
ACME Developer’sGuide

June 2010

This guide describes how to write an Authentication and Credential
Management Extension (ACME) agent to provide customized
authentication on the OpenVMS operating system. It also discusses
writing an OpenVMS Alpha persona extension to support your own
credentials to accompany OpenVMS credentials.

Revision/Update Information: This manual supersedes the ACME
Developer’s Guide, Version 7.3-1.

Software Version: OpenVMS Version 8.4 for Integrity
servers
OpenVMS Alpha Version 8.4

Hewlett-Packard Company
Palo Alto, California

© Copyright 2010 Hewlett-Packard Development Company, L.P.

Confidential computer software. Valid license from HP required for possession, use or copying.
Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software
Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government
under vendor’s standard commercial license.

The information contained herein is subject to change without notice. The only warranties for HP
products and services are set forth in the express warranty statements accompanying such products
and services. Nothing herein should be construed as constituting an additional warranty. HP shall
not be liable for technical or editorial errors or omissions contained herein.

Java is a US trademark of Sun Microsystems, Inc.

Microsoft and Windows are U.S. registered trademarks of Microsoft Corporation.

Motif is a trademark of The Open Group in the US and other countries.

PostScript is a registered trademark of Adobe Systems Incorporated.

UNIX is a registered trademark of The Open Group.

Windows, and MS Windows are US registered trademarks of Microsoft Corporation.

Intel and Itanium are registered trademarks of Intel Corporation or its subsidiaries in the United
States and other countries.

ZK6199

The HP OpenVMS documentation set is available on CD-ROM.

This document was prepared using DECdocument, Version 3.3-1b.

Contents

Preface . x

1 Overview

1.1 Concepts . 1–4
1.1.1 Agents . 1–4
1.1.2 $ACM Call Types . 1–4
1.1.3 Call Modes . 1–4
1.1.4 Ordering of Agents . 1–5
1.2 $ACM Request Functions and Phases . 1–5
1.3 Authentication and Change-Password Phase Dispatching 1–5
1.3.1 ACME Server Flow Control . 1–6
1.3.2 Special Dispatching Cases . 1–7
1.3.3 Dialogue Mode . 1–8
1.3.4 Waiting for ASTs . 1–8
1.3.5 Waiting for Resources . 1–8
1.4 ACME Server Callback Routines . 1–8
1.5 Agent ‘‘Request’’ Callout Routines . 1–10
1.6 Agent ‘‘Control’’ Callout Routines . 1–16
1.7 WQE Fields . 1–17
1.8 Agent Rules . 1–18
1.8.1 DOI Agents . 1–18
1.8.2 Auxiliary Agents . 1–19
1.8.3 Choosing Between a DOI Agent or an Auxiliary Agent 1–19
1.8.4 Controls for Secondary DOI Agents . 1–20
1.9 Phase Rules . 1–20
1.10 VMS Agent Operation and Controls . 1–23
1.11 NT Agent Operation and Controls . 1–25
1.12 Operating Environment Restrictions . 1–25

2 ACME Agent Programming Guidelines

2.1 Operating Environment . 2–1
2.1.1 Wait Form System Service Calls . 2–1
2.1.2 Event Flags and IOSBs . 2–2
2.1.3 AST Contexts . 2–2
2.2 Process Context . 2–3
2.2.1 Privilege Manipulation . 2–3
2.2.2 Thread Safety . 2–3
2.2.3 Memory Allocation . 2–3
2.2.4 ACME-Specific Resources . 2–4
2.2.5 ACME Process Control . 2–4
2.3 ACME Callout Routine Dispatching . 2–5
2.3.1 To ACME Agent Control Callout Routines . 2–5

iii

2.3.2 To ACME Event and Query Callout Routines 2–6
2.3.3 To ACME Authentication and Password Callout Routines 2–6
2.3.3.1 Failure of an Authentication/Password Request 2–6
2.3.3.2 Free Context . 2–6
2.3.3.3 New Password Retry . 2–7
2.4 Beyond Dispatching . 2–7
2.4.1 Preauthentication . 2–7
2.4.2 Phase Done . 2–8
2.5 Concealing Authentication Details . 2–8
2.5.1 Return Status Codes . 2–8
2.5.2 Interaction Patterns . 2–9
2.6 Dialogue Support for ACME Authentication and Password Callout

Routines . 2–9
2.6.1 Text Output . 2–10
2.6.2 Binary Output . 2–11
2.6.3 Binary Input . 2–11
2.7 Item Code Support . 2–11
2.7.1 Using Input Item Code Requests . 2–12
2.7.1.1 Input for Well-Known Items . 2–13
2.7.1.2 Reporting Input Item Code Errors . 2–14
2.7.2 Fulfilling Output Item Code Requests . 2–14
2.7.2.1 Special Output Items for ACME Authentication and Password

Callout Routines . 2–14
2.7.2.2 Normal Output Items . 2–15
2.8 Auditing Within an ACME Callout Routine . 2–15
2.9 Writing to the ACME$SERVER Log File . 2–15
2.10 ACME Callout Internationalization . 2–15
2.11 Password Policy ACME Agents and Older Password Policy Models 2–16
2.12 ACME Agent Design Alternatives . 2–16
2.12.1 Separate Qualification of Proposed New Passwords 2–16
2.12.2 Using a Separate Process . 2–16
2.13 Naming Your ACME Agent . 2–16

3 Testing and Debugging Your ACME Agent

3.1 Using ACME Tracing . 3–1
3.2 Using the Debugger . 3–2

4 ACME Agent Data Structure

4.1 ACME Server Process Data Types . 4–1
4.1.1 Revision Level Fields to Check . 4–1
4.1.2 Revision Level Fields to Set . 4–2
4.1.3 ACMEID Data Type, Also Used by SYS$ACM[W] System Service

Callers . 4–2
4.1.4 ACMEWQEITM Data Type, Unique to the ACME Server Process 4–3
4.2 Work Queue Entry Data Fields . 4–4
4.2.1 Function Field . 4–4
4.2.1.1 ACMEFC$V_FUNCTION . 4–4
4.2.1.2 ACMEFC$V_MODIFIERS . 4–4
4.2.2 Flags Field . 4–5
4.2.2.1 ACME Flags Field . 4–5
4.2.2.2 Dispatcher Flags Field . 4–6
4.2.3 Dialogue Flags Field . 4–7

iv

4.2.4 Status Field . 4–7
4.2.5 Secondary Status Field . 4–7
4.2.6 ACME Status Field . 4–7
4.2.7 AST Context Field . 4–7
4.2.8 Locale Field . 4–8
4.2.9 Service Name Field . 4–8
4.2.10 Requestor Profile Field . 4–8
4.2.11 Requestor Mode Field . 4–8
4.2.12 Requestor Process ID Field . 4–8
4.2.13 Current ACME ID Field . 4–8
4.2.14 Target ACME ID Field . 4–9
4.2.15 Designated ACME ID Field . 4–9
4.2.16 Designated Credentials Field . 4–9
4.2.17 Timeout Field . 4–9
4.2.18 Factor Field . 4–9
4.2.19 Itemlist Field . 4–9
4.2.20 ACME Itemlist Field . 4–9
4.2.21 Function-Dependent Parameters Field . 4–9
4.2.21.1 The Agent Initialization WQE Extension . 4–10
4.2.21.2 The Agent Startup WQE Extension . 4–10
4.2.21.3 The Authentication and Password Change WQE Extension 4–10
4.2.22 Revision Level Field . 4–14
4.2.23 Size Field . 4–14
4.2.24 FLINK Field . 4–14
4.2.25 BLINK Field . 4–14

5 ACME Agent Control Callout Routines

5.1 Arguments . 5–2
5.2 Return Values for Agent Control Callout Routines 5–2

ACME$CO_AGENT_INITIALIZE . 5–4
ACME$CO_AGENT_SHUTDOWN . 5–5
ACME$CO_AGENT_STANDBY . 5–6
ACME$CO_AGENT_STARTUP . 5–7

6 ACME Authentication and Password Callout Routines

6.1 Arguments . 6–3
6.2 Return Values . 6–4

ACME$CO_ACCEPT_PASSWORDS . 6–6
ACME$CO_ACCEPT_PRINCIPAL . 6–7
ACME$CO_ANCILLARY_MECH_1 . 6–9
ACME$CO_ANCILLARY_MECH_2 . 6–10
ACME$CO_ANCILLARY_MECH_3 . 6–11
ACME$CO_ANNOUNCE . 6–12
ACME$CO_AUTHENTICATE . 6–13
ACME$CO_AUTHORIZE . 6–14
ACME$CO_AUTOLOGON . 6–15
ACME$CO_CREDENTIALS . 6–16
ACME$CO_FINISH . 6–17
ACME$CO_INITIALIZE . 6–19
ACME$CO_LOGON_INFORMATION . 6–20

v

ACME$CO_MAP_PRINCIPAL . 6–21
ACME$CO_MESSAGES . 6–22
ACME$CO_NEW_PASSWORD_1 . 6–23
ACME$CO_NEW_PASSWORD_2 . 6–25
ACME$CO_NOTICES . 6–27
ACME$CO_PASSWORD_1 . 6–28
ACME$CO_PASSWORD_2 . 6–30
ACME$CO_PRINCIPAL_NAME . 6–32
ACME$CO_QUALIFY_PASSWORD_1 . 6–33
ACME$CO_QUALIFY_PASSWORD_2 . 6–34
ACME$CO_SET_PASSWORDS . 6–35
ACME$CO_SYSTEM_PASSWORD . 6–36
ACME$CO_VALIDATE_MAPPING . 6–37

7 ACME Event and Query Callout Routines

7.1 Arguments for Event and Query Callout Routines 7–2
ACME$CO_EVENT . 7–4
ACME$CO_QUERY . 7–5

8 ACME Status Codes

8.1 Flow Control Codes . 8–1
8.2 Agent Failure Codes . 8–4
8.3 Secondary Codes (Password Quality) . 8–7
8.4 Secondary Codes (Privileged) . 8–10
8.5 Logging Messages . 8–13
8.6 Callback Codes . 8–14
8.7 SYS$ACM[W] Codes . 8–19
8.8 SET SERVER and SHOW SERVER Codes . 8–23

9 ACME Callback Routines

9.1 Managing ACME-Specific Resources . 9–1
9.2 Managing AST Contexts . 9–1
9.3 Managing Virtual Memory . 9–2
9.4 Reporting Status to the ACME Server Main Image 9–2
9.5 Reporting Status to the Operations Staff . 9–2
9.6 Communicating with the ACM Client Process . 9–3
9.7 Coordinating Activities with Other ACME Agents 9–3
9.8 Callback Routine Reference Section . 9–3

AST_ROUTINE . 9–4
ACME$CB_ACQUIRE_RESOURCE . 9–6
ACME$CB_ACQUIRE_ACME_AST . 9–8
ACME$CB_ACQUIRE_ACME_RMSAST . 9–10
ACME$CB_ACQUIRE_WQE_AST . 9–12
ACME$CB_ACQUIRE_WQE_RMSAST . 9–14
ACME$CB_ALLOCATE_ACME_VM . 9–16
ACME$CB_ALLOCATE_WQE_VM . 9–18
ACME$CB_CANCEL_DIALOGUE . 9–20

vi

ACME$CB_DEALLOCATE_ACME_VM . 9–22
ACME$CB_DEALLOCATE_WQE_VM . 9–24
ACME$CB_FORMAT_DATE_TIME . 9–26
ACME$CB_ISSUE_CREDENTIALS . 9–28
ACME$CB_QUEUE_DIALOGUE . 9–30
ACME$CB_RELEASE_ACME_AST . 9–34
ACME$CB_RELEASE_ACME_RMSAST . 9–36
ACME$CB_RELEASE_RESOURCE . 9–38
ACME$CB_RELEASE_WQE_AST . 9–40
ACME$CB_RELEASE_WQE_RMSAST . 9–42
ACME$CB_REPORT_ACTIVITY . 9–44
ACME$CB_REPORT_ATTRIBUTES . 9–46
ACME$CB_SEND_LOGFILE . 9–48
ACME$CB_SEND_OPERATOR . 9–50
ACME$CB_SET_2ND_STATUS . 9–52
ACME$CB_SET_ACME_STATUS . 9–54
ACME$CB_SET_DESIGNATED_DOI . 9–56
ACME$CB_SET_LOGON_FLAG . 9–57
ACME$CB_SET_LOGON_STATS_DOI . 9–59
ACME$CB_SET_LOGON_STATS_VMS . 9–61
ACME$CB_SET_OUTPUT_ITEM . 9–63
ACME$CB_SET_PHASE_EVENT . 9–65
ACME$CB_SET_WQE_FLAG . 9–67
ACME$CB_SET_WQE_PARAMETER . 9–69

10 Persona Extensions Overview

10.1 Persona Data Structures . 10–1
10.1.1 Persona Security Block (PSB) . 10–2
10.1.2 PXB_ARRAY . 10–3
10.1.3 Persona Extension Block (PXB) . 10–3
10.1.4 Persona Extension Cloning and Delegation . 10–3
10.2 Persona Item Codes . 10–4

11 Persona Extensions Entry Points

11.1 Initialization Routine . 11–1
11.2 Create Routine . 11–1
11.3 Clone Routine . 11–2
11.4 Delegate Routine . 11–2
11.5 Delete Routine . 11–3
11.6 Modify Routine . 11–3
11.7 Query Routine . 11–4
11.8 Make_TLV Routine . 11–5

vii

12 Connecting Your Persona Extension Image to the OpenVMS
Executive

12.1 Compiling . 12–1
12.2 Linking . 12–1
12.3 Testing . 12–1
12.4 Installing . 12–1
12.5 Declaring Your Persona Extension Image . 12–1

NSA$REGISTER_PSB_EXTENSION . 12–2

A SYS$ACM[W] Data Structures

A.1 ACM Communications Buffer (ACMECB) . A–1
A.2 ACM Hardware Address Type (ACMEHAT) . A–2
A.3 ACME Item Set Entry (ACMEITMSET) . A–3
A.4 ACME Logon Flags (ACMELGIFLG) . A–4
A.5 ACME Logon Information for the Domain of Interpretation

(ACMELIDOI) . A–5
A.6 ACME Logon Information for VMS (ACMELIVMS) A–6
A.7 ACME Logon Information (ACMELI) . A–7
A.8 ACME Authentication Mechanism (ACMEMECH) A–8
A.9 ACME Revision Level (ACMEREVLVL) . A–9
A.10 ACM Status Block (ACMESB) . A–10
A.11 Universal Coordinated Time (UTCBLK) . A–11

B ACME Agent Interface Data Structures

B.1 ACME Date Time Formatting Control Flags (ACMEDTFLG) B–1
B.2 ACME Kernel Callback Vector (ACMEKCV) . B–2
B.3 Item List Output Item Data Buffer (ACMEOUTITM) B–6
B.4 ACME Process Quota Resource Requirements Block(ACMEPQ) B–7
B.5 ACME Agent Resource Requirements Block (ACMERSRC) B–8
B.6 ACME WQE Extension for Agent Shutdown (ACMEWQEADX) B–9
B.7 ACME WQE Extension for Agent Startup (ACMEWQEAEX) B–10
B.8 ACME WQE Extension for Agent Initialize (ACMEWQEAIX) B–11
B.9 ACME WQE Extension for Agent Standby (ACMEWQEASX) B–12
B.10 ACME WQE Extension for Authentication (ACMEWQEAX) B–13
B.11 Work Queue Entry Function Dependent Extension (ACMEWQEFDX) . . . B–15
B.12 ACME Work Queue Entry Function Independent Extension

(ACMEWQEFIX) . B–16
B.13 ACME Work Queue Entry Flags (ACMEWQEFLG) B–17
B.14 ACME Work Queue Entry Item (ACMEWQEITM) B–18
B.15 ACME Work Queue Entry Value (ACMEWQEVAL) B–19
B.16 ACME Work Queue Entry (ACMEWQE) . B–20

C Persona Extension Interface Data Structures

C.1 Persona Security Block (PSB) . C–1
C.2 Persona Extension Block Array (PXB_ARRAY) . C–4
C.3 Persona Extension Block (PXB) . C–5
C.4 Persona Extension Creation Flags (PXB_FLAGS) C–6
C.5 Persona Extension Dispatch Vector (PXVD) . C–7
C.6 Persona Extension Registration Block (PXRB) . C–8
C.7 Persona Extension Create Flags (CREATE_FLAGS) C–10
C.8 Persona Delegation Block (DELBK) . C–11

viii

C.9 PSB Ring Buffer (PSBRB) . C–12
C.10 Persona Security Block Array (PSB_ARRAY) . C–15

D ACME Agent and Persona Extension Code Examples

Glossary

Index

Figures

1–1 Overview of the ACME Subsystem . 1–2
2–1 Item List Processing . 2–12
5–1 ACME Agent Control Callout Routine Control Flow 5–1
6–1 ACME Authentication and Password Callout Routine Control

Flow . 6–1
7–1 ACME Event and Query Callout Routine Control Flow 7–1
10–1 Some Persona Data Structures . 10–2

Tables

1–1 ACME Terminology . 1–2
1–2 Values Returned by Callout Routines . 1–6
1–3 WQE Standard Fields . 1–17
1–4 WQE Extensions . 1–17
1–5 Control Semantics . 1–20
1–6 Cooperative Model . 1–21
1–7 Independent Model . 1–22
1–8 Example, WQE Standard Fields . 1–23
1–9 Example, WQE Extensions . 1–23
1–10 UAF Flags . 1–24
1–11 System Parameter SECURITY_POLICY Bits 1–24
5–1 Processing Order for Agent Control Callout Routines 5–2
5–2 Arguments for Agent Control Callout Routines 5–2
5–3 Return Values for Agent Control Callout Routines 5–3
6–1 Processing Order for Authentication and Password Callout

Routines . 6–2
6–2 Arguments for ACME Authentication and Password Callout

Routines . 6–3
6–3 Return Values for Authentication and Password Callout Routines . . . 6–4
7–1 Arguments fo ACME Event and Query Callout Routines 7–2

ix

Preface

Intended Audience
This guide is intended for individuals who want to provide authentication services
in their software.

Document Structure
This guide is organized as follows:

• Chapter 1 provides an overview of the ACME client and ACME server
processes and how they interact to provide authentication services.

• Chapter 2 discusses programming guidelines you should be familiar with
before you begin writing your own ACME agent shareable images.

• Chapter 3 provides tips for testing your ACME agent shareable images.

• Chapter 4 describes the agent data structure.

• Chapter 5 lists ACME callout routines for agent control.

• Chapter 6 lists ACME callout routines for processing Authentication and
Password Change requests.

• Chapter 7 lists ACME callout routines for event and query request processing.

• Chapter 8 lists ACME status codes.

• Chapter 9 lists ACME callback routines.

• Chapter 10 gives an overview of persona extensions.

• Chapter 11 describes persona extension entry points.

• Chapter 12 describes connecting your persona extension image to the
OpenVMS executive.

• Appendix A describes SYS$ACM[W] data structures.

• Appendix B describes ACME agent interface data structures.

• Appendix C describes persona extension interface data structures.

• Appendix D provides an ACME programming example.

• The Glossary lists terms you need to know to write an ACME agent.

x

Related Documents
If you are writing software to be a consumer of authentication services, you
should read the description of $ACM in the HP OpenVMS System Services
Reference Manual.

For additional information about HP OpenVMS products and services, see:

http://www.hp.com/go/openvms

Reader’s Comments
HP welcomes your comments on this manual. Please send your comments or
suggestions to:

openvmsdoc@hp.com

How To Order Additional Documentation
For information about how to order additional documentation, see:

http://www.hp.com/go/openvms/doc/order

Conventions
The following conventions are used in this manual:

Ctrl/x A sequence such as Ctrl/x indicates that you must hold down
the key labeled Ctrl while you press another key or a pointing
device button.

PF1 x A sequence such as PF1 x indicates that you must first press
and release the key labeled PF1 and then press and release
another key or a pointing device button.

Return In examples, a key name enclosed in a box indicates that
you press a key on the keyboard. (In text, a key name is not
enclosed in a box.)

In the HTML version of this document, this convention appears
as brackets, rather than a box.

. . . A horizontal ellipsis in examples indicates one of the following
possibilities:

• Additional optional arguments in a statement have been
omitted.

• The preceding item or items can be repeated one or more
times.

• Additional parameters, values, or other information can be
entered.

.

.

.

A vertical ellipsis indicates the omission of items from a code
example or command format; the items are omitted because
they are not important to the topic being discussed.

() In command format descriptions, parentheses indicate that you
must enclose choices in parentheses if you specify more than
one.

xi

[] In command format descriptions, brackets indicate optional
choices. You can choose one or more items or no items.
Do not type the brackets on the command line. However,
you must include the brackets in the syntax for OpenVMS
directory specifications and for a substring specification in an
assignment statement.

| In command format descriptions, vertical bars separate choices
within brackets or braces. Within brackets, the choices are
optional; within braces, at least one choice is required. Do not
type the vertical bars on the command line.

{ } In command format descriptions, braces indicate required
choices; you must choose at least one of the items listed. Do
not type the braces on the command line.

bold type Bold type represents the introduction of a new term. It also
represents the name of an argument, an attribute, or a reason.

italic type Italic type indicates important information, complete titles
of manuals, or variables. Variables include information that
varies in system output (Internal error number), in command
lines (/PRODUCER=name), and in command parameters in
text (where dd represents the predefined code for the device
type).

UPPERCASE TYPE Uppercase type indicates a command, the name of a routine,
the name of a file, or the abbreviation for a system privilege.

Example This typeface indicates code examples, command examples, and
interactive screen displays. In text, this type also identifies
URLs, UNIX commands and pathnames, PC-based commands
and folders, and certain elements of the C programming
language.

- A hyphen at the end of a command format description,
command line, or code line indicates that the command or
statement continues on the following line.

numbers All numbers in text are assumed to be decimal unless
otherwise noted. Nondecimal radixes—binary, octal, or
hexadecimal—are explicitly indicated.

xii

1
Overview

The Authentication and Credential Management Extensions (ACME) subsystem
was designed with two objectives:

• Provide application programs with a native system service for user
authentication ($ACM[W]). This service supports passwords as the default
authentication mechanism, but is able to support additional mechanisms
through the use of customized policy providers (ACME agents).

• Provide a means to add site-specific or third-party authentication policy
providers (ACME agents) accessed through the $ACM system service.

When an application calls $ACM, the ACME_SERVER process dispatches the
requests to one or more agents that have been configured by the system manager.
An agent drives the input/output (prompting) operations directed at the user,
enforces authentication and authorization, and issues credentials (information
containing the user’s identity, privileges, and roles within a given security
environment).

The ACME subsystem was designed to operate under one of two authentication
models: cooperative and independent. In the cooperative model, all domain-of-
interpretation (DOI) agents enforce authentication and issue credentials using
a single principal-name and password scheme as seen from the perspective
of the $ACM application. In the independent model, a DOI agent performs
authentication and issues credentials only when it is operating as the designated
DOI agent, otherwise it does not participate in the request. These concepts are
explained further in Section 1.8.1.

These two models are implemented using a set of rules that are conventionally
followed by agents. It is technically possible to design an agent that does not
follow these rules. But such agents will not operate with other agents, which
follow the conventional set of rules.

Figure 1–1 shows how the ACM client and ACME server processes interoperate
to implement authentication.

Overview 1–1

Overview

Figure 1–1 Overview of the ACME Subsystem

VMS ACME VMS DOI

ACM Client Process ACME Server Process

VM-0781A-AI

LOGINOUT

SET PASSWORD

YourProgram

SYS$ACM[W] ACME Server

Auxiliary
ACME

NT ACME NT DOI

Other ACME Other DOI

This chapter provides a general description of the ACME agent interface and
rules. Before proceeding, familiarize yourself with the ACME-related terms
defined in Table 1–1.

Table 1–1 ACME Terminology

Term Definition

Agent-specific
item codes

The set of extended item codes that are defined by an agent and known only to that
agent and any customized $ACM applications. An agent never prompts a generic
$ACM application for agent-specific item codes unless the item code represents a simple
text-based data element that a generic $ACM application can process blindly. For
example, an agent can prompt a generic $ACM application for an agent-specific item
code representing a ‘‘token id’’ string which can be responded to by a human user, but
the agent is not allowed to prompt a generic $ACM application for specialized, binary
data such as might be used in a hardware token.

Auxiliary agent An agent that implements a partial authentication policy or some function such as
password filtering, but does not issue credentials. It cannot be the target of an $ACM
call.

(continued on next page)

1–2 Overview

Overview

Table 1–1 (Cont.) ACME Terminology

Term Definition

Common item
codes

The set of basic item codes documented by the $ACM system service that exists for
every OpenVMS system and is recognized by all agents and $ACM applications. All
common item codes can be specified on the initial $ACM call, but only a subset of well-
known common item codes may be processed in dialogue mode (see below). Examples of
common item codes are:

ACME$_LOGON_TYPE
ACME$_AUTH_MECHANISM
ACME$_NEW_PASSWORD_FLAGS
ACME$_PRINCIPAL_NAME_IN
ACME$_PASSWORD_1

Designated DOI
agent

For untargeted $ACM calls, the DOI agent that locates the principal-name in its
principal-name database. For targeted $ACM calls, the DOI agent specified in the
call. This is the only DOI agent allowed to prompt for passwords. It always issues
credentials and is responsible for the ultimate success or failure of the request.

Dialogue mode The mode in which an agent issues a request to acquire information from the user (or to
be displayed to the user). The calling application obtains the information from the user
(or displays it to the user) and calls $ACM again to proceed until the service indicates
that no further interaction is required. $ACM applications that specify the context
argument operate in dialogue mode.

DOI Domain-of-Interpretation. A DOI represents a security environment having a principal-
namespace, authentication and authorization schemes, and information representing a
user’s identity (both VMS and DOI-specific) and privileges. A DOI agent implements a
particular DOI. A DOI agent can be the target of an $ACM call.

Password A string, known only to the user and the system, used to verify the user’s identity.

Phase A phase is a discrete stage of request processing. Each phase is associated with a callout
routine within an agent that the ACME server invokes.

Principal-Name A string representing a user (sometimes referred to as ‘‘username’’).

Request An $ACM request is represented internally as a work queue entry (WQE). The WQE is
used to maintain the state of the request through multiple stages of processing. It is
also used to control certain interactions among the agents.

Secondary DOI
agent

A DOI agent is one that is not operating as the designated DOI agent. It performs
authentication and issues credentials according to the model under which it was
designed and configured.

Targeted call A call to $ACM that specifies the ACME$_TARGET_DOI_ID or ACME$_TARGET_DOI_
NAME item code.

Untargeted call A call to $ACM that does not specify the ACME$_TARGET_DOI_ID or ACME$_
TARGET_DOI_NAME item code.

Well-known
item codes

The set of common item codes that an $ACM application can expect to process in
dialogue mode (or to supply in a single non-dialogue $ACM call). Generic $ACM
applications can respond to well-known item codes, even in restricted operating
environments where there is no human user with which to interact or where application
protocols accept only username and password data. Examples of well-known item codes
are:

ACME$_PASSWORD_SYSTEM
ACME$_PRINCIPAL_NAME_IN
ACME$_PASSWORD_1

Overview 1–3

Overview
1.1 Concepts

1.1 Concepts
Understanding of following concepts is required before implementing an ACME
agent.

1.1.1 Agents
An ACME agent enforces a user authentication policy when a program calls the
$ACM system service. Agents perform the following operations:

• Identification

• Authentication

• Authorization

• Credential issuance

There are two types of agents, DOI and auxiliary.

A DOI agent is responsible for password prompting, authentication, and issuing
credentials. For any given request, one DOI agent declares itself to be the
designated DOI agent. All other DOI agents operate as secondary DOI agents,
participating in request processing according to the model under which they
were designed and configured to operate. Auxiliary agents (see below) operate in
concert with the designated DOI agent, providing stronger authentication or some
other function.

An auxiliary agent logically works in conjunction with the designated DOI agent.
Both designated DOI agent and auxiliary agent must pass authentication and
authorization checks for the request to succeed. The designated DOI agent will
perform all of its usual authentication operations.

1.1.2 $ACM Call Types
An application can target an $ACM call to a particular DOI agent, or it can call
$ACM without directing the request to any particular DOI.

In the first instance, known as a targeted call, an $ACM call may target
a particular DOI agent. When it does, the targeted DOI agent will be the
designated DOI agent.

In the second instance, known as an untargeted call, an $ACM call does not
target a DOI agent. Instead, the first DOI agent to locate the principal-name
in its namespace will be the designated DOI agent. The remaining DOI agents
function as secondary DOI agents.

When multiple DOI agents are involved in processing a request, each DOI agent
authenticates and issue credentials according to the model under which it was
designed and configured to operate.

1.1.3 Call Modes
$ACM calls operate in either dialogue mode or non-dialogue mode.

When called with a non-zero $ACM context argument, the $ACM service operates
in dialogue mode which allows an agent to drive input and output operations
for the user. This is the recommended method of calling $ACM when there
is a human user (as opposed to a client program) interacting with the $ACM
application.

1–4 Overview

Overview
1.1 Concepts

1.1.4 Ordering of Agents
In most cases, the order in which agents are configured is not important.
Requests are processed in stages according to the phases defined for each
function. The sequence of phases impose a logical ordering of processing steps
and user input/output operations.

There are two cases where ordering is important:

• When the designated DOI agent for untargeted calls is determined according
to principal-name.

For an untargeted $ACM call, the first DOI agent to find the principal-
name valid in its namespace declares itself the designated DOI agent. If
namespaces among DOI agents overlap, the DOI agent that is configured first
(using the SET SERVER ACME/ENABLE command) will always become the
designated DOI agent.

• When the sequence of prompts is generated by multiple agents in a single
phase.

In this case, any user input/output operations generated by more than one
agent in any given phase will be prompted or displayed in the order the
agents are configured.

1.2 $ACM Request Functions and Phases
$ACM requests specify the ACME function to be performed. Requests can specify
one of the following functions:

AUTHENTICATE_PRINCIPAL Authenticate a user and obtain credentials.

CHANGE_PASSWORD Change a user’s password.

QUERY Perform a DOI-defined ‘‘query’’ function.

EVENT Perform a DOI-defined ‘‘event’’ function.

RELEASE_CREDENTIALS Delete DOI-specific credentials.

The ACME server processes requests in a series of phases. Each phase is
associated with a callout routine within an agent. Most functions are processed
as a single phase while two are processed in several phases.

EVENT, QUERY, and RELEASE_CREDENTIALS functions are processed as
a single phase. They are targeted to a particular DOI agent, do not involve
other DOI agents, nor do they interact with the $ACM caller. These are simple
functions from an agent’s point of view.

AUTHENTICATE_PRINCIPAL and CHANGE_PASSWORD functions are
processed as a sequence of phases that may involve more than one DOI agent and
may also involve dialogue with the $ACM caller. These are relatively complex
functions.

1.3 Authentication and Change-Password Phase Dispatching
AUTHENTICATE_PRINCIPAL and CHANGE_PASSWORD phases are defined to
be compatible with the VMS user authentication policy while allowing flexibility
to work with other policies. Phases are defined for standard operations such as
prompting for principal-name, validating a password, etc. An agent is expected to
utilize each phase as it is defined and ignore a phase that has no meaning to the
agent.

Overview 1–5

Overview
1.3 Authentication and Change-Password Phase Dispatching

The ACME server invokes each agent’s callout routines in order, beginning with
INITIALIZE (see below) and ending with FINISH. When multiple agents exist,
the ACME server invokes a given callout routine for every agent (in the order
that the agents were configured) before moving to the next phase. Agents follow
a set of rules which, by convention, allow agents to cooperate in a meaningful and
predictable manner for the $ACM application and user. These rules are described
later in this document.

The rest of this section describes the general nature of phase operations and how
an agent interacts with the ACME server.

In the following diagram, AUTHENTICATE_PRINCIPAL and CHANGE_
PASSWORD functions are processed in a sequence of 26 phases. (The ACME
server skips certain phases for the CHANGE_PASSWORD function.)

Phase ACME Server Flow

1 INITIALIZE
2 SYSTEM_PASSWORD -- chg-pwd ----------------------+
3 ANNOUNCE |
4 AUTOLOGON <--------------------------------+
5 PRINCIPAL_NAME
6 ACCEPT_PRINCIPAL
7 MAP_PRINCIPAL
8 VALIDATE_MAPPING
9 ANCILLARY_MECH_1
10 PASSWORD_1
11 ANCILLARY_MECH_2
12 PASSWORD_2
13 ANCILLARY_MECH_3
14 AUTHENTICATE -- auth-fail ----+-- chg-pwd --+
15 MESSAGES | |
16 AUTHORIZE | |
17 NOTICES | |
18 LOGON_INFORMATION | |
19 NEW_PASSWORD_1 <---------------+ |<------------+
20 QUALIFY_PASSWORD_1 -- retry -------+ |
21 NEW_PASSWORD_2 <---------------+ |
22 QUALIFY_PASSWORD_2 -- retry -------+ |
23 ACCEPT_PASSWORD |
24 SET_PASSWORD |-- chg-pwd --+
25 CREDENTIALS | |
26 FINISH <------------------+<------------+

1.3.1 ACME Server Flow Control
ACME server flow control is managed by callout routines that return values that
affect dispatching flow and determine the final status of the request, as shown in
the following table.

Table 1–2 Values Returned by Callout Routines

Value Action

0 Converted to ACME$_FAILURE by ACME server, set request status,
advance to FINISH phase

SS$_NORMAL Converted to ACME$_CONTINUE by ACME server

ACME$_CONTINUE Advance to next agent’s callout routine

(continued on next page)

1–6 Overview

Overview
1.3 Authentication and Change-Password Phase Dispatching

Table 1–2 (Cont.) Values Returned by Callout Routines

Value Action

ACME$_WAITAST Stall until AST is delivered and return to this agent’s callout routine

ACME$_WAITRESOURCE Stall until resource is available and return to this agent’s callout
routine

ACME$_PERFORMDIALOGUE Perform dialogue and return results to this agent’s callout routine

ACME$_RETRYPWD Backup to the start of the previous NEW_PASSWORD_* phase

ACME$_AUTHFAILURE prior
to AUTHENTICATE phase

Set request status, convert to ACME$_CONTINUE, continue processing
until AUTHENTICATE phase, then return ACME$_AUTHFAILURE

Any other status Set request status and advance to FINISH phase

1.3.2 Special Dispatching Cases
The following table shows how the ACME server responds to values returned by
agents.

If An agent returns The ACME server

Prior to the
AUTHENTICATE
phase

ACME$_AUTHFAILURE 1. Sets the status in the WQE
2. Flags the request as failed
3. Continues processing through the
AUTHENTICATE phase

Once the AUTHENTICATE phase is complete,
the ACME server checks the request failure flag and
if set, stores the ACME$_AUTHFAILURE value in
the request’s status field and moves directly to the
FINISH phase.

This permits agents to keep their prompting
sequence intact in the event of an early failure (e.g.
‘‘no such user’’) without giving away this information
to the user.

In the NEW_
PASSWORD_*
phase

ACME$_RETRYPWD Returns control to the NEW_PASSWORD_* phase
for retry

In the QUALIFY_
PASSWORD_*
phase

ACME$_RETRYPWD Returns control to the NEW_PASSWORD_* phase
for retry

At anytime ACME$_WAITAST
ACME$_WAITRESOURCE
ACME$_
PERFORMDIALOGUE

Stalls the request until the required action is
performed and then returns control to the same
callout routine to continue processing

Note the following:

• If no agent services the request, the ACME server will fail the request with
ACME$_AUTHFAILURE.

• The ACME server will call every agent’s FINISH phase regardless of the
status returned by the previous agent.

• The first agent to return a failure status (other than one of the dispatching
control statuses) to the ACME server will cause the request (WQE) status
field to be set to that value.

Overview 1–7

Overview
1.3 Authentication and Change-Password Phase Dispatching

1.3.3 Dialogue Mode
Agents interact with the $ACM caller using dialogue operations. A dialogue
operation can be a request for data from the user or information to be displayed
to the user. The $ACM caller processes the dialog request and prompts the user
for the data or displays the information to the user, as specified. The agent must
supply the item code that is associated with the data to be returned by the $ACM
caller and, optionally, supplies the prompt and default strings for user input
operations.

To initiate a dialogue request, an agent calls the ACME$CB_QUEUE_DIALOGUE
callback routine to prepare the dialog request and then returns ACME$_
PERFORMDIALOGUE when returning from the agent’s callout routine.

In this ACME version, only text-based dialogue interactions are supported. The
INPUT dialogue-support flag supplied by the $ACM caller indicates the client is
capable of text-based user input/output operations. In the future, other forms of
dialogue may be supported.

1.3.4 Waiting for ASTs
Agents can stall request processing while waiting for an asynchronous operation
to complete with an AST.

An agent waits for AST delivery from a asynchronous service by calling the
ACME$CB_ACQUIRE_WQE_AST callback to obtain an AST routine address
and AST parameter address when calling the asynchronous service. The agent
returns ACME$_WAITAST upon returning from the callout routine. When the
asynchronous service completes, the ACME server will receive delivery of the AST
and will dispatch it to the agent at non-AST level when it invokes the agent’s
callout routine again.

1.3.5 Waiting for Resources
Agents can stall request processing while waiting for an agent-specific resource
to become available. The ACME server provides support for an agent to acquire
(ACME$CB_ACQUIRE_RESOURCE) and release (ACME$CB_RELEASE_
RESOURCE) agent-specific resources. There is no special callback routine to
create a resource. To create resources, an agent calls ACME$CB_RELEASE_
RESOURCE one or more times in the agent’s startup phase, depending on the
number of such resources an agent will manage.

During request processing, the agent calls ACME$CB_ACQUIRE_RESOURCE
to attempt to allocate an instance of the resource. If the call fails, the agent
returns ACME$_WAITRESOURCE upon returning from the callout routine. As
the resource becomes available (by another request calling ACME$_RELEASE_
RESOURCE), the ACME server will again invoke the agent’s callout routine.

1.4 ACME Server Callback Routines
Callbacks are routines in the ACME server image for agents to call for various
operations. The routine addresses for callbacks are obtained from the ACME
server’s kernel callback (KCB) vector that is provided as an argument to each
callout routine.

Callback routines are categorized by how they provide support for agents, as
follows:

1–8 Overview

Overview
1.4 ACME Server Callback Routines

Coordinate activities with other agents

ACME$CB_SET_DESIGNATED_DOI
ACME$CB_SET_PHASE_EVENT
ACME$CB_SET_WQE_FLAG
ACME$CB_SET_WQE_PARAMETER

Manage AST contexts (global and per-request)

ACME$CB_ACQUIRE_ACME_AST
ACME$CB_ACQUIRE_ACME_RMSAST
ACME$CB_ACQUIRE_WQE_AST
ACME$CB_ACQUIRE_WQE_RMSAST
ACME$CB_RELEASE_ACME_AST
ACME$CB_RELEASE_ACME_RMSAST
ACME$CB_RELEASE_WQE_AST
ACME$CB_RELEASE_WQE_RMSAST

Manage Resources

ACME$CB_ACQUIRE_RESOURCE
ACME$CB_RELEASE_RESOURCE

Allocate memory (global and per-request)

ACME$CB_ALLOCATE_ACME_VM
ACME$CB_ALLOCATE_WQE_VM
ACME$CB_DEALLOCATE_ACME_VM
ACME$CB_DEALLOCATE_WQE_VM

Communicate with the $ACM client process (dialogue calls, set request status,
and load output items requested by the client)

ACME$CB_CANCEL_DIALOGUE
ACME$CB_FORMAT_DATE_TIME
ACME$CB_ISSUE_CREDENTIALS
ACME$CB_SET_2ND_STATUS
ACME$CB_ACME_STATUS
ACME$CB_SET_LOGON_FLAG
ACME$CB_SET_LOGON_STATS_DOI
ACME$CB_SET_LOGON_STATS_VMS
ACME$CB_QUEUE_DIALOGUE_ITEM
ACME$CB_SET_OUTPUT_ITEM

Write to the ACME server log file or operator

ACME$CB_SEND_LOGFILE
ACME$CB_SEND_OPERATOR

Report agent status to the ACME server

ACME$CB_REPORT_ACTIVITY
ACME$CB_REPORT_ATTRIBUTES

Overview 1–9

Overview
1.5 Agent ‘‘Request’’ Callout Routines

1.5 Agent ‘‘Request’’ Callout Routines
Request phases for a given $ACM function invoke an agent’s callout routines.
EVENT and QUERY functions are single-phased functions operating under a
single DOI agent. AUTHENTICATE_PRINCIPAL and CHANGE_PASSWORD
functions are multi-phased functions that operate under multiple DOI agents and
auxiliary agents.

The ACME server calls the following callout routines for the EVENT and QUERY
functions.

Phase Routine

EVENT ACME$CO_EVENT

Agent-specific. No defined operations.

Phase Routine

QUERY ACME$CO_QUERY

Agent-specific. No defined operations.

The ACME server calls the following callout routines for the AUTHENTICATE_
PRINCIPAL and CHANGE_PASSWORD functions:

Phase Routine

INITIALIZE ACME$CO_INITIALIZE

Each new request is processed starting with this phase. Agents should allocate a
request context structure in this phase that the ACME server will then return in
subsequent callout routines via the request-context argument.

Agents may also check the item lists supplied as arguments to the callout routine
to determine whether any well-known items were specified on the initial call.
This may be more convenient than searching through the WQE’s item lists which
contain the entire history of items supplied by the caller when operating in
dialogue mode.

Phase Routine

SYSTEM_PASSWORD ACME$CO_SYSTEM_PASSWORD

The VMS agent processes the VMS system password in this phase, if one is
defined for the system. This phase is associated with the ACME$_PASSWORD_
SYSTEM item code.

Phase Routine

ANNOUNCE ACME$CO_ANNOUNCE

This phase is used to display information to the user prior to the username
prompt.

1–10 Overview

Overview
1.5 Agent ‘‘Request’’ Callout Routines

The VMS agent displays the contents of SYS$ANNOUNCE.

Phase Routine

AUTOLOGON ACME$CO_AUTOLOGON

Agents automatically determine the principal-name based on some criteria and
store it in the WQE, if possible.

The VMS agent processes the Automatic Login Facility (ALF) function in this
phase.

Phase Routine

PRINCIPAL_NAME ACME$CO_PRINCIPAL_NAME

If no principal-name has been determined by any previous agent (i.e. no value
is stored in the WQE), the current agent can prompt the user for it and store
it in the WQE. Prompting is optional, because the VMS agent will prompt if no
principal-name has been stored in the WQE.

Agents should use the following sequence to determine the principal-name:

1. Look in the WQE (already established)

2. Check if supplied in initial phase on the first dialogue call

3. Search the common item list supplied as an argument to the callout routine
(which represents the items supplied on this dialogue request)

4. Prompt the user

This phase is associated with the ACME$_PRINCIPAL_NAME_IN item code.

The VMS agent prompts for ‘‘Username: ’’ in this phase.

Phase Routine

ACCEPT_PRINCIPAL ACME$CO_ACCEPT_PRINCIPAL

The first agent that successfully locates the principal-name in its namespace
declares itself the designated DOI agent. In later phases, the designated DOI
agent maps the principal-name to a VMS username, prompts for passwords,
performs authentication and authorization, and issues credentials.

If no agent has declared itself the designated DOI, the VMS agent looks up the
principal-name in the SYSUAF.DAT file. If it finds a record with that username
and it satisfies certain criteria (see EXTAUTH and IGNORE_EXTAUTH controls),
the VMS agent declares itself the designated DOI agent.

Phase Routine

MAP_PRINCIPAL ACME$CO_MAP_PRINCIPAL

The designated DOI agent provides a VMS username-mapping for the principal-
name in this phase.

Overview 1–11

Overview
1.5 Agent ‘‘Request’’ Callout Routines

The VMS agent simply uses the principal-name, if it is the designated DOI agent.

Phase Routine

VALIDATE_MAPPING VALIDATE_MAPPING

Agents validate the VMS username-mapping in this phase, if they will
authenticate and issue credentials for this request. If the agent’s VMS mapping
is different than the one stored in the WQE, the agent must fail the request.

If the VMS agent is not the designated DOI agent, it uses this phase to ensure
a record exists in the SYSUAF.DAT file for the mapped username and that it
satisfies certain criteria (see the EXTAUTH and IGNORE_EXTAUTH controls).

Phase Routine

ANCILLARY_MECH_1 ACME$CO_ANCILLARY_MECH_1

Agent-specific.

The VMS agent does not use this phase.

Phase Routine

PASSWORD_1 ACME$CO_PASSWORD_1

The designated DOI agent uses this phase to prompt for a primary password, if
required, and stores it in the WQE. No password validation is performed in this
phase.

Agents should use the following sequence to determine the password:

1. Look in the WQE (already established)

2. Check if supplied in initial phase on the first dialogue call

3. Search the common item list supplied as an argument to the callout routine
(which represents the items supplied on this dialogue request)

4. Prompt the user

This phase is associated with the ACME$_PASSWORD_1 item code.

The VMS agent prompts for ‘‘Password: ’’ in this phase.

Phase Routine

ANCILLARY_MECH_2 ACME$CO_ANCILLARY_MECH_2

Agent-specific. The VMS agent does not use this phase.

Phase Routine

PASSWORD_2 ACME$CO_PASSWORD_2

The designated DOI agent uses this phase to prompt for a secondary password, if
required, and stores it in the WQE. No password validation is performed in this
phase.

1–12 Overview

Overview
1.5 Agent ‘‘Request’’ Callout Routines

Agents should use the following sequence to determine the password:

1. Look in the WQE (already established)

2. Check if supplied in initial phase on the first dialogue call

3. Search the common item list supplied as an argument to the callout routine
(which represents the items supplied on this dialogue request)

4. Prompt the user

This phase is associated with the ACME$_PASSWORD_2 item code.

The VMS agent prompts for ‘‘Secondary Password: ’’ in this phase.

Phase Routine

ANCILLARY_MECH_3 ACME$CO_ANCILLARY_MECH_3

Agent-specific.

The VMS agent does not use this phase.

Phase Routine

AUTHENTICATE ACME$CO_AUTHENTICATE

The designated DOI agent and any auxiliary agents validate the passwords in
this phase and perform other validation as defined for those agents. Secondary
DOI agents also perform validation, if designed and configured to operate under
the cooperative model.

The VMS agent performs standard SYSUAF.DAT password validation in this
phase, including intrusion detection.

Phase Routine

MESSAGES ACME$CO_MESSAGES

Agents use this phase to display information to the user after authentication and
before authorization.

The VMS agent does not use this phase.

Phase Routine

AUTHORIZE ACME$CO_AUTHORIZE

The designated DOI agent and any auxiliary agents perform authorization
checks. Secondary DOI agents may also perform authorization, if so designed and
configured to operate under the cooperative model.

The VMS agent uses this phase to perform modal restrictions checks and account
disabled check.

Phase Routine

NOTICES ACME$CO_NOTICES

Overview 1–13

Overview
1.5 Agent ‘‘Request’’ Callout Routines

This phase is used to display lengthy notices following successful authentication
and authorization.

The VMS agent uses this phase to display the contents of SYS$WELCOME.

Phase Routine

LOGON_INFORMATION ACME$CO_LOGON_INFORMATION

This phase is used to display short notices following successful authentication
and authorization.

The VMS agent uses this phase to display last-login time, number of failed logins,
etc.

Phase Routine

NEW_PASSWORD_1 ACME$CO_NEW_PASSWORD_1

In this phase, the designated DOI agent prompts for a new primary password, if
the existing password has expired.

Agents should use the following sequence to determine the new password:

1. Look in the WQE (already established)

2. Check if supplied in initial phase on the first dialogue call

3. Search the common item list supplied as an argument to the callout routine
(which represents the items supplied on this dialogue request)

4. Prompt the user

This phase is associated with the ACME$_NEW_PASSWORD_1 item code.

If operating as the designated DOI agent, the VMS agent uses this phase to
prompt as follows:

New Password:
Verification:

Phase Routine

QUALIFY_PASSWORD_1 ACME$CO_QUALIFY_PASSWORD_1

This phase is used by secondary DOI agents operating under the cooperative
model when auxiliary agents check the validity of the proposed password.

The VMS agent uses this phase to check the password history and password
dictionary databases.

Phase Routine

NEW_PASSWORD_2 ACME$CO_NEW_PASSWORD_2

In this phase, the designated DOI agent prompts for a new secondary password,
if the existing secondary password has expired.

Agents should use the following sequence to determine the new password:

1. Look in the WQE (already established)

1–14 Overview

Overview
1.5 Agent ‘‘Request’’ Callout Routines

2. Check if supplied in initial phase on the first dialogue call

3. Search the common item list supplied as an argument to the callout routine
(which represents the items supplied on this dialogue request)

4. Prompt the user

This phase is associated with the ACME$_NEW_PASSWORD_2 item code. If
operating as the designated DOI agent, the VMS agent uses this phase to prompt
as follows:

New Secondary Password:
Verification:

Phase Routine

QUALIFY_PASSWORD_2 ACME$CO_QUALIFY_PASSWORD_2

This phase is used by secondary DOI agents operating under the cooperative
model when auxiliary agents check the validity of the proposed secondary
password.

The VMS agent uses this phase to check the password history and password
dictionary databases.

Phase Routine

ACCEPT_PASSWORDS ACME$CO_ACCEPT_PASSWORDS

This phase is used to prepare for setting the passwords in the next phase.

Phase Routine

SET_PASSWORDS ACME$CO_SET_PASSWORDS

This phase is used to write the passwords to the agent’s authentication database.

The VMS agent uses this phase to store the password in the SYSUAF.DAT file.

Phase Routine

CREDENTIALS ACME$CO_CREDENTIALS

This phase is used by the designated DOI agent and secondary DOI agents
operating under the cooperative model to issue credentials that will be
converted to a persona extension by the ACME server and returned to the
$ACM application.

The VMS agent uses this phase to issue the VMS security profile for the user
that will be returned in the base persona structure.

Phase Routine

FINISH ACME$CO_FINISH

This is the final phase of request processing. Agents should audit the success or
failure of the request and perform any clean-up that is necessary. If a request
context structure was allocated, it should be deallocated in this phase.

Overview 1–15

Overview
1.5 Agent ‘‘Request’’ Callout Routines

The VMS agent uses this phase to generate login and logfail audits.

1.6 Agent ‘‘Control’’ Callout Routines
Control operations directed to the ACME server by the system manager involve
activities that must be performed by agents. There are callout routines associated
with these activities, as follows.

Command Routine

SET SERVER ACME/CONFIGURE ACME$CO_AGENT_INITIALIZE

Agents are dynamically-activated into the ACME server process (brought into the
ACME server’s virtual memory space), but not yet active. Request dispatching is
disabled.

Command Routine

SET SERVER ACME/ENABLE ACME$CO_AGENT_STARTUP

Requests dispatching is enabled. The agent’s request callout routines will be
invoked following execution of this routine.

This is the preferred stage to allocate global memory and create agent resources.

Command Routine

SET SERVER ACME/SUSPEND ACME$CO_AGENT_STANDBY

Request dispatching is temporarily disabled. Agent should become idle while
system management tasks, such as system backups, are performed. That is,
the agent should close any open files or shutdown any other activity that might
prevent system managements tasks from completing.

Request dispatching will resume when the SET SERVER ACME /RESUME
command is issued. There is no callout routine for this command, so agents
should be prepared to open files as needed during request processing.

Commands Routine

SET SERVER ACME/EXIT
SET SERVER ACME/DISABLE

ACME$CO_AGENT_SHUTDOWN

Request dispatching is disabled. Agent must shut down for possible
reconfiguration. There is no guarantee that the agent will be reenabled in
the future.

This is the preferred stage to deallocate global memory and release agent
resources.

1–16 Overview

Overview
1.7 WQE Fields

1.7 WQE Fields
Table 1–3 shows the standard fields in the WQE.

Table 1–3 WQE Standard Fields

Field Definition

FLAGS Set by an agent to control certain processing features. Set using ACME$CB_
SET_WQE_FLAG.

TARGET_ACME_ID Set by $ACM service when the caller specifies either the ACME$_TARGET_
DOI_ID or ACME$_TARGET_DOI_NAME item code.

DESIGNATED_ACME_
ID

Set by the first DOI agent that finds the principal- name valid in its namespace.
Set using ACME$CB_SET_DESIGNATED_DOI.

STATUS Set by ACME server. If the request is rejected by an agent, the first failure
status reported by an agent returning from a callout routine is used.

SECONDARY_STATUS Set by an agent to provide more details for the status of a request. Set using
ACME$CB_SET_2ND_STATUS.

ACME_STATUS Set by an agent to provide agent-specific error codes. Set using ACME$CB_
SET_ACME_STATUS.

Table 1–4 shows the WQE extensions for the AUTHENTICATE_PRINCIPAL and
CHANGE_PASSWORD functions.

Table 1–4 WQE Extensions

Field Definition

NEW_PASSWORD_
FLAGS

Set by $ACM service when the caller specifies the ACME$_NEW_PASSWORD_
FLAGS item code.

LOGON_FLAGS Set by an agent. Used to load the logon-flags portion of the ACME$_LOGON_
INFORMATION item code. Set using ACME$CB_SET_LOGON_FLAG.

LOGON_STATS_DOI Set by an agent. Used to load the DOI-specific portion of the ACME$_LOGON_
INFORMATION item code. Set using ACME$CB_SET_LOGON_STATS_DOI.

LOGON_STATS_VMS Set by the VMS agent. Used to load the VMS DOI portion of the ACME$_
LOGON_INFORMATION item code. Set using ACME$CB_SET_LOGON_
STATS_VMS.

SYSTEM_PASSWORD Set by an agent when the caller specifies the ACME$_PASSWORD_SYSTEM
item code. Set using ACME$CB_SET_WQE_PARAMETER.

PRINCIPAL_NAME Set by an agent when the caller specifies the ACME$_PRINCIPAL_NAME_IN
item code. Set using ACME$CB_SET_WQE_PARAMETER.
This value must be loaded, unmodified, from the ACME$_PRINCIPAL_NAME_
IN item code. The value represents the original principal-name string as
specified by the user and used to determine the appropriate DOI agent.

PRINCIPAL_NAME_
OUT

Set by the designated DOI agent to convert the principal-name to a standard
format. Used to load the ACME$_PRINCIPAL_NAME_OUT item code. Set
using ACME$CB_SET_WQE_PARAMETER.

This string is used to load the principal-name field of the persona extension
and will be used to identify the default user in future re-authenticate and
change password operations.

VMS_USERNAME Set by the designated DOI agent. Used to load the ACME$_MAPPED_VMS_
USERNAME item code. Set using ACME$CB_SET_WQE_PARAMETER.

(continued on next page)

Overview 1–17

Overview
1.7 WQE Fields

Table 1–4 (Cont.) WQE Extensions

Field Definition

PASSWORD_1 Set by the designated DOI agent (or auxiliary agent) when the caller specifies
the ACME$_PASSWORD_1 item code. Set using ACME$CB_SET_WQE_
PARAMETER.
This password string may be modified before being stored in the WQE. This
allows an auxiliary agent to use the password supplied by the user to unlock the
password needed by the designated DOI agent.

PASSWORD_2 Set by the designated DOI agent (or auxiliary agent) when the caller specifies
the ACME$_PASSWORD_2 item code. Set using ACME$CB_SET_WQE_
PARAMETER.
This password string may be modified before being stored in the WQE. This
allows an auxiliary agent to use the password supplied by the user to unlock the
password needed by the designated DOI agent.

NEW_PASSWORD_1 Set by the designated DOI agent (or auxiliary agent) when the caller specifies
the ACME$_NEW_PASSWORD_1 item code. Set using ACME$CB_SET_WQE_
PARAMETER.

NEW_PASSWORD_2 Set by the designated DOI agent (or auxiliary agent) when the caller specifies
the ACME$_NEW_PASSWORD_1 item code. Set using ACME$CB_SET_WQE_
PARAMETER.

1.8 Agent Rules
Agents that are designed to work together must comply with the rules described
in this section. These rules are designed with the following two goals in mind:

• To present the user with a logical sequence of prompts.

• To allow the system manager to define configurations that use a common
(synchronized across DOI’s) principal-name and password and issue
credentials as a group.

1.8.1 DOI Agents
DOI agents operate as either the designated DOI agent or a secondary DOI
agent for a given request. The functions that a DOI performs depends on the
model, cooperative or independent, under which is was designed and configured
to operate.

Cooperative Model: User obtains a credential from each DOI

Username: joe@acme.com
Password:

All DOI agents authenticate and issue credentials, using a single principal-name
and password. The designated DOI agent drives the prompting sequence.

While the user enters only one principal-name and password, the agents use this
information as-is (synchronized principal-names and passwords).

Independent Model: User obtains a credential from one DOI

Username: joe@acme.com
Password:

Only the designated DOI agent authenticates the user and issues credentials.
Secondary DOI agents do not participate in the request.

1–18 Overview

Overview
1.8 Agent Rules

1.8.2 Auxiliary Agents
An auxiliary agent works in conjunction with the designated DOI agent to enforce
stronger authentication or other administrative functions such as displaying
special information. For example:

Username: abc
Password:
Token-Challenge: 3VN0-QVV5-TVQ5-524T
Token Response: 53BV-2GC5-36V5-V21Y

The designated DOI agent authenticates using the password while the auxiliary
agent authenticates using the token challenge-response. The principal-name is
associated with the DOI represented by the designated DOI agent.

Auxiliary agents always operate alongside a designated DOI agent and are
restricted to the following operations:

• Prompt/load principal-name field

• Validate VMS username mapping

• Prompt/load password field

• Utilize enhanced authentication mechanisms

• Perform additional authentication checks

• Perform additional authorization checks

• Perform additional password filtering

• Obtain or display miscellaneous information

It is important to note that since auxiliary agents do not provide credentials, the
principal-name must be the one that the designated DOI agent recognizes and
loads into its persona extension. This is the principal-name that will be used as
the default for any future authentication or change-password operations.

1.8.3 Choosing Between a DOI Agent or an Auxiliary Agent
When designing an agent, the first decision to make is whether the agent will
function as an auxiliary agent or DOI agent. An auxiliary agent is simpler to
design and implement, but is functionally less powerful than a DOI agent.

Use an auxiliary agent when you wish to add an authentication mechanism
on top of a DOI’s password mechanism or to add extra filtering of a user’s new
password during a password change. In either case, the auxiliary uses the
designated DOI agent’s principal-name to identify the user. An auxiliary agent
does not replace the designated DOI agent’s password mechanism.

Use a DOI agent when you wish to issue credentials that represent the user
within a particular DOI, including principal-name and other information. You
must use a DOI agent when you wish to replace the VMS password mechanism,
because the password mechanism enforced by the designated DOI agent replaces
the VMS agent’s password mechanism during authentication.

Overview 1–19

Overview
1.8 Agent Rules

1.8.4 Controls for Secondary DOI Agents
All DOI agents are responsible for principal-name validation, VMS username
mapping, password validation, authorization, and issuing credentials.

Secondary DOI agents can operate under the cooperative or independent model,
depending on how the system manager has configured them to operate and how
the agents were designed.

Developers should provide controls to allow the system manager to configure
their DOI agent for either model when it is operating as a secondary DOI agent.
Table 1–5 summarizes the control semantics for secondary DOI agents.

Table 1–5 Control Semantics

In this role The agent

Cooperative Will service the request
May prompt for principal-name
Must not prompt for password
Authenticates, authorizes, and issues credentials

Independent Will not service the request
(no prompting, no authentication, no authorization, no credentials
issued)

These controls are implemented in a DOI-specific manner using logical names or
some other mechanism designed by the agent developer.

1.9 Phase Rules
Table 1–6 and Table 1–7 show the ACME phase rules for the AUTHENTICATE_
PRINCIPAL and CHANGE_PASSWORD functions in the cooperative and
independent models.

1–20 Overview

Overview
1.9 Phase Rules

Table 1–6 Cooperative Model

Phase Silver1 Gold1 VMS1 Zinc2

1 Initialize {+} {+} {+} {+}

2 System-Password (prompt) {+}

3 Announce <> <> <> <>

4 Auto-Logon [] [] [] []

5 Principal-Name (prompt) [+] [] [] []

6 Accept-Principal (establish DOI) [] [+] []

7 Map-Principal {+}

8 Validate-Mapping {+} {+} {+} <>

9 Ancillary-Mech-1 <> <>

10 Password-1 (prompt) {[+]} []

11 Ancillary-Mech-2 <> <>

12 Password-2 (prompt) {[]} []

13 Ancillary-Mech-3 <> <+>

14 Authenticate {+} {+} <+>

15 Messages <> <> <> <>

16 Authorize {+} {+} {+} <+>

17 Notices <> <> <> <>

18 Logon-Information {+} {+}

19 New-Password-13 (prompt) {[+]} []

20 Qualify-Password-13 {+} {+} <>

21 New-Password-23 (prompt) {[]} []

22 Qualify-Password-23 (prompt) {} {} <>

23 Accept-Passwords3 {+} {+} <>

24 Set-Password3 {+} {+} <>

25 Credentials {+} {+} {+}

26 Finish {+} {+} {+} {+}

1DOI Agent
2Auxiliary Agent
3Used only when a password expires (or is requested) and needs to be set to a new value.
Key to Phase Rules

[]—Operation is completed by the first agent to perform it (optional, unless indicated otherwise)
<>—Optional operation
{}—Mandatory operation, if condition applies
+—Operation performed by the agent in this example

Overview 1–21

Overview
1.9 Phase Rules

Table 1–7 Independent Model

Phase Silver1 Gold1 VMS1 Zinc2

1 Initialize {+} {+} {+} {+}

2 System-Password (prompt) {+}

3 Announce <> <> <> <>

4 Auto-Logon [] [] [] []

5 Principal-Name (prompt) [+] [] [] []

6 Accept-Principal (establish DOI) [] [+] []

7 Map-Principal {+}

8 Validate-Mapping {+} {+} <>

9 Ancillary-Mech-1 <> <>

10 Password-1 (prompt) {[+]} []

11 Ancillary-Mech-2 <> <>

12 Password-2 (prompt) {[]} []

13 Ancillary-Mech-3 <> <+>

14 Authenticate {+} <+>

15 Messages <> <> <>

16 Authorize {+} {+} <+>

17 Notices <> <> <>

18 Logon-Information {+} {+}

19 New-Password-13 (prompt) {[+]} []

20 Qualify-Password-13 {+} <>

21 New-Password-23 (prompt) {[]} []

22 Qualify-Password-23 (prompt) {} <>

23 Accept-Passwords3 {+} <>

24 Set-Password3 {+} <>

25 Credentials {+} {+}

26 Finish {+} {+} {+} {+}

1DOI Agent
2Auxiliary Agent
3Used only when a password expires (or is requested) and needs to be set to a new value.
Key to Phase Rules

[]—Operation is completed by the first agent to perform it (optional, unless indicated otherwise)
<>—Optional operation
{}—Mandatory operation, if condition applies
+—Operation performed by the agent in this example

Prompt/Display Phase Agent

(system password) 2 VMS

Username: 5 Silver

Password: 10 Gold

1–22 Overview

Overview
1.9 Phase Rules

Prompt/Display Phase Agent

Token-ID: 13 Zinc

New Password: 19 Gold

Verification: 19 Gold

Table 1–8 Example, WQE Standard Fields

WQE Field Phase Agent

TARGET_ACME_ID n/a server

FLAGS any any

DESIGNATED_ACME_ID 6 Gold

STATUS any server

SECONDARY_STATUS any any

ACME_STATUS any any

Table 1–9 Example, WQE Extensions

WQE Field Phase Agent

NEW_PASSWORD_FLAGS n/a server

LOGON_FLAGS 18 Gold

LOGON_STAT_VMS 18 VMS

LOGON_STATS_DOI 18 Gold

SYSTEM_PASSWORD 2 VMS

PRINCIPAL_NAME 5 Gold

PRINCIPAL_NAME_OUT 6 Gold

VMS_USERNAME 7 Gold

PASSWORD_1 10 Gold

PASSWORD_2

NEW_PASSWORD_1 19 Gold

NEW_PASSWORD_2

1.10 VMS Agent Operation and Controls
Whether operating as a designated DOI agent or a secondary DOI agent,
the VMS agent always operates as a cooperative agent. It never operates as
an independent DOI agent. Because of its special role as the native DOI on
OpenVMS systems, the VMS agent follows a slightly different set of rules than
other DOI agents.

The system manager determines the conditions under which the VMS agent
operates (designated or secondary DOI agent). The system manager also selects
which SYSUAF accounts are allowed to have the VMS agent operate as a
secondary DOI.

Overview 1–23

Overview
1.10 VMS Agent Operation and Controls

Secondary DOI Agent
If a record exists in the SYSUAF file for the VMS username mapped by the
designated DOI agent, the VMS agent may operate as a secondary DOI agent
under any of the following conditions:

• The EXTAUTH flag is set in the user’s SYSUAF record

• The IGNORE_EXTAUTH bit is set in the SECURITY_POLICY system
parameter bitmask

When it is operating as a secondary DOI agent, the VMS agent enforces
authorization and issues credentials, but does not perform authentication (the
designated DOI effectively replaces the VMS password policy in this case).

The VMS agent will keep the user’s password synchronized between the
SYSUAF.DAT file and the designated DOI’s password database by generating a
VMS hash value for the password in the WQE and storing the hash value in the
SYSUAF record (exceptions: see DISPWDSYNCH and GUARD_PASSWORDS).
This is done for the benefit of older software which might reference the password
hash in the SYSUAF.DAT file.

Designated DOI Agent
If a record exists in the SYSUAF file for the principal-name, the VMS agent may
operate as the designated DOI agent under any of the following conditions:

• The EXTAUTH flag is clear in the user’s SYSUAF record

• The VMSAUTH flag is set in the user’s SYSUAF record and the VMS DOI is
targeted

• The IGNORE_EXTAUTH bit is set in the SECURITY_POLICY system
parameter bitmask

VMS agent controls consist of a set of UAF flags and the bits for the SECURITY_
POLICY system parameter, as described in Table 1–10 and Table 1–11.

Table 1–10 UAF Flags

EXTAUTH The VMS agent operates as a secondary DOI agent when this flag is set in the user’s
SYSUAF record (exceptions: see VMSAUTH and IGNORE_EXTAUTH). EXTAUTH
is used to flag accounts for which another DOI agent enforces authentication and the
VMS agent acts as a secondary DOI agent. VMS authorization (account-disable and
modal restrictions) is still enforced.

VMSAUTH The VMS agent operates as the designated DOI agent when this flag is set in the
user’s SYSUAF record and the call is targeted to the VMS DOI.

DISPWDSYNCH If this flag is set in the user’s SYSUAF record, the VMS agent will not synchronize
the user’s password with the value stored in the WQE.

Table 1–11 System Parameter SECURITY_POLICY Bits

IGNORE_EXTAUTH The VMS agent may operate as the designated DOI agent or a
secondary DOI agent, regardless of EXTAUTH flag setting.

(continued on next page)

1–24 Overview

Overview
1.10 VMS Agent Operation and Controls

Table 1–11 (Cont.) System Parameter SECURITY_POLICY Bits

GUARD_PASSWORDS When operating as the designated DOI agent, the VMS agent does
not store the password in the WQE. When operating as the secondary
DOI agent, the VMS agent does not synchronize the password from the
WQE.

ALLOW_NOAUTHORIZATION The VMS agent does not enforce modal restriction checks when
/NOAUTHORIZATION is specified in $ACM call.

1.11 NT Agent Operation and Controls
The NT agent operates as either the designated DOI agent or a secondary DOI
agent. The system manager can configure the NT agent to operate in either a
cooperative or independent role.

To configure an NT agent in a cooperative role, define the PWRK$ACME_
GRANT_SECONDARY_CREDS logical name as ALWAYS. If authentication fails,
the NT agent does not grant credentials but allows the request to proceed when
operating as a secondary DOI agent.

To configure an NT agent in an independent role (the default), define the
PWRK$ACME_GRANT_SECONDARY_CREDS logical name as NEVER (or
undefined). The NT agent does not perform authentication nor does it issue
credentials when operating as the secondary DOI agent.

1.12 Operating Environment Restrictions
The ACME server is a multi-threaded process: user threads with kernel threads
and upcalls enabled. Requests are serviced on multiple threads, so agents need
to be aware of concurrency implications. It is also important that agents do not
interfere with the user thread manager.

Here are some important things to remember:

• Use asynchronous system services for best performance

• Use AST callback routines for handling AST delivery

• Do not use event flag 0 in asynchronous system services calls

• Always specify an IOSB parameter in asynchronous system service calls

• Do not assume a given work request will always execute in the same thread
following a stall (do not use thread-local storage)

• Do not assume a particular thread implementation

For further details and recommendations, refer to the Guide to the POSIX
Threads Library.

Overview 1–25

2
ACME Agent Programming Guidelines

ACME agents work with the ACME server main image to provide comprehensive
authentication and credential management (for ACM client processes) through
the SYS$ACM[W] system service. To ensure a coherent interface, all ACME
agents should follow the programming guidelines presented in this chapter.

Unless otherwise indicated, all pass-by-reference arguments and address pointers
within data structures are 32-bit addresses.

Use the CC/VAXC compiler switch to have the ACME agent header files generate
the convenient field references to ACME data structures.

The VMS ACME agent is required for a complete operational environment. If
you start the ACME_SERVER process manually using SET SERVER ACME
commands, you must configure the VMS ACME in order to grant persona-based
credentials. Use the following commands to start the ACME_SERVER and
configure ACME agents:

$ SET SERVER ACME/START/LOG
$ SET SERVER ACME/CONFIG=(NAME=VMS,CRED=VMS)
$ SET SERVER ACME/CONFIG=(NAME=<your-agent>[,CRED=<your-cred>])
$ SET SERVER ACME/ENABLE

2.1 Operating Environment
Your ACME agent shareable image runs in a multithreaded environment
established by the ACME server main image, so your code must not do anything
to interfere with scheduling within the ACME server process.

2.1.1 Wait Form System Service Calls
Except during ACME agent control callout routines, your ACME agent should not
call a wait form system service, including at least:

PTD$READW
SYS$ABORT_TRANSW
SYS$ACMW
SYS$ADD_BRANCHW
SYS$AUDIT_EVENTW
SYS$BRKTHRUW
SYS$CHECK_PRIVILEGEW
SYS$CPU_TRANSITIONW
SYS$CREATE_BRANCHW
SYS$DECLARE_RMW
SYS$DNSW
SYS$END_BRANCHW
SYS$END_TRANSW
SYS$ENQW
SYS$FINISH_RMOPW

ACME Agent Programming Guidelines 2–1

ACME Agent Programming Guidelines
2.1 Operating Environment

SYS$FORGET_RMW
SYS$GETDTIW
SYS$GETDVIW
SYS$GETJPIW
SYS$GETLKIW
SYS$GETQUIW
SYS$GETSYIW
SYS$GETUAI
SYS$ICC_CONNECTW
SYS$ICC_DISCONNECTW
SYS$ICC_RECEIVEW
SYS$ICC_REPLYW
SYS$ICC_TRANSCEIVEW
SYS$ICC_TRANSMITW
SYS$IO_FASTPATHW
SYS$IPCW
SYS$JOIN_RMW
SYS$QIOSERVERW
SYS$QIOW
SYS$RECOVERW
SYS$REGISTRYW
SYS$SETDTIW
SYS$SETEVTASTW
SYS$SETUAI
SYS$SET_DEFAULT_TRANSW
SYS$SNDJBCW
SYS$START_BRANCHW
SYS$START_TRANSW
SYS$SYNCH
SYS$TRANS_EVENTW
SYS$UPDSECW
SYS$UPDSEC_64W
SYS$WAIT

Avoid synchronous I/O. Instead use asynchronous I/O with the ACM dispatcher
support for AST (Asynchronous System Trap) contexts.

2.1.2 Event Flags and IOSBs
Your ACME agent should always specify EFN$C_ENF when calling a system
service that uses an event flag. Avoid the default value of zero since this will
result in false ‘‘wakes’’ for other threads of execution. Always supply the IOSB
argument to system services that accept one.

2.1.3 AST Contexts
Your ACME agent should obtain an ACME AST context for any system service
call it makes that requires an AST routine address and AST parameter. This
allows the ACM dispatcher to intercept the AST and deliver it to your agent at
non-AST level. Obtain an AST context by calling one of the following ACME
callback routines and specifying the AST routine address and AST parameters in
your ACME agent:

• ACME$CB_ACQUIRE_ACME_AST

• ACME$CB_ACQUIRE_ACME_RMSAST

• ACME$CB_ACQUIRE_WQE_AST

2–2 ACME Agent Programming Guidelines

ACME Agent Programming Guidelines
2.1 Operating Environment

• ACME$CB_ACQUIRE_WQE_RMSAST

Pass the AST_HANDLER value and the AST_CONTEXT value you receive from
the callback to the system service as the ASTADR and ASTPRM arguments,
respectively.

The AST context provided by ACM is a 64-bit quantity that ignores the high
order 32 bits. The programmer should pass either the 64-bit value or the low
order 32 bits, depending on what system service is being called.

When the system service completes, the ACM dispatcher calls your routine at
non-AST level using the AST routine address and AST parameter you specified,
to avoid interfering with cooperative multitasking in the ACME server process.

2.2 Process Context
Do not directly use the POSIX Threads Library (formerly DECthreads) or Ada
Tasking. You should invoke tasking services only by interaction with the ACME
server main image, because the mechanism for tasking might change between
OpenVMS releases.

2.2.1 Privilege Manipulation
You must never set or clear privileges since other ACME agents will need certain
privileges. You should specify any privileges needed by your ACME agent in the
required call to ACME callback routine ACME$CB_REPORT_ATTRIBUTES. The
ACME server main image ensures that the specified privileges are enabled.

Your ACME agent must never depend upon some privilege being absent, since
at some time it might run alongside some other ACME agent that requires that
privilege.

2.2.2 Thread Safety
All ACME agent code must be thread-safe except for the code executed via the
following ACME agent control callout routines:

• ACME$CO_AGENT_INITIALIZE

• ACME$CO_AGENT_STARTUP

• ACME$CO_AGENT_STANDBY

• ACME$CO_AGENT_SHUTDOWN

2.2.3 Memory Allocation
Use the following ACME callback routines to manage blocks of memory:

• ACME$CB_ALLOCATE_ACME_VM

• ACME$CB_ALLOCATE_WQE_VM

• ACME$CB_DEALLOCATE_ACME_VM

• ACME$CB_DEALLOCATE_WQE_VM

Although other mechanisms might work, using these entry points brings the
memory allocated by your ACME agent under the umbrella of the ACME server
process debugging tools. This makes it easier to deal with problems involving
ACME agents from multiple creators.

ACME Agent Programming Guidelines 2–3

ACME Agent Programming Guidelines
2.2 Process Context

Using these memory allocation ACME callback routines also defends against
memory leaks within your ACME agent in certain circumstances. The ACM
dispatcher deallocates memory allocated by ACME$CB_ALLOCATE_WQE_VM
after processing a particular request completes.

The ACM dispatcher never deallocates ACME-allocated memory except in
response to a specific deallocation request from the ACME agent.

2.2.4 ACME-Specific Resources
An ACME-specific resource is an entity that your ACME agent defines and
then caches with the ACME server main image by a call to ACME callback
routine ACME$CB_RELEASE_RESOURCE.

Your ACME agent can use a subsequent call to ACME callback routine
ACME$CB_ACQUIRE_RESOURCE to retrieve the ACME-specific resource. If
that callback indicates there are no such ACME-specific resources available,
your ACME agent can wait until one is available by returning ACME$_
WAITRESOURCE.

The ACME server main image has no information regarding the nature of the
ACME-specific resource, it merely caches it and releases it in a thread-safe
manner at the direction of the ACME agent that created it. The reason for
using this capability is that if there is no ACME-specific resource left, the ACM
dispatcher can stall activity on a given request until an ACME-specific resource
becomes available (due to being released by a thread working on a different
request).

2.2.5 ACME Process Control
Your ACME agent should not invoke any process control system service affecting
its own process, such as the following:

SYS$EXIT
SYS$FORCEX
SYS$SETAST
SYS$SETDDIR
SYS$SETDFPROT
SYS$SETEXV
SYS$SETPRN
SYS$SETPRT
SYS$SETPRT_64
SYS$SETPRV
SYS$SETRWM
SYS$SETSTK
SYS$SETSWM
SYS$SETUP_AVOID_PREEMPT
SYS$SET_IMPLICIT_AFFINITY
SYS$SUSPND
SYS$RESUME
SYS$CANWAK
SYS$HIBER
SYS$SCHDWK
SYS$WAKE

2–4 ACME Agent Programming Guidelines

ACME Agent Programming Guidelines
2.3 ACME Callout Routine Dispatching

2.3 ACME Callout Routine Dispatching
When the ACM dispatcher calls an ACME callout routine in your ACME agent
shareable image, your code can call other (non-blocking) routines, but must
eventually return to the ACM dispatcher with a status code. In returning, there
are special meanings conveyed to the ACM dispatcher, if your ACME callout
routine returns one of the following status codes:

• ACME$_CONTINUE

The ACME callout routine has completed processing for this request. Proceed
to subsequent ACME agents’ callout routines.

• ACME$_WAITAST

Call this ACME callout routine back (at non-AST level) after the completion
of the next AST (for this ACME agent).

• ACME$_WAITRESOURCE

Call this ACME callout routine back when the next ACME-specific resource
(for this ACME agent) becomes available of the type code for which the most
recent ACME$RESOURCENOTAVAIL was returned.

• ACME$_PERFORMDIALOGUE

Send all dialogue data that has been queued by a call to ACME callback
routine ACME$CB_QUEUE_DIALOGUE back to the ACM client process
and call this ACME callout routine back when there is either a response (for
input) or an acknowledgement (for output) available from the client.

• Other code

Complete the request with this status.

When the ACME server main image calls the ACME callout routines provided by
various ACME agents, there are three different dispatch patterns, as described in
the next three sections.

2.3.1 To ACME Agent Control Callout Routines
When a privileged user invokes the SET SERVER ACME command, depending
on command qualifiers, the ACM dispatcher calls one of the following ACME
agent control callout routines for one ACME agent repeatedly until it returns
ACME$_CONTINUE or a failure:

• ACME$CO_AGENT_INITIALIZE

• ACME$CO_AGENT_STARTUP

• ACME$CO_AGENT_STANDBY

• ACME$CO_AGENT_SHUTDOWN

Then the ACM dispatcher moves on to the next ACME agent. The ACM
dispatcher finishes when all ACME agents have completed. It returns results to
the process that issued the SET SERVER ACME command.

ACME Agent Programming Guidelines 2–5

ACME Agent Programming Guidelines
2.3 ACME Callout Routine Dispatching

2.3.2 To ACME Event and Query Callout Routines
When an ACM client process calls the SYS$ACM[W] system service with a
function code of ACME$_FC_EVENT or ACME$_FC_QUERY the ACM dispatcher
calls the corresponding ACME event and query callout routines:

• ACME$CO_EVENT

• ACME$CO_QUERY

The ACM dispatcher calls only that ACME callout routine provided by the ACME
agent specified by the client’s ACME$_TARGET_DOI_ID or ACME$_TARGET_
DOI_NAME item. It calls this repeatedly until done, and then returns results to
the ACM client process.

2.3.3 To ACME Authentication and Password Callout Routines
Except as noted in this section, the ACME server main image processes each
Authenticate Principal or Change Password request by calling each ACME callout
routine in the order specified in Table 6–1. Where multiple ACME agents provide
the same ACME callout routine (as is often the case), the ACME server main
image calls the ACME callout routine from each ACME agent until it returns
ACME$_CONTINUE or a failure.

2.3.3.1 Failure of an Authentication/Password Request
Before processing reaches the ACME callout routine ACME$CO_
AUTHENTICATE, any failure code that is returned by any ACME agent is
simply noted without disturbing the dispatching activity. This supports the goals
outlined in Section 2.5.

Once processing reaches the ACME callout routine ACME$CO_AUTHENTICATE,
all authentication-related user interaction has been completed. Any failure code
that has been returned by any ACME agent (including one noted from an earlier
ACME callout routine) causes processing to skip to the end of dispatching, where
each ACME agent gets called at the required ACME callout routine ACME$CO_
FINISH.

2.3.3.2 Free Context
The following two situations reseult in early termination of the dispatch cycle:

• The client program aborts the Authenticate Principal or Change Password
request while it is handling a Dialogue request by sending function code
ACME$_FC_FREE_CONTEXT (or the client program exits, with the same
effect).

• The system manager uses the command SET SERVER ACME/ABORT to force
processing to stop.

As in the case specified in Section 2.3.3.1, each ACME agent is called at ACME
callout routine ACME$CO_FINISH. The first of the two cases previously listed
can only happen when a dialogue request is pending. It is particularly important
for the ACME agent that had an outstanding dialogue request to clean up the
ACME-specific resource, other ACME-specific resource, general resource, memory
and AST context usage, since it was not between ACME callout routines, like
other ACME agents, and might have temporary allocations.

If a client aborts, your ACME agent might not get called for several ACME
callout routines. If you have work to do in these situations (such as auditing),
your ACME agent can depend on always getting called for ACME callout routine
ACME$CO_FINISH.

2–6 ACME Agent Programming Guidelines

ACME Agent Programming Guidelines
2.3 ACME Callout Routine Dispatching

2.3.3.3 New Password Retry
An ACME agent solicits or obtains a new password in either of the following
ACME callout routines:

• ACME$CO_NEW_PASSWORD_1

• ACME$CO_NEW_PASSWORD_2

The ACME agent that has received a password it finds acceptable, stores it in the
work queue entry for access by other ACME agents. Then, the ACM dispatcher
calls all other ACME agents to ensure it is acceptable to them.

All ACME agents have an opportunity to veto the new password as unacceptable
in the appropriate ACME callout routine:

• ACME$CO_QUALIFY_PASSWORD_1

• ACME$CO_QUALIFY_PASSWORD_2

Each ACME agent is expected to test the user-supplied password against its own
criteria and, if there is a problem, do the following:

1. Report the reason the password is unacceptable via a dialogue message to the
ACM client process.

2. Return with the status code ACME$_RETRYPWD.

When the ACM dispatcher receives the status code ACME$_RETRYPWD, it loops
back to continue execution at the corresponding prior ACME authentication and
password callout routine:

• ACME$CO_NEW_PASSWORD_1

• ACME$CO_NEW_PASSWORD_2

Only after a full cycle of no ACME agent reporting a problem is the pair of steps
declared done.

Once there is agreement among all concerned ACME agents, each concerned
ACME agent should set the password into its own records using the ACME
authentication and password callout routines ACME$CO_ACCEPT_PASSWORDS
and ACME$CO_SET_PASSWORDS.

2.4 Beyond Dispatching
The information in this section pertains to ACME authentication and password
callout routines. There are certain cases where your ACME agent must omit
the normal processing associated with the purpose of an ACME callout routine
even though it is called at that routine. In those cases it is reasonable and
expected that your ACME agent might continue to perform any other processing
it normally carries out during that ACME callout routine where such processing
is unrelated to the nominal purpose of the ACME callout routine.

2.4.1 Preauthentication
Your ACME agent must make its own tests for the ACMEWQEFLG$V_
PREAUTHENTICATED flag described in Section 4.2.2.1 and, if it is set, your
ACME agent must eschew all authentication-related activity in the following
ACME callout routines:

• ACME$CO_ANCILLARY_MECH_1

• ACME$CO_PASSWORD_1

ACME Agent Programming Guidelines 2–7

ACME Agent Programming Guidelines
2.4 Beyond Dispatching

• ACME$CO_ANCILLARY_MECH_2

• ACME$CO_PASSWORD_2

• ACME$CO_ANCILLARY_MECH_3

• ACME$CO_AUTHENTICATE

It may not be possible for your ACME agent to issue credentials in this situation.
The ACMEWQEFLG$V_PREAUTHENTICATED flag described in Section 4.2.2.1
is used in the creation of certain detached processes where authentication is not
feasible, such as DECnet proxy logins and initialization of batch jobs.

2.4.2 Phase Done
Setting the ACMEWQEFLG$V_PHASE_DONE flag described in Section 4.2.2.1
indicates completion described in Section 4.2.2.1 of an ACME callout routine
with respect to well-known items for that ACME callout routine. Other ACME
agents should honor that flag and not perform the business of that ACME callout
routine. But ACME agents might have additional activity overloaded onto an
ACME callout routine, and they are free to pursue those actions.

2.5 Concealing Authentication Details
From the original OpenVMS release at the end of the 1970’s, security policy has
been to keep the reasons why login failed a secret from the person attempting to
log in.

As part of the TCB, your ACME agent must follow the standards for keeping
authentication failure details secret from those who have not yet been
authenticated. The measures to take fall into the following two basic groups:

• Avoid explicit explanations via status codes.

• Avoid implicit explanations via interaction patterns.

These are explained in detail below.

2.5.1 Return Status Codes
In the event of an authentication failure, your ACME agent should do the
following:

1. Indicate the real cause of failure by a call to ACME callback routine
ACME$CB_SET_2ND_STATUS 1 providing a true error code for return
to the caller ACMSB field ACMESB$L_SECONDARY_STATUS.

2. Return the sanitized error code ACME$_AUTHFAILURE to the ACME server
process so it can return it to the caller ACMSB field ACMESB$L_STATUS.

The SYS$ACM[W] system service ensures that only the non-revealing ACME$_
AUTHFAILURE code is delivered to unprivileged callers.

In other failure cases, such as where authentication checks succeed but
authorization checks fail, your ACME agent should return some status other
than ACME$_AUTHFAILURE , and use the secondary status for a subsidiary
message, if appropriate. The VMS ACME, for instance, under the appropriate
circumstances can return one of the following errors as the primary status, visible
even to unprivileged callers:

1 Calls to either ACME callback routine ACME$CB_SET_2ND_STATUS or ACME callback
routine ACME$CB_SET_ACME_STATUS have the side effect of returning the ACME ID
of your ACME agent to the caller ACMSB field ACMESB$L_ACME_ID.

2–8 ACME Agent Programming Guidelines

ACME Agent Programming Guidelines
2.5 Concealing Authentication Details

%LGI-F-LOGDISABL, logins are currently disabled; try again later
%LGI-F-BADHOUR, you are not authorized to login at this time
%LGI-F-BADDAY, you are not authorized to login today
%LGI-F-RESTRICT, you are not authorized to login from this source
%LGI-F-ACNTEXPIR, your account has expired; contact your system manager
%ACME-F-PWDEXPIRED, your password has expired; contact your system manager
%LGI-F-FRCPWDERR, error changing expired password

2.5.2 Interaction Patterns
As noted in Section 2.3.3.2, there are two mechanisms that terminate an
Authenticate Principal or Change Password request at any stage of request
processing:

• An ACME$_FC_FREE_CONTEXT function code from the ACM client process

• Management intervention through the ACME server main image

Aside from those cases, the ACME server main image calls each ACME callout
routine you provide between the following ACME callout routines in the order
specified in Chapter 6, regardless of any failure returned by an ACME agent:

• ACME$CO_INITIALIZE

• ACME$CO_AUTHENTICATE

The client interaction that may take place in the following ACME callout routines
is still possible when some ACME authentication and password callout routine
has returned a failure code, and your ACME agent should pursue that interaction:

• ACME$CO_SYSTEM_PASSWORD

• ACME$CO_PRINCIPAL_NAME

• ACME$CO_VALIDATE_MAPPING

• ACME$CO_ANCILLARY_MECH_1

• ACME$CO_ANCILLARY_MECH_2

• ACME$CO_PASSWORD_2

• ACME$CO_ANCILLARY_MECH_3

Your ACME agent should behave in a ‘‘typical’’ fashion in the above circumstance.
(For example, the VMS ACME behaves as though the specified principal name
existed and used a single password.)

2.6 Dialogue Support for ACME Authentication and Password
Callout Routines

Your ACME agent can make its own tests of the ACMEWQE$L_DIALOGUE_
FLAGS field described in Section 4.2.3. If necessary capabilities are missing, your
ACME agent can return the failure code ACME$_INSFDIALSUPPORT to the
ACM dispatcher for ultimate return as the primary status to the SYS$ACM[W]
system service caller.

Alternatively, your ACME agent can simply call ACME callback routine
ACME$CB_QUEUE_DIALOGUE and use the fact that it returns ACME$_
INSFDIALSUPPORT as a basis for taking an alternate course of action.

Except in the event of failures after the ACME callout routine ACME$CO_
AUTHENTICATE, the ACME server main image calls each ACME callout routine
in order.

ACME Agent Programming Guidelines 2–9

ACME Agent Programming Guidelines
2.6 Dialogue Support for ACME Authentication and Password Callout Routines

The ACM dispatcher ensures that the only item codes that a client adds to a
request after the first call are those for which the client was prompted. For
common item codes, an ACME agent can rely on the fact that the only ones added
along the way are responses to prompts for well-known items.

Whenever your ACME agent prompts for a well-known item, it should preserve
secrecy regarding which ACME agent has asked for the input by using the same
prompt any other ACME agent would use. To do this, determine the prompt text
from the appropriate OpenVMS message value, stripped of facility severity and
code indications, according to the following table:

Well-Known Item Item Code
Message Code for Prompt Text

Authenticate Principal Change Password

System password ACME$_SYSTEM_PASSWORD None LGI$_OLDPASS

Principal Name In ACME$_PRINCIPAL_NAME_IN LGI$_USERNAME LGI$_USERNAME

Password 1 ACME$_PASSWORD_1 LGI$_PASSWORD LGI$_OLDPASS

Password 2 ACME$_PASSWORD_2 LGI$_PASSWORD LGI$_OLDPASS

New password 1 ACME$_NEW_PASSWORD_1 LGI$_NEWPASS LGI$_NEWPASS

Confirm password 1 ACME$_NEW_PASSWORD_1 LGI$_CHKPASS LGI$_CHKPASS

New password 2 ACME$_NEW_PASSWORD_2 LGI$_NEWPASS LGI$_NEWPASS

Confirm password 2 ACME$_NEW_PASSWORD_2 LGI$_CHKPASS LGI$_CHKPASS

When your ACME agent requests input of a principal name, the maximum length
of ACME$K_MAXCHAR_PRINCIPAL_NAME applies, and your ACME agent can
use a buffer of limited size (perhaps allowing a few extra characters for leading
and trailing spaces).

When your ACME agent requests input of a password, the maximum size is
the length that can be described in a 16-bit word. Your ACME agent must be
prepared to handle a very long string for sharing with other ACME agents.

2.6.1 Text Output
Where there is any chance of user confusion, your ACME agent should ensure
that any output text clearly indicates the context. For instance, the VMS ACME
already provides output text for Last interactive login and Last non-interactive
login, corresponding to the values it passes to ACME authentication and password
callout routine ACME$CB_SET_LOGON_STATS_VMS. If your ACME agent is
going to provide an additional "Last Login" date, it should indicate the context,
such as:

Last Login with the Vulcan Mind-Meld technique was 25-Feb-2184

When your ACME agent interacts with the ACME server main image, text
strings must use the UCS encoding. To send text data, queue the output using
an ACME-specific message category that has bit 14 set, and thus is susceptible to
UCS-Latin1 conversion.

Warning

Because UCS supports a broader range of characters than Latin-1,
translations of arbitrary UCS characters may be impossible. In this case,
a substitute symbol is used. This will probably not result in the desired
effect. ACME agents that generate such unmappable characters should

2–10 ACME Agent Programming Guidelines

ACME Agent Programming Guidelines
2.6 Dialogue Support for ACME Authentication and Password Callout Routines

refrain from sending them to ACM client programs that have not specified
the ACME$M_UCS2_4 function modifier.

2.6.2 Binary Output
Your ACME agent can send irregular itemset entries (such as those specifying
binary data) to clients, but your ACME should only do this to particular clients
that have special knowledge regarding the message category for those itemset
entries.

To send binary data, queue the output using an ACME-specific message category
that does not have bit ACMEMC$V_UCS set, and thus is not susceptible to
UCS-Latin1 conversion.

2.6.3 Binary Input
Your ACME agent can request irregular input (such as that containing binary
data) from clients, but your ACME agent should only do this to particular clients
that have special knowledge regarding the item codes for those requests.

To request binary data input, use an ACME-specific item code that does not have
bit ACMEIV$V_UCS set, and thus is not susceptible to UCS-Latin1 conversion.

2.7 Item Code Support
The caller of the SYS$ACM[W] system service provides a single item list with
common items and ACME-specific items intermixed, but that is split up by the
ACME server main image and presented to each ACME agent as the following
two separate chains of item list segments:

• Common items

• ACME-specific items

The ACME-specific items presented to each ACME agent are only those
specifically intended for that ACME agent. Those intended for other ACME
agents are filtered out, as shown in Figure 2–1.

ACME Agent Programming Guidelines 2–11

ACME Agent Programming Guidelines
2.7 Item Code Support

Figure 2–1 Item List Processing

ACME Server Process

VM-0782A-AI

ACME$_LOGON_TYPE

ACME$_NULL

ACME$_CHAIN

ACME$_CONTEXT_ACME_ID

ACME$_LOGON_TYPE

ACME$_ACCESS_PORT

ACME$_CHAIN

ACME$_PASSWORD_2

youracme_manager_name

youracme_manager_name

ACME$_PASSWORD_2

ACME$_LOGON_TYPE

ACME$_NULL

ACME$_NULL

0

<vendor>$_codeword

ACME$_CONTENET_ACME_ID

ACME$_ACCESS_PORT

ACME$_CHAIN

youracme_billing_group ACME$_LOGON_TYPE

0

0

youracme_billing_group

0

<vendor>$_codeword

ACM Client Process

Items provided by client Common items

ACME- Specific items (ACME 4)

ACME- Specific items (ACME 7)

2.7.1 Using Input Item Code Requests
Within a chain of item list segments, use the last rendition of an input-item as
the defining occurence. This is required (except for any ACME-specific input
items for which multiple values are actually honored in a single call) in order to
provide callers of SYS$ACM[W] with the same item list semantics for all ACME
agents. Note that the following parameters, provided by the ACM dispatcher
to your ACME agent’s callout routines, give you a pointer to the results of the
current interactions with the client:

• ITEM_LIST

• ACME_ITEM_LIST

2–12 ACME Agent Programming Guidelines

ACME Agent Programming Guidelines
2.7 Item Code Support

Because those interactions are guaranteed to include items that your ACME
agent requested during this ACME authentication and password callout routine,
using those parameters provides a handy way to speed processing compared to
using the following WQE entries:

• ACMEWQE$PS_ITEMLIST

• ACMEWQE$PS_ACME_ITEMLIST

2.7.1.1 Input for Well-Known Items
Your ACME agent should engage in dialogue to obtain well-known items only in
the ACME authentication and password callout routine designated for each item
according to the following table:

Well-Known Item Item Code ACME Callout Routine

System password ACME$_SYSTEM_PASSWORD ACME$CO_SYSTEM_PASSWORD

Principal Name In ACME$_PRINCIPAL_NAME_IN ACME$CO_PRINCIPAL_NAME

Password 1 ACME$_PASSWORD_1 ACME$CO_PASSWORD_1

Password 2 ACME$_PASSWORD_2 ACME$CO_PASSWORD_2

New Password 1 ACME$_NEW_PASSWORD_1 ACME$CO_NEW_PASSWORD_1

New Password 2 ACME$_NEW_PASSWORD_2 ACME$CO_NEW_PASSWORD_2

The ACME authentication and password callout routine should engage in this
dialogue only if all of the following are true:

1. This ACME agent needs the item.

2. The initial call to the SYS$ACM[W] system service did not include the item
in the item list.

3. No other ACME agent has prompted for the item yet (and so indicated by
setting flag ACMEWQEFLG$V_PHASE_DONE.2

4. If the well-known item is a password of any sort (anything other than
ACME$CO_PRINCIPAL_NAME), this ACME agent is the designated DOI.

Your ACME agent should engage in dialogue to obtain ACME-specific items only
when one of the following is true:

• The ACME authentication and password callout routine is not designated for
any well-known item.

• This ACME is the one that has engaged in the dialogue to obtain the well-
known item for the ACME authentication and password callout routine and
the ACME- specific item is associated with the well-known item (such as the
confirmation of the selection of a new password).

2 In the case of principal name, the relevant flag to check is subfield ACMEWQEITM$L_
ACME_ID of field ACMEWQEAX$R_PRINCIPAL_NAME since the principal name might
be set in an earlier ACME callout routine than ACME$CO_PRINCIPAL_NAME.

ACME Agent Programming Guidelines 2–13

ACME Agent Programming Guidelines
2.7 Item Code Support

2.7.1.2 Reporting Input Item Code Errors
When an item list entry provided by the client is inadequate, your ACME agent
should return the following status values:

Status Meaning

SS$_BADITMCOD An ACME-specific item code is undefined or is inappropriate in the circumstance
(for example, incompatible with the function code or another item). Alternatively, a
required item code is not provided.

Common item codes undefined at the time your ACME agent is built should be
ignored, since they might be added later on by even a patch to an existing version
of OpenVMS.

SS$_BADBUFLEN An item length is wrong for the item code used.

SS$_BADPARAM The contents of an item are incorrect for the circumstance.

SS$_NO<priv> The client does not have a single required privilege needed for an operation.

SS$_NOPRIV The client does not have any of a set of privileges which would suffice for an
operation.

When your ACME agent returns any of the first three status values in connection
with a specific item, it should return the item code in the ACME-specific status
by calling ACME callback routine ACME$CB_SET_ACME_STATUS. That not
only indicates which item was faulty to the client, but also indicates which ACME
agent found fault with the item.

2.7.2 Fulfilling Output Item Code Requests
The ACME server main image silently prevents the return of output item code
results in the event of a failure. Your ACME agent can store output item code
results using the ACME callback routine ACME$CB_SET_OUTPUT_ITEM
during any ACME callout routine. They are not returned to the client program
until after the final ACME callout routine processing, and then only if the final
status indicates success.

2.7.2.1 Special Output Items for ACME Authentication and Password Callout Routines
It is actually the ACME server main image that will satisfy client requests for
the following output items:

• ACME$_LOGON_INFORMATION

During processing, the ACME agent that supports the designated DOI calls
ACME$CB_SET_LOGON_STATS_DOI to store data in the ACMEWQEAX$R_
LOGON_STATS_DOI field of the WQE extension for authentication.

• ACME$_MAPPED_VMS_USERNAME

During processing, the ACME agent that maps the principal name calls
ACME$CB_SET_WQE_PARAMETER to store an OpenVMS user name into
the ACMEWQEAX$R_VMS_USERNAME field of the WQE extension for
authentication.

• ACME$_PERSONA_HANDLE_OUT

During processing, the ACME agents that support DOIs call ACME callback
routine ACME$CB_ISSUE_CREDENTIALS, providing it with credentials for
the SYS$ACM[W] system service to amalgamate into a persona for the client.

• ACME$_PRINCIPAL_NAME_OUT

2–14 ACME Agent Programming Guidelines

ACME Agent Programming Guidelines
2.7 Item Code Support

During processing, the ACME agent that determines the principal name
calls ACME$CB_SET_WQE_PARAMETER to store a normalized (according
to the rules of that ACME agent) rendition of the principal name into the
ACMEWQEAX$R_PRINCIPAL_NAME_OUT field of the WQE extension for
authentication;

2.7.2.2 Normal Output Items
Specify the results as they become known to your ACME agent. The ACM
dispatcher returns them to the SYS$ACM client at the end of successful
processing.

Your ACME agent may return different results for the same item at successive
stages of the processing. Only the last value for each item is returned. This is
different from saying the same thing for a given item code.

If you need to communicate to a cooperating client program before processing of
the request is complete, use the ACME callback routine ACME$CB_QUEUE_
DIALOGUE with an ACME-specific output data type known to the client. You
can reliably determine the identity of an installed ACM client program from the
ACMEWQE$R_SERVICE_NAME field.

2.8 Auditing Within an ACME Callout Routine
If you want to audit via the use of SYS$AUDIT_EVENT, SYS$CHECK_
PRIVILEGE or a similar system service that provides an AUDIT_FLAGS
parameter, you should specify NSA$M_SERVER in that parameter to cause
auditing to be done even though the context is that of a server in the TCB.

2.9 Writing to the ACME$SERVER Log File
Unexpected operational problems (except those that could be caused by faulty
input from an end user) should be logged to the ACME$SERVER log (whose
default location is SYS$MANAGER).

If the problem prevents completion of the request, do the following:

1. Indicate the real cause of failure by a call to ACME callback routine
ACME$CB_SET_2ND_STATUS which provides one of the following:

A failure code from Section 8.4

A failure code specific to your ACME agent

2. Return the code ACME$_CONTACTSYSMGR (not ACME$_AUTHFAILURE)
to cause the system manager to investigate the details your ACME agent
stored in the ACME$SERVER log.

2.10 ACME Callout Internationalization
Core OpenVMS services allow for internationalization on a per-process basis
through the redefinition of SYS$MESSAGE. Within the ACME server process,
only one natural language setting of this nature is possible, just as with all
processes.

ACME Agent Programming Guidelines 2–15

ACME Agent Programming Guidelines
2.11 Password Policy ACME Agents and Older Password Policy Models

2.11 Password Policy ACME Agents and Older Password Policy
Models

If your only goal in writing an ACME agent is to enforce additional local
restrictions on the selection of new passwords, then you can get by with only the
following three ACME authentication and password callout routines:

• ACME$CO_QUALIFY_PASSWORD_1

• ACME$CO_QUALIFY_PASSWORD_2

• ACME$CO_FINISH

For more information on writing ACME authentication and password callout
routines, see Chapter 6.

2.12 ACME Agent Design Alternatives
In many cases those who want to write an ACME agent need to interface to an
external mechanism that already has particular rules of operation. The rules
described in this chapter should allow you sufficient flexibility to bridge the two
environments.

2.12.1 Separate Qualification of Proposed New Passwords
You will find you can write a much more interoperable ACME agent if you
separate the following two notions:

• Checking the acceptability of a proposed new password

• Setting the new password

Some ACME agents are constrained from providing that separation by protocols
on an external network over which they communicate. Where this is not an issue,
keep the two actions separate.

2.12.2 Using a Separate Process
If some of the rules described in this chapter are not compatible with a technique
you want to use (such as calling an existing library that expects some other
environment), you might choose to do the following:

1. Create a detached process with that environment.

2. Communicate with that process from your ACME agent using the Intra-
Cluster Communication (ICC) system services discussed in the OpenVMS
Programming Concepts Manual.

2.13 Naming Your ACME Agent
Suitable system manager commands can load a properly built ACME agent,
regardless of its name. For maximum ease-of-use your ACME agent should have
a name in the following form:

<facility-prefix><acme-name>_ACMESHR.EXE

where:

• <facility-prefix> is the facility prefix name for your ACME agent, ending with
a dollar sign for registered facilities and with an underscore for local facilities

• <acme-name> is the simple name of your ACME agent

2–16 ACME Agent Programming Guidelines

ACME Agent Programming Guidelines
2.13 Naming Your ACME Agent

• _ACMESHR.EXE is an underscore followed by the standard termination and
extension for ACME agent shareable images

For example, if you register the facility MYCORP and write a DNA ACME agent,
the name might be:

MYCORP$DNA_ACMESHR.EXE

Writing the same code for local use, the name might be:

OURSTUFF_DNA_ACMESHR.EXE

For maximum ease of configuration, store your ACME agent in
SYS$COMMON:[SYSLIB].

ACME Agent Programming Guidelines 2–17

3
Testing and Debugging Your ACME Agent

Under actual operation, your ACME agent might encounter circumstances that
you did not anticipate. This chapter outlines the tools and techniques available
to test and debug ACME agents.

3.1 Using ACME Tracing
In addition to the logging described in Section 2.9, a series of trace flags exists
(expressed here with the corresponding bit-masks):

• 0 - agent—Enable agent tracing

• 1 - general—General (non-specific) tracing

• 2 - vm—Virtual memory operations

• 3 - ast—AST processing

• 4 - wqe—WQE parameter values

• 5 - report—Agent status/attrbutes operations

• 6 - message—Messaging operations

• 7 - dialogue—Dialogue operations

• 8 - resource—ACME-specific resource operations

• 9 - callout—Invocations of any ACME callout routines

• 10 - callout_status—Status returned from any ACME callout routines

To set some combination of these trace flags, use a command similar to the
following:

SET SERVER ACME/TRACE=%x146

The WQE flag ACMEWQEFLG$V_TRACE_ENABLED mirrors the state of
flag value 1. Your ACME agent can test that flag and, if it is set, use the
ACME$CB_SEND_LOGFILE callback routine to send extra tracing information
to the ACME$SERVER log file. Particularly if your ACME agent will be used
at another site, it is useful to log additional information specific to your ACME
agent.

You can also use the other trace flags to send additional information to the
ACME$SERVER log file to provide a context for unexpected behavior you might
observe.

Testing and Debugging Your ACME Agent 3–1

Testing and Debugging Your ACME Agent
3.2 Using the Debugger

3.2 Using the Debugger
You can debug your ACME agent using the OpenVMS Debugger. Compile and
link your agent code with debugger switches. From a privileged process, run the
ACME server image, as follows:

$ RUN SYS$SYSTEM:ACME.SERVER

Once the ACME server is running, issue the following commands from a second
terminal session:

$ SET SERVER ACME/CONF=(NAME=VMS,CRED=VMS)
$ SET SERVER ACME/CONF=(NAME=your-acme,CRED=your-cred)
$ SET SERVER ACME/ENABLE

Enter the debugger in the first terminal session by typing:

<Ctrl/Y>
$ DEBUG
DBG> SET IMAGE your-image
DBG> SET MODULE your-module
DBG> SET BREAK your-bpt
DBG> GO

3–2 Testing and Debugging Your ACME Agent

4
ACME Agent Data Structure

Cooperation between software from multiple providers to achieve a single
coherent authentication environment requires careful use of common data
structures. In general, your ACME agent can read these structures directly, but
should modify them only by calling specific ACME callback routines.

4.1 ACME Server Process Data Types
This section describes some of the data structures used within the ACME server
process. As with client software calling the SYS$ACM[W] system service, it is
important to properly handle the version indications within those data structures
that contain revision level fields.

4.1.1 Revision Level Fields to Check
Possible major and minor revision level values provided by the ACME server
main image for use in ACME agents include the following:

• ACMEWQE$W_REVISION_LEVEL

The major and minor subfields can contain the following values:

ACMEWQE$K_MAJOR_ID_001 together with ACMEWQE$K_MINOR_
ID_001

All data elements, as described in Section 4.2

ACMEWQE$K_MAJOR_ID_001 together with ACMEWQE$K_MINOR_
ID_000

Data elements described in Section 4.2, but without the following cells:

ACMEWQE$L_TIMEOUT
ACMEWQE$L_FACTOR

• ACMEKCV$W_ACM_REVISION_LEVEL

The major and minor subfields can contain the following values:

ACME$K_MAJOR_ID_001 together with ACME$K_MINOR_ID_000

The interface to the ACM dispatcher, as described in this manual.

• ACMEKCV$W_REVISION_LEVEL

The major and minor subfields can contain the following values:

ACMEKCV$K_MAJOR_ID_001 together with ACMEKCV$K_MINOR_ID_
000

The interaction rules described in this manual.

Your ACME agent should test against those values that represent the level with
which your code is compatible.

ACME Agent Data Structure 4–1

ACME Agent Data Structure
4.1 ACME Server Process Data Types

It is sufficient to check those revision fields only during ACME$CO_AGENT_
INITIALIZE. If your ACME agent encounters a mismatch, callbacks are
inadvisable. Your ACME agent should return ACME$_UNSUPREVLVL.

A difference in major ID indicates an incompatible change in structure layout
or calling protocol such that you must specifically program your ACME agent to
respond to different major IDs.

A difference in minor ID indicates additional fields in a structure, or additional
calling protocol options, that will not affect an ACME agent that behaves
appropriately for earlier minor ID values.

4.1.2 Revision Level Fields to Set
Possible major and minor revision level values for use by ACME agents include
the following:

• ACMELIDOI$W_REVISION_LEVEL

ACMELIDOI$K_MAJOR_ID_001 together with ACMELIDOI$K_MINOR_
ID_000

All data elements, as described in Section A.5.

• ACMELIVMS$W_REVISION_LEVEL (only used by the VMS ACME)

ACMELIVMS$K_MAJOR_ID_001 together with ACMELIVMS$K_
MINOR_ID_000

All data elements, as described in Section A.6.

• ACMERSRC$W_REVISION_LEVEL

ACMERSRC$K_MAJOR_ID_001 together with ACMERSRC$K_MINOR_
ID_000

All data elements, as described in Section B.5.

Your ACME agent should generate those values that represent the level with
which your code is compatible.

4.1.3 ACMEID Data Type, Also Used by SYS$ACM[W] System Service Callers
These data types are defined in STARLET and are also used by programs that
call the SYS$ACM[W] system service.

ACMEID, a longword data type, is the base type for several items in calls to the
SYS$ACM[W] system service and for several fields within the work queue entry,
as discussed in Section 4.2.

It is divided into the following three subfields:

• ACMEID$V_ACME_NUM

The 15-bit index number corresponding to the name of a particular ACME
agent. This number does not vary on a given machine until the next reboot,
providing continuity for SYS$ACM[W] system service callers even though an
ACME server process may be replaced.

• ACMEID$V_DOI_DESIGNATOR

The 1-bit flag indicating that a particular ACME agent has been registered
via the command SET SERVER ACME as able to provide credentials. This
means the ACME agent supports a DOI.

• ACMEID$V_SERVER_NUM

4–2 ACME Agent Data Structure

ACME Agent Data Structure
4.1 ACME Server Process Data Types

The incarnation number of the particular ACME server process handling a
request.

Client programs that call the SYS$ACM[W] system service and use the
ACMEID data type often use only the ACMEID$V_ACME_NUM field to perform
comparisons, while within an ACME callout routine it is more typical to compare
the entire longword of the ACMEID type. In fact, the ACME agent writer
usually only needs to be concerned about whether a given value is equal to the
ACMEWQE$L_CURRENT_ACME_ID value (that indicating this ACME agent
itself), equal to zero, or something else. The exact value of ‘‘something else’’ is
rarely of interest.

4.1.4 ACMEWQEITM Data Type, Unique to the ACME Server Process
These data types are defined in LIB and are only useful to those writing an
ACME agent. Although the fact that they are defined in LIB makes them
susceptible to change on subsequent releases, it is an OpenVMS development goal
to minimize incompatible changes since the software making use of them (ACME
agent shareable images) is user mode code.

The ACMEWQEITM data type (see Section B.14) describes a UCS encoding of a
string item. The length can be arbitrarily long (although the initial SYS$ACM[W]
system service and ACME server main image implementations limit it to 65535
bytes), so the data type does not actually contain a string, but rather points to
a string stored elsewhere. The ACMEWQEITM data type contains the following
subfields:

• ACMEWQEITM$L_ACME_ID

The ACME ID of the ACME agent that most recently set this item. Zero
indicates the item has never been set.

• ACMEWQEITM$L_PHASE

The number of the ACME authentication and password callout routine in
which this item was most recently set. ACME authentication and password
callout routine numbering is private to the ACME server main image and
can change from one release to the next as new ones are added. The only
characteristics of an ACME callout routine usable by an ACME agent are the
following:

The number for a particular ACME callout routine remains the same for
a given execution of the ACME server main image.

The numbers of ACME callout routines are monotonically increasing
according to the first encounter of each ACME authentication and
password callout routine.

Thus, the usefulness of the ACME authentication and password callout
routine numbering is mainly limited to testing and debugging.

• ACMEWQEITM$L_LENGTH

The length of the item string, in bytes (four times the number of characters).

• ACMEWQEITM$PS_POINTER

The address of the item string in memory allocated and deallocated by the
ACME agent shareable image that set the item.

ACME Agent Data Structure 4–3

ACME Agent Data Structure
4.1 ACME Server Process Data Types

Your ACME agent can read data directly from the ACMEWQEITM type and the
string to which it points. But, to avoid problems with abnormally long strings, it
is best to perform comparisons against the existing string rather than to make a
copy of it.

Your ACME agent can change data in those instances of the ACMEWQEITM
type, described in Section 4.2.21.3, by calling ACME callout routine ACME$CB_
SET_WQE_PARAMETER.

4.2 Work Queue Entry Data Fields
This section describes fields of the work queue entry, listed in order of decreasing
interest to the writer of a typical ACME agent. An ACME agent can read these
fields directly. An ACME agent can also change certain fields, but only through
the use of specific ACME callback routines.

4.2.1 Function Field
ACMEWQE$L_FUNCTION, the function field, is of data type ACMEFC, and is
divided into two subfields, described below.

4.2.1.1 ACMEFC$V_FUNCTION
This subfield contains the function code specified on the call to the SYS$ACM[W]
system service. As documented in the OpenVMS System Services Reference
Manual, that code will be one of the following:

• ACME$_FC_AUTHENTICATE_PRINCIPAL

• ACME$_FC_CHANGE_PASSWORD

• ACME$_FC_RELEASE_CREDENTIALS

• ACME$_FC_QUERY

• ACME$_FC_EVENT

• ACME$_FC_FREE_CONTEXT

4.2.1.2 ACMEFC$V_MODIFIERS
This subfield contains the set of function modifiers specified on the call to the
SYS$ACM[W] system service. As documented in the OpenVMS System Services
Reference Manual, the valid modifiers are as follows:

• ACME$M_NOAUDIT

• ACME$M_TIMEOUT

• ACME$M_UCS2_4

• ACME$M_ACQUIRE_CREDENTIALS

• ACME$M_MERGE_PERSONA

• ACME$M_COPY_PERSONA

• ACME$M_OVERRIDE_MAPPING

• ACME$M_NOAUTHORIZATION

• ACME$M_FOREIGN_POLICY_HINTS

• ACME$M_DEFAULT_PRINCIPAL

4–4 ACME Agent Data Structure

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

4.2.2 Flags Field
ACMEWQE$L_FLAGS, the flags field, is of data type ACMEWQEFLG (see
Section B.13) and contains flags in two sets, as described below.

4.2.2.1 ACME Flags Field
ACMEWQEFLG$V_ACME_FLAGS is the ACME flags field. ACME flags are set
by ACME agents calling ACME$CB_SET_WQE_FLAG. The following flags are
potentially applicable to all requests:

• ACMEWQEFLG$V_PHASE_DONE

For ACME authentication and password callout routines, this flag means
that some ACME agent has completed the mandated activity for the current
ACME authentication and password callout routine. Other ACME agents
should only pursue their private activities. See the description of each specific
ACME authentication and password callout routine in Chapter 6 for an
indication of whether ACMEWQEFLG$V_PHASE_DONE is used for that
routine.

The ACM dispatcher clears this flag before calling the ACME agents for the
next ACME authentication and password callout routine.

• ACMEWQEFLG$V_NO_RETRY

An ACME agent is unable to retry some operation.

For ACME authentication and password callout routines, if the original
proposal is unsatisfactory, this flag means that some ACME agent is not
capable of handling a different proposed new password. Your ACME agent
should check this flag, if a proposed password fails qualification during one of
the following ACME authentication and password callout routines:

• ACME$CO_QUALIFY_PASSWORD_1

• ACME$CO_QUALIFY_PASSWORD_2

If your ACME agent finds the flag set, it should fail the authenticate principal
or change password request rather than returning ACME$_RETRYPWD. To
fail the request, your ACME agent should take the following steps:

1. Call ACME callback routine ACME$CB_SET_2ND_STATUS, specifying
one of the following:

A failure code from Section 8.3

A failure code specific to your ACME agent

2. Return the code ACME$_INVNEWPWD.

• ACMEWQEFLG$V_PREAUTHENTICATED

This request is implicitly authenticated based on its source, such as DECnet
proxy logins and the initialization of batch jobs. No ACME agent should
engage in any authentication activity.

Caution

Attempting to second-guess the decision of another ACME agent to
set this flag is fraught with peril. For example, if your ACME agent
were to provide some additional authentication involving out-of-band
cryptographic handshakes, it could fail miserably in a case where there

ACME Agent Data Structure 4–5

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

is no ‘‘other end’’ such as traditional methods of starting DECwindows,
DECnet or TCP/IP detached processes.

• ACMEWQEFLG$V_NO_EXTERNAL_AUTH

A LOGINOUT.EXE user has explicitly specified /LOCAL_PASSWORD, so
no ACME agent other than the VMS ACME should call the ACME callback
routine ACME$CB_SET_DESIGNATED_DOI.

• ACMEWQEFLG$V_SKIP_NEW_PASSWORD

No ACME agent should engage in new password processing, since at least one
of the following occurred:

Item ACME$_AUTH_MECHANISM specified some non-zero value.

ACME$_LOGON_TYPE specified a logon type of either ACME$K_
NETWORK or ACME$K_BATCH, where, by definition, password change
dialogue is not possible.

4.2.2.2 Dispatcher Flags Field
ACMEWQEFLG$V_DISPATCHER_FLAGS, the dispatcher flags field, contains
the following flags set by the ACM dispatcher in response to various conditions
not directly controlled by ACME agents:

• ACMEWQEFLG$V_DIALOGUE_POSSIBLE

The call to the SYS$ACM[W] system service provided item ACME$_
DIALOGUE_SUPPORT, so at least your ACME agent can queue output
dialogue itemset entries. You can determine what sorts of input dialogue
itemset entries to queue by examining subfields ACMEDLOGFLG$V_INPUT
and ACMEDLOGFLG$V_NOECHO of field ACMEWQE$L_DIALOGUE_
FLAGS.

• ACMEWQEFLG$V_AST_RECEIVED

Reserved to HP.

• ACMEWQEFLG$V_MASK_STATUS

When it returns final status to the ACM client program, the SYS$ACM[W]
system service will mask field ACMESB$L_SECONDARY_STATUS
if ACMESB$L_STATUS, if ACMESB$L_STATUS contains ACME$_
AUTHFAILURE. This flag reflects the privilege state when the SYS$ACM[W]
system service was called.

• ACMEWQEFLG$V_TRACE_ENABLED

The agent tracing bit described in Section 3.1 was set, so this ACME agent
should engage any tracing activity it has.

• ACMEWQEFLG$V_ABORT_REQUEST

The ACM client process has called the SYS$ACM[W] system service with
function code ACME$_FC_FREE_CONTEXT (or has performed an image exit,
which has the same effect).

• ACMEWQEFLG$V_FAILED_REQUEST

An ACME agent returned an ordinary (not reserved) non-success status,
meaning the request will fail.

4–6 ACME Agent Data Structure

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

4.2.3 Dialogue Flags Field
ACMEWQE$L_DIALOGUE_FLAGS, the dialogue flags field, is of data type
ACMEDLOGFLG and contains the set of flags specified by the ACM client
program in item ACME$_DIALOGUE_SUPPORT. The following flags are
currently defined:

• ACMEDLOGFLG$V_INPUT

• ACMEDLOGFLG$V_NOECHO

4.2.4 Status Field
ACMEWQE$R_STATUS, the status field, is of data type unsigned longword and
contains the primary status that is currently scheduled to be returned to the
caller of the SYS$ACM[W] system service in field ACMESB$L_STATUS.

If this is a success status, as indicated by the low bit being set, there is still a
chance it could be replaced by a failure status before the completion of processing.

If multiple ACME agents return failure status, the first one to do so ‘‘wins’’ and
has its failure status returned to the caller of SYS$ACM[W] system service. This
prevailing ACME agent also has values (if any) it provided for the following cells:

• Secondary status - via ACME$CB_SET_2ND_STATUS

• ACME status - via ACME$CB_SET_ACME_STATUS

Any values provided by other ACME agents will be eliminated.

Whichever (if any) ACME agent ends up having its value used for the ACME
status will also have its ACME ID returned to the ACM client program as the
ACME status ID.

4.2.5 Secondary Status Field
ACMEWQE$R_SECONDARY_STATUS, the secondary status field, is of data
type unsigned longword and contains the status that is currently scheduled to be
returned to the caller of the SYS$ACM[W] system service in field ACMESB$L_
SECONDARY_STATUS.

If no ACME agent has yet specified a secondary status, there is still a chance it
could be set before processing is completed.

4.2.6 ACME Status Field
ACMEWQE$R_ACME_STATUS, the ACME status field, is of data type unsigned
longword and contains the status that is currently scheduled to be returned to the
caller of the SYS$ACM[W] system service in field ACMESB$L_ACME_STATUS.

Except for the special cases described in Section 2.7.1.2, there is no general
guarantee that this field is in the form of an OpenVMS status code.

If no ACME agent has yet specified an ACME status, there is still a chance it
could be set before processing is completed.

4.2.7 AST Context Field
The ACMEWQE$Q_AST_CONTEXT field and the ACMDWQEFLG$V_AST_
RECEIVED flag are reserved for Hewlett-Packard.

ACME Agent Data Structure 4–7

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

4.2.8 Locale Field
ACMEWQE$R_LOCALE, the locale field, is of data type ACMEWQEITM
(introduced in Section 4.1.4) and describes a UCS encoding of the ACME$_
LOCALE item provided on the call to the SYS$ACM[W] system service.

Most ACME agents have no particular use for this field, since it is for possible
future internationalization support in the ACME server main image.

4.2.9 Service Name Field
ACMEWQE$R_SERVICE_NAME, the service name field, is of data type
ACMEWQEITM (see Section 4.1.4) and describes a UCS encoding of the name of
the installed image that called the SYS$ACM[W] system service for this request.

This information is actually provided by the SYS$ACM[W] system service itself
or by privileged clients, and can thus be trusted.

4.2.10 Requestor Profile Field
ACMEWQE$L_REQUESTOR_PROFILE, the requestor profile field, is the
persona ID for a copy of the active persona when the ACM client process called
the SYS$ACM[W] system service for this request. Although that active persona
was in the context of the ACM client process, the ACME server main image
has recreated this copy in the context of the ACME server process. Thus, your
ACME agent can use this persona ID to call the persona query system service
(SYS$PERSONA_QUERY) for details about the exact identity with which the
ACM client process called the SYS$ACM[W] system service. It is important
to use this method, rather than the SYS$GETJPI system service, to inquire
about security attributes of the ACM client process because the current state
of the ACM client process might be different from the state when it called the
SYS$ACM[W] system service.

4.2.11 Requestor Mode Field
ACMEWQE$L_REQUESTOR_MODE, the requestor mode field, contains
the access mode from which the ACM client process made the call to the
SYS$ACM[W] system service. This may be different from the access mode of
the active persona at the time of the call to the SYS$ACM[W] system service, as
found in item ISS$_MODE of the persona identified by the persona ID stored in
ACMEWQE$L_REQUESTOR_PROFILE.

4.2.12 Requestor Process ID Field
ACMEWQE$L_REQUESTOR_PID, the requestor process ID field, contains the
process ID (PID) of the ACM client process. On Alpha, when kernel threads are
in use, this still is the ID of the process (first kernel thread), not the individual
kernel thread from which the request was queued. A subsequent kernel thread
might no longer exist in the future while an image is still running in a process, so
the PID provided in this field must be one that will persist.

4.2.13 Current ACME ID Field
ACMEWQE$L_CURRENT_ACME_ID, the current ACME ID field, is of data type
ACMEID and contains the ACME ID for the ACME agent currently executing.

4–8 ACME Agent Data Structure

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

4.2.14 Target ACME ID Field
ACMEWQE$L_TARGET_ACME_ID, the target ACME ID field, is of data type
ACMEID and for a targeted request it contains the ACME ID (if any) specified
by the ACM client process to indicate the target DOI specified via one of the
following items:

• ACME$_TARGET_DOI_ID

• ACME$_TARGET_DOI_NAME

4.2.15 Designated ACME ID Field
ACMEWQE$L_DESIGNATED_ACME_ID, the designated ACME ID field, is of
data type ACMEID and contains the ACME ID of the ACME agent that called
ACME callback routine ACME$CB_SET_DESIGNATED_DOI to indicate that it
would take charge in processing this request.

4.2.16 Designated Credentials Field
ACMEWQE$L_DESIGNATED_CRED, the designated credentials field, is of
data type unsigned longword and contains the persona extension ID for the
ACME agent that has designated itself as DOI by calling ACME callback routine
ACME$CB_SET_DESIGNATED_DOI.

4.2.17 Timeout Field
ACMEWQE$L_TIMEOUT, the timeout field, reflects the ACME$_TIMEOUT
parameter provided by the client (or defaulted by the SYS$ACM[W] system
service).

4.2.18 Factor Field
ACMEWQE$L_FACTOR, the factor field, contains the maximum number of
simultaneous requests the ACM dispatcher will expect your ACME agent to have
pending at one time.

4.2.19 Itemlist Field
ACMEWQE$PS_ITEMLIST, the item list field, contains a pointer to the first
item list segment of ACME-independent items that the ACM client process has
provided throughout the history of processing this request.

4.2.20 ACME Itemlist Field
ACMEWQE$PS_ACME_ITEMLIST, the ACME item list field, contains a pointer
to the first item list segment of ACME-specific items that the ACM client process
has provided for this ACME agent throughout the history of processing this
request.

4.2.21 Function-Dependent Parameters Field
ACMEWQE$PS_FUNC_DEP_PARAMS, the function-dependent parameters field,
contains a pointer. The data structure addressed by the pointer varies depending
upon the nature of ACME callout routine, as shown in the following sections.

ACME Agent Data Structure 4–9

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

4.2.21.1 The Agent Initialization WQE Extension
On a call to the ACME agent control callout routine ACME$CO_AGENT_
STARTUP, the function-dependent parameters field contains a pointer to the
ACMEWQEAIX data structure described in Section B.8.

ACMEWQEAIX$L_AGENT_NAME, the agent name field of that data structure,
holds a pointer to a 32-bit string descriptor of the ACME agent name.

Currently it contains a null pointer.

4.2.21.2 The Agent Startup WQE Extension
On a call to ACME agent control callout routine ACME$CO_AGENT_
STARTUP, the function-dependent parameters field contains a pointer to the
ACMEWQEAEX data structure described in Section B.7.

ACMEWQEAEX$L_CONCURRENT_REQUESTS, the concurrent requests field of
that data structure, is of data type unsigned longword and contains the maximum
number of simultaneous requests that the ACME agent might have to handle.

4.2.21.3 The Authentication and Password Change WQE Extension
On a call to an ACME authentication and password callout routine, when field
ACMEFC$V_FUNCTION of cell ACMEWQE$L_FUNCTION contains ACME$_
FC_AUTHENTICATE_PRINCIPAL or ACME$_FC_CHANGE_PASSWORD, then
the function-dependent parameters field contains a pointer to the ACMEWQEAX
data structure described in Section B.10.

Each field is described in detail below.

Field Name Contains Data Type

ACMEWQEAX$L_NEW_PASSWORD_FLAGS New password flags ACMEPWDFLG

ACMEWQEAX$L_NEW_PASSWORD_FLAGS consists of the following flags to
indicate the passwords the caller of the SYS$ACM[W] system service wishes to
change on this Authenticate Principal or Change Ppassword request.

• ACMEPWDFLG$V_SYSTEM

• ACMEPWDFLG$V_PASSWORD_1

• ACMEPWDFLG$V_PASSWORD_2

• ACMEPWDFLG$V_SPECIFIED

The caller of the SYS$ACM[W] system service does not specify flag
ACMEPWDFLG$V_SPECIFIED. Instead, it is set by the ACME server
main image to indicate that the ACME$_NEW_PASSWORD_FLAGS item
was specified at all.

Aside from that last flag, the flags in this field are as supplied in the item
ACME$_NEW_PASSWORD_FLAGS of the SYS$ACM[W] system service call.

Field Name Contains Data Type

ACMEWQEAX$L_LOGON_FLAGS Log on flags ACMELGIFLG

ACMEWQEAX$L_LOGON_FLAGS is comprised of flags collected from ACME
agents by the ACME server main image for transmission back to the ACM client
process that specified item code ACME$_LOGON_FLAGS. The following are the
possible flags:

4–10 ACME Agent Data Structure

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

Symbol Meaning

ACMELGIFLG$V_NEW_MAIL_
AT_LOGIN

The user had one or more new mail messages.

ACMELGIFLG$V_PASSWORD_
CHANGED

The user changed the primary password.

ACMELGIFLG$V_PASSWORD_
EXPIRED

The primary password expired without the user
changing it.

ACMELGIFLG$V_PASSWORD_
WARNING

The primary password will expire shortly.

ACMELGIFLG$V_
PASSWORD2_CHANGED

The user changed the secondary password.

ACMELGIFLG$V_
PASSWORD2_EXPIRED

The secondary password expired without the user
changing it.

ACMELGIFLG$V_
PASSWORD2_WARNING

The secondary password will expire shortly.

ACME agents that handle primary (password_1) and secondary (password_2)
passwords, or a mail system, should set these flags when appropriate by calling
the ACME callback routine ACME$CB_SET_LOGON_FLAG with each code that
is appropriate from the following list:

• ACMELGIFLG$K_NEW_MAIL_AT_LOGIN

• ACMELGIFLG$K_PASSWORD_CHANGED

• ACMELGIFLG$K_PASSWORD_EXPIRED

• ACMELGIFLG$K_PASSWORD_WARNING

• ACMELGIFLG$K_PASSWORD2_CHANGED

• ACMELGIFLG$K_PASSWORD2_EXPIRED

• ACMELGIFLG$K_PASSWORD2_WARNING

The ACME server main image sends the resulting ACMELGIFLG flags mask
back to the ACM client process that specified the ACME$_LOGON_FLAGS
output item code. This provides an indication of the processing that went on
during authentication.

When LOGINOUT receives this flags mask, it makes it available to the created
process through the SYS$GETJPI system service item code JPI$_LOGIN_FLAGS.
Other callers of the SYS$ACM[W] system service make their own decision about
what to do with the mask of flags.

Field Name Contains Data Type

ACMEWQEAX$R_LOGON_STATS_VMS OpenVMS log on
statistics

ACMELIVMS1

1See Section A.6.

ACMEWQEAX$R_LOGON_STATS_VMS contains statistics regarding the
authentication from the VMS ACME. This information is part of the information
returned to an ACM client program that specifies the ACME$_LOGON_
INFORMATION output item code. The VMS ACME provides it by calling ACME
authentication and password callout routine ACME$CB_SET_LOGON_STATS_
VMS.

ACME Agent Data Structure 4–11

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

Field Name Contains Data Type

ACMEWQEAX$R_LOGON_STATS_DOI DOI log on statistics ACMELIDOI1

1See Section A.5.

ACMEWQEAX$R_LOGON_STATS_DOI contains statistics regarding the
authentication from the ACME agent that called the ACME callback routine
ACME$CB_SET_DESIGNATED_DOI. This information is part of the information
returned to an ACM client program that specifies output item code ACME$_
LOGON_INFORMATION. The ACME agent provides it by calling ACME
authentication and password callout routine ACME$CB_SET_LOGON_STATS_
VMS.

Field Name Contains Data Type

ACMEWQEAX$R_SYSTEM_PASSWORD System password ACMEWQEITM1

1See Section 4.1.4.

ACMEWQEAX$R_SYSTEM_PASSWORD describes a UCS encoding of the system
password value received from the ACM client process. Typically only the VMS
ACME handles the system password.

To set this field, the VMS ACME calls ACME callback routine ACME$CB_
SET_WQE_PARAMETER with an ID parameter of ACMEWQE$K_SYSTEM_
PASSWORD.

Field Name Contains Data Type

ACMEWQEAX$R_PRINCIPAL_NAME Principal name ACMEWQEITM

ACMEWQEAX$R_PRINCIPAL_NAME describes a UCS encoding of the principal
name initially received by an ACME agent. Although the item code ACME$_
PRINCIPAL_NAME_IN is generally considered to be the source of the principal
name, other sources are possible. For example, in the case of the VMS ACME,
the principal name might also come from the automatic login facility, or from a
DECnet proxy login.

For honoring such alternate sources, your ACME agent should not edit the data it
stores into field ACME$QEAX_PRINCIPAL_NAME. For settings made based on
the item code ACME$_PRINCIPAL_NAME_IN, the only edit your ACME agent
should make is to remove leading and trailing spaces.

To set this field, your ACME agent should call the ACME callback routine
ACME$CB_SET_WQE_PARAMETER with an ID parameter of ACMEWQE$K_
PRINCIPAL_NAME.

Field Name Contains Data Type

ACMEWQEAX$R_PRINCIPAL_NAME_OUT Principal name out ACMEWQEITM

ACMEWQEAX$R_PRINCIPAL_NAME_OUT describes a UCS encoding of
the result of the principal name mapping ultimately performed for the
authentication principal or change password operations.

4–12 ACME Agent Data Structure

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

This final selection is made during ACME authentication and password callout
routine ACME$CO_ACCEPT_PRINCIPAL. The ACME agent that calls ACME
callback routine ACME$CB_SET_DESIGNATED_DOI is the one to set this field.

In contrast to ACME$QEAX_PRINCIPAL_NAME, the ACME agent setting field
ACMEW$EAX_PRINCIPAL_NAME_OUT can freely manipulate the contents.

To set this field, your ACME agent should call the ACME callback routine
ACME$CB_SET_WQE_PARAMETER with an ID parameter of ACMEWQE$K_
PRINCIPAL_NAME_OUT.

Field Name Contains Data Type

ACMEWQEAX$R_VMS_USERNAME OpenVMS username ACMEWQEITM

ACMEWQEAX$R_VMS_USERNAME describes a UCS encoding of the OpenVMS
username to which the principal name out has been mapped. The ACME agent
that calls ACME$CB_SET_DESIGNATED_DOI should set the ACME$QEAX_
VMS_USERNAME field.

To set this field, your ACME agent should call the ACME callback routine
ACME$CB_SET_WQE_PARAMETER with an ID parameter of ACMEWQE$K_
VMS_USERNAME.

Field Name Contains Data Type

ACMEWQEAX$R_PASSWORD_1 Password 1 ACMEWQEITM

ACMEWQEAX$R_PASSWORD_1 describes a UCS encoding of a ACME$_
PASSWORD_1 value received from the ACM client process. To set this field,
your ACME agent should call the ACME callback routine ACME$CB_SET_WQE_
PARAMETER with an ID parameter of ACMEWQE$K_PASSWORD_1.

Field Name Contains Data Type

ACMEWQEAX$R_PASSWORD_2 Password 2 ACMEWQEITM

ACMEWQEAX$R_PASSWORD_2 describes a UCS encoding of a ACME$_
PASSWORD_2 value received from the ACM client process. To set this field,
your ACME agent should call the ACME callback routine ACME$CB_SET_WQE_
PARAMETER with an ID parameter of ACMEWQE$K_PASSWORD_2.

Field Name Contains Data Type

ACMEWQEAX$R_NEW_PASSWORD_1 New password 1 ACMEWQEITM

ACMEWQEAX$R_NEW_PASSWORD_1 describes a UCS encoding of the new
password 1 agreed upon by the various ACME agents. To set this field, your
ACME agent should call the ACME callback routine ACME$CB_SET_WQE_
PARAMETER with an ID parameter of ACMEWQE$K_NEW_PASSWORD_1.

Field Name Contains Data Type

ACMEWQEAX$R_NEW_PASSWORD_2 New password 2 ACMEWQEITM

ACMEWQEAX$R_NEW_PASSWORD_2 describes a UCS encoding of the new
password 2 agreed upon by the various ACME agents. To set this field, your

ACME Agent Data Structure 4–13

ACME Agent Data Structure
4.2 Work Queue Entry Data Fields

ACME agent should call the ACME callback routine ACME$CB_SET_WQE_
PARAMETER with an ID parameter of ACMEWQE$K_NEW_PASSWORD_2.

4.2.22 Revision Level Field
ACMEWQE$W_REVISION_LEVEL, the revision level field, is of type
ACMEREVLVL (see Section A.9) and contains the overall ACME revision level,
as defined by the ACME server main image.

4.2.23 Size Field
ACMEWQE$W_SIZE, the size field, is of data type unsigned word and contains
the size of the work queue entry data structure.

4.2.24 FLINK Field
ACMEWQE$PS_FLINK is reserved for the ACME server main image.

4.2.25 BLINK Field
ACMEWQE$PS_BLINK is reserved for the ACME server main image.

4–14 ACME Agent Data Structure

5
ACME Agent Control Callout Routines

This chapter describes the possible ACME agent control callout routines to
support coordinated configuration and startup of ACME agents. Different ACME
agents may each supply their own version of the same ACME agent control
callout routine and each will be called in order, as shown in Figure 5–1.

Figure 5–1 ACME Agent Control Callout Routine Control Flow

ACME Server�
Main Image

ACME Agent 1 ACME Agent 2

VM-0783A-AI

ACME$CO_AGENT_SHUTDOWN

ACME$CO_AGENT_SHUTDOWN

ACME$CO_AGENT_STANDBY

ACME$CO_AGENT_STARTUP

ACME$CO_AGENT_INITIALIZE

ACME$CO_AGENT_INITIALIZE

ACME$CO_AGENT_STARTUP

In any ACME callout routine, an ACME agent may perform processing for its
own purposes, so long as it does not violate any of the programming rules in
Chapter 2. An ACME agent, however, must also perform certain mandatory

ACME Agent Control Callout Routines 5–1

ACME Agent Control Callout Routines

processing specific to the ACME callout routine it provides (see individual routine
descriptions for more information).

No request context or item list arguments are provided for agent control callout
routines since these are not request processing callouts (no call to the SYS$ACM
[W] system service was made to trigger the invocation).

All ACME agents must support ACME callout routine ACME$CO_AGENT_
INITIALIZE. The other routines are optional.

The following section presents the ACME agent control callout routines in
alphabetical order. The following table lists them in their normal processing
order.

Table 5–1 Processing Order for Agent Control Callout Routines

1 ACME$CO_AGENT_INITIALIZE

2 ACME$CO_AGENT_STARTUP

3 ACME$CO_AGENT_SHUTDOWN

4 ACME$CO_AGENT_STANDBY

5.1 Arguments
The arguments are the same for each callout routine, with one exception. ACME$CO_AGENT_
STARTUP takes an additional argument: factor. All arguments for this set of callout routines
are described in Table 5–2.

Table 5–2 Arguments for Agent Control Callout Routines

Argument Description

kcb_vector Address of an array called the KCB (Kernel Callback) vector. To interact with the
ACME server main image and other ACME agents, your ACME agent must invoke
various ACME callback routines. The procedure values of those callback routines are
stored in the KCB vector.

acme_context Address of a common quadword provided on all invocations of your ACME agent, for
whatever purpose you deem fit.

wqe Address of the work queue entry for this request. Has the structure described in
Section B.16. Your ACME agent can read information directly out of the work queue
entry, but should only change the contents of the work queue entry through the
designated ACME callback routines. See Section 4.2.

factor ACME$CO_AGENT_STARTUP only. Address of a quadword containing a 32-bit
value representing the number of concurrent threads in this process.

5.2 Return Values for Agent Control Callout Routines
The return values are the same for each callout routine and are described in
Table 5–3.

5–2 ACME Agent Control Callout Routines

ACME Agent Control Callout Routines
5.2 Return Values for Agent Control Callout Routines

Table 5–3 Return Values for Agent Control Callout Routines

Value Description

ACME$_CONTINUE Call next ACME agent

Other Complete with success or failure

ACME Agent Control Callout Routines 5–3

ACME Agent Control Callout Routines
ACME$CO_AGENT_INITIALIZE

ACME$CO_AGENT_INITIALIZE

This routine must make exactly one call to the ACME callback routine
ACME$CB_REPORT_ATTRIBUTES to indicate the required resources for the
operation of this ACME agent, both on a static level and on a per-request level.

Format

ACME$CO_AGENT_INITIALIZE kcb_vector, acme_context, wqe

Description

This routine is the preferred place to check data structure versions, as described
in Section 4.1.1.

5–4 ACME Agent Control Callout Routines

ACME Agent Control Callout Routines
ACME$CO_AGENT_SHUTDOWN

ACME$CO_AGENT_SHUTDOWN

This routine is called in response to the SET SERVER ACME/DISABLE
command. Your ACME agent should use this opportunity to clean up any loose
ends such as open channels, allocated memory, and others.

Format

ACME$CO_AGENT_SHUTDOWN kcb_vector, acme_context, wqe

ACME Agent Control Callout Routines 5–5

ACME Agent Control Callout Routines
ACME$CO_AGENT_STANDBY

ACME$CO_AGENT_STANDBY

The ACME server main image may call this routine when there has been
no recent SYS$ACM[W] system service activity. Your ACME agent can take
advantage of this hint to flush caches, close files and otherwise clean things up.

Format

ACME$CO_AGENT_STANDBY kcb_vector, acme_context, wqe

Description

No time-consuming activities should be undertaken, as this processing blocks the
handling of new requests that ACM client processes may present.

5–6 ACME Agent Control Callout Routines

ACME Agent Control Callout Routines
ACME$CO_AGENT_STARTUP

ACME$CO_AGENT_STARTUP

This routine is called in response to the SET SERVER ACME/ENABLE command.
Your ACME agent can do the preparatory work you want, such as opening
network connections.

Format

ACME$CO_AGENT_STARTUP kcb_vector, acme_context, wqe, factor

Description

Your ACME agent can also check ACMEWQE$L_FACTOR and use it to initialize
or allocate data structures.

The acme_context argument can be used to store the address of memory allocated
with ACME callback routine ACME$CB_ALLOCATE_ACME_VM.

ACME Agent Control Callout Routines 5–7

6
ACME Authentication and Password Callout

Routines

This chapter describes the possible ACME request processing callout routines to
support processing Authenticate Principal or Change Password requests.

Different ACME agents may each supply their own version of the same ACME
agent control callout routine and each will be called in order, as shown in
Figure 6–1.

Figure 6–1 ACME Authentication and Password Callout Routine Control Flow

ACME Server�
Main Image

ACME Agent 1 ACME Agent 2

VM-0785A-AI

ACME$CO_AUTHENTICATE

ACME$CO_FINISH

ACME$CO_PASSWORD_2

ACME$CO_PASSWORD_1

ACME$CO_INITIALIZE

ACME$CO_AGENT_INITIALIZE

ACME$CO_PASSWORD_1

ACME$CO_AUTHENTICATE

ACME$CO_FINISH

ACME Authentication and Password Callout Routines 6–1

ACME Authentication and Password Callout Routines

ACME authentication and password callout routines differ from the ACME
callout routines described in Chapter 5 and Chapter 7 in the following ways:

• A series of different ACME callout routines are called in succession to process
each SYS$ACM[W] system service request.

• For each ACME callout routine, each ACME agent that provides such an
entry point will be called in turn, rather than relying on a single ACME
agent.

• For dialog mode requests, any ACME agent may send output text or inquiries
back to the client program.

Rather than acting alone, as they do for ACME agent control callout routines and
ACME event and query callout routines, the ACME authentication and password
callout routines act in concert to provide a unified authentication service.

In any ACME callout routine, an ACME agent may perform processing for its
own purposes, as long as it does not violate any of the programming rules in
Chapter 2. An ACME agent, however, must also perform certain mandatory
processing specific to the ACME callout routine it provides, as outlined
throughout the remainder of this chapter.

All ACME agents that support any ACME authentication and password callout
routine must support ACME callout routine ACME$CO_FINISH. The other
routines are optional.

The following sections present the ACME authentication and password callout
routines in alphabetical order. The following table lists them in their normal
processing order.

Table 6–1 Processing Order for Authentication and Password Callout Routines

1 ACME$CO_INITIALIZE

2 ACME$CO_SYSTEM_PASSWORD

3 ACME$CO_ANNOUNCE

4 ACME$CO_AUTOLOGON

5 ACME$CO_PRINCIPAL_NAME

6 ACME$CO_ACCEPT_PRINCIPAL

7 ACME$CO_MAP_PRINCIPAL

8 ACME$CO_VALIDATE_MAPPING

9 ACME$CO_ANCILLARY_MECH_1

10 ACME$CO_PASSWORD_1

11 ACME$CO_ANCILLARY_MECH_2

12 ACME$CO_PASSWORD_2

13 ACME$CO_ANCILLARY_MECH_3

14 ACME$CO_AUTHENTICATE

15 ACME$CO_MESSAGES

16 ACME$CO_AUTHORIZE

17 ACME$CO_NOTICES

(continued on next page)

6–2 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines

Table 6–1 (Cont.) Processing Order for Authentication and Password Callout
Routines

18 ACME$CO_LOGON_INFORMATION

19 ACME$CO_NEW_PASSWORD_1

20 ACME$CO_QUALIFY_PASSWORD_1

21 ACME$CO_NEW_PASSWORD_2

22 ACME$CO_QUALIFY_PASSWORD_2

23 ACME$CO_ACCEPT_PASSWORDS

24 ACME$CO_SET_PASSWORDS

25 ACME$CO_CREDENTIALS

26 ACME$CO_FINISH

6.1 Arguments
The arguments are the same for each callout routine and are described in
Table 6–2.

Table 6–2 Arguments for ACME Authentication and Password Callout Routines

Argument Description

kcb_vector Address of an array called the KCB (Kernel Callback) vector. To interact with the
ACME server main image and other ACME agents, your ACME agent must invoke
various ACME callback routines. The procedure values of those callback routines are
stored in the KCB vector.

acme_context Address of a common quadword provided on all invocations of your ACME agent, for
whatever purpose you deem fit.

wqe Address of the work queue entry for this request. Has the structure described in
Section B.16. Your ACME agent can read information directly out of the work queue
entry, but should only change the contents of the work queue entry through the
designated ACME callback routines. See Section 4.2.

request_context Address of a single quadword provided on invocatins of your ACME agent in support
of a particular request for whatever purpose you deem fit.

(continued on next page)

ACME Authentication and Password Callout Routines 6–3

ACME Authentication and Password Callout Routines
6.1 Arguments

Table 6–2 (Cont.) Arguments for ACME Authentication and Password Callout Routines

Argument Description

common_item_list Consists of one or more item list segments chained together. All item list segments
follow the 32-bit addressing item list format, to facilitate operation between ACME
agents written in various programming languages (some of which might not support
64-bit addressing).

The chaining between item list segments does not reflect any initial chaining
provided by the caller of the SYS$ACM[W] system service, but instead is the result
of segmentation in the transfer of the item list data from the ACM client process
context to the ACME server process context.

In the case of the ACME callout routiens ACME$CO_INITIALIZE, ACME$CO_
EVENT, and ACME$CO_QUERY the items provided include those from the initial
call to the SYS$ACM[W] system service. For subsequent ACME authentication and
password callout routines other than ACME$CO_INITIALIZE, the items include only
those specifically requested in dialogue interaction from that ACME callout routine.

Common item list items are those provided during this ACME callout routine
with common item codes (ACME$_codename). To inspect items provided to previous
ACME authentication and password callout routines for this request, use the chain
of item list segments pointed to by the work queue entry cell ACMEWQE$PS_
ITEMLIST.

acme_item_list Consists of one or more item list segments chained together. All item list segments
follow the 32-bit addressing item list format, to facilitate operation between ACME
agents written in various programming languages (some of which might not support
64-bit addressing).

The chaining between item list segments does not reflect any initial chaining
provided by the caller of the SYS$ACM[W] system service, but instead is the result
of segmentation in the transfer of the item list data from the ACM client process
context to the ACME server process context.

In the case of the ACME callout routiens ACME$CO_INITIALIZE, ACME$CO_
EVENT, and ACME$CO_QUERY the items provided include those from the initial
call to the SYS$ACM[W] system service. For subsequent ACME authentication and
password callout routines other than ACME$CO_INITIALIZE, the items include only
those specifically requested in dialogue interaction from that ACME callout routine.

ACME-specific item list items are those provided during this ACME callout routine
with ACME-specific item codes (not ACME$_codename) targeted at this ACME
agent. Your ACME agent will not see any ACME-specific item codes targeted at
other ACME agents. To inspect items provided to previous ACME authentication
and password callout routines for this request, use the chain of item list segments
pointed to by work queue entry cell ACMEWQE$PS_ACME_ITEMLIST.

6.2 Return Values
The return values are the same for each callout routine and are described in
Table 6–3. For information on dispatching, see Section 2.3.

Table 6–3 Return Values for Authentication and Password Callout Routines

Value Description

ACME$_CONTINUE Call next ACME agent

ACME$_WAITAST Return to this routine after completing the next AST for
this agent

(continued on next page)

6–4 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
6.2 Return Values

Table 6–3 (Cont.) Return Values for Authentication and Password Callout
Routines

Value Description

ACME$_WAITRESOURCE Return to this routine when the next ACME-
specific resource (for this ACME agent) becomes
available of the type code for which the most recent
ACME$RESOURCENOTAVAIL was returned

ACME$_
PERFORMDIALOGUE

Send all dialogue data that has been queued by a call to
ACME callback routine ACME$CB_QUEUE_DIALOGUE
back to the ACM client process and call this ACME callout
routine back when there is either a response (for input) or
an acknowledgement (for output) available from the client

Other Complete with success or failure

ACME Authentication and Password Callout Routines 6–5

ACME Authentication and Password Callout Routines
ACME$CO_ACCEPT_PASSWORDS

ACME$CO_ACCEPT_PASSWORDS

In this routine your ACME agent should prepare to commit any agreed-upon new
passwords.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_ACCEPT_PASSWORDS kcb_vector, acme_context, wqe,
request_context, common_item_list,
acme_item_list

Description

Processing steps:

1. If the ACMEWQEFLG$V_SKIP_NEW_PASSWORD flag is set, return
ACME$_CONTINUE.

2. If operating under model 2, secondary DOI agents may prompt for new
agent-specific passwords.

3. If operating under model 1 or 2, all DOI agents prepare to commit password
changes. If unable to do so, return a failure status describing the nature of
the failure.

6–6 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_ACCEPT_PRINCIPAL

ACME$CO_ACCEPT_PRINCIPAL

In this routine the first ACME agent to find that the ACMEWQEAX$R_
PRINCIPAL_NAME field of the WQE extension for authentication contains a
principal name it can support must rewrite the ACMEWQEAX$R_PRINCIPAL_
NAME_OUT field of the WQE extension for authentication with a canonical
representation of the principal name. It must declare itself the designated DOI
by calling ACME$CB_SET_DESIGNATED_DOI.

Format

ACME$CO_ACCEPT_PRINCIPAL kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Various ACME agents have differing methods for initially considering whether
they might recognize some particular principal-name In, such as particular
characters being included or excluded from the name. For example, the NT
ACME will try to recognize a principal-name In that contains a slash (/) or
a commercial at sign (@), whereas the VMS ACME will not try to recognize
a principal-name In that contains anything other than alphanumerics, the
underscore and the dollar sign. After such an initial test, however, any ACME
agent that has determined the principal-name In might be one that they recognize
must make a thorough test to determine whether it in fact does recognize it,
typically by consulting an ACME-specific table or a networked system that
contains such a table.

If an ACME agent does not recognize a particular Principal Name In, it should
return ACME$_CONTINUE from its ACME$CO_ACCEPT_PRINCIPAL ACME
authentication and password callout routine to let other ACME agents have
a chance to handle that principal name. If an ACME agent does recognize
the Principal Name In stored in the PRINCIPAL_NAME field of the WQE
authentication extension, it must call ACME$CB_SET_WQE_PARAMETER to
specify the edited Principal Name Out that should be stored in the PRINCIPAL_
NAME_OUT field of the WQE authentication extension. The editing to create the
Principal Name Out could do some of the following:

• Remove leading or trailing spaces.

• Adjust cases of alphabetic characters.

• Make any other transformation deemed suitable.

• Make no changes at all.

Processing Steps:

The recognizing ACME agent declares itself the designated DOI by calling
ACME$CB_SET_DESIGNATED_DOI.

1. Test flag ACMEWQEFLG$V_PHASE_DONE. If it has been set (presumably
by the corresponding ACME authentication and password callout routine for
some prior ACME agent) skip the following steps.

ACME Authentication and Password Callout Routines 6–7

ACME Authentication and Password Callout Routines
ACME$CO_ACCEPT_PRINCIPAL

2. Using methods private to the ACME agent, test the string in
ACMEWQEAX$R_PRINCIPAL_NAME to see if the syntax can be handled by
this ACME agent, and if not, skip the following steps since this ACME agent
cannot handle this principal name.

3. Using methods private to the ACME agent, look up the string in
ACMEWQEAX$R_PRINCIPAL_NAME to see if it matches a username
for the DOI supported by this ACME agent. If not, skip the following steps
since this ACME agent cannot handle this principal name.

4. Call the ACME callback routine ACME$CB_SET_WQE_PARAMETER with
an ID parameter of ACMEWQE$K_PRINCIPAL_NAME_OUT and a DATA
parameter describing the edited principal name.

5. Call the ACME callback routine ACME$CB_SET_DESIGNATED_DOI to
indicate for future name authentication and password callout routines that
this ACME agent implemented the designated DOI.

6. Call the ACME callback routine ACME$CB_SET_WQE_FLAG with FLAG
argument ACMEWQEFLG$K_PHASE_DONE to prevent other ACME agents
from engaging in the purpose-based actions of this routine.

6–8 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_ANCILLARY_MECH_1

ACME$CO_ANCILLARY_MECH_1

In this routine your ACME agent can gather client input (prompting if necessary
and possible) for any ACME-specific authentication information to be gathered
before PASSWORD_1.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_ANCILLARY_MECH_1 kcb_vector, acme_context, wqe,
request_context, common_item_list,
acme_item_list

Description

Processing Steps:

1. Test flag ACMEWQEFLG$V_PREAUTHENTICATED and if it has been set
during some prior ACME authentication and password callout routine, skip
the following steps.

2. Perform the authentication processing specific to this ACME agent, skipping
the following steps if successful.

3. Indicate the real cause of failure for return to the caller ACMSB field
ACMESB$L_SECONDARY_STATUS by a call to ACME callback routine
ACME$CB_SET_2ND_STATUS providing one of the following:

A failure code from Section 8.4

A failure code specific to your ACME agent

4. Return the sanitized error code ACME$_AUTHFAILURE to the ACME server
process so it can return it to the caller ACMSB field ACMESB$L_STATUS.

ACME Authentication and Password Callout Routines 6–9

ACME Authentication and Password Callout Routines
ACME$CO_ANCILLARY_MECH_2

ACME$CO_ANCILLARY_MECH_2

In this routine your ACME agent can gather client input (prompting if necessary
and possible) for any ACME-specific authentication information to be gathered
after PASSWORD_1 and before PASSWORD_2.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_ANCILLARY_MECH_2 kcb_vector, acme_context, wqe,
request_context, common_item_list,
acme_item_list

Description

Processing Steps:

1. Test flag ACMEWQEFLG$V_PREAUTHENTICATED and if it has been set
during some prior ACME authentication and password callout routine, skip
the following steps.

2. Perform the authentication processing specific to this ACME agent, skipping
the following steps if successful.

3. Indicate the real cause of failure for return to the caller ACMSB field
ACMESB$L_SECONDARY_STATUS by a call to ACME callback routine
ACME$CB_SET_2ND_STATUS providing one of the following:

A failure code from Section 8.4

A failure code specific to your ACME agent

4. Return the sanitized error code ACME$_AUTHFAILURE to the ACME server
process so it can return it to the caller ACMSB field ACMESB$L_STATUS.

6–10 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_ANCILLARY_MECH_3

ACME$CO_ANCILLARY_MECH_3

In this routine your ACME agent can gather client input (prompting if necessary
and possible) for any ACME-specific authentication information to be gathered
after PASSWORD_2.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_ANCILLARY_MECH_3 kcb_vector, acme_context, wqe,
request_context, common_item_list,
acme_item_list

Description

Processing Steps:

1. Test flag ACMEWQEFLG$V_PREAUTHENTICATED and if it has been set
during some prior ACME authentication and password callout routine, skip
the following steps.

2. Perform the authentication processing specific to this ACME agent, skipping
the following steps, if successful.

3. Indicate the real cause of failure for return to the caller ACMSB field
ACMESB$L_SECONDARY_STATUS by a call to ACME callback routine
ACME$CB_SET_2ND_STATUS providing one of the following:

A failure code from Section 8.4

A failure code specific to your ACME agent

4. Return the sanitized error code ACME$_AUTHFAILURE to the ACME server
process so it can return it to the caller ACMSB field ACMESB$L_STATUS.

ACME Authentication and Password Callout Routines 6–11

ACME Authentication and Password Callout Routines
ACME$CO_ANNOUNCE

ACME$CO_ANNOUNCE

In this routine each ACME agent has an opportunity to provide text to the
ACM client process that might be shown to a user before authentication. The
ACM dispatcher will not invoke this ACME callout routine for the ACME$_FC_
CHANGE_PASSWORD function code.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_ANNOUNCE kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

If you decide to provide such text, your ACME agent should call the ACME
callback routine ACME$CB_QUEUE_DIALOGUE successively to provide
the output and then return code ACME$_PERFORMDIALOGUE to have it
transmitted.

Since the local system manager controls the order in which ACME agents are
configured, your ACME agent should make no assumption that the text it
provides will be displayed in any particular order with respect to that provided by
other ACME agents, such as the traditional SYS$ANNOUNCE display from the
VMS ACME.

In many environments, system managers are sensitive regarding the volume
of information presented to users logging in, so it is best if your ACME agent
supports a mechanism for the system manager to control the amount of, or
entirely disable, information that your ACME agent provides.

The ACM client process is not required to display the information you provide at
all, much less with any particular prominence on its screen, printer, or tickertape.

6–12 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_AUTHENTICATE

ACME$CO_AUTHENTICATE

In this routine, DOI agents evaluate the correctness of the saved authentication
inputs in Password 1 and Password 2. Any other ACME agents evaluate the
correctness of authentication inputs they collected.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_AUTHENTICATE kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

1. Test flag ACMEWQEFLG$V_PREAUTHENTICATED and if it has been set
during some prior ACME authentication and password callout routine, skip
the following steps.

2. Perform the authentication processing specific to this ACME agent. This
can include evaluating unprocessed information specific to your ACME agent
gathered during the following ACME authentication and password callout
routines:

• ACME$CO_ANCILLARY_MECH_1

• ACME$CO_ANCILLARY_MECH_2

• ACME$CO_ANCILLARY_MECH_3

3. Test any value supplied for item ACME$_AUTH_MECHANISM. If it is some
non-zero value other than ACMEMECH$K_PASSWORD, skip the following
steps since this authentication is not password based, so the actions of this
ACME authentication and password callout routine are irrelevant.

4. Perform the authentication processing of primary and secondary passwords,
skipping the following steps, if successful.

5. Indicate the real cause of failure for return to the caller ACMSB field
ACMESB$L_SECONDARY_STATUS by a call to ACME callback routine
ACME$CB_SET_2ND_STATUS providing one of the following:

A failure code from Section 8.4

A failure code specific to your ACME agent

6. Return the sanitized error code ACME$_AUTHFAILURE to the ACME server
process so it can return it to the caller ACMSB field ACMESB$L_STATUS.

ACME Authentication and Password Callout Routines 6–13

ACME Authentication and Password Callout Routines
ACME$CO_AUTHORIZE

ACME$CO_AUTHORIZE

In this routine each ACME agent evaluates the suitability of the authenticated
client for access, such as time-of-day restrictions or break-in evasion. The
ACM dispatcher will not invoke this ACME callout routine for the ACME$_
FC_CHANGE_PASSWORD function code.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_AUTHORIZE kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

None.

6–14 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_AUTOLOGON

ACME$CO_AUTOLOGON

In this routine ACME agents perform any steps to specify the principal name
other than through explicit client input. The VMS ACME, for example, uses this
routine to check for automatic login facility (ALF) entries and to handle DECnet
proxy login processing.

Format

ACME$CO_AUTOLOGON kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

1. Test flag ACMEWQEFLG$V_PHASE_DONE. If it has been set (presumably
by the corresponding ACME authentication and password callout routine for
some prior ACME agent) skip the following steps.

2. Using mechanisms specific to your ACME agent test to see whether you
have a principal name to provide for this request. If not, return ACME$_
CONTINUE.

3. Call the ACME callback routine ACME$CB_SET_WQE_PARAMETER
with an ID parameter of ACMEWQE$K_PRINCIPAL_NAME and a DATA
parameter describing the desired principal name.

4. Call the ACME callback routine ACME$CB_SET_WQE_FLAG with FLAG
argument ACMEWQEFLG$K_PHASE_DONE to prevent other ACME agents
from engaging in the purpose-based actions of this ACME authentication and
password callout routine.

ACME Authentication and Password Callout Routines 6–15

ACME Authentication and Password Callout Routines
ACME$CO_CREDENTIALS

ACME$CO_CREDENTIALS

In this routine your ACME agent should provide any DOI-specific credentials for
the caller of SYS$ACM. The ACM dispatcher will not invoke this ACME callout
routine for the ACME$_CHANGE_PASSWORD function code.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_CREDENTIALS kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

If the ACME$M_ACQUIRE_CREDENTIALS flag of the work queue entry is
not set, the client has not requested credentials. This flag provides a hint to
your ACME agent possibly avoiding delays due to lengthy procedures to create
unneeded credentials.

6–16 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_FINISH

ACME$CO_FINISH

In this routine your ACME agent should clean up after successful or unsuccessful
processing, including return of item codes and any ACME-specific logging.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAGE with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_FINISH kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Your ACME agent should not perform any final recording of results until this
ACME authentication and password callout routine since before now any ACME
agent has the opportunity to fail a hitherto successful request, changing the
results.

Since other ACME agents may have concluded their ACME$CO_FINISH
processing before your ACME agent is called for ACME$CO_FINISH, it is
undesirable to return a failure code from ACME$CO_FINISH for a request that
has previously been successful. In particular, the VMS ACME will write an audit
record to indicate the success or failure of a request, and that would be wrong if
your ACME agent failed the request in the ACME$CO_FINISH authentication
and password callout routine. There may be extraordinary cases where such a
last minute failure might be required, but it should be avoided if possible.

Processing Steps:
ACMEWQEFLG$V_ABORT_REQUEST is set only when control has been
transferred to ACME$CO_FINISH during a wait for client dialogue response
(some ACME agent returned ACME$_PERFORMDIALOGUE).

Deallocation of memory that was in use and waiting for any outstanding ASTs
that were queued for that request is the responsibility of the ACME$CO_FINISH
ACME authentication and password callout routine for each ACME.

The following is a simple but correct method of handling this with minimal
bookkeeping:

1. Never have I/O outstanding while waiting for dialogue response.

2. Never have I/O outstanding between ACME authentication and password
callout routines (since other ACME agents running then might be waiting for
the dialogue response that never comes, and instead sets ACMEWQEFLG$V_
ABORT_REQUEST with a control transfer to ACME$CO_FINISH).

3. Never have other ASTs pending in those situations either.

4. Ensure that memory bookkeeping persists for all allocations that span
dialogue responses or ACME authentication and password callout routines.

ACME Authentication and Password Callout Routines 6–17

ACME Authentication and Password Callout Routines
ACME$CO_FINISH

Not all ACME agents are able to handle things in such a dogmatic fashion. In
those cases precise state information regarding I/Os, other ASTs and all memory
allocations will be required.

6–18 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_INITIALIZE

ACME$CO_INITIALIZE

In this routine all but the simplest ACME agents should allocate a request
context data structure of their own design and store its address at the location
pointed to by the request context parameter.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_INITIALIZE kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Your ACME agent can also take this opportunity to read the initial item list
data provided by the caller of the SYS$ACM[W] system service during this
routine, while it is still provided in the item list argument. If your ACME agent
waits until later ACME authentication and password callout routines, it would
have to process the longer chains pointed to by the work queue entry fields
ACMEWQE$PS_WQE_ITEMLIST and ACMEWQE$PS_WQE_ACME_ITEMLIST.

ACME Authentication and Password Callout Routines 6–19

ACME Authentication and Password Callout Routines
ACME$CO_LOGON_INFORMATION

ACME$CO_LOGON_INFORMATION

In this routine each ACME agent has an opportunity to provide short text to the
ACM client process that might be shown to a user as part of the final output after
a simple authentication. The intention is that this information be brief, so that it
will certainly fit on the last screen of any video device being used, from a 24-inch
graphics display to the smallest Personal Digital Assistant (PDA). Only crucial
information, such as that included in data type ACMELIDOI, should be included.

The ACM dispatcher will not invoke this ACME callout routine for the ACME$_
FC_CHANGE_PASSWORD function code.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_LOGON_INFORMATION kcb_vector, acme_context, wqe,
request_context, common_item_list,
acme_item_list

Description

If the status subfield of the ACMEWQE$R_STATUS field indicates a failure
status, return ACME$_CONTINUE without sending any messages to the client
process.

If you decide to provide such information, your ACME agent should call the
ACME callback routine ACME$CB_QUEUE_DIALOGUE successively to provide
the output and then return code ACME$_PERFORMDIALOGUE to have it
transmitted.

Since the order in which ACME agents are configured is under the control of the
local system manager, your ACME agent should make no assumption that the
text it provides will be displayed in any particular order with respect to other
ACME agents, such as the traditional security report information from the VMS
ACME.

In many environments, system managers are sensitive regarding the volume
of information presented to users logging in, so it is best if your ACME agent
supports a mechanism for the system manager to control the amount of, or
entirely disable, information that your ACME agent provides.

The ACM client process is not required to display the information you provide at
all, much less with any particular prominence on its screen, printer, or tickertape.

6–20 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_MAP_PRINCIPAL

ACME$CO_MAP_PRINCIPAL

In this routine the designated DOI agent specifies the VMS username to use, if
this authentication succeeds.

Format

ACME$CO_MAP_PRINCIPAL kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Call the ACME callback routine ACME$CB_SET_WQE_PARAMETER with an
ID parameter of ACMEWQE$K_VMS_USERNAME and a DATA parameter
describing the VMS username.

ACME Authentication and Password Callout Routines 6–21

ACME Authentication and Password Callout Routines
ACME$CO_MESSAGES

ACME$CO_MESSAGES

In this routine each ACME agent can provide text to the ACM client process that
might be shown to a user after authentication but before authorization tests. The
ACM dispatcher will not invoke this ACME callout routine for the ACME$_FC_
CHANGE_PASSWORD function code.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_MESSAGES kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

If you decide to provide such information, your ACME agent should call the
ACME callback routine ACME$CB_QUEUE_DIALOGUE successively to provide
the output and then return code ACME$_PERFORMDIALOGUE to have it
transmitted.

Since the order in which ACME agents are configured is under the control of the
local system manager, your ACME agent should make no assumption that the
text it provides will be displayed in any particular order with respect to other
ACME agents.

This output opportunity does not correspond to any traditional display from the
VMS ACME.

In many environments, system managers are sensitive regarding the volume
of information presented to users logging in, so it is best if your ACME agent
supports a mechanism for the system manager to control the amount of, or
entirely disable, information that your ACME agent provides.

The ACM client process is not required to display the information you provide at
all, much less with any particular prominence on its screen, printer, or tickertape.

6–22 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_NEW_PASSWORD_1

ACME$CO_NEW_PASSWORD_1

In this routine the designated DOI agent can solicit and evaluate a new primary
password from the client if explicitly requested (or in the case of authentication,
if the previous password has expired).

Format

ACME$CO_NEW_PASSWORD_1 kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

1. If the ACMEWQEFLG$V_SKIP_NEW_PASSWORD flag is set, return
ACME$_CONTINUE.

2. If this is not the designated DOI agent for this request, skip the following
steps.

3. If item code ACME$_NEW_PASSWORD_1 was included in the Common
item list that the ACM client program supplied on the initial call to the
SYS$ACM[W] system service, use that value (with leading and trailing spaces
and tabs removed) for the desired new primary password.

4. Otherwise ask the ACM client process for the new primary password, as
follows. Since security needs require that the password be typed without
echoing the characters, the user cannot see the results of the typing, so your
ACME agent must engage in either deferred confirmation or immediate
confirmation. To ask the ACM client process for the new primary password,
use the following steps:

a. Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE
specifying the following:

• An ITEM_CODE parameter of ACME$_NEW_PASSWORD_1

• A DATA_1 parameter prompt string

• A DATA_2 parameter confirmation string (if using immediate
confirmation)

• A FLAGS parameter with ACMEDLOGFLG$V_INPUT and
ACMEDLOGFLG$V_NOECHO set

b. Return code ACME$_PERFORMDIALOGUE.

c. When called back, retrieve the new primary password from parameter
ITEM_LIST, using the last item on the chain of item list segments that
has the item code ACME$_NEW_PASSWORD_1.

d. To support deferred confirmation:

• Compare the proposed password against password quality rules
specific to your ACME agent. If it fails, do the following:

Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE
to provide a one-line error message describing the password
quality problem.

ACME Authentication and Password Callout Routines 6–23

ACME Authentication and Password Callout Routines
ACME$CO_NEW_PASSWORD_1

Return code ACME$_PERFORMDIALOGUE to have your error
message transmitted to the ACM client process.

When your ACME authentication and password callout routine
is called again (indicating your error message was transmitted
to the ACM client process), return code ACME$_RETRYPWD to
cause the ACM dispatcher to return control to ACME$CO_NEW_
PASSWORD_1.

• Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE and
specify the following:

An ITEM_CODE parameter of ACME$_NEW_PASSWORD_1

A DATA_1 argument confirmation string

A FLAGS argument with ACMEDLOGFLG$V_INPUT and
ACMEDLOGFLG$V_NOECHO set

• Return code ACME$_PERFORMDIALOGUE.

• When called back, retrieve the confirmation primary password from
parameter ITEM_LIST, using the last item on the chain of item list
segments that has the item code ACME$_NEW_PASSWORD_1.

• Compare the original proposed password to the confirmation proposed
password and if they do not match, issue an error message and restart
step 4 to ask for the proposed new password.

When your ACME agent has received a confirmed string from the ACM client
program, use that value (with leading and trailing spaces and tabs removed)
for the desired new primary password.

5. Call the ACME callback routine ACME$CB_SET_WQE_PARAMETER
with an ID parameter of ACMEWQE$K_NEW_PASSWORD_1 and a DATA
parameter describing the new primary password.

6–24 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_NEW_PASSWORD_2

ACME$CO_NEW_PASSWORD_2

In this routine the designated DOI agent can solicit and evaluate a new secondary
password from the client if explicitly requested (or in the case of authentication,
if the previous password has expired).

Format

ACME$CO_NEW_PASSWORD_2 kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

1. If the ACMEWQEFLG$V_SKIP_NEW_PASSWORD flag is set, return
ACME$_CONTINUE.

2. If this is not the designated DOI agent for this request, skip the following
steps.

3. If item code ACME$_NEW_PASSWORD_2 was included in the Common
item list that the ACM client program supplied on the initial call to the
SYS$ACM[W] system service, use that value (with leading and trailing spaces
and tabs removed) for the desired new secondary password.

4. Otherwise ask the ACM client process for the new secondary password, as
follows. Since security needs require that the password be typed without
echoing the characters, the user cannot see the results of the typing, so
your ACME agent must engage in either deferred confirmation or immediate
confirmation.

a. Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE and
specify the following:

• An ITEM_CODE argument of ACME$_NEW_PASSWORD_2

• A DATA_1 argument prompt string

• A DATA_2 argument confirmation string (if using immediate
confirmation)

• A FLAGS argument with ACMEDLOGFLG$V_INPUT and
ACMEDLOGFLG$V_NOECHO set

b. Return code ACME$_PERFORMDIALOGUE.

c. When called back, retrieve the new secondary password from parameter
ITEM_LIST, using the last item on the chain of item list segments that
has the item code ACME$_NEW_PASSWORD_2.

d. To support deferred confirmation:

• Compare the proposed password against password quality rules
specific to your ACME agent. If it fails, do the following:

Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE
to provide a one-line error message describing the password
quality problem.

ACME Authentication and Password Callout Routines 6–25

ACME Authentication and Password Callout Routines
ACME$CO_NEW_PASSWORD_2

Return code ACME$_PERFORMDIALOGUE to have your error
message transmitted to the ACM client process.

When your ACME authentication and password callout routine
is called again (indicating your error message was transmitted
to the ACM client process), return code ACME$_RETRYPWD to
cause the ACM dispatcher to return control to ACME$CO_NEW_
PASSWORD_2.

• Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE and
specify the following:

An ITEM_CODE argument of ACME$_NEW_PASSWORD_2

A DATA_1 argument of that confirmation string

A FLAGS argument with ACMEDLOGFLG$V_INPUT and
ACMEDLOGFLG$V_NOECHO set

• Return code ACME$_PERFORMDIALOGUE.

• When called back, retrieve the confirmation secondary password from
parameter ITEM_LIST, using the last item on the chain of item list
segments that has the item code ACME$_NEW_PASSWORD_2.

• Compare the original proposed password to the confirmation proposed
password and if they do not match, issue an error message and restart
step 4 to ask for the proposed new password.

When your ACME agent has received a confirmed string from the ACM client
program, use that value (with leading and trailing spaces and tabs removed)
for the desired new secondary password.

5. Call the ACME callback routine ACME$CB_SET_WQE_PARAMETER
with an ID parameter of ACMEWQE$K_NEW_PASSWORD_2 and a DATA
parameter describing the new secondary password.

6–26 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_NOTICES

ACME$CO_NOTICES

In this routine each ACME agent has an opportunity to provide long text to
the ACM client process that might be shown to a user after authorization. The
ACM dispatcher will not invoke this ACME callout routine for the ACME$_FC_
CHANGE_PASSWORD function code.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_NOTICES kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

If the status subfield of the ACMEWQE$R_STATUS field indicates a failure
status, return ACME$_CONTINUE without sending any messages to the client
process.

If there is no failure yet, there could be a subsequent failure during password
change processing, but that is after the messages have been sent to the client
process, and cannot be avoided.

If you decide to provide such information, your ACME agent should call the
ACME callback routine ACME$CB_QUEUE_DIALOGUE successively to provide
the output and then return code ACME$_PERFORMDIALOGUE to have it
transmitted.

Since the order in which ACME agents are configured is under the control of the
local system manager, your ACME agent should make no assumption that the
text it provides will be displayed in any particular order with respect to other
ACME agents, such as the traditional display from logical name SYS$WELCOME
produced by the VMS ACME.

In many environments, system managers are sensitive regarding the volume
of information presented to users logging in, so it is best if your ACME agent
supports a mechanism for the system manager to control the amount of, or
entirely disable, information that your ACME agent provides.

The ACM client process is not required to display the information you provide at
all, much less with any particular prominence on its screen, printer, or tickertape.

ACME Authentication and Password Callout Routines 6–27

ACME Authentication and Password Callout Routines
ACME$CO_PASSWORD_1

ACME$CO_PASSWORD_1

In this routine the designated DOI agent that needs a primary password obtains
it from the ACM client process (prompting if necessary and possible).

Format

ACME$CO_PASSWORD_1 kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

1. Test flag ACMEWQEFLG$V_PREAUTHENTICATED and if it has been set
during some prior ACME authentication and password callout routine, skip
the following steps.

2. Test any value supplied for item ACME$_AUTH_MECHANISM. If it is some
non-zero value other than ACMEMECH$K_PASSWORD, skip the following
steps since this authentication is not password based, so the actions of this
ACME authentication and password callout routine are irrelevant.

3. Test flag ACMEWQEFLG$V_PHASE_DONE. If it has been set (presumably
by the corresponding ACME authentication and password callout routine for
some prior ACME agent), skip the following steps.

This test is required in addition to the following test for subfield
ACMEWQEITM$L_ACME_ID of field ACMEWQEAX$R_PASSWORD_1,
since that structure might not be filled in due either to some rule against
sharing that is specific to a particular ACME agent or to an LGI callout
routine returning the status LGI$_SKIPRELATED.

4. Test subfield ACMEWQEITM$L_ACME_ID of field ACMEWQEAX$R_
PASSWORD_1. If it has been set (presumably by the corresponding ACME
authentication and password callout routine for some prior ACME agent),
skip the following steps.

5. If item code ACME$_PASSWORD_1 was included in the Common item list
that the ACM client program supplied on the initial call to the SYS$ACM[W]
system service, use that value (with leading and trailing spaces and tabs
removed) for the desired primary password.

6. If none of the preceding steps applied, do the following:

If no primary password is required by your ACME agent for this principal
name, return ACME$_CONTINUE.

If this request is for function code ACME$_FC_CHANGE_
PASSWORD, test flag ACMEPWDFLG$V_PASSWORD_1 within field
ACMEWQEAX$L_NEW_PASSWORD_FLAGS to see if the primary
password is to be changed, and if not, return ACME$_CONTINUE.

Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE
specifying the following:

• An ITEM_CODE parameter of ACME$_PASSWORD_1

• A DATA_1 parameter of the prompt string

6–28 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_PASSWORD_1

• A FLAGS parameter with ACMEDLOGFLG$V_INPUT and
ACMEDLOGFLG$V_NOECHO set

Return code ACME$_PERFORMDIALOGUE

When called back, retrieve the primary password from parameter ITEM_
LIST, using the last item on the list that has the proper item code, using
that value (with leading and trailing spaces and tabs removed) for the
desired primary password.

7. Call the ACME callback routine ACME$CB_SET_WQE_PARAMETER with
an ID parameter of ACMEWQE$K_PASSWORD_1 and a DATA parameter
describing the primary password. Take this action regardless of whether your
ACME agent views the password as ‘‘correct’’ because other ACME agents
may need to see it. This is not a problem for passwords received as an item
on an initial call, since those are available to all ACME agents.

8. Call the ACME callback routine ACME$CB_SET_WQE_FLAG with FLAG
argument ACMEWQEFLG$K_PHASE_DONE to prevent other ACME agents
from engaging in the purpose-based actions of this routine.

ACME Authentication and Password Callout Routines 6–29

ACME Authentication and Password Callout Routines
ACME$CO_PASSWORD_2

ACME$CO_PASSWORD_2

In this routine the designated DOI agent that needs a secondary password
obtains it from the ACM client process (prompting if necessary and possible).

Format

ACME$CO_PASSWORD_2 kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

1. Test flag ACMEWQEFLG$V_PREAUTHENTICATED and if it has been set
during some prior ACME authentication and password callout routine, skip
the following steps.

2. Test any value supplied for item ACME$_AUTH_MECHANISM. If it is some
non-zero value other than ACMEMECH$K_PASSWORD, skip the following
steps since this authentication is not password based, so the actions of this
ACME authentication and password callout routine are irrelevant.

3. Test flag ACMEWQEFLG$V_PHASE_DONE. If it has been set (presumably
by the corresponding ACME authentication and password callout routine for
some prior ACME agent), skip the following steps.

This test is required in addition to the following test for subfield
ACMEWQEITM$L_ACME_ID of field ACMEWQEAX$R_PASSWORD_2
since that structure might not be filled in due either to some rule against
sharing that is specific to a particular ACME agent or to an LGI callout
routine returning the status LGI$_SKIPRELATED.

4. Test subfield ACMEWQEITM$L_ACME_ID of field ACMEWQEAX$R_
PASSWORD_2. If it has been set (presumably by the corresponding ACME
authentication and password callout routine for some prior ACME agent),
skip the following steps.

5. If item code ACME$_PASSWORD_2 was included in the Common item list
that the ACM client program supplied on the initial call to the SYS$ACM[W]
system service, use that value (with leading and trailing spaces and tabs
removed) for the desired secondary password.

6. If none of the preceding steps applied, do the following:

If no secondary password is required by your ACME agent for this
principal name, return ACME$_CONTINUE.

If this request is for function code ACME$_FC_CHANGE_
PASSWORD, test flag ACMEPWDFLG$V_PASSWORD_2 within field
ACMEWQEAX$L_NEW_PASSWORD_FLAGS to see if the secondary
password is to be changed, and if not, return ACME$_CONTINUE.

Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE and
specify the following:

• An ITEM_CODE argument of ACME$_PASSWORD_2

• A DATA_1 argument of the prompt string

6–30 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_PASSWORD_2

• A FLAGS argument with ACMEDLOGFLG$V_INPUT and
ACMEDLOGFLG$V_NOECHO set

Return code ACME$_PERFORMDIALOGUE

When called back, retrieve the secondary password from parameter
ITEM_LIST, using the last item on the list that has the proper item code,
using that value (with leading and trailing spaces and tabs removed) for
the desired secondary password.

7. Call the ACME callback routine ACME$CB_SET_WQE_PARAMETER with
an ID parameter of ACMEWQE$K_PASSWORD_2 and a DATA parameter
describing the secondary password. Take this action regardless of whether
your ACME agent views the password as ‘‘correct’’ because other ACME
agents may need to see it. This is not a problem for passwords received as an
item on an initial call, since those are available to all ACME agents.

8. Call the ACME callback routine ACME$CB_SET_WQE_FLAG with FLAG
argument ACMEWQEFLG$K_PHASE_DONE to prevent other ACME agents
from engaging in the purpose-based actions of this routine.

ACME Authentication and Password Callout Routines 6–31

ACME Authentication and Password Callout Routines
ACME$CO_PRINCIPAL_NAME

ACME$CO_PRINCIPAL_NAME

In this routine an ACME agent may choose to determine the principal name to be
used for this request (prompting if necessary and possible).

Format

ACME$CO_PRINCIPAL_NAME kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

1. Test flag ACMEWQEFLG$V_PHASE_DONE. If it has been set (presumably
by the corresponding ACME authentication and password callout routine for
some prior ACME agent) skip the following steps.

2. Test subfield ACMEWQEITM$L_ACME_ID of field ACMEWQEAX$R_
PRINCIPAL_NAME. If it has been set (presumably by the corresponding
ACME authentication and password callout routine for some prior ACME
agent), skip the following steps.

3. If item code ACME$_PRINCIPAL_NAME_IN was included in the Common
item list that the ACM client program supplied on the initial call to the
SYS$ACM[W] system service, use that value (with leading and trailing spaces
and tabs removed) for the desired principal name.

4. If none of the preceding steps applied, do the following:

Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE
specifying an ITEM_CODE parameter of ACME$_PRINCIPAL_NAME_
IN, along with that prompt string (parameter DATA_1) and a FLAGS
parameter with ACMEDLOGFLG$V_INPUT set.

Return code ACME$_PERFORMDIALOGUE.

When called back, retrieve the principal name from parameter ITEM_
LIST, using the last item on the list that has the proper item code, using
that value (with leading and trailing spaces and tabs removed) for the
desired principal name.

Call the ACME callback routine ACME$CB_SET_WQE_PARAMETER
with an ID parameter of ACMEWQE$K_PRINCIPAL_NAME and a DATA
parameter describing the desired principal name.

Call the ACME callback routine ACME$CB_SET_WQE_FLAG with
FLAG argument ACMEWQEFLG$K_PHASE_DONE to prevent other
ACME agents from engaging in the purpose-based actions of this ACME
authentication and password callout routine.

If your ACME agent is going to prompt for principal name, it must do so using
the sequence shown in the list above. Since the VMS ACME is always enabled,
it will perform those steps if no prior ACME agent does it. Thus, it is typically
not necessary for your ACME agent to do so. An example of a case where you
might wish to perform principal name in your own ACME agent is if you wanted
to replace the string "Username:" with some other prompt, such as "Principal
Name:" or "login:.

6–32 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_QUALIFY_PASSWORD_1

ACME$CO_QUALIFY_PASSWORD_1

In this routine your ACME agent can evaluate a new primary password from
the client. If your ACME agent returns ACME$_RETRYPWD from this ACME
callout routine, the ACM dispatcher will cycle back to the ACME callout routine
ACME$CO_NEW_PASSWORD_1. The reason for this call is to support input of a
new primary password coordinated between ACME agents.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_QUALIFY_PASSWORD_1 kcb_vector, acme_context, wqe,
request_context, common_item_list,
acme_item_list

Description

Processing Steps:

1. If the ACMEWQEFLG$V_SKIP_NEW_PASSWORD flag is set, return
ACME$_CONTINUE.

2. If no new password was supplied in field ACMEWQEAX$R_NEW_
PASSWORD_1 of the ACMEWQEAX data structure, return ACME$_
CONTINUE.

3. Compare the password stored in the field ACMEWQEAX$R_NEW_
PASSWORD_1 of the ACMEWQEAX data structure pointed to by the
authentication and password change WQE extension of the work queue entry
against password quality rules specific to your ACME agent. If it fails, do the
following:

Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE to
provide a one-line error message describing the password quality problem.

Return code ACME$_PERFORMDIALOGUE to have your error message
transmitted to the ACM client process.

When your ACME authentication and password callout routine is called
again (indicating your error message was transmitted to the ACM client
process), return code ACME$_RETRYPWD to cause the ACM dispatcher
to return control to ACME$CO_NEW_PASSWORD_1.

ACME Authentication and Password Callout Routines 6–33

ACME Authentication and Password Callout Routines
ACME$CO_QUALIFY_PASSWORD_2

ACME$CO_QUALIFY_PASSWORD_2

In this routine your ACME agent can evaluate a new secondary password from
the client. If your ACME agent returns ACME$_RETRYPWD from this ACME
callout routine, the ACM dispatcher cycles back to the ACME callout routine
ACME$CO_NEW_PASSWORD_2. The reason for this call is to support input of a
new secondary password coordinated between ACME agents.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_QUALIFY_PASSWORD_2 kcb_vector, acme_context, wqe,
request_context, common_item_list,
acme_item_list

Description

Processing Steps:

1. If the ACMEWQEFLG$V_SKIP_NEW_PASSWORD flag is set, return
ACME$_CONTINUE.

2. If no new password was supplied in field ACME$QEAX_NEW_PASSWORD_2
of the ACMEWQEAX data structure, return ACME$_CONTINUE.

3. Compare the password stored in the field ACMEWQEAX$R_NEW_
PASSWORD_2 of the ACMEWQEAX data structure pointed to by the
authentication and password change WQE extension of the work queue entry
against password quality rules specific to your ACME agent. If it fails, do the
following:

Call the ACME callback routine ACME$CB_QUEUE_DIALOGUE to
provide a one-line error message describing the password quality problem.

Return code ACME$_PERFORMDIALOGUE to have your error message
transmitted to the ACM client process.

When your ACME authentication and password callout routine is called
again (indicating your error message was transmitted to the ACM client
process), return code ACME$_RETRYPWD to cause the ACM dispatcher
to return control to ACME$CO_NEW_PASSWORD_2.

6–34 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_SET_PASSWORDS

ACME$CO_SET_PASSWORDS

In this routine your ACME agent should commit any agreed-upon new passwords.

Note

Because many ACME agents will engage in the actions of this routine,
no ACME agent should call the ACME callback routine ACME$CB_SET_
WQE_FLAG with FLAG argument ACMEWQEFLG$K_PHASE_DONE.

Format

ACME$CO_SET_PASSWORDS kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

Processing Steps:

1. If the ACMEWQEFLG$V_SKIP_NEW_PASSWORD flag is set, return
ACME$_CONTINUE.

2. Perform all Commit operations required to change the primary or secondary
password using only the contents of the following fields of the ACMEWQEAX
data structure pointed to by the authentication and password change WQE
extension of the work queue entry:

ACMEWQEAX$R_PRINCIPAL_NAME_OUT

ACMEWQEAX$R_VMS_USERNAME

ACMEWQEAX$R_PASSWORD_1

ACMEWQEAX$R_PASSWORD_2

ACMEWQEAX$R_NEW_PASSWORD_1

ACMEWQEAX$R_NEW_PASSWORD_2

ACMEWQEAX$L_NEW_PASSWORD_FLAGS

3. Exit with ACME$_CONTINUE.

ACME Authentication and Password Callout Routines 6–35

ACME Authentication and Password Callout Routines
ACME$CO_SYSTEM_PASSWORD

ACME$CO_SYSTEM_PASSWORD

In this routine the VMS ACME will see if system password processing is required,
and if so, will validate the system password and keep prompting (if dialogue
support allows) until it is correct.

Format

ACME$CO_SYSTEM_PASSWORD kcb_vector, acme_context, wqe,
request_context, common_item_list,
acme_item_list

Description

To set the ACMEWQEAX$R_SYSTEM_PASSWORD field in the authentication
extension to the work queue entry, the VMS ACME calls ACME callback routine
ACME$CB_SET_WQE_PARAMETER with an ID parameter of ACMEWQE$K_
SYSTEM_PASSWORD. Typically the system password is handled only by the
VMS ACME, and since the information need not be shared between ACME
agents, the VMS ACME does not guarantee to store it in that cell.

6–36 ACME Authentication and Password Callout Routines

ACME Authentication and Password Callout Routines
ACME$CO_VALIDATE_MAPPING

ACME$CO_VALIDATE_MAPPING

In this routine the VMS ACME determines whether the mapped VMS username
is valid, and, in the process, reads user authorization information pertaining to
that VMS username. Other DOIs use this phase to check for VMS username
mapping mismatches.

Format

ACME$CO_VALIDATE_MAPPING kcb_vector, acme_context, wqe, request_context,
common_item_list, acme_item_list

Description

If your ACME agent is operating as a secondary DOI under model 1 (common
passwords), check for a VMS username mismatch between the value stored
in the WQE and the value that your ACME agent would have provided for
this principal-name. Return ACME$_AUTHFAILURE after checking ACME$_
MAPCONFLICT in the ACMESB secondary status field.

ACME Authentication and Password Callout Routines 6–37

7
ACME Event and Query Callout Routines

This chapter describes the possible ACME request processing callout routines
to support the single-shot function codes ACME$_FC_EVENT and ACME$_FC_
QUERY, which are always directed to a single ACME agent and do not involve
dialogue processing. Different ACME agents may each supply their own version
of the same ACME agent control callout routine and only those for a single
ACME agent will be called, as shown in Figure 7–1.

Figure 7–1 ACME Event and Query Callout Routine Control Flow

ACME Server�
Main Image

ACME Agent 1 ACME Agent 2

VM-0784A-AI

ACME$CO_QUERY

ACME$CO_QUERY

ACME$CO_EVENT

ACME$CO_EVENT

Your ACME agent can use the WQE argument provided to ACME callout routines
ACME$CO_EVENT and ACME$CO_QUERY in the same fashion as for ACME
authentication and password callout routines. But, its lifetime is limited to a
single invocation, coupled with those follow-up invocations due to returning the
following status codes:

• ACME$_WAITRESOURCE

ACME Event and Query Callout Routines 7–1

ACME Event and Query Callout Routines

• ACME$_PERFORMDIALOGUE

• ACME$_WAITAST

Both routines are optional for your ACME agent.

7.1 Arguments for Event and Query Callout Routines
The arguments are the same for each callout routine and are described in
Table 7–1.

Table 7–1 Arguments fo ACME Event and Query Callout Routines

Argument Description

kcb_vector Address of an array called the KCB (Kernel Callback) vector. To
interact with the ACME server main image and other ACME
agents, your ACME agent must invoke various ACME callback
routines. The procedure values of those callback routines are stored
in the KCB vector.

acme_context Address of a common quadword provided on all invocations of your
ACME agent, for whatever purpose you deem fit.

wqe Address of the work queue entry for this request. Has the structure
described in Section B.16. Your ACME agent can read information
directly out of the work queue entry, but should only change the
contents of the work queue entry through the designated ACME
callback routines. See Section 4.2.

request_context Address of a single quadword provided on invocatins of your ACME
agent in support of a particular request for whatever purpose you
deem fit.

common_item_list Consists of one or more item list segments chained together. All
item list segments follow the 32-bit addressing item list format,
to facilitate operation between ACME agents written in various
programming languages (some of which might not support 64-bit
addressing).

The chaining between item list segments does not reflect any initial
chaining provided by the caller of the SYS$ACM[W] system service,
but instead is the result of segmentation in the transfer of the item
list data from the ACM client process context to the ACME server
process context.

In the case of the ACME callout routiens ACME$CO_INITIALIZE,
ACME$CO_EVENT, and ACME$CO_QUERY the items provided
include those from the initial call to the SYS$ACM[W] system
service. For subsequent ACME authentication and password callout
routines other than ACME$CO_INITIALIZE, the items include only
those specifically requested in dialogue interaction from that ACME
callout routine.

Common item list items are those provided during this ACME
callout routine with common item codes (ACME$_codename). To
inspect items provided to previous ACME authentication and
password callout routines for this request, use the chain of item list
segments pointed to by the work queue entry cell ACMEWQE$PS_
ITEMLIST.

(continued on next page)

7–2 ACME Event and Query Callout Routines

ACME Event and Query Callout Routines
7.1 Arguments for Event and Query Callout Routines

Table 7–1 (Cont.) Arguments fo ACME Event and Query Callout Routines

Argument Description

acme_item_list Consists of one or more item list segments chained together. All
item list segments follow the 32-bit addressing item list format,
to facilitate operation between ACME agents written in various
programming languages (some of which might not support 64-bit
addressing).

The chaining between item list segments does not reflect any initial
chaining provided by the caller of the SYS$ACM[W] system service,
but instead is the result of segmentation in the transfer of the item
list data from the ACM client process context to the ACME server
process context.

In the case of the ACME callout routiens ACME$CO_INITIALIZE,
ACME$CO_EVENT, and ACME$CO_QUERY the items provided
include those from the initial call to the SYS$ACM[W] system
service. For subsequent ACME authentication and password callout
routines other than ACME$CO_INITIALIZE, the items include only
those specifically requested in dialogue interaction from that ACME
callout routine.

ACME-specific item list items are those provided during this ACME
callout routine with ACME-specific item codes (not ACME$_
codename) targeted at this ACME agent. Your ACME agent will
not see any ACME-specific item codes targeted at other ACME
agents. To inspect items provided to previous ACME authentication
and password callout routines for this request, use the chain of item
list segments pointed to by work queue entry cell ACMEWQE$PS_
ACME_ITEMLIST.

ACME Event and Query Callout Routines 7–3

ACME Event and Query Callout Routines
ACME$CO_EVENT

ACME$CO_EVENT

This routine is the only one called for function code ACME$_FC_EVENT. Since
that function code always requires targeting a particular ACME agent, all
processing is specific to the needs and definitions of your ACME agent.

Format

ACME$CO_EVENT kcb_vector, acme_context, wqe, request_context, item_lists

Description

The general outline for structuring your ACME$_FC_EVENT support is that
your ACME agent performs some logging or processing, and possibly returns data
for output item ACME$_EVENT_DATA_OUT, in response to the following input
items:

• ACME$_EVENT_TYPE

• ACME$_EVENT_DATA_IN

Unlike the situation for the ACME authentication and password callout routines
when your ACME$CO_EVENT ACME callout routine is called, you can be
assured that the request received was made by a caller who is specifically
interested in your ACME agent and will conform to whatever conventions you
establish, including which item codes are actually supported.

If your ACME agent engages in logging based on calls to ACME$CO_EVENT, you
should consider checking for particular privileges or rights identifiers being held
by the caller of the SYS$ACM[W] system service to defend against a denial of
service attack that attempts to fill your storage space. Normal SYS$PERSONA_
QUERY calls using the persona ID stored in ACMEWQE$L_WQE_REQUESTOR_
PROFILE can provide that information.

7–4 ACME Event and Query Callout Routines

ACME Event and Query Callout Routines
ACME$CO_QUERY

ACME$CO_QUERY

This routine is the only one called for function code ACME$_FC_QUERY. Since
that function code always requires targeting a particular ACME agent, all
processing is specific to the needs and definitions of your ACME agent.

Format

ACME$CO_QUERY kcb_vector, acme_context, wqe, request_context, item_lists

Description

The general outline for structuring your ACME$_FC_QUERY support is that
your ACME agent performs an inquiry and returns data for output item ACME$_
QUERY_DATA, in response to the following input items :

• ACME$_QUERY_TYPE

• ACME$_QUERY_KEY_TYPE

• ACME$_QUERY_KEY_VALUE

Unlike the situation for the ACME authentication and password callout routines,
when your ACME$CO_QUERY ACME callout routine is called you can be
assured that the request received was made by a caller who is specifically
interested inyour ACME agent and will conform to whatever conventions you
establish, including which item codes are actually supported.

ACME Event and Query Callout Routines 7–5

8
ACME Status Codes

This chapter describes ACME status codes and messages, which are organized
into the following categories:

• Flow control codes (see Section 8.1)

• Agent failure codes (see Section 8.2)

• Secondary codes (password quality) (see Section 8.3)

• Secondary codes (privileged) (see Section 8.4)

• Logging messages (see Section 8.5)

• Callback codes (see Section 8.6)

• SYS$ACM[W] codes (see Section 8.7)

• SET SERVER and SHOW SERVER codes (see Section 8.8)

8.1 Flow Control Codes
These status codes are returned by your ACME agent to control operation of the
ACM dispatcher. They are not returned to the ACM client program.

CONTACTSYSMGR, requested operation has failed; contact the system manager
Facility: ACME, ACM Dispatcher Flow Control Codes
Other language symbol: ACME$_CONTACTSYSMGR
Severity: Error
Explanation: The ACME server or an ACME agent encountered some
failure not due to any action of the user.
User Action: Choose the proper role-based action as follows:

End User:

A failure beyond your control has prevented authentication. Report this to
the system manager.

System Manager:

Look in the ACME$SERVER log file for a detailed description. If
ACME$SERVER is not defined as a logical name, this file will be named
SYS$MANAGER:ACME$SERVER.LOG.

ACME Programmer:

Return this code from your ACME request processing callout routines (that is,
anything but an ACME agent control callout routine) only after using ACME
callback routine ACME$CB_SEND_LOGFILE to record circumstances of the
failure.

ACME Status Codes 8–1

ACME Status Codes
8.1 Flow Control Codes

PERFORMDIALOGUE, perform dialogue processing
Facility: ACME, ACM Dispatcher Flow Control Codes
Other language symbol: ACME$_PERFORMDIALOGUE
Severity: Warning
Explanation: An ACME authentication and password routine returns this
code to request that queued dialogue messages be processed.
User Action: Choose the proper role-based action as follows:

End User:

Make a note of this error and tell the system manager what you were doing
when the error occurred.

System Manager:

This message should never be presented to the end user. Consult the author
or vendor of the program being used. If the program was supplied by HP,
contact an HP support representative.

ACME Programmer:

Return this code to the ACM dispatcher from your ACME agent callout
routine when dialogue items you have queued should be sent to the ACM
client program.

RETRYPWD, new password is invalid; retry operation
Facility: ACME, ACM Dispatcher Flow Control Codes
Other language symbol: ACME$_RETRYPWD
Severity: Warning
Explanation: An ACME authentication and password routine returns this
code to request that new password processing be restarted.
User Action: Choose the proper role-based action as follows:

End User:

Make a note of this error and tell the system manager what you were doing
when the error occurred.

System Manager:

This message should never be presented to the end user. Consult the author
or vendor of the program being used. If the program was supplied by HP,
contact an HP support representative.

ACME Programmer:

Return this status code from your ACME authentication and password callout
routine when both of the following conditions occur:

• The new password selected by the user is unacceptable.

• No ACME agent has indicated that it cannot retry with a different
password.

8–2 ACME Status Codes

ACME Status Codes
8.1 Flow Control Codes

WAITAST, wait for AST event
Facility: ACME, ACM Dispatcher Flow Control Codes
Other language symbol: ACME$_WAITAST
Severity: Warning
Explanation: An ACME authentication and password callout routine
returns this code to request that processing of this request be suspended
pending AST delivery.
User Action: Choose the proper role-based action as follows:

End User:

Make a note of this error and tell the system manager what you were doing
when the error occurred.

System Manager:

This message should never be presented to the end user. Consult the author
or vendor of the program being used. If the program was supplied by HP,
contact an HP support representative.

ACME Programmer:

Return this status code from your ACME callout routine when your ACME
agent must wait for AST delivery.

WAITRESOURCE, wait for ACME-specific resource
Facility: ACME, ACM Dispatcher Flow Control Codes
Other language symbol: ACME$_WAITRESOURCE
Severity: Warning
Explanation: An ACME authentication and password callout routine
returns this code to request that processing of this request be suspended
pending availability of the most recently requested ACME-specific resource.
User Action: Choose the proper role-based action as follows:

End User:

Make a note of this error and tell the system manager what you were doing
when the error occurred.

System Manager:

This message should never be presented to the end user. Consult the author
or vendor of the program being used. If the program was supplied by HP,
contact an HP support representative.

ACME Programmer:

Return this status code from your ACME callout routine when your ACME
agent must wait for the most recently requested ACME-specific resource to
become available.

ACME Status Codes 8–3

ACME Status Codes
8.2 Agent Failure Codes

8.2 Agent Failure Codes
These status codes can be returned by your ACME agent to indicate to the ACM
client program the failure of a request.

Although it is possible to return status codes specific to your ACME agent for
special circumstances, using these standard codes (perhaps with a secondary
status specific to your ACME agent) increases the ability of ACM client programs
to provide a smooth user interface.

In the particular case of ACME-E-AUTHFAILURE, the secondary status is
treated confidentially by not being disclosed to nonprivileged clients and by not
being displayed by privileged clients. This prevents an attacker from learning
what aspect of an authentication attempt was faulty.

ACCEXPIRED, account has expired
Facility: ACME, ACME Agent Failure Codes
Other language symbol: ACME$_ACCEXPIRED
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because the account for the user has expired.
User Action: Choose the proper role-based action as follows:

System Manager:

Contact the authorizing authority to determine whether a user request to
reactivate the account should be honored.

ACME Programmer:

The VMS ACME returns this status code if an account is expired in the
SYSUAF record for this user. You may want your ACME agents to do the
same, based on their own account expiration information.

AUTHFAILURE, authentication has failed
Facility: ACME, ACME Agent Failure Codes
Other language symbol: ACME$_AUTHFAILURE
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
in authentication.
User Action: Choose the proper role-based action as follows:

End User:

Your authentication information is not acceptable to the system.
Authorization failure can be due to a number of causes, including but
not limited to: invalid password or token, expired or locked account, too many
failed login attempts, invalid or unknown principal name. Check your work
and if subsequent attempts fail, contact the system manager. Do not reveal
your password or token to anyone, including the system manager, except
under exceptional circumstances as designated in your site’s security policy.
If you do divulge your password to anyone, change it as soon as possible.

System Manager:

8–4 ACME Status Codes

ACME Status Codes
8.2 Agent Failure Codes

The system accounting file and system audit log, if enabled, contain details
regarding the precise cause of the authentication failure. The authenticating
agent does not share this failure information with unprivileged users so that
it cannot be used to guess passwords or plan attacks.

ACME Programmer:

Your ACME agent should return this status code after calling ACME$CB_
SET_2ND_STATUS to indicate the precise cause of the authentication failure.

INVALIDTIME, access is denied at this time
Facility: ACME, ACME Agent Failure Codes
Other language symbol: ACME$_INVALIDTIME
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because the user is not allowed to log in at this time.
User Action: Choose the proper role-based action as follows:

End User:

Try again at a time when your use is authorized.

ACME Programmer:

The VMS ACME returns this status code if an account is not authorized for
this time of day in the SYSUAF record for this user. You may want your
ACME agents to do the same, based on their own controls. The ACME agent
may first call ACME$CB_SET_2ND_STATUS with a status code indicating
the precise nature of the time-of-day restriction before returning ACME$_
INVALIDTIME.

INVNEWPWD, new password is invalid
Facility: ACME, ACME Agent Failure Codes
Other language symbol: ACME$_INVNEWPWD
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a new password provided was not acceptable.
User Action: Choose the proper role-based action as follows:

End User:

The new password failed to meet password quality checks by one or more
ACME agents. Password quality checks include minimum and/or maximum
lengths, dictionary match, history match, or other site-specific password policy
filters. Choose a different new password conforming to your site password
policies. Check your work and if subsequent attempts fail, contact the system
manager. Do not reveal your password or token to anyone, including the
system manager, except under exceptional circumstances as designated in
your site’s security policy. If you do divulge your password to anyone, change
it as soon as possible.

ACME Programmer:

ACME Status Codes 8–5

ACME Status Codes
8.2 Agent Failure Codes

When another ACME agent has indicated it cannot handle new password
retries, your ACME agent should return this status code after calling
ACME$CB_SET_2ND_STATUS with a secondary status code that indicates
the precise problem with the quality of the proposed new password.

NOTAUTHORIZED, authentication failed due to account restrictions
Facility: ACME, ACME Agent Failure Codes
Other language symbol: ACME$_NOTAUTHORIZED
Severity: Error
Explanation: Authorization failed because of account restrictions enforced
by one or more ACME agents.
User Action: Choose the proper role-based action as follows:

End User:

Contact the system manager and provide information about the type of
operation and the principal name used.

ACME Programmer:

Your ACME agent can return this message to the end user for a general
authorization failure. The ACME agent may first call ACME$CB_SET_2ND_
STATUS with a status code indicating the precise nature of the authorization
failure before returning ACME$_NOTAUTHORIZED.

PWDCANTCHANGE, password cannot be changed
Facility: ACME, ACME Agent Failure Codes
Other language symbol: ACME$_PWDCANTCHANGE
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a password cannot be changed.
User Action: Choose the proper role-based action as follows:

End User:

Contact your system manager and provide information about the type of
operation and the principal name used.

System Manager:

If the password was not locked for a valid reason, review the security policy
that prevents this password from being changed by the end user.

ACME Programmer:

The VMS ACME returns this status code if the SYSUAF record for this user
indicates the password is locked. You may want your ACME agents to do the
same, based on their own controls.

PWDEXPIRED, password has expired
Facility: ACME, ACME Agent Failure Codes
Other language symbol: ACME$_PWDEXPIRED
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a password provided has expired and a new password is required to

8–6 ACME Status Codes

ACME Status Codes
8.2 Agent Failure Codes

complete the request. The SYS$ACM[W] system service returns this when
called in non-dialogue mode (non-interactive operation).
User Action: Choose the proper role-based action as follows:

ACME Programmer:

The VMS ACME returns this status code if the SYSUAF record for this user
indicates the password has expired and a new password is required. You may
want your own ACME agents to do the same, based on their own controls.

PWDNOTCHG, password not changed
Facility: ACME, ACME Agent Failure Codes
Other language symbol: ACME$_PWDNOTCHG
Severity: Error
Explanation: The specified password could not be changed due to policy
restrictions or system error.
User Action: Choose the proper role-based action as follows:

End User:

Review the password policy restrictions for your site and verify that your
choice meets those requirements. Check your work and try again. If all else
fails, contact the system manager.

System Manager:

If a system error was the reason for this error, the ACME$SERVER error log
file may contain more information. If ACME$SERVER is not defined as a
logical name, this file will be named SYS$MANAGER:ACME$SERVER.LOG.

8.3 Secondary Codes (Password Quality)
Your ACME agent callout routines might provide these messages as failure
details by way of the ACME callback routine ACME$CD_SET_2ND_STATUS.
Otherwise, an ACME callout routine might return an ACME-specific code.

PWDINDICT, password exists in dictionary database
Facility: ACME, ACME Secondary Codes (Password Quality)
Other language symbol: ACME$_PWDINDICT
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a proposed new password is found in an ACME agent’s password
dictionary.
User Action: Choose the proper role-based action as follows:

End User:

Choose a password that is not a common word or acronym.

ACME Programmer:

When another ACME agent has indicated it cannot handle new password
retries, the VMS ACME calls ACME$CB_SET_2ND_STATUS with this status
code and then returns ACME$_INVNEWPWD if a proposed new password is
present in its password dictionary file. You may want your ACME agents to
do the same, based on their own controls.

ACME Status Codes 8–7

ACME Status Codes
8.3 Secondary Codes (Password Quality)

PWDINHISTORY, password exists in history database
Facility: ACME, ACME Secondary Codes (Password Quality)
Other language symbol: ACME$_PWDINHISTORY
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a proposed new password has been used too recently.
User Action: Choose the proper role-based action as follows:

End User:

Choose a different password that you have not used recently (as defined by
your site-specific policy).

ACME Programmer:

When another ACME agent has indicated it cannot handle new password
retries, the VMS ACME calls ACME$CB_SET_2ND_STATUS with this status
code and then returns ACME$_INVNEWPWD if the hash value of a proposed
new password is present and unexpired in its password history file. You may
want your ACME agents to do the same, based on their own controls.

PWDINVALID, unspecified password policy restriction
Facility: ACME, ACME Secondary Codes (Password Quality)
Other language symbol: ACME$_PWDINVALID
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a proposed new password is unacceptable for an unspecified reason.
User Action: Choose the proper role-based action as follows:

End User:

Choose a different password.

ACME Programmer:

When another ACME agent has indicated it cannot handle new password
retries, your ACME agent could call ACME$CB_SET_2ND_STATUS with
this status code and then return ACME$_INVNEWPWD if a proposed new
password is unacceptable in some manner not covered by any other password
quality secondary status for the ACME facility.

PWDINVCHAR, password contains invalid characters
Facility: ACME, ACME Secondary Codes (Password Quality)
Other language symbol: ACME$_PWDINVCHAR
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a proposed new password contains characters unacceptable to the
ACME agent.
User Action: Choose the proper role-based action as follows:

End User:

Choose a password without the unacceptable characters.

ACME Programmer:

8–8 ACME Status Codes

ACME Status Codes
8.3 Secondary Codes (Password Quality)

When another ACME agent has indicated it cannot handle new password
retries, the VMS ACME calls ACME$CB_SET_2ND_STATUS with this status
code and then returns ACME$_INVNEWPWD if a proposed new password
contains characters that are unacceptable for the password hash algorithm
indicated in the SYSUAF record for this user. You may want your ACME
agents to do the same, based on their own controls.

PWDTOOEASY, password can be easily guessed
Facility: ACME, ACME Secondary Codes (Password Quality)
Other language symbol: ACME$_PWDTOOEASY
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a proposed new password is too easy to guess.
User Action: Choose the proper role-based action as follows:

End User:

Choose a password that is harder to guess.

ACME Programmer:

When another ACME agent has indicated it cannot handle new password
retries, the VMS ACME calls ACME$CB_SET_2ND_STATUS with this status
code and then returns ACME$_INVNEWPWD if a proposed new password
can be too easily guessed. You may want your ACME agents to do the same,
based on their own standards.

PWDTOOLONG, password greater than maximum length
Facility: ACME, ACME Secondary Codes (Password Quality)
Other language symbol: ACME$_PWDTOOLONG
Severity: Error
Explanation: The Authenticate Principal or Change Password request
failed because a proposed new password is longer than allowed by policy or
implementation.
User Action: Choose the proper role-based action as follows:

End User:

Choose a shorter password that is within the range permitted by your
site-specific policy or implementation.

ACME Programmer:

When another ACME agent has indicated it cannot handle new password
retries, the VMS ACME calls ACME$CB_SET_2ND_STATUS with this status
code and then returns ACME$_INVNEWPWD if a proposed new password is
longer than 32 characters. You may want your ACME agents to do the same,
based on their own controls.

ACME Status Codes 8–9

ACME Status Codes
8.3 Secondary Codes (Password Quality)

PWDTOOSHORT, password less than minimum length
Facility: ACME, ACME Secondary Codes (Password Quality)
Other language symbol: ACME$_PWDTOOSHORT
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a proposed new password is shorter than allowed by policy.
User Action: Choose the proper role-based action as follows:

End User:

Choose a longer password.

ACME Programmer:

When another ACME agent has indicated it cannot handle new password
retries, the VMS ACME calls ACME$CB_SET_2ND_STATUS with this status
code and then returns ACME$_INVNEWPWD if a proposed new password is
shorter than allowed by the SYSUAF record for this user. You may want your
ACME agents to do the same, based on their own controls.

8.4 Secondary Codes (Privileged)
Your ACME callout routines might provide these messages as failure details by
way of the ACME callback routine ACME$CB_SET_2ND_STATUS. Otherwise,
your ACME agent might return an ACME-specific code.

Security Warning

For security reasons, any code indicating the precise reason for
authentication failure should be provided only as a secondary status
by way of a call to ACME callback routing ACME$CB_SET_2ND_
STATUS, with ACME$_AUTHFAILURE returned for the primary status.

ACCOUNTLOCK, account is disabled
Facility: ACME, ACME Secondary Codes (Privileged)
Other language symbol: ACME$_ACCOUNTLOCK
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because the account associated with the specified principal name is disabled.
User Action: Choose the proper role-based action as follows:

System Manager:

Presence of this status code in the accounting file or security auditing log may
warrant an investigation regarding a possible attack against the system.

If the account of a legitimate user was locked, reconsider the administrative
decision to lock this account. For the VMS ACME, the control is the
DISUSER flag in the SYSUAF record for this user. Consult the appropriate
documentation for other ACME agents to determine when they might return
this status code.

ACME Programmer:

8–10 ACME Status Codes

ACME Status Codes
8.4 Secondary Codes (Privileged)

For confidentiality, your ACME agent should call ACME$CB_SET_
2ND_STATUS with this status code to indicate the precise cause of the
authentication failure for accounting and security auditing. Then your ACME
agent should return the status code ACME$_AUTHFAILURE to the user.

INTRUDER, record matching request was found in the intrusion database
Facility: ACME, ACME Secondary Codes (Privileged)
Other language symbol: ACME$_INTRUDER
Severity: Error
Explanation: Authentication failed because successive attempts from this
source have failed, creating intruder status.
User Action: Choose the proper role-based action as follows:

System Manager:

Presence of this status code in the accounting file or security auditing log may
warrant an investigation regarding a possible attack against the system.

Alternatively, a legitimate user may be having difficulties logging in.

ACME Programmer:

For confidentiality, your ACME agent should call ACME$CB_SET_
2ND_STATUS with this status code to indicate the precise cause of the
authentication failure for accounting and security auditing. Then your ACME
agent should return the status code ACME$_AUTHFAILURE to the user.

INVALIDPWD, password is invalid
Facility: ACME, ACME Secondary Codes (Privileged)
Other language symbol: ACME$_INVALIDPWD
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because a provided password was invalid.
User Action: Choose the proper role-based action as follows:

System Manager:

Presence of this status code in the accounting file or security auditing log may
warrant an investigation regarding a possible attack against the system.

Alternatively, a legitimate user may just be having a bad password day.

ACME Programmer:

For confidentiality, your ACME agent should call ACME$CB_SET_
2ND_STATUS with this status code to indicate the precise cause of the
authentication failure for accounting and security auditing. Then your ACME
agent should return the status code ACME$_AUTHFAILURE to the user.

INVMAPPING, principal name does not map to an OpenVMS user name
Facility: ACME, ACME Secondary Codes (Privileged)
Other language symbol: ACME$_INVMAPPING
Severity: Error
Explanation: An ACME agent returned a user name that does not exist in
SYSUAF.DAT, the OpenVMS system authorization file.
User Action: Choose the proper role-based action as follows:

ACME Status Codes 8–11

ACME Status Codes
8.4 Secondary Codes (Privileged)

System Manager:

Review the mapping configuration of your ACME agents.

ACME Programmer:

For confidentiality, the VMS ACME calls ACME$CB_SET_2ND_STATUS with
this status code to indicate the precise cause of the authentication failure for
accounting and security auditing. Then the VMS ACME returns the status
code ACME$_AUTHFAILURE to the user.

MAPCONFLICT, principal name maps to a different OpenVMS user name
Facility: ACME, ACME Secondary Codes (Privileged)
Other language symbol: ACME$_MAPCONFLICT
Severity: Error
Explanation: An unprivileged caller asked to merge credentials using a
principal name that an ACME agent mapped to a different OpenVMS user
name than that associated with the current process.
User Action: Choose the proper role-based action as follows:

System Manager:

Presence of this status code in the accounting file or security auditing log may
warrant an investigation regarding a possible attack against the system.

Investigate the software being used to see if a configuration error is causing
this problem.

ACME Programmer:

For confidentiality, your ACME agent should call ACME$CB_SET_
2ND_STATUS with this status code to indicate the precise cause of the
authentication failure for accounting and security auditing. Then your ACME
agent should return the status code ACME$_AUTHFAILURE to the user.

NOEXTAUTH, principal name cannot be authenticated externally
Facility: ACME, ACME Secondary Codes (Privileged)
Other language symbol: ACME$_NOEXTAUTH
Severity: Error
Explanation: The attempted use of external authentication is not authorized
for the specified principal name. An ACME agent other than the VMS ACME
successfully authenticated a principal name that mapped to a SYSUAF record
that did not have the EXTAUTH flag set.
User Action: Choose the proper role-based action as follows:

System Manager:

Presence of this status code in the accounting file or security auditing log may
warrant an investigation regarding a possible attack against the system.

It is more likely that this message indicates a configuration error with one of
the ACME agents.

ACME Programmer:

For confidentiality, the VMS ACME calls ACME$CB_SET_2ND_STATUS with
this status code to indicate the precise cause of the authentication failure for
accounting and security auditing. Then the VMS ACME returns the status
code ACME$_AUTHFAILURE to the user.

8–12 ACME Status Codes

ACME Status Codes
8.4 Secondary Codes (Privileged)

NOLOCAUTH, not authorized to override external authentication
Facility: ACME, ACME Secondary Codes (Privileged)
Other language symbol: ACME$_NOLOCAUTH
Severity: Error
Explanation: The Authenticate Principal or Change Password request
failed because the specified principal name maps to an OpenVMS user name
that is not authorized to override external authentication. In particular, the
EXTAUTH flag is set and the VMSAUTH flag is clear in the SYSUAF record.
User Action: Choose the proper role-based action as follows:

System Manager:

If this error did not occur for a legitimate reason, presence of this status code
in the accounting file or security auditing log may warrant an investigation
regarding a possible attack against the system.

ACME Programmer:

For confidentiality, the VMS ACME calls ACME$CB_SET_2ND_STATUS with
this status code to indicate the precise cause of the authentication failure for
accounting and security auditing. Then the VMS ACME returns the status
code ACME$_AUTHFAILURE to the user.

NOSUCHUSER, principal name does not exist or is invalid
Facility: ACME, ACME Secondary Codes (Privileged)
Other language symbol: ACME$_NOSUCHUSER
Severity: Error
Explanation: The Authenticate Principal or Change Password request failed
because none of the ACME agents recognized the principal name. For the
VMS ACME agent, this error indicates that the principal name does not exist
as a user name in SYSUAF.DAT, the OpenVMS system authorization file.
User Action: Choose the proper role-based action as follows:

System Manager:

If this error did not occur for a legitimate reason, presence of this status code
in the accounting file or security auditing log may warrant an investigation
regarding a possible attack against the system.

ACME Programmer:

For confidentiality, your ACME agent should call ACME$CB_SET_
2ND_STATUS with this status code to indicate the precise cause of the
authentication failure for accounting and security auditing. Then your ACME
agent should return the status code ACME$_AUTHFAILURE to the user.

8.5 Logging Messages
The following message is intended for use only in the ACME server log.

ACME Status Codes 8–13

ACME Status Codes
8.5 Logging Messages

NOMSGFND, no acceptable message found
Facility: ACME, ACME Logging Messages
Other language symbol: ACME$_NOMSGFND
Severity: Error
Explanation: This internal status code is used within the ACME server
main image. The ACME server main image may enter this into the
ACME$SERVER log file when certain types of tracing are active.
User Action: Choose the proper role-based action as follows:

System Manager:

This message should only be logged, never received. Contact an HP support
representative.

8.6 Callback Codes
An ACME callback routine can return these codes to your ACME agent. If
one of these codes causes a nonrecoverable failure, your ACME agent should
include the circumstances surrounding the error in the ACME server log file
when logging the error. Then the ACME agent should return the error ACME$_
CONTACTSYSMGR to the ACM dispatcher to transmit it to the client program.

This code should not be presented to an end user. Consult the author or vendor
of the client program being used. If the program was supplied by HP, contact an
HP support representative.

ASTCTXNOTFND, AST context not found
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_ASTCTXNOTFND
Severity: Error
Explanation: It was not possible to locate the specified AST context when
an ACME agent called an ACME callback routine.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

This message indicates a programming error. Review the programming of
your ACME agent.

BUFFEROVF, output buffer overflow
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_BUFFEROVF
Severity: Informational
Explanation: The call completed successfully, but data has been truncated
because the specified user buffer is too small for at least one output item
returned by the call.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

Review the sizes of output buffers.

ACM Client Programmer:

8–14 ACME Status Codes

ACME Status Codes
8.6 Callback Codes

Review the sizes of output buffers that your client program provides for the
SYS$ACM[W] system service.

BUFTOOSMALL, buffer too small
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_BUFTOOSMALL
Severity: Error
Explanation: An internal buffer allocation failure was encountered by the
ACME server main image.
User Action: Contact an HP support representative.

DIALOGFULL, dialogue queue is full
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_DIALOGFULL
Severity: Error
Explanation: Too many dialogue entries have been queued for the available
buffer space within the ACME server main image.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

Send the existing dialogue entries to the client process by returning the
status code ACME$_PERFORMDIALOGUE. When you call SYS$ACM[W]
again, repeat the queueing of the dialogue entry that received the error.

DUPCREDTYP, credentials of the specified type have already been issued
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_DUPCREDTYP
Severity: Error
Explanation: An ACME agent made a duplicate call to ACME callback
routine ACME$CB_ISSUE_CREDENTIALS.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

This message indicates a programming error. Review the programming of
your ACME agent.

INCONSTATE, internal consistency error
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_INCONSTATE
Severity: Fatal
Explanation: The ACME server detected an internal error.
User Action: Contact an HP support representative.

ACME Status Codes 8–15

ACME Status Codes
8.6 Callback Codes

INSFDIALSUPPORT, insufficient dialogue support
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_INSFDIALSUPPORT
Severity: Error
Explanation: An ACME agent required dialogue support that is not
provided by the call to the SYS$ACM[W] system service. In most cases,
this error occurs because an ACM client called the SYS$ACM[W] service in
non-dialogue mode and one or more ACME agents required interaction with
the user; for example, the user’s password has expired and a new one must
be entered.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

Your ACME agent should return this code if it discovers (for example, by
calling callback routine ACME$CB_QUEUE_DIALOGUE) that a necessary
dialogue support capability is not provided by the client program.

INVCREDTYP, agent is not authorized to issue the specified type of credentials
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_INVCREDTYP
Severity: Error
Explanation: An ACME agent made a call to ACME callback routine
ACME$CB_ISSUE_CREDENTIALS specifying a credentials type that was
not specified when the ACME agent was configured. This status code will
also be returned if the ACME agent specifies a credentials type of 0 (zero).
User Action: Choose the proper role-based action as follows:

System Manager:

Check the SET SERVER ACME/CONFIGURE command that was used to
configure this ACME agent.

ACME Programmer:

This message indicates a programming error. Check the code that calls
ACME$CB_ISSUE_CREDENTIALS.

INVFLAG, flag number is invalid
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_INVFLAG
Severity: Error
Explanation: An ACME agent made a call to an ACME callback routine
specifying an incorrect flag number.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

This message indicates a programming error. Correct the flag number passed
to the ACME callback routine.

8–16 ACME Status Codes

ACME Status Codes
8.6 Callback Codes

INVPARAMETER, parameter selector or descriptor is invalid
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_INVPARAMETER
Severity: Error
Explanation: An ACME agent made a call to an ACME callback routine
specifying an incorrect parameter.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

This message indicates a programming error. Correct the parameter passed
to the ACME callback routine.

NORMAL, normal successful completion
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_NORMAL
Severity: Success
Explanation: The operation completed successfully. The ACME callback was
successful.
User Action: Choose the proper role-based action as follows:

End User:

None.

ACME Programmer:

Continue processing.

NOTOUTITEM, item code does not reflect an output item
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_NOTOUTITEM
Severity: Error
Explanation: A call to an ACME callback routine specified an address that
is not the address of an output item passed to the ACME agent by the ACM
dispatcher.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

This message indicates a programming error. Review the programming of
your ACME agent.

NULLVALUE, NULL value is invalid
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_NULLVALUE
Severity: Error
Explanation: A call to an ACME callback routine specified a null
ACME-specific resource type.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

This message indicates a programming error. Review the programming of
your ACME agent.

ACME Status Codes 8–17

ACME Status Codes
8.6 Callback Codes

RESOURCENOTAVAIL, requested resource is not available
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_RESOURCENOTAVAIL
Severity: Error
Explanation: A call to ACME callback routine ACME$CB_ACQUIRE_
RESOURCE could not be fulfilled.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

In the likely event that your ACME agent cannot proceed without the ACME-
specific resource, return the code ACME$_WAITRESOURCE to have your
ACME agent called again at this ACME callout routine after an ACME-
specific resource of the specified type becomes available. (Note that even
when the resource becomes available, another request might make use of the
resource first, causing your ACME agent to have to wait again.)

UNSUPPORTED, requested operation is unsupported
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_UNSUPPORTED
Severity: Error
Explanation: An ACME agent attempted to call an ACME callback routine
from an invalid ACME agent callout routine, or the requested SYS$ACM[W]
service is not supported.
User Action: Choose the proper role-based action as follows:

ACME Programmer:

This message indicates a programming error. Review the programming of
your ACME agent.

ACM Client Programmer:

Revise the SYS$ACM[W] service request to fix the error.

UNSUPREVLVL, unsupported structure revision level
Facility: ACME, ACME Callback Codes
Other language symbol: ACME$_UNSUPREVLVL
Severity: Error
Explanation: A data structure revision level is incorrect.
User Action: Choose the proper role-based action as follows:

System Manager:

Revisit the documentation for the ACME agent that logged this problem,
paying particular attention to version compatibility issues.

ACME Programmer:

Unless you have written your ACME agent to adapt to multiple structure
revision levels, use ACME callback routine ACME$CB_SEND_LOGFILE
to record circumstances of this failure and then return status code
ACME$_CONTACTSYSMGR to the ACM dispatcher.

8–18 ACME Status Codes

ACME Status Codes
8.7 SYS$ACM[W] Codes

8.7 SYS$ACM[W] Codes
The SYS$ACM[W] system service can return these errors to indicate an improper
call by the ACM client or an internal failure in communications among the
SYS$ACM[W] system service, the ACME server main image, and one or more
ACME agents. These messages represent conditions detected outside the scope of
the ACME server process, and therefore are not written to the ACME$SERVER
log file. For more information about coding the ACM client, refer to the HP
OpenVMS Programming Concepts Manual and the HP OpenVMS System Services
Reference Manual.

DOIUNAVAILABLE, the domain of interpretation is not processing requests
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_DOIUNAVAILABLE
Severity: Error
Explanation: The DOI specified as a target in the call to the SYS$ACM[W]
system service is not currently available.
User Action: Choose the proper role-based action as follows:

System Manager:

Enable the ACME agent that supports the DOI, or notify users that the DOI
is unavailable.

ACM Client Programmer:

If your client program requires this DOI, contact the system manager.

INVALIDCTX, context argument does not match request parameters
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_INVALIDCTX
Severity: Error
Explanation: A subsequent call to the SYS$ACM[W] system service did not
contain the same function code and function modifiers as the original call,
or it did not contain the proper item list as specified in the communications
buffer itemset.
User Action: Choose the proper role-based action as follows:

ACM Client Programmer:

Review the programming of your ACM client program, particularly where it
evaluates the itemset within the context block and prepares the item list for
the next call to SYS$ACM[W]. Also ensure that other parameters required to
remain constant across successive SYS$ACM[W] do not vary.

INVALIDTLV, invalid or corrupted TLV
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_INVALIDTLV
Severity: Error
Explanation: There was an internal communications error between the
SYS$ACM[W] system service and the ACME server main image.
User Action: Choose the proper role-based action as follows:

System Manager:

ACME Status Codes 8–19

ACME Status Codes
8.7 SYS$ACM[W] Codes

Contact an HP support representative.

INVITMSEQ, invalid item code sequence
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_INVITMSEQ
Severity: Error
Explanation: The SYS$ACM[W] system service encountered an invalid
combination of query type and data item codes.
User Action: Choose the proper role-based action as follows:

ACM Client Programmer:

Check that your call to SYS$ACM[W] using the query function pairs the
type and data item codes. ACME$_QUERY_KEY_TYPE must be followed by
ACME$_QUERY_KEY_VALUE, and ACME$_QUERY_TYPE must be followed
by ACME$_QUERY_DATA.

INVPERSONA, persona does not exist or handle is invalid
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_INVPERSONA
Severity: Error
Explanation: The ACME$_PERSONA_HANDLE_IN item has an incorrect
value.
User Action: Choose the proper role-based action as follows:

ACM Client Programmer:

Review the code your client program uses to provide personas to the
SYS$ACM[W] system service.

INVREQUEST, parameter is invalid within the context of the request
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_INVREQUEST
Severity: Error
Explanation: A call to the SYS$ACM[W] system service provided an invalid
combination of function codes, function modifiers, and item codes.
User Action: Choose the proper role-based action as follows:

ACM Client Programmer:

Review the arguments provided to the SYS$ACM[W] system service to
determine which ones are causing the error.

NOACMECTX, no ACME context is active
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_NOACMECTX
Severity: Error
Explanation: In initial request processing, the SYS$ACM[W] system service
encountered an ACME-specific item code when no ACME context had been
established.
User Action: Choose the proper role-based action as follows:

ACM Client Programmer:

8–20 ACME Status Codes

ACME Status Codes
8.7 SYS$ACM[W] Codes

Verify that your dialogue mode requests are properly sequenced. Establish
an ACME context by specifying one of the following item codes: ACME$_
CONTEXT_ACME_ID, ACME$_CONTEXT_ACME_NAME, ACME$_
TARGET_DOI_ID, or ACME$_TARGET_DOI_NAME.

NOCREDENTIALS, no credentials were issued
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_NOCREDENTIALS
Severity: Error
Explanation:

Credentials were not issued.
User Action: Choose the proper role-based action as follows:

System Manager:

Review the ACME$SERVER log to look for a failure in ACME agent
processing. If ACME$SERVER is not defined as a logical name, this file will
be named SYS$MANAGER:ACME$SERVER.LOG.

NOPRIV, insufficient privileges for the requested operation
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_NOPRIV
Severity: Error
Explanation: The calling process does not possess the necessary privileges
to issue the requested SYS$ACM[W] service or perform the requested SET
SERVER ACME operation.
User Action: Choose the proper role-based action as follows:

System Manager:

Evaluate whether privileges should be granted if this is an exceptional
circumstance.

ACM Client Programmer:

Review the arguments provided to the SYS$ACM[W] system service to
determine which ones are causing the status code.

NOSUCHDOI, the domain of interpretation does not exist
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_NOSUCHDOI
Severity: Error
Explanation: An ACME agent supporting the DOI specified as a target in
the call to the SYS$ACM[W] system service has not been loaded.
User Action: Choose the proper role-based action as follows:

End User:

Contact your system manager and provide information about the type of
operation and the principal name used, and indicate the system component or
application used when this error was received.

System Manager:

Load the ACME agent that supports the DOI, or notify users that the service
is unavailable.

ACME Status Codes 8–21

ACME Status Codes
8.7 SYS$ACM[W] Codes

NOTARGETCRED, specified credentials do not exist
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_NOTARGETCRED
Severity: Error
Explanation: The specified type of target credentials do not exist. The
persona returned by the SYS$ACM[W] service does not contain credentials
for the specified domain of interpretation (DOI).
User Action: Choose the proper role-based action as follows:

System Manager:

Review your configuration of various ACME agents and their matching
persona executive images to ensure that the proper credentials are
available.

OPINCOMPL, operation incomplete; interaction required
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_OPINCOMPL
Severity: Warning
Explanation: A programming error has occurred. The caller of the
SYS$ACM[W] system service must perform more dialogue processing to
complete the request.
User Action: Choose the proper role-based action as follows:

ACM Client Programmer:

Review your dialogue mode calling sequence to ensure that your client
program continues to call SYS$ACM[W] until SYS$ACM[W] returns a status
other than OPINCOMPL.

THREADERROR, thread RTL error; status = ’hex-number’
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_THREADERROR
Severity: Fatal
Explanation:

The ACME server main image encountered a threading error.
User Action: Choose the proper role-based action as follows:

System Manager:

Contact an HP support representative.

TIMEOUT, requested operation has timed out
Facility: ACME, ACME SYS$ACM[W] Codes
Other language symbol: ACME$_TIMEOUT
Severity: Error
Explanation: ACME server process operations took too long.
User Action: Choose the proper role-based action as follows:

End User:

8–22 ACME Status Codes

ACME Status Codes
8.7 SYS$ACM[W] Codes

Contact your system manager and provide information about the type of
operation and the principal name used, and indicate the system component or
application used when this error was received.

System Manager:

Consult the vendor documentation to evaluate the range of possible timeout
configuration options for the various ACME agents.

ACME Programmer:

Consider whether programming changes can reduce the time required.

8.8 SET SERVER and SHOW SERVER Codes
These status codes can be returned by the following commands:

• SET SERVER ACME

• SHOW SERVER ACME

Since these commands can be issued only by users with particular privileges,
these messages presume the user receiving them has privileges to read the
ACME$SERVER log.

ACME agents never deal with these status codes.

ACTIVE, authentication server is already active
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_ACTIVE
Severity: Error
Explanation: The authentication server process (ACME_SERVER) was
already active when an attempt was made to start the server.

This message can also occur during an attempt to disable the server for
reconfiguration. Attempts to disable the server result in this error until the
server enters the disabled state.
User Action: Choose the proper role-based action as follows:

System Manager:

Reconsider the order in which you invoke SET SERVER and SHOW SERVER
ACME commands.

AGENTDBFULL, attempted to register more than the number of agents allowed
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_AGENTDBFULL
Severity: Error
Explanation: An attempt was made to configure more than the limit of eight
(8) ACME agents (including the VMS ACME agent).
User Action: Choose the proper role-based action as follows:

System Manager:

Shut down the ACME server. Then restart the ACME server and load your
choice of no more than seven (7) ACME agents.

ACME Status Codes 8–23

ACME Status Codes
8.8 SET SERVER and SHOW SERVER Codes

AGENTLOADFAIL, agent image load failure
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_AGENTLOADFAIL
Severity: Error
Explanation: An error occurred while loading an ACME agent. This is
usually a configuration error. Refer to the ACME$SERVER error log file for
more information. If ACME$SERVER is not defined as a logical name, this
file will be named SYS$MANAGER:ACME$SERVER.LOG.
User Action: Choose the proper role-based action as follows:

System Manager:

Identify the offending ACME agent and take corrective action to eliminate
the error. Consult the author or vendor of the ACME agent being used. If the
agent was provided by HP, contact an HP support representative.

AUTHDOWN, authentication server is unavailable
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_AUTHDOWN
Severity: Fatal
Explanation: The ACME server is not available.
User Action: Choose the proper role-based action as follows:

System Manager:

Restart the ACME server.

BUSY, authentication server is busy
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_BUSY
Severity: Error
Explanation: The ACME server process is too busy to handle the command.
An authentication request may be in progress.
User Action: Choose the proper role-based action as follows:

System Manager:

Wait and retry the command. If the command still fails with the BUSY
status, issue a SHOW SERVER ACME command and check the server state
in the resulting display.

If the server state indicates that there are requests in progress, and you want
to disable or shut down the server right away, you can specify /CANCEL with
/DISABLE or /EXIT to cancel all pending requests so that your command will
be processed immediately. For example:

$ SET SERVER ACME /DISABLE /CANCEL

If you want to allow all requests currently in progress to complete (but accept
no new requests) when you suspend, disable, or shut down the server, you can
use the /WAIT qualifier with /EXIT, /DISABLE, or /SUSPEND. For example,
the following command suspends new requests to the server but allows
currently pending requests to complete:

$ SET SERVER ACME /SUSPEND /WAIT

8–24 ACME Status Codes

ACME Status Codes
8.8 SET SERVER and SHOW SERVER Codes

If it takes too long for the pending requests to complete, you can press Ctrl/Y
to abort this command and enter a command that specifies /CANCEL.

Note

Any new requests are queued, but they are not dispatched to the server
until the server resumes operation.

DUPACME, an agent with the specified name has already been loaded
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_DUPACME
Severity: Error
Explanation: An attempt was made to configure an ACME agent with the
name of a previously configured ACME agent. This error typically results
from trying to configure the same ACME agent twice.
User Action: Choose the proper role-based action as follows:

System Manager:

Use the SHOW SERVER ACME command and consult your records and
command procedures to correct the attempted misconfiguration.

ERRCLOSELOGFIL, error closing log file; status = ’hex-number’
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_ERRCLOSELOGFIL
Severity: Error
Explanation: The ACME$SERVER log file could not be closed.
User Action: Choose the proper role-based action as follows:

System Manager:

Examine the error status. If the error is not due to a device-off-line condition
or another correctable situation, contact an HP support representative.

ERROPENCONFIGSFIL, error opening configuration staging file; status = ’hex_
number’
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_ERROPENCONFIGSFIL
Severity: Error
Explanation: The ACME server could not open the ACME$SERVER_
CONFIG configuration logging file upon startup. Automatic reconfiguration
on restart will not be possible.
User Action: Choose the proper role-based action as follows:

System Manager:

Look at the value of the logical name ACME$SERVER_CONFIG to see
if it points to a nonexistent directory or a full disk. If ACME$SERVER_
CONFIG is not defined as a logical name, the file will be named
SYS$SYSTEM:ACME$SERVER_CONFIG.TMP. Correct the problem and
restart the ACME server. If you do not correct the problem, the server
will continue to run but it will not be able to recover the server’s previous

ACME Status Codes 8–25

ACME Status Codes
8.8 SET SERVER and SHOW SERVER Codes

configuration state if you subsequently restart the server. You will have to
establish the state explicitly.

ERROPENLOGFIL, error opening log file; status = ’hex-number’
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_ERROPENLOGFIL
Severity: Error
Explanation: The ACME$SERVER log file could not be opened.
User Action: Choose the proper role-based action as follows:

System Manager:

Look at the value of the logical name ACME$SERVER to see if it points to a
nonexistent directory or a full disk.

ERROPENRESTARTFIL, error opening configuration restart file; status = ’hex_
number’
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_ERROPENRESTARTFIL
Severity: Error
Explanation: The ACME server was unable to create the ACME$SERVER_
RESTART file during server rundown. Automatic server reconfiguration on
restart will not be possible.
User Action: Choose the proper role-based action as follows:

System Manager:

Look at the value of the logical name ACME$SERVER_RESTART to see
if it points to a nonexistent directory or a full disk. If ACME$SERVER_
RESTART is not defined as a logical name, the file will be named
SYS$SYSTEM:ACME$SERVER_RESTART.DAT. If the file cannot be
created, the server will restart but it may not be able to recover its previous
configuration state. You may have to establish the state explicitly.

ERRWRITELOGFIL, error writing log file; status = ’hex-number’
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_ERRWRITELOGFIL
Severity: Error
Explanation: The ACME$SERVER log file could not be written.
User Action: Choose the proper role-based action as follows:

System Manager:

Check the status value displayed in the message to learn details about the
failure; then take the appropriate action.

8–26 ACME Status Codes

ACME Status Codes
8.8 SET SERVER and SHOW SERVER Codes

FAILURE, operation failure; if logging is enabled, see details in the
ACME$SERVER log file
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_FAILURE
Severity: Error
Explanation: The ACME server or an ACME agent encountered a failure
not due to user action.
User Action: Choose the proper role-based action as follows:

System Manager:

If logging is enabled, look in the ACME$SERVER log file for a detailed
description. If ACME$SERVER is not defined as a logical name, the log file
will be named SYS$MANAGER:ACME$SERVER.LOG.

Note

By default, the ACME server does not start up with logging enabled. That
is, the SET SERVER ACME /START command does not enable logging.
To enable logging and create a log file, you must execute the command
SET SERVER ACME /LOG. Note that the /LOG qualifier is included in
the system startup procedure used to start the ACME server.

ACME Programmer:

Return this code from your ACME agent control callout routines only
after using ACME callback routine ACME$CB_SEND_LOGFILE to record
circumstances of the failure.

INACTIVE, authentication server is not active
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_INACTIVE
Severity: Error
Explanation: The authentication server process (ACME_SERVER) was not
active when an attempt was made to stop, disable, or configure the server.
User Action: Choose the proper role-based action as follows:

System Manager:

Reconsider the order in which you invoke SET SERVER and SHOW SERVER
ACME commands.

INCOMPATSTATE, server state is incompatible with requested operation
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_INCOMPATSTATE
Severity: Error
Explanation: The ACME server process cannot process this request in its
current state.
User Action: Choose the proper role-based action as follows:

System Manager:

Reconsider the order in which you invoke SET SERVER and SHOW SERVER
ACME commands.

ACME Status Codes 8–27

ACME Status Codes
8.8 SET SERVER and SHOW SERVER Codes

NOAGENTINIT, no agent initialization routine found
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_NOAGENTINIT
Severity: Error
Explanation: The specified ACME agent could not be loaded because the
ACME agent does not contain an agent initialization routine.
User Action: Choose the proper role-based action as follows:

System Manager:

Identify the offending ACME agent and take corrective action to eliminate
the error. Consult the author or vendor of the ACME agent being used. If the
agent was provided by HP, contact an HP support representative.

NOTSTARTED, authentication server failed to start
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_NOTSTARTED
Severity: Error
Explanation: The ACME server failed to start in response to the command.
User Action: Choose the proper role-based action as follows:

System Manager:

Examine the server log (file SYS$MANAGER:ACME$SERVER.LOG by
default or as defined by the ACME$SERVER logical name) to determine
what error condition prevented the server from completing its startup. If the
server process could not be started at all (there is no server log), check the
accounting file to determine the process termination status.

Take corrective action to resolve the problem and restart the server.

SERVEREXIT, ACME_SERVER exiting
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_SERVEREXIT
Severity: Informational
Explanation: The ACME server has been terminated by the command.
User Action: Choose the proper role-based action as follows:

System Manager:

Proceed to your next planned activity.

SERVERSTART, ACME_SERVER starting
Facility: ACME, ACME SET SERVER and SHOW SERVER Codes
Other language symbol: ACME$_SERVERSTART
Severity: Informational
Explanation: The ACME server has been started by the command.
User Action: Choose the proper role-based action as follows:

System Manager:

Proceed to configure the ACME server.

8–28 ACME Status Codes

9
ACME Callback Routines

This chapter lists the ACME callback routines. You can call any of these routines
from any ACME callout routine you implement (except where noted). Use ACME
callback routines for the following functions:

• Managing ACME-specific resources

• Managing AST contexts

• Managing virtual memory

• Reporting status to the ACME server main image

• Reporting status to the operations staff

• Communicating with the ACM client process

• Coordinating activities with other ACME agents

The following sections provide tips for using ACME callback routines.

9.1 Managing ACME-Specific Resources
Use the following callback routines to manage ACME-specific resources:

• ACME$CB_ACQUIRE_RESOURCE

• ACME$CB_RELEASE_RESOURCE

9.2 Managing AST Contexts
Within an ACME agent, never specify an address in your code as an AST handler
when calling an OpenVMS system service or intervening library routine (for
example, an SNA access routine).

Instead, call one of the four following acquire routines to obtain the AST handler
and AST context values to pass to the system service or intervening library
routine:

• ACME$CB_ACQUIRE_ACME_AST

• ACME$CB_ACQUIRE_ACME_RMSAST

• ACME$CB_ACQUIRE_WQE_AST

• ACME$CB_ACQUIRE_WQE_RMSAST

The ‘‘ACME’’ entry points return an AST handler and AST context value suitable
for general use throughout the callout routines of an ACME agent, while the
‘‘WQE’’ entry points return an AST handler and AST context value only useful
within the processing context of a single request.

ACME Callback Routines 9–1

ACME Callback Routines
9.2 Managing AST Contexts

The ‘‘_AST’’ entry points return a quadword AST context that can be passed as
the ASTPRM parameter to normal system services, even from 64-bit registers.
Only the low-order 32 bits are actually meaningful.

The ‘‘_RMSAST’’ entry points return a longword AST context that can be stored
in the ‘‘$L_CTX’’ field of an RMS RAB or FAB.

In the event your ACME determines that the operating system will not deliver an
AST, such as when certain system services return a synchronous status code, you
must release the AST context you received, using one of the following callback
routines:

• ACME$CB_RELEASE_ACME_AST

• ACME$CB_RELEASE_ACME_RMSAST

• ACME$CB_RELEASE_WQE_AST

• ACME$CB_RELEASE_WQE_RMSAST

When an AST is delivered that automatically releases the associated AST context,
your ACME agent should not make a call to the release routine.

9.3 Managing Virtual Memory
Your ACME agent must not stall during operations and must return to its caller,
if it needs to wait for external events. Thus, use stack-based storage locations for
short periods of time. Allocate heap-based storage for data that must be accessed
on a subsequent invocation. You must allocate and deallocate that storage with
the following four callbacks:

• ACME$CB_ALLOCATE_ACME_VM

• ACME$CB_ALLOCATE_WQE_VM

• ACME$CB_DEALLOCATE_ACME_VM

• ACME$CB_DEALLOCATE_WQE_VM

The ‘‘ACME’’ entry points allocate and deallocate memory suitable for general use
throughout the callout routines of an ACME agent, while the ‘‘WQE’’ entry points
allocate and deallocate memory only useful within the processing context of a
single request.

9.4 Reporting Status to the ACME Server Main Image
Use the following callback routines to report general information about your
ACME agent to the ACME server main image:

• ACME$CB_REPORT_ACTIVITY

• ACME$CB_REPORT_ATTRIBUTES

9.5 Reporting Status to the Operations Staff
At more secure sites, only members of the security staff are allowed to enable
their terminals as security operator terminals, and ordinary operators do not
have the privilege to read the ACME server log. Use the following callback
routines to report error or tracing information to security staff or operators,
depending on the site policy for the handling of such information.

• ACME$CB_SEND_LOGFILE

9–2 ACME Callback Routines

ACME Callback Routines
9.5 Reporting Status to the Operations Staff

• ACME$CB_SEND_OPERATOR

9.6 Communicating with the ACM Client Process
Use the following ACME callback routines to provide final output to the ACM
client program and also to provide intermediate output and solicit intermediate
input:

• ACME$CB_CANCEL_DIALOGUE

• ACME$CB_FORMAT_DATE_TIME

• ACME$CB_ISSUE_CREDENTIALS

• ACME$CB_SET_2ND_STATUS

• ACME$CB_SET_ACME_STATUS

• ACME$CB_SET_LOGON_FLAG

• ACME$CB_SET_LOGON_STATS_DOI

• ACME$CB_SET_LOGON_STATS_VMS

• ACME$CB_QUEUE_DIALOGUE

• ACME$CB_SET_OUTPUT_ITEM

9.7 Coordinating Activities with Other ACME Agents
ACME agents use the following ACME callback routines to decide which ACME
agent will handle various processing steps:

• ACME$CB_SET_DESIGNATED_DOI

• ACME$CB_SET_PHASE_EVENT

• ACME$CB_SET_WQE_FLAG

• ACME$CB_SET_WQE_PARAMETER

9.8 Callback Routine Reference Section
The rest of this chapter describes each ACME callback routine in detail. The
routines are presented in alphabetical order.

Note

Callback routines that specify a return code of ACME$_NORMAL may
also return SS$_NORMAL under certain situations.

ACME Callback Routines 9–3

ACME Callback Routines
AST_ROUTINE

AST_ROUTINE

Template for your AST routine. Use this as the template for your AST_ROUTINE
provided to ACME callout routines.

Format

AST_ROUTINE kcb_vector, acme_context, wqe, request_context, ast_context,
ast_parameter

Arguments

kcb_vector
OpenVMS usage: ACM_CALLBACK_VECTOR
type: acmekcv
access: read only
mechanism: reference

Address of KCB vector

acme_context
OpenVMS usage: QUADWORD_UNSIGNED
type: acmewqe
access: modify
mechanism: reference
mechanism:

Address of ACME context quadword

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: read only
mechanism: reference

Address of the work queue entry

request_context
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of request context quadword

ast_context
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of AST context

ast_parameter
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only

9–4 ACME Callback Routines

ACME Callback Routines
AST_ROUTINE

mechanism: reference

Address of AST parameter

Description

This routine does whatever is appropriate for your ACME agent on completion of
I/O. Unlike AST routines called by system services, this AST routine is called at
non-AST level.

Return Values

None.

ACME Callback Routines 9–5

ACME Callback Routines
ACME$CB_ACQUIRE_RESOURCE

ACME$CB_ACQUIRE_RESOURCE

Acquire an ACME-specific resource (access via ACMEKCV$CB_ACQUIRE_
RESOURCE).

Retrieves an ACME-specific resource your ACME agent had previously released
to the ACME server main image.

Format

ACME$CB_ACQUIRE_RESOURCE wqe, resource_type, resource_value

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

ACME$_WAITRESOURCE

Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

resource_type
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value

(ACME defined) type of ACME-specific resource to retrieve

resource_value
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: write only
mechanism: reference

Address of quadword to receive the value of the ACME-specific resource allocated

9–6 ACME Callback Routines

ACME Callback Routines
ACME$CB_ACQUIRE_RESOURCE

Description

An ACME-specific resource is represented by a quadword value that your ACME
originally releases to the ACME server main image and which your ACME can
later acquire from the ACME server main image. In creating each ACME-specific
resource you specify a 32-bit ACME-specific resource type number of your own
choosing.

If you create only one ACME-specific resource with a given ACME-specific
resource type, you can use that ACME-specific resource with the code ACME$_
WAITRESOURCE to create a mutual exclusion semaphore.

If you create multiple ACME-specific resources with a given ACME-specific
resource type, those ACME-specific resources can be used with the code ACME$_
WAITRESOURCE to limit the number of simultaneous activities of a particular
type. The ACME-specific resource value associated with each ACME-specific
resource is chosen by your ACME when it first releases the ACME-specific
resource to the ACME server main image. Thus, you can use that ACME- specific
resource value to represent the address of a data structure in memory, a value in
a hash table, a record in a disk file, or any similar reminder.

If you have provided any ACME-specific resources to the ACME server main
image, you must perform this callback for each at least by the end of the next
invocation of ACME$CO_FINISH.

If your ACME agent returns ACME$_WAITRESOURCE and then is called back
again, it is not guaranteed that the next attempt to acquire the ACME-specific
resource will succeed. In addition to the request that gives up an ACME-specific
resource, there could be multiple requests being processed that are waiting for the
ACME-specific resource. When a single instance of the ACME-specific resource is
freed, all requests waiting for it may become active, but only one will be able to
get the ACME-specific resource.

Related Callbacks

ACME$CB_RELEASE_RESOURCE

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Resource has been acquired and removed from
the list.

ACME$_
RESOURCENOTAVAIL

Requested ACME-specific resource is not
available.

ACME$_NULLVALUE Resource type of NULL was specified and is
invalid.

ACME Callback Routines 9–7

ACME Callback Routines
ACME$CB_ACQUIRE_ACME_AST

ACME$CB_ACQUIRE_ACME_AST

Acquire an ACME-wide AST context (access via ACMEKCV$CB_ACQUIRE_
ACME_AST).

Returns a 64-bit AST context for use between diverse requests.

Format

ACME$CB_ACQUIRE_ACME_AST wqe, ast_handler, ast_context, ast_routine,
ast_parameter

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

ACME$_WAITAST

Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ast_handler
OpenVMS usage: AST_PROCEDURE
type: procedure value
access: write only
mechanism: reference

Address of 64-bit pointer to receive AST handler interceptor procedure address

ast_context
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: write only
mechanism: reference

Address of quadword to receive the AST parameter that should be passed to
system services using this AST context

9–8 ACME Callback Routines

ACME Callback Routines
ACME$CB_ACQUIRE_ACME_AST

ast_routine
OpenVMS usage: AST_PROCEDURE
type: procedure value
access: read only
mechanism: call without stack unwinding

Address of ACME’s AST service routine to invoke upon AST delivery

ast_parameter
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of longword containing ACME specific value to pass to the ACME’s AST
service routine upon AST delivery

Description

This callback creates an AST context that contains the address of the AST routine
and AST parameter specified by your ACME agent. In the AST handler and AST
context locations your ACME agent specifies, this callback stores the values your
ACME agent should specify for ASTADR and ASTPRM in calling a system service
or library routine.

Related Callbacks

ACME$CB_RELEASE_ACME_AST

Alternative Callbacks

ACME$CB_ACQUIRE_ACME_RMSAST
ACME$CB_ACQUIRE_WQE_AST
ACME$CB_ACQUIRE_WQE_RMSAST

Return Values

ACME$_NORMAL AST context has been established.
ACME$_INVPARAMETER No AST routine was specified.
other Any failure condition from allocating memory.

ACME Callback Routines 9–9

ACME Callback Routines
ACME$CB_ACQUIRE_ACME_RMSAST

ACME$CB_ACQUIRE_ACME_RMSAST

Acquire an ACME-Wide RMS ACME-wide AST context (access via
ACMEKCV$CB_ACQUIRE_ACME_RMSAST).

Returns a 32-bit AST context for use between diverse requests.

Format

ACME$CB_ACQUIRE_ACME_RMSAST wqe, ast_handler, ast_context ast_routine,
ast_parameter

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

ACME$_WAITAST

Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ast_handler
OpenVMS usage: AST_PROCEDURE
type: procedure value
access: write only
mechanism: reference

Address of 64-bit pointer to receive AST handler (interceptor procedure) address

ast_context
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: write only
mechanism: reference

Address of longword to receive the AST parameter that should be passed to RMS
services using this AST context

9–10 ACME Callback Routines

ACME Callback Routines
ACME$CB_ACQUIRE_ACME_RMSAST

ast_routine
OpenVMS usage: AST_PROCEDURE
type: procedure value
access: read only
mechanism: call without stack unwinding

Address of ACME’s AST service routine to invoke upon AST delivery

ast_parameter
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Address of longword containing ACME-specific value to pass to the ACME’s AST
service routine upon AST delivery

Description

This callback creates an AST context that contains the address of the AST routine
and AST parameter specified by your ACME agent. In the AST handler and AST
context locations your ACME agent specifies, this callback stores the values your
ACME agent should specify for ASTADR and ASTPRM in calling a system service
or library routine.

Related Callbacks

ACME$CB_RELEASE_ACME_RMSAST

Alternative Callbacks

ACME$CB_ACQUIRE_ACME_AST
ACME$CB_ACQUIRE_WQE_AST
ACME$CB_ACQUIRE_WQE_RMSAST

Return Values

ACME$_NORMAL AST context has been established.
ACME$_INVPARAMETER No AST routine was specified.
other Any failure condition from allocating memory.

ACME Callback Routines 9–11

ACME Callback Routines
ACME$CB_ACQUIRE_WQE_AST

ACME$CB_ACQUIRE_WQE_AST

Acquire a request-specific ACME-wide AST context (access via ACMEKCV$CB_
ACQUIRE_WQE_RMSAST).

Returns a 64-bit AST context for use within a single request.

Format

ACME$CB_ACQUIRE_WQE_AST wqe, ast_handler, ast_context, ast_routine,
ast_parameter

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

ACME$_WAITAST

Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ast_handler
OpenVMS usage: AST_PROCEDURE
type: procedure value
access: write only
mechanism: reference

Address of 64-bit pointer to receive AST handler (interceptor procedure) address

ast_context
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: write only
mechanism: reference

Address of quadword to receive the AST parameter that should be passed to
system services using this AST context

9–12 ACME Callback Routines

ACME Callback Routines
ACME$CB_ACQUIRE_WQE_AST

ast_routine
OpenVMS usage: AST_PROCEDURE
type: procedure value
access: read only
mechanism: call without stack unwinding

Address of ACME’s AST service routine to invoke upon AST delivery

ast_parameter
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of quadword containing ACME specific value to pass to the ACME’s AST
service routine upon AST delivery

Description

This callback creates an AST context that contains the address of the AST routine
and AST parameter specified by your ACME agent. In the AST handler and AST
context locations your ACME agent specifies, this callback stores the values your
ACME agent should specify for ASTADR and ASTPRM in calling a system service
or library routine.

Specifying an AST routine address of zero is not recommended and may not be
supported in the future.

Related Callbacks

ACME$CB_RELEASE_WQE_AST

Alternative Callbacks

ACME$CB_ACQUIRE_ACME_AST
ACME$CB_ACQUIRE_ACME_RMSAST
ACME$CB_ACQUIRE_WQE_RMSAST

Return Values

ACME$_NORMAL AST context has been established.
ACME$_UNSUPPORTED Unsupported execution context.
other Any failure condition from allocating memory.

ACME Callback Routines 9–13

ACME Callback Routines
ACME$CB_ACQUIRE_WQE_RMSAST

ACME$CB_ACQUIRE_WQE_RMSAST

Acquire a request-specific RMS ACME-wide AST context (access via
ACMEKCV$CB_ACQUIRE_WQE_RMSAST).

Returns a 32-bit AST context for use within a single request.

Format

ACME$CB_ACQUIRE_WQE_RMSAST wqe, ast_handler, ast_context ast_routine,
ast_parameter

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

ACME$_WAITAST

Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ast_handler
OpenVMS usage: AST_PROCEDURE
type: procedure value
access: write only
mechanism: reference

Address of 64-bit pointer to receive AST handler interceptor procedure) address

ast_context
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: write only
mechanism: reference

Address of longword to receive the AST parameter that should be passed to RMS
services using this AST context

9–14 ACME Callback Routines

ACME Callback Routines
ACME$CB_ACQUIRE_WQE_RMSAST

ast_routine
OpenVMS usage: AST_PROCEDURE
type: procedure value
access: read only
mechanism: call without stack unwinding

Address of ACME’s AST service routine to invoke upon AST delivery

ast_parameter
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Address of longword containing ACME specific value to pass to the ACME’s AST
service routine upon AST delivery

Description

This callback creates an AST context that contains the address of the AST routine
and AST parameter specified by your ACME agent. In the AST handler and AST
context locations your ACME agent specifies, this callback stores the values your
ACME agent should specify for ASTADR and ASTPRM in calling a system service
or library routine.

Specifying an AST routine address of zero is not recommended and may not be
supported in the future.

Related Callbacks

ACME$CB_RELEASE_WQE_RMSAST

Alternative Callbacks

ACME$CB_ACQUIRE_ACME_AST
ACME$CB_ACQUIRE_ACME_RMSAST
ACME$CB_ACQUIRE_WQE_AST

Return Values

ACME$_NORMAL AST context has been established.
ACME$_UNSUPPORTED Unsupported execution context.
other Any failure condition from allocating memory.

ACME Callback Routines 9–15

ACME Callback Routines
ACME$CB_ALLOCATE_ACME_VM

ACME$CB_ALLOCATE_ACME_VM

Allocate ACME-wide virtual memory (access via ACMEKCV$CB_ALLOCATE_
ACME_VM).

Allocates virtual memory for use between diverse requests.

Format

ACME$CB_ALLOCATE_ACME_VM wqe, segment_size, segment_address

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

segment_size
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Number of bytes to allocate

segment_address
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: write only
mechanism: reference

Address of a longword to receive the address of the memory allocated by this
procedure.

9–16 ACME Callback Routines

ACME Callback Routines
ACME$CB_ALLOCATE_ACME_VM

Description

You can retain memory you allocate with this call until the next invocation of
ACME$CO_AGENT_SHUTDOWN and you can access it from any ACME callout
routine in your ACME agent.

Related Callbacks

ACME$CB_DEALLOCATE_ACME_VM

Alternative Callbacks

ACME$CB_ALLOCATE_WQE_VM

Return Values

ACME$_NORMAL Memory has been allocated.
other Any failure condition from allocating memory.

ACME Callback Routines 9–17

ACME Callback Routines
ACME$CB_ALLOCATE_WQE_VM

ACME$CB_ALLOCATE_WQE_VM

Allocate request-specific virtual memory (access via ACMEKCV$CB_ALLOCATE_
WQE_VM).

Allocates virtual memory for use within a single request.

Format

ACME$CB_ALLOCATE_WQE_VM wqe, segment_size, segment_address

Valid from ACME Callouts

All request processing routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

segment_size
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Number of bytes to allocate

segment_address
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: write only
mechanism: reference

Address of a longword to receive the address of the memory allocated by this
procedure.

9–18 ACME Callback Routines

ACME Callback Routines
ACME$CB_ALLOCATE_WQE_VM

Description

You can only retain memory you allocate with this call for the duration of a
single request, and you can only access it from an ACME callout routine that
is servicing this request for which it was allocated. In the case of ACME$CO_
EVENT or ACME$CO_QUERY, this means you must deallocate the memory
before your final return to the ACM dispatcher.

Related Callbacks

ACME$CB_DEALLOCATE_WQE_VM

Alternative Callbacks

ACME$CB_ALLOCATE_ACME_VM

Return Values

ACME$_NORMAL Memory has been allocated.
ACME$_UNSUPPORTED Unsupported execution context.
other Any failure condition from allocating memory.

ACME Callback Routines 9–19

ACME Callback Routines
ACME$CB_CANCEL_DIALOGUE

ACME$CB_CANCEL_DIALOGUE

Cancel pending dialogue items queued by ACME$CB_QUEUE_DIALOGUE
(access via ACMEKCV$CB_CANCEL_DIALOGUE).

Cancels dialogue items that have been queued but not yet transmitted to the
ACM client process.

Format

ACME$CB_CANCEL_DIALOGUE wqe

Valid from ACME Callouts

Authenticate Principal and Change Password routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

Description

Until your ACME callout routine returns the code ACME$_
PERFORMDIALOGUE, dialogue information you provide with ACME$CB_
QUEUE_DIALOGUE is retained by the ACME server main image and not
transmitted to the ACM client process. This ACME callback routine ACME$CB_
CANCEL_DIALOGUE causes that untransmitted dialogue information to be
discarded and not transmitted to the ACM client process.

Related Callbacks

ACME$CB_QUEUE_DIALOGUE

Alternative Callbacks

None.

9–20 ACME Callback Routines

ACME Callback Routines
ACME$CB_CANCEL_DIALOGUE

Return Values

ACME$_NORMAL Dialogue entries have been cancelled.
ACME$_UNSUPPORTED Unsupported execution context.

ACME Callback Routines 9–21

ACME Callback Routines
ACME$CB_DEALLOCATE_ACME_VM

ACME$CB_DEALLOCATE_ACME_VM

Deallocate ACME-wide virtual memory (access via ACMEKCV$CB_
DEALLOCATE_ACME_VM).

Deallocates virtual memory for use between diverse requests.

Format

ACME$CB_DEALLOCATE_ACME_VM wqe, segment_size, segment_address

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

segment_size
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Number of bytes to deallocate

segment_address
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of first byte to deallocate

Description

You can use this ACME callback routine during any ACME callout routine to
deallocate memory allocated with ACME$CB_ALLOCATE_ACME_VM. You must
perform this deallocation at least by the end of the next invocation of ACME$CO_
AGENT_SHUTDOWN.

9–22 ACME Callback Routines

ACME Callback Routines
ACME$CB_DEALLOCATE_ACME_VM

Related Callbacks

ACME$CB_ALLOCATE_ACME_VM

Alternative Callbacks

ACME$CB_DEALLOCATE_WQE_VM

Return Values

ACME$_NORMAL Memory has been released.
other Any failure condition from deallocating memory.

ACME Callback Routines 9–23

ACME Callback Routines
ACME$CB_DEALLOCATE_WQE_VM

ACME$CB_DEALLOCATE_WQE_VM

Deallocate request-specific virtual memory (access via ACMEKCV$CB_
DEALLOCATE_WQE_VM).

Deallocates virtual memory for use within a single request.

Format

ACME$CB_DEALLOCATE_WQE_VM wqe, segment_size, segment_address

Valid from ACME Callouts

All request processing routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

segment_size
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Number of bytes to deallocate

segment_address
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of first byte to deallocate

Description

You can use this ACME callback routine during ACME callout routines associated
with the same request from which the memory was allocated with ACME$CB_
ALLOCATE_ACME_VM. You must perform this deallocation at least by the end
of the corresponding invocation of ACME$CO_FINISH.

9–24 ACME Callback Routines

ACME Callback Routines
ACME$CB_DEALLOCATE_WQE_VM

Related Callbacks

ACME$CB_ALLOCATE_WQE_VM

Alternative Callbacks

ACME$CB_DEALLOCATE_ACME_VM

Return Values

ACME$_NORMAL Memory has been released.
other Any failure condition from deallocating memory.

ACME Callback Routines 9–25

ACME Callback Routines
ACME$CB_FORMAT_DATE_TIME

ACME$CB_FORMAT_DATE_TIME

Format date and time (access via ACMEKCV$CB_FORMAT_DATE_TIME).

Formats a date or time string.

Format

ACME$CB_FORMAT_DATE_TIME wqe, [dt_value], dt_string, [dt_len], [flags]

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

dt_value
OpenVMS usage: UTC_DATE_TIME
type: utcblk
access: read only
mechanism: reference
mechanism: optional

Address of UTC date/time value

dt_string
OpenVMS usage: CHAR_STRING
type: character string
access: write only
mechanism: string descriptor

Address of descriptor describing buffer to receive the formatted date/time string

dt_len
OpenVMS usage: WORD_UNSIGNED
type: unsigned word
access: write only
mechanism: reference
mechanism: optional

9–26 ACME Callback Routines

ACME Callback Routines
ACME$CB_FORMAT_DATE_TIME

Address of word to receive the length (in bytes) of the formatted date/time string

flags
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value
mechanism: optional

Formatting control flags

Description

This ACME callback routine invokes SYS$ASCUTC on behalf of your ACME
agent. You should use this ACME callback routine rather than calling
SYS$ASCUTC directly, because in the future this ACME callback routine
may provide localization services to match the user’s preferences.

Related Callbacks

None.

Alternative Callbacks

ACME$CB_SEND_LOGFILE

Return Values

ACME$_NORMAL Date/time conversion successful.
ACME$_BUFFEROVF Output did not all fit into buffer provided.
other Any condition returned by SYS$ASCUTC.

ACME Callback Routines 9–27

ACME Callback Routines
ACME$CB_ISSUE_CREDENTIALS

ACME$CB_ISSUE_CREDENTIALS

Issue credentials for the client (access via ACMEKCV$CB_ISSUE_
CREDENTIALS).

Provides credentials to be transmitted back to the ACM client process.

Format

ACME$CB_ISSUE_CREDENTIALS wqe, type, credentials

Valid from ACME Callouts

ACME$CO_CREDENTIALS

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

type
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Ignored. The credential type is derived from the credential information that was
registered for the ACME agent.

credentials
OpenVMS usage: VECTOR_BYTE_UNSIGNED
type: byte array
access: read only
mechanism: string descriptor

Address of descriptor describing security credentials

9–28 ACME Callback Routines

ACME Callback Routines
ACME$CB_ISSUE_CREDENTIALS

Description

If your ACME agent provides credentials for use in a matching persona extension
you have implemented (as described in Chapter 10, use this ACME callback
routine during ACME$CO_CREDENTIALS to transmit those credentials back to
the ACM client process.

Within the ACM client process, the SYS$ACM[W] system service uses persona
services to attach the credentials to the persona it is creating for the caller.
The byte array you provide to this ACME callback routine must be entirely
self-contained and must not make any references to particular memory addresses,
since it will be used in a different process context than where it was created.

ACME$CB_ISSUE_CREDENTIALS() restricts the size of the credentials to a
maximum of 8192 and returns ACME$_INVPARAMETER for any larger specified
size.

Related Callbacks

ACME$CB_SET_LOGON_FLAG
ACME$CB_SET_LOGON_STATS_DOI
ACME$CB_SET_OUTPUT_ITEM

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Credentials have been accepted.
ACME$_DUPCREDTYP Credentials of the specified type have already

been issued.
ACME$_INVCREDTYP Calling agent is not registered to issue

credentials.
ACME$_INVPARAMETER Invalid credentials type or data descriptor.
ACME$_UNSUPPORTED Unsupported execution context.
other Any failure condition from allocating memory.
other Any failure condition from LIB$ANALYZE_

SDESC_64.

ACME Callback Routines 9–29

ACME Callback Routines
ACME$CB_QUEUE_DIALOGUE

ACME$CB_QUEUE_DIALOGUE

Queue dialogue to be sent to the client (access via ACMEKCV$CB_QUEUE_
DIALOGUE).

Queues dialogue material for transmission back to the ACM client process.

Format

ACME$CB_QUEUE_DIALOGUE wqe, [flags], [item_code], [max_length], [data_1],
[data_2]

Valid from ACME Callouts

Authenticate Principal and Change Password routines

Related Codes You Can Return

ACME$_PERFORMDIALOGUE

Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

flags
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value
mechanism: optional

Dialogue control flags

item_code
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value
mechanism: optional

Item code to use to tag response

9–30 ACME Callback Routines

ACME Callback Routines
ACME$CB_QUEUE_DIALOGUE

max_length
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value
mechanism: optional

Maximum length of response data

data_1
OpenVMS usage: VECTOR_BYTE_UNSIGNED
type: byte array
access: read only
mechanism: string descriptor
mechanism: optional

Prompt/message text

data_2
OpenVMS usage: VECTOR_BYTE_UNSIGNED
type: byte array
access: read only
mechanism: string descriptor
mechanism: optional

Prompt/response/message text

Description

This ACME callback routine creates an itemset entry in the itemset that the
SYS$ACM[W] system service presents to the ACM client process within the ACM
communications buffer. Note the following:

• The WQE parameter is the same WQE parameter received as an input
parameter by the ACME callout routine from which the ACME callback
routine is invoked.

• The Flags parameter contains the dialogue flags required to support this
request. Currently defined flags are the following:

ACMEDLOGFLG$V_INPUT
ACMEDLOGFLG$V_NOECHO

If the client has not specified support for at least the corresponding flags (as
indicated in ACMEWQE$L_DIALOGUE_FLAGS), then the call fails with
code ACME$_INSFDIALSUPPORT.

A side effect of the Flags parameter is that it controls whether this itemset
entry is for input or output.

• The item code parameter indicates the item code that the ACM client process
should use to respond to an input itemset entry.

For both input itemset entries and output itemset entries, the item code
parameter groups the output with adjacent entries for display by the client.
The exact effect of this grouping depends on the nature of the client.

• The max_length parameter indicates for an input itemset entry the maximum
length of the input provided by the ACM client process.

ACME Callback Routines 9–31

ACME Callback Routines
ACME$CB_QUEUE_DIALOGUE

• In the case of an output itemset entry, the max_length parameter becomes
the msg_type parameter for specifying the nature of the output.

These msg_type or message category values exist to classify the nature of
output data that might be displayed or acted upon by ACM cilent programs.
For binary output provided in data_1 or data_2, this value is the only way
for an ACM client program to know the nature of the data1 it receives in
an itemset entry. For text output provided in data_1 or data_2 independent
of the ACM client program, the value should be one from the common
definitions.

The common definitions for all function codes are the following:

Symbol Meaning

acmemc$k_general General text
acmemc$k_header Header text
acmemc$k_trailer Trailer text
acmemc$k_selection Acceptable choices
acmemc$k_dialogue_alert Alert (advisory)

The common definitions specific to Authenticate Principal are the following:

Symbol Meaning

acmemc$k_system_
identification

System identification text

acmemc$k_system_notices System notices
acmemc$k_welcome_notices Welcome notices,
acmemc$k_logon_notices Logon notices
acmemc$k_password_notices Password notices
acmemc$k_mail_notices MAIL notices

These definitions are documented in the OpenVMS System Services Reference
Manual description of the SYS$ACM[W] system service.

As with item codes, ACME-specific message category values are those with
the topmost of the 16 bits set to 1.

• The data_1 parameter is a string descriptor, where null address with null
length means ‘‘no string’’ and non-zero address with null length means ‘‘blank
line’’, if that is meaningful in the context of the ACM client program.

In the case of an output itemset entry, the string is to be output; whereas in
the case of an input itemset entry, the string is the "prompt" to be provided to
the user, if appropriate.

• The data_2 parameter is a string descriptor, where null address with null
length means ‘‘no string’’ and non-zero address with null length meaning
‘‘blank line’’, if that is meaningful in the context of the ACM client program.

1 Your ACME agent should only provide such binary data to an ACM client program
known to be able to handle that particular category of data.

9–32 ACME Callback Routines

ACME Callback Routines
ACME$CB_QUEUE_DIALOGUE

In the case of an output itemset entry, the string is to be output; whereas
in the case of an input itemset entry, the meaning of the data_2 parameter
depends on the setting of the ACMEDLOGFLG$V_NOECHO flag:

If ACMEDLOGFLG$V_NOECHO is clear, the string indicates the
"default" that the ACME agent presumes, if a null string is returned.
If ACMEDLOGFLG$V_NOECHO is set, the string indicates the "prompt"
to be used for a second confirming entry of the unechoed data.

When the ACM client program is programmed to match your ACME agent, you
can use data_1 and data_2 to send binary information rather than text, through
the use of special msg_type values or special item codes.

Your ACME agent must always supply item code information when calling ACME
callback routine ACME$CB_QUEUE_DIALOGUE, even for output itemset entries
when no input can be provided. This is because the ACM client program uses the
item code in the itemset entry to determine whether output data is in text form
(bit ACMEIC$V_UCS set) or not, and thus how to present it to a user.

Related Callbacks

ACME$CB_CANCEL_DIALOGUE

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Dialogue entry has been queued.
ACME$_DIALOGFULL Pending dialogue queue is full.
ACME$_
INSFDIALSUPPORT

Dialogue not possible; context buffer parameter
was not specified or requested capability exceeds
that indicated by client.

ACME$_INVPARAMETER Invalid item code or data descriptor.
ACME$_UNSUPPORTED Unsupported execution context.
other Any failure condition from allocating memory.
other Any failure condition from LIB$ANALYZE_

SDESC_64.

ACME Callback Routines 9–33

ACME Callback Routines
ACME$CB_RELEASE_ACME_AST

ACME$CB_RELEASE_ACME_AST

Release an ACME-wide AST context (access via ACMEKCV$CB_RELEASE_
ACME_AST).

Frees a 64-bit AST context for use between diverse requests, indicating the
operating system will not deliver the AST after all.

Format

ACME$CB_RELEASE_ACME_AST wqe, ast_context

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ast_context
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of quadword containing the AST context to be released

Description

You can use this ACME callback routine during any ACME callout routine to
indicate an AST context allocated with ACME$CB_ACQUIRE_ACME_AST is not
needed after all since the operating system will not deliver the AST. If you need
to make this callback, you must do so at least by the end of the next invocation of
ACME$CO_AGENT_SHUTDOWN.

9–34 ACME Callback Routines

ACME Callback Routines
ACME$CB_RELEASE_ACME_AST

Related Callbacks

ACME$CB_ACQUIRE_ACME_AST

Alternative Callbacks

ACME$CB_RELEASE_ACME_RMSAST
ACME$CB_RELEASE_WQE_AST
ACME$CB_RELEASE_WQE_RMSAST

Return Values

ACME$_NORMAL Specified context has been deleted.
ACME$_ASTCTXNOTFND Specified context was not found.

ACME Callback Routines 9–35

ACME Callback Routines
ACME$CB_RELEASE_ACME_RMSAST

ACME$CB_RELEASE_ACME_RMSAST

Release an ACME-wide RMS AST context (access via ACMEKCV$CB_RELEASE_
ACME_RMSAST).

Frees a 32-bit AST context for use within a single request, indicating the
operating system will not deliver the AST after all.

Format

ACME$CB_RELEASE_ACME_RMSAST wqe, ast_context

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ast_context
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Address of longword containing the AST context to be released
AST parameter that would be passed to RMS services using this AST context

Description

You can use this ACME callback routine during any ACME callout routine to
indicate that an AST context allocated with ACME$CB_ACQUIRE_ACME_
RMSAST is not needed after all since the operating system will not deliver the
AST. If you need to make this callback, you must do so at least by the end of the
next invocation of ACME$CO_AGENT_SHUTDOWN.

9–36 ACME Callback Routines

ACME Callback Routines
ACME$CB_RELEASE_ACME_RMSAST

Related Callbacks

ACME$CB_ACQUIRE_ACME_RMSAST

Alternative Callbacks

ACME$CB_RELEASE_ACME_AST
ACME$CB_RELEASE_WQE_AST
ACME$CB_RELEASE_WQE_RMSAST

Return Values

ACME$_NORMAL Specified context has been deleted.
ACME$_ASTCTXNOTFND Specified context was not found.

ACME Callback Routines 9–37

ACME Callback Routines
ACME$CB_RELEASE_RESOURCE

ACME$CB_RELEASE_RESOURCE

Release an ACME-specific resource (access via ACMEKCV$CB_RELEASE_
RESOURCE).

Feeds an ACME-specific resource to the ACME server main image.

Format

ACME$CB_RELEASE_RESOURCE wqe, resource_type, resource_value

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

resource_type
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value

(ACME defined) type of the ACME-specific resource being released

resource_value
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of quadword containing the value of the ACME-specific resource allocated

Description

You can use this ACME callback routine during any ACME callout routine to
pass an ACME- specific resource to the ACME server main image for storage.

The type of ACME-specific resources cached with ACM cannot be zero (null).

9–38 ACME Callback Routines

ACME Callback Routines
ACME$CB_RELEASE_RESOURCE

Related Callbacks

ACME$CB_ACQUIRE_RESOURCE

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Resource has been added to the list.
ACME$_NULLVALUE Resource type of NULL was specified and is

invalid.

ACME Callback Routines 9–39

ACME Callback Routines
ACME$CB_RELEASE_WQE_AST

ACME$CB_RELEASE_WQE_AST

Release a request-specific AST context (access via ACMEKCV$CB_RELEASE_
WQE_AST).

Frees a 64-bit AST context for use within a single request, indicating the
operating system will not deliver the AST after all.

Format

ACME$CB_RELEASE_WQE_AST wqe, ast_context

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ast_context
OpenVMS usage: QUADWORD_UNSIGNED
type: unsigned quadword
access: read only
mechanism: reference

Address of quadword containing the AST context to be released

Description

You can use this ACME callback routine during ACME callout routines
associated with the same request from which the AST context was allocated
with ACME$CB_ACQUIRE_WQE_AST. Making this call indicates that the AST
context is not needed after all since the operating system will not deliver the AST.
If you need to make this callback, you must do so at least by the end of the next
invocation of ACME$CO_FINISH.

9–40 ACME Callback Routines

ACME Callback Routines
ACME$CB_RELEASE_WQE_AST

Related Callbacks

ACME$CB_ACQUIRE_WQE_AST

Alternative Callbacks

ACME$CB_RELEASE_ACME_AST
ACME$CB_RELEASE_ACME_RMSAST
ACME$CB_RELEASE_WQE_RMSAST

Return Values

ACME$_NORMAL Specified context has been deleted.
ACME$_UNSUPPORTED Unsupported execution context.
ACME$_INCONSTATE AST for specified context has already arrived.
ACME$_ASTCTXNOTFND Specified context was not found.

ACME Callback Routines 9–41

ACME Callback Routines
ACME$CB_RELEASE_WQE_RMSAST

ACME$CB_RELEASE_WQE_RMSAST

Release a request-specific RMS AST context (access via ACMEKCV$CB_
RELEASE_WQE_RMSAST).

Frees a 32-bit AST context for use within a single request, indicating the
operating system will not deliver the AST after all.

Format

ACME$CB_RELEASE_WQE_RMSAST wqe, ast_context

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ast_context
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: reference

Address of longword containing the RMS AST context to be released

Description

You can use this ACME callback routine during ACME callout routines
associated with the same request from which the AST context was allocated
with ACME$CB_ACQUIRE_WQE_RMSAST. Making this call indicates that the
AST context is not needed after all since the operating system will not deliver the
AST. If you need to make this callback, you must do so at least by the end of the
next invocation of ACME$CO_FINISH.

9–42 ACME Callback Routines

ACME Callback Routines
ACME$CB_RELEASE_WQE_RMSAST

Related Callbacks

ACME$CB_ACQUIRE_WQE_RMSAST

Alternative Callbacks

ACME$CB_RELEASE_ACME_AST
ACME$CB_RELEASE_ACME_RMSAST
ACME$CB_RELEASE_WQE_AST

Return Values

ACME$_NORMAL Specified context has been deleted.
ACME$_UNSUPPORTED Unsupported execution context.
ACME$_INCONSTATE AST for specified context has already arrived.
ACME$_ASTCTXNOTFND Specified context was not found.

ACME Callback Routines 9–43

ACME Callback Routines
ACME$CB_REPORT_ACTIVITY

ACME$CB_REPORT_ACTIVITY

Report ACME activity (access via ACMEKCV$CB_REPORT_ACTIVITY).

Provides a text string to the ACME server main image describing the current
status of your ACME agent for display by the command SHOW SERVER
ACME/FULL.

Format

ACME$CB_REPORT_ACTIVITY wqe, activity

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

activity
OpenVMS usage: CHAR_STRING
type: character string
access: read only
mechanism: string descriptor

Address of ACME activity (status information) string descriptor

Description

Your ACME agent can provide the text string from any ACME callout routine, but
if you choose to provide it from a request processing callout routine you should
not do so too often, since calling this routine causes synchronization between all
simultaneous requests.

One way to avoid those synchronization bottlenecks is to compare the proposed
text with the last text provided and not make the call if the change is insignificant
or nonexistent.

9–44 ACME Callback Routines

ACME Callback Routines
ACME$CB_REPORT_ACTIVITY

Related Callbacks

ACME$CB_REPORT_ATTRIBUTES

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Activity string has been stored.
ACME$_INVPARAMETER Activity description was missing or null.

ACME Callback Routines 9–45

ACME Callback Routines
ACME$CB_REPORT_ATTRIBUTES

ACME$CB_REPORT_ATTRIBUTES

Report ACME identity and quota requirements (access via ACMEKCV$CB_
REPORT_ATTRIBUTES).

Provides the quota requirements for your ACME agent to the ACME server main
image allowing calculation of the number of simultaneous requests that can be
handled, the privileges that must be enabled, and so on.

It also provides a text string to the ACME server main image identifying your
ACME agent for display by the command SHOW SERVER ACME/FULL.

Format

ACME$CB_REPORT_ATTRIBUTES wqe, ident, resource_req

Valid from ACME Callouts

ACME$CO_AGENT_INITIALIZE

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

ident
OpenVMS usage: CHAR_STRING
type: character string
access: read only
mechanism: string descriptor

Address of descriptor specifying the identification string

resource_req
OpenVMS usage: ACME_RESOURCE_REQUIREMENTS
type: acmersrc
access: read only
mechanism: reference

Address of ACME resource requirements structure

9–46 ACME Callback Routines

ACME Callback Routines
ACME$CB_REPORT_ATTRIBUTES

Description

The quota requirements you provide are used together with those from other
ACME agents to calculate how many simultaneous requests can be processed,
what privileges must be enabled, and so on.

Related Callbacks

ACME$CB_REPORT_ACTIVITY

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Information has been stored.
ACME$_INVPARAMETER Identity description was missing or null.
ACME$_UNSUPPORTED Unsupported execution context.
ACME$_UNSUPREVLVL Resource requirements structure level does not

reflect a supported version.

ACME Callback Routines 9–47

ACME Callback Routines
ACME$CB_SEND_LOGFILE

ACME$CB_SEND_LOGFILE

Log a message in the ACME$SERVER log file (access via ACMEKCV$CB_SEND_
LOGFILE).

Formats a message and writes it to the ACME$SERVER log file.

Format

ACME$CB_SEND_LOGFILE wqe, msgvec, [actrtn], [actprm]

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

msgvec
OpenVMS usage: VECTOR_LONGWORD_UNSIGNED
type: unsigned longword array
access: read only
mechanism: reference

Address of $PUTMSG style message vector

actrtn
OpenVMS usage: PROCEDURE
type: procedure value
access: read only
mechanism: call without stack unwinding
mechanism: optional

Address of action routine

actprm
OpenVMS usage: USER_ARG
type: unsigned quadword
access: read only
mechanism: value

9–48 ACME Callback Routines

ACME Callback Routines
ACME$CB_SEND_LOGFILE

mechanism: optional

Parameter to pass to action routine

Description

This ACME callback routine invokes system service SYS$PUTMSG on behalf of
your ACME agent.

Related Callbacks

ACME$CB_SEND_OPERATOR

Alternative Callbacks

ACME$CB_FORMAT_DATE_TIME

Return Values

ACME$_NORMAL Message has been written.
other Any failure condition from SYS$PUTMSG.
other Any failure condition from LIB$CALLG.

ACME Callback Routines 9–49

ACME Callback Routines
ACME$CB_SEND_OPERATOR

ACME$CB_SEND_OPERATOR

Send a message to security operator terminals (access via ACMEKCV$CB_SEND_
OPERATOR).

Sends a message to security operator terminals.

Format

ACME$CB_SEND_OPERATOR wqe, msgtxt

Valid from ACME Callouts

All ACME callout routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

msgtxt
OpenVMS usage: CHAR_STRING
type: character string
access: read only
mechanism: string descriptor

Address of descriptor describing message text

Description

This ACME callback routine sends the text string you provide to terminals
enabled as security operator, via the OPCOM facility.

Related Callbacks

ACME$CB_SEND_LOGFILE

9–50 ACME Callback Routines

ACME Callback Routines
ACME$CB_SEND_OPERATOR

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Message has been sent.
other Any failure condition from LIB$ANALYZE_

SDESC_64.
other Any failure condition from SYS$SNDOPR.

ACME Callback Routines 9–51

ACME Callback Routines
ACME$CB_SET_2ND_STATUS

ACME$CB_SET_2ND_STATUS

Record a secondary status for the request (access via ACMEKCV$CB_SET_2ND_
STATUS).

Stores a longword into the secondary status for possible return to the ACM client
process.

Format

ACME$CB_SET_2ND_STATUS wqe, status_value

Valid from ACME Callouts

All request processing routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

status_value
OpenVMS usage: COND_VALUE
type: longword
access: read only
mechanism: value

Specific status value/condition code

Description

This ACME callback returns the status you provide to the ACM client process
as the secondary status. However, the SYS$ACM[W] system service returns the
ACME$_AUTHFAILURE status code as the secondary status also, (not giving
details of what went wrong) in cases where both of the following are true:

• Your ACME agent returns a primary status to the ACM dispatcher of
ACME$_AUTHFAILURE

• The ACM client process called the SYS$ACM[W] system service without the
security privilege.

9–52 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_2ND_STATUS

However, in such cases the VMS ACME audits the secondary status your ACME
agent provided so that security officers can review it.

Related Callbacks

ACME$CB_SET_ACME_STATUS

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Secondary/protected status has been recorded.
ACME$_UNSUPPORTED Unsupported execution context.

ACME Callback Routines 9–53

ACME Callback Routines
ACME$CB_SET_ACME_STATUS

ACME$CB_SET_ACME_STATUS

Record an ACME-specific status for the request (access via ACMEKCV$CB_SET_
ACME_STATUS).

Stores a longword into the ACME-specific status for possible return to the ACM
client process.

Format

ACME$CB_SET_ACME_STATUS wqe, status_value

Valid from ACME Callouts

All request processing routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

status_value
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value

ACME specific status value/condition code

Description

This ACME callback returns the status you provide to the ACM client process as
the ACME status.

Related Callbacks

ACME$CB_SET_ACME_STATUS

9–54 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_ACME_STATUS

Alternative Callbacks

None.
Return Values

ACME$_NORMAL ACME specific status has been recorded.
ACME$_UNSUPPORTED Unsupported execution context.

ACME Callback Routines 9–55

ACME Callback Routines
ACME$CB_SET_DESIGNATED_DOI

ACME$CB_SET_DESIGNATED_DOI

Assume responsibility for handling a request (access via ACMEKCV$CB_SET_
DESIGNATED_DOI).

Declares that your ACME agent takes responsibility for handling the current
request.

Format

ACME$CB_SET_DESIGNATED_DOI wqe

Valid from ACME Callouts

Authenticate Principal and Change Password routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

Description

This ACME callback routine denotes your ACME agent as controlling the Domain
of Interpretation for this authentication.

Related Callbacks

None.

Alternative Callbacks

None.
Return Values

ACME$_NORMAL WQE is tagged.
ACME$_UNSUPPORTED Unsupported execution context.

9–56 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_LOGON_FLAG

ACME$CB_SET_LOGON_FLAG

Set a flag to report authentication activity to the client (access via
ACMEKCV$CB_SET_LOGON_FLAG).

Sets one of a series of flags that the SYS$ACM[W] system service returns to the
ACM client process on successful authentication.

Format

ACME$CB_SET_LOGON_FLAG wqe, flag

Valid from ACME Callouts

Authenticate Principal and Change Password routines (only for Authenticate
Principal)

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

flag
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value

Flag number to set

Description

This ACME callback routine sets one of the flags in Section A.4, indicating a
particular condition was encountered on this authentication. The symbolic names
available for the FLAG parameter are:

• ACMELGIFLG$K_NEW_MAIL_AT_LOGIN

• ACMELGIFLG$K_PASSWORD_CHANGED

• ACMELGIFLG$K_PASSWORD_EXPIRED

• ACMELGIFLG$K_PASSWORD_WARNING

ACME Callback Routines 9–57

ACME Callback Routines
ACME$CB_SET_LOGON_FLAG

• ACMELGIFLG$K_PASSWORD2_CHANGED

• ACMELGIFLG$K_PASSWORD2_EXPIRED

• ACMELGIFLG$K_PASSWORD2_WARNING

Related Callbacks

ACME$CB_ISSUE_CREDENTIALS
ACME$CB_SET_LOGON_STATS_DOI
ACME$CB_SET_OUTPUT_ITEM

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Specified flag has been set.
ACME$_INVFLAG Invalid flag number.
ACME$_UNSUPPORTED Unsupported execution context.

9–58 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_LOGON_STATS_DOI

ACME$CB_SET_LOGON_STATS_DOI

Set non-native (non-OpenVMS) logon statistics (access via ACMEKCV$CB_SET_
LOGON_STATS_DOI).

Provides authentication statistics to the ACM client process from the ACME
agent that controls the Domain of Interpretation (the one that called ACME$CB_
SET_DESIGNATED_DOI).

Format

ACME$CB_SET_LOGON_STATS_DOI wqe, logon_data

Valid from ACME Callouts

Authenticate Principal and Change Password routines (only for Authenticate
Principal)

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

logon_data
OpenVMS usage: ACM_LOGON_INFORMATION_DOI
type: acmelidoi
access: read only
mechanism: reference

Address of DOI logon statistics buffer

Description

If your ACME agent is the one that controls the Domain of Interpretation (the one
that called ACME$CB_SET_DESIGNATED_DOI for a particular authentication,
use this ACME callback routine to specify the contents of the DOI portion of the
data returned to the ACM client process in response to the ACME$_LOGON_
INFORMATION item code (as specified in Section A.5).

While the ACM dispatcher fills in the ACMELIDIO$L_ACME_ID and
ACMELIDIO$L_PHASE fields, your ACME agent must fill in all other fields,
including ACMELIDIO$W_SIZE and ACMELIDIO$W_REVISION_LEVEL.

ACME Callback Routines 9–59

ACME Callback Routines
ACME$CB_SET_LOGON_STATS_DOI

Related Callbacks

ACME$CB_ISSUE_CREDENTIALS
ACME$CB_SET_LOGON_FLAG
ACME$CB_SET_OUTPUT_ITEM

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Logon statistics have been recorded in the WQE.
ACME$_UNSUPPORTED Unsupported execution context.
ACME$_UNSUPREVLVL Logon statistics structure level does not reflect a

supported version.

9–60 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_LOGON_STATS_VMS

ACME$CB_SET_LOGON_STATS_VMS

Set native (OpenVMS) logon statistics (access via ACMEKCV$CB_SET_LOGON_
STATS_VMS).

Provides authentication statistics to the ACM client process from the VMS
ACME.

Format

ACME$CB_SET_LOGON_STATS_VMS wqe, logon_data

Valid from ACME Callouts

Authenticate Principal and Change Password routines (only for Authenticate
Principal)

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

logon_data
OpenVMS usage: ACM_LOGON_INFORMATION_VMS
type: acmelivms
access: read only
mechanism: reference

Address of VMS logon statistics buffer

Description

The VMS ACME uses this ACME callback routine to specify the contents of the
VMS portion of the data returned to the ACM client process in response to the
ACME$_LOGON_INFORMATION item code (as specified in Section A.6).

While the ACM dispatcher fills in the ACMELIVMS$L_ACME_ID and
ACMELIVMS$L_PHASE fields, the VMS ACME must fill in all other fields,
including ACMELIVMS$W_SIZE and ACMELIVMS$W_REVISION_LEVEL.

ACME Callback Routines 9–61

ACME Callback Routines
ACME$CB_SET_LOGON_STATS_VMS

Related Callbacks

None.

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Information has been recorded in the WQE.
ACME$_UNSUPPORTED Unsupported execution context.
ACME$_UNSUPREVLVL Logon statistics structure level does not reflect a

supported version.

9–62 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_OUTPUT_ITEM

ACME$CB_SET_OUTPUT_ITEM

Provide data to fulfill a client output item (access via ACMEKCV$CB_SET_
OUTPUT_ITEM).

Provides results for ACME-specific output items requested by the ACM client
process.

Format

ACME$CB_SET_OUTPUT_ITEM wqe, entry, data

Valid from ACME Callouts

All request processing routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

entry
OpenVMS usage: ITEM_LIST
type: ile3
access: read only
mechanism: reference

Address of the item list entry to set

data
OpenVMS usage: VECTOR_BYTE_UNSIGNED
type: unsigned byte array
access: read only
mechanism: string descriptor

Address of descriptor describing data for field

ACME Callback Routines 9–63

ACME Callback Routines
ACME$CB_SET_OUTPUT_ITEM

Description

Your ACME agent should call this ACME callback routine with the address of the
original item list entry being fulfilled, as well as a string descriptor of the data to
fulfill that output item.

If the string descriptor you provide contains a non-zero length but a zero address,
the ACME server main image allocates memory for the response but does not fill
it. This can be used for cases where you want to use data directly as it comes
from some other service. After you call this ACME callback routine, the item list
output item data buffer (described in Section B.3) addressed by the ILE3$PS_
BUFADDR field of the output item list entry contains the amount of space you
specified. You must ensure that the ACMEOUTITM$B_DATA field is filled with
the data and the ACMEOUTITM$W_LENGTH field is filled with the length
actually used before request processing completes.

Related Callbacks

ACME$CB_ISSUE_CREDENTIALS
ACME$CB_SET_LOGON_FLAG
ACME$CB_SET_LOGON_STATS_DOI

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Parameter field has been set.
ACME$_NOTOUTITEM Item list entry does not reflect an output item

code..
ACME$_INVPARAMETER Data provided is longer than allowed by the

client item.
other Any failure condition from allocating memory.
other Any failure condition from LIB$ANALYZE_

SDESC_64.

9–64 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_PHASE_EVENT

ACME$CB_SET_PHASE_EVENT

Set phase notification event (access via ACMEKCV$CB_SET_PHASE_EVENT).

Used to synchronize activity between a tightly coupled ACME agent and ACM
client program. It is used by the VMS ACME with LOGINOUT to support the
traditional LGI callout interface interface.

Format

ACME$CB_SET_PHASE_EVENT wqe, [event_data]

Valid from ACME Callouts

Authenticate Principal and Change Password routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

event_data
OpenVMS usage: VECTOR_BYTE_UNSIGNED
type: unsigned byte array
access: read only
mechanism: string descriptor
mechanism: optional

Prompt/message text

Description

If an ACME agent invokes this ACME callback routine, the SYS$ACM[W] system
service notifies the ACM client process after each authentication or password
change phase.

Related Callbacks

None.

ACME Callback Routines 9–65

ACME Callback Routines
ACME$CB_SET_PHASE_EVENT

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Notification has been queued.
ACME$_INVREQUEST Notification was previously queued.
ACME$_
INSFDIALSUPPORT

Client cannot handle dialogue.

ACME$_UNSUPPORTED Unsupported execution context.
other Any failure condition from allocating memory.
other Any failure condition from LIB$ANALYZE_

SDESC_64.

9–66 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_WQE_FLAG

ACME$CB_SET_WQE_FLAG

Set a WQE flag to communicate with the ACME server main image and with
other ACME agents (access via ACMEKCV$CB_SET_WQE_FLAG).

Sets one of a group of flags to communicate with the ACME server main image
and with other ACME agents.

Format

ACME$CB_SET_WQE_FLAG wqe, flag

Valid from ACME Callouts

All request processing routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

flag
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value

Flag number to set

Description

The flags used for this communication are defined in Section B.13. ACME agents
can read the flags directly, but to set them ACME agents must invoke this ACME
callback routine.

Related Callbacks

None.

ACME Callback Routines 9–67

ACME Callback Routines
ACME$CB_SET_WQE_FLAG

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Specified flag has been set.
ACME$_INVFLAG Invalid flag number.
ACME$_UNSUPPORTED Unsupported execution context.

9–68 ACME Callback Routines

ACME Callback Routines
ACME$CB_SET_WQE_PARAMETER

ACME$CB_SET_WQE_PARAMETER

Set a WQE parameter to communicate with the ACME server main image and
with other ACME agents (access via ACMEKCV$CB_SET_WQE_PARAMETER).

Sets one of a group of string values to communicate with the ACME server main
image and with other ACME agents.

Format

ACME$CB_SET_WQE_PARAMETER wqe, id, data

Valid from ACME Callouts

All request processing routines

Related Codes You Can Return

None.
Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

wqe
OpenVMS usage: ACM_WORK_QUEUE_ENTRY
type: acmewqe
access: modify
mechanism: reference

Address of the work queue entry

id
OpenVMS usage: LONGWORD_UNSIGNED
type: unsigned longword
access: read only
mechanism: value

ID number of parameter (item) field to set

data
OpenVMS usage: VECTOR_BYTE_UNSIGNED
type: unsigned byte array
access: read only
mechanism: string descriptor

Address of descriptor specifying string for the field

ACME Callback Routines 9–69

ACME Callback Routines
ACME$CB_SET_WQE_PARAMETER

Description

The possible ID values are the following:

• ACMEWQE$K_SYSTEM_PASSWORD

• ACMEWQE$K_PRINCIPAL_NAME

• ACMEWQE$K_PRINCIPAL_NAME_OUT

• ACMEWQE$K_VMS_USERNAME

• ACMEWQE$K_PASSWORD_1

• ACMEWQE$K_PASSWORD_2

• ACMEWQE$K_NEW_PASSWORD_1

• ACMEWQE$K_NEW_PASSWORD_2

ACME agents can read the strings directly, but to set them ACME agents must
invoke this ACME callback routine.

Related Callbacks

None.

Alternative Callbacks

None.
Return Values

ACME$_NORMAL Parameter field has been set.
ACME$_INVFLAG Invalid flag number.
ACME$_UNSUPPORTED Unsupported execution or function context.
other Any failure condition from allocating memory.
other Any failure condition from LIB$ANALYZE_

SDESC_64.

9–70 ACME Callback Routines

10
Persona Extensions Overview

This chapter discusses the use of custom persona extensions for implementing
specialized security policies. The initial provision of persona extensions is most
easily handled from an ACME agent. The programming techniques for writing
your own persona extension are different from those for writing ACME agents
and are described in this chapter, Chapter 11, and Chapter 12.

After a client process has authenticated with the SYS$ACM[W] system service,
you may want the client process to retain DOI-specific information so it can be
retrieved or used later on during the life of that process or other processes that it
creates.

The role of a persona extension is to store the credentials information provided
by a particular ACME agent. When a process calls the SYS$ACM[W] system
service it can specify item code ACME$_PERSONA_HANDLE_OUT and
appropriate function modifiers to indicate it wants certain persona services.
The SYS$ACM[W] system service fills the longword described by the ACME$_
PERSONA_HANDLE_OUT item with a persona ID. That persona ID represents
a persona that contains credentials from all ACME agents that chose to supply
them.

The ultimate example of this is the persona (with accompanying persona
extensions) created when LOGINOUT calls the SYS$ACM[W] system service.
That persona is installed as the natural persona and persists for the life of the
process.

Suitably privileged programs can create personas using other system services,
but the SYS$ACM[W] system service is the most comprehensive and foolproof
mechanism.

To add support for a custom persona extension you must implement a persona
extension image, providing entry points discussed in Chapter 11. The entry
points in your persona extension image are always called in kernel mode.
Although it may be possible to write a persona extension image in some other
language, the only programming language currently supported for this purpose is
BLISS.

For information on an example persona extension image, see Appendix D.

10.1 Persona Data Structures
The data structures used in persona processing are provided in Appendix C.
Three are listed here that are of primary interest to those who are writing
a persona extension image. These data structures are all stored in system
nonpaged pool.

Persona Extensions Overview 10–1

Persona Extensions Overview
10.1 Persona Data Structures

Figure 10–1 Some Persona Data Structures

Persona-Wide Data Per-Extension Data

VM-0786A-AI

VMS "Extention" Fields

PSB$L_FLINK

PSB$L_PXB_COUNT

PSB$AR_PXB_ARRAY

PSB$Q_PXB_MUTEX

PSB$L_BLINK

PSB$W_SIZE

PSB$B_TYPE

PSB$B_SUBTYPE

PSB$L_FLINK

PSB$L_BLINK

PSB$W_SIZE

PSB$B_TYPE

PSB$B_SUBTYPE

Other Fields

Extention-specific�
Fields

PSB$L_FLINK

1

2

3

4

5

6

7

8

etc.

PSB$L_BLINK

PSB$W_SIZE

PSB$B_TYPE

PSB$B_SUBTYPE

PXB_ARRAY$AR_ELEMENTS

Persona Security Block (PSB) PXB Array Persona Extension�
Block (PXB)

10.1.1 Persona Security Block (PSB)
The Persona Security Block (shown in Section C.1) is the manifestation of a
single persona held by a process. User programs refer to a persona by a persona
ID or in most cases, just default to using the natural persona. In addition to
general fields for persona management, the PSB concludes with the fields that
implement the VMS ‘‘persona extension’’. Since every persona must always have
a VMS persona extension, data for that persona extension is bundled right into
the PSB.

10–2 Persona Extensions Overview

Persona Extensions Overview
10.1 Persona Data Structures

10.1.2 PXB_ARRAY
Within the Persona Security Block (PSB) cell PSB$AR_PXB_ARRAY points to an
element within a PXB_ARRAY structure (shown in Section C.2). In particular, it
points to cell PXB_ARRAY$AR_ELEMENTS, the start of an array of longwords
indexed by the extension ID for the various persona extensions available on
a system. The prior cells of the PXB_ARRAY are only for memory allocation
tracking purposes, and your persona extension image does not need to refer to
them.

Element 0 of the PXB_ARRAY is special. While non-zero contents in the other
elements are pointers to a Persona Extension Block (PXB), non-zero contents
in Element 0 indicate the extension ID for the persona extension that is the
primary extension for the subject persona services. The primary extension will
be targeted for any subsequent SYS$ACM[W] system service call that specifies
modifier ACME$M_DEFAULT_PRINCIPAL.

The size of the PXB_ARRAY is enough to hold the maximum number of persona
extensions that might be present on a system. On a typical system most of the
elements will contain zero (the null pointer).

10.1.3 Persona Extension Block (PXB)
An indexed entry within the PXB_ARRAY points to the Persona Extension
Block (PXB) (if any) for the subject persona implementing the persona extension
corresponding to that index number. The fact that a persona extension image
for a particular extension ID has been declared on a system does not necessarily
mean that all personas on the system have that persona extension. Some
personas might have been created before that persona extension image was
registered, while others may not have been provided with credentials for that
persona extension for reasons private to a particular ACME agent.

The description in Section C.3 gives the format of the header of a PXB. Data after
the header is in a format specific to the persona extension.

10.1.4 Persona Extension Cloning and Delegation
In certain cases there is a need to create an additional persona identical to an
existing one. The general persona code in the OpenVMS executive handles the
PSB and PXB_ARRAY in this case, but your persona extension image must
handle the PXB. The following two types of calls are made to your persona
extension image for this purpose:

• Clone (for a new persona in the same process)

• Delegate (for a new persona in a different process on the same system)

For each of those calls, your persona extension image can use either of the
following two techniques to propagate the PXB information to the new persona:

• Allocate a new PXB and copy the data into it. If some of the data consists of
pointers to other data structures, you must decide whether to duplicate those
as well or support reference counts within those structures and just copy the
pointers.

• Increment a reference count in the existing PXB and provide the address of
that PXB for use by the new persona.

Persona Extensions Overview 10–3

Persona Extensions Overview
10.1 Persona Data Structures

For the clone call, reference counting activity is synchronized by the fact
that persona system services operate under the protection of the inner mode
semaphore. Since personas are specific to a single process, there will only be one
stream of activity calling your persona extension image for a particular persona
at a time. Thus, two calls to your persona extension image entry points for a
given PXB are always handled sequentially, rather than simultaneously, Two
modify calls, or a modify call and a delete call, will not conflict with one another.

For the delegate call, a reference-counting approach is not protected by the inner
mode semaphore, since that is a per-process interlock and delegation of a persona
involves two processes. To engage in reference counting, rather than straight
copying, in a delegation situation requires that your persona extension image
provide its own interlocking. One approach is to use a mutex you have created
within your PXB in the same fashion you use the PSB mutex PSB$Q_PXB_
MUTEX to protect manipulation of the entries in the PXB_ARRAY data structure
(described in Section 11.6).

Given the complexity of a reference counting approach, why would the writer of a
persona extension image ever choose that method? The answer is related to the
cost and relative frequency of clone and delegate calls to your persona extension
image, as follows:

• Cost

If your persona extension only takes 24 bytes (in addition to the 12 header
bytes for a PXB), the additional overhead in memory usage is minimal. Some
persona extensions, however, could take a kilobyte or more to store public key
certificates, for example.

• Frequency

The OpenVMS executive calls your clone routine every time a user makes an
explicit call to system service SYS$PERSONA_CLONE specifying a persona
that has your persona extension. But it will also make such a call when
passing control information to the Magtape ACP or when RMS must stall an
operation and retain persona information as it was at the time the request
was made.

The OpenVMS executive calls your delegate routine every time a user makes
an explicit call to the SYS$PERSONA_DELEGATE system service specifying
a persona that has your persona extension. But it will also make such a call
when the user calls the SYS$CREPRC system service to create a new process
running under the same UIC.

Whether the added risk of a reference counting implementation provides sufficient
performance improvement to make it worthwhile is something only you can
decide.

10.2 Persona Item Codes
There are several ranges of item codes:

• OpenVMS item codes

The possible range is from 1 to 1023, with currently defined codes identified
by the symbol range ISS$_MIN_ITEM_CODE through ISS$_MAX_ITEM_
CODE.

• Common item codes

10–4 Persona Extensions Overview

Persona Extensions Overview
10.2 Persona Item Codes

These are separately implemented for each persona extension. The possible
range is from 1024 to 8191, with currently defined codes identified by the
symbol range ISS$_MIN_COMMON_ITEM_CODE through ISS$_MAX_
COMMON_ITEM_CODE.

Modify support for certain codes is mandatory, as indicated in Section 11.6.

Query support for certain codes is mandatory, as indicated in Section 11.7.

• Extension-specific item codes

These are separately defined for each persona extension. The possible range
is from 8192 to 65535. Currently defined codes vary according to persona
extension. This is where you should define any item codes specific to your
persona extension. It is expected that your codes will overlap values used by
other persona extensions.

Persona Extensions Overview 10–5

11
Persona Extensions Entry Points

Your persona extension image can supply any of the entry points described below.
Five of them are required (as noted in Section 12.5). Note the following rules:

• Code for all persona extension routines (except the initialization routine)
must be in the Psect EXEC$NONPAGED_CODE, declared with the BLISS
macro $DECLARE_PSECT from LIB.REQ.

• Data for all routines must be in the Psect EXEC$NONPAGED_DATA,
declared with the BLISS macro $DECLARE_PSECT from LIB.REQ.

• These entry points need not be globally visible to the linker, since their
addresses are passed to the OpenVMS executive via other mechanisms.

• The names of these entry points do not matter.

11.1 Initialization Routine
This required persona extension routine declares the addresses of other persona
extension routines by calling NSA$REGISTER_PSB_EXTENSION, as described
in Chapter 12.

Code for this routine must be in the Psect EXEC$INIT_CODE, declared with the
BLISS macro $DECLARE_PSECT from LIB.REQ.

You must use the BLISS macro $INITIALIZATION_ROUTINE, specifying the
name of your initialization routine, to indicate that your initialization routine
should be invoked when your persona extension image is loaded into memory.

This routine accepts no arguments.

11.2 Create Routine
This required persona extension routine creates a new persona extension using a
specified set of credentials. It accepts the following arguments:

1. PSB - address of the PSB to which the new PXB will be attached

2. PXB - address of a longword into which the address of the new PXB should
be stored

3. TLV - address of the byte string containing credentials for the persona
extension

4. TLV_SIZE - length of the octet string containing credentials for the persona
extension

Allocate space for your PXB from nonpaged pool and populate it, including the
following three header fields:

• PXB$B_TYPE - DYN$C_SECURITY

• PXB$B_SUBTYPE - DYN$C_SECURITY_PXB_GENERIC

Persona Extensions Entry Points 11–1

Persona Extensions Entry Points
11.2 Create Routine

• PXB$W_SIZE - size allocated

For the size field you must use the size actually allocated (which can be larger
than the size requested, due to rounding).

11.3 Clone Routine
This persona extension routine is called when copying an existing persona
extension for use by the same process, such as in support of the SYS$PERSONA_
CLONE system service. It accepts the following arguments:

1. PSB - address of the PSB to which this PXB is attached

2. PXB - address of the PXB for this persona extension

3. NEW_PXB - address of a longword into which the address of the new PXB
should be stored

If your persona extension image supplies this persona extension routine, it can
either duplicate the existing PXB and any supporting structures or it can store
the address of the existing PXB while maintaining a reference count within it.

For copying extremely simple PXBs, it is sufficient to copy the contents of the
original PXB into a NEW_PXB. For more complex cases, some cells in the PXB
will be pointers to other data structures that must be duplicated as well.

If your persona extension image does not support this operation, cloned personas
will not contain your persona extension.

11.4 Delegate Routine
This persona extension routine is called when copying an existing
persona extension for use by a different process, such as in support of the
SYS$PERSONA_DELEGATE system service. It accepts the following arguments:

1. PSB - address of the PSB to which this PXB is attached

2. PXB - address of the PXB for this persona extension

3. unused

4. NEW_PXB - address of a longword into which the address of the new PXB
should be stored

5. NEW_PSB - address of the PSB to which the new PXB will be attached

If your persona extension image supplies this persona extension routine, it can
either duplicate the existing PXB and any supporting structures, or it can return
the same value as the existing PXB while maintaining a reference count within
it.

Note

While you can depend on the inner mode semaphore to protect against
multiple simultaneous access to a PXB shared through cloning, that does
not work for the case of a PXB shared through delegation and you will
need your own synchronization code if you take that approach.

For copying extremely simple PXBs, it is sufficient to copy the contents of the
original PXB into a NEW_PXB. For more complex cases, some cells in the PXB
will be pointers to other data structures that must be cloned as well.

11–2 Persona Extensions Entry Points

Persona Extensions Entry Points
11.4 Delegate Routine

If your persona extension image does not support this operation, delegated
personas will not contain your persona extension.

11.5 Delete Routine
This required persona extension routine is called to perform a logical deletion of
a persona extension, typically in response to the system service SYS$PERSONA_
DELETE or SYS$PERSONA_EXTENSION_DELETE. It accepts the following
arguments:

1. PSB - address of the PSB to which this PXB is attached

2. PXB - address of the PXB for this persona extension

Whether your persona extension routine always deletes the PXB, or first
decrements a reference count and only deletes when all references are gone,
depends on the method you used for the clone and delegate operations.

11.6 Modify Routine
This persona extension routine is called to modify a value stored in a persona
extension typically in response to the system service SYS$$PERSONA_MODIFY.
It accepts the following arguments:

1. PSB - address of the PSB to which this PXB is attached

2. PXB - address of the PXB for this persona extension

3. ITEMCODE - the ITEM_CODE to be modified

4. BUF_ADDRESS - address of the new value

5. BUF_LENGTH - length of the new value

Each persona extension image is required to support the ISS$_DOI item code in
its modify routine.

If the ITEMCODE is inappropriate, your persona extension routine should return
the error code SS$_BADITMCOD. If the BUF_LENGTH cannot be supported for
that ITEMCODEI, it should return the error code SS$_BADBUFLEN.

Whether your persona extension image copies persona extensions, or reference
counts them, determines whether a modification affects both the original and
the cloned (or delegated) persona. Your decision regarding how to implement
clone and delegate operations affects the security policy achieved by your persona
extension.

The persona extension’s modify routine must support the ISS$_DOI item
code unless the extension’s DOI field was already loaded by the ACME agent
which created the extension’s contents and provided it to SYS$ACM using the
ACME$CB_ISSUE_CREDENTIALS callback.

ISS$_DOI represents a quadword integer whose low-order longword contains the
identifier of the creating ACME agent. The high-order longword is ignored.

Note

Do not be concerned with the policy effect of your decision on the required
modify support for ISS$_DOI. That code is only modified at the time that
the SYS$ACM[W] system service adds a persona extension to a persona,
before any clone or delegate operation can take place.

Persona Extensions Entry Points 11–3

Persona Extensions Entry Points
11.6 Modify Routine

If your persona extension image reference counts a cloned or delegated persona
extension and the reference count is greater than 1, it is not possible to expand
the size of a persona extension.

Otherwise, if your persona extension can be of variable size, and it is necessary to
increase the size to handle this particular modification, take the following steps:

1. Allocate and populate a replacement PXB.

2. Use system service SYS$PERSONA_EXTENSION_LOOKUP to determine the
persona extension ID (index) for your persona extension.

3. Increment the reference count on the PSB with the BLISS macro
NSA$REFERENCE_PSB.

4. Return failure SS$_NOSUCHID if that index is greater than cell PSB$L_
PXB_COUNT in the PSB (decrementing the reference count and deallocating
the new PXB on the way out).

5. Lock the PSB extension array with the BLISS macro SCH$LOCKW_QUAD.

6. Read any existing entry for this persona extension ID (index) from the array
pointed to by cell PSB$AR_PXB_ARRAY in the PSB and deallocate that block
if non-null.

7. Store the new PXB in that array location.

8. Unlock the PSB extension array with the BLISS macro SCH$UNLOCK_
QUAD.

9. Decrement the reference count with the BLISS macro NSA$DEREFERENCE_
PSB.

10. Use that new PXB address for further references to the PXB during this call
of your persona extension routine.

If you have the Source Listings Kit, an example of that technique can be found in
facility SYS module NT_EXTENSION.

11.7 Query Routine
This required persona extension routine is called to retrieve contents of a persona
extension, typically in response to the system service SYS$PERSONA_QUERY or
SYS$PERSONA_EXTENSION_DELETE. It supports the following arguments:

1. PSB - address of the PSB to which this PXB is attached

2. PXB - address of the PXB for this persona extension

3. ITEMCODE - the ITEM_CODE to be retrieved

4. BUF_ADDRESS - address of the comparison value or output buffer

5. BUF_LENGTH - length of the comparison value or output buffer

6. RETURN_LENGTH - address of a 16-bit variable to receive the length

7. QUERYFLAGS - low-order bit means compare to a value, rather than query

8. INPUT_DATA - address of a descriptor for input data

Each persona extension image is required to support the following item codes in
its Query routine:

• ISS$_COMMON_FLAGS

11–4 Persona Extensions Entry Points

Persona Extensions Entry Points
11.7 Query Routine

• ISS$_DOI

• ISS$_COMMON_USERNAME

• ISS$_DOMAIN

• ISS$_COMMON_PRINCIPAL

• ISS$_COMMON_ACCOUNT

• ISS$_EXTENSION

For an unsupported item code, return SS$_BADITMCOD. Use this persona
extension routine (depending on the value of the parameter QUERYFLAGS)
either to retrieve a value or to compare to an existing value. Returns True (1) or
False (0).

If the INPUT_DATA descriptor address is non-zero, it describes a string to be
used as input for deriving output data. This could be used, for example, when
your persona extension contained a signature key that could be freely used to
sign input data on behalf of the process, but which was not to be divulged to
non-privileged callers (guarding against a Trojan horse attack to obtain the key).

Your Persona Extension Block (PXB) is specially treated by the process dump
capabilities on OpenVMS Alpha to avoid disclosing information to unprivileged
users, since even their own data might be compromised if they ran a Trojan Horse
program.

11.8 Make_TLV Routine
This persona extension routine must be supplied, but your persona extension
image is free to return the code SS$_UNSUPPORTED. It supports the following
arguments:

1. PSB - address of the PSB to which this PXB is attached

2. PXB - address of the PXB for this persona extension

3. Itemcode - ISS$_MAKE_TLV

4. BUF_ADDRESS - address of the output buffer

5. BUF_LENGTH - length of the output buffer

6. RETURN_LENGTH - address of a 16-bit variable to receive the length

7. FLAGS - for future use

This routine packages all the information from your persona extension into a
position- independent string suitable for feeding into your create routine when a
batch job is started. Whether your security model can or should support having
a persona extension in a batch job derived from the persona extension in effect
when the batch job was submitted is for you to decide.

Persona Extensions Entry Points 11–5

12
Connecting Your Persona Extension Image to

the OpenVMS Executive

12.1 Compiling
Ensure your code uses the Psects specified in Chapter 11.

12.2 Linking
To access required support routines, your persona extension image must be linked
against the OpenVMS Executive. On OpenVMS Alpha use the /SYSEXE qualifier.

Additionally, you must link in module SYS$DOINIT from library
VMS$VOLATILE_PRIVATE_INTERFACES so your initialize routine will be
called.

You must specify linker options for the program sections EXEC$NONPAGED_
CODE, EXEC$NONPAGED_DATA and EXEC$INIT_CODE, as shown in the
example of a persona extension provided with the ACME software distribution
kit. For more information, see Appendix D.

12.3 Testing
Test your completed persona extension image with the SYS$ETC:CHECK_
SECTIONS.COM command procedure.

12.4 Installing
Resolve - common system disks, PCSI action routines, SYSMAN, etc.

To set up your persona extension image to be included when the system boots,
use a command in the folowing format:

$ MCR SYSMAN
SYSMAN> SYS_LOADABLE ADD product image

Then, run the following command procedure:

$ @SYS$UPDATE:VMS$SYSTEM_IMAGES.COM

12.5 Declaring Your Persona Extension Image
The initialize routine of your persona extension image must call the routine
NSA$REGISTER_PSB_EXTENSION, described on the following pages.

Connecting Your Persona Extension Image to the OpenVMS Executive 12–1

Connecting Your Persona Extension Image to the OpenVMS Executive
NSA$REGISTER_PSB_EXTENSION

NSA$REGISTER_PSB_EXTENSION

Declare a set of persona extension routines.

This routine adds your persona extension to the set of valid persona extensions
during the current boot of the system.

Format

NSA$REGISTER_PSB_EXTENSION extension_name, pxdv

Returns

VMS Usage: cond_value
type: integer
access: read only
mechanism: by value in R0

Arguments

extension_name
OpenVMS usage: CHAR_STRING
type: character string
access: read only
mechanism: string descriptor

Name of the persona extension.

pxdv
OpenVMS usage: PXDV_TYPE
type: pxdv
access: modify
mechanism: reference

Address of persona security extension dispatch vector block.

Description

The executive image initialization routine for your persona extension image
should allocate a Persona Security Extension Dispatch Vector Block of size
PXDV$S_PXDV and populate it with the following:

• PXDV$L_FLAGS

• PXDV$A_CREATE - CREATE routine address1

• PXDV$A_CLONE - CLONE routine address

• PXDV$A_DELEGATE - DELEGATE routine address

• PXDV$A_DELETE - DELETE routine address1

• PXDV$A_MODIFY - MODIFY routine address1

• PXDV$A_QUERY - QUERY routine address1

12–2 Connecting Your Persona Extension Image to the OpenVMS Executive

Connecting Your Persona Extension Image to the OpenVMS Executive
NSA$REGISTER_PSB_EXTENSION

• PXDV$A_MAKE_TLV - MAKE_TLV routine address2

In Use

PXDV$L_VERSION PXDV$K_VERSION1

PXDV$L_FLAGS 0
All unused cells 0

1For this version of the structure.

Currently a maximum of 15 extensions can be registered.

Return Values

SS$_NORMAL Extension has been registered.
SS$_BUFFEROVF The limit on registered extensions has already

been reached.
SS$_DUPLNAM An extension by the specified name has already

been registered.
SS$_INVARG One of the required routine addresses was not

supplied.
other Failure allocating nonpaged pool.

1 This routine address must be supplied.
2 This routine address must be supplied, although the routine itself can return SS$_

UNSUPPORTED.

Connecting Your Persona Extension Image to the OpenVMS Executive 12–3

A
SYS$ACM[W] Data Structures

A.1 ACM Communications Buffer (ACMECB)
not available

acmecb

acmecb$q_context_id 0

acmecb$w_sizeacmecb$w_revision_level 8

acmecb$l_acme_id 12

acmecb$l_item_set_count 16

acmecb$ps_item_set 20

acmedlogflg

acmefc

SYS$ACM[W] Data Structures A–1

SYS$ACM[W] Data Structures
A.2 ACM Hardware Address Type (ACMEHAT)

A.2 ACM Hardware Address Type (ACMEHAT)
not available

acmehat

acmehat$w_protocolacmehat$w_facility 0

acmeic

acmeid

A–2 SYS$ACM[W] Data Structures

SYS$ACM[W] Data Structures
A.3 ACME Item Set Entry (ACMEITMSET)

A.3 ACME Item Set Entry (ACMEITMSET)
not available

acmeitmset

acmeis$l_flags 0

acmeis$w_item_codeacmeis$w_max_length 4

acmeis$q_data_1 8

acmeis$q_data_2 16

SYS$ACM[W] Data Structures A–3

SYS$ACM[W] Data Structures
A.4 ACME Logon Flags (ACMELGIFLG)

A.4 ACME Logon Flags (ACMELGIFLG)
not available

acmelgiflg

acmelgiflg$l_logon_flags 0

A–4 SYS$ACM[W] Data Structures

SYS$ACM[W] Data Structures
A.5 ACME Logon Information for the Domain of Interpretation (ACMELIDOI)

A.5 ACME Logon Information for the Domain of Interpretation
(ACMELIDOI)

not available

acmelidoi

acmelidoi$l_acme_id 0

acmelidoi$l_phase 4

acmelidoi$w_sizeacmelidoi$w_revision_level 8

acmelidoi$l_logfail_count 12

�acmelidoi$o_logon (16 bytes) 16�

�acmelidoi$o_logon_int (16 bytes) 32�

�acmelidoi$o_logon_nonint (16 bytes) 48�

�acmelidoi$o_logfail (16 bytes) 64�

�acmelidoi$o_logfail_int (16 bytes) 80�

�acmelidoi$o_logfail_nonint (16 bytes) 96�

SYS$ACM[W] Data Structures A–5

SYS$ACM[W] Data Structures
A.6 ACME Logon Information for VMS (ACMELIVMS)

A.6 ACME Logon Information for VMS (ACMELIVMS)
not available

acmelivms

acmelivms$l_acme_id 0

acmelivms$l_phase 4

acmelivms$w_sizeacmelivms$w_revision_level 8

acmelivms$l_logfail_count 12

�acmelivms$o_logon_int (16 bytes) 16�

�acmelivms$o_logon_nonint (16 bytes) 32�

A–6 SYS$ACM[W] Data Structures

SYS$ACM[W] Data Structures
A.7 ACME Logon Information (ACMELI)

A.7 ACME Logon Information (ACMELI)
not available

acmeli

acmeli$pq_logon_info_doi64 0

acmeli$w_sizeacmeli$w_revision_level 8

acmeli$l_logon_flags 12

acmeli$pq_logon_info_vms64 16

�acmeli$r_logon_info_vms (48 bytes) 24�

�acmeli$r_logon_info_doi (112 bytes) 72�

acmemc

SYS$ACM[W] Data Structures A–7

SYS$ACM[W] Data Structures
A.8 ACME Authentication Mechanism (ACMEMECH)

A.8 ACME Authentication Mechanism (ACMEMECH)
not available

acmemech

acmemech$w_mechanismacmemech$w_facility 0

acmepwdflg

A–8 SYS$ACM[W] Data Structures

SYS$ACM[W] Data Structures
A.9 ACME Revision Level (ACMEREVLVL)

A.9 ACME Revision Level (ACMEREVLVL)
not available

acmerevlvl

acmerevlvl$w_revision_level

SYS$ACM[W] Data Structures A–9

SYS$ACM[W] Data Structures
A.10 ACM Status Block (ACMESB)

A.10 ACM Status Block (ACMESB)
not available

acmesb

acmesb$l_status 0

acmesb$l_secondary_status 4

acmesb$l_acme_id 8

acmesb$l_acme_status 12

A–10 SYS$ACM[W] Data Structures

SYS$ACM[W] Data Structures
A.11 Universal Coordinated Time (UTCBLK)

A.11 Universal Coordinated Time (UTCBLK)
not available

UTCBLK

�UTCBLK$O_TIME_BLOCK (16 bytes) 0�

SYS$ACM[W] Data Structures A–11

B
ACME Agent Interface Data Structures

B.1 ACME Date Time Formatting Control Flags (ACMEDTFLG)
The following are the contents of the aggregate structure acmedtflg:

Field Use

acmedtflg$l_control_flags Composite field

acmedtflg

acmedtflg$l_control_flags 0

ACME Agent Interface Data Structures B–1

ACME Agent Interface Data Structures
B.2 ACME Kernel Callback Vector (ACMEKCV)

B.2 ACME Kernel Callback Vector (ACMEKCV)
The following are the contents of the aggregate structure acmekcv:

Field Use

acmekcv$w_acm_revision_level ACM kernel revision level

acmekcv$w_revision_level Structure revision level

acmekcv$cb_report_attributes Report resource requirements

acmekcv$cb_send_operator Send a message to the operator

acmekcv$cb_send_logfile Write a message in the log file

acmekcv$cb_allocate_acme_vm Allocate a block of memory

acmekcv$cb_deallocate_acme_vm Deallocate a block of memory

acmekcv$cb_allocate_wqe_vm Allocate a block of memory

acmekcv$cb_deallocate_wqe_vm Deallocate a block of memory

acmekcv$cb_set_designated_doi Declare DOI accepting request

acmekcv$cb_set_2nd_status Report secondary (protected)
status

acmekcv$cb_set_acme_status Report ACME specific status

acmekcv$cb_set_wqe_flag Set WQE status/control flag

acmekcv$cb_set_wqe_parameter Set WQE data item

acmekcv$cb_set_output_item Set output item

acmekcv$cb_set_logon_flag Set logon status flag

acmekcv$cb_set_logon_stats_vms Report native (OpenVMS) logon
statistics

acmekcv$cb_set_logon_stats_doi Reprot non-native (non-
OpenVMS) logon statistics

acmekcv$cb_set_phase_event Set phase transition notification

acmekcv$cb_queue_dialogue Queue a dialogue item set

acmekcv$cb_cancel_dialogue Dismiss pending dialogue

acmekcv$cb_acquire_acme_ast Establish a non-RMS AST context

acmekcv$cb_release_acme_ast Dismiss non-RMS AST context

acmekcv$cb_acquire_wqe_ast Establish a non-RMS AST context

acmekcv$cb_release_wqe_ast Dismiss non-RMS AST context

acmekcv$cb_acquire_acme_rmsast Establish an RMS AST context

acmekcv$cb_release_acme_rmsast Dismiss RMS AST context

acmekcv$cb_acquire_wqe_rmsast Establish an RMS AST context

acmekcv$cb_release_wqe_rmsast Dismiss RMS AST context

acmekcv$cb_acquire_resource Acquire an ACME specific resource

acmekcv$cb_release_resource Release an ACME specific resource

acmekcv$cb_issue_credentials Issue security credentials

acmekcv$cb_format_date_time Format date and time

acmekcv$cb_report_activity Report resource requirements

The following cells are only meaningful if ACMEKCV$W_REVISION_LEVEL contains ACMEKCV$K_
MAJOR_ID_001/ACMEKCV$K_MINOR_ID_001 or higher.

B–2 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.2 ACME Kernel Callback Vector (ACMEKCV)

Field Use

acmekcv$cb_ucs_to_latin1 Convert UCS2_4 to Latin1

acmekcv$cb_latin1_to_ucs Convert Latin1 to UCS2_4

The following constants are defined in conjunction with acmekcv:

Constant Value Use

acmersrc$k_length 80

acme$k_minor_id_000 0

acme$k_minor_id_001 0

acme$k_minor_id 0 The default is still
000

acme$k_major_id_001 1

acme$k_major_id 1

acme$k_revision 256

acmekcv$k_minor_id_000 0 original V7.2-1
callback list

acmekcv$k_minor_id_001 1 supporting Latin1<-
>UCS conversion

acmekcv$k_minor_id 0

acmekcv$k_major_id_001 1

acmekcv$k_major_id 1

acmekcv$k_revision 256

acme$k_report_attributes 0

acme$k_send_operator 1

acme$k_send_logfile 2

acme$k_allocate_acme_vm 3

acme$k_deallocate_acme_vm 4

acme$k_allocate_wqe_vm 5

acme$k_deallocate_wqe_vm 6

acme$k_set_designated_doi 7

acme$k_set_2nd_status 8

acme$k_set_acme_status 9

acme$k_set_wqe_flag 10

acme$k_set_wqe_parameter 11

acme$k_set_output_item 12

acme$k_set_logon_flag 13

acme$k_set_logon_stats_vms 14

acme$k_set_logon_stats_doi 15

acme$k_set_phase_event 16

acme$k_queue_dialogue 17

acme$k_cancel_dialogue 18

acme$k_acquire_acme_ast 19

ACME Agent Interface Data Structures B–3

ACME Agent Interface Data Structures
B.2 ACME Kernel Callback Vector (ACMEKCV)

Constant Value Use

acme$k_release_acme_ast 20

acme$k_acquire_wqe_ast 21

acme$k_release_wqe_ast 22

acme$k_acquire_acme_rmsast 23

acme$k_release_acme_rmsast 24

acme$k_acquire_wqe_rmsast 25

acme$k_release_wqe_rmsast 26

acme$k_acquire_resource 27

acme$k_release_resource 28

acme$k_issue_credentials 29

acme$k_format_date_time 30

acme$k_report_activity 31

acme$k_ucs_to_latin1 32

acme$k_latin1_to_ucs 33

acme$k_kcv_count 34

acmekcv

acmekcv$w_acm_revision_levelacmekcv$w_revision_level 0

acmekcv$cb_report_attributes 4

acmekcv$cb_send_operator 8

acmekcv$cb_send_logfile 12

acmekcv$cb_allocate_acme_vm 16

acmekcv$cb_deallocate_acme_vm 20

acmekcv$cb_allocate_wqe_vm 24

acmekcv$cb_deallocate_wqe_vm 28

acmekcv$cb_set_designated_doi 32

acmekcv$cb_set_2nd_status 36

acmekcv$cb_set_acme_status 40

acmekcv$cb_set_wqe_flag 44

acmekcv$cb_set_wqe_parameter 48

acmekcv$cb_set_output_item 52

acmekcv$cb_set_logon_flag 56

(continued on next page)

B–4 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.2 ACME Kernel Callback Vector (ACMEKCV)

acmekcv$cb_set_logon_stats_vms 60

acmekcv$cb_set_logon_stats_doi 64

acmekcv$cb_set_phase_event 68

acmekcv$cb_queue_dialogue 72

acmekcv$cb_cancel_dialogue 76

acmekcv$cb_acquire_acme_ast 80

acmekcv$cb_release_acme_ast 84

acmekcv$cb_acquire_wqe_ast 88

acmekcv$cb_release_wqe_ast 92

acmekcv$cb_acquire_acme_rmsast 96

acmekcv$cb_release_acme_rmsast 100

acmekcv$cb_acquire_wqe_rmsast 104

acmekcv$cb_release_wqe_rmsast 108

acmekcv$cb_acquire_resource 112

acmekcv$cb_release_resource 116

acmekcv$cb_issue_credentials 120

acmekcv$cb_format_date_time 124

acmekcv$cb_report_activity 128

acmekcv$cb_ucs_to_latin1 132

acmekcv$cb_latin1_to_ucs 136

ACME Agent Interface Data Structures B–5

ACME Agent Interface Data Structures
B.3 Item List Output Item Data Buffer (ACMEOUTITM)

B.3 Item List Output Item Data Buffer (ACMEOUTITM)
The following are the contents of the aggregate structure acmeoutitm:

Field Use

acmeoutitm$l_acme_id ID of ACME which set the item
entry

acmeoutitm$l_phase Phase during which item was set

acmeoutitm$w_size Structure size, in bytes

acmeoutitm$w_rsvd_1

acmeoutitm$w_length Actual size, in bytes, of data

acmeoutitm$w_max_length Size, in bytes, of data buffer

acmeoutitm$b_data Data

acmeoutitm$b_fill_11_

The following constants are defined in conjunction with acmeoutitm:

Constant Value Use

acmewqefdx$k_length 296

acmeoutitm$k_length 16 Length of fixed
portion

acmeoutitm

acmeoutitm$l_acme_id 0

acmeoutitm$l_phase 4

acmeoutitm$w_sizeacmeoutitm$w_rsvd_1 8

acmeoutitm$w_lengthacmeoutitm$w_max_length 12

acmeoutitm$b_dataacmeoutitm$b_fill_11_ 16

B–6 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.4 ACME Process Quota Resource Requirements Block(ACMEPQ)

B.4 ACME Process Quota Resource Requirements Block(ACMEPQ)
The following are the contents of the aggregate structure acmepq:

Field Use

acmepq$l_memory Virtual address space use

acmepq$l_channel I/O channels

acmepq$l_direct_io Direct I/O count

acmepq$l_buffer_io Buffered I/O count

acmepq$l_buffer_io_mem Buffered I/O memory usage

acmepq$l_ast AST count

acmepq$l_tqe TQE count

acmepq$l_lock Lock count

acmepq

acmepq$l_memory 0

acmepq$l_channel 4

acmepq$l_direct_io 8

acmepq$l_buffer_io 12

acmepq$l_buffer_io_mem 16

acmepq$l_ast 20

acmepq$l_tqe 24

acmepq$l_lock 28

ACME Agent Interface Data Structures B–7

ACME Agent Interface Data Structures
B.5 ACME Agent Resource Requirements Block (ACMERSRC)

B.5 ACME Agent Resource Requirements Block (ACMERSRC)
The following are the contents of the aggregate structure acmersrc:

Field Use

General resource requirements

acmersrc$q_privileges Operating privilege

acmersrc$w_size Structure size, in bytes

acmersrc$w_revision_level Structure revision level

acmersrc$l_stack_size Maximum operating stack

acmersrc$r_agent_quotas General process quotas

Per-request resource requirements

acmersrc$r_request_quotas Per-request process quotas

The following constants are defined in conjunction with acmersrc:

Constant Value Use

acmersrc$k_minor_id_000 0

acmersrc$k_minor_id 0

acmersrc$k_major_id_001 1 VMS V7.2-1

acmersrc$k_major_id 1

acmersrc$k_revision 256

acmersrc

acmersrc$q_privileges 0

acmersrc$w_sizeacmersrc$w_revision_level 8

acmersrc$l_stack_size 12

�acmersrc$r_agent_quotas (32 bytes) 16�

�acmersrc$r_request_quotas (32 bytes) 48�

B–8 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.6 ACME WQE Extension for Agent Shutdown (ACMEWQEADX)

B.6 ACME WQE Extension for Agent Shutdown (ACMEWQEADX)
The following are the contents of the aggregate structure acmewqeadx:

Field Use

acmewqeadx$l_reserved Null structure

The following constants are defined in conjunction with acmewqeadx:

Constant Value Use

acmewqeaex$k_length 4

acmewqeadx

acmewqeadx$l_reserved 0

ACME Agent Interface Data Structures B–9

ACME Agent Interface Data Structures
B.7 ACME WQE Extension for Agent Startup (ACMEWQEAEX)

B.7 ACME WQE Extension for Agent Startup (ACMEWQEAEX)
The following are the contents of the aggregate structure acmewqeaex:

Field Use

acmewqeaex$l_concurrent_requests maximum at a time

The following constants are defined in conjunction with acmewqeaex:

Constant Value Use

acmewqeaix$k_length 4

acmewqeaex

acmewqeaex$l_concurrent_requests 0

B–10 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.8 ACME WQE Extension for Agent Initialize (ACMEWQEAIX)

B.8 ACME WQE Extension for Agent Initialize (ACMEWQEAIX)
The following are the contents of the aggregate structure acmewqeaix:

Field Use

acmewqeaix$ps_agent_name address of string descriptor

The following constants are defined in conjunction with acmewqeaix:

Constant Value Use

acmewqeax$k_length 296

acmewqeaix

acmewqeaix$ps_agent_name 0

ACME Agent Interface Data Structures B–11

ACME Agent Interface Data Structures
B.9 ACME WQE Extension for Agent Standby (ACMEWQEASX)

B.9 ACME WQE Extension for Agent Standby (ACMEWQEASX)
The following are the contents of the aggregate structure acmewqeasx:

Field Use

acmewqeasx$l_reserved Null structure

The following constants are defined in conjunction with acmewqeasx:

Constant Value Use

acmewqeadx$k_length 4

acmewqeasx

acmewqeasx$l_reserved 0

B–12 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.10 ACME WQE Extension for Authentication (ACMEWQEAX)

B.10 ACME WQE Extension for Authentication (ACMEWQEAX)
The following are the contents of the aggregate structure acmewqeax:

Field Use

acmewqeax$l_new_password_flags Password change request flags

acmewqeax$l_logon_flags Logon flags

acmewqeax$r_logon_stats_vms Native (OpenVMS) logon statistics

acmewqeax$r_logon_stats_doi Non-native (non-OpenVMS) logon
statistics

acmewqeax$r_system_password System password

acmewqeax$r_principal_name Raw (unprocessed) principal name

acmewqeax$r_principal_name_out Principal name

acmewqeax$r_vms_username Mapped OpenVMS user name

acmewqeax$r_password_1 Password 1

acmewqeax$r_password_2 Password 2

acmewqeax$r_new_password_1 New password 1

acmewqeax$r_new_password_2 New password 2

The following constants are defined in conjunction with acmewqeax:

Constant Value Use

acmewqe$k_min_auth_param 256

acmewqe$k_system_password 256

acmewqe$k_principal_name 257

acmewqe$k_principal_name_out 258

acmewqe$k_vms_username 259

acmewqe$k_password_1 260

acmewqe$k_password_2 261

acmewqe$k_new_password_1 262

acmewqe$k_new_password_2 263

acmewqe$k_max_auth_param 263

acmewqeax

acmewqeax$l_new_password_flags 0

acmewqeax$l_logon_flags 4

�acmewqeax$r_logon_stats_vms (48 bytes) 8�

(continued on next page)

ACME Agent Interface Data Structures B–13

ACME Agent Interface Data Structures
B.10 ACME WQE Extension for Authentication (ACMEWQEAX)

�acmewqeax$r_logon_stats_doi (112 bytes) 56�

�acmewqeax$r_system_password (16 bytes) 168�

�acmewqeax$r_principal_name (16 bytes) 184�

�acmewqeax$r_principal_name_out (16 bytes) 200�

�acmewqeax$r_vms_username (16 bytes) 216�

�acmewqeax$r_password_1 (16 bytes) 232�

�acmewqeax$r_password_2 (16 bytes) 248�

�acmewqeax$r_new_password_1 (16 bytes) 264�

�acmewqeax$r_new_password_2 (16 bytes) 280�

B–14 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.11 Work Queue Entry Function Dependent Extension (ACMEWQEFDX)

B.11 Work Queue Entry Function Dependent Extension
(ACMEWQEFDX)

The following are the contents of the aggregate structure acmewqefdx:

Field Use

acmewqefdx$r_auth_pwd AUTHENTICATE_
PRINCIPAL/CHANGE_
PASSWORD

The following constants are defined in conjunction with acmewqefdx:

Constant Value Use

acmewqeasx$k_length 4

acmewqefdx

�acmewqefdx$r_auth_pwd (296 bytes) 0�

ACME Agent Interface Data Structures B–15

ACME Agent Interface Data Structures
B.12 ACME Work Queue Entry Function Independent Extension (ACMEWQEFIX)

B.12 ACME Work Queue Entry Function Independent Extension
(ACMEWQEFIX)

The following are the contents of the aggregate structure acmewqefix:

Field Use

acmewqefix$l_reserved Null structure

The following constants are defined in conjunction with acmewqefix:

Constant Value Use

acmewqeitm$k_length 16

acmewqefix$k_length 0

acmewqefix

acmewqefix$l_reserved 0

B–16 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.13 ACME Work Queue Entry Flags (ACMEWQEFLG)

B.13 ACME Work Queue Entry Flags (ACMEWQEFLG)
The following are the contents of the aggregate structure acmewqeflg:

Field Use

acmewqeflg$l_flags_struct Composite field

The following constants are defined in conjunction with acmewqeflg:

Constant Value Use

acmewqeflg$k_min_acme_flag 0

acmewqeflg$k_max_acme_flag 15

acmewqeflg$k_min_fi_flag 0

acmewqeflg$k_phase_done 0

acmewqeflg$k_no_retry 1

acmewqeflg$k_max_fi_flag 1

acmewqeflg$k_min_auth_flag 12

acmewqeflg$k_preauthenticated 12

acmewqeflg$k_no_external_auth 13

acmewqeflg$k_skip_new_password 14

acmewqeflg$k_null_net_user 15

acmewqeflg$k_max_auth_flag 15

acmewqeflg

acmewqeflg$l_flags_struct 0

ACME Agent Interface Data Structures B–17

ACME Agent Interface Data Structures
B.14 ACME Work Queue Entry Item (ACMEWQEITM)

B.14 ACME Work Queue Entry Item (ACMEWQEITM)
The following are the contents of the aggregate structure acmewqeitm:

Field Use

acmewqeitm$l_acme_id ID of ACME which set the item

acmewqeitm$l_phase Phase during which item was set

acmewqeitm$l_length Size, in bytes, of data

acmewqeitm$ps_pointer Address of data

The following constants are defined in conjunction with acmewqeitm:

Constant Value Use

acmewqeval$k_length 12

acmewqeitm

acmewqeitm$l_acme_id 0

acmewqeitm$l_phase 4

acmewqeitm$l_length 8

acmewqeitm$ps_pointer 12

B–18 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.15 ACME Work Queue Entry Value (ACMEWQEVAL)

B.15 ACME Work Queue Entry Value (ACMEWQEVAL)
The following are the contents of the aggregate structure acmewqeval:

Field Use

acmewqeval$l_acme_id ID of ACME which set the value

acmewqeval$l_phase Phase during which value was set

acmewqeval$L_VALUE Value

The following constants are defined in conjunction with acmewqeval:

Constant Value Use

acme$k_maxchar_acme_ident 64 Maximum length (in
characters) of

acme$k_maxchar_acme_activity 64 Maximum length (in
characters) of

acmewqeval

acmewqeval$l_acme_id 0

acmewqeval$l_phase 4

acmewqeval$L_VALUE 8

ACME Agent Interface Data Structures B–19

ACME Agent Interface Data Structures
B.16 ACME Work Queue Entry (ACMEWQE)

B.16 ACME Work Queue Entry (ACMEWQE)
The following are the contents of the aggregate structure acmewqe:

Field Use

acmewqe$ps_flink WQE list forward link

acmewqe$ps_blink WQE list backward link

acmewqe$w_size Structure size, in bytes

acmewqe$w_revision_level Structure revision level

acmewqe$l_flags Status/control flags

acmewqe$l_function Function code/modifiers

acmewqe$l_dialogue_flags Dialogue support flags

acmewqe$l_requestor_profile Requestor’s security profile (Persona ID)

acmewqe$l_requestor_mode Requestor’s mode

acmewqe$l_requestor_pid Requestor’s PID

acmewqe$l_target_acme_id Agent ID of ACME at which this request is
directed

acmewqe$l_designated_acme_id Agent ID of ACME that assumed processing
control

acmewqe$l_designated_cred Type of credentials associated with the
designated ACME

acmewqe$l_current_acme_id Agent ID of current ACME

acmewqe$r_status First non-success status returned by an ACME

acmewqe$r_secondary_status Secondary (protected) status

acmewqe$r_acme_status ACME specific status

acmewqe$ps_func_ind_params Function independent extension

acmewqe$ps_func_dep_params Function dependent extension

acmewqe$ps_itemlist ACME independent item list

acmewqe$ps_acme_itemlist ACME specific item list

acmewqe$q_ast_context AST context for which the AST has been
recieved

acmewqe$r_locale Locale specifier

acmewqe$r_service_name Service (client) specifier

acmewqe$l_timeout_seconds Seconds since system boot at which this
request can be timed out

acmewqe$b_fill_9_

The following constants are defined in conjunction with acmewqe:

Constant Value Use

acmewqe$k_minor_id_000 0 original V7.2-1 WQE supporting
only COM

acmewqe$k_minor_id_001 1 subsequent extension of the WQE

acmewqe$k_minor_id 0

acmewqe$k_major_id_001 1

B–20 ACME Agent Interface Data Structures

ACME Agent Interface Data Structures
B.16 ACME Work Queue Entry (ACMEWQE)

Constant Value Use

acmewqe$k_major_id 1

acmewqe$k_revision 256

acmewqe

acmewqe$ps_flink 0

acmewqe$ps_blink 4

acmewqe$w_sizeacmewqe$w_revision_level 8

acmewqe$l_flags 12

acmewqe$l_function 16

acmewqe$l_dialogue_flags 20

acmewqe$l_requestor_profile 24

acmewqe$l_requestor_mode 28

acmewqe$l_requestor_pid 32

acmewqe$l_target_acme_id 36

acmewqe$l_designated_acme_id 40

acmewqe$l_designated_cred 44

acmewqe$l_current_acme_id 48

�acmewqe$r_status (12 bytes) 52�

�acmewqe$r_secondary_status (12 bytes) 64�

�acmewqe$r_acme_status (12 bytes) 76�

acmewqe$ps_func_ind_params 88

acmewqe$ps_func_dep_params 92

acmewqe$ps_itemlist 96

acmewqe$ps_acme_itemlist 100

(continued on next page)

ACME Agent Interface Data Structures B–21

ACME Agent Interface Data Structures
B.16 ACME Work Queue Entry (ACMEWQE)

acmewqe$q_ast_context 104

�acmewqe$r_locale (16 bytes) 112�

�acmewqe$r_service_name (16 bytes) 128�

acmewqe$l_timeout_seconds 144

acmewqe$b_fill_9_ 148

B–22 ACME Agent Interface Data Structures

C
Persona Extension Interface Data Structures

C.1 Persona Security Block (PSB)
This is the basic structure for a persona, including OpenVMS data.

The following are the contents of the aggregate structure PSB:

Field Use

PSB$L_FLINK Standard listhead Forward link

PSB$L_BLINK Standard listhead Backward link

PSB$W_SIZE Standard structure size, in bytes

PSB$B_TYPE Standard Type code for PSB (DYN$C_
SECURITY)

PSB$B_SUBTYPE Standard Subtype code (DYN$C_SECURITY_
PSB)

PSB$L_DEBUG_FLINK Forward link to previous PSB (DEBUG)

PSB$L_DEBUG_BLINK Backward link to previous PSB (DEBUG)

PSB$L_DEBUG_PID PID of process that allocated this PSB (DEBUG)

PSB$L_FLAGS Every structure needs a set of flags

PSB$L_PERSONA_ID Persona id assigned to this PSB

PSB$L_REFCOUNT Number of attached execution contexts to this
PSB

PSB$O_UID Universal identifier assigned to persona

PSB$T_CLONE_REGION Start of area copied when PSB is cloned

PSB$L_MODE Access level for this PSB (User, Supervisor, Exec,
Kernel)

End of the reserve PSB (runt).

PSB$T_USERNAME Persona Username

PSB$T_ACCOUNT Persona Account name

PSB$L_NOAUDIT Non-zero implies no audit status

PSB$L_UIC UIC of persona
UIC_FLAGS must always follow UIC

PSB$L_UIC_FLAGS UIC identifier flags longword
(should always be zero)

PSB$L_CONCEALED_COUNT Hidden reference tracking

PSB$Q_RESERVED Used for quadword alignment

PSB$Q_DOI Domain Of Interpretation

PSB$L_RIGHTS_ENABLED Bitmap of enabled/disabled rights pointers

Persona Extension Interface Data Structures C–1

Persona Extension Interface Data Structures
C.1 Persona Security Block (PSB)

Field Use

PSB$AR_AUTHRIGHTS Array of pointers to authorized rights chains

PSB$AR_RIGHTS Array of pointers to active rights chains

PSB$AR_CLASS Pointer to classification data block

PSB$L_PXB_COUNT Number of extensions registered when this
persona is created.

PSB$AR_PXB_ARRAY Pointer to array of pointers to this PSB’s
extension blocks.

PSB$Q_PXB_MUTEX Mutex to sych access to this PSB’s fields.

The following constants are defined in conjunction with PSB:

Constant Value Use

PSB$K_SIZE_ACCOUNT 32

PSB$K_SIZE_USERNAME 32

PSB$K_COUNT_PERSONAE 8

PSB$K_COUNT_RIGHTS 10

PSB$K_RIGHTS_PERSONA 0

PSB$K_RIGHTS_SYSTEM 1

PSB$K_RIGHTS_INSTALLED 2

PSB$K_RIGHTS_SUBSYSTEM 3

PSB$K_RIGHTS_TEMPORARY 4

PSB$K_RIGHTS_CHKPRO 9

PSB$K_FLAGS_BIT_COUNT 13 Number of flags

PSB$K_RESERVE_PERSONA_
LENGTH

56

PSB$K_CLONE_REGION_SIZE 220

psb

PSB$L_FLINK 0

PSB$L_BLINK 4

PSB$W_SIZEPSB$B_TYPEPSB$B_SUBTYPE 8

PSB$L_DEBUG_FLINK 12

PSB$L_DEBUG_BLINK 16

PSB$L_DEBUG_PID 20

PSB$L_FLAGS 24

PSB$L_PERSONA_ID 28

(continued on next page)

C–2 Persona Extension Interface Data Structures

Persona Extension Interface Data Structures
C.1 Persona Security Block (PSB)

PSB$L_REFCOUNT 32

�PSB$O_UID (16 bytes) 36�

PSB$L_MODE 52

�PSB$T_USERNAME (32 bytes) 56�

�PSB$T_ACCOUNT (32 bytes) 88�

PSB$L_NOAUDIT 120

PSB$L_UIC 124

PSB$L_UIC_FLAGS 128

PSB$L_CONCEALED_COUNT 132

PSB$Q_RESERVED 136

PSB$Q_DOI 144

PSB$L_RIGHTS_ENABLED 184

�PSB$AR_AUTHRIGHTS (40 bytes) 188�

�PSB$AR_RIGHTS (40 bytes) 228�

PSB$AR_CLASS 268

PSB$L_PXB_COUNT 272

PSB$AR_PXB_ARRAY 276

PSB$Q_PXB_MUTEX 280

Persona Extension Interface Data Structures C–3

Persona Extension Interface Data Structures
C.2 Persona Extension Block Array (PXB_ARRAY)

C.2 Persona Extension Block Array (PXB_ARRAY)
The PSB$AR_PXB_ARRAY cell of the Persona Security Block points to the PXB_
ARRAY$AR_ELEMENTS field of this structure. PXB_ARRAY$AR_ELEMENTS
contains pointers to all of the persona extension blocks associated with the
persona.

The following are the contents of the aggregate structure PXB_ARRAY:

Field Use

PXB_ARRAY$L_FLINK Forward link

PXB_ARRAY$L_BLINK Backward link

PXB_ARRAY$W_SIZE Size

PXB_ARRAY$B_TYPE Type code

PXB_ARRAY$B_SUBTYPE Subtype code

PXB_ARRAY$AR_ELEMENTS Array cells

The following constants are defined in conjunction with PXB_ARRAY:

Constant Value Use

PXB$K_LENGTH 12 Length of header

PXB_ARRAY_ELEMENTS 16

PXB_ARRAY$K_PXB_ARRAY_
HEADER

12

pxb_array

PXB_ARRAY$L_FLINK 0

PXB_ARRAY$L_BLINK 4

PXB_ARRAY$W_SIZEPXB_ARRAY$B_TYPEPXB_ARRAY$B_SUBTYPE 8

�PXB_ARRAY$AR_ELEMENTS (64 bytes) 12�

C–4 Persona Extension Interface Data Structures

Persona Extension Interface Data Structures
C.3 Persona Extension Block (PXB)

C.3 Persona Extension Block (PXB)
This structure shows the header for your Persona Extension Block structure.
PXB$B_TYPE should contain DYN$C_SECURITY. PXB$B_SYBTYPE should
contain DYN$C_SECURITY_PXB_GENERIC. PXB$W_SIZE should contain the
allocated size for this structure, including this header and all the subsequent
fields you define.

The following are the contents of the aggregate structure PXB:

Field Use

PXB$L_FLINK Forward link

PXB$L_BLINK Backward link

PXB$W_SIZE Size

PXB$B_TYPE Type code

PXB$B_SUBTYPE Subtype code

pxb

PXB$L_FLINK 0

PXB$L_BLINK 4

PXB$W_SIZEPXB$B_TYPEPXB$B_SUBTYPE 8

The above fields describe only the fixed portion of the Persona Extension Block,
common to all persona extensions. Following those cells you should include the
data specific to your extension, noting the total resultant size of the structure in
cell PXB$W_SIZE.

Persona Extension Interface Data Structures C–5

Persona Extension Interface Data Structures
C.4 Persona Extension Creation Flags (PXB_FLAGS)

C.4 Persona Extension Creation Flags (PXB_FLAGS)
If flag PXB$V_DEBIT is set, the user process is charged for the memory used in
this this PXB, even if it is not being charged for the memory used in the parent
PSB.

This flag should be returned by your persona extension image in response to a
query for ISS$_COMMON_FLAGS.

Typically direct system service requests will charge the user process for memory
usage, while implicit requests from within the TCB will not do so. If you want to
cause even implict requests to charge the user, use the PXB$V_DEBIT flag.

The following are the contents of the aggregate structure PXB_FLAGS:

Field Length Starts at Use

PXB$V_FILL_1 1 bit Bit 0 Clone operation

PXB$V_FILL_2 1 bit Bit 1 Delegate operation

PXB$V_FILL_3 1 bit Bit 2

PXB$V_FILL_4 1 bit Bit 3

PXB$V_FILL_5 1 bit Bit 4

PXB$V_FILL_6 1 bit Bit 5

PXB$V_FILL_7 1 bit Bit 6

PXB$V_DEBIT 1 bit Bit 7 DEBIT1

1This bit must be in synch with PSB flag.

pxb_flags

unused

C–6 Persona Extension Interface Data Structures

Persona Extension Interface Data Structures
C.5 Persona Extension Dispatch Vector (PXVD)

C.5 Persona Extension Dispatch Vector (PXVD)
Your persona extension image provides this specification of persona extension
routines when it calls NSA$REGISTER_PSB_EXTENSION from its initialization
routine, as described in Chapter 12. The following are the contents of the
aggregate structure PXDV:

Field Use

PXDV$L_VERSION Version of dispatch vector

PXDV$L_FLAGS

PXDV$A_CREATE Address to CREATE routine

PXDV$A_CLONE Address to CLONE routine

PXDV$A_DELEGATE Address to DELEGATE routine

PXDV$A_DELETE Address to DELETE routine

PXDV$A_MODIFY Address to MODIFY routine

PXDV$A_QUERY Address to QUERY routine

PXDV$A_MAKE_TLV Address to MAKE_TLV routine

The following constants are defined in conjunction with PXDV:

Constant Value Use

PXRB$K_LENGTH 88 Length of PXRB struct

PXDV$K_version 1

PXDV$K_min_version 1

PXDV$K_max_version 1

pxdv

PXDV$L_VERSION 0

PXDV$L_FLAGS 4

PXDV$A_CREATE 8

PXDV$A_CLONE 12

PXDV$A_DELEGATE 16

PXDV$A_DELETE 20

PXDV$A_MODIFY 24

PXDV$A_QUERY 28

PXDV$A_MAKE_TLV 32

unused 36

Persona Extension Interface Data Structures C–7

Persona Extension Interface Data Structures
C.6 Persona Extension Registration Block (PXRB)

C.6 Persona Extension Registration Block (PXRB)
This data structure in nonpaged pool provides ongoing storage for the addresses
providedinteh PSDV by your persona extension image.

The following are the contents of the aggregate structure PXRB:

Field Use

PXRB$L_FLINK Forward link

PXRB$L_BLINK Backward link

PXRB$W_SIZE Size

PXRB$B_TYPE Type code

PXRB$B_SUBTYPE Subtype code

PXRB$L_FLAGS

PXRB$L_EID Extension ID

PXRB$L_NAME_DESC Extension name descriptor

PXRB$AR_NAME Extension name string

PXRB$A_CREATE Pointer to CREATE routine

PXRB$A_CLONE Pointer to CLONE routine

PXRB$A_DELEGATE Pointer to DELEGATE routine

PXRB$A_DELETE Pointer to DELETE routine

PXRB$A_MODIFY Pointer to MODIFY routine

PXRB$A_QUERY Pointer to QUERY routine

PXRB$A_MAKE_TLV Pointer to MAKE_TLV routine

The following constants are defined in conjunction with PXRB:

Constant Value Use

DELBK$C_DELEGATE_
BLOCK_SIZE

40 Length of DELBK struct

pxrb

PXRB$L_FLINK 0

PXRB$L_BLINK 4

PXRB$W_SIZEPXRB$B_TYPEPXRB$B_SUBTYPE 8

PXRB$L_FLAGS 12

PXRB$L_EID 16

PXRB$L_NAME_DESC 20

(continued on next page)

C–8 Persona Extension Interface Data Structures

Persona Extension Interface Data Structures
C.6 Persona Extension Registration Block (PXRB)

�PXRB$AR_NAME (32 bytes) 28�

PXRB$A_CREATE 60

PXRB$A_CLONE 64

PXRB$A_DELEGATE 68

PXRB$A_DELETE 72

PXRB$A_MODIFY 76

PXRB$A_QUERY 80

PXRB$A_MAKE_TLV 84

Persona Extension Interface Data Structures C–9

Persona Extension Interface Data Structures
C.7 Persona Extension Create Flags (CREATE_FLAGS)

C.7 Persona Extension Create Flags (CREATE_FLAGS)
This flag is used by a caller of SYS$PERSONA_CREATE_EXTENSION to
indicate that the created extension should be the primary extension. The visible
result for your persona extension image will be that the index of this will be in
location 0 of the PXB Array.

The following are the contents of the aggregate structure CREATE_FLAGS:

Field Use

PXB$V_PRIMARY_EXTENSION This field is 1 bit long, and starts at bit 0.
Clone operation

PXB$V_FILL_6_ This field is 31 bits long, and starts at bit 1.

create_flags

C–10 Persona Extension Interface Data Structures

Persona Extension Interface Data Structures
C.8 Persona Delegation Block (DELBK)

C.8 Persona Delegation Block (DELBK)
Use this structure to pass delegation information between processes.

The following are the contents of the aggregate structure DELBK:

Field Use

DELBK$L_FLINK Forward link

DELBK$L_BLINK Backward link

DELBK$W_SIZE size

DELBK$B_TYPE Type code

DELBK$B_SUBTYPE Subtype code

DELBK$L_PERSONA_ID Persona ID

DELBK$L_PERSONA_ADDRESS Persona address

DELBK$L_CLIENT_EPID Client’s EPID

DELBK$L_CLIENT_TPID Client’s Thread PID

DELBK$L_BYTCNT BYTCNT/BYTLM to be debited upon
delegation

DELBK$L_IMGCNT Value of PHD$L_IMGCNT when we started

DELBK$L_STATUS Status

delbk

DELBK$L_FLINK 0

DELBK$L_BLINK 4

DELBK$W_SIZEDELBK$B_TYPEDELBK$B_SUBTYPE 8

DELBK$L_PERSONA_ID 12

DELBK$L_PERSONA_ADDRESS 16

DELBK$L_CLIENT_EPID 20

DELBK$L_CLIENT_TPID 24

DELBK$L_BYTCNT 28

DELBK$L_IMGCNT 32

DELBK$L_STATUS 36

Persona Extension Interface Data Structures C–11

Persona Extension Interface Data Structures
C.9 PSB Ring Buffer (PSBRB)

C.9 PSB Ring Buffer (PSBRB)
Keeps a history of recent persona activity when the system is booted with the
SECURITY_MON.EXE executive image.

The following are the contents of the aggregate structure PSBRB:

Field Use

PSBRB$L_FLINK Standard listhead Forward link

PSBRB$L_BLINK Standard listhead Backward link

PSBRB$W_SIZE Standard structure size, in bytes

PSBRB$B_TYPE Standard Type code for PSB (DYN$C_
SECURITY)

PSBRB$B_SUBTYPE Standard Subtype code (DYN$C_
SECURITY_PRB)

PSBRB$L_MAX_INDEX Maximum number of records in ring

PSBRB$L_CURRENT_INDEX Index of nex record to be written in the
RingBuffer

PSBRB$T_RECORDS Offset to first record in RingBuffer

PSBRB$L_FUNCTION Define which support routine is reporting
this record

PSBRB$L_PSB Address of PSB being acted upon by the
function

PSBRB$L_REFCNT Current reference count the above PSB

PSBRB$L_FLAGS Contents of PSB flags

PSBRB$L_MODE Access mode of current PSB

PSBRB$L_PC Address from where the function was called

PSBRB$L_PSL PSL at the time of the operation

PSBRB$L_UTHREAD_ID Current active DECthread (if any)

PSBRB$L_KTB Current KTB

PSBRB$L_CPU CPU ID from current KTB
Function specific information

PSBRB$L_AUX_1 $Assume = previous PSB
$Clone = PSB being created

PSBRB$L_AUX_2 $Assume = previous PSB reference count

The following constants are defined in conjunction with PSBRB:

Constant Value Use

PSB$_TLV_FLAGS 1 1

PSB$_TLV_ARBFLAGS 2 2 CHP$_FLAGS Placeholder to
avoid conflict with ARB TLVs

PSB$_TLV_ARBPRIV 3 3 CHP$_PRIVS Placeholder to
avoid conflict with ARB TLVs

PSB$_TLV_MODE 4 4

PSB$_TLV_WORKCLASS 5 5

PSB$_TLV_RIGHTS 6 6

C–12 Persona Extension Interface Data Structures

Persona Extension Interface Data Structures
C.9 PSB Ring Buffer (PSBRB)

Constant Value Use

PSB$_TLV_USERNAME 9 9

PSB$_TLV_ACCOUNT 10 10

PSB$_TLV_NOAUDIT 11 11

PSB$_TLV_AUTHPRIV 12 12

PSB$_TLV_PERMPRIV 13 13

PSB$_TLV_IMAGE_WORKPRIV 14 14

PSB$_TLV_RIGHTS_ENABLED 15 15

PSB$_TLV_AUTHRIGHTS 16 16

PSB$_TLV_MINCLASS 17 17

PSB$_TLV_MAXCLASS 18 18

PSB$_TLV_UID 19 19

PSB$_TLV_UIC 22 22

PSB$_TLV_WORKPRIV 23 23

PSB$_TLV_MIN_CODE 1

PSB$_TLV_MAX_CODE 23

PSBRB

PSBRB$L_FLINK 0

PSBRB$L_BLINK 4

PSBRB$W_SIZEPSBRB$B_TYPEPSBRB$B_SUBTYPE 8

PSBRB$L_MAX_INDEX 12

PSBRB$L_CURRENT_INDEX 16

PSBRB$L_FUNCTION 20

PSBRB$L_PSB 24

PSBRB$L_REFCNT 28

PSBRB$L_FLAGS 32

PSBRB$L_MODE 36

PSBRB$L_PC 40

PSBRB$L_PSL 44

PSBRB$L_UTHREAD_ID 48

PSBRB$L_KTB 52

PSBRB$L_CPU 56

(continued on next page)

Persona Extension Interface Data Structures C–13

Persona Extension Interface Data Structures
C.9 PSB Ring Buffer (PSBRB)

PSBRB$L_AUX_1 60

PSBRB$L_AUX_2 64

unused 68

C–14 Persona Extension Interface Data Structures

Persona Extension Interface Data Structures
C.10 Persona Security Block Array (PSB_ARRAY)

C.10 Persona Security Block Array (PSB_ARRAY)
Contains the master list of personas held by a process.

The following are the contents of the aggregate structure PSB_ARRAY:

Field Use

PSA$L_FLINK Standard listhead Forward link

PSA$L_BLINK Standard listhead Backward link

PSA$W_SIZE Standard structure size, in bytes

PSA$B_TYPE Standard Type code for PSB (DYN$C_SECURITY)

PSA$B_SUBTYPE Standard Subtype code (DYN$C_SECURITY_PSB)

PSA$L_RESERVED Keep array quad aligned ...

PSA$T_ELEMENTS Offset to first element in array

The following constants are defined in conjunction with PSB_ARRAY:

Constant Value Use

PSB$K_LENGTH 288 Length of PSB structure

psb_array

PSA$L_FLINK 0

PSA$L_BLINK 4

PSA$W_SIZEPSA$B_TYPEPSA$B_SUBTYPE 8

PSA$L_RESERVED 12

Persona Extension Interface Data Structures C–15

D
ACME Agent and Persona Extension Code

Examples

The release notes contain a pointer to code examples for a sample ACME agent
and persona extension.

ACME Agent and Persona Extension Code Examples D–1

Glossary

This glossary lists and defines the terms used in this guide.

ACM

See Authentication and Credential Management.

ACM client process

A process that calls the SYS$ACM[W] system service.

ACM client program

A program that calls the SYS$ACM[W] system service.

ACM communications buffer

An area provided by the SYS$ACM[W] system service via the ACM context
argument. It contains an itemset to specify required user interaction in dialog
mode.

ACM context argument

An argument to the SYS$ACM[W] system service that passes a pointer variable.
If the SYS$ACM[W] system service requires additional information in dialog
mode, it fills in that variable so it points to an ACM communications buffer.

ACM dispatcher

That code within the ACME server main image that makes calls to the ACME
callout routines provided by the various ACME agent shareable images and
reacts to the status codes they return.

ACME

See Authentication and Credential Management Extension.

ACME agent

The abbreviated name for an ACME agent shareable image.

ACME agent control callout routine

Supports SET SERVER ACME commands. One of four entry points provided by
an ACME agent shareable image to be called by the ACME server main image.
For controlling the startup, shutdown, suspension, or resumption of operations
for that ACME agent shareable image.

Glossary–1

ACME agent shareable image

A shareable image used within the ACME server process to implement one or
more forms of authentication and optionally provide credentials to the process
that called the SYS$ACM[W] system service. The VMS ACME is an example of
an ACME agent shareable image that ships with the OpenVMS operating system.
Others can be provided with add-on products or be written locally.

ACME authentication and password callout routine

Supports the processing of the SYS$ACM[W] system service function codes
ACME$_FC_AUTHENTICATE_PRINCIPAL and ACME$_FC_CHANGE_
PASSWORD. One of 29 entry points provided by an ACME agent shareable image
to be called by the ACME server main image. For processing function codes for
that ACME agent shareable image.

ACME callback routine

An entry point provided by the ACME server main image to be called by any
ACME agent shareable image for implementation of the authentication policy of
one or more DOIs.

ACME callout routine

An entrypoint provided by an ACME agent shareable image to be called by the
ACME server main image for implementation of the authentication policy of one
or more DOIs.

ACME event and query callout routine

One of the ACME callout routines ACME$CO_EVENT or ACME$CO_QUERY.
Provided by an ACME agent shareable image to be called by the ACME server
main image. For processing the SYS$ACM[W] system service function codes
ACME$_FC_EVENT or ACME$_FC_QUERY, respectively.

ACME server log

A text file written by the ACME server main image containing error
and trace information from the ACM dispatcher and the various ACME
agents. You can define the ACME$SERVER logical name to send
the ACME server log to a specified disk. The default destination is
SYS$SPECIFIC:[SYSMGR]ACME$SERVER.LOG.

ACME server main image

The main image that runs in an ACME server process and makes calls to each
ACME agent shareable image. This image is supplied with the operating system.

ACME server process

A detached process that performs back end operations in support of the
SYS$ACM[W] system service.

ACME-specific resource

An ACME-specific entity that can be cached with the ACM dispatcher and
retrieved when needed or when next available in the scheduling cycle.

Glossary–2

ACME status

The fourth longword returned in the structure to which the ACMSB argument
to the SYS$ACM[W] system service points. The symbolic name of this cell is
ACMESB$L_ACME_STATUS. The ACME status contains a status encoded in a
format specific to a particular ACME agent unless the primary status contains
one of the following values:

• SS$_BADITMCOD

• SS$_BADBUFLEN

• SS$_BADPARAM

When the primary status contains one of those values, the ACME status indicates
what item code was in error.

AST context

A structure acquired by an ACME agent shareable image via an ACME callback
routine to allow the use of AST-driven system services without actually running
ACME agent shareable image code at AST level.

Authentication and Credential Management (ACM)

A set of tools that provide the ability to enhance or customize authentication
services.

Authentication and Credential Management Extension (ACME)

An ACM program.

authentication policy

A set of rules determining how to establish the identity of (authenticate) users
when they start to use the system. Most operating systems use passwords as the
primary authentication mechanism. A system can have different authentication
policies implemented for multiple DOIs at the same time.

credentials

A set of items used to validate access for a particular DOI. The SYS$ACM[W]
system service returns credentials to the ACM client program as an attachment
to a persona in the form of an additional persona extension. Other privileged
components specific to the same DOI can use that persona extension in making
security decisions. The OpenVMS Registry, for instance, can grant or deny access
to particular data elements based on the NT persona extension.

deferred confirmation

A pattern of dialog mode operation in which an ACM client program confirms
a no-echo prompt (such as for a new password) only after the initial response
has been at least partially qualified by an ACME agent. This presents a more
hospitable interface to users than immediate confirmation.

designated DOI

The Domain of Interpretation (DOI) chosen to prevail in processing a particular
Authenticate Principal or Change Password request. Interaction between the
various ACME agents on a system, in accordance with policy controls set by the
system manager, leads to one of the ACME agents designating itself to provide
the designated DOI. Other DOIs may contribute to authentication and may

Glossary–3

provide credentials. When the call to the SYS$ACM[W] system service specifies a
target DOI, that DOI will also be used as the designated DOI.

dialog mode

A form of operation whereby the ACM client program calls the SYS$ACM[W]
system service successively to complete a full Authenticate Principal or Change
Password operation. You specify dialog mode by providing the context argument
when calling the SYS$ACM[W] system service.

DOI

See domain of interpretation.

domain of interpretation (DOI)

An authentication policy implemented by an ACME agent shareable image or by
several in combination.

event

Information an ACM client program transmits to an ACME agent for use in
some fashion specific to a particular DOI. It might be recorded in a log or used
to trigger some mode of operation. Requirements for sending an event, including
any required privilege, are specific to the DOI.

executive image

A program image specially constructed without transfer vectors and intended
to be included as part of the modular OpenVMS executive. This is sometimes
known by the informal name Execlet. A persona extension image that you write
is an example of an executive image.

extension ID

The index number for a particular persona extension within persona data
structures. The extension ID for persona extensions from a particular persona
extension image will remain constant until the next time the system is booted.

immediate confirmation

A pattern of dialog mode operation in which an ACM client program confirms
a no-echo prompt (such as for a new password) before returning the initial
response to the ACME server process (and thus before any qualification of the
new password regarding acceptability). This presents a lighter system load than
deferred confirmation.

item list

A chain of item list segments with each segment terminated by the item
ACME$_CHAIN, except for the final segment which is terminated by a zero item.
Each ACME$_CHAIN item points to the successor segment.

item list segment

An array of standard VMS item_list_3 or item list entry B descriptors.

itemset

An array of itemset entries provided by the SYS$ACM[W] system service to
specify required user interaction.

Glossary–4

itemset entry

An element within an itemset describing a single user interaction request from
an ACME agent.

LGI callout

A mechanism introduced in OpenVMS Version 5.5 for customizing LOGINOUT
interactions. This was the predecessor to the ACME mechanism.

logon type

Also known as login class. One of the five types of authentication supported by
the SYS$ACM[W] system service (local, dialup, remote, network, and batch). The
type that is chosen (or defaulted, in the case of non-privileged callers) governs
the degree of interaction that might be required for provision of passwords and
changing of passwords.

message category

The code value indicating the purpose of output dialogue text.

PSB

See Persona Security Block.

Persona Secutiry Block (PSB)

A data structure used to implement a persona.

non-dialogue mode

A form of operation whereby the ACM client program calls the SYS$ACM[W]
system service once with all items required.

OpenVMS executive

The combination of SYS$PUBLIC_VECTORS.EXE, SYS$BASE_IMAGE.EXE,
and executive images that together form the core of the operating system.

OpenVMS user name

The name used to identify a user in non-authentication system service calls after
a user is logged in. It is case-blind and limited to 12 alphanumeric characters
making it considerably less flexible than the principal name. Note that the input
prompt Username: is actually requesting a principal name.

persona

A kernel data structure (internal code PSB) associated with a process forming the
basis for identity within the operating system.

persona extension

A kernel data structure (internal code PXB) attached to a persona associated
with a process for the purpose of holding credentials for a particular DOI.

Persona Extension Block (PSB)

A data structure used for any persona extension other than the OpenVMS
persona extension.

Glossary–5

persona extension image

An executive image containing support routines for a particular persona
extension.

persona extension routine

A routine contained within a persona extension image that is invoked in kernel
mode by the OpenVMS executive to support operations on a particular persona
extension.

persona ID

A longword value representing a persona held by a particular process.
Translation of that value into a reference to the corresponding PSB is handled
entirely by persona system services.

primary status

The first longword returned in the structure to which the ACMSB argument
to the SYS$ACM[W] system service points. The symbolic name of this cell is
ACMESB$L_STATUS. It indicates the overall status of the request.

principal name

The initial name used to claim an identity, expressed in a syntax appropriate for
a particular DOI. Note that the traditional input prompt Username: is actually
requesting a principal name. In simple cases the spelling of the principal name is
the same as the spelling of the OpenVMS user name to which it maps.

principal name mapping

The transformation performed by an ACME agent that determines what
OpenVMS user name is associated with a particular principal name.

PXB

See Persona Extension Block.

request

The collection of data within the ACME server process pertaining to a particular
call or related set of calls to the SYS$ACM[W] system service by a client process.
The physical manifestation of a request is centered in a work queue entry.

return status

The value returned by the SYS$ACM[W] system service. Success indicates only
that the request was sent to the ACME server process. Success does not indicate
the final result of processing.

secondary status

The second longword returned in the structure to which the ACMSB argument
to the SYS$ACM[W] system service points. The symbolic name of this cell is
ACMESB$L_SECONDARY_STATUS. It indicates a more detailed explanation of
the primary status.

Glossary–6

status ACME ID

The third longword returned in the structure to which the ACMSB argument
to the SYS$ACM[W] system service points. The symbolic name of this cell
is ACMESB$L_ACME_ID. It indicates the identity of the ACME agent that
provided status information.

SYS$ACM[W] system service

The Authentication and Credential Management system service.

target DOI

The DOI specified on the initial call to the SYS$ACM[W] system service to be the
one to handle the request.

targeted request

A request where the caller of the SYS$ACM[W] system service specifies item
code ACME$_TARGET_DOI_ID or item code ACME$_TARGET_DOI_NAME to
indicate which DOI should handle the request.

TCB

See trusted computing base.

trusted computing base (TCB)

A combinatin of computer hardware and operating system software that enforces
a security policy. In OpenVMS systems, the TCB includes the entire executive
and file system, all other system components that do not execute in user mode
(such as device drivers, RMS, and DCL), most system programs installed with
privilege, and a variety of other utilities used by system managers to maintain
data relevant to the TCB.

UCS encoding

Unicode Character Set encoding. This uses the character set under which
characters are represented in 16 bits. OpenVMS uses UCS2-4, in which each
16-bit character is actually stored in a 32-bit cell (4 bytes).

VMS ACME

The ACME agent that implements the traditional pre-ACME OpenVMS
authentication policy.

well-known item

The seven common input text items that might be requested by any ACME
agent: ACME$_PASSWORD_SYSTEM, ACME$_PRINCIPAL_NAME, ACME$_
PASSWORD_1, ACME$_PASSWORD_2, ACME$_NEW_PASSWORD_SYSTEM,
ACME$_NEW_PASSWORD_1 or ACME$_NEW_PASSWORD_2.

WQE

See work queue entry.

work queue entry (WQE)

A data structure provided by the ACME server main image that tracks the
progress of a particular request from a client process as it is handled by the
ACME server main image and various ACME agent shareable images.

Glossary–7

Index

A
ACCEXPIRED status code, 8–4
ACCOUNTLOCK status code, 8–10
ACM client process

and item list, 2–11
function codes that specify ACME callout

routines, 2–6
function code that aborts a request, 2–6
item codes that specify ACME agents, 2–6

ACM dispatcher
and ACME server process, 2–3
and ACME-specific resources, 2–4
and failure codes, 2–6
and SET SERVER ACME command, 2–5
deallocating memory, 2–4
dispatch patterns, 2–5
early termination of the dispatch cycle, 2–6
flags set by, 4–6
parameters, 2–12

ACMDWQE$L_FLAGS field
and callout routine completion, 2–8

ACME$
_FC_AUTHENTICATE_PRINCIPAL function

code, 4–4
_FC_CHANGE_PASSWORD function code, 4–4
_FC_EVENT function code, 4–4, 7–4
_FC_FREE_CONTEXT function code, 2–6, 4–4
_FC_QUERY function code, 4–4, 7–5
_FC_RELEASE_CREDENTIALS function code,

4–4
_TARGET_DOI_ID item code, 4–9
_TARGET_DOI_NAME item code, 4–9

ACME$CB
_ACQUIRE_ACME_AST, rules for using, 2–2
_ACQUIRE_ACME_RMSAST, rules for using,

2–2
_ACQUIRE_RESOURCE, rules for using, 2–4
_ACQUIRE_WQE_AST

rules for using, 2–2
_ACQUIRE_WQE_RMSAST

rules for using, 2–3
_ALLOCATE_ACME_VM, rules for using, 2–3
_ALLOCATE_WQE_VM, rules for using, 2–3
_DEALLOCATE_ACME_VM, rules for using,

2–3

ACME$CB (cont’d)
_DEALLOCATE_WQE_VM, rules for using,

2–3
_ISSUE_CREDENTIALS, rules for using, 2–14
_QUEUE_DIALOGUE, rules for using, 2–9,

2–15
_RELEASE_RESOURCE, rules for using, 2–4
_REPORT_ATTRIBUTES, rules for using, 2–3
_SEND_LOGFILE, and tracing, 3–1
_SEND_LOGFILE, rules for using, 2–10
_SET_2ND_STATUS, rules for using, 2–8
_SET_ACME_STATUS, rules for using, 2–14
_SET_LOGON_STATS_DOI, rules for using,

2–14
_SET_OUTPUT_ITEM, rules for using, 2–14
_SET_WQE_FLAG

and ACMEWQE$L_FLAGS field, 4–5
_SET_WQE_PARAMETER, rules for using,

2–14
ACME$CO

_ACCEPT_PASSWORDS, 2–7
_AGENT_INITIALIZE

and revision level checking, 4–2
rules for using, 2–3, 2–5

_AGENT_SHUTDOWN, rules for using, 2–3,
2–5

_AGENT_STANDBY, rules for using, 2–3, 2–5
_AGENT_STARTUP, rules for using, 2–3, 2–5
_ANCILLARY_MECH_1, 2–9
_ANCILLARY_MECH_1, rules for using, 2–7
_ANCILLARY_MECH_2, 2–9
_ANCILLARY_MECH_2, rules for using, 2–7
_ANCILLARY_MECH_3, 2–9
_ANCILLARY_MECH_3, rules for using, 2–7
_AUTHENTICATE, rules for using, 2–7, 2–9
_EVENT, rules for using, 2–6
_INITIALIZE, rules for using, 2–9
_NEW_PASSWORD_1, rules for using, 2–7
_NEW_PASSWORD_2, rules for using, 2–7
_PASSWORD_1, rules for using, 2–7
_PASSWORD_2, 2–9
_PASSWORD_2, rules for using, 2–7
_PRINCIPAL_NAME, 2–9
_QUALIFY_PASSWORD_1, rules for using,

2–7
_QUALIFY_PASSWORD_2, rules for using,

2–7

Index–1

ACME$CO (cont’d)
_QUERY, rules for using, 2–6
_SET_PASSWORDS, 2–7
_SYSTEM_PASSWORD, 2–9
_VALIDATE_MAPPING, 2–9

ACME$M
_ACQUIRE_CREDENTIALS function modifier,

4–4
_COPY_PERSONA function modifier, 4–4
_DEFAULT_PRINCIPAL function modifier, 4–4
_FOREIGN_POLICY_HINTS function modifier,

4–4
_MERGE_PERSONA function modifier, 4–4
_NOAUDIT, function modifier, 4–4
_NOAUTHORIZATION function modifier, 4–4
_TIMEOUT function modifier, 4–4

ACME$QEAX_VMS_USERNAME field, creating a
detached process, 2–7

ACME$SERVER log file
and ACME tracing, 3–1
default location, 2–15
rules for using, 2–15

ACME$_FC_EVENT function code, 2–6
ACME$_FC_QUERY function code, 2–6
ACME agent

allocating and deallocating memory, 2–3
and failure or abort situations, 2–6, 2–8
obtaining a new password, 2–7
requesting a password, 2–10
requesting a principal name, 2–10
requesting binary data, 2–11
rules for programming I/O, 2–2
scheduling within the ACME server process,

2–1
sending binary data, 2–11
sending text strings, 2–10
system services it must never call, 2–1, 2–4
testing a password, 2–7
with a pending Dialog request, 2–6

ACMEKCV$W
_ACM_REVISION_LEVEL field, 4–1
_REVISION_LEVEL field, 4–1

ACMELGIFLG$V
_NEW_MAIL_AT_LOGIN flag, 4–10
_PASSWORD2_CHANGED flag, 4–10
_PASSWORD2_EXPIRED flag, 4–10
_PASSWORD2_WARNING flag, 4–10
_PASSWORD_CHANGED flag, 4–10
_PASSWORD_EXPIRED flag, 4–10
_PASSWORD_WARNING flag, 4–10

ACMELIDOI$W_REVISION_LEVEL field, 4–2
ACMELIVMS$W_REVISION_LEVEL field, 4–2
ACMEPWDFLG$V

_PASSWORD_1 flag, 4–10
_PASSWORD_2 flag, 4–10
_SPECIFIED flag, 4–10
_SYSTEM flag, 4–10

ACMERSRC$W_REVISION_LEVEL field, 4–2
ACME server main image

and item list segments, 2–11
caching and releasing resources, 2–4

ACME-specific item
definition, 2–11
rules for obtaining, 2–13

ACME-specific resource
caching and releasing, 2–4

ACMEWQE$L
_CURRENT_ACME_ID field in the WQE, 4–8
_DESIGNATED_ACME_ID field in the WQE,

4–9
_DESIGNATED_CRED field in the WQE, 4–9
_DIALOGUE_FLAGS field in the WQE, 4–7
_FACTOR field in the WQE, 4–9
_FLAGS field in the WQE, 4–5
_FUNCTION field in the WQE, 4–4
_REQUESTOR_MODE field in the WQE, 4–8
_REQUESTOR_PID field in the WQE, 4–8
_REQUESTOR_PROFILE field in the WQE,

4–8
_TARGET_ACME_ID field in the WQE, 4–9
_TIMEOUT field in the WQE, 4–9

ACMEWQE$PS
_ACME_ITEMLIST field in the WQE, 4–9
_FUNC_DEP_PARAMS field in the WQE, 4–9
_ITEMLIST field in the WQE, 4–9

ACMEWQE$R
_ACME_STATUS field in the WQE, 4–7
_LOCALE field in the WQE, 4–8
_SECONDARY_STATUS field in the WQE, 4–7
_SERVICE_NAME field in the WQE, 4–8
_STATUS field in the WQE, 4–7

ACMEWQE$W
_REVISION_LEVEL field in the WQE, 4–1,

4–14
_SIZE field in the WQE, 4–14

ACMEWQEAEX$L_CONCURRENT_REQUESTS
field, 4–10

ACMEWQEAIX$L_AGENT_NAME field, 4–10
ACMEWQEAX$L

_LOGON_FLAGS field, 4–10
_NEW_PASSWORD_FLAGS field, 4–10

ACMEWQEAX$R
_LOGON_STATS_DOI field, 4–11
_LOGON_STATS_VMS field, 4–11
_NEW_PASSWORD_1 field, 4–13
_NEW_PASSWORD_2 field, 4–13
_PASSWORD_1 field, 4–13
_PASSWORD_2 field, 4–13
_PRINCIPAL_NAME field, 4–12
_PRINCIPAL_NAME_OUT field, 4–12
_SYSTEM_PASSWORD field, 4–12
_VMS_USERNAME field, 4–13

ACMEWQEFLG$K
_NO_EXTERNAL_AUTH flag, 4–6
_NO_RETRY flag, 4–5

Index–2

ACMEWQEFLG$K (cont’d)
_PHASE_DONE flag in ACMEWQE$L_FLAGS

field, 4–5
_PREAUTHENTICATED flag, 4–5
_SKIP_NEW_PASSWORD flag, 4–6

ACMEWQEFLG$V
_ACME_FLAGS field, 4–5
_DISPATCHER_FLAGS field, 4–6
_PHASE_DONE, flag in ACMDWQE$L_FLAGS

field, 2–8
_PREAUTHENTICATED, flag in

ACME$QEAX_VMS_USERNAME
field, 2–7

_TRACE_ENABLED flag, 3–1
ACTIVE status code, 8–23
AGENTDBFULL status code, 8–23
AGENTLOADFAIL status code, 8–23
Agent trace flag, 3–1
AST context

ACME callback routines for obtaining, 2–2
definition and role in authentication process,

2–3
ASTCTXNOTFND status code, 8–14
AST trace flag, 3–1
AST_ROUTINE argument

rules for using with ACME callback routines,
2–3

AUTHDOWN status code, 8–24
AUTHFAILURE status code, 8–4

B
BUFFEROVF status code, 8–14
BUFTOOSMALL status code, 8–15
BUSY status code, 8–24

C
Callback routines

ACME$CB_ACQUIRE_ACME_AST, 2–2
ACME$CB_ACQUIRE_ACME_RMSAST, 2–2
ACME$CB_ACQUIRE_RESOURCE, 2–4
ACME$CB_ACQUIRE_WQE_AST, 2–2
ACME$CB_ACQUIRE_WQE_RMSAST, 2–3
ACME$CB_ALLOCATE_ACME_VM, 2–3
ACME$CB_ALLOCATE_WQE_VM, 2–3
ACME$CB_DEALLOCATE_ACME_VM, 2–3
ACME$CB_DEALLOCATE_WQE_VM, 2–3
ACME$CB_ISSUE_CREDENTIALS, 2–14
ACME$CB_QUEUE_DIALOGUE, 2–9, 2–15
ACME$CB_RELEASE_RESOURCE, 2–4
ACME$CB_REPORT_ATTRIBUTES, 2–3
ACME$CB_SEND_LOGFILE, 2–10
ACME$CB_SET_2ND_STATUS, 2–8
ACME$CB_SET_ACME_STATUS, 2–14
ACME$CB_SET_LOGON_STATS_DOI, 2–14
ACME$CB_SET_OUTPUT_ITEM, 2–14
ACME$CB_SET_WQE_PARAMETER, 2–14

Callback routines (cont’d)
for obtaining an AST context, 2–2
for specifying privileges, 2–3
using the AST_ROUTINE argument, 2–3

Callback vector data cells, 4–1
Callback vector entries

ACMEKCV$CB_ACQUIRE_ACME_AST, 9–8
ACMEKCV$CB_ACQUIRE_ACME_RMSAST,

9–10
ACMEKCV$CB_ACQUIRE_RESOURCE, 9–6
ACMEKCV$CB_ACQUIRE_WQE_RMSAST,

9–14
ACMEKCV$CB_ALLOCATE_ACME_VM, 9–16
ACMEKCV$CB_ALLOCATE_WQE_VM, 9–18
ACMEKCV$CB_CANCEL_DIALOGUE, 9–20
ACMEKCV$CB_DEALLOCATE_ACME_VM,

9–22
ACMEKCV$CB_DEALLOCATE_WQE_VM,

9–24
ACMEKCV$CB_FORMAT_DATE_TIME, 9–26
ACMEKCV$CB_ISSUE_CREDENTIALS, 9–28
ACMEKCV$CB_QUEUE_DIALOGUE, 9–30
ACMEKCV$CB_RELEASE_ACME_AST, 9–34
ACMEKCV$CB_RELEASE_ACME_RMSAST,

9–36
ACMEKCV$CB_RELEASE_WQE_AST, 9–40
ACMEKCV$CB_RELEASE_WQE_RMSAST,

9–42
ACMEKCV$CB_REPORT_ACTIVITY, 9–44
ACMEKCV$CB_REPORT_ATTRIBUTES, 9–46
ACMEKCV$CB_SEND_LOGFILE, 9–48
ACMEKCV$CB_SEND_OPERATOR, 9–50
ACMEKCV$CB_SET_2ND_STATUS, 9–52
ACMEKCV$CB_SET_ACME_STATUS, 9–54
ACMEKCV$CB_SET_DESIGNATED_DOI,

9–56
ACMEKCV$CB_SET_LOGON_FLAG, 9–57
ACMEKCV$CB_SET_LOGON_STATS_DOI,

9–59
ACMEKCV$CB_SET_LOGON_STATS_VMS,

9–61
ACMEKCV$CB_SET_OUTPUT_ITEM, 9–63
ACMEKCV$CB_SET_PHASE_EVENT, 9–65
ACMEKCV$CB_SET_WQE_FLAG, 9–67
ACMEKCV$CB_SET_WQE_PARAMETER,

9–69
Callout routines

ACME$CB_SET_WQE_FLAG, 4–5
ACME$CO_ACCEPT_PASSWORDS, 2–7
ACME$CO_AGENT_INITIALIZE, 2–3, 2–5,

4–2
ACME$CO_AGENT_SHUTDOWN, 2–3, 2–5
ACME$CO_AGENT_STANDBY, 2–3, 2–5
ACME$CO_AGENT_STARTUP, 2–3, 2–5
ACME$CO_ANCILLARY_MECH_1, 2–7, 2–9
ACME$CO_ANCILLARY_MECH_2, 2–7, 2–9
ACME$CO_ANCILLARY_MECH_3, 2–7, 2–9
ACME$CO_AUTHENTICATE, 2–7, 2–9

Index–3

Callout routines (cont’d)
ACME$CO_EVENT, 2–6
ACME$CO_INITIALIZE, 2–9
ACME$CO_NEW_PASSWORD_1, 2–7
ACME$CO_NEW_PASSWORD_2, 2–7
ACME$CO_PASSWORD_1, 2–7
ACME$CO_PASSWORD_2, 2–7, 2–9
ACME$CO_PRINCIPAL_NAME, 2–9
ACME$CO_QUALIFY_PASSWORD_1, 2–7
ACME$CO_QUALIFY_PASSWORD_2, 2–7
ACME$CO_QUERY, 2–6
ACME$CO_SET_PASSWORDS, 2–7
ACME$CO_SYSTEM_PASSWORD, 2–9
ACME$CO_VALIDATE_MAPPING, 2–9
ACME$_CB_SEND_LOGFILE, 3–1
for ACME agent configuration, 5–1
for ACME agent startup, 5–1
for Authenticate Principal requests, 6–1
for Change Password requests, 6–1
for obtaining well-known items, 2–13
for request processing, 7–1
for specifying privileges, 2–3
processing multiple instances of, 2–6
status codes returned by, 2–5

Callout trace flag, 3–1
Callout_status trace flag, 3–1
Common items, as item list segment, 2–11
CONTACTSYSMGR status code, 8–1
CONTINUE status code, 2–5, 5–3, 6–4

D
DECnet proxy login, 6–15
DIALOGFULL status code, 8–15
Dialog mode

and authorization and password callout
routines, 6–2

Dialogue trace flag, 3–1
DOIUNAVAILABLE status code, 8–19
DUPACME status code, 8–25
DUPCREDTYP status code, 8–15

E
ERRCLOSELOGFIL status code, 8–25
ERROPENCONFIGSFIL status code, 8–25
ERROPENLOGFIL status code, 8–26
ERROPENRESTARTFIL status code, 8–26
ERRWRITELOGFIL status code, 8–26

F
FAILURE status code, 8–26
Function codes used by ACM client

ACME$_FC_AUTHENTICATE_PRINCIPAL,
4–4

ACME$_FC_CHANGE_PASSWORD, 4–4
ACME$_FC_EVENT, 4–4, 7–4

Function codes used by ACM client (cont’d)
ACME$_FC_FREE_CONTEXT, 2–6, 4–4
ACME$_FC_QUERY, 4–4, 7–5
ACME$_FC_RELEASE_CREDENTIALS, 4–4
to call event and query callout routines, 2–6

Function modifiers, list of, 4–4

G
General trace flag, 3–1
GUARD_PASSWORDS flag

and ACME agent behavior, 2–7

I
I/O

and rules for programming an ACME agent,
2–2

INACTIVE status code, 8–27
INCOMPATSTATE status code, 8–27
INCONSTATE status code, 8–15
INSFDIALSUPPORT status code, 8–15
INTRUDER status code, 8–11
INVALIDCTX status code, 8–19
INVALIDPWD status code, 8–11
INVALIDTIME status code, 8–5
INVALIDTLV status code, 8–19
INVCREDTYP status code, 8–16
INVFLAG status code, 8–16
INVITMSEQ status code, 8–20
INVMAPPING status code, 8–11
INVNEWPWD status code, 8–5
INVPARAMETER status code, 8–16
INVPERSONA status code, 8–20
INVREQUEST status code, 8–20
Item codes, storing output results, 2–14
Item codes used by ACM client

ACME$_TARGET_DOI_ID, to specify the DOI,
4–9

ACME$_TARGET_DOI_NAME, to specify the
DOI, 4–9

to specify an ACME agent, 2–6
Item list

contents, 2–11
Item list segment

definition, 2–11
rules for using, 2–12

Itemset entry
rules for using, 2–13

M
MAPCONFLICT status code, 8–12
Message trace flag, 3–1

Index–4

N
NOACMECTX status code, 8–20
NOAGENTINIT status code, 8–27
NOCREDENTIALS status code, 8–21
NOEXTAUTH status code, 8–12
NOLOCAUTH status code, 8–12
NOMSGFND status code, 8–13
NOPRIV status code, 8–21
NORMAL status code, 8–17
NOSUCHDOI status code, 8–21
NOSUCHUSER status code, 8–13
NOTARGETCRED status code, 8–21
NOTAUTHORIZED status code, 8–6
NOTOUTITEM status code, 8–17
NOTSTARTED status code, 8–28
NULLVALUE status code, 8–17

O
OPINCOMPL status code, 8–22

P
PERFORMDIALOGUE status code, 2–5, 6–5, 8–1
Privileges, specifying, 2–3
PWDCANTCHANGE status code, 8–6
PWDEXPIRED status code, 8–6
PWDINDICT status code, 8–7
PWDINHISTORY status code, 8–7
PWDINVALID status code, 8–8
PWDINVCHAR status code, 8–8
PWDNOTCHG status code, 8–7
PWDTOOEASY status code, 8–9
PWDTOOLONG status code, 8–9
PWDTOOSHORT status code, 8–9

R
Report trace flag, 3–1
RESOURCENOTAVAIL status code, 8–17
Resource trace flag, 3–1
RETRYPWD status code, 2–7, 8–2

S
SECURITY_POLICY system parameter

GUARD_PASSWORDS flag, 2–7
SERVEREXIT status code, 8–28
SERVERSTART status code, 8–28
SET SERVER ACME command

/ABORT qualifier, 2–6
and agent control callout routines, 2–5
/DISABLE qualifier, 5–5
/ENABLE qualifier, 5–7
status codes returned by, 8–23
/TRACE qualifier, 3–1

SHOW SERVER ACME command, status codes
returned by, 8–23

Status codes
ACCEXPIRED, 8–4
ACCOUNTLOCK, 8–10
ACTIVE, 8–23
AGENTDBFULL, 8–23
AGENTLOADFAIL, 8–23
ASTCTXNOTFND, 8–14
AUTHDOWN, 8–24
AUTHFAILURE, 8–4
BUFFEROVF, 8–14
BUFTOOSMALL, 8–15
BUSY, 8–24
CONTACTSYSMGR, 8–1
CONTINUE, 2–5, 5–3, 6–4
DIALOGFULL, 8–15
DOIUNAVAILABLE, 8–19
DUPACME, 8–25
DUPCREDTYP, 8–15
ERRCLOSELOGFIL, 8–25
ERROPENCONFIGSFIL, 8–25
ERROPENLOGFIL, 8–26
ERROPENRESTARTFIL, 8–26
ERRWRITELOGFIL, 8–26
FAILURE, 8–26
INACTIVE, 8–27
INCOMPATSTATE, 8–27
INCONSTATE, 8–15
in response to an item list entry, 2–14
INSFDIALSUPPORT, 8–15
INTRUDER, 8–11
INVALIDCTX, 8–19
INVALIDPWD, 8–11
INVALIDTIME, 8–5
INVALIDTLV, 8–19
INVCREDTYP, 8–16
INVFLAG, 8–16
INVITMSEQ, 8–20
INVMAPPING, 8–11
INVNEWPWD, 8–5
INVPARAMETER, 8–16
INVPERSONA, 8–20
INVREQUEST, 8–20
list of, 2–5
MAPCONFLICT, 8–12
NOACMECTX, 8–20
NOAGENTINIT, 8–27
NOCREDENTIALS, 8–21
NOEXTAUTH, 8–12
NOLOCAUTH, 8–12
NOMSGFND, 8–13
NOPRIV, 8–21
NORMAL, 8–17
NOSUCHDOI, 8–21
NOSUCHUSER, 8–13
NOTARGETCRED, 8–21
NOTAUTHORIZED, 8–6

Index–5

Status codes (cont’d)
NOTOUTITEM, 8–17
NOTSTARTED, 8–28
NULLVALUE, 8–17
OPINCOMPL, 8–22
PERFORMDIALOGUE, 2–5, 6–5, 8–1
PWDCANTCHANGE, 8–6
PWDEXPIRED, 8–6
PWDINDICT, 8–7
PWDINHISTORY, 8–7
PWDINVALID, 8–8
PWDINVCHAR, 8–8
PWDNOTCHG, 8–7
PWDTOOEASY, 8–9
PWDTOOLONG, 8–9
PWDTOOSHORT, 8–9
RESOURCENOTAVAIL, 8–17
RETRYPWD, 2–7, 8–2
rules for returning, 2–8
security precautions when using, 8–10
SERVEREXIT, 8–28
SERVERSTART, 8–28
THREADERROR, 8–22
TIMEOUT, 8–22
UNSUPPORTED, 8–18
UNSUPREVLVL, 8–18
WAITAST, 2–5, 6–4, 8–2
WAITRESOURCE, 2–5, 6–5, 8–3

SYS$ACM[W] system service
and the ACME$_AUTHFAILURE status code,

2–8
function code that aborts a request, 2–6
item codes that determine the DOI, 4–9

SYS$AUDIT_EVENT system service, used for
auditing purposes, 2–15

SYS$CHECK_PRIVILEGE system service, used
for auditing purposes, 2–15

System service AST parameter, 2–2
System service event flag, rules for using, 2–2
System services

AUDIT_FLAGS parameter, 2–15
SYS$AUDIT_EVENT, 2–15
SYS$CHECK_PRIVILEGE, 2–15
SYS$PUTMSG, 9–48
that ACME agent must never call, 2–1, 2–4

T
THREADERROR status code, 8–22
TIMEOUT status code, 8–22
Trace flags, list of, 3–1

U
UNSUPPORTED status code, 8–18
UNSUPREVLVL status code, 8–18

V
VMS ACME

and error messages, 2–8
DECnet proxy login processing, 6–15

VM trace flag, 3–1

W
WAITAST status code, 2–5, 6–4, 8–2
WAITRESOURCE status code, 2–5, 6–5, 8–3
Well-known items

using ACME callout routines to obtain, 2–13
WQE trace flag, 3–1

Index–6

