative file using random access,
the accessing service returns a record-not-found error status (RMS$_RNF). However, if the lock-
nonexistent-record option is selected, the accessing service returns an alternative success status (RMS
$_OK_RNF) indicating that the record stream accessed a cell that never contained a record. If the
cell contains a deleted record, RMS returns the deleted record with an alternate success status (RMS
$_OK_DEL) to indicate that a deleted record was accessed.

The lock-nonexistent-record option prevents other record streams from putting a record into an empty
cell until the locking record stream puts a record in it or releases the record lock. Any other record
stream that tries to access the cell to put data into it receives a record-locked status (RMS$_RLK). If
the record stream that has the lock puts a record into the cell, RMS returns an alternate success status
(RMS$_OK_ALK) indicating that the cell was already locked. In general, the RMS$_OK_ALK status is
returned when a service tries to lock a record that the current record stream has already locked. This also
applies to the Put service, which locks and unlocks the record in one record operation.

The next table lists miscellaneous record-locking options and how you select each option through the
FDL and RMS interfaces:

Option Interface How to Select

Manual unlocking FDL: RMS: CONNECT
MANUAL_UNLOCKING RAB
$L_ROP RAB$V_ULK

Lock nonexistent record FDL: RMS: CONNECT
NONEXISTENT_RECORD AB
$L_ROP RAB$V_NXR

7.2.5. Record-Locking Deadlocks
A deadlock occurs when there is a set of processes and each process is waiting to access a record that is
locked by another process in the set. The program stalls because none of the processes can acquire the
record that it needs to complete its task and release its locks.

The lock manager resolves the deadlock by denying one of the lock requests. When this occurs with
a record lock, RMS returns an RMS$_DEADLOCK status. The RMS$_DEADLOCK status is only

187

Chapter 7. File Sharing and Buffering

returned if the wait-if-locked option is selected. If your application program does its own wait and retry
handling, the deadlock will occur, but the lock manager will not detect it.

The amount of time that lapses before RMS takes action on the deadlock depends on the value specified
in the DEADLOCK_WAIT system parameter. The default value for this system parameter is 10 seconds.
For further details about how this parameter is set, see the VSI OpenVMS System Manager's Manual.

7.2.5.1. Record Locking Options to Control Deadlock Detection

RMS uses the distributed lock manager ($ENQ system service) for record locking.

To help prevent false deadlocks, the distributed lock manager uses the following flags for lock requests.

Flag 1 Purpose

LCK$M_NODLCKWT When set, the lock management services do not
consider this lock when trying to detect deadlock
conditions.

LCK$M_NODLCKBLK When set, the lock management services do not
consider this lock as blocking other locks when
trying to detect deadlock conditions.

1Improper use of these flags can result in the lock management services ignoring genuine deadlocks. For complete flag information, see the
$ENQ section of the VSI OpenVMS System Services Reference Manual: A–GETUAI.

In previous releases to OpenVMS Version 7.2–1H1, RMS did not set these flags in its record lock
requests.

With OpenVMS Version 7.2–1H1, you can optionally request that RMS set these flags in record lock
requests by setting the corresponding options RAB$V_NODLCKWT and RAB$V_NODLCKBLK
in the new RAB$W_ROP_2 field. For more information about using these options, see the flag
information in the $ENQ section of the VSI OpenVMS System Services Reference Manual: A–GETUAI.

For more information about the lock manager, see the VSI OpenVMS System Services Reference Manual

7.3. Local and Shared Buffering Techniques
One of the key performance factors is record buffering, that is, the transfer of records between a storage
device and an area of memory accessible to the application program. Between the storage device and the
record buffer in the appliction program, however, is an intermediate buffer area that RMS maintains. An
intermediate buffer area is usually associated with each process you can also specify a shared buffer area
for a shared file.

7.3.1. Record Transfer Modes
For synchronous and asynchronous record operations, RMS provides two record transfer modes: move
mode and locate mode.

In move mode, RMS copies a record from an I/O buffer into a buffer that you specify. For input
operations, data is first read into the I/O buffer from a peripheral device (such as a disk), then moved
to your application program buffer for processing. For output operations, you first build the record in
your application program buffer then RMS moves the record to the I/O buffer that is used to transfer the
record to disk.

188

Chapter 7. File Sharing and Buffering

In locate mode, RMS allows the application program to access records in an I/O buffer by providing
the address of the returned record as the internal buffer location instead of an application program
buffer location (field RAB$L_RBF). Usually, this reduces program overhead because records can be
processed directly within the I/O buffer. Locate mode is only available for input operations. Because it
may not always be possible to use locate mode, you must supply an application program buffer for cases
in which move mode must be used, even though you specify locate mode (see the VSI OpenVMS Record
Management Services Reference Manual).

Other RMS facilities allow programs to control I/O buffer space allocation or to leave space management
to RMS. The following sections describe buffering.

7.3.2. Understanding Buffering
Your program perceives RMS record processing as the movement of records between a file and the
program itself. In fact, RMS uses internal memory areas called I/O buffers to read or write blocks or
buckets of data. Transparent to your program, RMS transfers blocks or buckets of a file into or from an
I/O buffer. Records within the I/O buffer are then made available to the program when RMS transfers
the records between the I/O buffer and the application program's record buffer.

The unit of data transfer between a file and the I/O buffers depends on the file organization. For the
sequential organization, RMS reads and writes a block or series of blocks. For relative and indexed
organizations, RMS reads and writes buckets.

The relationship between the application program and the I/O buffers that RMS maintains is shown
in Figure 7.2, "RMS Buffers and the Application Program". As illustrated, the application program
resides in the P0 region of process address space. The RMS-maintained buffer area, together with RMS-
maintained control information, resides in the P1 region.

Note that RMS normally overflows into P0 space and that the linker provides options for controlling
the overflow. Note, too, that linker options are available for allocating additional buffer space in the P0
region, if needed. See the VSI OpenVMS Linker Utility Manual for details.

Figure 7.2. RMS Buffers and the Application Program

The specified record buffer contains the record to be read or written, and RMS maintains the rest of the
block in application program process space in an RMS-controlled area of the program.

For optimum performance, consider the number of buffers carefully. The defaults calculated by RMS are
few and may be adequate for access to small files. For example, it is not unusual to specify many buffers
when processing a large indexed file, yet the default number of buffers RMS provides is only two.

The CONNECT secondary attribute MULTIBUFFER_COUNT establishes the number of local buffers,
but the FILE secondary attribute GLOBAL_BUFFER_COUNT (FAB field FAB$W_GBC) specifies the
number ofglobal buffers as described inSection 7.3.6, "Using Global Buffers for Shared Files".

189

Chapter 7. File Sharing and Buffering

Often the best way to achieve optimum buffering for a particular application program is to use
combinations of buffer sizes and numbers of buffers. One approach is to time each combination and
measure the number of I/O operations. Then consider the amount of memory used before you choose
the one that improved application program performance the most.

With buffering, the goal is to use a buffer size and number of buffers that improves application program
performance without exhausting the virtual memory resources of your process or system. Keep in mind
the trade-offs between file I/O performance and exhausting memory resources. The buffers used by a
process are charged against the process's working set. You should avoid allocating so many buffers that
the CPU spends excessive processing time paging and swapping. For performance-critical application
programs, consider increasing the size of the process working set and adding additional memory.

The system manager should monitor the paging and swapping activity of the application program's
process and selected other processes to avoid improving the performance of the target application
program at the expense of other application programs. Have your system manager consult the Guide to
OpenVMS Performance Management 1

When records are accessed sequentially, a large buffer (or buffers) should be used. Contiguous records
in a file are read into memory in one or more blocks for sequential files or in buckets (multiblock units)
for relative and indexed files. After the blocks or buckets are read into the buffer area provided by RMS,
later access to adjacent records would access records in the same block or bucket in the buffer. This
eliminates additional I/O and improves performance. When a record is needed that is not in the current
buffer cache, one of the buffers is replaced by the blocks or the bucket that contains the new record.

When records in the file are repeatedly accessed, using more than one buffer can hold the previously
accessed records in memory longer and eliminate an I/O operation when the program accesses the
records again.

The buffers that the application program requests RMS to allocate for its use are referred to as a buffer
cache and can be thought of as a buffer pool for your process. RMS uses buffer caches to locate records
first before attempting I/O to the target device. When many processes share a file, the program can use a
shared global buffer cache. (SeeSection 7.3.6, "Using Global Buffers for Shared Files".)

7.3.3. Buffering for Sequential Files
With sequential files, the number of local buffers and the size of the local buffers can be
specified at run time. You specify the number of local buffers with the FDL attribute CONNECT
MULTIBUFFER_COUNT and you specify the buffer size with the FDL attribute CONNECT
MULTIBLOCK_COUNT.

Sequential files provide an option that uses two buffers. One buffer holds records to be read from
the disk or written to the disk. The other buffer awaits I/O completion. This is called read-ahead
and write-behind processing and should be considered for sequential access to sequential files. The
number of buffers (CONNECT MULTIBUFFER_COUNT) should be specified as 2. The length
of the buffers used for sequential files is determined by the specified multiblock count (CONNECT
MULTIBLOCK_COUNT). For sequential access to a sequential file, the optimum number of blocks per
buffer depends on the record size, but a value such as 16 is usually appropriate.

To see the default buffer count for the current process, use the DCL command SHOW RMS_DEFAULT.
To set the default buffer count for the current process, use the DCL command SET RMS_DEFAULT/
SEQUENTIAL/BUFFER_COUNT=n, wheren is the number of buffers.

1This manual has been archived but is available on the OpenVMS Documentation CD-ROM. A printed book can be ordered by calling
800-282-6672. For information about the resources needed for file applications, refer to Section 1.8, "Process and System Resources for File
Applications".

190

Chapter 7. File Sharing and Buffering

7.3.4. Buffering for Relative Files
With relative files, buckets, not blocks, are the unit of transfer between the disk and memory. The bucket
size is specified when the file is created, although the bucket size of an existing file can be changed by
converting the file (see Chapter 10, "Maintaining Files").

The bucket size is specified by the FDL attribute FILE BUCKET_SIZE (VMS RMS control block field
FAB$B_BKS or XAB$B_BKZ). When choosing this value, you should consider whether or not the
file is usually accessed randomly (small bucket size), sequentially (large bucket size), or both (medium
bucket size), as described in Chapter 2, "Choosing a File Organization".

You can specify the number of local buffers (CONNECT MULTIBUFFER_COUNT) at run time.
The type of record access to be performed determines the best use of local buffers. The two extremes
of record access are that records are processed completely randomly or completely sequentially. Also,
there are cases in which records are accessed randomly but may be reaccessed (random with temporal
locality), and cases in which records are accessed randomly but adjacent records are likely to be accessed
(random with spatial locality).

For completely random or sequential access, a single buffer should be specified. In a processing
environment in which the program processes records randomly and sometimes reaccessed records, use
multiple buffers to keep the reaccessed records in the buffer cache.

When records are accessed randomly and adjacent records are apt to be accessed, you should specify a
single buffer. However, if your program is processing a file with small bucket sizes, you should consider
specifying more buffers. When the file is likely to be accessed by several methods, you should consider a
compromise of the number of buffers and bucket sizes.

When adding records to a relative file, consider choosing the deferred-write option (FDL attribute FILE
DEFERRED_WRITE FAB$L_FOP field FAB$V_DFW). With this option, the buffer (memory-resident
bucket) into which the records have been moved is not written to disk until the buffer is needed for other
purposes or until the file is closed. Note that if you use the deferred-write option, there is a risk that data
may be lost if a system crash occurs before the records are written to disk.

To see the current process-default buffer count, use the DCL command SHOW RMS_DEFAULT.
To set the process-default buffer count, use the DCL command SET RMS_DEFAULT/RELATIVE/
BUFFER_COUNT=n, where n is the number of buffers.

7.3.5. Buffering for Indexed Files
With indexed files, buckets (not blocks) are the units of transfer between the disk and memory. The
bucket size is specified when the file is created, although the bucket size of an existing file can be
changed by converting the file (see Chapter 10, "Maintaining Files").

The bucket size is specified by the FDL attribute FILE BUCKET_SIZE (VMS RMS control block field
FAB$B_BKS or XAB$B_BKZ), as described inChapter 2, "Choosing a File Organization".

When accessing indexed files, it is important to remember that the index portion of the file must be
read by RMS to locate the desired record. The algorithm used by RMS places a higher priority for the
higher-level buckets of the index in the buffer cache. Thus, the highest levels of the index remain in the
buffer cache, while the buffers that may have contained the actual data buckets and the lower-level index
buckets are reused to contain other buckets. That is, the buffers that are reused first contain either data or
lower-level index buckets, which are the first to be discarded from the buffer cache.

191

Chapter 7. File Sharing and Buffering

When accessing indexed files, the number of local buffers (CONNECT MULTIBUFFER_COUNT) is
specified at run time and recommended values can vary greatly for different application programs. When
records are processed randomly, use as many buffers as your process working set can support to cache
additional index buckets. When records are accessed sequentially, even after locating the first record
randomly, use a small multibuffer count, such as the default of 2 buffers.

Many application programs access files using a mixture of completely random and completely
sequential processing. For such application programs, a compromise of the above number of buffers is
recommended.

When adding records to an indexed file, consider choosing the deferred-write option (FDL attribute
FILE DEFERRED_WRITE FAB$L_FOP field FAB$V_DFW). With the deferred-write option, the
buffer into which the records have been moved is not written to disk until the buffer is needed for other
purposes or until the file is closed. This option, however, may cause records to be lost if a system crash
should occur before the records are written to disk.

To see the current process-default buffer count, use the DCL command SHOW RMS_DEFAULT.
To set the process-default buffer count, use the DCL command SET RMS_DEFAULT/INDEXED/
BUFFER_COUNT=n, where n is the number of buffers.

7.3.6. Using Global Buffers for Shared Files
Two types of buffer caches are available using RMS: local and global. Local buffers reside within
process (program) memory space and are not shared among processes, even if several processes access
the same file and read the same records. Global buffers, which are designed for application programs
that access the same files and perhaps the same records, do not reside in process memory space.

If several processes share a file, you should specify that the file uses global buffers. A global buffer is
an I/O buffer that two or more processes can access in conjunction with file sharing. If two or more
processes request the same information from a file, each process can use the global buffers instead of
allocating its own process-local buffers. Figure 7.3, "Using Global Buffers for a Shared File" illustrates
the use of global buffers.

Figure 7.3. Using Global Buffers for a Shared File

Unlike local buffers, global buffers can be accessed by multiple processes accessing the same file. When
a record requested by one process is located in a global buffer, the record can be transferred directly
from the global buffer to the program, eliminating an I/O read operation. Note that if the previous
accessor modified the record, RMS writes the buffer to disk before returning the record to the new
accessor. This ensures that the modified bucket in memory matches its counterpart on the disk.

There are two situations in which global buffers cannot be used for shared files. When a process
permanent file is being accessed, RMS does not use global buffers (no error is returned). When an image

192

Chapter 7. File Sharing and Buffering

is linked using the LINK option keyword IOSEGMENT=NOP0BUFS (rarely used), RMS does not use
global buffers.

Even if global buffers are used, a minimal number of local buffers should be requested, because, under
certain circumstances, RMS may need to use local buffers. When attempting to access a record, RMS
looks first in the global buffer cache for the record before looking in the local buffers if the record is still
not found, an I/O operation occurs. When using the deferred-write option with global buffering enabled,
the number of buckets that can be buffered without I/O is equal to the number of local buffers thus, the
use of more than the minimum number of local buffers should be considered.

You can specify the number of global buffers two ways: by using a preset file default or by having the
first process that accesses the file specify the value at run time. To set the file default (maintained in
the file header), use the DCL command SET FILE/GLOBAL_BUFFERS=n where n is the number of
buffers.

To set the global buffer value at run time, the first process to connect to the file with the FILE
GLOBAL_BUFFER_COUNT attribute (FAB field FAB$W_GBC) greater than 0 can set this value.
The default value returned in the FAB$W_GBC field following an Open (or Create) service may be
altered if unacceptable before invoking the Connect service. When a previous or subsequent application
program attempts to open and connect to the file, the global buffer count determines whether or not that
process uses global buffers. If the value is 0, that process uses only local buffers if the value is greater
than 0, that process uses global buffers along with other processes. Refer to the VSI OpenVMS Record
Management Services Reference Manual for additional information on the use of the FAB$W_GBC field
and Connect service. An example of a routine that sets the global buffer count after opening a file is
provided in Example 5.2, "Selecting the USEROPEN Option to Call a Routine".

To request that the global buffer cache be read-only, specify SHARING GET and SHARING
MULTISTREAMING attributes (FAB$B_SHR field FAB$V_SHRGET and FAB$V_MSE).

When modifying an application program to use global buffers, consider using more global buffers and
slightly larger bucket sizes if records are processed randomly. For application programs with many users,
consider allocating a number of global buffers equal to the number of local buffers used previously,
multiplied by number of users (if resources permit):

No. Global Buffers = No. Local Buffers x Average No. Users

When using an indexed file, if the index structure is small and the number of users is many, consider
allocating enough global buffers to keep the entire index structure in memory.

For shared sequential file operations, the first accessor of the file uses the multiblock count value to
establish the global buffer size for all subsequent accessors.

7.3.6.1. Enhancing Global Buffer Performance
OpenVMS includes enhancements that improve RMS global buffer performance. These features are
greater scalability, greater concurrent access to the global section, and read-mode bucket locking for
shared access to global buffers.

Greater Scalability

RMS implements an algorithm for global buffer management that dramatically improves scalability. The
performance associated with the previous algorithm effectively limited the maximum number of global
buffers on large, shared files. With this change, you may increase the number of global buffers on these
files to the full limit of 32,767 to fully exploit large memory systems.

193

Chapter 7. File Sharing and Buffering

Concurrent Access

RMS synchronizes access to the global section that is used for RMS global buffers by using inline
atomic instruction sequences rather than distributive locking. This change allows more concurrent access
to the section, particularly on symmetric multiprocessing machines (SMP).

Greater scalability benefits those who wish to use very large global buffer counts. Concurrent access to
the global section helps any application using global buffers where contention on the global section itself
is a bottleneck.

Note

By increasing the number of global buffers on specific files, you may need to increase the size of some
of the system resources. In particular, you may need to increase the sysgen parameters GBLPAGES,
GBLPAGFILE, or GBLSECTIONS. In addition, you may need to increase the process working set size
and the page file quota.

Read-Mode Bucket Locking (Alpha Only)

RMS reduces locking for shared access to global buffers and improves performance with its
implementation of read-mode global bucket locking, which has the following functionality:

● Allows concurrent read access to the global buffers. Accesses are no longer serialized, waiting to
acquire an exclusive lock for a read access.

● Caches the read-mode lock as a system lock, which is retained over accesses and only lowered to null
when the lock is blocking an exclusive write request. This functionality significantly reduces both
local and remote lock request traffic (the number of $ENQ and $DEQ system service calls) as well
as associated IPL-8 spinlock activity and System Communications Services (SCS) messages for a
cluster.

● Does not increase lock resource names or the number of active system or process locks on the
system.

● Is functionally compatible in mixed version clusters that include both Alpha and VAX computers.

This functionality applies to read operations (using the $GET and $FIND services) for all three file
organizations: sequential, relative, and indexed. It also applies to a write operation (using the $PUT
service) for the read accesses used for index buckets the first time through an index tree for the write.

You do not need to change existing applications to implement the read-only global bucket locks.
However, global buffers must be set on a data file to take advantage of the enhancement. Use the
following DCL command, where n is the number of buffers:

$ SET FILE/GLOBAL_BUFFER=n <filename>

For information about specifying the number of buffers, refer to the VSI OpenVMS DCL Dictionary. For
general information about using global buffers, refer to the Guide to OpenVMS File Applications [https://
docs.vmssoftware.com/guide-to-openvms-file-applications/].

In a mixed cluster environment where there may be high contention for specific buckets, the Alpha
nodes that are using read-mode global bucket locking may dominate accesses to write-shared files,
thereby preventing timely access by other nodes.

194

https://docs.vmssoftware.com/guide-to-openvms-file-applications/
https://docs.vmssoftware.com/guide-to-openvms-file-applications/
https://docs.vmssoftware.com/guide-to-openvms-file-applications/

Chapter 7. File Sharing and Buffering

With the /CONTENTION_POLICY= keyword qualifier to the SET RMS_DEFAULT command, you can
specify the level of locking fairness at either the process or system level for environments that experience
high contention conditions.

For more information about using the /CONTENTION_POLICY= keyword qualifier, refer to the VSI
OpenVMS DCL Dictionary.

195

Chapter 7. File Sharing and Buffering

196

Chapter 8. Record Processing
This chapter describes record processing to help you use the run-time record operations described in
Chapter 9, "Run-Time Options". This chapter provides information about the following subjects:

● Record operations appropriate to high-level languages

● Record operations for file organizations

● Record environment as it relates to record positioning

● Synchronous versus asynchronous record operations

8.1. Record Operations
Record operations are performed by OpenVMS RMS (hereafter referred to as RMS) primary or
secondary services. Primary services have functional equivalents in high-level language record
operations, whereas secondary services are specific to RMS functions.

Section 8.2, "Primary Services" describes the five primary services. For a brief description of the
secondary services, refer to Section 8.3, "Secondary Services", and for more detailed descriptions of the
secondary services, refer to the VSI OpenVMS Record Management Services Reference Manual.

8.2. Primary Services
This section describes the five services that are functionally similar to related high-level language
operations. The following table provides a brief description of each of these services and cites the
similarities to high-level languages:

Find The Find service locates an existing record in the
file. It does not return the record to your program;
instead it establishes the record's location as the
current-record position in the record stream. The
Find service, when applied to a disk or magnetic
tape file, corresponds to the FIND statement in
BASIC and Fortran, the START statement in
COBOL, the FIND and LOCATE statements in
Pascal, and the READ statement with the SET
keyword for PL/I.

Get The Get service returns the selected record to
your program. The Get service, when applied to
a disk or magnetic tape file, corresponds to (is
used by) the GET statement in BASIC; the READ
statement in COBOL, Fortran, and PL/I; and the
GET statement (and others) in Pascal.

Put The Put service inserts a new record in the
file. The Put service, when applied to a disk
or magnetic tape file, corresponds to the PUT
and PRINT statements in BASIC, the WRITE
statement (and others) in COBOL, the WRITE
statement in Fortran and PL/I, and the PUT and
WRITELN statements in Pascal.

197

Chapter 8. Record Processing

Update The Update service modifies an existing disk file
record. The Update service corresponds to the
UPDATE statement in BASIC and Pascal and to
the REWRITE statement in COBOL, Fortran, and
PL/I.

Delete The Delete service erases records from relative
disk files and indexed disk files. The Delete service
corresponds to the DELETE statement in BASIC,
COBOL, Fortran, Pascal, and PL/I.

A single statement in a high-level language may correspond to one or several RMS record-processing
service calls. For example, the COBOL statement DELETE uses the Delete service during sequential
record access, but it uses the Find and Delete services during random record access.

File organization in part determines the types of record operations that a program can perform. Table
8.1, "Record Operations and File Organizations" shows the major record operations that RMS permits
for each file organization.

Table 8.1. Record Operations and File Organizations

Record Operation File Organization

Permitted Sequential Relative Indexed

Get Yes Yes Yes
Put Yes1 Yes Yes
Find Yes Yes Yes
Delete No Yes Yes
Update Yes 2 Yes Yes

1In a sequential file, RMS allows records to be added at the end of the file only. (Records can be written to other points in the file by using a Put
service with the update-if option.)
2When performing an Update service to a sequential file containing fixed-length records, you cannot change the length of the record. The
Update service is allowed only on disk devices.

The remainder of this section briefly describes the record retrieval (Find and Get) services, the record
insertion (Put) service, the record modification (Update) service, and the record deletion (Delete)
service. Note that all references to services imply applicability to similar functional capabilities found in
high-level languages.

8.2.1. Locating and Retrieving Records
You can use the Find and Get services to locate and retrieve a record. The Find service locates a record
and establishes its location as the current-record position in a record stream but does not return the
record to a buffer. The Get service locates the record, establishes its location as the current-record
position in the record stream, and returns it to the buffer area you specify.

If you use the Get service, you must allocate a buffer area in the data portion of your program to store
the retrieved record by defining an appropriate variable or multivariable record structure in the program.

Note

When you invoke the Get service, RMS takes control of the record buffer and may modify it. RMS
returns the record size but it can guarantee record integrity only from the access point to the end of the
record.

198

Chapter 8. Record Processing

In addition to retrieving the record, RMS returns to your program the length of the record (in control
block field RAB$W_RSZ, record size) and the file address of the record (in control block field RAB
$L_RBF, record buffer). If you direct RMS only to locate the record, it does not write the record into
your buffer. Instead, it sets the RAB$W_RSZ and RAB$L_RBF fields to point to an internal buffer
where the record is located.

When using indexed files, you may need to allocate a buffer for the desired key and to specify its length.
When using high-level languages, the language's compiler may automatically handle the allocation and
size specification of the record buffer and the key buffer.

In some applications, you can minimize record I/O and improve performance by using the Find service
instead of the Get service. For example, a process does not have to retrieve a record when it is preparing
to invoke the Update, Delete, Release, or Truncate service. If a process intends to update a record that is
accessible to other processes, it should lock the record until it completes the update.

For interactive applications where the user verifies that the appropriate record is being accessed before
deleting it or updating it, the program should use the Get service instead of the Find service.

In some situations, a process may use two services and two types of record access to retrieve a set of
records. For example, the process might use the Find service and random access mode to locate the first
record in the set and then switch to the Get service for sequentially retrieving the records in the set.

An efficient use of the Find service is to create a table of RFAs (record file addresses) to be used for
rapidly accessing the records in the same file.

Record retrieval operations are typically used to repetitively read and process a set of records. As part
of this type of operation, your program should check for an end-of-file condition after each Find or Get
service.

For more information about the Find and Get services, refer to the VSI OpenVMS Record Management
Services Reference Manual.

8.2.2. Inserting Records
The Put service adds a record to the file. Within the data portion of your program, you must provide a
buffer for the record to be added. When calling RMS directly, the program must also supply the length
of each record to be written. This is a constant value with fixed-length records but varies from record
to record when adding variable-length or VFC records. When using high-level languages, however, the
language's compiler may automatically specify the record buffer size or supply a means to simplify its
specification.

The current-record position is especially important when adding records to a sequential file. RMS
establishes the current-record position at the end of file for any record stream associated with a file
opened for adding records. To add records to a relative file or to an indexed file, use random access (by
key or record number), unless the program adds records sequentially by a specified ordering of primary
keys or by relative record number.

The update-if option replaces an existing record using the Put service when you choose random access
mode. When superseding existing records, consider using this option to add records to a relative or
indexed file. A program can use the update-if option to update a record in a sequential file that is being
accessed randomly by relative record number.

Be careful with automatic record locking when you use this option for a shared file because the Put
service briefly releases record locks applied by the Get or Find service before the Update operation

199

Chapter 8. Record Processing

begins. This could permit another record stream to delete or update the record between the time that the
program invokes the Put service and the beginning of the Update service.

Consider using the Update service instead of the Put service with the update-if option to update an
existing record in a shared file.

When a file contains alternate keys with characteristics that prohibit duplicate values, the application
must be prepared to handle duplicate-alternate-key errors.

For more information about the Put service, refer to the VSI OpenVMS Record Management Services
Reference Manual.

8.2.3. Updating Records
The Update service modifies an existing record in a file. Your program must first locate the appropriate
record and optionally retrieve the record itself, by calling either the Find service or the Get service. As
with the Put service, your program must provide a buffer within the data portion of the program to hold
the record that is to be updated.

When calling RMS directly, the program must also supply the length of each record to be written. This
is a constant value when updating fixed-length records but varies from record to record when updating
variable-length records or VFC records. Note that some high-level language compilers may automatically
handle record buffer allocation and size specification or may supply a means to simplify its specification.

Your program must establish the current-record position before it updates a record. If the file is shared,
the service that establishes the record position should also lock the record.

When you update indexed file records, take care not to alter the value of any key field that has been
specified as unchangeable, for example, the primary key. To change the value of a record's primary key,
you must replace the existing record with a new record having the desired primary key value. You can do
this using the Put and Delete services respectively, or, where applicable, you may use the Put service with
the update-if (RAB$L_ROP RAB$V_UIF) option.

When updating indexed file records, you do not have to specify the key of reference.

For more information about the Update service and record-processing options, refer to the VSI
OpenVMS Record Management Services Reference Manual.

8.2.4. Deleting Records
The Delete service removes a record from the file. You cannot delete individual records from sequential
files, but you can truncate sequential files using the Truncate service. As with the Update service, the
Delete service must be preceded by a Find or Get service to establish the current-record position.

When deleting records from an indexed file with alternate indexes, you can specify the fast-delete option
to reduce the amount of time needed to delete a record. When you invoke the Delete service and specify
the fast-delete option, RMS does not attempt to remove any of the pointers from alternative indexes to
the deleted record.

You improve performance by postponing the processing needed to eliminate the pointers from
alternative indexes to the record. However, there are disadvantages to using the fast-delete option:

● The unused pointers from the alternate indexes result in a corresponding waste of space.

200

Chapter 8. Record Processing

● If the program later tries to access the deleted record from an alternate index, RMS must traverse
the pointer linkage, find that the record no longer exists, and then perform the processing that was
avoided originally with the Delete service.

Use the fast-delete option only if the immediate improvement in performance is worth the added space
and overhead. Typically, you use the fast-delete option for indexed files that implement alternate keys
and require frequent maintenance.

Conversely, avoid the fast-delete option for most read-only indexed files and for indexed files that are
infrequently updated.

For more information about the Delete service, refer to the VSI OpenVMS Record Management Services
Reference Manual.

8.3. Secondary Services
This section provides very brief descriptions of the secondary services. Note that each of the services
performs a specialized function with few options.

Connect Allows you to connect to a single record stream or
to multiple record streams.

Disconnect Allows you to disconnect a record stream. This
is done implicitly when a file is closed, but when
using multiple record streams, you may want to
disconnect one record stream but not others.

Flush Writes modified I/O buffers and file attribute
information maintained in memory to the file.

Free Releases all record locks established by the current
record stream.

Next Volume Continues the next volume of a magnetic tape
volume set. This service applies only to sequential
files.

Release Releases the record lock on the current record.
Rewind Positions the record stream context to the first

record of the file.
Truncate Truncates a file beginning with the current record,

effectively deleting it and all remaining records.
This service applies only to sequential files.

Wait Awaits the completion of an asynchronous record
operation (or Connect service).

In addition to the record-processing services, a variety of file-processing services are also available. For
more information about both types of processing services and the options that apply to each, see the VSI
OpenVMS Record Management Services Reference Manual.

8.4. Record Access for the Various File
Organizations
To retrieve or insert a file record for a particular record stream, your program must specify either
sequential or random access.

201

Chapter 8. Record Processing

Sequential access can be used with all file organizations. For sequential files, sequential access implies
that records are accessed according to their physical position in the file. For relative files, sequential
access implies that records are accessed according to the ascending order of relative record numbers.
In indexed files, sequential access implies that records are accessed according to a specified ordering of
values for a particular key or keys.

Random access is defined as one of the following:

● Random access by key for indexed files implies that RMS uses the specified key value (contained
within the record itself) to locate the desired record.

● Random access by relative record number for relative files and for sequential files having fixed-
length records implies that the specified relative record number is used to locate the desired record.
The relative record number does not necessarily reside in the record.

● Random access by RFA implies that the specified RFA is used to locate the desired record. This
access mode is supported for all three file organizations and is normally available only to programs
written in VAX MACRO or similar low-level languages.

Record access is specified using language statements or by establishing the appropriate control block
field values (not offset values) in the RAB.

Note

No FDL attributes are provided for specifying record access.

The appropriate RAB values in the access mode specification field, identified by the symbolic offset
RAB$B_RAC, are as follows:

● You specify sequential access by inserting the value RAB$C_SEQ in the RAB$B_RAC field.

● You specify either random access by key or random access by relative record number by inserting
the value RAB$C_KEY in the RAB$B_RAC field. This access mode is used to randomly access
records in indexed files using a specified key value. It is also used to randomly access records by
record number in relative files and in sequential files having fixed-length records.

● You specify random access by RFA for all file organizations by inserting the value RAB$C_RFA in
the RAB$B_RAC field.

Your program may also need to specify the key or other record identifier needed to access the records.
For indexed files, there are additional key-related options.

The record access mode can be changed without reopening the file or reconnecting the record stream.
For example, you can use random access by key to establish the current-record position in an indexed file
and then retrieve records sequentially by a specified sort order. Note, however, that changing modes in
this manner requires program access to the RAB$B_RAC control block field at run time.

The record access mode, in conjunction with the file organization, is what determines the manner
in which a record is selected. In the following sections, the sequential and random access modes are
discussed in the context of the applicable file organizations. Random access by RFA is discussed
separately because it applies to disk files, regardless of file organization.

The following discussion of record access modes is directed primarily toward services that insert records
and services that retrieve records. For additional details about these services, see the VSI OpenVMS
Record Management Services Reference Manual.

202

Chapter 8. Record Processing

8.4.1. Processing Sequential Files
A program can read sequential files on both tape and disk devices using the sequential record access
mode. If the file resides on disk, the random access by RFA mode can be used to read records, and if the
file uses the fixed-length record format, the random access by relative record number mode is permitted.

You can add records only to the end of a sequential file.

All record access modes permit you to establish a new current-record position in a sequential file using
the Find service. With sequential access, the Find service permits you to skip over records. With either
random access by relative record number or random access by RFA, the Find service establishes a
starting point for sequential Get services.

You cannot randomly delete records from a sequential file. However, you can randomly update records
in a sequential file if the file is on disk and if the update does not change the record size.

The following sections discuss the use of sequential and random access modes with sequential files.

8.4.1.1. Sequential Access
The sequential access mode is supported for sequential files on all devices. It is the only record access
mode that is supported for nondisk devices, such as terminals, mailboxes, and magnetic tapes.

With sequential access, RMS returns records from sequential files in the order in which they were
stored. When a program has retrieved all of the records from a sequential file, any further attempt to
sequentially access records in the file causes RMS to return an end-of-file (no more data) condition code.

In sequential access mode, you can add records only to the end of a sequential file, that is, the file
location immediately following the current-record position.

8.4.1.2. Random Access
You can use the relative record number to randomly retrieve and insert records in sequential files having
fixed-length records. Records are numbered in ascending order, starting with number 1.

In a sequential file, records are usually inserted at the end of the file. To insert records randomly within
the current boundaries of the file at a relative record number less than or equal to the highest record
number, set the update-if option (FDL attribute CONNECT UPDATE_IF; RAB$L_ROP bit RAB
$V_UIF) to overwrite existing records.

When accessing a sequential file randomly by relative record number, your program must provide the
record number at symbolic offset RAB$L_KBF and must specify a key length of 4 at symbolic offset
RAB$B_KSZ, in the RAB.

8.4.2. Processing Relative Files
The relative file organization permits greater program flexibility in performing record operations than
the sequential organization. A program can read existing records from the file using sequential, random
access by relative record number mode or random access by RFA mode. You can write new records
either sequentially or randomly, as long as the intended record location (cell) does not already contain a
record. You can also delete records.

All record access modes for relative files allow you to establish the current-record position using the Find
or Get service. After finding the record, RMS permits you to delete the record from the relative file.
After the record is deleted, the empty cell becomes available for a new record. In addition, your program

203

Chapter 8. Record Processing

can update records anywhere in the file. For variable-length records, the Update service can modify the
record length up to the maximum size specified when the file was created.

When you insert a record into a relative file, the record is placed in a fixed cell within the file. A cell
within a relative file can contain a record, can be vacant (never have contained a record), or can contain a
deleted record.

The following sections discuss the sequential and random access modes for relative files.

8.4.2.1. Sequential Access
For relative files, the sequential access mode can be used to retrieve successive records in ascending
record number. Vacant cells and cells that contain deleted records are skipped over automatically.

8.4.2.2. Random Access
You can directly read a record within a relative file by specifying the appropriate relative record number.
If you attempt to read from a nonexistent cell—that is, a vacant cell or a cell containing a deleted record
—RMS returns an error message.

To position the record stream at a particular cell, regardless of whether or not it contains a record, use
the nonexistent-record option (FDL attribute CONNECT NONEXISTENT_RECORD), or set the RAB
$V_NXR bit in the RAB$L_ROP field.

You can use the forward search key options (equal-or-next-key and next-key) to directly access records
in relative files, but the reverse search key options are not supported for relative files.

The equal-or-next-key option (FDL attribute CONNECT KEY_GREATER_EQUAL) directs RMS
to return a record having a record number equal to or greater than the specified record number. For
example, when you specify record number 48, RMS returns record number 48. If RMS does not find
record number 48, it returns the first record it encounters having a number greater than 48.

The next-key option (FDL attribute CONNECT KEY_GREATER_THAN) directs RMS to return the
record that has the next greater record number. For example, when you specify record number 48, RMS
returns record number 49, if record 49 exists.

You can also use random access mode to insert records into relative files. You can even overwrite cells
that contain records by selecting the update-if option (FDL attribute CONNECT UPDATE_IF) or by
directly setting the RAB$V_UIF bit in the RAB$L_ROP field.

To access a relative file randomly by record number, your program must contain the relative record
number in the RAB at symbolic offset RAB$L_KBF and the key length value 4 at symbolic offset RAB
$B_KSZ.

8.4.3. Processing Indexed Files
Indexed files provide the most record-processing flexibility. Your program can read existing records
from the file in sequential, random access by RFA mode or random access by key mode. RMS also
allows you to write any number of new records into an indexed file if you do not violate a specified key
constraint, such as not allowing duplicate key values.

In random access by key mode, RMS provides two forward search key options for use with one of four
match options (see Section 8.4.3.2, "Random Access"). A reverse search key option permits reverse
random access when used in combination with either of the two forward search key options.

The search key options are:

204

Chapter 8. Record Processing

● The equal-or-next-key option (FDL attribute CONNECT KEY_GREATER_EQUAL) searches the
file forward (toward the end of the file) to return the next record whose key value is equal to or
greater than the current key of reference, according to sort order.

● The next-key option (FDL attribute CONNECT KEY_GREATER_THAN) searches the file forward
(toward the end of the file) to return the record whose key value is greater than the current key of
reference, according to sort order.

● The reverse search key option is used with either the equal-or-next-key option or the next-key option
to access selected records in reverse order. (This option does not reverse the direction of sequential
access operations, which are always done in the forward direction, according to sort order.)

If the reverse search key option is used with the equal-or-next-key option, RMS searches the file
backward (toward the beginning of the file) to return the previous record whose key value is equal to
or less than the current key of reference, assuming according to sort order.

If the reverse search key option is used with the next-key option, RMS searches the file backward
(toward the beginning of the file) to return the previous record whose key value is less than the
current key of reference, according to sort order.

Table 8.2, "Search Key Types" lists the search key types for each option combination. Note that three of
the listed combinations are not supported (not allowed) and result in the return of an error message.

Table 8.2. Search Key Types

Search Key Option Settings

Search Key Type Reverse Equal or Next Next

Equal 1 Off Off Off
Equal or greater than Off On Off
Greater than Off Off On
Not allowed Off On On
Not allowed On Off Off
Equal or less than 2 On On Off
Less than (previous) On Off On
Not allowed On On On

1Default forward search key
2Default reverse search key

If you use the reverse search key option with a set of records that has duplicate keys, only the first record
in the set is returned. An application that needs to access all records having duplicate key values requires
additional compiler or program logic.

On-disk data structures are designed to provide optimum performance for forward searches. Reverse
search performance may be diminished, especially for applications that process long chains of deleted
records. To take advantage of built-in caching that improves performance when retrieving successive
previous records, specify full key sizes and select the next-key option.

The following C program demonstrates the use of the search key option. The program reads the last and
the next-to-last records in a file.

/*
 REVERSE-SEARCH

205

Chapter 8. Record Processing

 The file is defined by the logical INFILE, and has record and
 key sizes defined below.
*/

#include <rms> /* defines rabs and fabs */
#include <stdio> /* defines printf */
#include <string> /* defines strlen */
#include <stdlib> /* defines exit */
#include <starlet> /* defines sys$open, et al */

#define RECORD_SIZE 80
#define KEY_SIZE 10

char INPUT_NAME[] = "INFILE";

struct FAB infab;
struct RAB inrab;

error_exit (code, value)
long code;
long value;
{
 void lib$signal();
 lib$signal (code, value);
 exit (0);
}

main ()
{
 char record [RECORD_SIZE + 1]; /* record buffer */
 char key [KEY_SIZE + 1]; /* key buffer */
 long status;

 /* Set up input fab */
 infab = cc$rms_fab;
 infab.fab$b_fac = FAB$M_GET | FAB$M_PUT | FAB$M_UPD | FAB$M_DEL;
 infab.fab$b_shr = FAB$M_SHRGET | FAB$M_SHRPUT | FAB$M_SHRUPD
 | FAB$M_SHRDEL; /* read/write sharing */
 infab.fab$l_fna = INPUT_NAME; /* logical name INFILE */
 infab.fab$b_fns = sizeof INPUT_NAME - 1;

 /* Set up input rab */
 inrab = cc$rms_rab;
 inrab.rab$l_fab = &infab;
 inrab.rab$b_rac = RAB$C_KEY; /* key access */
 inrab.rab$l_rop = RAB$M_REV | RAB$M_NXT;
 /* reverse-search, next */
 inrab.rab$b_krf = 0; /* access by primary key */
 inrab.rab$l_ubf = record; /* record buffer */
 inrab.rab$w_usz = RECORD_SIZE; /* maximum record size */

 /* Open and connect */
 status = sys$open (&infab);
 if (! (status & 1))
 error_exit (status, infab.fab$l_stv);
 status = sys$connect (&inrab);
 if (! (status & 1))
 error_exit (status, inrab.rab$l_stv);

206

Chapter 8. Record Processing

 /* Set key larger than the largest possible real key */
 strcpy (key, "~");
 inrab.rab$l_kbf = key; /* key buffer */
 inrab.rab$b_ksz = 1; /* set key length */

 /* Get and display the last record */
 status = sys$get (&inrab);
 if (! (status & 1))
 error_exit (status, inrab.rab$l_stv);
 record[inrab.rab$w_rsz] = '\0';
 printf ("Record: {%s}\n", record);

 /* Set key to the (just-read) largest key */
 inrab.rab$l_kbf = record; /* key buffer */
 inrab.rab$b_ksz = KEY_SIZE; /* set key length */

 /* Get and display the next-to-last record */
 status = sys$get (&inrab);
 if (! (status & 1))
 error_exit (status, inrab.rab$l_stv);
 record[inrab.rab$w_rsz] = '\0';
 printf ("Record: {%s}\n", record);

 /* Close file */
 status = sys$close (&infab);
 if (! (status & 1))
 error_exit (status, infab.fab$l_stv);
}

You can use the Find service (similar to the Get service), in sequential access mode, random access by
RFA mode, or random access by key access mode. When finding records in random access by key access
mode, your program can specify any one of the four types of key matches (exact, generic, approximate,
generic/approximate) described in Section 2.1.1.2, "Random Access by Key Value or Relative Record
Number" and Section 8.4.3.2, "Random Access".

In addition to reading, writing, and finding a record, your program can delete or update any record in an
indexed file if the operation does not violate specified key characteristics. For example, if the program
specifies that key values cannot be changed, any update that attempts to change a key value is rejected.

The next section describes how indexed files are used with the sequential and random access by key
modes.

8.4.3.1. Sequential Access
You can use sequential record access mode to retrieve successive records in an indexed file. RMS
retrieves the records in successive order by the specified sort order for a key of reference. The key of
reference (for example, primary key, first alternate key, second alternate key, and so forth) is established
through one of the following services:

● The Connect service.

● The Rewind service.

● The Find service or the Get service using random access. (Note that a Get or Put service specifying
random access by RFA always establishes the key of reference as the primary key.)

207

Chapter 8. Record Processing

When the sequential access mode is used with the Put service to insert records into an indexed file,
successive records must be in the specified sort order by primary key.

8.4.3.2. Random Access
One of the most useful features of indexed files is that you can randomly retrieve records by the record's
key value. A key value and a key of reference (such as a primary key, first alternate key, and so forth)
can be specified as input to the record-processing service. RMS searches the specified index to locate the
record with the specified key value.

When reading records in random access by key mode, your program may specify one of four types of
key matches:

● Exact key match

● Approximate key match

● Generic key match

● Approximate and generic key match

Exact match requires that the record's key value precisely match the key value specified by the program's
Get service.

Approximate key match allows the program to select one of the following options:

● Equal-or-next-key option

● Next-key option

● Reverse equal-or-next-key option

● Reverse next-key option

The advantage of using an approximate key match is that your program can retrieve a record without
knowing its precise key value. RMS uses the approximations in your program to return the record with
the key value nearest the specified value.

If you elect to use a generic key match, your program need provide only a specified number of leading
characters in the key, for example, the first 5 bytes (characters) of a 10-byte string data-type key.

Note

The string data-type keys include STRING, DSTRING, COLLATED, and DCOLLATED keys.

RMS uses this information to return the first record with a key value that begins with these characters
and meets the specified sorting order requirement. This is useful when attempting to locate a record
when only part of the key is known or for applications in which a series of records must be retrieved
when only the initial portions of their key values are identical. Generic key match is available for string
keys only.

For example, if the program specifies the next-key option with a generic match on the three characters
RAM using ascending sort order, RMS returns records with key values RAMA, RAMBO, and RAMP in
that order. A record having the same key value RAM is not returned. If you specify the next-key option
and descending sort order, RMS returns records with key values RAMP, RAMBO, and RAMA in that
order.

208

Chapter 8. Record Processing

When a generic key match is used with various approximate key match options, the results can vary, as
shown in the following example. Consider using a key value of ABB to access records having key values
of ABA, ABB, and ABC, respectively.

● If the program elects to use the equal-or-next-key option with ascending sort order and a 3-character
generic match, RMS returns the record containing the key ABB.

● If the program uses the next-key option with ascending sort order and a 3-character generic match,
RMS returns the record with key value ABC.

● If the program uses the equal-or-next-key option with ascending sort order and a 2-character generic
match, RMS returns the record with key value ABA.

Now observe the effects of varying the search key option and the length of the generic string.

● If the program uses the next-key option with descending sort order and a 3-character generic match,
RMS again returns the record with key value ABA.

● If the program uses the next-key option with descending sort order and a 2-character generic match
(AB), RMS returns a record-not-found condition because none of the records has a key that begins
with the letters AA.

Now consider an example of how to return all the records in a file with key values that match the generic
string AB.

1. Specify the generic string value of AB (2-byte key) in random access by key mode.

2. Use the Get service (or the Find services) to access the first record.

3. Change the record access mode to sequential.

4. Access the next record.

5. Compare the first two characters of the returned record's key with the first two characters of the
specified key.

6. If the two key values are the same, process the record and return to step 4. If the two keys differ,
do not process the record; instead, proceed to the next task (may require changing back to random
access by key).

This procedure can be used to return all records that match a specified duplicate key for a key that allows
duplicates. An alternative to checking the characters is to specify an ending key value and set the key-
limit option when the record access mode is changed to sequential.

When accessing an indexed file randomly by key, the key value must reside in the area of memory
identified by the control block offset RAB$L_KBF. When using string keys, you should specify the key
length in the location identified by control block offset RAB$B_KSZ.

8.4.4. Access by Record File Address (RFA)
Random access by RFA is supported for all disk files. Whenever RMS successfully accesses a record,
an internal representation of the record's location is returned in the 6-byte RAB field RAB$W_RFA.
When a program wants to retrieve the record using random access by RFA, RMS uses this internal data
to retrieve the record.

209

Chapter 8. Record Processing

One way to use RFA access is to establish a record position for later sequential accesses. Consider
a sequential file with variable-length records that can only be accessed randomly using RFA access.
Assume the file consists of a list of transactions, sorted previously by account value. Because each
account may have multiple transactions, each account value may have multiple records for it in the file.
Instead of reading the entire file until it finds the first record for the desired account number, it uses a
previously saved RFA value and random access by RFA to set the current-record position using a Find
service at the first record of the desired account number. It can then switch to sequential record access
and read all successive records for that account, until the account number changes or the end of the file
is reached. Figure 8.1, "Using RFA Access to Establish Record Position" shows how the file is accessed
for account C.

Figure 8.1. Using RFA Access to Establish Record Position

8.5. Block Input/Output
Block input/output (I/O) lets you bypass the record-processing capabilities entirely. In this manner, your
program can process a file as a virtually contiguous set of blocks.

Block I/O operations provide an intermediate step between operations and direct use of the Queue I/
O Request system service. Using block I/O gives your program full control of the data in the individual
blocks of a file while being able to take advantage of the RMS capabilities for opening, closing, and
extending a file.

In block I/O, a program reads or writes one or more blocks by specifying a starting virtual block number
in the file and the length of the transfer. Regardless of the organization of the file, RMS accesses the
identified block or blocks.

Because RMS files contain internal information meaningful only to RMS itself, VSI does not
recommend that you modify an existing file using block I/O if the file is also to be accessed by record-
level operations. (Block I/O does not update any internal record information.) The block I/O facility,
however, does allow you to create your own file organizations. This file structure must be maintained
through specialized user-written programs and procedures; RMS cannot access these structures with its
record access modes.

For more information about using block I/O, see the VSI OpenVMS Record Management Services
Reference Manual.

8.6. Current Record Context
For each RAB connected to a FAB, RMS maintains current context information about the record stream
including the current-record position and the next-record position. Furthermore, the current context is
different for the various services, as shown in Table 8.3, "Record Access Stream Context".

The current record context is internal to RMS; you have no direct contact with it. However, you should
know the context for each service in order to properly access records when you invoke a service.

210

Chapter 8. Record Processing

Table 8.3. Record Access Stream Context

Service Access Mode Current Next

Connect Not applicable None First record
Connect with RAB
$L_ROP RAB$V_EOF
bit set

Not applicable None End of file

Get, when last service
was not a Find

Sequential Old next record New current record+1

Get, when last service
was a Find

Sequential Unchanged Current record+1

Get Random New New current record+1
Put, sequential file Sequential None End of file
Put, relative file Sequential None Next record position
Put, indexed file Sequential None Undefined
Put Random None Unchanged
Find Sequential Old next record New current record+1
Find Random New Unchanged
Update Not applicable None Unchanged
Delete Not applicable None Unchanged
Truncate Not applicable None End of file
Rewind Not applicable Unchanged First record
Free Not applicable None Unchanged
Release Not applicable None Unchanged

Notes to Table 8.3, "Record Access Stream Context":

1. Except for the Truncate service, RMS establishes the current-record position before establishing the
next-record position.

2. The notation “+1” indicates the next sequential record as determined by the file organization. For
indexed files, the current key of reference is part of this determination.

3. The Connect service on an indexed file establishes the next record to be the first record in the index
represented by the RAB key of reference (RAB$B_KRF) field.

4. The Connect service leaves the next record as the end of file for a magnetic tape file opened for Put
services (unless the FAB$V_NEF option in the FAB$L_FOP is set).

8.6.1. Current-Record Position
For the Update, Delete, Release, and Truncate services, the current-record position reflects the location
of the target record. The current-record position also facilitates sequential processing on disk devices for
a stream.

The following list describes situations where the current-record position is undefined:

● When a RAB is first connected to a FAB

211

Chapter 8. Record Processing

● When a record operation is unsuccessful

● Following the successful execution of a service other than a Get service or Find service

When the current-record position is undefined, RMS rejects the Update, Delete, Release, or Truncate
service.

A Get service using sequential record access mode and immediately preceded by the Find service
operates on the record specified by the current-record position. If the Find service does not lock the
record (for relative and indexed files) and the current record is deleted, the Get service accesses the
record at the next-record position.

Following successful execution of the Get service or the Find service, the current-record position is set
to the target record's RFA. RMS also places the target record's address in the RFA field of the related
RAB. The results are as follows:

● After initialization, the current-record position reflects the RFA of the record that was the object of
the most recent successful Get service or Find service (unless a failure occurs on a different service).

● Unless it is modified, the RAB$W_RFA field always contains the address of the target current
record. (If the operation fails, the RFA is undefined.)

Table 8.3, "Record Access Stream Context" summarizes the effect that each successful record operation
has on the context of the current record.

8.6.2. Next-Record Position
RMS uses the next-record position for doing sequential record access. For sequential record processing,
the next-record position is the location of the target record for the next Find service (Get service where
appropriate) or Put service. In a relative file, the target record is the record that occupies the next
nonvacant cell.

The ability to look ahead significantly decreases access time for sequential processing. RMS uses its
internal knowledge of file organization and structures to determine the next-record position for each
record service.

The Connect service initializes the next-record position to one of the following locations:

● The first record in a sequential file or the first cell in a relative file

● The first record in the collated sequence of the specified key of reference in an indexed file

● The end of a file on disk, if the RAB$L_ROP field RAB$V_EOF option is set

● The end of a write-accessed ANSI magnetic tape file, unless the FAB$V_NEF option is set in the
FAB$L_FOP field

In any record access mode, the Get service establishes the next-record position as either the next record
or the next record cell in the file. This is also true for the Find service in sequential access mode.

The Truncate service establishes the end of the file at the current-record position (effectively deleting the
record at that location and all records following it) so you need only use Put services to extend the file.
Note that you can truncate only sequential files.

In random access mode, the Find (or Get) service and the Put service do not affect the next-record
position, unless these services are used to add a record with a primary key value or a record number

212

Chapter 8. Record Processing

that lies between the corresponding values of the current record and the next record (previous record
for reverse search key options). When this occurs, the current-record position is changed to reflect the
location of the added record; that is, records are added after the current record, not before the next
record.

In sequential access mode, the Put service initializes the next-record position to the end of the file in a
sequential file. In a relative file, the Put service initializes the next-record position to the next record or
record cell. For sequential accesses to an indexed file, the Put service does not define the next-record
position.

Regardless of access mode, the Delete, Update, Free, and Release services have no effect on the next-
record position. For sequential and relative files, the Rewind service establishes the next-record position
as the first record or record cell in the file, regardless of the access mode. For indexed files, the Rewind
service always establishes the next-record position as the location of the first record for the current key
of reference.

Any unsuccessful record operation has no effect on the next record.

8.7. Synchronous and Asynchronous
Operations
Your program can handle record operations on a file in one of two ways: synchronously or
asynchronously. When operating synchronously, the program issuing the record-operation request regains
control only when the request is completely satisfied. Most high-level languages support synchronous
operation only. In asynchronous operations, the program can regain control before the request is
completely satisfied. You can specify record operations and file operations to be either synchronous or
asynchronous for each record stream.

For instance, when reading a record from a file synchronously, the program regains control only after
the record is passed to the program. In other words, the program waits until the record returns; no other
processing for this program takes place during this read-and-return cycle. On the other hand, when
reading a record asynchronously, the program might be able to regain control before the record is passed
to the program. The program can thus use the time normally required for the record transfer between
the file and memory to perform some other computations. Another record operation cannot be started
on the same stream until the previous record operation is complete. However, record operations on other
streams can be initiated.

Whether the program regains control before the record operation finishes depends on several factors. For
example, the required record may already reside in the I/O buffer, or the operating system may schedule
another process, thus possibly allowing a necessary I/O operation to be completed before the original
program is rescheduled.

One factor to consider in the use of asynchronous record operations is that you must include a separate
completion routine or a wait request in the issuing program. This routine (or wait request) is required
to determine when the record operation is completed because the results of the operation are not
available, and the next record operation for that stream cannot be initiated until the previous operation is
concluded.

8.7.1. Using Synchronous Operations
To declare a synchronous operation, you must clear the RAB$V_ASY option in the RAB$L_ROP field.
Normally, you do not have to clear this option because it is already cleared (by default). However, if the
RAB$V_ASY option had been set previously, then you must explicitly clear it.

213

Chapter 8. Record Processing

Normally, you do not use success and error routines with synchronous operations. Instead, you test the
completion status code for an error and change the flow of the program accordingly. However, if you use
these routines, they are executed as asynchronous system traps (ASTs) before the service returns to your
program (unless ASTs are disabled).

User-mode AST routines may be executed before the completion of a synchronous record operation
(see the VSI OpenVMS Record Management Services Reference Manual). If an AST routine attempts to
perform operations on a record stream that is being called from a non-AST level, it must be prepared to
handle stream-activity errors (RMS$_RSA or RMS$_BUSY).

8.7.2. Using Asynchronous Operations
To declare an asynchronous record operation, you must set the asynchronous (RAB$V_ASY) option
in the RAB$L_ROP field. You can switch between synchronous and asynchronous operations during
processing of a record stream by setting or clearing the RAB$V_ASY option on a per-operation basis.

You can specify completion routines to be executed as ASTs if success or error conditions occur. Within
such routines, you can issue additional operations, but they should also be asynchronous. If they are not,
all other asynchronous requests currently active in your program cannot have their completion routines
executed until the synchronous operation completes.

If an asynchronous operation is not completed at the time of return from a call to a service, the
completion status field of the RAB is 0, and a success status code of RMS$_PENDING is returned in
Register 0. This status code indicates that the operation was initiated but is not yet complete.

Note

Never modify the contents of an RMS control block when an operation is in progress because the results
are unpredictable.

If you issue a second record operation request for the same stream before a previous request is
completed, you receive an RMS$_RSA or RMS$_BUSY error status code, indicating that the record
stream is still active. This can also occur when an AST-level routine attempts to use an active record
stream; the original I/O request may be synchronous or asynchronous. An additional error (RMS
$_BUSY) can be encountered by attempting an operation using the same record stream (RAB) from
an error or success routine when the main program is awaiting completion of the initial operation. In
all cases, it is your responsibility to recognize this possibility and prevent the problem. Most problems
can be prevented by using a Wait service. When the Wait service concludes, it returns control to your
program.

Note that the Connect operation may be performed asynchronously. If the RAB$V_ASY option is set,
a Wait service should follow the Connect service to synchronize with the completion of the Connect
service. Another technique is to use the Connect service synchronously and set the RAB$V_ASY option
at run time, after the Connect service.

214

Chapter 9. Run-Time Options
This chapter describes the way you specify run-time options and summarizes the run-time options
available to you when opening files, connecting record streams, processing records, and closing files. The
run-time options that apply to record processing and to opening and closing a file can usually be preset
by file-open and record stream connection values. Some options can be selected after you open a file and
connect a record stream.

Note that run-time options discussed in previous sections are only summarized in this chapter. Most of
the material in this chapter relates to options not previously described in this document.

9.1. Specifying Run-Time Options
This section describes the way you use the Edit/FDL utility to specify run-time options that are available
to your program through the FDL$PARSE and FDL$RELEASE routines. It also describes the use of
language statements and OpenVMS RMS (hereafter referred to as RMS) to specify control block values.

You select RMS options by setting appropriate values in RMS control blocks within the data portion
of your program. In many cases, you can select these values by using keywords available to you in the
language OPEN statement for your application or by taking suitable default values. The values may be
selected using keywords in your record and file description statements or they may be selected directly
within the OPEN statement.

If your application is written in a language that does not provide keywords for the various features, you
can usually select the options using the File Definition Language (FDL).

Predefined FDL attributes can be supplied to your program at run time using the FDL$PARSE routine.
This routine also returns the address of the record access block (RAB) to let your program subsequently
change RAB values. Some RAB options are not available in FDL and can be set only by directly
accessing RAB fields and subfields at run time. To invoke options after record stream connection, your
program must have direct access to RMS control block fields using the address of the RAB and symbolic
offsets into it.

9.1.1. Using the Edit/FDL Utility
You can use the Edit/FDL utility to specify run-time attributes, such as adding a CONNECT attribute
that is used to set a control block value when the FDL$PARSE and FDL$RELEASE routines are called
by your program. These attributes preset the values available for opening a file and connecting a record
stream.

The following original FDL file was created with the Edit/FDL utility:

IDENT
"19-JUL-1994 14:57:37 OpenVMS FDL Editor"

SYSTEM
 SOURCE VMS

FILE
 ORGANIZATION indexed

215

Chapter 9. Run-Time Options

RECORD
 CARRIAGE_CONTROL carriage_return
 FORMAT variable
 SIZE 0

AREA 0
 ALLOCATION 8283
 BEST_TRY_CONTIGUOUS yes
 BUCKET_SIZE 18
 EXTENSION 2070

AREA 1
 ALLOCATION 18
 BEST_TRY_CONTIGUOUS yes
 BUCKET_SIZE 18
 EXTENSION 18

KEY 0
 CHANGES no
 DATA_AREA 0
 DATA_FILL 100
 DATA_KEY_COMPRESSION yes
 DATA_RECORD_COMPRESSION yes
 DUPLICATES no
 INDEX_AREA 1
 INDEX_COMPRESSION yes
 INDEX_FILL 100
 LEVEL1_INDEX_AREA 1
 PROLOG 3
 SEG0_LENGTH 9
 SEG0_POSITION 0
 TYPE string

Because the Edit/FDL utility does not include run-time attributes, you must add them to the FDL
definition. You can specify run-time attributes by specifying the ACCESS, CONNECT and SHARING
attributes. For example, if you want to add the CONNECT secondary attribute LOCK_ON_WRITE, you
use the EDIT/FDL ADD command. This is illustrated in Example 9.1, "Specifying Run-Time Attributes".

Example 9.1. Specifying Run-Time Attributes

 OpenVMS FDL Editor
 Add to insert one or more lines into the FDL definition
 Delete to remove one or more lines from the FDL definition
 Exit to leave the FDL Editor after creating the FDL file
 Help to obtain information about the FDL Editor \
 Invoke to initiate a script of related questions
 Modify to change existing line(s) in the FDL definition
 Quit to abort the FDL Editor with no FDL file creation
 Set to specify FDL Editor characteristics
 View to display the current FDL Definition
 Main Editor Function (Keyword)[Help] : ADD
 Legal Primary Attributes
 ACCESS attributes set the run-time access mode of the file
 AREA x attributes define the characteristics of file area x
 CONNECT attributes set various VMS RMS run-time options
 DATE attributes set the data parameters of the file
 FILE attributes affect the entire VMS RMS data file
 JOURNAL attributes set the journaling parameters of the file

216

Chapter 9. Run-Time Options

 KEY y attributes define the characteristics of key y
 RECORD attributes set the non-key aspects of each record
 SHARING attributes set the run-time sharing mode of the file
 SYSTEM attributes document operating system-specific items
 TITLE is the header line for the FDL file
 Enter Desired Primary (Keyword)[FILE] : CONNECT
 Legal CONNECT Secondary Attributes
 ASYNCHRONOUS yes/no NOLOCK yes/no
 BLOCK_IO yes/no NONEXISTENT_RECORD yes/no
 BUCKET_CODE number READ_AHEAD yes/no
 CONTEXT number READ_REGARDLESS yes/no
 END_OF_FILE yes/no TIMEOUT_ENABLE yes/no
 FAST_DELETE yes/no TIMEOUT_PERIOD number
 FILL_BUCKETS yes/no TRUNCATE_ON_PUT yes/no
 KEY_GREATER_EQUAL yes/no TT_CANCEL_CONTROL_O yes/no
 KEY_GREATER_THAN yes/no TT_PROMPT yes/no
 KEY_LIMIT yes/no TT_PURGE_TYPE_AHEAD yes/no
 KEY_OF_REFERENCE number TT_READ_NOECHO yes/no
 LOCATE_MODE yes/no TT_READ_NOFILTER yes/no
 LOCK_ON_READ yes/no TT_UPCASE_INPUT yes/no
 LOCK_ON_WRITE yes/no UPDATE_IF yes/no
 MANUAL_UNLOCKING yes/no WAIT_FOR_RECORD yes/no
 MULTIBLOCK_COUNT number WRITE_BEHIND yes/no
 MULTIBUFFER_COUNT number
 Enter CONNECT Attribute (Keyword)[-] : LOCK_ON_WRITE
 CONNECT
 LOCK_ON_WRITE
 Enter value for this Secondary (Yes/No)[-] : YES

 Resulting Primary Section
 CONNECT
 LOCK_ON_WRITE yes
 Press RETURN to continue (^Z for Main Menu)

The following list describes the callouts used in Example 9.1, "Specifying Run-Time Attributes":

This menu is the Main Editor Function menu. It displays the Edit/FDL utility commands you can
use.

The ADD command displays the Legal Primary Attributes menu.

The Legal Primary Attributes menu shows the primary attributes. You can either add a new
primary attribute or add a secondary attribute to an existing primary attribute. Initially, the FILE
primary attribute is the default.

The selection of the CONNECT primary attribute displays the Legal CONNECT Secondary
Attributes. You could similarly select the ACCESS, FILE, or SHARING options instead of the
CONNECT primary attribute to display the Legal Secondary Attributes for the selected primary
attribute.

This menu shows all the CONNECT secondary attributes you can add to your FDL file.

Select the proper CONNECT secondary attribute (in this case, LOCK_ON_WRITE).

The Edit/FDL utility verifies that you have selected the secondary attribute.

Enter the value that you want the secondary attribute to have (for instance, yes).

217

Chapter 9. Run-Time Options

The Edit/FDL utility verifies the value for the secondary attribute you have chosen.

Return to the main menu. If you choose to add another secondary attribute, you will notice that
CONNECT is now the default.

The FDL file containing the CONNECT primary attribute with the WRITE_BEHIND secondary
attribute is shown in the following example:

IDENT
"19-JUL-1994 14:57:37 OpenVMS FDL Editor"

SYSTEM
 SOURCE VMS

FILE
 ORGANIZATION indexed

RECORD
 CARRIAGE_CONTROL carriage_return
 FORMAT variable
 SIZE 0

CONNECT
 WRITE_BEHIND yes

AREA 0
 ALLOCATION 8283
 BEST_TRY_CONTIGUOUS yes
 BUCKET_SIZE 18
 EXTENSION 2070

AREA 1
 ALLOCATION 18
 BEST_TRY_CONTIGUOUS yes
 BUCKET_SIZE 18
 EXTENSION 18

KEY 0
 CHANGES no
 DATA_AREA 0
 DATA_FILL 100
 DATA_KEY_COMPRESSION yes
 DATA_RECORD_COMPRESSION yes
 DUPLICATES no
 INDEX_AREA 1
 INDEX_COMPRESSION yes
 INDEX_FILL 100
 LEVEL1_INDEX_AREA 1
 PROLOG 3
 SEG0_LENGTH 9
 SEG0_POSITION 0
 TYPE string

9.1.2. Using Language Statements and RMS
Language statements such as OPEN may contain keywords, clauses, or other modifiers that correspond
to the run-time attributes that are appropriate for opening files, connecting record streams, processing

218

Chapter 9. Run-Time Options

records, and closing files. Some languages use system-defined procedures in place of keywords and
clauses. Some languages allow you to call a user-supplied routine (USEROPEN or USERACTION) to set
control block values before opening the file.

For example, a user routine could be coded in VAX MACRO to take advantage of control block
store macros. (For an example of a VAX BASIC USEROPEN routine, see Example 5.2, "Selecting
the USEROPEN Option to Call a Routine".) Consult the corresponding language documentation for
additional information.

With VAX MACRO, RMS control block macros allow you to establish control block values at assembly
time and at run time using the same control block. (The assembly-time macros are placed in a data
section of the program; the run-time macros are placed in a code section of the program.) Using VAX
MACRO, control blocks are allocated within the program space at assembly time, and it may not be
necessary to use the run-time macros because the program can move values to the control block fields
using the instruction set. Other languages, however, may not allocate the control blocks within program
storage.

If your program has access to the starting location of the control block (a record access block, for
instance), the VAX MACRO assembly-time control block macro or the corresponding symbol definition
(DEF) macro provides your program with certain symbolic offsets (symbols) that can be used to locate
and identify the various fields in the control block. Some languages provide a means of making these
symbols available to your program.

For additional information about using the control block macros and control block fields, refer to the VSI
OpenVMS Record Management Services Reference Manual.

9.2. Options Related to Opening and Closing
Files
Before your program can access the records in a file, it must open the file and connect a record stream.
When it finishes processing records and no longer requires access to that file, your program should close
the file.

The options available for opening files, connecting record streams, and closing files include file access
and file sharing options, file specification options, performance options, record access options, and
options for:

● Adding records

● Acting on the file after it is closed (file disposition)

● Using indexed files

● Using magnetic tapes

● Performing nonstandard record processing

● Maintaining data reliability

9.2.1. File Access and Sharing Options
As described in Chapter 7, "File Sharing and Buffering", the program must declare the desired file-
access and file-sharing values before opening an existing file or creating a new file and must specify
record-locking and buffering strategies when the file is opened. These options are summarized in the
next table:

219

Chapter 9. Run-Time Options

Option Description

File access Specifies the record operations that the current
process performs: reading records, locating
records, deleting records, adding new records,
updating records, accessing blocks, and truncating
the file. (For additional information, see Section
7.1, "File Accessing".) You specify the file access
values using the FDL ACCESS primary attribute or
the FAB$B_FAC field.

File sharing Specifies the types of record operations that the
current process allows other file accessors to
perform: reading records, locating records, deleting
records, adding new records, and updating records.
You can also use file sharing to enable the current
process to use multiple record streams (or ensure
a read-only global buffer cache), operate on the
file without record interlocking, or disallow all
other accessors from accessing the file. You specify
file sharing values using the SHARING primary
attribute or the FAB$B_SHR field.

Record locking Allows you to provide record locking for a
shared file under user control. By default, RMS
automatically locks records, depending on the
file access and file sharing values specified. (For
additional information, see Section 7.2, "Record
Locking".) You specify the record locking values
using the CONNECT primary attribute or using the
record-processing options (RAB$L_ROP) field 1.

1Indicates an option that can be specified for each record-processing operation. For more information, see Section 9.3, "Summary of Record
Operation Options".

9.2.2. File Specifications
As described in Chapter 4, "Creating and Populating Files" and Chapter 6, "Advanced Use of File
Specifications", the program should specify the specification for the file being opened (or created) and
can also specify default file specifications. The file specifications are summarized in the following table:

File Specification Description

Primary Specifies the file specification to be used to locate
the desired file(s). If any components of a file
specification are omitted, RMS applies defaults but
you should specify the primary file specification.

● FDL: FILE NAME

● RMS: FAB$L_FNA and FAB$B_FNS
Default Specifies the default file specification to be used

to fill any missing components not provided by
the primary file specification. After applying
these defaults, if any components are still missing,
additional defaults are applied.

220

Chapter 9. Run-Time Options

File Specification Description
● FDL: FILE DEFAULT_NAME

● RMS: FAB$L_DNA and FAB$B_DNS
Related Specifies a related file specification that is used

to provide additional defaults when a related file
is used. If the device or directory components
are missing, RMS provides default values from
the process-default device (SYS$DISK) and the
current process-default directory.

● FDL: None

● RMS: FAB$L_NAM and NAM$L_RLF

9.2.3. File Performance Options
A number of run-time options that open files and connect record streams can collectively improve
application performance. Such options include the buffering options discussed in Chapter 7, "File
Sharing and Buffering".

Two run-time performance options not discussed previously are particularly important when adding
records to a file: extension size and window size.

9.2.3.1. Extension Size
If you intend to add records to the file, specify a reasonable default extension size to reduce the number
of times the file is extended.

Use the Edit/FDL utility to calculate the correct extension size. The Edit/FDL utility uses your responses
to assign an optimum value for the FDL attribute FILE EXTENSION. With multiple area files, the Edit/
FDL utility assigns optimum values to the AREA EXTENSION attributes.

If you do not specify an extension size, RMS computes the size; however, this size may not be optimum.

If you decide to create an FDL file for defining an indexed file without using EDIT/FDL, you can
approximate the value of the EXTENSION attributes. You do this by multiplying the number of records
per bucket by the number of records that you intend to add to the file during a given period of time.

To see the current default extension size, use the DCL command SHOW RMS_DEFAULT. To set the
default buffer count, use the DCL command SET RMS_DEFAULT/EXTEND_QUANTITY=n, where n
is the number of blocks per extension. The corresponding field is FAB$W_DEQ.

9.2.3.2. Window Size
If the file is extended repeatedly, the extensions may be scattered on the disk. Each extension is called
an extent—a pointer to each extent resides in the file header. For retrieval purposes, the pointers are
gathered together in a structure called a window. The default window size is 7 pointers, but you can
establish the window size to contain as many as 127 pointers. You can also set the window size to –1,
which makes a window that is just large enough to map the entire file.

When you access an extent whose pointer is not in the current window, the system has to read the file
header and fetch the appropriate window. This is called a window turn, and it requires an I/O operation.

221

Chapter 9. Run-Time Options

Window size is a run-time option. Many high-level languages include a clause that sets window size
when a file is opened.

You can set the window size (FAB$B_RTV field) at run time with a VAX MACRO subroutine or with
the FDL attribute FILE WINDOW_SIZE.

You can increase the default window size for a specific volume by using the DCL commands MOUNT
and INITIALIZE. However, using additional window pointers increases system overhead. The window
size is charged to your buffered I/O byte count quota, and indiscriminate use of large windows may
result in exceeding the buffered I/O byte count quota or may exhaust the system's nonpaged dynamic
memory.

You can use the Backup utility (BACKUP) to avoid having too many extents. When you restore a file,
BACKUP tries to write the file in one section of the disk. Although BACKUP does not necessarily
create a contiguous copy of the file, it does reduce the number of extents. If you are regularly backing up
the file, the number of extents is probably reasonable. For more information about BACKUP, see the VSI
OpenVMS System Manager's Manual.

Where disk space is available, you can reduce the number of extents by creating a new, contiguous
version of the file using either the Convert utility (CONVERT) or the DCL command COPY/
CONTIGUOUS. If neither of these conditions apply, a larger window size is the only option to use. For
file maintenance information, see Chapter 10, "Maintaining Files".

9.2.3.3. Summary of Performance Options
The following table summarizes the run-time open and connect options that may affect performance:

Option Description

Asynchronous record processing 1 Specifies that record I/O for this record stream
is done asynchronously. See Section 8.7,
"Synchronous and Asynchronous Operations".

● FDL: CONNECT ASYNCHRONOUS

● RMS: RAB$L_ROP RAB$V_ASY
Deferred-write 1 Allows records to be accumulated in a buffer and

written only when the buffer is needed or when
the file is closed. For use by all except nonshared
sequential files. See Chapter 3, "Performance
Considerations".

● FDL: FILE DEFERRED_WRITE

● RMS: FAB$L_FOP FAB$V_DFW
Default extension quantity Specifies the number of blocks to be allocated to a

file when more space is needed.

● FDL: FILE EXTENSION

● RMS: FAB$W_DEQ
Fast delete 1 Postpones certain internal operations associated

with deleting indexed file records until the record
is accessed again. This allows records to be

222

Chapter 9. Run-Time Options

Option Description
deleted rapidly but may affect the performance of
subsequent accessors reading the file.

● FDL: CONNECT FAST_DELETE

● RMS: RAB$L_ROP RAB$V_FDL
Global buffer count Specifies whether global buffers are used and the

number to be used if the record stream is the first
to connect to the file. See Section 7.3, "Local and
Shared Buffering Techniques".

● FDL: CONNECT
GLOBAL_BUFFER_COUNT

● RMS: FAB$W_GBC
Locate mode 1 Allows the use of locate mode, not move mode,

when reading records. See Section 7.3, "Local and
Shared Buffering Techniques".

● FDL: CONNECT LOCATE_MODE

● RMS: RAB$L_ROP RAB$V_LOC
Multiblock count Allows multiple blocks to be transferred into

memory during a single I/O operation (for
sequential files only). See Chapter 3, "Performance
Considerations" and Section 7.3, "Local and Shared
Buffering Techniques".

● FDL: CONNECT MULTIBLOCK_COUNT

● RMS: RAB$B_MBC
Number of buffers Enables the use of multiple buffers for the buffer

cache when used with indexed and relative files;
when used with sequential files, enables the use
of multiple buffers for the read-ahead and write-
behind options. See Section 7.3, "Local and Shared
Buffering Techniques".

● FDL: CONNECT MULTIBUFFER_COUNT

● RMS: RAB$B_MBF
Read-ahead 1 Alternates buffer use between two buffers when

reading sequential files. See Chapter 2, "Choosing
a File Organization".

● FDL: CONNECT READ_AHEAD

● RMS: RAB$L_ROP RAB$V_RAH
Retrieval window size Specifies the number of entries in memory for

retrieval windows, which corresponds to the
number of extents for a file.

223

Chapter 9. Run-Time Options

Option Description
● FDL: FILE WINDOW_SIZE

● RMS: FAB$B_RTV
Sequential access only Indicates that a sequential file may only be

accessed sequentially.

● FDL: FILE SEQUENTIAL_ONLY

● RMS: FAB$L_FOP FAB$V_SQO
Write-behind 1 Alternates buffer use between two buffers

when writing to sequential files. See Chapter 2,
"Choosing a File Organization".

● FDL: CONNECT WRITE_BEHIND

● RMS: RAB$L_ROP RAB$V_WBH
1Indicates an option that can be specified for each record-processing operation. For more information, see Section 9.3, "Summary of Record
Operation Options".

9.2.4. Record Access Options
You can specify the record access for a record stream as sequential, random by key or record number, or
random by RFA. (See Section 8.1, "Record Operations".) The selected record access can be changed for
each record processing operation. These options can be set using the RAB$B_RAC field, values RAB
C_SEQ, RABC_KEY, and RAB$C_RFA.

9.2.5. Options for Adding Records
When adding records to a file, consider the open and connection options in the following table:

Option Description

Default extension quantity 1 See Section 9.2.3, "File Performance Options".
Deferred-write 1 See Section 9.2.3, "File Performance Options".
End-of-file After the record stream is connected, the record

context is positioned to the end of the file.

● FDL: CONNECT END_OF_FILE

● RMS: RAB$L_ROP RAB$V_EOF
Retrieval window size 1 See Section 9.2.3, "File Performance Options".
Revision data The revision date and time and the revision number

can be specified to be a value other than the actual
revision date and time and revision number when
the file is closed. These options must be set while
the file is open and thus cannot be set using FDL.

● FDL: Does not apply

● RMS: Revision Date and Time XAB
Truncate on Put 1 When using sequential record access for sequential

files only, the record to be written is the last record

224

Chapter 9. Run-Time Options

Option Description
in the file, and RMS truncates the file just beyond
that record.

● FDL: CONNECT TRUNCATE_ON_PUT

● RMS: RAB$L_ROP RAB$V_TPT
Update-if 1 If you set this option and your program tries to

replace an existing record while adding records
randomly to a file, RMS modifies the existing
record instead of replacing it. When using this
option for indexed files, note that the file must
not allow duplicates for the primary key. Use this
option carefully with a shared file (see Section 8.1,
"Record Operations").

● FDL: CONNECT UPDATE_IF

● RMS: RAB$L_ROP RAB$V_UIF
Write-behind 1 See Section 9.2.3, "File Performance Options".

1Indicates an option that can be specified for each record-processing operation. For more information, see Section 9.3, "Summary of Record
Operation Options".

9.2.6. Options for Data Reliability
The following table lists the run-time file open options that apply to data reliability:

Option Description

Read-check Specifies that transfers from volumes are to
be checked by a read-compare operation,
which effectively doubles the amount of disk
I/O performed. This option is not available
for all devices (see the VSI OpenVMS Record
Management Services Reference Manual.)

● FDL: FILE READ_CHECK

● RMS: FAB$L_FOP FAB$V_RCK
Write-check Specifies that transfers to volumes are to be

checked by a read-compare operation, which
effectively doubles the amount of disk I/O
performed. This option is not available for
all devices (see the VSI OpenVMS Record
Management Services Reference Manual).

● FDL: FILE WRITE_CHECK

● RMS: FAB$L_FOP FAB$V_WCK

9.2.7. Options for File Disposition
The run-time file open options that apply to file disposition are listed in the following table. These
options can only be selected while the file is open.

225

Chapter 9. Run-Time Options

Option Description

Delete on close Deletes the file when it is closed.

● FDL: CONNECT DELETE_ON_CLOSE

● RMS: FAB$L_FOP FAB$V_DLT
Submit command file Submits a sequential file as a batch command

procedure to SYS$BATCH when you close the file.

● FDL: FILE SUBMIT_ON_CLOSE

● RMS: FAB$L_FOP FAB$V_SCF
Spool on close Prints a sequential file on SYS$PRINT when you

close the file.

● FDL: FILE PRINT_ON_CLOSE

● RMS: FAB$L_FOP FAB$V_SPL

9.2.8. Options for Indexed Files
The following table lists the run-time options that apply to indexed file processing. For more information
about processing indexed files, refer to Section 8.4.3, "Processing Indexed Files".

Option Description

Fast delete 1 Postpones certain internal operations associated
with deleting indexed file records until the record
is accessed again. This allows records to be deleted
rapidly, but it may degrade the performance of
processes that read the file later.

● FDL: CONNECT FAST_DELETE

● RMS: RAB$L_ROP RAB$V_FDL
Key equal or next 1 Returns the first record with a key value equal to

the key you specified when locating or reading
records. If RMS does not find a record with an
equal key value, it returns the record with the next
higher key value when ascending sort order is
specified. When descending sort order is specified,
RMS returns the next record with the next lower
key value.

● FDL: CONNECT KEY_GREATER_EQUAL

● RMS: RAB$L_ROP RAB$V_EQNXT
Next key 1 Returns the record with the next higher key value

when you specify ascending sort order when
locating or reading records. When you specify
descending sort order, RMS returns the next record
with the next lower key value. If you do not specify

226

Chapter 9. Run-Time Options

Option Description
either this option or the equal-or-next-key option,
RMS tries for a key match.

● FDL: CONNECT KEY_GREATER_THAN

● RMS: RAB$L_ROP RAB$V_NXT
Key of reference Permits you to specify which key to use for the

current record stream when you process an indexed
file with multiple keys.

● FDL: CONNECT KEY_OF_REFERENCE

● RMS: RAB$B_KRF
Key buffer 1 Specifies key buffer that must contain the selected

record's key when you are locating or reading
records randomly.

● FDL: None

● RMS: RAB$L_KBF
Key size 1 Specifies that only a portion of the key be used to

locate the selected record when you are locating or
reading records with a string data-type key.

● FDL: None

● RMS: RAB$B_KSZ
Limit key 1 Returns an alternate success status if the record key

exceeds the specified key when you are locating or
reading records sequentially.

● FDL: CONNECT KEY_LIMIT

● RMS RAB$L_ROP RAB$V_LIM
Load buckets 1 Uses the fill factor specified when the file was

created. When you are adding records to an index
file. By default, RMS fills buckets completely.

● FDL: CONNECT FILL_BUCKETS

● RMS: RAB$L_ROP RAB$V_LOA
1Indicates an option that can be specified for each record-processing operation. For more information, see Section 9.3, "Summary of Record
Operation Options".

9.2.9. Options for Magnetic Tape Processing
The run-time file open and close options that apply to magnetic tape processing are listed in the
following table:

Option Description

Not end-of-file Adds a record to a location other than at the end of
the file.

227

Chapter 9. Run-Time Options

Option Description
● FDL: FILE MT_NOT_EOF

● RMS: FAB$L_FOP FAB$V_NEF
Current position Positions the tape to the location immediately

following the most recently closed file when you
select this option when creating a file.

● FDL: FILE MT_CURRENT_POSITION

● RMS: FAB$L_FOP FAB$V_POS
Rewind on Open Directs that the tape volume be rewound before

it opens or creates the file. The rewind-on-open
option overrides the current-position option.

● FDL: FILE MT_OPEN_REWIND

● RMS: FAB$L_FOP FAB$V_RWO
Rewind on Close Directs that the tape volume be rewound before it

closes the file.

● FDL: FILE MT_CLOSE_REWIND

● RMS: FAB$L_FOP FAB$V_RWC

9.2.10. Options for Nonstandard File Processing
The following table lists the run-time file open options that apply to nonstandard file processing:

Option Description

Non-file-structured Use this option when you want to process data
from volumes created on systems other than VSI
systems.

● FDL: FILE NON_FILE_STRUCTURED

● RMS: FAB$L_FOP FAB$V_NFS
User file open Use this option if you want to use RMS only to

open the file and you intend to access the contents
of the file using Queue I/O Request system service
calls. The system returns the I/O channel number
in the FAB$L_STV field.

● FDL: FILE USER_FILE_OPEN

● RMS: FAB$L_FOP FAB$V_UFO

9.3. Summary of Record Operation Options
This section briefly describes the options associated with the record retrieval services (Find and Get),
the record insertion service (Put), the record modification service (Update), and the record deletion
service (Delete).

228

Chapter 9. Run-Time Options

9.3.1. Record Retrieval Options
The Find and Get services (or the equivalent language statements) can be used to locate and retrieve a
record.

The options associated with the Find and Get services are summarized in the following table. These
options can be set for each Find or Get service if the program can access the appropriate RAB control
block fields. The RAB control block fields are preset by connect-time values or defaults and as a result
of previous service calls.

Option Description

Asynchronous record processing Specifies that record I/O for this record stream is
done asynchronously.

● FDL: CONNECT ASYNCHRONOUS

● RMS: RAB$L_ROP RAB$V_ASY
Do not lock record Directs RMS not to lock the record for ensuing

operations.

● FDL: CONNECT NOLOCK

● RMS: RAB$L_ROP RAB$V_NLK
Key buffer Specifies key buffer that must contain the desired

record's key when you are locating or reading
records randomly.

● FDL: None

● RMS: RAB$L_KBF
Key equal or next Returns the first record with a key value equal to

the specified key when you are locating or reading
records. If RMS does not find a record with an
equal key value, it returns the record with the next
higher key value when you specify ascending sort
order. When you specify descending sort order,
RMS returns the record with the next lower key
value.

● FDL: CONNECT KEY_GREATER_EQUAL

● RMS: RAB$L_ROP RAB$V_EQNXT
Next key Returns the record with the next higher key value

when you specify ascending sort order when you
are locating or reading records. When you specify
descending sort order, RMS returns the record with
the next lower key value.

● FDL: CONNECT KEY_GREATER_THAN

● RMS: RAB$L_ROP RAB$V_NXT
Key of reference Specifies which key is used for current record

stream for indexed files with multiple keys.

229

Chapter 9. Run-Time Options

Option Description
● FDL: CONNECT KEY_OF_REFERENCE

● RMS: RAB$B_KRF
Key size Specifies that all or part of the key be used when

you are using a string key to locate or read records.

● FDL: None

● RMS: RAB$B_KSZ
Limit key Directs RMS, when locating or reading records

sequentially, to return an alternate success status if
the record key exceeds the specified key.

● FDL: CONNECT KEY_LIMIT

● RMS: RAB$L_ROP RAB$V_LIM
Locate mode Specifies the locate mode, instead of the move

mode. Applies to the Get service only.

● FDL: CONNECT LOCATE_MODE

● RMS: RAB$L_ROP RAB$V_LOC
Lock nonexistent record Indicates that RMS is to lock the record position

at the location of the following record operation,
regardless of whether a record exists at that
location. Applies only to relative files.

● FDL: CONNECT NONEXISTENT_RECORD

● RMS: RAB$L_ROP RAB$V_NXR
Lock for read Locks record for reading and allows other readers

(but no writers).

● FDL: CONNECT LOCK_ON_READ

● RMS: RAB$L_ROP RAB$V_REA
Lock for write Locks record for writing and allows other readers

(but no writers).

● FDL: CONNECT LOCK_ON_WRITE

● RMS: RAB$L_ROP RAB$V_RLK
Manual locking Allows you to control record locking and

unlocking manually.

● FDL: CONNECT MANUAL_LOCKING

● RMS: RAB$L_ROP RAB$V_ULK
Read ahead Improves performance at the expense of additional

memory for I/O buffers. For sequential access to
sequential files only.

230

Chapter 9. Run-Time Options

Option Description
● FDL: CONNECT READ_AHEAD

● RMS: RAB$L_ROP RAB$V_RAH
Read regardless Reads the specified record regardless of whether it

is locked by another user.

● FDL: CONNECT READ_REGARDLESS

● RMS: RAB$L_ROP RAB$V_RRL
Record access Specifies the way records are accessed:

sequentially, randomly by key (indexed files), by
record number (relative files), or randomly by
RFA.

● FDL: None

● RMS: RAB$B_RAC values, RAB$C_SEQ,
RABC_KEY, RABC_RFA

RFA Specifies the address of the desired record when
records are accessed randomly by RFA (RAB
$B_RAC contains RAB$C_RFA). This value is
also returned by Find and Get services regardless
of the type record access used.

● FDL: None

● RMS: RAB$W_RFA
Record header buffer Contains the symbolic address of the record header

buffer that contains the fixed portion of a VFC
record. Applies to the Get service only.

● FDL: None

● RMS: RAB$L_RHB
Timeout period Specifies a timeout period after which an error

is returned when you choose the wait-if-locked
option. The number of seconds is specified by
the CONNECT TIMEOUT_PERIOD or RAB
$B_TMO field to eliminate a potential deadlock.

● FDL: CONNECT TIMEOUT_PERIOD

● RMS: RAB$L_ROP RAB$V_TMO and RAB
$B_TMO

User buffer address Specifies the address of the user buffer that
receives the record. Applies to the Get service only.

● FDL: None

● RMS: RAB$L_UBF

231

Chapter 9. Run-Time Options

Option Description

User buffer size Specifies the maximum length of the user record
buffer. Applies to the Get service only.

● FDL: None

● RMS: RAB$L_USZ
Wait if locked Specifies that if the record is locked, RMS must

wait until it is available; also allows use of the wait-
timeout-period option.

● FDL: CONNECT WAIT_FOR_RECORD

● RMS: RAB$L_ROP RAB$V_WAT

9.3.2. Put Service Options
The Put service (or equivalent language statement) adds a record to the file.

The options associated with the Put service are summarized in the following table. These options can be
set for each Put service if the program can access the appropriate RAB control block fields. The RAB
control block fields are preset by connect-time values or defaults and as a result of previous service calls.

Option Description

Asynchronous record processing Specifies that record I/O for this record stream is
done asynchronously.

● FDL: CONNECT ASYNCHRONOUS

● RMS: RAB$L_ROP RAB$V_ASY
Key buffer Specifies key buffer that must contain the desired

record's relative record number when adding
records randomly to a relative file.

● FDL: None

● RMS: RAB$L_KBF
Key size Specifies a field that must have a value of 4 (the

default value provided by RMS) when adding
records to a relative file using random record
access.

● FDL: None

● RMS: RAB$B_KSZ
Load buckets Fills the buckets to the level specified when the

file is created. The default is that buckets fill
completely before a bucket split occurs.

● FDL: CONNECT FILL_BUCKETS

● RMS: RAB$L_ROP RAB$V_LOA

232

Chapter 9. Run-Time Options

Option Description

Read allowed Allows the locked record being written to be read.

● FDL: CONNECT LOCK_ON_WRITE

● RMS: RAB$L_ROP RAB$V_RLK
Record access Specifies the way records are added, sequentially

according to ascending key value or relative record
number, randomly by key (indexed files) or by
record number (relative files), or randomly by
RFA.

● FDL: None

● RMS: RAB$B_RAC values, RAB$C_SEQ,
RABC_KEY, RABC_RFA

Record header buffer Contains the symbolic address of the record header
buffer that contains the fixed portion of a VFC
record. Applies to the Get service only.

● FDL: None

● RMS: RAB$L_RHB
Record buffer address Specifies the address of the record buffer that

contains the record to be written.

● FDL: None

● RMS: RAB$L_RBF
Record buffer size Specifies the size of the record contained in the

record buffer to be written.

● FDL: None

● RMS: RAB$W_RSZ
Timeout period Specifies a timeout period after which an error

is returned when you choose the wait-if-locked
option. The number of seconds is specified by the
CONNECT TIMEOUT_PERIOD or the RAB
$B_TMO field to eliminate a potential deadlock.

● FDL: CONNECT TIMEOUT_PERIOD

● RMS: RAB$L_ROP RAB$V_TMO and RAB
$B_TMO

Truncate on Put Specifies that the file is truncated at the record
being added. Requires sequential record access and
only applies to sequential files.

● FDL: CONNECT TRUNCATE_ON_PUT

● RMS: RAB$L_ROP RAB$V_TPT

233

Chapter 9. Run-Time Options

Option Description

Update-if Turns the Put service into an update operation if
the record already exists in the file. Care must be
taken when using this option with shared files and
automatic record locking (see Section 8.1, "Record
Operations"). When using this option with indexed
files, note that the file must not allow duplicates
for the primary key. This option can only be used
when random record access has been specified.

● FDL: CONNECT UPDATE_IF

● RMS: RAB$L_ROP RAB$V_UIF
Write-behind Improves performance at the expense of additional

memory for I/O buffers. Requires sequential record
access and only applies to sequential files.

● FDL: CONNECT WRITE_BEHIND

● RMS: RAB$L_ROP RAB$V_WBH

9.3.3. Record Update Options
The Update service (or equivalent language statement) modifies an existing record in a file. Your
program must first locate the appropriate record position and optionally retrieve the record itself by
calling the Find or Get service (or equivalent language statement).

The options associated with the Update service are summarized in the following table. These options can
be set for each Update service if the program can access the appropriate RAB control block fields. The
RAB control block fields are preset by connect-time values or defaults and as a result of previous service
calls.

Option Description

Asynchronous record processing Specifies that record I/O for this record stream is
done asynchronously.

● FDL: CONNECT ASYNCHRONOUS

● RMS: RAB$L_ROP RAB$V_ASY
Record header buffer Contains the symbolic address of the record header

buffer that contains the fixed portion of a VFC
record. Applies to the Get service only.

● FDL: None

● RMS: RAB$L_RHB
Record buffer address Specifies the address of the record buffer that

contains the record to be written.

● FDL: None

● RMS: RAB$L_RBF

234

Chapter 9. Run-Time Options

Option Description

Record buffer size Specifies the size of the records contained in the
record buffer to be written.

● FDL: None

● RMS: RAB$W_RSZ

9.3.4. Record Deletion Options
The Delete service (or equivalent language statement) removes a record from the file. You cannot use
this service for sequential files; however, a sequential file can be truncated using the Truncate service.
Like the Update service, the Delete service must be preceded by a Find or Get service to establish the
current record position.

The options associated with the Delete service are summarized in the following table. These options can
be set for each Delete service if the program can access the appropriate RAB control block fields. The
RAB control block fields are preset by connect-time values or defaults and as a result of previous service
calls.

Option Description

Asynchronous record processing Specifies that record I/O for this record service will
be asynchronous.

● FDL: CONNECT ASYNCHRONOUS

● RMS: RAB$L_ROP RAB$V_ASY
Fast delete Specifies that the record to be deleted is flagged as

deleted, but parts of any alternate index key path
are not completely erased until a subsequent access
using the alternate key occurs. This makes deleting
the record occur more quickly, but it requires
additional access time for a subsequent Find or Get
service.

● FDL: CONNECT FAST_DELETE

● RMS: RAB$L_ROP RAB$V_FDL

9.4. Run-Time Example
Example 9.2, "Using the FDL$PARSE and FDL$RELEASE Routines" shows how to invoke the FDL
$PARSE and FDL$RELEASE routines to use the predefined control block values set by an Edit/FDL
utility editing session.

Example 9.2. Using the FDL$PARSE and FDL$RELEASE Routines

;
; This program calls the FDL utility routines FDL$PARSE and
; FDL$RELEASE. First, FDL$PARSE parses the FDL specification
; PART.FDL. Then the data file named in PART.FDL is accessed
; using the primary key. Last, the control blocks allocated
; by FDL$PARSE are released by FDL$RELEASE.
;

235

Chapter 9. Run-Time Options

 .TITLE FDLEXAM
;
 .PSECT DATA,WRT,NOEXE

;
MY_FAB: .LONG 0
MY_RAB: .LONG 0
FDL_FILE: .ASCID /PART.FDL/ ; Declare FDL file
REC_SIZE=80
LF=10
REC_RESULT: .LONG REC_SIZE
 .ADDRESS REC_BUFFER
REC_BUFFER: .BLKB REC_SIZE
HEADING: .ASCID /ID PART SUPPLIER COLOR /[LF]
;
 .PSECT CODE
;
; Declare the external routines
;
.EXTRN FDL$PARSE, -
 FDL$RELEASE
 ;
.ENTRY FDLEXAM,^M<> ; Set up entry mask
 PUSHAL MY_RAB ; Get set up for call with
 PUSHAL MY_FAB ; addresses to receive the
 PUSHAL FDL_FILE ; FAB and RAB allocated by
 CALLS #3,G^FDL$PARSE ; FDL$PARSE
 BLBS R0,KEY0 ; Branch on success
 BRW ERROR ; Signal error
 ;
KEY0: MOVL MY_FAB,R10 ; Move address of FAB to R10
 MOVL MY_RAB,R9 ; Move address of RAB to R9
 MOVL #REC_SIZE,RAB$W_USZ(R9)
 MOVAB REC_BUFFER,RAB$L_UBF(R9)
 $OPEN FAB=(R10) ; Open the file
 BLBC R0,F_ERROR
 $CONNECT RAB=(R9) ; Connect to the RAB
 BLBC R0,R_ERROR
 PUSHAQ HEADING ; Display the heading
 CALLS #1,G^LIB$PUT_OUTPUT
 BLBC R0,ERROR
 BRB GET_REC ; Skip error handling
 ;
F_ERROR: BRW FAB_ERROR
R_ERROR: BRW RAB_ERROR
 ;
GET_REC: $GET RAB=(R9) ; Get a record
 CMPL #RMS$_EOF,R0 ; If not end of file,
 BEQLU CLEAN ; continue
 BLBC R0,R_ERROR
 MOVZWL RAB$W_RSZ(R9),REC_RESULT ; Move a record into
 PUSHAL REC_RESULT ; the buffer
 CALLS #1,G^LIB$PUT_OUTPUT ; Display the record
 BLBC R0,ERROR
 BRB GET_REC ; Get another record
 ;
CLEAN: $CLOSE FAB=(R10) ; Close the FAB
 BLBC R0,FAB_ERROR

236

Chapter 9. Run-Time Options

 PUSHAL MY_RAB ; Push RAB address on stack
 PUSHAL MY_FAB ; Push FAB address on stack
 CALLS #2,G^FDL$RELEASE ; Release the control blocks
 BLBC R0,ERROR
 BRB FINI ; Successful completion
 ;
FAB_ERROR:
 PUSHL FAB$L_STV(R10) ; Signal file error
 PUSHL FAB$L_STS(R10)
 BRB RMS_ERR
 ;
ERROR: PUSHL R0 ; Signal error
 CALLS #1,G^LIB$SIGNAL
 $CLOSE FAB=(R10)
 BRW FINI ; End program
 ;
RAB_ERROR:
 PUSHL RAB$L_STV(R9) ; Signal record error
 PUSHL RAB$L_STS(R9)
 ;
RMS_ERR:
 CALLS #2,G^LIB$SIGNAL
 ;
FINI: RET
 .END FDLEXAM

237

Chapter 9. Run-Time Options

238

Chapter 10. Maintaining Files
Designing and creating your files and defining their records are only the first steps in the life cycle of
your file. You must also consider maintaining the file.

This chapter describes file maintenance with the emphasis on file tuning.

Section 10.1, "Viewing File Characteristics" describes how you can use the Analyze/RMS_File utility
to view the characteristics of a file. Section 10.2, "Generating an FDL File from a Data File" describes
how you can create an FDL file from a data file using the Analyze/RMS_File utility. Section 10.3,
"Optimizing and Redesigning File Characteristics" explains how to use the Edit/FDL utility, particularly
with Analyze/RMS_File, to optimize and redesign file characteristics. Section 10.4, "Making a File
Contiguous" describes how to make a file contiguous. Section 10.5, "Reorganizing a File" explains how
to reorganize a file, and Section 10.6, "Making Archive Copies" describes how to make archive copies of
a file.

10.1. Viewing File Characteristics
The Analyze/RMS_File utility (ANALYZE/RMS_FILE) allows you to inspect and analyze the internal
structure of an OpenVMS RMS (hereafter referred to as RMS) file.

ANALYZE/RMS_FILE can check a file's structure for errors and can generate a statistical or summary
report. A summary report is identical to a statistical report except that no checking is done. For more
information on producing a summary report, see the description of the Analyze/RMS_File utility in the
VSI OpenVMS Record Management Utilities Reference Manual.

You can also inspect and analyze your file using the Analyze/RMS_File utility interactively. The analysis
can show whether or not the file is properly designed for its application and can point out ways to
improve the file design.

In addition, you can use ANALYZE/RMS_FILE to obtain FDL files from data files. You can then use
these FDL files with the Create/FDL utility (CREATE/FDL), the Convert utility (CONVERT), and the
Edit/FDL utility, (EDIT/FDL). FDL files created with ANALYZE/RMS_FILE contain special analysis
sections for each area and key, which are called ANALYSIS_OF_AREA and ANALYSIS_OF_KEY.
The Edit/FDL utility uses these sections in the Optimize script to tune the file's structure.

10.1.1. Performing an Error Check
To check a file's structure for errors, use the following command syntax:

ANALYZE/RMS_FILE/CHECK filespec

By default with a command of this format, the Check report is displayed on the terminal (SYS
$OUTPUT).

If you receive any error messages, the file has been corrupted by a serious error. If you have had a
hardware problem such as a power failure or a disk head failure, then the hardware probably caused
the corruption. If you have not had any hardware problems, then a software error may have caused the
corruption. Note that the /CHECK qualifier does not find all types of file corruption, however.

In either case, you can try using the Convert utility to fix the problem by using the file specification as
both the input-filespec and the output-filespec. Note that if you are processing a relative file containing
deleted or unused records, the conversion process changes relative record numbers (RRN) in the output

239

Chapter 10. Maintaining Files

file. If the conversion does not correct the problem, use the Backup utility (BACKUP) to bring in the
backup copy of the file.

For more information about CONVERT and BACKUP, see Section 10.4.2, "Using the Convert Utility",
Section 10.5, "Reorganizing a File", and Section 10.6, "Making Archive Copies".

Note

If you believe that the software caused the error, contact a VSI support representative. Supply the
ANALYZE/RMS_FILE check report, a copy of the data file, and a description of what was done with
the data file. If possible, also supply a version of the file prior to the corruption and the program or
procedure which led to the corruption; being able to reproduce the problem is of tremendous value.

Example 10.1, "Using ANALYZE/RMS_FILE to Create a Check Report" is a sample Check report of a
file with the file specification DISK$:[HERBER]CUSTDATA.DAT;2.

Example 10.1. Using ANALYZE/RMS_FILE to Create a Check Report

Check RMS File Integrity 14-JUN-1993 21:51:47.38 Page
 1
DISK$:[HERBER]CUSTDATA.DAT;2

FILE HEADER

 File Spec: DISK$:[HERBER]CUSTDATA.DAT;2
 File ID: (10044,39,1)
 Owner UIC: [011,310]
 Protection: System: RWED, Owner: RWED, Group: RWE, World: RWE
 Creation Date: 9-JUN-1993 22:30:24.78
 Revision Date: 9-JUN-1993 22:30:30.86, Number: 4
 Expiration Date: none specified
 Backup Date: none posted
 Contiguity Options: none
 Performance Options: none
 Reliability Options: none
 Journaling Enabled: none

RMS FILE ATTRIBUTES

 File Organization: indexed
 Record Format: variable
 Record Attributes: carriage-return
 Maximum Record Size: 80
 Blocks Allocated: 30, Default Extend Size: 2
 Bucket Size: 1
 File Monitoring: disabled
 Global Buffer Count: 0

FIXED PROLOG

 Number of Areas: 8, VBN of First Descriptor: 3
 Prolog Version: 3

AREA DESCRIPTOR #0 (VBN 3, offset %X'0000')

240

Chapter 10. Maintaining Files

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 1, Blocks: 9, Used: 4, Next: 5
 Default Extend Quantity: 2
 Total Allocation: 9

AREA DESCRIPTOR #1 (VBN 3, offset %X'0040')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 10, Blocks: 3, Used: 1, Next: 11
 Default Extend Quantity: 1

AREA DESCRIPTOR #2 (VBN 3, offset %X'0080')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 13, Blocks: 3, Used: 1, Next: 14
 Default Extend Quantity: 1
 Total Allocation: 3

AREA DESCRIPTOR #3 (VBN 3, offset %X'00C0')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 16, Blocks: 3, Used: 1, Next: 17
 Default Extend Quantity: 1
 Total Allocation: 3

AREA DESCRIPTOR #4 (VBN 3, offset %X'0100')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 19, Blocks: 3, Used: 1, Next: 20
 Default Extend Quantity: 1
 Total Allocation: 3

AREA DESCRIPTOR #5 (VBN 3, offset %X'0140')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 22, Blocks: 3, Used: 1, Next: 23
 Default Extend Quantity: 1
 Total Allocation: 3

AREA DESCRIPTOR #6 (VBN 3, offset %X'0180')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 25, Blocks: 3, Used: 1, Next: 26
 Default Extend Quantity: 1
 Total Allocation: 3

AREA DESCRIPTOR #7 (VBN 3, offset %X'01C0')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 28, Blocks: 3, Used: 1, Next: 29

241

Chapter 10. Maintaining Files

 Default Extend Quantity: 1
 Total Allocation: 3
KEY DESCRIPTOR #0 (VBN 1, offset %X'0000')

 Next Key Descriptor VBN: 2, Offset: %X'0000'
 Index Area: 1, Level 1 Index Area: 1, Data Area: 0
 Root Level: 1
 Index Bucket Size: 1, Data Bucket Size: 1
 Root VBN: 10
 Key Flags:
 (0) KEY$V_DUPKEYS 0
 (3) KEY$V_IDX_COMPR 0
 (4) KEY$V_INITIDX 0
 (6) KEY$V_KEY_COMPR 0
 (7) KEY$V_REC_COMPR 1

 Key Segments: 1
 Key Size: 4
 Minimum Record Size: 4
 Index Fill Quantity: 512, Data Fill Quantity: 512
 Segment Positions: 0
 Segment Sizes: 4
 Data Type: string
 Name: "PART_NUM"
 First Data Bucket VBN: 4

KEY DESCRIPTOR #1 (VBN 2, offset %X'0000')

 Next Key Descriptor VBN: 2, Offset: %X'0066'
 Index Area: 3, Level 1 Index Area: 3, Data Area: 2
 Root Level: 1
 Index Bucket Size: 1, Data Bucket Size: 1
 Root VBN: 16
 Key Flags:
 (0) KEY$V_DUPKEYS 1
 (1) KEY$V_CHGKEYS 0
 (2) KEY$V_NULKEYS 0
 (3) KEY$V_IDX_COMPR 0
 (4) KEY$V_INITIDX 0
 (6) KEY$V_KEY_COMPR 0
 Key Segments: 1
 Key Size: 5
 Minimum Record Size: 9
 Index Fill Quantity: 512, Data Fill Quantity: 512
 Segment Positions: 4
 Segment Sizes: 5
 Data Type: string
 Name: "PART_NAME"
 First Data Bucket VBN: 13
KEY DESCRIPTOR #2 (VBN 2, offset %X'0066')

 Next Key Descriptor VBN: 2, Offset: %X'00CC'
 Index Area: 5, Level 1 Index Area: 5, Data Area: 4
 Root Level: 1
 Index Bucket Size: 1, Data Bucket Size: 1
 Root VBN: 22
 Key Flags:
 (0) KEY$V_DUPKEYS 1

242

Chapter 10. Maintaining Files

 (1) KEY$V_CHGKEYS 0
 (2) KEY$V_NULKEYS 0
 (3) KEY$V_IDX_COMPR 1
 (4) KEY$V_INITIDX 0
 (6) KEY$V_KEY_COMPR 1
 Key Segments: 1
 Key Size: 10
 Minimum Record Size: 19
 Index Fill Quantity: 512, Data Fill Quantity: 512
 Segment Positions: 9
 Segment Sizes: 10
 Data Type: string
 Name: "SUPPLIER_NAME"
 First Data Bucket VBN: 19

KEY DESCRIPTOR #3 (VBN 2, offset %X'00CC')

 Index Area: 7, Level 1 Index Area: 7, Data Area: 6
 Root Level: 1
 Index Bucket Size: 1, Data Bucket Size: 1
 Root VBN: 28
 Key Flags:
 (0) KEY$V_DUPKEYS 1
 (1) KEY$V_CHGKEYS 0
 (2) KEY$V_NULKEYS 0
 (3) KEY$V_IDX_COMPR 1
 (4) KEY$V_INITIDX 0
 (6) KEY$V_KEY_COMPR 1
 Key Segments: 1
 Key Size: 10
 Minimum Record Size: 29
 Index Fill Quantity: 512, Data Fill Quantity: 512
 Segment Positions: 19
 Segment Sizes: 10
 Data Type: string
 Name: "COLOR"
 First Data Bucket VBN: 25

The analysis uncovered NO errors.

ANALYZE/RMS_FILE/OUTPUT=CUSTDATA.ANL CUSTDATA.DAT

To place the Check report in a file, use a command of the form:

ANALYZE/RMS_FILE/CHECK/OUTPUT=output-filespec input-filespec

The Check report will be placed in the file you named with the output-filespec parameter. This file will
receive the file type .ANL by default. For example, the following command will perform an error check
on PRLG2.IDX and place the Check report in the file ERROR.ANL:

$ ANALYZE/RMS_FILE/CHECK/OUTPUT=ERROR PRLG2.IDX

243

Chapter 10. Maintaining Files

10.1.2. Generating a Statistics Report
For indexed files, the Statistics report consists of the Check report plus additional information about the
areas and keys in the file. (A Statistics report on a sequential or relative file is thus the same as a Check
report.)

To generate a Statistics report with ANALYZE/RMS_FILE, enter a DCL command of the form:

ANALYZE/RMS_FILE/STATISTICS filespec

Example 10.2, "Using ANALYZE/RMS_FILE to Create a Statistics Report" is an example of a Statistics
report.

Example 10.2. Using ANALYZE/RMS_FILE to Create a Statistics Report

RMS File Statistics 18-APR-1993 11:22:27.14 Page
 1
DISK$:[TEST.PROGRAM]INDEX.DAT;1

FILE HEADER

 File Spec: DISK$:[TEST.PROGRAM]INDEX.DAT;1
 File ID: (15960,8,0)
 Owner UIC: [011,310]
 Protection: System: RWED, Owner: RWED, Group: RWED, World: RWE
 Creation Date: 19-APR-1993 22:15:55.70
 Revision Date: 19-APR-1993 22:16:01.74, Number: 4
 Expiration Date: none specified
 Backup Date: 18-APR-1993 00:57:54.24
 Contiguity Options: contiguous-best-try
 Performance Options: none
 Reliability Options: none
 Journaling Enabled: none

RMS FILE ATTRIBUTES

 File Organization: indexed
 Record Format: variable
 Record Attributes: carriage-return
 Maximum Record Size: 80
 Blocks Allocated: 30, Default Extend Size: 2
 Bucket Size: 1
 File Monitoring: disabled
 Global Buffer Count: 0

FIXED PROLOG

 Number of Areas: 8, VBN of First Descriptor: 3
 Prolog Version: 3

AREA DESCRIPTOR #0 (VBN 3, offset %X'0000')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 1, Blocks: 9, Used: 4, Next: 5
 Default Extend Quantity: 2

244

Chapter 10. Maintaining Files

 Total Allocation: 9

STATISTICS FOR AREA #0

 Count of Reclaimed Blocks: 0

AREA DESCRIPTOR #1 (VBN 3, offset %X'0040')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 10, Blocks: 3, Used: 1, Next: 11
 Default Extend Quantity: 1
 Total Allocation: 3

STATISTICS FOR AREA #1

 Count of Reclaimed Blocks: 0

AREA DESCRIPTOR #2 (VBN 3, offset %X'0080')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 13, Blocks: 3, Used: 1, Next: 14
 Default Extend Quantity: 1
 Total Allocation: 3

STATISTICS FOR AREA #2

 Count of Reclaimed Blocks: 0
AREA DESCRIPTOR #3 (VBN 3, offset %X'00C0')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 16, Blocks: 3, Used: 1, Next: 17
 Default Extend Quantity: 1
 Total Allocation: 3

STATISTICS FOR AREA #3

 Count of Reclaimed Blocks: 0

AREA DESCRIPTOR #4 (VBN 3, offset %X'0100')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 19, Blocks: 3, Used: 1, Next: 20
 Default Extend Quantity: 1
 Total Allocation: 3

STATISTICS FOR AREA #4

 Count of Reclaimed Blocks: 0

AREA DESCRIPTOR #5 (VBN 3, offset %X'0140')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 22, Blocks: 3, Used: 1, Next: 23

245

Chapter 10. Maintaining Files

 Default Extend Quantity: 1
 Total Allocation: 3

STATISTICS FOR AREA #5

 Count of Reclaimed Blocks: 0

AREA DESCRIPTOR #6 (VBN 3, offset %X'0180')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 25, Blocks: 3, Used: 1, Next: 26
 Default Extend Quantity: 1
 Total Allocation: 3

STATISTICS FOR AREA #6

 Count of Reclaimed Blocks: 0

AREA DESCRIPTOR #7 (VBN 3, offset %X'01C0')

 Bucket Size: 1
 Reclaimed Bucket VBN: 0
 Current Extent Start: 28, Blocks: 3, Used: 1, Next: 29
 Default Extend Quantity: 1
 Total Allocation: 3
STATISTICS FOR AREA #7

 Count of Reclaimed Blocks: 0

KEY DESCRIPTOR #0 (VBN 1, offset %X'0000')

 Next Key Descriptor VBN: 2, Offset: %X'0000'
 Index Area: 1, Level 1 Index Area: 1, Data Area: 0
 Root Level: 1
 Index Bucket Size: 1, Data Bucket Size: 1
 Root VBN: 10
 Key Flags:
 (0) KEY$V_DUPKEYS 0
 (3) KEY$V_IDX_COMPR 0
 (4) KEY$V_INITIDX 0
 (6) KEY$V_KEY_COMPR 0
 (7) KEY$V_REC_COMPR 1
 Key Segments: 1
 Key Size: 4
 Minimum Record Size: 4
 Index Fill Quantity: 512, Data Fill Quantity: 512
 Segment Positions: 0
 Segment Sizes: 4
 Data Type: string
 Name: "ID_NUM"
 First Data Bucket VBN: 4

STATISTICS FOR KEY #0

 Number of Index Levels: 1
 Count of Level 1 Records: 1
 Mean Length of Index Entry: 6

246

Chapter 10. Maintaining Files

 Count of Index Blocks: 1
 Mean Index Bucket Fill: 4%
 Mean Index Entry Compression: 0%

 Count of Data Records: 10
 Mean Length of Data Record: 33
 Count of Data Blocks: 1
 Mean Data Bucket Fill: 90%
 Mean Data Key Compression: 0%
 Mean Data Record Compression: -2%

 Overall Space Efficiency: 2%

KEY DESCRIPTOR #1 (VBN 2, offset %X'0000')

 Next Key Descriptor VBN: 2, Offset: %X'0066'
 Index Area: 3, Level 1 Index Area: 3, Data Area: 2
 Root Level: 1
 Index Bucket Size: 1, Data Bucket Size: 1
 Root VBN: 16
 Key Flags:
 (0) KEY$V_DUPKEYS 1
 (1) KEY$V_CHGKEYS 0
 (2) KEY$V_NULKEYS 0
 (3) KEY$V_IDX_COMPR 0
 (4) KEY$V_INITIDX 0
 (6) KEY$V_KEY_COMPR 0
 Key Segments: 1
 Key Size: 5
 Minimum Record Size: 9
 Index Fill Quantity: 512, Data Fill Quantity: 512
 Segment Positions: 4
 Segment Sizes: 5
 Data Type: string
 Name: "ID_NAME"
 First Data Bucket VBN: 13

STATISTICS FOR KEY #1

 Number of Index Levels: 1
 Count of Level 1 Records: 1
 Mean Length of Index Entry: 7
 Count of Index Blocks: 1
 Mean Index Bucket Fill: 4%
 Mean Index Entry Compression: 0%

 Count of Data Records: 6
 Mean Duplicates per Data Record: 0
 Mean Length of Data Record: 19
 Count of Data Blocks: 1
 Mean Data Bucket Fill: 24%
 Mean Data Key Compression: 0%

KEY DESCRIPTOR #2 (VBN 2, offset %X'0066')

 Next Key Descriptor VBN: 2, Offset: %X'00CC'
 Index Area: 5, Level 1 Index Area: 5, Data Area: 4
 Root Level: 1

247

Chapter 10. Maintaining Files

 Index Bucket Size: 1, Data Bucket Size: 1
 Root VBN: 22
 Key Flags:
 (0) KEY$V_DUPKEYS 1
 (1) KEY$V_CHGKEYS 0
 (2) KEY$V_NULKEYS 0
 (3) KEY$V_IDX_COMPR 1
 (4) KEY$V_INITIDX 0
 (6) KEY$V_KEY_COMPR 1
 Key Segments: 1
 Key Size: 10
 Minimum Record Size: 19
 Index Fill Quantity: 512, Data Fill Quantity: 512
 Segment Positions: 9
 Segment Sizes: 10
 Data Type: string
 Name: "ADDRESS"
 First Data Bucket VBN: 19

STATISTICS FOR KEY #2

 Number of Index Levels: 1
 Count of Level 1 Records: 1
 Mean Length of Index Entry: 12
 Count of Index Blocks: 1
 Mean Index Bucket Fill: 4%
 Mean Index Entry Compression: 58%

 Count of Data Records: 7
 Mean Duplicates per Data Record: 0
 Mean Length of Data Record: 20
 Count of Data Blocks: 1
 Mean Data Bucket Fill: 30%
 Mean Data Key Compression: 21%

KEY DESCRIPTOR #3 (VBN 2, offset %X'00CC')

 Index Area: 7, Level 1 Index Area: 7, Data Area: 6
 Root Level: 1
 Index Bucket Size: 1, Data Bucket Size: 1
 Root VBN: 28
 Key Flags:
 (0) KEY$V_DUPKEYS 1
 (1) KEY$V_CHGKEYS 0
 (2) KEY$V_NULKEYS 0
 (3) KEY$V_IDX_COMPR 1
 (4) KEY$V_INITIDX 0
 (6) KEY$V_KEY_COMPR 1
 Key Segments: 1
 Key Size: 10
 Minimum Record Size: 29
 Index Fill Quantity: 512, Data Fill Quantity: 512
 Segment Positions: 19
 Segment Sizes: 10
 Data Type: string
 Name: "CHARGES"
 First Data Bucket VBN: 25

248

Chapter 10. Maintaining Files

STATISTICS FOR KEY #3

 Number of Index Levels: 1
 Count of Level 1 Records: 1
 Mean Length of Index Entry: 12
 Count of Index Blocks: 1
 Mean Index Bucket Fill: 4%
 Mean Index Entry Compression: 58%

 Count of Data Records: 5
 Mean Duplicates per Data Record: 1
 Mean Length of Data Record: 23
 Count of Data Blocks: 1
 Mean Data Bucket Fill: 25%
 Mean Data Key Compression: 34%

The analysis uncovered NO errors.

ANALYZE/RMS_FILE/OUTPUT=INDEX/STATISTICS INDEX.DAT

10.1.3. Using Interactive Mode
The /INTERACTIVE qualifier begins an interactive session in which you can examine the structure of
an RMS file.

ANALYZE/RMS_FILE imposes a hierarchical tree structure on the internal RMS file structure. Each
data structure in the file is a node, with a branch for each pointer in the data structure. The file header is
always the root node. Each of the three file organizations (sequential, relative, and indexed) has its own
tree structure.

To examine a file, you enter commands that move the current position to particular structures within the
tree. The utility displays the current structure on the screen.

Table 10.1, "ANALYZE/RMS_FILE Command Summary" summarizes the ANALYZE/RMS_FILE
commands.

Table 10.1. ANALYZE/RMS_FILE Command Summary

Command Function

AGAIN Displays the current structure again.
DOWN [branch] Moves the structure pointer down to the next level.

If the current node has more than one branch, the
branch keyword must be specified.

If a branch keyword is required but not specified,
the utility will display a list of possibilities to
prompt you. You can also display the list by
specifying “DOWN ?.”

DUMP n Displays a hexadecimal dump of the specified
block.

EXIT Ends the interactive session.

249

Chapter 10. Maintaining Files

Command Function

FIRST Moves the structure pointer to the first structure
on the current level. The structure is displayed. For
example, if you are examining data buckets and
want to examine the first bucket, this command
will put you there and display the first bucket's
header.

HELP [keyword ...] Displays help messages about the interactive
commands.

NEXT Moves the structure pointer to the next structure on
the current level. The structure is displayed.

Pressing the Return key is equivalent to a NEXT
command.

REST Moves the structure pointer along the rest of
the structures on the current level, and each is
displayed in turn.

TOP Moves the structure pointer up to the file header.
The file header is displayed.

UP Moves the structure pointer up to the next level.
The structure at that level is displayed.

10.1.4. Examining a Sequential File
Figure 10.1, "Tree Structure for Sequential Files" shows the tree structure of a sequential file.

Figure 10.1. Tree Structure for Sequential Files

The FILE HEADER structure is always the first structure displayed. From the FILE HEADER structure,
the DOWN command moves the current position to the FILE ATTRIBUTES structure. The DOWN
command from the FILE ATTRIBUTES structure moves the current position to the first record in the
file. From the first record, the REST command will move the current position through the records in the
file, displaying each one in turn. A series of NEXT commands will also accomplish this same operation.

Figure 10.2, "Record Layout and Content for SEQ.DAT" shows the layout and contents of the records in
a sequential file SEQ.DAT. Example 10.3, "Examining a Sequential File" is an interactive examination of
SEQ.DAT, showing the contents of three records in the file.

250

Chapter 10. Maintaining Files

Figure 10.2. Record Layout and Content for SEQ.DAT

Example 10.3. Examining a Sequential File

$ ANALYZE/RMS_FILE/INTERACTIVE SEQ.DAT

FILE HEADER
 File Spec: DISK$DELPHIWORK:[RMS32]SEQ.DAT;3
 File ID: (1170,2,2)
 Owner UIC: [730,465]
 Protection: System: RWED, Owner: RWED, Group: RWED, World:
 Creation Date: 7-MAY-1993 16:51:30.92
 Revision Date: 8-MAY-1993 14:02:17.15, Number: 3
 Expiration Date: none specified
 Backup Date: none posted
 Contiguity Options: none
 Performance Options: none
 Reliability Options: none

ANALYZE> DOWN

RMS FILE ATTRIBUTES
 File Organization: sequential
 Record Format: variable
 Record Attributes: carriage-return
 Maximum Record Size: 0
 Longest Record: 73
 Blocks Allocated: 3, Default Extend Size: 0
 End-of-File VBN: 1, Offset: %X'00E4'
 File Monitoring: disabled
 Global Buffer Count: 0

ANALYZE> DOWN

 DATA BYTES (VBN 1, offset %X'0000'):
 7 6 5 4 3 2 1 0 01234567
 ------------------------ --------
 31 30 30 30 30 30 00 49| 0000 |I.000001|
 20 4C 41 54 49 47 49 44| 0008 |COMPAQ |
 4E 45 4D 50 49 55 51 45| 0010 |COMPUTER|
 52 4F 50 52 4F 43 20 54| 0018 |CORPORAT|
 31 31 20 4E 4F 49 54 41| 0020 |ION 110 |
 42 20 54 49 50 53 20 30| 0028 |SPIT BRO|
 41 4F 52 20 4B 4F 4F 52| 0030 |OK ROAD |
 41 55 48 53 41 4E 20 44| 0038 |NASHUA |
 33 30 48 4E 20 20 20 20| 0040 | NH030|
 00 31 36 30| 0048 |62. |

ANALYZE> NEXT

 DATA BYTES (VBN 1, offset %X'004C'):
 7 6 5 4 3 2 1 0 01234567

251

Chapter 10. Maintaining Files

 ------------------------ --------
 32 30 30 30 30 30 00 49| 0000 |I.000002|
 49 46 46 4F 20 42 44 41| 0008 |ADB OFFI|
 4C 50 50 55 53 20 45 43| 0010 |CE SUPPL|
 20 20 20 20 20 53 45 49| 0018 |IES |
 32 34 20 20 20 20 20 20| 0020 | 42|
 4F 4D 45 53 4F 52 20 30| 0028 |0 ROSEMO|
 45 52 54 53 20 54 4E 55| 0030 |UNT STRE|
 49 44 20 4E 41 53 54 45| 0038 |ETSAN DI|
 32 39 41 43 20 4F 47 45| 0040 |EGO CA92|
 00 30 31 31| 0048 |110. |

ANALYZE> NEXT

 DATA BYTES (VBN 1, offset %X'0098'):
 7 6 5 4 3 2 1 0 01234567
 ------------------------ --------
 33 30 30 30 30 30 00 49| 0000 |I.000003|
 52 50 20 52 4F 4C 4F 43| 0008 |COLOR PR|
 4C 20 47 4E 49 54 4E 49| 0010 |INTING L|
 52 4F 54 41 52 4F 42 41| 0018 |ABORATOR|
 34 39 20 20 20 53 45 49| 0020 |IES 94|
 35 20 54 53 41 45 20 39| 0028 |9 EAST 5|
 45 45 52 54 53 20 48 54| 0030 |TH STREE|
 4F 59 20 57 45 4E 20 54| 0038 |T NEW YO|
 30 31 59 4E 20 20 4B 52| 0040 |RK NY10|
 00 33 30 30| 0048 |003. |

ANALYZE> EXIT

10.1.5. Examining a Relative File
Figure 10.3, "Tree Structure of Relative Files" shows the tree structure of relative files.

Figure 10.3. Tree Structure of Relative Files

The tree structure of relative files also begins with the FILE HEADER and FILE ATTRIBUTES
structures. From the FILE ATTRIBUTES structure, the next structure down is the PROLOG. The first
structure down from the PROLOG is the FIRST DATA BUCKET. The data bucket structures can be

252

Chapter 10. Maintaining Files

examined with the REST command or one at a time with the NEXT command. The only information at
the data bucket level is the number of the data bucket's virtual block.

The next structure down is the FIRST RECORD CELL IN FIRST BUCKET. You can examine the
records in each cell by specifying either the REST command or a series of NEXT commands.

Example 10.4, "Examining a Relative File" shows an interactive examination of a relative file.

Example 10.4. Examining a Relative File

FILE HEADER
 File Spec: DISK$NEWWORK:[RMS32]REL.DAT;1
 File ID: (9573,7,2)
 Owner UIC: [181,065]
 Protection: System: RWED, Owner: RWED, Group: RE, World:
 Creation Date: 22-MAY-1993 10:42:04.95
 Revision Date: 22-MAY-1993 10:42:05.81, Number: 1
 Expiration Date: none specified
 Backup Date: none posted
 Contiguity Options: contiguous-best-try
 Performance Options: none
 Reliability Options: none

ANALYZE> DOWN

RMS FILE ATTRIBUTES
 File Organization: relative
 Record Format: variable
 Record Attributes: carriage-return
 Maximum Record Size: 75
 Blocks Allocated: 9, Default Extend Size: 0
 Bucket Size: 3
 File Monitoring: disabled
 Global Buffer Count: 0

ANALYZE> DOWN

FIXED PROLOG
 Prolog Flags:
 (0) PLG$V_NOEXTEND 0
 First Data Bucket VBN: 2
 Maximum Record Number: 2147483647
 End-of-File VBN: 10
 Prolog Version: 1

ANALYZE> DOWN

DATA BUCKET (VBN 2)

ANALYZE> DOWN

 RECORD CELL (VBN 2, offset %X'0000'):
 Cell Control Flags:
 (2) DLC$V_DELETED 0
 (3) DCL$V_REC 1
 Record Bytes:
 7 6 5 4 3 2 1 0 01234567
 ------------------------ --------

253

Chapter 10. Maintaining Files

 31 30 30 30 30 30 00 49| 0000 |I.000001|
 20 4C 41 54 49 47 49 44| 0008 |COMPAQL |
 4E 45 4D 50 49 55 51 45| 0010 |COMPUTER|
 52 4F 50 52 4F 43 20 54| 0018 |CORPORAT|
 31 31 20 4E 4F 49 54 41| 0020 |ION 110|
 42 20 54 49 50 53 20 30| 0028 |SPIT BRO|
 41 4F 52 20 4B 4F 4F 52| 0030 |OK ROAD |
 41 55 48 53 41 4E 20 44| 0038 |NASHUA |
 33 30 48 4E 20 20 20 20| 0040 | NH030|
 31 36 30| 0048 | 62 |

If you use the REST command at the CELL AND RECORD level, the utility will display all the cells
and records in the file, not just the cells and records in the current bucket.

10.1.6. Examining an Indexed File
The structure of an indexed file also begins with the FILE HEADER, FILE ATTRIBUTES, and
PROLOG structures. From the PROLOG structure, the file structure branches to the area descriptors
and the key descriptors. To branch to the area descriptor path, specify the command DOWN AREA. To
branch to the key descriptor path, specify DOWN KEY.

The area descriptor path contains structures that show information about the various areas in the file.
The key descriptor path contains the primary key structures (and data records) and any secondary key
structures.

Figure 10.4, "Area Descriptor Path" shows the structure following the area descriptor path.

Figure 10.4. Area Descriptor Path

Example 10.5, "Examining an Area Descriptor Path" shows an examination of an area descriptor path
from the PROLOG level.

Example 10.5. Examining an Area Descriptor Path

ANALYZE> DOWN AREA

AREA DESCRIPTOR #0 (VBN 3, offset %X'0000'))
 Bucket Size: 1)
 Alignment: AREA$C_NONE)

254

Chapter 10. Maintaining Files

 Alignment Flags:)
 (0) AREA$V_HARD 0)
 (1) AREA$V_ONC 0)
 (5) AREA$V_CBT 0)
 (7) AREA$V_CTG 0)
 Current Extent Start: 1, Blocks: 9, Used: 7, Next: 8)
 Default Extend Quantity: 0)

Figure 10.5, "Key Descriptor Path" shows the structure following the key descriptor path. As shown
in the figure, you can branch directly to the DATA BUCKET, or you can branch to the INDEX ROOT
BUCKET to begin examination of the index structure, eventually reaching the DATA BUCKET
structure. Depending on whether you are examining the primary index structure or one of the alternate
index structures, there is a difference in the contents of the record structure.

The PRIMARY RECORD structure contains the actual data records; the ALTERNATE RECORD
structures contain secondary index data records (SIDRs).

Figure 10.5. Key Descriptor Path

Figure 10.6, "Structure of Primary Records" displays the structure of the primary records.

Figure 10.6. Structure of Primary Records

As shown in Figure 10.6, "Structure of Primary Records", the branch from the primary record structure
allows you to either examine the actual bytes of data within the record or to follow the RRV.

Example 10.6, "Examining a Primary Record" shows an examination of a primary record.

255

Chapter 10. Maintaining Files

Example 10.6. Examining a Primary Record

 PRIMARY DATA RECORD (VBN 4, offset %X'000E')
 Record Control Flags:
 (2) IRC$V_DELETED 0
 (3) IRC$V_RRV 0
 (4) IRC$V_NOPTRSZ 0
 Record ID: 1
 RRV ID: 1, 4-Byte Bucket Pointer: 4
 Key:
 7 6 5 4 3 2 1 0 01234567
 ------------------------ --------
 31 30 30 30 30 30| 0000 |000001 |

ANALYZE> DOWN BYTES

 7 6 5 4 3 2 1 0 01234567
 ------------------------ --------
 31 30 30 30 30 30 00 49| 0000 |I.000001|
 20 4C 41 54 49 47 49 44| 0008 |COMPAQ |
 4E 45 4D 50 49 55 51 45| 0010 |COMPUTER|
 52 4F 50 52 4F 43 20 54| 0018 |CORPORAT|
 31 31 20 4E 4F 49 54 41| 0020 |ION 110 |
 42 20 54 49 50 53 20 30| 0028 |SPIT BRO|
 41 4F 52 20 4B 4F 4F 52| 0030 |OK ROAD |
 41 55 48 53 41 4E 20 44| 0038 |NASHUA |
 33 30 48 4E 20 20 20 20| 0040 | NH03|
 31 36 30| 0048 |062 |

ANALYZE> UP

 PRIMARY DATA RECORD (VBN 4, offset %X'000E')
 Record Control Flags:
 (2) IRC$V_DELETED 0
 (3) IRC$V_RRV 0
 (4) IRC$V_NOPTRSZ 0
 Record ID: 1
 RRV ID: 1, 4-Byte Bucket Pointer: 4
 Key:
 7 6 5 4 3 2 1 0 01234567
 ------------------------ --------
 31 30 30 30 30 30| 0000 |000001 |

ANALYZE> DOWN RRV

BUCKET HEADER (VBN 4)
 Check Character: %X'00'
 Area Number: 0
 VBN Sample: 4
 Free Space Offset: %X'0104'
 Free Record ID Range: 4 - 255
 Next Bucket VBN: 4
 Level: 0
 Bucket Header Flags:
 (0) BKT$V_LASTBKT 1
 (1) BKT$V_ROOTBKT 0

Figure 10.7, "Structure of Alternate Records" displays the structure of the alternate records.

256

Chapter 10. Maintaining Files

Figure 10.7. Structure of Alternate Records

Example 10.7, "Examining an Alternate Record" shows an examination of an alternate record.

Example 10.7. Examining an Alternate Record

ANALYZE> DOWN

SIDR RECORD (VBN 6, offset %X'000E')
 Control Flags:
 (4) IRC$V_NOPTRSZ 0
 Record ID: 1
 Key:
 7 6 5 4 3 2 1 0 01234567
 ------------------------ --------
 31 36 30 33 30| 0000 |03062 |

ANALYZE> DOWN

 sidr pointer control flags:
 (2) IRC$V_DELETED 0
 (5) IRC$V_KEYDELETE 0
 sidr pointer record id: 1, 4-byte record VBN: 4

10.2. Generating an FDL File from a Data File
You can use the Analyze/RMS_File utility to create an FDL file generally called an analysis file. FDL
files created by ANALYZE/RMS_FILE contain statistics about each area and key in the primary
sections named ANALYSIS_OF_AREA and ANALYSIS_OF_KEY.

These analysis sections are then used by the Edit/FDL utility in its Optimize script. You can compare the
statistics in these sections with your assumptions about the file's use; you may find some places in the
file's structure where additional tuning will be possible.

To generate an FDL file from a data file, use the following command syntax:

ANALYZE/RMS_FILE/FDL filespec

With a command of this type, the FDL file obtains its file name from the input file specification; to
assign a different file name, use the /OUTPUT qualifier. For example, the following command would
generate an FDL file named INDEXDEF.FDL from the data file CUSTFILE.DAT:

$ ANALYZE/RMS_FILE/FDL/OUTPUT=INDEXDEF CUSTFILE.DAT

Example 10.8, "KEY and ANALYSIS_OF_KEY Sections in an FDL File" shows an FDL file showing the
KEY and ANALYSIS_OF_KEY sections for an indexed file with two keys.

257

Chapter 10. Maintaining Files

Example 10.8. KEY and ANALYSIS_OF_KEY Sections in an FDL File

IDENT 2-JUN-1993 16:15:35 VMS ANALYZE/RMS_FILE Utility

SYSTEM
 SOURCE VMS
FILE
 ALLOCATION 9
 BEST_TRY_CONTIGUOUS no
 BUCKET_SIZE 1
 CONTIGUOUS no
 EXTENSION 0
 GLOBAL_BUFFER_COUNT 0
 NAME DISK$USERWORK:[WORK.RMS32]CUSTDATA.DAT;4
 ORGANIZATION indexed
 OWNER [520,50]
 PROTECTION (system:RWED, owner:RWED, group:RWED,
 world:)
 READ_CHECK no
 WRITE_CHECK no

RECORD
 BLOCK_SPAN yes
 CARRIAGE_CONTROL carriage_return
 FORMAT variable
 SIZE 0

AREA 0
 BEST_TRY_CONTIGUOUS no
 BUCKET_SIZE 1
 CONTIGUOUS no
 EXTENSION 0

KEY 0
 CHANGES no
 DATA_AREA 0
 DATA_FILL 100
 DUPLICATES no
 INDEX_AREA 0
 INDEX_FILL 100
 LEVEL1_INDEX_AREA 0
 NULL_KEY no
 PROLOG 1
 SEG0_LENGTH 6
 SEG0_POSITION 0
 TYPE string
KEY 1
 CHANGES no
 DATA_AREA 0
 DATA_FILL 100
 DUPLICATES yes
 INDEX_AREA 0
 INDEX_FILL 100
 LEVEL1_INDEX_AREA 0
 NULL_KEY no
 SEG0_LENGTH 5
 SEG0_POSITION 68
 TYPE string

258

Chapter 10. Maintaining Files

ANALYSIS_OF_AREA 0
 RECLAIMED_SPACE 0

ANALYSIS_OF_KEY 0
 DATA_FILL 50
 DATA_RECORD_COUNT 3
 DATA_SPACE_OCCUPIED 1
 DEPTH 1
 INDEX_FILL 4
 INDEX_SPACE_OCCUPIED 1
 MEAN_DATA_LENGTH 73
 MEAN_INDEX_LENGTH 9

ANALYSIS_OF_KEY 1
 DATA_FILL 14
 DATA_RECORD_COUNT 3
 DATA_SPACE_OCCUPIED 1
 DEPTH 1
 DUPLICATES_PER_SIDR 1
 INDEX_FILL 4
 INDEX_SPACE_OCCUPIED 1
 MEAN_DATA_LENGTH 19
 MEAN_INDEX_LENGTH 8

10.3. Optimizing and Redesigning File
Characteristics
To maintain your files properly, you must occasionally tune them. Tuning involves adjusting and
readjusting the characteristics of the file, generally to make the file run faster or more efficiently, and
then reorganizing the file to reflect those changes.

There are two ways to tune files. You can redesign your FDL file to change file characteristics or
parameters. You can change these characteristics either interactively with the Edit/FDL utility (the
preferred method) or by using a text editor. With the redesigned FDL file, then, you can create a new
data file.

You can also optimize your data file by using ANALYZE/RMS_FILE with the /FDL qualifier. This
method, rather than actually redesigning your FDL file, produces an FDL file containing certain statistics
about the file's use that you can then use to tune your existing data file.

Figure 10.8, "RMS Tuning Cycle" shows how to use the RMS utilities to perform the tuning cycle.

259

Chapter 10. Maintaining Files

Figure 10.8. RMS Tuning Cycle

Section 10.3.1, "Redesigning an FDL File" describes how to redesign an FDL file, and Section 10.3.2,
"Optimizing a Data File" explains how to optimize the run-time performance of a data file.

10.3.1. Redesigning an FDL File
There are many ways to redesign an FDL file. If you want to make small changes, you can use the ADD,
DELETE, and MODIFY commands at the main menu (main editor) level.

Command Function

ADD Allows you to add one or more new lines to the
FDL file. When you give the ADD command at
the main menu level, the Edit/FDL utility prompts
you with a menu displaying all legal primary
attributes; your FDL file does not necessarily have
to contain all these attributes. You can add a new
primary attribute to your file, or you can add a new
secondary attribute to an existing primary attribute.

When you type in a primary attribute, the Edit/
FDL utility displays all the legal secondary
attributes for that primary attribute with their
possible values. You can then select the secondary
attribute that you want to add to your FDL file
and supply the appropriate value for the secondary
attribute.

DELETE Allows you to delete one or more lines from the
FDL file. When you give the DELETE command
at the main menu level, the Edit/FDL utility
prompts you with a menu displaying the current
primary attributes of your FDL file.

260

Chapter 10. Maintaining Files

Command Function
When you select the primary attribute for the
attribute you want to remove from your FDL
definition, the Edit/FDL utility displays the current
values for all of the FDL file's secondary attributes.
When you select the appropriate secondary from
this list, the Edit/FDL utility removes it from the
FDL definition. If you delete all of the secondary
attributes of a primary attribute, the Edit/FDL
utility removes the primary attribute from the
current definition.

MODIFY Allows you to change an existing line in the
FDL definition. When you issue the MODIFY
command at the main menu level, the Edit/FDL
utility prompts you with a menu displaying the
current primary attributes of your FDL file.

When you type in a primary attribute, the Edit/
FDL utility displays all the existing secondary
attributes for that primary attribute with their
current values. You can then select the secondary
attribute of which you want to change the value
and then supply the appropriate value for the
secondary attribute.

However, if you want to make substantial changes to an FDL file, you should invoke the Touch-up script.
Because sequential and relative files are simple in design, the Touch-up script works only with FDL
files that describe indexed files. If you want to redesign sequential and relative files, you can use the
command listed above (ADD, DELETE, or MODIFY), or you can go through the design phase again,
using the scripts for those organizations.

To completely redesign an existing FDL file that describes an indexed sequential file, use the following
command syntax:

EDIT/FDL/SCRIPT=TOUCHUP fdl-filespec

10.3.2. Optimizing a Data File
To improve the performance of a data file, use a 3-step procedure that includes analysis, FDL
optimization, and conversion of the file. If used periodically during the life of a data file, this procedure
yields a file that performs optimally.

For the analysis, use the ANALYZE/RMS_FILE/FDL command to create an output file (analysis-fdl-
file) that reflects the current state of the data file. The command syntax for creating the analysis-fdl-file
follows:

ANALYZE/RMS_FILE/FDL/OUTPUT=analysis-fdl-file original-data-file

The output file analysis-fdl-file contains all of the information and statistics about the data file,
including create-time attributes and information that reflects changes made to the structure and contents
of the data file over its life.

261

Chapter 10. Maintaining Files

For FDL optimization, use the Edit/FDL utility to produce an optimized output file (optimized-fdl-file).
You can do this by modifying either the original FDL file (original-fdl-file) if available, or the FDL
output of the file analysis analysis-fdl-file.

Modification of an FDL file can be performed either interactively using a terminal dialogue or
noninteractively by allowing the Edit/FDL utility to calculate optimal values based on analysis
information.

To optimize the file interactively using an OPTIMIZE script, use a command with the following format:

EDIT/FDL/ANALYSIS=analysis-fdl-file/SCRIPT=OPTIMIZE-/OUTPUT=optimized-fdl-file original-
fdl-file To optimize the file noninteractively, use a command with the following format:

EDIT/FDL/ANALYSIS=analysis-fdl-file/NOINTERACTIVE- /OUTPUT=optimized-fdl-file original-
fdl-file The optimized-fdl-file parameter is the optimized version of the original FDL file.

Conversion is the process of applying the optimized FDL file to the original data file. You use the
Convert utility to do this using a command with the following syntax:

CONVERT/FDL=optimized-fdl-file original-data-file new-data-file

10.4. Making a File Contiguous
If your file has been used for some time or if it is extremely volatile, the numerous deletions and
insertions of records may have caused the optimal design of the file to deteriorate. For example,
numerous extensions will degrade performance by causing window-turn operations. In indexed files,
deletions can cause empty but unusable buckets to accumulate.

If additions or insertions to a file cause too many extensions, the file's performance will also deteriorate.
To improve performance, you could increase the file's window size, but this uses an expensive system
resource and at some point may itself hurt performance. A better method is to make the file contiguous
again.

This section presents techniques for cleaning up your files. These techniques include using the Copy
utility, the Convert utility, and the Convert/Reclaim utility.

10.4.1. Using the Copy Utility
You can use the COPY command with the /CONTIGUOUS qualifier to copy the file, creating a new
contiguous version. The /CONTIGUOUS qualifier can be used only on an output file.

To use the COPY command with the /CONTIGUOUS qualifier, use the following command syntax:

COPY input-filespec output-filespec/CONTIGUOUS

If you do not want to rename the file, use the same name for input-filespec and output-filespec.

By default, if the input file is contiguous, COPY likewise tries to create a contiguous output file. By
using the /CONTIGUOUS qualifier, you ensure that the output file is copied to consecutive physical disk
blocks.

The /CONTIGUOUS qualifier can only be used when you copy disk files; it does not apply to tape files.
For more information, see the COPY command in the VSI OpenVMS DCL Dictionary.

262

Chapter 10. Maintaining Files

10.4.2. Using the Convert Utility
The Convert utility can also make a file contiguous if contiguity is an original attribute of the file.

To use the Convert utility to make a file contiguous, use the following command syntax:

CONVERT input-filespec output-filespec

If you do not want to rename the file, use the same name for input-filespec and output-filespec.

10.4.3. Reclaiming Buckets in Prolog 3 Files
If you delete a number of records from a Prolog 3 indexed file, it is possible that you deleted all of the
data entries in a particular bucket. RMS generally cannot use such empty buckets to write new records.

With Prolog 3 indexed files, you can reclaim such buckets by using the Convert/Reclaim utility. This
utility allows you to reclaim the buckets without incurring the overhead of reorganizing the file with
CONVERT.

As the data buckets are reclaimed, the pointers to them in the index buckets are deleted. If as a result any
of the index buckets become empty, they too are reclaimed.

Note that RFA access is retained after bucket reclamation. The only effect that CONVERT/RECLAIM
has on a Prolog 3 indexed file is that empty buckets are reclaimed.

To use CONVERT/RECLAIM, use the following command syntax, in which filespec specifies a Prolog
3 indexed file:

CONVERT/RECLAIM filespec

Please note that the file cannot be open for shared access at the time that you give the CONVERT/
RECLAIM command.

10.5. Reorganizing a File
Using the Convert utility is the easiest way to reorganize a file. In addition, CONVERT cleans up split
buckets in indexed files. Also, because the file is completely reorganized, buckets in which all the records
were deleted will disappear. (Note that this is not the same as bucket reclamation. With CONVERT, the
file becomes a new file and records receive new RFAs.)

To use the Convert utility to reorganize a file, use the following command syntax:

CONVERT input-filespec output-filespec

If you do not want to rename the file, use the same name for input-filespec and output-filespec.

10.6. Making Archive Copies
Another part of maintaining files is making sure that you protect the data in them. You should keep
duplicates of your files in another place in case something happens to the originals. In other words, you
need to back up your files. Then, if something does happen to your original data, you can restore the
duplicate files.

263

Chapter 10. Maintaining Files

The Backup utility (BACKUP) allows you to create backup copies of files and directories, and to restore
them as well. These backup copies are called save sets, and they can reside on either disk or magnetic
tape. Save sets are also written in BACKUP format; only BACKUP can interpret the data.

Unlike the DCL command COPY, which makes new copies of files (updating the revision dates and
assigning protection from the defaults that apply), BACKUP makes copies that are identical in all
respects to the originals, including dates and protection.

To use the Backup utility to create a save set of your file, use the following command syntax:

BACKUP input-filespec output-filespec[/SAVE_SET]

You have to use the /SAVE_SET qualifier only if the output file will be backed up to disk. You can omit
the qualifier for magnetic tape.

For more information about BACKUP, see the description of the Backup utility in the VSI OpenVMS
System Management Utilities Reference Manual.

264

Appendix A. Edit/FDL Utility
Optimization Algorithms
This appendix lists the algorithms used by the Edit/FDL utility to determine the optimum values for file
attributes.

A.1. Allocation
For sequential files with block spanning, the Edit/FDL utility allocates enough blocks to hold the
specified number of records of mean size. If you do not allow block spanning, the Edit/FDL utility
factors in the potential wasted space at the end of each block.

For relative files, the Edit/FDL utility calculates the total number of buckets in the file and then allocates
enough blocks to hold the required number of buckets and associated overhead. The Edit/FDL utility
calculates the total number of buckets by dividing the total number of records in the file by the bucket
record capacity. The overhead consists of the prolog which is equal to one block and is stored in VBN 1.

For indexed files, the Edit/FDL utility calculates the depth to determine the actual bucket size and
number of buckets at each level of the index. It then allocates enough blocks to hold the required number
of buckets. Areas for the data level (Level 0) have separate allocations from the areas for the index levels
of each key.

In all cases, allocations are rounded up to a multiple of bucket size.

A.2. Extension Size
For sequential files, the Edit/FDL utility sets the extension size to one-tenth of the allocation size and
truncates any fraction. For relative files and indexed files, the Edit/FDL utility extends the file by 25
percent rounded up to the next multiple of the bucket size.

A.3. Bucket Size
Because most records that the Edit/FDL utility accesses are close to each other, it makes the buckets
large enough to hold 16 records or the total record capacity of the file, whichever is smaller. The
maximum bucket size is 63 blocks.

For indexed files, the Edit/FDL utility permits you to decide the bucket size for any particular index. The
data and index levels get the same bucket size but you can use the MODIFY command to change these
values.

The Edit/FDL utility calculates the default bucket size by first finding the most common index depth
produced by the various bucket sizes. If you specify smaller buffers rather than fewer levels, the Edit/
FDL utility establishes the default bucket size as the smallest size needed to produce the most common
depth. On Surface_Plot graphs, these values are shown on the leftmost edge of each bucket size.

Note

If you specify a separate bucket size for the Level 1 index, it should match the bucket size assigned to the
rest of the index.

265

Appendix A. Edit/FDL Utility Optimization Algorithms

The bucket size is always a multiple of disk cluster size. The ANALYZE/RMS_FILE primary attribute
ANALYSIS_OF_KEY now has a new secondary attribute called LEVEL1_RECORD_COUNT that
represents the index level immediately above the data. It makes the tuning algorithm more accurate when
duplicate key values are specified.

A.4. Global Buffers
The global buffer count is the number of I/O buffers that two or more processes can access. This
algorithm tries to cache or “map” the whole Key 0 index (at least up to a point) into memory for quicker
and more efficient access.

A.5. Index Depth
The indexed design routines simulate the loading of data buckets with records based on your data
regarding key sizes, key positions, record sizes (mean and maximum), compression values, load method,
and fill factors.

When the Edit/FDL utility finds the number of required data buckets, it can determine the actual number
of index records in the next level up (each of which points to a data bucket). The process is repeated
until all the required index records for a level can fit in one bucket, the root bucket. When a file exceeds
32 levels, the Edit/FDL utility issues an error message.

With a line_plot, the design calculations are performed up to 63 times—once for each legal bucket
size. With a surface_plot, each line of the plot is equivalent to a line_plot with a different value for the
variable on the Y-axis.

266

	Guide to OpenVMS File Applications
	Table of Contents
	Preface
	1. About VSI
	2. Intended Audience
	3. Document Structure
	4. Related Documents
	5. OpenVMS Documentation
	6. VSI Encourages Your Comments
	7. Conventions

	Chapter 1. Introduction
	1.1. File Concepts
	1.2. Disk Concepts
	1.2.1. Files–11 On-Disk Structure Concepts
	1.2.2. Files–11 Control Files
	1.2.2.1. Index File
	1.2.2.2. Storage Bit Map File
	1.2.2.3. Bad Block File
	1.2.2.4. Master File Directory
	1.2.2.5. Core Image File
	1.2.2.6. Volume Set List File
	1.2.2.7. Continuation File
	1.2.2.8. Backup Log File
	1.2.2.9. Pending Bad Block Log File
	1.2.2.10. Security Profiles File (VAX Only)

	1.2.3. Files–11 On–Disk Structure Level 1 Versus Structure Level 2
	1.2.4. Physical Structures
	1.2.5. CD–ROM Concepts
	1.2.5.1. CD–ROM On-Disc Formats
	1.2.5.2. Volume Structure
	1.2.5.3. Files–11 C/D – ACPs
	1.2.5.4. Using DIGITAL System Identifiers on CD–ROM

	1.3. Magnetic Tape Concepts
	1.3.1. ANSI-Labeled Magnetic Tape
	1.3.1.1. Logical Format of ANSI Magnetic Tape Volumes
	1.3.1.2. RMS Magnetic Tape Ancillary Control Process (MTAACP)
	1.3.1.3. Basic Components of the ANSI Magnetic Tape Format
	1.3.1.4. Volume and File Configurations
	1.3.1.5. Volume Labels
	1.3.1.5.1. VOL1 Label
	1.3.1.5.2. VOL2 Label

	1.3.1.6. Header Labels
	1.3.1.6.1. HDR1 Label
	1.3.1.6.2. HDR2 Label
	1.3.1.6.3. HDR3 Label
	1.3.1.6.4. HDR4 Label

	1.3.1.7. Trailer Labels

	1.4. Using Command Procedures to Perform Routine File and Device Operations
	1.5. Volume Protection
	1.6. RMS (Record Management Services)
	1.6.1. File Definition Language (FDL)
	1.6.2. RMS Data Structures
	1.6.3. Record Management Services

	1.7. RMS Utilities
	1.7.1. The Analyze/RMS_File Utility
	1.7.2. The Convert Utility
	1.7.3. The Convert/Reclaim Utility
	1.7.4. The Create/FDL Utility
	1.7.5. The Edit/FDL Utility

	1.8. Process and System Resources for File Applications
	1.8.1. Memory Requirements
	1.8.2. Process Limits

	Chapter 2. Choosing a File Organization
	2.1. Record Concepts
	2.1.1. Record Access Modes
	2.1.1.1. Sequential Access
	2.1.1.2. Random Access by Key Value or Relative Record Number
	2.1.1.3. Random Access by Record File Address

	2.1.2. Record Formats
	2.1.2.1. Fixed-Length Record Format
	2.1.2.2. Variable-Length Record Format
	2.1.2.3. Variable-Length with Fixed-Length Control Field (VFC) Record Format
	2.1.2.4. Stream Record Format

	2.2. File Organization Concepts
	2.2.1. Sequential File Organization
	2.2.2. Relative File Organization
	2.2.3. Indexed File Organization
	2.2.3.1. Sequentially Retrieving Indexed Records
	2.2.3.2. Index Keys
	2.2.3.3. Other Key Characteristics
	2.2.3.4. Specifying Sort Order
	2.2.3.5. Using Collated Keys
	2.2.3.6. Summary of Indexed File Organization

	Chapter 3. Performance Considerations
	3.1. Design Considerations
	3.1.1. Speed
	3.1.2. Space
	3.1.3. Shared Access
	3.1.4. Impact on Applications Design

	3.2. Tuning
	3.2.1. File Design Attributes
	3.2.1.1. Initial File Allocation
	3.2.1.2. Contiguity
	3.2.1.3. Extending a File
	3.2.1.3.1. Auto Extend Size Selection
	3.2.1.3.2. Establishing Auto Extend Default Quantities
	3.2.1.3.3. Placement and Contiguity of Extends

	3.2.1.4. Truncating a File
	3.2.1.5. Units of I/O
	3.2.1.6. Multiple Areas for Indexed Files
	3.2.1.7. Bucket Fill Factor for Indexed Files

	3.2.2. Processing Options
	3.2.2.1. Multiple Buffers
	3.2.2.2. Deferred-Write Processing
	3.2.2.3. Global Buffers
	3.2.2.4. Read-Ahead and Write-Behind Processing

	3.3. Tuning a Sequential File
	3.3.1. Block Span Option
	3.3.2. Multiblock Size Option
	3.3.3. Number of Buffers
	3.3.4. Global Buffer Option
	3.3.5. Read-Ahead and Write-Behind Options

	3.4. Tuning a Relative File
	3.4.1. Bucket Size
	3.4.2. Number of Buffers
	3.4.3. Global Buffer Option
	3.4.4. Deferred-Write Option

	3.5. Tuning an Indexed File
	3.5.1. File Structure
	3.5.1.1. Prologs
	3.5.1.2. Primary Index Structure
	3.5.1.3. Alternate Index Structure
	3.5.1.4. Records
	3.5.1.5. Keys
	3.5.1.6. Areas

	3.5.2. Optimizing File Performance
	3.5.2.1. Bucket Size
	3.5.2.2. Fill Factor
	3.5.2.3. Number of Buffers
	3.5.2.4. Global Buffers
	3.5.2.5. Using the Deferred-Write Option

	3.6. Monitoring RMS Performance
	3.6.1. Enabling RMS Statistics
	3.6.2. Using RMS Statistics

	3.7. Processing in an OpenVMS Cluster Environment
	3.7.1. OpenVMS Cluster Shared Access
	3.7.1.1. Locking Considerations
	3.7.1.2. I/O Considerations

	3.7.2. Performance Recommendations

	Chapter 4. Creating and Populating Files
	4.1. File Creation Characteristics
	4.1.1. Using RMS Control Blocks
	4.1.1.1. File Access Block
	4.1.1.2. Extended Attribute Blocks

	4.1.2. Using File Definition Language
	4.1.2.1. Using the Edit/FDL Utility
	4.1.2.2. Designing an FDL File

	4.1.3. Using the FDL Routines

	4.2. Creating a File
	4.2.1. Using the Create Service
	4.2.2. Using the Create/FDL Utility
	4.2.3. Using the Convert Utility
	4.2.4. Using the FDL$CREATE Routine

	4.3. Creating and Accessing Tagged Files
	4.3.1. Programming Interface for File Tagging
	4.3.2. Accessing a Tagged File
	4.3.2.1. File Accesses That Do Not Sense Tags
	4.3.2.2. File Accesses That Sense Tags

	4.3.3. Preserving Tags

	4.4. Defining File Protection
	4.4.1. UIC-Based Protection
	4.4.2. ACL-Based Protection

	4.5. Populating a File
	4.5.1. Using the Convert Utility
	4.5.2. Using the Convert Routines

	4.6. Summary of File-Creation Options
	4.6.1. File-Creation Options
	4.6.2. File Characteristics
	4.6.3. File Allocation and Positioning

	Chapter 5. Locating and Naming Files on Disks
	5.1. Understanding Disk File Specifications
	5.2. File Specification Components
	5.2.1. The Node Component
	5.2.1.1. Local Node
	5.2.1.2. Remote Node

	5.2.2. The Device Component
	5.2.3. On-Disk Components
	5.2.3.1. Character Set for On-Disk Components
	5.2.3.1.1. Base Character Set
	5.2.3.1.2. Extended Character Set

	5.2.4. RMS and On-Disk Representation
	5.2.4.1. Simple Characters
	5.2.4.2. Compound Characters
	5.2.4.3. Uppercase and Lowercase Letters and Multiple File Versions
	5.2.4.4. Convert System Service

	5.2.5. The Root Component
	5.2.6. The Directory Component
	5.2.7. The File Name, Type, and Version Components
	5.2.8. Leading Hyphens in File and Subdirectory Names (Alpha Only)
	5.2.9. Restrictions and Anomalies
	5.2.9.1. Restriction with Extended File Names
	5.2.9.2. DCL Parsing Anomaly

	5.3. Logical Names and Parsing
	5.4. File Specification and Component Length Limits
	5.4.1. VAX Systems and ODS-2 Disks on Alpha Systems
	5.4.2. ODS-5 on Alpha Systems
	5.4.3. Maximum Subdirectory Depths
	5.4.4. Accessing Files on ODS-5 Disks from VAX Systems
	5.4.5. Determining the Structure Level of a Disk Device
	5.4.6. Using File Specification Defaults

	5.5. Image Activation Using Logical Names
	5.6. Sample Use of Logical Names
	5.7. Types of Logical Names
	5.8. Introduction to File Parsing
	5.9. Using One File Specification to Locate Many Files
	5.9.1. Processing One File
	5.9.2. Processing Many Files
	5.9.3. Processing One or Many Files

	Chapter 6. Advanced Use of File Specifications
	6.1. How RMS Applies Defaults
	6.2. Understanding RMS Parsing
	6.2.1. Checking for Open-by-Name Block
	6.2.2. File Specification Formats and Translating Logical Names
	6.2.3. Special Parsing Conventions
	6.2.3.1. Parsing Conventions for a Search List
	6.2.3.2. Special Processing for a Related File Specification
	6.2.3.3. Input File Specification Parsing
	6.2.3.4. Output File Specification Parsing

	6.3. Directory Syntax Conventions and Directory Concatenation
	6.3.1. Using Normal Directory Syntax
	6.3.2. Rooted-Directory Syntax Applications
	6.3.3. Using Rooted-Directory Syntax
	6.3.4. Concatenating Rooted-Directory Specifications
	6.3.5. An Example of Using a Rooted Directory
	6.3.6. Using a Rooted Directory to Extend RMS's Subdirectory Limit

	6.4. DID-Abbreviated Directories (Alpha Only)
	6.5. FID-Abbreviated Names (Alpha Only)
	6.5.1. Restrictions on FID-Abbreviated Names

	6.6. Using Process-Permanent Files

	Chapter 7. File Sharing and Buffering
	7.1. File Accessing
	7.1.1. Types of File Sharing and Record Streams
	7.1.2. Interlocked Interprocess File Sharing
	7.1.3. User-Interlocked Interprocess File Sharing

	7.2. Record Locking
	7.2.1. Default Record Locking
	7.2.2. Record-Locking Options
	7.2.2.1. Exclusive Locking
	7.2.2.2. Write Locking
	7.2.2.3. Read Locking
	7.2.2.4. No Locking (Query Locking)
	7.2.2.5. No Query Record Locking Option (Alpha Only)
	7.2.2.6. Put Service Considerations
	7.2.2.7. Summary

	7.2.3. Handling Record-Locking Conflicts
	7.2.3.1. Handling the Record-Locked Error
	7.2.3.2. Waiting for Locked Records
	7.2.3.3. Reading Regardless of Lock

	7.2.4. Miscellaneous Record-Locking Options
	7.2.4.1. Manual-Unlocking Option
	7.2.4.2. Lock-Nonexistent-Record Option

	7.2.5. Record-Locking Deadlocks
	7.2.5.1. Record Locking Options to Control Deadlock Detection

	7.3. Local and Shared Buffering Techniques
	7.3.1. Record Transfer Modes
	7.3.2. Understanding Buffering
	7.3.3. Buffering for Sequential Files
	7.3.4. Buffering for Relative Files
	7.3.5. Buffering for Indexed Files
	7.3.6. Using Global Buffers for Shared Files
	7.3.6.1. Enhancing Global Buffer Performance

	Chapter 8. Record Processing
	8.1. Record Operations
	8.2. Primary Services
	8.2.1. Locating and Retrieving Records
	8.2.2. Inserting Records
	8.2.3. Updating Records
	8.2.4. Deleting Records

	8.3. Secondary Services
	8.4. Record Access for the Various File Organizations
	8.4.1. Processing Sequential Files
	8.4.1.1. Sequential Access
	8.4.1.2. Random Access

	8.4.2. Processing Relative Files
	8.4.2.1. Sequential Access
	8.4.2.2. Random Access

	8.4.3. Processing Indexed Files
	8.4.3.1. Sequential Access
	8.4.3.2. Random Access

	8.4.4. Access by Record File Address (RFA)

	8.5. Block Input/Output
	8.6. Current Record Context
	8.6.1. Current-Record Position
	8.6.2. Next-Record Position

	8.7. Synchronous and Asynchronous Operations
	8.7.1. Using Synchronous Operations
	8.7.2. Using Asynchronous Operations

	Chapter 9. Run-Time Options
	9.1. Specifying Run-Time Options
	9.1.1. Using the Edit/FDL Utility
	9.1.2. Using Language Statements and RMS

	9.2. Options Related to Opening and Closing Files
	9.2.1. File Access and Sharing Options
	9.2.2. File Specifications
	9.2.3. File Performance Options
	9.2.3.1. Extension Size
	9.2.3.2. Window Size
	9.2.3.3. Summary of Performance Options

	9.2.4. Record Access Options
	9.2.5. Options for Adding Records
	9.2.6. Options for Data Reliability
	9.2.7. Options for File Disposition
	9.2.8. Options for Indexed Files
	9.2.9. Options for Magnetic Tape Processing
	9.2.10. Options for Nonstandard File Processing

	9.3. Summary of Record Operation Options
	9.3.1. Record Retrieval Options
	9.3.2. Put Service Options
	9.3.3. Record Update Options
	9.3.4. Record Deletion Options

	9.4. Run-Time Example

	Chapter 10. Maintaining Files
	10.1. Viewing File Characteristics
	10.1.1. Performing an Error Check
	10.1.2. Generating a Statistics Report
	10.1.3. Using Interactive Mode
	10.1.4. Examining a Sequential File
	10.1.5. Examining a Relative File
	10.1.6. Examining an Indexed File

	10.2. Generating an FDL File from a Data File
	10.3. Optimizing and Redesigning File Characteristics
	10.3.1. Redesigning an FDL File
	10.3.2. Optimizing a Data File

	10.4. Making a File Contiguous
	10.4.1. Using the Copy Utility
	10.4.2. Using the Convert Utility
	10.4.3. Reclaiming Buckets in Prolog 3 Files

	10.5. Reorganizing a File
	10.6. Making Archive Copies

	Appendix A. Edit/FDL Utility Optimization Algorithms
	A.1. Allocation
	A.2. Extension Size
	A.3. Bucket Size
	A.4. Global Buffers
	A.5. Index Depth

